WorldWideScience

Sample records for aps ion source

  1. Investigation and optimization of parameters affecting the multiply charged ion yield in AP-MALDI MS.

    Science.gov (United States)

    Ryumin, Pavel; Brown, Jeffery; Morris, Michael; Cramer, Rainer

    2016-07-15

    Liquid matrix-assisted laser desorption/ionization (MALDI) allows the generation of predominantly multiply charged ions in atmospheric pressure (AP) MALDI ion sources for mass spectrometry (MS) analysis. The charge state distribution of the generated ions and the efficiency of the ion source in generating such ions crucially depend on the desolvation regime of the MALDI plume after desorption in the AP-to-vacuum inlet. Both high temperature and a flow regime with increased residence time of the desorbed plume in the desolvation region promote the generation of multiply charged ions. Without such measures the application of an electric ion extraction field significantly increases the ion signal intensity of singly charged species while the detection of multiply charged species is less dependent on the extraction field. In general, optimization of high temperature application facilitates the predominant formation and detection of multiply charged compared to singly charged ion species. In this study an experimental set-up and optimization strategy is described for liquid AP-MALDI MS which improves the ionization efficiency of selected ion species up to 14 times. In combination with ion mobility separation, the method allows the detection of multiply charged peptide and protein ions for analyte solution concentrations as low as 2fmol/μL (0.5μL, i.e. 1fmol, deposited on the target) with very low sample consumption in the low nL-range. PMID:26827934

  2. Research with stored multi-charged ions at the APS and the NSLS

    International Nuclear Information System (INIS)

    Potential ion beam and stored ion targets for research using synchrotron radiation from the Advance Photon Source are discussed. The difficulties of cross section measurements for the photoionization of ions with high charge q and atomic number Z are mentioned, but preliminary observations of photoionization of stored Ar2+ and Xeq+ (4 ≤ q ≤ 10) are described, and a brief discussion of the measurement technique is presented, with reference to improvements possible using undulator and wiggler radiation from the APS

  3. Status of the Advanced Photon Source (APS) linear accelerator

    International Nuclear Information System (INIS)

    A 2856-MHz S-band, 450-MeV electron/positron linear accelerator is the first part of the injector for the Advanced Photon Source (APS) 7-GeV storage ring. Construction of the APS linac is currently nearing completion, and commissioning will begin in July 1993. The linac and its current status are discussed in this paper

  4. Highly Charged Ion Sources

    International Nuclear Information System (INIS)

    In this work a study is made for the factors affecting the production and extraction of highly charged ion beams. Discussion is made for the production of highly charged ions from: the conventional vacuum are ion sources (Pinning PIG and Duoplasmatron DP) and the recent trends type which are (Electron Beam Ion Sources EBIS, Electron Cyclotron Resonance Ion Sources ECRIS and Laser Ion source LIS). The highly charged ions with charge state +7 , O+8 ,Ne+10 , Ar+18 have been extracted from the ECRIS while fully stripped Xe+54 has been extracted from EBIS. Improving the capabilities of the conventional RF ion source to produce multiply charged ions is achieved through the use of electron injection into the plasma or with the use of RF driven ion source. The later is based on coupling the RF power to the discharge through an internal antenna in vacuum are ion source. The argon ion species extracted from these upgraded RF ion sources could reach Ar+5

  5. Electron Beam Ion Sources

    CERN Document Server

    Zschornacka, G; Thorn, A

    2013-01-01

    Electron beam ion sources (EBISs) are ion sources that work based on the principle of electron impact ionization, allowing the production of very highly charged ions. The ions produced can be extracted as a DC ion beam as well as ion pulses of different time structures. In comparison to most of the other known ion sources, EBISs feature ion beams with very good beam emittances and a low energy spread. Furthermore, EBISs are excellent sources of photons (X-rays, ultraviolet, extreme ultraviolet, visible light) from highly charged ions. This chapter gives an overview of EBIS physics, the principle of operation, and the known technical solutions. Using examples, the performance of EBISs as well as their applications in various fields of basic research, technology and medicine are discussed.

  6. Vacuum Arc Ion Sources

    OpenAIRE

    Brown, I.

    2014-01-01

    The vacuum arc ion source has evolved into a more or less standard laboratory tool for the production of high-current beams of metal ions, and is now used in a number of different embodiments at many laboratories around the world. Applications include primarily ion implantation for material surface modification research, and good performance has been obtained for the injection of high-current beams of heavy-metal ions, in particular uranium, into particle accelerators. As the use of the sourc...

  7. Plasma Ion Sources

    International Nuclear Information System (INIS)

    A wide variety of ion source types has been developed. Ion sources can provide beams of hundreds of amperes for fusion applications, nano-amperes for microprobe trace analysis and broad beams for ion implantation, space thrusters, industrial polymerisation and food sterilisation. Also it can be used in medical, military and accelerators applications. In this paper, three different types of plasma ion sources with different means for producing the discharge current and the ions extracting current from the plasma are studied. The various plasma described include, d.c glow discharge plasma, arc discharge plasma and radio frequency discharge plasma

  8. Peristaltic ion source

    International Nuclear Information System (INIS)

    Conventional ion sources generate energetic ion beams by accelerating the plasma-produced ions through a voltage drop at the extractor, and since it is usual that the ion beam is to propagate in a space which is at ground potential, the plasma source is biased at extractor voltage. For high ion beam energy the plasma source and electrical systems need to be raised to high voltage, a task that adds considerable complexity and expense to the total ion source system. The authors have developed a system which though forming energetic ion beams at ground potential as usual, operates with the plasma source and electronics at ground potential also. Plasma produced by a nearby source streams into a grided chamber that is repetitively pulsed from ground to high positive potential, sequentially accepting plasma into its interior region and ejecting it energetically. They call the device a peristaltic ion source. In preliminary tests they've produced nitrogen and titanium ion beams at energies from 1 to 40 keV. Here they describe the philosophy behind the approach, the test embodiment that they have made, and some preliminary results

  9. Status of the Advanced Photon Source (APS) linear accelerator

    International Nuclear Information System (INIS)

    A 2856-MHz S-band, electron-positron linear accelerator (linac) has been constructed at the Advanced Photon Source (APS). It is the source of particles and the injector for the other APS accelerators, and linac commissioning is well underway. The linac is operated 24 hours per day to support linac beam studies and rf conditioning, as well as positron accumulator ring and synchrotron commissioning studies. The design goal for accelerated positron current is 8-mA, and has been met. Maximum positron energy to date is 420-MeV, approaching the design goal of 450-MeV. The linac design and its performance are discussed

  10. Radio frequency ion source

    CERN Document Server

    Shen Guan Ren; Gao Fu; LiuNaiYi

    2001-01-01

    The study on Radio Frequency Ion Source is mainly introduced, which is used for CIAE 600kV ns Pulse Neutron Generator; and obtained result is also presented. The RF ion source consists of a diameter phi 25 mm, length 200 mm, coefficient of expansion =3.5 mA, beam current on target >=1.5 mA, beam spot =100 h.

  11. Microwave Discharge Ion Sources

    CERN Document Server

    Celona, L

    2013-01-01

    This chapter describes the basic principles, design features and characteristics of microwave discharge ion sources. A suitable source for the production of intense beams for high-power accelerators must satisfy the requirements of high brightness, stability and reliability. The 2.45 GHz off-resonance microwave discharge sources are ideal devices to generate the required beams, as they produce multimilliampere beams of protons, deuterons and singly charged ions. A description of different technical designs will be given, analysing their performance, with particular attention being paid to the quality of the beam, especially in terms of its emittance.

  12. Nanophotonic Ion Sources

    Science.gov (United States)

    Stolee, Jessica A.; Walker, Bennett N.; Chen, Yong; Vertes, Akos

    2010-10-01

    Interactions between laser radiation and photonic structures at elevated laser intensities give rise to the production of positive and negative ions from adsorbates. These new types of ion sources exhibit properties that are significantly different from conventional laser desorption ionization sources. In this contribution comparisons are made between matrix-assisted laser desorption ionization (MALDI) of biomolecules with ion production from laser-induced silicon microcolumn arrays (LISMA) and nanopost arrays (NAPA). The sharp increase of ion yields from the nanophotonic ion sources follow a power law behavior with an exponent of up to n≈7, whereas in the case of MALDI n≈5. The strong field enhancement in the vicinity of the columns and posts scales with their aspect ratio. Slender high aspect ratio posts show reduced laser fluence threshold for ionization. Posts with diameters at or below the thermal diffusion length demonstrate high surface temperatures due to the radial confinement of the deposited energy. As a consequence enhanced fragmentation, i.e., lower survival yield of the molecular ions is observed. The origin of protons in the ionization of adsorbates was identified as the entrapped residues of the solvent.

  13. Tandem Terminal Ion Source

    International Nuclear Information System (INIS)

    OAK-B135 Tandem Terminal Ion Source. The terminal ion source (TIS) was used in several experiments during this reporting period, all for the(sup 7)Be((gamma))(sup 8)B experiment. Most of the runs used(sup 1)H(sup+) at terminal voltages from 0.3 MV to 1.5 MV. One of the runs used(sup 2)H(sup+) at terminal voltage of 1.4 MV. The other run used(sup 4)He(sup+) at a terminal voltage of 1.37 MV. The list of experiments run with the TIS to date is given in table 1 below. The tank was opened four times for unscheduled source repairs. On one occasion the tank was opened to replace the einzel lens power supply which had failed. The 10 kV unit was replaced with a 15 kV unit. The second time the tank was opened to repair the extractor supply which was damaged by a tank spark. On the next occasion the tank was opened to replace a source canal which had sputtered away. Finally, the tank was opened to replace the discharge bottle which had been coated with aluminum sputtered from the exit canal

  14. Tandem Terminal Ion Source

    International Nuclear Information System (INIS)

    OAK-B135 Tandem Terminal Ion Source. The terminal ion source (TIS) was used in several experiments during this reporting period, all for the 7Be(γ)8B experiment. Most of the runs used 1H+ at terminal voltages from 0.3 MV to 1.5 MV. One of the runs used 2H+ at terminal voltage of 1.4 MV. The other run used 4He+ at a terminal voltage of 1.37 MV. The list of experiments run with the TIS to date is given in table 1 below. The tank was opened four times for unscheduled source repairs. On one occasion the tank was opened to replace the einzel lens power supply which had failed. The 10 kV unit was replaced with a 15 kV unit. The second time the tank was opened to repair the extractor supply which was damaged by a tank spark. On the next occasion the tank was opened to replace a source canal which had sputtered away. Finally, the tank was opened to replace the discharge bottle which had been coated with aluminum sputtered from the exit canal

  15. GANIL Workshop on Ion Sources

    International Nuclear Information System (INIS)

    The proceedings of the GANIL Workshop on Ion Sources held at GANIL - Caen on 18-19 March 1999 contains 13 papers aiming at improving the old source operation and developing new types of sources for nuclear research and studies of ion physics. A number of reports are devoted to applications like surface treatment, ion implantation or fusion injection. The 1+→n+ transformation, charged particle transport in ECR sources, addition of cesium and xenon in negative ion sources and other basic issues in ion sources are also addressed

  16. A Cold Strontium Ion Source

    Science.gov (United States)

    Erickson, Christopher J.; Lyon, Mary; Blaser, Kelvin; Harper, Stuart; Durfee, Dallin

    2010-03-01

    We present a cold ion source for strontium 87. The source is based off of a standard Low-Velocity-Intense-Source (LVIS) for strontium using permanent magnets in place of anti-Helmholtz coils. Atoms from the LVIS are then ionized in a two photon process as they pass a 20kV anode plate. The result is a mono-energetic beam of ions whose velocity is tunable. Applications for the ions include spectroscopy and ion interferometry.

  17. Review of Polarized Ion Sources

    Science.gov (United States)

    Zelenski, A.

    2016-02-01

    Recent progress in polarized ion sources development is reviewed. New techniques for production of polarized H‑ ion (proton), D‑ (D+) and 3He++ ion beams will be discussed. A novel polarization technique was successfully implemented for the upgrade of the RHIC polarized H‑ ion source to higher intensity and polarization. In this technique, a proton beam inside the high magnetic field solenoid is produced by ionization of the atomic hydrogen beam (from an external source) in the He-gas ionizer cell. Polarized electron capture from the optically-pumped Rb vapor further produces proton polarization (Optically Pumped Polarized Ion Source technique). The upgraded source reliably delivered beam for the 2013 polarized run in RHIC at S = 510 GeV. This was a major factor contributing to RHIC polarization increase to over 60 % for colliding beams. Feasibility studies of a new polarization technique for polarized 3He++ source based on BNL Electron Beam Ion Source is also discussed.

  18. Operation of ECR Ion Source

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    In 2001, ECR ion source was operated for HIRFL about 5138 hours and 8 species of ion beams, such as ~(12)C~(4+), ~(12)C~(5+), ~(36)Ar~(11+),~(13)C~(4+),~(40)Ca~(11+),~(40)Ar~(11+),~(56)Fe~(10+) and ~(18)O~(6+) were provided. Among these ions,~(56)Fe~(10+)is a new ion beam. In this period, 14 experiments of heavy ion physics application and nuclear research were finished.

  19. Recent progress in ion sources

    International Nuclear Information System (INIS)

    This paper is intended to survey recent developments in ion sources, particularly work reported at the ''Symposium on Ion Sources and the Formation of Ion Beams'' held in Berkeley in October 1974. The approach here will be to subdivide this topic into three main areas; briefly list and discuss notable progress in each; and finally add some additional detail through a few specific, selected examples. The major items of progress discussed include development of large-area plasma surfaces for multiple- aperture ion sources, a significant increase in available negative-ion current densities, and improved general agreement between extraction electrode design and performance. (U.S.)

  20. Ion sources for electrostatic accelerators

    International Nuclear Information System (INIS)

    Maybe the most important part of an electrostatic accelerator system, and also often the most tricky part is the ion source. There has been a rapid growth in activity in ion-source research and development during the last two to three decades. Some of these developments have also been of benefit to electrostatic accelerator users. In this report some of the different types of ion sources used in electrostatic accelerators are described. The list is not complete but more an overview of some of the more commonly used sources. The description is divided into two groups; positive ion sources for single stage electrostatic accelerators and negative ion sources for two stages (i.e. tandem) accelerators

  1. THE CUSP ECR ION SOURCE

    OpenAIRE

    Sudlitz, K.

    1989-01-01

    A Cusp ECR ion source is being developed in Warsaw University to be used on U-200 heavy ion cyclotron. The main goal of the work is the test of the idea of an ECR source constructed without permanent magnets and by means of an inexpensive 2.45GHz generator.

  2. Negative ion sources for tandem accelerator

    International Nuclear Information System (INIS)

    Four kinds of negative ion sources (direct extraction Duoplasmatron ion source, radial extraction Penniing ion source, lithium charge exchange ion source and Middleton-type sputter ion source) have been installed in the JAERI tandem accelerator. The ion sources can generate many negative ions ranging from Hydrogen to Uranium with the exception of Ne, Ar, Kr, Xe and Rn. Discussions presented in this report include mechanisms of negative ion formation, electron affinity and stability of negative ions, performance of the ion sources and materials used for negative ion production. Finally, the author will discuss difficult problems to be overcome in order to get any negative ion sufficiently. (author)

  3. Gas and metal ion sources

    Energy Technology Data Exchange (ETDEWEB)

    Oaks, E. [High Current Electronics Institute, Tomsk (Russian Federation)]|[State Academy of Control System and Radioelectronics, Tomsk (Russian Federation); Yushkov, G. [High Current Electronics Institute, Tomsk (Russian Federation)

    1996-08-01

    The positive ion sources are now of interest owing to both their conventional use, e.g., as injectors in charged-particle accelerators and the promising capabilities of intense ion beams in the processes related to the action of ions on various solid surfaces. For industrial use, the sources of intense ion beams and their power supplies should meet the specific requirements as follows: They should be simple, technologically effective, reliable, and relatively low-cost. Since the scanning of an intense ion beam is a complicated problem, broad ion beams hold the greatest promise. For the best use of such beams it is desirable that the ion current density be uniformly distributed over the beam cross section. The ion beam current density should be high enough for the treatment process be accomplished for an acceptable time. Thus, the ion sources used for high-current, high-dose metallurgical implantation should provide for gaining an exposure dose of {approximately} 10{sup 17} cm{sup {minus}2} in some tens of minutes. So the average ion current density at the surface under treatment should be over 10{sup {minus}5} A/cm{sup 2}. The upper limit of the current density depends on the admissible heating of the surface under treatment. The accelerating voltage of an ion source is dictated by its specific use; it seems to lie in the range from {approximately}1 kV (for the ion source used for surface sputtering) to {approximately}100 kV and over (for the ion sources used for high-current, high-dose metallurgical implantation).

  4. Resonance Ionization Laser Ion Sources

    CERN Document Server

    Marsh, B

    2013-01-01

    The application of the technique of laser resonance ionization to the production of singly charged ions at radioactive ion beam facilities is discussed. The ability to combine high efficiency and element selectivity makes a resonance ionization laser ion source (RILIS) an important component of many radioactive ion beam facilities. At CERN, for example, the RILIS is the most commonly used ion source of the ISOLDE facility, with a yearly operating time of up to 3000 hours. For some isotopes the RILIS can also be used as a fast and sensitive laser spectroscopy tool, provided that the spectral resolution is sufficiently high to reveal the influence of nuclear structure on the atomic spectra. This enables the study of nuclear properties of isotopes with production rates even lower than one ion per second and, in some cases, enables isomer selective ionization. The solutions available for the implementation of resonance laser ionization at radioactive ion beam facilities are summarized. Aspects such as the laser r...

  5. Jet laser ion source

    International Nuclear Information System (INIS)

    External laser injector of multicharged ions (MCI) is developed in which wide-aperture aberration-free wire gauze spherical shape electrodes are applied for effective MCI extraction from laser plasma and beam focusing. Axial plasma compression by solenoid magnetic field is used to reduce ion losses due to transverse movement of the scattering laser plasma. Transverse magnetic field created by another solenoid facilitates the effective laser plasma braking and consequently, leads to the narrowing of energy spectrum of plasma ions and its shift towards lower energies. 2 refs.; 3 figs

  6. The DCU laser ion source

    OpenAIRE

    Yeates, Patrick; Costello, John T.; Kennedy, Eugene T.

    2010-01-01

    Laser ion sources are used to generate and deliver highly charged ions of various masses and energies. We present details on the design and basic parameters of the DCU laser ion source (LIS). The theoretical aspects of a high voltage (HV) linear LIS are presented and the main issues surrounding laser-plasma formation, ion extraction and modeling of beam transport in relation to the operation of a LIS are detailed. A range of laser power densities (I ∼ 108–1011 W cm−2) and fluences (F = 0.1–3....

  7. Industrial ion sources broadbeam gridless ion source technology

    CERN Document Server

    Zhurin, Viacheslav V

    2012-01-01

    Due to the large number of uses of ion sources in academia and industry, those who utilize these sources need up to date and coherent information to keep themselves abreast of developments and options, and to chose ideal solutions for quality and cost-effectiveness. This book, written by an author with a strong industrial background and excellent standing, is the comprehensive guide users and developers of ion sources have been waiting for. Providing a thorough refresher on the physics involved, this resource systematically covers the source types, components, and the operational parameters.

  8. Synthetic plasma ion source

    International Nuclear Information System (INIS)

    An improved crossed-beam charge-exchange ion gun in which a synthetic plasma is formed by injecting an electron beam into a collimated molecular beam just before the molecules are ionized by charge exchange with a crossed primary ion beam, thereby forming a secondary ion beam from the ionized but space-charge-neutralized and substantially undeflected molecular beam. The plasma thus formed extends to an aperture stop in an aperture tube which extends upstream from an anode downstream of which anode a cathode is placed. A field is formed within the cathode/anode space and within the aperture tube into which the plasma extends. The sheath edge of the plasma within the tube is curved by the field to form a meniscus, and the aperture, being smaller in area than the secondary ion beam upstream of the aperture, both collimates the secondary ion beam and acts as a lens stop for the subsequent immersion lens formed by the meniscus and the field region

  9. Ion optics in an ion source system

    International Nuclear Information System (INIS)

    An analysis of ion beams from an ion source which consisted of a hemispherical anode, a plane earthed cathode, and a focusing electrode has been carried out. The focal properties of such electrode arrangement were studied using axially symmetric fields. Axial and radial electric fields were obtained as functions of the axial distance. It was found that the radial component of the gradient of potential pushes the ions towards the axis, which indicates the convergent action of the system. The effect of voltage variation between the boundary and the focusing electrode on the position of the plasma boundary are given using the experimental data of the ion source characteristics and its geometrical parameters. The advantages of plasma diffusing outside the source through a small aperture were used by applying a potential to the focusing electrode. It was possible to extract a large ion current from the expanded plasma. The system constituted a lens with a focal length of 29.4 mm. 7 figs

  10. Development of ion sources for ion projection lithography

    International Nuclear Information System (INIS)

    Multicusp ion sources are capable of generating ion beams with low axial energy spread as required by the Ion Projection Lithography (IPL). Longitudinal ion energy spread has been studied in two different types of plasma discharge: the filament discharge ion source characterized by its low axial energy spread, and the RF-driven ion source characterized by its long source lifetime. For He+ ions, longitudinal ion energy spreads of 1-2 eV were measured for a filament discharge multicusp ion source which is within the IPL device requirements. Ion beams with larger axial energy spread were observed in the RF-driven source. A double-chamber ion source has been designed which combines the advantages of low axial energy spread of the filament discharge ion source with the long lifetime of the RF-driven source. The energy spread of the double chamber source is lower than that of the RF-driven source

  11. Cold Strontium Ion Source for Ion Interferometry

    Science.gov (United States)

    Jackson, Jarom; Durfee, Dallin

    2015-05-01

    We are working on a cold source of Sr Ions to be used in an ion interferometer. The beam will be generated from a magneto-optical trap (MOT) of Sr atoms by optically ionizing atoms leaking out a carefully prepared hole in the MOT. A single laser cooling on the resonant transition (461 nm) in Sr should be sufficient for trapping, as we've calculated that losses to the atom beam will outweigh losses to dark states. Another laser (405 nm), together with light from the trapping laser, will drive a two photon transition in the atom beam to an autoionizing state. Supported by NSF Award No. 1205736.

  12. Hollow cathode hydrogen ion source

    International Nuclear Information System (INIS)

    High current density ion sources have been used to heat plasmas in controlled thermonuclear reaction experiments. High beam currents imply relatively high emission currents from cathodes which have generally taken the form of tungsten filaments. This paper describes a hydrogen ion source which was primarily developed to assess the emission current capability and design requirements for hollow cathodes for application in neutral injection devices. The hydrogen source produced ions by electron bombardment via a single hollow cathode. Source design followed mercury ion thruster technology, using a weak magnetic field to enhance ionization efficiency. A 1.3-cm diameter hollow cathode using a low work function material dispenser performed satisfactorily over a discharge current range of 10 to 90 A. Cylindrical probe measurements taken without ion extraction indicate maximum ion number densities on the order of 1012 cm-3. Discharge durations ranged from 30 seconds to continuous operation. Tests with beam extraction at 2.5 keV and 30 A discharge current yield average ion beam current densities of 0.1 A cm-2 over a 5-cm extraction diameter. Results of this study can be used to supply the baseline information needed to scale hollow cathodes for operation at discharge currents of hundreds of amperes using distributed cathodes

  13. An on-line Nielsen ion source

    International Nuclear Information System (INIS)

    The integrated target ion source is a key component of an on-line isotope separator. The paper shows how to convert a commercial standard Nielsen ion source to an on-line ion source. Some performance tests are described. the differences between two ion sources and the reasons for causing the difference are discussed. It is shown that the modified ion source can be used as an integrated target ion source due to its desirable discharging performance

  14. Vacuum Technology for Ion Sources

    OpenAIRE

    Chiggiato, P.

    2014-01-01

    The basic notions of vacuum technology for ion sources are presented, with emphasis on pressure profile calculation and choice of pumping technique. A Monte Carlo code (Molflow+) for the evaluation of conductances and the vacuum-electrical analogy for the calculation of time-dependent pressure variations are introduced. The specific case of the Linac4 H- source is reviewed.

  15. Status of ITEP decaborane ion source program

    International Nuclear Information System (INIS)

    The joint research and development program is continued to develop steady-state ion source of decaborane beam for ion implantation industry. Both Freeman and Bernas ion sources for decaborane ion beam generation were investigated. Decaborane negative ion beam as well as positive ion beam were generated and delivered to the output of mass separator. Experimental results obtained in ITEP are presented

  16. Bernas ion source discharge simulation

    International Nuclear Information System (INIS)

    As the technology and applications continue to grow up, the development of plasma and ion sources with clearly specified characteristic is required. Therefore comprehensive numerical studies at the project stage are the key point for ion implantation source manufacturing (especially for low energy implantation). Recently the most commonly encountered numerical approach is the Monte Carlo particle-in-cell (MCPIC) method also known as particle-in-cell method with Monte Carlo collisions. In ITEP the 2D3V numerical code PICSIS-2D realizing MCPIC method was developed in the framework of the joint research program. We present first results of the simulation for several materials interested in semiconductors. These results are compared with experimental data obtained at the ITEP ion source test bench

  17. The DCU laser ion source

    International Nuclear Information System (INIS)

    Laser ion sources are used to generate and deliver highly charged ions of various masses and energies. We present details on the design and basic parameters of the DCU laser ion source (LIS). The theoretical aspects of a high voltage (HV) linear LIS are presented and the main issues surrounding laser-plasma formation, ion extraction and modeling of beam transport in relation to the operation of a LIS are detailed. A range of laser power densities (I∼108-1011 W cm-2) and fluences (F=0.1-3.9 kJ cm-2) from a Q-switched ruby laser (full-width half-maximum pulse duration ∼35 ns, λ=694 nm) were used to generate a copper plasma. In ''basic operating mode,'' laser generated plasma ions are electrostatically accelerated using a dc HV bias (5-18 kV). A traditional einzel electrostatic lens system is utilized to transport and collimate the extracted ion beam for detection via a Faraday cup. Peak currents of up to I∼600 μA for Cu+ to Cu3+ ions were recorded. The maximum collected charge reached 94 pC (Cu2+). Hydrodynamic simulations and ion probe diagnostics were used to study the plasma plume within the extraction gap. The system measured performance and electrodynamic simulations indicated that the use of a short field-free (L=48 mm) region results in rapid expansion of the injected ion beam in the drift tube. This severely limits the efficiency of the electrostatic lens system and consequently the sources performance. Simulations of ion beam dynamics in a ''continuous einzel array'' were performed and experimentally verified to counter the strong space-charge force present in the ion beam which results from plasma extraction close to the target surface. Ion beam acceleration and injection thus occur at ''high pressure.'' In ''enhanced operating mode,'' peak currents of 3.26 mA (Cu2+) were recorded. The collected currents of more highly charged ions (Cu4+-Cu6+) increased considerably in this mode of operation.

  18. The DCU laser ion source.

    Science.gov (United States)

    Yeates, P; Costello, J T; Kennedy, E T

    2010-04-01

    Laser ion sources are used to generate and deliver highly charged ions of various masses and energies. We present details on the design and basic parameters of the DCU laser ion source (LIS). The theoretical aspects of a high voltage (HV) linear LIS are presented and the main issues surrounding laser-plasma formation, ion extraction and modeling of beam transport in relation to the operation of a LIS are detailed. A range of laser power densities (I approximately 10(8)-10(11) W cm(-2)) and fluences (F=0.1-3.9 kJ cm(-2)) from a Q-switched ruby laser (full-width half-maximum pulse duration approximately 35 ns, lambda=694 nm) were used to generate a copper plasma. In "basic operating mode," laser generated plasma ions are electrostatically accelerated using a dc HV bias (5-18 kV). A traditional einzel electrostatic lens system is utilized to transport and collimate the extracted ion beam for detection via a Faraday cup. Peak currents of up to I approximately 600 microA for Cu(+) to Cu(3+) ions were recorded. The maximum collected charge reached 94 pC (Cu(2+)). Hydrodynamic simulations and ion probe diagnostics were used to study the plasma plume within the extraction gap. The system measured performance and electrodynamic simulations indicated that the use of a short field-free (L=48 mm) region results in rapid expansion of the injected ion beam in the drift tube. This severely limits the efficiency of the electrostatic lens system and consequently the sources performance. Simulations of ion beam dynamics in a "continuous einzel array" were performed and experimentally verified to counter the strong space-charge force present in the ion beam which results from plasma extraction close to the target surface. Ion beam acceleration and injection thus occur at "high pressure." In "enhanced operating mode," peak currents of 3.26 mA (Cu(2+)) were recorded. The collected currents of more highly charged ions (Cu(4+)-Cu(6+)) increased considerably in this mode of operation

  19. Electron-Beam Ion Source MIS-1

    International Nuclear Information System (INIS)

    INP develops and produces electron-beam ion sources of multicharged ions. These ion sources provide a high density of the electron beam in the ionization area at the ion trap ≥ 103 A/cm2. They produce multicharge ions of various elements, both gaseous and solid ones. These ion sources successfully employ the technique of the dozed inlet of solid elements atoms into the ion trap

  20. On plasma ion beam formation in the Advanced Plasma Source

    International Nuclear Information System (INIS)

    The Advanced Plasma Source (APS) is employed for plasma ion-assisted deposition (PIAD) of optical coatings. The APS is a hot cathode dc glow discharge which emits a plasma ion beam to the deposition chamber at high vacuum (p ≲ 2 × 10−4 mbar). It is established as an industrial tool but to date no detailed information is available on plasma parameters in the process chamber. As a consequence, the details of the generation of the plasma ion beam and the reasons for variations of the properties of the deposited films are barely understood. In this paper the results obtained from Langmuir probe and retarding field energy analyzer diagnostics operated in the plasma plume of the APS are presented, where the source was operated with argon. With increasing distance to the source exit the electron density (ne) is found to drop by two orders of magnitude and the effective electron temperature (Te,eff) drops by a factor of five. The parameters close to the source region read ne ≳ 1011 cm−3 and Te,eff ≳ 10 eV. The electron distribution function exhibits a concave shape and can be described in the framework of the non-local approximation. It is revealed that an energetic ion population leaves the source region and a cold ion population in the plume is build up by charge exchange collisions with the background neutral gas. Based on the experimental data a scaling law for ion beam power is deduced, which links the control parameters of the source to the plasma parameters in the process chamber. (paper)

  1. Laserspray ionization on a commercial atmospheric pressure-MALDI mass spectrometer ion source: selecting singly or multiply charged ions.

    Science.gov (United States)

    McEwen, Charles N; Larsen, Barbara S; Trimpin, Sarah

    2010-06-15

    Multiply charged ions, similar to those obtained with electrospray ionization, are produced at atmospheric pressure (AP) using standard MALDI conditions of laser fluence and reflective geometry. Further, the charge state can be switched to singly charged ions nearly instantaneously by changing the voltage applied to the MALDI target plate. Under normal AP-MALDI operating conditions in which a voltage is applied to the target plate, primarily singly charged ions are observed, but at or near zero volts, highly charged ions are observed for peptides and proteins. Thus, switching between singly and multiply charged ions requires only manipulation of a single voltage. As in ESI, multiple charging, produced using the AP-MALDI source, allows compounds with molecular weights beyond the mass-to-charge limit of the mass spectrometer to be observed and improves the fragmentation relative to singly charged ions. PMID:20469839

  2. Recent progress in ion sources and preaccelerators

    International Nuclear Information System (INIS)

    Recent progress in ion sources is reviewed. The types of sources discussed include positive and negative proton and deuteron sources developed for conventional preaccelerators and for neutral beam applications. Positive heavy ion sources for conventional linacs and for induction linacs are included. Negative heavy ion sources are used for tandem electrostatic accelerators. Positive and negative polarized ion sources for protons and deuterons inject cyclotrons, tandems, and linacs. Some recent preaccelerator designs are summarized

  3. Linac4 H⁻ ion sources.

    Science.gov (United States)

    Lettry, J; Aguglia, D; Alessi, J; Andersson, P; Bertolo, S; Briefi, S; Butterworth, A; Coutron, Y; Dallocchio, A; David, N; Chaudet, E; Faircloth, D; Fantz, U; Fink, D A; Garlasche, M; Grudiev, A; Guida, R; Hansen, J; Haase, M; Hatayama, A; Jones, A; Koszar, I; Lallement, J-B; Lombardi, A M; Machado, C; Mastrostefano, C; Mathot, S; Mattei, S; Moyret, P; Nisbet, D; Nishida, K; O'Neil, M; Paoluzzi, M; Scrivens, R; Shibata, T; Steyaert, D; Thaus, N; Voulgarakis, G

    2016-02-01

    CERN's 160 MeV H(-) linear accelerator (Linac4) is a key constituent of the injector chain upgrade of the Large Hadron Collider that is being installed and commissioned. A cesiated surface ion source prototype is being tested and has delivered a beam intensity of 45 mA within an emittance of 0.3 π ⋅ mm ⋅ mrad. The optimum ratio of the co-extracted electron- to ion-current is below 1 and the best production efficiency, defined as the ratio of the beam current to the 2 MHz RF-power transmitted to the plasma, reached 1.1 mA/kW. The H(-) source prototype and the first tests of the new ion source optics, electron-dump, and front end developed to minimize the beam emittance are presented. A temperature regulated magnetron H(-) source developed by the Brookhaven National Laboratory was built at CERN. The first tests of the magnetron operated at 0.8 Hz repetition rate are described. PMID:26932021

  4. Linac4 H- ion sources

    Science.gov (United States)

    Lettry, J.; Aguglia, D.; Alessi, J.; Andersson, P.; Bertolo, S.; Briefi, S.; Butterworth, A.; Coutron, Y.; Dallocchio, A.; David, N.; Chaudet, E.; Faircloth, D.; Fantz, U.; Fink, D. A.; Garlasche, M.; Grudiev, A.; Guida, R.; Hansen, J.; Haase, M.; Hatayama, A.; Jones, A.; Koszar, I.; Lallement, J.-B.; Lombardi, A. M.; Machado, C.; Mastrostefano, C.; Mathot, S.; Mattei, S.; Moyret, P.; Nisbet, D.; Nishida, K.; O'Neil, M.; Paoluzzi, M.; Scrivens, R.; Shibata, T.; Steyaert, D.; Thaus, N.; Voulgarakis, G.

    2016-02-01

    CERN's 160 MeV H- linear accelerator (Linac4) is a key constituent of the injector chain upgrade of the Large Hadron Collider that is being installed and commissioned. A cesiated surface ion source prototype is being tested and has delivered a beam intensity of 45 mA within an emittance of 0.3 π ṡ mm ṡ mrad. The optimum ratio of the co-extracted electron- to ion-current is below 1 and the best production efficiency, defined as the ratio of the beam current to the 2 MHz RF-power transmitted to the plasma, reached 1.1 mA/kW. The H- source prototype and the first tests of the new ion source optics, electron-dump, and front end developed to minimize the beam emittance are presented. A temperature regulated magnetron H- source developed by the Brookhaven National Laboratory was built at CERN. The first tests of the magnetron operated at 0.8 Hz repetition rate are described.

  5. Triplemafios: a multicharged heavy ion source

    International Nuclear Information System (INIS)

    The principle and the characteristics of the ion source 'Triplemafios' are described. We also furnish the upto date performances concerning the ion charge states, ion currents and globale emittances of the beam

  6. Cs+ ion source for secondary ion mass spectrometry

    International Nuclear Information System (INIS)

    Various types of cesium ionization sources currently used in secondary ion mass spectrometry are briefly reviewed, followed by a description of the design and performance of a novel, thermal surface ionization Cs+ source developed in this laboratory. The source was evaluated for secondary ion mass spectrometry applications using the COALA ion microprobe mass analyzer. (orig.)

  7. Recent progress in heavy ion sources

    Energy Technology Data Exchange (ETDEWEB)

    Clark, D.J.

    1977-03-01

    A summary is given of the progress during the last several years in the technology of sources of high charge state positive heavy ions and negative heavy ions. Subjects covered include recent results in ECR and EBIS source development and comparison of various source types for high charge state heavy ions.

  8. Liquid metal ion source assembly for external ion injection into an electron string ion source (ESIS)

    Energy Technology Data Exchange (ETDEWEB)

    Segal, M. J., E-mail: mattiti@gmail.com [iThemba LABS, P.O. Box 722, Somerset West 7130 (South Africa); University of Cape Town, Rondebosch, Cape Town 7700 (South Africa); Bark, R. A.; Thomae, R. [iThemba LABS, P.O. Box 722, Somerset West 7130 (South Africa); Donets, E. E.; Donets, E. D.; Boytsov, A.; Ponkin, D.; Ramsdorf, A. [Joint Institute for Nuclear Research, Joloit-Curie 6, 141980 Dubna, Moscow Region (Russian Federation)

    2016-02-15

    An assembly for a commercial Ga{sup +} liquid metal ion source in combination with an ion transportation and focusing system, a pulse high-voltage quadrupole deflector, and a beam diagnostics system has been constructed in the framework of the iThemba LABS (Cape Town, South Africa)—JINR (Dubna, Russia) collaboration. First, results on Ga{sup +} ion beam commissioning will be presented. Outlook of further experiments for measurements of charge breeding efficiency in the electron string ion source with the use of external injection of Ga{sup +} and Au{sup +} ion beams will be reported as well.

  9. Liquid metal ion source assembly for external ion injection into an electron string ion source (ESIS)

    Science.gov (United States)

    Segal, M. J.; Bark, R. A.; Thomae, R.; Donets, E. E.; Donets, E. D.; Boytsov, A.; Ponkin, D.; Ramsdorf, A.

    2016-02-01

    An assembly for a commercial Ga+ liquid metal ion source in combination with an ion transportation and focusing system, a pulse high-voltage quadrupole deflector, and a beam diagnostics system has been constructed in the framework of the iThemba LABS (Cape Town, South Africa)—JINR (Dubna, Russia) collaboration. First, results on Ga+ ion beam commissioning will be presented. Outlook of further experiments for measurements of charge breeding efficiency in the electron string ion source with the use of external injection of Ga+ and Au+ ion beams will be reported as well.

  10. Laser ion source for isobaric heavy ion collider experiment

    Energy Technology Data Exchange (ETDEWEB)

    Kanesue, T., E-mail: tkanesue@bnl.gov; Okamura, M. [Collider-Accelerator Department, Brookhaven National Laboratory, Upton, New York 11973 (United States); Kumaki, M. [Research Institute for Science and Engineering, Waseda University, Tokyo 169-8555 (Japan); Nishina Center for Accelerator-Based Science, RIKEN, Saitama 351-0198 (Japan); Ikeda, S. [Nishina Center for Accelerator-Based Science, RIKEN, Saitama 351-0198 (Japan); Interdisciplinary Graduate School of Science and Engineering, Tokyo Institute of Technology, Kanagawa 226-8503 (Japan)

    2016-02-15

    Heavy-ion collider experiment in isobaric system is under investigation at Relativistic Heavy Ion Collider. For this experiment, ion source is required to maximize the abundance of the intended isotope. The candidate of the experiment is {sup 96}Ru + {sup 96}Zr. Since the natural abundance of particular isotope is low and composition of isotope from ion source depends on the composites of the target, an isotope enriched material may be needed as a target. We studied the performance of the laser ion source required for the experiment for Zr ions.

  11. Laser ion source for isobaric heavy ion collider experiment

    Science.gov (United States)

    Kanesue, T.; Kumaki, M.; Ikeda, S.; Okamura, M.

    2016-02-01

    Heavy-ion collider experiment in isobaric system is under investigation at Relativistic Heavy Ion Collider. For this experiment, ion source is required to maximize the abundance of the intended isotope. The candidate of the experiment is 96Ru + 96Zr. Since the natural abundance of particular isotope is low and composition of isotope from ion source depends on the composites of the target, an isotope enriched material may be needed as a target. We studied the performance of the laser ion source required for the experiment for Zr ions.

  12. Development of a high brightness ion source

    International Nuclear Information System (INIS)

    The brightness and emittance of an ion beam can depend on the ion temperature, aberrations and scattering, as well as other factors. However, it is the ion temperature which determines the irreducible minimum value of the emittance and hence brightness, as the other components can be eliminated by careful design. An ion source design is presented which has attained this minimum value for the emittance; the dependence of the ion temperature on the plasma source parameters is discussed

  13. Compact RF ion source for industrial electrostatic ion accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Hyeok-Jung, E-mail: hjkwon@kaeri.re.kr; Park, Sae-Hoon; Kim, Dae-Il; Cho, Yong-Sub [Korea Multi-purpose Accelerator Complex, Korea Atomic Energy Research Institute, Gyeongsangbukdo 38180 (Korea, Republic of)

    2016-02-15

    Korea Multi-purpose Accelerator Complex is developing a single-ended electrostatic ion accelerator to irradiate gaseous ions, such as hydrogen and nitrogen, on materials for industrial applications. ELV type high voltage power supply has been selected. Because of the limited space, electrical power, and robust operation, a 200 MHz RF ion source has been developed. In this paper, the accelerator system, test stand of the ion source, and its test results are described.

  14. Laser ion source with solenoid field

    International Nuclear Information System (INIS)

    Pulse length extension of highly charged ion beam generated from a laser ion source is experimentally demonstrated. The laser ion source (LIS) has been recognized as one of the most powerful heavy ion source. However, it was difficult to provide long pulse beams. By applying a solenoid field (90 mT, 1 m) at plasma drifting section, a pulse length of carbon ion beam reached 3.2 μs which was 4.4 times longer than the width from a conventional LIS. The particle number of carbon ions accelerated by a radio frequency quadrupole linear accelerator was 1.2 × 1011, which was provided by a single 1 J Nd-YAG laser shot. A laser ion source with solenoid field could be used in a next generation heavy ion accelerator

  15. Laser ion source with solenoid field

    Science.gov (United States)

    Kanesue, Takeshi; Fuwa, Yasuhiro; Kondo, Kotaro; Okamura, Masahiro

    2014-11-01

    Pulse length extension of highly charged ion beam generated from a laser ion source is experimentally demonstrated. The laser ion source (LIS) has been recognized as one of the most powerful heavy ion source. However, it was difficult to provide long pulse beams. By applying a solenoid field (90 mT, 1 m) at plasma drifting section, a pulse length of carbon ion beam reached 3.2 μs which was 4.4 times longer than the width from a conventional LIS. The particle number of carbon ions accelerated by a radio frequency quadrupole linear accelerator was 1.2 × 1011, which was provided by a single 1 J Nd-YAG laser shot. A laser ion source with solenoid field could be used in a next generation heavy ion accelerator.

  16. Production and ion-ion cooling of highly charged ions in electron string ion source.

    Science.gov (United States)

    Donets, D E; Donets, E D; Donets, E E; Salnikov, V V; Shutov, V B; Syresin, E M

    2009-06-01

    The scheme of an internal injection of Au atoms into the working space of the "Krion-2" electron string ion source (ESIS) was applied and tested. In this scheme Au atoms are evaporated from the thin tungsten wire surface in vicinity of the source electron string. Ion beams with charge states up to Au51+ were produced. Ion-ion cooling with use of C and O coolant ions was studied. It allowed increasing of the Au51+ ion yield by a factor of 2. Ions of Kr up to charge state 28+ were also produced in the source. Electron strings were first formed with injection electron energy up to 6 keV. Methods to increase the ESIS ion output are discussed. PMID:19566200

  17. Results of prototype particle-beam diagnostics tests for the Advanced Photon Source (APS)

    International Nuclear Information System (INIS)

    The Advanced Photon Source (APS) will be a third-generation synchrotron radiation source (hard x-rays) based on 7-GeV positrons circulating in a 1,104-m circumference storage ring. In the past year a number of the diagnostic prototypes for the measurement of the charged-particle beam parameters throughout the subsystems of the facility (ranging from 450-MeV to 7-GeV positrons and with different pulse formats) have been built and tested. Results are summarized for the beam position monitor (BPM), current monitor (CM), loss monitor (LM), and imaging systems (ISYS). The test facilities ranged from the 40-MeV APS linac test stand to the existing storage rings at SSRL and NSLS

  18. Results of prototype particle-beam diagnostics tests for the Advanced Photon Source (APS)

    International Nuclear Information System (INIS)

    The Advanced Photon Source (APS) will be a third-generation synchrotron radiation source (hard x-rays) based on 7-GeV positrons circulating in a 1104-m circumference storage ring. In the past year a number of the diagnostic prototypes for the measurement of the charged-particle beam parameters throughout the subsystems of the facility (ranging from 450-MeV to 7-GeV positrons and with different pulse formats) have been built and tested. Results are summarized for the beam position monitor (BPM), current monitor (CM), loss monitor (LM), and imaging systems (ISYS). The test facilities ranged from the 40-MeV APS linac test stand to the existing storage rings at SSRL and NSLS

  19. Development of ion sources for implantation technology

    International Nuclear Information System (INIS)

    Ion implantation for modification of surface properties of large areas requires ion sources of a particular type. The sources must be capable of producing rather high currents within somewhat poor vacuum conditions. Two types of source are typically used, the glow discharge and the vacuum arc. This paper describes both types. The glow discharge source has a low discharge voltage to minimize beam contamination from metal ions sputtered from the source chamber. To maintain the discharge, electrons are injected from outside the source chamber. The glow discharge source will generate up to 20 mA beam currents. The vacuum arc sources have the advantage of producing high currents of metal ions using a penning discharge. Metal ion currents up to 70 mA are mentioned

  20. Enablers of Open Source Software adoption: A case study of APS organisations

    OpenAIRE

    Kavitha Gurusamy; John Campbell

    2012-01-01

    Despite a considerable body of literature investigating factors involved in the Open Source Software (OSS) adoption process, there is little research into adoption of OSS by public sector organisations. So it was important to reassess the factors enabling OSS adoption in order to enhance OSS utilization within public sector organisations. This study explored various factors that may enable OSS adoption within Australian Public Sector (APS) organisations by interviewing those involved in softw...

  1. A Plasma Ion Source for ISOLTRAP

    CERN Document Server

    Skov, Thomas Guldager

    2016-01-01

    In this report, my work testing the new Penning ion source as a summer student at ISOLTRAP is described. The project was composed of three stages: (1) Setting up a test laboratory in building 275, (2) characterizing the ion source, and (3) implementing and testing the source in the ISOLTRAP setup. After setting up the test laboratory, the ion source was tested in a constant pressure environment with produced ion currents in the range of nA . An extensive scan of the source ion current versus operating parameters (pressure, voltage) was performed. A setup with pulsed gas flow was also tested, allowing a reduction of the gas load on the vacuum system. The behavior of the ion source together with the ISOLTRAP setup was also investigated, allowing to understand current limitations and future directions of improvement.

  2. High-charge-state ion sources

    International Nuclear Information System (INIS)

    Sources of high charge state positive ions have uses in a variety of research fields. For heavy ion particle accelerators higher charge state particles give greater acceleration per gap and greater bending strength in a magnet. Thus higher energies can be obtained from circular accelerators of a given size, and linear accelerators can be designed with higher energy gain per length using higher charge state ions. In atomic physics the many atomic transitions in highly charged ions supplies a wealth of spectroscopy data. High charge state ion beams are also used for charge exchange and crossed beam experiments. High charge state ion sources are reviewed

  3. Production of highly charged ion beams from ECR ion sources

    International Nuclear Information System (INIS)

    Electron Cyclotron Resonance (ECR) ion source development has progressed with multiple-frequency plasma heating, higher mirror magnetic fields and better technique to provide extra cold electrons. Such techniques greatly enhance the production of highly charged ions from ECR ion sources. So far at cw mode operation, up to 300 eμA of O7+ and 1.15 emA of O6+, more than 100 eμA of intermediate heavy ions for charge states up to Ar13+, Ca13+, Fe13+, Co14+ and Kr18+, and tens of eμA of heavy ions with charge states to Kr26+, Xe28+, Au35+, Bi34+ and U34+ have been produced from ECR ion sources. At an intensity of at least 1 eμA, the maximum charge state available for the heavy ions are Xe36+, Au46+, Bi47+ and U48+. An order of magnitude enhancement for fully stripped argon ions (I ≥ 60 enA) also has been achieved. This article will review the ECR ion source progress and discuss key requirement for ECR ion sources to produce the highly charged ion beams

  4. 11. international conference on ion sources

    International Nuclear Information System (INIS)

    This document gathers the summaries of the presentations made at ICIS05 (international conference on ion sources). It can be organized into 3 main topics: 1) 'fundamentals and theory' that deals with plasma, beam extraction, transport and emittance, diagnostics and simulation; 2) 'various types of ion sources' that include ECRIS, EBIS, microwave, negative, radioactive, polarized and laser ion sources, and charge breeders; and 3) 'ion sources and applications' in fields like accelerator injection, fusion energy, space propulsion, mass spectrometry, and neutron and cluster and rare nuclide production

  5. 11. international conference on ion sources

    Energy Technology Data Exchange (ETDEWEB)

    Leitner, D.; Lyneis, C.; Cheng, D.; Galloway, M.L.; Leitner, M.; Todd, D.S.; Ciavola, G.; Gammino, S.; Celona, L.; Ando, L.; Torrisi, L.; Cavenago, M.; Galata, A.; Spaedtke, P.; Tinschert, K.; Lang, R.; Iannucci, R.; Leroy, R.; Barue, C.; Hitz, D.; Koivisto, H.; Suominen, P.; Tarvainen, O.; Beijers, H.; Brandenburg, S.; Vanrooyen, D.; Hillo, C.; Kuchler, D.; Homeyer, H.; Rohrich, J.; Schachter, L.; Dobrescu, S.; Nakagawa, T.; Higurashi, Y.; Kidera, M.; Aihara, T.; Kase, M.; Goto, A.; Yang, Y.; Zhao, H.W.; Zhang, Z.M.; Zhang, X.Z.; Guo, X.H.; He, W.E.; Sun, L.T.; Yuan, P.; Song, M.T.; Xie, Z.Q.; Cao, Y.; Zhan, W.L.; Wei, B.W.; Bricault, P.; Lau, C.; Essabaa, S.; Cheikh Mhamed, M.; Bajeat, O.; Ducourtieux, M.; Lefort, H.; Panteleev, V.N.; Barzakh, A.E.; Fedorov, D.V.; Ionan, A.M.; Mezilev, K.A.; Moroz, F.V.; Orlov, S.Y.; Volkov, Y.M.; Andrighetto, A.; Lhersonneau, G.; Rizzi, V.; Tecchio, L.B.; Dubois, M.; Gaubert, G.; Jardins, P.; Lecesne, N.; Leroy, R.; Pacquet, J.Y.; Saint Laurent, M.G.; Villari, A.C.O.; Bajeat, O.; Essabaa, S.; Lau, C.; Menna, M.; Franberg, H.; Ammann, M.; Gdggeler, H.W.; Koster, U.; Allen, F.; Biedermann, C.; Radtke, R.; Ames, F.; Baartman, R.; Bricault, P.; Jayamanna, K.; Lamy, T.; McDonald, M.; Olivo, M.; Schmorl, P.; Yuan, D.H.L.; Asaji, T.; Sasaki, H.; Kato, Y.; Atabaev, B.; Radjabov, S.S.; Akhmadjanova, M.K.; Yuzikaeva, F.R.; Baoqun, Cui; Liqiang, Li; Yingjun, Ma; Shengyun, Zhu; Cong, Jiang

    2005-07-01

    This document gathers the summaries of the presentations made at ICIS05 (international conference on ion sources). It can be organized into 3 main topics: 1) 'fundamentals and theory' that deals with plasma, beam extraction, transport and emittance, diagnostics and simulation; 2) 'various types of ion sources' that include ECRIS, EBIS, microwave, negative, radioactive, polarized and laser ion sources, and charge breeders; and 3) 'ion sources and applications' in fields like accelerator injection, fusion energy, space propulsion, mass spectrometry, and neutron and cluster and rare nuclide production.

  6. Electron beam ion source and electron beam ion trap (invited).

    Science.gov (United States)

    Becker, Reinard; Kester, Oliver

    2010-02-01

    The electron beam ion source (EBIS) and its trap variant [electron beam ion trap (EBIT)] celebrated their 40th and 20th anniversary, respectively, at the EBIS/T Symposium 2007 in Heidelberg. These technologically challenging sources of highly charged ions have seen a broad development in many countries over the last decades. In contrast to most other ion sources the recipe of improvement was not "sorcery" but a clear understanding of the physical laws and obeying the technological constraints. This review will report important achievements of the past as well as promising developments in the future. PMID:20192368

  7. Arc-Discharge Ion Sources for Heavy Ion Fusion

    International Nuclear Information System (INIS)

    A miniature multiple beamlet approach to an injector system was recently proposed in order to reduce the size, cost, and power requirements of the injector. The beamlets of very high current density are needed to meet the brightness requirement. Besides vacuum arc ion sources, cold-cathode gas ion sources are candidates for this application. Vacuum-arc metal ion sources and vacuum-arc-like gas ion sources are discussed. Experiments are presented that focus on the short-pulse plasma composition and ion charge state distribution. Mg and Sr have been identified as the most promising metals leading to mono-species beams when 20 μs arc pulses are used. It is shown that the efficient production of gas ions requires the presence of a magnetic field

  8. Molecular ion sources for low energy semiconductor ion implantation (invited)

    Science.gov (United States)

    Hershcovitch, A.; Gushenets, V. I.; Seleznev, D. N.; Bugaev, A. S.; Dugin, S.; Oks, E. M.; Kulevoy, T. V.; Alexeyenko, O.; Kozlov, A.; Kropachev, G. N.; Kuibeda, R. P.; Minaev, S.; Vizir, A.; Yushkov, G. Yu.

    2016-02-01

    Smaller semiconductors require shallow, low energy ion implantation, resulting space charge effects, which reduced beam currents and production rates. To increase production rates, molecular ions are used. Boron and phosphorous (or arsenic) implantation is needed for P-type and N-type semiconductors, respectively. Carborane, which is the most stable molecular boron ion leaves unacceptable carbon residue on extraction grids. A self-cleaning carborane acid compound (C4H12B10O4) was synthesized and utilized in the ITEP Bernas ion source resulting in large carborane ion output, without carbon residue. Pure gaseous processes are desired to enable rapid switch among ion species. Molecular phosphorous was generated by introducing phosphine in dissociators via 4PH3 = P4 + 6H2; generated molecular phosphorous in a pure gaseous process was then injected into the HCEI Calutron-Bernas ion source, from which P4+ ion beams were extracted. Results from devices and some additional concepts are described.

  9. Molecular ion sources for low energy semiconductor ion implantation (invited)

    International Nuclear Information System (INIS)

    Smaller semiconductors require shallow, low energy ion implantation, resulting space charge effects, which reduced beam currents and production rates. To increase production rates, molecular ions are used. Boron and phosphorous (or arsenic) implantation is needed for P-type and N-type semiconductors, respectively. Carborane, which is the most stable molecular boron ion leaves unacceptable carbon residue on extraction grids. A self-cleaning carborane acid compound (C4H12B10O4) was synthesized and utilized in the ITEP Bernas ion source resulting in large carborane ion output, without carbon residue. Pure gaseous processes are desired to enable rapid switch among ion species. Molecular phosphorous was generated by introducing phosphine in dissociators via 4PH3 = P4 + 6H2; generated molecular phosphorous in a pure gaseous process was then injected into the HCEI Calutron-Bernas ion source, from which P4+ ion beams were extracted. Results from devices and some additional concepts are described

  10. Molecular ion sources for low energy semiconductor ion implantation (invited).

    Science.gov (United States)

    Hershcovitch, A; Gushenets, V I; Seleznev, D N; Bugaev, A S; Dugin, S; Oks, E M; Kulevoy, T V; Alexeyenko, O; Kozlov, A; Kropachev, G N; Kuibeda, R P; Minaev, S; Vizir, A; Yushkov, G Yu

    2016-02-01

    Smaller semiconductors require shallow, low energy ion implantation, resulting space charge effects, which reduced beam currents and production rates. To increase production rates, molecular ions are used. Boron and phosphorous (or arsenic) implantation is needed for P-type and N-type semiconductors, respectively. Carborane, which is the most stable molecular boron ion leaves unacceptable carbon residue on extraction grids. A self-cleaning carborane acid compound (C4H12B10O4) was synthesized and utilized in the ITEP Bernas ion source resulting in large carborane ion output, without carbon residue. Pure gaseous processes are desired to enable rapid switch among ion species. Molecular phosphorous was generated by introducing phosphine in dissociators via 4PH3 = P4 + 6H2; generated molecular phosphorous in a pure gaseous process was then injected into the HCEI Calutron-Bernas ion source, from which P4(+) ion beams were extracted. Results from devices and some additional concepts are described. PMID:26932065

  11. Cobalt alloy ion sources for focused ion beam implantation

    Energy Technology Data Exchange (ETDEWEB)

    Muehle, R.; Doebeli, M. [Paul Scherrer Inst. (PSI), Villigen (Switzerland); Zimmermann, P. [Eidgenoessische Technische Hochschule, Zurich (Switzerland)

    1997-09-01

    Cobalt alloy ion sources have been developed for silicide formation by focused ion beam implantation. Four eutectic alloys AuCo, CoGe, CoY and AuCoGe were produced by electron beam welding. The AuCo liquid alloy ion source was investigated in detail. We have measured the emission current stability, the current-voltage characteristics, and the mass spectrum as a function of the mission current. (author) 1 fig., 2 refs.

  12. Negative hydrogen ion production in fusion dedicated ion sources

    International Nuclear Information System (INIS)

    Graphical abstract: In RF sources the acceleration of positive ions to a few tens of eV by the plasma potential difference between the driver and the extraction regions can have an important effect on negative ion production by enhancing the negative ion yield from caesiated surfaces and by charge exchange reactions with caesium atoms. The presence of energetic positive ions can have other implications: modifying the virtual cathode in front of the plasma grid, ionizing caesium atoms. Highlights: ► The physics of volume and surface production of hydrogen negative ions is reviewed. ► Effects of positive ion acceleration by plasma potential difference are investigated. ► Caesium ionization in extraction region by electrons and charge exchange are compared. ► Charge exchange with energetic positive hydrogen ions dominates caesium ionization. ► Negative ion production by charge exchange of positive ions with caesium is discussed. - Abstract: A brief description is given of the basic processes in negative ion sources dedicated to fusion. It is considered that in these sources negative ions are produced by ions and atoms interacting with a caesiated surface, but this mechanism is not unique: the volume production, based on dissociative electron attachment to rovibrationally excited molecules, is also active. We suggest that in RF sources the acceleration of positive ions to a few tens of eV by the plasma potential difference between the driver and the extraction regions can have an important effect on negative ion production by enhancing the negative ion yield from caesiated surfaces, and by charge exchange reactions with caesium atoms. The presence of energetic positive ions can have other implications (modifying the virtual cathode in front of the plasma grid, participating in caesium ionization).

  13. Electron string ion sources for carbon ion cancer therapy accelerators

    CERN Document Server

    Boytsov, A Yu; Donets, E D; Donets, E E; Katagiri, K; Noda, K; Ponkin, D O; Ramzdorf, A Yu; Salnikov, V V; Shutov, V B

    2015-01-01

    The Electron String type of Ion Sources (ESIS) was developed, constructed and tested first in the Joint Institute for Nuclear Research. These ion sources can be the appropriate sources for production of pulsed C4+ and C6+ ion beams which can be used for cancer therapy accelerators. In fact the test ESIS Krion-6T already now at the solenoid magnetic field only 4.6 T provides more than 10^10 C4+ ions per pulse and about 5*10^9 C6+ ions per pulse. Such ion sources could be suitable for application at synchrotrons. It was also found, that Krion-6T can provide more than 10^11 C6+ ions per second at 100 Hz repetition rate, and the repetition rate can be increased at the same or larger ion output per second. This makes ESIS applicable at cyclotrons as well. As for production of 11C radioactive ion beams ESIS can be the most economic kind of ion source. To proof that the special cryogenic cell for pulse injection of gaseous species into electron string was successfully tested using the ESIS Krion-2M.

  14. Analysis of large release source terms in AP1000 nuclear power plant

    International Nuclear Information System (INIS)

    In some severe accident scenarios of AP1000 nuclear power plant, a breach or bypass of the containment will lead to large release to environment, which causes severe radioactive pollution of environment. Three release categories (bypass, early containment failure and containment isolation failure) have the largest contribution to large release frequency. Three typical severe accidents (steam generator tube rupture, spuriously open of automatic depressurization system valves and reactor pressure vessel rupture) were selected as typical cases corresponding to the three release categories and the fission-product source terms released to environment were calculated using MAAP code. The analysis results are provided as essential input data for quantifying the release of AP1000 nuclear power plant and the offsite dose analysis. (author)

  15. Multicharged and intense heavy ion beam sources

    International Nuclear Information System (INIS)

    The cyclotron plasma-are source (PIG), duoplasmatron (DP), laser source (LS), electron beam ion source (EBIS) and electron cyclotron resonance source (ECRS) from the viewpoint of generating intense and high charge state beams are considered. It is pointed out that for the last years three types of multicharged ion sources-EBIS, ECR and LS have been essentially developed. In the EBIS source the Xe48+ ions are produced. The present day level of the development of the electron-beam ionization technique shows that by means of this technique intensive uranium nuclei beams production becomes a reality. On the ECR source Xe26+ approximately 4x1010 h/s, Asub(r)sup(12+) approximately 1012 h/s intensive ion beams are produced. In the laser source a full number of C6+ ions during one laser pulse constitutes not less than 1010 from the 5x10mm2 emission slit. At the present time important results are obtained pointing to the possibility to separate the ion component of laser plasma in the cyclotron central region. On the PIG source the Xe15+ ion current up to 10μA per pulse is produced. In the duoplasmatron the 11-charge state of xenon ion beams is reached

  16. RF synchronized short pulse laser ion source

    Energy Technology Data Exchange (ETDEWEB)

    Fuwa, Yasuhiro, E-mail: fuwa@kyticr.kuicr.kyoto-u.ac.jp; Iwashita, Yoshihisa; Tongu, Hiromu; Inoue, Shunsuke; Hashida, Masaki; Sakabe, Shuji [Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011 (Japan); Okamura, Masahiro [Collider-Accelerator Department, Brookhaven National Laboratory, Upton, New York 11973 (United States); Yamazaki, Atsushi [Graduate School of Engineering, Nagoya University, Nagoya, Aichi 464-8603 (Japan)

    2016-02-15

    A laser ion source that produces shortly bunched ion beam is proposed. In this ion source, ions are extracted immediately after the generation of laser plasma by an ultra-short pulse laser before its diffusion. The ions can be injected into radio frequency (RF) accelerating bucket of a subsequent accelerator. As a proof-of-principle experiment of the ion source, a RF resonator is prepared and H{sub 2} gas was ionized by a short pulse laser in the RF electric field in the resonator. As a result, bunched ions with 1.2 mA peak current and 5 ns pulse length were observed at the exit of RF resonator by a probe.

  17. Large area ion and plasma beam sources

    International Nuclear Information System (INIS)

    In the past a number of ion beam sources utilizing different methods for plasma excitation have been developed. Nevertheless, a widespread use in industrial applications has not happened, since the sources were often not able to fulfill specific demands like: broad homogeneous ion beams, compatibility with reactive gases, low ion energies at high ion current densities or electrical neutrality of the beam. Our contribution wants to demonstrate technical capabilities of rf ion and plasma beam sources, which can overcome the above mentioned disadvantages. The physical principles and features of respective sources are presented. We report on effective low pressure plasma excitation by electron cyclotron wave resonance (ECWR) for the generation of dense homogeneous plasmas and the rf plasma beam extraction method for the generation of broad low energy plasma beams. Some applications like direct plasma beam deposition of a-C:H and ion beam assisted deposition of Al and Cu with tailored thin film properties are discussed. (orig.)

  18. Ion sources for energy extremes of ion implantation (invited)

    International Nuclear Information System (INIS)

    For the past four years a joint research and development effort designed to develop steady state, intense ion sources has been in progress with the ultimate goal to develop ion sources and techniques that meet the two energy extreme range needs of meV and hundreads of eV ion implanters. This endeavor has already resulted in record steady state output currents of high charge state of antimony and phosphorus ions: P2+ [8.6 pmA (particle milliampere)], P3+ (1.9 pmA), and P4+ (0.12 pmA) and 16.2, 7.6, 3.3, and 2.2 pmA of Sb3+Sb4+, Sb5+, and Sb6+ respectively. For low energy ion implantation, our efforts involve molecular ions and a novel plasmaless/gasless deceleration method. To date, 1 emA (electrical milliampere) of positive decaborane ions was extracted at 10 keV and smaller currents of negative decaborane ions were also extracted. Additionally, boron current fraction of over 70% was extracted from a Bernas-Calutron ion source, which represents a factor of 3.5 improvement over currently employed ion sources

  19. Electron-cyclotron-resonance ion sources (review)

    Energy Technology Data Exchange (ETDEWEB)

    Golovanivskii, K.S.; Dougar-Jabon, V.D. [People`s Friendship Univ., Moscow (Russian Federation)

    1992-01-01

    The physical principles are described and a brief survey of the present state is given of ion sources based on electron-cyclotron heating of plasma in a mirror trap. The characteristics of ECR sources of positive and negative ions used chiefly in accelerator technology are presented. 20 refs., 10 figs., 3 tabs.

  20. Use of labeled ions to determine the effect of APS-750 on liver and kidney physiology in vertebrates

    International Nuclear Information System (INIS)

    Mineral ions 45Ca++and 32PO4- seem to be filtered in greater amounts by organic tissues of plants and mice when they are mixed with APS-750, a commercial product developed in Mexico, as a dietary complement for breeding animals. This work compares the concentration of both ions in blood serum and urine of mice, finding that the circulation and excretion rate of these electrolytes is much faster if they are mixed with APS-750, which seems to be the starting point to develop the good properties showed by this product as health promoter in vertebrates. (author)

  1. Characteristics of 6.5 GHz ECR ion source for polarized H- ion source

    International Nuclear Information System (INIS)

    A 6.5 GHz ECR (electron cyclotron resonance) ion source has been developed for optically pumped polarized H- ion source at KEK. The properties of this ECR ion source such as beam intensities, proton ratios, plasma electron temperatures and beam emittances were measured. (author)

  2. Ion beam source construction and applications

    International Nuclear Information System (INIS)

    The aim of this thesis is to improve the performance of a new shape cold cathode Penning ion source to be suitable for some applications. In this work, many trials have been made to reach the optimum dimensions of the new shape of cold Molybdenum cathode Penning ion source with radial extraction. The high output ion beam can be extracted in a direction transverse to the discharge region. The new shape cold cathode Penning ion source consists of Copper cylindrical hollow anode of 40 mm length, 12 mm diameter and has two similar cone ends of 15 mm length, 22 mm upper cone diameter and 12 mm bottom cone diameter. The two movable Molybdenum cathodes are fixed in Perspex insulator and placed symmetrically at two ends of the anode. The Copper emission disc of 2 mm thickness and has central aperture of different diameters is placed at the middle of the anode for ion beam exit. The inner surface of the emission disc is isolated from the anode by Perspex insulator except an area of diameter 5 mm to confine the electrical discharge in this area. A movable Faraday cup is placed at different distances from the emission electrode aperture and used to collect the output ion beam from the ion source. The working gases are admitted to the ion source through a hole in the anode via a needle valve which placed between the gas cylinder and the ion source. The optimum anode- cathode distance, the uncovered area diameter of the emission disc, the central aperture diameter of the emission electrode, the distance between emission electrode and Faraday cup have been determined using Argon gas. The optimum distances of the ion source were found to be equal to 6 mm, 5 mm, 2.5 mm, and 3 cm respectively where stable discharge current and maximum output ion beam current at low discharge current can be obtained. The discharge characteristics, ion beam characteristics, and the efficiency of the ion source have been measured at different operating conditions and different gas pressures using

  3. Ion sources for systematic gas cell studies

    International Nuclear Information System (INIS)

    The FRS Ion Catcher, a test facility for the low energy branch (LEB) of the Super-FRS, has been commissioned and successfully tested. The current setup consists of a gas filled cryogenic stopping cell (CSC) to thermalise exotic nuclei, a diagnostic unit to monitor and transport the stopped and extracted ion beam into the multiple-reflection time-of-flight mass-spectrometer (MR-TOF-MS), where they are identified by precision mass measurements. The MR-TOF-MS can also be used to provide isobarically clean beams for experiments further downstream. To investigate ion transport and extraction processes of the CSC three different ion sources are in use inside the CSC. A movable radioactive ion source is mounted to test the ion transport depending on the initial ion position. A multiple target laser ablation ion source is mounted to test the mass and time dependency of the ion transport and extraction. It also provides calibration ions for the MR-TOF-MS. For investigating intensity limitations due to space charge and plasma effects and the cleanliness of the CSC an electrical discharge ion source is installed.

  4. Plasma-Based Ion Beam Sources

    International Nuclear Information System (INIS)

    Ion beam sources cover a broad spectrum of scientific and technical applications delivering ion currents between less than 1 mA and about 100 A at acceleration voltages between 100 V and 100 kV. The ions are mostly generated by electron collisions in a gas discharge and then extracted from the discharge plasma, focused and post-accelerated by single- or multi-aperture electrode systems. Some important applications require the neutralization of the exhausted beam either by charge exchange or by admixture of electrons. In the first part of the paper, the theory of ionization by electron impact, the energy and carrier balances in the plasma, and the extraction and focusing mechanisms will be outlined. The principles of the preferred gas discharges and of the ion beam sources based on them are discussed; i.e. of the Penning, bombardment, arc, duoplasmatron, radio frequency, and microwave types. In the second part of the paper, the special requirements of the different applications are described together with the related source hardware. One distinguishes: 1. Single-aperture ion sources producing protons, heavy ions, isotope ions, etc. for particle accelerators, ion microprobes, mass spectrometers, isotope separators, etc.; quality determinative quantities are brightness, emittance, energy width, etc. 2. Broad-beam multi-aperture injector sources for fusion machines with positive or negative deuterium ions; very high beam densities, small portions of molecular ions, flat beam profiles with small divergence angles, etc. are required. 3. Broad-beam multi-aperture ion thrusters for space propulsion operated with singly charged xenon ions; high efficiencies, reliable operation, and long lifetimes are most important. Spin-offs are applied in industry for material processing. Referring to these applications, the following sources will be described in some detail: 1. Cold cathode and filament driven sources, capillary arc and plasmatron types, microwave and ECR-sources. 2

  5. Electron string ion sources for carbon ion cancer therapy accelerators

    Science.gov (United States)

    Boytsov, A. Yu.; Donets, D. E.; Donets, E. D.; Donets, E. E.; Katagiri, K.; Noda, K.; Ponkin, D. O.; Ramzdorf, A. Yu.; Salnikov, V. V.; Shutov, V. B.

    2015-08-01

    The type of the Electron String Ion Sources (ESIS) is considered to be the appropriate one to produce pulsed C4+ and C6+ ion beams for cancer therapy accelerators. In fact, the new test ESIS Krion-6T already now provides more than 1010 C4+ ions per pulse and about 5 × 109 C6+ ions per pulse. Such ion sources could be suitable to apply at synchrotrons. It has also been found that Krion-6T can provide more than 1011 C6+ ions per second at the 100 Hz repetition rate, and the repetition rate can be increased at the same or larger ion output per second. This makes ESIS applicable at cyclotrons as well. ESIS can be also a suitable type of ion source to produce the 11C radioactive ion beams. A specialized cryogenic cell was experimentally tested at the Krion-2M ESIS for pulse injection of gaseous species into the electron string. It has been shown in experiments with stable methane that the total conversion efficiency of methane molecules to C4+ ions reached 5%÷10%. For cancer therapy with simultaneous irradiation and precise dose control (positron emission tomography) by means of 11C, transporting to the tumor with the primary accelerated 11C4+ beam, this efficiency is preliminarily considered to be large enough to produce the 11C4+ beam from radioactive methane and to inject this beam into synchrotrons.

  6. Ion Sources for MedAustron

    CERN Document Server

    Lettry, J; Wallner, J; Sargsyan, E; CERN. Geneva. BE Department

    2010-01-01

    The MedAustron Ion therapy center will be constructed in Wiener Neustadt (Austria) in the vicinity of Vienna. Its accelerator complex consists of four ion sources, a linear accelerator, a synchrotron and a beam delivery system to the three medical treatment rooms and to the research irradiation room. The ion sources shall deliver beams of H31+, C4+ and light ions with utmost reliability and stability. This paper describes the features of the ion sources presently planned for the MedAustron facility; such as ion source main parameters, gas injection, temperature control and cooling systems. A dedicated beam diagnostics technique is proposed in order to characterize ECR ions beams; in the first drift region after the ion source, a fraction of the mixed beam is selected via moveable aperture. With standard beam diagnostics, we then aim to produce position-dependant observables such as ion-current density, beam energy distribution and emittance for each charge states to be compared to simulations of ECR e-heating...

  7. Cleaning techniques for intense ion beam sources

    International Nuclear Information System (INIS)

    Generation of high power lithium ion beams on the SABRE (1TW) and PBFA-X (20 TW) accelerators have been limited by the parallel acceleration of contaminant ions. during the beam pulse lithium is replaced by protons and carbon ions. This replacement is accompanied by rapid impedance decay of the diode. The contaminant hydrogen and carbon is believed to originate from impurity molecules on the surface and in the bulk of the lithium ion source and its substrate material. Cleaning techniques designed to remove hydrocarbons from the ion source have been employed with some success in test stand experiments and on SABRE. The test stand experiments have shown that a lithium fluoride (LiF) ion source film can accrue dozens of hydrocarbon monolayers on its surface while sitting in vacuum. Application of 13.5 MHz RF discharge cleaning with 90% Ar/10% O2 can significantly reduce the surface hydrocarbon layers on the LiF film. On SABRE, combinations of RF discharge cleaning, anode heating, layering gold between the source film (LiF) and its substrate, and cryogenic cathode cooling produced an increase by a factor of 1.5--2 in the quantity of high energy lithium in the ion beam. A corresponding decrease in protons and carbon ions was also observed. Cleaning experiments on PBFA-X are underway. New designs of contamination resistant films and Li ion sources are currently being investigated

  8. On-line thermoemission ion source efficiency

    International Nuclear Information System (INIS)

    The calculations of thermoemission ion source efficiency were performed for different ionizer models. The calculations show that source efficiency is strongly influenced by geometry and dimensions of the ionizer (its length and the size of the extraction hole). The value of extraction voltage (i.e. voltage between the ionizer and the extraction electrode) is also very important. The construction of the ion source should enable electric field to penetrate deep into the ionizer volume

  9. Charged-particle beam diagnostics for the Advanced Photon Source (APS)

    International Nuclear Information System (INIS)

    Plans, prototypes, and initial test results for the charged-particle beam (e-, e+) diagnostic systems on the injector rings, their transport lines, and the storage ring for the Advanced Photon Source (APS) are presented. The APS will be a synchrotron radiation user facility with one of the world's brightest x-ray sources in the 10-keV to 100-keV regime. Its 200-MeV electron linac, 450-MeV positron linac, positron accumulator ring, 7-GeV booster synchrotron, 7-GeV storage ring, and undulator test lines will also demand the development and demonstration of key particle-beam characterization techniques over a wide range of parameter space. Some of these parameter values overlap or approach those projected for fourth generation light sources (linac-driven FELs and high brightness storage rings) as described at a recent workshop. Initial results from the diagnostics prototypes on the linac test stand operating at 45-MeV include current monitor data, beam loss monitor data, and video digitization using VME architecture

  10. Overview of charged-particle beam diagnostics for the advanced photon source (APS)

    International Nuclear Information System (INIS)

    Plans, prototypes, and initial test results for the charged-particle beam (e-,e+) diagnostic systems on the injector rings, their transport lines, and the storage ring for the Advanced Photon Source (APS) are presented. The APS will be a synchrotron radiation user facility with one of the world's brightest x-ray sources in the 10-keV to 100-keV regime. Its 200-MeV electron linac, 450-MeV positron linac, positron accumulator ring, 7-GeV booster synchrotron, 7-GeV storage ring, and undulator test lines will also demand the development and demonstration of key particle-beam characterization techniques over a wide range of parameter space. Some of these parameter values overlap or approach those projected for fourth generation light sources (linac-driven FELs and high brightness storage rings) as described at a recent workshop. Initial results from the diagnostics prototypes on the linac test stand operating at 45-MeV include current monitor data, beam loss monitor data, and video digitization using VME architecture

  11. Negative Decaborane Ion Beam from ITEP Bernas Ion Source

    International Nuclear Information System (INIS)

    A joint research and development effort focusing on the design of steady state, intense ion sources has been in progress for the past two and a half years with a couple of Russian institutions. The ultimate goal of the effort is to meet the two, energy extreme range needs of mega-electron-volt and 100's of electron-volt ion implanters. This endeavor has already resulted in record steady state output currents of higher charge state antimony and phosphorous ions to meet high-energy implantation requirements. For low energy ion implantation, R and D efforts have involved molecular ions and a novel plasmaless/gasless deceleration method. To date, 1 emA of positive decaborane ions were extracted at 10 keV and a smaller current of negative decaborane ions were also extracted. Though of scientific interest, negative decaborane ions did not attract interest from industry, since the semiconductor ion implant industry seems to have solved the wafer-charging problem. This paper describes conditions under which negative decaborane ions are formed and extracted from a Bernas ion source

  12. Characteristics of MINI ECR ion source

    Energy Technology Data Exchange (ETDEWEB)

    Saitoh, Yuichi; Yokota, Watalu [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment

    1997-03-01

    A very compact electron cyclotron resonance ion source (MINI ECR) was manufactured to extend available energy ranges of ion beams by applying multiply charged ions to electrostatic accelerators. The magnetic field to confine a plasma is formed only by small permanent magnets and the microwave power up to 15 W is generated by a compact transistor amplifier in order to install the ion source at a narrow high-voltage terminal where the electrical power feed is restricted. The magnet assembly is 12 cm in length and 11 cm in diameter, and forms a mirror field with the maximum strength of 0.55 T. The total power consumption of the source is below 160 W. The performance of the source was tested in a bench stand. The results of Ar, Xe, O, and N ion generation are reported in this paper. (author)

  13. Intense metal ion beam source for heavy ion fusion

    International Nuclear Information System (INIS)

    We have developed an ion source which can produce high current beams of metal ions. The source uses a metal vapor vacuum arc discharge as the plasma medium from which the ions are extracted, so we have called this source the MEVVA ion source. The metal plasma is created simply and efficiently and no carrier gas is required. Beams have been produced from metallic elements spanning the periodic table from lithium through uranium, at extraction voltages from 10 to 60 kV and with beam currents as high as 1.1 Amperes (electrical current in all charge states). A brief description of the source is given and its possible application as an ion source for heavy ion fusion is considered. Beams such as C+ (greater than or equal to99% of the beam in this species and charge state), Cr2+ (80%), and Ta/sup 3+,4+,5+/ (mixed charge states) have been produced. Beam emittance measurements and ways of increasing the source brightness are discussed

  14. MALT accelerator facility; characteristic of ion sources

    Energy Technology Data Exchange (ETDEWEB)

    Nakano, Chuichiro; Kobayashi, Koichi; Matsuzaki, Hiroyuki; Sunohara, Yoko [Tokyo Univ. (Japan)

    2001-02-01

    A tandem accelerator has been operated since 1995 with a continual effort to increase the accuracy and reliability of the measurement. In the present paper, after a brief discussion on a cesium sputter ion source incorporated in the MALT accelerator, basic characteristics such as temperature of cesium reservoir, and ioniser plate cathode potential. Production of negative ions in the ion source proceed in two step. The first step is generation of positive ions due to the surface ionization on a hot Ta plate, and the second step, electron detachment on a cathode. (M. Tanaka)

  15. Ion sources for RFQ accelerators and for cyclotrons

    International Nuclear Information System (INIS)

    Ion sources used in conjunction with low energy accelerators, either RF quadrupole linacs or small cyclotrons, are reviewed. The topics covered include low energy accelerators used as injectors to larger accelerators, ion sources for low and medium currents of heavy ions, high-current heavy ion sources, ion sources for pulsed high currents of light ions, and new developments in ion sources such as beams of radioactive ions

  16. Production of slow ion beams from a laser ion source

    Czech Academy of Sciences Publication Activity Database

    Gammino, S.; Ciavola, G.; Torrisi, L.; Ando, L.; Celona, L.; Láska, Leoš; Krása, Josef; Wolowski, J.; Woryna, E.; Parys, P.; Shirkov, G. D.

    Vienna : XX, 2000, s. 1598-1600. [European Particles Acceleration Conference. Wien (AT), 26.06.2000-30.06.2000] R&D Projects: GA AV ČR IAA1010105 Institutional research plan: CEZ:AV0Z1010921 Keywords : hybride laser ion source * highly charged ions Subject RIV: BL - Plasma and Gas Discharge Physics

  17. Electrospray ion source with reduced analyte electrochemistry

    Science.gov (United States)

    Kertesz, Vilmos [Knoxville, TN; Van Berkel, Gary [Clinton, TN

    2011-08-23

    An electrospray ion (ESI) source and method capable of ionizing an analyte molecule without oxidizing or reducing the analyte of interest. The ESI source can include an emitter having a liquid conduit, a working electrode having a liquid contacting surface, a spray tip, a secondary working electrode, and a charge storage coating covering partially or fully the liquid contacting surface of the working electrode. The liquid conduit, the working electrode and the secondary working electrode can be in liquid communication. The electrospray ion source can also include a counter electrode proximate to, but separated from, said spray tip. The electrospray ion source can also include a power system for applying a voltage difference between the working electrodes and a counter-electrode. The power system can deliver pulsed voltage changes to the working electrodes during operation of said electrospray ion source to minimize the surface potential of the charge storage coating.

  18. Electrospray ion source with reduced analyte electrochemistry

    Science.gov (United States)

    Kertesz, Vilmos; Van Berkel, Gary J

    2013-07-30

    An electrospray ion (ESI) source and method capable of ionizing an analyte molecule without oxidizing or reducing the analyte of interest. The ESI source can include an emitter having a liquid conduit, a working electrode having a liquid contacting surface, a spray tip, a secondary working electrode, and a charge storage coating covering partially or fully the liquid contacting surface of the working electrode. The liquid conduit, the working electrode and the secondary working electrode can be in liquid communication. The electrospray ion source can also include a counter electrode proximate to, but separated from, said spray tip. The electrospray ion source can also include a power system for applying a voltage difference between the working electrodes and a counter-electrode. The power system can deliver pulsed voltage changes to the working electrodes during operation of said electrospray ion source to minimize the surface potential of the charge storage coating.

  19. Prototype negative ion sources for RIB generation

    Energy Technology Data Exchange (ETDEWEB)

    Alton, G.D.; Murray, S.N. [Oak Ridge National Lab., TN (United States); Welton, R.F.; Williams, C. [Oak Ridge National Lab., TN (United States)]|[Oak Ridge Inst. of Science and Engineering, TN (United States); Cui, B. [China Inst. of Atomic Energy, Beijing (China)

    1997-12-01

    Radioactive ion beams (RIBs) of {sup 17}F and {sup 18}F are of interest for investigation of astrophysical phenomena such as the hot CNO cycle and the rp stellar nuclear synthesis processes. In order to generate useful beam intensities of atomic F{sup {minus}}, the species must be efficiently and expediently released from the target material, thermally dissociated from fluoride release products during transport to the ionization chamber of the ion source, and efficiently ionized in the source upon arrival. The authors have conceived and evaluated two prototype negative ion sources for potential use for RIB generation: (1) a direct extraction source and (2) a kinetic ejection source. Both sources utilize Cs vapor to enhance F{sup {minus}} formation. The mechanical design features, operational parameters, ionization efficiencies for forming atomic F{sup {minus}} and delay times for transport of F and fluoride compounds for the respective sources are presented. The efficiency {eta} for formation and extraction of F{sup {minus}} for the direct extraction negative ion source is found to be {eta} {approximately} 1.0% while the characteristic delay time {tau} for transport of F and fluorides through the source is typically, {eta} {approximately} 120s; the analogous efficiencies and delay times for the kinetic ejection negative ion source are, respectively: {eta} = {approximately}3.2% and {tau} = {approximately}70s.

  20. Prototype negative ion sources for RIB generation

    International Nuclear Information System (INIS)

    Radioactive ion beams (RIBs) of 17F and 18F are of interest for investigation of astrophysical phenomena such as the hot CNO cycle and the rp stellar nuclear synthesis processes. In order to generate useful beam intensities of atomic F-, the species must be efficiently and expediently released from the target material, thermally dissociated from fluoride release products during transport to the ionization chamber of the ion source, and efficiently ionized in the source upon arrival. The authors have conceived and evaluated two prototype negative ion sources for potential use for RIB generation: (1) a direct extraction source and (2) a kinetic ejection source. Both sources utilize Cs vapor to enhance F- formation. The mechanical design features, operational parameters, ionization efficiencies for forming atomic F- and delay times for transport of F and fluoride compounds for the respective sources are presented. The efficiency η for formation and extraction of F- for the direct extraction negative ion source is found to be η ∼ 1.0% while the characteristic delay time τ for transport of F and fluorides through the source is typically, η ∼ 120s; the analogous efficiencies and delay times for the kinetic ejection negative ion source are, respectively: η = ∼3.2% and τ = ∼70s

  1. Three chamber negative ion source

    International Nuclear Information System (INIS)

    A negative ion vessel is divided into an excitation chamber, a negative ionization chamber and an extraction chamber by two magnetic filters. Input means introduces neutral molecules into a first chamber where a first electron discharge means vibrationally excites the molecules which migrate to a second chamber. In the second chamber a second electron discharge means ionizes the molecules, producing negative ions which are extracted into or by a third chamber. A first magnetic filter prevents high energy electrons from entering the negative ionization chamber from the excitation chamber. A second magnetic filter prevents high energy electrons from entering the extraction chamber from the negative ionizing chamber. An extraction grid at the end of the negative ion vessel attracts negative ions into the third chamber and accelerates them. Another grid, located adjacent to the extraction grid, carries a small positive voltage in order to inhibit positive ions from migrating into the extraction chamber and contour the plasma potential. Additional electrons can be suppressed from the output flux using ExB forces provided by magnetic field means and the extractor grid electric potential

  2. Ion mixing and numerical simulation of different ions produced in the ECR ion source

    International Nuclear Information System (INIS)

    This paper is to continue theoretical investigations and numerical simulations in the physics of ECR ion sources within the CERN program on heavy ion acceleration. The gas (ion) mixing effect in ECR sources is considered here. It is shown that the addition of light ions to the ECR plasma has three different mechanisms to improve highly charged ion production: the increase of confinement time and charge state of highly ions as the result of ion cooling; the concentration of highly charged ions in the central region of the source with high energy and density of electrons; the increase of electron production rate and density of plasma. The numerical simulations of lead ion production in the mixture with different light ions and different heavy and intermediate ions in the mixture with oxygen, are carried out to predict the principal ECR source possibilities for LHC applications. 18 refs., 23 refs

  3. State of the Art ECR Ion Sources

    International Nuclear Information System (INIS)

    Electron Cyclotron Resonance (ECR) ion source which produces highly-charged ions is used in heavy ion accelerators worldwide. Applications also found in atomic physics research and industry ion implantation. ECR ion source performance continues to improve, especially in the last few years with new techniques, such as multiple-frequency plasma heating and better methods to provide extra cold electrons, combined with higher magnetic mirror fields. So far more than 1 emA of multiply-charged ions such as He2+ and O6+, and 30 eμA of Au32+, 1.1 eμA of 238U48+, and epA currents of very high charge states such as 86Kr35+ and 238U60+ have been produced

  4. Ion production from solid state laser ion sources

    CERN Document Server

    Gottwald, T; Wendt, K; Raeder, S; Mattolat, C; Rothe, S; Liu, Y; Lassen, J

    2010-01-01

    Laser ion sources based on resonant excitation and ionization of atoms are well-established tools for selective and efficient production of radioactive ion beams. Recent developments are focused on the use of the state-of-the-art all solid-state laser systems. To date, 35 elements of the periodic table are available from laser ion sources based on tunable Ti:sapphire lasers. Recent progress in this field regarding the establishment of suitable optical excitation schemes for Ti:sapphire lasers are reported.

  5. Development of a microwave ion source for ion implantations

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, N., E-mail: Nbk-Takahashi@shi.co.jp; Murata, H.; Kitami, H.; Mitsubori, H.; Sakuraba, J.; Soga, T.; Aoki, Y.; Katoh, T. [Technology Research Center, Sumitomo Heavy Industries Ltd., Yokosuka, Kanagawa 237-8555 (Japan)

    2016-02-15

    A microwave ion source is expected to have a long lifetime, as it has fewer consumables. Thus, we are in the process of developing a microwave ion source for ion implantation applications. In this paper, we report on a newly developed plasma chamber and the extracted P{sup +} beam currents. The volume of the plasma chamber is optimized by varying the length of a boron nitride block installed within the chamber. The extracted P{sup +} beam current is more than 30 mA, at a 25 kV acceleration voltage, using PH{sub 3} gas.

  6. ECR ion source based low energy ion beam facility

    International Nuclear Information System (INIS)

    Over the past two decades or so, electron cyclotron resonance (ECR) ion sources have created a tremendous impact and given a major boost to technology and science in the production of high intensity multiply charged ions. A project was undertaken to develop a research facility consisting of an ECR source along with all its peripheral electronics and vacuum components placed on a 200 kV high voltage platform for obtaining multiply charged ions in a widely varying energy range from a few kilo electron volts (keV) to a few million electron volts (MeV)

  7. High current ion source development at Frankfurt

    International Nuclear Information System (INIS)

    The development of high current positive and negative ion sources is an essential issue for the next generation of high current linear accelerators. Especially, the design of the European Spallation Source facility (ESS) and the International Fusion Material Irradiation Test Facility (IFMIF) have increased the significance of high brightness hydrogen and deuterium sources. As an example, for the ESS facility, two H--sources each delivering a 70 mA H--beam in 1.45 ms pulses at a repetition rate of 50 Hz are necessary. A low emittance is another important prerequisite. The source must operate, while meeting the performance requirements, with a constancy and reliability over an acceptable period of time. The present paper summarizes the progress achieved in ion sources development of intense, single charge, positive and negative ion beams. (author) 16 figs., 7 refs

  8. Highly Stripped Ion Sources for MeV Ion Implantation

    Energy Technology Data Exchange (ETDEWEB)

    Hershcovitch, Ady

    2009-06-30

    Original technical objectives of CRADA number PVI C-03-09 between BNL and Poole Ventura, Inc. (PVI) were to develop an intense, high charge state, ion source for MeV ion implanters. Present day high-energy ion implanters utilize low charge state (usually single charge) ion sources in combination with rf accelerators. Usually, a MV LINAC is used for acceleration of a few rnA. It is desirable to have instead an intense, high charge state ion source on a relatively low energy platform (de acceleration) to generate high-energy ion beams for implantation. This de acceleration of ions will be far more efficient (in energy utilization). The resultant implanter will be smaller in size. It will generate higher quality ion beams (with lower emittance) for fabrication of superior semiconductor products. In addition to energy and cost savings, the implanter will operate at a lower level of health risks associated with ion implantation. An additional aim of the project was to producing a product that can lead to long­ term job creation in Russia and/or in the US. R&D was conducted in two Russian Centers (one in Tomsk and Seversk, the other in Moscow) under the guidance ofPVI personnel and the BNL PI. Multiple approaches were pursued, developed, and tested at various locations with the best candidate for commercialization delivered and tested at on an implanter at the PVI client Axcelis. Technical developments were exciting: record output currents of high charge state phosphorus and antimony were achieved; a Calutron-Bemas ion source with a 70% output of boron ion current (compared to 25% in present state-of-the-art). Record steady state output currents of higher charge state phosphorous and antimony and P ions: P{sup 2+} (8.6 pmA), P{sup 3+} (1.9 pmA), and P{sup 4+} (0.12 pmA) and 16.2, 7.6, 3.3, and 2.2 pmA of Sb{sup 3+} Sb {sup 4 +}, Sb{sup 5+}, and Sb{sup 6+} respectively. Ultimate commercialization goals did not succeed (even though a number of the products like high

  9. Ion sources on basis contracted discharges

    International Nuclear Information System (INIS)

    The summary of the works about the contracted discharge with thermocathode and with cold whole cathode research was held with the purpose of their application in plasma generation on the ion beams sources

  10. Factors influencing parameters of laser ion sources

    Czech Academy of Sciences Publication Activity Database

    Láska, Leoš; Badziak, J.; Boody, F. D.; Gammino, S.; Jungwirth, Karel; Krása, Josef; Krouský, Eduard; Parys, P.; Pfeifer, Miroslav; Rohlena, Karel; Ryč, L.; Skála, Jiří; Torrisi, L.; Ullschmied, Jiří; Wolowski, J.

    Madrid : ETS, 2006, s. 201. [ECLIM /29./. Madrid (ES), 11.06.2006-16.06.2006] R&D Projects: GA AV ČR IAA1010405 Institutional research plan: CEZ:AV0Z10100523; CEZ:AV0Z20430508 Keywords : laser ion sources * ion characteristics * non-linear processes Subject RIV: BH - Optics, Masers, Lasers

  11. A negative ion source test facility

    Energy Technology Data Exchange (ETDEWEB)

    Melanson, S.; Dehnel, M., E-mail: morgan@d-pace.com; Potkins, D.; Theroux, J.; Hollinger, C.; Martin, J.; Stewart, T.; Jackle, P.; Withington, S. [D-Pace, Inc., P.O. Box 201, Nelson, British Columbia V1L 5P9 (Canada); Philpott, C.; Williams, P.; Brown, S.; Jones, T.; Coad, B. [Buckley Systems Ltd., 6 Bowden Road, Mount Wellington, Auckland 1060 (New Zealand)

    2016-02-15

    Progress is being made in the development of an Ion Source Test Facility (ISTF) by D-Pace Inc. in collaboration with Buckley Systems Ltd. in Auckland, NZ. The first phase of the ISTF is to be commissioned in October 2015 with the second phase being commissioned in March 2016. The facility will primarily be used for the development and the commercialization of ion sources. It will also be used to characterize and further develop various D-Pace Inc. beam diagnostic devices.

  12. An advanced negative hydrogen ion source

    Energy Technology Data Exchange (ETDEWEB)

    Goncharov, Alexey A., E-mail: gonchar@iop.kiev.ua; Dobrovolsky, Andrey N.; Goretskii, Victor P. [Institute of Physics National Academy of Science in Ukraine, Kiev 03028 (Ukraine)

    2016-02-15

    The results of investigation of emission productivity of negative particles source with cesiated combined discharge are presented. A cylindrical beam of negative hydrogen ions with density about 2 A/cm{sup 2} in low noise mode on source emission aperture is obtained. The total beam current values are up to 200 mA for negative hydrogen ions and up to 1.5 A for all negative particles with high divergence after source. The source has simple design and can produce stable discharge with low level of oscillation.

  13. Negative ion source with external RF antenna

    Science.gov (United States)

    Leung, Ka-Ngo; Hahto, Sami K.; Hahto, Sari T.

    2007-02-13

    A radio frequency (RF) driven plasma ion source has an external RF antenna, i.e. the RF antenna is positioned outside the plasma generating chamber rather than inside. The RF antenna is typically formed of a small diameter metal tube coated with an insulator. An external RF antenna assembly is used to mount the external RF antenna to the ion source. The RF antenna tubing is wound around the external RF antenna assembly to form a coil. The external RF antenna assembly is formed of a material, e.g. quartz, which is essentially transparent to the RF waves. The external RF antenna assembly is attached to and forms a part of the plasma source chamber so that the RF waves emitted by the RF antenna enter into the inside of the plasma chamber and ionize a gas contained therein. The plasma ion source is typically a multi-cusp ion source. A converter can be included in the ion source to produce negative ions.

  14. ITER DNB ion source movement mechanism

    International Nuclear Information System (INIS)

    The 100 kV negative hydrogen ion source based Diagnostic Neutral Beam (DNB) injector, a part of Indian (IN) Procurement Package for ITER. DNB is expected to deliver 18-20 A of hydrogen neutral beam to the ITER plasma through a narrow blanket aperture of size 0.40(H) x 0.45(V) m2, at a distance ∼20.67 m from the ion source position. Due to long transport length, a small misalignment of the ion source will cause significant transmission loss of the beam and produce asymmetric heat load on the beamline components and on the duct assembly. Mechanical misalignment and deflection due to tokamak stray magnetic field are also envisaged and therefore ion source positional adjustment is needed during DNB operation. This can be addressed by making provisions for the desired vertical and horizontal movements in the ion source support structure. Two independent translations for horizontal angular and linear misalignment adjustment are achieved by means of 'master-slave' configuration arrangement in the support structure. The force analysis of the movement mechanism of the ion source support structure is carried out analytically by statics and generates inputs for an engineering design of such movement mechanism and discussed in the manuscript.

  15. Energy spread of ion beams generated in multicusp ion sources

    International Nuclear Information System (INIS)

    For the production of future microelectronics devices, various alternate methods are currently being considered to replace the presently used method of lithography with ion beam lithography. One of these methods is the Ion Projection Lithography (IPL), which aims at the possibility of projecting sub-0.25 μm patterns of a stencil mask onto a wafer substrate. In order to keep the chromatic aberrations below 25 nm, an ion source which delivers a beam with energy spread of less than 3 eV is desired. For this application, multicusp ion sources are being considered. We measure the longitudinal energy spread of the plasma ions by using a two-grid electrostatic energy analyzer. The energy spread of the extracted beam is measured by a high-voltage retarding-field energy analyzer. In order to obtain the transverse ion temperature, a parallel-plate scanner is being set up to study the beam emittance. In this paper, comparisons are made for different ion source configurations

  16. Dual chamber laser ion source at LISOL

    OpenAIRE

    Kudryavtsev, Yuri; Cocolios, Thomas Elias; Gentens, Johnny; Huyse, Marc; Ivanov, Oleg; Pauwels, Dieter; Sonoda, Tetsu; Van den Bergh, Paul; Van Duppen, Piet

    2009-01-01

    A new type of gas cell for the resonance ionization laser ion source at the Leuven Isotope Separator On Line (LISOL) has been developed and tested under off-line and on-line conditions. Two-step selective laser ionization is applied to produce purified beams of radioactive isotopes. The selectivity of the ion source has been increased by more than one order of magnitude by separation of the stopping and laser ionization regions. This allows the use of electrical fields for further ion purific...

  17. Laser ion source for particle accelerators

    CERN Document Server

    Sherwood, T R

    1995-01-01

    There is an interest in accelerating atomic nuclei to produce particle beams for medical therapy, atomic and nuclear physics, inertial confinement fusion and particle physics. Laser Ion Sources, in which ions are extracted from plasma created when a high power density laser beam pulse strikes a solid surface in a vacuum, are not in common use. However, some new developments in which heavy ions have been accelerated show that such sources have the potential to provide the beams required for high-energy accelerator systems.

  18. Laser ion source with solenoid for Brookhaven National Laboratory-electron beam ion source

    International Nuclear Information System (INIS)

    The electron beam ion source (EBIS) preinjector at Brookhaven National Laboratory (BNL) is a new heavy ion-preinjector for relativistic heavy ion collider (RHIC) and NASA Space Radiation Laboratory (NSRL). Laser ion source (LIS) is a primary ion source provider for the BNL-EBIS. LIS with solenoid at the plasma drift section can realize the low peak current (∼100 μA) with high charge (∼10 nC) which is the BNL-EBIS requirement. The gap between two solenoids does not cause serious plasma current decay, which helps us to make up the BNL-EBIS beamline.

  19. Laser ion source with solenoid for Brookhaven National Laboratory-electron beam ion source.

    Science.gov (United States)

    Kondo, K; Yamamoto, T; Sekine, M; Okamura, M

    2012-02-01

    The electron beam ion source (EBIS) preinjector at Brookhaven National Laboratory (BNL) is a new heavy ion-preinjector for relativistic heavy ion collider (RHIC) and NASA Space Radiation Laboratory (NSRL). Laser ion source (LIS) is a primary ion source provider for the BNL-EBIS. LIS with solenoid at the plasma drift section can realize the low peak current (∼100 μA) with high charge (∼10 nC) which is the BNL-EBIS requirement. The gap between two solenoids does not cause serious plasma current decay, which helps us to make up the BNL-EBIS beamline. PMID:22380298

  20. Molecular ion sources for low energy semiconductor ion implantation (invited)

    Energy Technology Data Exchange (ETDEWEB)

    Hershcovitch, A., E-mail: hershcovitch@bnl.gov [Brookhaven National Laboratory, Upton, New York 11973 (United States); Gushenets, V. I.; Bugaev, A. S.; Oks, E. M.; Vizir, A.; Yushkov, G. Yu. [High Current Electronics Institute, Siberian Branch of Russian Academy of Sciences, Tomsk 634055 (Russian Federation); Seleznev, D. N.; Kulevoy, T. V.; Kozlov, A.; Kropachev, G. N.; Kuibeda, R. P.; Minaev, S. [Institute for Theoretical and Experimental Physics, Moscow 117218 (Russian Federation); Dugin, S.; Alexeyenko, O. [State Scientific Center of the Russian Federation State Research Institute for Chemistry and Technology of Organoelement Compounds, Moscow (Russian Federation)

    2016-02-15

    Smaller semiconductors require shallow, low energy ion implantation, resulting space charge effects, which reduced beam currents and production rates. To increase production rates, molecular ions are used. Boron and phosphorous (or arsenic) implantation is needed for P-type and N-type semiconductors, respectively. Carborane, which is the most stable molecular boron ion leaves unacceptable carbon residue on extraction grids. A self-cleaning carborane acid compound (C{sub 4}H{sub 12}B{sub 10}O{sub 4}) was synthesized and utilized in the ITEP Bernas ion source resulting in large carborane ion output, without carbon residue. Pure gaseous processes are desired to enable rapid switch among ion species. Molecular phosphorous was generated by introducing phosphine in dissociators via 4PH{sub 3} = P{sub 4} + 6H{sub 2}; generated molecular phosphorous in a pure gaseous process was then injected into the HCEI Calutron-Bernas ion source, from which P{sub 4}{sup +} ion beams were extracted. Results from devices and some additional concepts are described.

  1. Effects of surface and volume production on emittance in a volume type negative ion source

    International Nuclear Information System (INIS)

    A volume-type negative ion source has been modeled using a version of the Negative Ion Injector Design Analysis Program (NIIDeAP). The purpose of the study was to investigate the relative effects of surface-produced ions and volume-produced ions on the emittance of the total extracted beam. The differences between the two types of ion production can be expected to influence energy and emittance distributions for several reasons. Even though the fundamental physics of ion production in the source imply a low temperature, the effects of magnetic field, internal surface geometry, plasma potential, and superposition of two different populations can result in a significant increase of the apparent temperature. A high precision ion trajectory integrator was used. (Author) 5 figs., 5 refs

  2. Improvement of compact ECR ion source

    International Nuclear Information System (INIS)

    A compact electron cyclotron resonance ion source (ECRIS), so-colled Kei2, has been developed for high energy carbon ion therapy facility. It based on experimental studies for production of carbon 4+ ions with a 10 GHz ECR source at the Heavy Ion Medical Accelerator in Chiba (HIMAC), so-called NIRS-ECR, the field distribution of the mirror magnet for Kei2 was designed. A microwave source with the traveling-wave-tube (TWT) was adopted for Kei2, with a frequency range and maximum power of 9.75 - 10.25 GHz and 750 W, respectively. The Kei2 and prototype injector were installed in the HIMAC facility in 2009. Improvement of the Kei2 is described in this paper. (author)

  3. Ion source development and operation at GSI

    International Nuclear Information System (INIS)

    At GSI different ion beams are delivered to the UNILAC, the synchrotron SIS or to the storage ring ESR. For that purpose three different injectors are in use for the UNILAC, equipped with different ion sources. The standard injector with a Penning ion source and the high current injector (with CHORDIS or MEVVA ion source) supply the Wideroee accelerator (pre-stripper section of UNILAC) with an injection energy of 11.7 keV/u. The newly built high charge state injector HLI is equipped with an ECR ion source (CAPRICE). The injection energy for the succeeding RFQ and IH accelerator is 2.5 keV/u. Both beams are further accelerated in the Alvarez accelerator (post-stripper section of UNILAC) with an injection energy of 1.4 MeV/u. For ion source tests and developments additional test benches are available. The specific advantages of each injector, recent improvements and specific operating modes are described. (author)

  4. Review of negative hydrogen ion sources

    International Nuclear Information System (INIS)

    In the early seventies, significant discoveries for H- ion sources were made at Novosibirsk. These and many improvements which followed have led to useful accelerator sources. With these sources charge-exchange injection into circular accelerators has become desirable and routine. This paper reviews the major developments leading to practical H- sources. Different types and variations of these sources with some basic physics and operation will be described. The operating parameters and beam characteristics of these sources will be given. 32 refs., 13 figs

  5. Status of CSNS H- ion source

    CERN Document Server

    Liu, Shengjin; Ouyang, Huafu; Zhao, Fuxiang; Xiao, Yongchuan; Lv, Yongjia; Cao, Xiuxia; Xue, Kangjia; Zhang, Junsong; Xu, Taoguang; Li, Fang; Lu, Yanhua; Li, Gang; Yang, Lei; Li, Yi

    2014-01-01

    A new H^- ion source has been installed successfully and will be used to serve the China Spallation Neutron Source (CSNS). In this paper, we report various components of the ion source, including discharge chamber, temperature, cooling system, extraction electrodes, analyzing magnet, remote control system and so on. Compared to the previous experimental ion source, some improvements have been made to make the ion source more compact and convenient. In the present arrangement, the Penning field is generated by a pair of pole tip extensions on the analyzing magnet instead of by a separate circuit. For the remote control system, F3RP61-2L is applied to the accelerator online control system for the first time. In the running of the ion source, a stable pulse H- beam with a current of 50 mA at an energy of 50 keV is produced. The extraction frequency and pulse width is 25 Hz and 500microsecond, respectively. Furthermore, an emittance scanner has been installed and measurements are in progress.

  6. LIGA fabrication of mm-wave accelerating cavity structures at the Advanced Photon Source (APS)

    International Nuclear Information System (INIS)

    Recent microfabrication technologies based on the LIGA (German acronym for Lithographe, Galvanoformung, und Abformung) process have been applied to build high-aspect-ratio, metallic or dielectric planar structures suitable for high-frequency rf cavity structures. The cavity structures would be used as parts of linear accelerators, microwave undulators, and mm-wave amplifiers. The microfabrication process includes manufacture of precision x-ray masks, exposure of positive resist x-rays through the mask, resist development, and electroforming of the final microstructure. Prototypes of a 32-cell, 108-GHz constant-impedance cavity and a 66-cell, 94-GHz constant-gradient cavity were fabricated with the synchrotron radiation sources at APS and NSLS. This paper will present an overview of the new technology and details of the mm-wave cavity fabrication

  7. Ion sources for high-frequency accelerators

    International Nuclear Information System (INIS)

    Ion sources are being applied increasingly in many areas of physica snd technology, from basic research in nuclear and atomic physics to energy research, isotope separation, implantation technology, surface processing and analysis all the way to biomedicine. It is impossible within the framework of this discussion to provide a comprehensive survey of the variety of available source types. The function and problems of the types important for high-frequency accelerators are to be explained using a few individual examples in order to stimulate a basic understanding for this technically sophisticated and little-known equipment. The sources discussed here supply single or multiple positively charged ions. 54 refs., 18 figs

  8. Saddle antenna radio frequency ion sources

    Energy Technology Data Exchange (ETDEWEB)

    Dudnikov, V., E-mail: vadim@muonsinc.com; Johnson, R. [Muons, Inc., Batavia, Illinois 60510 (United States); Murray, S.; Pennisi, T.; Santana, M.; Piller, C.; Stockli, M.; Welton, R. [ORNL, Oak Ridge, Tennessee 37831 (United States); Breitschopf, J. [TLU, Seguin, Texas 78155 (United States); Dudnikova, G. [UMD, College Park, Maryland 32611 (United States); Institute of Computational Technologies SBRAS, Novosibirsk (Russian Federation)

    2016-02-15

    Existing RF ion sources for accelerators have specific efficiencies for H{sup +} and H{sup −} ion generation ∼3–5 mA/cm{sup 2} kW, where about 50 kW of RF power is typically needed for 50 mA beam current production. The Saddle Antenna (SA) surface plasma source (SPS) described here was developed to improve H{sup −} ion production efficiency, reliability, and availability. In SA RF ion source, the efficiency of positive ion generation in the plasma has been improved to 200 mA/cm{sup 2} kW. After cesiation, the current of negative ions to the collector was increased from 1 mA to 10 mA with RF power ∼1.5 kW in the plasma (6 mm diameter emission aperture) and up to 30 mA with ∼4 kW RF. Continuous wave (CW) operation of the SA SPS has been tested on the test stand. The general design of the CW SA SPS is based on the pulsed version. Some modifications were made to improve the cooling and cesiation stability. CW operation with negative ion extraction was tested with RF power up to ∼1.2 kW in the plasma with production up to Ic = 7 mA. A stable long time generation of H{sup −} beam without degradation was demonstrated in RF discharge with AlN discharge chamber.

  9. Ion Source Development at the SNS

    International Nuclear Information System (INIS)

    The Spallation Neutron Source (SNS) now routinely operates near 1 MW of beam power on target with a highly-persistent ∼38 mA peak current in the linac and an availability of ∼90%. The ∼1 ms-long, 60 Hz, ∼50 mA H- beam pulses are extracted from a Cs-enhanced, multi-cusp, RF-driven, internal-antenna ion source. An electrostatic LEBT (Low Energy Beam Transport) focuses the 65 kV beam into the RFQ accelerator. The ion source and LEBT have normally a combined availability of ∼99%. Although much progress has been made over the last years to achieve this level of availability further improvements are desirable. Failures of the internal antenna and occasionally impaired electron dump insulators require several source replacements per year. An attempt to overcome the antenna issues with an AlN external antenna source early in 2009 had to be terminated due to availability issues. This report provides a comprehensive review of the design, experimental history, status, and description of recently updated components and future plans for this ion source. The mechanical design for improved electron dump vacuum feedthroughs is also presented, which is compatible with the baseline and both external antenna ion sources.

  10. Automatic ion extraction from high-frequency ion source

    International Nuclear Information System (INIS)

    A description and results of tests of device for automatic extraction of ions from a high-frequency ion source are presented. The automatic regime is realized by introducing feedback with respect to the current of the source cathode and requires low sinusoidal modulation of the exctracting voltage. By varying the power of the discharge the beam current was controlled in the 90-1470μA range with automatic preservation of the optimal conditions in the extraction system. The device was used on a 210-kV neutron generator

  11. Vacuum arc ion source development at GSI

    Energy Technology Data Exchange (ETDEWEB)

    Spaedtke, P.; Emig, H.; Wolf, B.H. [GSI Darmstadt (Germany)

    1996-08-01

    Ion beams produced by the Mevva ion source are well suited for the injection into a synchrotron accelerator due to the low repetition rate (0.2 ... 5 Hz, the higher repetition rate is for the optimization of the linear accelerator only) and the short pulse length (up to 0.5ms). From the beginning of the authors experience with the Mevva ion source at GSI they tried to improve the reliability of pulse-to-pulse reproducibility and to minimize the noise on the extracted ion beam. For accelerator application this is highly necessary, otherwise the accelerator tuning and optimization becomes very difficult or even impossible. Already the beam transport becomes difficult for a noisy beam, because space charge compensation can be destroyed (at least partially). Furthermore a noisy dc-beam results in some rf-buckets which might be even empty.

  12. LINAC4 - The Ion Source

    CERN Document Server

    Haugaa, Olav

    2013-01-01

    My summer student project has been split in three parts. During the first 4-5 weeks I was involved in the design of the filtermagnets for the IS02 with the simulation tool Opera. After this, I have performed data analysis of the plasma light emission in the IS01 source with the software Matlab and I took part in the development of a Fortran code for plasma simulations. In all projects, understanding plasma physics has been essential and the learning outcome related to this field has been very high.

  13. Design study of primary ion provider for relativistic heavy ion collider electron beam ion source

    International Nuclear Information System (INIS)

    Brookhaven National Laboratory has developed the new preinjector system, electron beam ion source (EBIS) for relativistic heavy ion collider (RHIC) and National Aeronautics and Space Administration Space Radiation Laboratory. Design of primary ion provider is an essential problem since it is required to supply beams with different ion species to multiple users simultaneously. The laser ion source with a defocused laser can provide a low charge state and low emittance ion beam, and is a candidate for the primary ion source for RHIC-EBIS. We show a suitable design with appropriate drift length and solenoid, which helps to keep sufficient total charge number with longer pulse length. The whole design of primary ion source, as well as optics arrangement, solid targets configuration and heating about target, is presented.

  14. Design study of primary ion provider for relativistic heavy ion collider electron beam ion source.

    Science.gov (United States)

    Kondo, K; Kanesue, T; Tamura, J; Okamura, M

    2010-02-01

    Brookhaven National Laboratory has developed the new preinjector system, electron beam ion source (EBIS) for relativistic heavy ion collider (RHIC) and National Aeronautics and Space Administration Space Radiation Laboratory. Design of primary ion provider is an essential problem since it is required to supply beams with different ion species to multiple users simultaneously. The laser ion source with a defocused laser can provide a low charge state and low emittance ion beam, and is a candidate for the primary ion source for RHIC-EBIS. We show a suitable design with appropriate drift length and solenoid, which helps to keep sufficient total charge number with longer pulse length. The whole design of primary ion source, as well as optics arrangement, solid targets configuration and heating about target, is presented. PMID:20192366

  15. Fourth generation electron cyclotron resonance ion sources.

    Science.gov (United States)

    Lyneis, Claude M; Leitner, D; Todd, D S; Sabbi, G; Prestemon, S; Caspi, S; Ferracin, P

    2008-02-01

    The concepts and technical challenges related to developing a fourth generation electron cyclotron resonance (ECR) ion source with a rf frequency greater than 40 GHz and magnetic confinement fields greater than twice B(ECR) will be explored in this article. Based on the semiempirical frequency scaling of ECR plasma density with the square of operating frequency, there should be significant gains in performance over current third generation ECR ion sources, which operate at rf frequencies between 20 and 30 GHz. While the third generation ECR ion sources use NbTi superconducting solenoid and sextupole coils, the new sources will need to use different superconducting materials, such as Nb(3)Sn, to reach the required magnetic confinement, which scales linearly with rf frequency. Additional technical challenges include increased bremsstrahlung production, which may increase faster than the plasma density, bremsstrahlung heating of the cold mass, and the availability of high power continuous wave microwave sources at these frequencies. With each generation of ECR ion sources, there are new challenges to be mastered, but the potential for higher performance and reduced cost of the associated accelerator continues to make this a promising avenue for development. PMID:18315111

  16. Recent negative ion source developments at ORNL

    International Nuclear Information System (INIS)

    According to specifications written for the 25 MV ORNL tandem accelerator, the ion source used during acceptance testing must be capable of producing a negative ion beam of intensity greater than or equal to 7.5 μA within a phase space of less than or equal to 1 π cm-mrad (MeV)/sup 1/2/. The specifications were written prior to the development of an ion source with such capabilities but fortunately Andersen and Tykesson introduced a source in 1975 which could easily meet the specified requirements. The remarkable beam intensity and quality properties of this source has motivated the development of other sources which utilize sputtering in the presence of a diffuse cesium plasma - some of which will be described in these proceedings. This report describes results of studies associated with the development of a modified Aarhus geometry and an axial geometry source which utilize sputtering in the presence of a diffuse cesium plasma for the production of negative ion beams

  17. Ion Source Development at the SNS

    International Nuclear Information System (INIS)

    The US Spallation Neutron Source* (SNS) has recently begun producing neutrons and is currently on track to becoming a world-leading facility for materials science based on neutron scattering. The facility is comprised of an H- ion source, a linear accelerator, an accumulator ring, a liquid-Hg target and a suite of neutron scattering instruments. Over the next several years the average H- current from the ion source will be increased in order to meet the baseline facility requirement of providing 1.4 MW of beam-power to the target and the SNS power upgrade power requirement of 2+ MW on target. Meeting the latter goal will require H- currents of 70-100 mA with an RMS emittance of 0.20-0.35 mm mrad and a ∼7% duty-factor. To date, the RF-driven multicusp SNS ion source has only been able to demonstrate sustained operation at 33 mA of beam current at a ∼7% duty-factor. This report details our efforts to develop variations of the current ion source which can meet the final requirements: designs and experimental results are presented for source versions featuring helicon plasma generators, high-power external antennas employing Cs, glow-discharge plasma guns supplying supplemental electrons and advanced Cs collars.

  18. Influence of APS bias voltage on properties of HfO2 and SiO2 single layer deposited by plasma ion-assisted deposition

    Institute of Scientific and Technical Information of China (English)

    Meiping Zhu; Kui Yi; Zhengxiu Fan; Jianda Shao

    2011-01-01

    @@ HfO2 and SiO2 single layer is deposited on glass substrate with plasma ion assistance provided by Leybold advanced plasma source (APS). The deposition is performed with a bias voltage in the range of 70-130 V for HfO2, and 70-170 V for SiO2. Optical, structural, mechanical properties, as well as absorption and laser induced damage threshold at 1064 nm of HfO2 and SiO2 single layer deposited with the plasma ion assistance are systematically investigated. With the increase of APS bias voltage, coatings with higher refractive index, reduced surface roughness, and higher laser-induced damage threshold (LIDT) are obtained, and no significant change of the absorption at 1064 nm is observed. For HfO2, a bias voltage can be identified to achieve coatings without any stress. However, too-high bias voltage can cause the increase of surface roughness and stress, and decrease the LIDT. The bias voltage can be properly identified to achieve coatings with desired properties.%HfO2 and SiO2 single layer is deposited on glass substrate with plasma ion assistance provided by Leybold advanced plasma source (APS). The deposition is performed with a bias voltage in the range of 70-130 V for HfO2, and 70-170 V for SiO2. Optical, structural, mechanical properties, as well as absorption and laser induced damage threshold at 1064 nm of HfO2 and SiO2 single layer deposited with the plasma ion assistance are systematically investigated. With the increase of APS bias voltage, coatings with higher refractive index, reduced surface roughness, and higher laser-induced damage threshold (LIDT) are obtained, and no significant change of the absorption at 1064 nm is observed. For HfO2, a bias voltage can be identified to achieve coatings without any stress. However, too-high bias voltage can cause the increase of surface roughness and stress, and decrease the LIDT. The bias voltage can be properly identified to achieve coatings with desired properties.

  19. Electron cyclotron resonance ion source control system

    International Nuclear Information System (INIS)

    The ECR Ion source control system is a computer based control system. Main components of the ECR ion source are microwave generation, plasma chamber, solenoid magnets and power supplies, extraction electrodes and power supplies, beam measuring device and vacuum system. All electronics devices have their built in microprocessor base electronic interface, which can be remotely accessed by serial or Ethernet link. Two Ethernet to four port serial converter are used to extend the serial port of the computer. Serial interface of all the devices are connected to the extended serial ports of the computer. A serial link of high voltage power supplies have provided optical isolation using serial to optical converter to overcome EMI and EMC problems. The software has been developed in house for remote operation of the ECR ion source. (author)

  20. The RHIC polarized H⁻ ion source.

    Science.gov (United States)

    Zelenski, A; Atoian, G; Raparia, D; Ritter, J; Steski, D

    2016-02-01

    A novel polarization technique had been successfully implemented for the Relativistic Heavy Ion Collider (RHIC) polarized H(-) ion source upgrade to higher intensity and polarization. In this technique, a proton beam inside the high magnetic field solenoid is produced by ionization of the atomic hydrogen beam (from external source) in the He-gaseous ionizer cell. Further proton polarization is produced in the process of polarized electron capture from the optically pumped Rb vapor. The use of high-brightness primary beam and large cross sections of charge-exchange cross sections resulted in production of high intensity H(-) ion beam of 85% polarization. The source very reliably delivered polarized beam in the RHIC Run-2013 and Run-2015. High beam current, brightness, and polarization resulted in 75% polarization at 23 GeV out of Alternating Gradient Synchrotron (AGS) and 60%-65% beam polarization at 100-250 GeV colliding beams in RHIC. PMID:26932068

  1. The RHIC polarized H- ion source

    Science.gov (United States)

    Zelenski, A.; Atoian, G.; Raparia, D.; Ritter, J.; Steski, D.

    2016-02-01

    A novel polarization technique had been successfully implemented for the Relativistic Heavy Ion Collider (RHIC) polarized H- ion source upgrade to higher intensity and polarization. In this technique, a proton beam inside the high magnetic field solenoid is produced by ionization of the atomic hydrogen beam (from external source) in the He-gaseous ionizer cell. Further proton polarization is produced in the process of polarized electron capture from the optically pumped Rb vapor. The use of high-brightness primary beam and large cross sections of charge-exchange cross sections resulted in production of high intensity H- ion beam of 85% polarization. The source very reliably delivered polarized beam in the RHIC Run-2013 and Run-2015. High beam current, brightness, and polarization resulted in 75% polarization at 23 GeV out of Alternating Gradient Synchrotron (AGS) and 60%-65% beam polarization at 100-250 GeV colliding beams in RHIC.

  2. The Stockholm Electron Beam Ion Source

    Energy Technology Data Exchange (ETDEWEB)

    Beebe, E.; Liljeby, L.; Engstroem, A.; Bjoerkhage, M. (Manne Siegbahn Inst. of Physics, Stockholm (Sweden))

    1993-03-01

    The electron beam ion source, CRYSIS, produces highly charged ions for injection into the heavy ion storage ring - CRYRING at the Manne Siegbahn Institute, and for low energy atomic physics experiments. It will also provide highly charged ions for the Stockholm-Mainz Penning trap scheduled for installation at MSI in early 1993. CRYSIS has produced ions up to Ar[sup 18+] and [sup 136]Xe[sup 49+] using electron beam currents of typically I[sub e] = 200-300 mA and current density j[sub e] = 100-200 A/cm[sup 2]. Continuous electron beams of energy E = 19 keV and current I[sub e] = 600 mA have been propagated through the source with transmission greater than 99.9%. Test beams of He[sup 2+] and N[sup 7+] extracted from the source in 50-100 [mu]s pulses have been injected into CRYRING with the entire CRYSIS platform raised to 20 kV. Ions of charge up to [sup 136]Xe[sup 44+] extracted in extended 50-100 ms pulses have been used in coincidence-type atomic physics experiments. The status of CRYSIS as of March 15, 1992 is reported. Improvements, modes of operation, and results are discussed. (orig.).

  3. Optically pumped polarized H- ion source

    International Nuclear Information System (INIS)

    The current status and future prospects for the optically pumped polarized H- ion source are discussed. At the present time H- ion currents of 60 μA and with a polarization of 65% have been produced. The ion current and polarization can be increased significantly if the optically pumped Na charge exchange target density and polarization can be increased. Studies of wall surfaces that permit many bounces before depolarizing the Na electron spin and studies of radiation trapping in optically pumped Na indicate that the Na target density and polarization can be increased substantially. 27 refs., 6 figs., 2 tabs

  4. Liquid metal alloy ion source based metal ion injection into a room-temperature electron beam ion source.

    Science.gov (United States)

    Thorn, A; Ritter, E; Ullmann, F; Pilz, W; Bischoff, L; Zschornack, G

    2012-02-01

    We have carried out a series of measurements demonstrating the feasibility of using the Dresden electron beam ion source (EBIS)-A, a table-top sized, permanent magnet technology based electron beam ion source, as a charge breeder. Low charged gold ions from an AuGe liquid metal alloy ion source were injected into the EBIS and re-extracted as highly charged ions, thereby producing charge states as high as Au(60 +). The setup, the charge breeding technique, breeding efficiencies as well as acceptance and emittance studies are presented. PMID:22380207

  5. Plasma ion sources and ion beam technology inmicrofabrications

    Energy Technology Data Exchange (ETDEWEB)

    Ji, Lili

    2007-09-01

    For over decades, focused ion beam (FIB) has been playing a very important role in microscale technology and research, among which, semiconductor microfabrication is one of its biggest application area. As the dimensions of IC devices are scaled down, it has shown the need for new ion beam tools and new approaches to the fabrication of small-scale devices. In the meanwhile, nanotechnology has also deeply involved in material science research and bioresearch in recent years. The conventional FIB systems which utilize liquid gallium ion sources to achieve nanometer scale resolution can no longer meet the various requirements raised from such a wide application area such as low contamination, high throughput and so on. The drive towards controlling materials properties at nanometer length scales relies on the availability of efficient tools. In this thesis, three novel ion beam tools have been developed and investigated as the alternatives for the conventional FIB systems in some particular applications. An integrated focused ion beam (FIB) and scanning electron microscope (SEM) system has been developed for direct doping or surface modification. This new instrument employs a mini-RF driven plasma source to generate focused ion beam with various ion species, a FEI two-lens electron (2LE) column for SEM imaging, and a five-axis manipulator system for sample positioning. An all-electrostatic two-lens column has been designed to focus the ion beam extracted from the source. Based on the Munro ion optics simulation, beam spot sizes as small as 100 nm can be achieved at beam energies between 5 to 35 keV if a 5 {micro}m-diameter extraction aperture is used. Smaller beam spot sizes can be obtained with smaller apertures at sacrifice of some beam current. The FEI 2LE column, which utilizes Schottky emission, electrostatic focusing optics, and stacked-disk column construction, can provide high-resolution (as small as 20 nm) imaging capability, with fairly long working distance

  6. Plasma ion sources and ion beam technology in microfabrications

    International Nuclear Information System (INIS)

    For over decades, focused ion beam (FIB) has been playing a very important role in microscale technology and research, among which, semiconductor microfabrication is one of its biggest application area. As the dimensions of IC devices are scaled down, it has shown the need for new ion beam tools and new approaches to the fabrication of small-scale devices. In the meanwhile, nanotechnology has also deeply involved in material science research and bioresearch in recent years. The conventional FIB systems which utilize liquid gallium ion sources to achieve nanometer scale resolution can no longer meet the various requirements raised from such a wide application area such as low contamination, high throughput and so on. The drive towards controlling materials properties at nanometer length scales relies on the availability of efficient tools. In this thesis, three novel ion beam tools have been developed and investigated as the alternatives for the conventional FIB systems in some particular applications. An integrated focused ion beam (FIB) and scanning electron microscope (SEM) system has been developed for direct doping or surface modification. This new instrument employs a mini-RF driven plasma source to generate focused ion beam with various ion species, a FEI two-lens electron (2LE) column for SEM imaging, and a five-axis manipulator system for sample positioning. An all-electrostatic two-lens column has been designed to focus the ion beam extracted from the source. Based on the Munro ion optics simulation, beam spot sizes as small as 100 nm can be achieved at beam energies between 5 to 35 keV if a 5 (micro)m-diameter extraction aperture is used. Smaller beam spot sizes can be obtained with smaller apertures at sacrifice of some beam current. The FEI 2LE column, which utilizes Schottky emission, electrostatic focusing optics, and stacked-disk column construction, can provide high-resolution (as small as 20 nm) imaging capability, with fairly long working distance

  7. ECR ion source with electron gun

    Science.gov (United States)

    Xie, Zu Q.; Lyneis, Claude M.

    1993-01-01

    An Advanced Electron Cyclotron Resonance ion source (10) having an electron gun (52) for introducing electrons into the plasma chamber (18) of the ion source (10). The ion source (10) has a injection enclosure (12) and a plasma chamber tank (14). The plasma chamber (18) is defined by a plurality of longitudinal magnets (16). The electron gun (52) injects electrons axially into the plasma chamber (18) such that ionization within the plasma chamber (18) occurs in the presence of the additional electrons produced by the electron gun (52). The electron gun (52) has a cathode (116) for emitting electrons therefrom which is heated by current supplied from an AC power supply (96) while bias potential is provided by a bias power supply (118). A concentric inner conductor (60) and Outer conductor (62) carry heating current to a carbon chuck (104) and carbon pusher (114) Which hold the cathode (116) in place and also heat the cathode (16). In the Advanced Electron Cyclotron Resonance ion source (10), the electron gun (52) replaces the conventional first stage used in prior art electron cyclotron resonance ion generators.

  8. Decaborane beam from ITEP Bernas ion source

    International Nuclear Information System (INIS)

    A joint research and development program is under way to develop steady-state intense ion sources for the two energy extremes of MeV and hundreds of eV. The difficulties of extraction and transportation of low-energy boron beams are investigated using a decaborane compound [I. Yamada, W. L. Brown, J. A. Northby, and M. Sosnowski, Nucl. Instrum. Methods Phys. Res. B 79, 223 (1993)]. Presented here are the results from ITEP experiments using the Bernas ion source with an indirectly heated LaB6 cathode

  9. Numerical Simulation Multicomponent Ion Beam Transport form ECR Ion Source

    Institute of Scientific and Technical Information of China (English)

    MaLei; SongMingtao; ZhangZimin; CaoYun

    2003-01-01

    In order to simulate the transport of multi-components ion beam extracted from an ECR ion source, we have developed a multi-charged ion beam transport program named MCIBS 1.0. The program is dedicated to numerical simulation of the behavior of highly-charged ion beam and optimization of beam optics in transport lines and is realized on a PC with Windows user interface of Microsoft Visual Basic. Among all the ions with different charge states in the beam, the exchanges of electrons between highly charged ions and low charged ions or neutral,atoms of residual gas are taken into account by using classical Molecular Over-barrier Model and Monte Carlo method. An advanced Windows graphical interface makes it; comfortable and friendly for the user to operate in an interactive mode. The present program is used for the numerical calculation and optimization of beam optics in a transport line consisting of various magnetic elements, such as dipole magnet, quadrupole and so on. It is possible to simultaneously simulate 200,000 particles, in a transport line of 340 m at most, and show every particle orbit. Beam cross section graphics and emittance phase pictures can be also shown at any position in the transport line.

  10. Low energy ion beam dynamics of NANOGAN ECR ion source

    Science.gov (United States)

    Kumar, Sarvesh; Mandal, A.

    2016-04-01

    A new low energy ion beam facility (LEIBF) has been developed for providing the mass analyzed highly charged intense ion beams of energy ranging from a few tens of keV to a few MeV for atomic, molecular and materials sciences research. The new facility consists of an all permanent magnet 10 GHz electron cyclotron resonance (ECR) ion source (NANOGAN) installed on a high voltage platform (400 kV) which provides large currents of multiply charged ion beams. Higher emittance at low energy of intense ion beam puts a tremendous challenge to the beam optical design of this facility. The beam line consists of mainly the electrostatic quadrupoles, an accelerating section, analyzing cum switching magnet and suitable beam diagnostics including vacuum components. The accelerated ion beam is analyzed for a particular mass to charge (m/q) ratio as well as guided to three different lines along 75°, 90° and 105° using a large acceptance analyzing cum switching magnet. The details of transverse beam optics to all the beam lines with TRANSPORT and GICOSY beam optics codes are being described. Field computation code, OPERA 3D has been utilized to design the magnets and electrostatic quadrupoles. A theoretical estimation of emittance for optimized geometry of ion source is given so as to form the basis of beam optics calculations. The method of quadrupole scan of the beam is used to characterize the emittance of the final beam on the target. The measured beam emittance increases with m/q ratios of various ion beams similar to the trend observed theoretically.

  11. rf improvements for Spallation Neutron Source H- ion source.

    Science.gov (United States)

    Kang, Y W; Fuja, R; Goulding, R H; Hardek, T; Lee, S-W; McCarthy, M P; Piller, M C; Shin, K; Stockli, M P; Welton, R F

    2010-02-01

    The Spallation Neutron Source at Oak Ridge National Laboratory is ramping up the accelerated proton beam power to 1.4 MW and just reached 1 MW. The rf-driven multicusp ion source that originates from the Lawrence Berkeley National Laboratory has been delivering approximately 38 mA H(-) beam in the linac at 60 Hz, 0.9 ms. To improve availability, a rf-driven external antenna multicusp ion source with a water-cooled ceramic aluminum nitride (AlN) plasma chamber is developed. Computer modeling and simulations have been made to analyze and optimize the rf performance of the new ion source. Operational statistics and test runs with up to 56 mA medium energy beam transport beam current identify the 2 MHz rf system as a limiting factor in the system availability and beam production. Plasma ignition system is under development by using a separate 13 MHz system. To improve the availability of the rf power system with easier maintenance, we tested a 70 kV isolation transformer for the 80 kW, 6% duty cycle 2 MHz amplifier to power the ion source from a grounded solid-state amplifier. PMID:20192394

  12. Present status of compact ECR ion source

    International Nuclear Information System (INIS)

    The 10 GHz compact Electron Cyclotron Resonance (ECR) Ion Source with all permanent magnets (Kei2-source) has been developed since 2003. The maximum mirror magnetic field on the beam axis are 0.59 T at the extraction side and 0.87 T at the gas injection side. The minimum B strength is 0.25 T. The size of the source is 300 mm in diameter and 290 mm in length. details of the improvement and the application of the source are reported. (author)

  13. Electron cyclotron resonance (ECR) ion sources

    International Nuclear Information System (INIS)

    Starting with the pioneering work of R. Geller and his group in Grenoble (France), at least 14 ECR sources have been built and tested during the last five years. Most of those sources have been extremely successful, providing intense, stable and reliable beams of highly charged ions for cyclotron injection or atomic physics research. However, some of the operational features of those sources disagreed with commonly accepted theories on ECR source operation. To explain the observed behavior of actual sources, it was found necessary to refine some of the crude ideas we had about ECR sources. Some of those new propositions are explained, and used to make some extrapolations on the possible future developments in ECR sources

  14. Hollow cathode ion source without magnetic field

    International Nuclear Information System (INIS)

    On the base of the IBM-4 ion source a hollow cathode source operating in the continuous regime is developed. The gas discharge chamber diameter equals 100 mm, chamber height - 50 mm. A hollow cathode represents a molybdenum tube with an internal diameter 13 mm and wall thickness 0,7-0,8 mm. An emitter is manufactured from zirconium carbide and lanthanum hexaboride. The investigations of the source operation have shown both cathodes operated efficiency. Electron emission density consitutes 25 A/cm2. At the 50 A discharge current ion current density in a center of plasma emitter constitutes 120 mA/cm2. As a result of the investigations carried out the compatibility of the hollow cathode and the IBM-type source is shown

  15. Installation of the Legnaro ECR ion source

    International Nuclear Information System (INIS)

    The mechanical parts of the 14.4 Ghz Legnaro Electron Cyclotron Ion Source 'Alice' were built, in particular the 24 bars NdFeB Halbach hexapole. A newly designed extractor was implemented, with a tapered focus electrode and a reentrant puller. Several delays forced us to postpone the first tests to late June. The source is expected to inject a superconductive linac, which is being completed, via an RFQ

  16. Performance of the LBL ECR ion source

    International Nuclear Information System (INIS)

    The LBL Electron Cyclotron Resonance (ECR) ion source in test operation since January 1984 has produced a wide variety of high charge state ion beams suitable for injection into the 88-Inch Cyclotron. Two recent developments have dramatically improved the capability of the ECR source. The first development was the production of metallic ions. The intensities of aluminum ions produced were 36, 22, 10, and .065 eμA for charge states 6, 7, 8, and 11, respectively. Calcium ion intensities were 36, 31, 4.6, and 0.20 eμA for charge states 8, 9, 12, and 14, respectively. The second development was the replacement of the sextupole magnet used in of all other high charge state ECR sources with an octupole structure. This modification resulted in a dramatic improvement in the intensities of the high charge state beams and a significant upward shift in the charge state distribution (C.S.D.). The ECR-octupole or OCTIGUN has produced 89, 52, 9, and 2.5 eμA of Ar/sup 8,9,11,12+/ and 21, 10, and 0.34 eμA of Kr/sup 10,14,18+/, respectively. For the high charge states of argon and krypton the improvement gained by using the octupole is typically a factor of 5 to 10

  17. Development of versatile multiaperture negative ion sources

    Energy Technology Data Exchange (ETDEWEB)

    Cavenago, M.; Minarello, A.; Sattin, M. [INFN-LNL, v.le dell' Universita n 2, I-35020, Legnaro (PD) Italy (Italy); Serianni, G.; Antoni, V.; Bigi, M.; Pasqualotto, R.; Recchia, M.; Veltri, P.; Agostinetti, P.; Barbisan, M.; Baseggio, L.; Cervaro, V.; Degli Agostini, F.; Franchin, L.; Laterza, B.; Ravarotto, D.; Rossetto, F.; Zaniol, B.; Zucchetti, S. [Consorzio RFX, Associazione Euratom-ENEA sulla fusione, c.so S. Uniti 4, 35127 Padova (Italy); and others

    2015-04-08

    Enhancement of negative ion sources for production of large ion beams is a very active research field nowadays, driven from demand of plasma heating in nuclear fusion devices and accelerator applications. As a versatile test bench, the ion source NIO1 (Negative Ion Optimization 1) is being commissioned by Consorzio RFX and INFN. The nominal beam current of 135 mA at −60 kV is divided into 9 beamlets, with multiaperture extraction electrodes. The plasma is sustained by a 2 MHz radiofrequency power supply, with a standard matching box. A High Voltage Deck (HVD) placed inside the lead shielding surrounding NIO1 contains the radiofrequency generator, the gas control, electronics and power supplies for the ion source. An autonomous closed circuit water cooling system was installed for the whole system, with a branch towards the HVD, using carefully optimized helical tubing. Insulation transformer is installed in a nearby box. Tests of several magnetic configurations can be performed. Status of experiments, measured spectra and plasma luminosity are described. Upgrades of magnetic filter, beam calorimeter and extraction grid and related theoretical issues are reviewed.

  18. Design of Magnetic Field System for Calutron Ion Source Set

    Institute of Scientific and Technical Information of China (English)

    REN; Xiu-yan; ZENG; Zi-qiang

    2013-01-01

    The Calutron ion source is the most important equipment of EMIS,and the structure of the ion source is more complicated.Because the parameter of each part is interrelate,as experiment and test set,It is very convenient to adjust the parameter of ion source and make the ion source get a good quality.Magnetic field system is the leading and necessary auxiliary equipment of the Calutron ion source

  19. PuMa-ECR ion source operation

    International Nuclear Information System (INIS)

    The PuMa (Pulsed Magnetic field)-ECR ion source uses a pulsed solenoid coil to improve the peak current by opening the magnetic bottle along the beam axis. After demonstration of the principle of the pulsed magnetic extraction, the ion source was tested with different gases. We got promising results from helium up to krypton. For xenon the enhancement of the analyzed current was only in the same order as the enhancement of the afterglow. The influence of the current in the pulsed coil on the analyzed ion current was measured. With increased current levels in the pulsed coil the pulse height of the PuMa-pulse increases within the given pulse length of the coil. By using the pulsed coil the maximum of the charge state distribution can be shifted to higher charge states. (author)

  20. Laser Ion Source Development at IGISOL

    International Nuclear Information System (INIS)

    A new laser ion source is under development at the IGISOL (Ion Guide Isotope Separator On-Line) mass separator facility in Jyvaeskylae, Finland. Two laser systems have been installed to provide access to as broad a range of elements as possible. One system uses well-known dye laser technology, the other uses solid state pump and titanium sapphire lasers. Several techniques are being pursued to improve both the isobaric purity and efficiency of exotic radioactive beams. One method uses pulsed lasers to ionize atoms after they have flowed out of the gas volume, within a radio-frequency sextupole (SPIG) guide. This is a variation of the so-called Laser Ion Source Trap (LIST) method and will be discussed in these proceedings

  1. Ion sources for solids isotopic analysis

    International Nuclear Information System (INIS)

    Of the dozen or so methods of producing ions from solid samples only the surface or thermal ionisation method has found general application for precise measurement of isotopic ratios. The author discusses the principal variables affecting the performance of the thermal source; sample preparation, loading onto the filament, sample pre-treatment, filament material. (Auth.)

  2. Preinjector for Linac 1, ion source

    CERN Multimedia

    1974-01-01

    For a description of the Linac 1 preinjector, please see first 7403070X. Inside the drum-shaped container shown in 7403081X, is the ion source with its associated electronics. It sits at the HV end of the accelerating column seen also in 7403081.

  3. Development of the RF Ion Sources for Focused Ion Beam Accelerators

    OpenAIRE

    V. Voznyi; Miroshnichenko, V.; S. Mordyk; D. Shulha; V. Storizhko; Tokman, V.

    2014-01-01

    The paper presents the results of investigations of ion sources developed in the IAP of NAS of Ukraine for generation of high brightness ion beams with small energy spread. A series of RF ion sources operated at the frequency of 27.12 MHz were studied: the inductive RF ion source, the helicon ion source, the multi-cusp RF ion source, and the sputter type RF source of metal ions. A global model and transformer model were applied for calculation of RF source plasma parameters. Ion energy spread...

  4. Enablers of Open Source Software adoption: A case study of APS organisations

    Directory of Open Access Journals (Sweden)

    Kavitha Gurusamy

    2012-04-01

    Full Text Available Despite a considerable body of literature investigating factors involved in the Open Source Software (OSS adoption process, there is little research into adoption of OSS by public sector organisations. So it was important to reassess the factors enabling OSS adoption in order to enhance OSS utilization within public sector organisations. This study explored various factors that may enable OSS adoption within Australian Public Sector (APS organisations by interviewing those involved in software procurement. The findings were analysed through the lenses of technology adoption theories (i.e, Diffusion of Innovation (DOI theory and Technology Acceptance Model (TAM, and OSS adoption literature. Success of OSS in government agencies was found to be contingent on critical aspects such as availability of support and maintainability of OSS products, ability to meet organisational business needs in a cost effective manner, economic value associated with OSS such as maintenance and training costs, and attitude of staff toward OSS. The findings suggested that Rogers’ relative advantage and compatibility constructs are major enablers while organisational attributes, environmental attributes, and TAM’s attributes also had some influence on OSS adoption.

  5. The University of Washington polarized ion source

    International Nuclear Information System (INIS)

    A colliding-beams polarized ion source has been in operation for nuclear physics experiments at the University of Washington tandem-linac facility since late 1987. Thermal beams of polarized atomic hydrogen or deuterium are ionized by charge exchange in collisions with a collinear, fast, neutral cesium beam. Negative ions are extracted and the polarization symmetry axis is precessed to any desired direction in a crossed-field spin precessor. The design of the cesium beam system differs from previous sources in that magnetic deflection and focusing are used and beams of several milliamperes at energies of 40 keV are produced. The source is controlled by a microprocessor based system which is connected via fiber optic links to the main linac control and data acquisition computers. To date, currents of 1μA and polarizations in excess of 90% have been produced. 3 refs., 2 figs

  6. Ion source requirements for pulsed spallation neutron sources

    International Nuclear Information System (INIS)

    The neutron scattering community has endorsed the need for a high- power (1 to 5 MW) accelerator-driven source of neutrons for materials research. Properly configured, the accelerator could produce very short (sub-microsecond) bursts of cold neutrons, said time structure offering advantages over the continuous flux from a reactor for a large class of experiments. The recent cancellation of the ANS reactor project has increased the urgency to develop a comprehensive strategy based on the best technological scenarios. Studies to date have built on the experience from ISIS (the 160 KW source in the UK), and call for a high-current (approx. 100 mA peak) H- source-linac combination injecting into one or more accumulator rings in which beam may be further accelerated. The 1 to 5 GeV proton beam is extracted in a single turn and brought to the target-moderator stations. The high current, high duty-factor, high brightness and high reliability required of the ion source present a very large challenge to the ion source community. A workshop held in Berkeley in October 1994, analyzed in detail the source requirements for proposed accelerator scenarios, the present performance capabilities of different H- source technologies, and identified necessary R ampersand D efforts to bridge the gap

  7. The SNS External Antenna H- Ion Source

    Energy Technology Data Exchange (ETDEWEB)

    Welton, Robert F [ORNL; Stockli, Martin P [ORNL; Murray Jr, S N [ORNL; Crisp, Danny W [ORNL; Carmichael, Justin R [ORNL; Goulding, Richard Howell [ORNL; Han, Baoxi [ORNL; Pennisi, Terry R [ORNL; Santana, Manuel [ORNL

    2010-01-01

    The U.S. Spallation Neutron Source (SNS) is an accelerator-based, pulsed neutron-scattering facility, currently in the process of ramping up neutron production. In order to insure that we will meet our operational commitments as well as provide for future facility upgrades with high reliability, we have developed an RF-driven, H- ion source based on a ceramic aluminum nitride (AlN) plasma chamber [1]. This source is expected to be utilized by the SNS for neutron production starting in 2009. This report details the design of the production source which features an AlN plasma chamber, 2-layer external antenna, cooled-multicusp magnet array, Cs2CrO4 cesium system and a Molybdenum plasma ignition gun. Performance of the production source both on the SNS accelerator and SNS test stand is reported. The source has also been designed to accommodate an elemental Cs system with an external reservoir which has demonstrated unanalyzed beam currents up to ~100mA (60Hz, 1ms) on the SNS ion source test stand.

  8. ECR ion source based low energy ion beam facility

    Indian Academy of Sciences (India)

    P Kumar; G Rodrigues; U K Rao; C P Safvan; D Kanjilal; A Roy

    2002-11-01

    Mass analyzed highly charged ion beams of energy ranging from a few keV to a few MeV plays an important role in various aspects of research in modern physics. In this paper a unique low energy ion beam facility (LEIBF) set up at Nuclear Science Centre (NSC) for providing low and medium energy multiply charged ion beams ranging from a few keV to a few MeV for research in materials sciences, atomic and molecular physics is described. One of the important features of this facility is the availability of relatively large currents of multiply charged positive ions from an electron cyclotron resonance (ECR) source placed entirely on a high voltage platform. All the electronic and vacuum systems related to the ECR source including 10 GHz ultra high frequency (UHF) transmitter, high voltage power supplies for extractor and Einzel lens are placed on a high voltage platform. All the equipments are controlled using a personal computer at ground potential through optical fibers for high voltage isolation. Some of the experimental facilities available are also described.

  9. Status of ECR ion sources at JAERI

    CERN Document Server

    Yokota, W; Nara, T; Ishi, Y; Arakawa, K; Ohkoshi, K

    1999-01-01

    At the Takasaki site of Japan Atomic Energy Research Institute, four ECR ion sources were purchased or developed so far. This paper will report their performance, modification and status. The outlines for each source are as follows; 1. OCTOPUS purchased from IBA s.a. has been in use with a cyclotron since 1990. The gas feed system was modified to change gas species within 10 minutes to avoid impurity ions in the cocktail beam acceleration technique of the cyclotron. 2. ECR-18 with 18-GHz microwave has a solenoid coil between a pair of mirror coils to change mirror ratio in a wide range. A bump between mirror peaks in the original axial field distribution was removed by halving the solenoid length. The performance in generating high charge state ions was significantly improved as a result. 3. HYPERNANOGAN was purchased from PANTECHNIK s.a. and installed in the cyclotron system this year. Test operation was successfully made with generation of Ar, Pb and Ta ions. 4. MINI ECR is a full permanent magnet source wi...

  10. A laser ablation source for offline ion production at LEBIT

    Science.gov (United States)

    Izzo, C.; Bollen, G.; Bustabad, S.; Eibach, M.; Gulyuz, K.; Morrissey, D. J.; Redshaw, M.; Ringle, R.; Sandler, R.; Schwarz, S.; Valverde, A. A.

    2016-06-01

    A laser ablation ion source has been developed and implemented at the Low-Energy Beam and Ion Trap (LEBIT) facility at the National Superconducting Cyclotron Laboratory. This offline ion source enhances the capabilities of LEBIT by providing increased access to ions used for calibration measurements and checks of systematic effects as well as stable and long-lived ions of scientific interest. The design of the laser ablation ion source and a demonstration of its successful operation are presented.

  11. Ion source test bench facility at IUAC, New Delhi

    International Nuclear Information System (INIS)

    Ion source test bench facility has been developed at IUAC for research and development works related to the studies of the efficient production of sputtered negative ions using single cathode SNICS and gas cathodes. This ion source test bench facility has been installed at Ion source room of Pelletron accelerator. The paper reports the installation and initial test results of this setup. (author)

  12. EMISSION CHARACTERISTICS OF LIQUID METAL ION SOURCE

    OpenAIRE

    Arimoto, H.; Komuro, M.

    1989-01-01

    Energy distributions of Au-Si-Be, Au-Si, Pd-Ni-Si-Be-B, and Pt-Si liquid metal alloy ion sources were investigated, being focused on behaviors of Si++ and Si+. We found that the energy spreads of the Si++ and Si+ were kept constant at 6 to 7.5 eV, even at an extremely low emission current (50 nA). This saturation results in a decrease in the figure of merit, (dI/dΩ)/ (ƊE)2, for an ion probe forming. (dI/dΩ : angular current density, ƊE : energy spread) The energy distribution profiles suggest...

  13. Main magnetic focus ion source with the radial extraction of ions

    CERN Document Server

    Ovsyannikov, V P

    2015-01-01

    In the main magnetic focus ion source, atomic ions are produced in the local ion trap created by the rippled electron beam in focusing magnetic field. Here we present the novel modification of the room-temperature hand-size device, which allows the extraction of ions in the radial direction perpendicular to the electron beam across the magnetic field. The detected X-ray emission evidences the production of Ir$^{44+}$ and Ar$^{16+}$ ions. The ion source can operate as the ion trap for X-ray spectroscopy, as the ion source for the production of highly charged ions and also as the ion source of high brightness.

  14. Main magnetic focus ion source with the radial extraction of ions

    Science.gov (United States)

    Ovsyannikov, V. P.; Nefiodov, A. V.

    2016-01-01

    In the main magnetic focus ion source, atomic ions are produced in the local ion trap created by the rippled electron beam in focusing magnetic field. Here we present the novel modification of the room-temperature hand-size device, which allows the extraction of ions in the radial direction perpendicular to the electron beam across the magnetic field. The detected X-ray emission evidences the production of Ir44+ and Ar16+ ions. The ion source can operate as the ion trap for X-ray spectroscopy, as the ion source for the production of highly charged ions and also as the ion source of high brightness.

  15. Applications of EHD-ion sources in SIMS

    International Nuclear Information System (INIS)

    Because of their high brillance and their small energy spread EHD ion sources are well qualified for focused ion beams. This work describes the build-up and the main properties of a designed indium EHD ion source. It is used as primary gun in a scanning ion microprobe. The advantages of this new source instead of a O2 - duoplasmatron ion source are described and demonstrated by selected examples. (Author)

  16. Note: Development of ESS Bilbao's proton ion source: Ion Source Hydrogen Positive

    International Nuclear Information System (INIS)

    The Ion Source Hydrogen positive is a 2.7 GHz off-resonance microwave discharge ion source. It uses four coils to generate an axial magnetic field in the plasma chamber around 0.1 T that exceeds the ECR resonance field. A new magnetic system was designed as a combination of the four coils and soft iron in order to increase the reliability of the source. The description of the simulations of the magnetic field and the comparison with the magnetic measurements are presented. Moreover, results of the initial commissioning of the source for extraction voltage until 50 kV will be reported

  17. Note: Development of ESS Bilbao's proton ion source: Ion Source Hydrogen Positive

    Energy Technology Data Exchange (ETDEWEB)

    Miracoli, R., E-mail: rmiracoli@essbilbao.org; Feuchtwanger, J.; Arredondo, I.; Belver, D.; Gonzalez, P. J.; Corres, J.; Djekic, S.; Echevarria, P.; Eguiraun, M.; Garmendia, N.; Muguira, L. [ESS-Bilbao, Leioa (Spain)

    2014-02-15

    The Ion Source Hydrogen positive is a 2.7 GHz off-resonance microwave discharge ion source. It uses four coils to generate an axial magnetic field in the plasma chamber around 0.1 T that exceeds the ECR resonance field. A new magnetic system was designed as a combination of the four coils and soft iron in order to increase the reliability of the source. The description of the simulations of the magnetic field and the comparison with the magnetic measurements are presented. Moreover, results of the initial commissioning of the source for extraction voltage until 50 kV will be reported.

  18. Chromium plating pollution source reduction by plasma source ion implantation

    International Nuclear Information System (INIS)

    There is growing concern over the environmental toxicity and workers' health issues due to the chemical baths and rinse water used in the hard chromium plating process. In this regard the significant hardening response of chromium to nitrogen ion implantation can be environmentally beneficial from the standpoint of decreasing the thickness and the frequency of application of chromium plating. In this paper the results of a study of nitrogen ion implantation of chrome plated test flats using the non-line-of-sight Plasma Source Ion Implantation (PSII) process, are discussed. Surface characterization was performed using Scanning Electron Microscopy (SEM), Auger Electron Spectroscopy (AES), and Electron Spectroscopy for Chemical Analysis (ESCA). The surface properties were evaluated using a microhardness tester, a pin-on-disk wear tester, and a corrosion measurement system. Industrial field testing of nitrogen PSII treated chromium plated parts showed an improvement by a factor of two compared to the unimplanted case

  19. CAS Accelerator Physics (Ion Sources) in Slovakia

    CERN Multimedia

    CAS School

    2012-01-01

    The CERN Accelerator School (CAS) and the Slovak University of Technology jointly organised a specialised course on ion sources, held at the Hotel Senec, Senec, Slovakia, from 29 May to 8 June, 2012.   Following some background lectures on accelerator physics and the fundamental processes of atomic and plasma physics, the course covered a wide range of topics related to ion sources and highlighted the latest developments in the field. Realistic case studies and topical seminars completed the programme. The school was very successful, with 69 participants representing 25 nationalities. Feedback from the participants was extremely positive, reflecting the high standard of the lectures. The case studies were performed with great enthusiasm and produced some excellent results. In addition to the academic programme, the participants were able to take part in a one-day excursion consisting of a guided tour of Bratislava and free time. A welcome event was held at the Hotel Senec, with s...

  20. ECR ion sources: present status and prospects

    International Nuclear Information System (INIS)

    Although now widely used for many applications, the electron cyclotron resonance ion sources (ECRIS), an outgrowth of the fusion plasma research, still suffer from some mystification, or at least from a lack of understanding. This article is an attempt to give a broad overview of the today ECRIS activity devoted to the production of highly charged ions: is therefore describes both physics and theory efforts, technology, performances, plans and prospects as well. An important chapter gives the status of understanding the ECRIS behavior, both the current thinking on how they operate and the experimental evidences whenever it is possible. The various existing sources, their design and main features, are then surveyed. At last the present trends of development, the potential directions for future improvement are examined. (author). 48 refs., 15 figs., 3 tabs

  1. Microscopy with a Deterministic Single Ion Source

    CERN Document Server

    Jacob, Georg; Wolf, Sebastian; Ulm, Stefan; Couturier, Luc; Dawkins, Samuel T; Poschinger, Ulrich G; Schmidt-Kaler, Ferdinand; Singer, Kilian

    2015-01-01

    We realize a single particle microscope by using deterministically extracted laser cooled $^{40}$Ca$^+$ ions from a Paul trap as probe particles for transmission imaging. We demonstrate focusing of the ions with a resolution of 5.8$\\;\\pm\\;$1.0$\\,$nm and a minimum two-sample deviation of the beam position of 1.5$\\,$nm in the focal plane. The deterministic source, even when used in combination with an imperfect detector, gives rise to much higher signal to noise ratios as compared with conventional Poissonian sources. Gating of the detector signal by the extraction event suppresses dark counts by 6 orders of magnitude. We implement a Bayes experimental design approach to microscopy in order to maximize the gain in spatial information. We demonstrate this method by determining the position of a 1$\\,\\mu$m circular hole structure to an accuracy of 2.7$\\,$nm using only 579 probe particles.

  2. Innovations in ion sources and injectors

    International Nuclear Information System (INIS)

    Current trends in the development of high-intensity positive-ion sources for linear accelerators are discussed with regard to particle production, ionization principle, and extraction system. A few sources are presented and their most recent beam data given. The performance of injection systems under the influence of strong space-charge action is demonstrated in an example. The design of a compounds system where the beam is extracted, focused, and accelerated to injection energy in a single structure with reduced aberration is explained in the following. In connection with this system the concept of beam emittance is critically examined and a new interpretation of fractional emittances derived

  3. Wien filter for a polarized ions source

    International Nuclear Information System (INIS)

    In order to carry out investigation works about nuclear structure, the Nuclear Center of Mexico has an accelerator Tandem Van de Graff of 12 Mv. Now in this center there is a polarized ions source, in a setting phase, totally constructed in the workshop of the accelerator. This source, supplies an ion beam with a polarization whose propagation direction is not the adequate one for the dispersion and reaction processes wanted to be realized. A filter Wien was used to obtain the correct direction of the polarization vector. The purpose of this work is the study of the filter necessary conditions in order to reach the desirable objective. In the first part some generalities are given about: polarization phenomena, polarized ions source and description of the performance of the Wien filter. In the second part, the problem of the passage of a polarized beam through the filter is tried and solved. Finally, the design and construction of the filter is presented together with the results of the experimentation with the object to justify the suppositions which were taken into consideration in the solution of the filter problem. (author)

  4. Ion trajectories in an electrostatic ion guide for external ion source fourier transform ion cyclotron resonance mass spectrometry.

    Science.gov (United States)

    Marto, J A; Marshall, A G; May, M A; Limbach, P A

    1995-10-01

    An electrostatic ion guide (EIG) that consists of concentric cylinder and central wire electrodes can transport ions efficiently from an external ion source to an ion cyclotron resonance (ICR) ion trap for mass analysis, with several advantages over current injection methods. Because the electrostatic force of the EIG captures ions in a stable orbit about the wire electrode, ions with initially divergent trajectories may be redirected toward the ICR ion trap for improved ion transmission efficiency. SIMION trajectory calculations (ion kinetic energy, 1-200 eV; elevation angle, 0.30 °; azimuthal angle, 0.360°) predict that ions of m/z 1000 may be transmitted through a strong (0.01 → 3.0-T) magnetic field gradient. Judicious choice of ion source position and EIG potential minimizes the spread in ion axial kinetic energy at the ICR ion trap. Advantages of the EIG include large acceptance angle, even for ions that have large initial kinetic energy and large radial displacement with respect to the central z-axis, low ion extraction voltage (5-20 V), and efficient trapping because ions need not be accelerated to high velocity to pass through the magnetic field gradient. PMID:24214038

  5. Heavy Ion Injection Into Synchrotrons, Based On Electron String Ion Sources

    CERN Document Server

    Donets, E E; Syresin, E M

    2004-01-01

    A possibility of heavy ions injection into synchrotrons is discussed on the base of two novel ion sources, which are under development JINR during last decade: 1) the electron string ion source (ESIS), which is a modified version of a conventional electron beam ion source (EBIS), working in a reflex mode of operation, and 2) the tubular electron string ion source (TESIS). The Electron String Ion Source "Krion-2" (VBLHE, JINR, Dubna) with an applied confining magnetic field of 3 T was used for injection into the superconducting JINR synchrotron - Nuclotron and during this runs the source provided a high pulse intensity of the highly charged ion beams: Ar16+

  6. Ion sources for high-power hadron accelerators

    OpenAIRE

    Faircloth, Dan

    2013-01-01

    Ion sources are a critical component of all particle accelerators. They create the initial beam that is accelerated by the rest of the machine. This paper will introduce the many methods of creating a beam for high-power hadron accelerators. A brief introduction to some of the relevant concepts of plasma physics and beam formation is given. The different types of ion source used in accelerators today are examined. Positive ion sources for producing H+ ions and multiply charged heavy ions are ...

  7. Ions beams and ferroelectric plasma sources

    Science.gov (United States)

    Stepanov, Anton

    Near-perfect space-charge neutralization is required for the transverse compression of high perveance ion beams for ion-beam-driven warm dense matter experiments, such as the Neutralized Drift Compression eXperiment (NDCX). Neutralization can be accomplished by introducing a plasma in the beam path, which provides free electrons that compensate the positive space charge of the ion beam. In this thesis, charge neutralization of a 40 keV, perveance-dominated Ar+ beam by a Ferroelectric Plasma Source (FEPS) is investigated. First, the parameters of the ion beam, such as divergence due to the extraction optics, charge neutralization fraction, and emittance were measured. The ion beam was propagated through the FEPS plasma, and the effects of charge neutralization were inferred from time-resolved measurements of the transverse beam profile. In addition, the dependence of FEPS plasma parameters on the configuration of the driving pulser circuit was studied to optimize pulser design. An ion accelerator was constructed that produced a 30-50 keV Ar + beam with pulse duration ion source showed that the dependence of beam radius on Q was consistent with space charge expansion. It was concluded that the beam was perveance-dominated with a charge neutralization fraction of approximately zero in the absence of neutralizing plasma. Since beam expansion occurred primarily due to space charge, the decrease in effective perveance due to neutralization by FEPS plasma can be inferred from the reduction in beam radius. Results on propagation of the ion beam through FEPS plasma demonstrate that after the FEPS is triggered, the beam radius decreases to its neutralized value in about 5 mus. The duration of neutralization was about 10 mus at a charging voltage VFEPS = 5.5 kV and 35 mus at VFEPS = 6.5 kV. With VFEPS = 6.5 kV, the transverse current density profile 33 cm downstream of the source had a Gaussian shape with xrms =5 mm, which corresponds to a half-angle divergence of 0.87°. The

  8. ICT high efficiency duoplasmatron ion source

    International Nuclear Information System (INIS)

    The duoplasmatron ion source of the Livermore 400 kV ICT accelerator was modified to increase the target current from the accelerator. In routine operation, D+ currents on target of 18 to 22 mA are now produced rather than the 5 to 8 mA originally available. The major modification to the source was the installation of a focus electrode between the plasma expansion cup and the accel-decel extraction electrode system. With this arrangement, the source output may be varied from maximum down to zero beam level without excessive extractor loading. Beam divergence varies from 6 mrad to 30 mrad. The focusing and extraction electrodes are simple to fabricate and are radiation cooled. Beam transport efficiency of 75 percent was obtained through the 15 m long x 10 cm diameter transport system. The increase in target current was obtained without decreasing the reliability of the accelerator

  9. Development of negative ion source at the IPP Nagoya University

    International Nuclear Information System (INIS)

    Preliminary experiments have been made to develop a high current H- ion surface for a neutral beam injector. Initially, an H- ion source of the magnetron type has been investigated in order to determine its physical and technical problems. A second plasma source for negative ion production is under construction, which is based on controlled plasma production. This paper describes preliminary experimental results of the magnetron ion source and some features in the new type of plasma source

  10. MIVOC method at the mVINIS ion source

    OpenAIRE

    Jovović Jovica; Cvetić Jovan; Dobrosavljević Aleksandar; Nedeljković Tanja; Jovanović Biljana; Draganić Ilija

    2007-01-01

    Based on the metal-ions-from-volatile-compounds (MIVOC) method with the mVINIS ion source, we have produced multiply charged ion beams from solid substances. Highly in tense, stable multiply charged ion beams of several solid substances with high melting points were extracted by using this method. The spectrum of multiply charged ion beams obtained from the element hafnium is presented here. For the first time ever, hafnium ion beam spectra were recorded at an electron cyclotron resonance ion...

  11. Advanced Photon Source experimental beamline Safety Assessment Document: Addendum to the Advanced Photon Source Accelerator Systems Safety Assessment Document (APS-3.2.2.1.0)

    International Nuclear Information System (INIS)

    This Safety Assessment Document (SAD) addresses commissioning and operation of the experimental beamlines at the Advanced Photon Source (APS). Purpose of this document is to identify and describe the hazards associated with commissioning and operation of these beamlines and to document the measures taken to minimize these hazards and mitigate the hazard consequences. The potential hazards associated with the commissioning and operation of the APS facility have been identified and analyzed. Physical and administrative controls mitigate identified hazards. No hazard exists in this facility that has not been previously encountered and successfully mitigated in other accelerator and synchrotron radiation research facilities. This document is an updated version of the APS Preliminary Safety Analysis Report (PSAR). During the review of the PSAR in February 1990, the APS was determined to be a Low Hazard Facility. On June 14, 1993, the Acting Director of the Office of Energy Research endorsed the designation of the APS as a Low Hazard Facility, and this Safety Assessment Document supports that designation

  12. MIVOC method at the mVINIS ion source

    Directory of Open Access Journals (Sweden)

    Jovović Jovica

    2007-01-01

    Full Text Available Based on the metal-ions-from-volatile-compounds (MIVOC method with the mVINIS ion source, we have produced multiply charged ion beams from solid substances. Highly in tense, stable multiply charged ion beams of several solid substances with high melting points were extracted by using this method. The spectrum of multiply charged ion beams obtained from the element hafnium is presented here. For the first time ever, hafnium ion beam spectra were recorded at an electron cyclotron resonance ion source. Multiply charged ion beams from solid substances were used to irradiate the polymer, fullerene and glassy carbon samples at the channel for the modification of materials.

  13. A hollow cathode ion source for production of primary ions for the BNL electron beam ion source

    Science.gov (United States)

    Alessi, James; Beebe, Edward; Carlson, Charles; McCafferty, Daniel; Pikin, Alexander; Ritter, John

    2014-02-01

    A hollow cathode ion source, based on one developed at Saclay, has been modified significantly and used for several years to produce all primary 1+ ions injected into the Relativistic Heavy Ion Collider Electron Beam Ion Source (EBIS) at Brookhaven. Currents of tens to hundreds of microamperes have been produced for 1+ ions of He, C, O, Ne, Si, Ar, Ti, Fe, Cu, Kr, Xe, Ta, Au, and U. The source is very simple, relying on a glow discharge using a noble gas, between anode and a solid cathode containing the desired species. Ions of both the working gas and ionized sputtered cathode material are extracted, and then the desired species is selected using an ExB filter before being transported into the EBIS trap for charge breeding. The source operates pulsed with long life and excellent stability for most species. Reliable ignition of the discharge at low gas pressure is facilitated by the use of capacitive coupling from a simple toy plasma globe. The source design, and operating experience for the various species, is presented.

  14. Main features of ECR ion source vacuum systems

    International Nuclear Information System (INIS)

    This is a paper giving a view on the main features of vacuum systems of ECR (Electron Cyclotron Resonance) ion sources. It is still very interesting to use such a source as a possible source of high charge state ions at upgrading present heavy particle accelerators. Scaling relationships are given as a basis for understanding the vacuum configurations of ECR ion sources. The relevance of gas desorption effects to vacuum equilibrium and stability is also pointed out. Ion induced pressure instability, a model of hydrogen diffusion and influence of neutral gases on the vacuum stability of ECR ion sources are discussed. 23 refs.; 7 figs.; 3 tabs

  15. Ion sources for high-power hadron accelerators

    CERN Document Server

    Faircloth, Dan

    2013-01-01

    Ion sources are a critical component of all particle accelerators. They create the initial beam that is accelerated by the rest of the machine. This paper will introduce the many methods of creating a beam for high-power hadron accelerators. A brief introduction to some of the relevant concepts of plasma physics and beam formation is given. The different types of ion source used in accelerators today are examined. Positive ion sources for producing H+ ions and multiply charged heavy ions are covered. The physical principles involved with negative ion production are outlined and different types of negative ion sources are described. Cutting edge ion source technology and the techniques used to develop sources for the next generation of accelerators are discussed.

  16. Commissioning of the superconducting ECR ion source VENUS

    OpenAIRE

    Leitner, Daniela; Abbott, Steve R.; Dwinell, Roger D.; Leitner, Matthaeus; Taylor, Clyde; Lyneis, Claude M.

    2003-01-01

    VENUS (Versatile ECR ion source for NUclear Science) is a next generation superconducting ECR ion source, designed to produce high current, high charge state ions for the 88-Inch Cyclotron at the Lawrence Berkeley National Laboratory. VENUS also serves as the prototype ion source for the RIA (Rare Isotope Accelerator) front end. The magnetic confinement configuration consists of three superconducting axial coils and six superconducting radial coils in a sextupole configuration. The nomi...

  17. Development of hollow anode penning ion source for laboratory application

    International Nuclear Information System (INIS)

    The research work presented here focuses for the development of miniature penning type ion source. One hollow anode penning type ion source was developed in our laboratory. The size of the ion source is 38 mm diameter and 55 mm length. The ion source consists of two cathodes, a hollow anode and one piece of rare earth permanent magnet. The plasma was created in the plasma region between cathodes and the hollow anode. The J × B force in the region helps for efficient ionization of the gas even in the high vacuum region∼1×10-5 Torr. The ions were extracted in the axial direction with help of the potential difference between the electrodes and the geometry of the extraction angle. The effect of the extraction electrode geometry for efficient extraction of the ions from the plasma region was examined. This ion source is a self extracted ion source. The self extracted phenomena reduce the cost and the size of the ion source. The extracted ion current was measured by a graphite probe. An ion current of more than 200 μA was observed at the probe placed 70 mm apart from the extraction electrode. In this paper, the structure of the ion source, effect of operating pressure, potential difference and the magnetic field on the extracted ion current is reported.

  18. Calculation of work parameters for plasma ion source

    International Nuclear Information System (INIS)

    Construction of plasma ion source used in the electromagnetic isotope separators at the Institute of Physics, Lublin, Poland and at JINR, Dubna, is described. For this source calculations of ion currents and source efficiency are performed. A limited review of source characteristics is also given

  19. Testing of laser ablation ion source for JYFLTRAP

    OpenAIRE

    Poleshchuk, Kateryna

    2015-01-01

    In this work, we have constructed and tested a laser ablation ion source for JYFLTRAP Penning trap at the IGISOL (Ion Guide Isotope Separator On-line) facility. The calibration of the Penning trap parameters requires reference ions or ion clusters that have well-known masses with relatively small mass uncertainty. These ions and ion clusters can be created with certain solid targets, which contain large amounts of isotopes of reference masses and by using a laser for target ablation. In this ...

  20. The first experimental results on laser ion loading into superconducting ECR ion source at RIKEN

    International Nuclear Information System (INIS)

    The first experimental results on ions and neutrals injection by means of laser ablation from metal targets into the RIKEN 18 GHz superconducting electron cyclotron resonance ion source (SC ECRIS) are presented. Pulsed aluminium ion currents up to Al8+ were generated in the source. The difference in pulse shapes of various charge states of the extracted ion currents is registered

  1. Ion Source Development for Ultratrace Detection of Uranium and Thorium

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yuan [ORNL; Batchelder, Jon Charles [ORNL; Galindo-Uribarri, Alfredo {nmn} [ORNL; Stracener, Daniel W [ORNL

    2015-01-01

    A hot-cavity surface ionization source and a hot-cavity laser ion source are evaluated in terms of ionization efficiencies for generating ion beams of U and Th. The work is motivated by the need for more efficient ion sources for detecting ultratrace U and Th impurities in a copper matrix by mass spectrometry techniques such as accelerator mass spectrometry (AMS). The performances of the ion sources are characterized using uranyl nitrate and thorium nitrate sample materials and sample sizes of 20 - 40 g of U or Th. For the surface source, the dominant ion beams observed are UO+ or ThO+ and ionization efficiencies of 2-4% have been obtained with W and Re cavities. Three-step resonant photoionization of U atoms is studied and an ionization efficiency of 8.7% has been obtained with the laser ion source. The positive ion sources promise more than an order of magnitude more efficient than conventional Cs-sputter negative ion sources used for AMS. In addition, the laser ion source is highly selective and effective in suppressing interfering and ions. Work is in progress to improve the efficiencies of both positive ion sources.

  2. Progress of resonant ionization laser ion source development at GANIL

    International Nuclear Information System (INIS)

    SPIRAL2 (Système de Production d’Ions Radioactifs Accélérés en Ligne) is a research facility under construction at GANIL (Grand Accélérateur National d’Ions Lourds) for the production of radioactive ion beams by isotope separation on-line methods and low-energy in-flight techniques. A resonant ionization laser ion source will be one of the main techniques to produce the radioactive ion beams. GISELE (GANIL Ion Source using Electron Laser Excitation) is a test bench developed to study a fully operational laser ion source available for Day 1 operations at SPIRAL2 Phase 2. The aim of this project is to find the best technical solution which combines high selectivity and ionization efficiency with small ion beam emittance and stable long term operation. Latest results about the new ion source geometry will be presented

  3. Differential turbulent heating of different ions in electron cyclotron resonance ion source plasma

    International Nuclear Information System (INIS)

    The article considers the collisionless ion sound turbulent heating of different ions in an electron cyclotron resonance ion source (ECRIS). The ion sound arises due to parametric instability of pumping wave propagating along the magnetic field with the frequency close to that of electron cyclotron. Within the framework of turbulent heating model the different ions temperatures are calculated in gas-mixing ECRIS plasma

  4. A singly charged ion source for radioactive 11C ion acceleration

    International Nuclear Information System (INIS)

    A new singly charged ion source using electron impact ionization has been developed to realize an isotope separation on-line system for simultaneous positron emission tomography imaging and heavy-ion cancer therapy using radioactive 11C ion beams. Low-energy electron beams are used in the electron impact ion source to produce singly charged ions. Ionization efficiency was calculated in order to decide the geometric parameters of the ion source and to determine the required electron emission current for obtaining high ionization efficiency. Based on these considerations, the singly charged ion source was designed and fabricated. In testing, the fabricated ion source was found to have favorable performance as a singly charged ion source

  5. A singly charged ion source for radioactive ¹¹C ion acceleration.

    Science.gov (United States)

    Katagiri, K; Noda, A; Nagatsu, K; Nakao, M; Hojo, S; Muramatsu, M; Suzuki, K; Wakui, T; Noda, K

    2016-02-01

    A new singly charged ion source using electron impact ionization has been developed to realize an isotope separation on-line system for simultaneous positron emission tomography imaging and heavy-ion cancer therapy using radioactive (11)C ion beams. Low-energy electron beams are used in the electron impact ion source to produce singly charged ions. Ionization efficiency was calculated in order to decide the geometric parameters of the ion source and to determine the required electron emission current for obtaining high ionization efficiency. Based on these considerations, the singly charged ion source was designed and fabricated. In testing, the fabricated ion source was found to have favorable performance as a singly charged ion source. PMID:26932062

  6. A singly charged ion source for radioactive 11C ion acceleration

    Science.gov (United States)

    Katagiri, K.; Noda, A.; Nagatsu, K.; Nakao, M.; Hojo, S.; Muramatsu, M.; Suzuki, K.; Wakui, T.; Noda, K.

    2016-02-01

    A new singly charged ion source using electron impact ionization has been developed to realize an isotope separation on-line system for simultaneous positron emission tomography imaging and heavy-ion cancer therapy using radioactive 11C ion beams. Low-energy electron beams are used in the electron impact ion source to produce singly charged ions. Ionization efficiency was calculated in order to decide the geometric parameters of the ion source and to determine the required electron emission current for obtaining high ionization efficiency. Based on these considerations, the singly charged ion source was designed and fabricated. In testing, the fabricated ion source was found to have favorable performance as a singly charged ion source.

  7. A singly charged ion source for radioactive {sup 11}C ion acceleration

    Energy Technology Data Exchange (ETDEWEB)

    Katagiri, K.; Noda, A.; Nagatsu, K.; Nakao, M.; Hojo, S.; Muramatsu, M.; Suzuki, K.; Wakui, T.; Noda, K. [National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba-shi, Chiba 263-8555 (Japan)

    2016-02-15

    A new singly charged ion source using electron impact ionization has been developed to realize an isotope separation on-line system for simultaneous positron emission tomography imaging and heavy-ion cancer therapy using radioactive {sup 11}C ion beams. Low-energy electron beams are used in the electron impact ion source to produce singly charged ions. Ionization efficiency was calculated in order to decide the geometric parameters of the ion source and to determine the required electron emission current for obtaining high ionization efficiency. Based on these considerations, the singly charged ion source was designed and fabricated. In testing, the fabricated ion source was found to have favorable performance as a singly charged ion source.

  8. Pulsed diode source of polarized ions

    International Nuclear Information System (INIS)

    The advantages of polarized nuclei for fusion reactors have recently been described. We propose a pulsed source of polarized nuclei that consists of an ion diode with a polarized anode. With magnetic resonance techniques the nuclear spins of the protons of solid NH3 can be made about 90 to 95% polarized. This material would be used for the anode. The diode would be pulsed with a voltage of 1-200K-volts for 1-2 μ sec. Flashover of the anode produces a surface plasma from which the polarized protons would be extracted to form a beam. Depolarization could be detected by comparing reaction cross sections and/or distribution of reaction products with similar results for unpolarized beams

  9. Magnetic plasma confinement for laser ion source

    International Nuclear Information System (INIS)

    A laser ion source (LIS) can easily provide a high current beam. However, it has been difficult to obtain a longer beam pulse while keeping a high current. On occasion, longer beam pulses are required by certain applications. For example, more than 10 μs of beam pulse is required for injecting highly charged beams to a large sized synchrotron. To extend beam pulse width, a solenoid field was applied at the drift space of the LIS at Brookhaven National Laboratory. The solenoid field suppressed the diverging angle of the expanding plasma and the beam pulse was widened. Also, it was observed that the plasma state was conserved after passing through a few hundred gauss of the 480 mm length solenoid field.

  10. Magnetic plasma confinement for laser ion source.

    Science.gov (United States)

    Okamura, M; Adeyemi, A; Kanesue, T; Tamura, J; Kondo, K; Dabrowski, R

    2010-02-01

    A laser ion source (LIS) can easily provide a high current beam. However, it has been difficult to obtain a longer beam pulse while keeping a high current. On occasion, longer beam pulses are required by certain applications. For example, more than 10 micros of beam pulse is required for injecting highly charged beams to a large sized synchrotron. To extend beam pulse width, a solenoid field was applied at the drift space of the LIS at Brookhaven National Laboratory. The solenoid field suppressed the diverging angle of the expanding plasma and the beam pulse was widened. Also, it was observed that the plasma state was conserved after passing through a few hundred gauss of the 480 mm length solenoid field. PMID:20192365

  11. Operational characteristics of a metal vapor vacuum arc ion source

    International Nuclear Information System (INIS)

    The MEVVA ion source can produce high current pulsed beams of metallic ions using a metal vapor vacuum arc discharge as the plasma medium from which the ions are extracted. In this study, the operational characteristics of the MEVVA IV ion source are summarized. Results are presented of measurements of the ion beam current as a function of arc current over a range of extraction voltage. Ti, Ta and Pb were examined as the cathode materials. The arc current ranged from 50A to 250A and the extraction voltage from 10kV to 80kV. The ion beam current was measured at two different distances from the ion source using Faraday cups, so as to investigate the beam divergence. Additionally, the cathode erosion rates were measured. Optimum operating conditions of the MEVVA ion source were determined. 10 refs., 6 figs

  12. Photoionization of multiply charged ions at the advanced light source

    OpenAIRE

    Schlachter, A. S.; Kilcoyne, A. L. D.; Aguilar, A.; Gharaibeh, M. F.; Emmons, E. D.; Scully., S. W. J.; Phaneuf, R A; Muller, A.; Schippers, S.; I. Alvarez; Cisneros, C.; Hinojosa, G.; McLaughlin, B. M.

    2004-01-01

    Photoionization of multiply charged ions is studied using the merged-beams technique at the Advanced Light Source. Absolute photoionization cross sections have been measured for a variety of ions along both isoelectronic and isonuclear sequences.

  13. ITEP Bernas ion source with additional electron beam

    International Nuclear Information System (INIS)

    A joint research and development program is underway to develop steady-state intense ion sources for the two energy extremes of MeV and hundreds of eV. For the MeV range the investigations were focused on charge-state enhancement for ions generated by the modified Bernas ion sources. Based on the previously successful ITEP experience with the e-metal vapor vacuum arc ion source [e.g., Batalin et al., Rev. Sci. Instrum. 75, 1900 (2004)], the injection of a high-energy electron beam into the Bernas ion source discharge region is expected to enhance the production of high charge states. Presented here are construction details and studies of electron-beam influence on the enhancement of ion-beam charge states generated by the modified Bernas ion source

  14. Status report on electron cyclotron resonance ion sources at the Heavy Ion Medical Accelerator in Chiba

    CERN Document Server

    Kitagawa, A; Sekiguchi, M; Yamada, S; Jincho, K; Okada, T; Yamamoto, M; Hattori, T G; Biri, S; Baskaran, R; Sakata, T; Sawada, K; Uno, K

    2000-01-01

    The Heavy Ion Medical Accelerator in Chiba at the National Institute of Radiological Sciences (NIRS) is not only dedicated to cancer therapy, it is also utilized with various ion species for basic experiments of biomedical science, physics, chemistry, etc. Two electron cyclotron resonance (ECR) ion sources are installed for production of gaseous ions. One of them, the NIRS-ECR, is a 10 GHz ECR ion source, and is mainly operated to produce C/sup 4+/ ions for daily clinical treatment. This source realizes good reproducibility and reliability and it is easily operated. The other source, the NIRS-HEC, is an 18 GHz ECR ion source that is expected to produce heavier ion species. The output ion currents of the NIRS-ECR and the NIRS-HEC are 430e mu A for C/sup 4+/ and 1.1e mA for Ar/sup 8+/, respectively. (14 refs).

  15. Transport line for beam generated by ITEP Bernas ion source

    International Nuclear Information System (INIS)

    A joint research and development program is underway to investigate beam transport systems for intense steady-state ion sources for ion implanters. Two energy extremes of MeV and hundreds of eV are investigated using a modified Bernas ion source with an indirectly heated cathode. Results are presented for simulations of electrostatic systems performed to investigate the transportation of ion beams over a wide mass range: boron to decaborane

  16. Construction of the RCNP polarized heavy ion source, 'HISPANIOLA'

    International Nuclear Information System (INIS)

    Construction of the RCNP polarized heavy ion source is presented. Principle of the polarization production is based on charge and spin exchange collisions between highly stripped heavy ions and polarized Na vapor. A 2.45 GHz ECR ion source produces highly stripped heavy ions. A single mode ring dye- laser serves in producing Na polarization by means of an optical pumping. As a first step of our project, the production of polarized 3He is primarily scheduled. (author)

  17. Ion source for high-precision mass spectrometry

    Science.gov (United States)

    Todd, Peter J.; McKown, Henry S.; Smith, David H.

    1984-01-01

    The invention is directed to a method for increasing the precision of positive-ion relative abundance measurements conducted in a sector mass spectrometer having an ion source for directing a beam of positive ions onto a collimating slit. The method comprises incorporating in the source an electrostatic lens assembly for providing a positive-ion beam of circular cross section for collimation by the slit.

  18. Performance of positive ion based high power ion source of EAST neutral beam injector

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Chundong; Xie, Yahong, E-mail: xieyh@ipp.ac.cn; Xie, Yuanlai; Liu, Sheng; Xu, Yongjian; Liang, Lizhen; Jiang, Caichao; Li, Jun; Liu, Zhimin [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China)

    2016-02-15

    The positive ion based source with a hot cathode based arc chamber and a tetrode accelerator was employed for a neutral beam injector on the experimental advanced superconducting tokamak (EAST). Four ion sources were developed and each ion source has produced 4 MW @ 80 keV hydrogen beam on the test bed. 100 s long pulse operation with modulated beam has also been tested on the test bed. The accelerator was upgraded from circular shaped to diamond shaped in the latest two ion sources. In the latest campaign of EAST experiment, four ion sources injected more than 4 MW deuterium beam with beam energy of 60 keV into EAST.

  19. Ion temperature effects on ion charge-state distributions of an electron cyclotron resonant ion source

    International Nuclear Information System (INIS)

    A method is described for determining ion cyclotron resonance (ICR) heating effects on multiply charged-ion energy distributions using a Monte Carlo fit to experimental time-of-flight spectrometer data. The method is general but is used here specifically to separate the effects of plasma ambipolar potential spread and ion temperature in an electron cyclotron resonance (ECR) heated magnetic mirror ion source (MIMI) [Phys. Fluids 28, 3116 (1985)]. A steady-state equilibrium model is also developed that models the relevant atomic processes occurring in MIMI plasmas. This model and the Monte Carlo analysis are used to relate the effect of midplane ICR heating on end loss ion charge state distributions to its effect on the confined ion distributions. The model allows for collisional, moderately collisional, and collisionless confinement, specific to each charge state in the distribution. Both experiment and modeling show that increased ion temperature causes a shift to lower-Z ion populations in both the confined and end loss charge-state distributions

  20. Generation of a boron ion beam in a modified ion source for semiconductor applications

    International Nuclear Information System (INIS)

    Presented here are results of experimental studies on the production of intense beams of boron ions using a modified Bernas-Calutron ion source. Instead of using the conventional boron-trifluoride gas, a solid lithium-boron-tetrafluoride compound was heated to release boron-trifluoride. For optimum ion source parameters the measured 25-41 mA of total ion beam current was composed of 70% singly charged and about 1% doubly charged boron ions

  1. The charge state of the ions produced by a saddle field ion source

    International Nuclear Information System (INIS)

    The thesis is concerned with an analysis of the charge state and energy of the ions produced by a saddle field ion source, and its application to the measurement of the sputtering yield. The subject is discussed under the topic headings: production of multicharged ions, saddle field ion sources, experimental conditions, ionic charge state, energy for argon, and sputtering yield of gold for Ar+ and Ar2+ ions. (U.K.)

  2. Ion source developments for RNB production at Spiral / GANIL

    International Nuclear Information System (INIS)

    The first on-line production system for SPIRAL/GANIL (Radioactive Ion Production System with Acceleration on-Line) phase-I has been commissioned on the SIRa (Radioactive Ion Separator) test bench. Exotic multicharged noble gas ion beams have been obtained during several days. In parallel, a new ECRIS (Electron Cyclotron Resonance Ion Source) for mono-charged ions has also been developed. Preliminary, off-line results are presented. (authors)

  3. Vacuum ARC ion sources - activities & developments at LBL

    Energy Technology Data Exchange (ETDEWEB)

    Brown, I. [Lawrence Berkeley Laboratory, CA (United States)

    1996-08-01

    The author describes work at LBL on the development and application of vacuum arc ion sources. Work has been done on vacuum spark sources - to produce very high charge states, studies of high charge states in magnetic field, hybrid ion source operation on metal/gas plasma, multipole operation, work on MEVVA V for implantation applications, development of broad beam sources, and removal of particles from the output of the source.

  4. The Power Supply System of Ion Source for NBI

    Institute of Scientific and Technical Information of China (English)

    Liu Zhimin; Liu Xiaoning; Hu Chundong; Hu Liqun; Liu Sheng; Song Shihua; Li Jun; Han Xiaopu; Wang Yongjun

    2005-01-01

    The power supply system of ion source for the Neutral Beam Injector (NBI) in the HT-7 superconducting tokamak is based on a single injector with one ion source that can deliver 700 kW of neutral beam power. Experiments and a discharges test on the ion source were successfully performed. In this paper, the circuit structures and features of every power supply are described and the results of the discharges test are presented.

  5. Ion source development for ultratrace detection of uranium and thorium

    Science.gov (United States)

    Liu, Y.; Batchelder, J. C.; Galindo-Uribarri, A.; Chu, R.; Fan, S.; Romero-Romero, E.; Stracener, D. W.

    2015-10-01

    Efficient ion sources are needed for detecting ultratrace U and Th impurities in a copper matrix by mass spectrometry techniques such as accelerator mass spectrometry (AMS). Two positive ion sources, a hot-cavity surface ionization source and a resonant ionization laser ion source, are evaluated in terms of ionization efficiencies for generating ion beams of U and Th. The performances of the ion sources are characterized using uranyl nitrate and thorium nitrate sample materials with sample sizes between 20 and 40 μg of U or Th. For the surface ion source, the dominant ion beams observed are UO+ or ThO+ and ionization efficiencies of 2-4% have been obtained with W and Re cavities. With the laser ion source, three-step resonant photoionization of U atoms has been studied and only atomic U ions are observed. An ionization efficiency of about 9% has been demonstrated. The performances of both ion sources are expected to be further improved.

  6. High-Intensity, High Charge-State Heavy Ion Sources

    CERN Document Server

    Alessi, J

    2004-01-01

    There are many accelerator applications for high intensity heavy ion sources, with recent needs including dc beams for RIA, and pulsed beams for injection into synchrotrons such as RHIC and LHC. The present status of sources producing high currents of high charge state heavy ions will be reviewed. These sources include ECR, EBIS, and Laser ion sources. The benefits and limitations for these type sources will be described, for both dc and pulsed applications. Possible future improvements in these type sources will also be discussed.

  7. Phase control and intra-pulse phase compensation of the Advanced Photon Source (APS) linear accelerator

    International Nuclear Information System (INIS)

    Rf power for the APS linear accelerator is provided by five klystrons, each of which feeds one linac ''sector,'' containing accelerating structures and SLED cavities. A VXI-based subsystem measures the phase of each sector of the linac with respect to a thermally stabilized reference line. The resulting information is used to control a linearized varactor phase shifter. Error correction is done by software, using operator-controllable parameters. A second phase shifter provides an intra-pulse correction to the phase of the klystron drive pulse. When the intra-pulse correction is applied, the resulting phase is flat to within 0.5 degrees after 2.5 μsec. A second correction, made after the PSK trigger to the SLED and during the filling of the accelerating structures, resulted in an energy gain of 5 MeV from a single sector

  8. Hydrogen Plasma Generation with 200 MHz RF Ion Source

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jeongtae; Park, Kwangmook; Seo, Dong Hyuk; Kim, Han-Sung; Kwon, Hyeok-Jung; Cho, Yong-Sub [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-10-15

    The ion source for the system is required to be rugged with 2000 hours maintenance free operation time because it is installed in the vessel filled with SF6 gas at the pressure of 10 bar. A 200 MHz RF ion source is considered as an ion source. It is a simple construction and provides long life operation. The specifications of the ion source are 5 kV extraction voltage and 1 mA beam current referenced to the proton. RF ion source has been developed and undergone a performance test. Results of the test are presented. 200 MHz RF ion source is designated and manufactured. First of all test stand test of ion source are set up for a performance test of ion source. It includes a RF ion source, a 200-MHz RF system, beam extraction system, vacuum system, beam extraction system, and beam diagnostic system. At pressure of 1.2E-5 torr, hydrogen plasma is generated with net RF power 70 W. Pyrex tube surrounded by an inductive coil takes the role of vessel and discharge is enhanced with field of permanent magnets.

  9. Applications of Cold Cathode PIG Ion Source in Lithography

    International Nuclear Information System (INIS)

    The cold cathode Penning ion source (PIG) of axial type could be modified to produce ion and electron beam with a considerable amount to use it in the lithography process. Lithography is a new applications of ion/electron beam at which one can use the ion/ or electron beam as a pencil to write and draw on a metal surface. The electron beam takes 1/3 the time needed for ion beam to make good picture. So that with the help of ion/or electron beam lithography one can mark tools, parts, instruments, and equipment with names, numbers, designs, trademark or brand name in few seconds. It is an easy process, quick and an inexpensive method. Firstly, operating characteristics of this ion source is studied. Lithography application of ion source with optimum conditions is done. Later, the hardness and the tensile strength is measured and each of them increases with increasing time

  10. Investigations on a Co-Dy liquid alloy ion source

    International Nuclear Information System (INIS)

    We have investigated the emission characteristics of a Co-Dy liquid alloy ion source intended for focused ion beam implantation of cobalt and dysprosium ions. An alloy composition of Co2Dy was selected in order to have a relatively low melting temperature, sufficient cobalt concentration for ion implantation purposes and low corrosion effects of the alloy and emitter tungsten wires. We have measured the melting behaviour of the alloy, the emission current stability, the current-voltage characteristics and the mass and energy spectra as a function of source current using a time-of-flight spectrometer. The ion source exhibits a good performance even after storage for several weeks in dry air. The mass spectra show a high intensity of doubly charged dysprosium ions and singly and doubly charged cobalt ions. The Co-Dy source works in a stable way for at least several days

  11. High Intensity High Charge State ECR Ion Sources

    CERN Document Server

    Leitner, Daniela

    2005-01-01

    The next-generation heavy ion beam accelerators such as the proposed Rare Isotope Accelerator (RIA), the Radioactive Ion Beam Factory at RIKEN, the GSI upgrade project, the LHC-upgrade, and IMP in Lanzhou require a great variety of high charge state ion beams with a magnitude higher beam intensity than currently achievable. High performance Electron Cyclotron Resonance (ECR) ion sources can provide the flexibility since they can routinely produce beams from hydrogen to uranium. Over the last three decades, ECR ion sources have continued improving the available ion beam intensities by increasing the magnetic fields and ECR heating frequencies to enhance the confinement and the plasma density. With advances in superconducting magnet technology, a new generation of high field superconducting sources is now emerging, designed to meet the requirements of these next generation accelerator projects. The talk will briefly review the field of high performance ECR ion sources and the latest developments for high intens...

  12. Present status of FLNR (JINR) ECR ion sources

    International Nuclear Information System (INIS)

    Six ECR ion sources have been operated in the Flerov Laboratory of Nuclear Reactions (JINR). Two 14 GHz ECR ion sources (ECR4M and DECRIS-2) supply various ion species for the U400 and U400M cyclotrons correspondingly for experiments on the synthesis of heavy and exotic nuclei using ion beams of stable and radioactive isotopes. The 18 GHz DECRIS-SC ion source with superconducting magnet system produces ions from Ar up to W for solid state physics experiments and polymer membrane fabrication at the IC-100 cyclotron. The third 14 GHz ion source DECRIS-4 with 'flat' minimum of the axial magnetic field is used as a stand alone machine for test experiments and also for experiments on ion modification of materials. The other two compact ECR ion sources with all permanent magnet configuration have been developed for the production of single charged ions and are used at the DRIBs installation and at the MASHA mass-spectrometer. In this paper, present status of the ion sources, recent developments and plans for modernization are reported. The paper is followed by the slides of the presentation. (authors)

  13. Laser sources of multiply charged heavy ions

    International Nuclear Information System (INIS)

    Laser production of highly charged ions is studied at the 50 J photodissociation iodine laser facility PERUN. The laser beam is focused onto various metallic targets. The use of a parabolic mirror with a hole in the center instead of a focusing lens allows for measuring ion beam parameters along the laser beam axis and results in two fold increase in the ion extraction. The diagnostics of the laser-produced ions in a far expansion zone is based on the time-of-flight method. The reported results prove the existence of highly charged ions with ion charge z > 40 in a far expansion zone and their survival during the recombination processes occurring in early stages of expansion. The higher laser power density is applied the higher ion charge states are generated. The maximum ion charge achieved e.g. for tantalum was z = 55. (J.U.)

  14. Three-dimensional simulations of ion dynamics in an Electron Cyclotron Resonance Ion Source

    International Nuclear Information System (INIS)

    We present a three-dimensional simulation of the ion dynamics in an electron cyclotron resonance ion source. Ion trajectories in the min-B field of the source are calculated taking ion-ion and electron-ion collisions into account. The electrons are not tracked but considered as a neutralizing background with a Maxwell-Boltzmann velocity distribution. Some applications of the code are discussed, e.g., the calculated charge-state and phase-space distributions of extracted ion beams and the ionization dynamics in the plasma.

  15. Main magnetic focus ion source with the radial extraction of ions

    OpenAIRE

    Ovsyannikov, V. P.; Nefiodov, A. V.

    2015-01-01

    In the main magnetic focus ion source, atomic ions are produced in the local ion trap created by the rippled electron beam in focusing magnetic field. Here we present the novel modification of the room-temperature hand-size device, which allows the extraction of ions in the radial direction perpendicular to the electron beam across the magnetic field. The detected X-ray emission evidences the production of Ir$^{44+}$ and Ar$^{16+}$ ions. The ion source can operate as the ion trap for X-ray sp...

  16. Construction of thermionic alkali-ion sources

    Energy Technology Data Exchange (ETDEWEB)

    Ul Haq, F.

    1986-04-01

    A simple technique is described by which singly charged alkali ions of K, Na, Li, Rb and Cs are produced by heating ultra-pure chemical salts of different alkali metals on tungsten filaments without employing a temperature measuring device. The character of alkali-ion currents at different heating powers and the remarkably constant ion emission current for prolonged periods are discussed.

  17. Recent developments and upgrades in ion source technology and ion beam systems at HVE

    Science.gov (United States)

    Podaru, Nicolae C.; Mous, Dirk J. W.

    2016-03-01

    In this paper we discuss various ion sources used in particle accelerator systems dedicated to ion beam analysis techniques. Key performance and characteristics of some ion sources are discussed: emittance, brightness, gas consumption, sample consumption efficiency, lifetime, etc. For negative ion sources, we focus on the performance of volume H- ion sources (e.g. HVE model 358), the duoplasmatron negative ion source and the magnetically filtered multicusp volume sources (e.g. HVE model SO-120). The duoplasmatron ion source has been recently upgraded with a Ta filament to deliver up to 150 μA H- ion beams and in conjunction with the Na charge exchange canal up to 20 μA of He-. The available brightness from the duoplasmatron increased from 2 to 6 A m-2 rad-2 eV-1. The ion source has been incorporated in a stand-alone light ion injector, well suited to deliver 20-30 keV negative ion beams of H-, He-, C-, NHx- and O- to accelerate for most ion beam analysis techniques.

  18. Laser Ion Source Operation at the TRIUMF Radioactive Ion Beam Facility

    Science.gov (United States)

    Lassen, J.; Bricault, P.; Dombsky, M.; Lavoie, J. P.; Gillner, M.; Gottwald, T.; Hellbusch, F.; Teigelhöfer, A.; Voss, A.; Wendt, K. D. A.

    2009-03-01

    The TRIUMF Resonant Ionization Laser Ion Source (RILIS) for radioactive ion beam production is presented, with target ion source, laser beam transport, laser system and operation. In this context aspects of titanium sapphire (TiSa) laser based RILIS and facility requirements are discussed and results from the first years of TRILIS RIB delivery are given.

  19. Calculation of ion beam species extracted from a hydrogen ion source

    International Nuclear Information System (INIS)

    Ion species from a hydrogen ion source are calculated as a function of the electron density on the assumption that the energy distribution of electrons in the source is Maxwellian with temperatures 8 to 12 eV. The beam fraction of ion species depends only on the electron density, and the proton ratio increases with electron density. (author)

  20. Negative ion source development for fusion application (invited).

    Science.gov (United States)

    Takeiri, Yasuhiko

    2010-02-01

    Giant negative ion sources, producing high-current of several tens amps with high energy of several hundreds keV to 1 MeV, are required for a neutral beam injector (NBI) in a fusion device. The giant negative ion sources are cesium-seeded plasma sources, in which the negative ions are produced on the cesium-covered surface. Their characteristic features are discussed with the views of large-volume plasma production, large-area beam acceleration, and high-voltage dc holding. The international thermonuclear experimental reactor NBI employs a 1 MeV-40 A of deuterium negative ion source, and intensive development programs for the rf-driven source plasma production and the multistage electrostatic acceleration are in progress, including the long pulse operation for 3600 s. Present status of the development, as well as the achievements of the giant negative ion sources in the working injectors, is also summarized. PMID:20192420

  1. Negative ion source development for fusion application (invited)

    International Nuclear Information System (INIS)

    Giant negative ion sources, producing high-current of several tens amps with high energy of several hundreds keV to 1 MeV, are required for a neutral beam injector (NBI) in a fusion device. The giant negative ion sources are cesium-seeded plasma sources, in which the negative ions are produced on the cesium-covered surface. Their characteristic features are discussed with the views of large-volume plasma production, large-area beam acceleration, and high-voltage dc holding. The international thermonuclear experimental reactor NBI employs a 1 MeV-40 A of deuterium negative ion source, and intensive development programs for the rf-driven source plasma production and the multistage electrostatic acceleration are in progress, including the long pulse operation for 3600 s. Present status of the development, as well as the achievements of the giant negative ion sources in the working injectors, is also summarized.

  2. An ion source with bunched beam release

    International Nuclear Information System (INIS)

    As a continuation of a preceding study, the possibility of bunched beam release from a FEBIAD-B2 ion source was investigated for the alkali metals, the alkaline-earths, aluminum, the transition elements scandium to nickel and for ytterbium. With an appropriate choice of the cooling/heating system and of the trap material, efficient bunching is reached for the alkalies, calcium, manganese and ytterbium, which have enthalpies of adsorption within the range 2.6 ≤ΔH, < 5 eV, the window useful for bunching. Utilizing deduced values of the mean sticking time at a surface of defined temperature, ΔH/sub a/-values up to approximately 6 eV can be determined. Thus the conditions can be specified which should allow bunching and chemical separation for various other elements that are too refractory for the present device. Experimental and semi-empirical ΔH/sub a/-values are in good agreement for the transition elements and aluminium but exhibit strong deviations for the alkali metals, the alkaline-earths, ytterbium and probably some other lanthanides. On-line mass separation of neutron-deficient isotopes of cadmium, indium and tin with a high degree of selectivity demonstrates the chemical separation power of bunched beam release

  3. Ion Source Physics and Technology (2/2)

    CERN Document Server

    CERN. Geneva

    2016-01-01

    This series of lectures starts with an introduction in some aspects of atomic and plasma physics as base for the ion source physics. The main part covers aspects of ion source physics, technology and operation. Several source types are presented. Some information on infrastructure and supporting services (as high voltage, cooling, microwaves etc) are given to better understand the source environment. The last part on engineering aims to show that, in the field of ion sources, many different technologies are combined in a quite small environment, which is challenging and interesting at the same time.

  4. Ion Source Physics and Technology (1/2)

    CERN Document Server

    CERN. Geneva

    2016-01-01

    This series of lectures starts with an introduction in some aspects of atomic and plasma physics as base for the ion source physics. The main part covers aspects of ion source physics, technology and operation. Several source types are presented. Some information on infrastructure and supporting services (as high voltage, cooling, microwaves etc) are given to better understand the source environment. The last part on engineering aims to show that, in the field of ion sources, many different technologies are combined in a quite small environment, which is challenging and interesting at the same time.

  5. Primary beams of an electron beam ion source (EBIS)

    International Nuclear Information System (INIS)

    Electron guns for the ion sources of the SATURN II facility were tested and compared with models. The guns tested were a gun with 36 mm diameter cathode, 7 mm, 4 mm, 4 mm with insulated Whenelt, and 8 mm. A lanthanium hexaboride cathode is presented. For the primary ion beams, zeolite and plasma sources were realized. In DIONE, which will replace CRYEBIS as ion source in SATURNE, the density of the electron beam compressed within the maximum magnetic field can be evaluated. Results indicate a factor of 3 improvement compared with CRYEBIS. Lithium sources can be used, but gas sources do not produce significant improvements

  6. High-efficiency target-ion sources for RIB generation

    Energy Technology Data Exchange (ETDEWEB)

    Alton, G.D.

    1993-12-31

    A brief review is given of high-efficiency ion sources which have been developed or are under development at ISOL facilities which show particular promise for use at existing, future, or radioactive ion beam (RIB) facilities now under construction. Emphasis will be placed on those sources which have demonstrated high ionization efficiency, species versatility, and operational reliability and which have been carefully designed for safe handling in the high level radioactivity radiation fields incumbent at such facilities. Brief discussions will also be made of the fundamental processes which affect the realizable beam intensities in target-ion sources. Among the sources which will be reviewed will be selected examples of state-of-the-art electron-beam plasma-type ion sources, thermal-ionization, surface-ionization, ECR, and selectively chosen ion source concepts which show promise for radioactive ion beam generation. A few advanced, chemically selective target-ion sources will be described, such as sources based on the use of laser-resonance ionization, which, in principle, offer a more satisfactory solution to isobaric contamination problems than conventional electromagnetic techniques. Particular attention will be given to the sources which have been selected for initial or future use at the Holifield Radioactive Ion Beam Facility now under construction at the Oak Ridge National Laboratory.

  7. Increasing source to image distance for AP pelvis imaging – Impact on radiation dose and image quality

    International Nuclear Information System (INIS)

    Aim: A quantative primary study to determine whether increasing source to image distance (SID), with and without the use of automatic exposure control (AEC) for antero-posterior (AP) pelvis imaging, reduces dose whilst still producing an image of diagnostic quality. Methods: Using a computed radiography (CR) system, an anthropomorphic pelvic phantom was positioned for an AP examination using the table bucky. SID was initially set at 110 cm, with tube potential set at a constant 75 kVp, with two outer chambers selected and a fine focal spot of 0.6 mm. SID was then varied from 90 cm to 140 cm with two exposures made at each 5 cm interval, one using the AEC and another with a constant 16 mAs derived from the initial exposure. Effective dose (E) and entrance surface dose (ESD) were calculated for each acquisition. Seven experienced observers blindly graded image quality using a 5-point Likert scale and 2 Alternative Forced Choice software. Signal-to-Noise Ratio (SNR) was calculated for comparison. For each acquisition, femoral head diameter was also measured for magnification indication. Results: Results demonstrated that when increasing SID from 110 cm to 140 cm, both E and ESD reduced by 3.7% and 17.3% respectively when using AEC and 50.13% and 41.79% respectively, when the constant mAs was used. No significant statistical (T-test) difference (p = 0.967) between image quality was detected when increasing SID, with an intra-observer correlation of 0.77 (95% confidence level). SNR reduced slightly for both AEC (38%) and no AEC (36%) with increasing SID. Conclusion: For CR, increasing SID significantly reduces both E and ESD for AP pelvis imaging without adversely affecting image quality

  8. Can a powerful source (APS) cast useful light on atomic hole state processes?

    International Nuclear Information System (INIS)

    Although the workshop is officially on the subject of Atomic Physics, it has become customary to link Atomic, Molecular and Optical Physics into one package. Since the issue under discussion is, What can be done with the APS? one can argue further that all experiments will use x-rays in one way or another and therefore could be categorized as X-Ray Optical Physics. A superficial case for unity can be made from the x-ray absorption spectrum of Cl adsorbed on a Cu(001) surface. In both cases similarly shaped spectra are observed, but in the second case the resonance is due to the collective scattering of the incident x-rays by the substrate crystal (i.e., a Cu Bragg reflection). The latter effect, known as the x-ray standing wave effect, is useful for surface structure determination. It is important to remember that atomic effects like in the upper figure may influence the optical effects such as in the lower figure. Continuing the argument for Optical Physics as a unifying endeavor, the author has listed a number of properties of x-rays (or photons) along with types of experiments where these properties play a central role

  9. Ion source developments for stable and radioactive ion beams at GANIL

    CERN Document Server

    Leroy, R; Lecesne, N; Jardin, P; Gaubert, G; Huguet, Y; Pacquet, J Y; Villari, A C C; Lecler, D; Been, T

    1999-01-01

    Since now many years, the Ganil ion source team has in charge to develop ion sources with three main purposes. The first one concerns the radioactive ion production that implies high efficiency ion sources as the amount of created exotic atoms is very low (between 10 to 108 particle per second). The second one deals with high intensities of stable metallic ion beams for the injectors of the accelerator while the last one tries to increase the intensities of very high charge state ion beams for atomic physic. Concerning radioactive ion production, the recent results obtained, in collaboration with the ISN Grenoble group, with the 1+/n+ method drove us to develop a new concept of ecr ion source for monocharged ion production. The results of the first tests of this source will be given. This new idea for the construction of ecr ion source can be applied to multicharged ion production. Concerning the high charge state ion beam production, a new source called SUPERSHYPIE has been built that allow to increase by a ...

  10. Design of the compact permanent-magnet ECR ion source

    International Nuclear Information System (INIS)

    Electron Cyclotron Resonance Ion Sources (ECRIS) for multiply charged ion beams keep regularly improving and expanding since the pioneer time of R. Geller and his coworkers about twenty years age. It has been widely utilized in a variety of research areas ranging from atomic and nuclear physics to material sciences. Because of the unique capability of producing highly charged ion beams, the ECR ion source has become increasingly popular in heavy-ion accelerators where the principle of acceleration sensitively depends on the charge-to-mass ratio (q=M) of the injected positive ion beam. The potential usages of beam based research development is still developing and there are plenty of rooms to be part of it. On the basis of ECR ion source technology, we will explore possible applications in the field of plasma technology, radiation technology, plastic deformation, adding more and new functionality by implantation, MEMS applications, developing new generation mass analysis system, fast neutron radiography system, etc

  11. Mo layer thickness requirement on the ion source back plate for the HNB and DNB ion sources in ITER

    International Nuclear Information System (INIS)

    All the inner surfaces of the ion sources and the upstream surface of the plasma grid of the ITER neutral beam ion sources are proposed to be coated with molybdenum. This is done to avoid sputtering of the base material (Cu or CuCrZr) by the ions in the source plasma (D+, D2+, D3+ or H+, H2+, H3+). The sputtering of Mo by the ions in the source plasma is low compared to that from Cu, and the threshold energy for sputtering ∼80 eV) is high compared to the energy of the ions in the source. However the D2+, H2+ and D+, H+ ions backstreaming from the accelerators will have energies that substantially exceed that threshold and it is important that the Mo layer is not eroded such that the base material is exposed to the source plasma. In the case of the HNB, the backstreaming ion power is calculated to be in the order of ∼1 MW, and the average energy of the backstreaming ions is calculated to be ∼300 keV. The ion sources in the HNB beam lines, 40 A 1 MeV D and 46 A 870 keV H beams, are supposed to operate for a period of 2 x 107 s. For the DNB, 60 A 100 keV H beams, the corresponding number is 1.4 × 106 s considering a beam duty cycle of 3s ON/20s OFF with 5 Hz modulation. The Mo layer on the ion source back plate should be thick enough to survive this operational time. Thickness estimation has been carried out taking into account the sputtering yields (atoms/ion), the energy spectrum of the backstreaming ions and the estimated profiles on the ion source back plate

  12. Mo layer thickness requirement on the ion source back plate for the HNB and DNB ion sources in ITER

    Science.gov (United States)

    Singh, M. J.; De Esch, H. P. L.; Hemsworth, R.; Boilson, D.

    2015-04-01

    All the inner surfaces of the ion sources and the upstream surface of the plasma grid of the ITER neutral beam ion sources are proposed to be coated with molybdenum. This is done to avoid sputtering of the base material (Cu or CuCrZr) by the ions in the source plasma (D+, D2+, D3+ or H+, H2+, H3+). The sputtering of Mo by the ions in the source plasma is low compared to that from Cu, and the threshold energy for sputtering ˜80 eV) is high compared to the energy of the ions in the source. However the D2+, H2+ and D+, H+ ions backstreaming from the accelerators will have energies that substantially exceed that threshold and it is important that the Mo layer is not eroded such that the base material is exposed to the source plasma. In the case of the HNB, the backstreaming ion power is calculated to be in the order of ˜1 MW, and the average energy of the backstreaming ions is calculated to be ˜300 keV. The ion sources in the HNB beam lines, 40 A 1 MeV D and 46 A 870 keV H beams, are supposed to operate for a period of 2 x 107 s. For the DNB, 60 A 100 keV H beams, the corresponding number is 1.4 × 106 s considering a beam duty cycle of 3s ON/20s OFF with 5 Hz modulation. The Mo layer on the ion source back plate should be thick enough to survive this operational time. Thickness estimation has been carried out taking into account the sputtering yields (atoms/ion), the energy spectrum of the backstreaming ions and the estimated profiles on the ion source back plate.

  13. Optimization of ion sources for controlled fusion research applications

    International Nuclear Information System (INIS)

    The prospect for improvements in the performance of ion sources for controlled fusion research applications is investigated from a theoretical point of view. The objectives are identified in terms of beam energy, intensity, purity and power efficiency. By analyzing the process in the extraction and formation of an ion beam, an expression is obtained which relates the parameters of the ion source to the quality of the beam. The implications of the result in improving the performance of the ion source for CTR applications is discussed

  14. Emittance Measurements for Beams Extracted from LECR3 Ion Source

    Institute of Scientific and Technical Information of China (English)

    CaoYun; ZhaoHongwei; MaLei; ZhangZimin

    2003-01-01

    High quality ion beams are required by IMP cyclotron and atomic physics research, so it is important to research and measure beam emitt ance of ECR ion source. Intense beams extracted from ECR ion source usually have low energy, so it is suitable to use Electric-Sweep Scanner to measure the emittance. This kind of measurement is popularly used at ECR ion source, and it has some prominent merits such as high accuracy, very short time of data processing and easy expressing of the emittance pattern. So we designed and built this emittance scanner to measure emittance of the ion beams produced by LECR3 ion source. The structure of the ESS is shown in Fig.l, and the photo of the ESS is shown in Fig.2.

  15. Verification of high efficient broad beam cold cathode ion source.

    Science.gov (United States)

    Abdel Reheem, A M; Ahmed, M M; Abdelhamid, M M; Ashour, A H

    2016-08-01

    An improved form of cold cathode ion source has been designed and constructed. It consists of stainless steel hollow cylinder anode and stainless steel cathode disc, which are separated by a Teflon flange. The electrical discharge and output characteristics have been measured at different pressures using argon, nitrogen, and oxygen gases. The ion exit aperture shape and optimum distance between ion collector plate and cathode disc are studied. The stable discharge current and maximum output ion beam current have been obtained using grid exit aperture. It was found that the optimum distance between ion collector plate and ion exit aperture is equal to 6.25 cm. The cold cathode ion source is used to deposit aluminum coating layer on AZ31 magnesium alloy using argon ion beam current which equals 600 μA. Scanning electron microscope and X-ray diffraction techniques used for characterizing samples before and after aluminum deposition. PMID:27587108

  16. MIVOC Method at the mVINIS Ion Source

    International Nuclear Information System (INIS)

    We have used the well-known metal-ions-from-volatile- compounds (MIVOC) method with the mVINIS Ion Source to produce multiply charged ion beams form solid substances. Using this method very intense stable multiply charged ion beams of several solid substances having high melting points were obtained. The yields and spectrum of the multiply charged ion beams obtained from Hf will be presented. A hafnium ion beam spectrum was recorded at an ECR ion source for the first time. We have utilized the multiply charged ion beams from solid substances to irradiate the polymer, fullerene and glassy carbon samples at the channel for modification of materials (L3A). (author)

  17. Ionization efficiency calculations for cavity thermoionization ion source

    International Nuclear Information System (INIS)

    The numerical model of ionization in a thermoionization ion source is presented. The review of ion source ionization efficiency calculation results for various kinds of extraction field is given. The dependence of ionization efficiency on working parameters like ionizer length and extraction voltage is discussed. Numerical simulations results are compared to theoretical predictions obtained from a simplified ionization model

  18. The examinations on purity of ion beams emitted by plasmatic and thermoemission ion source

    International Nuclear Information System (INIS)

    The composition of ion beam emitted by both Nielsen's type of plasmatic ion source and source with superficial ionization was examined. Investigations were connected with a design of simplified and chapper variant of implantator without ion beam analysis in magnetic field. The measurements were carried out using an isotope electromagnetic separator in the Institute of Physics at the Maria Curie-Sklodowska University in Lublin. A considerable differentation in ion beam in respect of both ion charge and kind was observed. The impurities were caused by gases absorbed in source elements as well as by residual gases filled the apparatus. An important reason of impurities seems to be also a source ''store'' due to previous separations. The methods which enable to obtain pure ion beams of argon, nitrogen, zinc and aluminium are presented. Besides the optimum conditions for source work the pure ion beams are determined. (author)

  19. Examinations on purity of ion beams emitted by plasmatic and thermoemission ion source

    Energy Technology Data Exchange (ETDEWEB)

    Maczka, D.; Mazur, J.; Wasiak, A. (Uniwersytet Marii Curie-Sklodowskiej, Lublin (Poland). Inst. Fizyki)

    1981-01-01

    The composition of ion beam emitted by both Nielsen's type of plasmatic ion source and source with superficial ionization was examined. Investigations were connected with a design of simplified and chapper variant of implantator without ion beam analysis in magnetic field. The measurements were carried out using an isotope electromagnetic separator in the Institute of Physics at the Maria Curie-Sklodowska University in Lublin. A considerable differentation in ion beam in respect of both ion charge and kind was observed. The impurities were caused by gases absorbed in source elements as well as by residual gases filled the apparatus. An important reason of impurities seems to be also a source ''store'' due to previous separations. The methods which enable to obtain pure ion beams of argon, nitrogen, zinc and aluminium are presented. Besides the optimum conditions for source work the pure ion beams are determined.

  20. Volume and Surface-Enhanced Volume Negative Ion Sources

    CERN Document Server

    Stockli, M P

    2013-01-01

    H- volume sources and, especially, caesiated H- volume sources are important ion sources for generating high-intensity proton beams, which then in turn generate large quantities of other particles. This chapter discusses the physics and technology of the volume production and the caesium-enhanced (surface) production of H- ions. Starting with Bacal's discovery of the H- volume production, the chapter briefly recounts the development of some H- sources, which capitalized on this process to significantly increase the production of H- beams. Another significant increase was achieved in the 1990s by adding caesiated surfaces to supplement the volume-produced ions with surface-produced ions, as illustrated with other H- sources. Finally, the focus turns to some of the experience gained when such a source was successfully ramped up in H- output and in duty factor to support the generation of 1 MW proton beams for the Spallation Neutron Source.

  1. Electron temperature effects for an ion beam source

    International Nuclear Information System (INIS)

    A hydrogen high temperature plasma up to 200 eV is produced by acceleration of electrons in a hot hollow cathode discharge and is used as an ion beam source. Then, two characteristics are observed: A rate of the atomic ion (H+) number increases above 70%. A perveance of the ion beam increases above 30 times compared with that of a cold plasma, while a floating potential of an ion acceleration electrode approaches an ion acceleration potential (- 500 V) according as an increment of the electron temperature. Moreover, a neutralized ion beam can be produced by only the negative floating electrode without an external power supply. (author)

  2. Negative ions as a source of low energy neutral beams

    Energy Technology Data Exchange (ETDEWEB)

    Fink, J.H.

    1980-01-01

    Little consideration has been given to the impact of recent developments in negative ion source technology on the design of low energy neutral beam injectors. However, negative ion sources of improved operating efficiency, higher gas efficiency, and smaller beam divergence will lead to neutral deuterium injectors, operating at less than 100 keV, with better operating efficiencies and more compact layouts than can be obtained from positive ion systems.

  3. Possible Source of Intermediate Ions over Marine Environment

    OpenAIRE

    Sunil D. Pawar; V. Gopalakrishnan

    2012-01-01

    Measurements of small, intermediate and large ions made onboard ORV Sagarkanya over the Arabian Sea in May-June 2003 during Arabian Sea Monsoon Experiment (ARMEX) are reported here. The daily averaged values of small-, intermediate-, and large-ion concentrations measured for 36 days during this cruise have been used for analysis. The analysis shows a weak positive correlation of 0.14 between intermediate- and large-ion concentrations, which indicates that the sources of these two types of ion...

  4. Emission characteristics and stability of laser ion sources

    Czech Academy of Sciences Publication Activity Database

    Krása, Josef; Velyhan, Andriy; Krouský, Eduard; Láska, Leoš; Rohlena, Karel; Jungwirth, Karel; Ullschmied, Jiří; Lorusso, A.; Velardi, L.; Nassisi, V.; Czarnecka, A.; Ryc, L.; Parys, P.; Wolowski, J.

    2010-01-01

    Roč. 85, č. 5 (2010), s. 617-621. ISSN 0042-207X R&D Projects: GA AV ČR IAA100100715 Institutional research plan: CEZ:AV0Z10100523; CEZ:AV0Z20430508 Keywords : laser ion sources * ion emission reproducibility * thermal and fast ions * ion temperature * centre-of-mass velocity Subject RIV: BH - Optics, Masers, Laser s Impact factor: 1.048, year: 2010

  5. Off-line ion source terminal for ISAC at TRIUMFa)

    Science.gov (United States)

    Jayamanna, K.; Ames, F.; Cojocaru, G.; Baartman, R.; Bricault, P.; Dube, R.; Laxdal, R.; Marchetto, M.; MacDonald, M.; Schmor, P.; Wight, G.; Yuan, D.

    2008-02-01

    The off-line ion source (OLIS) terminal consists of a microwave cusp ion source, either a surface ion source or a hybrid surface-arc discharge ion source and an electrostatic switch that allows selecting any one of the sources without mechanical intervention. These sources provide variety of beams to ISAC experiments, for commissioning the accelerators, for setting up the radioactive experiments, and for tuning the beam lines. The microwave ion source has been operational since 1995 and provides singly and doubly charged beams from various stable isotopes for many ISAC experiments at high and low energy areas. Originally its prime goal was to provide beams from gaseous elements, but later two ovens and a sputtering system were added in order to provide beams from liquids and from solids. The surface ion source installed in 2002 can provide low energy spread beams from alkali and semialkali elements. It also has three separate ovens and an ionizer. Therefore, it can provide three different temperature regions simultaneously to provide different beams to ISAC. It is mainly used for laser spectroscopy experiments and other experiments, which require a finite beam quality. A hybrid surface-arc discharge ion source was also developed and installed in order to meet specific demands from experiments. This source terminal is now automated for start up and for mass selection. It is capable of providing stable beams for months without maintenance and it is also capable of providing negative ion beams if required. To date, over 40 different isotopes including many rear isotopes were delivered to various experiments from the OLIS source terminal. Performances of the ion sources and some of the results are discussed.

  6. A trapped ion source with improved ionizing efficiency for the production of multiply charged ions

    International Nuclear Information System (INIS)

    An ultrahigh vacuum 'trapped ion source' has been developed following closely Redhead's basic design. Positive ions have been trapped within the space charge of a magnetically confined electron beam with potential barriers at either end of the ionization region, resulting in the production of multiply charged ions. These highly stripped ions are formed by the successive collisions with low energy (0 mass spectrometer. The results obtained in the production of multiply charged ions of Au are presented. (auth.)

  7. Negative hydrogen ion beam extraction from an AC heated cathode driven Bernas-type ion source

    Science.gov (United States)

    Okano, Y.; Miyamoto, N.; Kasuya, T.; Wada, M.

    2015-04-01

    A plasma grid structure was installed to a Bernas-type ion source used for ion implantation equipment. A negative hydrogen (H-) ion beam was extracted by an AC driven ion source by adjusting the bias to the plasma grid. The extracted electron current was reduced by positively biasing the plasma grid, while an optimum plasma grid bias voltage for negative ion beam extraction was found to be positive 3 V with respect to the arc chamber. Source operations with AC cathode heating show extraction characteristics almost identical to that with DC cathode heating, except a minute increase in H- current at higher frequency of cathode heating current.

  8. Laser ion source with solenoid for Brookhaven National Laboratory-electron beam ion sourcea)

    Science.gov (United States)

    Kondo, K.; Yamamoto, T.; Sekine, M.; Okamura, M.

    2012-02-01

    The electron beam ion source (EBIS) preinjector at Brookhaven National Laboratory (BNL) is a new heavy ion-preinjector for relativistic heavy ion collider (RHIC) and NASA Space Radiation Laboratory (NSRL). Laser ion source (LIS) is a primary ion source provider for the BNL-EBIS. LIS with solenoid at the plasma drift section can realize the low peak current (˜100 μA) with high charge (˜10 nC) which is the BNL-EBIS requirement. The gap between two solenoids does not cause serious plasma current decay, which helps us to make up the BNL-EBIS beamline.

  9. Enhanced production of negative ions in a pulsed volume ion source

    OpenAIRE

    Mellon, Kevin Noel

    1993-01-01

    The need for high brightness neutral beams for neutral beam heating systems has lead to extensive research into low pressure, high power negative ion sources. Negative ion sources at present have low gas and power efficiencies and to realise the current densities for the future H'/D' based neutral injectors needed for the next generation of fusion tokamaks will necessitate continued efforts into improving the design of negative ion sources. In this thesis a new approach to the production ...

  10. Imaging of granular sources in high energy heavy ion collisions

    OpenAIRE

    Yang, Zhi-Tao; Zhang, Wei-Ning; Huo, Lei; Zhang, Jing-Bo

    2008-01-01

    We investigate the source imaging for a granular pion-emitting source model in high energy heavy ion collisions. The two-pion source functions of the granular sources exhibit a two-tiered structure. Using a parametrized formula of granular two-pion source function, we examine the two-tiered structure of the source functions for the imaging data of Au+Au collisions at Alternating Gradient Synchrotron (AGS) and Relativistic Heavy Ion Collider (RHIC). We find that the imaging technique introduce...

  11. Development of plasma ion source based micromachining system

    International Nuclear Information System (INIS)

    A compact high performance Inductively Coupled Plasma based (ICP) RF ion source operating at 13.56 MHz frequency is developed for production of low energy beams with micron size dimensions for high speed micromachining applications. To produce fine beams with high current density, ion source must produce high current ion beams with low energy spread and low divergence. Systematic characterizations have been carried out on the ion source and the extracted ion beams. The plasma source has exhibited a reduced brightness of 1x105 A/m2-sr-eV and ion energy spread of less than 5 eV. The angular current intensity of this source is >10 mA/Sr which is about three order higher than the traditional Liquid Metal Ion Source (LMIS). Ions are extracted by two electrode extraction system with 1 mm aperture and accelerated up to 8 KeV. Initial tests with the two lens focusing column, about 20 nA beam could be focused in 1.5 μm spot at working distance of 1 mm. The ion source life time and the stability has been excellent. Several experiments have been carried out to estimate the capability of this system for high micromachining applications. Various types of micro patterns have been created on Si wafer with Ar ion beam. Milling rate of > 1 μm3 are easily possible with this system. It is expected that with few more modifications in ion source as well as focusing column, milling rates of one order more and focused spot size of submicron dimensions can easily be achieved. (author)

  12. Molecular and negative ion production by a standard electron cyclotron resonance ion source.

    Science.gov (United States)

    Rácz, R; Biri, S; Juhász, Z; Sulik, B; Pálinkás, J

    2012-02-01

    Molecular and negative ion beams, usually produced in special ion sources, play an increasingly important role in fundamental and applied atomic physics. The ATOMKI-ECRIS is a standard ECR ion source, designed to provide highly charged ion (HCI) plasmas and beams. In the present work, H(-), O(-), OH(-), O(2)(-), C(-), C(60)(-) negative ions and H(2)(+), H(3)(+), OH(+), H(2)O(+), H(3)O(+), O(2)(+) positive molecular ions were generated in this HCI-ECRIS. Without any major modification in the source and without any commonly applied tricks (such as usage of cesium or magnetic filter), negative ion beams of several μA and positive molecular ion beams in the mA range were successfully obtained. PMID:22380160

  13. Charge state distribution analysis of Al and Pb ions from the laser ion source at IMP

    International Nuclear Information System (INIS)

    A prototype laser ion source that could demonstrate the possibility of producing intense pulsed high charge state ion beams has been established with a commercial Nd:YAG laser (Emax=3 J, 1064 nm, 8-10 ns) to produce laser plasma for the research of Laser Ion Source (LIS). At the laser ion source test bench, high purity (99.998%) aluminum and lead targets have been tested for laser plasma experiment. An Electrostatic Ion Analyzer (EIA) and Electron Multiply Tube (EMT) detector were used to analyze the charge state and energy distribution of the ions produced by the laser ion source. The maximum charge states of Al12+ and Pb7+ were achieved. The results will be presented and discussed in this paper. (authors)

  14. Charge state distribution analysis of Al and Pb ions from the laser ion source at IMP

    CERN Document Server

    Shan, Sha; Zhang-Min, Li; Xiao-Hong, Guo; Lun-Cai, Zhou; Guo-Zhu, Cai; Liang-ting, Sun; Xue-Zhen, Zhang; Huan-Yu, Zhao; Xi-Meng, Chen; Hong-Wei, Zhao

    2013-01-01

    A prototype laser ion source that could demonstrate the possibility of producing intense pulsed high charge state ion beams has been established with a commercial Nd:YAG laser (E max = 3 J, 1064 nm, 8-10 ns) to produce laser plasma for the research of Laser Ion Source (LIS). At the laser ion source test bench, high purity (99.998 %) aluminum and lead targets have been tested for laser plasma experiment. An Electrostatic Ion Analyzer (EIA) and Electron Multiply Tube (EMT) detector were used to analyze the charge state and energy distribution of the ions produced by the laser ion source. The maximum charge states of Al12+ and Pb7+ were achieved. The results will be presented and discussed in this paper.

  15. Status of ion sources at National Institute of Radiological Sciences

    Energy Technology Data Exchange (ETDEWEB)

    Kitagawa, A.; Fujita, T.; Goto, A.; Hattori, T.; Hamano, T.; Hojo, S.; Honma, T.; Imaseki, H.; Katagiri, K.; Muramatsu, M.; Sakamoto, Y.; Sekiguchi, M.; Suda, M.; Sugiura, A.; Suya, N. [National Institute of Radiological Sciences (NIRS), 4-9-1 Anagawa, Inage, Chiba 263-8555 (Japan)

    2012-02-15

    The National Institute of Radiological Sciences (NIRS) maintains various ion accelerators in order to study the effects of radiation of the human body and medical uses of radiation. Two electrostatic tandem accelerators and three cyclotrons delivered by commercial companies have offered various life science tools; these include proton-induced x-ray emission analysis (PIXE), micro beam irradiation, neutron exposure, and radioisotope tracers and probes. A duoplasmatron, a multicusp ion source, a penning ion source (PIG), and an electron cyclotron resonance ion source (ECRIS) are in operation for these purposes. The Heavy-Ion Medical Accelerator in Chiba (HIMAC) is an accelerator complex for heavy-ion radiotherapy, fully developed by NIRS. HIMAC is utilized not only for daily treatment with the carbon beam but also for fundamental experiments. Several ECRISs and a PIG at HIMAC satisfy various research and clinical requirements.

  16. Status of the ATLAS PIIECR ion source project

    International Nuclear Information System (INIS)

    The ATLAS PIIECR ion source is a major component of a project which will result in the replacement of the ATLAS tandem electrostatic injector with a superconducting linac of extremely low velocity profile and an ECR ion source operating in the continuous mode. A compilation of the source parameters adopted is tabulated, and the various issues considered in the design process and decisions made regarding those issues are discussed

  17. ECR [electron cyclotron resonance] ion sources and applications with heavy-ion linacs

    International Nuclear Information System (INIS)

    The electron cyclotron resonance (ECR) ion source has been developed in the last few years into a reliable source of high charge-state heavy ions. The availability of heavy ions with relatively large charge-to-mass ratios (0.1--0.5) has made it possible to contemplate essentially new classes of heavy-ion linear accelerators. In this talk, I shall review the state-of-the-art in ECR source performance and describe some of the implications this performance level has for heavy-ion linear accelerator design. The present linear accelerator projects using ECR ion sources will be noted and the performance requirements of the ECR source for these projects will be reviewed. 30 refs., 3 figs

  18. Investigation and application of hollow anode glow discharge ion source

    Energy Technology Data Exchange (ETDEWEB)

    Abdelsalam, F.W.; Helal, A.G. [Accelerators and Ion Sources Department, Nuclear Research Center, Atomic Energy Authority, P.O. Box 13759 Inchas, Cairo (Egypt); Saddeek, Y.B. [Physics Dep., Faculty of Science, AL-Azhar University in Assuitt, Assuitt (Egypt); Abdelrahman, M.M., E-mail: moustafa82003@yahoo.co [Accelerators and Ion Sources Department, Nuclear Research Center, Atomic Energy Authority, P.O. Box 13759 Inchas, Cairo (Egypt); Soliman, B.A. [Accelerators and Ion Sources Department, Nuclear Research Center, Atomic Energy Authority, P.O. Box 13759 Inchas, Cairo (Egypt)

    2010-11-15

    In the present work, a new shape of a glow discharge ion source has been designed, fabricated and constructed at Accelerators and Ion Sources Department, Nuclear Research Center, Egyptian Atomic Energy Authority, Egypt. The discharge and output beam characteristics of the ion source at different operating gas pressures have been measured at the optimum distance between the anode and the cathode (3.5 mm) using hydrogen and nitrogen gases. Furthermore, mixture of different gases was studied, e.g., addition of H{sub 2} gas to N{sub 2} gas with different ratios has been investigated. Finally, as an application of this new ion source, ion beam modification of insulators (glass) which depends on glass structure has been achieved. It has been found that, the transmission of light is decreased by coating the glass surface with Ar ion beam more than coating with plasma of Ar gas at the same pressure and the same exposure time. So we could use this ion source as a coating tool for borate glass surface. The parameters affected the glow discharge ion source efficiency have been examined carefully using a mixture of gases. Using helium gas, the glow discharge is in a turbulent state due to instabilities. An investigated H{sub 2}-N{sub 2} mixture has been used in order to obtain an optimum percentage of the mixture of the two gases to increase the electric field necessary for ionization balance.

  19. Intense stationary H- ion source with a hollow cathode

    International Nuclear Information System (INIS)

    H- ion source with a cesium hollow cathode, operating in the stationary regime, is investigated for designing the thermonuclear device injector. The source is of an axial-symmetry geometry with the radial magnetic field. Ion extraction is being performed tranverse the magnetic field through the holes in the main anode. The movable magnetic analyzer has been used for controlling of the beam. The ion current of 109 mA and the energy of 5 keV is obtained in the stationary regime. The analysis of the ion source operation has shown: 1)the source preserves working capacity even without the magnetic field; 2)the largest H- current is in a small magnetic field (10-20 G) in the region of emission holes; 3)H- ion current increases at decreasing hydrogen consumption

  20. High intensity ECR ion source: SILHI from research to industry

    International Nuclear Information System (INIS)

    Originally designed at CEA (Commissariat a l'Energie Atomique et aux Energies Alternatives) the SILHI (Source d'Ions Legers de Haute Intensité) ion source is today worldwide recognized as the most efficient ECR ion source to produce very intense beam up to 150 mA. Applications are such as accelerator driven systems for nuclear waste transmutation, production of radioactive ion beams, or secondary particles for neutron sciences. Many sources have been developed and constructed using coils like for the IFMIF injector or even permanent magnets at SPIRAL2 for the magnetic field generation. The performances are strongly linked to the high voltage extraction system which is a pentode electrode device allowing beam formation and focusing of space charged dominated ion beam. In this paper we will described the design and show what has been done to obtain such a reliable product. Beam simulations and final performances will be given

  1. Highly efficient H- ion source for cyclotrons without caesium

    International Nuclear Information System (INIS)

    Full text: An internal high current H- ion source for cyclotrons and other injectors was developed which makes use of some very effective methods of H- ion production. The source is distinguished by high gas efficiency. A surface-plasma method for H- ion production without using caesium vapor was realized. A strong current arc discharge was applied for dissociation and dissociative ionization of H2 molecules. An H+-H- recharge method using a residual gas layer adjusted by thickness and pressure was realized in this source. In a double-chamber ion source with high-current discharge in the single chamber and low-current low-volt discharge in the different chamber is used the supplementary electrode which a composite-plate cover with low electronic work function (∼1,5 eV). Anticipate of ion current of H- is 1-2 mA. (author)

  2. Oxygen ion source and RFQ for Linac 1

    CERN Multimedia

    Photographic Service

    1986-01-01

    As injector to the PS Booster, Linac 1 was replaced by Linac 2 in 1980. It continued to be used for the acceleration of oxygen and sulfur ions. In 1984, its Cockcroft-Walton preinjector was replaced by an RFQ. In the foreground at the right is the oxygen ion source. A 90 deg bending magnet selects O6+ ions which are preaccelerated in an RFQ and enter Linac 1, at the far left. In the background is the proton and negative hydrogen ion source, followed by the 520 keV RFQ-1 and a bending magnet towards the entrance of Linac 1.

  3. Development of negative helium ion sources

    Energy Technology Data Exchange (ETDEWEB)

    Ootsuka, Michio; Nakamura, Shin; Suzuki, Yozo; Amemiya, Kensuke; Tanaka, Masanobu; Takeuchi, Kazuhiro; Tokiguchi, Katsumi; Sato, Tadashi [Hitachi Ltd., Tokyo (Japan)

    2001-02-01

    On the basis of the cooperation of industries and universities, the local government of Fukui established Wakasa Bay Energy Research Center. An emphasis is placed on the application of accelerators. Two accelerators are scheduled, a tandem electrostatic accelerator (5MeV) and synchrotron (200MeV). The tandem accelerator requires helium ion currents to exceed 10 {mu} A. The use of Lithium vapors for charge exchange (electron attachment) is adopted for negative ion production. (M. Tanaka)

  4. Applications of heavy-negative-ion sources for materials science (invited)

    OpenAIRE

    Ishikawa, Junzo

    2000-01-01

    Applications of heavy negative ions produced by sputter-type negative-ion sources for materials science are reviewed. Submilliampere and milliampere heavy-negative-ion beams can be produced by a neutral- and ionized-alkaline–metal-bombardment-type heavy-negative-ion source and rf plasma sputter-type negative-ion sources, respectively. These negative-ion beams can be applied for materials processing such as ion implantation, ion beam etching, and ion beam deposition. In negative-ion implantati...

  5. Physical mechanisms leading to high currents of highly charged ions in laser-driven ion sources

    Energy Technology Data Exchange (ETDEWEB)

    Haseroth, Helmut [European Organization for Nuclear Research, Geneva (Switzerland); Hora, Heinrich [New South Wales Univ., Kensington, NSW (Australia)]|[Regensburg Inst. of Tech. (Germany). Anwenderzentrum

    1996-12-31

    Heavy ion sources for the big accelerators, for example, the LHC, require considerably more ions per pulse during a short time than the best developed classical ion source, the electron cyclotron resonance (ECR) provides; thus an alternative ion source is needed. This can be expected from laser-produced plasmas, where dramatically new types of ion generation have been observed. Experiments with rather modest lasers have confirmed operation with one million pulses of 1 Hz, and 10{sup 11} C{sup 4+} ions per pulse reached 2 GeV/u in the Dubna synchrotron. We review here the complexities of laser-plasma interactions to underline the unique and extraordinary possibilities that the laser ion source offers. The complexities are elaborated with respect to keV and MeV ion generation, nonlinear (ponderomotive) forces, self-focusing, resonances and ``hot`` electrons, parametric instabilities, double-layer effects, and the few ps stochastic pulsation (stuttering). Recent experiments with the laser ion source have been analyzed to distinguish between the ps and ns interaction, and it was discovered that one mechanism of highly charged ion generation is the electron impact ionization (EII) mechanism, similar to the ECR, but with so much higher plasma densities that the required very large number of ions per pulse are produced. (author).

  6. Influence of ion species ratio on grid-enhanced plasma source ion implantation

    Institute of Scientific and Technical Information of China (English)

    Wang Jiu-Li; Zhang Gu-Ling; Liu Yuan-Fu; Wang You-Nian; Liu Chi-Zi; Yang Si-Ze

    2004-01-01

    @@ Grid-enhanced plasma source ion implantation (GEPSII) is a newly proposed technique to modify the inner-surface properties of a cylindrical bore. In this paper, a two-ion fluid model describing nitrogen molecular ions N2+ and atomic ions N+ is used to investigate the ion sheath dynamics between the grid electrode and the inner surface of a cylindrical bore during the GEPSII process, which is an extension of our previous calculations in which only N2+ was considered.Calculations are concentrated on the results of ion dose and impact energy on the target for different ion species ratios in the core plasma. The calculated results show that more atomic ions N+ in the core plasma can raise the ion impact energy and reduce the ion dose on the target.

  7. Vacuum Arc Ion Sources: Recent Developments and Applications

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Ian; Oks, Efim

    2005-05-01

    The vacuum arc ion source has evolved over the past twenty years into a standard laboratory tool for the production of high current beams of metal ions, and is now used in a number of different embodiments at many laboratories around the world. The primary application of this kind of source has evolved to be ion implantation for material surface modification. Another important use is for injection of high current beams of heavy metal ions into the front ends of particle accelerators, and much excellent work has been carried out in recent years in optimizing the source for reliable accelerator application. The source also provides a valuable tool for the investigation of the fundamental plasma physics of vacuum arc plasma discharges. As the use of the source has grown and diversified, at the same time the ion source performance and operational characteristics have been improved in a variety of different ways also. Here we review the growth and status of vacuum arc ion sources around the world, and summarize some of the applications for which the sources have been used.

  8. Vacuum Arc Ion Sources: Recent Developments and Applications

    International Nuclear Information System (INIS)

    The vacuum arc ion source has evolved over the past twenty years into a standard laboratory tool for the production of high current beams of metal ions, and is now used in a number of different embodiments at many laboratories around the world. The primary application of this kind of source has evolved to be ion implantation for material surface modification. Another important use is for injection of high current beams of heavy metal ions into the front ends of particle accelerators, and much excellent work has been carried out in recent years in optimizing the source for reliable accelerator application. The source also provides a valuable tool for the investigation of the fundamental plasma physics of vacuum arc plasma discharges. As the use of the source has grown and diversified, at the same time the ion source performance and operational characteristics have been improved in a variety of different ways also. Here we review the growth and status of vacuum arc ion sources around the world, and summarize some of the applications for which the sources have been used

  9. Control system for the CSNS ion source test stand

    International Nuclear Information System (INIS)

    A penning plasma surface H- ion source test stand for the CSNS has just been constructed at the IHEP. In order to achieve a safe and reliable system, nearly all devices of the ion source are designed to have the capability of both local and remote operation function. The control system consists of PLCs and EPICS real-time software tools separately serving device control and monitoring, PLC integration and OPI support. This paper summarizes the hardware and software implementation satisfying the requirements of the ion source control system.(authors)

  10. Possible Source of Intermediate Ions over Marine Environment

    Directory of Open Access Journals (Sweden)

    Sunil D. Pawar

    2012-01-01

    Full Text Available Measurements of small, intermediate and large ions made onboard ORV Sagarkanya over the Arabian Sea in May-June 2003 during Arabian Sea Monsoon Experiment (ARMEX are reported here. The daily averaged values of small-, intermediate-, and large-ion concentrations measured for 36 days during this cruise have been used for analysis. The analysis shows a weak positive correlation of 0.14 between intermediate- and large-ion concentrations, which indicates that the sources of these two types of ions are different over ocean surface. The negative correlation is observed between small- and intermediate-ion concentration for entire period of cruise. In addition, it is seen that the intermediate-ion concentration shows a very good (=0.58 and significant positive correlation with sea surface pressure. Based on good negative correlation between small- and intermediate-ion concentrations and good positive correlation between intermediate-ion concentration and sea surface pressure, it has been proposed that attachment of small ions to the ultrafine particles transported from upper troposphere to marine boundary layer is the main source of intermediate ions over ocean surface. This study supports the idea that the main source of ultrafine particles over marine boundary layer (MBL is entrainment of aerosol particles from the free troposphere.

  11. A vacuum spark ion source: High charge state metal ion beams

    Energy Technology Data Exchange (ETDEWEB)

    Yushkov, G. Yu., E-mail: gyushkov@mail.ru; Nikolaev, A. G.; Frolova, V. P. [High Current Electronics Institute, Siberian Branch of the Russian Academy of Science, Tomsk 634055 (Russian Federation); Oks, E. M. [High Current Electronics Institute, Siberian Branch of the Russian Academy of Science, Tomsk 634055 (Russian Federation); Tomsk State University of Control System and Radioelectronics, Tomsk 634050 (Russian Federation)

    2016-02-15

    High ion charge state is often important in ion beam physics, among other reasons for the very practical purpose that it leads to proportionately higher ion beam energy for fixed accelerating voltage. The ion charge state of metal ion beams can be increased by replacing a vacuum arc ion source by a vacuum spark ion source. Since the voltage between anode and cathode remains high in a spark discharge compared to the vacuum arc, higher metal ion charge states are generated which can then be extracted as an ion beam. The use of a spark of pulse duration less than 10 μs and with current up to 10 kA allows the production of ion beams with current of several amperes at a pulse repetition rate of up to 5 pps. We have demonstrated the formation of high charge state heavy ions (bismuth) of up to 15 + and a mean ion charge state of more than 10 +. The physics and techniques of our vacuum spark ion source are described.

  12. A vacuum spark ion source: High charge state metal ion beams

    International Nuclear Information System (INIS)

    High ion charge state is often important in ion beam physics, among other reasons for the very practical purpose that it leads to proportionately higher ion beam energy for fixed accelerating voltage. The ion charge state of metal ion beams can be increased by replacing a vacuum arc ion source by a vacuum spark ion source. Since the voltage between anode and cathode remains high in a spark discharge compared to the vacuum arc, higher metal ion charge states are generated which can then be extracted as an ion beam. The use of a spark of pulse duration less than 10 μs and with current up to 10 kA allows the production of ion beams with current of several amperes at a pulse repetition rate of up to 5 pps. We have demonstrated the formation of high charge state heavy ions (bismuth) of up to 15 + and a mean ion charge state of more than 10 +. The physics and techniques of our vacuum spark ion source are described

  13. A vacuum spark ion source: High charge state metal ion beams

    Science.gov (United States)

    Yushkov, G. Yu.; Nikolaev, A. G.; Oks, E. M.; Frolova, V. P.

    2016-02-01

    High ion charge state is often important in ion beam physics, among other reasons for the very practical purpose that it leads to proportionately higher ion beam energy for fixed accelerating voltage. The ion charge state of metal ion beams can be increased by replacing a vacuum arc ion source by a vacuum spark ion source. Since the voltage between anode and cathode remains high in a spark discharge compared to the vacuum arc, higher metal ion charge states are generated which can then be extracted as an ion beam. The use of a spark of pulse duration less than 10 μs and with current up to 10 kA allows the production of ion beams with current of several amperes at a pulse repetition rate of up to 5 pps. We have demonstrated the formation of high charge state heavy ions (bismuth) of up to 15 + and a mean ion charge state of more than 10 +. The physics and techniques of our vacuum spark ion source are described.

  14. Recent advances in high current vacuum arc ion sources for heavy ion fusion

    CERN Document Server

    Qi Nian Sheng; Prasad, R R; Krishnan, M S; Anders, A; Kwan, J; Brown, I

    2001-01-01

    For a heavy ion fusion induction linac driver, a source of heavy ions with charge states 1+-3+, approx 0.5 A current beams, approx 20 mu s pulse widths and approx 10 Hz repetition rates is required. Thermionic sources have been the workhorse for the Heavy Ion Fusion (HIF) program to date, but suffer from heating problems for large areas and contamination. They are limited to low (contact) ionization potential elements and offer relatively low ion fluxes with a charge state limited to 1+. Gas injection sources suffer from partial ionization and deleterious neutral gas effects. The above shortcomings of the thermionic ion sources can be overcome by a vacuum arc ion source. The vacuum arc ion source is a good candidate for HIF applications. It is capable of providing ions of various elements and different charge states in short and long pulse bursts and high beam current density. Under a Phase-I STTR from DOE, the feasibility of the vacuum arc ion source for the HIF applications was investigated. We have modifie...

  15. An ion guide laser ion source for isobar-suppressed rare isotope beams.

    Science.gov (United States)

    Raeder, Sebastian; Heggen, Henning; Lassen, Jens; Ames, Friedhelm; Bishop, Daryl; Bricault, Pierre; Kunz, Peter; Mjøs, Anders; Teigelhöfer, Andrea

    2014-03-01

    Modern experiments at isotope separator on-line (ISOL) facilities like ISAC at TRIUMF often depend critically on the purity of the delivered rare isotope beams. Therefore, highly selective ion sources are essential. This article presents the development and successful on-line operation of an ion guide laser ion source (IG-LIS) for the production of ion beams free of isobaric contamination. Thermionic ions from the hot ISOL target are suppressed by an electrostatic potential barrier, while neutral radio nuclides effusing out are resonantly ionized by laser radiation within a quadrupole ion guide behind this barrier. The IG-LIS was developed through detailed thermal and ion optics simulation studies and off-line tests with stable isotopes. In a first on-line run with a SiC target a suppression of surface-ionized Na contaminants in the ion beam of up to six orders of magnitude was demonstrated. PMID:24689577

  16. An ion guide laser ion source for isobar-suppressed rare isotope beams

    Energy Technology Data Exchange (ETDEWEB)

    Raeder, Sebastian, E-mail: sebastian.raeder@fys.kuleuven.be; Ames, Friedhelm; Bishop, Daryl; Bricault, Pierre; Kunz, Peter; Mjøs, Anders [TRIUMF, 4004 Wesbrook Mall, Vancouver, British Columbia V6T 2A3 (Canada); Heggen, Henning, E-mail: heggen@triumf.ca [TRIUMF, 4004 Wesbrook Mall, Vancouver, British Columbia V6T 2A3 (Canada); Institute of Applied Physics, TU Darmstadt, Schlossgartenstr. 7, 64289 Darmstadt (Germany); Lassen, Jens, E-mail: lassen@triumf.ca; Teigelhöfer, Andrea [TRIUMF, 4004 Wesbrook Mall, Vancouver, British Columbia V6T 2A3 (Canada); Department of Physics and Astronomy, University of Manitoba, Winnipeg, Manitoba R3T 2N2 (Canada)

    2014-03-15

    Modern experiments at isotope separator on-line (ISOL) facilities like ISAC at TRIUMF often depend critically on the purity of the delivered rare isotope beams. Therefore, highly selective ion sources are essential. This article presents the development and successful on-line operation of an ion guide laser ion source (IG-LIS) for the production of ion beams free of isobaric contamination. Thermionic ions from the hot ISOL target are suppressed by an electrostatic potential barrier, while neutral radio nuclides effusing out are resonantly ionized by laser radiation within a quadrupole ion guide behind this barrier. The IG-LIS was developed through detailed thermal and ion optics simulation studies and off-line tests with stable isotopes. In a first on-line run with a SiC target a suppression of surface-ionized Na contaminants in the ion beam of up to six orders of magnitude was demonstrated.

  17. Ion source diodes with magnetic mirror

    International Nuclear Information System (INIS)

    This device includes a grid anode, a first cathode set in front cf the anode, and a magnetic mirror behind the anode. It is a winding coaxial to the anode and the cathode. Anode and cathode have spherical cap shapes whose concavity is directed towards a target. Then the ion beam has some focusing. Electrons, emitted by cathode, are accelerated towards the anode and cross through it. These electrons are submitted to the winding magnetic field. Their trajectories curved around the field lines and lie on the diode axis. Then electrons go backwards through again the anode. Electrons oscillate thus a great number a time. At each passage, they give energy to the anode, that creates plasma round it. Ions are extracted from that plasma and accelerated by interelectrode field. As there is no electric field in the back of the anode, there is an ion beam emitted only foreward

  18. Caborane beam from ITEP Bernas ion source for semiconductor implanters

    Energy Technology Data Exchange (ETDEWEB)

    Seleznev, D.; Hershcovitch, A.; Kropachev, G.; Kozlov, A.; Kuibeda, R.; Koshelev, V.; Kulevoy, T.; Jonson, B.; Poole, J.; Alexeyenko, O.; Gurkova, E.; Oks, E.; Gushenets, V.; Polozov, S.; Masunov, E.

    2010-02-01

    A joint research and development of steady state intense boron ion sources for hundreds of electron-volt ion implanters has been in progress for the past 5 years. The difficulties of extraction and transportation of low energy boron beams can be solved by implanting clusters of boron atoms. In Institute for Theoretical and Experimental Physics (ITEP) the Bernas ion source successfully generated the beam of decaborane ions. The carborane (C{sub 2}B{sub 10}H{sub 12}) ion beam is more attractive material due to its better thermal stability. The results of carborane ion beam generation are presented. The result of the beam implantation into the silicon wafer is presented as well.

  19. Vacuum system development status for the APS [Advanced Photon Source] storage ring

    International Nuclear Information System (INIS)

    The status of the design and fabrication of a prototype sector of the storage ring vacuum system for the Advanced Photon Source is described. The 26.5-m-long prototype sector will be assembled within a full-scale magnet and tunnel mockup to study interspacial component relationships for maintenance, as well as the vacuum system operational performance. Each completed vacuum section is mounted as an integral part of the modular structure that contains the magnets and magnet power supplies on a common base. Unique automatic machine welding designs and techniques are employed in the fabrication of the aluminium vacuum chambers from extrusions. Special chamber bending procedures and measurements checks are used to maintain the required flatness of the insider chamber light gap surfaces. Photo-electron yields due to low-energy photons in the narrow channel gap of the vacuum chamber and their potential effects on the overall outgassing rate are found to be negligible. 9 refs., 5 figs

  20. Simulation code for beam trajectories in an ion source 'IONORB'

    International Nuclear Information System (INIS)

    The computer simulation code developed is for studying optimum configuration of the ion beam extraction electrodes in an ion source. It simulates ion extraction from a source plasma and acceleration through the extraction electrodes. The shape and position of the emitter are self-consistently computed so that the plasma temperature saturation current is equal to the space-charge-limitted current at the emitter. Finite ion and electron temperatures and wall sheath length between the source plasma and the electrode are considered at the emitter. The extracted ions which pass through the zero equipotential surface under the grounded electrode suffer from no space-charge-expansion because of the electron cloud. The beam divergence is thus computed on the surface. The computation is possible for both the beams from an aperture and a slot. (auth.)

  1. Ionization efficiency estimations for the SPES surface ion source

    Science.gov (United States)

    Manzolaro, M.; Andrighetto, A.; Meneghetti, G.; Rossignoli, M.; Corradetti, S.; Biasetto, L.; Scarpa, D.; Monetti, A.; Carturan, S.; Maggioni, G.

    2013-12-01

    Ion sources play a crucial role in ISOL (Isotope Separation On Line) facilities determining, with the target production system, the ion beam types available for experiments. In the framework of the SPES (Selective Production of Exotic Species) INFN (Istituto Nazionale di Fisica Nucleare) project, a preliminary study of the alkali metal isotopes ionization process was performed, by means of a surface ion source prototype. In particular, taking into consideration the specific SPES in-target isotope production, Cs and Rb ion beams were produced, using a dedicated test bench at LNL (Laboratori Nazionali di Legnaro). In this work the ionization efficiency test results for the SPES Ta surface ion source prototype are presented and discussed.

  2. Tests of a Laser Ion Source at the Heidelberg Electron Beam Ion Trap

    OpenAIRE

    Mironov, V; Trinczek, M.; Werdich, A.; González Martínez, A.; Guo, P; X. Zhang; Braun, J.; Crespo López-Urrutia, J.; Höhr, C.; Ullrich, J.

    2003-01-01

    A laser ion source (LIS) has been designed and successfully tested for loading the Heidelberg electron beam ion trap (H-EBIT) with ions of practically all solid-state elements. A pulsed YAG:Nd3þ laser (30 mJ, 8 ns) is used to produce plasma from a solid target. Lowly charged ions are extracted from the plasma and accelerated by a short high-voltage pulse, generating a pulsed ion beam with energy of up to 6 keV per charge. The ion beam is transported into the EBIT, decelerated and captured wit...

  3. Simulation methods of ion sheath dynamics in plasma source ion implantation

    Institute of Scientific and Technical Information of China (English)

    WANG Jiuli; ZHANG Guling; WANG Younian; LIU Yuanfu; LIU Chizi; YANG Size

    2004-01-01

    Progress of the theoretical studies on the ion sheath dynamics in plasma source ion implantation (PSII) is reviewed in this paper. Several models for simulating the ion sheath dynamics in PSII are provided. The main problem of nonuniform ion implantation on the target in PSII is discussed by analyzing some calculated results. In addition, based on the relative researches in our laboratory, some calculated results of the ion sheath dynamics in PSII for inner surface modification of a cylindrical bore are presented. Finally, new ideas and tendency for future researches on ion sheath dynamics in PSII are proposed.

  4. A New Technique for Diagnosing Multi-charged Ion Beams Produced by ECR Ion Source

    Institute of Scientific and Technical Information of China (English)

    ZhangZimin; ZhaoHongwei; CaoYun; MaLei; MaBaohua; LiJinyu; WangHui; FengYucheng; DuJunfeng

    2003-01-01

    In order to study the transmission properties of multi-charged ion beams between the ECR ion source and the analyzing magnet, a new diagnostic system composed of three Wien-filters with three single-wires has been built and installed on the IMP ECR source test bcnch. The single-wire is used to measure the beam profile and the beam density distribution, and the Wien-filter is used to measure the charge state distribution of ion beam.

  5. A review of ion sources for medical accelerators (invited)

    Energy Technology Data Exchange (ETDEWEB)

    Muramatsu, M.; Kitagawa, A. [National Institute of Radiological Sciences (NIRS), 4-9-1 Anagawa, Inage, Chiba 263-8555 (Japan)

    2012-02-15

    There are two major medical applications of ion accelerators. One is a production of short-lived isotopes for radionuclide imaging with positron emission tomography and single photon emission computer tomography. Generally, a combination of a source for negative ions (usually H- and/or D-) and a cyclotron is used; this system is well established and distributed over the world. Other important medical application is charged-particle radiotherapy, where the accelerated ion beam itself is being used for patient treatment. Two distinctly different methods are being applied: either with protons or with heavy-ions (mostly carbon ions). Proton radiotherapy for deep-seated tumors has become widespread since the 1990s. The energy and intensity are typically over 200 MeV and several 10{sup 10} pps, respectively. Cyclotrons as well as synchrotrons are utilized. The ion source for the cyclotron is generally similar to the type for production of radioisotopes. For a synchrotron, one applies a positive ion source in combination with an injector linac. Carbon ion radiotherapy awakens a worldwide interest. About 6000 cancer patients have already been treated with carbon beams from the Heavy Ion Medical Accelerator in Chiba at the National Institute of Radiological Sciences in Japan. These clinical results have clearly verified the advantages of carbon ions. Heidelberg Ion Therapy Center and Gunma University Heavy Ion Medical Center have been successfully launched. Several new facilities are under commissioning or construction. The beam energy is adjusted to the depth of tumors. It is usually between 140 and 430 MeV/u. Although the beam intensity depends on the irradiation method, it is typically several 10{sup 8} or 10{sup 9} pps. Synchrotrons are only utilized for carbon ion radiotherapy. An ECR ion source supplies multi-charged carbon ions for this requirement. Some other medical applications with ion beams attract developer's interests. For example, the several types of

  6. A review of ion sources for medical accelerators (invited).

    Science.gov (United States)

    Muramatsu, M; Kitagawa, A

    2012-02-01

    There are two major medical applications of ion accelerators. One is a production of short-lived isotopes for radionuclide imaging with positron emission tomography and single photon emission computer tomography. Generally, a combination of a source for negative ions (usually H- and/or D-) and a cyclotron is used; this system is well established and distributed over the world. Other important medical application is charged-particle radiotherapy, where the accelerated ion beam itself is being used for patient treatment. Two distinctly different methods are being applied: either with protons or with heavy-ions (mostly carbon ions). Proton radiotherapy for deep-seated tumors has become widespread since the 1990s. The energy and intensity are typically over 200 MeV and several 10(10) pps, respectively. Cyclotrons as well as synchrotrons are utilized. The ion source for the cyclotron is generally similar to the type for production of radioisotopes. For a synchrotron, one applies a positive ion source in combination with an injector linac. Carbon ion radiotherapy awakens a worldwide interest. About 6000 cancer patients have already been treated with carbon beams from the Heavy Ion Medical Accelerator in Chiba at the National Institute of Radiological Sciences in Japan. These clinical results have clearly verified the advantages of carbon ions. Heidelberg Ion Therapy Center and Gunma University Heavy Ion Medical Center have been successfully launched. Several new facilities are under commissioning or construction. The beam energy is adjusted to the depth of tumors. It is usually between 140 and 430 MeV∕u. Although the beam intensity depends on the irradiation method, it is typically several 10(8) or 10(9) pps. Synchrotrons are only utilized for carbon ion radiotherapy. An ECR ion source supplies multi-charged carbon ions for this requirement. Some other medical applications with ion beams attract developer's interests. For example, the several types of accelerators are

  7. Reduction-type current-limiting ion pump power source

    International Nuclear Information System (INIS)

    The leakage-transformer type ion pump power source has been widely used because of the protection against short-circuit current. The start-up of an ion pump by this type of power source, however, requires frequent turning on and off operations in order to prevent the overheat of the ion pump. At the High-Energy Physics Research Institute, a small power source for dust collector has been used to maintain the vacuum after the start-up with a leakage-transformer type power source. The one for dust collector is a reduction-type current-limiting power source in which both the current and voltage becomes zero when a overload occurs. At the Institute, an ion pump power source that combines the reduction-type current limiting mechanism and DC-DC converter type mechanism has been installed for about 1,100 ion pumps used for the accumulating ring and main ring of Tristan. The ion pump power source has the following features: 1) it requires only one turning-on operation, and is suitable for the computer control of a distribution-type pumping system, 2) it is smaller in size and weight (about 1/5 compared to conventional equipment), and 3) it consists of separate modules. (N.K.)

  8. A Hot Cavity Laser Ion Source at IGISOL

    OpenAIRE

    Reponen, M.; Kessler, T.; Moore, I D; Rothe, S.; Äystö, J.

    2008-01-01

    A development program is underway at the IGISOL (Ion Guide Isotope Separator On-Line) facility, University of Jyvaskyla, to efficiently and selectively produce low-energy radioactive ion beams of silver isotopes and isomers, with a particular interest in N=Z 94Ag. A hot cavity ion source has been installed, based on the FEBIAD (Forced Electron Beam Induced Arc Discharge) technique, combined with a titanium:sapphire laser system for selective laser ionization. The silver recoils produced via t...

  9. Effect of resonant microwave power on a PIG ion source

    International Nuclear Information System (INIS)

    We have investigated the effect of applying microwave power at the electron cyclotron frequency on the characteristics of the ion beam extracted from a hot-cathode PIG ion source. No change was seen in the ion charge state distribution. A small but significant reduction in the beam noise level was seen, and it is possible that the technique may find application in situations where beam quiescence is important. 29 references, 2 figures

  10. Potential profile near singularity point in kinetic Tonks-Langmuir discharges as a function of the ion sources temperature

    International Nuclear Information System (INIS)

    A plasma-sheath transition analysis requires a reliable mathematical expression for the plasma potential profile Φ(x) near the sheath edge xs in the limit ε≡λD/l=0 (where λD is the Debye length and l is a proper characteristic length of the discharge). Such expressions have been explicitly calculated for the fluid model and the singular (cold ion source) kinetic model, where exact analytic solutions for plasma equation (ε=0) are known, but not for the regular (warm ion source) kinetic model, where no analytic solution of the plasma equation has ever been obtained. For the latter case, Riemann [J. Phys. D: Appl. Phys. 24, 493 (1991)] only predicted a general formula assuming relatively high ion-source temperatures, i.e., much higher than the plasma-sheath potential drop. Riemann's formula, however, according to him, never was confirmed in explicit solutions of particular models (e.g., that of Bissell and Johnson [Phys. Fluids 30, 779 (1987)] and Scheuer and Emmert [Phys. Fluids 31, 3645 (1988)]) since ''the accuracy of the classical solutions is not sufficient to analyze the sheath vicinity''[Riemann, in Proceedings of the 62nd Annual Gaseous Electronic Conference, APS Meeting Abstracts, Vol. 54 (APS, 2009)]. Therefore, for many years, there has been a need for explicit calculation that might confirm the Riemann's general formula regarding the potential profile at the sheath edge in the cases of regular very warm ion sources. Fortunately, now we are able to achieve a very high accuracy of results [see, e.g., Kos et al., Phys. Plasmas 16, 093503 (2009)]. We perform this task by using both the analytic and the numerical method with explicit Maxwellian and ''water-bag'' ion source velocity distributions. We find the potential profile near the plasma-sheath edge in the whole range of ion source temperatures of general interest to plasma physics, from zero to ''practical infinity.'' While within limits of ''very low'' and ''relatively high'' ion source

  11. Potential profile near singularity point in kinetic Tonks-Langmuir discharges as a function of the ion sources temperature

    Science.gov (United States)

    Kos, L.; Tskhakaya, D. D.; Jelić, N.

    2011-05-01

    A plasma-sheath transition analysis requires a reliable mathematical expression for the plasma potential profile Φ(x) near the sheath edge xs in the limit ɛ ≡λD/ℓ =0 (where λD is the Debye length and ℓ is a proper characteristic length of the discharge). Such expressions have been explicitly calculated for the fluid model and the singular (cold ion source) kinetic model, where exact analytic solutions for plasma equation (ɛ =0) are known, but not for the regular (warm ion source) kinetic model, where no analytic solution of the plasma equation has ever been obtained. For the latter case, Riemann [J. Phys. D: Appl. Phys. 24, 493 (1991)] only predicted a general formula assuming relatively high ion-source temperatures, i.e., much higher than the plasma-sheath potential drop. Riemann's formula, however, according to him, never was confirmed in explicit solutions of particular models (e.g., that of Bissell and Johnson [Phys. Fluids 30, 779 (1987)] and Scheuer and Emmert [Phys. Fluids 31, 3645 (1988)]) since "the accuracy of the classical solutions is not sufficient to analyze the sheath vicinity" [Riemann, in Proceedings of the 62nd Annual Gaseous Electronic Conference, APS Meeting Abstracts, Vol. 54 (APS, 2009)]. Therefore, for many years, there has been a need for explicit calculation that might confirm the Riemann's general formula regarding the potential profile at the sheath edge in the cases of regular very warm ion sources. Fortunately, now we are able to achieve a very high accuracy of results [see, e.g., Kos et al., Phys. Plasmas 16, 093503 (2009)]. We perform this task by using both the analytic and the numerical method with explicit Maxwellian and "water-bag" ion source velocity distributions. We find the potential profile near the plasma-sheath edge in the whole range of ion source temperatures of general interest to plasma physics, from zero to "practical infinity." While within limits of "very low" and "relatively high" ion source temperatures

  12. Investigation of multi-charged heavy ion production in an electron beam ion source

    International Nuclear Information System (INIS)

    Measurements of multi-charged heavy ions produced in an Electron Beam Ion Source (EBIS) were carried out with a test model ion source 20 cm in length. This test model utilized an electron gun placed external to the bore of the focusing solenoid in order to achieve electrostatically focussed electron beams and isolation of the vacuum surrounding the electron gun from the vacuum in the ionization region within the solenoid bore. An ultrahigh vacuum system utilizing liquid nitrogen (770K) cryopumping was used to achieve the low pressures needed in the ionization region for the operation of this ion source. Several technical problems limited the operation of this test model and prevented a thorough investigation of the ionization processes in the ion source, but the experimental results have shown qualitative agreement with the theoretical calculations for the operation of this type of ion source. Even with the problems of an insufficient vacuum and electron beam focussing field, measurable currents of C+5 and A+8 ions were produced. The present experimental results suggest that the approach taken in this work of using an external electron gun and cryopumping in the EBIS to achieve the large electron beam current density and low vacuum necessary for successful operation is a viable one. Such an ion source can be used to create highly-charged heavy ions for injection into a cyclotron or other type of particle accelerator

  13. Investigation of multi-charged heavy ion production in an electron beam ion source

    Energy Technology Data Exchange (ETDEWEB)

    Hamm, R.W.

    1977-12-01

    Measurements of multi-charged heavy ions produced in an Electron Beam Ion Source (EBIS) were carried out with a test model ion source 20 cm in length. This test model utilized an electron gun placed external to the bore of the focusing solenoid in order to achieve electrostatically focussed electron beams and isolation of the vacuum surrounding the electron gun from the vacuum in the ionization region within the solenoid bore. An ultrahigh vacuum system utilizing liquid nitrogen (77/sup 0/K) cryopumping was used to achieve the low pressures needed in the ionization region for the operation of this ion source. Several technical problems limited the operation of this test model and prevented a thorough investigation of the ionization processes in the ion source, but the experimental results have shown qualitative agreement with the theoretical calculations for the operation of this type of ion source. Even with the problems of an insufficient vacuum and electron beam focussing field, measurable currents of C/sup +5/ and A/sup +8/ ions were produced. The present experimental results suggest that the approach taken in this work of using an external electron gun and cryopumping in the EBIS to achieve the large electron beam current density and low vacuum necessary for successful operation is a viable one. Such an ion source can be used to create highly-charged heavy ions for injection into a cyclotron or other type of particle accelerator.

  14. Sources of polarized ions and atoms

    International Nuclear Information System (INIS)

    In this presentation we discuss methods of producing large quantities of polarized atoms and ions (Stern-Gerlach separation, optical pumping, and spin-exchange) as well as experimental methods of measuring the degree of polarization of atomic systems. The usefulness of polarized atoms in probing the microscopic magnetic surface properties of materials will also be discussed. 39 refs., 5 figs., 2 tabs

  15. Factors influencing parameters of laser ion sources

    Czech Academy of Sciences Publication Activity Database

    Láska, Leoš; Badziak, J.; Boody, F. P.; Gammino, S.; Jungwirth, Karel; Krása, Josef; Krouský, Eduard; Parys, P.; Pfeifer, Miroslav; Rohlena, Karel; Ryč, L.; Skála, Jiří; Torrisi, L.; Ullschmied, Jiří; Wolowski, J.

    2007-01-01

    Roč. 25, - (2007), s. 199-205. ISSN 0263-0346 R&D Projects: GA AV ČR IAA100100715 Institutional research plan: CEZ:AV0Z10100523; CEZ:AV0Z2043910 Keywords : highly charged ions * laser -produced plasma * self-focusing Subject RIV: BH - Optics, Masers, Laser s Impact factor: 4.696, year: 2007

  16. Laser ion sources for various applications

    Czech Academy of Sciences Publication Activity Database

    Wolowski, J.; Parys, P.; Woryna, E.; Krása, Josef; Láska, Leoš; Rohlena, Karel; Gammino, S.; Ciavola, G.; Torresi, L.; Boody, F. P.; Hora, H.; Haseroth, H.

    2000-01-01

    Roč. 30, č. 1 (2000), s. 69-82. ISSN 0078-5466 Institutional research plan: CEZ:AV0Z1010921 Keywords : ion emission * high-Z plasma Subject RIV: BH - Optics, Masers, Lasers Impact factor: 0.231, year: 2000

  17. Synchrotron injectors based on high charge state ion sources

    International Nuclear Information System (INIS)

    The performance of any injector contemplated to replace the electrostatic tandem accelerators some time in the future should evidently match or surpass the characteristics of the tandems. It is a fortunate coincidence that the performance of the BNL tandem satisfies in most respects the requirements of the proposed collider, although originally tandems were not built with this application in mind. Requests for heavy ion beams with parameters suitable for injection into the rings of a heavy ion collider have appeared rather recently, at a stage when the high charge state ion sources, which in principle are capable of producing many ion species, have not yet reached such a level of performance. Therefore, consideration of such sources as part of a future injector replacing the tandem accelerators will have to rely on the extrapolation of results from existing models, developed for a different purpose. At the same time, present and future collider requirements for heavy ion beams should serve as a stimulus for the development of sources producing ions with adequate charge states and intensities. Injectors based on such sources may present a better alternative than the tandem accelerators because a higher charge-to-mass ratio of ions from the source results in a more efficient and less costly accelerator. In this report, two candidates for a high charge state, heavy ion source will be considered: an EBIS and an ECR. Other approaches, e.g. laser ion sources, are much further away in the development of a device to be used in a synchrotron injector. 25 refs., 7 figs., 4 tabs

  18. A new type of cluster and cluster ion source

    International Nuclear Information System (INIS)

    Combining a magnetron gas discharge with the gas aggregation technique an intense source of clusters has been developed. A large part (up to 80%) of the clusters can be generated as ions without using additional electron impact ionisation. (orig.)

  19. Design of small ECR ion source for neutron generator

    International Nuclear Information System (INIS)

    The principles, structures and characteristics of small ECR (Electron Cyclotron Resonance) ion source used in the neutron generator are introduced. The processes of the design and key technique and innovations are described. (authors)

  20. Development of the RIKEN atomic beam type polarized ion source

    International Nuclear Information System (INIS)

    The RIKEN atomic beam type polarized ion source has been assembled and is operational. The present level of performance is 140 μA with 50-60% polarization of the ideal value. Results from operation will be described. (author)

  1. Development of Magnetic Hollow Cold Cathode for Ion Source

    OpenAIRE

    Djamel Boubetra; Bouafia, M.

    2008-01-01

    The research presented in this study focuses on the development of ion source with hollow cold cathodes which supplies low-power and high ion-current density applications. The theoretical and experimental results were used to design a second-generation laboratory model, low-current hollow cathode. Present experiment is to design a hollow cold cathode with two application possibilities.

  2. Study on a volume-production H- ion source

    International Nuclear Information System (INIS)

    H- ions formed by volume-production are extracted from a multicuspion source. By applying a large positive bias to the plasma electrode, the ratio I-/Ie becomes 1/20. H- ion current of 0.4mA is extracted from a 0.3cm2 circular aperture at an arc current of 10A. (author)

  3. Performance characterization of rf-driven multicusp ion sources

    Energy Technology Data Exchange (ETDEWEB)

    Perkins, L.T.; De Vries, G.J.; Herz, P.R.; Kunkel, W.B.; Leung, K.N.; Pickard, D.S.; Wengrow, A.; Williams, M.D. [Lawrence Berkeley National Laboratory, University of California at Berkeley, Berkeley, California 94720 (United States)

    1996-03-01

    Radio-frequency (rf)-driven multicusp ion sources have been developed extensively at Lawrence Berkeley National Laboratory (LBNL) for many applications, each requiring specific source designs. These uses have ranged from large ion sources for neutral-beam injectors{emdash}several tens of centimeters in size{emdash}to small sources for oil-well logging neutron tubes{emdash}a few centimeters in diameter. The advantages associated with internal antenna, rf-driven ion sources include reliability, long component life, ease of operation, and the ability to generate plasmas free of the impurities commonly found in hot-filament discharge sources. We have investigated and characterized the performance of rf-driven sources with respect to the rf operating frequency and ion source size for hydrogen ion species and current density. Furthermore, we have included in this study the aspects of proper coupling of the rf generator to the antenna through an impedance matching network. Finally, critical issues pertaining to general rf operation including beam extraction, rf shielding, and cooling of transformer cores are discussed.

  4. Recent developments of the LBL ECR ion source

    International Nuclear Information System (INIS)

    The performance of the LBL ECR has improved significantly since January 85 when the last ECR Ion Source Workshop was held in Berkeley. The 88-Inch Cyclotron began regular operation with the ECR source just prior to the workshop. Since then about 80% of the cyclotron operating schedule has been with the ECR source. The light-ion filament source is used only for runs two or more shifts in length using proton, 3He, or alpha beams. Occasionally the polarized ion source is used. The heavy-ion PIG sources are not longer used. The operating experience with the Cyclotron+ECR has been highly successful in terms of reliability, stability, production of high charge state currents, and in the range of ions which can be produced. For example, a 32.5 MeV/u 16O8+ beam was developed and successfully used for a nuclear structure experiment. The 60 nA beam available from the cyclotron was more intense than the experiment could use. A 1.08 GeV 36Ar18+ beam was used to test the response of various scintillator materials to intermediate energy heavy ions. Three aspects of the LBL ECR source development are discussed. First, the installation of a new first stage cavity has resulted in improved source performance. Second, a number of metal ion beams have been developed and are used regularly for nuclear science experiments with the cyclotron. Third, the source performance has been compared to charge state distribution (CSD) calculations using a computer code

  5. Direct extracting negative ions from PIG ion sources with permanent magnet

    International Nuclear Information System (INIS)

    Two kinds of permanent magnet PIG ion sources are introduced, which can be used for direct extracting negative ions of the elements with larger electron affinity, such as H, C, O, F etc. By using LaB6 cathodes and at saturation extraction voltage, 130 μA of O- and 75 μA of F- ions were extracted from the side extraction PIG ion source, its power consumption is 110 and 280 W, respectively, and for end extraction PIG ion source, 50 μA of H-, 1∼2 mA of O- and F- ion beam have been delivered and the power consumption is only 40, 50 and 100 W, respectively

  6. Pragmatic development of a laser ion source for intense highly-charged ion beam

    International Nuclear Information System (INIS)

    Recently, applications of high-charge-state (including fully stripped) heavy-ion beams have been attracting interest in both physics and industry. To enhance their usefulness, more intense beams are required. Cancer therapy using carbon ions is a particularly promising heavy-ion beam application. Due to advances in laser technology, the laser ion source (LIS) has become one of the most popular sources for generating highly charged and intense heavy-ion beams. The project to develop a high-intensity LIS was started on June 2009. In our project, whose ultimate goal is to apply a heavy-ion accelerator for cancer therapy, we have almost completed designing the LIS, and manufacturing will commence soon. We intend to measure the source performance by performing plasma and beam tests up until the end of March 2011. We will report the outline and a progress of the project. (author)

  7. Mo layer thickness requirement on the ion source back plate for the HNB and DNB ion sources in ITER

    Energy Technology Data Exchange (ETDEWEB)

    Singh, M. J.; Hemsworth, R.; Boilson, D. [ITER Organisation, Route de Vinon sur Verdon, 13115 Saint Paul Lez Durance (France); De Esch, H. P. L. [CEA-Cadarache, IRFM, F-13108 Saint-Paul-lez-Durance (France)

    2015-04-08

    All the inner surfaces of the ion sources and the upstream surface of the plasma grid of the ITER neutral beam ion sources are proposed to be coated with molybdenum. This is done to avoid sputtering of the base material (Cu or CuCrZr) by the ions in the source plasma (D{sup +}, D{sub 2}{sup +}, D{sub 3}{sup +} or H{sup +}, H{sub 2}{sup +}, H{sub 3}{sup +}). The sputtering of Mo by the ions in the source plasma is low compared to that from Cu, and the threshold energy for sputtering ∼80 eV) is high compared to the energy of the ions in the source. However the D{sub 2}{sup +}, H{sub 2}{sup +} and D{sup +}, H{sup +} ions backstreaming from the accelerators will have energies that substantially exceed that threshold and it is important that the Mo layer is not eroded such that the base material is exposed to the source plasma. In the case of the HNB, the backstreaming ion power is calculated to be in the order of ∼1 MW, and the average energy of the backstreaming ions is calculated to be ∼300 keV. The ion sources in the HNB beam lines, 40 A 1 MeV D and 46 A 870 keV H beams, are supposed to operate for a period of 2 x 10{sup 7} s. For the DNB, 60 A 100 keV H beams, the corresponding number is 1.4 × 10{sup 6} s considering a beam duty cycle of 3s ON/20s OFF with 5 Hz modulation. The Mo layer on the ion source back plate should be thick enough to survive this operational time. Thickness estimation has been carried out taking into account the sputtering yields (atoms/ion), the energy spectrum of the backstreaming ions and the estimated profiles on the ion source back plate.

  8. DUHOCAMIS: a dual hollow cathode ion source for metal ion beams.

    Science.gov (United States)

    Zhao, W J; Müller, M W O; Janik, J; Liu, K X; Ren, X T

    2008-02-01

    In this paper we describe a novel ion source named DUHOCAMIS for multiply charged metal ion beams. This ion source is derived from the hot cathode Penning ion gauge ion source (JINR, Dubna, 1957). A notable characteristic is the modified Penning geometry in the form of a hollow sputter electrode, coaxially positioned in a compact bottle-magnetic field along the central magnetic line of force. The interaction of the discharge geometry with the inhomogeneous but symmetrical magnetic field enables this device to be operated as hollow cathode discharge and Penning discharge as well. The main features of the ion source are the very high metal ion efficiency (up to 25%), good operational reproducibility, flexible and efficient operations for low charged as well as highly charged ions, compact setup, and easy maintenance. For light ions, e.g., up to titanium, well-collimated beams in the range of several tens of milliamperes of pulsed ion current (1 ms, 10/s) have been reliably performed in long time runs. PMID:18315181

  9. Efficient cesiation in RF driven surface plasma negative ion source

    Science.gov (United States)

    Belchenko, Yu.; Ivanov, A.; Konstantinov, S.; Sanin, A.; Sotnikov, O.

    2016-02-01

    Experiments on hydrogen negative ions production in the large radio-frequency negative ion source with cesium seed are described. The system of directed cesium deposition to the plasma grid periphery was used. The small cesium seed (˜0.5 G) provides an enhanced H- production during a 2 month long experimental cycle. The gradual increase of negative ion yield during the long-term source runs was observed after cesium addition to the source. The degraded H- production was recorded after air filling to the source or after the cesium washing away from the driver and plasma chamber walls. The following source conditioning by beam shots produces the gradual recovery of H- yield to the high value. The effect of H- yield recovery after cesium coverage passivation by air fill was studied. The concept of cesium coverage replenishment and of H- yield recovery due to sputtering of cesium from the deteriorated layers is discussed.

  10. Report on the workshop on ion sources for hadron colliders

    Energy Technology Data Exchange (ETDEWEB)

    Alessi, J.G.

    1997-11-01

    A workshop on Ion Sources for Hadron Colliders was held September 4--5, 1997 in Gelnhausen, Germany. This workshop, organized by the WE-Heraeus-Stiftung Foundation, the University of Frankfurt, Brookhaven National Laboratory, and CERN, directly followed the 7th Symposium on Electron Beam Ion Sources and Traps. Various options were reviewed for the development of a high current, intermediate charge state heavy ion source for use on colliders such as RHIC and LHC. In addition to status reports on ECR, EBIS, and laser sources, there was also discussion of issues relevant to the scaling of these sources to intensities as required by RHIC and LHC. The presentations and discussions from this workshop are summarized.

  11. Report on the workshop on ion sources for hadron colliders

    International Nuclear Information System (INIS)

    A workshop on Ion Sources for Hadron Colliders was held September 4--5, 1997 in Gelnhausen, Germany. This workshop, organized by the WE-Heraeus-Stiftung Foundation, the University of Frankfurt, Brookhaven National Laboratory, and CERN, directly followed the 7th Symposium on Electron Beam Ion Sources and Traps. Various options were reviewed for the development of a high current, intermediate charge state heavy ion source for use on colliders such as RHIC and LHC. In addition to status reports on ECR, EBIS, and laser sources, there was also discussion of issues relevant to the scaling of these sources to intensities as required by RHIC and LHC. The presentations and discussions from this workshop are summarized

  12. Ion accumulation and space charge neutralization in intensive electron beams for ion sources and electron cooling

    International Nuclear Information System (INIS)

    The Electron Beam Ion Sources (EBIS), Electron Beam Ion Traps (EBIT) and electron beams for electron cooling application have the beam parameters in the same ranges of magnitudes. EBIS and EBIT produce and accumulate ions in the beam due to electron impact ionization. The cooling electron beam accumulates positive ions from the residual gas in the accelerator chamber during the cooling cycle. The space charge neutralization of cooling beam is also used to reduce the electron energy spread and enhance the cooling ability. The advanced results of experimental investigations and theoretical models of the EBIS electron beams are applied to analyze the problem of beam neutralization in the electron cooling techniques. The report presents the analysis of the most important processes connected with ion production, accumulation and losses in the intensive electron beams of ion sources and electron cooling systems for proton and ion colliders. The inelastic and elastic collision processes of charged particles in the electron beams are considered. The inelastic processes such as ionization, charge exchange and recombination change the charge states of ions and neutral atoms in the beam. The elastic Coulomb collisions change the energy of particles and cause the energy redistribution among components in the electron-ion beams. The characteristic times and specific features of ionization, beam neutralization, ion heating and loss in the ion sources and electron cooling beams are determined. The dependence of negative potential in the beam cross section on neutralization factor is studied. 17 refs., 5 figs., 1 tab

  13. Development of ion sources: Towards high brightness for proton beam writing applications

    International Nuclear Information System (INIS)

    An Ion Source Test Bench (ISTB) has been designed and commissioned to facilitate the measurement of ion beam reduced brightness (Br) obtained from different ion sources. Preliminary Br measurements were carried out, with RF ion source, in the ISTB for He ions. Meanwhile we have also fabricated and tested a novel ion source called electron impact gas ion source, whose reduced brightness is expected to reach up to 107 pA/μm2 mrad2 MeV. Initial ion-current measurements from such electron impact gas ion source (tested inside an environmental SEM) has yielded about 300 pA of Ar ions. The areal ion current density from this electron impact gas ion source is found to be at least 380 times higher than the existing RF ion source. This novel ion source is promising for application in proton beam writing lithography with feature sizes smaller than 10 nm

  14. Plasma source ion implantation research at southwestern institute of physics

    International Nuclear Information System (INIS)

    The PSII-EX device and PSII-IM device for research and development of plasma source ion implantation (PSII) technology are described briefly. The functions, main technical specifications and properties of the devices are also discussed. After ion implantation by PSII, the improvements of the surface-mechanical properties (such as microhardness, wear-resistance, friction factor, biological compatibility, etc) for some materials, microanalysis and numerical simulation of modified layers of materials, the technical developments for the practical workpiece treatments and the preliminary experiments for plasma source ion implantation-enhanced deposition are introduced too. As last, the future work about PSII have been proposed

  15. Status report of the ECR ion sources at the KVI

    OpenAIRE

    Drentje, A. G.; Barzangy, F.; Kremers, H. R.; Meyer, D.; J. Mulder; Sijbring, J.

    1999-01-01

    Abstract: At the moment three ECR ion sources are in operation at the KVI. One of these is being used as the ionizer section of the polarized ion (protons and deuterons) source POLIS; it runs at 2.5 GHz. In this paper the emphasis will be on the other two ECRISs, both being used for the production of highly charged ions. ECRIS3 is connected to the AGOR super-conducting Cyclotron. Beams of 12, 13C6+, 14N7+, 15N5+, 16O6+, 8+, 36Ar11+, 12+, 14+, 40Ar8+ and 3He2+, 4He2+ have been produced at vari...

  16. Software architecture considerations for ion source control systems

    International Nuclear Information System (INIS)

    General characteristics of distributed control system software tools are examined from the perspective of ion source control system requirements. Emphasis is placed on strategies for building extensible, distributed systems in which the ion source element is one component of a larger system. Vsystem, a commercial software tool kit from Vista Control Systems was utilized extensively in the control system upgrade of the Holifield Radioactive Ion Beam Facility. Part of the control system is described and the characteristics of Vsystem are examined and compared with those of EPICS, the Experimental Physics and Industrial Control System

  17. Two approaches for $H^{-}$ ion production with 245 GHz ion sources

    CERN Document Server

    Gobin, R; Bacal, M; Breton, J; Delferrière, O; Harrault, F; Ivanov, A A; Svarnas, P; Tuske, O

    2006-01-01

    Over the last few years, the accelerator community requested the development of improved negative hydrogen ion sources. For spallation sources, like SNS or ESS, pulsed high intensity H/sup negative ion beams of a few tens of milliamperes, with a duty cycle close to 10%, are required. New facilities like CERN also ask for high performance negative ion beams. Since CEA undertook an electron cyclotron resonance (ECR)-based ion source programme, a European network devoted to high performance negative ion source development has been created. In this group, several laboratories developing 2.45 GHz ECR sources follow different approaches to increase the extracted ion current. At Saclay, with a solenoidal magnetic structure based on coils, close to 3 mA H/sup negative ion beam is now extracted in pulsed mode (2 ms/100 ms). A metallic biased grid separates the plasma bulk from the H/sup negative ion production zone and significantly improves the H/sup negative extracted current. At Ecole Polytechnique, the source Came...

  18. Artificially Structured Boundary for a high purity ion trap or ion source

    International Nuclear Information System (INIS)

    A plasma enclosed by an Artificially Structured Boundary (ASB) is proposed here as an alternative to existing ion source assemblies. In accelerator applications, many ion sources can have a limited lifetime or frequent service intervals due to sputtering and eventual degradation of the ion source assembly. Ions are accelerated towards the exit canal of positive ion sources, whereas, due to the biasing scheme, electrons or negative ions are accelerated towards the back of the ion source assembly. This can either adversely affect the experiment in progress due to sputtered contamination or compromise the integrity of the ion source assembly. Charged particle trajectories in the proximity of an ASB experience electromagnetic fields that are designed to hinder ion–surface interactions. Away from the ASB there is an essentially field free region. The field produced by an ASB is considered to consist of a periodic sequence of electrostatically plugged magnetic field cusps. A classical trajectory Monte Carlo simulation is extended to include electrostatic plugging of magnetic field cusps. The conditions necessary for charged particles to be reflected by the ASB are presented and quantified in terms of normalized parameters

  19. A hollow cathode hydrogen ion source. [for controlled fusion

    Science.gov (United States)

    Sovey, J. S.; Mirtich, M. J.

    1977-01-01

    High current density ion sources have been used to heat plasmas in controlled thermonuclear reaction experiments. High beam currents imply relatively high emission currents from cathodes which have generally taken the form of tungsten filaments. This paper describes a hydrogen ion source which was primarily developed to assess the emission current capability and design requirements for hollow cathodes for application in neutral injection devices. The hydrogen source produced ions by electron bombardment via a single hollow cathode. Source design followed mercury ion thruster technology, using a weak magnetic field to enhance ionization efficiency. A 1.3-cm-diam hollow cathode using a low work function material dispenser performed satisfactorily over a discharge current range of 10-90 A. Cylindrical probe measurements taken without ion extraction indicate maximum ion number densities on the order of 10 trillion/cu cm. Discharge durations ranged from 30 sec to continuous operation. Tests with beam extraction at 2.5 keV and 30 A discharge current yield average ion beam current densities of 0.1 A/sq cm over a 5-cm extraction diameter. Results of this study can be used to supply the baseline information needed to scale hollow cathodes for operation at discharge currents of hundreds of amperes using distributed cathodes.

  20. Hollow cathode ion source for application to an implanter

    International Nuclear Information System (INIS)

    A hollow cathode ion source has been studied in order to improve the life-time of an ion source for an ion implanter. Both volatile and refractory elements are shown to be ionized using two types of discharge state of the hollow cathode namely hot and cold cathode discharge. The life-time of LaB6 as the hot cathode is more than 150 h and the ion beam currents reach more than 10 mA cm-2 at the extraction voltage of 10 kV. For the cold cathode operation, stable currents of approx. 40 to 70 μA are extracted of refractory metal ions such as W and Mo. (author)

  1. A hot cavity laser ion source at IGISOL

    Science.gov (United States)

    Reponen, M.; Kessler, T.; Moore, I. D.; Rothe, S.; Äystö, J.

    2009-12-01

    A development program is underway at the IGISOL (Ion Guide Isotope Separator On-Line) facility, University of Jyväskylä, to efficiently and selectively produce low-energy radioactive ion beams of silver isotopes and isomers, with a particular interest in N = Z 94Ag . A hot cavity ion source has been installed, based on the FEBIAD (Forced Electron Beam Induced Arc Discharge) technique, combined with a titanium:sapphire laser system for selective laser ionization. The silver recoils produced via the heavy-ion fusion-evaporation reaction, 40Ca(58Ni, p3n)94Ag , are stopped in a graphite catcher, diffused, extracted and subsequently ionized using a three-step laser ionization scheme. The performance of the different components of the hot cavity laser ion source is discussed and initial results using stable 107, 109Ag are presented.

  2. A hot cavity laser ion source at IGISOL

    Energy Technology Data Exchange (ETDEWEB)

    Reponen, M.; Kessler, T.; Moore, I.D.; Aeystoe, J. [University of Jyvaeskylae, Department of Physics, PO Box 35 (YFL), Jyvaeskylae (Finland); Rothe, S. [Johannes Gutenberg Universitaet, AG Larissa/Quantum, Institut fuer Physik, Mainz (Germany)

    2009-12-15

    A development program is underway at the IGISOL (Ion Guide Isotope Separator On-Line) facility, University of Jyvaeskylae, to efficiently and selectively produce low-energy radioactive ion beams of silver isotopes and isomers, with a particular interest in N=Z {sup 94}Ag. A hot cavity ion source has been installed, based on the FEBIAD (Forced Electron Beam Induced Arc Discharge) technique, combined with a titanium:sapphire laser system for selective laser ionization. The silver recoils produced via the heavy-ion fusion-evaporation reaction, {sup 40}Ca({sup 58}Ni, p3n){sup 94}Ag, are stopped in a graphite catcher, diffused, extracted and subsequently ionized using a three-step laser ionization scheme. The performance of the different components of the hot cavity laser ion source is discussed and initial results using stable {sup 107,} {sup 109}Ag are presented. (orig.)

  3. A Hot Cavity Laser Ion Source at IGISOL

    CERN Document Server

    Reponen, M; Moore, I D; Rothe, S; Äystö, J

    2008-01-01

    A development program is underway at the IGISOL (Ion Guide Isotope Separator On-Line) facility, University of Jyvaskyla, to efficiently and selectively produce low-energy radioactive ion beams of silver isotopes and isomers, with a particular interest in N=Z 94Ag. A hot cavity ion source has been installed, based on the FEBIAD (Forced Electron Beam Induced Arc Discharge) technique, combined with a titanium:sapphire laser system for selective laser ionization. The silver recoils produced via the heavy-ion fusion-evaporation reaction, 40Ca(58Ni, p3n)94Ag, are stopped in a graphite catcher, diffused, extracted and subsequently ionized using a three-step laser ionization scheme. The performance of the different components of the hot cavity laser ion source is discussed and initial results using stable 107,109Ag are presented.

  4. A New ECR Ion Source for Atomic Physics Research at IMP

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    A new Electron Cyclotron Resonance (ECR) ion source (LECR3-Lanzhou Electron Cyclotron Resonance ion source No.3) was constructed this year. The main purpose of this source is to provide highly charged ion beams for atomic physics and surface physics research. The design of this ion source is based on the IMP 14.5 GHz ECR ion source (LECR2-Lanzhou Electron Cyclotron Resonance ion source No.2) with double RF heating

  5. Pressure limits of negative ion sources based upon gas efficiency and extracted ion-current density

    International Nuclear Information System (INIS)

    The nature of the electrical discharge has an obvious impact upon the gas efficiency of an ion source and on the current density whch can be drawn from it. However external factors, such as the conductance of the grids and the background pressure along the beamline, also have an effect. Simple approximations based upon these factors show that there is a lower limit to the pressure of an ion source, which can deliver an ion beam of given current density at a specific gas efficiency. Estimates of ion stripping losses in a double gridded structure show that for all practical purposes, there is an upper limit as well

  6. Highly charged ion X-rays from Electron-Cyclotron Resonance Ion Sources

    OpenAIRE

    Indelicato, Paul; Boucard, S.; Covita, D. S.; Gotta, D.; Gruber, A; Hirtl, A.; Fuhrmann, H.; Le Bigot, E.-O.; Schlesser, S.; dos Santos, J. M. F.; Simons, L. M.; Stingelin, L.; Trassinelli, Martino; Trassinelli, M; Veloso, J.

    2006-01-01

    Radiation from the highly-charged ions contained in the plasma of Electron-Cyclotron Resonance Ion Sources constitutes a very bright source of X-rays. Because the ions have a relatively low kinetic energy ($\\approx 1$~eV) transitions can be very narrow, containing only small Doppler broadening. We describe preliminary accurate measurements of two and three-electron ions with $Z=16$--18. We show how these measurement can test sensitively many-body relativistic calculations or can be used as X-...

  7. Multimodal Vacuum-Assisted Plasma Ion (VaPI) Source with Transmission Mode and Laser Ablation Sampling Capabilities

    Science.gov (United States)

    Keelor, Joel D.; Farnsworth, Paul B.; Weber, Arthur L.; Abbott-Lyon, Heather; Fernández, Facundo M.

    2016-05-01

    We have developed a multimodal ion source design that can be configured on the fly for various analysis modes, designed for more efficient and reproducible sampling at the mass spectrometer atmospheric pressure (AP) interface in a number of different applications. This vacuum-assisted plasma ionization (VaPI) source features interchangeable transmission mode and laser ablation sampling geometries. Operating in both AC and DC power regimes with similar results, the ion source was optimized for parameters including helium flow rate and gas temperature using transmission mode to analyze volatile standards and drug tablets. Using laser ablation, matrix effects were studied, and the source was used to monitor the products of model prebiotic synthetic reactions.

  8. Performance of the upgraded LBNL AECR ion source

    International Nuclear Information System (INIS)

    The LBNL AECR ion source has been upgraded in July 1996 by increasing its magnetic fields to improve its plasma confinement and thereby enhance the source performance. After a few months of tailoring the magnetic field configuration to match the two-frequency plasma heating (14 and 10 GHz), the upgraded AECR ion source (AECR-U) with its higher magnetic fields and higher magnetic mirror ratios has demonstrated significantly enhanced performance. For heavy ions at intensity of about 1 eμA, the charge state was shifted from 42+ to 48+ for uranium and from 41+ to 46+ for bismuth. An order of magnitude enhancement for fully stripped argon ions (I ≥ 60 enA) also has been achieved. Hydrogen-like krypton ions at intensity of about 105 pps were extracted from the source and confirmed by measuring its characteristic x-ray with a SiLi crystal detector. High charge state heavy ion beams of xenon-136 and uranium-238 produced with the AECR-U ion source were accelerated by the 88-Inch Cyclotron. Despite poor transmission for the highly charged heavy ions due to vacuum losses in the cyclotron, 11 MeV/nucleon 136Xe41+ at 1 x 107 pps, 13 MeV/nucleon 136Xe46+ at a few hundred pps, and 7 MeV/nucleon 238U55+ at 3 x 104 pps and 8 MeV/nucleon 238U60+ at a few pps were confirmed with a crystal energy detector after extraction from the cyclotron. The total energy of 1.935 GeV of the extracted 238U60+ ions is the highest energy ever produced by the 88-Inch Cyclotron. Detailed optimization of the AECR Upgrade will be presented in this paper

  9. A quadrupole ion trap as low-energy cluster ion beam source

    CERN Document Server

    Uchida, N; Kanayama, T

    2003-01-01

    Kinetic energy distribution of ion beams was measured by a retarding field energy analyzer for a mass-selective cluster ion beam deposition system that uses a quadrupole ion trap as a cluster ion beam source. The results indicated that the system delivers a cluster-ion beam with energy distribution of approx 2 eV, which corresponded well to the calculation results of the trapping potentials in the ion trap. Using this deposition system, mass-selected hydrogenated Si cluster ions Si sub n H sub x sup + were actually deposited on Si(111)-(7x7) surfaces at impact kinetic energy E sub d of 3-30 eV. Observation by using a scanning tunneling microscope (STM) demonstrated that Si sub 6 H sub x sup + cluster ions landed on the surface without decomposition at E sub d =3 eV, while the deposition was destructive at E sub d>=18 eV. (author)

  10. A compact source for bunches of singly charged atomic ions

    Science.gov (United States)

    Murböck, T.; Schmidt, S.; Andelkovic, Z.; Birkl, G.; Nörtershäuser, W.; Vogel, M.

    2016-04-01

    We have built, operated, and characterized a compact ion source for low-energy bunches of singly charged atomic ions in a vacuum beam line. It is based on atomic evaporation from an electrically heated oven and ionization by electron impact from a heated filament inside a grid-based ionization volume. An adjacent electrode arrangement is used for ion extraction and focusing by applying positive high-voltage pulses to the grid. The method is particularly suited for experimental environments which require low electromagnetic noise. It has proven simple yet reliable and has been used to produce μs-bunches of up to 106 Mg+ ions at a repetition rate of 1 Hz. We present the concept, setup and characterizing measurements. The instrument has been operated in the framework of the SpecTrap experiment at the HITRAP facility at GSI/FAIR to provide Mg+ ions for sympathetic cooling of highly charged ions by laser-cooled 24Mg+.

  11. A self-sputtering ion source: A new approach to quiescent metal ion beams

    OpenAIRE

    Oks, Efim M.

    2010-01-01

    A new metal ion source is presented based on sustained self-sputtering plasma in a magnetron discharge. Metals exhibiting high self-sputtering yield like Cu, Ag, Zn, and Bi can be used in a high-power impulse magnetron sputtering (HIPIMS) discharge such that the plasma almost exclusively contains singly charged metal ions of the target material. The plasma and extracted ion beam are quiescent. The ion beams consist mostly of singly charged ions with a space-charge limited current density w...

  12. A self-sputtering ion source: A new approach to quiescent metal ion beams

    Energy Technology Data Exchange (ETDEWEB)

    Oks, Efim M.; Anders, Andre

    2009-09-03

    A new metal ion source is presented based on sustained self-sputtering plasma in a magnetron discharge. Metals exhibiting high self-sputtering yield like Cu, Ag, Zn, and Bi can be used in a high-power impulse magnetron sputtering (HIPIMS) discharge such that the plasma almost exclusively contains singly charged metal ions of the target material. The plasma and extracted ion beam are quiescent. The ion beams consist mostly of singly charged ions with a space-charge limited current density which reached about 10 mA/cm2 at an extraction voltage of 45 kV and a first gap spacing of 12 mm.

  13. Calcium and lithium ion production for laser ion source

    Energy Technology Data Exchange (ETDEWEB)

    Okamura, M.; Palm, K.; Stifler, C.; Steski, D.; Ikeda, S.; Kumaki, M.; Kanesue, T.

    2015-08-23

    Calcium and lithium ion beams are required by NASA Space Radiation Laboratory (NSRL) at Brookhaven National Laboratory (BNL) to simulate the effects of cosmic radiation. To find out difficulties to provide such high reactive material as laser targets, the both species were experimentally tested. Plate-shaped lithium and calcium targets were fabricated to create ablation plasmas with a 6ns, 1064nm Nd:YAG laser. We found significant oxygen contamination in both the Ca and Li high-charge-state beams due to the rapid oxidation of the surfaces. A large-spot-size, low-power-density laser was then used to analyze the low-charge-state beams without scanning the targets. The low-charge-state Ca beam did not have any apparent oxygen contamination, showing the potential to clean the target entirely with a low-power beam once in the chamber. The Li target was clearly still oxidizing in the chamber after each low-power shot. To measure the rate of oxidation, we shot the low-power laser at the target repeatedly at 10sec, 30sec, 60sec, and 120sec interval lengths, showing a linear relation between the interval time and the amount of oxygen in the beam.

  14. Calcium and lithium ion production for laser ion source

    Energy Technology Data Exchange (ETDEWEB)

    Okamura, M., E-mail: okamura@bnl.gov [Collider-Accelerator Department, Brookhaven National Laboratory, Upton, New York 11973 (United States); Nishina Center for Accelerator-Based Science, RIKEN, Saitama (Japan); Palm, K. [Department of Physics, Cornell University, Ithaca, New York 14853-2501 (United States); Stifler, C. [Engineering Physics Systems Department, Providence College, Providence, Rhode Island 02918 (United States); Steski, D.; Kanesue, T. [Collider-Accelerator Department, Brookhaven National Laboratory, Upton, New York 11973 (United States); Ikeda, S. [Nishina Center for Accelerator-Based Science, RIKEN, Saitama (Japan); Interdisciplinary Graduate School of Science and Engineering, Tokyo Institute of Technology, Kanagawa (Japan); Kumaki, M. [Nishina Center for Accelerator-Based Science, RIKEN, Saitama (Japan); Research Institute for Science and Engineering, Waseda University, Tokyo (Japan)

    2016-02-15

    Calcium and lithium ion beams are required by NASA Space Radiation Laboratory at Brookhaven National Laboratory to simulate the effects of cosmic radiation. To identify the difficulties in providing such highly reactive materials as laser targets, both species were experimentally tested. Plate shaped lithium and calcium targets were fabricated to create ablation plasmas with a 6 ns 1064 nm neodymium-doped yttrium aluminum garnet laser. We found significant oxygen contamination in both the Ca and Li high charge state beams due to the rapid oxidation of the surfaces. A large spot size, low power density laser was used to create low charge state beams without scanning the targets. The low charge state Ca beam did not have any apparent oxygen contamination, showing the potential to clean the target entirely of oxide with a low power beam once in the chamber. The Li target was clearly still oxidizing in the chamber after each low power shot. To measure the rate of oxidation, we shot the low power laser at the target repeatedly at 10 s, 30 s, 60 s, and 120 s interval lengths, showing a linear relation between the interval time and the amount of oxygen in the beam.

  15. Calcium and lithium ion production for laser ion source

    International Nuclear Information System (INIS)

    Calcium and lithium ion beams are required by NASA Space Radiation Laboratory at Brookhaven National Laboratory to simulate the effects of cosmic radiation. To identify the difficulties in providing such highly reactive materials as laser targets, both species were experimentally tested. Plate shaped lithium and calcium targets were fabricated to create ablation plasmas with a 6 ns 1064 nm neodymium-doped yttrium aluminum garnet laser. We found significant oxygen contamination in both the Ca and Li high charge state beams due to the rapid oxidation of the surfaces. A large spot size, low power density laser was used to create low charge state beams without scanning the targets. The low charge state Ca beam did not have any apparent oxygen contamination, showing the potential to clean the target entirely of oxide with a low power beam once in the chamber. The Li target was clearly still oxidizing in the chamber after each low power shot. To measure the rate of oxidation, we shot the low power laser at the target repeatedly at 10 s, 30 s, 60 s, and 120 s interval lengths, showing a linear relation between the interval time and the amount of oxygen in the beam

  16. Calcium and lithium ion production for laser ion source

    Science.gov (United States)

    Okamura, M.; Palm, K.; Stifler, C.; Steski, D.; Ikeda, S.; Kumaki, M.; Kanesue, T.

    2016-02-01

    Calcium and lithium ion beams are required by NASA Space Radiation Laboratory at Brookhaven National Laboratory to simulate the effects of cosmic radiation. To identify the difficulties in providing such highly reactive materials as laser targets, both species were experimentally tested. Plate shaped lithium and calcium targets were fabricated to create ablation plasmas with a 6 ns 1064 nm neodymium-doped yttrium aluminum garnet laser. We found significant oxygen contamination in both the Ca and Li high charge state beams due to the rapid oxidation of the surfaces. A large spot size, low power density laser was used to create low charge state beams without scanning the targets. The low charge state Ca beam did not have any apparent oxygen contamination, showing the potential to clean the target entirely of oxide with a low power beam once in the chamber. The Li target was clearly still oxidizing in the chamber after each low power shot. To measure the rate of oxidation, we shot the low power laser at the target repeatedly at 10 s, 30 s, 60 s, and 120 s interval lengths, showing a linear relation between the interval time and the amount of oxygen in the beam.

  17. Reconstruction of the Proton Source in Relativistic Heavy Ion Collisions

    OpenAIRE

    Polleri, Alberto; Mattiello, Raffaele; Mishustin, Igor; Bondorf, Jakob

    1999-01-01

    We describe a direct method to reconstruct the transverse proton source formed in a relativistic heavy ion collision, making use of experimentally measured proton and deuteron spectra and assuming that deuterons are formed via two-nucleon coalescence. We show that an ambiguity with respect to the source temperature still persists and we indicate a possible solution to the problem.

  18. An all permanent magnet electron cyclotron resonance ion source for heavy ion therapy

    Science.gov (United States)

    Cao, Yun; Li, Jia Qing; Sun, Liang Ting; Zhang, Xue Zhen; Feng, Yu Cheng; Wang, Hui; Ma, Bao Hua; Li, Xi Xia

    2014-02-01

    A high charge state all permanent Electron Cyclotron Resonance ion source, Lanzhou All Permanent ECR ion source no. 3-LAPECR3, has been successfully built at IMP in 2012, which will serve as the ion injector of the Heavy Ion Medical Machine (HIMM) project. As a commercial device, LAPECR3 features a compact structure, small size, and low cost. According to HIMM scenario more than 100 eμA of C5+ ion beam should be extracted from the ion source, and the beam emittance better than 75 π*mm*mrad. In recent commissioning, about 120 eμA of C5+ ion beam was got when work gas was CH4 while about 262 eμA of C5+ ion beam was obtained when work gas was C2H2 gas. The design and construction of the ion source and its low-energy transportation beam line, and the preliminary commissioning results will be presented in detail in this paper.

  19. The electron cyclotron resonance coupled to laser ion source for charge state enhancement experiment: production of high inensity ion beams by means of hybrid ion source

    Czech Academy of Sciences Publication Activity Database

    Gammino, S.; Torrisi, L.; Ciavola, G.; Andó, L.; Celona, L.; Manciagli, S.; Krása, Josef; Láska, Leoš; Pfeifer, Miroslav; Rohlena, Karel; Mazzasalma, A. M.; Gentile, C.; Picciotto, A.; Wolowski, J.; Woryna, E.; Badziak, J.; Parys, P.; Hitz, D.; Shirkov, G. D.

    2004-01-01

    Roč. 96, č. 5 (2004), s. 2961-2967. ISSN 0021-8979 Institutional research plan: CEZ:AV0Z1010921 Keywords : laser ion sources * ECR ion sources Subject RIV: BH - Optics, Masers, Lasers Impact factor: 2.255, year: 2004

  20. RF Negative Ion Source Development at IPP Garching

    Science.gov (United States)

    Kraus, W.; McNeely, P.; Berger, M.; Christ-Koch, S.; Falter, H. D.; Fantz, U.; Franzen, P.; Fröschle, M.; Heinemann, B.; Leyer, S.; Riedl, R.; Speth, E.; Wünderlich, D.

    2007-08-01

    IPP Garching is heavily involved in the development of an ion source for Neutral Beam Heating of the ITER Tokamak. RF driven ion sources have been successfully developed and are in operation on the ASDEX-Upgrade Tokamak for positive ion based NBH by the NB Heating group at IPP Garching. Building on this experience a RF driven H- ion source has been under development at IPP Garching as an alternative to the ITER reference design ion source. The number of test beds devoted to source development for ITER has increased from one (BATMAN) by the addition of two test beds (MANITU, RADI). This paper contains descriptions of the three test beds. Results on diagnostic development using laser photodetachment and cavity ringdown spectroscopy are given for BATMAN. The latest results for long pulse development on MANITU are presented including the to date longest pulse (600 s). As well, details of source modifications necessitated for pulses in excess of 100 s are given. The newest test bed RADI is still being commissioned and only technical details of the test bed are included in this paper. The final topic of the paper is an investigation into the effects of biasing the plasma grid.

  1. A study for the improvements of radio frequency ion source performance and ion beam quality

    International Nuclear Information System (INIS)

    In this work emphasis was given to improve ion beam obtained from the RF ion source. Thus, the objectives of this work are: a - Production of higher ion charge state which requires an intense plasma. This is achieved by the use of D.C magnetic field, the use of electron injection into the plasma, and the work run at optimum discharge pressure. b - Increasing the value of the extracted current. c - Improving ion beam quality by its interaction with electron beam. The production of multiply charged ions requires an intense plasma. This leads of the use of RF ion source with radial extraction, central constriction, and electron injection into plasma, together with magnetic field perpendicular to RF field. The plasma intensity could be increased from n e = 10 9 electrons/c m3 up to 10 12 electrons/cm 3. The ion beam was analyzed by a sector magnet and is found to contain a larger percentage of Ar +4 than that without electron injection. To improve ion source efficiency, this means increasing ion current for the same, or lower RF power and gas consumption. A new design of RF ion source of small size and having a magnetic mirror - like shape could yield a current up to 12 m. A at extracting voltage 3 K.V and pressure = 20 m.Torr. Electrons were injected into the ion beam from filaments around the beam . Such electrons decrease the space charge repulsive forces between the particles. Samples of the beam profiles are traced by ion beam scanner, with and without suppression to electrons . From these samples we could deduce a decrease of ion beam emittance due to the effect of beam neutralization, which agrees with the theoretical work made for the effect of neutralization on the beam emittance

  2. Development of ion beams for space effects testing using an ECR ion source

    Science.gov (United States)

    Benitez, Janilee; Hodgkinson, Adrian; Johnson, Mike; Loew, Tim; Lyneis, Claude; Phair, Larry

    2013-04-01

    At LBNL's 88-Inch Cyclotron and Berkeley Accelerator Space Effects (BASE) Facility, a range of ion beams at energies from 1 to 55 MeV/nucleon are used for radiation space effects testing. By bombarding a component with ion beams the radiation component of the space environment can be simulated and single event effects (SEEs) determined. The performance of electronic components used in space flight and high altitude aircraft can then be evaluated. The 88- Inch Cyclotron is coupled to the three electron cyclotron resonance ion sources (ECR, AECR-U, VENUS). These ion sources provide a variety of ion species, ranging from protons to heavy ions such as bismuth, for these tests. In particular the ion sources have been developed to provide "cocktails", a mixture of ions of similar mass-to-charge ratio, which can be simultaneously injected into the cyclotron, but selectively extracted from it. The ions differ in both their linear energy transfer (LET) deposited to the part and in their penetration depth into the tested part. The current heavy ion cocktails available are the 4.5, 10, 16, and 30 MeV per nucleon.

  3. Development of ion beams for space effects testing using an ECR ion source

    Energy Technology Data Exchange (ETDEWEB)

    Benitez, Janilee; Hodgkinson, Adrian; Johnson, Mike; Loew, Tim; Lyneis, Claude; Phair, Larry [Nuclear Science Division, Lawrence Berkeley National Lab One Cyclotron Road, Berkeley, CA 94720 (United States)

    2013-04-19

    At LBNL's 88-Inch Cyclotron and Berkeley Accelerator Space Effects (BASE) Facility, a range of ion beams at energies from 1 to 55 MeV/nucleon are used for radiation space effects testing. By bombarding a component with ion beams the radiation component of the space environment can be simulated and single event effects (SEEs) determined. The performance of electronic components used in space flight and high altitude aircraft can then be evaluated. The 88- Inch Cyclotron is coupled to the three electron cyclotron resonance ion sources (ECR, AECR-U, VENUS). These ion sources provide a variety of ion species, ranging from protons to heavy ions such as bismuth, for these tests. In particular the ion sources have been developed to provide {sup c}ocktails{sup ,} a mixture of ions of similar mass-to-charge ratio, which can be simultaneously injected into the cyclotron, but selectively extracted from it. The ions differ in both their linear energy transfer (LET) deposited to the part and in their penetration depth into the tested part. The current heavy ion cocktails available are the 4.5, 10, 16, and 30 MeV per nucleon.

  4. Beam tests of a 10 GHz compact ECR ion source

    International Nuclear Information System (INIS)

    Ion source for medical facilities should have characteristics of easy maintenance, low electric power, good stability and long operation time without maintenance (one year or more). The 10 GHz compact Electron Cyclotron Resonance (ECR) Ion Source with all permanent magnets has been developed 2003. The maximum mirror magnetic field on the beam axis are 0.59 T at the extraction side and 0.87 T at the gas injection side. The minimum B strength is 0.25 T. The size of the source is 300 mm in diameter and 290 mm in length. Details of the design and the results of preliminary beam test are reported. (author)

  5. Recent progress on the superconducting ion source VENUS

    OpenAIRE

    Benitez, J.Y.; Franzen, K.Y.; Hodgkinson, A.; Loew, T.; Lyneis, C.M.; Phair, L.; Saba, J.; Strohmeier, M.; Tarvainen, Olli

    2012-01-01

    The 28 GHz Ion Source VENUS (versatile ECR for nuclear science) is back in operation after the superconducting sextupole leads were repaired and a fourth cryocooler was added. VENUS serves as an R&D device to explore the limits of electron cyclotron resonance source performance at 28 GHz with its 10 kW gryotron and optimum magnetic fields and as an ion source to increase the capabilities of the 88-Inch Cyclotron both for nuclear physics research and applications. The development a...

  6. Analysis of Large Release Source Terms in AP1000 Nuclear Power Plant%AP1000核电厂大量放射性释放源项分析

    Institute of Scientific and Technical Information of China (English)

    张琨

    2012-01-01

    AP1000核电厂的某些严重事故情景中,安全壳可能发生失效或旁通,导致大量放射性物质释放到环境中,造成严重的放射性污染.针对大量放射性释放频率贡献最大的3种释放类别(安全壳旁通、安全壳早期失效和安全壳隔离失效),分别选取典型的严重事故序列(蒸汽发生器传热管破裂、自动卸压系统阀门误开启和压力容器破裂),使用MAAP程序计算分析了释放到环境中的裂变产物源项.该分析结果为量化AP1000核电厂的放射性释放后果和厂外剂量分析提供了必要的输入.%In some severe accident scenarios of AP1000 nuclear power plant, a breach or bypass of the containment will lead to large release to environment, which causes severe radioactive pollution of environment. Three release categories (bypass, early containment failure and containment isolation failure) have the largest contribution to large release frequency. Three typical severe accidents (steam generator tube rupture, spuriously open of automatic depressurization system valves and reactor pressure vessel rupture) were selected as typical cases corresponding to the three release categories and the fission-product source terms released to environment were calculated using MAAP code. The analysis results are provided as essential input data for quantifying the release of AP1000 nuclear power plant and the offsite dose analysis.

  7. A high charge state heavy ion beam source for HIF

    International Nuclear Information System (INIS)

    A high current low emittance high charge state heavy ion beam source is being developed. This is designed to deliver HIF (heavy ion fusion) driver accelerator scale beam. Using high-charge-state beam in a driver accelerator for HIF may increase the acceleration efficiency, leading to a reduction in the driver accelerator size and cost. The proposed source system which consists of the gas beam electron stripper followed by a high charge state beam separator, can be added to existing single charge state, low emittance, high brightness ion sources and injectors. We shall report on the source physics design using 2D beam envelope simulations and experimental feasibility studies' results using a neutral gas stripper and a beam separator at the exit of the LBL 2 MV injector

  8. Ion Sources and Injectors for HIF Induction Linacs

    International Nuclear Information System (INIS)

    Ion source and injector development is one of the major parts of the HIF program in the USA. Our challenge is to design a cost effective driver-scale injector and to build a multiple beam module within the next couple of years. In this paper, several current-voltage scaling laws are summarized for guiding the injector design. Following the traditional way of building injectors for HIF induction linac, we have produced a preliminary design for a multiple beam driver-scale injector. We also developed an alternate option for a high current density injector that is much smaller in size. One of the changes following this new option is the possibility of using other kinds of ion sources than the surface ionization sources. So far, we are still looking for an ideal ion source candidate that can readily meet all the essential requirements

  9. A New Type Ion Source And Its Applications

    International Nuclear Information System (INIS)

    In this work, a design and construction of an ion source was done, in order to obtain a high intensity ion beam and to determine the efficiency of the modified ion source. Also, the improvement of plasma and the ion beam characteristics have been studied in details. Different distances between the two anode rods (6, 12, 18 mm) were examined and tested to measure the ion beam current in terms of the discharge current, and consequently, a high density plasma is determined. It was found that the optimum distance is 6 mm, where at this distance a maximum ion current is obtained. Also the diameter of cathode surface was taken to be (5, 8,15 mm) to clarify the influence of the mechanical confinement on the extracted ion beam. A discharge region of 5 mm was found to be the optimum value for this ion source. Different shapes (ring, disk, sphere, and pierce) of focusing electrodes with different exit hole diameters (5, 7, 9 and 11 mm) were used as focusing electrodes. The optimum diameter for the focusing electrode was found to be 9 mm where maximum ion beam current is obtained.It has been concluded that the ion beam current is increased by three times (from 100 μA to 312 μA) by applying a focusing voltage Vf of -3 kV on a sphere focusing electrode. At Vf = -3 kV, the focusing electrode current If = 2.5 μA is only a small fraction of the total ion beam current and an ion beam current of 312 μA is produced at discharge current Id = 0.6 mA, due to the increase of stability at this value. Finally, this ion source is used as a preparation tool of the surface of PET polymer substrate to be ready for coating or thin film deposition. Ar ion beam has been used for this purpose, where the Scan Electron Microscope (SEM) shows that, the best sample is the one which has been irradiated up to 30 minutes. In this case the sample is more homogenous and of higher roughness than other irradiated samples. Also the (UV-VIS) spectrum tells us that, there is small change in energy gap

  10. Overview of ion source characterization diagnostics in INTF

    Science.gov (United States)

    Bandyopadhyay, M.; Sudhir, Dass; Bhuyan, M.; Soni, J.; Tyagi, H.; Joshi, J.; Yadav, A.; Rotti, C.; Parmar, Deepak; Patel, H.; Pillai, S.; Chakraborty, A.

    2016-02-01

    INdian Test Facility (INTF) is envisaged to characterize ITER diagnostic neutral beam system and to establish the functionality of its eight inductively coupled RF plasma driver based negative hydrogen ion source and its beamline components. The beam quality mainly depends on the ion source performance and therefore, its diagnostics plays an important role for its safe and optimized operation. A number of diagnostics are planned in INTF to characterize the ion source performance. Negative ions and its cesium contents in the source will be monitored by optical emission spectroscopy (OES) and cavity ring down spectroscopy. Plasma near the extraction region will be studied using standard electrostatic probes. The beam divergence and negative ion stripping losses are planned to be measured using Doppler shift spectroscopy. During initial phase of ion beam characterization, carbon fiber composite based infrared imaging diagnostics will be used. Safe operation of the beam will be ensured by using standard thermocouples and electrical voltage-current measurement sensors. A novel concept, based on plasma density dependent plasma impedance measurement using RF electrical impedance matching parameters to characterize the RF driver plasma, will be tested in INTF and will be validated with OES data. The paper will discuss about the overview of the complete INTF diagnostics including its present status of procurement, experimentation, interface with mechanical systems in INTF, and integration with INTF data acquisition and control systems.

  11. The Leuven isotope separator on-line laser ion source

    International Nuclear Information System (INIS)

    An element-selective laser ion source has been used to produce beams of exotic radioactive nuclei and to study their decay properties. The operational principle of the ion source is based on selective resonant laser ionization of nuclear reaction products thermalized and neutralized in a noble gas at high pressure. The ion source has been installed at the Leuven Isotope Separator On-Line (LISOL), which is coupled on-line to the cyclotron accelerator at Louvain-la-Neuve. 54,55Ni and 54,55Co isotopes were produced in light-ion-induced fusion reactions. Exotic nickel, cobalt and copper nuclei were produced in proton-induced fission of 238U. The b decay of the 68-74Ni, 67-70Co, 70-75Cu and 110-114Rh isotopes has been studied by means of β-γ and γ-γ spectroscopy. Recently, the laser ion source has been used to produce neutron-deficient rhodium and ruthenium isotopes (91-95Rh, 98Rh, 90,91Ru) near the N=Z line in heavy ion-induced fusion reactions

  12. Impregnated-electrode-type liquid metal ion source

    Science.gov (United States)

    Ishikawa, J.; Gotoh, Y.; Tsuji, H.; Takagi, T.

    We have developed an impregnated-electrode-type liquid metal ion source whose tip is a sintered-porous structure made of a refractory metal such as tungsten. By this structure the ratio of the liquid metal surface area facing the vacuum to the volume is low, which decreases useless metal evaporation from the surface. The maximum vapour pressure of the metal in operation for this ion source is 10 -1-10 0 Torr, which is 2-3 orders of magnitude higher than that for the needle type. Therefore, useful metal ions such as Ga +, Au +, Ag +, In +, Si 2+, Ge 2+, and Sb 2+ can be extracted from single element metals or alloys. The porous structure of the tip has also an effect on the positive control of the liquid metal flow rate to the tip head. Thus, a stable operation with a high current of a few hundreds of μA can be obtained together with a low current high brightness ion beam. Therefore, this ion source is suitable not only for microfocusing but also for a general use as a metal ion source.

  13. Resonant Ionization Laser Ion Source Project at TRIUMF

    Energy Technology Data Exchange (ETDEWEB)

    Lassen, J., E-mail: lassen@triumf.ca; Bricault, P.; Dombsky, M.; Lavoie, J. P. [TRIUMF (Canada); Geppert, Ch.; Wendt, K. [Johannes Gutenberg-Universitaet Mainz (Germany)

    2005-04-15

    Resonant laser excitation and ionisation is one of the most successful tools for the selective production of radioactive ion beams (RIB) at on-line mass separator facilities. TRIUMF plans to augment the current ion sources with a resonant ionisation laser ion source (RILIS), to use the high production yields from the target, as shown by the delivery of 3*10{sup 4}/s {sup 11}Li ions from a standard target ion source with surface ionisation. The development and installation of TRIUMF's RILIS (TRILIS) is necessary to provide beams of short lived isotopes that conventional ion sources could not produce in sufficient intensity and purity for nuclear-, and nuclear astrophysics- experiments. A laser system consisting of three tunable titanium-sapphire (TiSa) lasers with frequency doubling and tripling was employed to demonstrate first off-line resonance ionisation of Ga, and is being installed for first on-line test and a run on {sup 62}Ga in December 2004.

  14. Overview of ion source characterization diagnostics in INTF

    Energy Technology Data Exchange (ETDEWEB)

    Bandyopadhyay, M., E-mail: mainak@iter-india.org; Sudhir, Dass; Bhuyan, M.; Tyagi, H.; Joshi, J.; Yadav, A.; Rotti, C.; Parmar, Deepak; Patel, H.; Pillai, S.; Chakraborty, A. [ITER-India, Institute for Plasma Research, A-29 GIDC, Sector-25, Gandhinagar, Gujarat 382016 (India); Soni, J. [Institute for Plasma Research, Bhat, Gandhinagar, Gujarat 382 428 (India)

    2016-02-15

    INdian Test Facility (INTF) is envisaged to characterize ITER diagnostic neutral beam system and to establish the functionality of its eight inductively coupled RF plasma driver based negative hydrogen ion source and its beamline components. The beam quality mainly depends on the ion source performance and therefore, its diagnostics plays an important role for its safe and optimized operation. A number of diagnostics are planned in INTF to characterize the ion source performance. Negative ions and its cesium contents in the source will be monitored by optical emission spectroscopy (OES) and cavity ring down spectroscopy. Plasma near the extraction region will be studied using standard electrostatic probes. The beam divergence and negative ion stripping losses are planned to be measured using Doppler shift spectroscopy. During initial phase of ion beam characterization, carbon fiber composite based infrared imaging diagnostics will be used. Safe operation of the beam will be ensured by using standard thermocouples and electrical voltage-current measurement sensors. A novel concept, based on plasma density dependent plasma impedance measurement using RF electrical impedance matching parameters to characterize the RF driver plasma, will be tested in INTF and will be validated with OES data. The paper will discuss about the overview of the complete INTF diagnostics including its present status of procurement, experimentation, interface with mechanical systems in INTF, and integration with INTF data acquisition and control systems.

  15. Overview of ion source characterization diagnostics in INTF

    International Nuclear Information System (INIS)

    INdian Test Facility (INTF) is envisaged to characterize ITER diagnostic neutral beam system and to establish the functionality of its eight inductively coupled RF plasma driver based negative hydrogen ion source and its beamline components. The beam quality mainly depends on the ion source performance and therefore, its diagnostics plays an important role for its safe and optimized operation. A number of diagnostics are planned in INTF to characterize the ion source performance. Negative ions and its cesium contents in the source will be monitored by optical emission spectroscopy (OES) and cavity ring down spectroscopy. Plasma near the extraction region will be studied using standard electrostatic probes. The beam divergence and negative ion stripping losses are planned to be measured using Doppler shift spectroscopy. During initial phase of ion beam characterization, carbon fiber composite based infrared imaging diagnostics will be used. Safe operation of the beam will be ensured by using standard thermocouples and electrical voltage-current measurement sensors. A novel concept, based on plasma density dependent plasma impedance measurement using RF electrical impedance matching parameters to characterize the RF driver plasma, will be tested in INTF and will be validated with OES data. The paper will discuss about the overview of the complete INTF diagnostics including its present status of procurement, experimentation, interface with mechanical systems in INTF, and integration with INTF data acquisition and control systems

  16. Singularity and Bohm criterion in hot positive ion species in the electronegative ion sources

    Science.gov (United States)

    Aslaninejad, Morteza; Yasserian, Kiomars

    2016-05-01

    The structure of the discharge for a magnetized electronegative ion source with two species of positive ions is investigated. The thermal motion of hot positive ions and the singularities involved with it are taken into account. By analytical solution of the neutral region, the location of the singular point and also the values of the plasma parameter such as electric potential and ion density at the singular point are obtained. A generalized Bohm criterion is recovered and discussed. In addition, for the non-neutral solution, the numerical method is used. In contrast with cold ion plasma, qualitative changes are observed. The parameter space region within which oscillations in the density and potential can be observed has been scanned and discussed. The space charge behavior in the vicinity of edge of the ion sources has also been discussed in detail.

  17. Highly charged ion production in ECRH plasma sources for heavy-ion accelerators and other applications

    International Nuclear Information System (INIS)

    The design and status of three ECRH ion sources under development at NSCL are briefly discussed. The RT-ECR ion source, with two minimum B plasma stages and ECRH heating at 6.4 GHz, produces useable intensities of fully stripped light ions up to oxygen; for heavier species, charges such as Argon 14+, Krypton 20+, Iodine 25+ and Tantalum 29+ have been measured. The 6.4 GHz CP-ECR, just beginning operation, has a high temperature metal vapor oven replacing the first plasma stage, and will be used for metal ion production. Initial results for Lithium ions are presented. The SC-ECR, now in the design stage, has a superconducting magnet structure to allow first harmonic ECRH heating at 30--35 GHz. With a higher cutoff density, it is hoped that A≅200 ions with Q>50+ will be realized

  18. The status of the Electron Beam Ion Sources

    Energy Technology Data Exchange (ETDEWEB)

    Stockli, M.P.

    1990-12-31

    More than twenty years after its invention, 13 examples of the Electron Beam Ion Sources (EBIS) are in operation worldwide. The substantial progress in operation and insight, achieved over the last few years, made the EBISes become reliable tools for the production of beams of very highly charged, low-energy ions. For example, 8 EBISes produce bare argon on a standard basis. The successful production of hydrogen-like xenon presents the ions with the highest ionization energy, whereas the production of Th80+ presents the highest achieved charge state. Several synchrotrons are fed by EBIS injectors, taking advantage of the EBIS batch mode production, which yields the highest charge states. A few EBISes are used for ion source development. However, most of the EBISes` efforts are directed to research the physics of highly charged ions. Some of those are used to study the electron--ion interaction inside the source. But normally, most EBISes deliver the ions for external experiments, which so far concentrate on the recombination of the highly charged ions with atoms, molecules and surfaces. The ions are typically produced at a potential of 1 to a few kilovolts per charge; but in most cases, the EBIS is mounted on a high voltage platform or is followed by an RFQ, and therefore can generate ion energies from a few hundred volts up to a few hundred kilovolts per charge. The delivered beams have a low emittance and a low energy spread, which is an advantage for high-resolution experiments. This paper presents briefly all operational EBISes, their capabilities, their achievements, and their contribution to physics research. 5 figs., 1 tab., 59 refs.

  19. The status of the Electron Beam Ion Sources

    Energy Technology Data Exchange (ETDEWEB)

    Stockli, M.P.

    1990-01-01

    More than twenty years after its invention, 13 examples of the Electron Beam Ion Sources (EBIS) are in operation worldwide. The substantial progress in operation and insight, achieved over the last few years, made the EBISes become reliable tools for the production of beams of very highly charged, low-energy ions. For example, 8 EBISes produce bare argon on a standard basis. The successful production of hydrogen-like xenon presents the ions with the highest ionization energy, whereas the production of Th80+ presents the highest achieved charge state. Several synchrotrons are fed by EBIS injectors, taking advantage of the EBIS batch mode production, which yields the highest charge states. A few EBISes are used for ion source development. However, most of the EBISes' efforts are directed to research the physics of highly charged ions. Some of those are used to study the electron--ion interaction inside the source. But normally, most EBISes deliver the ions for external experiments, which so far concentrate on the recombination of the highly charged ions with atoms, molecules and surfaces. The ions are typically produced at a potential of 1 to a few kilovolts per charge; but in most cases, the EBIS is mounted on a high voltage platform or is followed by an RFQ, and therefore can generate ion energies from a few hundred volts up to a few hundred kilovolts per charge. The delivered beams have a low emittance and a low energy spread, which is an advantage for high-resolution experiments. This paper presents briefly all operational EBISes, their capabilities, their achievements, and their contribution to physics research. 5 figs., 1 tab., 59 refs.

  20. The status of the Electron Beam Ion Sources

    International Nuclear Information System (INIS)

    More than twenty years after its invention, 13 examples of the Electron Beam Ion Sources (EBIS) are in operation worldwide. The substantial progress in operation and insight, achieved over the last few years, made the EBISes become reliable tools for the production of beams of very highly charged, low-energy ions. For example, 8 EBISes produce bare argon on a standard basis. The successful production of hydrogen-like xenon presents the ions with the highest ionization energy, whereas the production of Th80+ presents the highest achieved charge state. Several synchrotrons are fed by EBIS injectors, taking advantage of the EBIS batch mode production, which yields the highest charge states. A few EBISes are used for ion source development. However, most of the EBISes' efforts are directed to research the physics of highly charged ions. Some of those are used to study the electron--ion interaction inside the source. But normally, most EBISes deliver the ions for external experiments, which so far concentrate on the recombination of the highly charged ions with atoms, molecules and surfaces. The ions are typically produced at a potential of 1 to a few kilovolts per charge; but in most cases, the EBIS is mounted on a high voltage platform or is followed by an RFQ, and therefore can generate ion energies from a few hundred volts up to a few hundred kilovolts per charge. The delivered beams have a low emittance and a low energy spread, which is an advantage for high-resolution experiments. This paper presents briefly all operational EBISes, their capabilities, their achievements, and their contribution to physics research. 5 figs., 1 tab., 59 refs

  1. Development of C{sup 6+} laser ion source and RFQ linac for carbon ion radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Sako, T., E-mail: takayuki1.sako@toshiba.co.jp; Yamaguchi, A.; Sato, K. [Toshiba Corporation, Yokohama 235-8522 (Japan); Goto, A.; Iwai, T.; Nayuki, T.; Nemoto, K.; Kayama, T. [Cancer Research Center, Yamagata University Faculty of Medicine, Yamagata 990-9585 (Japan); Takeuchi, T. [Accelerator Engineering Corporation, Chiba 263-0043 (Japan)

    2016-02-15

    A prototype C{sup 6+} injector using a laser ion source has been developed for a compact synchrotron dedicated to carbon ion radiotherapy. The injector consists of a laser ion source and a 4-vane radio-frequency quadrupole (RFQ) linac. Ion beams are extracted from plasma and directly injected into the RFQ. A solenoid guides the low-energy beams into the RFQ. The RFQ is designed to accelerate high-intensity pulsed beams. A structure of monolithic vanes and cavities is adopted to reduce its power consumption. In beam acceleration tests, a solenoidal magnetic field set between the laser ion source and the RFQ helped increase both the peak currents before and after the RFQ by a factor of 4.

  2. Development of C6+ laser ion source and RFQ linac for carbon ion radiotherapy

    Science.gov (United States)

    Sako, T.; Yamaguchi, A.; Sato, K.; Goto, A.; Iwai, T.; Nayuki, T.; Nemoto, K.; Kayama, T.; Takeuchi, T.

    2016-02-01

    A prototype C6+ injector using a laser ion source has been developed for a compact synchrotron dedicated to carbon ion radiotherapy. The injector consists of a laser ion source and a 4-vane radio-frequency quadrupole (RFQ) linac. Ion beams are extracted from plasma and directly injected into the RFQ. A solenoid guides the low-energy beams into the RFQ. The RFQ is designed to accelerate high-intensity pulsed beams. A structure of monolithic vanes and cavities is adopted to reduce its power consumption. In beam acceleration tests, a solenoidal magnetic field set between the laser ion source and the RFQ helped increase both the peak currents before and after the RFQ by a factor of 4.

  3. Development of C⁶⁺ laser ion source and RFQ linac for carbon ion radiotherapy.

    Science.gov (United States)

    Sako, T; Yamaguchi, A; Sato, K; Goto, A; Iwai, T; Nayuki, T; Nemoto, K; Kayama, T; Takeuchi, T

    2016-02-01

    A prototype C(6+) injector using a laser ion source has been developed for a compact synchrotron dedicated to carbon ion radiotherapy. The injector consists of a laser ion source and a 4-vane radio-frequency quadrupole (RFQ) linac. Ion beams are extracted from plasma and directly injected into the RFQ. A solenoid guides the low-energy beams into the RFQ. The RFQ is designed to accelerate high-intensity pulsed beams. A structure of monolithic vanes and cavities is adopted to reduce its power consumption. In beam acceleration tests, a solenoidal magnetic field set between the laser ion source and the RFQ helped increase both the peak currents before and after the RFQ by a factor of 4. PMID:26932119

  4. Informal workshop on intense polarized ion sources: a summary

    International Nuclear Information System (INIS)

    An Informal Workshop on Intense Polarized Ion Sources was held on March 6, 1980, at the O'Hare Hilton Hotel, Chicago, Illinois. The purpose of the Workshop was to discuss problems in developing higher-intensity polarized proton sources, particularly the optically-pumped source recently proposed by L.W. Anderson of the University of Wisconsin. A summary of the discussions is reported

  5. Imaging of Sources in Heavy-Ion Reactions

    OpenAIRE

    Danielewicz, P.; Brown, D A

    1997-01-01

    We discuss imaging sources from low relative-velocity correlations in heavy-ion reactions. When the correlation is dominated by interference, we can obtain the images by Fourier transforming the correlation function. In the general case, we may use the method of optimized discretization. This method stabilizes the inversion by adapting the resolution of the source to the experimental error and to the measured velocities. The imaged sources contain information on freeze-out density, phase-spac...

  6. Operation status of the J-PARC ion source

    International Nuclear Information System (INIS)

    A cesium-free H- ion source driven with a LaB6-filament is being operated at the Japan Proton Accelerator Research Complex (J-PARC) without any serious trouble since the restoration from the halt due to the March 2011 earthquake. The H- ion current extracted from the ion source has been restrained to approximately 19 mA for the 50-days continuous operation without any lifetime problem on the filament. During the operation period from Jan. 5 to Feb. 22 2013 (scheduled operation time was 1200h), the extracted beam current from the ion source was increased to 22 mA in order to increase the beam power delivered to the J-PARC experimental halls. The filament current necessary for the constant arc-power, after it reached the maximum value at around 200h from the start of the operation, usually almost linearly decreases as time. The decreasing speed of the filament current changed from about 0.02A/h to about 0.6A/h at 1108h from the start of the operation. After 10h from the observation of the high decreasing speed, the filament was broken. By the unusual quick maintenance, in which only the end-plate with a Lab6-filament instead of the whole ion source chamber form the end plate to the plasma electrode was changed, the beam operation was restarted with beam stop time of about 8h. The parameters measured during the LaB6-filament braking process and the prediction method of the LaB6-filament life-time are presented in this paper. Also, the ion source operation more than 30 mA for 8 days and the status of the front-end test stand consisting of the ion source and the 50 mA-RFQ for the J-PARC upgrade to 1 MW are presented. (author)

  7. Volume production of negative ions in the reflex-type ion source

    Energy Technology Data Exchange (ETDEWEB)

    Jimbo, K.

    1982-06-01

    The production of negative hydrogen ions is investigated in the reflex-type negative ion source. The extracted negative hydrogen currents of 9.7 mA (100 mA/cm/sup 2/) for H/sup -/ and of 4.1 mA(42 mA/cm/sup 2/) for D/sup -/ are obtained continuously. The impurity is less than 1%. An isotope effect of negative ion production is observed.

  8. Volume production of negative ions in the reflex-type ion source

    International Nuclear Information System (INIS)

    The production of negative hydrogen ions is investigated in the reflex-type negative ion source. The extracted negative hydrogen currents of 9.7 mA (100 mA/cm2) for H- and of 4.1 mA(42 mA/cm2) for D- are obtained continuously. The impurity is less than 1%. An isotope effect of negative ion production is observed

  9. Slow ion beams from a laser ion source for the ECLISSE experiment

    Czech Academy of Sciences Publication Activity Database

    Andó, L.; Torrisi, L.; Gammino, S.; Ciavola, G.; Celona, L.; Láska, Leoš; Krása, Josef; Wolowski, J.; Woryna, E.; Shirkiv, G. D.

    Bologna : Italian Physical Society, 2001 - (Gammino, S.; Ciavola, G.), s. 109-113 - (Conference Proceedings.. 72). [Workshop on the Production of Intense Beams of Highly Charged Ions . Catania (IT), 24.09.2000-27.09.2000] R&D Projects: GA AV ČR IAA1010105 Institutional research plan: CEZ:AV0Z1010921 Keywords : hybrid ion source * ion generation Subject RIV: BJ - Thermodynamics

  10. Electron heating, time evolution of bremsstrahlung and ion beam current in electron cyclotron resonance ion sources

    OpenAIRE

    Ropponen, Tommi

    2010-01-01

    This thesis is a study of Electron Cyclotron Resonance Ion Source (ECRIS) plasmas and their properties. The focus has been on time evolution studies of bremsstrahlung emission, ion beam current production and numerical studies of electron heating in ECRIS plasmas. The time scales for reaching steady state bremsstrahlung production at electron energies greater than 30 keV is shown to be on the order of several hundreds of milliseconds. The ion beam currents of different elements...

  11. An ion source based on the cathodic arc

    Energy Technology Data Exchange (ETDEWEB)

    Sanders, D.M.; Falabella, S.

    1992-12-31

    This invention is comprised of a cylindrically symmetric arc source to produce a ring of ions which leave the surface of the arc target radially and are reflected by electrostatic fields present in the source to a point of use, such as a part to be coated. An array of electrically isolated rings positioned in the source serves the duel purpose of minimizing bouncing of macroparticles and providing electrical insulation to maximize the electric field gradients within the source. The source also includes a series of baffles which function as a filtering or trapping mechanism for any macroparticles.

  12. A cusped field H- ion source for LAMPF

    International Nuclear Information System (INIS)

    The addition of the Proton Storage Ring (PSR) to LAMPF requires the development of a more intense H- ion source. The goals of this development program are to produce a beam of sufficient quality to match the acceptance of the accelerator and of sufficient intensity and duty factor to satisfy PSR operation as well as existing LAMPF requirements. The ion source concept best suited to these demands is the multi-cusp negative ion source being developed at LBL. The H- ion source development was carried out on the high-voltage test stand in the LAMPF injector complex. The test stand, upgraded for the project, provides both unanalyzed and mass-analyzed beams to appropriate emittance scanning stations. Beam currents are measured using both beam current toroids and biased Faraday cups in both sections of the transport line. The emittance data are processed by the SEL 840 control computer at LAMPF. Ion source testing has been carried out using the extraction optics originally developed for the LAMPF duoplasmatron. Optics questions are being addressed by the plasma simulation code SNOW developed at Sandia. The accelerating column design will seek to minimize the divergence of the extracted beam and the predictions from SNOW will be tested on the stand with actual H- beams

  13. The new ECR ion source DECRIS-4 (project)

    International Nuclear Information System (INIS)

    A new ion source DECRIS-4 for the production of multiplicity charged ions is planned to be built at the FLNR (JINR). The source can be used as an injector of heavy multiply charged ions for the U-400 cyclotron, as well as a 'charge breeder' (+ → n+>> method) for the second phase of the DRIBs project. The main feature of the ion source design is the creation of the extended resonance zone in a comparatively compact ECRIS. For this purpose the axial magnetic field distribution is formed with a flat minimum. Superposition of the axial magnetic field with the field of the permanent magnet hexapole, made of NdFeB, allows one to create a large resonance volume. In this case the electrons can be heated more efficiently. The maximum of the plasma density is situated near the axis, where ions are mainly extracted from. For the plasma heating a microwave frequency of 14 GHz will be used. A preliminary design of the source is described. Also the features and prospects for the application of this source are discussed

  14. Development of Li+ alumino-silicate ion source

    International Nuclear Information System (INIS)

    To uniformly heat targets to electron-volt temperatures for the study of warm dense matter, one strategy is to deposit most of the ion energy at the peak of energy loss (dE/dx) with a low (E < 5 MeV) kinetic energy beam and a thin target. Lower mass ions have a peak dE/dx at a lower kinetic energy. To this end, a small lithium (Li+) alumino-silicate source has been fabricated, and its emission limit has been measured. These surface ionization sources are heated to 1000-1150 C where they preferentially emit singly ionized alkali ions. Alumino-silicates sources of K+ and Cs+ have been used extensively in beam experiments, but there are additional challenges for the preparation of high-quality Li+ sources: There are tighter tolerances in preparing and sintering the alumino-silicate to the substrate to produce an emitter that gives uniform ion emission, sufficient current density and low beam emittance. We report on recent measurements ofhigh ( up to 35 mA/cm2) current density from a Li+ source. Ion species identification of possible contaminants is being verified with a Wien (E x B) filter, and via time-of-flight.

  15. High brilliance multicusp ion source for hydrogen microscopy at SNAKE

    Energy Technology Data Exchange (ETDEWEB)

    Moser, M., E-mail: marcus.moser@unibw.de [Universitaet der Bundeswehr Muenchen, Institut fuer Angewandte Physik und Messtechnik, LRT2, Department fuer Luft- und Raumfahrttechnik, 85577 Neubiberg (Germany); Reichart, P. [Universitaet der Bundeswehr Muenchen, Institut fuer Angewandte Physik und Messtechnik, LRT2, Department fuer Luft- und Raumfahrttechnik, 85577 Neubiberg (Germany); Carli, W. [Maier-Leibniz-Laboraturium der LMU und TU Muenchen, 85478 Garching (Germany); Greubel, C.; Peeper, K. [Universitaet der Bundeswehr Muenchen, Institut fuer Angewandte Physik und Messtechnik, LRT2, Department fuer Luft- und Raumfahrttechnik, 85577 Neubiberg (Germany); Hartung, P. [Maier-Leibniz-Laboraturium der LMU und TU Muenchen, 85478 Garching (Germany); Dollinger, G. [Universitaet der Bundeswehr Muenchen, Institut fuer Angewandte Physik und Messtechnik, LRT2, Department fuer Luft- und Raumfahrttechnik, 85577 Neubiberg (Germany)

    2012-02-15

    In order to improve the lateral resolution of the 3D hydrogen microscopy by proton-proton scattering at the Munich microprobe SNAKE, we have installed a new multicusp ion source for negative hydrogen ions manufactured by HVEE at the Munich 14 MV tandem accelerator that boosts the proton beam brilliance with the potential to reduce the beam diameter at the focal plane of SNAKE. We measured a beam brilliance B = 27 A m{sup -2} rad{sup -2} eV{sup -1} directly behind the ion source that is at the space charge limit for conventional ion sources. After preacceleration to in total 180 keV beam energy we measure a slightly reduced beam brilliance of B = 10 {mu}A mm{sup -2} mrad{sup -2} MeV{sup -1}. For injection into the tandem accelerator, the extracted H{sup -}-current of the multicusp source of 1 mA is reduced to about 10 {mu}A because of radiation safety regulations and heating problems at the object slits of SNAKE. Due to beam oscillations and influences of the terminal stripper of the tandem we measured a reduced beam brilliance of 0.8 {mu}A mm{sup -2} mrad{sup -2} MeV{sup -1} in front of SNAKE at 25 MeV but still being nearly 10 times larger than measured with any other ion source.

  16. Portable test bench for the studies concerning ion sources and ion beam extraction and focusing systems

    International Nuclear Information System (INIS)

    A portable test bench is described, which was designed to check ion sources, ion beam extraction and focusing systems before its use in a 600 KeV Cockcroft-Walton accelerator. The vacuum possibilities of the system are specially analyzed in connection with its particular use. The whole can be considered as a portable accelerator of low energy (50 keV). (Author)

  17. Production and diagnosis of krypton ion beam using a freeman ion source

    International Nuclear Information System (INIS)

    The present work investigates the processes and phenomena occur in a Freeman heavy ion source system using krypton gas. The ion source parameters are adjusted in order to obtain the desired beam current with highest efficiency. The relations between the discharge current Id and the ion beam current Ib are obtained at constant pressures and for various accelerating voltages. The curves indicate a linear dependence of ion current from plasma density. Optimization of the ion source required adjustment of the cathode current and gas pressure. The dependence of ion beam currents on the accelerating voltage is given at constant discharge current (la = 0.8 A) and for various pressures. The ion beam current reaches 3m A at 45 KV and at a pressure of 2 x 105 Torr, and a cathode current equal to 130 A. An analysis has been made for an implanted Krypton ion beam in a zinc specimen using laser ablation inductively coupled plasma mass spectrometry. Photographs show the examined zinc specimen are presented. The depth profile shows that the highest concentration of Krypton ion under the surface of the zinc specimen is located at about 10 nm

  18. Development of a compact ECR ion source for various ion production

    Science.gov (United States)

    Muramatsu, M.; Hojo, S.; Iwata, Y.; Katagiri, K.; Sakamoto, Y.; Takahashi, N.; Sasaki, N.; Fukushima, K.; Takahashi, K.; Suzuki, T.; Sasano, T.; Uchida, T.; Yoshida, Y.; Hagino, S.; Nishiokada, T.; Kato, Y.; Kitagawa, A.

    2016-02-01

    There is a desire that a carbon-ion radiotherapy facility will produce various ion species for fundamental research. Although the present Kei2-type ion sources are dedicated for the carbon-ion production, a future ion source is expected that could provide: (1) carbon-ion production for medical use, (2) various ions with a charge-to-mass ratio of 1/3 for the existing Linac injector, and (3) low cost for modification. A prototype compact electron cyclotron resonance (ECR) ion source, named Kei3, based on the Kei series has been developed to correspond to the Kei2 type and to produce these various ions at the National Institute of Radiological Sciences (NIRS). The Kei3 has an outer diameter of 280 mm and a length of 1120 mm. The magnetic field is formed by the same permanent magnet as Kei2. The movable extraction electrode has been installed in order to optimize the beam extraction with various current densities. The gas-injection side of the vacuum chamber has enough space for an oven system. We measured dependence of microwave frequency, extraction voltage, and puller position. Charge state distributions of helium, carbon, nitrogen, oxygen, and neon were also measured.

  19. Development of a compact ECR ion source for various ion production

    Energy Technology Data Exchange (ETDEWEB)

    Muramatsu, M., E-mail: m-mura@nirs.go.jp; Hojo, S.; Iwata, Y.; Katagiri, K.; Sakamoto, Y.; Kitagawa, A. [National Institute of Radiological Sciences (NIRS), 4-9-1 Anagawa, Inage, Chiba 263-8555 (Japan); Takahashi, N. [Sumitomo Heavy Industries, Ltd., 19 Natsushima, Yokosuka, Kanagawa 237-8555 (Japan); Sasaki, N.; Fukushima, K.; Takahashi, K.; Suzuki, T.; Sasano, T. [Accelerator Engineering Corporation, 3-8-5 Konakadai, Inage, Chiba 263-0043 (Japan); Uchida, T.; Yoshida, Y. [Bio-Nano Electronics Research Centre, Toyo University, 2100 Kujirai, Kawagoe-shi, Saitama 350-8585 (Japan); Hagino, S.; Nishiokada, T.; Kato, Y. [Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita-shi, Osaka 565-0871 (Japan)

    2016-02-15

    There is a desire that a carbon-ion radiotherapy facility will produce various ion species for fundamental research. Although the present Kei2-type ion sources are dedicated for the carbon-ion production, a future ion source is expected that could provide: (1) carbon-ion production for medical use, (2) various ions with a charge-to-mass ratio of 1/3 for the existing Linac injector, and (3) low cost for modification. A prototype compact electron cyclotron resonance (ECR) ion source, named Kei3, based on the Kei series has been developed to correspond to the Kei2 type and to produce these various ions at the National Institute of Radiological Sciences (NIRS). The Kei3 has an outer diameter of 280 mm and a length of 1120 mm. The magnetic field is formed by the same permanent magnet as Kei2. The movable extraction electrode has been installed in order to optimize the beam extraction with various current densities. The gas-injection side of the vacuum chamber has enough space for an oven system. We measured dependence of microwave frequency, extraction voltage, and puller position. Charge state distributions of helium, carbon, nitrogen, oxygen, and neon were also measured.

  20. Development of a compact ECR ion source for various ion production

    International Nuclear Information System (INIS)

    There is a desire that a carbon-ion radiotherapy facility will produce various ion species for fundamental research. Although the present Kei2-type ion sources are dedicated for the carbon-ion production, a future ion source is expected that could provide: (1) carbon-ion production for medical use, (2) various ions with a charge-to-mass ratio of 1/3 for the existing Linac injector, and (3) low cost for modification. A prototype compact electron cyclotron resonance (ECR) ion source, named Kei3, based on the Kei series has been developed to correspond to the Kei2 type and to produce these various ions at the National Institute of Radiological Sciences (NIRS). The Kei3 has an outer diameter of 280 mm and a length of 1120 mm. The magnetic field is formed by the same permanent magnet as Kei2. The movable extraction electrode has been installed in order to optimize the beam extraction with various current densities. The gas-injection side of the vacuum chamber has enough space for an oven system. We measured dependence of microwave frequency, extraction voltage, and puller position. Charge state distributions of helium, carbon, nitrogen, oxygen, and neon were also measured

  1. Effect of Coulomb collision on the negative ion extraction mechanism in negative ion sources

    International Nuclear Information System (INIS)

    To improve the H− ion beam optics, it is necessary to understand the energy relaxation process of surface produced H− ions in the extraction region of Cs seeded H− ion sources. Coulomb collisions of charged particles have been introduced to the 2D3V-PIC (two dimension in real space and three dimension in velocity space particle-in-cell) model for the H− extraction by using the binary collision model. Due to Coulomb collision, the lower energy part of the ion energy distribution function of H− ions has been greatly increased. The mean kinetic energy of the surface produced H− ions has been reduced to 0.65 eV from 1.5 eV. It has been suggested that the beam optics of the extracted H− ion beam is strongly affected by the energy relaxation process due to Coulomb collision

  2. ULTRA-LOW-ENERGY HIGH-CURRENT ION SOURCE

    International Nuclear Information System (INIS)

    The technical objective of the project was to develop an ultra-low-energy, high-intensity ion source (ULEHIIS) for materials processing in high-technology fields including semiconductors, micro-magnetics and optics/opto-electronics. In its primary application, this ion source can be incorporated into the 4Wave thin-film deposition technique called biased target ion-beam deposition (BTIBD), which is a deposition technique based on sputtering (without magnetic field, i.e., not the typical magnetron sputtering). It is a technological challenge because the laws of space charge limited current (Child-Langmuir) set strict limits of how much current can be extracted from a reservoir of ions, such as a suitable discharge plasma. The solution to the problem was an innovative dual-discharge system without the use of extraction grids.

  3. Extraction induced emittance growth for negative ion sources

    International Nuclear Information System (INIS)

    Nonlinear emittance growth produced by ion extraction is considered by a 3-D analysis in a Vlasov-Poisson-Boltzmann formulation. Phenomena considered include: presheath effects, including electron depletion, electron sheath accumulation (for large transverse magnetic fields), nonlinear sheath fields (obtained by a self-consistent solution with an assumed quasi-equilibrium positive ion distribution and at least one Vlasov distribution), nonlinear fringe fields produced by the accelerator-extractor itself obtained self-consistently with item 3 above, nonlinear space charge of the beam itself, and beam in conjunction with extracted electrons. For specific volume negative ion source configurations, an investigation of the contribution of aberrations caused by an electron trap and electron accumulation in the extraction sheath are studied. Either of these effects can contribute significantly to the beam emittance, possibly dominating the contribution of the negative ion temperature in the source. 2 refs., 10 figs

  4. A resonant ionization laser ion source at ORNL

    Science.gov (United States)

    Liu, Y.; Stracener, D. W.

    2016-06-01

    Multi-step resonance laser ionization has become an essential tool for the production of isobarically pure radioactive ion beams at the isotope separator on-line (ISOL) facilities around the world. A resonant ionization laser ion source (RILIS) has been developed for the former Holifield Radioactive Ion Beam Facility (HRIBF) of Oak Ridge National Laboratory. The RILIS employs a hot-cavity ion source and a laser system featuring three grating-tuned and individually pumped Ti:Sapphire lasers, especially designed for stable and simple operation. The RILIS has been installed at the second ISOL production platform of former HRIBF and has successfully provided beams of exotic neutron-rich Ga isotopes for beta decay studies. This paper reports the features, advantages, limitations, and on-line and off-line performance of the RILIS.

  5. Project of electro-cyclotron resonance ion source test-bench for material investigation.

    Science.gov (United States)

    Kulevoy, T V; Chalykh, B B; Kuibeda, R P; Kropachev, G N; Ziiatdinova, A V

    2014-02-01

    Development of new materials for future energy facilities with higher operating efficiency is a challenging and crucial task. However, full-scale testing of radiation hardness for reactor materials is quite sophisticated and difficult as it requires long session of reactor irradiation; moreover, induced radioactivity considerably complicates further investigation. Ion beam irradiation does not have such a drawback; on the contrary, it has certain advantages. One of them is high speed of defect formation. Therefore, it provides a useful tool for modeling of different radiation damages. Improved understanding of material behavior under high dose irradiation will probably allow to simulate reactor irradiation close to real conditions and to make an adequate estimation of material radiation hardness. Since 2008 in Institute for Theoretical and Experimental Physics, the ion beam irradiation experiments are under development at the heavy ion radio frequency quadrupole linac and very important results are obtained already [T. V. Kulevoy et al., in Proceedings of the International Topical Meeting on Nuclear Research Applications and Utilization of Accelerators, IAEA Vienna, Austria, 2009, http://www.pub.iaea.org/MTCD/publications/PDF/P1433_CD/darasets/papers/ap_p5_07.pdf]. Nevertheless, the new test bench based on electro-cyclotron resonance ion source and high voltage platform is developed. The project of the test bench is presented and discussed. PMID:24593489

  6. Electron beam ion sources for student education at universities

    Energy Technology Data Exchange (ETDEWEB)

    Ritter, Erik [DREEBIT GmbH, Dresden (Germany); Zschornack, Guenter [TU Dresden, Dresden (Germany)

    2014-07-01

    Ion beams have become essential tools used in many fields of fundamental research as well as industrial applications. Thus, it is important for todays physics students to understand the basics of ion beam creation, transportation as well as ion-surface interactions. We present results from laboratory training courses using table-top sized electron beam ion sources of the Dresden EBIT type which is able to produce a large spectrum of ions with low or high charge states. The initial ion beam is guided through several ion optical elements like Einzel lenses and deflectors, is separated by the charge-to-mass ratio of its components with a Wien-Filter or dipole analyzing magnet and is detected in a Faraday Cup. A specific assembly for laboratory training as used at the Technische Universitaet Dresden and the Jagiellonian University in Krakow, Poland, is introduced. In typical experiments, students analyze the charge-to-mass ratio spectrum from a Dresden EBIT measured using a Wien Filter. The composition of the extracted ion beam can be manipulated by the gas pressure or the ionisation time. In a wider context, the atomic physics processes occurring especially during the production of highly charged ions also appear in nuclear fusion facilities as well as in many astrophysical phenomena, for example supernovas. Such aspects can be discussed in order to help students connect to modern research carried out at large international facilities.

  7. Electron beam ion sources for student education at universities

    International Nuclear Information System (INIS)

    Ion beams have become essential tools used in many fields of fundamental research as well as industrial applications. Thus, it is important for todays physics students to understand the basics of ion beam creation, transportation as well as ion-surface interactions. We present results from laboratory training courses using table-top sized electron beam ion sources of the Dresden EBIT type which is able to produce a large spectrum of ions with low or high charge states. The initial ion beam is guided through several ion optical elements like Einzel lenses and deflectors, is separated by the charge-to-mass ratio of its components with a Wien-Filter or dipole analyzing magnet and is detected in a Faraday Cup. A specific assembly for laboratory training as used at the Technische Universitaet Dresden and the Jagiellonian University in Krakow, Poland, is introduced. In typical experiments, students analyze the charge-to-mass ratio spectrum from a Dresden EBIT measured using a Wien Filter. The composition of the extracted ion beam can be manipulated by the gas pressure or the ionisation time. In a wider context, the atomic physics processes occurring especially during the production of highly charged ions also appear in nuclear fusion facilities as well as in many astrophysical phenomena, for example supernovas. Such aspects can be discussed in order to help students connect to modern research carried out at large international facilities.

  8. Prudction of low energy high intensity metal ion beams by means of a laser ion source

    Czech Academy of Sciences Publication Activity Database

    Gammino, S.; Torrisi, L.; Andó, L.; Ciavola, G.; Celona, L.; Láska, Leoš; Krása, Josef; Pfeifer, Miroslav; Rohlena, Karel; Woryna, E.; Wolowski, J.; Parys, P.; Shirkov, G. D.

    2002-01-01

    Roč. 73, č. 2 (2002), s. 650-653. ISSN 0034-6748 R&D Projects: GA AV ČR IAA1010105 Grant ostatní: KBN(PL) 5 P03B 108 20 Institutional research plan: CEZ:AV0Z1010921 Keywords : ECLISSE project * laser ion source * electron cyclotron resonance ion source Subject RIV: BH - Optics, Masers, Lasers Impact factor: 1.437, year: 2002

  9. CONSTRUCTION OF POLARIZED HEAVY ION SOURCE AT RCNP

    OpenAIRE

    Tanaka, M.; Ohshima, T.; Abe, K.; Katori, K.; Fujiwara, M.; Itahashi, T.; Ogata, H; Kondo, M.

    1990-01-01

    A recent progress in the construction of a polarized heavy ion source at RCNP, Osaka University is presented. A basic principle of the polarization is a spin and charge exchange collision between a highly stripped heavy ion and a polarized sodium atom. The first possible evidence for the 3He nuclear polarization generated through this method was experimentally demonstrated by means of the beam foil spectroscopy.

  10. Electrode activation in cesium-free negative ion sources

    International Nuclear Information System (INIS)

    Features of emission electrode activation leading to enhancement of negative ion emission in cesium-free discharges are discussed. In some ion sources with cesium-free discharges, the emission of negative ions has been increased significantly by emission electrode activation using strong heating of the negative biased electrode by discharge plasma. A simple explanation of this enhancement is that it is due to an accumulation on the emission surface of the plasma electrode of impurities with low ionization potential that decreases in surface work function and increases the secondary emission of negative ions similar to ''Cesiation.'' The negative biasing of emission surface is important for accumulation and trapping the impurities on the emission surface. To effectively control the activation process it is important to directly detect the evolution of the work function and the impurity concentration during electrode activation with enhancement of negative ion emission.

  11. Beam test of compact ECR ion source for carbon therapy

    International Nuclear Information System (INIS)

    Ion source for medical facilities should have characteristics of easy maintenance, low electric power, good stability and long operation time without maintenance (one year or more). Based on the proto type compact source, a 10 GHz compact ECR ion source with all permanent magnets has been developed. Peaks of the mirror magnetic field along the beam axis are 0.59 T at the extraction side and 0.87 T at the gas injection side, respectively, while the minimum B strength is 0.25 T. The source has a diameter of 320 mm and a length of 295 mm. The result of beam tests shows that a C4+ intensity of 530 μA was obtained under an extraction voltage of 45 kV. This paper describes the design detail and the experimental results for the new source. (author)

  12. Alternative modeling methods for plasma-based Rf ion sources

    Science.gov (United States)

    Veitzer, Seth A.; Kundrapu, Madhusudhan; Stoltz, Peter H.; Beckwith, Kristian R. C.

    2016-02-01

    Rf-driven ion sources for accelerators and many industrial applications benefit from detailed numerical modeling and simulation of plasma characteristics. For instance, modeling of the Spallation Neutron Source (SNS) internal antenna H- source has indicated that a large plasma velocity is induced near bends in the antenna where structural failures are often observed. This could lead to improved designs and ion source performance based on simulation and modeling. However, there are significant separations of time and spatial scales inherent to Rf-driven plasma ion sources, which makes it difficult to model ion sources with explicit, kinetic Particle-In-Cell (PIC) simulation codes. In particular, if both electron and ion motions are to be explicitly modeled, then the simulation time step must be very small, and total simulation times must be large enough to capture the evolution of the plasma ions, as well as extending over many Rf periods. Additional physics processes such as plasma chemistry and surface effects such as secondary electron emission increase the computational requirements in such a way that even fully parallel explicit PIC models cannot be used. One alternative method is to develop fluid-based codes coupled with electromagnetics in order to model ion sources. Time-domain fluid models can simulate plasma evolution, plasma chemistry, and surface physics models with reasonable computational resources by not explicitly resolving electron motions, which thereby leads to an increase in the time step. This is achieved by solving fluid motions coupled with electromagnetics using reduced-physics models, such as single-temperature magnetohydrodynamics (MHD), extended, gas dynamic, and Hall MHD, and two-fluid MHD models. We show recent results on modeling the internal antenna H- ion source for the SNS at Oak Ridge National Laboratory using the fluid plasma modeling code USim. We compare demonstrate plasma temperature equilibration in two-temperature MHD models

  13. Alternative modeling methods for plasma-based Rf ion sources

    Energy Technology Data Exchange (ETDEWEB)

    Veitzer, Seth A., E-mail: veitzer@txcorp.com; Kundrapu, Madhusudhan, E-mail: madhusnk@txcorp.com; Stoltz, Peter H., E-mail: phstoltz@txcorp.com; Beckwith, Kristian R. C., E-mail: beckwith@txcorp.com [Tech-X Corporation, Boulder, Colorado 80303 (United States)

    2016-02-15

    Rf-driven ion sources for accelerators and many industrial applications benefit from detailed numerical modeling and simulation of plasma characteristics. For instance, modeling of the Spallation Neutron Source (SNS) internal antenna H{sup −} source has indicated that a large plasma velocity is induced near bends in the antenna where structural failures are often observed. This could lead to improved designs and ion source performance based on simulation and modeling. However, there are significant separations of time and spatial scales inherent to Rf-driven plasma ion sources, which makes it difficult to model ion sources with explicit, kinetic Particle-In-Cell (PIC) simulation codes. In particular, if both electron and ion motions are to be explicitly modeled, then the simulation time step must be very small, and total simulation times must be large enough to capture the evolution of the plasma ions, as well as extending over many Rf periods. Additional physics processes such as plasma chemistry and surface effects such as secondary electron emission increase the computational requirements in such a way that even fully parallel explicit PIC models cannot be used. One alternative method is to develop fluid-based codes coupled with electromagnetics in order to model ion sources. Time-domain fluid models can simulate plasma evolution, plasma chemistry, and surface physics models with reasonable computational resources by not explicitly resolving electron motions, which thereby leads to an increase in the time step. This is achieved by solving fluid motions coupled with electromagnetics using reduced-physics models, such as single-temperature magnetohydrodynamics (MHD), extended, gas dynamic, and Hall MHD, and two-fluid MHD models. We show recent results on modeling the internal antenna H{sup −} ion source for the SNS at Oak Ridge National Laboratory using the fluid plasma modeling code USim. We compare demonstrate plasma temperature equilibration in two

  14. Alternative modeling methods for plasma-based Rf ion sources.

    Science.gov (United States)

    Veitzer, Seth A; Kundrapu, Madhusudhan; Stoltz, Peter H; Beckwith, Kristian R C

    2016-02-01

    Rf-driven ion sources for accelerators and many industrial applications benefit from detailed numerical modeling and simulation of plasma characteristics. For instance, modeling of the Spallation Neutron Source (SNS) internal antenna H(-) source has indicated that a large plasma velocity is induced near bends in the antenna where structural failures are often observed. This could lead to improved designs and ion source performance based on simulation and modeling. However, there are significant separations of time and spatial scales inherent to Rf-driven plasma ion sources, which makes it difficult to model ion sources with explicit, kinetic Particle-In-Cell (PIC) simulation codes. In particular, if both electron and ion motions are to be explicitly modeled, then the simulation time step must be very small, and total simulation times must be large enough to capture the evolution of the plasma ions, as well as extending over many Rf periods. Additional physics processes such as plasma chemistry and surface effects such as secondary electron emission increase the computational requirements in such a way that even fully parallel explicit PIC models cannot be used. One alternative method is to develop fluid-based codes coupled with electromagnetics in order to model ion sources. Time-domain fluid models can simulate plasma evolution, plasma chemistry, and surface physics models with reasonable computational resources by not explicitly resolving electron motions, which thereby leads to an increase in the time step. This is achieved by solving fluid motions coupled with electromagnetics using reduced-physics models, such as single-temperature magnetohydrodynamics (MHD), extended, gas dynamic, and Hall MHD, and two-fluid MHD models. We show recent results on modeling the internal antenna H(-) ion source for the SNS at Oak Ridge National Laboratory using the fluid plasma modeling code USim. We compare demonstrate plasma temperature equilibration in two-temperature MHD

  15. Ferroelectric Plasma Source for Heavy Ion Beam Charge Neutralization

    International Nuclear Information System (INIS)

    Plasmas are employed as a source of unbound electrons for charge neutralizing heavy ion beams to allow them to focus to a small spot size. Calculations suggest that plasma at a density of 1-100 times the ion beam density and at a length ∼ 0.1-1 m would be suitable. To produce one-meter plasma, large-volume plasma sources based upon ferroelectric ceramics are being developed. These sources have the advantage of being able to increase the length of the plasma and operate at low neutral pressures. The source utilizes the ferroelectric ceramic BaTiO3 to form metal plasma. The drift tube inner surface of the Neutralized Drift Compression Experiment (NDCX) will be covered with ceramic, and high voltage (∼ 1-5 kV) applied between the drift tube and the front surface of the ceramic by placing a wire grid on the front surface. A prototype ferroelectric source 20 cm long has produced plasma densities of 5 x 1011 cm-3. The source was integrated into the previous Neutralized Transport Experiment (NTX), and successfully charge neutralized the K+ ion beam. Presently, the one-meter source is being fabricated. The source is being characterized and will be integrated into NDCX for charge neutralization experiments

  16. Plasma and Ion Sources in Large Area Coatings: A Review

    Energy Technology Data Exchange (ETDEWEB)

    Anders, Andre

    2005-02-28

    Efficient deposition of high-quality coatings often requires controlled application of excited or ionized particles. These particles are either condensing (film-forming) or assisting by providing energy and momentum to the film growth process, resulting in densification, sputtering/etching, modification of stress, roughness, texture, etc. In this review, the technical means are surveyed enabling large area application of ions and plasmas, with ion energies ranging from a few eV to a few keV. Both semiconductortype large area (single wafer or batch processing with {approx} 1000 cm{sup 2}) and in-line web and glass-coating-type large area (> 10{sup 7} m{sup 2} annually) are considered. Characteristics and differences between plasma and ion sources are explained. The latter include gridded and gridless sources. Many examples are given, including sources based on DC, RF, and microwave discharges, some with special geometries like hollow cathodes and E x B configurations.

  17. The RHIC polarized H{sup −} ion source

    Energy Technology Data Exchange (ETDEWEB)

    Zelenski, A., E-mail: zelenski@bnl.gov; Atoian, G.; Raparia, D.; Ritter, J.; Steski, D. [Brookhaven National Laboratory, Upton, New York 11973 (United States)

    2016-02-15

    A novel polarization technique had been successfully implemented for the Relativistic Heavy Ion Collider (RHIC) polarized H{sup −} ion source upgrade to higher intensity and polarization. In this technique, a proton beam inside the high magnetic field solenoid is produced by ionization of the atomic hydrogen beam (from external source) in the He-gaseous ionizer cell. Further proton polarization is produced in the process of polarized electron capture from the optically pumped Rb vapor. The use of high-brightness primary beam and large cross sections of charge-exchange cross sections resulted in production of high intensity H{sup −} ion beam of 85% polarization. The source very reliably delivered polarized beam in the RHIC Run-2013 and Run-2015. High beam current, brightness, and polarization resulted in 75% polarization at 23 GeV out of Alternating Gradient Synchrotron (AGS) and 60%-65% beam polarization at 100-250 GeV colliding beams in RHIC.

  18. Design and development of the CSNS ion source control system

    International Nuclear Information System (INIS)

    Now that the CSNS ion source test stand has been stably working for years, an online control system for the CSNS ion source which aims to be more stable and reliable is now under development. F3RP61-2L, a new PLC CPU module running an embedded Linux system, is introduced to the system as an IOC, to function together with the I/O modules of FA-M3 PLC on the PLC-bus. The adoption of the new IOC not only simplifies the architecture of the control system, but also improves the data transmission speed. In this paper, the design and development of the supervisory and control system for the CSNS ion source are described. (authors)

  19. Design and development of the CSNS ion source control system

    CERN Document Server

    Yan-Hua, Lu; Hua-Fu, Ouyang

    2013-01-01

    After the CSNS ion source test stand has been stably working for years, an online control system for CSNS ion source aiming to be more stable and reliable is now under development. F3RP61-2L, a new PLC CPU module under Linux system, is introduced to the system as an IOC, to function together with the I/O modules of FA-M3 PLC on the PLC-bus. The adoption of the new IOC not only simplifies the architecture of the control system, but also improves the data transmission speed. In this paper, the design and development of the supervisory and control system for CSNS ion source are described.

  20. Recipe for fabricating zeolite ion source for plasma probing

    International Nuclear Information System (INIS)

    Alkali zeolite is often used as an ion source material owing to its easy extraction of alkali ions. In our laboratory, we fabricated zeolite containing a particular alkali species through a replacement reaction with sodium zeolite. In this paper, we present a simple mathematical model for describing this replacement reaction for making zeolite containing a particular alkali species. In this model, the fraction of alkali ions trapped in the zeolite lattice is expressed as a function of the number of substitution reactions in a concise recursion formula. This formula gives a simple estimation of efficiency for fabricating alkali zeolite in terms of the consumptions of time and chemicals. (author)

  1. Shunting arc plasma source for pure carbon ion beama)

    Science.gov (United States)

    Koguchi, H.; Sakakita, H.; Kiyama, S.; Shimada, T.; Sato, Y.; Hirano, Y.

    2012-02-01

    A plasma source is developed using a coaxial shunting arc plasma gun to extract a pure carbon ion beam. The pure carbon ion beam is a new type of deposition system for diamond and other carbon materials. Our plasma device generates pure carbon plasma from solid-state carbon material without using a hydrocarbon gas such as methane gas, and the plasma does not contain any hydrogen. The ion saturation current of the discharge measured by a double probe is about 0.2 mA/mm2 at the peak of the pulse.

  2. High yields from the Stockholm electron beam ion source CRYSIS

    Energy Technology Data Exchange (ETDEWEB)

    Rao, R.; Bjoerkhage, M.; Carle, P.; Engstroem, Aa.; Liljeby, L.; Rouleau, G.; Wenander, F. [Manne Siegbahn Lab., Stockholm (Sweden)

    1997-04-01

    CRYSIS is an electron beam ion source (EBIS) with a superconducting solenoid. Highly charged ions are delivered to the acceleration and storage ring CRYRING, SMILETRAP and to low energy atomic and surface physics experiments. Stable electron beam currents up to 700 mA are obtained, in order to enhance the ion yield out of the EBIS. Measurements of the total charge per pulse at different working conditions and electron beam current density measurements were done. At electron beam currents of 600 mA yields up to 2.5 x 10{sup 10} charges per pulse could be measured. (orig.). 8 refs.

  3. Shunting arc plasma source for pure carbon ion beam

    Energy Technology Data Exchange (ETDEWEB)

    Koguchi, H.; Sakakita, H.; Kiyama, S.; Shimada, T.; Sato, Y.; Hirano, Y. [Energy Technology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Umezono, Tsukuba, Ibaraki 305-8568 (Japan)

    2012-02-15

    A plasma source is developed using a coaxial shunting arc plasma gun to extract a pure carbon ion beam. The pure carbon ion beam is a new type of deposition system for diamond and other carbon materials. Our plasma device generates pure carbon plasma from solid-state carbon material without using a hydrocarbon gas such as methane gas, and the plasma does not contain any hydrogen. The ion saturation current of the discharge measured by a double probe is about 0.2 mA/mm{sup 2} at the peak of the pulse.

  4. Modified calutron negative ion source operation and future plans

    International Nuclear Information System (INIS)

    Negative ion generation has advanced rapidly by employing the concept of surface ionization. The modified calutron has proven to be a successful tool to explore these concepts and provide solutions to the many problems which must be evaluated. Many features of the SITEX (Surface Ionization with Transverse Extraction) ion source are ideally suited to this exploration. Some of these features are; a ribbon-like plasma, electron control by transverse magnetic fields and the ability to separate the Cs oven parameters from those which control the positive ion generation

  5. Emission characteristics and stability of laser ion sources

    Czech Academy of Sciences Publication Activity Database

    Krása, Josef; Velyhan, Andriy; Krouský, Eduard; Láska, Leoš; Rohlena, Karel; Jungwirth, Karel; Ullschmied, Jiří; Lorusso, A.; Velardi, L.; Nassisi, V.; Czarnecka, A.; Ryc, L.; Parys, P.; Wolowski, J.

    Melville: American Institute of Physics, 2010 - (Kobayashi, A.; Miyasaka, T.; Krása, J.), 119-122. (AIP Conference Proceedings. 1282). ISBN 978-0-7354-0812-8. [International Symposium on Applied Plasma Science /7./: ISAPS '09. Hamburg (DE), 31.08.2009-04.09.2009] R&D Projects: GA AV ČR IAA100100715 Institutional research plan: CEZ:AV0Z10100523; CEZ:AV0Z20430508 Keywords : laser ion sources * ion emission reproducibility * thermal and fast ions * centre-of-mass veloci Subject RIV: BH - Optics, Masers, Laser s

  6. Shunting arc plasma source for pure carbon ion beam.

    Science.gov (United States)

    Koguchi, H; Sakakita, H; Kiyama, S; Shimada, T; Sato, Y; Hirano, Y

    2012-02-01

    A plasma source is developed using a coaxial shunting arc plasma gun to extract a pure carbon ion beam. The pure carbon ion beam is a new type of deposition system for diamond and other carbon materials. Our plasma device generates pure carbon plasma from solid-state carbon material without using a hydrocarbon gas such as methane gas, and the plasma does not contain any hydrogen. The ion saturation current of the discharge measured by a double probe is about 0.2 mA∕mm(2) at the peak of the pulse. PMID:22380206

  7. Upwelling O(+) ion source characteristics. [in polar magnetosphere

    Science.gov (United States)

    Moore, T. E.; Lockwood, M.; Chandler, M. O.; Waite, J. H., Jr.; Chappell, C. R.; Persoon, A.; Sugiura, M.

    1986-01-01

    The characteristics of an upwelling ion source are discussed. A typical upwelling event is analyzed using Dynamic Explorer 1 satellite retarding ion mass spectrometer (RIMS) observations of the low-energy plasma, and energetic ion and local electromagnetic field observations. The RIMS spectrograms of the O(+) ion species, radial and axial head data for O(+), and spin plan O(+) distribution functions are examined. The features of the upwelling observed include: (1) transverse ion heating to temperature of 100,000 K, (2) large outward flows of O(+), (3) enhanced flow of H(+) and He (+), (4) moderately strong field-aligned current sheets, (5) an associated intense eastward convection channel, and (6) strong wave emissions in the range near and below the proton gyrofrequency. The association between the upwelling O(+) signature and auroral current is investigated. Plasma wave and electric field environments are studied and plasma flows and densities are derived. It is noted that the mechanism for ion heating which defines the source region for these polar ion outflows is related to field-aligned currents and an associated auroral convection channel or jet.

  8. Sources for Low Energy Extreme of Ion Implantation

    International Nuclear Information System (INIS)

    A joint research and development effort focusing on the design of steady state, intense ion sources has been in progress for the past four and a half years. The ultimate goal is to meet the two, energy extreme range needs of mega-electron-volt and 100's of electron-volt ion implanters. This endeavor has resulted in record steady state output currents of higher charge state Antimony and Phosphorous ions: P2+(8.6 pmA), P3+(1.9 pmA), and P4+(0.12 pmA) and 16.2, 7.6, 3.3, and 2.2 pmA of Sb3+ Sb4+, Sb5+, and Sb6+ respectively. During the past year the effort was channeled towards low energy implantation, for which the effort involved molecular ions and a novel plasmaless/gasless deceleration method. To date, 3 emA of positive Decaborane ions were extracted at 14 keV and a smaller current of negative Decaborane ions were also extracted. Additionally, a Boron fraction of over 70% was extracted from a Bernas-Calutron ion source.

  9. Development of electron cyclotron resonance heavy ion source

    International Nuclear Information System (INIS)

    A multiply charged heavy ion (MCHI) beam is a major scientific ingredient to explore many new fields of research over a wide energy range (from a few eV to a few TeV). The basic requirement is to have an ion source that will produce highly charged (Z) high intensity ion beam with low emittance over the entire mass range and will work stably over a long time and having 100% duty cycle. These are very useful requirements in accelerator applications in particular. Performance of present day Electron Cyclotron Resonance Ion Source (ECRIS) has almost fulfilled all the above conditions. In ECRIS, high-Z ions are produced by subjecting low-Z ions in a plasma to successive impact of hot electrons, which are efficiently energized by rf power, the frequency of which equals the cyclotron frequency of the electrons in the magnetic field. The emphasis on ECRIS development has been to increase electron temperature Te and nτ factor, where n is electron density and τ is the ion confinement time, which in turn is related to plasma confinement and stability. In this paper the development on ECRIS and the experiences with the 6.4 GHz ECRIS indigenously built at the VEC centre will be briefly presented. (author). 32 refs., 9 figs., 2 tabs

  10. H- Ion Sources For CERN’s Linac4

    CERN Document Server

    Lettry, J; Coutron, Y; Chaudeta, E; Dallocchio, A; Gil Flores, J; Hansen, J; Mahner, E; Mathot, S; Mattei, S; Midttun, O; Moyret, P; Nisbet, D; O’Neil, M; Paoluzzi, M; Pasquino, C; Pereira, H; Sanchez Arias, J; Schmitzer, C; Scrivens, R; Steyaert, D

    2013-01-01

    The specifications set to the Linac4 ion source are: H- ion pulses of 0.5 ms duration, 80 mA intensity and 45 keV energy within a normalized emittance of 0.25 mmmrad RMS at a repetition rate of 2 Hz. In 2010, during the commissioning of a prototype based on H- production from the plasma volume, it was observed that the powerful co-extracted electron beam inherent to this type of ion source could destroy its electron beam dump well before reaching nominal parameters. However, the same source was able to provide 80 mA of protons mixed with a small fraction of H2+ and H3+ molecular ions. The commissioning of the radio frequency quadrupole accelerator (RFQ), beam chopper and H- beam diagnostics of the Linac4 are scheduled for 2012 and its final installation in the underground building is to start in 2013. Therefore, a crash program was launched in 2010 and reviewed in 2011 aiming at keeping the original Linac4 schedule with the following deliverables: Design and production of a volume ion source prototype suitabl...

  11. Development of a pig ion source with end extraction

    International Nuclear Information System (INIS)

    This work describes the developed version of the cold 'positive ion gas' ion source that been designed and constructed in our laboratory. The disadvantages of the earlier source, which made its assembly and intern disassembly and installation on the system a heavy burden, are overcome by making it of more compact size and built-in unit with end extraction that is pierce-type in shape. Besides, the problems that have arisen with the magnetic field are solved by removing the electro-magnet from the vacuum zone to be externally positioned along the cathodes-anode region. The electrical connections and insulation mechanism are improved in order to optimize the ion beam parameters and step-up its acceleration energy as well. Experiments have been conducted to asses the influence of pressure, discharge voltage, magnetic field and extracting voltage on the ion source properties. At the high pressure regime the discharge current is significantly decreased with pressure. It gives an argon ion current of∼ 100 μA at Vd = 1 kV, Ve= 2.5 kV, Vacc = 6 kV and magnetic field ∼ 250 G. The source showed an energy spread of 22 eV at a discharge voltage of 1 kV and an extraction voltage of 2.5 kV

  12. The Leuven isotope separator on-line laser ion source

    CERN Document Server

    Kudryavtsev, Y; Franchoo, S; Huyse, M; Gentens, J; Kruglov, K; Müller, W F; Prasad, N V S; Raabe, R; Reusen, I; Van den Bergh, P; Van Duppen, P; Van Roosbroeck, J; Vermeeren, L; Weissman, L

    2002-01-01

    An element-selective laser ion source has been used to produce beams of exotic radioactive nuclei and to study their decay properties. The operational principle of the ion source is based on selective resonant laser ionization of nuclear reaction products thermalized and neutralized in a noble gas at high pressure. The ion source has been installed at the Leuven Isotope Separator On-Line (LISOL), which is coupled on-line to the cyclotron accelerator at Louvain-la-Neuve. sup 5 sup 4 sup , sup 5 sup 5 Ni and sup 5 sup 4 sup , sup 5 sup 5 Co isotopes were produced in light-ion-induced fusion reactions. Exotic nickel, cobalt and copper nuclei were produced in proton-induced fission of sup 2 sup 3 sup 8 U. The b decay of the sup 6 sup 8 sup - sup 7 sup 4 Ni, sup 6 sup 7 sup - sup 7 sup 0 Co, sup 7 sup 0 sup - sup 7 sup 5 Cu and sup 1 sup 1 sup 0 sup - sup 1 sup 1 sup 4 Rh isotopes has been studied by means of beta-gamma and gamma-gamma spectroscopy. Recently, the laser ion source has been used to produce neutron-d...

  13. Optimization of negative ion sources for a heavy-ion-beam probe

    OpenAIRE

    Nishiura, M.; Ido, T.; Shimizu, A.; Kato, S.; Tsukada, K.; Nishizawa, A.; Hamada, Y.; Matsumoto, Y.; Mendenilla, A.; Wada, M.

    2006-01-01

    The development of plasma-sputter-type negative ion sources is underway for the heavy-ion-beam probe system as plasma diagnostic beams of the large helical device (LHD) for potential and fluctuation field measurements. Our purpose is to increase the doubly charged exchanged Au^+ beam intensity to enhance the detection signal after passing through the plasmas of the LHD. For this purpose, the characterization of the Au^– ion source and the beam optics has been carried out both experimentally a...

  14. Production of a highly charged uranium ion beam with RIKEN superconducting electron cyclotron resonance ion source.

    Science.gov (United States)

    Higurashi, Y; Ohnishi, J; Nakagawa, T; Haba, H; Tamura, M; Aihara, T; Fujimaki, M; Komiyama, M; Uchiyama, A; Kamigaito, O

    2012-02-01

    A highly charged uranium (U) ion beam is produced from the RIKEN superconducting electron cyclotron resonance ion source using 18 and 28 GHz microwaves. The sputtering method is used to produce this U ion beam. The beam intensity is strongly dependent on the rod position and sputtering voltage. We observe that the emittance of U(35+) for 28 GHz microwaves is almost the same as that for 18 GHz microwaves. It seems that the beam intensity of U ions produced using 28 GHz microwaves is higher than that produced using 18 GHz microwaves at the same Radio Frequency (RF) power. PMID:22380180

  15. Design and test of the ion mobility spectrometer with corona discharge ion source

    International Nuclear Information System (INIS)

    In the present paper we describe in detail the design and construction of a home built ion mobility spectrometer with corona discharge as an ionization source. The ion mobility spectra have been recorded using the corona discharge in two different modes: i) chemical ionization and ii) direct ionization in the corona discharge. The chemical ionization of the organic compounds resulted in less fragmented ion mobility spectra in comparison to the direct ionization of the compounds in the corona discharge. The measured positive ion mobility spectra of several organic compounds including acetone, methanol, ethanol and benzene are presented. (Authors)

  16. Development of high intensity ECR ion source for ADS

    International Nuclear Information System (INIS)

    Electron cyclotron resonance principle based ion source consists of plasma chamber, five electrode ion extraction system and high voltage ceramic insulation system. Five electrodes have complex geometry with water cooling arrangement and bimetallic joints. Beam diagnostic and beam dump system are inherent part of it to measure beam quality and current. This paper describes mechanical design and manufacturing features of plasma chamber, electrodes and faraday cup of proton source. Various joining techniques like braze welding, brazing, electron beam welding and diffusion bonding are used to manufacture electrodes and plasma chamber. Beam diagnostic chamber and beam dump chamber are designed, manufactured and helium leak tested at CDM, BARC. (author)

  17. A computer gas cluster ion beam source at QSEC

    International Nuclear Information System (INIS)

    Description is given for a compact ion source developed in our laboratory which can serve not only as an accelerator in a range of a few tens of kV but also as a Wiley-McLaren Time-of-Flight (TOF) mass spectrometer. Using this new type ion source we can select a variety of desired cluster size and obtain a well collimated beam with the aide of Grid Lenses. We describe two technical details that play a key role in cluster size measurements; electrostatic lenses in a TOF system and the use of a mesh in an electrostatic optical system. (author)

  18. Inverted spherical ioniser sputter ion source (IS3)

    International Nuclear Information System (INIS)

    The reflected beam sputter ion source has been found to have an inherent need for frequent readjustment of several voltages during use. Its lack of cylindrical symmetry is reflected in the asymmetry of its beam, and the position and shape of the sputtering Cs+ beam have been shown to depend strongly on the Cs+ current because of space charge effects. There has been a tendency for ion source designs starting from a simple concept to be subjected to continual improvement a process which, while improving one feature, often complicates the originally simple concept, and makes operation more complex

  19. Recycling effect of germanium on ECR ion source

    OpenAIRE

    Leherissier, P.; Barué, C.; Canet, C; Dubois, M.; Dupuis, M.; Flambard, J.L.; Gaubert, G.; Jardin, P.; Lecesne, N.; Lemagnen, F.; R. LEROY; Pacquet, J.Y.

    2003-01-01

    After running for three weeks with a 76Ge beam provided by the ECR-4 ion source at GANILwe have investigated the recycling effect of an SF6 plasma. The initial beam was produced bythe classical method, using germanium dioxide in our micro-oven and helium as support gas.The overall ionization efficiency was measured and found to be around 3%. Without theoven, and using SF6 instead of helium, the ECR-4 ion source has been able to produce a verystable beam during a two-week period. The intensity...

  20. Accessibility condition of wave propagation and multicharged ion production in electron cyclotron resonance ion source plasma

    International Nuclear Information System (INIS)

    A new tandem type source of electron cyclotron resonance (ECR) plasmas has been constructing for producing synthesized ion beams in Osaka University. Magnetic mirror field configuration with octupole magnets can be controlled to various shape of ECR zones, namely, in the 2nd stage plasma to be available by a pair mirror and a supplemental coil. Noteworthy correlations between these magnetic configurations and production of multicharged ions are investigated in detail, as well as their optimum conditions. We have been considering accessibility condition of electromagnetic and electrostatic waves propagating in ECR ion source plasma, and then investigated their correspondence relationships with production of multicharged ions. It has been clarified that there exits efficient configuration of ECR zones for producing multicharged ion beams experimentally, and then has been suggested from detail accessibility conditions on the ECR plasma that new resonance, i.e., upper hybrid resonance, must have occurred

  1. Accessibility condition of wave propagation and multicharged ion production in electron cyclotron resonance ion source plasma

    Energy Technology Data Exchange (ETDEWEB)

    Kato, Yushi, E-mail: kato@eei.eng.osaka-u.ac.jp; Yano, Keisuke; Nishiokada, Takuya; Nagaya, Tomoki; Kimura, Daiju; Kumakura, Sho; Imai, Youta; Hagino, Shogo; Otsuka, Takuro; Sato, Fuminobu [Division of Electrical, Electronic and Information Engineering, Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita-shi, Osaka 565-0871 (Japan)

    2016-02-15

    A new tandem type source of electron cyclotron resonance (ECR) plasmas has been constructing for producing synthesized ion beams in Osaka University. Magnetic mirror field configuration with octupole magnets can be controlled to various shape of ECR zones, namely, in the 2nd stage plasma to be available by a pair mirror and a supplemental coil. Noteworthy correlations between these magnetic configurations and production of multicharged ions are investigated in detail, as well as their optimum conditions. We have been considering accessibility condition of electromagnetic and electrostatic waves propagating in ECR ion source plasma, and then investigated their correspondence relationships with production of multicharged ions. It has been clarified that there exits efficient configuration of ECR zones for producing multicharged ion beams experimentally, and then has been suggested from detail accessibility conditions on the ECR plasma that new resonance, i.e., upper hybrid resonance, must have occurred.

  2. Ion beams in SEM: An experiment towards a high brightness low energy spread electron impact gas ion source

    NARCIS (Netherlands)

    Jun, D.S.; Kutchoukov, V.G.; Kruit, P.

    2011-01-01

    A next generation ion source suitable for both high resolution focused ion beam milling and imaging applications is currently being developed. The new ion source relies on a method of which positively charged ions are extracted from a miniaturized gas chamber where neutral gas atoms become ionized b

  3. Blind Source Separation For Ion Mobility Spectra

    International Nuclear Information System (INIS)

    Miniaturization is a powerful trend for smart chemical instrumentation in a diversity of applications. It is know that miniaturization in IMS leads to a degradation of the system characteristics. For the present work, we are interested in signal processing solutions to mitigate limitations introduced by limited drift tube length that basically involve a loss of chemical selectivity. While blind source separation techniques (BSS) are popular in other domains, their application for smart chemical instrumentation is limited. However, in some conditions, basically linearity, BSS may fully recover the concentration time evolution and the pure spectra with few underlying hypothesis. This is extremely helpful in conditions where non-expected chemical interferents may appear, or unwanted perturbations may pollute the spectra. SIMPLISMA has been advocated by Harrington et al. in several papers. However, more modern methods of BSS for bilinear decomposition with the restriction of positiveness have appeared in the last decade. In order to explore and compare the performances of those methods a series of experiments were performed.

  4. Electron cyclotron resonance microwave ion sources for thin film processing

    International Nuclear Information System (INIS)

    Plasmas created by microwave absorption at the electron cyclotron resonance (ECR) are increasingly used for a variety of plasma processes, including both etching and deposition. ECR sources efficiently couple energy to electrons and use magnetic confinement to maximize the probability of an electron creating an ion or free radical in pressure regimes where the mean free path for ionization is comparable to the ECR source dimensions. The general operating principles of ECR sources are discussed with special emphasis on their use for thin film etching. Data on source performance during Cl base etching of Si using an ECR system are presented. 32 refs., 5 figs

  5. A review of vacuum ARC ion source research at ANSTO

    International Nuclear Information System (INIS)

    The authors talk briefly describes the history and current status of vacuum arc ion source research at the Australian Nuclear Science and Technology Organization (ANSTO). In addition, the author makes some mention of the important role of previous Vacuum Arc Ion Source Workshops in fostering the development of this research field internationally. During the period 1986 -89, a type of plasma centrifuge known as a vacuum arc centrifuge was developed at ANSTO as part of a research project on stable isotope separation. In this device, a high current vacuum arc discharge was used to produce a metal plasma which was subsequently rotated in an axial magnetic field. The high rotational speeds (105 - 106 rad sec-1) achievable with this method produce centrifugal separation of ions with different mass:charge ratios such as isotopic species. The first portent of things to come occurred in 1985 when Dr. Ian Brown visited ANSTO's Lucas Heights Research Laboratories and presented a talk on the metal vapour vacuum arc (MEVVA) ion source which had only recently been invented by Brown and co-workers, J. Galvin and R. MacGill, at Lawrence Berkeley Laboratory. For those of us involved in vacuum arc centrifuge research, this was an exciting development primarily because the metal vapour vacuum arc plasma source was common to both devices. Thus, a type of arc, which had since the 1930's been extensively investigated as a means of switching high current loads, had found wider application as a useful plasma source

  6. Plasma spectroscopy of metal ions for hyper-electron cyclotron resonance ion source.

    Science.gov (United States)

    Muto, Hideshi; Ohshiro, Yukimitsu; Yamaka, Shoichi; Watanabe, Shin-ichi; Oyaizu, Michihiro; Kubono, Shigeru; Yamaguchi, Hidetoshi; Kase, Masayuki; Hattori, Toshiyuki; Shimoura, Susumu

    2014-02-01

    In this research, the optical line spectra of metal ions from ECR plasma were observed using a grating monochromator with a photomultiplier. The light intensity of line spectrum from the ECR plasma had a strong correlation with ion beam intensity measured by a magnetic mass analyzer. This correlation is a significant information for the beam tuning process, because it allows to conduct the extraction of the desired metal ion species from the ECR plasma. Separation of ion species of the same charge to mass ratio with an electromagnetic mass analyzer is known to be an exceptionally complex process, but this research provides a new approach for its simplification. In this paper the grating monochromator method for metal ion beam tuning such as (40)Ca(12+), (56)Fe(15+), and (85)Rb(20+) of hyper-ECR ion source as an injector for RIKEN Azimuthal Varying Field cyclotron is described. PMID:24593484

  7. Ion beam extraction from a matrix ECR plasma source by discrete ion-focusing effect

    DEFF Research Database (Denmark)

    Stamate, Eugen; Draghici, Mihai

    2010-01-01

    Positive or negative ion beams extracted from plasma are used in a large variety of surface functionalization techniques such as implantation, etching, surface activation, passivation or oxidation. Of particular importance is the surface treatment of materials sensitive to direct plasma exposure...... due to high heath fluxes, the controllability of the ion incidence angle, and charge accumulation when treating insulating materials. Despite of a large variety of plasma sources available for ion beam extraction, there is a clear need for new extraction mechanisms that can make available ion beams...... with high current densities that can treat surfaces placed adjacent to the extraction region. This work introduces a new phenomenology for ion beam extraction using the discrete ion-focusing effect associated with three-dimensional plasma-sheath-lenses [1, 2]. Experiments are performed in a matrix...

  8. Collisional electrostatic ion cyclotron waves as a possible source of energetic heavy ions in the magnetosphere

    Science.gov (United States)

    Providakes, Jason; Seyler, Charles E.

    1990-01-01

    A new mechanism is proposed for the source of energetic heavy ions (NO/+/, O2/+/, and O/+/) found in the magnetosphere. Simulations using a multispecies particle simulation code for resistive current-driven electrostatic ion cyclotron waves show transverse and parallel bulk heating of bottomside ionospheric heavy ion populations. The dominant mechanism for the transverse bulk heating is resonant ion heating by wave-particle ion trapping. Using a linear kinetic dispersion relation for a magnetized, collisional, homogenous, and multiion plasma, it is found that collisional electrostatic ion cyclotron waves near the NO(+), O2(+), and O(+) gyrofrequencies are unstable to field-aligned currents of 50 microA/sq m for a typical bottomside ionosphere.

  9. High intensity negative proton beams from a SNICS ion source

    International Nuclear Information System (INIS)

    For the past year we have been involved in a project to develop an intense (> 100μA) negative proton beam from a SNICS (Source of Negative Ions by Cesium Sputtering) ion source. This report will cover how we accomplished and exceeded this goal by more than 40%. Included in these observations will be the following: A description of an effective method for making titanium hydride cathodes. How to overcome the limitations of the titanium hydride cathode. The modification of the SNICS source to improve output; including the installation of the conical ionizer and the gas cathode. A discussion of problems including: poisoning the proton beam with oxygen, alternative gas cathode materials, the clogging of the gas inlet, long burn-in times, and limited cathode life times. Finally, how to optimize source performance when using a gas cathode, and what is the mechanism by which a gas cathode operates; facts, fantasies, or myth

  10. A simple radionuclide-driven single-ion source

    International Nuclear Information System (INIS)

    We describe a source capable of producing single barium ions through nuclear recoils in radioactive decay. The source is fabricated by electroplating 148Gd onto a silicon α-particle detector and vapor depositing a layer of BaF2 over it. 144Sm recoils from the alpha decay of 148Gd are used to dislodge Ba+ ions from the BaF2 layer and emit them in the surrounding environment. The simultaneous detection of an α particle in the substrate detector allows for tagging of the nuclear decay and of the Ba+ emission. The source is simple, durable, and can be manipulated and used in different environments. We discuss the fabrication process, which can be easily adapted to emit most other chemical species, and the performance of the source.

  11. A simple radionuclide-driven single-ion source

    CERN Document Server

    Díez, M Montero; Fairbank, W; Gratta, G; Barbeau, P S; Barry, K; DeVoe, R; Dolinski, M J; Green, M; LePort, F; Müller, A R; Neilson, R; O'Sullivan, K; Ackerman, N; Aharmin, B; Auger, M; Benitez-Medina, C; Breidenbach, M; Burenkov, A; Cook, S; Daniels, T; Donato, K; Farine, J; Giroux, G; Gornea, R; Graham, K; Hagemann, C; Hall, C; Hall, K; Hallman, D; Hargrove, C; Herrin, S; Karelin, A; Kaufman, L J; Kuchenkov, A; Kumar, K; Lacey, J; Leonard, D S; Mackay, D; MacLellan, R; Mong, B; Niner, E; Odian, A; Piepke, A; Pocar, A; Prescott, C Y; Pushkin, K; Rollin, E; Rowson, P C; Sinclair, D; Slutsky, S; Stekhanov, V; Vuilleumier, J -L; Wichoski, U; Wodin, J; Yang, L; Yen, Y -R

    2010-01-01

    We describe a source capable of producing single barium ions through nuclear recoils in radioactive decay. The source is fabricated by electroplating 148Gd onto a silicon {\\alpha}-particle detector and vapor depositing a layer of BaF2 over it. 144Sm recoils from the alpha decay of 148Gd are used to dislodge Ba+ ions from the BaF2 layer and emit them in the surrounding environment. The simultaneous detection of an {\\alpha} particle in the substrate detector allows for tagging of the nuclear decay and of the Ba+ emission. The source is simple, durable, and can be manipulated and used in different environments. We discuss the fabrication process, which can be easily adapted to emit most other chemical species, and the performance of the source.

  12. A high-performance electron beam ion source

    Energy Technology Data Exchange (ETDEWEB)

    Alessi,J.; Beebe, E.; Bellavia, S.; Gould, O.; Kponou, A.; Lambiase, R.; Lockey, R.; McCafferty, D.; Okamura, M.; Pikin, A. I.; Raparia, D.; Ritter, J.; Syndstrup, L.

    2009-06-08

    At Brookhaven National Laboratory, a high current Electron Beam Ion Source (EBIS) has been developed as part of a new preinjector that is under construction to replace the Tandem Van de Graaffs as the heavy ion preinjector for the RHIC and NASA experimental programs. This preinjector will produce milliampere-level currents of essentially any ion species, with q/A {ge} 1/6, in short pulses, for injection into the Booster synchrotron. In order to produce the required intensities, this EBIS uses a 10A electron gun, and an electron collector designed to handle 300 kW of pulsed electron beam power. The EBIS trap region is 1.5 m long, inside a 5T, 2m long, 8-inch bore superconducting solenoid. The source is designed to switch ion species on a pulse-to-pulse basis, at a 5 Hz repetition rate. Singly-charged ions of the appropriate species, produced external to the EBIS, are injected into the trap and confined until the desired charge state is reached via stepwise ionization by the electron beam. Ions are then extracted and matched into an RFQ, followed by a short IH Linac, for acceleration to 2 MeV/A, prior to injection into the Booster synchrotron. An overview of the preinjector is presented, along with experimental results from the prototype EBIS, where all essential requirements have already been demonstrated. Design features and status of construction of the final high intensity EBIS is also be presented.

  13. Discrimination of ionic species from broad-beam ion sources

    International Nuclear Information System (INIS)

    The performance of a broad-beam, three-grid, ion extraction system incorporating radio frequency (RF) mass discrimination was investigated experimentally. This testing demonstrated that the system, based on a modified single-stage Bennett mass spectrometer, can discriminate between ionic species having about a 2-to-1 mass ratio while producing a broad-beam of ions with low kinetic energy (less than 15 eV). Testing was conducted using either argon and krypton ions or atomic and diatomic oxygen ions. A simple one-dimensional model, which ignores magnetic field and space-charge effects, was developed to predict the species separation capabilities as well as the kinetic energies of the extracted ions. The experimental results correlated well with the model predictions. This RF mass discrimination system can be used in applications where both atomic and diatomic ions are produced, but a beam of only one of the species is desired. An example of such an application is a 5 eV atomic oxygen source. This source would produce a beam of atomic oxygen with 5 eV kinetic energy, which would be directed onto a material specimen, to simulate the interaction between the surface of a satellite and the rarefied atmosphere encountered in low-Earth orbit

  14. Laser Cooled Strontium Source for an Ion Interferometer

    Science.gov (United States)

    Lyon, Mary; Archibald, James; Erickson, Christopher; Durfee, Dallin

    2010-10-01

    We present a Strontium-87 magneto-optical trap (MOT) in a Low-Velocity-Intense-Source (LVIS) as the source of cooled, collimated atoms for an ion interferometer. Laser cooling and trapping is accomplished with a 461 nm frequency doubled laser and a pair of permanent magnets. A beam of cooled atoms is produced by passing the atoms through a hole drilled in one of the retroreflecting optics. The atoms are then photo-ionized in a two photon process.

  15. Plasma source ion implantation of ammonia into electroplated chromium

    International Nuclear Information System (INIS)

    Ammonia gas (NH3) has been used as a nitrogen source for plasma source ion implantation processing of electroplated chromium. No evidence was found of increased hydrogen concentrations in the bulk material, implying that ammonia can be used without risking hydrogen embrittlement. The retained nitrogen dose of 2.1 x 1017 N-at/cm2 is sufficient to increase the surface hardness of electroplated Cr by 24% and decrease the wear rate by a factor of 4

  16. Studies in High Current Density Ion Sources for Heavy Ion Fusion Applications

    International Nuclear Information System (INIS)

    This dissertation develops diverse research on small (diameter ∼ few mm), high current density (J ∼ several tens of mA/cm2) heavy ion sources. The research has been developed in the context of a programmatic interest within the Heavy Ion Fusion (HIF) Program to explore alternative architectures in the beam injection systems that use the merging of small, bright beams. An ion gun was designed and built for these experiments. Results of average current density yield () at different operating conditions are presented for K+ and Cs+ contact ionization sources and potassium aluminum silicate sources. Maximum values for a K+ beam of ∼90 mA/cm2 were observed in 2.3 (micro)s pulses. Measurements of beam intensity profiles and emittances are included. Measurements of neutral particle desorption are presented at different operating conditions which lead to a better understanding of the underlying atomic diffusion processes that determine the lifetime of the emitter. Estimates of diffusion times consistent with measurements are presented, as well as estimates of maximum repetition rates achievable. Diverse studies performed on the composition and preparation of alkali aluminosilicate ion sources are also presented. In addition, this work includes preliminary work carried out exploring the viability of an argon plasma ion source and a bismuth metal vapor vacuum arc (MEVVA) ion source. For the former ion source, fast rise-times (∼ 1 (micro)s), high current densities (∼ 100 mA/cm2) and low operating pressures (epsilon)n (le) 0.006 π mm · mrad) although measured currents differed from the desired ones (I ∼ 5mA) by about a factor of 10

  17. Studies in High Current Density Ion Sources for Heavy Ion FusionApplications

    Energy Technology Data Exchange (ETDEWEB)

    Chacon-Golcher, E.

    2002-06-01

    This dissertation develops diverse research on small (diameter {approx} few mm), high current density (J {approx} several tens of mA/cm{sup 2}) heavy ion sources. The research has been developed in the context of a programmatic interest within the Heavy Ion Fusion (HIF) Program to explore alternative architectures in the beam injection systems that use the merging of small, bright beams. An ion gun was designed and built for these experiments. Results of average current density yield () at different operating conditions are presented for K{sup +} and Cs{sup +} contact ionization sources and potassium aluminum silicate sources. Maximum values for a K{sup +} beam of {approx}90 mA/cm{sup 2} were observed in 2.3 {micro}s pulses. Measurements of beam intensity profiles and emittances are included. Measurements of neutral particle desorption are presented at different operating conditions which lead to a better understanding of the underlying atomic diffusion processes that determine the lifetime of the emitter. Estimates of diffusion times consistent with measurements are presented, as well as estimates of maximum repetition rates achievable. Diverse studies performed on the composition and preparation of alkali aluminosilicate ion sources are also presented. In addition, this work includes preliminary work carried out exploring the viability of an argon plasma ion source and a bismuth metal vapor vacuum arc (MEVVA) ion source. For the former ion source, fast rise-times ({approx} 1 {micro}s), high current densities ({approx} 100 mA/cm{sup 2}) and low operating pressures (< 2 mtorr) were verified. For the latter, high but acceptable levels of beam emittance were measured ({var_epsilon}{sub n} {le} 0.006 {pi} mm {center_dot} mrad) although measured currents differed from the desired ones (I {approx} 5mA) by about a factor of 10.

  18. High electric field deuterium ion sources for neutron generators

    Science.gov (United States)

    Reichenbach, Birk

    Active interrogation systems for highly enriched uranium require improved fieldable neutron sources. The target technology for deuterium-tritium neutron generators is well understood and the most significant improvement can be achieved by improving the deuterium ion source through increased output and, in some cases, lifetime of the ion source. We are developing a new approach to a deuterium ion sources based upon the field desorption/evaporation of deuterium from the surfaces of metal tips. Electrostatic field desorption (EFD) desorbs previously adsorbed deuterium as ions under the influence of high electric fields (several V/A), without removing tip material. Single etched wire tip experiments have been performed and have shown that this is difficult but can be achieved with molybdenum and tungsten tips. Electrostatic field evaporation (EFE) evaporates ultra thin deuterated titanium films as ions. It has been shown that several 10s of atomic layers can be removed within a few nanoseconds from etched tungsten tips. In the course of these studies titanium deposition and deuteration methods were studied and new detection methods developed. Space charge effects resulting from the large ion currents were identified to be the most likely cause of some unusual ion emission characteristics. In addition, on W oriented substrates a surprising body-centered cubic crystal structure of the titanium film was found and studied. The ion currents required for neutron generator applications can be achieved by microfabrication of metal tip arrays. Field desorption studies of microfabricated field emitter tip arrays have been conducted for the first time. Maximum fields of 3 V/A have been applied to the array tip surfaces to date, although fields of ˜ 2 V/A to ˜ 2.5 V/A are more typical. Desorption of atomic deuterium ions has been observed at fields of roughly 2 V/A at room temperature. The desorption of common surface adsorbates, such as hydrogen, carbon, water, and carbon

  19. Ferroelectric Plasma Source for Heavy Ion Beam Charge Neutralization

    CERN Document Server

    Efthimion, Philip; Gilson, Erik P; Grisham, Larry; Logan, B G; Waldron, William; Yu, Simon

    2005-01-01

    Plasmas are employed as a medium for charge neutralizing heavy ion beams to allow them to focus to a small spot size. Calculations suggest that plasma at a density of 1-100 times the ion beam density and at a length ~ 0.1-1 m would be suitable. To produce 1 meter plasma, large-volume plasma sources based upon ferroelectric ceramics are being considered. These sources have the advantage of being able to increase the length of the plasma and operate at low neutral pressures. The source will utilize the ferroelectric ceramic BaTiO3 to form metal plasma. The drift tube inner surface of the Neutralized Drift Compression Experiment (NDCX) will be covered with ceramic. High voltage (~ 1-5 kV) is applied between the drift tube and the front surface of the ceramic by placing a wire grid on the front surface. A prototype ferroelectric source 20 cm long produced plasma densities ~ 5x1011 cm-3. The source was integrated into the experiment and successfully charge neutralized the K ion beam. Presently, the 1 meter source ...

  20. Pulsed magnetic field-electron cyclotron resonance ion source operation

    International Nuclear Information System (INIS)

    The pulsed magnetic field (PuMa)-electron cyclotron resonance (ECR) ion source uses a pulsed coil to improve the peak current by opening the magnetic bottle along the beam axis. After demonstration of the principle of the pulsed magnetic extraction, the ion source was tested with different gases. We received promising results from helium to krypton. The influence of the current in the pulsed coil on the analyzed ion current was measured. With increased current levels within the pulsed coil not only the pulse height of the PuMa pulse, but the pulse length can also be controlled. By using the pulsed coil the maximum of the charge state distribution can be shifted to higher charge states. copyright 1996 American Institute of Physics

  1. Targets on superhydrophobic surfaces for laser ablation ion sources

    Energy Technology Data Exchange (ETDEWEB)

    Renisch, D., E-mail: renisch@uni-mainz.de [Institut fuer Kernchemie, Johannes Gutenberg-Universitaet Mainz, Fritz Strassmann Weg 2, 55128 Mainz (Germany); Max-Planck-Institut fuer Kernphysik, Saupfercheckweg 1, 69117 Heidelberg (Germany); Beyer, T.; Blaum, K. [Max-Planck-Institut fuer Kernphysik, Saupfercheckweg 1, 69117 Heidelberg (Germany); Fakultaet fuer Physik und Astronomie, Ruprecht-Karls-Universitaet Heidelberg, Philosophenweg 12, 69120 Heidelberg (Germany); Block, M. [GSI Helmholtzzentrum fuer Schwerionenforschung GmbH, Planckstrasse 1, 64291 Darmstadt (Germany); Duellmann, Ch.E. [Institut fuer Kernchemie, Johannes Gutenberg-Universitaet Mainz, Fritz Strassmann Weg 2, 55128 Mainz (Germany); GSI Helmholtzzentrum fuer Schwerionenforschung GmbH, Planckstrasse 1, 64291 Darmstadt (Germany); Helmholtz-Institut Mainz, Johann-Joachim-Becher-Weg 36, 55099 Mainz (Germany); Eberhardt, K. [Institut fuer Kernchemie, Johannes Gutenberg-Universitaet Mainz, Fritz Strassmann Weg 2, 55128 Mainz (Germany); Eibach, M. [Institut fuer Kernchemie, Johannes Gutenberg-Universitaet Mainz, Fritz Strassmann Weg 2, 55128 Mainz (Germany); Fakultaet fuer Physik und Astronomie, Ruprecht-Karls-Universitaet Heidelberg, Philosophenweg 12, 69120 Heidelberg (Germany); and others

    2012-06-01

    Target preparation techniques for a laser ablation ion source at the Penning-trap mass spectrometer TRIGA-TRAP have been investigated with regard to future experiments with actinides. To be able to perform mass measurements on these nuclides considering their limited availability, an efficient target preparation technique is mandatory. Here, we report on a new approach for target production using backings, which are pretreated in a way that a superhydrophobic surface is formed. This resulted in improved targets with a more homogeneous distribution of the target material compared to standard techniques with unmodified backings. It was demonstrated that the use of these new targets in a laser ablation ion source improved the ion production significantly.

  2. Design of a versatile multiaperture negative ion source

    Energy Technology Data Exchange (ETDEWEB)

    Cavenago, M. [INFN-LNL, viale dell' Universita n. 2, 35020 Legnaro (Italy); Kulevoy, T.; Petrenko, S. [INFN-LNL, viale dell' Universita n. 2, 35020 Legnaro (Italy); ITEP, Bolshaja Cheremushkinskaja 25, 110079, Moscow (Russian Federation); Antoni, V.; Bigi, M.; Gazza, E.; Recchia, M.; Serianni, G.; Veltri, P. [Consorzio RFX, Associazione EURATOM-ENEA Sulla Fusione, c.so Stati Uniti 4, 35127, Padova (Italy)

    2010-02-15

    Negative ion sources are a key component of the neutral beam injector to be installed in the International Thermonuclear Experimental Reactor. At present research and development activities address several important issues related to beam extraction, optics, and optimization. Together with the design of real size devices and the accumulation of atomic cross section databases, a relatively small negative ion source [130 mA of H{sup -} at 60 kV, named Negative Ion Optimization phase 1 (NIO1)] is under construction at Consorzio RFX to contribute to benchmark numerical simulation tools and to test components, such as emittance scanners, beam dumps, and cesium ovens. NIO1 design, magnet configuration, and rf coupling simulations are described.

  3. The ISOLDE laser ion source for exotic nuclei

    International Nuclear Information System (INIS)

    At the ISOLDE on line mass separator a system of copper vapor lasers and dye lasers serves for resonant ionization of atoms inside a hot cavity attached to the target. Radioactive ion beams of Yb, Ag, Mn, Ni, Zn, Be, Cu, Cd and Sn were produced with the Resonance Ionization Laser Ion Source (RILIS). Two and three step excitation schemes are used, providing an ionization efficiency of about 10%. Thanks to the use of the RILIS it became possible to ionize beryllium efficiently at ISOLDE, and all particle stable Be isotopes could be separated for the first time. Separation of Ag and Cu nuclear isomers was achieved in the ion source by appropriate tuning of the laser wavelength. New isotopes of Ag, Mn, Zn, Cd and Sn were found, including the r process 'waiting point' nucleus 129Ag

  4. A Multi-Sample Cs-Sputter Negative Ion Source

    International Nuclear Information System (INIS)

    A multi-sample Cs sputter negative-ion source, equipped with a conical-geometry, W-surface-ionizer has been designed and fabricated that permits sample changes without disruption of on-line accelerator operation. Sample changing is effected by actuating an electro-pneumatic control system located at ground potential that drives an air-motor-driven sample-indexing-system mounted at high voltage; this arrangement avoids complications associated with indexing mechanisms that rely on electronic power-supplies located at high potential. In-beam targets are identified by LED indicator lights derived from a fiber-optic, Gray-code target-position sensor. Aspects of the overall source design and details of the indexing mechanism along with operational parameters, ion optics. intensities, and typical emittances for a variety of negative-ion species will be presented in this report

  5. Beamlet interaction in multi-aperture negative ion source

    Energy Technology Data Exchange (ETDEWEB)

    Fujiwara, Yukio; Hanada, Masaya; Kawai, Kenichi; Kitagawa, Tadashi; Miyamoto, Kenji; Okumura, Yoshikazu; Watanabe, Kazuhiro [Japan Atomic Energy Research Inst., Naka, Ibaraki (Japan). Naka Fusion Research Establishment

    1999-02-01

    Beamlet interaction, which may deteriorate beam convergence, was studied in a high-current negative ion beam composed of multiple beamlets. Experimental results demonstrated that a deflection angle of beamlets at the edge of a beam was larger than that at the center of a beam, because of space charge effect. The deflection angle was independent of the beam energy ranging from 86 keV to 178 keV at the same perveance. Effect of electrons accompanying negative ions was confirmed to be negligible. It was shown that repulsive force due to space charge effect was inversely proportional to the square of distance. The maximum deflection angle of a large negative ion source for the JT-60 Negative ion-NBI system was estimated to be about 6.6 mrad based on the obtained results. Shaping of a grid was proposed to compensate the beamlet interaction. Beam orbit simulations indicated the effectiveness of the shaping. (author)

  6. Grating monochromator for electron cyclotron resonance ion source operation.

    Science.gov (United States)

    Muto, Hideshi; Ohshiro, Yukimitsu; Yamaka, Shouichi; Watanabe, Shin-ichi; Oyaizu, Michihiro; Kubono, Shigeru; Yamaguchi, Hidetoshi; Kase, Masayuki; Hattori, Toshiyuki; Shimoura, Susumu

    2013-07-01

    Recently, we started to observe optical line spectra from an ECR plasma using a grating monochromator with a photomultiplier. The light intensity of line spectrum from the ECR plasma had a strong correlation with ion beam intensity measured by a magnetic mass analyzer. This correlation is a significant information for beam tuning because it allows the extraction of the desired ion species from the ECR plasma. Separation of ion species of the same charge to mass ratio with an electromagnetic mass analyzer is known to be an exceptionally complex process, but this research gives new insights into its simplification. In this paper, the grating monochromator method for beam tuning of a Hyper-ECR ion source as an injector for RIKEN azimuthal varying field (AVF) cyclotron is described. PMID:23902055

  7. Beamlet interaction in multi-aperture negative ion source

    International Nuclear Information System (INIS)

    Beamlet interaction, which may deteriorate beam convergence, was studied in a high-current negative ion beam composed of multiple beamlets. Experimental results demonstrated that a deflection angle of beamlets at the edge of a beam was larger than that at the center of a beam, because of space charge effect. The deflection angle was independent of the beam energy ranging from 86 keV to 178 keV at the same perveance. Effect of electrons accompanying negative ions was confirmed to be negligible. It was shown that repulsive force due to space charge effect was inversely proportional to the square of distance. The maximum deflection angle of a large negative ion source for the JT-60 Negative ion-NBI system was estimated to be about 6.6 mrad based on the obtained results. Shaping of a grid was proposed to compensate the beamlet interaction. Beam orbit simulations indicated the effectiveness of the shaping. (author)

  8. Note: A pulsed laser ion source for linear induction accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, H., E-mail: bamboobbu@hotmail.com [Institute of Fluid Physics, China Academy of Engineering Physics, P.O. Box 919-106, Mianyang 621900 (China); School of Physics, Peking University, Beijing 100871 (China); Zhang, K.; Shen, Y.; Jiang, X.; Dong, P.; Liu, Y.; Wang, Y.; Chen, D.; Pan, H.; Wang, W.; Jiang, W.; Long, J.; Xia, L.; Shi, J.; Zhang, L.; Deng, J. [Institute of Fluid Physics, China Academy of Engineering Physics, P.O. Box 919-106, Mianyang 621900 (China)

    2015-01-15

    We have developed a high-current laser ion source for induction accelerators. A copper target was irradiated by a frequency-quadrupled Nd:YAG laser (266 nm) with relatively low intensities of 10{sup 8} W/cm{sup 2}. The laser-produced plasma supplied a large number of Cu{sup +} ions (∼10{sup 12} ions/pulse) during several microseconds. Emission spectra of the plasma were observed and the calculated electron temperature was about 1 eV. An induction voltage adder extracted high-current ion beams over 0.5 A/cm{sup 2} from a plasma-prefilled gap. The normalized beam emittance measured by a pepper-pot method was smaller than 1 π mm mrad.

  9. Development of ion source for neutral beam injection

    International Nuclear Information System (INIS)

    There are a few methods for further raising (secondary heating) toroidal plasma temperature above the limit of Joule heating of 1 to 2 keV. In this paper, the ion source used for neutral beam injection heating is described, which is now considered to be the most effective means as the secondary heating. It was reported that in Oak Ridge National Laboratory, neutral particle beam was injected into the torus and the plasma temperature increased as expected. Japan Atomic Energy Research Institute (JAERI) planned the plasma heating by neutral beam injection in JFT-2 torus from the summer of 1976 and it was decided that the heating by neutral beam injection is also employed in the critical plasma test facility (JT-60) which is scheduled to start operation in 1980. For this purpose, JAERI decided to build some test stand for ion source development including ITS-1 already prepared. At present, the test stand ITS-2 for the development of two stage acceleration ion source is ordered as a part of the development program of neutral beam injection heating for JT-60. This stand will be available for the test of ion sources of up to 100 kV, 20 A, and pulse width 1 sec. (Wakatsuki, Y.)

  10. Analysis of Magnetic Field of the DNB Ion Source

    Institute of Scientific and Technical Information of China (English)

    XIE Yahong; HU Chundong; LIU Sheng; LIU Zhimin; WANG Shaohu

    2008-01-01

    A distribution of the magnetic field produced by permanent magnets in the DNB ion source is calculated and analyzed in order to understand the plasma confinement in a cusped magnetic field and optimize plasma discharge. A uniform plasma is obtained in the experiment.

  11. Power efficiency improvements with the radio frequency H− ion source

    International Nuclear Information System (INIS)

    CW 13.56 MHz radio frequency-driven H− ion source is under development at the University of Jyväskylä for replacing an existing filament-driven ion source at the MCC30/15 cyclotron. Previously, production of 1 mA H− beam, which is the target intensity of the ion source, has been reported at 3 kW of RF power. The original ion source front plate with an adjustable electromagnet based filter field has been replaced with a new front plate with permanent magnet filter field. The new structure is more open and enables a higher flux of ro-vibrationally excited molecules towards the plasma electrode and provides a better control of the potential near the extraction due to a stronger separation of the main plasma from the plasma electrode. While the original system provided better control over the e−/H− ratio, the new configuration has led to a higher production efficiency of 1 mA H− at 1.75 kW RF power. The latest results and upgrade plans are presented

  12. On the dynamics of liquid metal ion sources

    Energy Technology Data Exchange (ETDEWEB)

    Mair, G.L.R.; Ganetsos, Th. [University of Athens, Department of Physics, Section of Solid State Physics, Panepistimiopolis, Zographos, Athens (Greece); Aidinis, C.J. [University of Athens, Department of Physics, Section of Applied Physics, Panepistimiopolis, Zographos, Athens (Greece)]. E-mail: caidinis@cc.uoa.gr; Bischoff, L. [Research Center Rossendorf Inc, Institute of Ion Beam and Materials Research, Dresden (Germany)

    2002-06-21

    The mechanisms governing the formation of the liquid metal cone that constitutes the basis of a liquid metal ion source (LMIS) are investigated. Cone formation times ranging from <20 ns up to several hundreds of ms have been reported in the literature. This paper attempts to explain these differences by devising a theoretical model that encompasses inertial and flow effects. (author)

  13. The Cathode Ramper: Application for the Duoplasmatron Ion Source

    CERN Document Server

    Sánchez-Conejo, J

    2003-01-01

    The purpose of the Cathode Ramper Application is to heat the Linac 2 duoplasmatron ion source cathode up to a desired temperature selected by the user. The application has been developed in Java, making use of the Java Development Kit 1.4 and the PS Java environment.

  14. Analysis of Magnetic Field of the DNB Ion Source

    International Nuclear Information System (INIS)

    A distribution of the magnetic field produced by permanent magnets in the DNB ion source is calculated and analyzed in order to understand the plasma confinement in a cusped magnetic field and optimize plasma discharge. A uniform plasma is obtained in the experiment.

  15. Separation of beam and electrons in the spallation neutron source H- ion source

    International Nuclear Information System (INIS)

    The Spallation Neutron Source (SNS) requires an ion source producing an H- beam with a peak current of 35 mA at a 6.2% duty factor. For the design of this ion source, extracted electrons must be transported and dumped without adversely affecting the H- beam optics. Two issues are considered: (1) electron containment transport and controlled removal; and (2) first-order H- beam steering. For electron containment, various magnetic, geometric and electrode biasing configurations are analyzed. A kinetic description for the negative ions and electrons is employed with self-consistent fields obtained from a steady-state solution to Poisson's equation. Guiding center electron trajectories are used when the gyroradius is sufficiently small. The magnetic fields used to control the transport of the electrons and the asymmetric sheath produced by the gyrating electrons steer the ion beam. Scenarios for correcting this steering by split acceleration and focusing electrodes will be considered in some detail

  16. Enhanced Physicochemical and Biological Properties of Ion-Implanted Titanium Using Electron Cyclotron Resonance Ion Sources

    Directory of Open Access Journals (Sweden)

    Csaba Hegedűs

    2016-01-01

    Full Text Available The surface properties of metallic implants play an important role in their clinical success. Improving upon the inherent shortcomings of Ti implants, such as poor bioactivity, is imperative for achieving clinical use. In this study, we have developed a Ti implant modified with Ca or dual Ca + Si ions on the surface using an electron cyclotron resonance ion source (ECRIS. The physicochemical and biological properties of ion-implanted Ti surfaces were analyzed using various analytical techniques, such as surface analyses, potentiodynamic polarization and cell culture. Experimental results indicated that a rough morphology was observed on the Ti substrate surface modified by ECRIS plasma ions. The in vitro electrochemical measurement results also indicated that the Ca + Si ion-implanted surface had a more beneficial and desired behavior than the pristine Ti substrate. Compared to the pristine Ti substrate, all ion-implanted samples had a lower hemolysis ratio. MG63 cells cultured on the high Ca and dual Ca + Si ion-implanted surfaces revealed significantly greater cell viability in comparison to the pristine Ti substrate. In conclusion, surface modification by electron cyclotron resonance Ca and Si ion sources could be an effective method for Ti implants.

  17. Calculation of ion charge-state distribution in ECR ion sources

    International Nuclear Information System (INIS)

    Starting with the pioneering efforts of Y. Yongen (Louvain-la-Neuve, Belgium) a code has been developed to calculate the equilibrium ion charge-state distribution for electron-cyclotron resonance source (ECR) ion sources. Production of ions is caused by the impact ionization of the charge gas from ECR-heated electrons of a few keV. Loss of an ion of a given charge state is from charge exchange and radiative recombination. Ultimately, the ion flows out of the minimum-B containment region. The ion confinement times are calculated using an ion-trap-potential model which is based upon modeling calculations done at Lawrence Livermore National Laboratory (LLNL) for the Tandem Mirror Machine. Using this model requires the self-consistent determination of the trap potential and thermal electron density in the plasma. Code inputs are gas natural density, hot-electron temperature and density, ion temperature, cold-electron temperature, mirror ratio, physical dimensions, and atomic-physics data. Other than that there are no adjustable parameters. Results of comparison of calculations with the limited available data are reasonable

  18. Production of highly charged ion beams from electron cyclotron resonance ion sources (invited)

    International Nuclear Information System (INIS)

    Electron cyclotron resonance ion source (ECRIS) development has progressed with multiple-frequency plasma heating, higher mirror magnetic fields, and better technique to provide extra cold electrons. Such techniques greatly enhance the production of highly charged ions from ECRISs. So far at continuous wave (CW) mode operation, up to 300 eμA of O7+ and 1.15 emA of O6+, more than 100 eμA of intermediate heavy ions for charge states up to Ar13+, Ca13+, Fe13+, Co14+, and Kr18+, and tens of eμA of heavy ions with charge states to Kr26+, Xe28+, Au35+, Bi34+, and U34+ were produced from ECRISs. At an intensity of at least 1 eμA, the maximum charge state available for the heavy ions are Xe36+, Au46+, Bi47+, and U48+. An order of magnitude enhancement for fully stripped argon ions (I≥60enA) were also achieved. This article will review the ECR ion source progress and discuss key requirement for ECRISs to produce the highly charged ion beams. copyright 1998 American Institute of Physics

  19. Long-life bismuth liquid metal ion source for focussed ion beam micromachining application

    Energy Technology Data Exchange (ETDEWEB)

    Mazarov, P. [Lehrstuhl fuer Angewandte Festkoerperphysik, Ruhr-Universitaet Bochum, D-44780 Bochum (Germany)], E-mail: paul.mazarov@ruhr-uni-bochum.de; Melnikov, A.; Wernhardt, R.; Wieck, A.D. [Lehrstuhl fuer Angewandte Festkoerperphysik, Ruhr-Universitaet Bochum, D-44780 Bochum (Germany)

    2008-09-15

    Liquid metal ion sources (LMISs) with Ga as ion species are widely used in focused ion beam (FIB) technology for micromachining and surface treatment on the sub-micron and nano-scale. Key features of a LMIS for investigating mechanical properties and 3D-microfabrication of materials are long life-time, high brightness, stable ion current and a highly effective milling ability for the material to be modified. In order to increase the material removal rate, heavier ions than Ga and their clusters should be applied. Bismuth (Bi) is the heaviest, non-radio-active element in the periodic table, is non-toxic and exhibits a low melting point. We have thus produced a long-life (about 1000 h) Bi LMIS with a good beam performance, applicable in any FIB system. Since Bi is the only element in this source, it is not necessary to separate it from other ions by a mass filter. Investigation of the sputtering rate of NiTi shape memory alloys using Ga and Bi LMIS showed that, for the same experimental conditions, the material removal rate with using of Bi{sub n}{sup k+} ions in a standard FIB machine without a mass separator is about five times larger compared to Ga{sup +} ions. This use of Bi as LMIS-species is the ultimate breakthrough in sputtering applications.

  20. Long-life bismuth liquid metal ion source for focussed ion beam micromachining application

    International Nuclear Information System (INIS)

    Liquid metal ion sources (LMISs) with Ga as ion species are widely used in focused ion beam (FIB) technology for micromachining and surface treatment on the sub-micron and nano-scale. Key features of a LMIS for investigating mechanical properties and 3D-microfabrication of materials are long life-time, high brightness, stable ion current and a highly effective milling ability for the material to be modified. In order to increase the material removal rate, heavier ions than Ga and their clusters should be applied. Bismuth (Bi) is the heaviest, non-radio-active element in the periodic table, is non-toxic and exhibits a low melting point. We have thus produced a long-life (about 1000 h) Bi LMIS with a good beam performance, applicable in any FIB system. Since Bi is the only element in this source, it is not necessary to separate it from other ions by a mass filter. Investigation of the sputtering rate of NiTi shape memory alloys using Ga and Bi LMIS showed that, for the same experimental conditions, the material removal rate with using of Bink+ ions in a standard FIB machine without a mass separator is about five times larger compared to Ga+ ions. This use of Bi as LMIS-species is the ultimate breakthrough in sputtering applications

  1. Estimation of Sputtering Damages on a Magnetron H- Ion Source Induced by Cs+ and H+ Ions

    CERN Document Server

    Pereira, H; Alessi, J; Kalvas, t

    2013-01-01

    An H− ion source is being developed for CERN’s Linac4 accelerator. A beam current requirement of 80 mA and a reliability above 99% during 1 year with 3 month uninterrupted operation periods are mandatory. To design a low-maintenance long life-time source, it is important to investigate and understand the wear mechanisms. A cesiated plasma discharge ion source, such as the BNL magnetron source, is a good candidate for the Linac4 ion source. However, in the magnetron source operated at BNL, the removal of material from the molybdenum cathode and the stainless steel anode cover plate surfaces is visible after extended operation periods. The observed sputtering traces are shown to result from cesium vapors and hydrogen gas ionized in the extraction region and subsequently accelerated by the extraction field. This paper presents a quantitative estimate of the ionization of cesium and hydrogen by the electron and H− beams in the extraction region of BNL’s magnetron ion source. The respective contributions o...

  2. Review of laser-driven ion sources and their applications.

    Science.gov (United States)

    Daido, Hiroyuki; Nishiuchi, Mamiko; Pirozhkov, Alexander S

    2012-05-01

    For many years, laser-driven ion acceleration, mainly proton acceleration, has been proposed and a number of proof-of-principle experiments have been carried out with lasers whose pulse duration was in the nanosecond range. In the 1990s, ion acceleration in a relativistic plasma was demonstrated with ultra-short pulse lasers based on the chirped pulse amplification technique which can provide not only picosecond or femtosecond laser pulse duration, but simultaneously ultra-high peak power of terawatt to petawatt levels. Starting from the year 2000, several groups demonstrated low transverse emittance, tens of MeV proton beams with a conversion efficiency of up to several percent. The laser-accelerated particle beams have a duration of the order of a few picoseconds at the source, an ultra-high peak current and a broad energy spectrum, which make them suitable for many, including several unique, applications. This paper reviews, firstly, the historical background including the early laser-matter interaction studies on energetic ion acceleration relevant to inertial confinement fusion. Secondly, we describe several implemented and proposed mechanisms of proton and/or ion acceleration driven by ultra-short high-intensity lasers. We pay special attention to relatively simple models of several acceleration regimes. The models connect the laser, plasma and proton/ion beam parameters, predicting important features, such as energy spectral shape, optimum conditions and scalings under these conditions for maximum ion energy, conversion efficiency, etc. The models also suggest possible ways to manipulate the proton/ion beams by tailoring the target and irradiation conditions. Thirdly, we review experimental results on proton/ion acceleration, starting with the description of driving lasers. We list experimental results and show general trends of parameter dependences and compare them with the theoretical predictions and simulations. The fourth topic includes a review of

  3. Development of compact ECR ion source for carbon therapy facility

    International Nuclear Information System (INIS)

    A 10 GHz compact Electron Cyclotron Resonance (ECR) ion source with all permanent magnets has been developed. Peaks of the mirror magnetic field along the beam axis are 0.59 T at the extraction side and 0.87 T at the gas injection side, respectively, while the minimum B strength is 0.25 T. The source has a diameter of 320 mm and a length of 295 mm. The result of beam tests shows that a C4+ intensity of 500 μA was obtained under an extraction voltage of 30 kV. This paper describes the design detail and the experimental results for the new source. (author)

  4. Study of hot electrons in a ECR ion source

    International Nuclear Information System (INIS)

    The perfecting of diagnosis connected with hot electrons of plasma, and then the behaviour of measured parameters of plasma according to parameters of source working are the purpose of this thesis. The experimental results obtained give new information on hot electrons of an ECR ion source. This thesis is divided in 4 parts: the first part presents an ECR source and the experimental configuration (ECRIS physics, minimafios GHz, diagnosis used); the second part, the diagnosis (computer code of cyclotron emission and calibration); the third part gives experimental results in continuous regime (emission cyclotron diagnosis, bremsstrahlung); the fourth part, experimental results in pulsed regime (emission cyclotron diagnosis, diamagnetism) calibration)

  5. H/sup -/ ion source research at Los Alamos

    Energy Technology Data Exchange (ETDEWEB)

    Allison, P.; Smith, H.V. Jr.; Sherman, J.D.

    1980-01-01

    Up to 160 mA of H/sup -/ ions has been extracted at 20 kV from a 10 by 0.5-mm/sup 2/ slit in a Penning surface-plasma source. Typically, 70% of the beam can be transported through a bending magnet to a Faraday cup or emittance scanner. Up to 90% transmission has been observed for some neutralizing gases. Average and pulsed cesium flows from the source were measured with a surface-ionization gauge. Operating parameters of the source and measurements of the emittance are reported.

  6. RF Plasma source for a Heavy Ion Fusion injector

    International Nuclear Information System (INIS)

    We are developing high-current ion sources for Heavy Ion Fusion (HIF) applications. Our proposed RF plasma source starts with an array of high current density mini-beamlets (of a few milliampere each at ∼100 mA/cm2) that are kept separated from each other within a set of acceleration grids. After they have gained sufficient kinetic energy (>1.2 MeV), the mini-beamlets are allowed to merge together to form a high current beam (about 0.5 A) with low emittance. Simulations have been done to maximize the beam brightness within the physical constraints of the source. We have performed a series of experiments on an RF plasma source. A 80-kV 20-μs source has produced up to 5 mA of Ar+ in a single beamlet and we measured the emittance of a beamlet, its energy spread, and the fraction of ions in higher charge states. We have also tested a 50-kV 61-hole multi-beamlet array. Two upcoming experiments are being prepared: the first experiment will test full-gradient extraction and transport of 61 beamlets through the first four electrodes, and the second experiment will converge 119 beamlets into an ESQ channel at one-quarter scaled voltage of a 1.6 MV HIF injector

  7. Efficient cesiation in RF driven surface plasma negative ion source

    Energy Technology Data Exchange (ETDEWEB)

    Belchenko, Yu.; Ivanov, A.; Konstantinov, S.; Sanin, A., E-mail: sanin@inp.nsk.su; Sotnikov, O. [Budker Institute of Nuclear Physics, Siberian Branch of Russian Academy of Sciences, Novosibirsk (Russian Federation)

    2016-02-15

    Experiments on hydrogen negative ions production in the large radio-frequency negative ion source with cesium seed are described. The system of directed cesium deposition to the plasma grid periphery was used. The small cesium seed (∼0.5 G) provides an enhanced H{sup −} production during a 2 month long experimental cycle. The gradual increase of negative ion yield during the long-term source runs was observed after cesium addition to the source. The degraded H{sup −} production was recorded after air filling to the source or after the cesium washing away from the driver and plasma chamber walls. The following source conditioning by beam shots produces the gradual recovery of H{sup −} yield to the high value. The effect of H{sup −} yield recovery after cesium coverage passivation by air fill was studied. The concept of cesium coverage replenishment and of H{sup −} yield recovery due to sputtering of cesium from the deteriorated layers is discussed.

  8. Nitrogen ion implantation into various materials using 28 GHz electron cyclotron resonance ion source

    International Nuclear Information System (INIS)

    The installation of the 28 GHz electron cyclotron resonance ion source (ECRIS) ion implantation beamline was recently completed at the Korea Basic Science Institute. The apparatus contains a beam monitoring system and a sample holder for the ion implantation process. The new implantation system can function as a multipurpose tool since it can implant a variety of ions, ranging hydrogen to uranium, into different materials with precise control and with implantation areas as large as 1–10 mm2. The implantation chamber was designed to measure the beam properties with a diagnostic system as well as to perform ion implantation with an in situ system including a mass spectrometer. This advanced implantation system can be employed in novel applications, including the production of a variety of new materials such as metals, polymers, and ceramics and the irradiation testing and fabrication of structural and functional materials to be used in future nuclear fusion reactors. In this investigation, the first nitrogen ion implantation experiments were conducted using the new system. The 28 GHz ECRIS implanted low-energy, multi-charged nitrogen ions into copper, zinc, and cobalt substrates, and the ion implantation depth profiles were obtained. SRIM 2013 code was used to calculate the profiles under identical conditions, and the experimental and simulation results are presented and compared in this report. The depths and ranges of the ion distributions in the experimental and simulation results agree closely and demonstrate that the new system will enable the treatment of various substrates for advanced materials research

  9. Nitrogen ion implantation into various materials using 28 GHz electron cyclotron resonance ion source

    Science.gov (United States)

    Shin, Chang Seouk; Lee, Byoung-Seob; Choi, Seyong; Yoon, Jang-Hee; Kim, Hyun Gyu; Ok, Jung-Woo; Park, Jin Yong; Kim, Seong Jun; Bahng, Jungbae; Hong, Jonggi; Lee, Seung Wook; Won, Mi-Sook

    2016-02-01

    The installation of the 28 GHz electron cyclotron resonance ion source (ECRIS) ion implantation beamline was recently completed at the Korea Basic Science Institute. The apparatus contains a beam monitoring system and a sample holder for the ion implantation process. The new implantation system can function as a multipurpose tool since it can implant a variety of ions, ranging hydrogen to uranium, into different materials with precise control and with implantation areas as large as 1-10 mm2. The implantation chamber was designed to measure the beam properties with a diagnostic system as well as to perform ion implantation with an in situ system including a mass spectrometer. This advanced implantation system can be employed in novel applications, including the production of a variety of new materials such as metals, polymers, and ceramics and the irradiation testing and fabrication of structural and functional materials to be used in future nuclear fusion reactors. In this investigation, the first nitrogen ion implantation experiments were conducted using the new system. The 28 GHz ECRIS implanted low-energy, multi-charged nitrogen ions into copper, zinc, and cobalt substrates, and the ion implantation depth profiles were obtained. SRIM 2013 code was used to calculate the profiles under identical conditions, and the experimental and simulation results are presented and compared in this report. The depths and ranges of the ion distributions in the experimental and simulation results agree closely and demonstrate that the new system will enable the treatment of various substrates for advanced materials research.

  10. Nitrogen ion implantation into various materials using 28 GHz electron cyclotron resonance ion source

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Chang Seouk [Busan Center, Korea Basic Science Institute, Busan 609-735 (Korea, Republic of); School of Mechanical Engineering, Pusan National University, Pusan 609-735 (Korea, Republic of); Lee, Byoung-Seob; Choi, Seyong; Yoon, Jang-Hee; Kim, Hyun Gyu; Ok, Jung-Woo; Park, Jin Yong; Kim, Seong Jun; Bahng, Jungbae; Hong, Jonggi; Won, Mi-Sook, E-mail: mswon@kbsi.re.kr [Busan Center, Korea Basic Science Institute, Busan 609-735 (Korea, Republic of); Lee, Seung Wook, E-mail: Seunglee@pusan.ac.kr [School of Mechanical Engineering, Pusan National University, Pusan 609-735 (Korea, Republic of)

    2016-02-15

    The installation of the 28 GHz electron cyclotron resonance ion source (ECRIS) ion implantation beamline was recently completed at the Korea Basic Science Institute. The apparatus contains a beam monitoring system and a sample holder for the ion implantation process. The new implantation system can function as a multipurpose tool since it can implant a variety of ions, ranging hydrogen to uranium, into different materials with precise control and with implantation areas as large as 1–10 mm{sup 2}. The implantation chamber was designed to measure the beam properties with a diagnostic system as well as to perform ion implantation with an in situ system including a mass spectrometer. This advanced implantation system can be employed in novel applications, including the production of a variety of new materials such as metals, polymers, and ceramics and the irradiation testing and fabrication of structural and functional materials to be used in future nuclear fusion reactors. In this investigation, the first nitrogen ion implantation experiments were conducted using the new system. The 28 GHz ECRIS implanted low-energy, multi-charged nitrogen ions into copper, zinc, and cobalt substrates, and the ion implantation depth profiles were obtained. SRIM 2013 code was used to calculate the profiles under identical conditions, and the experimental and simulation results are presented and compared in this report. The depths and ranges of the ion distributions in the experimental and simulation results agree closely and demonstrate that the new system will enable the treatment of various substrates for advanced materials research.

  11. Power supply system for negative ion source at IPR

    Energy Technology Data Exchange (ETDEWEB)

    Gahlaut, Agrajit; Sonara, Jashwant; Parmar, K G; Soni, Jignesh; Bandyopadhyay, M; Singh, Mahendrajit; Bansal, Gourab; Pandya, Kaushal; Chakraborty, Arun, E-mail: agrajit@ipr.res.i [Institute for Plasma Research, Gandhinagar, Gujarat - 382428 (India)

    2010-02-01

    The first step in the Indian program on negative ion beams is the setting up of Negative ion Experimental Assembly - RF based, where 100 kW of RF power shall be coupled to a plasma source producing plasma of density {approx}5 x 10{sup 12} cm{sup -3}, from which {approx} 10 A of negative ion beam shall be produced and accelerated to 35 kV, through an electrostatic ion accelerator. The experimental system is modelled similar to the RF based negative ion source, BATMAN presently operating at IPP, Garching, Germany. The mechanical system for Negative Ion Source Assembly is close to the IPP source, remaining systems are designed and procured principally from indigenous sources, keeping the IPP configuration as a base line. High voltage (HV) and low voltage (LV) power supplies are two key constituents of the experimental setup. The HV power supplies for extraction and acceleration are rated for high voltage ({approx}15 to 35kV), and high current ({approx} 15 to 35A). Other attributes are, fast rate of voltage rise (< 5ms), good regulation (< {+-}1%), low ripple (< {+-}2%), isolation ({approx}50kV), low energy content (< 10J) and fast cut-off (< 100{mu}s). The low voltage (LV) supplies required for biasing and providing heating power to the Cesium oven and the plasma grids; have attributes of low ripple, high stability, fast and precise regulation, programmability and remote operation. These power supplies are also equipped with over-voltage, over-current and current limit (CC Mode) protections. Fault diagnostics, to distinguish abnormal rise in currents (breakdown faults) with over-currents is enabled using fast response breakdown and over-current protection scheme. To restrict the fault energy deposited on the ion source, specially designed snubbers are implemented in each (extraction and acceleration) high voltage path to swap the surge energy. Moreover, the monitoring status and control signals from these power supplies are required to be electrically ({approx} 50k

  12. Power supply system for negative ion source at IPR

    Science.gov (United States)

    Gahlaut, Agrajit; Sonara, Jashwant; Parmar, K. G.; Soni, Jignesh; Bandyopadhyay, M.; Singh, Mahendrajit; Bansal, Gourab; Pandya, Kaushal; Chakraborty, Arun

    2010-02-01

    The first step in the Indian program on negative ion beams is the setting up of Negative ion Experimental Assembly - RF based, where 100 kW of RF power shall be coupled to a plasma source producing plasma of density ~5 × 1012 cm-3, from which ~ 10 A of negative ion beam shall be produced and accelerated to 35 kV, through an electrostatic ion accelerator. The experimental system is modelled similar to the RF based negative ion source, BATMAN presently operating at IPP, Garching, Germany. The mechanical system for Negative Ion Source Assembly is close to the IPP source, remaining systems are designed and procured principally from indigenous sources, keeping the IPP configuration as a base line. High voltage (HV) and low voltage (LV) power supplies are two key constituents of the experimental setup. The HV power supplies for extraction and acceleration are rated for high voltage (~15 to 35kV), and high current (~ 15 to 35A). Other attributes are, fast rate of voltage rise (< 5ms), good regulation (< ±1%), low ripple (< ±2%), isolation (~50kV), low energy content (< 10J) and fast cut-off (< 100μs). The low voltage (LV) supplies required for biasing and providing heating power to the Cesium oven and the plasma grids; have attributes of low ripple, high stability, fast and precise regulation, programmability and remote operation. These power supplies are also equipped with over-voltage, over-current and current limit (CC Mode) protections. Fault diagnostics, to distinguish abnormal rise in currents (breakdown faults) with over-currents is enabled using fast response breakdown and over-current protection scheme. To restrict the fault energy deposited on the ion source, specially designed snubbers are implemented in each (extraction and acceleration) high voltage path to swap the surge energy. Moreover, the monitoring status and control signals from these power supplies are required to be electrically (~ 50kV) isolated from the system. The paper shall present the

  13. An intense plane-beam ion source (1963)

    International Nuclear Information System (INIS)

    Experiments are described carried out on the cross-section of a Penning type ion source which is a prototype of the annular ion source intended for the M.M.I.I. device at the Fontenay-aux-Roses Nuclear Research Centre. It is shown that the existence or absence of a very strong concentration depends in particular on the magnetic geometry. With a suitable magnetic and electrical geometry it is possible to concentrate the discharge towards the slit and thus to increase considerably the electrical yield and the gas yield. In pulsed conditions, the current derived from this source can exceed 100 mA with a slit 20 cm long and 0.2 mm wide. The gas yield can attain 20 per cent. The main characteristics of the discharge and of the beam are examined. (authors)

  14. Development of polarized ion source for the JINR accelerator complex

    Science.gov (United States)

    Fimushkin, V. V.; Kovalenko, A. D.; Kutuzova, L. V.; Prokofichev, Yu V.; Shutov, B.; Belov, A. S.; Zubets, V. N.; Turbabin, A. V.

    2016-02-01

    Status of the JINR polarized ion source development is described. The source is under tests at the test-bench of LHEP, JINR. A charge-exchange plasma ionizer has been tested initially without a storage cell in the ionization region. An unpolarized deuterium ion beam with peak current of 160 mA, 23 keV energy, pulse duration of 100 μs and repetition rate of 1 Hz has been extracted from the ionizer. With a free polarized atomic hydrogen beam injected into the ionizer a polarized proton beam with peak current of 1.4 mA has been obtained. The nearest plans for the source development include tests of the ionizer with the storage cell and tuning of the high frequency transition units installed in their operating position with a Breit-Rabi polarimeter.

  15. Design of 1+ Ion Source Coupling First Design of the Resonant Ionization Laser Ion Source For the Multi-Mega Watt Target Station

    CERN Document Server

    A. Olivier, F. Le Blanc, C. Lau

    The realisation of next-generation ion sources suitable for the EURISOL multi-mega-watt (MMW) target station needs exhaustive studies and developments. An exhaustive review was carried out to evaluate the capability of the ion-sources to operate under the irradiation conditions of the MMW target station. In addition, selectivity must be taken into account to avoid the spread of unwanted radioactivity out of the target-ion-source system (TIS).These studies led to consider RILIS (Resonance Ionization Laser Ion Source) as the reference ion source for this target station.

  16. First experiments with gasdynamic ion source in CW mode

    Science.gov (United States)

    Skalyga, V.; Izotov, I.; Golubev, S.; Vodopyanov, A.; Tarvainen, O.

    2016-02-01

    A new type of ECR ion source—a gasdynamic ECR ion source—has been recently developed at the Institute of Applied Physics. The main advantages of such device are extremely high ion beam current with a current density up to 600-700 emA/cm2 in combination with low emittance, i.e., normalized RMS emittance below 0.1 π mm mrad. Previous investigations were carried out in pulsed operation with 37.5 or 75 GHz gyrotron radiation with power up to 100 kW at SMIS 37 experimental facility. The present work demonstrates the first experience of operating the gasdynamic ECR ion source in CW mode. A test bench of SMIS 24 facility has been developed at IAP RAS. 24 GHz radiation of CW gyrotron was used for plasma heating in a magnetic trap with simple mirror configuration. Initial studies of plasma parameters were performed. Ion beams with pulsed and CW high voltage were successfully extracted from the CW discharge. Obtained experimental results demonstrate that all advantages of the gasdynamic source can be realized also in CW operation.

  17. Investigation of particle dynamics in Ecr Ion Source plasma

    International Nuclear Information System (INIS)

    The Electron Cyclotron Resonance Ion Sources (Ecris) are nowadays the most effective devices that can feed the particle accelerators in a continuous and reliable way, providing high current beams of low and medium charge state ions and relatively intense currents for highly charged ions. Ecris are on the one hand important tools for research with ion beams (in surface, atomic and nuclear science); on the other hand, they imply plasma under extreme conditions and constitute thus themselves objects of scientific interest. A detailed investigation of the particle dynamics in Ecris plasmas is here presented: electron heating and confinement are studied numerically, and the results are then compared with experimental results. Some variations to the classical Ecr-heating mechanism are proposed: the frequency tuning effect and the two-frequency heating in particular, but details about the effects of particular phase relationships in multi-wave plasma heating are also given. A special attention was paid to the electron heating until extremely high energies: this is a key issue for the safety of future, high performances sources, as these hot electrons are useless for ionizations and detrimental for the helium cryostat surrounding the superconducting coils of the magnetic system. Radically different heating schemes are also proposed, as the Bernstein wave heating currently under investigation for fusion devices. The influence of the electron dynamics on the ion beam emittance has been finally analyzed, in order to maximize the beam brightness and to avoid the formation of halos.

  18. First experiments with gasdynamic ion source in CW mode

    Energy Technology Data Exchange (ETDEWEB)

    Skalyga, V., E-mail: skalyga@ipfran.ru; Vodopyanov, A. [Institute of Applied Physics, Russian Academy of Sciences (IAP RAS), 46 Ul‘yanova St., Nizhny Novgorod 603950 (Russian Federation); Lobachevsky State University of Nizhny Novgorod (UNN), 23 Gagarina St., Nizhny Novgorod 603950 (Russian Federation); Izotov, I.; Golubev, S. [Institute of Applied Physics, Russian Academy of Sciences (IAP RAS), 46 Ul‘yanova St., Nizhny Novgorod 603950 (Russian Federation); Tarvainen, O. [Department of Physics, University of Jyvaskyla, P.O. Box 35 (YFL), 40500 Jyvaskyla (Finland)

    2016-02-15

    A new type of ECR ion source—a gasdynamic ECR ion source—has been recently developed at the Institute of Applied Physics. The main advantages of such device are extremely high ion beam current with a current density up to 600–700 emA/cm{sup 2} in combination with low emittance, i.e., normalized RMS emittance below 0.1 π mm mrad. Previous investigations were carried out in pulsed operation with 37.5 or 75 GHz gyrotron radiation with power up to 100 kW at SMIS 37 experimental facility. The present work demonstrates the first experience of operating the gasdynamic ECR ion source in CW mode. A test bench of SMIS 24 facility has been developed at IAP RAS. 24 GHz radiation of CW gyrotron was used for plasma heating in a magnetic trap with simple mirror configuration. Initial studies of plasma parameters were performed. Ion beams with pulsed and CW high voltage were successfully extracted from the CW discharge. Obtained experimental results demonstrate that all advantages of the gasdynamic source can be realized also in CW operation.

  19. An ion species model for positive ion sources - part II analysis of hydrogen isotope effects

    OpenAIRE

    Surrey, E.; Holmes, A J T

    2014-01-01

    A one dimensional model of the magnetic multipole volume plasma source has been developed for application to intense ion/neutral atom beam injectors. The model uses plasma transport coefficients for particle and energy flow to create a detailed description of the plasma parameters along an axis parallel to that of the extracted beam. In this paper the isotopic modelling of positive hydrogenic ions is considered and compared with experimental data from the neutral beam injectors of the Joint E...

  20. Limits of stability in emission of ions by laser ion sources

    Czech Academy of Sciences Publication Activity Database

    Krása, Josef; Velyhan, Andriy; Krouský, Eduard; Láska, Leoš; Rohlena, Karel; Jungwirth, Karel; Ullschmied, Jiří; Lorusso, A.; Velardi, L.; Nassisi, V.; Ryc, L.; Parys, P.; Wolowski, J.

    Osaka: IAPS, 2009 - (Kobayashi, A.), 175-178. (Advances in applied plasma science. 7). ISBN 978-4-9900642-6-6. [International Symposium on Applied Plasma Science /7./: ISAPS '09. Hamburg (DE), 31.08.2009-04.09.2009] R&D Projects: GA AV ČR IAA100100715 Institutional research plan: CEZ:AV0Z10100523; CEZ:AV0Z20430508 Keywords : laser ion sources * stability in ion emission Subject RIV: BL - Plasma and Gas Discharge Physics