WorldWideScience

Sample records for aquatic plant control

  1. Aquatic plant control research

    Energy Technology Data Exchange (ETDEWEB)

    Pryfogle, P.A.; Rinehart, B.N. [Idaho National Engineering Lab., Idaho Falls, ID (United States); Ghio, E.G. [Pacific Gas & Electric Company, San Francisco, CA (United States). Hydro Generation Engineering

    1997-05-01

    The Northwest region of the United States contains extensive canal systems that transport water for hydropower generation. Nuisance plants, including algae, that grow in these systems reduce their hydraulic capacity through water displacement and increased surface friction. Most control methods are applied in an ad hoc fashion. The goal of this work is to develop cost-effective, environmentally sound, long-term management strategies to prevent and control nuisance algal growth. This paper reports on a multi-year study, performed in collaboration with the Pacific Gas & Electric Company, to investigate algal growth in their canal systems, and to evaluate various control methodologies. Three types of controls, including mechanical, biological and chemical treatment, were selected for testing and evaluation. As part of this study, water quality data were collected and algal communities were sampled from numerous stations throughout the distribution system at regular intervals. This study resulted in a more comprehensive understanding of conditions leading to the development of nuisance algal growth, a better informed selection of treatment plans, and improved evaluation of the effectiveness for the control strategies selected for testing.

  2. Control of Fish and Aquatic Plants.

    Science.gov (United States)

    Hesser, R. B.; And Others

    This agriculture extension service publication from Pennsylvania State University is a handbook for the water body manager. The bulk of the contents deals with aquatic plant control. The different types of aquatic plants, their reproduction and growth, and their role in the ecology of the water body are introduced in this main section. Also, the…

  3. Aquatic plants

    DEFF Research Database (Denmark)

    Madsen, T. V.; Sand-Jensen, K.

    2006-01-01

    Aquatic fl owering plants form a relatively young plant group on an evolutionary timescale. The group has developed over the past 80 million years from terrestrial fl owering plants that re-colonised the aquatic environment after 60-100 million years on land. The exchange of species between...... terrestrial and aquatic environments continues today and is very intensive along stream banks. In this chapter we describe the physical and chemical barriers to the exchange of plants between land and water....

  4. Introduced aquatic plants and algae

    Science.gov (United States)

    Non-native aquatic plants such as waterhyacinth and hydrilla severely impair the uses of aquatic resources including recreational faculties (lakes, reservoirs, rivers) as well as timely delivery of irrigation water for agriculture. Costs associated with impacts and management of all types of aquatic...

  5. Aquatic Pest Control. Manual 99.

    Science.gov (United States)

    Missouri Univ., Columbia. Agricultural Experiment Station.

    This training manual provides information needed to meet the minimum EPA standards for certification as a commercial applicator of pesticides in the aquatic pest control category. The text discusses various water use situations; aquatic weed identification; herbicide use and effects; and aquatic insects and their control. (CS)

  6. Macrophytes: Ecology of aquatic plants

    NARCIS (Netherlands)

    Bornette, G.; Puijalon, S.

    2009-01-01

    Aquatic plants contribute to maintaining key functions and related biodiversity in freshwater ecosystems, and to provide the needs of human societies. The way the ecological niches of macrophytes are determined by abiotic filters and biotic ones is considered. A simple, broadly applicable model of t

  7. Aquatic plants clean wastewater lagoons

    Energy Technology Data Exchange (ETDEWEB)

    1980-09-01

    Water weeds that grow profusely in warm tropical and subtropical regions have always been considered a nuisance; current research is focusing on methods to cull benefits from such aquatic proliferations. Weeds, especially the water hyacinth, are proving to be useful in the purification of wastewater lagoons. The plants extract inorganic and organic toxicants from the effluent. Hyacinths employed in experiments conducted in Puerto Rico are removed from the lagoons to prevent overcrowding. This harvest is sent through a digester to produce methane. (2 diagrams, 3 photos)

  8. Assessment of aquatic plants in the reservoirs of AES-tietê and development of an integrated control model for the most important species.

    Science.gov (United States)

    Velini, Edivaldo Domingues; Galo, Maria Lourdes B T; Carvalho, Fernando Tadeu; Martins, Dagoberto; Cavenaghi, Anderson Luis; Trindade, Maria Lúcia Bueno; Bravin, Luis Fernando N; Negrisoli, Eduardo; Antuniassi, Ulisses Rocha; Simionato, José L A; Santos, Silvio C A

    2005-01-01

    The general objective of this work was to develop a monitoring and management model for aquatic plants that could be used in reservoir cascades in Brazil, using the reservoirs of AES-Tietê as a study case. The investigations were carried out at the reservoirs of Barra-Bonita, Bariri, Ibitinga, Promissão, and Nova-Avanhandava, located in the Tietê River Basin; Agua Vermelha, located in the Grande River Basin; Caconde, Limoeiro, and Euclides da Cunha, which are part of the Pardo River Basin; and the Mogi-Guaçu reservoir, which belongs to the Mogi-Guaçu River basin. The main products of this work were: development of techniques using satellite-generated images for monitoring and planning aquatic plant control; planning and construction of a boat to move coating plant masses and an airboat equipped with a DGPS navigation and application flow control system. Results allowed to conclude that the occurrence of all types of aquatic plants is directly associated with sedimentation process and, consequently, with nutrient and light availability. Reservoirs placed at the beginning of cascades are more subject to sedimentation and occurrence of marginal, floating and emerged plants, and are the priority when it comes to controlling these plants, since they provide a supply of weeds for the other reservoirs. Reservoirs placed downstream show smaller amounts of water-suspended solids, with greater transmission of light and occurrence of submerged plants. PMID:15656166

  9. Freshwater aquatic plant biomass production in Florida

    Energy Technology Data Exchange (ETDEWEB)

    Reddy, K.R.; Sutton, D.L.; Bowes, G.

    1983-01-01

    About 8% (1.2 million ha) of the total surface area of Florida is occupied by freshwater. Many of these water bodies are eutrophic. Nutrients present in these water bodies can be potentially used to culture aquatic plants as a possible feedstock for methane production. This paper summarizes the results of known research findings on biomass production potential of freshwater aquatic plants in Florida and identifies key research needs to improve the quality and quantity of biomass yields. Among floating aquatic plants, biomass yield potential was in the order of water-hyacinth > water lettuce > pennywort > salvinia > duckweed > azolla. Pennywort, duckweed, and azolla appear to perform well during the cooler months compared to other aquatic plants. Among emergent plants, biomass yield potential was in the order of southern wild rice > cattails > soft rush > bulrush. Cultural techniques, nutrient management, and environmental factors influencing the biomass yields were discussed. 68 references.

  10. Physical model of a floating trash boom to control aquatic weeds at the TVA Widows Creek Fossil Plant

    International Nuclear Information System (INIS)

    This paper reports that the Tennessee Valley Authority (TVA) Widows Creek Fossil plant seasonally encounters adverse accumulations of aquatic weeds at the intakes of the condenser cooling water pumps. To reduce the accumulations, a floating trash boom has been proposed for the intakes. To evaluate the hydraulic feasibility of a boom, a physical model of the intakes has been built at the TVA Engineering Laboratory. The model was used to determine the boom alignment and depth of skimming needed to successfully deflect weeds away from the intakes and provide self-cleaning

  11. Aquatic Plants and Lake Ecosystems

    Czech Academy of Sciences Publication Activity Database

    Pokorný, Jan; Květ, Jan

    Oxford : Blackwell Science Ltd, 2003 - (O´Sullivan, P.; Reynolds, C.), s. 309-340 ISBN 0-632-04797-6 R&D Projects: GA ČR GA206/01/1113 Institutional research plan: CEZ:AV0Z6087904 Keywords : Aquatic macrophytes * green algae Subject RIV: EH - Ecology, Behaviour

  12. Controle químico de plantas aquáticas: Polygonum lapathifolium Chemical control of aquatic plants: Polygonum lapathifolium

    Directory of Open Access Journals (Sweden)

    M.A. Terra

    2003-01-01

    Full Text Available O objetivo deste trabalho foi avaliar a eficiência de alguns herbicidas no controle de Polygonum lapathifolium. O experimento foi instalado e conduzido no Núcleo de Pesquisas Avançadas em Matologia, pertencente à Faculdade de Ciências Agronômicas da UNESP - Botucatu-SP. Plantas de P. lapathifolium foram coletadas no rio Tietê e cultivadas em caixas d'água de fibra de vidro de 0,6 x 0,6 x 0,45 m, contendo 15 cm de solo. Os tratamentos utilizados foram: 2,4-D amina a 720 a 1.440 g e.a. ha-1; diquat a 480 g i.a. ha-1; glyphosate a 2.400 e 3.360 g e.a. ha-1 + Aterbane 0,5% v/v; imazapyr a 250 e 500 g e.a. ha-1; e testemunha sem aplicação de herbicida. A aplicação foi realizada com um pulverizador costal pressurizado a CO2, a pressão constante de 2,0 bars, equipado com barra de pulverização munida de dois bicos de jato plano, tipo Teejet XR 110.02 VS. O consumo de calda foi de 200 L ha-1. O delineamento experimental utilizado foi o inteiramente casualizado, com três repetições. As avaliações foram visuais, atribuindo-se notas para os sintomas de injúrias de acordo com uma escala percentual. Apenas o herbicida glyphosate, independentemente da dose utilizada, controlou as plantas de Polygonum lapathifolium, atingindo 100% aos 46 dias após a aplicação. Inicialmente o herbicida diquat promoveu injúrias severas, entretanto, no decorrer do período de avaliações, elas se dissiparam e as plantas rebrotaram.The objective of this trial was to study the efficacy of some herbicides in controlling P. lapathifolium. The experiment was carried out at Núcleo de Pesquisas Avançadas em Matologia of the Faculdade de Ciências Agronômicas/Botucatu - São Paulo, Brazil. Polygonum lapathifolium plants were collected in the Tietê River and cultivated in 0.6 x 0.6 x 0.45 m fiber glass tanks containing 15 cm of soil. The herbicides used were 2,4-D amine at 720 and 1,440 g e.a. ha-1, diquat at 480 g a.i. ha-1, glyphosate at 2,400 and 3,360 g e

  13. Hydrothermal liquefaction of aquatic plants to bio-oils

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, D.; Zhang, L.; Zhang, S.; Fu, H.; Chen, J. [Fudan Univ., Shanghai (China). Dept. of Environmental Science and Engineering

    2010-07-01

    This study investigated the feasibility of producing bio-oils from aquatic plants by hydrothermal liquefaction using 2 typical aquatic plants as feedstocks, notably Enteromorpha prolifera and water hyacinth which are typical aquatic plants found in seawater and freshwater. Bio-oil production from these 2 feedstocks was studied in a batch reactor at controlled temperatures under an initial partial pressure of 2.0 MPa N2. The effects of temperature and reaction time on the liquefaction products yields were also studied. GC-MS and elemental analysis were carried out to analyze the composition of bio-oils. The bio-oil produced from Enteromorpha prolifera contained mainly fatty acids, esters and quite a few heterocyclic compounds. Phenols and their derivatives were found to be the main compounds in bio-oils produced from water hyacinth. An elemental analysis revealed that bio-oils produced from the 2 aquatic plants have higher energy density. It was concluded that the use of aquatic plants as feedstock for liquid fuel can contribute to environmental protection and sustainable energy development by reducing greenhouse gas emissions associated with the burning of fossil fuels. 9 refs., 3 tabs.

  14. Aquatic effect assessment for plant protection products

    OpenAIRE

    Brock, T.C.M.; Arts, G.H.P.; Hulscher, ten, T.E.M.; Jong, de, D.; Luttik, R.; Roex, E.; Smit, C.E.; Vliet, van, W.

    2011-01-01

    In this report new proposals for the aquatic effects assessment of plant protection products (pesticides) in the Netherlands are described for edge-of-field surface waters (drainage ditches) falling under the domain of the Plant Protection Product Regulation (pre-registration) and for water bodies falling under the domain of the Water Framework Directive (post-registration). These methods are developed on request of two Dutch ministries (Ministry of Economic Affairs, Agriculture and Innovatio...

  15. CAM Photosynthesis in Submerged Aquatic Plants

    Science.gov (United States)

    Keeley, J.E.

    1998-01-01

    Crassulacean acid metabolism (CAM) is a CO2-concentrating mechanism selected in response to aridity in terrestrial habitats, and, in aquatic environments, to ambient limitations of carbon. Evidence is reviewed for its presence in five genera of aquatic vascular plants, including Isoe??tes, Sagittaria, Vallisneria, Crassula, and Littorella. Initially, aquatic CAM was considered by some to be an oxymoron, but some aquatic species have been studied in sufficient detail to say definitively that they possess CAM photosynthesis. CO2-concentrating mechanisms in photosynthetic organs require a barrier to leakage; e.g., terrestrial C4 plants have suberized bundle sheath cells and terrestrial CAM plants high stomatal resistance. In aquatic CAM plants the primary barrier to CO2 leakage is the extremely high diffusional resistance of water. This, coupled with the sink provided by extensive intercellular gas space, generates daytime CO2(Pi) comparable to terrestrial CAM plants. CAM contributes to the carbon budget by both net carbon gain and carbon recycling, and the magnitude of each is environmentally influenced. Aquatic CAM plants inhabit sites where photosynthesis is potentially limited by carbon. Many occupy moderately fertile shallow temporary pools that experience extreme diel fluctuations in carbon availability. CAM plants are able to take advantage of elevated nighttime CO2 levels in these habitats. This gives them a competitive advantage over non-CAM species that are carbon starved during the day and an advantage over species that expend energy in membrane transport of bicarbonate. Some aquatic CAM plants are distributed in highly infertile lakes, where extreme carbon limitation and light are important selective factors. Compilation of reports on diel changes in titratable acidity and malate show 69 out of 180 species have significant overnight accumulation, although evidence is presented discounting CAM in some. It is concluded that similar proportions of the aquatic

  16. Phytoremediation using eichhornia crassipes aquatic plant

    International Nuclear Information System (INIS)

    Phytoremediation is a cost effective approach for the Treatment of polluted soil and contaminated water. The effectiveness of one aquatic plant Eichhornia crassipes was evaluated for its capability in removing copper from copper solution using atomic absorption spectroscopy (AAS). The aquatic plant was placed in solutions containing 2 mg/L, 4 mg/L an d 6 mg/L of copper, for a period of 18 days and the change in Cu concentration was measured. Results showed an increase of copper within the plants' root and shoot tissues and a decrease of copper concentration in the solution. It was found that roots tend to accumulate a higher amount of copper than shoots due to translocation process. The maximum growth of Eichhornia crassipes was in the 2 mg/L solution which shows that growth was affected by the presence of Cu in the water. The maximum removal of copper in the solutions containing Eichhornia crassipes was 87.5% from the 4 mg/L solution. Eichhornia crassipes accumulated upto 1265.0 mg/kg of Cu in its roots indicating that this aquatic plant species may be used as a hyper-accumulator for copper. (author)

  17. Leachate treatment and anaerobic digestion using aquatic plants and algae

    OpenAIRE

    Ström, Emma

    2010-01-01

    Phytoremediation as a way to control and lessen nutrient concentrations in landfill leachate is a cheap and environmentally sustainable method. Accumulated nutrients in the plants can then be removed by harvesting and anaerobically digesting the biomass. This study presents two aquatic plants (L. minor (L.) and P. stratiotes (L.)) and one microalgae species (C. vulgaris (L.)), their capacities for growth and nutrient removal in leachate from Häradsudden landfill, Sweden, are investigated. The...

  18. The maximization of the productivity of aquatic plants for use in controlled ecological life support systems (CELSS)

    Science.gov (United States)

    Thompson, B. G.

    Lemna minor (common duckweed) and a Wolffia sp. were grown in submerged growth systems. Submerged growth increased the productivity/unit volume (P/UV) of the organisms and may allow these plants to be used in a controlled ecological life support system (CELSS).

  19. Aquatic Plant Management Program current status and seasonal workplan

    Energy Technology Data Exchange (ETDEWEB)

    Burns, E.R.; Bates, A.L.; Webb, D.H.

    1993-07-01

    The objective of the TVA Aquatic Plant Management Program is to support in an environmentally and economically responsible manner, the balanced multiple uses of the water resource of the Tennessee Valley. This is accomplished by following an integrated approach to prevent introduction and spread of noxious species, documenting occurrence and spread of existing species, and suppressing or eliminating problems in designated high use areas. It is not the TVA objective, nor is it biologically feasible and prudent to eliminate all aquatic vegetation. Aerial photography, helicopter reconnaissance, and field surveys are used to assess distributions and abundance of various aquatic macrophytes. Water level fluctuations are supplemented by herbicide applications to control undesirable vegetation. Investigations are conducted to evaluate water level fluctuation schemes, as well as biological, mechanical, and alternative chemical control techniques which offer potential for more environmentally compatible and cost-effective management operations.

  20. Decomposition of aquatic plants in lakes

    Energy Technology Data Exchange (ETDEWEB)

    Godshalk, G.L.

    1977-01-01

    This study was carried out to systematically determine the effects of temperature and oxygen concentration, two environmental parameters crucial to lake metabolism in general, on decomposition of five species of aquatic vascular plants of three growth forms in a Michigan lake. Samples of dried plant material were decomposed in flasks in the laboratory under three different oxygen regimes, aerobic-to-anaerobic, strict anaerobic, and aerated, each at 10/sup 0/C and 25/sup 0/C. In addition, in situ decomposition of the same species was monitored using the litter bag technique under four conditions.

  1. Differentiating aquatic plant communities in a eutrophic river using hyperspectral and multispectral remote sensing

    Science.gov (United States)

    Tian, Y.Q.; Yu, Q.; Zimmerman, M.J.; Flint, S.; Waldron, M.C.

    2010-01-01

    valuable approach for assessing the effectiveness of management practices for controlling aquatic plant growth in inland waters, as well as for routine monitoring of aquatic plants in lakes and suitable lentic environments. ?? 2010 Blackwell Publishing Ltd.

  2. Evaluating the feasibility of planting aquatic plants for habitat restoration in shallow Mississippi lakes

    Science.gov (United States)

    Planting aquatic plants is a technique used to restore native aquatic plant communities in lakes lacking aquatic plants. However, the feasibility of using this restoration technique in Mississippi lakes has not been evaluated. We conducted two exclosure experiments to evaluate the success of planti...

  3. Aquatic Pest Control. Sale Publication 4071.

    Science.gov (United States)

    Wamsley, Mary Ann, Ed.; Vermeire, Donna M., Ed.

    The information in this manual applies to control of aquatic pests in recreational waters, agricultural reservoirs, ornamental ponds, coastal bays, estuaries and channels, and drinking water reservoirs. Mechanical, cultural, biological, and chemical control methods are discussed. The majority of the material is devoted to weed control in static…

  4. Antagonism of Some Aquatic Hyphomycetes against Plant Pathogenic Fungi

    OpenAIRE

    S. C. SATI; P. Arya

    2010-01-01

    The antagonistic activity of five aquatic hyphomycetes, viz., Heliscus lugdunensis, Tetrachaetum elegans, Tetracladium breve, T. marchalianum, and T. nainitalense, against seven plant pathogenic fungi was studied using a dual culture technique. Inhibitory activity of tested aquatic hyphomycetes was determined by measuring the radial growth of plant pathogenic fungi on dual culture plates. Tetrachaetum elegans showed antagonistic activity against Colletotrichum falcatum, Fusarium oxysporum, Py...

  5. Quantitative assessment of aquatic impacts of power plants

    International Nuclear Information System (INIS)

    Progress is reported in a continuing study of the design and analysis of aquatic environmental monitoring programs for assessing the impacts of nuclear power plants. Analysis of data from Calvert Cliffs, Pilgrim, and San Onofre nuclear power plants confirmed the generic applicability of the control-treatment pairing design suggested by McKenzie et al. (1977). Substantial progress was made on the simulation model evaluation task. A process notebook was compiled in which each model equation was translated into a standardized notation. Individual model testing and evaluating was started. The Aquatic Generalized Environmental Impact Simulator (AGEIS) was developed and will be tested using data from Lake Keowee, South Carolina. Further work is required to test the various models and perfect AGEIS for impact analyses at actual power plant sites. Efforts on the hydrologic modeling task resulted in a compendium of models commonly applied to nuclear power plants and the application of two well-received hydrodynamic models to data from the Surry Nuclear Power Plant in Virginia. Conclusions from the study of these models indicate that slight inaccuracies of boundary data have little influence on mass conservation and accurate bathymetry data are necessary for conservation of mass through the model calculations. The hydrologic modeling task provides valuable reference information for model users and monitoring program designers

  6. Quantitative assessment of aquatic impacts of power plants

    Energy Technology Data Exchange (ETDEWEB)

    McKenzie, D.H.; Arnold, E.M.; Skalski, J.R.; Fickeisen, D.H.; Baker, K.S.

    1979-08-01

    Progress is reported in a continuing study of the design and analysis of aquatic environmental monitoring programs for assessing the impacts of nuclear power plants. Analysis of data from Calvert Cliffs, Pilgrim, and San Onofre nuclear power plants confirmed the generic applicability of the control-treatment pairing design suggested by McKenzie et al. (1977). Substantial progress was made on the simulation model evaluation task. A process notebook was compiled in which each model equation was translated into a standardized notation. Individual model testing and evaluating was started. The Aquatic Generalized Environmental Impact Simulator (AGEIS) was developed and will be tested using data from Lake Keowee, South Carolina. Further work is required to test the various models and perfect AGEIS for impact analyses at actual power plant sites. Efforts on the hydrologic modeling task resulted in a compendium of models commonly applied to nuclear power plants and the application of two well-received hydrodynamic models to data from the Surry Nuclear Power Plant in Virginia. Conclusions from the study of these models indicate that slight inaccuracies of boundary data have little influence on mass conservation and accurate bathymetry data are necessary for conservation of mass through the model calculations. The hydrologic modeling task provides valuable reference information for model users and monitoring program designers.

  7. Public lakes, private lakeshore: modeling protection of native aquatic plants.

    Science.gov (United States)

    Schroeder, Susan A; Fulton, David C

    2013-07-01

    Protection of native aquatic plants is an important proenvironmental behavior, because plant loss coupled with nutrient loading can produce changes in lake ecosystems. Removal of aquatic plants by lakeshore property owners is a diffuse behavior that may lead to cumulative impacts on lake ecosystems. This class of behavior is challenging to manage because collective impacts are not obvious to the actors. This paper distinguishes positive and negative beliefs about aquatic plants, in models derived from norm activation theory (Schwartz, Adv Exp Soc Psychol 10:221-279, 1977) and the theory of reasoned action (Fishbein and Ajzen, Belief, attitude, intention, and behavior: an introduction to theory and research, Addison-Wesley, Boston 1975), to examine protection of native aquatic plants by Minnesota lakeshore property owners. We clarify how positive and negative evaluations of native aquatic plants affect protection or removal of these plants. Results are based on a mail survey (n = 3,115). Results suggest that positive evaluations of aquatic plants (i.e., as valuable to lake ecology) may not connect with the global attitudes and behavioral intentions that direct plant protection or removal. Lakeshore property owners' behavior related to aquatic plants may be driven more by tangible personal benefits derived from accessible, carefully managed lakeshore than intentional action taken to sustain lake ecosystems. The limited connection of positive evaluations of aquatic plants to global attitudes and behavioral intentions may reflect either lack of knowledge of what actions are needed to protect lake health and/or unwillingness to lose perceived benefits derived from lakeshore property. PMID:23609308

  8. VASCULAR PLANTS AS ENGINEERS OF OXYGEN IN AQUATIC SYSTEMS

    Science.gov (United States)

    The impact of organisms on oxygen is one of the most dramatic examples of ecosystem engineering on Earth. In aquatic systems, which have much lower oxygen concentrations than the atmosphere, vascular aquatic plants can affect oxygen concentrations significantly not only on long t...

  9. Ecogenotoxicity testing of aquatic environment by comet assay in plants

    Directory of Open Access Journals (Sweden)

    Anita Mukherjee

    2015-05-01

    Full Text Available One of the goals of environmental monitoring is the detection of potentially hazardous compounds in water. We have set up a standard method to apply the Comet assay in aquatic plants that could be of great interest to evaluate cytotoxicity, genotoxicity and oxidative stress on the same species regarded as most sensitive to environmental pollutants. The aim of the present study was to set up of standardized procedure to evaluate genotoxicity in aquatic plants- Ceratophyllum demersum one that is submerged free floating and the other is Lemna minor - a fresh water floating plant by Comet assay. Electrophoresis and unwinding times were adapted to obtain minimum DNA migration evaluated as tail intensity % or tail moment in the control group and, at the same time maximum sensitivity for DNA damage with known genotoxicants. We further investigated the cytotoxicity and oxidative stress induced in the same species. Based on the repeatability of results obtained we suggest that Ceratophyllum, Lemna can serve as model species and Comet assay could be adopted to monitor the eco-genotoxicity of water pollutants.

  10. Master plan: Guntersville Reservoir Aquatic Plant Management. Executive summary

    Energy Technology Data Exchange (ETDEWEB)

    1992-12-31

    In 1989, Congress provided funding to start a five-year comprehensive project to manage aquatic plants in Guntersville Reservoir, to be jointly implemented by the US Army Corps of Engineers (Corps) and Tennessee Valley Authority (TVA). TVA serves as the overall project coordinator and is the lead agency for this project. Known as the Joint Agency Guntersville Project (JAGP), the project will test and demonstrate innovative management technologies, and incorporate the most effective technologies into a comprehensive aquatic plant management plan for Guntersville Reservoir. The JAGP is intended to serve as a National Demonstration Project for aquatic plant management. As part of this JAGP, the Master Plan for Aquatic Plant Management for the Guntersville Reservoir Project, Alabama-Tennessee is authorized by Corps Contract Number DACW62-90-C-0067.

  11. Cytochemical and ultrastructural aspects of aquatic carnivorous plant turions

    Czech Academy of Sciences Publication Activity Database

    Plachno, B.J.; Adamec, Lubomír; Kozieradzka-Kiszkurno, M.; Świątek, P.; Kamińska, I.

    2014-01-01

    Roč. 251, č. 6 (2014), s. 1449-1454. ISSN 0033-183X Institutional support: RVO:67985939 Keywords : aquatic carnivorous plants * winter buds * storage functions Subject RIV: EF - Botanics Impact factor: 2.651, year: 2014

  12. Field effectiveness of Bacillus thuringiensis israelensis (Bti) against Aedes (Stegomyia) aegypti (Linnaeus) in ornamental ceramic containers with common aquatic plants.

    Science.gov (United States)

    Chen, C D; Lee, H L; Nazni, W A; Seleena, B; Lau, K W; Daliza, A R; Ella Syafinas, S; Mohd Sofian, A

    2009-04-01

    This study was undertaken to determine the impact of larvaciding using a Bti (Bacillus thuringiensis israelensis) formulation (VectoBac WG) against Aedes aegypti larvae in earthen jars containing aquatic plants. Aquatic plants commonly used for landscaping, Pistia stratiotes (L.) (Liliopsida: Araceae) and Sagittaria sp. (Liliopsida: Alismataceae) were placed inside earthen jars filled with 50 L tap water. All earthen jars were treated with Bti formulation at 8g/1000L. Untreated jars with and without aquatic plants were also set up as controls. Fifty laboratory-bred 2nd instar larvae were introduced into each earthen jar. All earthen jars were observed daily. Number of adults emerged was recorded and the larval mortality was calculated. The indicators of effectiveness of Bti for these studies were (i) residual activities of Bti, and (ii) larval mortality in earthen jars with or without aquatic plants. The treated earthen jars containing P. stratiotes and Sagittaria sp. showed significant residual larvicidal effect up to 7 weeks, in comparison to untreated control (p < 0.05). The larval mortality ranged from 77.34% - 100% for jars with aquatic plants vs 80.66% - 100% for jars without aquatic plant. Earthen jars treated with Bti without aquatic plants also exhibited significantly longer residual larvicidal activity of up to 10 weeks (p < 0.05). The larval mortality ranged from 12.66% - 100% for jars with aquatic plants vs 59.34% - 100% for jars without aquatic plant. Thus, earthen jars without aquatic plants exhibited longer residual larvicidal effect compared to those with aquatic plants. This study suggested that containers with aquatic plants for landscaping should be treated more frequently with Bti in view of the shortened residual activity. PMID:19696734

  13. Modeling the element cycle of aquatic plants

    International Nuclear Information System (INIS)

    Aquatic plants play an important role in element cycles in wetlands and the efficiency of the process is extremely related to their proportional biomass allocation to above- and belowground organs. Therefore, the framework of most macrophyte productivity models is usually similar with a mass-balance approach consisting of gross production, respiration and mortality losses and the translocation between organs. These growth models are incorporated with decomposition models to evaluate the annual cycle of elements. Perennial emergent macrophytes with a relatively large biomass have a particularly important role in element cycles. Their phenological stages, such as the beginning of hibernation of belowground rhizome systems, emergence of new shoots in spring with resources stocked in the rhizomes, flowering, downward translocation of photosynthetic products later on and then the mortality of the aboveground system in late autumn, depend on the environmental conditions, basically the nutrients, water depth, climatic variations, etc. Although some species retain standing dead shoots for a long time, dead shoots easily fall into water, starting to decompose in the immediate aftermath. However, their decomposition rates in the water are relatively low, causing to accumulate large amounts of organic sediments on the bottom. Together with the deposition of allochthonous suspended matters in the stand, this process decreases the water depth, transforming wetlands gradually into land. The depth of penetration of roots into the sediments to uptake nutrients and water is extremely site specific, however, in water-logged areas, the maximum penetrable depth may be approximately estimated by considering the ability of oxygen transport into the rhizome system. The growth of perennial submerged plants is also estimated by a process similar to that of emergent macrophytes. However, compared with emergent macrophytes, the root system of submerged macrophytes is weaker, and the nutrient

  14. Aquatic plant surface as a niche for methanotrophs

    OpenAIRE

    YasuyoshiSakai; NaokoYoshida; AkioMurakami

    2014-01-01

    This study investigated the potential local CH4 sink in various plant parts as a boundary environment of CH4 emission and consumption. By comparing CH4 consumption activities in cultures inoculated with parts from 39 plant species, we observed significantly higher consumption of CH4 associated with aquatic plants than other emergent plant parts such as woody plant leaves, macrophytic marine algae, and sea grass. In situ activity of CH4 consumption by methanotrophs associated with different s...

  15. Aquatic plant surface as a niche for methanotrophs

    OpenAIRE

    Yoshida, Naoko; Iguchi, Hiroyuki; Yurimoto, Hiroya; Murakami, Akio; Sakai, Yasuyoshi

    2014-01-01

    This study investigated the potential local CH4 sink in various plant parts as a boundary environment of CH4 emission and consumption. By comparing CH4 consumption activities in cultures inoculated with parts from 39 plant species, we observed significantly higher consumption of CH4 associated with aquatic plants than other emergent plant parts such as woody plant leaves, macrophytic marine algae, and sea grass. In situ activity of CH4 consumption by methanotrophs associated with different sp...

  16. Aquatic plant surface as a niche for methanotrophs

    Directory of Open Access Journals (Sweden)

    Naoko eYoshida

    2014-02-01

    Full Text Available This study investigated the potential local CH4 sink in various plant parts as a boundary environment of CH4 emission and consumption. By comparing CH4 consumption activities in cultures inoculated with parts from 39 plant species, we observed significantly higher consumption of CH4 associated with aquatic plants than other emergent plant parts such as woody plant leaves, macrophytic marine algae, and sea grass. In situ activity of CH4 consumption by methanotrophs associated with different species of aquatic plants was in the range of 3.7 – 37 μmol⋅h-1⋅g-1 dry weight, which was ca 5.7-370 fold higher than epiphytic CH4 consumption in submerged parts of emergent plants. The qPCR-estimated copy numbers of the particulate methane monooxygenase-encoding gene pmoA were variable among the aquatic plants and ranged in the order of 105 to 107 copies⋅g-1 dry weight, which correlated with the observed CH4 consumption activities. Phylogenetic identification of methanotrophs on aquatic plants based on the pmoA sequence analysis revealed a predominance of diverse gammaproteobacterial type-I methanotrophs, including a phylotype of a possible plant-associated methanotroph with the closest identity (86-89% to Methylocaldum gracile.

  17. Bioremoval of toxic elements with aquatic plants and algae

    Energy Technology Data Exchange (ETDEWEB)

    Wang, T.C.; Ramesh, G. [Harbor Branch Oceanographic Inst., Fort Pierce, FL (United States); Weissman, J.C.; Varadarajan, R. [Microbial Products, Inc., Vero Beach, FL (United States); Benemann, J.R.

    1995-12-31

    Aquatic plants were screened to evaluate their ability to adsorb dissolved metals. The plants screened included those that are naturally immobilized (attached algae and rooted plants) and those that could be easily separated from suspension (filamentous microalgae, macroalgae, and floating plants). Two plants were observed to have high adsorption capabilities for cadmium (Cd) and zinc (Zn) removal: one blue green filamentous alga of the genus Phormidium and one aquatic rooted plant, water milfoil (Myriophyllum spicatum). These plants could also reduce the residual metal concentration to 0.1 mg/L or less. Both plants also exhibited high specific adsorption for other metals (Pb, Ni, and Cu) both individually and in combination. Metal concentrations were analyzed with an atomic absorption spectrophotometer (AAS).

  18. STUDY OF AQUATIC ANGIOSPERMIC PLANTS OF ANAND CITY, GUJARAT, INDIA

    Directory of Open Access Journals (Sweden)

    K. R. PATEL1 AND N. K. PATEL2

    2014-06-01

    Full Text Available The present study deals with the taxonomic study of Aquatic Angiosperms growing throughout the Anand city. The plants are listed along with their brief taxonomic account of each species with current nomenclature, vernacular name, family and uses. The  collected plants are systematically observed during present work, During my study I observed various aquatic angiospermic plants such as   Ceratophyllum demersum, Colocasia esculenta, Eichhornia crassipes, Ipomoea aquatica, Nymphoides indicum, Ludwigia repens, Polygonum orientale, Typha elephantina, Lemna perpusilla, Spirodella polyrrhiza, Xanthium indicum, Phyllanthus reticulatus, Cynodon dactylon, Hydrilla verticillata were very common. Whereas Nymphaea nouchali, Polygonum barbatum, Scirpus articulatus were very rare in the study area.

  19. Late cretaceous aquatic plant world in Patagonia, Argentina.

    Science.gov (United States)

    Cúneo, N Rubén; Gandolfo, María A; Zamaloa, María C; Hermsen, Elizabeth

    2014-01-01

    In this contribution, we describe latest Cretaceous aquatic plant communities from the La Colonia Formation, Patagonia, Argentina, based on their taxonomic components and paleoecological attributes. The La Colonia Formation is a geological unit deposited during a Maastrichtian-Danian transgressive episode of the South Atlantic Ocean. This event resulted in the deposition of a series of fine-grained sediments associated with lagoon systems occurring along irregular coastal plains in northern Patagonia. These deposits preserved a diverse biota, including aquatic and terrestrial plants and animals. The aquatic macrophytes can be broadly divided into two groups: free-floating and rooted, the latter with emergent or floating leaves. Free-floating macrophytes include ferns in Salviniaceae (Azolla and Paleoazolla) and a monocot (Araceae). Floating microphytes include green algae (Botryoccocus, Pediastrum and Zygnemataceae). Among the rooted components, marsileaceous water ferns (including Regnellidium and an extinct form) and the eudicot angiosperm Nelumbo (Nelumbonaceae) are the dominant groups. Terrestrial plants occurring in the vegetation surrounding the lagoons include monocots (palms and Typhaceae), ferns with affinities to Dicksoniaceae, conifers, and dicots. A reconstruction of the aquatic plant paleocommuniy is provided based on the distribution of the fossils along a freshwater horizon within the La Colonia Formation. This contribution constitutes the first reconstruction of a Cretaceous aquatic habitat for southern South America. PMID:25148081

  20. Late cretaceous aquatic plant world in Patagonia, Argentina.

    Directory of Open Access Journals (Sweden)

    N Rubén Cúneo

    Full Text Available In this contribution, we describe latest Cretaceous aquatic plant communities from the La Colonia Formation, Patagonia, Argentina, based on their taxonomic components and paleoecological attributes. The La Colonia Formation is a geological unit deposited during a Maastrichtian-Danian transgressive episode of the South Atlantic Ocean. This event resulted in the deposition of a series of fine-grained sediments associated with lagoon systems occurring along irregular coastal plains in northern Patagonia. These deposits preserved a diverse biota, including aquatic and terrestrial plants and animals. The aquatic macrophytes can be broadly divided into two groups: free-floating and rooted, the latter with emergent or floating leaves. Free-floating macrophytes include ferns in Salviniaceae (Azolla and Paleoazolla and a monocot (Araceae. Floating microphytes include green algae (Botryoccocus, Pediastrum and Zygnemataceae. Among the rooted components, marsileaceous water ferns (including Regnellidium and an extinct form and the eudicot angiosperm Nelumbo (Nelumbonaceae are the dominant groups. Terrestrial plants occurring in the vegetation surrounding the lagoons include monocots (palms and Typhaceae, ferns with affinities to Dicksoniaceae, conifers, and dicots. A reconstruction of the aquatic plant paleocommuniy is provided based on the distribution of the fossils along a freshwater horizon within the La Colonia Formation. This contribution constitutes the first reconstruction of a Cretaceous aquatic habitat for southern South America.

  1. A controlled aquatic ecological life support system (CAELSS) for combined production of fish and higher plant biomass suitable for integration into a lunar or planetary base.

    Science.gov (United States)

    Blum, V; Andriske, M; Eichhorn, H; Kreuzberg, K; Schreibman, M P

    1995-10-01

    Based on the construction principle of the already operative Closed Equilibrated Biological Aquatic System (C.E.B.A.S.) the concept of an aquaculture system for combined production of animal and plant biomass was developed. It consists of a tank for intensive fish culture which is equipped with a feeding lock representing also a trap for biomass removal followed by a water recycling system. This is an optimized version of the original C.E.B.A.S. filters adapted to higher water pollutions. It operates in a fully biological mode and is able to convert the high ammonia ion concentrations excreted by the fish gills into nitrite ions. The second biomass production site is a higher plant cultivator with an internal fiber optics light distributor which may utilize of solar energy. The selected water plant is a tropical rootless duckweed of the genus Wolffia which possesses a high capacity in nitrate elimination and is terrestrially cultured as a vegetable for human nutrition in Southeast Asia. It is produced in an improved suspension culture which allows the removal of excess biomass by tangential centrifugation. The plant cultivator is able to supply the whole system with oxygen for respiration and eliminates vice versa the carbon dioxide exhaled by the fish via photosynthesis. A gas exchanger may be used for emergency purposes or to deliver excess oxygen into the environment and may be implemented into the air regeneration system of a closed environment of higher order. The plant biomass is fed into a biomass processor which delivers condensed fresh and dried biomass as pellets. The recovered water is fed back into the aquaculture loop. The fresh plants can be used for human nutrition immediately or can be stored after sterilization in an adequate packing. The dried Wolffia pellets are collected and brought into the fish tank by an automated feeder. In parallel the water from the plant cultivator is driven back to the animal tank by a pump. The special feature of the

  2. Algal-bloom control by allelopathy of aquatic macrophytes——A review

    Institute of Scientific and Technical Information of China (English)

    Hongying HU; Yu HONG

    2008-01-01

    Algal-bloom control is an important issue for water environment protection as it induces several nega-tive impacts on the lives of aquatic organisms, aquacul-ture, landscaping, and human health. The development of an environment-friendly, cost-effective, and convenient alternative for controlling algal bloom has gained much concern. Using the allelopathy of aquatic macrophytes as a novel and safe method for algal-bloom control is a promising alternative. This paper reviews the develop-ment and potential application about allelopathy of aquatic plants on algae, including the allelopathic research history, the potential research problems, the research methodology, and the reported aquatic macro-phytes and their inhibitory allelochemicals. Potential modes of inhibition action of allelochemicals on algae, possible ways for application, and future development directions of research on algal-bloom control by aquatic macrophytes were also presented.

  3. Mercury uptake and accumulation by four species of aquatic plants

    Energy Technology Data Exchange (ETDEWEB)

    Skinner, Kathleen [Department of Biology, Russell Sage College, 45 Ferry Street, Troy, NY 12180 (United States)]. E-mail: skinnk@sage.edu; Wright, Nicole [NEIWPCC-NYSDEC, 625 Broadway, 4th Floor, Albany, NY 12233-3502 (United States)]. E-mail: ndwright@gw.dec.state.ny.us; Porter-Goff, Emily [Department of Biology, Russell Sage College, 45 Ferry Street, Troy, NY 12180 (United States)

    2007-01-15

    The effectiveness of four aquatic plants including water hyacinth (Eichornia crassipes), water lettuce (Pistia stratiotes), zebra rush (Scirpus tabernaemontani) and taro (Colocasia esculenta) were evaluated for their capabilities in removing mercury from water. The plants were exposed to concentrations of 0 mg/L, 0.5 mg/L or 2 mg/L of mercury for 30 days. Assays were conducted using both Microtox[reg] (water) and cold vapor Atomic Absorption Spectroscopy (AAS) (roots and water). The Microtox[reg] results indicated that the mercury induced acute toxicity had been removed from the water. AAS confirmed an increase of mercury within the plant root tissue and a corresponding decrease of mercury in the water. All species of plants appeared to reduce mercury concentrations in the water via root uptake and accumulation. Water lettuce and water hyacinth appeared to be the most effective, followed by taro and zebra rush, respectively. - Four species of aquatic plants reduced mercury in water.

  4. Mercury uptake and accumulation by four species of aquatic plants

    International Nuclear Information System (INIS)

    The effectiveness of four aquatic plants including water hyacinth (Eichornia crassipes), water lettuce (Pistia stratiotes), zebra rush (Scirpus tabernaemontani) and taro (Colocasia esculenta) were evaluated for their capabilities in removing mercury from water. The plants were exposed to concentrations of 0 mg/L, 0.5 mg/L or 2 mg/L of mercury for 30 days. Assays were conducted using both Microtox[reg] (water) and cold vapor Atomic Absorption Spectroscopy (AAS) (roots and water). The Microtox[reg] results indicated that the mercury induced acute toxicity had been removed from the water. AAS confirmed an increase of mercury within the plant root tissue and a corresponding decrease of mercury in the water. All species of plants appeared to reduce mercury concentrations in the water via root uptake and accumulation. Water lettuce and water hyacinth appeared to be the most effective, followed by taro and zebra rush, respectively. - Four species of aquatic plants reduced mercury in water

  5. A co-beneficial system using aquatic plants: bioethanol production from free-floating aquatic plants used for water purification.

    Science.gov (United States)

    Soda, S; Mishima, D; Inoue, D; Ike, M

    2013-01-01

    A co-beneficial system using constructed wetlands (CWs) planted with aquatic plants is proposed for bioethanol production and nutrient removal from wastewater. The potential for bioethanol production from aquatic plant biomass was experimentally evaluated. Water hyacinth and water lettuce were selected because of their high growth rates and easy harvestability attributable to their free-floating vegetation form. The alkaline/oxidative pretreatment was selected for improving enzymatic hydrolysis of the aquatic plants. Ethanol was produced with yields of 0.14-0.17 g-ethanol/ g-biomass in a simultaneous saccharification and fermentation mode using a recombinant Escherichia coli strain or a typical yeast strain Saccharomyces cerevisiae. Subsequently, the combined benefits of the CWs planted with the aquatic plants for bioethanol production and nutrient removal were theoretically estimated. For treating domestic wastewater at 1,100 m(3)/d, it was inferred that the anoxic-oxic activated sludge process consumes energy at 3,200 MJ/d, whereas the conventional activated sludge process followed by the CW consumes only 1,800 MJ/d with ethanol production at 115 MJ/d. PMID:23752400

  6. USE OF VASCULAR AQUATIC PLANTS IN PHYTOTOXICITY STUDIES WITH SEDIMENTS

    Science.gov (United States)

    Sediments and rooted aquatic plants are major components of wetland systems. ediments in these systems act as sinks and reservoirs for organic and inorganic pollutants that are adsorbed to sediment particles or contained-in interstitial water that exists between the particle spac...

  7. Avoidance and tolerance to avian herbivores in aquatic plants

    OpenAIRE

    Hidding, A.

    2009-01-01

    Tolerance and avoidance are the two contrasting strategies that plants may adopt to cope with herbivores. Tolerance traits define the degree to which communities remain unaffected by herbivory. Trade-offs between herbivore avoidance and competitive strength and between avoidance and colonization ability may shape population traits and communities under herbivory. In this thesis I present comparative and experimental studies on populations and communities of aquatic plants and how they deal wi...

  8. Shifts in Rhizoplane Communities of Aquatic Plants after Cadmium Exposure

    OpenAIRE

    Stout, Lisa M.; Nüsslein, Klaus

    2005-01-01

    In this study we present the comparative molecular analysis of bacterial communities of the aquatic plant Lemna minor from a contaminated site (RCP) and from a laboratory culture (EPA), as well as each of these with the addition of cadmium. Plants were identified as L. minor by analysis of the rpl16 chloroplast region. Comparative bacterial community studies were based on the analyses of 16S rRNA clone libraries, each containing about 100 clones from the root surfaces of plants. Bacterial com...

  9. Method for treating wastewater using microorganisms and vascular aquatic plants

    Science.gov (United States)

    Wolverton, B. C. (Inventor)

    1983-01-01

    A method for treating wastewater compresses subjecting the wastewater to an anaerobic setting step for at least 6 hours and passing the liquid effluent from the anaerobic settling step through a filter cell in an upflow manner. There the effluent is subjected first to the action of anaerobic and facultative microorganisms, and then to the action of aerobic microorganisms and the roots of at least one vascular aquatic plant.

  10. [90Sr and 137Cs in higher aquatic plants of the Chernobyl nuclear plant exlusion zone

    Science.gov (United States)

    Gudkov, D I; Derevets, V V; Kuz'menko, M I; Nazarov, A B

    2001-01-01

    The content of radionuclides 90Sr and 137Cs in higher aquatic plants of water objects within Chernobyl NPP exclusion zone has been analysed. Biodiversity of phytocenose was studied and species-indicators of radioactive contamination were revealed. The seasonal dynamics of radionuclide content in macrophytes was studied and the role of main aquatic plant clumps in processes of 137Cs and 90Sr distribution in abiotic component of biohydrocenose was demonstrated. PMID:11402559

  11. Removal of fluoride contamination in water by three aquatic plants.

    Science.gov (United States)

    Karmakar, Sukalpa; Mukherjee, Joydeep; Mukherjee, Somnath

    2016-01-01

    Phytoremediation, popularly known as 'green technology' has been employed in the present investigation to examine the potential of fluoride removal from water by some aquatic plants. Fluoride contamination in drinking water is very much prevalent in different parts of the world including India. Batch studies were conducted using some aquatic plants e.g., Pistia stratiotes, Eichhornia crassipes, and Spirodela polyrhiza which profusely grow in natural water bodies. The experimental data exhibited that all the above three aquatic floating macrophytes could remove fluoride to some relative degree of efficiency corresponding to initial concentration of fluoride 3, 5, 10, 20 mg/l after 10 days exposure time. Result showed that at lower concentration level i.e., 3 mg/L removal efficiency of Pistia stratiotes (19.87%) and Spirodela polyrhiza (19.23%) was found to be better as compared to Eichhornia crassipes (12.71%). Some of the physiological stress induced parameters such as chlorophyll a, chlorophyll b, total chlorophyll, carotenoid, total protein, catalase, and peroxidase were also studied to explore relative damage within the cell. A marginal stress was imparted among all the plants for lower concentration values (3 mg/L), whereas at 20 mg/l, maximum damage was observed. PMID:26247406

  12. Radionuclides in aquatic ecosystems associated with power plants

    International Nuclear Information System (INIS)

    An overview is presented of liquid radioactivity releases to the environment from most of the operating nuclear power reactors in the U.S. through 1973. Concentrations and half-lives of radionuclides in the primary coolant water of a typical boiling water reactor are tabulated. It is noted that the releases of radionuclides from operating nuclear power plants have amounted to small fractions of the limits established by Title 10, Code of Federal Regulations, Part 20 (10CFR20). Recommendations are made for research on the effects of nuclear power plants on aquatic ecosystems

  13. Mercury uptake and accumulation by four species of aquatic plants.

    Science.gov (United States)

    Skinner, Kathleen; Wright, Nicole; Porter-Goff, Emily

    2007-01-01

    The effectiveness of four aquatic plants including water hyacinth (Eichornia crassipes), water lettuce (Pistia stratiotes), zebra rush (Scirpus tabernaemontani) and taro (Colocasia esculenta) were evaluated for their capabilities in removing mercury from water. The plants were exposed to concentrations of 0 mg/L, 0.5 mg/L or 2 mg/L of mercury for 30 days. Assays were conducted using both Microtox (water) and cold vapor Atomic Absorption Spectroscopy (AAS) (roots and water). The Microtox results indicated that the mercury induced acute toxicity had been removed from the water. AAS confirmed an increase of mercury within the plant root tissue and a corresponding decrease of mercury in the water. All species of plants appeared to reduce mercury concentrations in the water via root uptake and accumulation. Water lettuce and water hyacinth appeared to be the most effective, followed by taro and zebra rush, respectively. PMID:16781033

  14. Applicator Training Manual for: Aquatic Weed Control.

    Science.gov (United States)

    Herron, James W.

    The aquatic weeds discussed in this manual include algae, floating weeds, emersed weeds, and submerged weeds. Specific requirements for pesticide application are given for static water, limited flow, and moving water situations. Secondary effects of improper application rates and faulty application are described. Finally, techniques of limited…

  15. Downstream Effects of a Hydroelectric Reservoir on Aquatic Plant Assemblages

    Directory of Open Access Journals (Sweden)

    Ivan Bernez

    2002-01-01

    Full Text Available Macrophytes were studied downstream of the Rophémel hydroelectric dam on the River Rance (Côtes d’Armor Department, western France to assess the effects of hydroelectric functioning on river macrophyte communities. We studied ten representative sections of the hydro-peaking channel on five occasions in 1995 and 1996, on a 15-km stretch of river. Floristic surveys were carried out on sections 50 m in length, and genera of macroalgae, species of bryophyta, hydrophytes, and emergent rhizophytes were identified. For the aquatic bryophytes and spermatophytes section of our study, we compared our results with 19th century floristic surveys, before the dam was built. During the vegetative growth period, the hydro-peaking frequency was low. The plant richness was highest near the dam. The macrophyte communities were highly modified according to the distance to the dam. The frequency and magnitude of hydro-peaking was related to the aquatic macrophyte richness in an Intermediate Disturbance Hypothesis position. However, the results of the eco-historical comparison with 19th century floristic surveys point to the original nature of the flora found at the site. Some floral patterns, seen during both periods and at an interval of 133 years, were indicative of the ubiquity of the aquatic flora and of the plants’ adaptability. This demonstrates the importance of taking river basin history into account in such biological surveys.

  16. Toxicity Concerns of Semiconducting Nanostructures on Aquatic Plant Hydrilla verticillata

    Directory of Open Access Journals (Sweden)

    Mishra, Priya

    2013-04-01

    Full Text Available In this article, we have examined toxicity of nanostructures such as flower-like ZnO capped with starch, spherical uncapped ZnO and spherical CdS on aquatic plant Hydrilla verticillata, which has not done before. Hydrilla plant was exposed by these nanoparticles at a concentration of 400 mg/L for 7 days and changes in the biochemical parameters such as catalase activity, chlorophyll content and protein content were observed. It was perceived that spherical CdS nanoparticles were more toxic than the corresponding ZnO nanoparticles since there was a decrease in chlorophyll content and increase in catalase activity. This effort upsurge an interest in understanding the hazards of nanomaterials and their risk, which poses an impact on our environment and how they can be monitored via simple biochemical assays on plant systems.

  17. The Impact of Endothall on the Aquatic Plant Community of Kress Lake, Washington

    OpenAIRE

    Parsons, Jenifer K.; Hamel, K. S.; O'Neal, S. L,; Moore,, James E.

    2004-01-01

    CA dense mat-forming population of Eurasian watermilfoil ( Myriophyllum spicatum L . ) was interfering with fishing and recreation in a small western Washington lake. A low concentration (1.5 mg/L active ingredient) of the herbicide endothall formulated as Aquathol® K was used in 2000 to attempt to selectively control the Eurasian watermilfoil. Aquatic plant biomass and frequency data were collected before treatment, ten weeks after treatment and during the gr...

  18. The effect of radioactive contamination of the Yenisei river on cytogenetic characteristics of aquatic plants

    Energy Technology Data Exchange (ETDEWEB)

    Bolsunovsky, A.; Medvedeva, M. [Institute of Biophysics SB Russian Academy of Sciences (Russian Federation); Muratova, E. [Institute of Forest SB Russian Academy of Sciences (Russian Federation)

    2014-07-01

    The Yenisei River, one of the world's largest rivers, is contaminated with artificial radionuclides released by one of the Russian facilities producing weapons-grade plutonium (the Mining-and-Chemical Combine, MCC), which has been in operation for many years. Aquatic plants are an important component of water ecosystems, which can accumulate high levels of radionuclides and, thus, can be used in bio-monitoring and bioremediation. The purpose of the study was to assess levels of radionuclides and to evaluate the frequency of chromosomal aberrations in samples of submerged plants collected in different parts of the Yenisei River. The following species were studied: Fontinalis antipyretica, Batrachium kauffmanii, Myriophyllum spicatum, Elodea canadensis, Ceratophyllum demersum and various Potamogeton species. Samples were collected at positions in the vicinity of the MCC discharge point, at a distance of 330 km downstream of Krasnoyarsk, and upstream of the MCC, during sampling campaigns in 2003-2012. Detailed analysis of radioactive contamination of aquatic plants of the Yenisei River revealed large-scale contamination of aquatic plants as far as 250 km downstream of the MCC. Before the last MCC reactor was shut down in 2010, about 30 radionuclides, including uranium and transuranium elements, were detected in the biomass of aquatic plants. The highest concentration factors of the major radionuclides were obtained for Fontinalis antipyretica and Potamogeton lucens. Samples of the plants collected after the shutdown of the reactor contained considerably lower activity levels of artificial radionuclides, and their diversity was significantly decreased. Results of cytogenetic investigations of aquatic plants collected when the reactor was still operating (2003-2009) suggest that at the MCC discharge site and downstream the occurrence of chromosomal aberrations in ana-telophase and metaphase cells of the plants was considerably higher (up to 30%) than in the control

  19. Observations on anopheline breeding in relation to aquatic plants in different breeding habitats of Kheda (Gujarat).

    Science.gov (United States)

    Kant, Rajni; Srivastava, H C

    2004-09-01

    Water bodies infested with aquatic vegetations may pose problems in mosquito control through bio-environmental methods. Paucity of information pertaining to association of mosquito breeding with aquatic vegetation was the basis for present investigation. The mosquito breeding sites infested with solitary/dominating plant community viz., Eichhornia crassipes, Ipomoea aquatica, Hydrilla verticillata, Nymphea neuchali, Trapa bispinosa, Lemna paucicostata, Trachelomonas spp., Azolla pinnata, Algae spp. and Cynodon dactylon were selected for the study. The investigation revealed that breeding of eleven anopheline species was associated with Eichhornia in different habitats followed by Hydrilla, algae and Cynodon (8 each), Ipomoea and Trapa (6), Lemna. and Nymphea (5), Azolla and Trachelomonas (4). An. subpictus was associated with all types of vegetation. An. annularis, An. nigerrimus and An. barbirostris were associated with nine plant species. An. culicifacies, the principal malaria vector was found breeding in association with seven aquatic plants and showed strong association with Cynodon, Hydrilla and algae. The species diversity in habitats infested with Hydrilla, algae and Cynodon seems to be most favourable for the breeding of An. culicifacies. It is suggested that thinning or removal of such vegetations at regular interval may help to reduce vector population and enhance the efficacy of biological control agents particularly the larvivorous fishes in such habitats. PMID:16509256

  20. Bioprospecção de macroalgas marinhas e plantas aquáticas para o controle da antracnose do feijoeiro Bioprospecting of marine seaweeds and aquatic plants for controlling the bean anthracnose

    Directory of Open Access Journals (Sweden)

    Guilherme Fernandes de Abreu

    2008-02-01

    Full Text Available O objetivo deste trabalho foi testar o efeito local, residual e sistêmico, de extratos de 17 espécies de macroalgas marinhas e de duas plantas aquáticas, sobre a antracnose do feijoeiro. Para tanto, os espécimes foram coletados, identificados, secos em estufa (50ºC/ 48 h, moídos e seus compostos extraídos com etanol. Plantas de feijoeiro (Phaseolus vulgaris cv. Uirapuru foram cultivadas em vasos, em casa-de-vegetação. Os 19 extratos foram subdivididos e testados em duas etapas de seleção e comparação independentes, utilizando-se o delineamento inteiramente ao acaso, com cinco repetições (vasos com três plantas. As plantas foram pulverizadas com extratos na concentração de 50 mg de peso seco/mL quando apresentavam o primeiro trifólio expandido. Para verificar o efeito local, as plantas foram inoculadas com uma suspensão de 1,2 x 10(6 conídios/mL 4 horas após o tratamento, enquanto que para o estudo do efeito residual e sistêmico, as plantas foram inoculadas 7 dias após o tratamento. A severidade da antracnose foi avaliada 7 dias após a inoculação (dai na planta inteira e no trifólio não tratado (efeito sistêmico, utilizando-se uma escala de 1 a 9. As algas e plantas que reduziram significativamente a severidade da doença foram comparadas em experimento avaliado aos 7 e aos 12 dai. O extrato de Bryothamnion seaforthii apresentou efeito local, reduzindo em 35% a severidade da antracnose, enquanto o extrato de Ulva fasciata demonstrou efeito residual com redução de 22% na doença aos 12 dai. Somente os extratos de Lemna sp. e U. fasciata reduziram sistemicamente a severidade de doença aos 7 dai na ordem de 55 e 44%, respectivamente, em relação à testemunha. O possível modo de ação desses extratos é discutido.The goal of this work was to test the local, residual as well as systemic effect of extracts from 17 marine seaweeds and two aquatic plant species against the bean anthracnose. For that, specimens were

  1. Application of vascular aquatic plants for pollution removal, energy and food production in a biological system

    Science.gov (United States)

    Wolverton, B. C.; Barlow, R. M.; Mcdonald, R. C.

    1975-01-01

    Vascular aquatic plants such as water hyacinths (Eichhornia crassipes) (Mart.) Solms and alligator weeds (Alternanthera philoxeroides) (Mart.) Griesb., when utilized in a controlled biological system (including a regular program of harvesting to achieve maximum growth and pollution removal efficiency), may represent a remarkably efficient and inexpensive filtration and disposal system for toxic materials and sewage released into waters near urban and industrial areas. The harvested and processed plant materials are sources of energy, fertilizer, animal feed, and human food. Such a system has industrial, municipal, and agricultural applications.

  2. Bioeconomic Modeling of the Invasive Aquatic Plants Hydrilla verticillata (hydrilla), Eichhornia crassipes (water hyacinth), and Pistia stratiotes (water lettuce) and their impacts on angler effort on Florida lakes

    OpenAIRE

    Adams, Damian C.; Lee, Donna J.

    2005-01-01

    The invasive aquatic plants Hydrilla verticillata (hydrilla), Eichhornia crassipes (water hyacinth), and Pistia stratiotes (water lettuce) have the potential to negatively impact recreational use of Florida lakes if consistent, adequate control expenditures are not made. In the mid-1990's, Florida significantly reduced its spending on invasive aquatic plant control measures, which resulted in a significant increase in needed control expenditures in subsequent years. This paper attempts to for...

  3. Shoot branching of the aquatic carnivorous plant Utricularia australis as the key process of plant growth

    Czech Academy of Sciences Publication Activity Database

    Adamec, Lubomír

    2011-01-01

    Roč. 51, č. 1 (2011), 133-148. ISSN 0079-2047 Institutional research plan: CEZ:AV0Z60050516 Keywords : aquatic carnivorous plant * branching characteristics * mathematical model Subject RIV: EF - Botanics Impact factor: 0.833, year: 2011

  4. An updated checklist of aquatic plants of Myanmar and Thailand

    Directory of Open Access Journals (Sweden)

    Yu Ito

    2014-01-01

    Full Text Available The flora of Tropical Asia is among the richest in the world, yet the actual diversity is estimated to be much higher than previously reported. Myanmar and Thailand are adjacent countries that together occupy more than the half the area of continental Tropical Asia. This geographic area is diverse ecologically, ranging from cool-temperate to tropical climates, and includes from coast, rainforests and high mountain elevations. An updated checklist of aquatic plants, which includes 78 species in 44 genera from 24 families, are presented based on floristic works. This number includes seven species, that have never been listed in the previous floras and checklists. The species (excluding non-indigenous taxa were categorized by five geographic groups with the exception of to reflect the rich diversity of the countries' floras.

  5. Meta-Analysis of the Copper, Zinc, and Cadmium Absorption Capacities of Aquatic Plants in Heavy Metal-Polluted Water

    OpenAIRE

    Jing Li; Haixin Yu; Yaning Luan

    2015-01-01

    The use of aquatic plants for phytoremediation is an important method for restoring polluted ecosystems. We sought to analyze the capacity of different aquatic plant species to absorb heavy metals and to summarize available relevant scientific data on this topic. We present a meta-analysis of Cu, Zn, and Cd absorption capacities of aquatic plants to provide a scientific basis for the selection of aquatic plants suitable for remediation of heavy-metal pollution. Plants from the Gramineae, Pont...

  6. Chromium accumulation in submerged aquatic plants treated with tannery effluent at Kanpur, India.

    Science.gov (United States)

    Gupta, Kiran; Gaumat, Sumati; Mishra, Kumkum

    2011-09-01

    Aquatic macrophytes have been widely studied because of their capability of absorbing contaminants from water and their subsequent use in biomonitoring. This study presents a comparison of Cr accumulating potential of submerged aquatic plants viz Vallisneria spiralis and Hydrilla verticillata. These plants were treated with various concentrations of treated tannery effluent collected from UASB, Jajmau, Kanpur under repeated exposure in controlled laboratory conditions in order to assess their maximum bioaccumulation potential. The maximum accumulation of 385.6 and 201.6 microg g(-1) dry weight was found in roots of V. spiralis and the whole plants of H. verticillata, respectively at 100% concentration after 9th day of effluent exposure. The chlorophyll and protein content of both species decreased with increase in effluent concentration and duration. At highest concentration and duration a maximum reduction of 67.4 and 62.66% in total chlorophyll content, 9.97 and 4.66% in carotenoid content and 62.66 and 59.36% in protein content was found in V. spiralis and H. verticillata respectively. Anatomical studies in both V. spiralis and H. verticillata was carried out to assess the effects of metal accumulation within the plants. Changes in the anatomical structures of both plants exhibits the capacity of these species to act as indicator of effluent toxicity. The high accumulation potential of Cr by both plants revealed their capability to remove pollutants from effluent. PMID:22319874

  7. Remote Sensing and Modeling for Improving Operational Aquatic Plant Management

    Science.gov (United States)

    Bubenheim, Dave

    2016-01-01

    The California Sacramento-San Joaquin River Delta is the hub for California’s water supply, conveying water from Northern to Southern California agriculture and communities while supporting important ecosystem services, agriculture, and communities in the Delta. Changes in climate, long-term drought, water quality changes, and expansion of invasive aquatic plants threatens ecosystems, impedes ecosystem restoration, and is economically, environmentally, and sociologically detrimental to the San Francisco Bay/California Delta complex. NASA Ames Research Center and the USDA-ARS partnered with the State of California and local governments to develop science-based, adaptive-management strategies for the Sacramento-San Joaquin Delta. The project combines science, operations, and economics related to integrated management scenarios for aquatic weeds to help land and waterway managers make science-informed decisions regarding management and outcomes. The team provides a comprehensive understanding of agricultural and urban land use in the Delta and the major water sheds (San Joaquin/Sacramento) supplying the Delta and interaction with drought and climate impacts on the environment, water quality, and weed growth. The team recommends conservation and modified land-use practices and aids local Delta stakeholders in developing management strategies. New remote sensing tools have been developed to enhance ability to assess conditions, inform decision support tools, and monitor management practices. Science gaps in understanding how native and invasive plants respond to altered environmental conditions are being filled and provide critical biological response parameters for Delta-SWAT simulation modeling. Operational agencies such as the California Department of Boating and Waterways provide testing and act as initial adopter of decision support tools. Methods developed by the project can become routine land and water management tools in complex river delta systems.

  8. Training for Certification: Aquatic Pest Control.

    Science.gov (United States)

    Wamsley, Mary Ann, Ed.; Vermeire, Donna M., Ed.

    This Cooperative Extension Service publication from Mississippi State University is a training guide for commercial applicators. Weed control, vertebrate pest control, and environmental considerations and restrictions are the three major parts of the document. The weed control section discusses non-pesticide, mechanical, and biological control as…

  9. GCFR plant control system

    International Nuclear Information System (INIS)

    A plant control system is being designed for a gas-cooled fast breeder reactor (GCFR) demonstration plant. Control analysis is being performed as an integral part of the plant design process to ensure that control requirements are satisfied as the plant design evolves. The load control portion of the plant control system provides stable automatic (closed-loop) control of the plant over the 25% to 100% load range. Simulation results are presented to demonstrate load control system performance. The results show that the plant is controllable at full load with the control system structure selected, but gain scheduling is required to achieve desired performance over the load range

  10. Effects of Eichhornia crassipes Growth on Aquatic Plants in Dianchi Lake

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    [Objective] The aim was to study the effects of Eichhornia crassipes as an invasive plant on aquatic plants in Dianchi Lake. [Method] Based on the determination of chlorophyll content of phytoplankton and submerged plant (Potamogeton pectinatus) in Dianchi Lake in different months, the effects of E. crassipes on aquatic plants in Dianchi Lake were studied, and the allelopathy effect of root culture solution of E. crassipes on Microcystis aquaticum was discussed. [Result] The growth of E. crassipes in Dianch...

  11. Plant response strategies to stress and disturbance: the case of aquatic plants

    Indian Academy of Sciences (India)

    Michèle Trémolières

    2004-12-01

    The environmental factors controlling the establishment and development of plants in different ecosystems are of two types, stress and disturbance. The effects of stress or disturbance on aquatic systems are discussed in relation to the following questions: Can we predict the state and rate of recolonization after a disturbance? What are the strategies of recolonization developed by plants? How high is the resilience of a disturbed system? Two theories, the intermediate disturbance hypothesis, and the patch dynamics concept proposed to predict the composition, structure and dynamics of plants due to physical-chemical factors, were tested on two scales, that of communities and that of species, within two alluvial floodplains (the Rhine and the Rhône systems in France). With regard to the change of community on a larger scale (i.e. the whole network of the cut-off channels in the floodplain), large gradients of connection and disturbance induce high diversities within communities. Moreover, the highest flood disturbance induces a higher species richness and the occurrence of a particular species. The change in species is analysed using biological traits (morphological, reproductive or physiological). In the floodplain of the river Rhône, the response of plants corresponds well to theory, i.e. that habitats with an intermediate disturbance are richer than more or less disturbed habitats. So we can predict, through the biological traits, the functioning of a habitat. The last remaining question is that of the resilience of the system, which can be discussed in terms of species competition and the risk of biological invasion after an opening of habitat.

  12. ECOLOGICAL IMPACT OF INTEGRATED CHEMICAL AND BIOLOGICAL AQUATIC WEED CONTROL

    Science.gov (United States)

    This final report presents results of a four-year study of the ecological impacts of chemical, biological, and integrated methods of aquatic weed control. Biological and water quality changes occurred as abundance of macrophytic vegetation was altered by natural factors or manage...

  13. Invasion strategies in clonal aquatic plants: are phenotypic differences caused by phenotypic plasticity or local adaptation?

    Science.gov (United States)

    Riis, Tenna; Lambertini, Carla; Olesen, Birgit; Clayton, John S.; Brix, Hans; Sorrell, Brian K.

    2010-01-01

    Background and Aims The successful spread of invasive plants in new environments is often linked to multiple introductions and a diverse gene pool that facilitates local adaptation to variable environmental conditions. For clonal plants, however, phenotypic plasticity may be equally important. Here the primary adaptive strategy in three non-native, clonally reproducing macrophytes (Egeria densa, Elodea canadensis and Lagarosiphon major) in New Zealand freshwaters were examined and an attempt was made to link observed differences in plant morphology to local variation in habitat conditions. Methods Field populations with a large phenotypic variety were sampled in a range of lakes and streams with different chemical and physical properties. The phenotypic plasticity of the species before and after cultivation was studied in a common garden growth experiment, and the genetic diversity of these same populations was also quantified. Key Results For all three species, greater variation in plant characteristics was found before they were grown in standardized conditions. Moreover, field populations displayed remarkably little genetic variation and there was little interaction between habitat conditions and plant morphological characteristics. Conclusions The results indicate that at the current stage of spread into New Zealand, the primary adaptive strategy of these three invasive macrophytes is phenotypic plasticity. However, while limited, the possibility that genetic diversity between populations may facilitate ecotypic differentiation in the future cannot be excluded. These results thus indicate that invasive clonal aquatic plants adapt to new introduced areas by phenotypic plasticity. Inorganic carbon, nitrogen and phosphorous were important in controlling plant size of E. canadensis and L. major, but no other relationships between plant characteristics and habitat conditions were apparent. This implies that within-species differences in plant size can be explained

  14. Photoacoustic analysis of the ultrasonic irradiation effect in the photosynthetic activity in aquatic lirium plants

    International Nuclear Information System (INIS)

    We report, the application of the photoacoustic technique for monitoring the photosynthesis evolution in aquatic lirium (Eichhornia Crassipes), before and after it was exposed to ultrasonic irradiations. We obtained the disappearance of the phototobaric contribution in the PA signal measured for the irradiated samples with ultrasound of 17 kHz, and therefore of a possible damage in the centers producing the photosynthesis, due to the irradiation. These results show the utility of the ultrasonic irradiation, as well as, of the photosynthesis monitoring by means of the photoacoustic technique, for the elaboration and establishment of methodologies in the control of this aquatic plant, whose propagation causes many consequences extremely unfavorable for the environment, as well as for the diverse human activities that are developed in the bodies of water in the tropical and sub-tropical regions of the world

  15. Natural attenuation of weathered oil using aquatic plants in a farm in Southeast Mexico.

    Science.gov (United States)

    Rivera-Cruz, María Del Carmen; Trujillo-Narcía, Antonio; Trujillo-Rivera, Eduardo A; Arias-Trinidad, Alfredo; Mendoza-López, María Remedios

    2016-09-01

    An experiment was conducted in field for three years to assess the sustainability of aquatic plants Leersia hexandra, Cyperus articulatus, and Eleocharis palustris for use in the removal of total hydrocarbons of weathered oil in four areas contaminated with 60916-119373 mg/kg of hydrocarbons. The variables evaluated were coverage of plant, dry matter, density of plant growth-promoting rhizobacteria, and the removal of total weathered oil. The variables showed statistical differences (p = 0.05) due to the effects of time and the amount of oil in the soil. The three aquatic plants survived on the farm during the 36-month evaluation. The grass L. hexandra yielded the greatest coverage of plant but was inhibited by the toxicity of the oil, which, in contrast, stimulated the coverage of C. articulatus. The rhizosphere of L. hexandra in control soil was more densely colonized by N-fixing bacteria, while the density of phosphate and potassium solubilizing rhizobacteria was stimulated by exposure to oil. C. articulatus coverage showed positive relationship with the removal of weathered oil; positive effect between rhizosphere and L. hexandra grass coverage was also identified. These results contributed to the removal of weathered oil in Gleysols flooded and affected by chronic discharges of crude oil. PMID:26939740

  16. Eficácia do carfentrazone-ethyl no controle de plantas aquáticas latifoliadas em caixas-d'água Efficiency of carfentrazone-ethyl in controlling large-leafed aquatic plants using boxes of water

    Directory of Open Access Journals (Sweden)

    F.T. Carvalho

    2005-06-01

    Full Text Available Atualmente, alguns herbicidas estão sendo desenvolvidos para o controle de plantas daninhas aquáticas. O objetivo deste trabalho foi avaliar a eficácia do carfentrazone-ethyl em ambiente aquático para o controle pós-emergente de aguapé, alface-d'água e salvínia. O trabalho foi desenvolvido em caixas-d'água, no período de julho a setembro de 2004, no NUPAM - FCA/UNESP, em Botucatu. O delineamento experimental adotado foi o de blocos ao acaso, com sete tratamentos e quatro repetições, sendo as unidades experimentais constituídas pelas caixasd'água. Os tratamentos foram os seguintes: testemunha sem herbicida; Aurora 400 CE (75, 150 e 300 mL ha-1; Roundup (3,0 L ha-1, Aurora 400 CE + Roundup (75 mL + 3,0 L ha-1 e Aurora 400 CE + Arsenal N.A. (75 mL + 2,0 L ha-1. Observou-se que o tratamento Aurora 400 CE (300 mL ha-1 é altamente eficaz no controle de alface-d'água (Pistia stratiotes; o tratamento Roundup (3,0 L ha-1 é altamente eficaz no controle de aguapé (Eichhornia crassipes; o tratamento Aurora 400 CE + Roundup (75 mL + 3,0 L ha-1 é eficaz no controle de aguapé (E. crassipes, alface-d'água (P. stratiotes e salvínia (Salvinia auriculata; e o tratamento Aurora 400 CE + Arsenal (75 mL + 2,0 L ha-1 é eficaz no controle de aguapé (E. crassipes e alface-d'água (P. stratiotes. A mistura Aurora 400 CE + Roundup (75 mL + 3,0 L ha-1 apresentou-se viável e foi o único tratamento eficaz no controle das três espécies estudadas.Some herbicides are being currently developed for the control of aquatic weeds.The objective of this work was to evaluate the efficiency of Aurora 400 CE in aquatic environment for the post-emergence control of Eichhornia crassipes, Pistia stratiotes and Salvinia auriculata. The experiment was developed in boxes of water, from 22/07 to 20/09/2004, at NUPAM-FCA/UNESP, Botucatu, SP, Brazil. The experimental design was in randomized blocks with seven treatments and four repetitions, with the units consisting

  17. The response of three aquatic plants to different concentration od selenite in media

    OpenAIRE

    Mohorko, Evelina

    2013-01-01

    The response of three aquatic plants (Myriophyllum spicatum, Ceratophyllum demersum and Potamogeton perfoliatus) to the change in selenite content in their environment was studied. All chosen aquatic plants were at first exposed to the medium with 10 mg/L of added selenite for various days of exposure (1 to 15 days). After the treatments the plants were transplanted to medium without added selenite for 5 days. After each treatment the photochemical efficiency of photosystem II (PS II), electr...

  18. Ash characteristics and plant nutrients in some aquatic biomasses

    Science.gov (United States)

    Masto, Reginald; Pandit, Ankita; George, Joshy; Mukhopadhyay, Sangeeta; Selvi, Vetrivel; Ram, Lal

    2016-04-01

    Aquatic biomasses are explored as potential fuel source for direct combustion because of their faster growth and no land requirement. The energy density and the ash characteristics of the aquatic biomasses are to be evaluated for their suitability for energy extraction. In the study, four aquatic plant samples namely Eichornia crassipes, Hydrilla verticilleta, Lemna minor, Spirogyra spp were collected from a pond in Digwadih Campus of Central Institute of Mining and Fuel Research, Dhanbad. The biomasses were air dried, powdered and ashed at different temperatures. Volatile C was relatively lower in Spirogyra and Hydrilla (53 %) than Eichornia (62.6 %) or Lemna (59.7 %), whereas fixed C was higher for Eichornia and Lemna (about 10 %) and lower for Hydrilla (1 %). Ultimate analysis showed that the carbon content was in the order Eichornia > Lemna > Spirogyra > Hydrilla. The IR spectra of each raw biomass is compared to their respective ashes obtained at different temperatures (500-900°C). With increase in ashing temperature from 500-900°C there is gradual breakdown of the cellulosic structure hence, peaks around 2900-2800cm-1 caused by aliphatic C-H vibration tends to disappear slowly in ash. More number of peaks appears at lower wavenumbers in ashes of all the biomass samples indicating towards increased percentage of inorganic ion species. Considerable enrichment of SiO2 is validated with prominent peaks at 1100-900 cm-1 in all the ashes. Lemna and Spirogyra has a similar ash composition (Si > Al > Ca > K), whereas, Ca was higher in Hydrilla (Si > Ca > K > Al). Eichornia (Si > K > Ca > Al) has higher K and Ca than Al. SiO2 and Al2O3 were higher in Spirogyra, while SiO2 and CaO in Eichornia and Hydrilla. K first increased from 500-700/800⁰C, and then decreased from 800-900⁰C. Cl is lost slowly in ash from 500-700/800⁰C and then by a drastic reduction from 800-900⁰C. S is enhanced in ash at all temperatures although the change is quite small. Most of the Cl

  19. Functional trait composition of aquatic plants can serve to disentangle multiple interacting stressors in lowland streams.

    Science.gov (United States)

    Baattrup-Pedersen, Annette; Göthe, Emma; Riis, Tenna; O'Hare, Matthew T

    2016-02-01

    Historically, close attention has been paid to negative impacts associated with nutrient loads to streams and rivers, but today hydromorphological alterations are considered increasingly implicated when lowland streams do not achieve good ecological status. Here, we explore if trait-abundance patterns of aquatic plants change along gradients in hydromorphological degradation and eutrophication in lowland stream sites located in Denmark. Specifically, we hypothesised that: i) changes in trait-abundance patterns occur along gradients in hydromorphological degradation and ii) trait-abundance patterns can serve to disentangle effects of eutrophication and hydromorphological degradation in lowland streams reflecting that the mechanisms behind changes differ. We used monitoring data from a total of 147 stream reaches with combined data on aquatic plant species abundance, catchment land use, hydromorphological alterations (i.e. planform, cross section, weed cutting) and water chemistry parameters. Traits related to life form, dispersal, reproduction and survival together with ecological preference values for nutrients and light (Ellenberg N and L) were allocated to 41 species representing 79% of the total species pool. We found clear evidence that habitat degradation (hydromorphological alterations and eutrophication) mediated selective changes in the trait-abundance patterns of the plant community. Specific traits could distinguish hydromorphological degradation (free-floating, surface; anchored floating leaves; anchored heterophylly) from eutrophication (free-floating, submerged; leaf area). We provide a conceptual framework for interpretation of how eutrophication and hydromorphological degradation interact and how this is reflected in trait-abundance patterns in aquatic plant communities in lowland streams. Our findings support the merit of trait-based approaches in biomonitoring as they shed light on mechanisms controlling structural changes under environmental

  20. Safe, Effective Use of Pesticides, A Manual for Commercial Applicators: Aquatic Pest Control.

    Science.gov (United States)

    Extension Service (USDA), Washington, DC.

    This manual is intended to assist pesticide applicators in the area of aquatic pest control meet the requirements of the Michigan Department of Agriculture for certification. The Environmental Protection Agency (EPA) Aquatic Pest Control Guide served as a basis for this manual. The six sections presented describe: (1) Aquatic pest control; (2)…

  1. Carp Control Techniques for Aquatic Plant Establishment

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — Over the years, fish and wildlife habitat in the Great Lakes basin has been dramatically altered by many factors including water level regulation, the introduction...

  2. Design and analysis of aquatic monitoring programs at nuclear power plants

    International Nuclear Information System (INIS)

    This report addresses some of the problems of designing, conducting, and analyzing aquatic environmental monitoring programs for impact assessment of nuclear power plants. The concepts discussed are applicable to monitoring the effects of chemical, radioactive, or thermal effluents. The concept of control and treatment station pairs is the fundamental basis for the experimental method proposed. This concept is based on the hypothesis that the relationship between the two stations forming the pair can be estimated from the preoperational period and that this relationship holds during the operational period. Any changes observed in this relationship during the operational period are assumed to be the result of the power plant impacts. Thus, it is important that station pairs are selected so it can be assumed that they respond to natural environmental changes in a manner that maintains that relationship. The major problem in establishing the station pairs will be the location of the control station. The universal heterogeneity in the environment will prevent the establishment of identical station pairs. The requirement that the control station remain unaffected by the operation of the power plant dictates a spacial separation with its associated differences in habitat. Thus, selection of the control station will be based upon balancing the following two criteria: (1) far enough away from the plant site to be beyond the plant influence, and (2) close enough to the treatment station that the biological communities will respond to natural environmental changes consistently in the same manner

  3. 水生植物的生态功能和资源应用%Ecological Functions and Resource Utilization of Aquatic Plants

    Institute of Scientific and Technical Information of China (English)

    李冬林; 王磊; 丁晶晶; 芮雯奕

    2011-01-01

    水生植物具有水体产氧、氮循环、吸附沉积物、抑制浮游藻类繁殖、减轻水体富营养化、提高水体自净能力的重要功能,同时还能为水生动物、微生物提供栖息地和食物源,维持水岸带物种多样性.通过综述国内外水生植物的研究进展,阐明了水生植物的概念及分类方法,全面概述了水生植物的生态功能,讨论了中国城市建设中水生植物资源利用现状和效果,提出了水生植物在水岸带生态恢复应用中需要关注的问题以及今后水生植物研究的目标和方向.%Aquatic plants are one of the important factors in maintaining water ecological quality effectively. A lots of research showed that aquatic plants have many important functions, such as producing oxygen, nitrogen cycling, and adsorption deposit, controlling the harmful algal breeding, lightening water eutrophication, improving water clear ability. Moreover aquatic plants can provide inhabits and food to aquatic animals and microbe, maintain species diversity too. The concepts and classifying methods of aquatic plants were clarified by synthesized researched progress of aquatic plants in the paper. Ecological functions of aquatic plants were systematically summarized; their utilizing actuality and effect on building in the cities were discussed. Presently, much of correlative basic researches on aquatic plants, such as the collecting of genetic resources, breeding of new varieties, the general industrialized level and ecological functions with much faultiness in China. The more efforts of relevant studies were concentrated on ecological effect of aquatic plants on rivers and lakes water environment, but studies on their eco-physiological characteristics and regulation in adverse circumstances were few; presently, the researches on absorption of aquatic plants to nitrogen and phosphorus from polluted water have already been reported frequently in China, but the studies on the morphology

  4. Environmental Assessment: Submerged Aquatic Plant Management of Banks Lake, Banks Lake NWR, Lakeland, Georgia

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This Environmental Assessment is an analysis of five alternatives developed to address themanagement of the submerged aquatic plants of Banks Lake on Banks Lake...

  5. Radionuclides in higher aquatic plants of water reservoirs within the Chernobyl NPP exclusion zone

    International Nuclear Information System (INIS)

    The results of radionuclides 90Sr and 137Cs content in higher aquatic plants of water objects within Chernobyl NPP exclusion zone have been analysed. Biodiversity of phytocenose was studied and spice-indicators of radioactive contamination are exposed as well. The seasonal dynamics of radionuclides content in macrophites was studied and the role of main aquatic plant clumps in processes of 137Cs and 90Sr distribution in abiotic component of biohydrocenose have been demonstrated

  6. 90Sr and 137Cs in higher aquatic plants of the Chernobyl NPP exclusion zone

    International Nuclear Information System (INIS)

    The content of 90Sr and 137Cs radionuclides in higher aquatic plants of water object within Chernobyl NPP exclusion zone has been analysed. Biodiversity of phytocenose was studied and species-indicators of radioactive contamination were revealed. The seasonal dynamics of radionuclide content in macrophytes was studied and the role of main aquatic plant clumps in processes of 90Sr and 137Cs distribution in abiotic component of biohydrocenose was demonstrated

  7. The aquatic habit and host plants of Paracles klagesi (Rothschild (Lepidoptera, Erebidae, Arctiinae in Brazil

    Directory of Open Access Journals (Sweden)

    Aurélio R. Meneses

    2013-09-01

    Full Text Available The aquatic habit and host plants of Paracles klagesi (Rothschild (Lepidoptera, Erebidae, Arctiinae in Brazil. The aquatic caterpillar Paracles klagesi (Rothschild, 1910 was collected from the headwaters of a stream in an ecotone between Cerrado and Babaçu forest in northeastern Brazil. The single caterpillar found was observed feeding on the macrophyte Tonina fluviatilis Aubl. (Eriocaulaceae and other aquatic plants of the family Nymphaeaceae present in the area, but also accepted as food Elodea canadensis Michx. (Hydrocharitaceae and Cabomba sp. (Cabombaceae under laboratory conditions.

  8. Apply Pesticides Correctly, A Guide for Commercial Applicators: Aquatic Pest Control.

    Science.gov (United States)

    Wamsley, Mary Ann, Ed.; Vermeire, Donna M., Ed.

    This guide presents information needed to meet the requirements for pesticide applicator certification. The first part deals with recognition and control of aquatic pests such as aquatic weeds, fish and other vertebrates. Environmental concerns in aquatic pest control are discussed in the second section. (CS)

  9. Effects of Elimination of Alligator Weed on Certain Aquatic Plants and the Value of these Plants as Waterfowl Foods

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The effects of elimination of alligatorweed by granular silvex on the abundance of 12 species of aquatic plants were studied on the Santee National Wildlife Refuge,...

  10. MORPHO-STRUCTURAL ADAPTATIONS OF SOME AQUATIC CARNIVOROUS PLANT SPECIES (ALDROVANDA VESICULOSA L. AND UTRICULARIA VULGARIS L.

    Directory of Open Access Journals (Sweden)

    STANESCU IRINA

    2007-12-01

    Full Text Available In the present work the authors emphasize a few structure particularities of two aquatic carnivorous plant species, Aldrovanda vesiculosa L. and Utricularia vulgaris L., underlining their adaptation to the aquatic medium and to the carnivory menu.

  11. Comprehensive review on phytotechnology: Heavy metals removal by diverse aquatic plants species from wastewater.

    Science.gov (United States)

    Rezania, Shahabaldin; Taib, Shazwin Mat; Md Din, Mohd Fadhil; Dahalan, Farrah Aini; Kamyab, Hesam

    2016-11-15

    Environmental pollution specifically water pollution is alarming both in the developed and developing countries. Heavy metal contamination of water resources is a critical issue which adversely affects humans, plants and animals. Phytoremediation is a cost-effective remediation technology which able to treat heavy metal polluted sites. This environmental friendly method has been successfully implemented in constructed wetland (CWs) which is able to restore the aquatic biosystem naturally. Nowadays, many aquatic plant species are being investigated to determine their potential and effectiveness for phytoremediation application, especially high growth rate plants i.e. macrophytes. Based on the findings, phytofiltration (rhizofiltration) is the sole method which defined as heavy metals removal from water by aquatic plants. Due to specific morphology and higher growth rate, free-floating plants were more efficient to uptake heavy metals in comparison with submerged and emergent plants. In this review, the potential of wide range of aquatic plant species with main focus on four well known species (hyper-accumulators): Pistia stratiotes, Eicchornia spp., Lemna spp. and Salvinia spp. was investigated. Moreover, we discussed about the history, methods and future prospects in phytoremediation of heavy metals by aquatic plants comprehensively. PMID:27474848

  12. Transfer of oxytetracycline from swine manure to three different aquatic plants: implications for human exposure.

    Science.gov (United States)

    Boonsaner, Maliwan; Hawker, Darryl W

    2015-03-01

    Little is known regarding the potential for pharmaceuticals including antibiotics to be accumulated in edible aquatic plants and enter the human food chain. This work investigates the transfer of a widely used veterinary antibiotic, oxytetracycline (OTC), from swine manure to aquatic plants by firstly characterizing desorption from swine manure to water and fitting data to both nonlinear and linear isotherms. Bioconcentration of OTC from water was then quantified with aquatic plants of contrasting morphology and growth habit viz. watermeal (Wolffia globosa Hartog and Plas), cabomba (Cabomba caroliniana A. Gray) and water spinach (Ipomoea aquatica Forsk.). Watermeal and water spinach are widely consumed in Southeast Asia. The OTC desorption and bioconcentration data were used to provide the first quantitative estimates of human exposure to OTC from a manure-water-aquatic plant route. Results show that under certain conditions (plants growing for 15d in undiluted swine manure effluent (2% w/v solids) and an initial OTC swine manure concentration of 43mgkg(-1) (dry weight)), this pathway could provide a significant fraction (>48%) of the acceptable daily intake (ADI) for OTC. While effluent dilution, lower OTC manure concentrations and not all plant material consumed being contaminated would be expected to diminish the proportion of the ADI accumulated, uptake from aquatic plants should not be ignored when determining human exposure to antibiotics such as OTC. PMID:25496742

  13. Treatment with aquatic plants by a Bagdi tribal healer of Rajbari District, Bangladesh

    Directory of Open Access Journals (Sweden)

    Mohsina Mukti

    2013-01-01

    Full Text Available Context: Tribal healers mainly use land plants in their medicinal formulations; use of aquatic plants has been scarcely reported. Aims: The aim of the present study was to conduct an ethnomedicinal survey working with a Bagdi tribal healer of Rajbari District, Bangladesh. Settings and Design: The survey was carried out working with a Bagdi healer, who lived alone in the wetlands of Rajbari District and used primarily aquatic plants for treatment. Materials and Methods: Interview of the healer was carried out with the help of a semi-structured questionnaire and the guided field-walk method. Results: The Bagdi healer was observed to use seven different aquatic plant species coming from five plant families for treatment of ailments such as hemorrhoids, tonsillitis, heart disorders, burning sensations and pain in hands or legs, blurred vision, debility, sexual weakness in males, chronic dysentery, infertility in women, constipation, chronic leucorrhea, blackness and foul odor of menstrual blood, hair loss, graying of hair and to keep the head cool. One plant was used to treat what the healer mentioned as "evil eye", this refers to their belief in black-magic. Conclusions: This is the first reported instance of a Bagdi healer who primarily uses aquatic plants for treatment. Ethnomedicinal uses of a number of the plants used by the Bagdi healer have been reported for other places in India and Pakistan. Taken together, the various uses of the different plant species opens up scientific possibilities of new drug discoveries from the plants.

  14. Controls on metal exposure to aquatic organisms in urban streams.

    Science.gov (United States)

    Turpin-Nagel, Katelyn; Vadas, Timothy M

    2016-08-10

    Streams in urban ecosystems receive metal inputs primarily from stormwater runoff and wastewater effluent. The relative contribution of these metal sources to stream impairment is difficult to discern based on simple water characteristics and biological surveys. Stream impairment in these systems is often indicated by reduced abundance and diversity of aquatic insects, which tend to be more sensitive to chronic metal exposures. Metal species and controls on metal species in both the waterborne and dietborne exposure pathways to aquatic organisms are reviewed here. In addition, ecological changes that can control dietborne species are discussed. A main focus is on how organic matter from different anthropogenic sources may control both aqueous metal speciation as well as interaction with various inorganic or microbiological surfaces in streams. Most of the reviewed research focuses on Cu, Zn or Pb as those are the primary metals of concern in developed systems and Cu and Pb have unique and strong interactions with organic matter. Recommendations for further research are described in the context of exposure species, dynamics of exposure, stoichiometry, or advanced analytical tools, and regulatory implications are discussed. PMID:27170052

  15. Antioxidant and Antimicrobial Activities of an Aquatic Plant: Duckweed (Lemna minor L.)

    OpenAIRE

    GÜLÇİN, İlhami; *,; KİREÇCİ, Ekrem; AKKEMİK, Ebru; TOPAL, Fevzi; HİSAR, Olcay

    2010-01-01

    Duckweed (Lemna minor L. Lemnaceae) is a widespread, free-floating aquatic macrophyte, a source of food for waterfowl and a shelter for small aquatic invertebrates. It grows quickly and reproduces faster than other vascular plants. The objective of this study was to determine the antioxidant, antiradical, antimicrobial, and anticandidal activities of duckweed using different in vitro methodologies. For evaluation of antioxidant and antiradical activities, 2,2´-azino-bis(3-ethylbenzthiazoline-...

  16. Aquatic grazers reduce the establishment and growth of riparian plants along an environmental gradient

    NARCIS (Netherlands)

    Veen, G.F.; Sarneel, J.M.; Ravensbergen, L.; Huig, N.; van Paassen, J.; Rip, W.; Bakker, E.S.

    2013-01-01

    Summary The establishment of riparian plants is determined by abiotic conditions and grazing, although it is usually presumed that the former are most important. We tested the impact of aquatic grazers on the survival and growth of establishing riparian plants and whether the impact of grazing inter

  17. Removal of pharmaceuticals and personal care products in aquatic plant-based systems: A review

    International Nuclear Information System (INIS)

    Pharmaceuticals and personal care products (PPCPs) in the aquatic environment are regarded as emerging contaminants and have attracted increasing concern. The use of aquatic plant-based systems such as constructed wetlands (CWs) for treatment of conventional pollutants has been well documented. However, available research studies on aquatic plant-based systems for PPCP removal are still limited. The removal of PPCPs in CWs often involves a diverse and complex set of physical, chemical and biological processes, which can be affected by the design and operational parameters selected for treatment. This review summarizes the PPCP removal performance in different aquatic plant-based systems. We also review the recent progress made towards a better understanding of the various mechanisms and pathways of PPCP attenuation during such phytoremediation. Additionally, the effect of key CW design characteristics and their interaction with the physico-chemical parameters that may influence the removal of PPCPs in functioning aquatic plant-based systems is discussed. -- Highlights: • Investigation of the removal performance of PPCPs in CW systems. • Investigation of the mechanisms and pathways contributing to PPCP removal in CWs. • Investigation of the effect of CW design parameters on PPCP removal. • Investigation of the correlation between physico-chemical parameters and PPCP removal. -- This review gives an overview of the present state of research on the removal of pharmaceutical and personal care products by means of constructed wetlands

  18. RhizoFlowCell system reveals early effects of micropollutants on aquatic plant rhizosphere.

    Science.gov (United States)

    Mynampati, Kalyan Chakravarthy; Lee, Yong Jian; Wijdeveld, Arjan; Reuben, Sheela; Samavedham, Lakshminarayanan; Kjelleberg, Staffan; Swarup, Sanjay

    2015-12-01

    In aquatic systems, one of the non-destructive ways to quantify toxicity of contaminants to plants is to monitor changes in root exudation patterns. In aquatic conditions, monitoring and quantifying such changes are currently challenging because of dilution of root exudates in water phase and lack of suitable instrumentation to measure them. Exposure to pollutants would not only change the plant exudation, but also affect the microbial communities that surround the root zone, thereby changing the metabolic profiles of the rhizosphere. This study aims at developing a device, the RhizoFlowCell, which can quantify metabolic response of plants, as well as changes in the microbial communities, to give an estimate of the stress to which the rhizosphere is exposed. The usefulness of RhizoFlowCell is demonstrated using naphthalene as a test pollutant. Results show that RhizoFlowCell system is useful in quantifying the dynamic metabolic response of aquatic rhizosphere to determine ecosystem health. PMID:26386206

  19. Meta-Analysis of the Copper, Zinc, and Cadmium Absorption Capacities of Aquatic Plants in Heavy Metal-Polluted Water.

    Science.gov (United States)

    Li, Jing; Yu, Haixin; Luan, Yaning

    2015-12-01

    The use of aquatic plants for phytoremediation is an important method for restoring polluted ecosystems. We sought to analyze the capacity of different aquatic plant species to absorb heavy metals and to summarize available relevant scientific data on this topic. We present a meta-analysis of Cu, Zn, and Cd absorption capacities of aquatic plants to provide a scientific basis for the selection of aquatic plants suitable for remediation of heavy-metal pollution. Plants from the Gramineae, Pontederiaceae, Ceratophyllaceae, Typhaceae and Haloragaceae showed relatively strong abilities to absorb these metals. The ability of a particular plant species to absorb a given metal was strongly correlated with its ability to absorb the other metals. However, the absorption abilities varied with the plant organ, with the following trend: roots > stems > leaves. The pH of the water and the life habits of aquatic plants (submerged and emerged) also affect the plant's ability to absorb elements. Acidic water aids the uptake of heavy metals by plants. The correlation observed between element concentrations in plants with different aquatic life habits suggested that the enrichment mechanism is related to the surface area of the plant exposed to water. We argue that this meta-analysis would aid the selection of aquatic plants suitable for heavy-metal absorption from polluted waters. PMID:26703632

  20. Comparative Studies of the Phytoextraction Capacity of Five Aquatic Plants in Heavy Metal Contaminated Water

    OpenAIRE

    Erzsébet BUTA; Anamária TÖRÖK; Zongo, Bilassé; Maria CANTOR; Buta, Mihai; Majdik, Cornelia

    2014-01-01

    The uptake capacity of the aquatic plants (Salvinia natans Kunth., Eichhornia crassipes Mart., Lemna minor L., Elodea canadensis Michx., Pistia stratiotes L.) was analyzed in phytoextraction of Cu2+, Zn2+, and Cd2+. It was attend to study the plants capacity comparatively using mono and multimetallic systems. In particular, the chlorophyll, protein and carotenoids contents were studied during heavy metals uptake, in order to observe the stress effect on plants. The results obtained for the m...

  1. Meta-Analysis of the Copper, Zinc, and Cadmium Absorption Capacities of Aquatic Plants in Heavy Metal-Polluted Water

    Directory of Open Access Journals (Sweden)

    Jing Li

    2015-11-01

    Full Text Available The use of aquatic plants for phytoremediation is an important method for restoring polluted ecosystems. We sought to analyze the capacity of different aquatic plant species to absorb heavy metals and to summarize available relevant scientific data on this topic. We present a meta-analysis of Cu, Zn, and Cd absorption capacities of aquatic plants to provide a scientific basis for the selection of aquatic plants suitable for remediation of heavy-metal pollution. Plants from the Gramineae, Pontederiaceae, Ceratophyllaceae, Typhaceae and Haloragaceae showed relatively strong abilities to absorb these metals. The ability of a particular plant species to absorb a given metal was strongly correlated with its ability to absorb the other metals. However, the absorption abilities varied with the plant organ, with the following trend: roots > stems > leaves. The pH of the water and the life habits of aquatic plants (submerged and emerged also affect the plant’s ability to absorb elements. Acidic water aids the uptake of heavy metals by plants. The correlation observed between element concentrations in plants with different aquatic life habits suggested that the enrichment mechanism is related to the surface area of the plant exposed to water. We argue that this meta-analysis would aid the selection of aquatic plants suitable for heavy-metal absorption from polluted waters.

  2. Herbivory and growth in terrestrial and aquatic populations of amphibious stream plants

    DEFF Research Database (Denmark)

    Sand-Jensen, Kaj; Jacobsen, Dean

    2002-01-01

    1. Many amphibious plant species grow in the transition between terrestrial and submerged vegetation in small lowland streams. We determined biomass development, leaf turnover rate and invertebrate herbivory during summer in terrestrial and aquatic populations of three amphibious species to...... evaluate advantages and disadvantages of aerial and submerged life. 2. Terrestrial populations had higher area shoot density, biomass and leaf production than aquatic populations, while leaf turnover rate and longevity were the same. Terrestrial populations experienced lower percentage grazing loss of leaf...... apparent loss to standing leaves of all ages. The results imply that variation in density of grazers relative to plant production can account for differences in grazing impact between terrestrial and aquatic populations, and that fast leaf turnover keeps apparent grazing damage down. 4. We conclude that...

  3. Aquatic and wetland plants of Puerto Rico. I. Pteridophyta

    Directory of Open Access Journals (Sweden)

    Vega Hernández, Efrén

    1999-12-01

    Full Text Available A description of the aquatic and wetland families of Pteridophytes in Puerto Rico is presented herein. Included are brief descriptions of each family, genus and species, and, when appropriate, keys for genera and species accompany the descriptions. The distribution of each species is also documented with maps, as well as with information on some ecological characteristics of each species.Estudio de los helechos acuáticos y palustres de Puerto Rico, con especial atención a las especies asociadas a cuerpos de aguas quietas y pantanos. Se reconocen 8 géneros y 13 especies. Se dan descripciones, claves, notas de sus hábitats y mapas de distribucidn.

  4. Cytogenetic consequences of low dose chronic irradiation on native populations of higher aquatic plants

    International Nuclear Information System (INIS)

    The original data of cytogenetic monitoring of the most wide-spread species of higher aquatic plants of water bodies from Chernobyl accident exclusive zone are analyzed. There are discussed the correlation between chromosome aberration rate in apical root meristems cells and absorbed dose rate. (authors)

  5. Ecophysiological traits of terrestrial and aquatic carnivorous plants: are the costs and benefits the same?

    Czech Academy of Sciences Publication Activity Database

    Ellison, A. M.; Adamec, Lubomír

    2011-01-01

    Roč. 120, č. 11 (2011), 1721-1731. ISSN 0030-1299 Institutional research plan: CEZ:AV0Z60050516 Keywords : terrestrial and aquatic carnivorous plants * photosynthesis * mineral nutrition Subject RIV: EF - Botanics Impact factor: 3.061, year: 2011

  6. Micronutrient content does not reflect the status of health in the aquatic carnivorous plant Aldrovanda vesiculosa

    Czech Academy of Sciences Publication Activity Database

    Adamec, Lubomír

    2007-01-01

    Roč. 62, č. 6 (2007), s. 711-714. ISSN 0006-3088 Institutional research plan: CEZ:AV0Z60050516 Keywords : rootless aquatic plant * disorder of shoot apices * tissue microelement content Subject RIV: EF - Botanics Impact factor: 0.207, year: 2007

  7. Statistical Verification of Folk Medicinal Potentiality of Wild Dicot Aquatic Plants in Jordan

    Directory of Open Access Journals (Sweden)

    S. Al-Qura'n

    2005-01-01

    Full Text Available This study describes a floristic study of Jordan with its environs. The study was carried out during 2001-2003 and 287 aquatic dicot samples were collected and photographed in the field. After the identification of the specimens, the total wild aquatic dicot species have been determined as 87 species belonging to 59 genera and 33 plant families were presented in investigated Jordan sites. The endemism rate of the investigated area is 26.4% for the 23 species. The largest 3 families are Labiatae (9 aquatic species, Compositae (7 species and Salicaceae (7 species. The largest genera are Mentha (6 species, Polygonum (5 species and Salix (5 species. Similarities between the taxa and those of neighbouring regions performed were compared in this study. 63 aquatic dicot species (73.3% have therapeutic similarities with neighbouring countries, while the 24 remaining species (26.7% haven't such therapeutic similarity. Emerged species (living with close contact with water body were the most recorded, while amphibious, submerged and floating species were the least. The folk medicinal importance value of aquatic species recorded was identified according to Friedman et al. [1]. Twenty one species (24% have ROP values higher than 50 and therefore; have the highest popularity in folk medicinal potentiality. Twenty six species (29.9% have therapeutic effects informed by less than three informants and therefore; excluded from further consideration. Forty species (46.1% have ROP values less than 50 and therefore; considered nonpopular medicinal plants.

  8. Uranium accumulation by aquatic plants from uranium-contaminated water in Central Portugal.

    Science.gov (United States)

    Pratas, João; Favas, Paulo J C; Paulo, Carlos; Rodrigues, Nelson; Prasad, M N V

    2012-03-01

    Several species of plants have developed a tolerance to metal that enables them to survive in metal contaminated and polluted sites. Some of these aquatic plants have been reported to accumulate significant amounts of specific trace elements and are, therefore, useful for phytofiltration. This work focuses the potential of aquatic plants for the phytofiltration of uranium (U) from contaminated water. We observed that Callitriche stagnalis, Lemna minor, and Fontinalis antipyretica, which grow in the uraniferous geochemical province of Central Portugal, have been able to accumulate significant amounts of U. The highest concentration of U was found in Callitriche stagnalis (1948.41 mg/kg DW), Fontinalis antipyretica (234.79 mg/kg DW), and Lemna minor (52.98 mg/kg DW). These results indicate their potential for the phytofiltration of U through constructed treatment wetlands or by introducing these plants into natural water bodies in the uraniferous province of Central Portugal. PMID:22567707

  9. Aquatics task force on environmental assessment of the Atikokn Power Plant: effects on aquatic organisms

    Energy Technology Data Exchange (ETDEWEB)

    Hendrey, G.R.

    1978-11-01

    Possible impacts of an 800-MW coal-fired power plant to be built near Atikokan, Ontario were evaluated. It is feared that the emissions of SO/sub 2/ will lead to the deposition of sulfuric acid and result in the acidification of freshwaters in nearby parks and wilderness areas. The most obvious biological effects of acidification are damages to populations of fish. Less conspicuous but no less severe damages also occur to other organisms. It appears that all trophic levels are affected: species numbers are reduced, biomasses are altered, and primary production and decomposition are impaired. Field experiments and laboratory experiments indicate that microbial activity is reduced and that the recycling of materials is greatly impeded at low pH. This may interfere with nutrient supplies to plants and decrease the microbial biomass available to higher trophic levels. Phytoplankton densities decrease in acidified lakes and there is a reduction in some species of macrophytes. On the other hand, Sphagnum and benthic filamentous algae greatly increase in acidified conditions. The total primary productivity of lakes and streams may actually increase because of such dense growths on the bottom. Zooplankton and benthic invertebrate communities become less complex as acidity increases. This may in part be due to reduced food supplies, but direct inhibition by H/sub 2/SO/sub 4/ has also been demonstrated. This removal of fish food organisms may exacerbate damage to fisheries, especially in the pH range of 5 to 6. When a lake loses all fish because of low pH, a few species of invertebrates may become very abundant. The salamanders Ambystoma jeffersonium and A. maculatum, sensitive to acidity below pH 7.0 and 5.0 respectively, are being eliminated from small ponds or temporary pools in the region around Ithaca, NY because of the impact of acid precipitation. Species of frogs in some lakes are also being eliminated because of acidification. (ERB)

  10. Plant Functions in Wetland and Aquatic Systems: Influence of Intensity and Capacity of Soil Reduction

    OpenAIRE

    DeLaune, R.D.; Pezeshki, S. R.

    2001-01-01

    Wetland or hydric soils, in addition to excess water and limited air-filled porosity, are characterized by anaerobic or reducing conditions. Wetland plants have developed physiological and morphological adaptations for growing under these conditions. Various methods exist for measuring plant responses to reducing conditions in wetland and aquatic environments, including assessment of radial oxygen transport, cellular enzymatic transformations, changes in root structure, and nutrient uptake. H...

  11. Potential of some aquatic plants for removal of arsenic from wastewater by green technology

    OpenAIRE

    Mohammed Barznji Dana A.

    2015-01-01

    Phytoremediation or green technology is counted among the successful and effective biological contaminated water treatment techniques. Basically, the concept of this green, cost-effective, simple, environmentally nondisruptive method consists in using plants and microbiological processes to reduce contaminants in the ecosystem. Different species from aquatic plants (emerged, free-floating, and submerged) have been studied to mitigate toxic contaminants such as arsenic, cadmium, chromium, copp...

  12. By which mechanism does prey capture enhance plant growth in aquatic carnivorous plants: Stimulation of shoot apex?

    Czech Academy of Sciences Publication Activity Database

    Adamec, Lubomír

    2011-01-01

    Roč. 178, č. 2 (2011), s. 171-176. ISSN 1863-9135 Institutional research plan: CEZ:AV0Z60050516 Keywords : aquatic carnivorous plants * dark respiration * tissue N and P content Subject RIV: EF - Botanics Impact factor: 1.145, year: 2011

  13. Assessment of lead distribution in aquatic plant Lemna minor, using sequential extraction procedure

    International Nuclear Information System (INIS)

    Complete text of publication follows. The contamination of water resources by toxic metals demands for attention since this kind of contamination, sometimes, is difficult to realize. Moreover, lead, for instance, has the capacity to be accumulated in fish and plants utilized in the food, and also in human beings, causing several disturbances. Phytoremediation is an emerging technology that employs the use of plants for the clean-up of contaminated environments. The model plant Lemna minor is a genera of Duckweed plant, and refers to a group of floating, flowering plants of the family Lemnaceae. The aquatic plant Lemna minor is relevant to many aquatic environments, including lakes, streams, effluent, rain, and sediment. The aquatic plant Lemna minor has been studied due its potential to extract lead from contaminated waters. The aim of this study was to determine the distribution of Pb in the aquatic plant Lemna minor under stress, using a modified sequential extraction with different solvents: hexane, ethyl acetate, 2-propanol, methanol, ethanol/water (1:1) and water. Non-extractable residues formed the last fraction. Elemental distributions in the plants were determined using flame atomic absorption spectroscopy (F AAS), and scanning electron microscopy coupled with energy dispersive X-ray microanalysis (SEM-EDX). It was found that the aquatic plant L. minor has the capacity to accumulate lead: in the first day of contamination, about 79% of lead had been intake by the plant. After 7 days, the Pb content was 142 mg Kg-1. After sequential extraction, the methanol and ethanol/water fractions were dominants: 27 and 45% of total content, respectively. In these fractions we can find acids that form specific chelating agents, such as oligopeptides (phytochelatins). The hexane, ethyl acetate, and 2-propanol fractions gave the smallest isolated fraction. These fractions consisted of non-polar lipid compounds. Elemental distribution by X-ray fluorescence spectra and maps

  14. Chromium stress induced alterations in biochemical and enzyme metabolism in aquatic and terrestrial plants.

    Science.gov (United States)

    Ganesh, K Sankar; Baskaran, L; Rajasekaran, S; Sumathi, K; Chidambaram, A L A; Sundaramoorthy, P

    2008-06-01

    Water is seriously polluted by the discharge of various industrial wastewater containing heavy metals. Among them, chromium is considered to be toxic to living organisms and it is released mostly from tanneries. The chromium-contaminated water is discharged into nearby water bodies and it affects both aquatic and terrestrial plants. So the present experiment was conducted with an aquatic plant, water lettuce (Pistia stratiotes L.) and a terrestrial plant soybean (Glycine max L. Merr.). They were treated with different concentrations (0, 5, 10, 25, 50, 100 and 200mg/L) of potassium dichromate solution. The biochemical parameters such as total chlorophyll, carotenoid, protein and amino acid content and the enzymatic activities like catalase and peroxidase were estimated. The accumulation of chromium was also analysed in both the plants. All the biochemical contents and enzyme activities of water lettuce and soybean seedlings showed a great variation with respect to the increase in chromium concentrations. The accumulation of chromium increased gradually with the increase of chromium concentrations. Total inhibition of all the parameters were observed at 300 mg/L chromium concentration. The terrestrial plant soybean was sensitive than the aquatic plant water lettuce towards chromium stress. PMID:18206355

  15. Weed risk assessment for aquatic plants: modification of a New Zealand system for the United States.

    Directory of Open Access Journals (Sweden)

    Doria R Gordon

    Full Text Available We tested the accuracy of an invasive aquatic plant risk assessment system in the United States that we modified from a system originally developed by New Zealand's Biosecurity Program. The US system is comprised of 38 questions that address biological, historical, and environmental tolerance traits. Values associated with each response are summed to produce a total score for each species that indicates its risk of invasion. To calibrate and test this risk assessment, we identified 39 aquatic plant species that are major invaders in the continental US, 31 species that have naturalized but have no documented impacts (minor invaders, and 60 that have been introduced but have not established. These species represent 55 families and span all aquatic plant growth forms. We found sufficient information to assess all but three of these species. When the results are compared to the known invasiveness of the species, major invaders are distinguished from minor and non-invaders with 91% accuracy. Using this approach, the US aquatic weed risk assessment correctly identifies major invaders 85%, and non-invaders 98%, of the time. Model validation using an additional 10 non-invaders and 10 invaders resulted in 100% accuracy for the former, and 80% accuracy for the latter group. Accuracy was further improved to an average of 91% for all groups when the 17% of species with scores of 31-39 required further evaluation prior to risk classification. The high accuracy with which we can distinguish non-invaders from harmful invaders suggests that this tool provides a feasible, pro-active system for pre-import screening of aquatic plants in the US, and may have additional utility for prioritizing management efforts of established species.

  16. Effects of power plant cooling on aquatic biota

    International Nuclear Information System (INIS)

    Several bibliographies and reviews on 'ecological consequences of power plant cooling' have been published. Other reports compile additional data, but are not available to the public. Altogether, more than 3,000 literature citations have been gathered until now, too many to be studied by an individual scientist. The bibliography becomes more comprehensible if only titles are accepted that deal with power plant cooling itself, neglecting the influence of temperature and other stress factors on organisms as examined under laboratory conditions. Among these 600 remaining titles, about 370 are published in journals and periodicals available to the public. They are presented in this bibliography. (orig./RW)

  17. Plant control device

    International Nuclear Information System (INIS)

    A plant control device comprises an intellectual instrumentation group for measuring a predetermined process amount, an intellectual equipment group operating in accordance with a self-countermeasure, a system information space for outputting system information, a system level monitoring and diagnosing information generalization section for outputting system information, a system level maintenance information generalization section for outputting information concerning maintenance, a plant level information space and a plant level information generalization section. Each of them determines a state of the plant autonomously, and when abnormality is detected, each of the intellectual instrumentation, equipments and systems exchange information with each other, to conduct required operations including operations of intellectual robots, as required. Appropriate countermeasures for gauges, equipments and systems can be conducted autonomously at a place where operators can not access to improve reliability of complicate operations in the working site, as well as improve plant safety and reliability. (N.H.)

  18. Role of algae and higher aquatic plants in decontamination of cyanide-containing waters

    International Nuclear Information System (INIS)

    Cyanide compounds and especially free cyanides stand out among components of wastewaters of hydrometallurgy, electroforming, and other such enterprises with respect to toxicity and danger for man and fauna of water bodies. In this article data on a study of the regularities of decontamination of cyanide-containing wastewaters by hydrophytes are given, the mechanisms of this process are examined, and the results of testing the hydrobotanical method of treating wastewaters of a goldrecovery plant are examined. The experiments were carried out with hydrophytes from the Angara River, Lake Baikal, and small lakes and ponds in the vicinity of Irkutsk and Tashkent. The series of experiments established that algae and higher aquatic plants are resistant to cyanides. A table shows the kinetic parameters of the removal of cyanide by algae and higher aquatic plants collected in Baikal. Of the multitude of species investigated for detoxifying ability, the most resistant were detected in the experimental basins and the most suitable were charophytes

  19. Aquatic indicator organisms as a tool to monitor discharges from nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Outola, Iisa; Vartti, Vesa-Pekka; Klemola, Seppo [STUK - Radiation and Nuclear Safety Authority, P.O. Box 14, 00881 Helsinki (Finland)

    2014-07-01

    There are four operating nuclear power plant units in Finland at two separate locations. The units started operation during 1977-1980. The surveillance of radioactive substances in the vicinities of the nuclear power plant is carried out under the permanent monitoring programs. Some 1000 samples are taken annually from the surroundings of the power plants to confirm that the discharges from the power plants are within permissible release limits and to monitor the dispersion of discharges in the environment. Aquatic indicator organisms (macro-algae, periphyton, mussels, crustacean, submerged aquatic plants) are included in the monitoring program. The indicator organisms are valuable monitoring objects both in normal and emergency situations because they accumulate effectively and often very rapidly radioactive substances from the medium. Six different species (Periphyton, Fucus vesiculosus, Myriophyllum spicatum, Potamogeton pectinatus, Saduria entomon, Macoma Baltica/Mytilus edulis) are collected regularly. Number of sampling location for each species varies from 1 to 7. Some species are collected continuously, some 1-2 times in a year. In this study we have evaluated the monitoring results for the aquatic indicator organisms for the period of 2005-2010 concerning concentration of discharge nuclides. Our aim was to answer the following questions using the monitoring data from aquatic organisms: 1) Which radionuclides are released to the marine environment and how often do we detect them? 2) How far from the nuclear power plants discharge radionuclides are detected? 3) How concentration of discharge radionuclides has changed with time in aquatic organisms? The number of discharge nuclides detected in the aquatic indicator samples was 11. Most of them were only detected in few samples, but {sup 58}Co, {sup 60}Co, {sup 54}Mn and {sup 110m}Ag were detected more frequently. Most of the observations above detection limits were made within the 5 km distance from the

  20. Aquatic indicator organisms as a tool to monitor discharges from nuclear power plants

    International Nuclear Information System (INIS)

    There are four operating nuclear power plant units in Finland at two separate locations. The units started operation during 1977-1980. The surveillance of radioactive substances in the vicinities of the nuclear power plant is carried out under the permanent monitoring programs. Some 1000 samples are taken annually from the surroundings of the power plants to confirm that the discharges from the power plants are within permissible release limits and to monitor the dispersion of discharges in the environment. Aquatic indicator organisms (macro-algae, periphyton, mussels, crustacean, submerged aquatic plants) are included in the monitoring program. The indicator organisms are valuable monitoring objects both in normal and emergency situations because they accumulate effectively and often very rapidly radioactive substances from the medium. Six different species (Periphyton, Fucus vesiculosus, Myriophyllum spicatum, Potamogeton pectinatus, Saduria entomon, Macoma Baltica/Mytilus edulis) are collected regularly. Number of sampling location for each species varies from 1 to 7. Some species are collected continuously, some 1-2 times in a year. In this study we have evaluated the monitoring results for the aquatic indicator organisms for the period of 2005-2010 concerning concentration of discharge nuclides. Our aim was to answer the following questions using the monitoring data from aquatic organisms: 1) Which radionuclides are released to the marine environment and how often do we detect them? 2) How far from the nuclear power plants discharge radionuclides are detected? 3) How concentration of discharge radionuclides has changed with time in aquatic organisms? The number of discharge nuclides detected in the aquatic indicator samples was 11. Most of them were only detected in few samples, but 58Co, 60Co, 54Mn and 110mAg were detected more frequently. Most of the observations above detection limits were made within the 5 km distance from the nuclear power plants

  1. ZINC AND LEAD IN BOTTOM SEDIMENTS AND AQUATIC PLANTS IN RIVER NAREW

    Directory of Open Access Journals (Sweden)

    Elżbieta Skorbiłowicz

    2014-12-01

    Full Text Available Aquatic ecosystems are a valuable part of natural environment. The increasing level of pollution in waters transforming biocoenoses and other adverse effects of the impact of toxic substances have contributed to the development of biological monitoring. The aim of the study was to determine the changes in contents of zinc and lead in bottom sediments and roots of aquatic plants: Phragmites australis and Acorus calamus in the river Narew. There were 14 points on the river, from where samples of bottom sediments and plant material were collected. The contents of lead and zinc were determined by means of flame atomic absorption spectrophotometry using Varian device. It was proven that bottom sediments were characterized by low contents of zinc and lead except from two sampling points: in Bondary and Narew. Achieved results of analyzes of plant material showed a slight exceeding in the case of lead. Spatial distribution of zinc and lead contents in examined roots of plants coincided with their contents in bottom sediments, which was also confirmed by statistical analysis. It was proven that aquatic plants had greater tendency for accumulation of metals than bottom sediments.

  2. Accumulation of uranium by aquatic plants in field conditions: prospects for phytoremediation.

    Science.gov (United States)

    Favas, Paulo J C; Pratas, João; Varun, Mayank; D'Souza, Rohan; Paul, Manoj S

    2014-02-01

    A study was undertaken to determine Uranium concentrations in water and aquatic plants in the uraniferous region of Beiras, Central Portugal. Samples were collected from running water (n=200) at places where aquatic species were observed. Plant samples were collected from 28 species of submerged, free-floating and rooted emergent plants including 2 bryophytes and 1 pteridophyte. Uranium concentrations in surface waters ranged from 0.23 to 1,217 μg L(-1). The aquatic plant species studied, including several previously untested species, exhibited the ability to accumulate U in concentrations many times that of the ambient water. In general submerged plants exhibited higher U content followed by rooted emergent and free floating species. The highest U concentrations were observed in the bryophyte Fontinalis antipyretica (up to 4,979 mg kg(-1)) followed by Callitriche stagnalis (1963mgkg(-1)), Callitriche hamulata (379 mg kg(-1)), Ranunculus peltatus subsp. saniculifolius (243 mg kg(-1)), Callitriche lusitanica (218 mg kg(-1)), and Ranunculus trichophyllus (65.8 mg kg(-1)). In two out of three rooted emergent species U seemed to be preferentially partitioned in rhizome/roots with highest rhizome U content recorded in Typha latifolia (380 mg kg(-1)). Among the free-floating species, the highest U content (42.5 mg kg(-1)) was seen in Lemna minor. The bryophyte F. antipyretica and Callitrichaceae members seem to be promising candidates for the development of phytofiltration methodologies based on U accumulation, abundance and biomass production. PMID:24239820

  3. Eficácia do carfentrazone-ethyl no controle de plantas aquáticas latifoliadas em caixas-d'água Efficiency of carfentrazone-ethyl in controlling large-leafed aquatic plants using boxes of water

    OpenAIRE

    F.T. Carvalho; E.D. Velini; E. Negrisoli; C.V.S. Rossi

    2005-01-01

    Atualmente, alguns herbicidas estão sendo desenvolvidos para o controle de plantas daninhas aquáticas. O objetivo deste trabalho foi avaliar a eficácia do carfentrazone-ethyl em ambiente aquático para o controle pós-emergente de aguapé, alface-d'água e salvínia. O trabalho foi desenvolvido em caixas-d'água, no período de julho a setembro de 2004, no NUPAM - FCA/UNESP, em Botucatu. O delineamento experimental adotado foi o de blocos ao acaso, com sete tratamentos e quatro repetições, sendo as ...

  4. Heavy metal pollution in aquatic ecosystems and its phytoremediation using wetland plants: An ecosustainable approach

    Energy Technology Data Exchange (ETDEWEB)

    Rai, P.K. [Mizoram Central University, Tanhril (India). School for Earth Science & Natural Resource Management

    2008-07-01

    This review addresses the global problem of heavy metal pollution originating from increased industrialization and urbanization and its amelioration by using wetland plants both in a microcosm as well as natural/field condition. This review mentions salient features of wetland ecosystems, their vegetation component, and the pros and cons involved in heavy metal removal. Wetland plants are preferred over other bio-agents due to their low cost, frequent abundance in aquatic ecosystems, and easy handling. Constructed wetlands proved to be effective for the abatement of heavy metal pollution from acid mine drainage; landfill leachate; thermal power; and municipal, agricultural, refinery, and chlor-alkali effluent. the physicochemical properties of wetlands provide many positive attributes for remediating heavy metals. Typha, Phragmites, Eichhornia, Azolla, Lemna, and other aquatic macrophytes are some of the potent wetland plants for heavy metal removal. Biomass disposal problem and seasonal growth of aquatic macrophytes are some limitations in the transfer of phytoremediation technology from the laboratory to the field. However, the disposed biomass of macrophytes may be used for various fruitful applications. An ecosustainable model has been developed through the author's various works, which may ameliorate some of the limitations. The creation of more areas for phytoremediation may also aid in wetlands conservation. Genetic engineering and biodiversity prospecting of endangered wetland plants are important future prospects in this regard.

  5. Topical report on sources and systems for aquatic plant biomass as an energy resource

    Energy Technology Data Exchange (ETDEWEB)

    Goldman, J.C.; Ryther, J.H.; Waaland, R.; Wilson, E.H.

    1977-10-21

    Background information is documented on the mass cultivation of aquatic plants and systems design that is available from the literature and through consultation with active research scientists and engineers. The biology of microalgae, macroalgae, and aquatic angiosperms is discussed in terms of morphology, life history, mode of existence, and ecological significance, as they relate to cultivation. The requirements for growth of these plants, which are outlined in the test, suggest that productivity rates are dependent primarily on the availability of light and nutrients. It is concluded that the systems should be run with an excess of nutrients and with light as the limiting factor. A historical review of the mass cultivation of aquatic plants describes the techniques used in commercial large-scale operations throughout the world and recent small-scale research efforts. This review presents information on the biomass yields that have been attained to date in various geographical locations with different plant species and culture conditions, emphasizing the contrast between high yields in small-scale operations and lower yields in large-scale operations.

  6. Potential of some aquatic plants for removal of arsenic from wastewater by green technology

    Directory of Open Access Journals (Sweden)

    Mohammed Barznji Dana A.

    2015-03-01

    Full Text Available Phytoremediation or green technology is counted among the successful and effective biological contaminated water treatment techniques. Basically, the concept of this green, cost-effective, simple, environmentally nondisruptive method consists in using plants and microbiological processes to reduce contaminants in the ecosystem. Different species from aquatic plants (emerged, free-floating, and submerged have been studied to mitigate toxic contaminants such as arsenic, cadmium, chromium, copper, lead, mercury, zinc, etc. Arsenic is one of the most severe toxic elements; it is widely distributed in the environment, usually found in combination with chloride, oxygen, sulphur and metal ions as a result of mineral dissolution from sedimentary or volcanic rocks and the dilution of geothermal water. The effluents from both industrial and agricultural sectors are also regarded as sources to contaminate water. From the accumulation point of view, several aquatic plants have been mentioned as good arsenic accumulators and their performance is evaluated using the green technology method. These include Spirodela polyrhiza, Wolffia globosa, Lemna gibba, L. minor, Eichhornia crassipes, Azolla caroliniana, Azolla filiculoides, Azolla pinnata, Ceratophyllum demersum and Pistia stratiotes. The up-to-date information illustrated in this review paper generates knowledge about the ability of some common aquatic plants around the globe to remediate arsenic from contaminated water.

  7. Foraging behaviour of coypus Myocastor coypus: why do coypus consume aquatic plants?

    Science.gov (United States)

    Guichón, M. L.; Benítez, V. B.; Abba, A.; Borgnia, M.; Cassini, M. H.

    2003-12-01

    Foraging behaviour of wild coypu was studied to examine two hypotheses that had been previously proposed to explain the species' preference for aquatic plants. First, the nutritional benefit hypothesis which states that aquatic plants are more nutritional than terrestrial plants. Second, the behavioural trade-off hypothesis which states that coypus avoid foraging far from the water because of the costs associated with other types of behaviour. In order to test the nutritional benefit hypothesis, we studied the diet composition of coypus in relation to the protein content of the diet and of the plants available in the environment. Fieldwork was conducted seasonally from November 1999 to August 2000 at one study site located in the Province of Buenos Aires, east central Argentina. Behavioural observations showed that coypus remained foraging in the water and microhistological analysis of faeces indicated that their diet was principally composed of hygrophilic monocotyledons ( Lemna spp. and Eleocharis spp.) throughout the year. We did not find support for the nutritional benefit hypothesis: nutritional quality (based on nitrogen content) of hygrophilic plants was not higher than that of terrestrial plants, and seasonal changes in diet quality did not match either fluctuations in vegetation quality or proportion of hygrophilic plants in the diet. Although not directly tested, the behavioural trade-off hypothesis may explain why coypus prefer to forage in or near the water as a mechanism for reducing predation risk.

  8. Utilization of emergent aquatic plants for biomass-energy-systems development

    Energy Technology Data Exchange (ETDEWEB)

    Kresovich, S.; Wagner, C.K.; Scantland, D.A.; Groet, S.S.; Lawhon, W.T.

    1982-02-01

    A review was conducted of the available literature pertaining to the following aspects of emergent aquatic biomass: identification of prospective emergent plant species for management; evaluation of prospects for genetic manipulation; evaluation of biological and environmental tolerances; examination of current production technologies; determination of availability of seeds and/or other propagules, and projections for probable end-uses and products. Species identified as potential candidates for production in biomass systems include Arundo donax, Cyperus papyrus, Phragmites communis, Saccharum spontaneum, Spartina alterniflora, and Typha latifolia. If these species are to be viable candidates in biomass systems, a number of research areas must be further investigated. Points such as development of baseline yield data for managed systems, harvesting conceptualization, genetic (crop) improvement, and identification of secondary plant products require refinement. However, the potential pay-off for developing emergent aquatic systems will be significant if development is successful.

  9. Uptake of uranium by native aquatic plants: potential for bioindication and phytoremediation

    Directory of Open Access Journals (Sweden)

    Favas P. J. C.

    2013-04-01

    Full Text Available The work presented here is a part the on going study on the uraniferous geochemical province of Central Portugal in which, the use of aquatic plants as indicators of uranium contamination is being probed using aquatic plants emphasizing their potential use in the emerging phytotechnologies. Even though we have observed very low concentration of U in the fresh waters of the studied sites we found a set of vegetable species with the ability to accumulate U in concentrations which are orders of magnitude higher than the surrounding environment. We have observed that Apium nodiflorum, Callitriche stagnalis, Lemna minor and Fontinalis antipyretica accumulated significant amounts of uranium, whereas Oenanthe crocata excluded U. These results indicate substantial scope for proper radiophytoremediation and phytosociological investigation exploiting the native flora. These species show great potential for phytoremediation because they are endemic and easy to grow in their native conditions. A. nodiflorum and C. stagnalis have high bioproductivity and yield good biomass.

  10. Interactions between a cyanobacterial bloom (Microcystis) and the submerged aquatic plant Ceratophyllum oryzetorum Kom

    Institute of Scientific and Technical Information of China (English)

    LI Dunhai; LI Genbao; CHEN Wuxiong; LIU Yongding

    2009-01-01

    In aquatic ecosystems, macrophytes and phytoplankton are main primary producers, in which macrophyte plays an important role in maintaining clear water state, while phytoplankton often dominates in turbid waterbodies. In the present study, the growth and photosynthetic activity of the submerged aquatic plant Ceratophyllum oryzetorum Kom. in different cell densities of cyanobacterial bloom are studied. The results show that the plant length and fresh mass of C. oryzetorum are promoted by low cyanobacterial cell densities. Medium and high cyanobacterial cell densities, on the contrary, act as inhibitory. Furthermore, the photosynthetic activity of C. oryzetorum is strongly inhibited by high cyanobacterial cell densities. To a certain extent, the growth of cyanobacteria is inhibited by C. oryzetorum, but no significant effect is found in this study.

  11. Radionuclide biosorption by the aquatic plants of Pistia stratiotes

    International Nuclear Information System (INIS)

    The activity of leaves and roots of Pistia stratiotes from the Seversky Donets river has been measured. The visible activity of 131I in roots of plant is found. The content estimate of 131I in water of Seversky Donets river before extraction of samples of a hydrophyte gives value exceeding 1 Bk/l. The detection of activity of 131I in roots of Pistia stratiotes can be used for its monitoring in the biosphere. The photoactivation analysis has been used for measuring of element content in leaves and roots of Pistia stratiotes. Accumulation in roots versus leaves of Pistia stratiotes Mn, Co, Ni, Mo, I, Pb and also isotopes 228Ac, 214Pb and 214Bi was detected.

  12. Heavy metal pollution in aquatic ecosystems and its phytoremediation using wetland plants: an ecosustainable approach.

    Science.gov (United States)

    Rai, Prabhat Kumar

    2008-01-01

    This review addresses the global problem of heavymetal pollution originating from increased industrialization and urbanization and its amelioration by using wetland plants both in a microcosm as well as natural/field condition. Heavymetal contamination in aquatic ecosystems due to discharge of industrial effluents may pose a serious threat to human health. Alkaline precipitation, ion exchange columns, electrochemical removal, filtration, and membrane technologies are the currently available technologies for heavy metal removal. These conventional technologies are not economical and may produce adverse impacts on aquatic ecosystems. Phytoremediation of metals is a cost-effective "green" technology based on the use of specially selected metal-accumulating plants to remove toxic metals from soils and water. Wetland plants are important tools for heavy metal removal. The Ramsar convention, one of the earlier modern global conservation treaties, was adopted at Ramsar, Iran, in 1971 and became effective in 1975. This convention emphasized the wise use of wetlands and their resources. This review mentions salient features of wetland ecosystems, their vegetation component, and the pros and cons involved in heavy metal removal. Wetland plants are preferred over other bio-agents due to their low cost, frequent abundance in aquatic ecosystems, and easy handling. The extensive rhizosphere of wetland plants provides an enriched culture zone for the microbes involved in degradation. The wetland sediment zone provides reducing conditions that are conducive to the metal removal pathway. Constructed wetlands proved to be effective for the abatement of heavymetal pollution from acid mine drainage; landfill leachate; thermal power; and municipal, agricultural, refinery, and chlor-alkali effluent. the physicochemical properties of wetlands provide many positive attributes for remediating heavy metals. Typha, Phragmites, Eichhornia, Azolla, Lemna, and other aquatic macrophytes are some

  13. Dinitrogen fixation associated with shoots of aquatic carnivorous plants: is it ecologically important?

    Czech Academy of Sciences Publication Activity Database

    Sirová, D.; Šantrůček, Jiří; Adamec, Lubomír; Bárta, J.; Borovec, Jakub; Pech, J.; Owens, S.M.; Šantrůčková, H.; Schaeufele, R.; Štorchová, Helena; Vrba, Jaroslav

    2014-01-01

    Roč. 114, č. 1 (2014), s. 125-133. ISSN 0305-7364 R&D Projects: GA ČR(CZ) GAP504/11/0783 Institutional support: RVO:60077344 ; RVO:67985939 ; RVO:61389030 Keywords : Aldrovanda vesiculosa * aquatic carnivorous plants * Utricularia vulgaris * nitrogen fixation Subject RIV: CE - Biochemistry; EF - Botanics (BU-J); EF - Botanics (UEB-Q) Impact factor: 3.654, year: 2014

  14. Re-establishment of an extinct population of the endangered aquatic plant Potamogeton coloratus

    Czech Academy of Sciences Publication Activity Database

    Kaplan, Zdeněk; Šumberová, Kateřina; Formanová, I.; Ducháček, M.

    2014-01-01

    Roč. 119, Oct. 2014 (2014), s. 91-99. ISSN 0304-3770 R&D Projects: GA ČR GA206/09/0291; GA ČR GA206/09/0329; GA ČR GB14-36079G Institutional support: RVO:67985939 Keywords : aquatic plants * endangered species * population restoration Subject RIV: EF - Botanics Impact factor: 1.608, year: 2014

  15. Removal of Herbicide Residua and Nitrates from Agricultural Waters by Aquatic Plants

    OpenAIRE

    Bayer, David E; Rejmankova, Eliska

    1990-01-01

    WRC project W-727 focuses on evaluating the capacity of selected aquatic plant species for low concentrations of herbicide and nitrate removal from nursery waste waters. Two nurseries in the Sacramento area were selected as test sites. From June 1988 through October 1989, water samples from inflow and outflow water from both nurseries were collected and analysed for inorganic constituents and herbicides. Of the herbicides analyzed (simazine, oryzalin, oxyfluorfen and pendimethalin), only oryz...

  16. Effect of arsenic on reflectance spectra and chlorophyll fluorescence of aquatic plants.

    Science.gov (United States)

    Iriel, Analia; Dundas, Gavin; Fernández Cirelli, Alicia; Lagorio, Maria G

    2015-01-01

    Arsenic pollution of groundwater is a serious problem in many regions of Latin America that causes severe risks to human health. As a consequence, non-destructive monitoring methodologies, sensitive to arsenic presence in the environment and able to perform a rapid screening of large polluted areas, are highly sought-after. Both chlorophyll - a fluorescence and reflectance of aquatic plants may be potential indicators to sense toxicity in water media. In this work, the effects of arsenic on the optical and photophysical properties of leaves of different aquatic plants (Vallisneria gigantea, Azolla filiculoides and Lemna minor) were evaluated. Reflectance spectra were recorded for the plant leaves from 300 to 2400 nm. The spectral distribution of the fluorescence was also studied and corrected for light re-absorption processes. Photosynthetic parameters (Fv/Fm and ΦPSII) were additionally calculated from the variable chlorophyll fluorescence recorded with a pulse amplitude modulated fluorometer. Fluorescence and reflectance properties for V. gigantea and A. filiculoides were sensitive to arsenic presence in contrast to the behaviour of L. minor. Observed changes in fluorescence spectra could be interpreted in terms of preferential damage in photosystem II. The quantum efficiency of photosystem II for the first two species was also affected, decreasing upon arsenic treatment. As a result of this research, V. gigantea and A. filiculoides were proposed as bioindicators of arsenic occurrence in aquatic media. PMID:25150973

  17. Distribution patterns and changes of aquatic plant communities in Napahai Wetland in northwestern Yunnan Plateau,China

    Institute of Scientific and Technical Information of China (English)

    Derong XIAO; Kun TIAN; Hua YUAN; Yuming YANG; Ningyun LI; Shouguo XU

    2008-01-01

    Using GPS technology and community research methods for plant communities,we investigated the distribution patterns of aquatic plant communities in the high plateaus of the Napahai Wetlands,Yunnan,China,as well as the species changes of plant communities compared with that of 24 years ago since 2005.We found that the types and numbers of aquatic plant communities have changed.Some pollution-tolerant,nutrient-loving plant communities such as Scirpus tabernaemontani,Zizania caduciflora,Myriophyllum spicatum,and Azolla imbricata flourished,while the primary aquatic plant com-munities were reduced or even disappeared.The number of aquatic plant communities were increased from nine to 12 with the addition of two new emergent plant com-munities and one new floating-leaved plant community.The increase in emergent plant communities was signifi-cant.From east to west and from south to north,various types of plant communities were continuously distributed,including floating-leaved plant communities,emergent plant communities and submerged plant communities.The composition of the communities became more com-plicated and the number of accompanying species increased,while the percentage ratio of dominant plant species declined.In 2005,the coverage of emergent plant communities was the largest (528.42 hm2) followed by submerged plant communities (362.50 hm2) and the float-ing-leaf plant communities was the smallest (70.23 hm2).The variations in the distribution of aquatic plant com-munities in the Napahai Wetlands reflect the natural responses to the change of the wetland ecological envir-onment.This study indicates that human disturbances have led to an inward movement of the wetland shoreline,a decrease in water quality and a reduction in wetland habitat.

  18. Can sacrificial feeding areas protect aquatic plants from herbivore grazing? Using behavioural ecology to inform wildlife management.

    Science.gov (United States)

    Wood, Kevin A; Stillman, Richard A; Daunt, Francis; O'Hare, Matthew T

    2014-01-01

    Effective wildlife management is needed for conservation, economic and human well-being objectives. However, traditional population control methods are frequently ineffective, unpopular with stakeholders, may affect non-target species, and can be both expensive and impractical to implement. New methods which address these issues and offer effective wildlife management are required. We used an individual-based model to predict the efficacy of a sacrificial feeding area in preventing grazing damage by mute swans (Cygnus olor) to adjacent river vegetation of high conservation and economic value. The accuracy of model predictions was assessed by a comparison with observed field data, whilst prediction robustness was evaluated using a sensitivity analysis. We used repeated simulations to evaluate how the efficacy of the sacrificial feeding area was regulated by (i) food quantity, (ii) food quality, and (iii) the functional response of the forager. Our model gave accurate predictions of aquatic plant biomass, carrying capacity, swan mortality, swan foraging effort, and river use. Our model predicted that increased sacrificial feeding area food quantity and quality would prevent the depletion of aquatic plant biomass by swans. When the functional response for vegetation in the sacrificial feeding area was increased, the food quantity and quality in the sacrificial feeding area required to protect adjacent aquatic plants were reduced. Our study demonstrates how the insights of behavioural ecology can be used to inform wildlife management. The principles that underpin our model predictions are likely to be valid across a range of different resource-consumer interactions, emphasising the generality of our approach to the evaluation of strategies for resolving wildlife management problems. PMID:25077615

  19. A systematic review of nonrandomized controlled trials on the curative effects of aquatic exercise

    OpenAIRE

    Kamioka, Hiroharu; Tsutani, Kiichiro; Mutoh, Yoshiteru; Okuizum, Hiroyasu; Ohta, Miho; Handa, Shuichi; Okada, Shinpei; Kitayuguchi, Jun; Kamada, Masamitsu; Shiozawa, Nobuyoshi; Park, Sang-Jun; Honda, Takuya; Moriyama, Shoko

    2011-01-01

    Background: The objectives of this review were to integrate the evidence of curative effects through aquatic exercise and assess the quality of studies based on a review of nonrandomized controlled trials (nRCTs). Methods: Study design was a systematic review of nonrandomized controlled trials. Trials were eligible if they were nonrandomized clinical trials. Studies included one treatment group in which aquatic exercise was applied. We searched the following databases from 2000 up to July 20,...

  20. Simultaneous determination of multiclass emerging contaminants in aquatic plants by ultrasound assisted matrix solid phase dispersion and GC-MS

    OpenAIRE

    Aznar Roca, Ramón; Albero, Beatriz; Sánchez Brunete, Consuelo; Miguel, Esther; Martín Girela, Isabel; José L. Tadeo

    2016-01-01

    A multiresidue method was developed for the simultaneous determination of 31 emerging contaminants (pharmaceutical compounds, hormones, personal care products, biocides and flame retardants) in aquatic plants. Analytes were extracted by ultrasound assisted-matrix solid phase dispersion (UA-MSPD) and determined by gas chromatography-mass spectrometry after sylilation. The method was validated for different aquatic plants (Typha angustifolia, Arundo donax and Lemna minor) and a semiaquatic cult...

  1. Ubiquitous water-soluble molecules in aquatic plant exudates determine specific insect attraction.

    Directory of Open Access Journals (Sweden)

    Julien Sérandour

    Full Text Available Plants produce semio-chemicals that directly influence insect attraction and/or repulsion. Generally, this attraction is closely associated with herbivory and has been studied mainly under atmospheric conditions. On the other hand, the relationship between aquatic plants and insects has been little studied. To determine whether the roots of aquatic macrophytes release attractive chemical mixtures into the water, we studied the behaviour of mosquito larvae using olfactory experiments with root exudates. After testing the attraction on Culex and Aedes mosquito larvae, we chose to work with Coquillettidia species, which have a complex behaviour in nature and need to be attached to plant roots in order to obtain oxygen. This relationship is non-destructive and can be described as commensal behaviour. Commonly found compounds seemed to be involved in insect attraction since root exudates from different plants were all attractive. Moreover, chemical analysis allowed us to identify a certain number of commonly found, highly water-soluble, low-molecular-weight compounds, several of which (glycerol, uracil, thymine, uridine, thymidine were able to induce attraction when tested individually but at concentrations substantially higher than those found in nature. However, our principal findings demonstrated that these compounds appeared to act synergistically, since a mixture of these five compounds attracted larvae at natural concentrations (0.7 nM glycerol, <0.5 nM uracil, 0.6 nM thymine, 2.8 nM uridine, 86 nM thymidine, much lower than those found for each compound tested individually. These results provide strong evidence that a mixture of polyols (glycerol, pyrimidines (uracil, thymine, and nucleosides (uridine, thymidine functions as an efficient attractive signal in nature for Coquillettidia larvae. We therefore show for the first time, that such commonly found compounds may play an important role in plant-insect relationships in aquatic eco-systems.

  2. Accumulation of uranium by aquatic plants in field conditions: Prospects for phytoremediation

    International Nuclear Information System (INIS)

    A study was undertaken to determine Uranium concentrations in water and aquatic plants in the uraniferous region of Beiras, Central Portugal. Samples were collected from running water (n = 200) at places where aquatic species were observed. Plant samples were collected from 28 species of submerged, free-floating and rooted emergent plants including 2 bryophytes and 1 pteridophyte. Uranium concentrations in surface waters ranged from 0.23 to 1217 μg L−1. The aquatic plant species studied, including several previously untested species, exhibited the ability to accumulate U in concentrations many times that of the ambient water. In general submerged plants exhibited higher U content followed by rooted emergent and free floating species. The highest U concentrations were observed in the bryophyte Fontinalis antipyretica (up to 4979 mg kg−1) followed by Callitriche stagnalis (1963 mg kg−1), Callitriche hamulata (379 mg kg−1), Ranunculus peltatus subsp. saniculifolius (243 mg kg−1), Callitriche lusitanica (218 mg kg−1), and Ranunculus trichophyllus (65.8 mg kg−1). In two out of three rooted emergent species U seemed to be preferentially partitioned in rhizome/roots with highest rhizome U content recorded in Typha latifolia (380 mg kg−1). Among the free-floating species, the highest U content (42.5 mg kg−1) was seen in Lemna minor. The bryophyte F. antipyretica and Callitrichaceae members seem to be promising candidates for the development of phytofiltration methodologies based on U accumulation, abundance and biomass production. - Highlights: • Exploration of U contamination extent in uraniferous province of Central Portugal • A group of previously untested species with the ability to accumulate U was assessed • U accumulation patterns in the species indicate their potential in bioindication and phytoremediation of U-contaminated water

  3. The Effects of Rainfall on the Population Dynamics of an Endangered Aquatic Plant, Schoenoplectus gemmifer (Cyperaceae)

    Science.gov (United States)

    Kitamura, Koshi; Kakishima, Satoshi; Uehara, Takashi; Morita, Satoru; Tainaka, Kei-ichi; Yoshimura, Jin

    2016-01-01

    The conservation of aquatic plants in river ecosystems should consider the wash-out (away) problem resulting from severe rainfall. The aquatic plant Schoenoplectus gemmifer is an endangered species endemic to Japan. Our previous study reported that the population size of S. gemmifer in Hamamatsu city, Japan, had decreased by one-tenth because many individuals had been washed out by a series of heavy rains in 2004. However, there is insufficient information on the ecological nature of this endangered aquatic plant for adequate conservation. In this paper, we report the population dynamics of one population in Hamamatsu city from 2004 to 2012 in relation to rainfall. We surveyed the number and growing location of all living individuals in the population 300 times during the study period. To examine the temporal changes of individual plants, we also counted the number of culms for 38 individuals in four observations among 300 records. Decreases and increases in the population size of this plant were associated with washing out and the settlement of gemmae (vegetative propagation), respectively. The major cause of the reduction in the population size was an increase in the number of washed-out individuals and not the decreased settlement of gemmae. The wash-out rates for small and large individuals were not significantly different. Small individuals having a stream form with linear leaves resisted flooding, and large individuals were often partially torn off by flooding events. Modification of river basins to reduce the flow velocity may be effective for the conservation of S. gemmifer. PMID:27327439

  4. Accumulation of uranium by aquatic plants in field conditions: Prospects for phytoremediation

    Energy Technology Data Exchange (ETDEWEB)

    Favas, Paulo J.C., E-mail: pjcf@utad.pt [School of Life Sciences and the Environment, University of Trás-os-Montes e Alto Douro, 5001-801 Vila Real (Portugal); IMAR-CMA Marine and Environmental Research Centre, Faculty of Sciences and Technology, University of Coimbra, 3001-401 Coimbra (Portugal); Pratas, João [Department of Earth Sciences, Faculty of Sciences and Technology, University of Coimbra, 3001-401 Coimbra (Portugal); IMAR-CMA Marine and Environmental Research Centre, Faculty of Sciences and Technology, University of Coimbra, 3001-401 Coimbra (Portugal); Varun, Mayank; D' Souza, Rohan; Paul, Manoj S. [Department of Botany, St. John' s College, Agra 282 002 (India)

    2014-02-01

    A study was undertaken to determine Uranium concentrations in water and aquatic plants in the uraniferous region of Beiras, Central Portugal. Samples were collected from running water (n = 200) at places where aquatic species were observed. Plant samples were collected from 28 species of submerged, free-floating and rooted emergent plants including 2 bryophytes and 1 pteridophyte. Uranium concentrations in surface waters ranged from 0.23 to 1217 μg L{sup −1}. The aquatic plant species studied, including several previously untested species, exhibited the ability to accumulate U in concentrations many times that of the ambient water. In general submerged plants exhibited higher U content followed by rooted emergent and free floating species. The highest U concentrations were observed in the bryophyte Fontinalis antipyretica (up to 4979 mg kg{sup −1}) followed by Callitriche stagnalis (1963 mg kg{sup −1}), Callitriche hamulata (379 mg kg{sup −1}), Ranunculus peltatus subsp. saniculifolius (243 mg kg{sup −1}), Callitriche lusitanica (218 mg kg{sup −1}), and Ranunculus trichophyllus (65.8 mg kg{sup −1}). In two out of three rooted emergent species U seemed to be preferentially partitioned in rhizome/roots with highest rhizome U content recorded in Typha latifolia (380 mg kg{sup −1}). Among the free-floating species, the highest U content (42.5 mg kg{sup −1}) was seen in Lemna minor. The bryophyte F. antipyretica and Callitrichaceae members seem to be promising candidates for the development of phytofiltration methodologies based on U accumulation, abundance and biomass production. - Highlights: • Exploration of U contamination extent in uraniferous province of Central Portugal • A group of previously untested species with the ability to accumulate U was assessed • U accumulation patterns in the species indicate their potential in bioindication and phytoremediation of U-contaminated water.

  5. Vegetation development following stream/river restoration: more natural fluvial dynamics and morphology, return of aquatic and riparian plant species?

    Science.gov (United States)

    Soons, M. B.

    2012-04-01

    , even if seeds have successfully dispersed into an area, local germination and establishment may also be limiting for the development of local biodiversity and/or for restoration success. However, we know surprisingly little about the crucial process of colonization. This presentation focusses on colonization by aquatic and riparian plant species. I combine the results of several studies investigating dispersal, germination and establishment. A study on restored riparian zones along mountain streams shows that several years after restoration, the species composition at the restored sites shows signs of dispersal limitation: species with nearby source populations re-colonized successfully, but species without source populations in the immediate surroundings often remained absent. A detailed study on the re-colonization of a restored riparian zone along a lowland stream reveals that many species enter the site as seeds, but relatively few of these seeds are able to germinate and establish successfully, indicating that both a strong dispersal filter and a strong environmental filter control local vegetation development and hence stream dynamics and morphological developments. While the intensity of the disturbance of local conditions has a great impact on the role of the environmental filter, dispersal clearly remains a limiting factor in many situations.

  6. Investigation and assessment of tritium concentration of aquatic environment surrounding haiyang nuclear power plant

    International Nuclear Information System (INIS)

    Objective: To investigate tritium concentrations of aquatic environment surrounding Haiyang nuclear power plant, and make a analysis of the influencial factors of the tritium concentration; to assess the accumulated-effective dose of the residents surrounding nuclear power plant. Methods: We collected 16 sample points, including surface water, groundwater, drinking water and sea water within 30 km surrounding Haiyang nuclear power plant in wet period and dry period. The pretreatment and preparation of samples referred to the recommended methods of the national standards GB 12375-90. The low background liquid scintillation spectrometer is used to measure the tritium concentration. Result: The average level of the tritium concentration of water samples was (0.62 ± 0.163) Bq · L-1, the range of the tritium concentrations was from 0.27Bq · L-1 to 0.93Bq · L-1. The difference of the tritium concentrations between two different periods analyzed by the paired t test was considered statistically significant. (P-1, 0.008 μ Sv · a-1, 0.007 μ Sv · a-1, respectively. Conclusion: The activity concentration of tritium in the aquatic environment surrounding Haiyang nuclear power plant was at the lower level than that of others; according to the limited value that is regulated by basic standards for protection against ionizing radiation and of the safety of radiation sources (GB 18871-2002) (2 mSv), the accumulated-effective dose which residents suffered was in background level of radiation. (authors)

  7. The aquatic toxicity and chemical forms of coke plant effluent cyanide -- Implications for discharge limits

    International Nuclear Information System (INIS)

    Cyanide is present in treated cokemaking process waters at concentrations as high as 8.0 mg/L. In assessing options for managing the discharge of a treated effluent, the development and implementation of discharge limits for cyanide became a critical issue. A study was initiated to evaluate possible alternatives to cyanide permit limits at the US Steel Gary Works Facility. The objectives of the study were to: (1) evaluation the forms of cyanide present in coke plant effluent; (2) determine whether these forms of cyanide are toxic to selected aquatic organisms; (3) compare the aquatic toxicity of various chemical forms of cyanide; (4) identify if the receiving water modifies cyanide bioavailability; and (5) confirm, with respect to water quality-based effluent limits, an appropriate analytical method for monitoring cyanide in a coke plant effluent. The results of aquatic toxicity tests and corresponding analytical data are presented. Toxicity tests were conducted with various pure chemical forms of cyanide as well as whole coke plant effluent (generated from a pilot-scale treatment system). Test species included the fathead minnow (Pimephales promelas), rainbow trout (Oncorhynchus mykiss), Ceriodaphnia dubia (C. dubia) and Daphnia magna (D. magna). Analytical measurements for cyanide included total, weak acid dissociable, diffusible cyanide and selected metal species of cyanide. The findings presented by the paper are relevant with respect to the application of cyanide water quality criteria for a coke plant effluent discharge, the translation of these water quality-based effluent limits to permit limits, and methods for compliance monitoring for cyanide

  8. A quantitative and qualitative comparison of aquatic and terrestrial plant lignin phenols: Critical information for paleoecological reconstructions

    Science.gov (United States)

    Thomas, E. K.; Gao, L.; Huang, Y.

    2009-12-01

    Currently, lignin phenols are used in marine and lacustrine ecosystems as proxies for terrestrial vegetation inputs. Lignins are found in all vascular plants, where they play a crucial role in conduction of water, nutrients and photosynthates through the vascular system, and where they provide structural support. Furthermore, different types of lignin phenols are found in specific types of vegetation (e.g., both syringyl and vanillyl phenols are in angiosperm wood, but only vanillyl phenols are in gymnosperm wood). The ratio of lignin phenols (e.g. syringyl:vanillyl) is indicative of the type of plant from which the lignin phenols were derived. Studies that examine lignin phenols in sedimentary archives assume that lignin phenols are derived solely from terrestrial plants, and changes in the types of lignin phenols are therefore assumed to mark changes in terrestrial vegetation. These assumptions may be flawed, however, because many aquatic plants, including those that are submerged, are vascular, yet little is known about the type and concentration of lignin phenols present in aquatic vascular plants. This knowledge is imperative to the success of paleoecological studies that utilize lignin phenols as a geochemical proxy for terrestrial vegetation. Furthermore, lignin phenols may be important targets for compound-specific radiocarbon dating, which is useful when suitable macrofossils are unavailable. Knowing the origin of the molecules used for radiocarbon dating, however, (i.e. whether they are terrestrial or aquatic) is critical to obtaining meaningful chronologies. We isolated and analyzed lignin phenol monomers from different types of aquatic vascular plants. All plants analyzed are angiosperms, but they occupy different niches in aquatic plant communities: floating, emergent and submergent. We also analyzed different parts of aquatic plants (i.e., stems and leaves). We found lignin phenols in all aquatic species that we analyzed, which highlights the need for

  9. Plant-microbe interaction in aquatic system and their role in the management of water quality: a review

    Science.gov (United States)

    Srivastava, Jatin K.; Chandra, Harish; Kalra, Swinder J. S.; Mishra, Pratibha; Khan, Hena; Yadav, Poonam

    2016-04-01

    Microbial assemblage as biofilm around the aquatic plant forms a firm association that largely depends upon the mutual supplies of nutrients, e.g., microbes interact with plants in an aquatic system most likely for organic carbon and oxygen, whereas plants receive defensive immunity and mineral exchange. Apart from the mutual benefits, plant-microbe interactions also influence the water quality especially at rhizosphere providing inherent ability to the aquatic system for the mitigation of pollution from the water column. The review presents and in-depth information along with certain research advancements made in the field of ecological and bio/chemical aspects of plant-microbe interactions and the underlying potential to improve water quality.

  10. USE OF WATER HYACINTH AQUATIC TREATMENT SYSTEMS FOR AMMONIA CONTROL AND EFFLUENT POLISHING

    Science.gov (United States)

    A pilot investigation conducted at the City of Roseville, California evaluated the use of water hyacinth aquatic plants as a post-secondary wastewater treatment process. These systems substantially reduced ammonia concentrations during warm seasons by more than 70% in nonaerated ...

  11. Distribution of metals in aquatic edible plants: Trapa natans (Roxb.) Makino and Ipomoea aquatica Forsk.

    Science.gov (United States)

    Rai, U N; Sinha, S

    2001-09-01

    Most of the water bodies being used for the cultivation of edible aquatic plants (Trapa natans and Ipomoea aquatica) in Lucknow district, U.P., India, were found to be contaminated with a variety of toxic metals (Fe, Cu, Cr, Mn and Pb). The concentration of metals Cr, Pb and Fe in water was much higher than recommended permissible limits of WHO (1995). The edible parts of these plants bioconcentrated metals from their surrounding water significantly. Therefore, the present study was planned to assess the metal concentration in edible part of plants which was collected from various water bodies used for cultivation of these crops. Despite varying levels of metals found in various fruit parts of T. natans, the metal accumulation in kernel was alarming. However, metal content decreased significantly in various parts after boiling the fruit. Similarly, I. aquatica also accumulated significantly higher amounts of these metals in leaves, however the metal accumulating potential varied considerably depending upon level of metal contamination in the water body in which they were growing. The importance of these findings in the exploitation of these aquatic crops to meet the demand of food and health perspectives for human beings is highlighted. PMID:11554485

  12. Aquatic adventitious roots of the wetland plant Meionectes brownii can photosynthesize

    DEFF Research Database (Denmark)

    Rich, Sarah Meghan; Ludwig, Martha; Pedersen, Ole;

    2011-01-01

    roots during submergence. • Underwater photosynthetic light and CO(2) response curves were determined for aquatic-adapted leaves, stems and aquatic roots of M. brownii. Oxygen microelectrode and (14)CO(2)-uptake experiments determined shoot inputs of O(2) and photosynthate into aquatic roots. • Aquatic...... m(-3) dissolved CO(2), aquatic roots fix carbon at 0.016 µmol CO(2) g(-1) DM s(-1). Illuminated aquatic roots do not rely on exogenous inputs of O(2). • The photosynthetic ability of aquatic roots presumably offers an advantage to submerged M. brownii as aquatic roots, unlike sediment roots, need...

  13. Density-dependent reproductive and vegetative allocation in the aquatic plant Pistia stratiotes (Araceae).

    Science.gov (United States)

    Coelho, Flávia Freitas; Deboni, Liene; Lopes, Frederico Santos

    2005-01-01

    Pistia stratiotes is an aquatic macrophyte that grows in temporary-ponds in the southern Pantanal, Brazil. It reproduces both sexually and asexually and is usually observed forming dense mats on the water surface, a condition favored by the plant's vegetative reproduction coupled with an ability for rapid growth. In this study we examined the effect of densely crowded conditions on the production of reproductive and vegetative structures. In addition, we verified whether there is a trade-off between clonal growth and investment in sexual reproductive structures, and whether there is an allocation pattern with plant size. Individual plant biomass and the number of the rosettes producing sexual reproductive structures and vegetative growth structures both increased with density. Increase in plant size resulted in increased proportional allocation to sexual reproductive structures and vegetative growth structures. Allocation of biomass to reproduction did not occur at the expense of clonal growth. Thus, the density response appears as a increase of rosettes producing sexual reproductive structures and vegetative growth structures. Therefore, long leaves and stolons may be adaptive under densely crowded conditions where competition for light is intense. An important aspect in the study of trade-offs is the size-dependency of the allocation patterns .Usually, larger plants produce more biomass. Therefore, larger plants can allocate more biomass to both vegetative and sexual reproduction than smaller plants and thus show a positive correlation between both traits rather than the expected negative one. PMID:17354448

  14. A randomized controlled trial of aquatic and land-based exercise in patients with knee osteoarthritis

    DEFF Research Database (Denmark)

    Lund, H.; Weile, U.; Christensen, R.;

    2008-01-01

    patients reported adverse events (i.e. discomfort) in land-based exercise, while only 3 reported adverse events in the aquatic exercise. Conclusion: Only land-based exercise showed some improvement in pain and muscle strength compared with the control group, while no clinical benefits were detectable after......Objective: To compare the efficacy of aquatic exercise and a land-based exercise programme vs control in patients with knee osteoarthritis. Methods: Primary outcome was change in pain, and in addition Knee Injury and Osteoarthritis Outcome Score questionnaire (KOOS). Standing balance and strength...... was also measured after and at 3-month follow-up. Seventy-nine patients (62 women), with a mean age of 68 years (age range 40-89 years) were randomized to aquatic exercise (n = 27), land-based exercise (n = 25) or control (n = 27). Results: No effect was observed immediately after exercise cessation...

  15. Aquatic Food Plants and their Consumer Birds at Sandi Bird Sanctuary, Hardoi, Northern India

    Directory of Open Access Journals (Sweden)

    Kaushalendra Kumar Jha

    2013-07-01

    Full Text Available One of the Bird Sanctuaries of Uttar Pradesh, Sandi, was selected for studying some ecological aspects like, aquatic food plants, their food calendar and dependent birds of migratory as well as resident origin. The study site is considered as an ideal wetland. This is located at 27o15’ N and 79o55’ E. Thirty four food plant species were identified to be eaten by 16 birds.These plants were the species of Alloteropsis, Arundo, Azolla, Ceratophyllum, Chloris, Commelina, Cyperus, Echinochloa, Eichhornia, Eleocharis, Hydrilla, Ipomoea, Jussiaea, Lemna, Najas, Nelumbo, Nymphea, Nymphoides, Oryza, Pistia, Polygonum, Potamogeton, Scirpus, Spirodela, Trapa, Typha, Vallisneria, and Wolffia. Common consumer birds eating plant parts were Coot, Pochards, Teal, Wigeon, Gadwal, Gargany, Goose, Whistling-duck, Mallard, Pintail, Shoveler, and Swamphen. These are primarily the migratory birds except Coot, Whistling-duck and Swamphen. Spot-billed Duck, and Indian Moorhen were occasionally seen eating submerged hydrophytes and filamentous slimy green algae. On the basis of multi-strata growth of plants in the Sanctuary a wetland profile was prepared. Food calendar i.e., availability of palatable parts of plants during different months was recorded. Information collected in the study could be used for habitat management, especially the weed removal and ensuring food sustainability for the vegetarian birds.

  16. Bibliographical survey of radiostrontium uptake capacity and processes in aquatic plants

    International Nuclear Information System (INIS)

    This report covers 302 articles published between 1949 and 1980 on the contamination of freshwater and marine aquatic plants by radioactive strontium. For the marine and continental environments, the results of laboratory experiments on the dynamics of radiostrontium buildup and localization, concentration factors, elimination processes, the effects of biological factors and of the environment, the activity levels and concentration factors measured in areas directly and indirectly affected by waste discharges, discrimination factors and the role of plants as radiation indicators, are examined. The radioactive strontium uptake potentials are higher for freshwater plants -especially mosses and characeae- than for marine plants. In zones not directly affected by waste discharges, the maximum activity measured is 82 pCi/kg wet weight, compared with 750 pCi/kg for freshwater plants. The peak values were observed in 1964-1965. In zones directly affected by waste discharges, the activity levels range from 15 to 1700 pCi of 90Sr per kilogram of wet weight in the marine environment, and from 20 to 207000 pCi/kg in fresh water. This work underlines the need for greater accuracy in allowing for the ecological characteristics of each site when assessing the impact of nuclear facilities, and for thoroughly correlating field observations with laboratory experiments in order to obtain a prospective view of the potentials for radioactive strontium uptake by plants according to the activity levels present in the liquid effluents

  17. Hydrologic modeling of aquatic plant treatment systems polishing dairy lagoon effluents.

    Science.gov (United States)

    Cothren, G M; Chen, S; Rahman, M; Malone, R

    2001-01-01

    In this study, a mathematical model of the hydrologic balance of an aquatic plant treatment system (APTS) has been developed. The mass balance approach has been adopted and the major components of the water balance, such as precipitation, evapotranspiration (ET) and percolation have been incorporated into the model. For estimation of ET for duckweed and water hyacinth plants, mathematical relationships were established between ET and pan evaporation using data collected at the site. The observed ET rates of water hyacinths were up to 66% higher than the pan evaporation rates. But for duckweed, the observed ET rates were 10 to 20% lower than the pan evaporation rates. Using the available historic precipitation and pan evaporation data, several computer simulations of the model were run to estimate the HLR and HRT of the ponds under different design requirements. The results indicate that aquatic ponds with water hyacinths can operate at greater HLR's than ponds supporting duckweed. For a zero discharge system, the allowable HLR for a water hyacinth pond was found to be 5 times that of a pond containing duckweed. PMID:11759904

  18. Genetic uniformity characterizes the invasive spread of water hyacinth (Eichhornia crassipes), a clonal aquatic plant.

    Science.gov (United States)

    Zhang, Yuan-Ye; Zhang, Da-Yong; Barrett, Spencer C H

    2010-05-01

    Aquatic plant invasions are often associated with long-distance dispersal of vegetative propagules and prolific clonal reproduction. These reproductive features combined with genetic bottlenecks have the potential to severely limit genetic diversity in invasive populations. To investigate this question we conducted a global scale population genetic survey using amplified fragment length polymorphism markers of the world's most successful aquatic plant invader -Eichhornia crassipes (water hyacinth). We sampled 1140 ramets from 54 populations from the native (South America) and introduced range (Asia, Africa, Europe, North America, Central America and the Caribbean). Although we detected 49 clones, introduced populations exhibited very low genetic diversity and little differentiation compared with those from the native range, and approximately 80% of introduced populations were composed of a single clone. A widespread clone ('W') detected in two Peruvian populations accounted for 70.9% of the individuals sampled and dominated in 74.5% of the introduced populations. However, samples from Bangladesh and Indonesia were composed of different genotypes, implicating multiple introductions to the introduced range. Nine of 47 introduced populations contained clonal diversity suggesting that sexual recruitment occurs in some invasive sites where environmental conditions favour seedling establishment. The global patterns of genetic diversity in E. crassipes likely result from severe genetic bottlenecks during colonization and prolific clonal propagation. The prevalence of the 'W' genotype throughout the invasive range may be explained by stochastic sampling, or possibly because of pre-adaptation of the 'W' genotype to tolerate low temperatures. PMID:20529068

  19. [Alfalfa Planting as weed control

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This document is a letter to farming cooperators regarding the stipulations surrounding alfalfa plantings in lieu of small grain plantings to provide weed control,...

  20. Screening potential genotoxic effect of aquatic plant extracts using the mussel micronucleus test

    Institute of Scientific and Technical Information of China (English)

    Bettina Eck-Varanka; Nora Kovts; Katalin Hubai; Gbor Paulovits; rpd Ferincz; Eszter Horvth

    2016-01-01

    Objective:To assess the genotoxic potential of selected aquatic macrophytes:Ceratophyllum demersum L. (hornwort, family Ceratophyllaceae),Typha angustifolia L. (narrowleaf cattail, family Typhaceae),Stratiotes aloides L. (water soldier, family Butomaceae), andOenanthe aquatica (L.) Poir. (water dropwort, family Umbelliferae). Methods: For genotoxicity assessment, the mussel micronucleus test was applied. Micronucleus frequency was determined from the haemolymph ofUnio pictorum L. (painter’s mussel). In parallel, total and hydrolisable tannin contents were determined. Results:All plant extracts elucidated significant mutagenic effect. Significant correlation was determined between tannin content and mutagenic capacity. Conclusions:The significant correlation between genotoxicity as expressed by micronucleus frequency and tannin content (both total and hydrolisable tannins) indicate that tannin is amongst the main compounds being responsible for the genotoxic potential. It might be suggested that genotoxic capacity of these plants elucidate a real ecological effect in the ecosystem.

  1. Groundwater interactions with Lobelia lakes- effects on the aquatic plant, Littorella uniflora

    DEFF Research Database (Denmark)

    Ommen, Daniela Oliveira; Vinther, Hanne Fogh; Krüger, Laila;

    Lake Hampen is representative of a group of lakes called Lobelia lakes. These are oligotrophic, clear water lakes which tend to have a low alkalinity. These lakes are termed “Lobelia lakes” due to the characteristic isoetid species which thrive in these conditions. Isoetids are small, evergreen...... aquatic plants whose leaves grow in a rosette form and have a large root base. The large root system enables the plants to better assimilate nutrients from the sediments, and the uptake of CO2 which is used for photosynthesis, and to release O2 into otherwise anoxic sediments. Lake Hampen is situated high...... up in the Jylland ridge and lies close to the groundwater boundary. This means that the groundwater flow between the aquifer and the lake is not constant, sometimes the groundwater flows from the aquifer into the lake (discharge) and other times it flows from the lake into the aquifer (recharge...

  2. Plants cultivation in controlled containments

    International Nuclear Information System (INIS)

    The plants cultivation in controlled containments permits to the - Departement d'Ecophysiologie Vegetale et de Microbiologie (DVEM) - of the CEA to lead several topics of research. The works of DVEM which are based on the molecular labelling, technique adapted to plants, contribute to understand the plant - soil relationships and the plant growth process. In addition, the staff of DVEM study the impact of pollutant heavy metals, existing in the soil, on plants and the plant stress induced by oxygen, light, ionizing radiations,... and defence mechanisms of plants (F. M.)

  3. Effects of Co2 Concentrations and light intensity on photosynthesis of a rootless submerged plant, ceratophyllum demersum L., used for aquatic food production in bioregenerative life support systems

    Science.gov (United States)

    Kitaya, Y.; Okayama, T.; Murakami, K.; Takeuchi, T.

    Aquatic higher plants are likely to play an important role in aquatic food production modules in bioregenerative systems for producing feeds for fish, converting CO2 to O2 and remedying water quality in addition to green microalgae. In the present study, the effects of culture conditions on the net photosynthetic rate of a rootless submerged plant, Ceratophyllum demersum L., was investigated to determine the optimum culture conditions for plant function in aquatic food production modules including both plant culture and fish culture systems . The net photosynthetic rate in plants was determined by the increase in dissolved O2 concentrations in a closed vessel containing a plantlet and water. The water in the vessel was aerated sufficiently with a gas containing a known level CO 2 gas mixed with N2 gas before closing the vessel. The CO 2 concentrations in the aerating gas ranged from 0.3 to 100 mmol mol-1 . Photosynthetic photon flux density (PPFD) in the vessel ranged from 0 (dark) to 1.0 mmol m-2 s-1 , which was controlled with a metal halide lamp. Temperature was kept at 28 C. The net photosynthetic rate increased with increasing PPFD levels and was saturated at 0.2 and 0.5 mmol m-2 s-1 PPFD under CO 2 levels of 1.0 and 3.0 mmol mol-1 , respectively. The net photosynthetic rate increased with increasing CO2 levels from 0.3 to 3.0 mmol mol-1 showing the maximum value, 70 nmolO 2 gDW s at 3.0 mmol mol-1 CO2 and gradually decreased with increasing CO 2 levels from 3.0 to 100 mmol mol-1 . The results demonstrate that Ceratophyllum demersum L. could be an efficient CO 2 to O2 converter under a 3.0 mmol mol-1 CO2 level and relatively low PPFD levels in aquatic food production modules.

  4. Luxury Uptake and Removal of Phosphorus from Water Column by Representative Aquatic Plants and Its Implication for Wetland Management

    OpenAIRE

    Shardendu Shardendu; Sayantan, D.; Deepti Sharma; Sufia Irfan

    2012-01-01

    Aquatic plants with their high relative growth rates efficiently absorb nutrients from their surrounding media, thereby providing a simple and inexpensive solution for nutrient-polluted aquifers. The present study determined the P accumulation efficiencies of four different aquatic plants namely, Eleocharis plantaginea, Eichhornia crassipes, Pistia stratiotes, and Hydrilla verticillata from the 6043 ha Kabar Wetland (86°05′ E to 86°09′ E, 25°30′ N to 25°32′ N). The aim of the study was to sel...

  5. The toxicity of sulfolane and DIPA from sour gas plants to aquatic species

    International Nuclear Information System (INIS)

    The ecological effects of sulfolane and diisopropanolamine (DIPA), which are used to remove sulfur compounds from natural gas, were studied to establish risk-based cleanup criteria and to evaluate effective remedial measures. Toxicity tests were conducted on both the parent compounds and the thermal and biological degradation products. Toxicity testing focused on aquatic species because surface outlets, such as creeks, were found to be the major pathways for the water soluble DIPA and sulfolane chemicals. Sulfolane proved to be relatively non-toxic to aquatic species, with the exception of bacteria. DIPA was relatively toxic to algae at pH found in ground and surface waters. Aqueous and methanol reclaimer bottom extracts from five different gas plant sites were also tested using modified acute toxicity screening tests with different species. The reclaimer bottoms were found to be highly toxic to all species tested. DIPA and sulfolane did not entirely account for the toxicity of the reclaimer bottoms. Inorganic salts and metals present in reclaimer bottoms were found not to contribute to toxicity directly. The same was true for DIPA and sulfolane degradation products. 3 refs., 7 tabs., 8 figs

  6. Confirmation of irradiation processing doses for controlling microflora in frozen aquatic products

    International Nuclear Information System (INIS)

    Based on the research results and existing references in the hygienic standard and technique code of frozen aquatic products, a conclusion is made that the irradiation dose of 4-7 kGy could ensure bacteria count less than 5 x 104 cfu/g and no pathogen microbial detected when microbial count in the products is less than 5 x 106 cfu/g before irradiation. The irradiation dose of 4-7 kGy could be used in establishing irradiation sterilization practice for control microflora of frozen aquatic products. (authors)

  7. Crude oil derived petroleum products in the aquatic environment: priorities for control

    International Nuclear Information System (INIS)

    The available data on the environmental fate, behaviour and toxicity of five groups of petroleum products is reviewed and the information used to identify the priority of oil products for pollution control to protect the aquatic environment. The oil product groups comprise gasolines, kerosenes, other light fuel oil distillates, residual heavy fuel oils and lubricating oils. (author)

  8. A randomized controlled trial of aquatic and land-based exercise in patients with knee osteoarthritis

    DEFF Research Database (Denmark)

    Lund, Hans; Weile, Ulla; Christensen, Robin;

    2008-01-01

    patients reported adverse events (i.e. discomfort) in land-based exercise, while only 3 reported adverse events in the aquatic exercise. CONCLUSION: Only land-based exercise showed some improvement in pain and muscle strength compared with the control group, while no clinical benefits were detectable after...

  9. Preventing, controlling, and managing alien species introduction for the health of aquatic and marine ecosystems

    Science.gov (United States)

    Short, C.I.; Gross, S.K.; Wilkinson, D.

    2004-01-01

    The introduction and spread of invasive species is an emerging global problem. As economic and ecological impacts continue to grow, there will be an increasing need to develop innovative solutions and global partnerships to combat the increasing rate of invasions and their accompanying impacts. Threats to sustainable fisheries in North America associated with alien species come from many global directions and sources and can be deliberate or the unintended consequence of other actions. Decisions about the role of sustainable fisheries in protecting and restoring the health of aquatic ecosystems become even more complex when economic and social factors are considered along with environmental impacts, because many intentionally introduced species also have associated economic and community costs and benefits. Actions designed to prevent or control alien species in an aquatic ecosystem are often complicated by these nonenvironmental factors as well as public perception and opinion. Aquatic ecosystems are disturbed to varying degrees by alien species, including disease organisms. Prevention is the first and best line of defense. Determining likely pathways and effective countermeasures is more cost-effective than either eradication or control. Our ability to quickly identify new species and their associated risk to ecosystems is critical in designing and implementing effective control and management actions. Lack of infrastructure and necessary resources, clear-cut authority for regulation and action, and scientific information about the biology of alien species and effective control techniques are often limiting factors that prevent the needed action to protect aquatic ecosystems.

  10. Effects of acidification on metal accumulation by aquatic plants and invertebrates. 1. Constructed wetlands

    Science.gov (United States)

    Albers, P.H.; Camardese, M.B.

    1993-01-01

    The pH of lake water is often inversely correlated with concentrations of trace metals in the water column. Concentrations of Al, Cd, Ca, Cu, Fe, Hg, Pb, Mg, Mn, Ni, P, and Zn were compared in water, plants, and aquatic insects from three acidified (pH 5.0) and three nonacidified (pH 6.5) constructed wetlands. Concentrations of Zn in water and bur-reed (Sparganium americanum) were higher in acidified wetlands than in nonacidified wetlands. Floating nonrooted plants contained mean concentrations of Fe, Mg, and Mn that were higher than recommended maximum levels for poultry feed. The mean concentrations of all metals in insects were below recommended maximum levels for poultry feed and below levels that cause toxic effects in wild birds. Smaller than expected increases of metal concentrations in the water of acidified wetlands were probably due to limited mobilization of metals from the sediments and insignificant changes in sedimentation of aqueous metals. Calcium was lower in acidified than in nonacidified wetland water, but the Ca content of insects and bur-reed was not lower. Low concentrations of Ca in aquatic insects from both groups of wetlands indicate that calcium-rich crustaceans and mollusks are probably important to female waterfowl and their young during the spring, when invertebrates make up the majority of the diet. Although toxic effects from metal ingestion seem to be unlikely consequences of wetland acidification, the adverse effect of low pH on the occurrence of crustaceans and mollusks could threaten egg production and development of young.

  11. Aquatic Plants Planting Design of Pingtian Lake Wetland Park%平天湖湿地公园水生植物种植设计

    Institute of Scientific and Technical Information of China (English)

    刘妍

    2012-01-01

    依据湿地生态系统稳定发展的原则,在保证最小程度破坏当地原有植被的基础上,通过查阅资料和调查研究,从水生植物配置的角度,总结出平天湖湿地公园水生植物选择的依据和适当建议,以期为公园水生植物的选择提供思路.%Based on the principles of the steady development of wetland ecosystem to guarantee the minimal damage to native vegetation, the basis and suggestions on the choice of aquatic plants in Pingtian Lake Wetland Park were summarized from the perspective of aquatic plants configuration, with the aim to provide basis for the selection of aquatic plants in parks.

  12. Comparative Studies of the Phytoextraction Capacity of Five Aquatic Plants in Heavy Metal Contaminated Water

    Directory of Open Access Journals (Sweden)

    Erzsébet BUTA

    2014-06-01

    Full Text Available The uptake capacity of the aquatic plants (Salvinia natans Kunth., Eichhornia crassipes Mart., Lemna minor L., Elodea canadensis Michx., Pistia stratiotes L. was analyzed in phytoextraction of Cu2+, Zn2+, and Cd2+. It was attend to study the plants capacity comparatively using mono and multimetallic systems. In particular, the chlorophyll, protein and carotenoids contents were studied during heavy metals uptake, in order to observe the stress effect on plants. The results obtained for the monometallic system showed that Salvinia natans Kunth. accumulated the highest quantity of Cu2+ (4.72 mg/g, Zn2+ (2.23 mg/g and Cd2+ (1.90 mg/g. The leaves of Lemna minor L. accumulated the highest concentration of Cu2+ (10.80 mg/g and Cd2+ (2.78 mg/g in multimetallic system. The water lettuce (Pistia stratiotes L. translocated the highest quantity of Zn2+ in its roots (4.80 mg/g. The chlorophyll and the carotenoids levels decreased under the stress of heavy metals in both systems, while protein content increased under the influence of Cu2+ and Cd2+, but decreased for Zn2+.  The studied hydrophytes proved to be useful in the uptake of heavy metals in monometallic system and much more effective in the multimetallic system and showed great potential for further applications in the industrial and commercial wastewater treatments.

  13. Effects of long-term radiation exposure on the higher aquatic plants in the Chernobyl exclusion zone

    International Nuclear Information System (INIS)

    From the earliest years after the Chernobyl accident in 1986 the radioecological study on freshwater plant communities in the water-bodies within the Chernobyl exclusion zone (ChEZ) has been held. At first stages it was the research on plant species collection and radionuclide contamination of aquatic ecosystems. Now, it is the seasonal monitoring with several groups of data deals with different areas of plant communities investigation: (1) the data characterized the level of radionuclides contamination of the abiotic and biotic components of phyto-coenosis and connected absorbed dose rates for various species of aquatic plants; (2) indexes of plant reproduction, including productivity, sterility, seed germination indexes and different abnormalities of ontogenesis; (3) indexes of morphological deviations (radiomorphoses) of aquatic plant's reproduction organs such as panicle and seeds; (4) cytogenetic indexes including the rate and spectrum of chromosome aberrations in cells of apical root meristem of air-aquatic plants; (5) the group of indexes, connected with plant's immunity. The calculated absorbed dose rate for littoral emergent plants in sampling water bodies was varied from 0.7 to 1.4 Gy/year in dependence of radioactive contamination of bottom sediments, plant tissues and level of gamma-background. There were registered rather low rate of plant productivity (hundred times lower than normal), high percentage of sterility (20-80%), low germinating ability (14-48 %) and germinating power (40-50%) of seeds from all sampling water bodies within the ChEZ. Against the general suppressed background the effect of relative stimulation of more affected seeds was observed. With increase of internal absorbed dose in range of 0.2-5.3 mGy/year the number of germinated seeds was increased. At the same time the number of different abnormalities of seeds was increased as well. The highest rate of the morphological damages (up to 25 % of the total number of germinated seeds

  14. Effects of long-term radiation exposure on the higher aquatic plants in the Chernobyl exclusion zone

    Energy Technology Data Exchange (ETDEWEB)

    Shevtsova, N.; Gudkov, D. [Institute of Hydrobiology (Russian Federation)

    2014-07-01

    From the earliest years after the Chernobyl accident in 1986 the radioecological study on freshwater plant communities in the water-bodies within the Chernobyl exclusion zone (ChEZ) has been held. At first stages it was the research on plant species collection and radionuclide contamination of aquatic ecosystems. Now, it is the seasonal monitoring with several groups of data deals with different areas of plant communities investigation: (1) the data characterized the level of radionuclides contamination of the abiotic and biotic components of phyto-coenosis and connected absorbed dose rates for various species of aquatic plants; (2) indexes of plant reproduction, including productivity, sterility, seed germination indexes and different abnormalities of ontogenesis; (3) indexes of morphological deviations (radiomorphoses) of aquatic plant's reproduction organs such as panicle and seeds; (4) cytogenetic indexes including the rate and spectrum of chromosome aberrations in cells of apical root meristem of air-aquatic plants; (5) the group of indexes, connected with plant's immunity. The calculated absorbed dose rate for littoral emergent plants in sampling water bodies was varied from 0.7 to 1.4 Gy/year in dependence of radioactive contamination of bottom sediments, plant tissues and level of gamma-background. There were registered rather low rate of plant productivity (hundred times lower than normal), high percentage of sterility (20-80%), low germinating ability (14-48 %) and germinating power (40-50%) of seeds from all sampling water bodies within the ChEZ. Against the general suppressed background the effect of relative stimulation of more affected seeds was observed. With increase of internal absorbed dose in range of 0.2-5.3 mGy/year the number of germinated seeds was increased. At the same time the number of different abnormalities of seeds was increased as well. The highest rate of the morphological damages (up to 25 % of the total number of

  15. Distribution of the main physicochemical forms of the Chernobyl origin radionuclides in aquatic plants of the Glyboke lake

    International Nuclear Information System (INIS)

    The distribution of the physicochemical forms of radionuclides in the aquatic vegetation of the Glyboke lake located on the territory of the inner Chernobyl exclusion zone is studied. The interspecific features of 137Cs and 90Sr accumulation are analyzed, and the differences in the distributions of radionuclide physicochemical forms in accordance with the nutrition type of the studied plant species are determined.

  16. Effect of mercury on some aquatic plants. [Hydrilla verticillata Presl. ; Pistia stratiotes L. ; Salvinia molesta D. S. Mitchell

    Energy Technology Data Exchange (ETDEWEB)

    Mhatre, G.N.; Chaphekar, S.B.

    1985-01-01

    Three aquatic plants, Hydrilla verticillata Presl, Pistia stratiotes L. and Salvinia molesta D.S. Mitchell, were treated with different concentrations of mercury ranging from 1 to 1000 ..mu..g liter/sup -1/ at three different exposure durations, i.e. 1, 3 and 5 h. All were found to be severely affected by mercury. Foliar injury, chlorophyll content and phytomass showed perceptible effects with increasing exposure to the metal. In the case of floating plants a positive relationship was obtained between Leaf Injury Index (LII) and doses of the metal. The possible use of aquatic plants in general, and floating plants in particular, as simple bioassay material in biomonitoring and toxicity studies is discussed with special reference to LII as a simple biomonitoring parameter.

  17. Microhistological characteristics of selected aquatic plants of Florida, with techniques for the study of manatee food habits

    Science.gov (United States)

    Hurst, L.A.; Beck, C.A.

    1988-01-01

    This study was initiated in 1978 to develop a technique of identifying and quantifying the digestive tract contents of Florida manatees (Trichechus manatus latirostris) and to serve as a manual for the identification and analysis of ingesta collected from manatee carcasses salvaged in Florida. This report includes key microhistological characters found useful in identifying fragments of 83 plant species and three invertebrate groups. Many species of aquatic and wetland plants and invertebrates are available to manatees in Florida as potential foods.

  18. Heavy metals in sediments, soils, and aquatic plants from a secondary anabranch of the three gorges reservoir region, China.

    Science.gov (United States)

    Gao, Jun-Min; Sun, Xiu-Qian; Jiang, Wen-Chao; Wei, Yun-Mei; Guo, Jin-Song; Liu, Yuan-Yuan; Zhang, Ke

    2016-06-01

    We investigated the occurrence of cadmium (Cd), copper (Cu), chromium (Cr), nickel (Ni), lead (Pb), Znic (Zn), iron (Fe), manganese (Mn), and magnesium (Mg) in sediments, as well as in related soils and aquatic plants in the Liangtan River, a typical secondary anabranch of the Yangtze River in the Three Gorges Reservoir Region (TGRR) of China. We found that sediments accumulated more metals than soils and aquatic plants. Concentrations of the nine metals in sediments and soils followed the same sequence, while their concentrations in aquatic plants followed a different sequence. Potential adverse effects of contaminated sediments on benthic fauna were evaluated, and the results showed that the toxic effect on benthic organisms followed the sequence Zn > Ni > Cr > Cu > Cd > Pb. The potential ecological risk index analysis indicated that Cd in sediments had considerable ecological risk, whereas Cr, Cu, Zn, Ni, and Pb had low ecological risk. The potential ecological risk index (RI) of the heavy metals in sediments of the Liangtan River was 174.9, indicating moderate ecological risk. The transfer factor trend of metals for aquatic plants showed that Cd and Ni had the most and least accumulation, respectively. For Cu, Cd, Mg, Pb, and Cr, a significant positive correlation of the metal concentrations was observed between sediments and soils, but no correlations (excluding Cr) were detected between sediments and aquatic plants. Our study indicated that anthropogenic input may be the primary source of metal contamination in the Liangtan River, and that Zn and Cd pollution in the Liangtan River should be further explored. PMID:27055891

  19. Replacement of cowdung by fermentation of aquatic and terrestrial plants for use as fuel, fertilizer and biogas plant feed

    Energy Technology Data Exchange (ETDEWEB)

    Das, C.R. (Tata Energy Research Inst., Bombay, India); Ghatnekar, S.D.

    1981-01-01

    The problem of fuel for cooking in rural india (85% of the population), where 98% of the fuel requirement is for cooking purposes, is addressed. Currently, women and children spend 8 hours/day foraging for firewood and cowdung. As a solution to the problem (and to prevent further deforestation) a replacement material is suggested which is produced by simple technology and is within the reach of the poorest village dwellers. It is suggested that aquatic and terrestrial plants (water hyacinth, water lettuce, African payal, duck weed, paragrass, durva grass, etc.) be fermented in plastic bags for periods of 14 to 33 days. The fermented products would be made into cakes which can be burned as fuel or used as a fertilizer. Also, the cakes could be used as plant feed for a biogas process to produce methane. Experiments are described in which it is shown that the process is feasible, that the fermented mass is a suitable fuel, and that the fermented mass can be used as biogas plant feed. Plans for future experiments are outlined. (MJJ)

  20. Radioactive contamination of aquatic ecosystems in the areas of nuclear power plants and other nuclear facilities in Russia

    International Nuclear Information System (INIS)

    A comparative analysis of the radioactive contamination of aquatic ecosystems in the territory of Russia has been performed. The estimated contents of 90Sr and 137Cs in water, bottom sediments and fish are presented for cooling ponds of nuclear power plants (NPPs), aquifers of the Urals and of Chernobyl, and for the Yenisei River. The most highly contaminated water bodies in Russia are the Techa River and several lakes in the Chelyabinsk and Bryansk Regions. The analysis of doses due to the radioactive contamination of aquatic ecosystems is given. (orig.)

  1. Estimation of bioaccumulation of lead in the aquatic plants using 14 MeV neutron activation analysis

    International Nuclear Information System (INIS)

    Three aquatic plants, water hyacinth, Hydrilla and Pithophora were exposed to different concentrations of lead and the accumulation of lead in these plants for different exposure period was studied using 14 MeV (with a flux of approximately equal to 2x108 ncm-2sec-1) neutron activation analysis technique. The lead uptake in these plants was estimated by measuring gamma activity due to sup(207m)Pb (T=0.8 sec) produced by 14 MeV neutrons. Possibility of using these plants for waste water treatment is discussed. (author)

  2. Silicon in plant disease control

    Directory of Open Access Journals (Sweden)

    Edson Ampélio Pozza

    2015-06-01

    Full Text Available All essential nutrients can affect the incidence and severity of plant diseases. Although silicon (Si is not considered as an essential nutrient for plants, it stands out for its potential to decrease disease intensity in many crops. The mechanism of Si action in plant resistance is still unclear. Si deposition in plant cell walls raised the hypothesis of a possible physical barrier to pathogen penetration. However, the increased activity of phenolic compounds, polyphenol oxidases and peroxidases in plants treated with Si demonstrates the involvement of this element in the induction of plant defense responses. The studies examined in this review address the role of Si in disease control and the possible mechanisms involved in the mode of Si action in disease resistance in plants.

  3. Potential accumulation of estrogenic substances in biofilms and aquatic plants collected in sewage treatment plant (STP) and receiving water

    Energy Technology Data Exchange (ETDEWEB)

    Schultis, T.; Kuch, B.; Kern, A.; Metzger, J.W. [Inst. for Sanitary Engineering, Water Quality and Solid Waste Management ISWA, Stuttgart Univ. (Germany)

    2004-09-15

    During the past years the estrogenic potency of natural (e.g. estrone and 17{beta}-estradiol E2) and synthetic hormones (e.g. ethinylestradiol EE2) and xenoestrogens (e.g. pesticides, polychlorinated biphenyls (PCBs), dichlorodiphenyltrichloroethane (DDT), dioxins (PCDDs) and furans (PCDFs), alkylphenolic compounds or bisphenol A (BPA)) has attracted increasing scientific attention. Especially the occurrence and behaviour of these substances in waste water of sewage treatment plants (STPs) were often investigated. Andersen et al. found steroid estrogen concentrations in the effluent of a municipal STP always below the limit of quantification of 1 ng/l. However, Aerni et al. detected E2 and EE2 concentrations up to 6 ng/l and 2 ng/l, and alkylphenols, alkylphenolmonoand diethoxylates even at {mu}g/l concentrations in the effluent of a wastewater treatment plant with a significant industrial impact3. In activated and digested sewage sludge concentrations of estrone and E2 up to 37 ng/g and 49 ng/g, of the synthetic EE2 up to 17 ng/g were observed4. In river sediments the concentrations detected were lower with up to 2 ng/g estrone and 0,9 ng/g EE24. In the meantime many studies exist about raw and treated water in STPs, but there is little knowledge about the influence of estrogenic active substances on aquatic plants so far. In this study we investigated therefore the potency of estrogenic substances to accumulate in the duckweed Lemna minor from STP in comparison to the estrogenicity of duckweed from a natural pond, biofilms in drain and microsieve of the STP by the in vitro E-Screen- and LYES-assay (yeast estrogen screen-assay assisted by enzymatic digestion with lyticase). In addition, we tested the estrogenic activity of moss-like aquatic plants collected at different sites of the receiving water and analyzed the concentrations of four phenolic xenoestrogens in the effluent by GC/MS.

  4. Mechanical control of floating aquatic weed: Kainji Lake experience

    OpenAIRE

    Daddy, F.; Ladu, B.M.B.; Salzwedel, H.; Isa, A.U.

    2003-01-01

    The paper describes the uniqueness and invasiveness of water hyacinth (Eichhornia crassipes) on Lake Kainji (Nigeria). The mechanical blocking device design concept based on the Kainji Lake flooding regime is also highlighted. Water hyacinth coverage, that was over 23% at high water in level in 1994, was reduced to 0.75% in the same period in 2000. Although this feat cannot be wholly ascribed to mechanical control effort alone, the first year of the device's full operation more than 1.04 mill...

  5. Ants swimming in pitcher plants: kinematics of aquatic and terrestrial locomotion in Camponotus schmitzi.

    Science.gov (United States)

    Bohn, Holger Florian; Thornham, Daniel George; Federle, Walter

    2012-06-01

    Camponotus schmitzi ants live in symbiosis with the Bornean pitcher plant Nepenthes bicalcarata. Unique among ants, the workers regularly dive and swim in the pitcher's digestive fluid to forage for food. High-speed motion analysis revealed that C. schmitzi ants swim at the surface with all legs submerged, with an alternating tripod pattern. Compared to running, swimming involves lower stepping frequencies and larger phase delays within the legs of each tripod. Swimming ants move front and middle legs faster and keep them more extended during the power stroke than during the return stroke. Thrust estimates calculated from three-dimensional leg kinematics using a blade-element approach confirmed that forward propulsion is mainly achieved by the front and middle legs. The hind legs move much less, suggesting that they mainly serve for steering. Experiments with tethered C. schmitzi ants showed that characteristic swimming movements can be triggered by submersion in water. This reaction was absent in another Camponotus species investigated. Our study demonstrates how insects can use the same locomotory system and similar gait patterns for moving on land and in water. We discuss insect adaptations for aquatic/amphibious lifestyles and the special adaptations of C. schmitzi to living on an insect-trapping pitcher plant. PMID:22526112

  6. Phenotypic responses to water flow and wave exposure in aquatic plants

    Directory of Open Access Journals (Sweden)

    Agnieszka Gałka

    2011-04-01

    Full Text Available Plastic responses of 10 aquatic plant species from 5 rivers and 5 lakes in NW Poland were examined. Chara fragilis, C. delicatula, Potamogeton pectinatus, P. perfoliatus, P. natans, Spirodela polyrhiza, Hydrocharis morsus-ranae, Salvinia natans, Nymphoides peltata and Juncus bulbosus were the subject of research. In the running water of rivers, rhizophytes were generally bigger and they allocated from 0.6% to 58.6% more biomass for anchoring in the substrate than in stagnant water (ox bow lakes. In both flow variants rhizophytes allocated a similar biomass fraction for generative reproduction. On the other hand, under the influence of water flow pleustophytes reduced the mass of an individual (Spirodela by 25%, Hydrocharis 67%, Salvinia 77% and emergent structures (p<0.001, and the number of sporangia (p<0.001. In both flow variants the input of biomass to generative reproduction was the same (Salvinia, or it was greater in running water (Hydrocharis; an increase from 4.9±1.3% to 15.1±3.6%. Under the conditions of strong wave action, in comparison with the lack of this environmental factor, Chara delicatula was several times shorter (p<0.001. However, it was also stouter, and as a result it had similar mass. In the areas of wave action the plant allocated 88.8% of its mass for anchoring in the substrate, whereas when there were no waves, only 22.7%.

  7. Assessment of macro and microelement accumulation capability of two aquatic plants

    Energy Technology Data Exchange (ETDEWEB)

    Baldantoni, Daniela; Alfani, Anna; Di Tommasi, Paul; Bartoli, Giovanni; De Santo, Amalia Virzo

    2004-07-01

    The concentrations of four macroelements (C, N, P, S) and eight trace metals (Cd, Cr, Cu, Fe, Mn, Ni, Pb, Zn) were measured in the leaves and roots of the emergent plant, Phragmites communis Trin., and in the shoots and roots of the submersed Najas marina L., taken from Lake Averno (Naples, Italy). Phragmites communis leaves showed higher concentrations of carbon, nitrogen and phosphorus than roots, while the roots exhibited significantly higher concentrations of sulphur and trace metals. Najas marina roots also showed higher concentrations of sulphur and trace metals than shoots, but these differences were less marked than in Phragmites communis except for sulphur. Sulphur was the only macronutrient to show the highest concentrations in the roots. Phragmites communis roots had higher values of Cr, Cu, Fe, Mn and Ni than Najas marina roots. By contrast, Cd, Cr, Fe, Ni, Pb and Zn concentrations were higher in Najas marina shoots than in Phragmites communis leaves. Phragmites communis, available through the year, showing high capability to accumulate trace metals in the roots, appears a good monitor of lake contamination, better than Najas marina. - Element accumulation in roots and shoots of aquatic plants was used as a criteria for selecting useful biomonitors.

  8. β-N-Methylamino-L-alanine exposure alters defense against oxidative stress in aquatic plants Lomariopsis lineata, Fontinalis antipyretica, Riccia fluitans and Taxiphyllum barbieri.

    Science.gov (United States)

    Contardo-Jara, Valeska; Funke, Marc Sebastian; Peuthert, Anja; Pflugmacher, Stephan

    2013-02-01

    Four different aquatic plants, the Pteridophyte Lomariopsis lineata and the Bryophytes Fontinalis antipyretica, Riccia fluitans and Taxiphyllum barbieri, were tested for their capacity to absorb the neurotoxin β-N-Methylamino-L-alanine (BMAA) from water and thus their possible applicability in a "Green Liver System". After exposure to 10 and 100 μg L(-1) BMAA for 1, 3, 7 and 14 days exposure concentration of medium and tissue were analyzed by LC-MS/MS. The amount removed by the plants within only 1 day was equal to the biological degradation of 14 days. Comparing the "BMAA-removal" capacity of the 4 tested aquatic plants R. fluitans, L. lineata and T. barbieri turned out to be most effective in cleaning the water from this cyanobacterial toxin by up to 97% within 14 days. Activity of the antioxidant enzymes peroxidase (POD) and catalase (CAT), as well as biotransformation enzyme glutathione S-transferase (GST) was compared between exposed and control plants to determine possible harmful effects induced by BMAA. Whereas the Bryophytes displayed increased POD activity and subsequent adaptation when exposed to the lower concentration, as well as partly inhibited antioxidant response at the higher applied BMAA concentration, the Pteridophyte L. lineata reacted with increased POD activity during the whole experiment and increased GST activity after longer exposure for 14 days. To give a recommendation of the suitability of an aquatic plant to be used for sustainable phytoremediation of contaminated water, testing of removal capacity of specific contaminants as well as studying general physiological parameters giving hint on survivability in such environments has to be combined. PMID:23177931

  9. Toxicities of oils, dispersants and dispersed oils to algae and aquatic plants: Review and database value to resource sustainability

    International Nuclear Information System (INIS)

    Phytotoxicity results are reviewed for oils, dispersants and dispersed oils. The phytotoxicity database consists largely of results from a patchwork of reactive research conducted after oil spills to marine waters. Toxicity information is available for at least 41 crude oils and 56 dispersants. As many as 107 response parameters have been monitored for 85 species of unicellular and multicellular algae, 28 wetland plants, 13 mangroves and 9 seagrasses. Effect concentrations have varied by as much as six orders of magnitude due to experimental diversity. This diversity restricts phytotoxicity predictions and identification of sensitive species, life stages and response parameters. As a result, evidence-based risk assessments for most aquatic plants and petrochemicals and dispersants are not supported by the current toxicity database. A proactive and experimentally-consistent approach is recommended to provide threshold toxic effect concentrations for sensitive life stages of aquatic plants inhabiting diverse ecosystems. -- The phytotoxicity database does not support toxicity predictions for most oils and dispersants

  10. Uptake of uranium by aquatic plants growing in fresh water ecosystem around uranium mill tailings pond at Jaduguda, India.

    Science.gov (United States)

    Jha, V N; Tripathi, R M; Sethy, N K; Sahoo, S K

    2016-01-01

    Concentration of uranium was determined in aquatic plants and substrate (sediment or water) of fresh water ecosystem on and around uranium mill tailings pond at Jaduguda, India. Aquatic plant/substrate concentration ratios (CRs) of uranium were estimated for different sites on and around the uranium mill tailings disposal area. These sites include upstream and downstream side of surface water sources carrying the treated tailings effluent, a small pond inside tailings disposal area and residual water of this area. Three types of plant groups were investigated namely algae (filamentous and non-filamentous), other free floating & water submerged and sediment rooted plants. Wide variability in concentration ratio was observed for different groups of plants studied. The filamentous algae uranium concentration was significantly correlated with that of water (r=0.86, p<0.003). For sediment rooted plants significant correlation was found between uranium concentration in plant and the substrate (r=0.88, p<0.001). Both for other free floating species and sediment rooted plants, uranium concentration was significantly correlated with Mn, Fe, and Ni concentration of plants (p<0.01). Filamentous algae, Jussiaea and Pistia owing to their high bioproductivity, biomass, uranium accumulation and concentration ratio can be useful for prospecting phytoremediation of stream carrying treated or untreated uranium mill tailings effluent. PMID:26360459

  11. Antibiotic resistance in urban aquatic environments: can it be controlled?

    Science.gov (United States)

    Manaia, Célia M; Macedo, Gonçalo; Fatta-Kassinos, Despo; Nunes, Olga C

    2016-02-01

    Over the last decade, numerous evidences have contributed to establish a link between the natural and human-impacted environments and the growing public health threat that is the antimicrobial resistance. In the environment, in particular in areas subjected to strong anthropogenic pressures, water plays a major role on the transformation and transport of contaminants including antibiotic residues, antibiotic-resistant bacteria, and antibiotic resistance genes. Therefore, the urban water cycle, comprising water abstraction, disinfection, and distribution for human consumption, and the collection, treatment, and delivery of wastewater to the environment, is a particularly interesting loop to track the fate of antibiotic resistance in the environment and to assess the risks of its transmission back to humans. In this article, the relevance of different transepts of the urban water cycle on the potential enrichment and spread of antibiotic resistance is reviewed. According to this analysis, some gaps of knowledge, research needs, and control measures are suggested. The critical rationale behind the measures suggested and the desirable involvement of some key action players is also discussed. PMID:26649735

  12. Nuclear microprobe study of heavy metal uptake and transport in aquatic plant species

    International Nuclear Information System (INIS)

    Complete text of publication follows. In aquatic ecosystems water contamination by trace metals is one of the main types of pollution that may stress the biotic community. Although some metals are needed as micronutrients for autotrophic organisms, they can have toxic effects at higher concentration. Aquatic plants can take up large quantities of nutrients and metals from the environment, they can live under extreme environmental conditions therefore they are being increasingly used in remediation processes to reduce contamination. Besides the usually applied bulk analytical techniques quantitative micro-PIXE investigation of the macro, micro and trace element distribution within the root can lead to a better understanding of the heavy metal up-take, transport and detoxification mechanisms of the plants and thus helps to select the proper species for the remedial activity, or possibly to increase the efficiency of the remediation. In this work we determined the elemental distributions in root cross sections and along the roots of reed (Phragmaties australis), bulrush (Typha angustifolia) and sea club-rush (Bolboschoemus maritimus) using the Debrecen nuclear microprobe. The plants originate from the dried units of the wastewater sedimentation pond system of the tannery of Kunszentmarton. 1500 m3 waste water containing lime, sodium-salts, ammonium-salts, chromium-salts, sodium, chlorine and magnesium ions, sulphur and organic material was released to the pond system every day till 1988. The chosen species are the dominant species of the area, composing 85-90% of the green plant covering. This heavily contaminated area has been regularly monitored by the colleagues of the Dept. of Applied Ecology of the Univ. of Debrecen since 1998. They focused their work the potentially toxic heavy metal chromium. In order to conserve the samples in the living state, the roots were frozen in liquid nitrogen. 16-20 μm thick cross sections were made with cryo-microtome, and all the

  13. Genetic effects of flow dose irradiation on higher aquatic plants within the Chernobyl accident exclusion zone

    International Nuclear Information System (INIS)

    Complete text of publication follows. The rate of chromosome aberrations has been studied in four species of higher aquatic plants: common reed (Phragmites australis), sagittaria (Sagittaria sagittifolia), flowering rush (Butomus umbellatus) and manna (Glyceria maxima). The main water bodies were Glubokoye Lake and Dalekoye-1 Lake (left-bank flood lands of the Pripyat River), Azbuchin Lake and Yanovsky Crawl (right-bank flood lands of the Pripyat River), cooling pond of the Chernobyl NPP as well as Pripyat River and Uzh River. The absorbed dose rate for hydrobionts from above water bodies in decreasing sequence was: 3.4- 1.6 (Glubokoye Lake) > 0.09-0.05 (Dalekoye Lake) > 0.08-0.02 (Azhbuchin Lake) > 0.05- 0.01 (Yanovsky Crawl) > 0.03-0.01(cooling pond of Chernobyl NPP) > 0.004-0.002 (Pripyat River) > 0.003-0.001 Gy year-1 (Uzh River). The highest chromosome aberrations rate in root meristems (17.8-10.8%) were registered in plants from lakes within the left-bank flood lands of the Pripyat River, the lowest one (4.5-2.2%) - in plants from the Pripyat River and Uzh River. The rate of chromosome aberration in closed and slow-running water bodies of the Pripyat River flood land in 3-4 times higher than spontaneous mutagenesis level. It seems that spectrum of the main types of chromosome damages in plants of the right-bank flood land determines by the chemical mutagens (up to 69% of single fragments). The type of chromosome damages distribution in plants of the leftbank flood land points to practically equivalent effects of radiation and chemical factors - 44-49% of bridges, 43-50% of fragments and 6-8% of plural aberrations. Partial or close to complete seed sterility (from 47 to 72%.) are observed for common reed from investigated water bodies, except of running ones. The correlation between high level of chromosome damages and decrease of plant production has been registered.

  14. Actual versus predicted impacts of three ethanol plants on aquatic and terrestrial resources

    International Nuclear Information System (INIS)

    To help reduce US dependence on imported petroleum, Congress passed the Energy Security Act of 1980 (public Law 96-294). This legislation authorized the US Department of Energy (DOE) to promote expansion of the fuel alcohol industry through, among other measures, its Alcohol Fuels Loan Guarantee Program. Under this program, selected proposals for the conversion of plant biomass into fuel-grade ethanol would be granted loan guarantees. of 57 applications submitted for loan guarantees to build and operate ethanol fuel projects under this program, 11 were considered by DOE to have the greatest potential for satisfying DOE's requirements and goals. In accordance with the National Environmental Policy Act (NEPA), DOE evaluated the potential impacts of proceeding with the Loan Guarantee Program in a programmatic environmental assessment (DOE 1981) that resulted in a finding of no significant impact (FANCY) (47 Federal Register 34, p. 7483). The following year, DOE conducted site-specific environmental assessments (EAs) for 10 of the proposed projects. These F-As predicted no significant environmental impacts from these projects. Eventually, three ethanol fuel projects received loan guarantees and were actually built: the Tennol Energy Company (Tennol; DOE 1982a) facility near Jasper in southeastern Tennessee; the Agrifuels Refining Corporation (Agrifuels; DOE 1985) facility near New Liberia in southern Louisiana; and the New Energy Company of Indiana (NECI; DOE 1982b) facility in South Bend, Indiana. As part of a larger retrospective examination of a wide range of environmental effects of ethanol fuel plants, we compared the actual effects of the three completed plants on aquatic and terrestrial resources with the effects predicted in the NEPA EAs several years earlier. A secondary purpose was to determine: Why were there differences, if any, between actual effects and predictions? How can assessments be improved and impacts reduced?

  15. INSTRUMENTATION CONTROLLING INDUSTRIAL PLANT

    Directory of Open Access Journals (Sweden)

    Марина Владимировна Чувашлова

    2013-04-01

    Full Text Available The purpose of this study is to analyze theoretical and practical basis of controlling and to provide implementation guidelines for enterprise controlling. The problem of controlling implementation was considered by two criteria: sphere of application and time of validity.Taking into account sphere of application criterion the objectives can be achieved by certain tools, namely: management accounting in the form of profit and loss statement; information flow in the form of workflow system and mapping of business processes; planning which includes budgeting and monitoring that could in turn allow to compare performance to predetermined standards, plans or objectives; responsibility accounting.The second criterion that is time of validity is considered as strategic.DOI: http://dx.doi.org/10.12731/2218-7405-2013-1-39

  16. Influence of cooling water discharges from Kaiga Nuclear Power Plant on aquatic ecology of the Kadra reservoir

    International Nuclear Information System (INIS)

    The alterations induced in the ambient temperature can lead to wide manifestations in species distribution and community structure. In general, elevated water temperature causes changes in species composition, species dominance, standing crop and productivity of biota including phytoplankton communities in any aquatic ecosystem. Thus warm water discharges from power plants into the receiving water bodies may adversely affect aquatic ecology. In the absence of exhaustive data on the response of aquatic organisms and ecosystems in the tropics to elevated temperatures, the only option is to draw inferences, from the experiences in the subtropical and temperature areas. Since, sufficient data on similar line are not available in tropical environment, present paper delineates certain aspects of aquatic ecology of the Kadra reservoir where cooling water is discharged. The study suggests the heated effluents from Kaiga Nuclear Power plant caused changes in dissolved oxygen and pH of water, heterotrophic bacterial population, sediment biogeochemical cycles related biochemical processes, species composition, species dominance, standing crop and productivity of biota including phytoplankton communities within 500 m from End of Discharge Canal point of Kadra reservoir when two units are running in full capacity. (author)

  17. Process control in biogas plants

    DEFF Research Database (Denmark)

    Holm-Nielsen, Jens Bo; Oleskowicz-Popiel, Piotr

    2013-01-01

    Efficient monitoring and control of anaerobic digestion (AD) processes are necessary in order to enhance biogas plant performance. The aim of monitoring and controlling the biological processes is to stabilise and optimise the production of biogas. The principles of process analytical technology...

  18. Numerical modelling of distribution the discharged heat water from thermal power plant on the aquatic environment

    Science.gov (United States)

    Issakhov, Alibek

    2016-06-01

    The paper presents a mathematical model of distribution the discharged heat water from thermal power plant under various operational capacities on the aquatic environment. It was solved by the Navier-Stokes and temperature equations for an incompressible fluid in a stratified medium were based on the splitting method by physical parameters which approximated by the finite volume method. The numerical solution of the equation system was divided into four stages. At the first step it was assumed that the momentum transfer carried out only by convection and diffusion. While the intermediate velocity field was solved by 5-step Runge-Kutta method. At the second stage, the pressure field was solved by found the intermediate velocity field. Whereas Poisson equation for the pressure field was solved by Jacobi method. The third step assumes that the transfer was carried out only by pressure gradient. Finally the fourth step of the temperature equation was also solved as motion equations, with 5-step Runge-Kutta method. The algorithm was parallelized on high-performance computer. The obtained numerical results of three-dimensional stratified turbulent flow were compared with experimental data. What revealed qualitatively and quantitatively approximately the basic laws of hydrothermal processes occurring in the reservoir-cooler.

  19. Phytoremediation capacity of aquatic plants is associated with the degree of phytochelatin polymerization.

    Science.gov (United States)

    Török, Anamaria; Gulyás, Zsolt; Szalai, Gabriella; Kocsy, Gábor; Majdik, Cornelia

    2015-12-15

    Phytochelatins (PCs) play important role in phytoremediation as heavy metal binding peptides. In the present study, the association between heavy metal removal capacity and phytochelatin synthesis was compared through the examination of three aquatic plants: Elodea canadensis, Salvinia natans and Lemna minor. In case of a Cd treatment, or a Cd treatment combined with Cu and Zn, the highest removal capacity was observed in L. minor. At the same time, E. canadensis showed the lowest removal capacity except for Zn. The heavy metal-induced (Cu+Zn+Cd) oxidative stress generated the highest ascorbate level in L. minor. Cd in itself or combined with the other two metals induced a 10-15-fold increase in the amount of ɣ-glutamylcysteine in L. minor while no or smaller changes were observed in the other two species. Correspondingly, the total PC content was 6-8-fold greater in L. minor. In addition, PCs with higher degree of polymerization were only observed in L. minor (PC4, PC6 and PC7) while PC2 and PC3 occurred in E. canadensis and S. natans only. The correlation analysis indicated that the higher phytoremediation capacity of L. minor was associated with the synthesis of PCs and their higher degree of polymerization. PMID:26143200

  20. Performance of aquatic plant species for phytoremediation of arsenic-contaminated water

    Science.gov (United States)

    Jasrotia, Shivakshi; Kansal, Arun; Mehra, Aradhana

    2015-06-01

    This study investigates the effectiveness of aquatic macrophyte and microphyte for phytoremediation of water bodies contaminated with high arsenic concentration. Water hyacinth (Eichhornia crassipes) and two algae (Chlorodesmis sp. and Cladophora sp.) found near arsenic-enriched water bodies were used to determine their tolerance toward arsenic and their effectiveness to uptake arsenic thereby reducing organic pollution in arsenic-enriched wastewater of different concentrations. Parameters like pH, chemical oxygen demand (COD), and arsenic concentration were monitored. The pH of wastewater during the course of phytoremediation remained constant in the range of 7.3-8.4, whereas COD reduced by 50-65 % in a period of 15 days. Cladophora sp. was found to survive up to an arsenic concentration of 6 mg/L, whereas water hyacinth and Chlorodesmis sp. could survive up to arsenic concentrations of 2 and 4 mg/L, respectively. It was also found that during a retention period of 10 days under ambient temperature conditions, Cladophora sp. could bring down arsenic concentration from 6 to water hyacinth could reduce arsenic by only 20 %. Cladophora sp. is thus suitable for co-treatment of sewage and arsenic-enriched brine in an algal pond having a retention time of 10 days. The identified plant species provides a simple and cost-effective method for application in rural areas affected with arsenic problem. The treated water can be used for irrigation.

  1. Application of cold neutron prompt-gamma activation analysis in environmental studies of aquatic plants

    International Nuclear Information System (INIS)

    This paper describes the use of cold-neutron prompt-gamma activation analysis (CNPGAA) to determine carbon, nitrogen, and phosphorus in the aquatic plant Typha domingensis, commonly known as cattail, during spring and fall seasons. According to studies of the Florida Everglades, cattail replaces sawgrass as a result of nutrient enrichment from farm water runoff. Nutrient enrichment, especially phosphorus, in sediment and the water column can lead to undesirable expansion. Early signs of this expansion are apparent in the Apalachicola River floodplain near Apalachicola, Florida, USA. This research project is designed to use cattails as biomonitors of nutrient enrichment in the lower Apalachicola River floodplain. Determination of carbon, nitrogen, and phosphorus in cattail using cold neutron prompt-gamma activation has been developed in our previous studies at the CNPGAA facility at the National Institute of Standards and Technology (NIST), USA. The results of numerous field samples, collected from the study area during spring and fall seasons in 2002, will be presented in this paper. (author)

  2. Impact on the aquatic environment of hydro-peaking in hydroelectric plants

    International Nuclear Information System (INIS)

    There are a number of types of hydroelectric installations on French rivers. Some of these intermittently turbine water stored in dammed reservoirs, in order to use available reserves at the most opportune moment for power generation. These plants, run under 'hydro-peaking' management procedures, cause variations in discharge in river sections downstream of the restitution, on a daily or weekly scale. To answer questions concerning the impact of such variations in discharge on the aquatic environment, EDF launched a research program aimed at describing and better understanding the physical and biological phenomena related to hydro-peaking and assessing the possible impact of this type of plant management on French streams. Seven sites subjects to hydro-peaking were studied on rivers with mean flow rates lower than 20 m3/s (which corresponds to over 65 % of EDF hydro-peaking sites). Four themes in particular were examined: hydraulic characterization of hydro-peaking, modifications in thermal regime and water quality, response of benthic invertebrates and response of fish populations to hydro-peaking. For fish as well as for invertebrates, the role of the base discharge - in the absence of peaking flow - and that of the morphology of the river bed (and, in particular, the presence of shelter for fish) during periods of strong discharge were clearly highlighted. Impact assessment requires a precise diagnosis of the state of biocenoses. To carry out such a diagnosis, one must reason in terms of species, life phase (particularly the most sensitive phases) and population structure as well as the type of stream and the faunizone involved. A risk assessment is possible by means of simultaneous study of the morphology of the river bed and the response of the signal generated by hydro-peaking in terms of hydrology and physical characteristics downstream of the restitution. (authors)

  3. Algal and aquatic plant carbon concentrating mechanisms in relation to environmental change.

    Science.gov (United States)

    Raven, John A; Giordano, Mario; Beardall, John; Maberly, Stephen C

    2011-09-01

    species with or without CCMs. The information available permits less predictive power as to the effect of the forcing factors on CCM expression than for their overall effects on growth. CCMs are currently not part of models as to how global environmental change has altered, and is likely to further alter, algal and aquatic plant primary productivity. PMID:21327536

  4. Ocean circulation modeling of east sea for aquatic dispersion of liquid radioactive effluents from nuclear power plants

    International Nuclear Information System (INIS)

    Recently, three-dimensional models have been used for aquatic dispersion of radioactive effluents in relation to nuclear power plant siting based on the Notice No. 2003-12 'Guideline for investigating and assessing hydrological and aquatic characteristics of nuclear facility site' of the Ministry of Science and Technology (MOST) in Korea. Several nuclear power plants have been under construction or planed, which are Shin-Kori Unit 1 and 2, Shin-Wolsong Unit 1 and 2, and Shin-Ulchin Unit 1 and 2. For assessing the aquatic dispersion of radionuclides released from the above nuclear power plants, it is necessary to know the coastal currents around sites which are affected by circulation of East Sea. In this study, a three dimensional hydrodynamic model for the circulation of the East Sea of Korea has been developed as the first phase, which is based on the RIAMOM. The model uses the primitive equation with hydrostatic approximation. and uses Arakawa-B grid system horizontally and Z-coordinate vertically. Model domain is 126.5 .deg. E to 142.5 .deg. E of east longitude and 33 .deg. N and 52 .deg. N of the north latitude. The space of the horizontal grid was 1/12 .deg. to longitude and latitude direction and vertical level was divided to 20. This model uses Generalized Arakawa Scheme, Slant Advection, and Mode-Splitting Method. The input data were from JODC, KNFRDI, and ECMWF. The modeling results are in fairly good agreement with schematic patterns of the surface circulation in the East Sea. The local current model and aquatic dispersion model of the coastal region will be developed as the second phase. The oceanic dispersion experiments will be also carried out by using ARGO Drifter around a nuclear power plant site

  5. Modelling and controlling hydropower plants

    CERN Document Server

    Munoz-Hernandez, German Ardul; Jones, Dewi Ieuan

    2013-01-01

    Hydroelectric power stations are a major source of electricity around the world; understanding their dynamics is crucial to achieving good performance.  Modelling and Controlling Hydropower Plants discusses practical and well-documented cases of modelling and controlling hydropower station modelling and control, focussing on a pumped storage scheme based in Dinorwig, North Wales.  Single-input-single-output and multiple-input-multiple-output models, which cover the linear and nonlinear characteristics of pump-storage hydroelectric power stations, are reviewed. The most important dynamic features are discussed, and the verification of these models by hardware in the loop simulation is described. To show how the performance of a pump-storage hydroelectric power station can be improved, classical and modern controllers are applied to simulated models of the Dinorwig power plant. These include PID, fuzzy approximation, feed-forward and model-based predictive control with linear and hybrid prediction models. Mod...

  6. Biodigestion of the aquatics plants mixtures and biogas production; Biodigestao de misturas de plantas aquaticas e producao de biogas

    Energy Technology Data Exchange (ETDEWEB)

    Pereira, Roberto Guimaraes; Abreu, Fernando Luiz Barbuda de; Fernandes Filho, Jorge; Pereira, Maria Cristina Duarte Eiras [Universidade Federal Fluminense (UFF), Niteroi, RJ (Brazil). Dept. de Engenharia Mecanica. Programa de Pos-Graduacao em Engenharia Mecanica]. E-mail: temrobe@vm.uff.br; Melo, Ricardo Bichara de [Light Servicos de Eletricidade S.A., Rio de Janeiro, RJ (Brazil). Gerencia de Estudos e Gestao de Geracao]. E-mail: rbmelo@light.com.br

    2004-07-01

    Several systems of generating electricity using water storage reservoirs. One problem that occurs constantly in these reservoirs is the accumulation of aquatic plants, such as Eichhornia crassipes, Eichhornia azurea, Pistia stratiotes and Salvinia that may cause serious problems for the system. Periodically, the biomass must be removed and disposed of appropriate form, so that does not cause contamination of soil, groundwater or allowing the proliferation of vectors. One possible destination is the use of biomass in a process of biodigestion, resulting in biogas. The bench of biodigester used in the experiment of biodigestion of aquatic plants is composed of a reactor containing the biomass, where the biogas is produced and a reservoir for the monitoring the production of biogas. The reactor is located inside a container containing water that can be heated by an electrical resistance, with the aim of maintaining the temperature inside the reactor around 35 deg C. The results of analysis of gas of the reactor was obtained using a gas chromatograph to CG MASTER of double ionization detector with a flame and thermal conductivity. These results show a percentage of 50% of methane in the biogas. Also, were analyzed the biomass in the biodigester for determination of humidity, total organic matter, waste mineral and organic carbon. The process of biodigestion of the mixture of aquatic plants: Eichhornia crassipes, Eichhornia azurea and Pistia stratiotes and Salvinia shows potential for obtaining biogas, with considerable levels of methane, in order to facilitate its recovery.

  7. A systematic review of nonrandomized controlled trials on the curative effects of aquatic exercise

    Directory of Open Access Journals (Sweden)

    Kamioka H

    2011-03-01

    Full Text Available Hiroharu Kamioka1, Kiichiro Tsutani2, Yoshiteru Mutoh3, Hiroyasu Okuizum4, Miho Ohta5, Shuichi Handa4, Shinpei Okada6, Jun Kitayuguchi7, Masamitsu Kamada7, Nobuyoshi Shiozawa8, Sang-Jun Park4, Takuya Honda4, Shoko Moriyama41Faculty of Regional Environment Science, Tokyo University of Agriculture, Tokyo, Japan; 2Department of Drug Policy and Management, Graduate School of Pharmaceutical Sciences, 3Department of Physical and Health Education, Graduate School of Education, The University of Tokyo, Tokyo, Japan; 4Mimaki Onsen (Spa Clinic, Tomi City, Japan; 5Laboratory of Aqua, Health, and Sports Medicine, 6Physical Education and Medicine Research Foundation, Nagano, Japan; 7Physical Education and Medicine Research Center Unnan, Unnan City, Japan; 8Department of Longevity and Social Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, JapanBackground: The objectives of this review were to integrate the evidence of curative effects through aquatic exercise and assess the quality of studies based on a review of nonrandomized controlled trials (nRCTs.Methods: Study design was a systematic review of nonrandomized controlled trials. Trials were eligible if they were nonrandomized clinical trials. Studies included one treatment group in which aquatic exercise was applied. We searched the following databases from 2000 up to July 20, 2009: MEDLINE via PubMed, CINAHL, and Ichushi-Web.Results: Twenty-one trials met all inclusion criteria. Languages included were English (N = 9, Japanese (N = 11, and Korean (N = 1. Target diseases were knee and/or hip osteoarthritis, poliomyelitis, chronic kidney disease, discomforts of pregnancy, cardiovascular diseases, and rotator cuff tears. Many studies on nonspecific disease (healthy participants were included. All studies reported significant effectiveness in at least one or more outcomes. However results of evaluations with the TREND and CLEAR-NPT checklists generally

  8. Effects of CO 2 concentration and light intensity on photosynthesis of a rootless submerged plant, Ceratophyllumdemersum L., used for aquatic food production in bioregenerative life support systems

    Science.gov (United States)

    Kitaya, Y.; Okayama, T.; Murakami, K.; Takeuchi, T.

    In addition to green microalgae, aquatic higher plants are likely to play an important role in aquatic food production modules in bioregenerative systems for producing feed for fish, converting CO 2 to O 2 and remedying water quality. In the present study, the effects of culture conditions on the net photosynthetic rate of a rootless submerged plant, Ceratophyllum demersum L., was investigated to determine the optimum culture conditions for maximal function of plants in food production modules including both aquatic plant culture and fish culture systems. The net photosynthetic rate in plants was determined by the increase in dissolved O 2 concentrations in a closed vessel containing a plantlet and water. The water in the vessel was aerated sufficiently with a gas containing a known concentration of CO 2 gas mixed with N 2 gas before closing the vessel. The CO 2 concentrations in the aerating gas ranged from 0.3 to 10 mmol mol -1. Photosynthetic photon flux density (PPFD) in the vessel ranged from 0 (dark) to 1.0 mmol M -2 s -1, which was controlled with a metal halide lamp. Temperature was kept at 28°C. The net photosynthetic rate increased with increasing PPFD levels and was saturated at 0.2 and 0.5 mmol m -2 s -1 PPFD under CO 2 levels of 1.0 and 3.0 mmol mol -1, respectively. The net photosynthetic rate increased with increasing CO 2 levels from 0.3 to 3.0 mmol mol -1 showing the maximum value, 75 nmolO 2 gDW -1 s -1, at 2-3 mmol mol -1 CO 2 and gradually decreased with increasing CO 2 levels from 3.0 to 10 mmol mol -1. The results demonstrate that C. demersum could be an efficient CO 2 to O 2 converter under a 2.0 mmol mol -1 CO 2 level and relatively low PPFD levels in aquatic food production modules.

  9. Effects of CO2 concentration and light intensity on photosynthesis of a rootless submerged plant, Ceratophyllum demersum L., used for aquatic food production in bioregenerative life support systems

    Science.gov (United States)

    Kitaya, Y.; Okayama, T.; Murakami, K.; Takeuchi, T.

    2003-01-01

    In addition to green microalgae, aquatic higher plants are likely to play an important role in aquatic food production modules in bioregenerative systems for producing feed for fish, converting CO2 to O2 and remedying water quality. In the present study, the effects of culture conditions on the net photosynthetic rate of a rootless submerged plant, Ceratophyllum demersum L., was investigated to determine the optimum culture conditions for maximal function of plants in food production modules including both aquatic plant culture and fish culture systems. The net photosynthetic rate in plants was determined by the increase in dissolved O2 concentrations in a closed vessel containing a plantlet and water. The water in the vessel was aerated sufficiently with a gas containing a known concentration of CO2 gas mixed with N2 gas before closing the vessel. The CO2 concentrations in the aerating gas ranged from 0.3 to 10 mmol mol-1. Photosynthetic photon flux density (PPFD) in the vessel ranged from 0 (dark) to 1.0 mmol m-2 s-1, which was controlled with a metal halide lamp. Temperature was kept at 28 degrees C. The net photosynthetic rate increased with increasing PPFD levels and was saturated at 0.2 and 0.5 mmol m-2 s-1 PPFD under CO2 levels of 1.0 and 3.0 mmol mol-1, respectively. The net photosynthetic rate increased with increasing CO2 levels from 0.3 to 3.0 mmol mol-1 showing the maximum value, 75 nmol O2 gDW-1 s-1, at 2-3 mmol mol-1 CO2 and gradually decreased with increasing CO2 levels from 3.0 to 10 mmol mol-1. The results demonstrate that C. demersum could be an efficient CO2 to O2 converter under a 2.0 mmol mol-1 CO2 level and relatively low PPFD levels in aquatic food production modules. c2003 COSPAR. Published by Elsevier Science Ltd. All rights reserved.

  10. Monitoring and assessment of mercury pollution in the vicinity of a chloralkali plant. IV. Bioconcentration of mercury in in situ aquatic and terrestrial plants at Ganjam, India.

    Science.gov (United States)

    Lenka, M; Panda, K K; Panda, B B

    1992-02-01

    In situ aquatic and terrestrial plants including a few vegetable and crop plants growing in and around a chloralkali plant at Ganjam, India were analyzed for concentrations of root and shoot mercury. The aquatic plants found to bioconcentrate mercury to different degrees included Marsilea spp., Spirodela polyrhiza, Jussiea repens, Paspalum scrobiculatam, Pistia stratiotes, Eichhornia crassipes, Hygrophila schulli, Monochoria hastata and Bacopa monniera. Among wild terrestrial plants Chloris barbata, Cynodon dactylon, Cyperus rotundus and Croton bonplandianum were found growing on heavily contaminated soil containing mercury as high as 557 mg/kg. Analysis of mercury in root and shoot of these plants in relation to the mercury levels in soil indicated a significant correlation between soil and plant mercury with the exception of C. bonplandianum. Furthermore, the tolerance to mercury toxicity was highest with C. barbata followed by C. dactylon and C. rotundus, in that order. The rice plants analyzed from the surrounding agricultural fields did not show any significant levels of bioconcentrated mercury. Of the different vegetables grown in a contaminated kitchen garden with mercury level at 8.91 mg/kg, the two leafy vegetables, namely cabbage (Brassica oleracea) and amaranthus (Amaranthus oleraceous), were found to bioconcentrate mercury at statistically significant levels. The overall study indicates that the mercury pollution is very much localized to the specific sites in the vicinity of the chloralkali plant. PMID:1536599

  11. Roles for root iron plaque in sequestration and uptake of heavy metals and metalloids in aquatic and wetland plants.

    Science.gov (United States)

    Tripathi, Rudra D; Tripathi, Preeti; Dwivedi, Sanjay; Kumar, Amit; Mishra, Aradhana; Chauhan, Puneet S; Norton, Gareth J; Nautiyal, Chandra S

    2014-10-01

    Toxic metal(loid) contamination of soil and sediment poses long term risk to soil and human health through plant-human or plant-animal-human food chain pathways. Iron plaque (IP) formation is frequent in aquatic and wetland plant species and is responsible for the sequestration of various metal(loids). The presence of IP may act as a buffer or barrier and may thus enhance or reduce the uptake of potentially phytotoxic metals and metalloids by plants. If IP acts as a barrier, then low IP producing macrophytes/aquatic plants may be better accumulators of toxic metals and may find use in constructed wetlands for remediation of pollutants, while high IP forming edible plant species could be safer for human consumption. Conversely, if IP acts as a buffer for mineral nutrients and toxic elements then those cultivars may be rich in nutrients, but may also cause toxicity. However, an ecotoxicological risk is also inevitable if IP rich macrophyte roots containing heavy metals are consumed by herbivores. In this review, we summarize the current understanding about the role of IP in metal and metalloid sequestration, uptake, and transport. Furthermore, we will address the role of root IP in Oryza sativa for arsenic (As) sequestration leading to lower grain As translocation, reducing the risk of human exposure. PMID:24925182

  12. New approach for the removal of metal ions from water: adsorption onto aquatic plants and microwave reaction for the fabrication of nanometals.

    Science.gov (United States)

    Chefetz, B; Sominski, L; Pinchas, M; Ginsburg, T; Elmachliy, S; Tel-Or, E; Gedanken, A

    2005-08-18

    We adsorb heavy metal ions such as Ag(+), Pb(2+), and Ru(3+) onto an aquatic plant and convert the adsorbed ions to the corresponding nanometallic particles by the polyol reaction carried out in a microwave oven. PMID:16852922

  13. Aquatic plant and waterfowl habitat survey, 1988 : Stillwater Wildlife Management Area and vicinity

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — Aquatic vegetation surveys were conducted on Stillwater Wildlife Management Area, Canvasback Club, Carson Lake, and several other wetlands in Lahontan Valley,...

  14. Broad-Scale Comparison of Photosynthesis in Terrestrial and Aquatic Plant Communities

    DEFF Research Database (Denmark)

    Sand-Jensen, Kaj; Krause-Jensen, D.

    1997-01-01

    Comparisons of photosynthesis in terrestrial and aquatic habitats have been impaired by differences in methods and time-scales of measurements. We compiled information on gross photosynthesis at high irradiance and photosynthetic efficiency at low irradiance from 109 published terrestrial studies...... of forests, grasslands and crops and 319 aquatic studies of phytoplankton, macrophyte and attached microalgal communities to test if specific differences existed between the communities. Maximum gross photosynthesis and photosynthetic efficiency were systematically higher in terrestrial than in...

  15. Performance of aquatic plant species for phytoremediation of arsenic-contaminated water

    Science.gov (United States)

    Jasrotia, Shivakshi; Kansal, Arun; Mehra, Aradhana

    2015-06-01

    This study investigates the effectiveness of aquatic macrophyte and microphyte for phytoremediation of water bodies contaminated with high arsenic concentration. Water hyacinth (Eichhornia crassipes) and two algae (Chlorodesmis sp. and Cladophora sp.) found near arsenic-enriched water bodies were used to determine their tolerance toward arsenic and their effectiveness to uptake arsenic thereby reducing organic pollution in arsenic-enriched wastewater of different concentrations. Parameters like pH, chemical oxygen demand (COD), and arsenic concentration were monitored. The pH of wastewater during the course of phytoremediation remained constant in the range of 7.3-8.4, whereas COD reduced by 50-65 % in a period of 15 days. Cladophora sp. was found to survive up to an arsenic concentration of 6 mg/L, whereas water hyacinth and Chlorodesmis sp. could survive up to arsenic concentrations of 2 and 4 mg/L, respectively. It was also found that during a retention period of 10 days under ambient temperature conditions, Cladophora sp. could bring down arsenic concentration from 6 to <0.1 mg/L, Chlorodesmis sp. was able to reduce arsenic by 40-50 %; whereas, water hyacinth could reduce arsenic by only 20 %. Cladophora sp. is thus suitable for co-treatment of sewage and arsenic-enriched brine in an algal pond having a retention time of 10 days. The identified plant species provides a simple and cost-effective method for application in rural areas affected with arsenic problem. The treated water can be used for irrigation.

  16. Anti-tumour activities of fucoidan from the aquatic plant Utricularia aurea lour

    Directory of Open Access Journals (Sweden)

    Wilaiwan Chotigeat

    2005-12-01

    Full Text Available Fucoidan, a sulfated polysaccharide with several biological activities, is usually isolated from marine seaweeds or from echinoderms. Here, we report on the anti-tumour activity of fucoidan isolated from the aquatic plant Utricularia aurea Lour (Lentibulariaceae. A crude extract (CE prepared by incubating U.aurea with hot water at 95ºC for 12 hr was partially purified by Sephadex G-50, eluting with a 50mM sodium acetate buffer, at pH 5.0, containing 0.5M NaCl. Partially purified fucoidan (PPF had a 3- fold increase in fucose content when compared with the CE and a molecular weigÄt of 11.6 kDa as determined by Sephadex G-200. Chemical analysis showed that CE consisted of 62.5% glucuronic acid, 5.0% fucose, 1.7% sulfate and 12.0% proteins while PPF consisted of 65.0% glucuronic acid, 15.3% fucose, 2.1 % sulfate and 8.3% proteins.The anti-tumour activity of the CE and PPF was determined by the MTT test. The CE at 125 μg/mL fucoidan and PPF at 250 μg/mL inhibited the growth of KB cells (a nasopharynx tumour cell line, but did not inhibit that of normal fibroblast cells. The inhibition was postulated to occur via apoptosis as significantlymore apoptotic cells were found after treatment than in the untreated KB cells (P<0.05 by the TUNNEL (TdT-mediated dUTP Nick-End Labelling assay.

  17. THE ABILITY OF LEAVES AND RHIZOMES OF AQUATIC PLANTS TO ACCUMULATE MACRO- AND MICRONUTRIENTS

    Directory of Open Access Journals (Sweden)

    Agnieszka Edyta Parzych

    2015-06-01

    Full Text Available The samples of macrophytes and bottom sediments originated from the littoral zone of the Słupia River were collected in summer 2013. The aim of this study was to compare the properties of the accumulation of leaves and rhizomes of Glyceria maxima, Phragmites australis, Typha latifolia and Phalaris arundinacea for macro- and micronutrients. The largest quantities of macroelements were found in the leaves of the examined species, and microelements dominated the rhizomes of most examined macrophytes except for Mn in P.australis and T.latifolia. The obtained results show that N and K dominated in the leaves of P.arundinacea, P and Mg in the leaves of P.australis, and Ca in the leaves of G.maxima. The largest quantities of N, P and K were cumulated in the rhizomes of P.arundinacea, while Mg and Ca in the rhizome of T.latifolia. The leaves of aquatic plants accumulated from 1354.9 mmolc·kg-1 (T.latifolia to 1844.0 mmolc·kg-1 (P.arundinacea, and rhizomes from 985.8 mmolc·kg-1 (G.maxima to 1335.2 mmolc·kg-1 (P.arundinacea of all the analyzed components. In these species of macrophytes lower accumulated value of the sum of macro- and microelements were found in the rhizomes. The share of nitrogen was 42.4–59.8% of this amount, phosphorus 4.3–8.6%, potassium 22.8–35.1%, calcium from 2,6% to 12.4%, magnesium 3.0–7.5%, and heavy metals were from 0.6% (G.maxima to 1.2% (T.latifolia in leaves and from 2.2% (T.latifolia to 8.7% (G.maxima in rhizomes.

  18. Developing a novel approach to analyse the regimes of temporary streams and their controls on aquatic biota

    OpenAIRE

    Gallart, F.; Prat, N.; Garcia-Roger, E.M.; Latron, J.; Rieradevall, M.; P. Llorens; Barbera, G.G.; J. Froebrich

    2011-01-01

    Temporary streams are those water courses that undergo the recurrent cessation of flow or the complete drying of their channel. The biological communities in temporary stream reaches are strongly dependent on the temporal changes of the aquatic habitats determined by the hydrological conditions. The use of the aquatic fauna structural and functional characteristics to assess the ecological quality of a temporary stream reach can not therefore be made without taking into account the controls i...

  19. Aquatic macroinvertebrates collected at Ravenna Army Ammunition Plant, Portage and Trumbull Counties, Ohio, 1998

    Science.gov (United States)

    Tertuliani, John S.

    1999-01-01

    The results of a survey of macroinvertebrate communities in the Ravenna Army Ammunition Plant, were used as an indicator of disturbance in streams flowing through or near the training areas at the Plant. The data were interpreted using the Invertebrate Community Index (ICI), a multiple-metric index developed by the Ohio Environmental Protection Agency and based on the structural and functional characteristics of the macroinvertebrate community. Quantitative samples of the macroinvertebrate were collected for ICI determination from three streams South Fork Eagle Creek, Sand Creek, and Hinkley Creek flowing through the study area. These samples were collected using Hester-Dendy type artificial substrate samplers, which were placed in the streams during a 6-week sampling period, June 2 through July 15, 1998. A qualitative- dipnet sample from the natural substrates also was collected at each station on July 15, 1998, the last day of the sampling period. The macroinvertebrate communities at all three stations met the criterion designated for warmwater habitat aquatic life use, and communities at two of the three stations exceeded the criterion. The ICI scores were 42 at South Fork Eagle Creek, 50 at Sand Creek, and 48 at Hinkley Creek. The density of macroinvertebrates at South Fork Eagle Creek was 1,245 per square foot and represented 38 distinct taxa. The density at Sand Creek was 246 per square foot and represented 29 distinct taxa. The density at Hinkley Creek was 864 per square foot and represented 36 distinct taxa. Qualitative samples were also collected at 21 other sites using a D-framed dipnet. The qualitative sites encompassed three main environments: stream, pond, and swamp-wetland. All available habitat types in each environment were sampled until no new taxa were evident during coarse examination. The highest number of taxa were collected from the streams. The total number of taxa collected in streams ranged from 25 to 76; the mean was 60 and median 64. The

  20. Preliminary assessment of the aquatic impacts of a proposed defense waste processing facility at the Savannah River Plant

    Energy Technology Data Exchange (ETDEWEB)

    Mackey, H.E. Jr.

    1979-01-01

    A review of the literature indicates that a significant body of descriptive information exists concerning the aquatic ecology of Upper Three Runs Creek and Four Mile Creek of the Savannah River Plant south of Aiken, South Carolina. This information is adequate for preparation of an environmental document evaluating these streams. These streams will be impacted by construction and operation of a proposed Defense Waste Processing Facility for solidification of high level defense waste. Potential impacts include (1) construction runoff, erosion, and siltation, (2) effluents from a chemical and industrial waste treatment facility, and (3) radionuclide releases. In order to better evaluate potential impacts, recommend mitigation methods, and comply with NEPA requirements, additional quantitative biological information should be obtained through implementation of an aquatic baseline program.

  1. Preliminary assessment of the aquatic impacts of a proposed defense waste processing facility at the Savannah River Plant

    International Nuclear Information System (INIS)

    A review of the literature indicates that a significant body of descriptive information exists concerning the aquatic ecology of Upper Three Runs Creek and Four Mile Creek of the Savannah River Plant south of Aiken, South Carolina. This information is adequate for preparation of an environmental document evaluating these streams. These streams will be impacted by construction and operation of a proposed Defense Waste Processing Facility for solidification of high level defense waste. Potential impacts include (1) construction runoff, erosion, and siltation, (2) effluents from a chemical and industrial waste treatment facility, and (3) radionuclide releases. In order to better evaluate potential impacts, recommend mitigation methods, and comply with NEPA requirements, additional quantitative biological information should be obtained through implementation of an aquatic baseline program

  2. Accumulation of arsenic by aquatic plants in large-scale field conditions: opportunities for phytoremediation and bioindication.

    Science.gov (United States)

    Favas, Paulo J C; Pratas, João; Prasad, M N V

    2012-09-01

    This work focuses on the potential of aquatic plants for bioindication and/or phytofiltration of arsenic from contaminated water. More than 71 species of aquatic plants were collected at 200 sampling points in running waters. The results for the 18 most representative plant species are presented here. The species Ranunculus trichophyllus, Ranunculus peltatus subsp. saniculifolius, Lemna minor, Azolla caroliniana and the leaves of Juncus effusus showed a very highly significant (P<0.001) positive correlation with the presence of arsenic in the water. These species may serve as arsenic indicators. The highest concentration of arsenic was found in Callitriche lusitanica (2346 mg/kg DW), Callitriche brutia (523 mg/kg DW), L. minor (430 mg/kg DW), A. caroliniana (397 mg/kg DW), R. trichophyllus (354 mg/kg DW), Callitriche stagnalis (354 mg/kg DW) and Fontinalis antipyretica (346 mg/kg DW). These results indicate the potential application of these species for phytofiltration of arsenic through constructed treatment wetlands or introduction of these plant species into natural water bodies. PMID:22820614

  3. Co-occurrence of the cyanotoxins BMAA, DABA and anatoxin-a in Nebraska reservoirs, fish, and aquatic plants.

    Science.gov (United States)

    Al-Sammak, Maitham Ahmed; Hoagland, Kyle D; Cassada, David; Snow, Daniel D

    2014-02-01

    Several groups of microorganisms are capable of producing toxins in aquatic environments. Cyanobacteria are prevalent blue green algae in freshwater systems, and many species produce cyanotoxins which include a variety of chemical irritants, hepatotoxins and neurotoxins. Production and occurrence of potent neurotoxic cyanotoxins β-N-methylamino-L-alanine (BMAA), 2,4-diaminobutyric acid dihydrochloride (DABA), and anatoxin-a are especially critical with environmental implications to public and animal health. Biomagnification, though not well understood in aquatic systems, is potentially relevant to both human and animal health effects. Because little is known regarding their presence in fresh water, we investigated the occurrence and potential for bioaccumulation of cyanotoxins in several Nebraska reservoirs. Collection and analysis of 387 environmental and biological samples (water, fish, and aquatic plant) provided a snapshot of their occurrence. A sensitive detection method was developed using solid phase extraction (SPE) in combination with high pressure liquid chromatography-fluorescence detection (HPLC/FD) with confirmation by liquid chromatography-tandem mass spectrometry (LC/MS/MS). HPLC/FD detection limits ranged from 5 to 7 µg/L and LC/MS/MS detection limits were BMAA in about 18.1%, DABA in 17.1%, and anatoxin-a in 11.9%. PMID:24476710

  4. Evaluating bio environmental effects of Bushehr Nuclear Power Plant on water and aquatic organism of Persian Gulf

    International Nuclear Information System (INIS)

    The operation of nuclear power plants is always subjected to emission of some radioactive materials in the form of gaseous, liquids and solids in the environment. The heat from condenser coolant discharged to the sea can have some adverse effects on biological systems as thermal pollution. In this project, the radiation and thermal effects on Bushehr Nuclear Power Plants on aquatic animals in Persian Gulf were studied. The mathematical models for atmospheric dispersion of pollutant and pathways of radioactive materials from air to sea water and from sea to animals and human bodies were considered. some environmental samples from Persian Gulf were measured for radioactivity using high-purity Ge/Li detectors and Gamma-spectroscopy. The results indicates that the erection of B usher Nuclear Power Plants and its operation in the normal operation can have no adverse effects on environment, and also its thermal pollution is of no importance due to low area for coolant discharges

  5. Looking for biomarkers of Hg exposure by transcriptome analysis in the aquatic plant Elodea nuttallii

    Directory of Open Access Journals (Sweden)

    Regier N.

    2013-04-01

    Full Text Available Recently developed genomics tools have a promising potential to identify early biomarkers of exposure to toxicants. In the present work we used transcriptome analysis (RNA-seq of Elodea nuttallii –an invasive rooted macrophyte that is able to accumulate large amounts of metals- to identify biomarkers of Hg exposure. RNA-seq allowed identification of genes affected by Hg exposure and also unraveled plant response to the toxic metal: a change in energy/reserve metabolism caused by the inhibition of photosynthesis, and an adaptation of homeostasis networks to control accumulation of Hg. Data were validated by RT-qPCR and selected genes were further tested as biomarkers. Samples exposed in the field and to natural contaminated sediments clustered well with samples exposed to low metal concentrations under laboratory conditions. Our data suggest that this plant and/or this approach could be useful to develop new tests for water and sediment quality assessment.

  6. 77 FR 49601 - Endangered and Threatened Wildlife and Plants; Endangered Status for Six West Texas Aquatic...

    Science.gov (United States)

    2012-08-16

    ... aquatic fauna, area springs have served for centuries as an important source of irrigation water for local... most of the irrigation water for downstream agricultural irrigation by the Reeves County Water... water rights for the spring which is channeled through an extensive system of concrete-lined...

  7. The Price Model of Aquatic Products Based on Predictive Control Theory

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    This paper discusses a disequilibrium cobweb model of price of aquatic products, and applies predictive control theory, so that the system operates stably, and the deviation between supply and demand of aquatic products smoothly tracks the pre-given target. It defines the supply and demand change model, and researches the impact of parameter selection in this model on dynamic state and robustness of the system. I conduct simulation by Matlab software, to get the response curve of this model. The results show that in the early period of commodities coming into the market, affected by lack of market information and many other factors, the price fluctuates greatly in a short time. The market will gradually achieve balance between supply and demand over time, and the price fluctuations in the neighbouring two periods are broadly consistent. The increase in model parameter can decrease overshoot, to promote the stability of system, but the slower the dynamic response, the longer the deviation between supply and demand to accurately track a given target. Therefore, by selecting different parameters, the decision-makers can establish different models of supply and demand changes to meet the actual needs, and ensure stable development of market. Simulation results verify the excellent performance of this algorithm.

  8. Applying physicochemical approaches to control phosphogypsum heavy metal releases in aquatic environment.

    Science.gov (United States)

    Ammar, Rawaa; El Samrani, Antoine G; Kazpard, Véronique; Bassil, Joseph; Lartiges, Bruno; Saad, Zeinab; Chou, Lei

    2013-12-01

    One of the most important sources of solid waste in the Mediterranean Basin ecosystem originated from the phosphate fertilizer industries, which discharge phosphogypsum (PG) directly into aquatic environments or are stacked on stockpiles. The present study investigates metal release from PG under the influence of variable pH, increasing PG mass content, and complexing organic matter ligands. Major ions from PG leachates, grain size and charge, main functional groups along with metal leachability (Pb, Cd, Cr, Cu, and Zn) were determined using ion chromatography, laser diffraction, zetameter, Fourier transform infrared spectroscopy, and atomic absorption spectroscopy, respectively. The complete dissolution of PG recorded is at 2 g/L. Saturation and supersaturation with respect to PG may occur at concentrations of 3 and 4 g/L, respectively, revealing a clustering phenomenon leading to heavy metal encapsulation within the aggregates. Organic ligands such as citrate may trigger the cationic exchange within the PG suspension leading to ion release. As these factors are considered as specific process involving the release of contaminants from PG during storage under natural conditions, this study could set the foundations for PG remediation in aquatic environment. Organic ligands under controlled pH conditions could be utilized in treating fertilizer industrial wastes by taking into consideration the particularity of the receiving area, thus decreasing metal hazardous impact on natural media. PMID:23764982

  9. Anti- and Pro-Lipase Activity of Selected Medicinal, Herbal and Aquatic Plants, and Structure Elucidation of an Anti-Lipase Compound

    OpenAIRE

    Muhammad Abubakar Ado; Faridah Abas; Abdulkarim Sabo Mohammed; Hasanah M. Ghazali

    2013-01-01

    Plants that help in slowing down the digestion of triacylglycerols (TAGs) in the pancreas and small intestine of humans play an important role in the reduction of obesity. On the other hand, there may be plants or plant parts that stimulate intestinal lipolytic activity, thus contributing to greater TAG assimilation. The aim of this study was to evaluate the aqueous methanolic extracts of ninety eight (98) medicinal, herbal and aquatic plant materials from Malaysia for their effect on porcine...

  10. Advanced Coordinating Control System for Power Plant

    Institute of Scientific and Technical Information of China (English)

    WU Peng; WEI Shuangying

    2006-01-01

    The coordinating control system is popular used in power plant. This paper describes the advanced coordinating control by control methods and optimal operation, introduces their principals and features by using the examples of power plant operation. It is wealthy for automation application in optimal power plant operation.

  11. Guidance on tiered risk assessment for plant protection products for aquatic organisms in edge-of-field surface waters

    Directory of Open Access Journals (Sweden)

    EFSA Panel on Plant Protection Products and their Residues (PPR

    2013-07-01

    Full Text Available EFSA’s Panel on Plant Protection Products and their Residues (PPR was tasked to revise the Guidance Document (GD on Aquatic Ecotoxicology under Council Directive 91/414/EEC (SANCO/3268/2001 rev.4 (final, 17 October 2002. This Guidance of the PPR Panel is the first of three requested deliverables within this mandate. It has its focus on tiered acute and chronic effect assessment schemes with detailed guidance on tier 1 and higher tier effect assessments for aquatic organisms in edge-of-field surface waters and on proposals regarding how to link effects to exposure estimates. The exposure assessment methodology was not reviewed and it is assumed that the current FOCUS surface water exposure assessment methodology will continue to be used for exposure assessment at EU level. The current GD is intended to be used for authorisation of active substances at EU level as well as for plant protection products at Member State level. The effect assessment schemes in this GD allow for the derivation of regulatory acceptable concentrations (RACs on the basis of two options: (1 the ecological threshold option (ETO, accepting negligible population effects only, and (2 the ecological recovery option (ERO, accepting some population-level effects if ecological recovery takes place within an acceptable time period. In the tiered effect assessment schemes, in principle, all tiers (1, 2 and 3 are able to address the ETO, while the model ecosystem approach (tier 3, under certain conditions, is able to also address the ERO. The GD provides the scientific background for the risk assessment to aquatic organisms in edge-of-field surface waters and is structured to give detailed guidance on all assessment steps. An executive summary joining all parts of the guidance and decision schemes in a concise way is provided and is intended to help applicants and regulatory authorities in day-to-day use.

  12. Linguistic control of a nuclear power plant

    International Nuclear Information System (INIS)

    A multivariable linguistic controller based on fuzzy set theory is discussed and its application to a pressurized water nuclear power plant control is illustrated by computer simulation. The nonlinear power plant simulation model has nine states, two control inputs, one disturbance input, and two outputs. Although relatively simple, the model captures the essential coupled nonlinear plant dynamics and is convenient to use for control system studies. The use of an adaptive version of the controller is also demonstrated by computer simulation

  13. Developing a novel approach to analyse the regimes of temporary streams and their controls on aquatic biota

    Directory of Open Access Journals (Sweden)

    F. Gallart

    2011-10-01

    Full Text Available Temporary streams are those water courses that undergo the recurrent cessation of flow or the complete drying of their channel. The biological communities in temporary stream reaches are strongly dependent on the temporal changes of the aquatic habitats determined by the hydrological conditions. The use of the aquatic fauna structural and functional characteristics to assess the ecological quality of a temporary stream reach can not therefore be made without taking into account the controls imposed by the hydrological regime. This paper develops some methods for analysing temporary streams' aquatic regimes, based on the definition of six aquatic states that summarize the sets of mesohabitats occurring on a given reach at a particular moment, depending on the hydrological conditions: flood, riffles, connected, pools, dry and arid. We used the water discharge records from gauging stations or simulations using rainfall-runoff models to infer the temporal patterns of occurrence of these states using the developed aquatic states frequency graph. The visual analysis of this graph is complemented by the development of two metrics based on the permanence of flow and the seasonal predictability of zero flow periods. Finally, a classification of the aquatic regimes of temporary streams in terms of their influence over the development of aquatic life is put forward, defining Permanent, Temporary-pools, Temporary-dry and Episodic regime types. All these methods were tested with data from eight temporary streams around the Mediterranean from MIRAGE project and its application was a precondition to assess the ecological quality of these streams using the current methods prescribed in the European Water Framework Directive for macroinvertebrate communities.

  14. Utilization of two invasive free-floating aquatic plants (Pistia stratiotes and Eichhornia crassipes) as sorbents for oil removal.

    Science.gov (United States)

    Yang, Xunan; Chen, Shanshan; Zhang, Renduo

    2014-01-01

    Free-floating aquatic plants Pistia stratiotes and Eichhornia crassipes are well-known invasive species in the tropics and subtropics. The aim of this study was to utilize the plants as cost-effective and environmentally friendly oil sorbents. Multilevel wrinkle structure of P. stratiotes leaf (PL), rough surface of E. crassipes leaf (EL), and box structure of E. crassipes stalk (ES) were observed using the scanning electron microscope. The natural hydrophobic structures and capillary rise tests supported the idea to use P. stratiotes and E. crassipes as oil sorbents. Experiments indicated that the oil sorption by the plants was a fast process. The maximum sorption capacities for different oils reached 5.1-7.6, 3.1-4.8, and 10.6-11.7 g of oil per gram of sorbent for PL, EL, and ES, respectively. In the range of 5-35 °C, the sorption capacities of the plants were not significantly different. These results suggest that the plants can be used as efficient oil sorbents. PMID:24146323

  15. The role of aquatic plants and sediments in radium cycling in a tropical wetland

    International Nuclear Information System (INIS)

    The Magela floodplain, in the Northern Territory of Australia, drains two large uranium deposits: Ranger, where mining began in 1980, and Jabiluka, which is undeveloped. Radium may enter the floodplain through leaching or seepage from the mine site or through accidental or controlled release of waste waters. If effluent Ra does enter the floodplain it may be flushed out to sea by subsequent floodwater or, more likely, be taken up onto vegetation or bed sediment. The vegetation may, in turn, remobilize Ra from the sediment into the water column. The purpose of the present work was to investigate the relative importance of these processes and to predict the potential for Ra transfer through the buffalo-human food-chain. The study began with a survey of the natural Ra distribution in soil, plants and buffalo faeces on the floodplain in 1975-76 before mining began in 1980. This showed a natural accumulation of Ra at the beginning of the floodplain and from this it was predicted that effluent Ra may behave in a similar way and be held up in the floodplain rather than being flushed out to sea. Laboratory experiments were carried out on the major plant species from the floodplain, to measure the rates of Ra exchange between the water column, the plants and the sediment. A computer model was constructed from these data to simulate Ra transfer through the floodplain. These experiments identified direct Ra uptake from the water column onto plants and bed sediment as the major process in Ra transport through the system. When effluent Ra was introduced into the model and traced through the buffalo-human food-chain, a fourfold increase in Ra concentration in water over the entire wet season led to an average 2-fold increase in the human dietary intake of Ra. These effluent simulation experiments predicted that the Ranger mine could dispose of a million cubic metres of Ra-contaminated waste water over a 10-day period in the early part of the wet season without significant impact

  16. Idiomatic Control used in Sugar Plants

    DEFF Research Database (Denmark)

    Nielsen, Kirsten Mølgaard; Nielsen, Jens Frederik Dalsgaard; Pedersen, Tom Søndergaard

    1993-01-01

    A description of a control system for a large scale industrial plant - the evaporator section of a sugar plant. The control system is based on the idiomatic control concept, causing decomposition into loop control units - idioms. Dynamic decoupling, feedforward- and feedback loops eg. have been...... used as idioms....

  17. Adaptive genetic variation mediates bottom-up and top-down control in an aquatic ecosystem.

    Science.gov (United States)

    Rudman, Seth M; Rodriguez-Cabal, Mariano A; Stier, Adrian; Sato, Takuya; Heavyside, Julian; El-Sabaawi, Rana W; Crutsinger, Gregory M

    2015-08-01

    Research in eco-evolutionary dynamics and community genetics has demonstrated that variation within a species can have strong impacts on associated communities and ecosystem processes. Yet, these studies have centred around individual focal species and at single trophic levels, ignoring the role of phenotypic variation in multiple taxa within an ecosystem. Given the ubiquitous nature of local adaptation, and thus intraspecific variation, we sought to understand how combinations of intraspecific variation in multiple species within an ecosystem impacts its ecology. Using two species that co-occur and demonstrate adaptation to their natal environments, black cottonwood (Populus trichocarpa) and three-spined stickleback (Gasterosteus aculeatus), we investigated the effects of intraspecific phenotypic variation on both top-down and bottom-up forces using a large-scale aquatic mesocosm experiment. Black cottonwood genotypes exhibit genetic variation in their productivity and consequently their leaf litter subsidies to the aquatic system, which mediates the strength of top-down effects from stickleback on prey abundances. Abundances of four common invertebrate prey species and available phosphorous, the most critically limiting nutrient in freshwater systems, are dictated by the interaction between genetic variation in cottonwood productivity and stickleback morphology. These interactive effects fit with ecological theory on the relationship between productivity and top-down control and are comparable in strength to the effects of predator addition. Our results illustrate that intraspecific variation, which can evolve rapidly, is an under-appreciated driver of community structure and ecosystem function, demonstrating that a multi-trophic perspective is essential to understanding the role of evolution in structuring ecological patterns. PMID:26203004

  18. PROCEEDINGS OF THE WORKSHOP ON AQUATIC WEEDS: CONTROL AND ITS ENVIRONMENTAL CONSEQUENCES HELD AT GULF BREEZE, FLORIDA ON FEBRUARY 25-26, 1980

    Science.gov (United States)

    The report reviews the state-of-the-art of the chemical, biological, mechanical, and integrated control of aquatic weeds. Participants discuss problems in the field of aquatic weed control and the role of EPA in working toward their solution. Guidelines are proposed for the evalu...

  19. Assessment of the impact of chlorophyll derivatives to control parasites in aquatic ecosystems.

    Science.gov (United States)

    Erzinger, Gilmar Sidnei; Souza, Suellen Carolina; Pinto, Luciano Henrique; Hoppe, Roberto; Del Ciampo, Lineu Fernando; Souza, Ozair; Correia, Cláudia Hack Gumz; Häder, Donat-Peter

    2015-05-01

    Several research groups have studied new biopesticides which are less toxic to the environment and capable of controlling the vectors of parasitic diseases, especially in aquatic ecosystems. Pest control by photodynamic substances is an alternative to chemical or other measures, with chlorophyll and its derivatives as the most studied substances supported by their easy availability and low production costs. The impact of chlorophyll derivatives on four different species, a small crustacean (Daphnia similis), a unicellular alga (Euglena gracilis) and two species of fish (Astyanax bimaculatus and Cyprynus carpio) were tested under short-term conditions. In addition, the effects of long-term exposure were evaluated in D. similis and E. gracilis. In short-term tests, mortality of D. similis (EC50 = 7.75 mg/L) was most strongly affected by chlorophyllin, followed by E. gracilis (EC50 = 12.73 mg/L). The fish species showed a greater resistance documented by their EC50 values of 17.58 and 29.96 mg/L in C. carpio and A. bimaculatus, respectively. A risk quotient is calculated by dividing an estimate of exposure by an estimate of effect. It indicated that chlorophyll derivatives can be applied in nature to control the vectors of parasitic diseases under short-term conditions, but long-term exposure requires new formulations. PMID:25750014

  20. Arsenic, Zinc, and Aluminium Removal from Gold Mine Wastewater Effluents and Accumulation by Submerged Aquatic Plants (Cabomba piauhyensis, Egeria densa, and Hydrilla verticillata

    Directory of Open Access Journals (Sweden)

    Ahmad Farid Abu Bakar

    2013-01-01

    Full Text Available The potential of three submerged aquatic plant species (Cabomba piauhyensis, Egeria densa, and Hydrilla verticillata to be used for As, Al, and Zn phytoremediation was tested. The plants were exposed for 14 days under hydroponic conditions to mine waste water effluents in order to assess the suitability of the aquatic plants to remediate elevated multi-metals concentrations in mine waste water. The results show that the E. densa and H. verticillata are able to accumulate high amount of arsenic (95.2% and zinc (93.7% and resulted in a decrease of arsenic and zinc in the ambient water. On the other hand, C. piauhyensis shows remarkable aluminium accumulation in plant biomass (83.8% compared to the other tested plants. The ability of these plants to accumulate the studied metals and survive throughout the experiment demonstrates the potential of these plants to remediate metal enriched water especially for mine drainage effluent. Among the three tested aquatic plants, H. verticillata was found to be the most applicable (84.5% and suitable plant species to phytoremediate elevated metals and metalloid in mine related waste water.

  1. The toxic effects of l-Cysteine-capped cadmium sulfide nanoparticles on the aquatic plant Spirodela polyrrhiza

    International Nuclear Information System (INIS)

    Plants play an important role in the fate of nanoparticles in the environment through their uptake, bioaccumulation, and transfer to trophic chains. However, the impacts of nanoparticles on plants as essential components of all ecosystems are not well documented. In the present study, the toxic effects of l-Cysteine-capped CdS nanoparticles on Spirodela polyrrhiza as an aquatic higher plant species were studied. l-Cysteine-capped CdS nanoparticles were synthesized using hydrothermal method and their characteristics were determined by XRD, SEM, HR-TEM, and FT-IR techniques. The diameter of majority of synthesized nanoparticles was about 15–20 nm. Subsequently, the uptake of l-Cysteine-capped CdS nanoparticles by the plant species was confirmed using epifluorescence microscopy. The activity of peroxidase and superoxide dismutase as antioxidant enzymes was assayed and the relative frond number was calculated in the presence of different concentrations of l-Cysteine-capped CdS nanoparticles. The obtained results revealed the toxic effects of the synthesized nanoparticles on S. polyrrhiza, leading to growth reduction and significant changes in antioxidant enzymes’ activity.Graphical Abstract

  2. The toxic effects of l-Cysteine-capped cadmium sulfide nanoparticles on the aquatic plant Spirodela polyrrhiza

    Energy Technology Data Exchange (ETDEWEB)

    Khataee, Alireza, E-mail: ar_khataee@yahoo.com [University of Tabriz, Research Laboratory of Advanced Water and Wastewater Treatment Processes, Department of Applied Chemistry, Faculty of Chemistry (Iran, Islamic Republic of); Movafeghi, Ali [University of Tabriz, Department of Plant Biology, Faculty of Natural Sciences (Iran, Islamic Republic of); Nazari, Fatemeh [University of Tabriz, Research Laboratory of Advanced Water and Wastewater Treatment Processes, Department of Applied Chemistry, Faculty of Chemistry (Iran, Islamic Republic of); Vafaei, Fatemeh [University of Tabriz, Department of Plant Biology, Faculty of Natural Sciences (Iran, Islamic Republic of); Dadpour, Mohammad Reza [University of Tabriz, Department of Horticultural Science, Faculty of Agriculture (Iran, Islamic Republic of); Hanifehpour, Younes; Joo, Sang Woo, E-mail: swjoo@yu.ac.kr [Yeungnam University, School of Mechanical Engineering (Korea, Republic of)

    2014-12-15

    Plants play an important role in the fate of nanoparticles in the environment through their uptake, bioaccumulation, and transfer to trophic chains. However, the impacts of nanoparticles on plants as essential components of all ecosystems are not well documented. In the present study, the toxic effects of l-Cysteine-capped CdS nanoparticles on Spirodela polyrrhiza as an aquatic higher plant species were studied. l-Cysteine-capped CdS nanoparticles were synthesized using hydrothermal method and their characteristics were determined by XRD, SEM, HR-TEM, and FT-IR techniques. The diameter of majority of synthesized nanoparticles was about 15–20 nm. Subsequently, the uptake of l-Cysteine-capped CdS nanoparticles by the plant species was confirmed using epifluorescence microscopy. The activity of peroxidase and superoxide dismutase as antioxidant enzymes was assayed and the relative frond number was calculated in the presence of different concentrations of l-Cysteine-capped CdS nanoparticles. The obtained results revealed the toxic effects of the synthesized nanoparticles on S. polyrrhiza, leading to growth reduction and significant changes in antioxidant enzymes’ activity.Graphical Abstract.

  3. Characterization of the potential impact of metal contaminated sediments on aquatic plants and insects at the Savannah River Site

    International Nuclear Information System (INIS)

    Tim's Branch is an ephemeral second order tributary of Upper Three Runs Creek at the Savannah River Site (SRS). At present, Tim's Branch is the receiving stream for eight NPDES outfalls. Historic contamination of Tim's Branch through untreated discharges has resulted in significant levels of natural uranium, nickel, aluminum, mercury, copper, lead, chromium, and zinc in the stream sediments and flood plain. Indigenous plant and chironomid species in the area were identified. Sediment, benthic invertebrate and aquatic plant samples were harvested from several sites to determine metal concentrations. Physical and chemical parameters of sediment including acid volatile sulfides, pH, oxidation/reduction potential, organic carbon and particle size distribution were assessed to determine their influence on metal bioavailability. Laboratory tests indicated that significant levels of heavy metals are translocated from sediment to Hydrilla verticillata with a concurrent elevation of plant peroxidase activity. Laboratory sediment toxicity bioassays were also performed with laboratory-reared Chironomus tentans. In situ sediment toxicity bioassays were performed with indigenous chironomids and plants to validate laboratory results

  4. Adventitious shoot regeneration of the medicinal aquatic plant water hyssop (Bacopa monnieri L. Pennell using different internodes

    Directory of Open Access Journals (Sweden)

    Karatas M.

    2013-01-01

    Full Text Available Water hyssop (Bacopa monnieri L. is an important medicinal plant due to its active compounds. The plant is also used in ornamental aquaria mainly due to its appearance and adaptability. This study reports on the adventitious shoot regeneration of water hyssop by culturing different internodes and leaf explants on MS media supplemented with various combinations of BA and NAA. All explants induced calli and shoots on all combinations of BA+NAA. The maximum number of shoots per explant on all explants was observed on MS medium supplemented with 0.25 mg/l BA+0.25 mg/l NAA. A higher concentration of NAA inhibited shoot regeneration with all concentrations of BA. Shoots obtained from leaf explants were longer than those from other explants. Regenerated shoots were successfully rooted on MS medium supplemented with IBA. Rooted plantlets were successfully acclimatized in water of various pH levels between 4.0-10.00. It was found that plants can be established on slightly acidic to slightly alkaline media. However, pH 8.0 was found to be more suitable for plant growth under aquatic conditions.

  5. An experimental study into the influence of aquatic plant motion characteristics on the generation of a fluvial turbulent flow field

    Science.gov (United States)

    Hardy, R. J.; Marjoribanks, T.; Parsons, D. R.; Thomas, R. E.

    2015-12-01

    Aquatic vegetation has a determining effect on flow and consequently sediment transport as it generates both skin friction and form drag. The measurement of flow above the vegetation canopy has received much attention and there is now a good process understanding of mean and turbulent flow, although, much of this research has focused on rigid vegetation with relatively simple morphology. However, vegetation immersed in a flow experiences several forces (buoyancy; drag; virtual mass; Basset; and Saffman) which are counteracted by the properties of the vegetation (flexural rigidity; modulus of elasticity; the plant area exposed to the flow and; the packing density of the stems). The ratio of these forces determines the plant motion characteristics which are generally classified as either i) erect with no movement; ii) gently swaying; iii) strong, coherent swaying or; iv) prone. Here we report on an investigation into the influence of plant motion on the turbulence structure in the mixing zone as vortices in this region have been shown to account for the majority of the momentum transport between the canopy and the open flow. We report on a series of flume experiments where flow over a canopy of surrogate aquatic vegetation was measured using PIV at a spatial resolution of ~1mm2 and at a temporal resolution of 100 Hz. This provided whole flow field measurements for all three components of flow over the vegetation canopy. Plant motion characteristics were altered by modifying the flow Reynolds number through both velocity and depth. The influences of plant stem length were also assessed. The measured flows were analysed by standard Reynolds decomposition approaches and Eulerian and Lagrangian coherent flow structure identification methods. Kelvin-Helmholtz and Görtler-type vortices were identified within the canopy shear layer that are generated close to the canopy top and evolve downstream into span-wise roller vortices, which expand with both distance and time. When

  6. Assessment of gamma emitting radionuclides in the aquatic ecosystem of Kakrapar Atomic Power Station and evaluation of radiological doses to aquatic plants

    International Nuclear Information System (INIS)

    During operation and maintenance of Pressurised Heavy Water Reactors (PHWRs) at Kakrapar Atomic Power Station (KAPS), low level radioactive liquid waste is generated and released to the aquatic ecosystem (Moticher lake). The silt and aquatic weed (Hydrilla verticillata) samples collected from different locations in Moticher lake were analysed for 137Cs, 134Cs, 65Zn, 60Co, 54Mn and 40K during 2007-2008. A wide variation in activity levels of 137Cs, 134Cs, 65Zn, 60Co, 54Mn and 40K in silt and weed samples were observed in aquatic system of KAPS. The activity buildup in the silt is confined to a small area in the Moticher lake. The activity levels were found to be insignificant at 1 km away from discharge point (upstream and downstream). An attempt was made to evaluate the radiological dose to aquatic weed (Hydrilla verticillata), which was found to be well within the dose limit prescribed by US DOE. The total radiological dose due to the naturally occurring radionuclide (40K) is comparatively higher than that of other reactor released gamma emitting radionuclides. (author)

  7. Generic phylogeny, historical biogeography and character evolution of the cosmopolitan aquatic plant family Hydrocharitaceae

    Directory of Open Access Journals (Sweden)

    Chen Ling-Yun

    2012-03-01

    Full Text Available Abstract Background Hydrocharitaceae is a fully aquatic monocot family, consists of 18 genera with approximately 120 species. The family includes both fresh and marine aquatics and exhibits great diversity in form and habit including annual and perennial life histories; submersed, partially submersed and floating leaf habits and linear to orbicular leaf shapes. The family has a cosmopolitan distribution and is well represented in the Tertiary fossil record in Europe. At present, the historical biogeography of the family is not well understood and the generic relationships remain controversial. In this study we investigated the phylogeny and biogeography of Hydrocharitaceae by integrating fossils and DNA sequences from eight genes. We also conducted ancestral state reconstruction for three morphological characters. Results Phylogenetic analyses produced a phylogeny with most branches strongly supported by bootstrap values greater than 95 and Bayesian posterior probability values of 1.0. Stratiotes is the first diverging lineage with the remaining genera in two clades, one clade consists of Lagarosiphon, Ottelia, Blyxa, Apalanthe, Elodea and Egeria; and the other consists of Hydrocharis-Limnobium, Thalassia, Enhalus, Halophila, Najas, Hydrilla, Vallisneria, Nechamandra and Maidenia. Biogeographic analyses (DIVA, Mesquite and divergence time estimates (BEAST resolved the most recent common ancestor of Hydrocharitaceae as being in Asia during the Late Cretaceous and Palaeocene (54.7-72.6 Ma. Dispersals (including long-distance dispersal and migrations through Tethys seaway and land bridges probably played major roles in the intercontinental distribution of this family. Ancestral state reconstruction suggested that in Hydrocharitaceae evolution of dioecy is bidirectional, viz., from dioecy to hermaphroditism, and from hermaphroditism to dioecy, and that the aerial-submerged leaf habit and short-linear leaf shape are the ancestral states. Conclusions

  8. Use of aquatic mosses for monitoring artificial radionuclides downstream of the nuclear power plant of Bugey (River Rhone, France)

    Energy Technology Data Exchange (ETDEWEB)

    Beaugelin-Seiller, K. (CEA Centre d' Etudes Nucleaires de Cadarache, 13 - Saint-Paul-lez-Durance (France). Inst. de Protection et de Surete Nucleaire); Baudin, J.P. (Centre National de la Recherche Scientifique, 13 - Saint-Paul-les-Durance (France)); Brottet, D. (Electricite de France (EDF), 91 -Camp de la Valbonne (France). Centre de Production Nucleaire du Bugey)

    1994-01-01

    The detection of radionuclides in water, downstream of nuclear installations located on river banks, is often very difficult notably because of their low concentrations. Thus the use of biological indicators is an interesting process to detect radioactive contamination of an aquatic ecosystem. From 1986 to 1990, artificial radionuclides were measured in freshwater mosses sampled downstream of the nuclear power station of Bugey. These field data on the whole, have shown a comparatively good qualitative and quantitative relationship between radioactive composition of liquid waste and radionuclides detected in mosses. In other respects, the results showed up a relatively clear hierarchical structure in the affinity of the different radionuclides for the mosses. To specify these relations, mesh bags containing allochtonous mosses were immersed at four stations downstream of the power plant and regularly sampled during a 10-h waste discharge period. (author).

  9. Monitoring the aquatic toxicity of mosquito vector control spray pesticides to freshwater receiving waters.

    Science.gov (United States)

    Phillips, Bryn M; Anderson, Brian S; Voorhees, Jennifer P; Siegler, Katie; Denton, Debra; TenBrook, Patti; Larsen, Karen; Isorena, Philip; Tjeerdema, Ron S

    2014-07-01

    Pesticides are applied to state and local waterways in California to control insects such as mosquitoes, which are known to serve as a vector for West Nile Virus infection of humans. The California State Water Resources Control Board adopted a National Pollutant Discharge Elimination System General Permit to address the discharge to waters of the United States of pesticides resulting from adult and larval mosquito control. Because pesticides used in spray activities have the potential to cause toxicity to nontarget organisms in receiving waters, the current study was designed to determine whether toxicity testing provides additional, useful environmental risk information beyond chemical analysis in monitoring spray pesticide applications. Monitoring included a combination of aquatic toxicity tests and chemical analyses of receiving waters from agricultural, urban, and wetland habitats. The active ingredients monitored included the organophosphate pesticides malathion and naled, the pyrethroid pesticides etofenprox, permethrin, and sumithrin, pyrethrins, and piperonyl butoxide (PBO). Approximately 15% of the postapplication water samples were significantly toxic. Toxicity of half of these samples was attributed to the naled breakdown product dichlorvos. Toxicity of 2 other water samples likely occurred when PBO synergized the effects of pyrethroid pesticides that were likely present in the receiving system. Four of 43 postapplication sediment samples were significantly more toxic than their corresponding pre-application samples, but none of the observed toxicity was attributed to the application events. These results indicate that many of the spray pesticides used for adult mosquito control do not pose significant acute toxicity risk to invertebrates in receiving systems. In the case of naled in water, analysis of only the active ingredient underestimated potential impacts to the receiving system, because toxicity was attributed to the breakdown product, dichlorvos

  10. Monitoring of arsenic in aquatic plants, water, and sediment of wastewater treatment ponds at the Mae Moh Lignite power plant, Thailand.

    Science.gov (United States)

    Nateewattana, Jomjun; Trichaiyaporn, Siripen; Saouy, Maliwan; Nateewattana, Jintapat; Thavornyutikarn, Prasak; Pengchai, Petch; Choonluchanon, Somporn

    2010-06-01

    Mae Moh is a risky area for arsenic contamination caused by the effluent from biowetland ponds in Mae Moh lignite-fuelled power plant. The objective of this study was to investigate the arsenic concentrations of Mae Moh biowetland ponds and determine the main factors which are important for arsenic phytoremediation in the treatment system. The result revealed that arsenic concentrations in the supernant were in the range of less than 1.0 microg As L(-1) to 2.0 microg As L(-1) while those in the sediment were in the range of 25-200 microg As kg soil(-1). Both values were below the Thailand national standard of 0.25 mg As L(-1) for water and 27 mg As kg soil(-1) for the soil. Arsenic accumulation in the biomass of 5 aquatic plants at the biowetland ponds ranged from 123.83 to 280.53 mg As kgPlant(-1). Regarding the result of regression analysis (R (2) = 0.474 to 0.954), high concentrations of organic matter and other soluble ions as well as high pH value in the sediment could significantly enhance the removal of soluble arsenic in the wetland ponds. From the regression equation of accumulated arsenic concentration in each aquatic plant, Eichhornia crassipes (Mart.) Solms. (R (2) = 0.954), Ipomoea aquatica Forsk. (R (2) = 0.850), and Typha angustifolia (L.) (R (2) = 0.841) were found to be preferable arsenic removers for wastewater treatment pond in the condition of low Eh value and high content of solid phase EC and phosphorus. On the other hand, Canna glauca (L.) (R (2) = 0.749) appeared to be favorable arsenic accumulator for the treatment pond in the condition of high Eh value and high concentration of soluble EC. PMID:19455397

  11. BWR radiation control: plant demonstration

    International Nuclear Information System (INIS)

    The first year's progress is presented for a four-year program intended to implement and evaluate BRAC radiation reduction operational guidelines at the Vermont Yankee BWR and to document the results in sufficient detail to provide guidance to other BWR owners. Past operational, chemistry and radiation level data have been reviewed to provide a historical base of reference. Extensive sampling and chemistry monitoring systems have been installed to evaluate plant chemistry status and the effects of program implemented changes. Radiation surveys and piping gamma scans are being performed at targeted locations to quantify radiation level trends and to identify and quantify piping isotopics. Contact radiation levels on the recirculation line at Vermont Yankee have been increasing at a rate of 175 mR/h-EFPY since 1978. A materials survey of feedwater and reactor components in contact with the process liquid has been performed to identify sources of corrosion product release, particularly cobalt and nickel. A feedwater oxygen injection system has been installed to evaluate the effects of oxygen control on feedwater materials corrosion product releases. A baseline performance evaluation of the condensate treatment and reactor water cleanup systems has been completed. Data on organics and ionics at Vermont Yankee have been obtained. A methodology of BWR feedwater system layup during extended outages was developed, and an evaluation performed of layup and startup practices utilized at Vermont Yankee during the fall 1980 and 1981 refueling outages

  12. Phytoremediation: role of terrestrial plants and aquatic macrophytes in the remediation of radionuclides and heavy metal contaminated soil and water.

    Science.gov (United States)

    Sharma, Sunita; Singh, Bikram; Manchanda, V K

    2015-01-01

    significantly raised the amount of heavy metals and radionuclides in it. Also, these activities are continuously increasing the area of the contaminated sites. In this context, an attempt has been made to review different modes of the phytoremediation and various terrestrial and aquatic plants which are being used to remediate the heavy metals and radionuclide-contaminated soil and aquatic systems. Natural and synthetic enhancers, those hasten the process of metal adsorption/absorption by plants, are also discussed. The article includes 216 references. PMID:25277712

  13. Bibliographical review of radioactive cesium uptake capacity and processes in aquatic plants

    International Nuclear Information System (INIS)

    Both freshwater and marine plants are included in this survey covering 217 reports published between 1954 and 1979. These articles involve the radiocesium abundance found in areas either directly or indirectly affected by liquid waste releases. They specify the concentration factors determined from field measurements and laboratory works. Other areas covered include contamination kinetics, radiocesium distribution in higher plants, effects of biological and environmental factors. Radiocesium uptake potential is higher in freshwater algae and plants than in marine algae. Radiocesium adsorption phenomena seem to predominate in algae over absorption, while in the higher freshwater plants absorption is the primary phenomena. In areas not directly affected by liquid wastes, plant activity levels increased until they reached 10000 pCi/kg wet weight in 1965, and reduced thereafter. In areas directly affected by waste discharges, the activity levels range from 10 to 16000 pCi/kg wet weight in seawater, and from practically zero to 230000 pCi/kg in fresh water. This variability also affects the concentration factors. In most cases, the values measured in marine algae range from 10 to 100; the highest radiocesium uptake is found in brown algae and red algae. The concentration factors measured in freshwater mosses and algae are most often around 4000, while they are about 2000 in submerged, floating and emergent plants. Some plants, specially mosses and algae, proved to be better bioindicators than others. The biological half-lives range from 2 to 21 days in marine algae, and from 1 to 65 days in freshwater plants. This survey underscores the necessity of allowing for the ecological characteristics of each site when evaluating the impact of nuclear plants

  14. Steigerwald - Invasive Plant Detection, Control, and Replacement with Native Plants

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This project would maintain and expand annual invasive plant survey, control, and monitoring on Steigerwald Lake NWR. Early detection surveys, rapid response, large...

  15. Steigerwald - Invasive Plant Detection, Control, and Replacement with Native Plants

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This project would maintain and expand annual invasive plant survey, control, monitoring on Steigerwald Lake NWR. Early detection surveys, rapid response, large...

  16. Po-210 high levels in aquatic plants of the Carapebus sandbank, RJ, Brazil

    International Nuclear Information System (INIS)

    210 Po concentration have been determined in one green alga and in five freshwater plants grown in a pond of the Carapebus restinga (state of Rio de Janeiro). The alga Chara sp showed elevated concentration of 210 Po, similar to that observed in marine algae. All the other plants had the lowest concentration of 210 Po in the stems and the highest in the roots. Intermediate values were observed in the leaves. The unexpected high concentration of 210 Po in the roots, even superior to reported values for roots of plants from high radioactive background areas, must be due to the elevated levels of this radionuclide in associated soils that are known to be rich in humic organic material. There seem to have no translocation of this radionuclide from the roots to the other parts of the plants. (author)

  17. Thermal power plant simulation and control

    CERN Document Server

    Flynn, Damian

    2013-01-01

    Contributors of world-class excellence are brought together in Thermal Power Plant Simulation and Control to illustrate how current areas of research can be applied to power plant operation, leading to enhanced unit performance, asset management andplant competitiveness through intelligent monitoring and control strategies.

  18. HISTOANATOMICAL FEATURES OF THE AQUATIC PLANT HELANTHIUM TENELLUM (MART.) BRITT. (ALISMATACEAE)

    OpenAIRE

    Rodica BERCU

    2015-01-01

    The paper concerns a histological study of the main features of the stem (rhizome) and leaf (petiole and blade) of a perennial herb native to North, Central and South America, Helanthium tenellum (Mart.) Britt., growing both submerged and emerged in its native region. In our country the plant is known as an aquarium plant. However, the stem cortex is well-developed with epidermis, hypodermis and an aerenchyma tissue with a number of air chambers. The vascular system consists of amphivasal vas...

  19. Ecophysiological Traits of Terrestrial and Aquatic Carnivorous Plants: Are the Costs and Benefits the Same?

    OpenAIRE

    Adamec, Lubomír; Ellison, Aaron M.

    2011-01-01

    Identification of trade-offs among physiological and morphological traits and their use in cost-benefit models and ecological or evolutionary optimization arguments have been hallmarks of ecological analysis for at least 50 years. Carnivorous plants are model systems for studying a wide range of ecophysiological and ecological processes and the application of a cost-benefit model for the evolution of carnivory by plants has provided many novel insights into trait-based cost-benefit models. Ce...

  20. Model-Based Power Plant Master Control

    Energy Technology Data Exchange (ETDEWEB)

    Boman, Katarina; Thomas, Jean; Funkquist, Jonas

    2010-08-15

    The main goal of the project has been to evaluate the potential of a coordinated master control for a solid fuel power plant in terms of tracking capability, stability and robustness. The control strategy has been model-based predictive control (MPC) and the plant used in the case study has been the Vattenfall power plant Idbaecken in Nykoeping. A dynamic plant model based on nonlinear physical models was used to imitate the true plant in MATLAB/SIMULINK simulations. The basis for this model was already developed in previous Vattenfall internal projects, along with a simulation model of the existing control implementation with traditional PID controllers. The existing PID control is used as a reference performance, and it has been thoroughly studied and tuned in these previous Vattenfall internal projects. A turbine model was developed with characteristics based on the results of steady-state simulations of the plant using the software EBSILON. Using the derived model as a representative for the actual process, an MPC control strategy was developed using linearization and gain-scheduling. The control signal constraints (rate of change) and constraints on outputs were implemented to comply with plant constraints. After tuning the MPC control parameters, a number of simulation scenarios were performed to compare the MPC strategy with the existing PID control structure. The simulation scenarios also included cases highlighting the robustness properties of the MPC strategy. From the study, the main conclusions are: - The proposed Master MPC controller shows excellent set-point tracking performance even though the plant has strong interactions and non-linearity, and the controls and their rate of change are bounded. - The proposed Master MPC controller is robust, stable in the presence of disturbances and parameter variations. Even though the current study only considered a very small number of the possible disturbances and modelling errors, the considered cases are

  1. Organic and weed control in water supply reservoirs of power plants

    International Nuclear Information System (INIS)

    Aquatic weeds and algal control in water supply reservoirs used for multipurpose use need specific attention, since they pose a lot of problem for the operating plants by affecting (a) the water quality of boiler and feed waters, (b) the performance of DM plants by reducing the efficiency of Anion beds, (c) the performance of Activated Carbon Filters (ACF) and (d) fouling induced corrosion problems in cooling water systems (Heat Exchangers and Piping materials) causing plant outages leading to production losses. The photosynthetic activity of planktonic plants which are growing abundantly in the open reservoir, sustained by the relatively high inorganic phosphate levels shoots up the pH of the reservoir water to very high levels. High pH, Total Dissolved Solids (TDS) and depleted plants can increase corrosion problems affecting plant performance. This paper focuses on the type of weeds prominent in the water supply reservoir at Kalpakkam and the associated problems in the Nuclear Power Plants (NPPs). (author)

  2. Assessment of heavy metals in clarins buthopogon (fish) parts and nymphaea lotus (aquatic plant) in river niger, delta state of nigeria

    International Nuclear Information System (INIS)

    River Niger, the largest river in Nigeria flows southwards across Asaba and Onitsha to the Delta areas. The clarins buthopogon (fish) and Nymphaea lotus (aquatic plant) from the River Niger at Asaba were sampled for analysis using Atomic Absorption Spectrometer (AAS). The concentration of the heavy metals from the three parts of the fish (head, muscle and tail) had the following ranges: Cr, 8.90-9.70, Cu, 2.90-3.90, Fe, 6.00-113.20; Mg, 138.00-3398; Ni, 5.48-14.68, Pb, 0.20-1.60; Hg, 0.38-2.00 and Cd, 1.41-1.78 mg kg/sup -1/ on dry weight basis. These values were higher than those obtained in Kaduna River and Mediterranean coaster waters. The concentrations in Nymphaea Lotus (aquatic plant) were extremely high (Cr, 20.30; Cu, 10.70; Fe, 569.20; Mg, 6798.00; Ni, 72.08; Pb, 6.00; Hg, 51.30 and Cd, 31.10 mg kg/sup -1/ dry weight) and were also higher than those of fish part. The bioaccumulation of heavy metals in fish parts and aquatic plant indicated pollution, as per WHO and FEPA standards for aquatic life. (author)

  3. Chain-Length Distribution and Hydrogen Isotopic Fraction of n-alkyl Lipids in Aquatic and Terrestrial Plants: Implications for Paleoclimate Reconstructions

    Science.gov (United States)

    Gao, L.; Littlejohn, S.; Hou, J.; Toney, J.; Huang, Y.

    2008-12-01

    Recent studies demonstrate that in lacustrine sediments, aquatic plant lipids (e.g., C22-fatty acid) record lake water D/H ratio variation, while long-chain fatty acids (C26-C32, major components of terrestrial plant leaf waxes), record D/H ratios of precipitation (especially in arid regions). However, there are insufficient literature data for the distribution and hydrogen isotopic fractionation of n-alkyl lipids in aquatic and terrestrial plants. In this study, we determined the chain-length distributions and D/H ratios of n-alkyl lipids from 17 aquatic plant species (9 emergent, 4 floating and 4 submerge species) and 13 terrestrial plant species (7 grasses and 6 trees) from Blood Pond, Massachusetts. Our results are consistent with previous studies and provide a solid basis for the paleoclimatic reconstruction using D/H ratios of aquatic and terrestrial plant biomarkers. In addition, systematic hydrogen isotopic analyses on leaf waxes, leaf, stem and soil waters from trees and grasses significantly advance our understanding of our previously observed large D/H ratio difference between tree and grass leaf waxes. Our data indicate that the observed difference is not due to differences in leaf water D/H ratios. In comparison with grasses, trees use greater proportion of D-enriched residual or stored carbohydrates (as opposed to current photosynthetic carbohydrates) for leaf wax biosynthesis, resulting in higher leaf wax D/H ratios. The residual carbohydrates are enriched in deuterium because of the preferential consumption of light-hydrogen substrates during plant metabolism.

  4. Influence of sediment organic enrichment and water alkalinity on growth of aquatic isoetid and elodeid plants

    DEFF Research Database (Denmark)

    Raun, Ane-Marie Løvendahl; Borum, Jens; Jensen, Kaj Sand

    2010-01-01

    ) increasing alkalinity (from 0.17 to 3.20 meq. L-1) enhances growth and reduces inhibition of organic sediment enrichment for elodeids but not for isoetids. 2. In low organic sediments, higher oxygen release from roots of isoetids than elodeids generated oxic conditions to greater sediment depth for Lobelia...... two elodeids (Potamogeton crispus and P. perfoliatus), we test whether organic enrichment of lake sediments has a long-lasting influence by: (i) reducing plant growth because of oxygen stress on plant roots and (ii) inhibiting growth more for isoetids than elodeids. We also test whether (iii...... because of greater CO2 supply from sediments being their main CO2 source. At higher organic enrichment, isoetid biomass was reduced, leaf chlorophyll declined up to 10-fold, root length declined from 7 to <2 cm and mortality rose (up to 50%) signalling high plant stress. 4. Lobelia was not affected by HCO...

  5. Control tuning to improve plant availability

    International Nuclear Information System (INIS)

    Rajasthan Atomic Power Plant (RAPP) is a 200 MW nuclear power plant in a relatively small sized Rajasthan State Electricity Board (RSEB) grid. The basic control scheme is modelled after Douglas point, and hence essentially designed for base load operation. Tuning of the controllers or redesign of some of the controls may be needed to adapt RAPP to RSEB grid. Tuning of some of the major controllers such as boiler pressure control, primary heat transport, system pressure control etc. is suggested to improve the availability of the plant. The plant response for typical external (from the grid) and internal (from the reactor) disturbances has been presented to highlight the effect of such tuning. (author)

  6. Control of renewable distributed power plants

    OpenAIRE

    Bullich Massagué, Eduard

    2015-01-01

    The main objective of this master thesis is to design a power plant controller for a photo- voltaic (PV) power plant. In a first stage, the current situation of the status of the electrical grid is analysed. The electrical network structure is moving from a conventional system (with centralized power generation, unidirectional power ows, easy control) to a smart grid system consisting on distributed generation, renewable energies, smart and complex control architecture and ...

  7. Dark respiration and photosynthesis of dormant and sprouting turions of aquatic plants

    Czech Academy of Sciences Publication Activity Database

    Adamec, Lubomír

    2011-01-01

    Roč. 179, č. 2 (2011), s. 151-158. ISSN 1863-9135 Institutional research plan: CEZ:AV0Z60050516 Keywords : Carnivorous and non-carnivorous plants * dormancy * storage function Subject RIV: EF - Botanics Impact factor: 1.145, year: 2011

  8. Optimization of medium for growing the aquatic carnivorous plant Aldrovanda vesiculosa in vitro

    Czech Academy of Sciences Publication Activity Database

    Adamec, Lubomír; Kondo, K.

    Tokyo: Hiroshima University, 2002 - (Kondo, K.), s. 147-151 [The International Carnivorous Plant Conference. Tokyo (JP), 21.01.2002-23.01.2002] R&D Projects: GA AV ČR KSK6005114 Grant ostatní: JSPS Invitation Fellowship(JP) S-00141 Institutional research plan: CEZ:AV0Z6005908 Keywords : Aldrovanda vesiculosa Subject RIV: EF - Botanics

  9. Tissue mineral nutrient content in turions of aquatic plants: does it represent a storage function?

    Czech Academy of Sciences Publication Activity Database

    Adamec, Lubomír

    2010-01-01

    Roč. 176, č. 2 (2010), s. 145-151. ISSN 1863-9135 Institutional research plan: CEZ:AV0Z60050516 Keywords : carnivorous and non-carnivorous plant s * turion N, P, K, Ca and Mg content * water chemistry Subject RIV: EF - Botanics Impact factor: 1.108, year: 2010

  10. Digestive plasticity in Mallard ducks modulates dispersal probabilities of aquatic plants and crustaceans

    NARCIS (Netherlands)

    Charalambidou, I.; Santamaria, L.; Jansen, C.; Nolet, B.A.

    2005-01-01

    1. The consequences of plastic responses of the avian digestive tract for the potential of birds to disperse other organisms remain largely uninvestigated. 2. To explore how a seasonal diet switch in Mallard (Anas platyrhynchos L.) influences their potential to disperse plants and invertebrates, we

  11. Bioaccumulation and chemical forms of cadmium, copper and lead in aquatic plants

    Directory of Open Access Journals (Sweden)

    JinZhao Hu

    2010-02-01

    Full Text Available The cadmium(Cd, copper(Cu and lead(Pb accumulation, as well as their relative content of different chemical forms in Sagittaria sagittifolia L. and Potamogeton crispus L. were determined. The results showed that both the plants had the ability to accumulate large amounts of Cd, Cu and Pb, and they absorbed metals in dose-dependent manners. The roots of S. sagittifolia appeared more sensitive to Cd and Pb than the leaves of P. crispus. The potential of Cu uptake by these two plant tissues was similar. Under the same concentration, the uptake of Cu for both the plants was higher than Pb and Cd, while that of Pb was lowest. The Cd, Cu and Pb existed with various forms in the plants. Cd and Pb were mainly in the NaCl extractable form in S. sagittifolia and P. crispus. The HAc and ethanol extractable Cu were the main forms in the root, whereas the ethanol extractable form was the dominant chemical form in the caulis and bulb of the S. sagittifolia L.

  12. Intelligent distributed control for nuclear power plants

    International Nuclear Information System (INIS)

    This project was initiated in September 1989 as a three year project to develop and demonstrate Intelligent Distributed Control (IDC) for Nuclear Power Plants. The body of this Third Annual Technical Progress report summarizes the period from September 1991 to October 1992. There were two primary goals of this research project. The first goal was to combine diagnostics and control to achieve a highly automated power plant as described by M.A. Schultz. His philosophy, is to improve public perception of the safety of nuclear power plants by incorporating a high degree of automation where a greatly simplified operator control console minimizes the possibility of human error in power plant operations. To achieve this goal, a hierarchically distributed control system with automated responses to plant upset conditions was pursued in this research. The second goal was to apply this research to develop a prototype demonstration on an actual power plant system, the EBR-2 stem plant. Emphasized in this Third Annual Technical Progress Report is the continuing development of the in-plant intelligent control demonstration for the final project milestone and includes: simulation validation and the initial approach to experiment formulation

  13. Alkalinity and trophic state regulate aquatic plant distribution in Danish lakes

    DEFF Research Database (Denmark)

    Vestergaard, Ole Skafte; Sand-Jensen, Kaj

    2000-01-01

    distinct differences in the distribution of species and growth forms among the lakes. The lakes separated into five groups of characteristic species compositions. Alkalinity was the main factor responsible for the species distribution. Lakes of high alkalinity were dominated by vascular plants......Main distribution patterns of submerged macrophytes in a large number of Danish lakes were determined and relationships to environmental variables evaluated by different multivariate analysis techniques. The lakes varied greatly in location, size, depth, alkalinity and trophic status. There were...... of the elodeid growth form, lakes of intermediate alkalinity contained a variety of elodeids and vascular plants of the isoetid growth form, while lakes of low alkalinity and low pH had several isoetids and bryophytes, but very few elodeids. Alkalinity is a close descriptor of the bicarbonate concentration...

  14. HISTOANATOMICAL FEATURES OF THE AQUATIC PLANT HELANTHIUM TENELLUM (MART. BRITT. (ALISMATACEAE

    Directory of Open Access Journals (Sweden)

    Rodica BERCU

    2015-12-01

    Full Text Available The paper concerns a histological study of the main features of the stem (rhizome and leaf (petiole and blade of a perennial herb native to North, Central and South America, Helanthium tenellum (Mart. Britt., growing both submerged and emerged in its native region. In our country the plant is known as an aquarium plant. However, the stem cortex is well-developed with epidermis, hypodermis and an aerenchyma tissue with a number of air chambers. The vascular system consists of amphivasal vascular bundles to the center and peripheral few collateral bundles. The leaf mesophyll is heterogenous, represented by a palisade and a spongy tissue. In the mesophyll are embedded few poor developed vascular bundles. Excepting some taxonomic studies, a study concerning the anatomy of this species is lacking.

  15. Quantitative distribution of aquatic plant and animal communities in the Forsmark-area

    International Nuclear Information System (INIS)

    This report is a part of the SKB project 'SAFE'. The aim of SAFE is to update the previous safety analysis of SFR-1. SFR is for the repository of low and intermediate level radioactive waste. The aim of this report is to provide background information of the quantitative distribution of macroscopic (>1 mm) plants and animals on the sea floor (the phytobenthic communities) above the SFR. The phytobenthic plant and animal communities in the Bothnian Sea may constitute over half of the total production of the ecosystem in the coastal zone. Data will be used in a simulation model of the area. The attached plant and animal communities of the sea floor can be the major component to find radioactive isotopes when a leakage should occur from the SFR below the investigated area. Their ability to bioaccumulate the isotopes and the abundance of the plants and animals might to a large extent determine the amount of radionuclides that could be retained in the biological system. This might then affect the form of further dispersal of the radionuclides over larger areas, whether they are kept within and accumulated in the food chain or retained in the sediments or diluted in the water column. In the investigated area divers described the sea floor substrate and the dominating plant and animal communities along transect lines. In addition, the divers collected quantitative samples. Three transects were placed just above SFR, and two transects were placed from the shore of islands adjacent to SFR. In total, divers collected 54 quantitative samples. Also, divers collected 6 sediment cores for analysis of the organic contents and chlorophylla. The results from the divers estimates of plant and animal species distribution and cover degree, as well as the quantitative samples, indicated the area being fairly rich. An eroded moraine (boulders, stones, gravel and sand) dominated the substrate with occasional rock outcrops. At several sites, on the hard, more stable substrates (boulders

  16. Quantitative distribution of aquatic plant and animal communities in the Forsmark-area

    Energy Technology Data Exchange (ETDEWEB)

    Kautsky, H.; Plantman, P.; Borgiel, M. [Stockholm Univ. (Sweden). Dept. of Systems Ecology

    1999-12-15

    This report is a part of the SKB project 'SAFE'. The aim of SAFE is to update the previous safety analysis of SFR-1. SFR is for the repository of low and intermediate level radioactive waste. The aim of this report is to provide background information of the quantitative distribution of macroscopic (>1 mm) plants and animals on the sea floor (the phytobenthic communities) above the SFR. The phytobenthic plant and animal communities in the Bothnian Sea may constitute over half of the total production of the ecosystem in the coastal zone. Data will be used in a simulation model of the area. The attached plant and animal communities of the sea floor can be the major component to find radioactive isotopes when a leakage should occur from the SFR below the investigated area. Their ability to bioaccumulate the isotopes and the abundance of the plants and animals might to a large extent determine the amount of radionuclides that could be retained in the biological system. This might then affect the form of further dispersal of the radionuclides over larger areas, whether they are kept within and accumulated in the food chain or retained in the sediments or diluted in the water column. In the investigated area divers described the sea floor substrate and the dominating plant and animal communities along transect lines. In addition, the divers collected quantitative samples. Three transects were placed just above SFR, and two transects were placed from the shore of islands adjacent to SFR. In total, divers collected 54 quantitative samples. Also, divers collected 6 sediment cores for analysis of the organic contents and chlorophylla. The results from the divers estimates of plant and animal species distribution and cover degree, as well as the quantitative samples, indicated the area being fairly rich. An eroded moraine (boulders, stones, gravel and sand) dominated the substrate with occasional rock outcrops. At several sites, on the hard, more stable substrates

  17. Optimal control systems in hydro power plants

    International Nuclear Information System (INIS)

    The aim of the research done in this work is focused on obtaining the optimal models of hydro turbine including auxiliary equipment, analysis of governors for hydro power plants and analysis and design of optimal control laws that can be easily applicable in real hydro power plants. The methodology of the research and realization of the set goals consist of the following steps: scope of the models of hydro turbine, and their modification using experimental data; verification of analyzed models and comparison of advantages and disadvantages of analyzed models, with proposal of turbine model for design of control low; analysis of proportional-integral-derivative control with fixed parameters and gain scheduling and nonlinear control; analysis of dynamic characteristics of turbine model including control and comparison of parameters of simulated system with experimental data; design of optimal control of hydro power plant considering proposed cost function and verification of optimal control law with load rejection measured data. The hydro power plant models, including model of power grid are simulated in case of island ing and restoration after breakup and load rejection with consideration of real loading and unloading of hydro power plant. Finally, simulations provide optimal values of control parameters, stability boundaries and results easily applicable to real hydro power plants. (author)

  18. Transport of Black Carbon Across the Terrestrial-Aquatic Interface Following Wildfire: Contributions of Short and Long-term Controls

    Science.gov (United States)

    Boot, C. M.; Cotrufo, M. F.; Haddix, M. L.; Schmeer, S.; Kampf, S. K.; Brogan, D. J.; Nelson, P. A.; Rhoades, C.; Ryan, S. E.; Rathburn, S. L.; Hall, E.

    2014-12-01

    Black carbon (BC) is a ubiquitous component of the carbon cycle, yet controls on its landscape-level distribution, including the relative importance of mechanisms for transport across the terrestrial aquatic interface, are relatively unknown. In June 2012, the High Park Fire (HPF) burned 353 km2 of land in the Cache la Poudre (CLP) watershed just northwest of Fort Collins, CO. Following independent efforts of our group to quantify the effects of the HPF on biogeochemical pools and landscape geomorphology, we aimed to synthesize our respective datasets with two main objectives: 1. determine and relate BC content in different parts of the watershed including litter, soils, river bank sediments and dissolved and particulate organic materials in river water, 2. develop a conceptual framework for mechanisms that contribute to BC export from the CLP on short and long-term time scales. Using the benzene polycarboxylic acid (BPCA) method as a molecular proxy for BC concentrations, we found that the majority of BC deposited on the landscape by the HPF was located in the litter, coarse plant fraction of river bank sediments, and DOC, suggesting that BC mobilized on the landscape is transported downstream through the river network. In 2012, following the HPF, the 30-minute rainfall intensity required to mobilize sediment on hillslopes (critical I30) was 3.6 mm/hr, and in summer 2013, the critical I30 increased to 8.1 mm/hr, likely due to vegetation recovery. The low critical I30 in the first season following the fire indicated that BC could have been easily mobilized, even in small storms. Our working conceptual framework is that post fire, there are two phases of BC export from an ecosystem. In the first phase, BC export is primarily driven by transport of particulate material controlled by precipitation intensity and duration, along with the burn severity and slope of the landscape. The second phase of BC export is primarily in the dissolved form, and is driven by climatic

  19. Control of breathing in African lungfish (Protopterus dolloi): A comparison of aquatic and cocooned (terrestrialized) animals

    DEFF Research Database (Denmark)

    Perry, S.F.; Euverman, R.; Wang, Tobias;

    2008-01-01

    African lungfish, Protopterus dolloi exhibited constant rates of O2 consumption before (0.95 ± 0.07 mmol kg-1 h-1), during (1.21 ± 0.32 mmol kg-1 h-1) and after (1.14 ± 0.14 mmol kg-1 h-1) extended periods (1-2 months) of terrestrialization while cocooned. Although a breathing event...... in terrestrialized fish consisted of multiple bouts of inspiration and expiration in rapid succession, the mean frequency of pulmonary breathing events was unaltered in the terrestrialized fish (16.7 ± 1.4 h-1 versus 20.1 ± 4.9 h-1 in the aquatic and terrestrialized fish, respectively). Hypoxia ( 20 mmHg) increased...... the frequency of breathing events by 16 and 23 h-1 in the aquatic and terrestrialized fish, respectively. Hyperoxia ( 550 mmHg) decreased breathing event frequency by 10 and 15 h-1 in the aquatic and terrestrialized animals. Aquatic hypercapnia ( 37.5 mmHg) increased pulmonary breathing frequency (from 15...

  20. Indicator value of aquatic organisms in environmental monitoring programmes of Finnish nuclear power plants

    International Nuclear Information System (INIS)

    Since the 1970s, extensive monitoring programmes have been carried out in the environs of the Finnish nuclear power plants at Loviisa and Olkiluoto, situated on the southern coast and the western coast of Finland, respectively. In terrestrial environments, the main objects of sampling are ground level air and deposition, as well as soil, moss, grass, milk, garden produce, grain, meat and some other foodstuffs. In marine environments, samples of sea water, sinking matter, bottom sediments, fish, some seaweeds and benthic animals are taken

  1. Ridgefield - Wetland Invasive Plant Search and Control

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This project would expand survey, control, and monitoring efforts to detect new wetland invasive plant threats and reduce the accumulation of recently documented...

  2. Ridgefield - Wetland Invasive Plant Search and Control

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This project would expand survey, control, and monitoring efforts to detect new wetland invasive plant threats and continue reduction of the accumulation of...

  3. Design of feedforward controllers for multivariable plants

    Science.gov (United States)

    Seraji, H.

    1987-01-01

    Simple methods for the design of feedforward controllers to achieve steady-state disturbance rejection and command tracking in stable multivariable plants are developed in this paper. The controllers are represented by simple and low-order transfer functions and are not based on reconstruction of the states of the commands and disturbances. For unstable plants, it is shown that the present method can be applied directly when an additional feedback controller is employed to stabilize the plant. The feedback and feedforward controllers do not affect each other and can be designed independently based on the open-loop plant to achieve stability, disturbance rejection and command tracking, respectivley. Numerical examples are given for illustration.

  4. The Experiment Study of the Influence on Plant Seeds and Aquatic Bio-logical Survival in High Altitude Environment

    Institute of Scientific and Technical Information of China (English)

    陈霈润

    2015-01-01

    There is A certain foundation in this experiment. It was the second time we did this experiment. The purposes are three parts, first, explore the 30000~40000 meters high sky with two cameras recording the scene. The Second, find out whether the high sky condition (temperature, air pressure, cosmic ray) make influence on plants seeds. The third, text whether normal aquatic animal is able to survive in high sky. The conclusions are also three parts. It is important to set a deadline for my group member to finish the assignment, and also check their process, or they might delay their own part of work or they are not in charge of the work. As the leader, I should be thoughtful. Not only about members’assignment, but also the details of their work, previously. Discuss about each task with group to ensure the correctness. Last but not least, every part of the experiment needs to be tested carefully. Only if we try our best to prevent accidents that might happen, then the experiment is able to suc⁃cess.

  5. Determination of mercury(II) in aquatic plants using quinoline-thiourea conjugates as a fluorescent probe.

    Science.gov (United States)

    Feng, Guodong; Ding, Yuanyuan; Gong, Zhiyong; Dai, Yanna; Fei, Qiang

    2013-01-01

    In this study, a quinoline-thiourea conjugate (1-phenyl-3-(quinoline-8-yl) thiourea, PQT) was synthesized and used as a fluorescence sensor to detect mercury ion. The observation is coincident with the well-documented phenomenon that a thiocarbonyl-containing group on a fluorochrome quenches the fluorescence due to the heavy atom effect of the S atom. The large fluorescence enhancement of PQT in the buffered MeCN-water mixture (1/1 v/v; HEPES 100 mM; pH 8.0) was caused by the Hg(2+) induced transformation of the thiourea function into a urea group. As such, protic solvents can be ascribed to hydrogen bond formation on the carbonyl oxygen to reduce the internal conversion rate. The fluorescence intensity of PQT was enhanced quantitatively with an increase in the concentration of mercury ion. The limit of detection of Hg(2+) was 7.5 nM. The coexistence of other metal ions with mercury had no obvious influence on the detection of mercury. A quinolone-thiourea conjugate was used as a fluorescent probe to detect Hg(2+) in aquatic plants and the experimental results were satisfactory. PMID:23842417

  6. Economic Potentialities of Some Aquatic Plants Growing in North East Nile Delta, Egypt

    Science.gov (United States)

    Abu Ziada, M. E.; Mashaly, I. A.; Abd El-Monem, M.; Torky, M.

    The present study provides quantitative assessment of the vegetative yield, growth characteristics, metabolic products, elemental composition and antimicrobial bioactivity of five common macrohydrophytes: Bolboschoenus glaucus (Cyperaceae), Veronica anagallis-aquatica (Scrophulariaceae), Nymphaea lotus (Nymphaceae), Pistia stratiotes (Araceae) and Myriophyllum spicatum (Haloragidaceae). These plants tend to flourish vegetatively during the summer season (June-August). Their relative growth rate, relative assimilating surface growth rate and net assimilation rate were higher during early vegetative stage (February-May). The highest percentages of protein and lipids content were recorded in Nymphaea, while the crude fiber content was higher in Bolboschoenus than in other species. The macronutrient elements were detected with relatively high concentration and sodium cation appeared to be an essential accumulatent as compared with K, Ca and Mg. Myriophyllum appeared to be the major accumulator species of heavy metals, while Pistia appeared to be the minor one. Sterols, alkaloids, flavonoids, tannins, saponins and resins were detected in these plants. Nymphyaea was found to have the most effective antimicrobial activities than the other studied species.

  7. Plant Modeling for Human Supervisory Control

    DEFF Research Database (Denmark)

    Lind, Morten

    1999-01-01

    This paper provides an overview of multilevel flow modelling (MFM) and its application for design of displays for the supervisory control of industrial plant. The problem of designing the inforrrzatian content of sacpervisory displays is discussed and plant representations like MFM using levels of...... also provided by an analysis of the relations between levels of abstraction. It is also described how MFM supparts reazsonin about control actions by defining levels of intervention and by modal distinctions between function enablement and initiation....

  8. Control of the Diurnal Pattern of Methane Emission from Emergent Aquatic Macrophytes by Gas Transport Mechanisms

    Science.gov (United States)

    Whiting, Gary J.; Chanton, Jeffrey P.

    1995-01-01

    Methane emissions from Typha latifolia (L.) showed a large mid-morning transient peak associated with rising light levels. This peak was also associated with a steep decline in lacunal CH, concentrations near the stem base. This pattern contrasted sharply with emissions from Peltandra virginica (L.) that gradually rose to a peak in the mid-afternoon corresponding to elevated air temperatures. Internal CH4 concentrations within P. virginica stems did not change significantly over the diurnal period. Stomatal conductance appeared to correlate directly with light levels in both plant types and were not associated with peak CH4 emission events in either plant. These patterns are consistent with a convective throughflow and diffusive gas ventilation systems for Typha and Peltandra, respectively. Further effects of the convective throughflow in T. latifolia were evident in the elevated CH4 concentrations measured within brown leaves as contrasted to the near ambient levels measured within live green leaves. Experimental manipulation of elevated and reduced CO2 levels in the atmosphere surrounding the plants and of light/dark periods suggested that stomatal aperture has little or no control of methane emissions from T. latifolia.

  9. Root length of aquatic plant, Lemna minor L., as an optimal toxicity endpoint for biomonitoring of mining effluents.

    Science.gov (United States)

    Gopalapillai, Yamini; Vigneault, Bernard; Hale, Beverley A

    2014-10-01

    Lemna minor, a free-floating macrophyte, is used for biomonitoring of mine effluent quality under the Metal Mining Effluent Regulations (MMER) of the Environmental Effects Monitoring (EEM) program in Canada and is known to be sensitive to trace metals commonly discharged in mine effluents such as Ni. Environment Canada's standard toxicity testing protocol recommends frond count (FC) and dry weight (DW) as the 2 required toxicity endpoints-this is similar to other major protocols such as those by the US Environmental Protection Agency (USEPA) and the Organisation for Economic Co-operation and Development (OECD)-that both require frond growth or biomass endpoints. However, we suggest that similar to terrestrial plants, average root length (RL) of aquatic plants will be an optimal and relevant endpoint. As expected, results demonstrate that RL is the ideal endpoint based on the 3 criteria: accuracy (i.e., toxicological sensitivity to contaminant), precision (i.e., lowest variance), and ecological relevance (metal mining effluents). Roots are known to play a major role in nutrient uptake in conditions of low nutrient conditions-thus having ecological relevance to freshwater from mining regions. Root length was the most sensitive and precise endpoint in this study where water chemistry varied greatly (pH and varying concentrations of Ca, Mg, Na, K, dissolved organic carbon, and an anthropogenic organic contaminant, sodium isopropyl xanthates) to match mining effluent ranges. Although frond count was a close second, dry weight proved to be an unreliable endpoint. We conclude that toxicity testing for the floating macrophyte should require average RL measurement as a primary endpoint. PMID:25045146

  10. Intelligent distributed control for nuclear power plants

    International Nuclear Information System (INIS)

    This project was initiated in September 1989 as a three year project to develop and demonstrate Intelligent Distributed Control (IDC) for Nuclear Power Plants. There were two primary goals of this research project. The first goal was to combine diagnostics and control to achieve a highly automated power plant as described by M.A. Schultz. The second goal was to apply this research to develop a prototype demonstration on an actual power plant system, the EBR-2 steam plant. Described in this Final (Third Annual) Technical Progress Report is the accomplishment of the project's final milestone, an in-plant intelligent control experiment conducted on April 1, 1993. The development of the experiment included: simulation validation, experiment formulation and final programming, procedure development and approval, and experimental results. Other third year developments summarized in this report are: (1) a theoretical foundation for Reconfigurable Hybrid Supervisory Control, (2) a steam plant diagnostic system, (3) control console design tools and (4) other advanced and intelligent control

  11. Promises in intelligent plant control systems

    International Nuclear Information System (INIS)

    The control system is the brain of a power plant. The traditional goal of control systems has been productivity. However, in nuclear power plants the potential for disaster requires safety to be the dominant concern, and the worldwide political climate demands trustworthiness for nuclear power plants. To keep nuclear generation as a viable option for power in the future, trust is the essential critical goal which encompasses all others. In most of today's nuclear plants the control system is a hybrid of analog, digital, and human components that focuses on productivity and operates under the protective umbrella of an independent engineered safety system. Operation of the plant is complex, and frequent challenges to the safety system occur which impact on their trustworthiness. Advances in nuclear reactor design, computer sciences, and control theory, and in related technological areas such as electronics and communications as well as in data storage, retrieval, display, and analysis have opened a promise for control systems with more acceptable human brain-like capabilities to pursue the required goals. This paper elaborates on the promise of futuristic nuclear power plants with intelligent control systems and addresses design requirements and implementation approaches

  12. Aquatic ecology of the Kadra reservoir, the source of cooling water for Kaiga nuclear power plant

    International Nuclear Information System (INIS)

    The study is being conducted since July 2000 to evaluate impact of cooling water discharges from Kaiga Nuclear Power Plant on physicochemical and biological characteristics of Kadra reservoir. Besides marginal decrease of DO, sulfate, nitrate and potassium near discharge point at surface water, abiotic features of the water samples collected from three layers, viz. surface, 3-m depth and bottom at nine locations of the reservoir, did not show remarkable differences with reference to pH, phosphate, conductivity, suspended solids, sodium, hardness, chloride, alkalinity and heavy metals (Cu, Fe, Ni, Zn, Pb, Cd, Cr and Mn). The DT varied between 5 and 8.5 degC at surface water during the study. The abiotic characteristics of the reservoir water meet the specification of drinking water standard of Bureau of Indian Standards. While the counts of phytoplankton and zooplankton were reduced near discharge point, their population at 500 m off the discharge point was comparable to those near dam site at about 11 km down stream from plant site. Plamer's index (0-15) and Shannon's diversity index values (1.39-2.44) of the plankton at different sampling points indicate oligotrophic and semi productive nature of the water body. The total coliform (TC), staphylococcus and heterotrophic counts were, in general, less near discharge point. Based on TC count, the reservoir water, during most of the period, is categorized as 'B' following CPCB classification of surface waters. Generation of data needs to be continued till 2-3 years for statistical interpretation and drawing conclusions pertaining to extent of impact of cooling water discharges on Kadra reservoir ecology. (author)

  13. ITER prototype fast plant system controller

    International Nuclear Information System (INIS)

    ITER CODAC Design identified the need for slow and fast control plant systems, based respectively on industrial automation technology with maximum sampling rates below 100 Hz, and on embedded technology with higher sampling rates and more stringent real-time requirements. The fast system is applicable to diagnostics and plant systems in closed-control loops whose cycle times are below 1 ms. Fast controllers will be dedicated industrial controllers with the ability to supervise other fast and/or slow controllers, interface to actuators and sensors and high performance networks (HPN). This contribution presents the engineering design of two prototypes of a fast plant system controller (FPSC), specialized for data acquisition, constrained by ITER technological choices. This prototyping activity contributes to the Plant Control Design Handbook (PCDH) effort of standardization, specifically regarding fast controller characteristics. The prototypes will be built using two different form factors, PXIe and ATCA, with the aim of comparing the implementations. The presented solution took into consideration channel density, synchronization, resolution, sampling rates and the needs for signal conditioning such as filtering and galvanic isolation. The integration of the two controllers in the standard CODAC environment is also presented and discussed. Both controllers contain an EPICS IOC providing the interface to the mini-CODAC which will be used for all testing activities. The alpha version of the FPSC is also presented.

  14. ITER prototype fast plant system controller

    Energy Technology Data Exchange (ETDEWEB)

    Goncalves, B., E-mail: bruno@ipfn.ist.utl.pt [Instituto de Plasmas e Fusao Nuclear - Laboratorio Associado, Instituto Superior Tecnico, P-1049-001 Lisboa (Portugal); Sousa, J.; Carvalho, B.B.; Rodrigues, A.P.; Correia, M.; Batista, A. [Instituto de Plasmas e Fusao Nuclear - Laboratorio Associado, Instituto Superior Tecnico, P-1049-001 Lisboa (Portugal); Vega, J. [Centro de Investigaciones Energeticas, Medioambientales y Tecnologicas, CIEMAT, Av. Complutense, Madrid (Spain); Ruiz, M.; Lopez, J.M. [Grupo de Investigacion en Instrumentacion y Acustica Aplicada, Universidad Politecnica de Madrid (Spain); Castro, R. [Centro de Investigaciones Energeticas, Medioambientales y Tecnologicas, CIEMAT, Av. Complutense, Madrid (Spain); Wallander, A.; Utzel, N.; Makijarvi, P.; Simrock, S. [ITER Organization, CS 90 046, 13067 St. Paul lez Durance Cedex (France); Neto, A.; Alves, D.; Valcarcel, D.F. [Instituto de Plasmas e Fusao Nuclear - Laboratorio Associado, Instituto Superior Tecnico, P-1049-001 Lisboa (Portugal); Lousa, P.; Piedade, F.; Fernandes, L. [INOV, Lisbon (Portugal)

    2011-10-15

    ITER CODAC Design identified the need for slow and fast control plant systems, based respectively on industrial automation technology with maximum sampling rates below 100 Hz, and on embedded technology with higher sampling rates and more stringent real-time requirements. The fast system is applicable to diagnostics and plant systems in closed-control loops whose cycle times are below 1 ms. Fast controllers will be dedicated industrial controllers with the ability to supervise other fast and/or slow controllers, interface to actuators and sensors and high performance networks (HPN). This contribution presents the engineering design of two prototypes of a fast plant system controller (FPSC), specialized for data acquisition, constrained by ITER technological choices. This prototyping activity contributes to the Plant Control Design Handbook (PCDH) effort of standardization, specifically regarding fast controller characteristics. The prototypes will be built using two different form factors, PXIe and ATCA, with the aim of comparing the implementations. The presented solution took into consideration channel density, synchronization, resolution, sampling rates and the needs for signal conditioning such as filtering and galvanic isolation. The integration of the two controllers in the standard CODAC environment is also presented and discussed. Both controllers contain an EPICS IOC providing the interface to the mini-CODAC which will be used for all testing activities. The alpha version of the FPSC is also presented.

  15. Intelligent distributed control for nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Klevans, E.H.; Edwards, R.M.; Ray, A.; Lee, K.Y.; Garcia, H.E.: Chavez, C.M.; Turso, J.A.; BenAbdennour, A.

    1991-01-01

    In September of 1989 work began on the DOE University Program grant DE-FG07-89ER12889. The grant provides support for a three year project to develop and demonstrate Intelligent Distributed Control (IDC) for Nuclear Power Plants. The body of this Second Annual Technical Progress report covers the period from September 1990 to September 1991. It summarizes the second year accomplishments while the appendices provide detailed information presented at conference meetings. These are two primary goals of this research. The first is to combine diagnostics and control to achieve a highly automated power plant as described by M.A. Schultz, a project consultant during the first year of the project. This philosophy, as presented in the first annual technical progress report, is to improve public perception of the safety of nuclear power plants by incorporating a high degree automation where greatly simplified operator control console minimizes the possibility of human error in power plant operations. A hierarchically distributed control system with automated responses to plant upset conditions is the focus of our research to achieve this goal. The second goal is to apply this research to develop a prototype demonstration on an actual power plant system, the EBR-II steam plant.

  16. Intelligent distributed control for nuclear power plants

    International Nuclear Information System (INIS)

    In September of 1989 work began on the DOE University Program grant DE-FG07-89ER12889. The grant provides support for a three year project to develop and demonstrate Intelligent Distributed Control (IDC) for Nuclear Power Plants. The body of this Second Annual Technical Progress report covers the period from September 1990 to September 1991. It summarizes the second year accomplishments while the appendices provide detailed information presented at conference meetings. These are two primary goals of this research. The first is to combine diagnostics and control to achieve a highly automated power plant as described by M.A. Schultz, a project consultant during the first year of the project. This philosophy, as presented in the first annual technical progress report, is to improve public perception of the safety of nuclear power plants by incorporating a high degree automation where greatly simplified operator control console minimizes the possibility of human error in power plant operations. A hierarchically distributed control system with automated responses to plant upset conditions is the focus of our research to achieve this goal. The second goal is to apply this research to develop a prototype demonstration on an actual power plant system, the EBR-II steam plant

  17. Nuclear power plant control room operator control and monitoring tasks

    International Nuclear Information System (INIS)

    Oak Ridge National Laboratory is conducting a research project the purpose of which is to develop the technical bases for regulatory review criteria for use in evaluating the safety implications of human factors associated with the use of artificial intelligence and expert systems, and with advanced instrumentation and control (I and C) systems in nuclear power plants (NPP). This report documents the results from Task 8 of that project. The primary objectives of the task was to identify the scope and type of control and monitoring tasks now performed by control-room operators. Another purpose was to address the types of controls and safety systems needed to operate the nuclear plant. The final objective of Task 8 was to identify and categorize the type of information and displays/indicators required to monitor the performance of the control and safety systems. This report also discusses state-of-the-art controls and advanced display devices which will be available for use in control-room retrofits and in control room of future plants. The fundamental types of control and monitoring tasks currently conducted by operators can be divided into four classifications: function monitoring tasks, control manipulation tasks, fault diagnostic tasks, and administrative tasks. There are three general types of controls used in today's NPPs, switches, pushbuttons, and analog controllers. Plant I and C systems include components to achieve a number of safety-related functions: measuring critical plant parameters, controlling critical plant parameters within safety limits, and automatically actuating protective devices if safe limits are exceeded. The types of information monitored by the control-room operators consist of the following parameters: pressure, fluid flow and level, neutron flux, temperature, component status, water chemistry, electrical, and process and area radiation. The basic types of monitoring devices common to nearly all NPP control rooms include: analog meters

  18. Nuclear power plant control room operator control and monitoring tasks

    Energy Technology Data Exchange (ETDEWEB)

    Bovell, C.R.; Beck, M.G. [Concord Associates, Inc., Knoxville, TN (United States); Carter, R.J. [Oak Ridge National Labs., TN (United States)

    1998-07-01

    Oak Ridge National Laboratory is conducting a research project the purpose of which is to develop the technical bases for regulatory review criteria for use in evaluating the safety implications of human factors associated with the use of artificial intelligence and expert systems, and with advanced instrumentation and control (I and C) systems in nuclear power plants (NPP). This report documents the results from Task 8 of that project. The primary objectives of the task was to identify the scope and type of control and monitoring tasks now performed by control-room operators. Another purpose was to address the types of controls and safety systems needed to operate the nuclear plant. The final objective of Task 8 was to identify and categorize the type of information and displays/indicators required to monitor the performance of the control and safety systems. This report also discusses state-of-the-art controls and advanced display devices which will be available for use in control-room retrofits and in control room of future plants. The fundamental types of control and monitoring tasks currently conducted by operators can be divided into four classifications: function monitoring tasks, control manipulation tasks, fault diagnostic tasks, and administrative tasks. There are three general types of controls used in today`s NPPs, switches, pushbuttons, and analog controllers. Plant I and C systems include components to achieve a number of safety-related functions: measuring critical plant parameters, controlling critical plant parameters within safety limits, and automatically actuating protective devices if safe limits are exceeded. The types of information monitored by the control-room operators consist of the following parameters: pressure, fluid flow and level, neutron flux, temperature, component status, water chemistry, electrical, and process and area radiation. The basic types of monitoring devices common to nearly all NPP control rooms include: analog meters

  19. Shrub control by browsing: Targeting adult plants

    Science.gov (United States)

    da Silveira Pontes, Laíse; Magda, Danièle; Gleizes, Benoît; Agreil, Cyril

    2016-01-01

    Reconciling the well known benefits of shrubs for forage with environmental goals, whilst preventing their dominance, is a major challenge in rangeland management. Browsing may be an economical solution for shrubby rangelands as herbivore browsing has been shown to control juvenile shrub growth. Less convincing results have been obtained for adult plants, and long-term experiments are required to investigate the cumulative effects on adult plants. We therefore assessed the impact of different levels of browsing intensity on key demographic parameters for a major dominant shrub species (broom, Cytisus scoparius), focusing on adult plants. We assigned individual broom plants to one of three age classes: 3-5 years (young adults); 5-7 years (adults); and 7-9 years (mature adults). These plants were then left untouched or had 50% or 90% of their total edible stem biomass removed in simulated low-intensity and high-intensity browsing treatments, respectively. Morphological, survival and fecundity data were collected over a period of four years. Browsing affected the morphology of individual plants, promoting changes in subsequent regrowth, and decreasing seed production. The heavily browsed plants were 17% shorter, 32% narrower, and their twigs were 28% shorter. Light browsing seemed to control the growth of young adult plants more effectively than that of older plants. Reproductive output was considerably lower than for control plants after light browsing, and almost 100% lower after heavy browsing. High-intensity browsing had a major effect on survival causing high levels of plant mortality. We conclude that suitable browsing practices could be used to modify adult shrub demography in the management of shrub dominance and forage value.

  20. Nuclear power plant control system

    International Nuclear Information System (INIS)

    Purpose: To effectively transfer the operation of a nuclear power plant including a bwr type reactor to single load operation in the station with no increase in the neutron flux and water level in the reactor by the combined use of recycle pump trip and feedwater pump trip. Method: Upon rapid load decrease in a turbine generator, at least one of usually operated feedwater pumps and a recycle pump are tripped and the starting for a stand-by feedwater pump is inhibited. This rapidly decreases the recycling flow rate to thereby lower the neutron flux before generation of pressure increase and also decreases the feedwater flow rate to thereby suppress the increase in the water level due to increase in voids, whereby the operation is smoothly transferred to the single load operation in the station. (Horiuchi, T.)

  1. Controlling and maintaining exposure of hydrophobic organic compounds in aquatic toxicity tests by passive dosing

    International Nuclear Information System (INIS)

    The risk assessment of hydrophobic organic compounds (HOCs) in aquatic toxicity or bioconcentration tests is a challenge due to their low aqueous solubilities, sorption and losses leading to poorly defined exposure and reduced test sensitivity. Passive dosing overcomes these problems via the continual partitioning of HOCs from a dominating reservoir loaded in a biocompatible polymer such as silicone, providing defined and constant freely dissolved concentrations and eliminating spiking with co-solvents. This study characterised the performance of a passive dosing format for aquatic tests with small organism such as invertebrates and algae, consisting of PDMS silicone cast into the base of the glass test vessel. The PDMS silicone was loaded by partitioning from a methanol solution containing PAHs (log KOW 3.56-6.63) as model compounds, followed by removal of the methanol with water. This resulted in highly reproducible PDMS silicone HOC concentrations. When shaking, release of PAHs into aqueous solution was rapid and reproducible, and equilibrium partitioning was reached within 5 h for all compounds. The buffering capacity was sufficient to maintain stable concentrations over more than 10 weeks. This format was applied in a 48 h Daphnia magna immobilisation assay to test the toxicity of a range of PAHs at their aqueous solubility. D. magna immobilisation did not show a trend with aqueous solubility or hydophobicity (KOW) of the PAHs. However, the immobilisation data for all compounds could be fitted with one maximum chemical activity response curve. Those PAHs with the lowest maximum chemical activities resulted in no immobilisation. Naphthalene and phenanthrene showed full toxicity at aqueous solubility, and passive dosing was also used for the concentration-response testing of these compounds. The freely dissolved aqueous concentrations causing 50% immobilisation (EC-50) were 1.96 mg L-1 for naphthalene and 0.48 mg L-1 for phenanthrene. Therefore, passive dosing

  2. Nuclear reactor kinetics and plant control

    CERN Document Server

    Oka, Yoshiaki

    2013-01-01

    Understanding time-dependent behaviors of nuclear reactors and the methods of their control is essential to the operation and safety of nuclear power plants. This book provides graduate students, researchers, and engineers in nuclear engineering comprehensive information on both the fundamental theory of nuclear reactor kinetics and control and the state-of-the-art practice in actual plants, as well as the idea of how to bridge the two. The first part focuses on understanding fundamental nuclear kinetics. It introduces delayed neutrons, fission chain reactions, point kinetics theory, reactivit

  3. A novel approach to analysing the regimes of temporary streams in relation to their controls on the composition and structure of aquatic biota

    Directory of Open Access Journals (Sweden)

    F. Gallart

    2012-09-01

    Full Text Available Temporary streams are those water courses that undergo the recurrent cessation of flow or the complete drying of their channel. The structure and composition of biological communities in temporary stream reaches are strongly dependent on the temporal changes of the aquatic habitats determined by the hydrological conditions. Therefore, the structural and functional characteristics of aquatic fauna to assess the ecological quality of a temporary stream reach cannot be used without taking into account the controls imposed by the hydrological regime. This paper develops methods for analysing temporary streams' aquatic regimes, based on the definition of six aquatic states that summarize the transient sets of mesohabitats occurring on a given reach at a particular moment, depending on the hydrological conditions: Hyperrheic, Eurheic, Oligorheic, Arheic, Hyporheic and Edaphic. When the hydrological conditions lead to a change in the aquatic state, the structure and composition of the aquatic community changes according to the new set of available habitats. We used the water discharge records from gauging stations or simulations with rainfall-runoff models to infer the temporal patterns of occurrence of these states in the Aquatic States Frequency Graph we developed. The visual analysis of this graph is complemented by the development of two metrics which describe the permanence of flow and the seasonal predictability of zero flow periods. Finally, a classification of temporary streams in four aquatic regimes in terms of their influence over the development of aquatic life is updated from the existing classifications, with stream aquatic regimes defined as Permanent, Temporary-pools, Temporary-dry and Episodic. While aquatic regimes describe the long-term overall variability of the hydrological conditions of the river section and have been used for many years by hydrologists and ecologists, aquatic states describe the

  4. Plant control impact on IFR power plant passive safety response

    International Nuclear Information System (INIS)

    A method is described for optimizing the closed-loop plant control strategy with respect to safety margins sustained in the unprotected upset response of a liquid metal reactor. The optimization is performed subject to the normal requirements for reactor startup, load change and compensation for reactivity changes over the cycle. The method provides a formal approach to the process of exploiting the innate self-regulating property of a metal fueled reactor to make it less dependent on operator action and less vulnerable to automatic control system fault and/or operator error

  5. Trends of Superoxide Dismutase and Soluble Protein of Aquatic Plants in Lakes of Different Trophic Levels in the Middle and Lower Reaches of the Yangtze River,China

    Institute of Scientific and Technical Information of China (English)

    Ai-Ping Wu; Te Cao; Shi-Kai Wu; Le-Yi Ni; Ping Xie

    2009-01-01

    A limnological study was carried out to determine the responses of superoxide dismutase (SOD) activities and soluble protein (SP) contents of 11 common aquatic plants to eutrophication stress.Field investigation in 12 lakes in the middle and lower reaches of the Yangtze River was carried out from March to September 2004.Our results indicated that nonsubmersed (emergent and floating-leafed) plants and submersed plants showed different responses to eutrophication stress.Both SOD activities of the non-submersed and submersed plants were negatively correlated with their SP contents (P < 0.000 1).SP contents of non-submersed plants were significantly correlated with all nitrogen variables in the water (P < 0.05),whereas SP contents of submersed plants were only significantly correlated with carbon variables as well as ammonium and Secchi depth (SD) in water (P<0.05).Only SOD activities of submersed plants were decreased with decline of SD in water (P < 0.001).Our results indicate that the decline of SOD activities of submersed plants were mainly caused by light limitation,this showed a coincidence with the decline of macrophytes in eutrophic lakes,which might imply that the antioxidant system of the submersed plants were impaired under eutrophication stress.

  6. Agricultural Plant Pest Control. Manual 93.

    Science.gov (United States)

    Missouri Univ., Columbia. Agricultural Experiment Station.

    This training manual provides information needed to meet the minimum EPA standards for certification as a commercial applicator of pesticides for the agricultural plant pest control category. The text discusses the insect pests including caterpillars, beetles, and soil inhabiting insects; diseases and nematodes; and weeds. Consideration is given…

  7. Process control in nuclear power plants

    International Nuclear Information System (INIS)

    Optimum technical design of a nuclear power plant needs to be parallelled by effective process control in the stage of output operation. The author briefly demonstrates the pertinent criteria like operational organization, functional areas, crews, training of staff, process monitoring, industrial safety, incident prevention, and emergency manual. (DG)

  8. Control characteristics of inert gas recovery plant

    International Nuclear Information System (INIS)

    This paper presents a dynamic simulator and the control characteristics for a radioactive inert gas recovery plant which uses a cryogenic liquefying process. The simulator was developed to analyze the operational characteristics and is applicable to gas streams which contain nitrogen, argon, oxygen and krypton. The characteristics analysis of the pilot plant was performed after the accuracy of the simulator was checked using data obtained in fundamental experiments. The relationship between the reflux ratio and krypton concentration in the effluent gas was obtained. The decontamination factor is larger than 109 when the reflux ratio is more than 2. 0. The control characteristics of the plant were examined by changing its various parameters. These included the amount of gas to be treated, the heater power inside the evaporator and the liquid nitrogen level in the condenser. These characteristics agreed well with the values obtained in the pilot plant. The results show that the krypton concentration in the effluent gas increases when the liquid nitrogen level is decreased. However, in this case, the krypton concentration can be minimized by applying a feed forward control to the evaporator liquid level controller. (author)

  9. Response of aquatic plants of peat pits to eutrophication processes resulted from intensive management and overdrying of surrounding them peat meadows

    Science.gov (United States)

    Gołdyn, H.; Arczyńska-Chudy, E.

    2009-04-01

    Aquatic and wetland habitats belong to the most precious nature elements of rural environment. At the same time they are very sensitive to eutrophication and diverse impacts caused by intensive agriculture. If protected and well kept they may enrich plant diversity in agricultural landscape. One of the most important reasons of degradation of waters within the lowland landscape is intensive agriculture. Drainage of marshes, which was especially intensive in the last two centuries, has changed hydrological conditions and modified relationships in many aquatic and terrestrial ecosystems. This resulted in eutrophication of aquatic habitats. The presented study are the part of investigations on the changes of aquatic and marsh vegetation during the last thirty years period within agricultural landscape of Gen. Chlapowski Landscape Park in Wielkopolska Region. Their goal was to analyse changes in aquatic plant communities within the peat pits, which are situated among the meadows. Vegetation of these ecosystems was first studied from 1976 to 1979 and investigations were repeated in 2007. This allowed to evaluate the transformation of vegetation during the last 30 years. Analyses of the chemical composition of water showed a gradual increase in its trophic state. The strongest increase was observed in the concentrations of phosphates and ammonium nitrogen. It was a consequence of intensive management of the surrounding meadows and drainage, led to their overdrying in the 1980s, which simultaneously effected the transformation of meadow vegetation. These changes caused the acceleration of peat mineralization, which was the reason of the increased leaching of nutrients and enrichment of water stored in the peat pits. The diversity of aquatic plant communities revealed significant transformations during the last 30 years. Species diversity, measured by the Shannon index (H') increased from 3.09 to 3.45. The increase in the number of identified plant species and associations

  10. Assessment of toxicity of radioactively contaminated sediments of the Yenisei River for aquatic plants in laboratory assay

    Energy Technology Data Exchange (ETDEWEB)

    Zotina, T.; Trofimova, E.; Medvedeva, M.; Bolsunovsky, A. [Institute of Biophysic SB RAS (Russian Federation)

    2014-07-01

    The Yenisei River has been subjected to radioactive contamination due to the operation of the Mining-and-Chemical Combine (Rosatom) (MCC) producing weapon-grade plutonium for more than fifty years (1958-2010). As a result, high activities of long-lived artificial radionuclides (Cs-137, Pu-238, 239, 241, Am-241) were deposited in sediments of the river. Bottom sediments of the Yenisei River downstream of the Krasnoyarsk city are also polluted with heavy metals because of industrial discharges and from the water catchment area. The purpose of this research was to estimate the ability of submersed macrophytes Elodea canadensis and Myriophyllum spicatum to serve as indicators of toxicity of bottom sediments of the Yenisei River. Activities of artificial radionuclides in the biomass of aquatic plants sampled in the Yenisei River upstream of the MCC were below detection limit (< 0.5 Bq/kg of dry mass for Cs-137). The activities of artificial radionuclides in the biomass of macrophytes sampled in the Yenisei River in the vicinity of the MCC in autumn 2012 were (Bq/kg of dry mass): 67±4 for Co-60, 16±2 for Cs-137, and 8±1 for Eu-152. For eco-toxicological experiments, top 20-cm layers of bottom sediments (BS) were collected from the Yenisei River at three sites in the vicinity of the MCC (No. 2-4) and at one site upstream of the MCC (No. 1). Samples of sediments contained natural isotope K-40 (240-330 Bq/kg, fresh mass) and artificial radionuclides: Co-60 (up to 70 Bq/kg), Cs-137 (0.8-1400 Bq/kg), Eu-152, 154 (up to 220 Bq/kg), Am-241 (up to 40 Bq/kg). The total activity concentration of radionuclides measured on an HPGe-Gamma-spectrometer (Canberra, U.S.) in samples of BS No. 1-4 was 330, 500, 880 and 1580 Bq/kg of fresh mass, respectively. Apical shoots of submersed macrophytes were planted in sediments (6-9 shoots per sediment sub-sample in three replicates). Endpoints of shoot and root growth were used as toxicity indicators; the number of cells with chromosome

  11. Control system upgrades support better plant economics

    International Nuclear Information System (INIS)

    This paper (second in the series, see [1]) provides insight on how nuclear plants can achieve better efficiencies and reduced operations and maintenance (O and M) costs through focused control system upgrades. An understanding of this relationship is necessary to properly assess the economics of plant refurbishment decisions. Traditional economic feasibility assessment methods such as benefit cost analysis (BCA), internal rate of return (IRR), benefit cost ratios (B/C), or payback analysis are often performed without full consideration of project alternatives, quantified benefits, and life cycle costing. Consideration must be given to not only capital cost and project risk, but also to the potential economic benefits of new technology and added functionality offered by plant upgrades. Recent experience shows that if upgrades are focused on priority objectives, and are effectively implemented, they can deliver significant payback over the life of the plant, sometimes orders of magnitude higher than their initial capital cost. The following discussion explores some of the key issues and rationale behind upgrade decisions and their impact on improved plant efficiency and reduced O and M costs. A subsequent paper will explain how the justification for these improvements can be captured in an economic analysis and feasibility study to support strategic decision-making in a plant refurbishment context. (author)

  12. Intelligent plant operation support system for plant and process control

    Energy Technology Data Exchange (ETDEWEB)

    Kawaguchi, K.; Oishi, S.; Nishiya, T. (Hitachi, Ltd., Tokyo (Japan))

    1992-02-01

    Hitachi is introducing some AI (artificial intelligence) software packages, such as the advanced plant operation support system (APOS) and the intelligent alarm system (IMARK) which marks the process data with significant words, to reduce the workload of operators. APOS is a domain shell for the plant control expert system based on the real-time inference engine EUREKA-II (Electronic Understanding and Reasoning by Knowledge Activation-II). On the other hand, IMARK has been developed as one of the intelligent alarms to mark the time-series process data and report signs of an event to an operator. The present review article introduces the software packages for process computers, which includes APOS and IMARK, and also describes how AI techniques are used in them. 4 refs., 10 figs., 3 tabs.

  13. Angra nuclear plant - environmental control program

    International Nuclear Information System (INIS)

    The pre-operational studies, that were elaborated before the beginning of Angra I Power Plant operation, are described in particular the environmental radiological safety area till the fuel loading in the core reactor. Several aspects are included, as socio-economic survey, seismological analysis, Meteorological Program, marine biology, water cooling system, exposure measures of natural radiation, marine sediments characterization in the effluent dispersion area and Environmental Radiological Monitoring Program. The main environmental programs developed for the operational phase of the Angra I Plant are also presented, citing some considerations about the Meteorological Program, Marine Biology Control Program, Temperature and Chlorine Control in Piraquara de Fora Bay, Radiological Environmental Monitoring Program, Sanitary Effluent Control Program and Radiological Emergency Program. (C.G.C.). 2 refs

  14. On fuzzy control of water desalination plants

    Energy Technology Data Exchange (ETDEWEB)

    Titli, A. [Centre National de la Recherche Scientifique (CNRS), 31 - Toulouse (France); Jamshidi, M. [New Mexico Univ., Albuquerque, NM (United States); Olafsson, F. [Institute of Technology, Norway (Norway)

    1995-12-31

    In this report we have chosen a sub-system of an MSF water desalination plant, the brine heater, for analysis, synthesis, and simulation. This system has been modelled and implemented on computer. A fuzzy logic controller (FLC) for the top brine temperature control loop has been designed and implemented on the computer. The performance of the proposed FLC is compared with three other conventional control strategies: PID, cascade and disturbance rejection control. One major concern on FLC`s has been the lack of stability criteria. An up to-date survey of stability of fuzzy control systems is given. We have shown stability of the proposed FLC using the Sinusoidal Input Describing Functions (SIDF) method. The potential applications of fuzzy controllers for complex and large-scale systems through hierarchy of rule sets and hybridization with conventional approaches are also investigated. (authors)

  15. Design and simulation of a plant control system for a GCFR demonstration plant

    International Nuclear Information System (INIS)

    A plant control system is being designed for a 300 MW(e) Gas Cooled Fast Breeder Reactor (GCFR) demonstration plant. Control analysis is being performed as an integral part of the plant design process to ensure that control requirements are satisfied as the plant design evolves. Plant models and simulations are being developed to generate information necessary to further define control system requirements for subsequent plant design iterations

  16. Intelligent distributed control for nuclear power plants

    International Nuclear Information System (INIS)

    In September of 1989 work began on the DOE University Program grant DE-FG07-89ER12889. The grant provides support for a three year project to develop and demonstrate Intelligent Distributed Control (IDC) for Nuclear Power Plants. The body of this First Annual Technical Progress report summarizes the first year tasks while the appendices provide detailed information presented at conference meetings. One major addendum report, authored by M.A. Schultz, describes the ultimate goals and projected structure of an automatic distributed control system for EBR-2. The remaining tasks of the project develop specific implementations of various components required to demonstrate the intelligent distributed control concept

  17. Combined cycle plant controls retrofit case history

    International Nuclear Information System (INIS)

    The Comanche Power Station, Public Service of Oklahoma's combined cycle generating facility, underwent a controls and operator panel retrofit at the end of 1988. The plant consists of two gas turbines, two heat recovery boilers and a steam turbine along with three generators. This paper examines the extent to which the original goals and specifications were met. Costs, operating principles and modifications since the original installation are discussed. Operating procedures are compared with the original system. The future of the plant is discussed and the impact on the power system grid is analyzed

  18. Aquatic Macrophyte Risk Assessment for Pesticides

    NARCIS (Netherlands)

    Maltby, L.; Arnold, D.; Arts, G.H.P.; Davies, J.; Heimbach, F.; Pickl, C.; Poulsen, V.

    2009-01-01

    Given the essential role that primary producers play in aquatic ecosystems, it is imperative that the potential risk of pesticides to the structure and functioning of aquatic plants is adequately assessed. This book discusses the assessment of the risk of pesticides with herbicidal activity to aquat

  19. Nuclear fuel control in fuel fabrication plants

    International Nuclear Information System (INIS)

    The basic control problems of measuring uranium and of the environment inside and outside nuclear fuel fabrication plants are reviewed, excluding criticality prevention in case of submergence. The occurrence of loss scraps in fabrication and scrap-recycling, the measuring error, the uranium going cut of the system, the confirmation of the presence of lost uranium and the requirement of the measurement control for safeguard make the measurement control very complicated. The establishment of MBA (material balance area) and ICA (item control area) can make clearer the control of inventories, the control of loss scraps and the control of measuring points. Besides the above basic points, the following points are to be taken into account: 1) the method of confirmation of inventories, 2) the introduction of reliable NDT instruments for the rapid check system for enrichment and amount of uranium, 3) the introduction of real time system, and 4) the clarification of MUF analysis and its application to the reliability check of measurement control system. The environment control includes the controls of the uranium concentration in factory atmosphere, the surface contamination, the space dose rate, the uranium concentration in air and water discharged from factories, and the uranium in liquid wastes. The future problems are the practical restudy of measurement control under NPT, the definite plan of burglary protection and the realization of the disposal of solid wastes. (Iwakiri, K.)

  20. Assessing and Managing the Current and Future Pest Risk from Water Hyacinth, (Eichhornia crassipes), an Invasive Aquatic Plant Threatening the Environment and Water Security.

    Science.gov (United States)

    Kriticos, Darren J; Brunel, Sarah

    2016-01-01

    Understanding and managing the biological invasion threats posed by aquatic plants under current and future climates is a growing challenge for biosecurity and land management agencies worldwide. Eichhornia crassipes is one of the world's worst aquatic weeds. Presently, it threatens aquatic ecosystems, and hinders the management and delivery of freshwater services in both developed and developing parts of the world. A niche model was fitted using CLIMEX, to estimate the potential distribution of E. crassipes under historical and future climate scenarios. Under two future greenhouse gas emission scenarios for 2080 simulated with three Global Climate Models, the area with a favourable temperature regime appears set to shift polewards. The greatest potential for future range expansion lies in Europe. Elsewhere in the northern hemisphere temperature gradients are too steep for significant geographical range expansion under the climate scenarios explored here. In the Southern Hemisphere, the southern range boundary for E. crassipes is set to expand southwards in Argentina, Australia and New Zealand; under current climate conditions it is already able to invade the southern limits of Africa. The opportunity exists to prevent its spread into the islands of Tasmania in Australia and the South Island of New Zealand, both of which depend upon hydroelectric facilities that would be threatened by the presence of E. crassipes. In Europe, efforts to slow or stop the spread of E. crassipes will face the challenge of limited internal biosecurity capacity. The modelling technique demonstrated here is the first application of niche modelling for an aquatic weed under historical and projected future climates. It provides biosecurity agencies with a spatial tool to foresee and manage the emerging invasion threats in a manner that can be included in the international standard for pest risk assessments. It should also support more detailed local and regional management. PMID:27513336

  1. Nuclear Power Plant Control and Instrumentation 1989

    International Nuclear Information System (INIS)

    The meeting of the International Working Group on Nuclear Power Plant Control and Instrumentation (IWG-NPPCI) was organized in order to summarize operating experience of nuclear power plant control systems, gain a general overview of activities in development of modern control systems and receive recommendations on the further directions and particular measures within the Agency's programme. The meeting was held at the IAEA Headquarters in Vienna and was attended by 21 national delegates and observers from 18 countries. The present volume contains: (1) report on the meeting of the IWG-NPPCI, Vienna, 8-10 May 1989, (2) report of the scientific secretary on the major activities of IAEA during 1987-89 in the NPPCI area, (3) terms of reference International Working Group on NPPCI and (4) reports of the national representatives to the International Working Group on NPPCI. The paper and discussions with practical experience and described actual problems encountered. Emphasis was placed on the technical, industrial and economical aspects of the introduction of modern control systems and on the improvement of plant availability and safety. A separate abstract was prepared for each of the 19 papers presented by members of the International Working Group. Refs, figs and tabs

  2. Instrumentation and control of nuclear power plant

    International Nuclear Information System (INIS)

    This report outlines major instruments, man-machine systems in particular, that have been developed recently for nuclear power plants. The TMI accident triggered the reinforcement of man-machine interface systems in many nuclear power plants over the world. In Japan, new types of control panels have been successively adopted for practical applications. These central control panels are characterized by their designs based on basic theories of human engineering, the use of CRT's for efficient plant monitoring, and the effective utilization of computers to permit centralization of data and simplification of operations. Based on the lessons learned from the TMI accidents, various operator supporting systems have been developed in many countries to allow operators to obtain reactor data during their operation work. These systems play an important role especially in case of emergency. Such systems include safety parameter display systems and disturbance analysis systems. Digital instruments have been adopted more widely for the control of major systems including the nuclear reactor as high-performance, high-function microprocessors emerged. Other newly developed systems include highly reliable emergency systems, load following control systems, safety systems equipped with a microprocessor, and training simulators. (Nogami, K.)

  3. Stray current control in electrolysis plant

    International Nuclear Information System (INIS)

    Stray current can appear in any industrial plant powered by electricity. In electrolysis plants the probability for stray current appearance is high due to the use of electrolytes, which are current-conductive liquid media. Busbars, metallic equipment, electrolyte, the ground and the human body are to a different extent DC current-conductive. Brought in contact in an electrolysis plant, they act as a complex electrical network supplied by a rectifier. As a result, uncontrolled stray currents can flow causing hazard (even electrocution) to the operating personal, power loss and/or damage to the equipment. Despite its major importance for all metal winning and refining electrolysis processes, the stray current issue is very scarcely treated in the published literature. This paper reveals the fundamentals for stray current appearance pointing out to the two major loops in the plant. In the internal loop stray current flows through the electrolyte distribution system causing power loss and hardware damage by stray current induced corrosion. The heat exchanger used for electrolyte preheating is especially critical. The external stray current loop covers stray current cases caused by electrolyte leakage. It impacts on power losses and hazards to the personnel. LUSCURE (LUrgi Stray-CUrrent-cuRE) is a new method for localization, control and reduction of stray current in an electrolysis plant. It involves a translation of the plant and equipment design into an equivalent electrical circuit that is calculated and analysed. LUSCURE was verified by assessing a German copper refinery and by being extensively used in plant and equipment design for the High Current Density Copper Electrowinning Process (HCD). (author)

  4. Control effect of lanthanum against plant disease

    Institute of Scientific and Technical Information of China (English)

    LIU Yajia; WANG Yan; WANG Fubin; LIU Yuming; CUI Jianyu; HU Lin; MU Kangguo

    2008-01-01

    Effect of La on emergence, growth and development of Isatis indigotica Fort and Festuca arundinacea seedlings was researched by pot experiments of inoculating Rhizoctonia solani and with the mixture of Rhizoctonia solani and Fusarium solani in disinfected soil after the seeds were soaked in the solution with different concentrations of La3+. The results indicated that infection rate decreased and there were significant disease controlling effects on seed rot, bud rot and root rot caused by pathogenic fungi when the seeds were soaked by La3+. Thus, the rates of emergence of Isatis indigotica Fort. And turfgrass Festuca arundinacea were increased. When La3+ concentration was in a proper range, the growth and development of plant seedlings were promoted. Spraying La on rice plants showed a significant controling effect on Rhizoctonia solani. Furthermore, the EC50 of La3+ performed 128.7 and 128.1 mg/L at 1 and 7 d after spraying La in rice plants, respectively. The EC50ofLa3+ performed in vivo (in rice plant) was lower than that in vitro (171.9 mg/L).

  5. Plant Pathogen Sensing for Early Disease Control

    OpenAIRE

    Heard, Stephanie

    2014-01-01

    Sclerotinia sclerotiorum, a fungal pathogen of over 400 plant species has been estimated to cost UK based farmers approximately £20 million per year during severe outbreak (Oerke and Dehne 2004). S. sclerotiorum disease incidence is difficult to predict as outbreaks are often sporadic. Ascospores released from the fruiting bodies or apothecia can be dispersed for tens of kilometres. This makes disease control problematic and with no S. sclerotiorum resistant varieties available, growers are...

  6. ADAPTIVE SUBOPTIMAL CONTROL OF INPUT CONSTRAINED PLANTS

    Directory of Open Access Journals (Sweden)

    Valerii Azarskov

    2011-03-01

    Full Text Available Abstract. This paper deals with adaptive regulation of a discrete-time linear time-invariant plant witharbitrary bounded disturbances whose control input is constrained to lie within certain limits. The adaptivecontrol algorithm exploits the one-step-ahead control strategy and the gradient projection type estimationprocedure using the modified dead zone. The convergence property of the estimation algorithm is shown tobe ensured. The sufficient conditions guaranteeing the global asymptotical stability and simultaneously thesuboptimality of the closed-loop systems are derived. Numerical examples and simulations are presented tosupport the theoretical results.

  7. Triploid grass carp susceptibility and potential for disease transfer when used to control aquatic vegetation in reservoirs with avian vacuolar myelinopathy.

    Science.gov (United States)

    Haynie, Rebecca S; Bowerman, William W; Williams, Sarah K; Morrison, John R; Grizzle, John M; Fischer, John M; Wilde, Susan B

    2013-12-01

    Avian vacuolar myelinopathy (AVM) is an often-lethal neurologic disease that affects waterbirds and their avian predators (i.e., bald eagles Haliaeetus leucocephalus) in the southern United States. Feeding trials and field surveys provided evidence that AVM is caused by a toxin-producing, undescribed cyanobacterium (UCB), which grows as an epiphyte on the leaves of submerged aquatic vegetation (SAV). Reservoirs with documented AVM epornitics support dense growth of nonnative SAV. Waterbirds ingest the toxin when feeding on aquatic plants with the epiphytic UCB, and secondary intoxication occurs when raptors consume these birds. Vegetation management has been proposed as a means to reduce waterbird exposure to the putative toxin. We fed aquatic vegetation with and without the UCB to triploid Grass Carp Ctenopharyngodon idella in laboratory and field trials. Only Grass Carp that ingested aquatic vegetation with the UCB developed lesions in the central nervous system. The lesions (viewed using light microscopy) appeared similar to those in birds diagnosed with AVM. Grass Carp that received aquatic vegetation without the UCB were unaffected. Grass Carp tissues from each treatment were fed to domestic chickens Gallus domesticus (an appropriate laboratory model for AVM) in a laboratory trial; the chickens displayed no neurologic signs, and histology revealed a lack of the diagnostic lesions in brain tissues. Results from our trials suggest that (1) triploid Grass Carp are susceptible to the AVM toxin, although no fish mortalities were documented; and (2) the toxin was not accumulated in Grass Carp tissues, and the risk to piscivorous avifauna is likely low. However, a longer exposure time and analysis of sublethal effects may be prudent to further evaluate the efficacy and risk of using triploid Grass Carp to manage aquatic vegetation in a system with frequent AVM outbreaks. PMID:24341766

  8. Co-occurrence of the Cyanotoxins BMAA, DABA and Anatoxin-a in Nebraska Reservoirs, Fish, and Aquatic Plants

    OpenAIRE

    Al-Sammak, Maitham; Hoagland, Kyle; Cassada, David; Snow, Daniel

    2014-01-01

    Several groups of microorganisms are capable of producing toxins in aquatic environments. Cyanobacteria are prevalent blue green algae in freshwater systems, and many species produce cyanotoxins which include a variety of chemical irritants, hepatotoxins and neurotoxins. Production and occurrence of potent neurotoxic cyanotoxins β-N-methylamino-l-alanine (BMAA), 2,4-diaminobutyric acid dihydrochloride (DABA), and anatoxin-a are especially critical with environmental implications to public and...

  9. Development of aquatic plant bioassays for rapid screening and interpretive risk assessments of metal mining liquid waste waters

    International Nuclear Information System (INIS)

    The use of non-photosynthetic organisms alone to describe environmental impact has been recognized by regulatory agencies, industry and academia as being totally inadequate both in Europe and North America. Lack of adequate testing methods for photosynthetic aquatic organisms has been recognized as a major impediment to the successful regulation and safe use of pesticides and waste water discharges and is of even more concern to the metal mining industry due to the non-biodegradable nature of its waste streams. This work shows that the chemical effluent limits set in the 'Metal mining liquid effluent regulations and guidelines' provide variable protection of aquatic photosynthetic organisms and aquatic effects of the more toxic metals (e.g., copper, nickel, and zinc) may occur at levels that are one to two orders of magnitude lower than present limits. To establish adequate protection of receiving water bodies it may be necessary to establish site-specific criteria taking into consideration toxicity modifying factors of individual sites. If the establishment of such criteria is determined with a host of ecologically relevant organisms, it will be possible to design effective environmental protection at the least possible cost. (author). 17 refs., 2 tabs

  10. Utilização de chama para controle de plantas daninhas emersas em ambiente aquático Using flame for control of emerged aquatic weeds

    Directory of Open Access Journals (Sweden)

    S.R. Marchi

    2005-06-01

    trial, two flame applications (14 day interval between each application, triple flame application (7 day interval between each application and single flame application were used. Untreated plants were used in both trials as check. Injury was assessed at 1, 3, 7, 10, 13, 17, 21 and 30 days after applications. Dry biomass of survival plants was also obtained at the final experimental period. The first trial results showed a significant reduction in the biomass of E. crassipes, B. subquadripara and P.stratiotes, treated with the highest flame. All the sequential applications provided significant dry biomass reduction (over 90% in E. crassipes and B. subquadripara. The sequential and single applications provided dry biomass reductions up to 37% in S. auriculata. The results show that it is viable to use flame weeding as an alternative in the management of aquatic environments.

  11. Aquatic plant allelopathy emergency disposal of red tide and freshwater algal blooms%水生植物化感作用应急处置海洋赤潮和淡水水华

    Institute of Scientific and Technical Information of China (English)

    边归国

    2012-01-01

    In recent years, Allelopathy is becoming the new technology to control algae outbreaks. According to the research results at home and abroad, focus on the aquatic plant allelopathy, allelopathic algal material, algae emergency response methods, the red tide and algal blooms in freshwater emergency response and mechanism are reviewed, and the future development are to be Looking.%近年来,植物化感作用逐渐成为控制藻类暴发的一种新技术。根据国内外的研究成果,着重从水生植物化感作用、化感抑藻物质、应急处置藻类方法、海洋赤潮和淡水水华的应急处置及机理进行评述,并对该技术今后的发展予以展望。

  12. Uptake and release kinetics of 134Cs by goldfish (Carassius auratus) and 137Cs by zebra fish (Brachydanio rerio) in controlled aquatic environment

    International Nuclear Information System (INIS)

    The uptake and release kinetics of 134Cs by Goldfish (Carassius auratus) and 137Cs by Zebra Fish (Brachydanio rerio) from aquatic media of different ionic compositions and temperature was studied in controlled laboratory conditions. The accumulation of radiocesium in the case of Brachydanio rerio is observed to be strongly dependent on the potassium ion concentration of the aquatic medium, but in the case of Carassius auratus this dependence is quite weak. The biological half-lives of the cesium isotopes incorporated into the fish investigated in the present work vary from 19 to 80 days and are influenced by the temperature and the ionic composition of the aquatic medium. (author) 19 refs.; 1 fig.; 3 tabs

  13. Information presentation in power plant control rooms

    International Nuclear Information System (INIS)

    The objective of this study is to support operators' work especially in the control rooms of power plant. The exemplified process is a pressurized water (nuclear) reactor (PWR). The man-process interface is an information system that covers information refining, information presentation, information system handling, and process control. THe emphasis in this study is on the organization and presentation of information and on the alert function that is part of the information system. Another goal is to design the alert function so as to radically reduce the number of alarms during plant shutdown, e.g. during the refuelling or maintenance period and during a disturbance. Further, the experimental validation of CFMS (Critical Function Monitoring System), developed by Combustion Engineering, Inc. in the U.S.A. is described briefly. The validation was made at the Loviisa training simulator in the autumn of 1982. CFMS is a safety-related functional alarm system. The functional decomposition of information has turned out to be successful and it is helpful in designing displays. Preliminary criteria for designing displays, the structure of the information presentation system and the illustration of main interactions are presented. General practical ideas on designing the alert function seem very promising. Preliminary results of the CFMS validation are presented. Further, some ideas are presented on how to carry out the analysis and how to make such validations in the future. A new idea for the evaluation of core safety is presented, based on control theory concepts

  14. Cascade plant control by timer method

    International Nuclear Information System (INIS)

    The present invention relates to a method of controlling uranium flow rate through a cascaded centrifuge plant for the purpose of enriching uranium 235. Such a cascade includes multiple gas separation stage each of which consists of a plurality of centrifuges. The product gas usually includes a large amount of He gas, and a cold trap is used to eliminate the He from UF6. The cold trap is operated periodically in such a way that the mixed gas of He and UF6 is cooled to solidify only UF6 and then warmed to obtain UF6 by gasification. In order to operate the plant continuously, parallel multiple cold traps are operated alternatively. The operating conditions in such a complex cascade system are difficult to alter by conventional control methods. The present invention provides a rapid method of controlling the system when a certain percentage of the centrifuges in one stage malfunction. The control system consists of timers which are provided one for each cold trap to control the operational period of the trap. For example, if 20% of the centrifuges in a particular stage malfunction, the timer period of the cold traps attached to the normally operating centrifuge within the stage is maintained, and the period of all the other centrifuges are changed to 10/8 times that of the initial value. In this way the flow volume through all centrifuges except that in the particular stage is reduced to 80% of the initial value and the operation of the system can be continued with reduced efficiency. (Masui, R.)

  15. Dynamics and control of nuclear power plants

    International Nuclear Information System (INIS)

    A mathematical model of the power plant with a pressurized water reactor has been prepared and tested. The model is intended for a schematic simulator based on a digital computer. The results of the simulation run for various normal transients are in good agreement with literature data. Equipment for computer control of the experimental reactor TRIGA has been completed. The equipment includes two microcomputers and associated interface circuits. Presently, only data logging is performed. The analyses of random signals on the TRIGA reactor have been continued. Measurements of neutron flux, fuel temperature and cooling water duct have been performed

  16. Aquatic Sediments.

    Science.gov (United States)

    Sanville, W. D.; And Others

    1978-01-01

    Presents a literature review of aquatic sediments and its effect upon water quality, covering publications of 1976-77. This review includes: (1) sediment water interchange; (2) chemical and physical characterization; and (3) heavy water in sediments. A list of 129 references is also presented. (HM)

  17. VALIDATION OF EMBRYO TESTS FOR DETERMINING EFFECTS OF FUNGAL PEST CONTROL AGENTS ON NONTARGET AQUATIC ANIMALS

    Science.gov (United States)

    Developing embryos of the inland silverside fish Menidia beryllina and grass shrimp Palaemonetes pugio were exposed to conidiospores of the fungal weed control agent, Colletotrichum gloeosporioides, f. sp. aeschynomene, and the entomopathogen, Metarhizium anisopliae. nly Metarhiz...

  18. Control method for BWR type power plant

    International Nuclear Information System (INIS)

    The present invention provides a method of controlling a BWR type plant having internal pumps capable of sufficiently utilizing the performance of a whole volume turbine bypass plant to enable stable supply of electric power upon load interruption of power generator thereof. Namely, upon occurrence of load interruption of a power generator or turbine trip, a plurality of internal pumps are tripped simultaneously to abruptly reduce a reactor core flow rate by a predetermined value or more. In this case, a reactor core flow rate abruptly reduction scram signal is prevented. Alternatively, a plurality of internal pumps are tripped simultaneously to abruptly reduce the reactor core flow rate. In this case, a reactor core flow rate abrupt reduction scram set value is changed in order to inhibit the reactor core flow rate abrupt reduction scram signal. With such procedures, upon load interruption of power generator or upon trip of turbine, reactor core flow rate is abruptly reduced by trip of internal pumps for avoiding increase of neutron fluxes due to reactor pressure change. However, since reactor scram is avoided, the operation can be continued upon load interruption of power generator. As a result, performance of whole volume turbine bypass plant can be utilized sufficiently even upon occurrence of load interruption of power generator. (I.S.)

  19. Gaseous emissions from plants in controlled environments

    Science.gov (United States)

    Dubay, Denis T.

    1988-01-01

    Plant growth in a controlled ecological life support system may entail the build-up over extended time periods of phytotoxic concentrations of volatile organic compounds produced by the plants themselves. Ethylene is a prominent gaseous emission of plants, and is the focus of this report. The objective was to determine the rate of ethylene release by spring wheat, white potato, and lettuce during early, middle, and late growth stages, and during both the light and dark segments of the diurnal cycle. Plants grown hydroponically using the nutrient film technique were covered with plexiglass containers for 4 to 6 h. At intervals after enclosure, gas samples were withdrawn with a syringe and analyzed for ethylene with a gas chromatograph. Lettuce produced 10 to 100 times more ethylene than wheat or potato, with production rates ranging from 141 to 158 ng g-dry/wt/h. Wheat produced from 1.7 to 14.3 ng g-dry/wt/h, with senescent wheat producing the least amount and flowering wheat the most. Potatoes produced the least amount of ethylene, with values never exceeding 5 ng g-dry/wt/h. Lettuce and potatoes each produced ethylene at similar rates whether in dark period or light period. Ethylene sequestering of 33 to 43 percent by the plexiglass enclosures indicated that these production estimates may be low by one-third to one-half. These results suggest that concern for ethylene build-up in a contained atmosphere should be greatest when growing lettuce, and less when growing wheat or potato.

  20. Above- and below-ground vertebrate herbivory may each favour a different subordinate species in an aquatic plant community

    OpenAIRE

    Hidding, B.; Nolet, B.A.; de Boer, T.; De Vries, P.P.; Klaassen, M.R.J.

    2010-01-01

    At least two distinct trade-offs are thought to facilitate higher diversity in productive plant communities under herbivory. Higher investment in defence and enhanced colonization potential may both correlate with decreased competitive ability in plants. Herbivory may thus promote coexistence of plant species exhibiting divergent life history strategies. How different seasonally tied herbivore assemblages simultaneously affect plant community composition and diversity is, however, largely unk...

  1. Some aspects of radioecological monitoring of high aquatic plants from water bodies within the Chernobyl accident exclusion zone - 16368

    International Nuclear Information System (INIS)

    The impact analysis of low doses of ionizing radiation on the breathers in natural populations is an important part of radiobiological studies of non-human biota. The main aim of our studies was to investigate some cytogenetic, morphological and reproductive rates of the common reed (Phragmites australis (Cav.) Trin. ex. Steud.) from different water bodies within the Chernobyl accident exclusion zone. The absorbed dose rate for littoral emergent plants in sampling water bodies was varied from 1.3 E-02 to 1.6 E-01 Gy/h. The rate and main types of chromosome aberrations in roots meristems, morphological damages in seed germs, as well as rates of germinating ability and power were analyzed. There were registered rather low rate of germinating ability (14-48 %) and germinating power (<1) of seeds from all sampling water bodies with high levels of radioactive contamination in comparison to control ones. Against the general suppressed background the effect of relative stimulation of more affected seeds was observed. With increase of absorbed dose in range of 1.3 E-02-1.6 E-01 Gy/h the number of germinated seeds was increased. At the same time the number of morphological damages of seeds was increased as well. There was determined the positive correlation between absorbed dose rate and chromosome aberration rate in roots of the common reed from sampling water bodies. The highest rate of chromosome aberrations (up to 17 %) were registered in plants with high level of morphological deviations in seeds germs. The data obtained from the complex analysis of natural populations of the common reed from the radioactive contaminated water bodies testify about rather high level of genetic efficiency of low doses of long-term exposure. (authors)

  2. The aquatic fern Azolla as a natural plant-factory for ammonia removal from fish-breeding fresh wastewater.

    Science.gov (United States)

    Carlozzi, Pietro; Padovani, Giulia

    2016-05-01

    This study has investigated the potential of an Azolla-Anabaena symbiosis, a marriage between the cyanobacterium Anabaena azollae and the aquatic fern (Azolla), to remove ammonia from freshwater fish breeding areas. Experiments were carried out under artificial light of 20, 70, and 140 μmol m(-2) s(-1). We investigated three different water temperatures for the growing Azolla, ranging from sub-optimal to optimal temperatures (15, 22, and 28 °C). The capability of Azolla to remove ammonia from wastewater was demonstrated, and the highest ammonia concentration tolerated by the symbiosis between Azolla-anabaena without any toxic effect on the aquatic ferns was ascertained. The shortest time taken to remove ammonia from wastes, 2.5 cm deep and at 28 °C, was 40 min. The ammonia removal rate (A RR) was both light and temperature dependent and the highest rate (6.394 h(-1)) was attained at light intensity of 140 μmol m(-2) s(-1) and at a temperature of 28 °C; the lowest (0.947 h(-1)) was achieved at 20 μmol m(-2) s(-1) and 15 °C. The depth of the fish-wastewater pool also affected the A RR with the relation between A RR and the depth being a hyperbolic function. PMID:26805923

  3. Concentration of 129I in aquatic biota collected from a lake adjacent to the spent nuclear fuel reprocessing plant in Rokkasho, Japan

    International Nuclear Information System (INIS)

    The spent nuclear fuel reprocessing plant in Rokkasho, Japan, has been undergoing final testing since March 2006. During April 2006-October 2008, that spent fuel was cut and chemically processed, the plant discharged 129I into the atmosphere and coastal waters. To study 129I behaviour in brackish Lake Obuchi, which is adjacent to the plant, 129I concentrations in aquatic biota were measured by accelerator mass spectrometry. Owing to 129I discharge from the plant, the 129I concentration in the biota started to rise from the background concentration in 2006 and was high during 2007-08. The 129I concentration has been rapidly decreasing after the fuel cutting and chemically processing were finished. The 129I concentration factors in the biota were higher than those reported by IAEA for marine organisms and similar to those reported for freshwater biota. The estimated annual committed effective dose due to ingestion of foods with the maximum 129I concentration in the biota samples was 2.8 nSv y-1. (authors)

  4. Hygienic and microbiological influences exerted on natural water biotopes by algae and the growth of water plants. 2. Communication: improvement of the chemical and bacteriological water quality by the natural growth of aquatic plants (author's transl)

    Energy Technology Data Exchange (ETDEWEB)

    Graef, W.; Kersch, D.; Pawlofsky, C.M.

    1981-12-01

    For a natural pond, whose waters are used for recreational purposes (swimming) and are subject to waste water inflow, the biological purifying function of a zone overgrown with reeds and aquatic plants was ascertained by means of chemical and bacteriological water quality parameters. In the years from 1975 to 1980 the contents of ammonia, nitrites, nitrates, phosphates and chlorides as well as the colony counts (CFU/ml), the coli titres and the content of fruiting myxobacteria were determined from water samples, both during the lush-growth summer period and the low-growth winter season. The location of the 6 sampling points systematically extended from the sewage outlet via the tributary ditch, in front of and behind the natural growth zone as far as the swimming waters. The test series showed - that in the tributary ditch and especially during the passage through the upper water zone densely overgrown with aquatic plants, the proportion of degradable nitrogen compounds and phosphates is distinctly reduced beyond the extent of reduction by dilution processes, - that the colony counts in the effluent water as well as the content of E. coli and of the fruiting myxobacteria, which act as indirect faecal indicator, are also reduced considerably, - that the biological purifying of the vegetation zone is definitely higher in summer than during the low-growth winter months. From this the conclusion can be drawn that for maintaining and furthering an adequate water quality of recreational waters compromised by waste water, the preservation of the naturally growing aquatic plants both in the water itself and on the banks is absolutely necessary.

  5. A compilation of radionuclide transfer factors for the plant, meat, milk, and aquatic food pathways and the suggested default values for the RESRAD code

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Y.Y.; Biwer, B.M.; Yu, C.

    1993-08-01

    The ongoing development and revision of the RESRAD computer code at Argonne National Laboratory requires update of radionuclide transfer factors for the plant, meat, milk, and aquatic food pathways. Default values for these transfer factors used in published radiological assessment reports are compiled and compared with values used in RESRAD. The differences among the reported default values used in different radiological assessment codes and reports are also discussed. In data comparisons, values used in more recent reports are given more weight because more recent experimental work tends to be conducted under better-defined laboratory or field conditions. A new default value is suggested for RESRAD if one of the following conditions is met: (1) values used in recent reports are an order of magnitude higher or lower than the default value currently used in RESRAD, or (2) the same default value is used in several recent radiological assessment reports.

  6. Similar stress responses are elicited by copper and ultraviolet radiation in the aquatic plant Lemna gibba: Implication of reactive oxygen species as common signals

    International Nuclear Information System (INIS)

    Metals and ultraviolet (UV) radiation are two environmental stressors that can cause damage to plants. These two types of stressors often impact simultaneously on plants and both are known to promote reactive oxygen species (ROS) production. However, little information is available on the potential parallel stress responses elicited by metals and UV radiation. Using the aquatic plant Lemna gibba, we found that copper and simulated solar radiation (SSR, a light source containing photosynthetically active radiation (PAR) and UV radiation) induced similar responses in the plants. Both copper and SSR caused ROS formation. The ROS levels were higher when copper was combined with SSR than when applied with PAR. Higher concentrations of copper plus PAR caused toxicity as monitored by diminished growth and chlorophyll content. This toxicity was more pronounced when copper was combined with SSR. Because the generation of ROS was also higher when copper was combined with SSR, we attributed this enhanced toxicity to elevated levels of ROS. In comparison to PAR-grown plants, SSR treated plants exhibited elevated levels of superoxide dismutase (SOD) and glutathione reductase (GR). These enzyme levels were further elevated under both PAR and SSR when copper was added at concentrations that generated ROS. Interestingly, copper treatment in the absence of SSR (i.e. copper plus PAR) induced synthesis of the same flavonoids as those observed in SSR without copper. Finally, addition of either dimethyl thiourea or GSH (two common ROS scavengers) lowered in vivo ROS production, alleviated toxicity and diminished induction of GR as well as accumulation of UV absorbing compounds. Thus, the potential of ROS being a common signal for acclimation to stress by both copper and UV can be considered. (author)

  7. 上海乡土水生植物资源及其在水生态恢复与水景观建设中的应用潜力%SURVEY OF NATIVE AQUATIC VASCULAR PLANTS AND ITS POTENTIAL APPLICATION FOR RESTORATION AND RECONSTRUCTION OF AQUATIC ECOSYSTEMS IN SHANGHAI

    Institute of Scientific and Technical Information of China (English)

    王婕; 张净; 达良俊

    2011-01-01

    水生植物作为水生生态系统的主体,对发挥水生生态系统的自维持、自循环功能有重要作用.研究通过相关资料的查阅,建立上海地区乡土水生植物名录,并对其科属组成、区系特征、生活型、生长型等进行统计分析.结果表明上海地区乡土水生植物共计35科83属160种(含变种),单属科、单种属的比例较高,均达65%以上;植物区系组成丰富、成分复杂,以热带成分占优势,达64.6%;生活型以挺水植物为主,沉水植物次之,浮水植物最少;生长型类型丰富,以草本型、禾草型居多,20种生长型可进一步归为表征相似生态学特征和功能地位的6个生长型组.在水生态恢复与水景观建设中,仅有68.8%的景观水体有水生植物应用,且应用种类在2种以下的占79.2%.乡土水生植物应用不足,一半以上为观赏性强的外来物种,应用频率较高的为挺水植物,对具有良好净化效果的沉水植物重视不够.因此,在水生态恢复与水景观建设中,建议加强乡土水生植物资源的繁育栽培,在充分利用乡土水生植物资源配置群落的基础上,根据水质的富营养及基底状况,通过不同生长型组水生植物的应用,构建“沉水-浮水-挺水”植物群落复合体,并通过“近自然型”护岸的营造,形成“水生-湿生”复合生态系统.运用植被工程学的原理和方法,采用“生态浮岛”、“生态沉岛”等技术营造水生植被,将强人工化的水景观建成具生命的水生生态系统.%With the rapid economical development, more and more degraded aquatic ecosystems can not be restored by themselves after they were polluted seriously. Aquatic vascular plant especially the native species, as an important component, play a significant role for implication of self-sustainable and self-circulation in aquatic ecosystems. Reconstruction and restoration of aquatic plants and vegetations is vital to construct the artificial

  8. Occupational dose control in Nuclear Power Plants

    International Nuclear Information System (INIS)

    Reduction in occupational exposure at nuclear power plants is desirable not only in the interest of the health and safety of plant personnel, but also because it enhances the safety and reliability of the plants. This report summarises the current trends of doses to workers at nuclear power plants and the achievements and developments regarding methods for their reduction

  9. Plant status control - with an operational focus

    International Nuclear Information System (INIS)

    In the Nuclear industry, we have done a very good job of designing, developing, constructing, and improving our nuclear facilities. We have, however, often been inconsistent in documenting the details of our facilities, clearly addressing the rules around facility operation, and controlling and tracking the temporary, or permanent changes to our facilities. The reality is, that once we build a facility, we then must operate the facility, for it to be viable. Further we must operate it safely and efficiently for the facility to produce its product, and be acceptable to the public. Unfortunately, when we design and build these large, complicated facilities, we cannot project all the nuances of facility operation, although we can recognize this potential gap, and prepare for it. In order to allow for the complexities of the real world, we must provide the individuals who are tasked with operating our nuclear facilities, with the tools and processes to deal with 'all the nuances' of facility operation. This discussion will focus on the concepts behind a key process for ensuring that we meet our design and operating needs for our facilities, as well as recognizing and dealing with the potential gaps. The key process is 'Plant Status Control', and the discussion will have a primary focus on the needs of the end users, that being the individuals that have the immediate and current accountability for control and safety of the facility, the equipment, the staff, and ultimately the public, that being our Operations staff, and the Shift Manager. (author)

  10. Instrumentation control system in nuclear power plant

    International Nuclear Information System (INIS)

    Purpose: To improve the reliability of instrumentation control system in a nuclear power plant by using an optical fiber cable as a transmission path between a multiplexer and a central control room to thereby eliminate noises resulted from electromagnetic inductions or the likes. Constitution: Signals from neutron detectors are sent by way of ceramic-insulated cables to pre-amplifiers disposed outside of the pressure vessel of a nuclear reactor, converted into voltage pulse signals and then sent by way of coaxial cables to a multiplexer. The multiplexer receives a plurality of voltage pulse signals corresponding to the neutron detectors respectively, converts them into a time-shared electric signal train and sends it to an optical pulse transmitter. The transmitter converts the supplied signals into an optical pulse signal train corresponding to the electric signal train from the multiplexer and sends it by way of an optical fiber cable to an optical pulse receiver disposed in a central control room. (Kawakami, Y.)

  11. Improvement on reliability of control system in power plant

    International Nuclear Information System (INIS)

    Studies made of Japanese PWR operating experiences have revealed that failures in the control system are the primary causes of unscheduled shutdowns. An attempt has, therefore, been made to improve the reliability of the control system in order to raise the plant reliability. The following are the procedures applied to solve the issue; study of operating experiences, fault tree analysis and failure mode and effects analysis. Improvement measures are developed for the control system whose failure threatens to cause the plant trip during the plant life. These systems are the main feedwater control system, rod control system, pressurizer control system and main steam control system in the primary control system. As a result, the plant unavailability is expected to be reduced significantly by applying the improvements. The improvements are applied to the plants under construction and the operating plants in co-operation with utilities and vendors. (author)

  12. Relation between aquatic plants and gastropods (Mollusca, Gastropoda) in the region of Gentilly I (Quebec) nuclear generating station

    International Nuclear Information System (INIS)

    This study is based on a sampling of the gastropods present in the vegetation of the St. Lawrence riverside zone at Gentilly. A total of 536 plant specimens belonging to 20 species as well as 37 239 specimens grouping 10 different species of gastropods were sampled. A comparison of the plant species - mollusc data was carried out. The analysis of the results indicates that prosobranchs have no affinity whatsoever for any plant species in particular. The pulmonates, however, are found mainly on emergent plants. (author)

  13. Absorption and metabolism of bisphenol A, a possible endocrine disruptor, in the aquatic edible plant, water convolvulus (Ipomoea aquatica).

    Science.gov (United States)

    Noureddin, Imadeddin M; Furumoto, Toshio; Ishida, Yutaka; Fukui, Hiroshi

    2004-06-01

    Water convolvulus, a vegetable, absorbed bisphenol A (BPA), an endocrine disruptor, from the medium. One week later, no BPA could be detected in the plant, indicating that BPA had been metabolized in the plant. BPA monoglucoside was detected as the BPA base at ca. 10% in the roots, some in the stems, but none in the leaves. (2)H-NMR analyses of MeOH extracts and hydrolyzates of the plant treated with BPA-d(16) showed the presence of metabolites (ca. 7% and 26%, respectively, as BPA equivalents) other than the glucoside. Over 50% of BPA might be polymerized and/or tightly bound in the plant residues. PMID:15215615

  14. Regulatory control of nuclear power plants

    International Nuclear Information System (INIS)

    The purpose of this book is to support IAEA training courses and workshops in the field of regulatory control of nuclear power plants as well as to support the regulatory bodies of Member States in their own training activities. The target group is the professional staff members of nuclear safety regulatory bodies supervising nuclear power plants and having duties and responsibilities in the following regulatory fields: regulatory framework; regulatory organization; regulatory guidance; licensing and licensing documents; assessment of safety; and regulatory inspection and enforcement. Important topics such as regulatory competence and quality of regulatory work as well as emergency preparedness and public communication are also covered. The book also presents the key issues of nuclear safety such as 'defence-in-depth' and safety culture and explains how these should be taken into account in regulatory work, e.g. during safety assessment and regulatory inspection. The book also reflects how nuclear safety has been developed during the years on the basis of operating experience feedback and results of safety research by giving topical examples. The examples cover development of operating procedures and accident management to cope with complicated incidents and severe accidents to stress the importance of regulatory role in nuclear safety research. The main target group is new staff members of regulatory bodies, but the book also offers good examples for more experienced inspectors to be used as comparison and discussion basis in internal workshops organized by the regulatory bodies for refreshing and continuing training. The book was originally compiled on the basis of presentations provided during the two regulatory control training courses in 1997 and 1998. The textbook was reviewed at the beginning of the years 2000 and 2002 by IAEA staff members and consistency with the latest revisions of safety standards have been ensured. The textbook was completed in the

  15. Control of power plants and power systems. Proceedings

    International Nuclear Information System (INIS)

    The 88 papers in this volume constitute the proceedings of the International Federation of Automatic Control Symposium held in Mexico in 1995. The broad areas which they cover are: self tuning control; power plant operations; dynamic stability; fuzzy logic applications; power plants modelling; artificial intelligence applications; power plants simulation; voltage control; control of hydro electric units; state estimation; fault diagnosis and monitoring systems; system expansion and operation planning; security assessment; economic dispatch and optimal load flow; adaptive control; distribution; transient stability and preventive control; modelling and control of nuclear plant; knowledge data bases for automatic learning methods applied to power system dynamic security assessment; control of combined cycle units; power control centres. Separate abstracts have been prepared for the three papers relating to nuclear power plants. (UK)

  16. Anti- and Pro-Lipase Activity of Selected Medicinal, Herbal and Aquatic Plants, and Structure Elucidation of an Anti-Lipase Compound

    Directory of Open Access Journals (Sweden)

    Muhammad Abubakar Ado

    2013-11-01

    Full Text Available Plants that help in slowing down the digestion of triacylglycerols (TAGs in the pancreas and small intestine of humans play an important role in the reduction of obesity. On the other hand, there may be plants or plant parts that stimulate intestinal lipolytic activity, thus contributing to greater TAG assimilation. The aim of this study was to evaluate the aqueous methanolic extracts of ninety eight (98 medicinal, herbal and aquatic plant materials from Malaysia for their effect on porcine pancreatic lipase (PPL activity and to identify the structure of an anti-lipase compound from one of the sources. The degree of inhibition was also quantified as relative to orlistat activity against PPL (orlistat equivalents. Results revealed that while 19.4% of the extracts were found to have anti-lipase activity ≥80%, 12% were actually found to promote PPL activity. Twenty two percent (22.4% exhibited moderate inhibition (41%–80% and 2% were neutral toward PPL activity. The ripe fruit of Averrhoa carambola and the leaves of Archidendron jiringa (Jack I.C Nielsen L. (jering, Cynometra cauliflora (nam-nam and Aleurites moluccana (L. Willd (candle nut/buah keras had the highest (100% anti-lipase activity and are equivalent to 0.11 µg orlistat/mL. Plants that stimulated lipase activity included Pimpinella anisum L. (aniseed/jintan manis, activating the enzyme by 186.5%. Kaempferol 3-O-rhamnoside was isolated from the ethyl acetate fraction of C. cauliflora leaves and found to be an active lipase inhibitor. The structure was elucidated using 1H-NMR, 13C-NMR and 2D-NMR analyses.

  17. Anti- and pro-lipase activity of selected medicinal, herbal and aquatic plants, and structure elucidation of an anti-lipase compound.

    Science.gov (United States)

    Ado, Muhammad Abubakar; Abas, Faridah; Mohammed, Abdulkarim Sabo; Ghazali, Hasanah M

    2013-01-01

    Plants that help in slowing down the digestion of triacylglycerols (TAGs) in the pancreas and small intestine of humans play an important role in the reduction of obesity. On the other hand, there may be plants or plant parts that stimulate intestinal lipolytic activity, thus contributing to greater TAG assimilation. The aim of this study was to evaluate the aqueous methanolic extracts of ninety eight (98) medicinal, herbal and aquatic plant materials from Malaysia for their effect on porcine pancreatic lipase (PPL) activity and to identify the structure of an anti-lipase compound from one of the sources. The degree of inhibition was also quantified as relative to orlistat activity against PPL (orlistat equivalents). Results revealed that while 19.4% of the extracts were found to have anti-lipase activity ≥80%, 12% were actually found to promote PPL activity. Twenty two percent (22.4%) exhibited moderate inhibition (41%-80%) and 2% were neutral toward PPL activity. The ripe fruit of Averrhoa carambola and the leaves of Archidendron jiringa (Jack) I.C Nielsen L. (jering), Cynometra cauliflora (nam-nam) and Aleurites moluccana (L.) Willd (candle nut/buah keras) had the highest (100%) anti-lipase activity and are equivalent to 0.11 µg orlistat/mL. Plants that stimulated lipase activity included Pimpinella anisum L. (aniseed/jintan manis), activating the enzyme by 186.5%. Kaempferol 3-O-rhamnoside was isolated from the ethyl acetate fraction of C. cauliflora leaves and found to be an active lipase inhibitor. The structure was elucidated using 1H-NMR, 13C-NMR and 2D-NMR analyses. PMID:24287996

  18. Attempts to control aquatic Crassula helmsii at Huis ter Heide (Tilburg, The Netherlands), with special reference to dye treatment

    OpenAIRE

    Denys, Luc; van Valkenburg, Johan; Packet, Jo; Scheers, Kevin; De Hoop, Erwin; Adriaens, Tim

    2014-01-01

    Several methods were deployed simultaneously to control, if not eradicate, the highly invasive Crassula helmsii (Australian swamp stonecrop, New Zealand pigmy weed) in a newly created shallow pond adjoining the heath and moorland pools of the Dutch nature reserve Huis ter Heide. Measures included mechanical removal of top soil after draining, followed by extensive covering of pond margins with non-transparent foil, regular manual removal of washed-up plants, and addition of non-toxic dyes. Th...

  19. Bienestar de los animales acuáticos, con fines de control sanitario (Welfare of the aquatic animals, with ends of sanitary control

    Directory of Open Access Journals (Sweden)

    Rubio Limonta, Manuel

    2009-08-01

    Full Text Available ResumenPara introducir las prácticas y el concepto de bienestar de losanimales acuáticos, la OIE, (2006 ha propuesto trabajar los temasreferidos al transporte por las vías vía terrestre y marítima, y delsacrificio para el consumo humano y el control sanitario. En eltrabajo se refieren las prácticas que pueden ser empleadas en laindustria acuícola, para el sacrificio humanitario de animalesacuáticos describiendo métodos de eutanasia mecánicos, eléctricos,químicos y físicos con fines de control sanitario teniendo en cuenta su bienestar.SummaryTo introduce the practices and the concept of well-being of theaquatic animals, the OIE, (2006 has intended the topics referred tothe transport to work (via terrestrial and marine, and of the sacrifice (I consummate human and for the sanitary control. In the work we refer the common practices that can be employees in the aquaculture industry, for the sacrifice of aquatic animals describing the methods of slaughter mechanic, electric, chemical, physical with ends of sanitary control keeping in mind its welfare.

  20. Accumulation of transuranic elements in the aquatic biota of the Belarusian sector of contaminated area near the Chernobyl nuclear power plant - Accumulation of transuranic elements in aquatic biota of Belarusian sector of contaminated area of Chernobyl nuclear power plant

    Energy Technology Data Exchange (ETDEWEB)

    Golubev, Alexander; Mironov, Vladislav [International Sakharov Environmental University. Box 220070, 23 Dolgobrodskaya Street, Minsk, 220070 (Belarus)

    2014-07-01

    The evolution of nuclear contamination of Belarus territory after Chernobyl accident includes the four stages: 1. Iodine-neptunium stage, caused mainly by short-lived radionuclides {sup 131}I, {sup 239}Np and others with a half-life period of several weeks; II. Intermediate stage, caused by radionuclides with a half-life period of a year ({sup 144}Ce, {sup 106}Ru, {sup 134}Cs, etc.); III. Strontium-cesium stage, caused by {sup 90}Sr and {sup 137}Cs with a half-life period of about 30 years; IV. Plutonium-americium, caused by long-lived α-emitting radionuclides {sup 241}Am (period of half-life of 432 years) and {sup 239+240}Pu, having high radio and chemo-toxicity. According to forecasts, activity of {sup 241}Am to 2050 year will increase by 2.5 times and it will be the most important dose-related factor for the aquatic biota within the Chernobyl accident zone. In 2002 - 2008 years we have studied the accumulation of trans-uranic elements (TUE, {sup 241}Am, {sup 239+240}Pu) in basic components of water body ecosystems within the Chernobyl zone - non-flowing Perstok Lake, weak-flowing Borschevka flooding and small Braginka River. Among investigated components are water, bottom sediments, submerged macrophytes (Ceratophyllum submersum, Hydrocharis morsus-ranae, Lemna minor, Nuphar lutea, Stratiotes aloides), emergent macrophytes (Typha spp.), shellfish and fish. In the soil cover in the vicinity of the Perstok Lake activity of {sup 241}Am at present is equivalent to 300 - 600 Bq.kg{sup -1}, that is the basic source of its income to the lake. Radionuclides mobility in the water environment is higher than in the soil, that facilitates the rapid incorporation of {sup 241}Am to the trophic nets of water bodies and its removal by near-water animals in the terrestrial biotopes, including outside Chernobyl zone. Thus, the activity of {sup 241}Am in bottom sediments in the Perstok Lake and Borschevka flooding in 2008 year reach respectively 324 and 131 Bq.kg{sup -1}, and the

  1. Accumulation of transuranic elements in the aquatic biota of the Belarusian sector of contaminated area near the Chernobyl nuclear power plant - Accumulation of transuranic elements in aquatic biota of Belarusian sector of contaminated area of Chernobyl nuclear power plant

    International Nuclear Information System (INIS)

    The evolution of nuclear contamination of Belarus territory after Chernobyl accident includes the four stages: 1. Iodine-neptunium stage, caused mainly by short-lived radionuclides 131I, 239Np and others with a half-life period of several weeks; II. Intermediate stage, caused by radionuclides with a half-life period of a year (144Ce, 106Ru, 134Cs, etc.); III. Strontium-cesium stage, caused by 90Sr and 137Cs with a half-life period of about 30 years; IV. Plutonium-americium, caused by long-lived α-emitting radionuclides 241Am (period of half-life of 432 years) and 239+240Pu, having high radio and chemo-toxicity. According to forecasts, activity of 241Am to 2050 year will increase by 2.5 times and it will be the most important dose-related factor for the aquatic biota within the Chernobyl accident zone. In 2002 - 2008 years we have studied the accumulation of trans-uranic elements (TUE, 241Am, 239+240Pu) in basic components of water body ecosystems within the Chernobyl zone - non-flowing Perstok Lake, weak-flowing Borschevka flooding and small Braginka River. Among investigated components are water, bottom sediments, submerged macrophytes (Ceratophyllum submersum, Hydrocharis morsus-ranae, Lemna minor, Nuphar lutea, Stratiotes aloides), emergent macrophytes (Typha spp.), shellfish and fish. In the soil cover in the vicinity of the Perstok Lake activity of 241Am at present is equivalent to 300 - 600 Bq.kg-1, that is the basic source of its income to the lake. Radionuclides mobility in the water environment is higher than in the soil, that facilitates the rapid incorporation of 241Am to the trophic nets of water bodies and its removal by near-water animals in the terrestrial biotopes, including outside Chernobyl zone. Thus, the activity of 241Am in bottom sediments in the Perstok Lake and Borschevka flooding in 2008 year reach respectively 324 and 131 Bq.kg-1, and the activity of 241Am in macrophytes of the Perstok Lake at the same year was 1,0 - 3,7 Bq.kg-1. In

  2. Operational control of material release and discharges from nuclear power plant

    International Nuclear Information System (INIS)

    The operational control of radioactive materials during atmospheric release and aquatic discharge from nuclear power plant is a licensing criterion for NPPs. Originally at the Paks NPP the release control was based on activity limits for four groups of elements. These groups were noble gases, long living radio-aerosols, radioiodine and radiostrontium for atmospheric release and specified activity limit for beta emitters, strontium and tritium for aquatic discharge into Danube. These groups were controlled with proper sampling and/or measuring instrumentation. The limit for atmospheric release was given as a 30-day moving average, for liquid discharges the annual limit was stipulated. The new release and discharge limitation system is based on the environmental dose limitation. The dose constraint for Paks NPP is 90 Sv/year of the critical group for all release pathways and the investigation dose limit is equal to 27 Sv/year. The regulation did not subdivide the dose limit for atmospheric and liquid components but for operational control subdivision of dose limits for atmospheric release and aquatic discharge and shorter time period (one day-one month) seems to be useful. The subdivision can be based on past release data and/or previous activity limits. To satisfy dose below the investigation dose limit there should be a proper operation control level for each separately measured component and pathway belonging to reasonable time interval significantly shorter than one year. The main task of the NPP staff is elaboration of reasonable control levels and reference time intervals for different radionuclide and element groups to be used in operational control. Operational control levels are based on measured daily or monthly release rates. In case of noble gases, aerosols and iodine the daily release rates have several sharp peaks per year. Operational control levels give opportunity to detect these peaks for internal investigation purposes. Investigation release limits

  3. Toxicity assessment of boron (B) by Lemna minor L. and Lemna gibba L. and their possible use as model plants for ecological risk assessment of aquatic ecosystems with boron pollution.

    Science.gov (United States)

    Gür, Nurcan; Türker, Onur Can; Böcük, Harun

    2016-08-01

    As many of the metalloid-based pollutants, the boron (B) toxicity issues have aroused more and more global attentions, especially concerning drinking water sources which flow through boron-rich areas. Therefore, feasible and innovative approaches are required in order to assess B toxicity in aquatic ecosystems. In this study, the toxic effects of B on Lemna minor L. and Lemna gibba L. were investigated using various endpoints including number of fronds, growth rates, dry biomass and antioxidants enzymatic activities. Lemna species were exposed to B concentrations of 2 (control), 4, 8, 16, 32, 64 and 128 mg L(-1) for a test period of 7 days. The results demonstrated that plant growth was significantly reduced when the B concentration reached 16 mg L(-1). Furthermore, our results also concluded that among the antioxidative enzymes, SOD, APX and GPX can serve as important biomarkers for B-rich environment. The present results suggested that L. minor and L. gibba are very useful model plants for phytoremediation of low-B contaminated wastewater and they are also suitable options for B biomonitoring due to high phototoxic sensitivity against B. In this respect, the scientific insight of the present study is to fill the gaps in the research about the use of L. minor and L. gibba in ecotoxicological research associated with B toxicity. PMID:27192627

  4. Modelling and Control of Brobekk Waste Incineration Plant

    OpenAIRE

    Pehrson, Håvard

    2010-01-01

    Model Predictive Control of Brobekk waste incineration plant is the main focus of this master thesis. The motivation for using MPC at Brobekk is primarily to improve the control of the temperature towards the combustion furnace and towards Oslo. The Brobekk plant is connected to Hafslund Fjernvarme through heat exchangers, and where temperature and flow from Hafslund heavily affects the temperatures within the Brobekk Plant. Based on temperature, flow and demand from Hafslund, the control r...

  5. Diversity of Aquatic Vascular Plants in the Yangtze Delta%长江三角洲地区水生维管植物的多样性

    Institute of Scientific and Technical Information of China (English)

    张悦恬; 张光富; 李跃; 李玲; 俞立鹏

    2012-01-01

    Based on field investigation and literature survey, the species composition, geographical elements,and endangered state of aquatic vascular plants in the Yangtze Delta were analyzed. We found 185 wild species belonging to 90 genera and 39 families in this area,most of which were distributed in habitats such as ditches, rice-fields, and ponds. Additionally,e-mergent plants were the main type in terms of life form. This flora was chiefly temperate in nature according to areal-type analysis both at the level of genera and of species. In light of IUCN Red List Categories and Criteria (Edition 3. 1),those species were classified into 9 types, including Regionally Extinct (RE) 1,Critically Endangered (CR) 3,Endangered (EN) 8,and Vulnerable (VU) 10. Finally,we also examined the main reasons causing these aquatic plants to become threatened.%根据野外调查及相关资料,分析了长江三角洲地区水生植物区系的种类组成、地理成分以及濒危现状.该区现有水生维管植物39科90属185种,其生活型以挺水植物为主(占64.32%),主要分布于田边沟渠、农田以及池塘等不同水体.属、种等级的地理成分分析结果表明:其区系性质主要为温带性质.根据水生植物的濒危现状,参照世界自然保护联盟(IUCN)红色名录的等级和标准(3.1版本),将该区的植物分为9大类,其中地区性灭绝1种,极危种3种,濒危种8种,易危种10种,并简要讨论了该区水生植物受威胁的主要原因.

  6. Application of fuzzy logic controller in a nuclear power plant

    International Nuclear Information System (INIS)

    Possible application of a fuzzy logic controller in a PWR nuclear power plant is investigated in this paper. A simplified model of the complex dynamics of the system is used for simulation purposes. The goal is to keep average coolant temperature as close as possible to a desired (but changing) reference value. The position of the control rods is selected as control variable. Simulation results demonstrate the possibility of using fuzzy logic controllers in load following control of nuclear power plants

  7. Whole effluent toxicity assessment at a wastewater treatment plant upgraded with a full-scale post-ozonation using aquatic key species.

    Science.gov (United States)

    Magdeburg, Axel; Stalter, Daniel; Oehlmann, Jörg

    2012-08-01

    Ozonation as final wastewater (WW) polishing step, following conventional activated sludge treatment is increasingly implemented in sewage treatment for contaminant degradation to prevent surface water pollution. While the oxidative degradation of chemicals has been extensively investigated, the in vivo toxicological characteristics of ozonated whole effluents are rarely a matter of research. In the present study, whole effluents were toxicologically evaluated with an in vivo test battery before and after full-scale ozonation and subsequent sand filtration on site at a treatment plant. One aquatic plant (duckweed, Lemna minor) and five invertebrate species of different systematic groups (Lumbriculus variegatus, Chironomus riparius, Potamopyrgus antipodarum, Daphnia magna) were exposed to the effluents in a flow-through-designed test system with a test duration of 7-28 d. None of the considered toxicity endpoints correlated with the pollutant elimination. A tendency towards an increased toxicity after ozonation was apparent in three of the test systems showing [statistically] significant adverse effects in the L. variegatus toxicity test (decrease in reproduction and biomass). After sand filtration, adverse effects were reduced to a similar level like after conventional treatment. Solely the Daphnia reproduction test revealed beneficial effects after ozonation in combination with sand filtration. Results of the test battery indicate the formation of adverse oxidation products during WW ozonation. L. variegatus appeared to be the most sensitive of the five test species. Sand filtration effectively removes or detoxifies toxic oxidation products, as toxic effects were subsequently reduced to the level after conventional treatment. PMID:22560180

  8. Distributed intelligent control system for a continuous-state plant.

    Science.gov (United States)

    Stothert, A; Macleod, I M

    1997-01-01

    Continuous-state plants place specific demands on the structure and operation of multi-agent, multi-paradigm distributed intelligent controllers. An investigation of the use of distributed artificial intelligence techniques for continuous-state control is presented. The choice of agents and how they interact to control a continuous-state plant is discussed. A distinction between a priori and operational knowledge is introduced to simplify and aid the design of distributed intelligent controllers. A simulation study of a controller designed for a deep-shaft mine winder serves to demonstrate the application of distributed intelligent control to a continuous-state plant. PMID:18255879

  9. Best Tracking Performance under Plant Uncertainty and Control Energy Constraint

    Institute of Scientific and Technical Information of China (English)

    KONG Yi-gang; WANG Zhi-xin; WANG Jian-guo

    2007-01-01

    This paper has investigated best tracking performance for linear feedback control systems in the case that plant uncertainty and control effort need to be considered simultaneously. Firstly, an average integral square criterion of the tracking error and the plant input energy over a class of additive model errors is defined. Then, utilizing spectral factorization to minimize the performance index, we obtain an optimal controller design method, and furthermore study optimal tracking performance under plant uncertainty and control energy constraint. The results can be used to evaluate optimal average tracking performance and control energy in designing practical control systems.

  10. Heavy metals in water, sediments and wetland plants in an aquatic ecosystem of tropical industrial region, India.

    Science.gov (United States)

    Rai, Prabhat Kumar

    2009-11-01

    Concentrations of heavy metals (Cu, Cr, Fe, Pb, Zn, Hg, Ni, and Cd) and macronutrients (Mn) were measured in industrial effluents, water, bottom sediments, and wetland plants from a reservoir, Govind Ballabh (G.B.) Pant Sagar, in Singrauli Industrial region, India. The discharge point of a thermal power plant, a coal mine, and chlor-alkali effluent into the G.B. Pant Sagar were selected as sampling sites with one reference site in order to compare the findings. The concentrations of heavy metals in filtered water, sieved sediment samples (0.4-63 microm), and wetland plants were determined with particle-induced X-ray emission. The collected plants were Aponogeton natans, L. Engl. & Krause, Cyperus rotundus, L., Hydrilla verticillata, (L.f.) Royle, Ipomoea aquatica, Forssk., Marsilea quadrifolia, L., Potamogeton pectinatus, L., Eichhornia crassipes, (Mart.) Solms Monogr., Lemna minor, L., Spirodela polyrhiza (L.) Schleid. Linnaea, Azolla pinnata, R.Br., Vallisneria spiralis, L., and Polygonum amphibium, L. In general, metal concentration showed a significant positive correlation between industrial effluent, lake water, and lake sediment (p < 0.01). Likewise, significant positive correlation was recorded with metals concentration in plants and lake ambient, which further indicated the potential of aforesaid set of wetland macrophytes for pollution monitoring. PMID:18998227

  11. Computerized control and management at the Temelin nuclear power plant

    International Nuclear Information System (INIS)

    The proposed automation of the nuclear power plant control system includes a division of the control system into three hierarchic levels, supplemented with an additional level. These comprise the automated system of control of technological processes, the all-plant control of the power-generating process, the control of backup activities and of technical and economic activities, and top managerial control. The efficiency of the nuclear power plant operation, i.e. attainment of the maximum electricity output with minimum costs while securing the required safety, is the principal criterion in the design of the data model. Listed are tasks that would lend themselves to automation within the automated system of nuclear power plant control, and the basic scheme of their automation as follows from an analysis performed at the Temelin nuclear power plant. (Z.S). 2 figs., 2 refs

  12. Plant control system upgrades in the context of industry trends towards plant life-extension

    International Nuclear Information System (INIS)

    Domestic CANDU nuclear plants were brought online between 1972 and 1986. Over the next decade, most of these stations will be nearing the end of their designed operating life. Effort has traditionally been placed on ensuring that the existing installed plant control system equipment could operate reliably until the end of this design life. Until recently, little attention has been given to plant control system upgrades or replacements to meet the expected requirement for 30+ years of additional plant operation following potential plant refurbishments. Industry developments are changing this thinking. The combination of expected increases in electricity demand (and prices), and the many recent successful turnaround stories of U.S. nuclear power plants has resulted in new interest in plant life improvement and plant life extension programs. Plant control system upgrade decisions are now being driven by the need to replace or upgrade these systems to support plant life extension. This article is the first of several that investigate aspects of plant control system upgrades or replacement, specifically in the context of the CANDU station digital control computers (DCCs). It sets the context for the discussion in the subsequent articles by providing a brief review of industry trends favouring plant refurbishment, by outlining the basic issues of aging and obsolescence of control system equipment, by establishing the need for upgrades and replacements, and by introducing some of the basic challenges to be addressed by the industry as it moves forward. (author)

  13. Proposed Release Guides to Protect Aquatic Biota

    Energy Technology Data Exchange (ETDEWEB)

    Marter, W.L.

    2001-03-28

    At the request of South Carolina Department of Health and Environmental Control (SCDHEC) and the Department of Energy (DOE), the Savannah River Laboratory was assigned the task of developing the release guides to protect aquatic biota. A review of aquatic radioecology literature by two leading experts in the field of radioecology concludes that exposure of aquatic biota at one rad per day or less will not produce detectable deleterious effects on aquatic organisms. On the basis of this report, DOE recommends the use of one rad per day as an interim dose standard to protect aquatic biota.

  14. Micro-scale elemental partition in tissues of the aquatic plant Lemna minor L. exposed to highway drainage water

    Energy Technology Data Exchange (ETDEWEB)

    Mendes Godinho, R., E-mail: rmgodinho@yahoo.com [IST/ITN, Instituto Superior Técnico, Universidade Técnica de Lisboa, EN 10, 2686-953 Sacavém (Portugal); IPMA Instituto Português do Mar e da Atmosfera, Lisboa 1449-006 (Portugal); Raimundo, J.; Vale, C.; Anes, B.; Brito, P. [IPMA Instituto Português do Mar e da Atmosfera, Lisboa 1449-006 (Portugal); Alves, L.C.; Pinheiro, T. [IST/ITN, Instituto Superior Técnico, Universidade Técnica de Lisboa, EN 10, 2686-953 Sacavém (Portugal); CFNUL – Centro de Física Nuclear da Universidade de Lisboa (Portugal)

    2013-07-01

    In the scope of a monitoring program to assess the environmental impact of automobile traffic over one main bridge in Lisbon, both water and duckweed (Lemna minor L.) were sampled from the road drainage tanks and analyzed for chemical elements. Plants uptake Cr, Mn, Cu, and Zn metals from rain water draining the bridge road. Nuclear microprobe elemental maps of cryosections of L. minor tissues showed that incorporated elements were internalized in fronds of the plant. This approach at micrometer level allows a better knowledge of the elemental tissue partitioning in this biomonitor organism.

  15. Wind Power Plant Control - An Overview

    OpenAIRE

    Altin, Müfit; Teodorescu, Remus; Bak-Jensen, Birgitte; RODRIGUEZ, Pedro; Iov, Florin; Kjær, Philip C.

    2010-01-01

    Recent developments in wind turbine technology go towards installation of larger Wind Power Plants (WPPs). Therefore, power system operators have been challenged by the WPP penetration impacts in order to maintain reliabillity and stability of the power system. The revised grid codes have concentrated on the WPP connection point and as a result a WPP is considered as a single power plant. Nevertheless, compared to conventional power plants, WPPs have different inherent features such as conver...

  16. Crassulacean acid metabolism enhances underwater photosynthesis and diminishes photorespiration in the aquatic plant Isoetes australis

    DEFF Research Database (Denmark)

    Pedersen, Ole; Rich, S.M.; Pulido Pérez, Cristina;

    2011-01-01

    were evaluated for Isoetes australis, a submerged plant that inhabits shallow temporary rock pools. • Leaves high or low in malate were evaluated for underwater net photosynthesis and apparent photorespiration at a range of CO2 and O2 concentrations. • CAM activity was indicated by 9.7-fold higher leaf...

  17. Copper isotope fractionation during its interaction with soil and aquatic microorganisms and metal oxy(hydr)oxides: Possible structural control

    Science.gov (United States)

    Pokrovsky, O. S.; Viers, J.; Emnova, E. E.; Kompantseva, E. I.; Freydier, R.

    2008-04-01

    This work is aimed at quantifying the main environmental factors controlling isotope fractionation of Cu during its adsorption from aqueous solutions onto common organic (bacteria, algae) and inorganic (oxy(hydr)oxide) surfaces. Adsorption of Cu on aerobic rhizospheric ( Pseudomonas aureofaciens CNMN PsB-03) and phototrophic aquatic ( Rhodobacter sp. f-7bl, Gloeocapsa sp. f-6gl) bacteria, uptake of Cu by marine ( Skeletonema costatum) and freshwater ( Navicula minima, Achnanthidium minutissimum and Melosira varians) diatoms, and Cu adsorption onto goethite (FeOOH) and gibbsite (AlOOH) were studied using a batch reaction as a function of pH, copper concentration in solution and time of exposure. Stable isotopes of copper in selected filtrates were measured using Neptune multicollector ICP-MS. Irreversible incorporation of Cu in cultured diatom cells at pH 7.5-8.0 did not produce any isotopic shift between the cell and solution (Δ 65/63Cu(solid-solution)) within ±0.2‰. Accordingly, no systematic variation was observed during Cu adsorption on anoxygenic phototrophic bacteria ( Rhodobacter sp.), cyanobacteria ( Gloeocapsa sp.) or soil aerobic exopolysaccharide (EPS)-producing bacteria ( P. aureofaciens) in circumneutral pH (4-6.5) and various exposure times (3 min to 48 h): Δ 65Cu(solid-solution) = 0.0 ± 0.4‰. In contrast, when Cu was adsorbed at pH 1.8-3.5 on the cell surface of soil the bacterium P. aureofacienshaving abundant or poor EPS depending on medium composition, yielded a significant enrichment of the cell surface in the light isotope (Δ 65Cu (solid-solution) = -1.2 ± 0.5‰). Inorganic reactions of Cu adsorption at pH 4-6 produced the opposite isotopic offset: enrichment of the oxy(hydr)oxide surface in the heavy isotope with Δ 65Cu(solid-solution) equals 1.0 ± 0.25‰ and 0.78 ± 0.2‰ for gibbsite and goethite, respectively. The last result corroborates the recent works of Mathur et al. [Mathur R., Ruiz J., Titley S., Liermann L., Buss H. and

  18. Agricultural Plant Pest Control. Bulletin 763.

    Science.gov (United States)

    French, John C.; And Others

    This manual gives general information on plant pests and pesticides. First, the life-cycle and habits of some common insect pests are given. These include caterpillars, beetles and beetle larvae, and sucking insects. Next, plant diseases such as leaf diseases, wilts, root and crown rots, stem cankers, fruit rots, seed and seedling diseases, and…

  19. The banker plant method in biological control

    NARCIS (Netherlands)

    Huang, N.; Enkegaard, A.; Osborne, L.S.; Ramakers, P.M.J.; Messelink, G.J.; Pijnakker, J.; Murphy, G.

    2011-01-01

    In the banker plant method, long-lasting rearing units for beneficials are created in the crop by distributing plants infested with herbivores or carrying other food items, such as pollen. The method has been widely investigated over many years and used to aid establishment, development and dispersa

  20. Capacity of the aquatic fern (Salvinia minima Baker) to accumulate high concentrations of nickel in its tissues, and its effect on plant physiological processes

    International Nuclear Information System (INIS)

    Highlights: • We document the capacity of an aquatic fern to hyper-accumulate Ni. • Effects of high Ni concentrations uptake on plant performance is documented. • High concentration of Ni in tissues damage photosynthesis. • Damage is related to carboxylation mechanisms than to electron transfer efficiency. • S. minima is a good candidate for remediation of water bodies contaminated with Ni. - Abstract: An experiment was designed to assess the capacity of Salvinia minima Baker to uptake and accumulate nickel in its tissues and to evaluate whether or not this uptake can affect its physiology. Our results suggest that S. minima plants are able to take up high amounts of nickel in its tissues, particularly in roots. In fact, our results support the idea that S. minima might be considered a hyper-accumulator of nickel, as it is able to accumulate 16.3 mg g−1 (whole plant DW basis). Our results also showed a two-steps uptake pattern of nickel, with a fast uptake of nickel at the first 6 to 12 h of being expose to the metal, followed by a slow take up phase until the end of the experiment at 144 h. S. minima thus, may be considered as a fern useful in the phytoremediation of residual water bodies contaminated with this metal. Also from our results, S. minima can tolerate fair concentrations of the metal; however, at concentrations higher than 80 μM Ni (1.5 mg g−1 internal nickel concentration), its physiological performance can be affected. For instance, the integrity of cell membranes was affected as the metal concentration and exposure time increased. The accumulation of high concentrations of internal nickel did also affect photosynthesis, the efficiency of PSII, and the concentration of photosynthetic pigments, although at a lower extent

  1. Capacity of the aquatic fern (Salvinia minima Baker) to accumulate high concentrations of nickel in its tissues, and its effect on plant physiological processes

    Energy Technology Data Exchange (ETDEWEB)

    Fuentes, Ignacio I.; Espadas-Gil, Francisco; Talavera-May, Carlos; Fuentes, Gabriela; Santamaría, Jorge M., E-mail: jorgesm@cicy.mx

    2014-10-15

    Highlights: • We document the capacity of an aquatic fern to hyper-accumulate Ni. • Effects of high Ni concentrations uptake on plant performance is documented. • High concentration of Ni in tissues damage photosynthesis. • Damage is related to carboxylation mechanisms than to electron transfer efficiency. • S. minima is a good candidate for remediation of water bodies contaminated with Ni. - Abstract: An experiment was designed to assess the capacity of Salvinia minima Baker to uptake and accumulate nickel in its tissues and to evaluate whether or not this uptake can affect its physiology. Our results suggest that S. minima plants are able to take up high amounts of nickel in its tissues, particularly in roots. In fact, our results support the idea that S. minima might be considered a hyper-accumulator of nickel, as it is able to accumulate 16.3 mg g{sup −1} (whole plant DW basis). Our results also showed a two-steps uptake pattern of nickel, with a fast uptake of nickel at the first 6 to 12 h of being expose to the metal, followed by a slow take up phase until the end of the experiment at 144 h. S. minima thus, may be considered as a fern useful in the phytoremediation of residual water bodies contaminated with this metal. Also from our results, S. minima can tolerate fair concentrations of the metal; however, at concentrations higher than 80 μM Ni (1.5 mg g{sup −1} internal nickel concentration), its physiological performance can be affected. For instance, the integrity of cell membranes was affected as the metal concentration and exposure time increased. The accumulation of high concentrations of internal nickel did also affect photosynthesis, the efficiency of PSII, and the concentration of photosynthetic pigments, although at a lower extent.

  2. Ocorrência de plantas aquáticas nos reservatórios da Light-RJ Ocurrence of aquatic plants in the Light-RJ reservoirs

    Directory of Open Access Journals (Sweden)

    D. Martins

    2003-01-01

    Full Text Available O objetivo do presente trabalho foi caracterizar as comunidades infestantes de plantas aquáticas presentes nos reservatórios da Light-Sistema de Eletricidade S.A., localizada no município de Piraí-RJ. Os levantamentos foram realizados no período de julho a setembro de 1998. Os reservatórios analisados foram: Vigário, Pereira Passos e Lajes, sendo as quantidades de pontos amostrados de 19, 9 e 15, respectivamente. Em cada ponto amostrado fez-se a marcação das coordenadas geográficas e avaliou-se a porcentagem de ocupação do corpo d'água pelas espécies de plantas aquáticas presentes. Depois da identificação das plantas, pôde-se verificar quais eram as espécies mais freqüentes e a sua distribuição dentro do sistema de geração de energia. As espécies encontradas nos reservatórios foram: Brachiaria arrecta (Hack. Stent.; Egeria densa Planch.; Eichhornia azurea (Sw. Kunth.; Eichhornia crassipes (Mart. Solms.; Hymenachne amplexicaulis (Rudge Nees.; Panicum rivulare Trin.; Pistia stratiotis L.; Polygonum spp.; Sagitaria montevidensis Cham. & Schlecht; Salvinia auriculata (Micheli Adans; e Thypha dominguensis L.This study aimed to describe the aquatic weeds infesting the Light-Electric System S.A. reservoirs, located in Pirai-RJ, Brazil. The survey was carried out from July to September 1998. The reservoirs analyzed were: Vigario, Pereira Passos and Lajes, with 19, 9 and 15 points being sampled, respectively. Sampled geographic coordinates were marked in each point and a visual estimate was made of the percentage of river water occupied by the aquatic plants. After plant identification, the most frequent species and their distribution were determined as follows: Brachiaria arrecta (Hack. Stent.; Egeria densa Planch.; Eichhornia azurea (Sw. Kunth.; Eichhornia crassipes (Mart. Solms.; Hymenachne amplexicaulis (Rudge Nees.; Panicum rivulare Trin.; Pistia stratiotis L.; Polygonum spp.; Sagitaria montevidensis Cham.& Schlecht

  3. Controlled Ecological Life Support System: Use of Higher Plants

    Science.gov (United States)

    Tibbits, T. W.; Alford, D. K.

    1982-01-01

    Results of two workshops concerning the use of higher plants in Controlled Ecological Life Support Systems (CELSS) are summarized. Criteria for plant selection were identified from these categories: food production, nutrition, oxygen production and carbon dioxide utilization, water recycling, waste recycling, and other morphological and physiological considerations. Types of plant species suitable for use in CELSS, growing procedures, and research priorities were recommended. Also included are productivity values for selected plant species.

  4. Improvement on main control room for Japanese PWR plants

    International Nuclear Information System (INIS)

    The main control room which is the information center of nuclear power plant has been continuously improved utilizing the state of the art ergonomics, a high performance computer, computer graphic technologies, etc. For the latest Japanese Pressurized Water Reactor (PWR) plant, the CRT monitoring system is applied as the major information source for facilitating operators' plant monitoring tasks. For an operating plant, enhancement of monitoring and logging functions has been made adopting a high performance computer

  5. Recent progress in SG level control in French PWR plants

    International Nuclear Information System (INIS)

    Controlling the steam generator (SG) level is of major importance in a large PWR plant. This has led to extensive work on SG computer models. This paper presents results of the comparison between calculations and tests on the first four-loop plant in France. Four-loop plants started up after 1985 will be equipped with digital instead of analog controllers. A new SG level control has been designed and then optimised using the validated SG model. A prototype of this new system has been successfully tested on a three-loop plant. 4 refs

  6. Assessment of the dye removal capability of submersed aquatic plants in a laboratory-scale wetland system using anova

    Directory of Open Access Journals (Sweden)

    O. Keskinkan

    2007-06-01

    Full Text Available The textile dye (Basic Blue 41(BB41 removal capability of a laboratory-scale wetland system was presented in this study. Twenty glass aquaria were used to establish the wetland. Myriophyllum spicatum and Ceratophyllum demersum were planted in the aquaria and acclimated. After establishing flow conditions, the aquaria were fed with synthetic wastewaters containing BB41. The concentration of the dye was adjusted to 11.0 mg/L in the synthetic wastewater. Hydraulic retention times (HRTs ranged between 3 and 18 days. Effective HRTs were 9 and 18 days. The highest dye removal rates were 94.8 and 94.1% for M. spicatum and C. demersum aquaria respectively. The statistical ANOVA method was used to assess the dye removal capability of the wetland system. In all cases the ANOVA method revealed that plants in the wetland system and HRT were important factors and the wetland system was able to remove the dye from influent wastewater.

  7. Assessment of the dye removal capability of submersed aquatic plants in a laboratory-scale wetland system using anova

    OpenAIRE

    O. Keskinkan; M. Z. Lugal Göksu

    2007-01-01

    The textile dye (Basic Blue 41(BB41)) removal capability of a laboratory-scale wetland system was presented in this study. Twenty glass aquaria were used to establish the wetland. Myriophyllum spicatum and Ceratophyllum demersum were planted in the aquaria and acclimated. After establishing flow conditions, the aquaria were fed with synthetic wastewaters containing BB41. The concentration of the dye was adjusted to 11.0 mg/L in the synthetic wastewater. Hydraulic retention times (HRTs) ranged...

  8. EXTERNAL AND INTERNAL CONTROL IN PLANT DEVELOPMENT

    Institute of Scientific and Technical Information of China (English)

    Beáta Oborny

    2003-01-01

    Bodies of plants are modularly organized. Development proceeds by adding new modules to open endings with a potential for branching. Each module is autonomous to some extent. Development relies on the self-organized patterns that emerge from the interactions of individual modules. Interactions include both competition and cooperation, and several types of positive and negative feedback loops are involved. Development can be open to external influences, thus enabling the plant to adjust its form to the environment, for example, to the spatial distribution of ecological resources. This paper provides a review on adaptive plasticity in plants.

  9. Process plant equipment operation, control, and reliability

    CERN Document Server

    Holloway, Michael D; Onyewuenyi, Oliver A

    2012-01-01

    "Process Plant Equipment Book is another great publication from Wiley as a reference book for final year students as well as those who will work or are working in chemical production plants and refinery…" -Associate Prof. Dr. Ramli Mat, Deputy Dean (Academic), Faculty of Chemical Engineering, Universiti Teknologi Malaysia "…give[s] readers access to both fundamental information on process plant equipment and to practical ideas, best practices and experiences of highly successful engineers from around the world… The book is illustrated throughout with numerous black & white p

  10. One solution of main controller in thermal power plants

    Directory of Open Access Journals (Sweden)

    Radmilović Nebojša

    2008-01-01

    Full Text Available This paper describes functionality between pressure regulation of steam boiler and electrical power regulation of turbine-generator system at thermal power plants. Importans of this control is essentially in coordinate work mode when these complex and non-linear systems have to work as one integrated entity with tendency to produce electrical power at optimal and stable way. Steam generator - boiler is system with long transport delay and here is recommendation for improving pressure regulation. This regulation realized at thermal power plant nominal power 308MW and given working results in real time. Index Terms - boiler control, combustion control, thermal power plants, PID controller.

  11. Development of Plant Control Diagnosis Technology and Increasing Its Applications

    Science.gov (United States)

    Kugemoto, Hidekazu; Yoshimura, Satoshi; Hashizume, Satoru; Kageyama, Takashi; Yamamoto, Toru

    A plant control diagnosis technology was developed to improve the performance of plant-wide control and maintain high productivity of plants. The control performance diagnosis system containing this technology picks out the poor performance loop, analyzes the cause, and outputs the result on the Web page. Meanwhile, the PID tuning tool is used to tune extracted loops from the control performance diagnosis system. It has an advantage of tuning safely without process changes. These systems are powerful tools to do Kaizen (continuous improvement efforts) step by step, coordinating with the operator. This paper describes a practical technique regarding the diagnosis system and its industrial applications.

  12. Faster-than-real-time simulation for plant control

    International Nuclear Information System (INIS)

    As part of the advanced diagnostic prognostic analysis and control system, a faster-than-real-time simulation of the EBR-II reactor has been developed using the Digital Simulator for Nuclear Power Plants (DSNP). Other elements of the system include an expert system, advanced graphics display, real time data acquisition using the EBR-II plant computer and a data transmission system coupling the control computers with the plant and graphics display. Various plant models have been constructed with even the most complicated being able to run plant transients in less-than-real-time. This paper discusses the plant models, necessary code modifications and the results. Depending on degree of model complexity the plant simulations run from 0.067 to 0.75 of the transient time. 6 refs., 1 tab

  13. Utility of low-order linear nuclear-power-plant models in plant diagnostics and control

    International Nuclear Information System (INIS)

    A low-order, linear model of a pressurized water reactor (PWR) plant is described and evaluated. The model consists of 23 linear, first-order difference equations and simulates all subsystems of both the primary and secondary sides of the plant. Comparisons between the calculated model response and available test data show the model to be an adequate representation of the actual plant dynamics. Suggested use for the model in an on-line digital plant diagnostics and control system are presented

  14. Isolating the effects of storm events on arctic aquatic bacteria: temperature, nutrients, and community composition as controls on bacterial productivity

    OpenAIRE

    Adams, Heather E.; Crump, Byron C; Kling, George W

    2015-01-01

    Storm events can pulse nutrients and carbon from soils and provide an important subsidy to food webs in oligotrophic streams and lakes. Bacterial nutrient limitation and the potential response of stream aquatic bacteria to storm events was investigated in arctic tundra environments by manipulating both water temperature and inorganic nutrient concentrations in short (up to 4 days) and long duration (up to 2 weeks) laboratory mesocosm experiments. Inorganic N and P additions increased bacteria...

  15. Self-tuning constrained control of a power plant

    International Nuclear Information System (INIS)

    Problems of self-tuning digital control of a certain class of power plants are considered. A minimum variance controller with amplitude and/or introduction rate restrictions for the control signal is synthesized. The self-tuning control system is based on a prediction model, its parameters being estimated in the closed loop, using a recursive identification technique. Simulation results are presented. (author)

  16. Deficiency and toxicity of nanomolar copper in low irradiance-A physiological and metalloproteomic study in the aquatic plant Ceratophyllum demersum.

    Science.gov (United States)

    Thomas, George; Andresen, Elisa; Mattusch, Jürgen; Hubáček, Tomáš; Küpper, Hendrik

    2016-08-01

    Essential trace elements (Cu(2+), Zn(2+), etc) lead to toxic effects above a certain threshold, which is a major environmental problem in many areas of the world. Here, environmentally relevant sub-micromolar concentrations of Cu(2+) and simulations of natural light and temperature cycles were applied to the aquatic macrophyte Ceratophyllum demersum a s a model for plant shoots. In this low irradiance study resembling non-summer conditions, growth was optimal in the range 7.5-35nM Cu, while PSII activity (Fv/Fm) was maximal around 7.5nM Cu. Damage to the light harvesting complex of photosystem II (LHCII) was the first target of Cu toxicity (>50nM Cu) where Cu replaced Mg in the LHCII-trimers. This was associated with a subsequent decrease of Chl a as well as heat dissipation (NPQ). The growth rate was decreased from the first week of Cu deficiency. Plastocyanin malfunction due to the lack of Cu that is needed for its active centre was the likely cause of diminished electron flow through PSII (ΦPSII). The pigment decrease added to the damage in the photosynthetic light reactions. These mechanisms ultimately resulted in decrease of starch and oxygen production. PMID:27309311

  17. Evaluation of selected ubiquitous contaminants in the aquatic environment and their transformation products. A pilot study of their removal from a sewage treatment plant.

    Science.gov (United States)

    Bueno, M J Martínez; Uclés, S; Hernando, M D; Dávoli, E; Fernández-Alba, A R

    2011-03-01

    A simple method using direct sample injection combined with liquid chromatography tandem mass spectrometry has been developed for the simultaneous analysis of six alkaloid compounds in environmental samples. The target list includes two psychostimulants (nicotine and caffeine), three metabolites (cotinine, nicotinic acid and paraxanthine) and a coffee chemical (trigonelline). The analytical method was evaluated in three different matrices (surface water, influent and effluent wastewater). The method developed showed an adequate sensitivity, below 0.6 μg L(-1) for wastewater and 0.1 μg L(-1) for river matrices, without any prior treatment of the samples. Finally, the methodology was applied to real samples for evaluation of their removal from a sewage treatment plant and their persistence/fate in the aquatic environment. All compounds studied in this work were detected at all sampling points collected along the Henares River. However, nicotinic acid was only detected three times in treated sewage samples at levels above its detection limit. PMID:21333319

  18. Levels and distribution of polybrominated diphenyl ethers in the aquatic and terrestrial environment around a wastewater treatment plant.

    Science.gov (United States)

    Wang, Thanh; Yu, Junchao; Wang, Pu; Zhang, Qinghua

    2016-08-01

    The distribution and fate of polybrominated diphenyl ethers (PBDEs) in a riparian ecosystem nearby a wastewater treatment plant effluent were investigated. Different aqueous and terrestrial samples such as soil, sediment, plants, and invertebrates were collected and analyzed for tri- to heptabrominated PBDEs. Furthermore, the food web structure was elucidated using stable carbon and nitrogen isotopes. The highest PBDE levels were found for sediment- and soil-dwelling invertebrates, such as earthworms (Σ13 PBDEs 144 ng/g lipid weight), Tubifex tubifex (77 ng/g lw), and scarab larvae (49 ng/g lw). Differences in congener composition profiles among the different matrices show that the environmental distribution and fate of PBDEs in ecosystems can be very complex. Among the analyzed PBDEs in this ecosystem, the tetra-brominated BDE-47 was the dominant PBDE congener and followed by the penta-brominated BDE-99. A potential trend of increasing BDE-47/99 ratio with the increase of δ(15)N was observed for species with similar energy sources (δ(13)C), indicating a higher bioaccumulation potential for BDE-47 in this ecosystem. A significant correlation was also found between PBDEs and polychlorinated biphenyls (PCBs), indicating similar sources and fate between the two compound groups in this area. The biota-soil or biota-sediment accumulation factors (BSAFs) were somewhat different among the PBDE congeners and species, but were generally highest for those with log Kow values around 6.5-7. PMID:27164882

  19. DISSIPATION AND ENVIRONMENTAL RISK OF FIPRONIL ON AQUATIC ENVIRONMENT

    OpenAIRE

    JOAQUIM G. MACHADO-NETO; MAYRA A.P. FIGUEIREDO; WILSON G. MANRIQUE

    2013-01-01

    Pesticides have been used in agriculture to avoid productivity losses caused by various organisms. However, the indiscriminate use of these chemicals has resulted in negative impacts on the environment, such as residues in soil, water, air, plants and animals. Fipronil is a phenylpyrazole insecticide widely used in agricultural management to control pests of sugar cane in Brazil, and it can be leached into aquatic ecosystems. The present study aimed to evaluate the environmental risk of toxic...

  20. Standard Guide for Irradiation of Finfish and Aquatic Invertebrates Used as Food to Control Pathogens and Spoilage Microorganisms

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2009-01-01

    1.1 This guide outlines procedures and operations for the irradiation of raw, untreated, fresh (chilled), or frozen finfish and aquatic invertebrates, while ensuring that the irradiated product is safe and wholesome. 1.1.1 Aquatic invertebrates include molluscs, crustacea, echinoderms, etc. 1.1.1.1 Molluscs include bivalve shellfish, such as clams, mussels, and oysters; snails; and cephalopods, such as squid and octopus. 1.1.1.2 Crustacea include shellfish such as shrimp, lobster, crabs, prawns and crayfish. 1.1.1.3 Echinoderms include sea urchins and sea cucumbers. 1.2 This guide covers absorbed doses used to reduce the microbial and parasite populations in aquatic invertebrates and finfish. Such doses typically are below 10 kGy (1). 1.3 The use of reduced-oxygen packaging (vacuum or modified atmosphere, and including products packed in oil) with irradiated, raw product is not covered by this guide. The anaerobic environment created by reduced-oxygen packaging provides the potential for outgrowth o...

  1. 常见水生植物对农田退水中总氮和总磷的净化能力研究%Removal Ability of Common Aquatic Plants on Total N and Total P in Farmland Drainage

    Institute of Scientific and Technical Information of China (English)

    刘作云; 王雅丽; 龚道新; 焦雨婷

    2012-01-01

    为了解常见水生植物对农田退水中总氮(TN)和总磷(TP)的净化作用,通过模拟实验研究了空心菜、紫背浮萍、水芹菜、水浮莲、三叶浮萍和满江红对农田退水中TN和TP的净化能力.结果表明:在处理20 d后,供试水生植物对农田退水中TN的净化率达85.8%~95.6%,净化率大小顺序为:空心菜>水芹菜>水浮莲≈紫背浮萍>满江红≈三叶浮萍;TP的净化率达95.3%~97.2%,净化率大小顺序为:水芹菜>空心菜>水浮莲>紫背浮萍≈三叶浮萍≈满江红.而对照组仅为55.6%(TN)和58.9%(TP).这说明6种供试水生植物对农田退水中TN和TP均有较强的净化能力.%In order to research the removal ability of common aquatic plants on TN and TP in farmland drainage, using stimulated experiment to study the removal ability of Ipomoea aquatica Forsk, Spirodela polyrrhiza, Oenanthe javanica, Eichhomia crassipes, Lemma paucicostata and Azolla imbircata on TN and TP in farmland drainage. The results showed that 20 d after treatment applied, these six aquatic plants all had great. Removal ability on TN and TP in farmland drainage. The removal rates of them on TN were 85.8% ~95.6% with a order of Ipomoea aquatica Forsk >0enanthe javanica>Eichhornia crassipes ≈ Spirodela polyrrhiza>Azolla imbircata ≈ Lemma paucicostata, and the removal rates of them on TP were 95.3%-97.2% with a order of Oenanthe javanica>Ipomoea aquatica Forsk>Eichhomia crassipes > Spirodela polyrrhiza ≈ Lemma paucicostata ≈ Azolla imbircata, while the removal rate of control was only 55.6% on TN and 58.9% on TP.

  2. Intelligent main control room for advanced PWR plants

    International Nuclear Information System (INIS)

    The design targets of the main control room of nuclear power plants are as follows. (1) To make a good working environment where operators can operate easily. (2) To reduce the work load and operators error. To this end, MHI has been improving main control room design for advanced PWR plants. The new intelligent main control room consists of a soft operation console and a large display panel. According to our evaluation, the work load and human error of the new main control room are reduced by about 35% compared with the latest plants. This new design will be used to plan new plants and will have the additional feature of saving costs by standardizing plant design. (author)

  3. Multilevel flow modelling of process plant for diagnosis and control

    International Nuclear Information System (INIS)

    The paper describes the multilevel flow modelling methodology which can be used to construct functional models of energy and material processing systems. The models describe mass and energy flow topology on different levels of abstraction and represent the hierarchical functional structure of complex systems. A model of a nuclear power plant (PWR) is presented in the paper for illustration. Due to the consistency of the method, multilevel flow models provide specifications of plant goals and functions and may be used as a basis for design of computer-based support systems for the plant operator. Plant control requirements can be derived from the models and due to independence of the actual controller implementation the method may be used as basic for design of control strategies and for the allocation of control tasks to the computer and the plant operator. (author)

  4. Multilevel Flow Modelling of Process Plant for Diagnosis and Control

    DEFF Research Database (Denmark)

    Lind, Morten

    1982-01-01

    complex systems. A model of a nuclear power plant (PWR) is presented in the paper for illustration. Due to the consistency of the method, multilevel flow models provide specifications of plant goals and functions and may be used as a basis for design of computer-based support systems for the plant...... operator. Plant control requirements can be derived from the models and due to independence of the actual controller implementation the method may be used as a basis for design of control strategies and for the allocation of control tasks to the computer and the plant operator.......The paper describes the multilevel flow modelling methodology which can be used to construct functional models of energy and material processing systems. The models describe mass and energy flow topology on different levels of abstraction and represent the hierarchical functional structure of...

  5. Bioaccumulation of heavy metals in water, sediments, aquatic plant and histopathological effects on the golden apple snail in Beung Boraphet reservoir, Thailand.

    Science.gov (United States)

    Dummee, Vipawee; Kruatrachue, Maleeya; Trinachartvanit, Wachareeporn; Tanhan, Phanwimol; Pokethitiyook, Prayad; Damrongphol, Praneet

    2012-12-01

    Changes in the seasonal concentrations of heavy metals (Cu, Mn, Fe, Zn, Pb and Cd) were determined in water, sediments, snails (Pomacea canaliculata) and aquatic plants (Ipomoea aquatica) in three selected tributaries of the Beung Boraphet reservoir, Nakhon Sawan Province, central Thailand. Only Fe, Cu, Mn and Zn were detected by FAAS in all samples collected. The water quality of Beung Boraphet was medium clean with Fe, Mn, Cu and Zn concentrations well below internationally accepted limits. According to the criteria proposed for sediments by the EPA Region V, Zn and Mn concentrations were within the non-polluted range while Fe and Cu (wet season) concentrations fell into the class of severely polluted sediment. Both P. canaliculata and I. aquatica bioconcentrated more Mn in their tissues than were found in sediments, especially in the wet season. The results of Pearson correlation study and BCF values also indicated similar findings. Only Mn showed the importance of sediment-to-snail concentration and high BCF values in both snails and plants. P. canaliculata exposed to contaminated sediment for two months, showed higher accumulation of metals (Fe, Mn, Cu and Zn) in the digestive tracts and digestive glands than in the foot muscles. Histopathological changes included alterations in the epithelial lining of the digestive tracts, digestive glands and the gills. Loss of cilia and increase in mucous cells were observed in the digestive tracts and gills, while the digestive glands exhibited an increase of dark granules and basophilic cells, and dilation of digestive cells. The results indicated that both P. canaliculata and I. aquatica could be used as biomonitors of sedimentary metal contamination for the Beung Boraphet reservoir. PMID:23079739

  6. A systematic methodology for controller tuning in wastewater treatment plants

    DEFF Research Database (Denmark)

    Mauricio Iglesias, Miguel; Jørgensen, S.B.; Sin, G.

    2012-01-01

    Wastewater treatment plants are typically subject to continuous disturbances caused by influent variations which exhibits diurnal patterns as well as stochastic changes due to rain and storm water events. In order to achieve an efficient operation, the control system of the plant should be able to...... respond appropriately and reject these disturbances in the influent. A methodology is described here which systematically addresses the assessment of the plant and the influent dynamics, in order to propose a controller tuning that is best adapted to an existing or planned wastewater treatment plant...

  7. Benchmarking of Control Strategies for Wastewater Treatment Plants

    DEFF Research Database (Denmark)

    Wastewater treatment plants are large non-linear systems subject to large perturbations in wastewater flow rate, load and composition. Nevertheless these plants have to be operated continuously, meeting stricter and stricter regulations. Many control strategies have been proposed in the literature...... for improved and more efficient operation of wastewater treatment plants. Unfortunately, their evaluation and comparison – either practical or based on simulation – is difficult. This is partly due to the variability of the influent, to the complexity of the biological and biochemical phenomena and to...... model, plant layout, controllers, sensors, performance criteria and test procedures, i.e. a complete benchmarking protocol....

  8. Analysis on Single Point Vulnerabilities of Plant Control System

    International Nuclear Information System (INIS)

    The Plant Control System (PCS) is a system that controls pumps, valves, dampers, etc. in nuclear power plants with an OPR-1000 design. When there is a failure or spurious actuation of the critical components in the PCS, it can result in unexpected plant trips or transients. From this viewpoint, single point vulnerabilities are evaluated in detail using failure mode effect analyses (FMEA) and fault tree analyses (FTA). This evaluation demonstrates that the PCS has many vulnerable components and the analysis results are provided for OPR-1000 plants for reliability improvements that can reduce their vulnerabilities

  9. Stabilization Based Networked Predictive Controller Design for Switched Plants

    OpenAIRE

    Routh, Avijit; Das, Sourav; Das, Saptarshi; Pan, Indranil

    2012-01-01

    Stabilizing state feedback controller has been designed in this paper for a switched DC motor plant, controlled over communication network. The switched system formulation for the networked control system (NCS) with additional switching in a plant parameter along with the switching due to random packet losses, have been formulated as few set of non-strict Linear Matrix Inequalities (LMIs). In order to solve non-strict LMIs using standard LMI solver and to design the stabilizing state feedback...

  10. Controlling design bases inputs to plant modifications

    International Nuclear Information System (INIS)

    The concept of configuration management involves first establishing a baseline where plant design documents are consistent with well-defined design bases and where design documents represent actual plant configuration. From that baseline forward, the design change process assures consistency between design bases, design documents, and as-built configuration. Although the details of the design change procedures vary from utility to utility, that industry consensus is to use some form of design change document or package to effect the change. Although the Final Safety Analysis Reprot(FSAR) and plant technical specification bases are typically changed by the change process, most of the useful design bases information remains only in the archived change package or supporting calculations. This paper discusses several utility programs conceived to document and update their design bases and relates their finished product to improvements in the design modification process

  11. Medicinal plants for helminth parasite control: facts and fiction.

    Science.gov (United States)

    Athanasiadou, S; Githiori, J; Kyriazakis, I

    2007-10-01

    The use of medicinal plants for the prevention and treatment of gastro-intestinal parasitism has its origin in ethnoveterinary medicine. Although until recently the majority of the evidence on the antiparasitic activity of medicinal plants was anecdotal and lacked scientific validity, there is currently an increasing number of controlled experimental studies that aim to verify and quantify such plant activity. There are indeed a large number of plants whose anthelmintic activity has been demonstrated under controlled experimentation, either through feeding the whole plant or administering plant extracts to parasitised hosts. However, contrary to traditional expectation, there are also a great number of plants with purported antiparasitic properties, which have not been reproduced under experimental conditions. In this paper, we discuss the source of such inconsistencies between ethnoveterinary wisdom and scientific experimentation. We focus on the strengths and weaknesses of the existing methodologies used in the controlled studies to determine the activity of antiparasitic plants. We discuss issues like the seasonal and environmental variability of the plant composition, and how this can affect their antiparasitic properties and highlight the importance of identifying the mechanisms of action of such plants and the target parasite species. In addition to their antiparasitic properties, medicinal plants may also have anti-nutritional properties, which can affect animal performance and behaviour. For this reason, we emphasise the need for considering additional dimensions when evaluating medicinal plants. We also question whether using similar criteria as those used for the evaluation of anthelmintics is the way forward. We propose that a holistic approach is required to evaluate the potential of medicinal plants in parasite control and maximise their benefits on parasitised hosts. PMID:22444894

  12. Integrating transcriptional controls for plant cell expansion

    OpenAIRE

    Mockaitis, Keithanne; Estelle, Mark

    2004-01-01

    The plant hormones auxin and brassinosteroid promote cell expansion by regulating gene expression. In addition to independent transcriptional responses generated by the two signals, recent microarray analyses indicate that auxin and brassinosteroid also coordinate the expression of a set of shared target genes.

  13. Automatic control of nuclear power plants

    International Nuclear Information System (INIS)

    The fundamental concepts in automatic control are surveyed, and the purpose of the automatic control of pressurized water reactors is given. The response characteristics for the main components are then studied and block diagrams are given for the main control loops (turbine, steam generator, and nuclear reactors)

  14. Energy efficient control of a refrigeration plant

    DEFF Research Database (Denmark)

    Rasmussen, Henrik; Larsen, Lars F. S.

    2009-01-01

    This paper proposes a novel method for superheat and capacity control of refrigeration systems. The new idea is to control the superheat by the compressor speed and capacity by the refrigerant flow. A new low order nonlinear model of the evaporator is developed and used in a backstepping design o...... controller and the methods are evaluated with respect to energy efficiency....

  15. Controlling the Influent Load to Wastewater Treatment Plants

    OpenAIRE

    Bolmstedt, Jon

    2004-01-01

    The need for control of the influent load to a wastewater treatment plant (WWTP) is becoming more important. One reason for this is that there are a number of things that cannot be achieved with plant-focused control. For instance it is hard to avoid sludge loss as a result of poor settling or reducing a too high influent flow rate by in-plant control actions. It is also difficult to reduce the effects of a toxin in the influent, if the entire influent is to be biologically ...

  16. Cadmium toxicity investigated at the physiological and biophysical levels under environmentally relevant conditions using the aquatic model plant Ceratophyllum demersum.

    Science.gov (United States)

    Andresen, Elisa; Kappel, Sophie; Stärk, Hans-Joachim; Riegger, Ulrike; Borovec, Jakub; Mattusch, Jürgen; Heinz, Andrea; Schmelzer, Christian E H; Matoušková, Šárka; Dickinson, Bryan; Küpper, Hendrik

    2016-06-01

    Cadmium (Cd) is an important environmental pollutant and is poisonous to most organisms. We aimed to unravel the mechanisms of Cd toxicity in the model water plant Ceratophyllum demersum exposed to low (nM) concentrations of Cd as are present in nature. Experiments were conducted under environmentally relevant conditions, including nature-like light and temperature cycles, and a low biomass to water ratio. We measured chlorophyll (Chl) fluorescence kinetics, oxygen exchange, the concentrations of reactive oxygen species and pigments, metal binding to proteins, and the accumulation of starch and metals. The inhibition threshold concentration for most parameters was 20 nM. Below this concentration, hardly any stress symptoms were observed. The first site of inhibition was photosynthetic light reactions (the maximal quantum yield of photosystem II (PSII) reaction centre measured as Fv /Fm , light-acclimated PSII activity ΦPSII , and total Chl). Trimers of the PSII light-harvesting complexes (LHCIIs) decreased more than LHC monomers and detection of Cd in the monomers suggested replacement of magnesium (Mg) by Cd in the Chl molecules. As a consequence of dysfunctional photosynthesis and energy dissipation, reactive oxygen species (superoxide and hydrogen peroxide) appeared. Cadmium had negative effects on macrophytes at much lower concentrations than reported previously, emphasizing the importance of studies applying environmentally relevant conditions. A chain of inhibition events could be established. PMID:26840406

  17. Aquatic impact

    International Nuclear Information System (INIS)

    Because of the high reproduction rates of the plankton and good tidal mixing at existing plants, depletion of plankton populations has not occurred. Spawning occurs throughout the Bay for the species of fish present here, so local depletions are insufficient to decrease Bay populations. Impingement totals are small compared to mortality due to other sources. In addition, efforts to reduce these totals are now underway at all three existing plants, Calvert Cliffs, Morgantown, and Chalk Point. Habitat modification effects, usually more subtle in nature, have minor, localized impacts. Coupled together, the power plant monitoring studies show a low cumulative impact on the mesohaline environment. The major area of concern within this region is the impact of cooling water withdrawals upon the nursery and spawning areas of striped bass and other anadromous species. Possum Point and Vienna have the highest potential for impact. New facilities planned for this region (Douglas Point, Summit, and Vienna) would increase withdrawals. The overall impact upon striped bass due to entrainment drops from an estimated 6.6% entrainment (upper bound) of the eggs and larvae spawned in the Maryland portion of the Bay at present to an estimated 3.4% (upper bound) after 1987. The addition of Douglas Point and Summit is more than off-set by the retirements of the once-through cooling units at Vienna. No impingement data are available at any of the present plants; however, degraded water quality at the Baltimore and Washington plants appears to have severely restricted fish populations in these waters. The proposed plants are expected to have no major impacts in the areas of impingement or habitat modification due to the small amount of water withdrawn

  18. Aquatic dissipation of triclopyr in Lake Seminole, Georgia

    Science.gov (United States)

    Woodburn, K.B.; Green, W.R.; Westerdahl, H.E.

    1993-01-01

    A field study was conducted to evaluate the environmental dissipation of triclopyr herbicide under aquatic-use conditions. Three 4-h plots in Lake Seminole, Georgia, were selected for use: one control, one aerial plot, and one subsurface plot; both applications were at the maximum aquatic-use rate of 2.5 mg/L. Water, sediment, plants, fish, clams, and crayfish were all analyzed for residues, and water temperature, oxygen levels, pH, and conductivity were monitored. The half-life for aqueous-phase triclopyr ranged from 0.5 to 3.6 days, and the dissipation in surface and bottom waters was equivalent. The intermediate decay product of triclopyr, 3,5,6-trichloro-2-pyridinol (TCP), had an observed aquatic half-life of less than 1 day. No accumulation of triclopyr or TCP on sediment was observed. The half-life of triclopyr metabolized by aquatic plants averaged 4 days. Fish species did not exhibit any bioconcentration of triclopyr or TCP, with only trace amounts of either compound found in fish tissue. Both clams and crayfish contained detectable residues of triclopyr. The elimination of triclopyr from clam tissue was more rapid, with an observed half-life of 1.5 days, vs 12 days for crayfish; retention of triclopyr in the crayfish carcass (carapace, chelopeds, and gills) may have been an important mechanism. There was no detectable decline in water quality in either treatment plot. ?? 1993 American Chemical Society.

  19. Model-free adaptive control of advanced power plants

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, George Shu-Xing; Mulkey, Steven L.; Wang, Qiang

    2015-08-18

    A novel 3-Input-3-Output (3.times.3) Model-Free Adaptive (MFA) controller with a set of artificial neural networks as part of the controller is introduced. A 3.times.3 MFA control system using the inventive 3.times.3 MFA controller is described to control key process variables including Power, Steam Throttle Pressure, and Steam Temperature of boiler-turbine-generator (BTG) units in conventional and advanced power plants. Those advanced power plants may comprise Once-Through Supercritical (OTSC) Boilers, Circulating Fluidized-Bed (CFB) Boilers, and Once-Through Supercritical Circulating Fluidized-Bed (OTSC CFB) Boilers.

  20. In situ nutrient removal from aquaculture wastewater by aquatic vegetable Ipomoea aquatica on floating beds.

    Science.gov (United States)

    Li, Wenxiang; Li, Zhongjie

    2009-01-01

    Nutrient-rich effluents caused rising concern due to eutrophication of aquatic environment by utilization of a large amount of formula feed. Nutrient removal and water quality were investigated by planting aquatic vegetable on artificial beds in 36-m(2) concrete fishponds. After treatment of 120 days, 30.6% of total nitrogen (TN) and 18.2% of total phosphorus (TP) were removed from the total input nutrients by 6-m(2) aquatic vegetable Ipomoea aquatica. The concentrations of TN, TP, chemical oxygen demand (COD) and chlorophyll a in planted ponds were significantly lower than those in non-planted ponds (P<0.05). Transparency of water in planted ponds was much higher than that of control ponds. No significant differences in the concentration of total ammonia nitrogen (TAN), nitrate nitrogen (NO(3) (-)-N) and nitrite nitrogen (NO(2) (-)-N) were found between planted and non-planted ponds. These results suggested that planting aquatic vegetable with one-sixth covered area of the fishponds could efficiently remove nutrient and improve water quality. PMID:19474487

  1. Crop quality control system : a tool to control the visual quality of pot plants

    OpenAIRE

    Dijkshoorn-Dekker, M.W.C.

    2002-01-01

    Key words: quality, growth, model, leaf unfolding rate, internode, plant height, plant width, leaf area, temperature, plant spacing, season, light, development, image processing, grading, neural network, pot plant, Ficus benjamina 'Exotica'.The market is increasingly dictating the specifications for products. A well-defined marketable product must be delivered at a defined moment in time. A system was developed for growers to control development and growth of pot plants to achieve a defined q...

  2. Integrated framework for safety control design of nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Gabbar, Hossam A., E-mail: hossam.gabbar@uoit.c [Faculty of Energy and Nuclear Science, University of Ontario Institute of Technology, 2000 Simcoe St. North, Oshawa, Ontario, L1H7K4 (Canada)

    2010-10-15

    This paper presents an integrated framework for safety control analysis and design for nuclear power plants. It shows the use of process object-oriented modeling methodology (POOM) and fault models to integrate safety requirements, identified hazards, and fault propagation scenarios. Safety control design framework is proposed to show the integration between control systems and safety control design. Hierarchical control charts (HCC) are proposed to integrate process, control, and safety models along with the associated fault models in systematic manner. Process and the associated process and control variables that are involved in safety control systems. The proposed safety control design framework will support the control design and operation of nuclear power plants, as well as the integration with cogeneration facilities such as hydrogen production.

  3. Plant community controls on short-term ecosystem nitrogen retention.

    Science.gov (United States)

    de Vries, Franciska T; Bardgett, Richard D

    2016-05-01

    Retention of nitrogen (N) is a critical ecosystem function, especially in the face of widespread anthropogenic N enrichment; however, our understanding of the mechanisms involved is limited. Here, we tested under glasshouse conditions how plant community attributes, including variations in the dominance, diversity and range of plant functional traits, influence N uptake and retention in temperate grassland. We added a pulse of (15) N to grassland plant communities assembled to represent a range of community-weighted mean plant traits, trait functional diversity and divergence, and species richness, and measured plant and microbial uptake of (15) N, and leaching losses of (15) N, as a short-term test of N retention in the plant-soil system. Root biomass, herb abundance and dominant plant traits were the main determinants of N retention in the plant-soil system: greater root biomass and herb abundance, and lower root tissue density, increased plant (15) N uptake, while higher specific leaf area and root tissue density increased microbial (15) N uptake. Our results provide novel, mechanistic insight into the short-term fate of N in the plant-soil system, and show that dominant plant traits, rather than trait functional diversity, control the fate of added N in the plant-soil system. PMID:26749302

  4. Genetic Control and Phytohormonal Regulation of Plant Embryogenesis

    OpenAIRE

    V.A. Tsygankova

    2015-01-01

    The review is devoted to genetic mechanisms of regulation of plant embryonic development. Numerous families of genes identified to date that control this phase of plant ontogenesis are presented in detail; their key role in the formation and development of plant seed is described. Data concerning important role of different classes of phytohormones such as auxins, cytokinins, gibberellic acid, brassinosteroids, abscisic acid, ethylene and jasmonic acid in the regulation of plan...

  5. Proceedings of power plant dynamics, control and testing symposium

    International Nuclear Information System (INIS)

    This book presents the papers given at a symposium on reactor control and monitoring systems. Topics considered at the symposium included power plant modeling and simulation, reactor simulators, power reactor surveillance by noise analysis, in core instruments, computer codes, advanced data analysis techniques, loss of coolant simulation, nuclear power plant testing, reactor safety, expert systems, applications of artificial intelligence methodology, human factors, man-machine systems, and power plant diagnostics

  6. Evolution in invasive plants: implications for biological control

    OpenAIRE

    Müller-Schärer, Heinz; Schaffner, Urs; Steinger, Thomas

    2005-01-01

    Evidence is increasing that invasive plants can undergo rapid adaptive evolution during the process of range expansion. Here, we argue that evolutionary change during invasions will also affect plant–antagonist inter-actions and, thus, will have important implications for biological control programmes targeted at invasive plants. We explore how altered selection in the new range might influence the evolution of plant defence (resistance and tolerance) and life history. The degree to which suc...

  7. Considerations concerning the ergonomics of power plant control rooms

    International Nuclear Information System (INIS)

    Modern control rooms for the monitoring and control of large power plants have a high degree of automation. However, it is the responsibility of the control room personnel to ensure optimum process control during all operational states. The proper ergonomic design of a control room is one of the prerequisites to ensure that the operators are able to perceive the often large flow of current information and, after processing, to respond properly. (orig.)

  8. From plant and logistics control to multi-entreprise collaboration

    OpenAIRE

    Nof, Shimon; Morel, Gérard; Monostori, Laszlo; Molina, Arturo; Filip, Florin

    2006-01-01

    International audience Current and emerging manufacturing and logistics systems are posing new challenges and opportunities for the automation and control community. This milestone report describes the main problems, such as management of complexity, scalability, increasing costs, coordination, market-based resource allocation, and more. Recent accomplishments and trends are discussed: Control and automation techniques, manufacturing plant automation, collaborative control through integrat...

  9. Introducing Model Predictive Control for Improving Power Plant Portfolio Performance

    DEFF Research Database (Denmark)

    Edlund, Kristian Skjoldborg; Bendtsen, Jan Dimon; Børresen, Simon;

    2008-01-01

    This paper introduces a model predictive control (MPC) approach for construction of a controller for balancing the power generation against consumption in a power system. The objective of the controller is to coordinate a portfolio consisting of multiple power plant units in the effort to perform...

  10. Control strategy optimization of HVAC plants

    Energy Technology Data Exchange (ETDEWEB)

    Facci, Andrea Luigi; Zanfardino, Antonella [Department of Engineering, University of Napoli “Parthenope” (Italy); Martini, Fabrizio [Green Energy Plus srl (Italy); Pirozzi, Salvatore [SIAT Installazioni spa (Italy); Ubertini, Stefano [School of Engineering (DEIM) University of Tuscia (Italy)

    2015-03-10

    In this paper we present a methodology to optimize the operating conditions of heating, ventilation and air conditioning (HVAC) plants to achieve a higher energy efficiency in use. Semi-empiric numerical models of the plant components are used to predict their performances as a function of their set-point and the environmental and occupied space conditions. The optimization is performed through a graph-based algorithm that finds the set-points of the system components that minimize energy consumption and/or energy costs, while matching the user energy demands. The resulting model can be used with systems of almost any complexity, featuring both HVAC components and energy systems, and is sufficiently fast to make it applicable to real-time setting.

  11. Plant Disease Control by the Use of Chemicals. MP-27.

    Science.gov (United States)

    Ross, William D.; Bridgmon, George H.

    This document has been prepared as a reference manual providing information regarding plant diseases. The text concerns itself with the identification and development of infectious and non-infectious diseases and associated control measures. An appendix includes a glossary of plant pathological terms and a bibliography. (CS)

  12. CANDU 6 nuclear power plant tritium control and release

    International Nuclear Information System (INIS)

    The issues drawing people's attention, such as ways of CANDU plant tritium generation, measures to control tritium release to environment in the design of nuclear power plants as well as public dose due to tritium released to the environment are presented

  13. Integrated control centre concepts for CANDU power plants

    International Nuclear Information System (INIS)

    The size and complexity of nuclear power plants has increased significantly in the last 20 years. There is general agreement that plant safety and power production can be enhanced if more operational support systems that are significantly different from the ones based on the more conventional technologies used in plant control rooms. In particular, artificial intelligence and related technologies will play a major role in the development of innovative methods for information processing and presentation. These technologies must be integrated into the overall management and control philosophy of the plant and not be treated as vehicles to implement point solutions. The underlying philosophy behind our approach is discussed in this paper. Operator support systems will integrate into the overall control philosophy by complementing the operator. Four support systems are described; each is a prototype of a system being considered for the CANDU 3 control centre

  14. Voltage Control in Wind Power Plants with Doubly Fed Generators

    DEFF Research Database (Denmark)

    Garcia, Jorge Martinez

    In this work, the process of designing a wind power plant composed of; doubly fed induction generators, a static compensator unit, mechanically switched capacitors and on-load tap changer, for voltage control is shown. The selected control structure is based on a decentralized system, since it...... supplied by the doubly fed induction generator wind turbines is overcome by installing a reactive power compensator, i.e. a static compensator unit, which is coordinated with the plant control by a specific dispatcher. This dispatcher is set according to the result of the wind power plant load flow. To...... offers very fast system response to grid disturbances and lower sensitivity to the grid impedance, and moreover, this control structure releases the central control of having grid impedance estimation techniques or adaptive control methods. The difference between the required reactive power and the one...

  15. Tritium in the aquatic environment

    International Nuclear Information System (INIS)

    Most of the tritium released from nuclear facilities into the atmosphere eventually reaches the aqueous environment where it is rapidly taken up by aquatic organisms. This paper reviews the current literature on tritium in the aquatic environment. Conclusions from the review, which covered algae, aquatic plants, invertebrates, fish, and food chain studies, were that aquatic organisms incorporate tritium into their tissue free water very rapidly and reach concentrations near that of the external medium. Incorporation of tritium from triated water into the organic matter of cells is at a slower rate than incorporation into the tissue free water. If organisms consume tritiated food, incorporation of tritium into the organic matter is faster and a higher tritium concentration is reached than when the organisms are exposed to only tritiated water. Incorporation of tritium bound to molecules into the organic matter depends on the chemical form of the 'carrier' molecule. No evidence was found that biomagnification of tritium occurs at higher tropic levels. Radiation doses to large populations of humans from tritium releases will most likely be from the consumption of contaminated water rather than contaminated aquatic food products. (author)

  16. SOWFA Super-Controller: A High-Fidelity Tool for Evaluating Wind Plant Control Approaches

    Energy Technology Data Exchange (ETDEWEB)

    Fleming, P.; Gebraad, P.; van Wingerden, J. W.; Lee, S.; Churchfield, M.; Scholbrock, A.; Michalakes, J.; Johnson, K.; Moriarty, P.

    2013-01-01

    This paper presents a new tool for testing wind plant controllers in the Simulator for Offshore Wind Farm Applications (SOWFA). SOWFA is a high-fidelity simulator for the interaction between wind turbine dynamics and the fluid flow in a wind plant. The new super-controller testing environment in SOWFA allows for the implementation of the majority of the wind plant control strategies proposed in the literature.

  17. (Controls of the plant endomembrane-secretory pathway)

    Energy Technology Data Exchange (ETDEWEB)

    1991-01-01

    These studies are focused on elucidating the molecular structure of plant cell membranes with special reference to cell surface glycoproteins. The studies reported herein include use of monoclonal antibodies to characterize cell surface epitopes, construction of cDNA libraries of cell surface proteins, isolation of plant cell mutants by flow cytometry, detection of beta-glucouronidase marker enzyme systems in plants, expression go VSVG (the major envelope glycoprotein of Vesicular Stomatis Virus) in plant cells, and control of gene expression of cell membrane glycoproteins.(DT)

  18. [Controls of the plant endomembrane-secretory pathway]. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1991-12-31

    These studies are focused on elucidating the molecular structure of plant cell membranes with special reference to cell surface glycoproteins. The studies reported herein include use of monoclonal antibodies to characterize cell surface epitopes, construction of cDNA libraries of cell surface proteins, isolation of plant cell mutants by flow cytometry, detection of beta-glucouronidase marker enzyme systems in plants, expression go VSVG (the major envelope glycoprotein of Vesicular Stomatis Virus) in plant cells, and control of gene expression of cell membrane glycoproteins.(DT)

  19. Model Predictive Control of Integrated Gasification Combined Cycle Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    B. Wayne Bequette; Priyadarshi Mahapatra

    2010-08-31

    The primary project objectives were to understand how the process design of an integrated gasification combined cycle (IGCC) power plant affects the dynamic operability and controllability of the process. Steady-state and dynamic simulation models were developed to predict the process behavior during typical transients that occur in plant operation. Advanced control strategies were developed to improve the ability of the process to follow changes in the power load demand, and to improve performance during transitions between power levels. Another objective of the proposed work was to educate graduate and undergraduate students in the application of process systems and control to coal technology. Educational materials were developed for use in engineering courses to further broaden this exposure to many students. ASPENTECH software was used to perform steady-state and dynamic simulations of an IGCC power plant. Linear systems analysis techniques were used to assess the steady-state and dynamic operability of the power plant under various plant operating conditions. Model predictive control (MPC) strategies were developed to improve the dynamic operation of the power plants. MATLAB and SIMULINK software were used for systems analysis and control system design, and the SIMULINK functionality in ASPEN DYNAMICS was used to test the control strategies on the simulated process. Project funds were used to support a Ph.D. student to receive education and training in coal technology and the application of modeling and simulation techniques.

  20. Data-driven wind plant control

    OpenAIRE

    Gebraad, P.M.O.

    2014-01-01

    Each wind turbine in a cluster of wind turbines (a wind power plant) can influence the performance of other turbines through the wake that forms downstream of its rotor. The wake has a reduced wind velocity, since the turbine extracts energy from the flow, and the obstruction by the wind turbine rotor causes increased turbulence. If another turbine is standing in the path of a wake, the reduced wind speed in the wake results in a lower electrical energy production of that turbine. Also, the i...

  1. Control of pain with topical plant medicines

    Institute of Scientific and Technical Information of China (English)

    James; David; Adams; Jr.; Xiaogang; Wang

    2015-01-01

    Pain is normally treated with oral nonsteroidal anti-inflammatory agents and opioids. These drugs are dangerous and are responsible for many hospitalizations and deaths. It is much safer to use topical preparations made from plants to treat pain, even severe pain. Topical preparations must contain compounds that penetrate the skin, inhibit pain receptors such as transient receptor potential cation channels and cyclooxygenase-2, to relieve pain. Inhibition of pain in the skin disrupts the pain cycle and avoids exposure of internal organs to large amounts of toxic compounds. Use of topical pain relievers has the potential to save many lives, decrease medical costs and improve therapy.

  2. Controller Design Based on Nonlinear Separation Control Method for OTEC Pilot Plant

    Science.gov (United States)

    Nakamura, Masatoshi; Sugi, Takenao; Ikegami, Yasuyuki; Uehara, Haruo

    An OTEC (Ocean Thermal Energy Conversion) pilot plant consists of two parts; an OTEC system of main part and a heat reservoir system of sub part. The nonlinear separation control method was applied to the controller design for the OTEC pilot plant. The nonlinear separation models were constructed for the OTEC system and the heat reservoir system. The controller for the OTEC system and the heat reservoir system was designed by using the both nonlinear separation models. A detail simulation study showed that the multi-layer controller for the OTEC pilot plant brought a satisfactory control performance by comparing a conventional PI control.

  3. Aquatic arsenic: phytoremediation using floating macrophytes.

    Science.gov (United States)

    Rahman, M Azizur; Hasegawa, H

    2011-04-01

    Phytoremediation, a plant based green technology, has received increasing attention after the discovery of hyperaccumulating plants which are able to accumulate, translocate, and concentrate high amount of certain toxic elements in their above-ground/harvestable parts. Phytoremediation includes several processes namely, phytoextraction, phytodegradation, rhizofiltration, phytostabilization and phytovolatilization. Both terrestrial and aquatic plants have been tested to remediate contaminated soils and waters, respectively. A number of aquatic plant species have been investigated for the remediation of toxic contaminants such as As, Zn, Cd, Cu, Pb, Cr, Hg, etc. Arsenic, one of the deadly toxic elements, is widely distributed in the aquatic systems as a result of mineral dissolution from volcanic or sedimentary rocks as well as from the dilution of geothermal waters. In addition, the agricultural and industrial effluent discharges are also considered for arsenic contamination in natural waters. Some aquatic plants have been reported to accumulate high level of arsenic from contaminated water. Water hyacinth (Eichhornia crassipes), duckweeds (Lemna gibba, Lemna minor, Spirodela polyrhiza), water spinach (Ipomoea aquatica), water ferns (Azolla caroliniana, Azolla filiculoides, and Azolla pinnata), water cabbage (Pistia stratiotes), hydrilla (Hydrilla verticillata) and watercress (Lepidium sativum) have been studied to investigate their arsenic uptake ability and mechanisms, and to evaluate their potential in phytoremediation technology. It has been suggested that the aquatic macrophytes would be potential for arsenic phytoremediation, and this paper reviews up to date knowledge on arsenic phytoremediation by common aquatic macrophytes. PMID:21435676

  4. Next Generation Nuclear Plant Resilient Control System Functional Analysis

    International Nuclear Information System (INIS)

    Control Systems and their associated instrumentation must meet reliability, availability, maintainability, and resiliency criteria in order for high temperature gas-cooled reactors (HTGRs) to be economically competitive. Research, perhaps requiring several years, may be needed to develop control systems to support plant availability and resiliency. This report functionally analyzes the gaps between traditional and resilient control systems as applicable to HTGRs, which includes the Next Generation Nuclear Plant; defines resilient controls; assesses the current state of both traditional and resilient control systems; and documents the functional gaps existing between these two controls approaches as applicable to HTGRs. This report supports the development of an overall strategy for applying resilient controls to HTGRs by showing that control systems with adequate levels of resilience perform at higher levels, respond more quickly to disturbances, increase operational efficiency, and increase public protection.

  5. Next Generation Nuclear Plant Resilient Control System Functional Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Lynne M. Stevens

    2010-07-01

    Control Systems and their associated instrumentation must meet reliability, availability, maintainability, and resiliency criteria in order for high temperature gas-cooled reactors (HTGRs) to be economically competitive. Research, perhaps requiring several years, may be needed to develop control systems to support plant availability and resiliency. This report functionally analyzes the gaps between traditional and resilient control systems as applicable to HTGRs, which includes the Next Generation Nuclear Plant; defines resilient controls; assesses the current state of both traditional and resilient control systems; and documents the functional gaps existing between these two controls approaches as applicable to HTGRs. This report supports the development of an overall strategy for applying resilient controls to HTGRs by showing that control systems with adequate levels of resilience perform at higher levels, respond more quickly to disturbances, increase operational efficiency, and increase public protection.

  6. Nuclear techniques in plant pathology 1. Plant disease control and physiology of parasitism

    International Nuclear Information System (INIS)

    Nuclear techniques are advantageously used in several areas of plant pathology. Among them are: induction of mutation for disease resistance, studies with pesticides, disease control through pathogen inactivation, induction of variability and stimulation in pathogens and natural enemies, studies of microorganism physiology and diseased plant physiology, effect of gamma radiation on pesticides, technology of pesticides application, etc. (Author)

  7. Plant inherent control testing in EBR-II

    International Nuclear Information System (INIS)

    A testing program is being conducted in EBR-II to demonstrate passive, inherent reactor protection and control. Data obtained from tests have indicated that the reactor power can be controlled over a large range by the primary coolant flow, secondary coolant flow, and the turbine/generator load. Reactor safety could then be based on inherent safe characteristics of the plant rather than the complicated reactor shutdown system. A Plant Inherent Control Testing (PICT) program is being developed in EBR-II to investigate inherent control concepts for LMR's. The reactor power will be controlled between 40 and 100% power with the primary coolant pumps, the secondary coolant pumps, and the turbine admission valve. The thermal-hydraulic-neutronic system analysis code NATDEMO was used for the pretest predictions of the EBR-II plant response. This paper presents the results of this analysis

  8. Control of Water Content and Retention in Hydropower Plant Cascades

    OpenAIRE

    Gullhamn, Esbjörn

    2004-01-01

    The discharge through a river hydropower plant must be controlled such that the water level at a pre-specified point close to the facility is kept within given bounds. The controllers used today have a somewhat demanding tuning and often create too much amplified, unnatural discharge variations resulting in unsatisfactory control performance.This will affect both surrounding nature and imposing problems for river navigation. This thesis will present a new type of controller called Override Se...

  9. Experience curves for power plant emission control technologies

    OpenAIRE

    Rubin, Edward S.; Yeh, Sonia; Hounshell, David A

    2007-01-01

    This paper examines past experience in controlling emissions of sulphur dioxide (SO2) and nitrogen oxides (NOx) from coal-fired electric power plants. In particular, we focus on US and worldwide experience with two major environmental control technologies: flue gas desulphurisation (FGD) systems for SO2 control and selective catalytic reduction (SCR) systems for NOx control. We quantitatively characterise historical trends in the deployment and costs of these technologies over the past 30 yea...

  10. Modeling, simulation, and control of an extraterrestrial oxygen production plant

    Science.gov (United States)

    Schooley, L.; Cellier, F.; Zeigler, B.; Doser, A.; Farrenkopf, G.

    1991-01-01

    The immediate objective is the development of a new methodology for simulation of process plants used to produce oxygen and/or other useful materials from local planetary resources. Computer communication, artificial intelligence, smart sensors, and distributed control algorithms are being developed and implemented so that the simulation or an actual plant can be controlled from a remote location. The ultimate result of this research will provide the capability for teleoperation of such process plants which may be located on Mars, Luna, an asteroid, or other objects in space. A very useful near-term result will be the creation of an interactive design tool, which can be used to create and optimize the process/plant design and the control strategy. This will also provide a vivid, graphic demonstration mechanism to convey the results of other researchers to the sponsor.

  11. Adaptive environmental control for optimal results during plant microgravity experiments

    Science.gov (United States)

    Kostov, P.; Ivanova, T.; Dandolov, I.; Sapunova, S.; Ilieva, I.

    2002-07-01

    The SVET Space Greenhouse (SG) - the first and the only automated plant growth facility onboard the MIR Space Station in the period 1990-2000 was developed on a Russian-Bulgarian Project in the 80s. The aim was to study plant growth under microgravity in order to include plants as a link of future Biological Life Support Systems for the long-term manned space missions. An American developed Gas Exchange Measurement System (GEMS) was added to the existing SVET SG equipment in 1995 to monitor more environmental and physiological parameters. A lot of long-duration plant flight experiments were carried out in the SVET+GEMS. They led to significant results in the Fundamental Gravitational Biology field - second-generation wheat seeds were produced in the conditions of microgravity. The new International Space Station (ISS) will provide a perfect opportunity for conducting full life cycle plant experiments in microgravity, including measurement of more vital plant parameters, during the next 15-20 years. Nowadays plant growth facilities for scientific research based on the SVET SG functional principles are developed for the ISS by different countries (Russia, USA, Italy, Japan, etc.). A new Concept for an advanced SVET-3 Space Greenhouse for the ISS, based on the Bulgarian experience and "know-how" is described. The absolute and differential plant chamber air parameters and some plant physiological parameters are measured and processed in real time. Using the transpiration and photosynthesis measurement data the Control Unit evaluates the plant status and performs adaptive environmental control in order to provide the most favorable conditions for plant growth at every stage of plant development in experiments. A conceptual block-diagram of the SVET-3 SG is presented.

  12. Control of plant behaviour for design conformity

    International Nuclear Information System (INIS)

    Testing of the software and hardware installed in the Biblis NPP to this end showed clearly that computer-aided operation will unburden the operating staff who will have more time available to clarify and eliminate the causes of deviations or incidents, in particular. Checking and elimination of deviations of actual from reference values are prerequisites for production operation to continue; hence computer assistance will enhance the plant's availability in an effective way. Enhanced quality of signal evaluation due to computer support allows optimum detection and elimination of disturbed functions even within recurrent/in-service inspections. This will allow to ensure the quality of 'monitoring and reliability testing' throughout operation. (orig./DG)

  13. Nuclear power plant control and instrumentation 1982. Proceedings of an international symposium on nuclear power plant control and instrumentation

    International Nuclear Information System (INIS)

    Ever increasing demands for nuclear power plant safety and availability imply a need for the introduction of modern measurement and control methods, together with data processing techniques based on the latest advances in electronic components, transducers and computers. Nuclear power plant control and instrumentation is therefore an extremely rapidly developing field. The present symposium, held in Munich, FR Germany, was prepared with the help of the IAEA International Working Group on Nuclear Power Plant Control and Instrumentation and organized in close co-operation with the Gesellschaft fur Reaktorsicherheit, Federal Republic of Germany. A number of developments were highlighted at the Munich symposium: - The increased use of computers can bring clear advantages and this technique is now proven as a tool for supervising and controlling plant operation. Advanced computerized systems for operator support are being developed on a large scale in many countries. The progress in this field is quite obvious, especially in disturbance analysis, safety parameter display, plant operator guidance and plant diagnostics. The new trend of introducing computers and microprocessors in protection systems makes it easy to implement 'defence-in-depth' strategies which give better assurance of correct system responses and also prevent unnecessary reactor trips, thus improving plant availability. The introduction of computerized systems for control of reactor power, reactor water level and reactor pressure as well as for reactor start-up and shut-down could improve the reliability and availability of nuclear power plants. The rapid technical development in the area of control and instrumentation makes it necessary to plan for at least one replacement of obsolete equipment in the course of the 30 years lifetime of a nuclear power plant and retrofitting of currently operating reactors with new control systems. Major design improvements and regulatory requirements also require

  14. The fate of eroded soil organic carbon along a European transect – controls after deposition in terrestrial and aquatic systems

    DEFF Research Database (Denmark)

    Kirkels, Frédérique; Cammeraat, Erik; Kalbitz, Karsten;

    The potential fate of eroded soil organic carbon (SOC) after deposition is key to understand carbon cycling in eroding landscapes. Globally, large quantities of sediments and SOC are redistributed by soil erosion on agricul-tural land, particularly after heavy precipitation events. Deposition of...... turnover of deposited C is significantly affected by soil and organic matter properties, and whether deposition occurs in terrestrial or aquatic environments. We sampled topsoils from 10 agricultural sites along a European transect, spanning a wide range of SOC and soil characteristics (e.g. texture...... fate of SOC such as amounts and composition of soil organic matter (SOM), distribution of SOC in density fractions and aggregates as well as soil physical and chemical properties. NMR analysis provided an in-depth characterization of SOM quality, showing large similarities in chemical composition among...

  15. Spatial and temporal controls on Alnus-derived nutrients and stream stoichiometry: Implications for aquatic ecosystem productivity

    Science.gov (United States)

    Devotta, D.; Fraterrigo, J.; Walsh, P.; Hu, F.

    2015-12-01

    Predicting how nutrient fluxes that cross ecosystem boundaries will respond to future climate change is one of the greatest challenges for ecology in the 21st century. In southwestern (SW) Alaska, Pacific salmon (Oncorhynchus spp.) and nitrogen (N)-fixation by alder (Alnus spp.) provide key nutrient subsidies to freshwater systems. The importance of alder-derived nutrients (ADN) to aquatic systems will increase as alder cover expands under climate warming and salmon harvesting reduces marine-derived nutrients. We investigate broad-scale spatial and temporal drivers of ADN and stream N:P in 26 streams in SW Alaska. Alder cover and watershed features were measured using satellite images and topographic maps in ArcGIS. Stream water samples were collected in each spring and summer from 2010-2013 and analyzed for dissolved N and total phosphorus (TP). We obtained annual growing season length (AGSL) and sum of growing degree days (GDD) data from weather stations. Elevation was inversely related to alder cover, stream N, and N:P (ρ=-0.802, -0.65, and -0.71 resp., pADN export. Higher P was associated with lower temperatures, possibly reflecting reduced P demand under low rates of metabolic activity. Structural equation modeling revealed significant causal relationships among elevation, alder cover, and stream N:P across multiple years (r2=0.94, X2=742.8, df=9, pADN fluxes and stream N:P than temporal variation in growing season conditions. Therefore, the aquatic productivity of streams at low elevations that receive large amounts of ADN will be most resilient to climate change.

  16. Reconfigurable Control of a Ship Propulsion Plant

    DEFF Research Database (Denmark)

    Blanke, M.; Izadi-Zamanabadi, Roozbeh

    1998-01-01

    -tolerant control is a fairly new area. Thise paper presents a ship propulsion system as a benchmark that should be useful as a platform for the development of new ideas and a comparison of methods. The benchmark has two main elements. One is the development of efficient FDI algorithms, and the other is the...

  17. Rapid Control Prototyping Plataform for Didactic Plant Motor DC

    Directory of Open Access Journals (Sweden)

    Cristian Bazán-Orobio

    2013-06-01

    Full Text Available In this paper a design, implementation and validation of a Rapid Control Prototype platform for a plant based on a DC motor is proposed. This low-cost prototype provides of an electronic card (with a motor DC and sensors manipulated by PC with free software tools using Linux, Scilab / Scicos and RTAI-Lab. This RCP System allows developing speed -position control trainings by using different types of PID industrial controllers with anti – wind up and bump less transfer schemes. We develop a speed control application structured in four steps: identification, controller design, simulation and real time control, where there are pedagogical advantages of a platform that not only allows simulation but also real-time control of a plant.

  18. Controlling nuclear power plant costs in the USA

    International Nuclear Information System (INIS)

    The paper discusses U.S. nuclear power plant cost trends over the last fifteen years. Rapidly rising non-material related craft, engineering and field supervision labor costs are identified as being the major cost drivers since about 1978. Although U.S. light water reactor power plants are shown to be material cost competitive with other nuclear and coal-fired alternatives, the advantage is more than offset by high labor costs. It is shown that in some U.S. nuclear power plants, effective use of manpower has been made through plant standardization and the use of multi-unit sites. Control of construction costs is shown to be best where continuity of experience in management, engineering and construction forces exist. The effects of large versus small nuclear power plants on control of construction costs are discussed. U.S. constructibility programs sponsored by the Electric Power Research Institute and the U.S. Department of Energy are identified. They are discussed relative to their potential for developing the means to control U.S. nuclear power plant costs. Among the preliminary results of these programs are the perceptions that the evolutionary standardized plant concepts being developed appear to be cost effective. Also, some U.S. nuclear utilities have evolved tightly integrated project organizations that might duplicate better U.S. experience should they embark on a new project. (author). 14 refs, 8 figs, 1 tab

  19. Expert System Control of Plant Growth in an Enclosed Space

    Science.gov (United States)

    May, George; Lanoue, Mark; Bathel, Matthew; Ryan, Robert E.

    2008-01-01

    The Expert System is an enclosed, controlled environment for growing plants, which incorporates a computerized, knowledge-based software program that is designed to capture the knowledge, experience, and problem-solving skills of one or more human experts in a particular discipline. The Expert System is trained to analyze crop/plant status, to monitor the condition of the plants and the environment, and to adjust operational parameters to optimize the plant-growth process. This system is intended to provide a way to remotely control plant growth with little or no human intervention. More specifically, the term control implies an autonomous method for detecting plant states such as health (biomass) or stress and then for recommending and implementing cultivation and/or remediation to optimize plant growth and to minimize consumption of energy and nutrients. Because of difficulties associated with delivering energy and nutrients remotely, a key feature of this Expert System is its ability to minimize this effort and to achieve optimum growth while taking into account the diverse range of environmental considerations that exist in an enclosed environment. The plant-growth environment for the Expert System could be made from a variety of structures, including a greenhouse, an underground cavern, or another enclosed chamber. Imaging equipment positioned within or around the chamber provides spatially distributed crop/plant-growth information. Sensors mounted in the chamber provide data and information pertaining to environmental conditions that could affect plant development. Lamps in the growth environment structure supply illumination, and other additional equipment in the chamber supplies essential nutrients and chemicals.

  20. Fuzzy control applied to nuclear power plant pressurizer system

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Mauro V.; Almeida, Jose C.S., E-mail: mvitor@ien.gov.b, E-mail: jcsa@ien.gov.b [Instituto de Engenharia Nuclear (IEN/CNEN-RJ), Rio de Janeiro, RJ (Brazil)

    2011-07-01

    In a pressurized water reactor (PWR) nuclear power plants (NPPs) the pressure control in the primary loop is very important for keeping the reactor in a safety condition and improve the generation process efficiency. The main component responsible for this task is the pressurizer. The pressurizer pressure control system (PPCS) utilizes heaters and spray valves to maintain the pressure within an operating band during steady state conditions, and limits the pressure changes, during transient conditions. Relief and safety valves provide overpressure protection for the reactor coolant system (RCS) to ensure system integrity. Various protective reactor trips are generated if the system parameters exceed safe bounds. Historically, a proportional-integral derivative (PID) controller is used in PWRs to keep the pressure in the set point, during those operation conditions. The purpose of this study has two main goals: first is to develop a pressurizer model based on artificial neural networks (ANNs); second is to develop a fuzzy controller for the PWR pressurizer pressure, and compare its performance with the P controller. Data from a simulator PWR plant was used to test the ANN and the controllers as well. The reference simulator is a Westinghouse 3-loop PWR plant with a total thermal output of 2785 MWth. The simulation results show that the pressurizer ANN model response are in reasonable agreement with the simulated power plant, and the fuzzy controller built in this study has better performance compared to the P controller. (author)

  1. Power plant instrumentation and control handbook a guide to thermal power plants

    CERN Document Server

    Basu, Swapan

    2014-01-01

    The book discusses instrumentation and control in modern fossil fuel power plants, with an emphasis on selecting the most appropriate systems subject to constraints engineers have for their projects. It provides all the plant process and design details, including specification sheets and standards currently followed in the plant. Among the unique features of the book are the inclusion of control loop strategies and BMS/FSSS step by step logic, coverage of analytical instruments and technologies for pollution and energy savings, and coverage of the trends toward filed bus systems and integratio

  2. St. Lucie nuclear plant's instrument setpoint control program

    International Nuclear Information System (INIS)

    In the past several years, instrument setpoint control has become an issue of significant utility focus and concern. Various nuclear industry initiatives have contributed to shaping the current environment. Florida Power and Light Company's St. Lucie nuclear plant maintains a proactive approach to implementing an instrument setpoint control program. St. Lucie's timely response to prevailing setpoint issues ensures that an effective setpoint program is the end result. Florida Power and Light (FP and L) initiated a setpoint control program at St. Lucie, a two-unit Combustion Engineering plant, in 1985. The plan's development was the result of obsolete equipment modifications, setpoint changes, and regulatory inquiries

  3. Seismic test of local control panel for nuclear power plant

    International Nuclear Information System (INIS)

    The safety related equipment installed in Nuclear Power Plant are required to perform a safety function during and after a seismic event. To accomplish this safety function, they must be seismically qualified in accordance with the intent and requirements of the USNRC Regulatory Guide 1.100 and IEEE Std. 344. The local control panel is a safety related equipment which provide operators with control, display and monitoring for plant operating conditions. This paper describes test procedure for seismic qualification test of local control panel which is installed in Ulchin units 3 and 4. (author)

  4. BIOLOGICAL CONTROL OF WEEDS BY MEANS OF PLANT PATHOGENS

    Directory of Open Access Journals (Sweden)

    Marija Ravlić

    2014-06-01

    Full Text Available Biological control is the use of live beneficial organisms and products of their metabolism in the pests control. Plant pathogens can be used for weed control in three different ways: as classical, conservation and augmentative (inoculative and inundated biological control. Inundated biological control involves the use of bioherbicides (mycoherbicides or artificial breeding of pathogens and application in specific stages of crops and weeds. Biological control of weeds can be used where chemical herbicides are not allowed, if resistant weed species are present or in the integrated pest management against weeds with reduced herbicides doses and other non-chemical measures, but it has certain limitations and disadvantages.

  5. Control techniques for invasive alien plants

    OpenAIRE

    Michele de Sá Dechoum; Sílvia Renate Ziller

    2013-01-01

    Invasive alien species are recognized as a major threat to the conservation of biodiversity. These species should be managed based on local and regional environmental conditions. Control techniques were tested for ten invasive species in Santa Catarina State: the trees Casuarina equisetifolia, Hovenia dulcis, Psidium guajava, Syzygium cumini, and Terminalia catappa, and shrubs and herbs Rubus fruticosus, Furcraea foetida, Hedychium coronarium, Impatiens walleriana, and Tradescantia zebrina. T...

  6. Aquatic plants and lake ecosystems

    Czech Academy of Sciences Publication Activity Database

    Pokorný, Jan; Květ, Jan

    Malden : Blackwell Science, 2004 - (O´Sullivan, P.; Reynolds, C.), s. 309-340 ISBN 0-632-04797-6 R&D Projects: GA AV ČR KSK6005114 Keywords : macrophytes * biomass * functioning Subject RIV: EF - Botanics

  7. No association between the use of Bti for mosquito control and the dynamics of non-target aquatic invertebrates in French coastal and continental wetlands.

    Science.gov (United States)

    Lagadic, Laurent; Schäfer, Ralf B; Roucaute, Marc; Szöcs, Eduard; Chouin, Sébastien; de Maupeou, Jérôme; Duchet, Claire; Franquet, Evelyne; Le Hunsec, Benoit; Bertrand, Céline; Fayolle, Stéphanie; Francés, Benoît; Rozier, Yves; Foussadier, Rémi; Santoni, Jean-Baptiste; Lagneau, Christophe

    2016-05-15

    The environmental safety of Bacillus thuringiensis subsp. israelensis (Bti) is still controversial, mainly because most of the previous field studies on its undesired effects were spatially limited and did not address the relationship between community similarity and application time and frequency. No general statement can therefore be drawn on the usage conditions of Bti that insure protection of non-target organisms. The present study was conducted in eight sites distributed over the main geographical sectors where mosquito control is implemented in mainland France and Corsica. Changes in non-target aquatic invertebrates were followed at elapsed time after repeated applications of two Bti formulations (VectoBac® WDG or 12AS) up to four consecutive years. We examined the influence of both larvicide treatments and environmental variables on community dynamics and dissimilarity between treated and control areas. As it can be argued that chironomids are the most vulnerable group of non-target invertebrates, we scrutinised potential Bti-related effects on the dynamics of their community. The use of VectoBac® WDG and 12AS in coastal and continental wetlands had no immediate or long-term detectable effect on the taxonomic structure and taxa abundance of non-target aquatic invertebrate communities, including chironomids. This applied to the main habitats where mosquito larvae occur, regardless of their geographic location. Flooding, whose frequency and duration depend on local meteorological and hydrological conditions, was identified as the main environmental driver of invertebrate community dynamics. Our findings add support to the environmental safety of currently available Bti formulations when following recommended application rates and best mosquito control practices. PMID:26930319

  8. Control room, emergency control system and local control panels in nuclear power plants

    International Nuclear Information System (INIS)

    The requirements on planning and construction of control boards including ergonomic-technical designing are specified in this rule. The specifications put the requirements on the design of place, process and environment of work, which are mentioned in the sections 90 and 91 of the labor-management relations act, into more concrete terms for the safety-relevant control panels as work places in a nuclear power station. The work places at control panels are not considered as video workstations in the sense of the 'Safety Rules for Video Workstations in the Office Sector' published by the General Association of the Industrial Trade Associations. The requirements are based on the operation and information technology realized at present in control panels of stationary nuclear power plants. (orig./HP)

  9. Design of a load following controller for APR+ nuclear plants

    International Nuclear Information System (INIS)

    A load-following operation in APR+ nuclear plants is necessary to reduce the need to adjust the boric acid concentration and to efficiently control the control rods for flexible operation. In particular, a disproportion in the axial flux distribution, which is normally caused by a load-following operation in a reactor core, causes xenon oscillation because the absorption cross-section of xenon is extremely large and its effects in a reactor are delayed by the iodine precursor. A model predictive control (MPC) method was used to design an automatic load-following controller for the integrated thermal power level and axial shape index (ASI) control for APR+ nuclear plants. Some tracking controllers employ the current tracking command only. On the other hand, the MPC can achieve better tracking performance because it considers future commands in addition to the current tracking command. The basic concept of the MPC is to solve an optimization problem for generating finite future control inputs at the current time and to implement as the current control input only the first control input among the solutions of the finite time steps. At the next time step, the procedure to solve the optimization problem is then repeated. The support vector regression (SVR) model that is used widely for function approximation problems is used to predict the future outputs based on previous inputs and outputs. In addition, a genetic algorithm is employed to minimize the objective function of a MPC control algorithm with multiple constraints. The power level and ASI are controlled by regulating the control banks and part-strength control banks together with an automatic adjustment of the boric acid concentration. The 3-dimensional MASTER code, which models APR+ nuclear plants, is interfaced to the proposed controller to confirm the performance of the controlling reactor power level and ASI. Numerical simulations showed that the proposed controller exhibits very fast tracking responses.

  10. Improved iodine and tritium control in reprocessing plants

    International Nuclear Information System (INIS)

    During spent fuel processing, iodine and tritium are distributed in many aqueous, organic and gaseous process streams, which complicates their control. Small modifications of conventional purex flow sheets, compatible with processing in the headend and the first extraction cycle are necessary to confine the iodine and the tritium to smaller plant areas. The plant area connected to the dissolver off-gas (DOG) system is suited to confine the iodine and the plant area connected to the first aqueous cycle is suited to confine the tritium. A more clear and convenient iodine and tritium control will be achieved. Relevant process steps have been studied on a lab or a pilot plant scale using I-123 and H-3 tracer

  11. Control and automation technology in United States nuclear power plants

    International Nuclear Information System (INIS)

    The need to use computers for nuclear power plant design, engineering, operation and maintenance has been growing since the inception of commercial nuclear power electricity generation in the 1960s. The needs have intensified in recent years as the demands of safety and reliability, as well as economic competition, have become stronger. The rapid advance of computer hardware and software technology in the last two decades has greatly enlarged the potential of computer applications to plant instrumentation and control of future plants, as well as those needed for operation of existing plants. The traditional role of computers for mathematical calculations and data manipulation has been expanded to automate plant control functions and to enhance human performance and productivity. The major goals of using computers for instrumentation and control of nuclear power plants are (1) to improve safety; (2) to reduce challenges to the power plant; (3) to reduce the cost of operations and maintenance; (4) to enhance power production, and (5) to increase productivity of people. Many functions in nuclear power plants are achieved by a combination of human action and automation. Increasingly, computer-based systems are used to support operations and maintenance personnel in the performance of their tasks. There are many benefits which can accrue from the use of computers but it is important to ensure that the design and implementation of the support system and the human task places the human in the correct role in relation to the machine; that is, in a management position, with the computer serving the human. In addition, consideration must be given to computer system integrity, software validation and verification, consequences of error, etc., to ensure its reliability for nuclear power plant applications. (author). 31 refs

  12. Self-control system in storage unit of PV plants

    Energy Technology Data Exchange (ETDEWEB)

    Al-Shaban, Saad; Mohmoud, Ali [Hadhramout Univ. of Science and Technology, Faculty of Engineering, Mukalla (Yemen)

    2000-04-01

    A new system for self-controlling of storage batteries being charged by PV plants has been developed. This provides enhanced system reliability, lower system cost, and simpler operation for the user. In this system, the only requirement is to design and select PV panels so that their voltage-sensitive region (on the I-V curve) coincides with that required for a simpler remote PV plant and for long periods. (Author)

  13. 五种水生植物对水中铀的去除作用%Uranium removal from water by five aquatic plants

    Institute of Scientific and Technical Information of China (English)

    胡南; 丁德馨; 李广悦; 王永东; 李乐; 郑济芳

    2012-01-01

    采用水培实验,研究了浮叶植物野生水葫芦(Eichhornia crassipes)、漂浮植物浮萍(Lemna minor L)、满江红(Azolla imbircata)、沉水植物菹草(Potamogeton crispus)、挺水植物空心莲子草(Alligator Alternanthera Herb)在初始铀浓度分别为0.15、1.50和15.00mg·L-1水中的生长状况及它们对水中铀的去除能力.结果表明,在21d的水培试验期内,满江红对铀表现出了最强的抗性,0.15、1.50和15.00mg·L-1的铀对满江红的生长抑制率分别只有4.56%、2.48%和6.79%,而满江红对水中铀的去除率分别达到了94%、97%和92%.进一步的试验表明,每1L水中种植7.5g满江红,可以获得最大的铀去除率,将初始铀浓度为1.25、2.50、5.00和10.00mg·L-1的水体降至国家排放标准(GB23727-2009)规定值(0.05mg·L-1)以下分别需要17、19、23和25d.研究结果为进一步开展铀污染水体植物修复的研究打下了基础.%Hydroponic solution culture experiments were conducted on the growth of Eichhornia crassipes,Lemna minor L,Azolla imbircata,Potamogeton crispus,and Alligator alternanthera Herb in water with 0.15,1.50 and 15.00 mg · L-1 concentrations of uranium.The uranium removal from the water by the aquatic plants was also examined.For the 21 days of hydroponic solution culture experiments,Azolla imbircata exhibited the strongest resistance to uranium and its growth inhibition rates induced by the water with 0.15,1.50 and 15.00 mg · L-1 concentrations of uranium were 4.56%,2.48%,6.79%,respectively.The uranium removal rates from the water by the plant amounted to 94%,97% and 92%,respectively.Further experiments revealed that the most uranium removal could be achieved when 7.5 g Azolla imbircata was grown in 1 L of water.17,19,23 and 25 days were required for the plant with the uranium concentration in water of 1.25,2.50,5.00 and 10.00 mg · L-1 to reduce to below the national emission standards of China,respectively.The results

  14. Revised control strategies to improve sulphur plant performance

    International Nuclear Information System (INIS)

    As a lower cost alternative to process additions or modifications for improving sulfur plant performance, strategies can yield impressive results. Traditional control strategies are discussed, including reaction furnace control (combustion air, H2S content compensation, acid gas), blower surge control, and the use of process measurement and control valves. Revised control strategies are then presented. In controlling the furnace combustion air, the objective is to use the fast-acting trim air valve to handle any rapid small disturbances while using the main air valve to handle base load. H2 content compensation is performed by monitoring the reaction furnace temperature, which provides a means of detecting H2S changes immediately. A temperature control loop is configured to adjust the air to acid gas ratio. An alternative to controlling acid gas during startup is bringing in the acid gas under flow control rather than pressure control, and let the flare pressure controller maintain the back pressure on the regeneration unit. Blower surge control is more effective using a blower flow as the control variable. New and existing instrumentation should be calibrated for the current plant load, not the design load. High resolution characterized ball valves are more desirable than the traditional butterfly valves. The revised control strategies cannot be practically implemented in pneumatic equipment and require electronic controllers. Applying the revised strategies has enabled a 0.5% increase in sulfur recovery, equivalent to a 33% decrease in stack SO2 emissions. The revised strategies also make the sulfur plants more stable during process upsets and normal operation. 4 figs., 1 tab

  15. Control and Plant Modeling for Manufacturing Systems using Basic Statecharts

    OpenAIRE

    Moura, Raimundo; Guedes, Luiz Affonso

    2010-01-01

    In this work we presented a methodology for systematizing the process of plant and control modeling of manufacturing systems. Our proposal uses a formalism based on Statecharts diagrams, called Basic Statecharts (BSC). The plant modeling has three phases which can be executed as many times as necessary. In general, this methodology represents a hybrid approach - bottom-up and top-down, allowing components reuse and keeping a one-to-one relation between plant and model (i.e., it is faithful to...

  16. Integrated control algorithms for plant environment in greenhouse

    Science.gov (United States)

    Zhang, Kanyu; Deng, Lujuan; Gong, Youmin; Wang, Shengxue

    2003-09-01

    In this paper a survey of plant environment control in artificial greenhouse was put forward for discussing the future development. Firstly, plant environment control started with the closed loop control of air temperature in greenhouse. With the emergence of higher property computer, the adaptive control algorithm and system identification were integrated into the control system. As adaptation control is more depending on observation of variables by sensors and yet many variables are unobservable or difficult to observe, especially for observation of crop growth status, so model-based control algorithm were developed. In order to evade modeling difficulty, one method is predigesting the models and the other method is utilizing fuzzy logic and neural network technology that realize the models by the black box and gray box theory. Studies on control method of plant environment in greenhouse by means of expert system (ES) and artificial intelligence (AI) have been initiated and developed. Nowadays, the research of greenhouse environment control focus on energy saving, optimal economic profit, enviornment protection and continualy develop.

  17. Bioavailability of mercury in contaminated Oak Ridge watershed and potential remediation of river/runoff/storm water by an aquatic plant - 16319

    International Nuclear Information System (INIS)

    Historically as part of its national security mission, the U.S. Department of Energy's Y-12 National Security Facility in Oak Ridge, TN, USA acquired a significant fraction of the world's supply of elemental mercury. During the 1950's and 1960's, a large amount of elemental mercury escaped confinement and is still present in the buildings and grounds of the Y-12 Facility and in the Y-12 Watershed. Because of the adverse effects of elemental mercury and mercury compounds upon human health, the Oak Ridge Site is engaged in an on-going effort to monitor and remediate the area. The main thrust of the Oak Ridge mercury remediation effort is currently scheduled for implementation in FY09. In order to more cost effectively implement those extensive remediation efforts, it is necessary now to obtain an improved understanding of the role that mercury and mercury compounds play in the Oak Ridge ecosystem. Most recently, concentrations of both total mercury and methylmercury in fish and water of lower East Fork Poplar Creek (LEFPC) of Oak Ridge increased although the majority of mercury in the site is mercury sulfide. This drives the US DOE and the Oak Ridge Site to study the long-term bioavailability of mercury and speciation at the site. The stability and bioavailability of mercury sulfide as affected by various biogeochemical conditions -presence of iron oxides have been studied. We examined the kinetic rate of dissolution of cinnabar from Oak Ridge soils and possible mechanisms and pathways in triggering the most recent increase of mercury solubility, bioavailability and mobility in Oak Ridge site. The effects of pH and chlorine on oxidative dissolution of cinnabar from cinnabar-contaminated Oak Ridge soils is discussed. On the other hand, aquatic plants might be good candidate for phyto-remediate contaminated waste water and phyto-filtration of collective storm water and surface runoff and river. Our greenhouse studies on uptake of Hg by water lettuce (Pistia stratiotes

  18. Design of a Load Following Controller for APR+ Nuclear Plants

    International Nuclear Information System (INIS)

    The load-following operation of an APR+ nuclear plants is required to restrain the adjustment of boric acid concentration and to efficiently control the control rods for the flexibility of the operation. Especially, axial flux distribution disproportion that is usually caused by load-following operation in a reactor core induces xenon oscillation because the absorption cross-section of xenon is extremely large and its effects in a reactor are delayed by the iodine precursor. Rapid and smooth power maneuvering has its benefits in view of the economical and safe operation of reactors, so it is required that the controller is efficiently designed. Therefore, the load-following operation of an APR+ nuclear plants needs the ultimate automatic control and the advanced control method that satisfies the conditions such as the flexibility, safety and convenience. A model predictive control (MPC) method is applied to design an automatic load-following controller for the integrated thermal power level and axial shape index (ASI) control for an APR+ nuclear plants. Some tracking controllers use only the current tracking command. On the other hand, since MPC considers future commands in addition to the current tracking command, the MPC can achieve better tracking performance. Therefore, the MPC has been applied very much to the control of industrial process systems. The basic concept of the MPC is to solve an optimization problem for generating finite future control inputs at current time and to implement as the current control input only the first control input among the solutions of the finite time steps. At the next time step, the second control input is not implemented and the procedure to solve the optimization problem is then repeated. The power level and the ASI are controlled by the regulating control banks and part-strength control banks together with the automatic adjustment of boric acid concentration. The 3-dimensional MASTER code, which models the APR+ nuclear

  19. Fuzzy Logic Controller for Automatic Nuclear Power Plant

    International Nuclear Information System (INIS)

    Reactor output power stabilization is the desired goal for any reactor. During the operation of the reactor, different changes in its operating conditions occur.Therefore, an automatic reactor power control is required to compensate the reactivity changes. To achieve the optimal stabilization of reactor output power, Proportional-Integral-Derivative (PID) and Fuzzy Logic Controller (FLC) approaches are developed. Evaluation of each approach is discussed. A developed reactor power plant model is suggested to analyze and compare PID and FLC controller approaches. The simulation results show that FLC controller is a good approach for automatic reactor output power control

  20. Viscosity and not biological mechanisms often controls the effects of temperature on ciliary activity and swimming velocity of small aquatic organisms

    DEFF Research Database (Denmark)

    Larsen, Poul Scheel; Riisgård, H. U.

    2009-01-01

    A number of studies have shown that temperature-dependent viscosity of the ambient water controls or strongly affects bio-mechanical activity such as beat frequency of water-pumping cilia in mussels and ascidians, swimming velocity of sperm cells, ciliates and small (micro- and meso-scale) aquatic...... organisms using cilia or small appendages for propulsion. Here we summarize results from the literature and from own studies on bio-mechanical activities in response to changing temperature or manipulated viscosity at constant temperature, both having the same change in kinematic viscosity. The survey is...... used to assess to what extent the response is purely physical/mechanical or biological. We argue that a power-law dependence of bio-mechanical activity (a) on kinematic viscosity (ν), i.e. a ~ ν^−m, should be applied to available data. Based on a general close matching of the response data to power-law...

  1. Understanding Aquatic Rhizosphere Processes Through Metabolomics and Metagenomics Approach

    Science.gov (United States)

    Lee, Yong Jian; Mynampati, Kalyan; Drautz, Daniela; Arumugam, Krithika; Williams, Rohan; Schuster, Stephan; Kjelleberg, Staffan; Swarup, Sanjay

    2013-04-01

    The aquatic rhizosphere is a region around the roots of aquatic plants. Many studies focusing on terrestrial rhizosphere have led to a good understanding of the interactions between the roots, its exudates and its associated rhizobacteria. The rhizosphere of free-floating roots, however, is a different habitat that poses several additional challenges, including rapid diffusion rates of signals and nutrient molecules, which are further influenced by the hydrodynamic forces. These can lead to rapid diffusion and complicates the studying of diffusible factors from both plant and/or rhizobacterial origins. These plant systems are being increasingly used for self purification of water bodies to provide sustainable solution. A better understanding of these processes will help in improving their performance for ecological engineering of freshwater systems. The same principles can also be used to improve the yield of hydroponic cultures. Novel toolsets and approaches are needed to investigate the processes occurring in the aquatic rhizosphere. We are interested in understanding the interaction between root exudates and the complex microbial communities that are associated with the roots, using a systems biology approach involving metabolomics and metagenomics. With this aim, we have developed a RhizoFlowCell (RFC) system that provides a controlled study of aquatic plants, observed the root biofilms, collect root exudates and subject the rhizosphere system to changes in various chemical or physical perturbations. As proof of concept, we have used RFC to test the response of root exudation patterns of Pandanus amaryllifolius after exposure to the pollutant naphthalene. Complexity of root exudates in the aquatic rhizosphere was captured using this device and analysed using LC-qTOF-MS. The highly complex metabolomic profile allowed us to study the dynamics of the response of roots to varying levels of naphthalene. The metabolic profile changed within 5mins after spiking with

  2. A minimum attention control center for nuclear power plants

    International Nuclear Information System (INIS)

    Control Centers for Nuclear Power Plants have characteristically been designed for maximum attention by the operating staffs of these plants. Consequently, the monitoring, control and diagnostics oriented cognitive activities by these staffs, were mostly ''data-driven'' in nature. This paper addresses a control center concept, under development by Combustion Engineering, that promotes a more ''information-driven'' cognitive interaction process between the operator and the plant. The more ''intelligent'' and therefore less attentive nature of such interactive process utilizes computer implemented cognitive engineered algorithms. The underlying structure of these algorithms is based upon the Critical Function/Success Path monitoring principle. The paper highlights a typical implementation of the minimum attention concept for the handling of unfamiliar safety related events. (author)

  3. Reactive power control with CHP plants - A demonstration

    DEFF Research Database (Denmark)

    Nyeng, Preben; Østergaard, Jacob; Andersen, Claus A.;

    2010-01-01

    power rating of 7.3 MW on two synchronous generators. A closed-loop control is implemented, that remote controls the CHP plant to achieve a certain reactive power flow in a near-by substation. The solution communicates with the grid operator’s existing SCADA system to obtain measurements from the......In this project the potential for ancillary services provision by distributed energy resources is investigated. Specifically, the provision of reactive power control by combined heat and power plants is examined, and the application of the new standard for DER communication systems, IEC 61850...... lines to underground cables has changed the reactive power balance, and third, the TSO has introduced restrictions in the allowed exchange of reactive power between the transmission system and distribution grids (known as the Mvar-arrangement). The demonstration includes a CHP plant with an electric...

  4. Control techniques for invasive alien plants

    Directory of Open Access Journals (Sweden)

    Michele de Sá Dechoum

    2013-03-01

    Full Text Available Invasive alien species are recognized as a major threat to the conservation of biodiversity. These species should be managed based on local and regional environmental conditions. Control techniques were tested for ten invasive species in Santa Catarina State: the trees Casuarina equisetifolia, Hovenia dulcis, Psidium guajava, Syzygium cumini, and Terminalia catappa, and shrubs and herbs Rubus fruticosus, Furcraea foetida, Hedychium coronarium, Impatiens walleriana, and Tradescantia zebrina. Treatments applied for trees were cut stump, frill and girdling or ring-barking followed by herbicide application, while the other species were treated with foliar spray, application of herbicide on the root system, cut stump and herbicide injection. The active ingredients tested were Triclopyr, Glyphosate, and the combination of Triclopyr + Fluroxipyr in concentrations from 2 to 6%, according to the species. The cut stump method was efficient for all of the woody species, while ring-barking and frilling followed by herbicide application and basal bark application resulted in different levels of efficiency for the species tested. The most efficient method for herbs and shrubs was foliar spray, and the least efficient methods were cut stump and herbicide injection.

  5. Aspects regarding computer control of 15 N separation plant

    International Nuclear Information System (INIS)

    In order to improve the efficiency of a separation plant the whole process must be automatically controlled. The plant has a single output - the isotopic product. This output is characterized by a complex function, which involves qualitative or/and quantitative properties of the product. There are two important inputs into the system, namely: the amount of the substances and compounds which supply the plant and the electric power consumption. Our first aim is to reduce the input/output ratio of the separation plant. On the other hand, by applying this automatic control system we can reduce the operating personnel also. The isotopic product is sampled and analyzed using a dedicated mass spectrometer. An overall closed loop through the separation plant including this mass spectrometer could be very efficient, but the theoretical analysis is too complex and it is very difficult to realize it in practice. Therefore, multiple local control loops are preferred to apply for each product correlated parameter. Between these parameters there are complex interdependencies, governed by differential equations. The computer is equipped with standard input/output hardware, but in order to use it in the complex feedback loops, extra input/output hardware must be added, namely, dedicated input/output module cards. Depending on the operating principle of the detectors and actuators the signals involved in the whole system are analog and digital. The majority of the sensors and transducers generates analog signals and only a few of them have digital output. The last case is typical for transducers specialized mainly for detecting the level of a parameter. Actuators also need analog or digital control signals, corresponding to their operating principles. The computer control of isotopic plant has a great advantage of being very flexible in implementing adequate control software with operator friendly interfacing routines. (authors)

  6. Tangible interfaces for virtual nuclear power plant control desk

    International Nuclear Information System (INIS)

    Due to the high safety requirements for nuclear power plant operation, control desks must be designed in such a way operators can take all the procedures safely, with a good overview of all variable indicators and easy access to actuator controls. Also, operators must see alarms indication in a way they can easily identify any abnormal conditions and bring the NPP back to normal operation. The ergonomics and human factors fields have helped evaluations to improve the design of nuclear power plant control systems. Lately, the use of virtual control desks have helped even more such evaluations, by integrating in one platform both nuclear power plant dynamics simulator with a high visual fidelity control desk proto typing. Operators can interact with these virtual control desks in a similar way as with real ones. Such a virtual control desk has been under development at Instituto de Engenharia Nuclear, IEN/CNEN. This paper reports the latest improvements, with the use of more interaction modes, to turn operation a friendlier task. An automatic speech recognition interface has been implemented as a self-contained system, by accessing directly MS Windows Application Interface, and with online neural network training for spoken commend recognition. Thus, operators can switch among different desk views. Besides this, head tracking interfaces have been integrated with the virtual control desk, to move within desk views according to users head movements. Both marker and markerless-based head tracking interfaces have been implemented. Results are shown and commented. (author)

  7. Transient behaviour and control of the ACACIA plant

    International Nuclear Information System (INIS)

    This article deals with dynamic modelling and control of the ACACIA plant. A one-dimensional flow model describing the helium flow and the two-phase water flow is used through the whole plant, with different source terms in different pieces of equipment. A stage-by-stage model is produced for the radial compressor and axial turbine. Other models include the recuperator, water/helium heat exchangers, a natural convection evaporator, valves, etc. The models have been checked by comparison of the transient behavior with several other models, e.g. produced in RELAP. The dynamic behavior of this plant is analysed and a control structure is designed. First the requirements and options for a control system design are investigated. A number of possible control valve positions in the flowsheet are tested with transients in order to make an argued choice. The model is subsequently used to determine the optimal working conditions for different heat and power demands, these are used as set-points for the control system. Then the interaction between manipulated and controlled variables is mapped and based on this information a choice for coupling them in decentralised feedback control loops is made. This control structure is then tuned and tested. It can be concluded that both heat and power demand can be followed with acceptable performance over a wide range. (author)

  8. Perception of tomorrow's nuclear power plant control rooms

    International Nuclear Information System (INIS)

    Major development programs are upgrading today's light water reactor nuclear power plant (NPP) control rooms. These programs involve displays, control panel architecture, procedures, staffing, and training, and are supported by analytical efforts to refine the definitions of the dynamics and the functional requirements of NPP operation. These programs demonstrate that the NPP control room is the visible command/control/communications center of the complex man/machine system that operates the plant. These development programs are primarily plant specific, although the owners' groups and the Institute of Nuclear Power Operations (INPO) do provide some standardization. The Idaho National Engineering Laboratory recently completed a project to categorize control room changes and estimate the degree of change. That project, plus related studies, provides the basis for this image of the next generation of NPP control rooms. The next generation of NPP control rooms is envisioned as being dominated by three current trends: (1) application of state-of-the-art computer hardware and software; (2) use of NPP dynamic analyses to provide the basis for the control room man/machine system design; and (3) application of empirical principles of human performance

  9. Control and automation technology in United States nuclear power plants

    International Nuclear Information System (INIS)

    The need to use computers for nuclear power plant design, engineering, operation and maintenance has been growing since the inception of commercial nuclear power electricity generation in the 1960s. The needs have intensified in recent years as the demands of safety and reliability, as well as economic competition, have become stronger. The rapid advanced of computer hardware and software technology in the last two decades has greatly enlarged the potential of computer applications to plant instrumentation and control of future plants, as well as those needed for operation of existing plants. The traditional role of computers for mathematical calculations and data manipulation has been expanded to automate plant control functions and to enhance human performance and productivity. The major goals of using computers for instrumentation and control of nuclear power plants are: (1) to improve safety; (2) to reduce challenges to capital investments; (3) to reduce the cost of operations and maintenance; (4) to enhance power production; and (5) to increase productivity of people. Many functions in nuclear power plants are achieved by a combination of human action and automation. Increasingly, computer-based systems are used to support operations and maintenance personnel in the performance of their tasks. There are many benefits which can accrue from the use of computers but it is important to ensure that the design and implementation of the support system, and the human task places the human in the correct role in the relation to the machine; that is, in a management position, with the computer serving the human. In addition, consideration must be given to computer system integrity, software validation and verification, consequences of error, etc., to ensure its reliability for nuclear power plant applications. (author). 31 refs

  10. Advanced Neutron Source reactor control and plant protection systems design

    International Nuclear Information System (INIS)

    This paper describes the reactor control and plant protection systems' conceptual design of the Advanced Neutron Source (ANS). The Plant Instrumentation, Control, and Data Systems and the Reactor Instrumentation and Control System of the ANS are planned as an integrated digital system with a hierarchical, distributed control structure of qualified redundant subsystems and a hybrid digital/analog protection system to achieve the necessary fast response for critical parameters. Data networks transfer information between systems for control, display, and recording. Protection is accomplished by the rapid insertion of negative reactivity with control rods or other reactivity mechanisms to shut down the fission process and reduce heat generation in the fuel. The shutdown system is designed for high functional reliability by use of conservative design features and a high degree of redundance and independence to guard against single failures. Two independent reactivity control systems of different design principles are provided, and each system has multiple independent rods or subsystems to provide appropriate margin for malfunctions such as stuck rods or other single failures. Each system is capable of maintaining the reactor in a cold shutdown condition independently of the functioning of the other system. A highly reliable, redundant channel control system is used not only to achieve high availability of the reactor, but also to reduce challenges to the protection system by maintaining important plant parameters within appropriate limits. The control system has a number of contingency features to maintain acceptable, off-normal conditions in spite of limited control or plant component failures thereby further reducing protection system challenges

  11. Optimal control of a waste water cleaning plant

    Directory of Open Access Journals (Sweden)

    Ellina V. Grigorieva

    2010-09-01

    Full Text Available In this work, a model of a waste water treatment plant is investigated. The model is described by a nonlinear system of two differential equations with one bounded control. An optimal control problem of minimizing concentration of the polluted water at the terminal time T is stated and solved analytically with the use of the Pontryagin Maximum Principle. Dependence of the optimal solution on the initial conditions is established. Computer simulations of a model of an industrial waste water treatment plant show the advantage of using our optimal strategy. Possible applications are discussed.

  12. Advanced control room design for nuclear power plants

    International Nuclear Information System (INIS)

    The power industry has seen a continuous growth of size and complexity of nuclear power plants. Accompanying these changes have been extensive regulatory requirements resulting in significant construction, operation and maintenance costs. In response to related concerns raised by industry members, Combustion Engineering developed the NUPLEX 80 Advanced Control Room. The goal of NUPLEX 80TM is to: reduce design and construction costs; increase plant safety and availability through improvements in the man-machine interface; and reduce maintenance costs. This paper provides an overview of the NUPLEX 80 Advanced Control Room and explains how the stated goals are achieved. (author)

  13. Control room systems design for nuclear power plants

    International Nuclear Information System (INIS)

    This publication provides a resource for those who are involved in researching, managing, conceptualizing, designing, manufacturing or backfitting power plant control room systems. It will also be useful to those responsible for performing reviews or evaluations of the design and facilities associated with existing power plant control room systems. The ultimate worth of the publication, however, will depend upon how well it can support its users. Readers are invited to provide comments and observations to the IAEA, Division of Nuclear Power. If appropriate, the report will subsequently be re-issued, taking such feedback into account. Refs, figs and tabs

  14. Development of assessment methodology for plant configuration control

    International Nuclear Information System (INIS)

    The purpose of this study IS the development of effective and overall assessment methodology which reflects the characteristics of plants for the surveillance, maintenance, repair and operation of nuclear power plants. In this study, recent researches are surveyed and concept definition, procedures, current PSA methodologies, implementation of various models are evaluated. Through this survey, systematic assessment methodology is suggested. Configuration control assessment methodology suggested in this study for the purpose of the development of configuration control methodology reflecting the characteristics of Korean NPPs, can be utilized as the supplement of current PSA methodologies

  15. Design of control rooms and ergonomics in power plants

    International Nuclear Information System (INIS)

    Modern power plant control rooms are characterized by automation of protection and control functions, subdivision according to functions, computer-aided information processing, and ergonomic design. Automation relieves the personnel of stress. Subdivision according to functions permits optimized procedures. Computer-aided information processing results in variable information output tailored to the actual needs. Ergonomic design assures qualified man-machine interaction. Of course, these characteristics will vary between power plants in dependence of unit power, mode of operation, and safety and availability requirements. (orig.)

  16. SUBMERGED AQUATIC VEGETATION GARDENING MX974861

    Science.gov (United States)

    The Submerged Aquatic Vegetation Gardening project will acquire the seed/seedlings of SAVs for planting, will create an SAV gardening guide; and will create SAV plots at volunteers waterfront properties. Volunteers will gather data on plant size and spacing. Water quality test ...

  17. MicroRNAs in Control of Plant Development.

    Science.gov (United States)

    Li, Chao; Zhang, Baohong

    2016-02-01

    In the long evolutionary history, plant has evolved elaborate regulatory network to control functional gene expression for surviving and thriving, such as transcription factor-regulated transcriptional programming. However, plenty of evidences from the past decade studies demonstrate that the 21-24 nucleotides small RNA molecules, majorly microRNAs (miRNAs) play dominant roles in post-transcriptional gene regulation through base pairing with their complementary mRNA targets, especially prefer to target transcription factors in plants. Here, we review current progresses on miRNA-controlled plant development, from miRNA biogenesis dysregulation-caused pleiotropic developmental defects to specific developmental processes, such as SAM regulation, leaf and root system regulation, and plant floral transition. We also summarize some miRNAs that are experimentally proved to greatly affect crop plant productivity and quality. In addition, recent reports show that a single miRNA usually displays multiple regulatory roles, such as organ development, phase transition, and stresses responses. Thus, we infer that miRNA may act as a node molecule to coordinate the balance between plant development and environmental clues, which may shed the light on finding key regulator or regulatory pathway for uncovering the mysterious molecular network. PMID:26248304

  18. On-line control systems in nuclear power plants

    International Nuclear Information System (INIS)

    The author demonstrates the development of process control systems to their present-day sophisticated state in German nuclear power plants, complete with the gradual penetration of digital devices into information systems, process control systems and, eventually, into safety control systems, while pointing to the benefits offered by the German framework conditions and the new options and potentials, and difficulties, offered by qualification. Preliminary studies and experience indicate that advanced on-line process control systems can be expected to improve maintenance, operation and health monitoring/failure diagnosis at almost identical equipment spendings and space requirements while maintaining the same level of safety or even producing a higher one. (orig.)

  19. Genetic and epigenetic control of plant heat responses

    Directory of Open Access Journals (Sweden)

    Junzhong eLiu

    2015-04-01

    Full Text Available Plants have evolved sophisticated genetic and epigenetic regulatory systems to respond quickly to unfavorable environmental conditions such as heat, cold, drought, and pathogen infections. In particular, heat greatly affects plant growth and development, immunity and circadian rhythm, and poses a serious threat to the global food supply. According to temperatures exposing, heat can be usually classified as warm ambient temperature (about 22-27℃, high temperature (27-30℃ and extremely high temperature (37-42℃, also known as heat stress for the model plant Arabidopsis thaliana. The genetic mechanisms of plant responses to heat have been well studied, mainly focusing on elevated ambient temperature-mediated morphological acclimation and acceleration of flowering, modulation of plant immunity and circadian clock by high temperatures, and thermotolerance to heat stress. Recently, great progress has been achieved on epigenetic regulation of heat responses, including DNA methylation, histone modifications, histone variants, ATP-dependent chromatin remodeling, histone chaperones, small RNAs, long non-coding RNAs and other undefined epigenetic mechanisms. These epigenetic modifications regulate the expression of heat-responsive genes and function to prevent heat-related damage. This review focuses on recent progresses regarding the genetic and epigenetic control of heat responses in plants, and pays more attention to the role of the major epigenetic mechanisms in plant heat responses. Further research perspectives are also discussed.

  20. Characterizing photosynthesis and transpiration of plant communities in controlled environments

    Science.gov (United States)

    Monje, O.; Bugbee, B.

    1996-01-01

    CO2 and water vapor fluxes of hydroponically grown wheat and soybean canopies were measured continuously in several environments with an open gas exchange system. Canopy CO2 fluxes reflect the photosynthetic efficiency of a plant community, and provide a record of plant growth and health. There were significant diurnal fluctuations in root and shoot CO2 fluxes, and in shoot water vapor fluxes. Canopy stomatal conductance (Gc) to water vapor was calculated from simultaneous measurements of canopy temperature (Tcan) and transpiration rates (Tr). Tr in the dark was substantial, and there were large diurnal fluctuations in both Gc and Tr. Canopy net Photosynthesis (Pnet), Tr, and Gc increased with increasing net radiation. Gc increased with Tr, suggesting that the stomata of plants in controlled environments (CEs) behave differently from field-grown plants. A transpiration model based on measurements of Gc was developed for CEs. The model accurately predicted Tr from a soybean canopy.