Cao, Shancheng; Ouyang, Huajiang
2017-01-01
The structural characteristic deflection shapes (CDS’s) such as mode shapes and operational deflection shapes are highly sensitive to structural damage in beam- or plate-type structures. Nevertheless, they are vulnerable to measurement noise and could result in unacceptable identification errors. In order to increase the accuracy and noise robustness of damage identification based on CDS’s using vibration responses of random excitation, joint approximate diagonalization (JAD) technique and gapped smoothing method (GSM) are combined to form a sensitive and robust damage index (DI), which can simultaneously detect the existence of damage and localize its position. In addition, it is possible to apply this approach to damage identification of structures under ambient excitation. First, JAD method which is an essential technique of blind source separation is investigated to simultaneously diagonalize a set of power spectral density matrices corresponding to frequencies near a certain natural frequency to estimate a joint unitary diagonalizer. The columns of this joint diagonalizer contain dominant CDS’s. With the identified dominant CDS’s around different natural frequencies, GSM is used to extract damage features and a robust damage identification index is then proposed. Numerical and experimental examples of beams with cracks are used to verify the validity and noise robustness of JAD based CDS estimation and the proposed DI. Furthermore, damage identification using dominant CDS’s estimated by JAD method is demonstrated to be more accurate and noise robust than by the commonly used singular value decomposition method.
Online blind source separation based on joint diagonalization
Institute of Scientific and Technical Information of China (English)
Li Ronghua; Zhou Guoxu; Fang Zuyuan; Xie Shengli
2009-01-01
A now algorithm is proposed for joint diagonalization. With a modified objective function, the now algorithm not only excludes trivial and unbalanced solutions successfully, but is also easily optimized. In addition, with the new objective function, the proposed algorithm can work well in online blind source separation (BSS) for the first time, although this family of algorithms is always thought to be valid only in batch-mode BSS by far. Simulations show that it is a very competitive joint diagonalization algorithm.
Institute of Scientific and Technical Information of China (English)
肖心想; 雷敏
2013-01-01
Galaxy clusters are the important phenomenon in studying the changes of the universe and the bright foreground component of the redshifted cosmic reionization signals.It is one of the key issues in restricting the exploration and observation of the universe the clusters from the bright foreground of the Galactic and to separate extragalactic discrete sources.In the experiment the Joint Approximative Diagonalization of Eigenmatrix (JADE) algorithm is used to disentangle the cluster component from the simulated bright foreground on no consideration of the effects of instrument.The experimental results illustrates that the JADE algorithm can be used to separate the cluster component from the bright foreground validly.%星系团是研究宇宙变化的重要现象,也是宇宙在电离信号研究中的强前景.如何从强烈的银河系和河外离散源前景中分离出星系团一直是制约探索和观测宇宙的关键问题之一.实验通过利用扩展联合对角化(JADE)分离方法对模拟的未考虑仪器效应的前景图进行盲源分离探讨研究,获得了其中的星系团成分.结果表明,JADE分离方法能有效地对模拟的星系团成分进行分离.
Iterative algorithm for joint zero diagonalization with application in blind source separation.
Zhang, Wei-Tao; Lou, Shun-Tian
2011-07-01
A new iterative algorithm for the nonunitary joint zero diagonalization of a set of matrices is proposed for blind source separation applications. On one hand, since the zero diagonalizer of the proposed algorithm is constructed iteratively by successive multiplications of an invertible matrix, the singular solutions that occur in the existing nonunitary iterative algorithms are naturally avoided. On the other hand, compared to the algebraic method for joint zero diagonalization, the proposed algorithm requires fewer matrices to be zero diagonalized to yield even better performance. The extension of the algorithm to the complex and nonsquare mixing cases is also addressed. Numerical simulations on both synthetic data and blind source separation using time-frequency distributions illustrate the performance of the algorithm and provide a comparison to the leading joint zero diagonalization schemes.
Single-Channel Noise Reduction using Unified Joint Diagonalization and Optimal Filtering
DEFF Research Database (Denmark)
Nørholm, Sidsel Marie; Benesty, Jacob; Jensen, Jesper Rindom;
2014-01-01
In this paper, the important problem of single-channel noise reduction is treated from a new perspective. The problem is posed as a filtering problem based on joint diagonalization of the covariance matrices of the desired and noise signals. More specifically, the eigenvectors from the joint...... diagonalization corresponding to the least significant eigenvalues are used to form a filter, which effectively estimates the noise when applied to the observed signal. This estimate is then subtracted from the observed signal to form an estimate of the desired signal, i.e., the speech signal. In doing this, we...
Institute of Scientific and Technical Information of China (English)
Mosayeb Dalvand; Ghanbar Ebrahimi; Mehdi Tajvidi; Mohammad Layeghi
2014-01-01
We investigated bending moment resistance under diagonal compression load of corner doweled joints with plywood members. Joint members were made of 11-ply hardwood plywood of 19 mm thickness. Dowels were fabricated of Beech and Hornbeam species. Their diameters (6, 8 and 10 mm) and depths of penetration (9, 13 and 17 mm) in joint members were chosen variables in our experiment. By increasing the connector’s diameter from 6 to 8 mm, the bending moment resistance under diagonal compressive load was increased, while it decreased when the diameter was increased from 8 to 10 mm. The bending moment re-sistance under diagonal compressive load was increased by increasing the dowel’s depth of penetration. Joints made with dowels of Beech had higher resistance than dowels of Hornbeam. Highest resisting moment (45.18 N·m) was recorded for joints assembled with 8 mm Beech dowels penetrating 17 mm into joint members Lowest resisting moment (13.35 N·m) was recorded for joints assembled with 6 mm Hornbeam dowels and penetrating 9 mm into joint members.
Directory of Open Access Journals (Sweden)
Musa Atar
2010-02-01
Full Text Available The goal of this study was to determine the effects of different joint angles and adhesives on diagonal tension performances of the box-type furniture made from solid wood and medium density fiberboard (MDF. After drilling joints of 75º, 78º, 81º, 84º, and 87º degrees on Oriental beech, European oak, Scotch pine, and MDF samples, a diagonal tensile test was applied on corners glued with polyvinyl acetate (PVAc and polyurethane (D-VTKA = Desmodur-Vinyl Trieketonol Acetate according to ASTM D 1037 standard. With reference to the obtained results, the highest tensile strength was obtained in European oak with PVAc glue and joint angle of 84º, while the lowest value was obtained in MDF with D-VTKA glue and joint angle of 75º. Considering the interaction of wood, adhesive, and joint angle, the highest tensile strength was obtained in European oak with joint angle of 81º and D-VTKA glue (1.089 N.mm-2, whereas the lowest tensile strength was determined in MDF with joint angle of 75º and PVAc glue (0.163 N.mm-2. Therefore, PVAc as glue and 81º as joint angle could be suggested to obtain some advantageous on the dovetail joint process for box-type furniture made from both solid wood and MDF.
Institute of Scientific and Technical Information of China (English)
Mosayeb Dalvand; Ghanbar Ebrahimi; Akbar Rostampour Haftkhani; Sadegh Maleki
2013-01-01
This study was conducted to analyze the effect of joint type,and numbers and types of dovetail keys on diagonal tension and compression performance of corner joints in a furniture frame.Joint members were cut from white fir lumber.Butted and mitered joints were constructed with one and two dovetail key(s) with butterfly and H shapes.Joints were glued by polyvinyl acetate (PVAc) and cynoacrylate (CA).Compression capacity of joints was higher than diagonal tension.Mitered joints were stronger than butted ones.Butterfly dovetail keys were superior to H shape keys.Double keys performed better than single key.Experimental joints glued with PVAc were stronger than those glued with CA glue and control specimens.In terms of strength,butterfly dovetailed joints were comparable with doweled joints.
Delahunt, Eamonn; Prendiville, Anna; Sweeney, Lauren; Chawke, Mark; Kelleher, Judy; Patterson, Matt; Murphy, Katie
2012-08-01
Anterior cruciate ligament (ACL) injury is a common injury encountered by sport medicine clinicians. Surgical reconstruction is the recommended treatment of choice for those athletes wishing to return to full-contact sports participation and for sports requiring multi-directional movement patterns. The aim of ACL reconstruction is to restore knee joint mechanical stability such that the athlete can return to sporting participation. However, knowledge regarding the extent to which lower limb kinematic profiles are restored following ACL reconstruction is limited. In the present study the hip and knee joint kinematic profiles of 13 ACL reconstructed (ACL-R) and 16 non-injured control subjects were investigated during the performance of a diagonal jump landing task. The ACL-R group exhibited significantly less peak knee joint flexion (P=0.01). Significant between group differences were noted for time averaged hip joint sagittal plane (Pjoint frontal plane (Phip and knee joint kinematic profiles are present following ACL reconstruction, which could influence future injury risk.
A combined joint diagonalization-MUSIC algorithm for subsurface targets localization
Wang, Yinlin; Sigman, John B.; Barrowes, Benjamin E.; O'Neill, Kevin; Shubitidze, Fridon
2014-06-01
This paper presents a combined joint diagonalization (JD) and multiple signal classification (MUSIC) algorithm for estimating subsurface objects locations from electromagnetic induction (EMI) sensor data, without solving ill-posed inverse-scattering problems. JD is a numerical technique that finds the common eigenvectors that diagonalize a set of multistatic response (MSR) matrices measured by a time-domain EMI sensor. Eigenvalues from targets of interest (TOI) can be then distinguished automatically from noise-related eigenvalues. Filtering is also carried out in JD to improve the signal-to-noise ratio (SNR) of the data. The MUSIC algorithm utilizes the orthogonality between the signal and noise subspaces in the MSR matrix, which can be separated with information provided by JD. An array of theoreticallycalculated Green's functions are then projected onto the noise subspace, and the location of the target is estimated by the minimum of the projection owing to the orthogonality. This combined method is applied to data from the Time-Domain Electromagnetic Multisensor Towed Array Detection System (TEMTADS). Examples of TEMTADS test stand data and field data collected at Spencer Range, Tennessee are analyzed and presented. Results indicate that due to its noniterative mechanism, the method can be executed fast enough to provide real-time estimation of objects' locations in the field.
Ibáñez, Javier; Hernández, Vicente
2011-03-01
Differential Matrix Riccati Equations (DMREs) appear in several branches of science such as applied physics and engineering. For example, these equations play a fundamental role in control theory, optimal control, filtering and estimation, decoupling and order reduction, etc. In this paper a new method based on a theorem proved in this paper is described for solving DMREs by a piecewise-linearized approach. This method is applied for developing two block-oriented algorithms based on diagonal Padé approximants. MATLAB versions of the above algorithms are developed, comparing, under equal conditions, accuracy and computational costs with other piecewise-linearized algorithms implemented by the authors. Experimental results show the advantages of solving stiff or non-stiff DMREs by the implemented algorithms.
Beyond the Tamm-Dancoff approximation for extended systems using exact diagonalization
Sander, Tobias; Maggio, Emanuele; Kresse, Georg
2015-07-01
Linear optical properties can be accurately calculated using the Bethe-Salpeter equation. After introducing a suitable product basis for the electron-hole pairs, the Bethe-Salpeter equation is usually recast into a complex non-Hermitian eigenvalue problem that is difficult to solve using standard eigenvalue solvers. In solid-state physics, it is therefore common practice to neglect the problematic coupling between the positive- and negative-frequency branches, reducing the problem to a Hermitian eigenvalue problem [Tamm-Dancoff approximation (TDA)]. We use time-inversion symmetry to recast the full problem into a quadratic Hermitian eigenvalue problem, which can be solved routinely using standard eigenvalue solvers even at a finite wave vector q . This allows us to access the importance of the coupling between the positive- and negative-frequency branch for prototypical solids. As a starting point for the Bethe-Salpeter calculations, we use self-consistent Green's-function methods (GW ), making the present scheme entirely ab initio. We calculate the optical spectra of carbon (C), silicon (Si), lithium fluoride (LiF), and the cyclic dimer Li2F2 and discuss why the differences between the TDA and the full solution are tiny. However, at finite momentum transfer q , significant differences between the TDA and our exact treatment are found. The origin of these differences is explained.
Jankiewicz, Justyna
2004-01-01
We study the properties of time evolution of the $K^{0}-\\bar{K}^{0} $ system in spectral formulation. Within the one--pole model we find the exact form of the diagonal matrix elements of the effective Hamiltonian for this system. It appears that, contrary to the Lee--Oehme--Yang (LOY) result, these exact diagonal matrix elements are different if the total system is CPT--invariant but CP--noninvariant.
Interpolation function for approximating knee joint behavior in human gait
Toth-Taşcǎu, Mirela; Pater, Flavius; Stoia, Dan Ioan
2013-10-01
Starting from the importance of analyzing the kinematic data of the lower limb in gait movement, especially the angular variation of the knee joint, the paper propose an approximation function that can be used for processing the correlation among a multitude of knee cycles. The approximation of the raw knee data was done by Lagrange polynomial interpolation on a signal acquired using Zebris Gait Analysis System. The signal used in approximation belongs to a typical subject extracted from a lot of ten investigated subjects, but the function domain of definition belongs to the entire group. The study of the knee joint kinematics plays an important role in understanding the kinematics of the gait, this articulation having the largest range of motion in whole joints, in gait. The study does not propose to find an approximation function for the adduction-abduction movement of the knee, this being considered a residual movement comparing to the flexion-extension.
Boukahil, A.; Huber, D. L.
2014-12-01
We investigate the optical absorption and the density of states of a Frenkel exciton system on a square lattice with nearest-neighbor interactions and a Gaussian distribution of transition frequencies (i.e. Gaussian diagonal disorder). Results are presented for the absorption and the density of states of direct and indirect edge systems for a range of variances. There is reasonable agreement with the corresponding finite array calculations of Schreiber and Toyozawa. The existence of an Urbach tail is also investigated.
Chaotic diagonal recurrent neural network
Institute of Scientific and Technical Information of China (English)
Wang Xing-Yuan; Zhang Yi
2012-01-01
We propose a novel neural network based on a diagonal recurrent neural network and chaos,and its structure andlearning algorithm are designed.The multilayer feedforward neural network,diagonal recurrent neural network,and chaotic diagonal recurrent neural network are used to approach the cubic symmetry map.The simulation results show that the approximation capability of the chaotic diagonal recurrent neural network is better than the other two neural networks.
Youdas, James W; Adams, Kady E; Bertucci, John E; Brooks, Koel J; Steiner, Meghan M; Hollman, John H
2015-01-01
The aim of this study was to simultaneously quantify electromyographic (EMG) activation levels (% maximum voluntary isometric contraction [MVIC]) within the gluteus medius muscles on both moving and stance limbs across the performance of four proprioceptive neuromuscular facilitation (PNF) spiral-diagonal patterns in standing using resistance provided by elastic tubing. Differential EMG activity was recorded from the gluteus medius muscle of 26 healthy participants. EMG signals were collected with surface electrodes at a sampling frequency of 1000 Hz during three consecutive repetitions of each spiral-diagonal movement pattern. Significant differences existed among the four-spiral-diagonal movement patterns (F3,75 = 19.8; p < 0.001). The diagonal two flexion [D2F] pattern produced significantly more gluteus medius muscle recruitment (50 SD 29.3% MVIC) than any of the other three patterns and the diagonal one extension [D1E] (39 SD 37% MVIC) and diagonal two extension [D2E] (35 SD 29% MVIC) patterns generated more gluteus medius muscle recruitment than diagonal one flexion [D1F] (22 SD 21% MVIC). From a clinical efficiency standpoint, a fitness professional using the spiral-diagonal movement pattern of D2F and elastic tubing with an average peak tension of about 9% body mass may be able to concurrently strengthen the gluteus medius muscle on both stance and moving lower limbs.
Avgin, I.; Boukahil, A.; Huber, D. L.
2015-11-01
Using the coherent potential approximation, we investigate the optical absorption and the density of states of Frenkel exciton systems on simple, body centered, and face centered cubic lattices with nearest-neighbor interactions and a Gaussian distribution of transition frequencies (i.e. Gaussian diagonal disorder). The analysis is based on an elliptic integral approach with a variety of variances. The results for the simple cubic lattice are in good agreement with the finite array calculations of Schreiber and Toyozawa. Our findings suggest that the coherent potential approximation can be useful in interpreting the optical properties of cubic crystals where the optically excited states are Frenkel excitons with the dominant interactions limited to nearest-neighbors.
Energy Technology Data Exchange (ETDEWEB)
Avgin, I. [Department of Electrical and Electronics Engineering, Ege University, Bornova 35100, Izmir (Turkey); Boukahil, A. [Physics Department, University of Wisconsin-Whitewater, Whitewater, WI 53190 (United States); Huber, D.L., E-mail: dhuber@src.wisc.edu [Physics Department, University of Wisconsin-Madison, Madison, WI 53706 (United States)
2015-11-15
Using the coherent potential approximation, we investigate the optical absorption and the density of states of Frenkel exciton systems on simple, body centered, and face centered cubic lattices with nearest-neighbor interactions and a Gaussian distribution of transition frequencies (i.e. Gaussian diagonal disorder). The analysis is based on an elliptic integral approach with a variety of variances. The results for the simple cubic lattice are in good agreement with the finite array calculations of Schreiber and Toyozawa. Our findings suggest that the coherent potential approximation can be useful in interpreting the optical properties of cubic crystals where the optically excited states are Frenkel excitons with the dominant interactions limited to nearest-neighbors.
Directory of Open Access Journals (Sweden)
Sandeep Santosh
2016-09-01
Full Text Available In this paper, a comparative study of Wideband MUSIC method, Joint Diagonalization Structure (JDS method and Beam-Space Genetic Algorithm (BGA is presented with respect to resolution probability and Root mean square error (RMSE evaluated in both low and high Signal-to-Noise ratio (SNR regions. The simulation results show that BGA has higher resolution probability than the JDS method and Wideband MUSIC method in low SNR region while in the high SNR region, Wideband MUSIC has higher resolution probability followed by BGA and JDS method. RMSE is smallest for BGA as compared to JDS and Wideband MUSIC in low SNR region. In the high SNR region, Wideband MUSIC has smallest RMSE followed by BGA and JDS method.
Nonlinear approximation with dictionaries. II. Inverse Estimates
DEFF Research Database (Denmark)
Gribonval, Rémi; Nielsen, Morten
2006-01-01
In this paper, which is the sequel to [16], we study inverse estimates of the Bernstein type for nonlinear approximation with structured redundant dictionaries in a Banach space. The main results are for blockwise incoherent dictionaries in Hilbert spaces, which generalize the notion of joint block-diagonal...
Nonlinear approximation with dictionaries,.. II: Inverse estimates
DEFF Research Database (Denmark)
Gribonval, Rémi; Nielsen, Morten
In this paper we study inverse estimates of the Bernstein type for nonlinear approximation with structured redundant dictionaries in a Banach space. The main results are for separated decomposable dictionaries in Hilbert spaces, which generalize the notion of joint block-diagonal mutually...
Diagonalization of Hamiltonian; Diagonalization of Hamiltonian
Energy Technology Data Exchange (ETDEWEB)
Garrido, L. M.; Pascual, P.
1960-07-01
We present a general method to diagonalized the Hamiltonian of particles of arbitrary spin. In particular we study the cases of spin 0,1/2, 1 and see that for spin 1/2 our transformation agrees with Foldy's and obtain the expression for different observables for particles of spin C and 1 in the new representation. (Author) 7 refs.
Institute of Scientific and Technical Information of China (English)
崔建宇; 孙建刚; 宋玉普; 渡边史夫
2011-01-01
This paper uses the strut-truss model to analyze the shear strength of reinforced concrete frame exterior joints through thirty-five shear failure type joints without beam flexural yield and six shear failure joints after beam flexural yield. It discusses the influence of parameters including concrete compressive strength,column axial-compression ratio, amount of joint horizontal or vertical hoop, and angle of strut mechanism etc. ,on concrete strength effective factor ρ of diagonal strut mechanism. The analysis results show that ρ value deterioration ratio at peak load increases with the increase od concrete strength. The effect of joint hoop on ρ value deterioration is more significant using ordinary strength concrete than the case using high strength concrete. The contribution of strut mechanism to joint shear force is more than 80％ when joint shear reinforcement ration is less than 0.3 ％. The joint strength equation is proposed based on the analysis results of the factor ρ,and the calculated values agree well with the experimental results.%利用斜压-桁架模型对以往35个剪切破坏型以及6个梁屈服后剪切破坏型钢筋混凝土框架边节点试件抗剪强度进行解析.探讨了混凝土抗压强度、柱轴压比、节点水平箍筋量、节点竖向箍筋量以及斜压机构倾角等参数对斜压机构混凝土强度有效因数p的影响.研究结果表明,混凝土强度越高,最大荷载时p值衰减率越大;普通强度混凝土时节点箍筋对p值衰减的抑制效果比高强度混凝土时明显;节点箍筋配箍率小于0.3%范围内斜压机构承担总剪力的80%以上.根据对p值的解析结果提出了针对节点强度的计算式,计算值与试验结果吻合.
Diagonal stripes in the spin glass phase of cuprates
Energy Technology Data Exchange (ETDEWEB)
Seibold, G., E-mail: goetz@physik.tu-cottbus.d [Institut fuer Physik, BTU Cottbus, Post Box 101344, 03013 Cottbus (Germany); Lorenzana, J. [SMC-INFM-CNR and Dipartimento di Fisica, Universita di Roma ' La Sapienza' , P.le Aldo Moro 5, I-00185 Roma (Italy)
2010-12-15
Based on the unrestricted Gutzwiller approximation we study the possibility that the diagonal incommensurate spin scattering in the spin glass phase of lanthanum cuprates originates from stripe formation. Similar to the metallic phase two types of diagonal stripe structures appear to be stable: (a) site-centered textures which have one hole per site along the stripe and (b) ferromagnetic stair-case structures which are the diagonal equivalent to bond-centered stripes in the metallic phase and which on average have a filling of 3/4 holes per stripe site. We give a detailed analysis of the stability of both diagonal textures with regard to the vertical ones.
Multi-view TWRI scene reconstruction using a joint Bayesian sparse approximation model
Tang, V. H.; Bouzerdoum, A.; Phung, S. L.; Tivive, F. H. C.
2015-05-01
This paper addresses the problem of scene reconstruction in conjunction with wall-clutter mitigation for com- pressed multi-view through-the-wall radar imaging (TWRI). We consider the problem where the scene behind- the-wall is illuminated from different vantage points using a different set of frequencies at each antenna. First, a joint Bayesian sparse recovery model is employed to estimate the antenna signal coefficients simultaneously, by exploiting the sparsity and inter-signal correlations among antenna signals. Then, a subspace-projection technique is applied to suppress the signal coefficients related to the wall returns. Furthermore, a multi-task linear model is developed to relate the target coefficients to the image of the scene. The composite image is reconstructed using a joint Bayesian sparse framework, taking into account the inter-view dependencies. Experimental results are presented which demonstrate the effectiveness of the proposed approach for multi-view imaging of indoor scenes using a reduced set of measurements at each view.
Institute of Scientific and Technical Information of China (English)
李炜; 杨慧中
2014-01-01
联合对角化能够成功解决盲分离问题，但在求解时会得到非期望的奇异解，从而无法完全分离出源信号。鉴于此，提出一种用于线性卷积混合盲分离的联合对角化方法，将卷积混合模型变换为瞬时模型，并对变换后的模型应用联合对角化求取分离矩阵。在求解过程中，引入约束条件对解的范围进行限定，避免了奇异解的出现。仿真结果表明，所提出的方法能够成功实现卷积混合信号盲分离。%Joint diagonalization can solve the problem of the blind source separation(BSS) approach. However, the method may converge to some unexpected singular solutions, thus the separation process fails in the end. Therefore, a blind source separation method based on the joint diagonalization approach for the linear convolutive mixing model is proposed. In the proposed method, the convolutive mixing model is firstly transformed to the instantaneous mixing model. Then a joint diagonalization method is applied on the transformed model in order to compute out the separating matrix. Meanwhile, in the process of diagonalization, a constraint condition is introduced for the limitation of the class of the separating matrices such that the singular solutions are avoided. Simulation results show that the proposed method can realize BSS of convolutive mixture signals successfully.
The diagonalization of cubic matrices
Cocolicchio, D.; Viggiano, M.
2000-08-01
This paper is devoted to analysing the problem of the diagonalization of cubic matrices. We extend the familiar algebraic approach which is based on the Cardano formulae. We rewrite the complex roots of the associated resolvent secular equation in terms of transcendental functions and we derive the diagonalizing matrix.
Self-excitation of a diagonal MHD channel
Energy Technology Data Exchange (ETDEWEB)
Doperchuk, I.I.; Koneyev, S.M.A.
1982-01-01
Questions are examined of self-excitation of a diagonal MHD channel. Conditions are obtained for self-excitation using 0-dimensional approximation. An algorithm is presented for calculating the optimal self-exciting diagonal channel with regard for development and separation of the boundary layers, presence of near-electrode drops in voltage. Graphs are presented for the transitional regimes of channel operation with intermediate point of connection of the excitation winding.
Batell, Brian
2012-09-01
The focus of this brief review is on new physics (NP) sources of CP violation, especially related to the flavor-diagonal phenomena of electric dipole moments (EDMs) of elementary particles and atoms. Using weak scale supersymmetry as an example, we illustrate various aspects of the "new physics CP-problem". We also explore the interplay between flavor-changing and flavor-diagonal CP violation in the context of the recent hints from the Tevatron for new sources of CP violation in the B-meson systems.
Spectral diagonal ensemble Kalman filters
Kasanický, Ivan; Vejmelka, Martin
2015-01-01
A new type of ensemble Kalman filter is developed, which is based on replacing the sample covariance in the analysis step by its diagonal in a spectral basis. It is proved that this technique improves the aproximation of the covariance when the covariance itself is diagonal in the spectral basis, as is the case, e.g., for a second-order stationary random field and the Fourier basis. The method is extended by wavelets to the case when the state variables are random fields, which are not spatially homogeneous. Efficient implementations by the fast Fourier transform (FFT) and discrete wavelet transform (DWT) are presented for several types of observations, including high-dimensional data given on a part of the domain, such as radar and satellite images. Computational experiments confirm that the method performs well on the Lorenz 96 problem and the shallow water equations with very small ensembles and over multiple analysis cycles.
Efficient variational diagonalization of fully many-body localized Hamiltonians
Pollmann, Frank; Khemani, Vedika; Cirac, J. Ignacio; Sondhi, S. L.
2016-07-01
We introduce a variational unitary matrix product operator based variational method that approximately finds all the eigenstates of fully many-body localized one-dimensional Hamiltonians. The computational cost of the variational optimization scales linearly with system size for a fixed depth of the UTN ansatz. We demonstrate the usefulness of our approach by considering the Heisenberg chain in a strongly disordered magnetic field for which we compare the approximation to exact diagonalization results.
Directory of Open Access Journals (Sweden)
Lin Shao
2016-01-01
Full Text Available Due to large numbers of antennas and users, matrix inversion is complicated in linear precoding techniques for massive MIMO systems. Several approximated matrix inversion methods, including the Neumann series, have been proposed to reduce the complexity. However, the Neumann series does not converge fast enough. In this paper, to speed up convergence, a new joint Newton iteration and Neumann series method is proposed, with the first iteration result of Newton iteration method being employed to reconstruct the Neumann series. Then, a high probability convergence condition is established, which can offer useful guidelines for practical massive MIMO systems. Finally, simulation examples are given to demonstrate that the new joint Newton iteration and Neumann series method has a faster convergence rate compared to the previous Neumann series, with almost no increase in complexity when the iteration number is greater than or equal to 2.
Simultaneous diagonalization of two quaternion matrices
Institute of Scientific and Technical Information of China (English)
ZhouJianhua
2003-01-01
The simultaneous diagonalization by congruence of pairs of Hermitian quatemion matrices is discussed. The problem is reduced to a parallel one on complex matrices by using the complex adjoint matrix related to each quatemion matrix. It is proved that any two semi-positive definite Hermitian quatemion matrices can be simultaneously diagonalized by congruence.
A class of Bell diagonal states and entanglement witnesses
Chruscinski, D; Mlodawski, K; Matsuoka, T
2010-01-01
We analyze special class of bipartite states - so called Bell diagonal states. In particular we provide new examples of bound entangled Bell diagonal states and construct the class of entanglement witnesses diagonal in the magic basis.
On triangular algebras with noncommutative diagonals
Institute of Scientific and Technical Information of China (English)
2008-01-01
We construct a triangular algebra whose diagonals form a noncommutative algebra and its lattice of invariant projections contains only two nontrivial projections. Moreover we prove that our triangular algebra is maximal.
On triangular algebras with noncommutative diagonals
Institute of Scientific and Technical Information of China (English)
DONG AiJu
2008-01-01
We construct a triangular algebra whose diagonals form a noncommutative algebra and its lattice of invariant projections contains only two nontrivial projections.Moreover we prove that our triangular algebra is maximal.
Diagonal chromatography to study plant protein modifications
Walton, Alan; Tsiatsiani, Liana; Jacques, Silke; Stes, Elisabeth; Messens, Joris; Van Breusegem, Frank; Goormachtig, Sofie; Gevaert, Kris
2016-01-01
An interesting asset of diagonal chromatography, which we have introduced for contemporary proteome research, is its high versatility concerning proteomic applications. Indeed, the peptide modification or sorting step that is required between consecutive peptide separations can easily be altered and
Diagonal loading least squares time delay estimation
Institute of Scientific and Technical Information of China (English)
LI Xuan; YAN Shefeng; MA Xiaochuan
2012-01-01
Least squares （LS） time delay estimation is a classical and effective method. However, the performance is degraded severely in the scenario of low ratio of signal-noise （SNR） due to the instability of matrix inversing. In order to solve the problem, diagonal loading least squares （DL-LS） is proposed by adding a positive definite matrix to the inverse matrix. Furthermore, the shortcoming of fixed diagonal loading is analyzed from the point of regularization that when the tolerance of low SNR is increased, veracity is decreased. This problem is resolved by reloading. The primary estimation＇s reciprocal is introduced as diagonal loading and it leads to small diagonal loading at the time of arrival and larger loading at other time. Simulation and pool experiment prove the algorithm has better performance.
Diagonal chromatography to study plant protein modifications.
Walton, Alan; Tsiatsiani, Liana; Jacques, Silke; Stes, Elisabeth; Messens, Joris; Van Breusegem, Frank; Goormachtig, Sofie; Gevaert, Kris
2016-08-01
An interesting asset of diagonal chromatography, which we have introduced for contemporary proteome research, is its high versatility concerning proteomic applications. Indeed, the peptide modification or sorting step that is required between consecutive peptide separations can easily be altered and thereby allows for the enrichment of specific, though different types of peptides. Here, we focus on the application of diagonal chromatography for the study of modifications of plant proteins. In particular, we show how diagonal chromatography allows for studying proteins processed by proteases, protein ubiquitination, and the oxidation of protein-bound methionines. We discuss the actual sorting steps needed for each of these applications and the obtained results. This article is part of a Special Issue entitled: Plant Proteomics--a bridge between fundamental processes and crop production, edited by Dr. Hans-Peter Mock.
Noise Reduction in the Time Domain using Joint Diagonalization
DEFF Research Database (Denmark)
Nørholm, Sidsel Marie; Benesty, Jacob; Jensen, Jesper Rindom;
2014-01-01
, an estimate of the desired signal is found by subtraction of the noise estimate from the observed signal. The filter can be designed to obtain a desired trade-off between noise reduction and signal distortion, depending on the number of eigenvectors included in the filter design. This is explored through...
Diagonal and off-diagonal quark number susceptibilities at high temperatures
Ding, H -T; Ohno, H; Petreczky, P; Schadler, H -P
2015-01-01
We present continuum extrapolated lattice QCD results for up to fourth order diagonal and off-diagonal quark number susceptibilities in the high temperature region of 300-700 MeV. Lattice QCD calculations are performed using 2+1 flavors of highly improved staggered quarks with nearly physical quark masses and at four different lattice spacings. Comparisons of our results with recent weak coupling perturbative calculations yield reasonably good agreements for the entire temperature range.
Institute of Scientific and Technical Information of China (English)
XIE Bing-Hao; ZHANG Hong-Biao; CHEN Jing-Ling
2002-01-01
An algebraic diagonalization method is proposed. As two examples, the Hamiltonians of BCS ground stateunder mean-field approximation and XXZ antiferromagnetic model in linear spin-wave frame have been diagonalized byusing SU(2), SU(1,1) Lie algebraic method, respectively. Meanwhile, the eigenstates of the above two models are revealedto be SU(2), SU(1,1) coherent states, respectively. The relation between the usual Bogoliubov Valatin transformationand the algebraic method in a special case is also discussed.
New Criteria for Judging Generalized Strictly Diagonally Dominant Matrix
Institute of Scientific and Technical Information of China (English)
ZHANG Jin-song
2015-01-01
Generalized strictly diagonally dominant matrices play a wide and important role in computational mathematics, mathematical physics, theory of dynamical systems, etc. But it is diﬃcult to judge a matrix is or not generalized strictly diagonally dominant matrix. In this paper, by using the properties of α-chain diagonally dominant matrix, we obtain new criteria for judging generalized strictly diagonally dominant matrix, which enlarge the identification range.
Introduction to Hubbard model and exact diagonalization
Directory of Open Access Journals (Sweden)
S. Akbar Jafari
2008-06-01
Full Text Available Hubbard model is an important model in the theory of strongly correlated electron systems. In this contribution we introduce this model and the concepts of electron correlation by building on a tight binding model. After enumerating various methods of tackling the Hubbard model, we introduce the numerical method of exact diagonalization in detail. The book keeping and practical implementation aspects are illustrated with analytically solvable example of two-site Hubbard model.
Diagonalizing sensing matrix of broadband RSE
Sato, Shuichi; Kokeyama, Keiko; Kawazoe, Fumiko; Somiya, Kentaro; Kawamura, Seiji
2006-03-01
For a broadband-operated RSE interferometer, a simple and smart length sensing and control scheme was newly proposed. The sensing matrix could be diagonal, owing to a simple allocation of two RF modulations and to a macroscopic displacement of cavity mirrors, which cause a detuning of the RF modulation sidebands. In this article, the idea of the sensing scheme and an optimization of the relevant parameters will be described.
三体Bell对角态的纠缠%Entanglement of Tripartite Bell Diagonal States
Institute of Scientific and Technical Information of China (English)
赵慧; 张兴华
2011-01-01
给出了三体2(×)2(×)3Bell对角态纠缠判定的一个必要条件和3(×)3(×)3Bell对角态纠缠的充分条件,进一步研究了3(×)3(×)3Bell对角态纠缠与密度矩阵部分转置的关系以及Bell对角态负性的数学表达式.%A necessary condition of entanglement for tripartite 2 (⊕)2 (⊕)3 Bell diagonal states and a sufficient condition of entanglement for 3 (⊕)3 (⊕)3 Bell diagonal states are presented. Moreover, the relation between entanglement of 3(⊕)3(⊕)3 Bell diagonal states and partial transpose of density matrix is investigated. And an analytical expression of negative for Bell diagonal states is presented.Key words: Bell diagonal states; entanglement; density matrix Robust Estimation for Varying Coefficient Model Abstract: This paper considers robust estimation of varying coefficient models with emphasis on resistance against outliers. By combining B-splines method with taut string method, a robust estimation procedure is proposed. Based on local quadratic approximation, an iterative algorithm is introduced. Simulation study indicates that the proposed method is robust.
Exact diagonalization of quantum-spin models
Lin, H. Q.
1990-10-01
We have developed a technique to replace hashing in implementing the Lanczös method for exact diagonalization of quantum-spin models that enables us to carry out numerical studies on substantially larger lattices than previously studied. We describe the algorithm in detail and present results for the ground-state energy, the first-excited-state energy, and the spin-spin correlations on various finite lattices for spins S=1/2, 1, 3/2, and 2. Results for an infinite system are obtained by extrapolation. We also discuss the generalization of our method to other models.
Diagonal gates in the Clifford hierarchy
Cui, Shawn X.; Gottesman, Daniel; Krishna, Anirudh
2017-01-01
The Clifford hierarchy is a set of gates that appears in the theory of fault-tolerant quantum computation, but its precise structure remains elusive. We give a complete characterization of the diagonal gates in the Clifford hierarchy for prime-dimensional qudits. They turn out to be pmth roots of unity raised to polynomial functions of the basis state to which they are applied, and we determine which level of the Clifford hierarchy a given gate sits in based on m and the degree of the polynomial.
Diagonally non-computable functions and fireworks
Bienvenu, Laurent; Patey, Ludovic
2014-01-01
A set C of reals is said to be negligible if there is no probabilistic algorithm which generates a member of C with positive probability. Various classes have been proven to be negligible, for example the Turing upper-cone of a non-computable real, the class of coherent completions of Peano Arithmetic or the class of reals of minimal degrees. One class of particular interest in the study of negligibility is the class of diagonally non-computable (DNC) functions, proven by Kucera to be non-neg...
Diagonalizing the Black Hole Information Retrieval Process
Hooft, Gerard t
2015-01-01
The mechanism by which black holes return the absorbed information to the outside world is reconsidered, and described in terms of a set of mutually non-interacting modes. Our mechanism is based on the mostly classical gravitational back-reaction. The diagonalized formalism is particularly useful for further studies of this process. Although no use is made of string theory, our analysis appears to point towards an ensuing string-like interaction. It is shown how black hole entropy can be traced down to classical gravitational back-reaction.
Special function of nestin+neurons in the medial septum-diagonal band of Broca in adult rats
Institute of Scientific and Technical Information of China (English)
Yuhong Zhao; Kaihua Guo; Dongpei Li; Qunfang Yuan; Zhibin Yao
2014-01-01
Nestin+neurons have been shown to express choline acetyltransferase (ChAT) in the medial septum-diagonal band of Broca in adult rats. This study explored the projection of nestin+neu-rons to the olfactory bulb and the time course of nestin+neurons in the medial septum-diagonal band of Broca in adult rats during injury recovery after olfactory nerve transection. This study observed that all nestin+neurons were double-labeled with ChAT in the medial septum-diagonal band of Broca. Approximately 53.6%of nestin+neurons were projected to the olfactory bulb and co-labeled with fast blue. A large number of nestin+neurons were not present in each region of the medial septum-diagonal band of Broca. Nestin+neurons in the medial septum and vertical limb of the diagonal band of Broca showed obvious compensatory function. The number of nestin+neurons decreased to a minimum later than nestin-/ChAT+neurons in the medial sep-tum-diagonal band of Broca. The results suggest that nestin+cholinergic neurons may have a closer connection to olfactory bulb neurons. Nestin+cholinergic neurons may have a stronger tolerance to injury than Nestin-/ChAT+neurons. The difference between nestin+and nestin-/ChAT+neurons during the recovery process requires further investigations.
Pieper, Andreas; Kreutzer, Moritz; Alvermann, Andreas; Galgon, Martin; Fehske, Holger; Hager, Georg; Lang, Bruno; Wellein, Gerhard
2016-11-01
We study Chebyshev filter diagonalization as a tool for the computation of many interior eigenvalues of very large sparse symmetric matrices. In this technique the subspace projection onto the target space of wanted eigenvectors is approximated with filter polynomials obtained from Chebyshev expansions of window functions. After the discussion of the conceptual foundations of Chebyshev filter diagonalization we analyze the impact of the choice of the damping kernel, search space size, and filter polynomial degree on the computational accuracy and effort, before we describe the necessary steps towards a parallel high-performance implementation. Because Chebyshev filter diagonalization avoids the need for matrix inversion it can deal with matrices and problem sizes that are presently not accessible with rational function methods based on direct or iterative linear solvers. To demonstrate the potential of Chebyshev filter diagonalization for large-scale problems of this kind we include as an example the computation of the 102 innermost eigenpairs of a topological insulator matrix with dimension 109 derived from quantum physics applications.
Finite-Time Attractivity for Diagonally Dominant Systems with Off-Diagonal Delays
Directory of Open Access Journals (Sweden)
T. S. Doan
2012-01-01
Full Text Available We introduce a notion of attractivity for delay equations which are defined on bounded time intervals. Our main result shows that linear delay equations are finite-time attractive, provided that the delay is only in the coupling terms between different components, and the system is diagonally dominant. We apply this result to a nonlinear Lotka-Volterra system and show that the delay is harmless and does not destroy finite-time attractivity.
Quantum Monte Carlo diagonalization method as a variational calculation
Energy Technology Data Exchange (ETDEWEB)
Mizusaki, Takahiro; Otsuka, Takaharu [Tokyo Univ. (Japan). Dept. of Physics; Honma, Michio
1997-05-01
A stochastic method for performing large-scale shell model calculations is presented, which utilizes the auxiliary field Monte Carlo technique and diagonalization method. This method overcomes the limitation of the conventional shell model diagonalization and can extremely widen the feasibility of shell model calculations with realistic interactions for spectroscopic study of nuclear structure. (author)
Using off-diagonal confinement as a cooling method
Rousseau, Valery; Hettiarachchilage, Kalani; Moreno, Juana; Jarrell, Mark; Sheehy, Dan
2011-03-01
We show that the recently proposed ``off-diagonal confining" (ODC) method (Phys. Rev. Lett. 104, 167201 (2010)) can lead to temperatures that are smaller than with the conventional ``diagonal confining" (DC) method, depending on the control parameters of the system. We determine these parameters using exact diagonalizations for the hard-core case, then we extend our results to the soft-core case by performing quantum Monte Carlo simulations for both DC and ODC systems at fixed temperatures, and analysing the corresponding entropies. This work was supported by NSF OISE-0952300.
Diagonal representation for a generic matrix valued quantum Hamiltonian
Energy Technology Data Exchange (ETDEWEB)
Gosselin, Pierre [Universite Grenoble I, Institut Fourier, UMR 5582 CNRS-UJF UFR de Mathematiques, BP74, Saint Martin d' Heres Cedex (France); Mohrbach, Herve [Universite Paul Verlaine-Metz, Laboratoire de Physique Moleculaire et des Collisions, ICPMB-FR CNRS 2843, Metz Cedex 3 (France)
2009-12-15
A general method to derive the diagonal representation for a generic matrix valued quantum Hamiltonian is proposed. In this approach new mathematical objects like non-commuting operators evolving with the Planck constant promoted as a running variable are introduced. This method leads to a formal compact expression for the diagonal Hamiltonian which can be expanded in a power series of the Planck constant. In particular, we provide an explicit expression for the diagonal representation of a generic Hamiltonian to the second order in the Planck constant. This result is applied, as a physical illustration, to Dirac electrons and neutrinos in external fields. (orig.)
NONLINEAR BENDING THEORY OF DIAGONAL SQUARE PYRAMID RETICULATED SHALLOW SHELLS
Institute of Scientific and Technical Information of China (English)
肖潭; 刘人怀
2001-01-01
Double-deck reticulated shells are a main form of large space structures. One of the shells is the diagonal square pyramid reticulated shallow shell, whose its upper and lower faces bear most of the load but its core is comparatively flexible. According to its geometrical and mechanical characteristics, the diagonal square pyramid reticulated shallow shell is treated as a shallow sandwich shell on the basis of three basic assumptions. Its constitutive relations are analyzed from the point of view of energy and internal force equivalence. Basic equations of the geometrically nonlinear bending theory of the diagonal square pyramid reticulated shallow shell are established by means of the virtual work principle .
Teleportation of an arbitrary mixture of diagonal states of multiqudit
Institute of Scientific and Technical Information of China (English)
Du Qian-Hua; Lin Xiu-Min; Chen Zhi-Hua; Lin Gong-Wei; Chen Li-Bo; Gu Yong-Jian
2008-01-01
This paper proposes a scheme to teleport an arbitrary mixture of diagonal states of multiqutrit via classical correlation and classical communication. To teleport an arbitrary mixture of diagonal states of N qutrits, N classically correlated pairs of two qutrits are used as channel. The sender (Alice) makes Fourier transform and conditional gate (i.e., XOR(3) gate) on her qutrits and does measurement in appropriate computation bases. Then she sends N ctrits to the receiver (Bob). Based on the received information, Bob performs the corresponding unitary transformation on his qutrits and obtains the teleported state. Teleportation of an arbitrary mixture of diagonal states of multiqudit is also discussed.
变系数模型的稳健估计%Entanglement of Tripartite Bell Diagonal States
Institute of Scientific and Technical Information of China (English)
赵培信; 薛留根
2011-01-01
为了研究变系数模型的稳健估计问题,结合B-样条方法和taut string方法得到了一个稳健估计过程;结合局部二次逼近方法,给出了一个迭代算法.数据模拟结果表明所得估计是稳健的.%A necessary condition of entanglement for tripartite 2 (⊕)2 (⊕)3 Bell diagonal states and a sufficient condition of entanglement for 3 (⊕)3 (⊕)3 Bell diagonal states are presented. Moreover, the relation between entanglement of 3(⊕)3(⊕)3 Bell diagonal states and partial transpose of density matrix is investigated. And an analytical expression of negative for Bell diagonal states is presented.Key words: Bell diagonal states; entanglement; density matrix Robust Estimation for Varying Coefficient Model Abstract: This paper considers robust estimation of varying coefficient models with emphasis on resistance against outliers. By combining B-splines method with taut string method, a robust estimation procedure is proposed. Based on local quadratic approximation, an iterative algorithm is introduced. Simulation study indicates that the proposed method is robust.
Multivariate Diagonal Coinvariant Spaces for Complex Reflection Groups
Bergeron, Francois
2011-01-01
For finite complex reflexion groups, we consider the graded $W$-modules of diagonally harmonic polynomials in $r$ sets of variables, and show that associated Hilbert series may be described in a global manner, independent of the value of $r$.
EXTREME POINTS IN DIAGONAL-DISJOINT IDEALS OF NEST ALGEBRAS
Institute of Scientific and Technical Information of China (English)
董浙; 鲁世杰
2002-01-01
In this paper, the extreme points of the unit ball of diagonal-disjoint ideals in nest algebras are characterized completely; Furthermore, it is shown that every extreme point of the unit ball of 2 has essential-norm one.
Multivariable Decoupling Control System Based on Generalized Diagonal Dominance
Directory of Open Access Journals (Sweden)
S. Jamebozorg
2015-03-01
Full Text Available In this paper, the design of static precompensator for the reduction of interaction in linear multivariable systems is proposed. In the previous studies, the diagonal dominance of systems in special frequency range has been less paid attention to. In the proposed method, some static compensators with matrix coefficients are combined so that the final static compensator can make system diagonal dominance in a wide range of frequencies. These coefficients are obtained with optimization algorithm. In this method, to achieve diagonal dominance with less conservativeness, the criterion of generalized diagonal dominance is used. The proposed method does not have any limitation for systems with high interaction or non-minimum phase systems. In comparison with some common methods, it has a simpler structure with easy implementation. Simulation examples demonstrate the usefulness of the proposed method
Directory of Open Access Journals (Sweden)
Yurisman
2010-11-01
Full Text Available This paper presents results of numerical and experimental study of shear link behavior, utilizing diagonal stiffener on web of steel profile to increase shear link performance in an eccentric braced frame (EBF of a steel structure system. The specimen is to examine the behavior of shear link by using diagonal stiffener on web part under static monotonic and cyclic load. The cyclic loading pattern conducted in the experiment is adjusted according to AISC loading standards 2005. Analysis was carried out using non-linear finite element method using MSC/NASTRAN software. Link was modeled as CQUAD shell element. Along the boundary of the loading area the nodal are constraint to produce only one direction loading. The length of the link in this analysis is 400mm of the steel profile of WF 200.100. Important parameters considered to effect significantly to the performance of shear link have been analyzed, namely flange and web thicknesses, , thickness and length of web stiffener, thickness of diagonal stiffener and geometric of diagonal stiffener. The behavior of shear link with diagonal web stiffener was compared with the behavior of standard link designed based on AISC 2005 criteria. Analysis results show that diagonal web stiffener is capable to increase shear link performance in terms of stiffness, strength and energy dissipation in supporting lateral load. However, differences in displacement ductility’s between shear links with diagonal stiffener and shear links based on AISC standards have not shown to be significant. Analysis results also show thickness of diagonal stiffener and geometric model of stiffener to have a significant influence on the performance of shear links. To perform validation of the numerical study, the research is followed by experimental work conducted in Structural Mechanic Laboratory Center for Industrial Engineering ITB. The Structures and Mechanics Lab rotary PAU-ITB. The experiments were carried out using three test
Chatterjee, Arghya; Nayak, Tapan K; Sahoo, Nihar Ranjan
2016-01-01
Susceptibilities of conserved quantities, such as baryon number, strangeness and electric charge are sensitive to the onset of quantum chromodynamics (QCD) phase transition and are expected to provide information on the matter produced in heavy-ion collision experiments. A comprehensive study of the second-order diagonal susceptibilities and cross correlations has been made within a thermal model approach of the hadron resonance gas (HRG) model as well as with a hadronic transport model, UrQMD. We perform a detailed analysis of the effect of detector acceptances and choice of particle species in the experimental measurements of the susceptibilities for heavy-ion collisions corresponding to \\sNN = 4 GeV to 200 GeV. The transverse momentum cutoff dependence of suitably normalised susceptibilities are proposed as useful observables to probe the properties of the medium at freezeout.
Chatterjee, Arghya; Chatterjee, Sandeep; Nayak, Tapan K.; Ranjan Sahoo, Nihar
2016-12-01
Susceptibilities of conserved quantities, such as baryon number, strangeness and electric charge are sensitive to the onset of quantum chromodynamics phase transition, and are expected to provide information on the matter produced in heavy-ion collision experiments. A comprehensive study of the second order diagonal susceptibilities and cross correlations has been made within a thermal model approach of the hadron resonance gas model as well as with a hadronic transport model, ultra-relativistic quantum molecular dynamics. We perform a detailed analysis of the effect of detector acceptances and choice of particle species in the experimental measurements of the susceptibilities for heavy-ion collisions corresponding to \\sqrt{{s}{NN}} = 4 GeV to 200 GeV. The transverse momentum cutoff dependence of suitably normalised susceptibilities are proposed as useful observables to probe the properties of the medium at freezeout.
Auditory spatial resolution in horizontal, vertical, and diagonal planes.
Grantham, D Wesley; Hornsby, Benjamin W Y; Erpenbeck, Eric A
2003-08-01
Minimum audible angle (MAA) and minimum audible movement angle (MAMA) thresholds were measured for stimuli in horizontal, vertical, and diagonal (60 degrees) planes. A pseudovirtual technique was employed in which signals were recorded through KEMAR's ears and played back to subjects through insert earphones. Thresholds were obtained for wideband, high-pass, and low-pass noises. Only 6 of 20 subjects obtained wideband vertical-plane MAAs less than 10 degrees, and only these 6 subjects were retained for the complete study. For all three filter conditions thresholds were lowest in the horizontal plane, slightly (but significantly) higher in the diagonal plane, and highest for the vertical plane. These results were similar in magnitude and pattern to those reported by Perrott and Saberi [J. Acoust. Soc. Am. 87, 1728-1731 (1990)] and Saberi and Perrott [J. Acoust. Soc. Am. 88, 2639-2644 (1990)], except that these investigators generally found that thresholds for diagonal planes were as good as those for the horizontal plane. The present results are consistent with the hypothesis that diagonal-plane performance is based on independent contributions from a horizontal-plane system (sensitive to interaural differences) and a vertical-plane system (sensitive to pinna-based spectral changes). Measurements of the stimuli recorded through KEMAR indicated that sources presented from diagonal planes can produce larger interaural level differences (ILDs) in certain frequency regions than would be expected based on the horizontal projection of the trajectory. Such frequency-specific ILD cues may underlie the very good performance reported in previous studies for diagonal spatial resolution. Subjects in the present study could apparently not take advantage of these cues in the diagonal-plane condition, possibly because they did not externalize the images to their appropriate positions in space or possibly because of the absence of a patterned visual field.
Sang, Huiyan
2011-12-01
This paper investigates the cross-correlations across multiple climate model errors. We build a Bayesian hierarchical model that accounts for the spatial dependence of individual models as well as cross-covariances across different climate models. Our method allows for a nonseparable and nonstationary cross-covariance structure. We also present a covariance approximation approach to facilitate the computation in the modeling and analysis of very large multivariate spatial data sets. The covariance approximation consists of two parts: a reduced-rank part to capture the large-scale spatial dependence, and a sparse covariance matrix to correct the small-scale dependence error induced by the reduced rank approximation. We pay special attention to the case that the second part of the approximation has a block-diagonal structure. Simulation results of model fitting and prediction show substantial improvement of the proposed approximation over the predictive process approximation and the independent blocks analysis. We then apply our computational approach to the joint statistical modeling of multiple climate model errors. © 2012 Institute of Mathematical Statistics.
Net efficiency of roller skiing with a diagonal stride.
Nakai, Akira; Ito, Akira
2011-02-01
The aims of this study were: (a) to determine net efficiency during roller skiing with a diagonal stride at various speeds; (b) to assess the development of net efficiency across speeds; and (c) to examine the characteristics of efficiency in diagonal roller skiing. Two-dimensional kinematics and oxygen uptake were determined in eight male collegiate cross-country ski athletes who roller skied with the diagonal stride at various speeds on a level track. Net efficiency was calculated from rates of internal and external work and net energy expenditure. Individual net efficiency ranged from 17.7% to 52.1%. Net efficiency in the entire group of athletes increased with increasing speed, reached a maximum value of 37.3% at 3.68 m · s(-1), before slowly decreasing. These findings indicate that roller skiing with the diagonal stride at high speed is a highly efficient movement and that an optimal speed exists at which net efficiency can be maximally enhanced in diagonal roller skiing.
Correlations and diagonal entropy after quantum quenches in XXZ chains
Piroli, Lorenzo; Vernier, Eric; Calabrese, Pasquale; Rigol, Marcos
2017-02-01
We study quantum quenches in the XXZ spin-1 /2 Heisenberg chain from families of ferromagnetic and antiferromagnetic initial states. Using Bethe ansatz techniques, we compute short-range correlators in the complete generalized Gibbs ensemble (GGE), which takes into account all local and quasilocal conservation laws. We compare our results to exact diagonalization and numerical linked cluster expansion calculations for the diagonal ensemble, finding excellent agreement and thus providing a very accurate test for the validity of the complete GGE. Furthermore, we use exact diagonalization to compute the diagonal entropy in the postquench steady state. We show that the Yang-Yang entropy for the complete GGE is consistent with twice the value of the diagonal entropy in the largest chains or the extrapolated result in the thermodynamic limit. Finally, the complete GGE is quantitatively contrasted with the GGE built using only the local conserved charges (local GGE). The predictions of the two ensembles are found to differ significantly in the case of ferromagnetic initial states. Such initial states are better suited than others considered in the literature to experimentally test the validity of the complete GGE and contrast it to the failure of the local GGE.
Neutrino Mass Matrix with Approximate Flavor Symmetry
Riazuddin, M
2003-01-01
Phenomenological implications of neutrino oscillations implied by recent experimental data on pattern of neutrino mass matrix are disscussed. It is shown that it is possible to have a neutrino mass matrix which shows approximate flavor symmetry; the neutrino mass differences arise from flavor violation in off-diagonal Yukawa couplings. Two modest extensions of the standard model, which can embed the resulting neutrino mass matix have also been discussed.
Diagonal invariant ideals of Toeplitz algebras on discrete groups
Institute of Scientific and Technical Information of China (English)
许庆祥
2002-01-01
Diagonal invariant ideals of Toeplitz algebras defined on discrete groups are introduced and studied. In terms of isometric representations of Toeplitz algebras associated with quasi-ordered groups, a character of a discrete group to be amenable is clarified. It is proved that when G is Abelian, a closed two-sided non-trivial ideal of the Toeplitz algebra defined on a discrete Abelian ordered group is diagonal invariant if and only if it is invariant in the sense of Adji and Murphy, thus a new proof of their result is given.
Diagonal Limit for Conformal Blocks in d Dimensions
Hogervorst, Matthijs; Rychkov, Slava
2013-01-01
Conformal blocks in any number of dimensions depend on two variables z, zbar. Here we study their restrictions to the special "diagonal" kinematics z = zbar, previously found useful as a starting point for the conformal bootstrap analysis. We show that conformal blocks on the diagonal satisfy ordinary differential equations, third-order for spin zero and fourth-order for the general case. These ODEs determine the blocks uniquely and lead to an efficient numerical evaluation algorithm. For equal external operator dimensions, we find closed-form solutions in terms of finite sums of 3F2 functions.
Diagonally loaded SMI algorithm based on inverse matrix recursion
Institute of Scientific and Technical Information of China (English)
Cao Jianshu; Wang Xuegang
2007-01-01
The derivation of a diagonally loaded sample-matrix inversion (LSMI) algorithm on the busis of inverse matrix recursion (i.e. LSMI-IMR algorithm) is conducted by reconstructing the recursive formulation of covariance matrix. For the new algorithm, diagonal loading is by setting initial inverse matrix without any addition of computation. In addition, acorresponding improved recursive algorithm is presented, which is low computational complexity. This eliminates the complex multiplications of the scalar coefficient and updating matrix, resulting in significant computational savings.Simulations show that the LSMI-IMR algorithm is valid.
Benchmarking Compressed Sensing, Super-Resolution, and Filter Diagonalization
Markovich, Thomas; Sanders, Jacob N; Aspuru-Guzik, Alan
2015-01-01
Signal processing techniques have been developed that use different strategies to bypass the Nyquist sampling theorem in order to recover more information than a traditional discrete Fourier transform. Here we examine three such methods: filter diagonalization, compressed sensing, and super-resolution. We apply them to a broad range of signal forms commonly found in science and engineering in order to discover when and how each method can be used most profitably. We find that filter diagonalization provides the best results for Lorentzian signals, while compressed sensing and super-resolution perform better for arbitrary signals.
Seismic Behavior of Steel Off-Diagonal Bracing System (ODBS Utilized in Reinforced Concrete Frame
Directory of Open Access Journals (Sweden)
Keyvan Ramin
2014-01-01
Full Text Available The introduction of an eccentricity in this system results in a geometric nonlinearity behavior. The midpoint of the diagonal member is connected to the corner joint using a brace member with a relatively low stiffness, thus forming a three-member bracing system in each braced panel. An iterative method of analysis has been developed to study the nonlinear load-deflection behavior of ODBS. The results indicate that the load-deflection behavior of this system follows a nonlinear stiffness-hardening pattern with two yielding points, which reflect the tensile failure of different bracings; the present study aims to investigate the efficiency of applying off-diagonal steel braces to reinforced concrete frames. To achieve this, three types of 2-story, 6-story, and 15-story structures without and with X-bracing and off-center bracing systems were modeled using SAP2000 software, and for micromodeling ANSYS software was used to achieve finite element results for an exact comparison between various retrofitting systems. The results showed that the structures strengthened by toggle bracing system revealed better behavior for low oscillation periods. Moreover, this type of bracing system is quite suitable for 10-story structures but not for higher ones. Its main problem, which requires special contrivances to solve, is the existence of a soft ground floor.
Approximate Representations and Approximate Homomorphisms
Moore, Cristopher
2010-01-01
Approximate algebraic structures play a defining role in arithmetic combinatorics and have found remarkable applications to basic questions in number theory and pseudorandomness. Here we study approximate representations of finite groups: functions f:G -> U_d such that Pr[f(xy) = f(x) f(y)] is large, or more generally Exp_{x,y} ||f(xy) - f(x)f(y)||^2$ is small, where x and y are uniformly random elements of the group G and U_d denotes the unitary group of degree d. We bound these quantities in terms of the ratio d / d_min where d_min is the dimension of the smallest nontrivial representation of G. As an application, we bound the extent to which a function f : G -> H can be an approximate homomorphism where H is another finite group. We show that if H's representations are significantly smaller than G's, no such f can be much more homomorphic than a random function. We interpret these results as showing that if G is quasirandom, that is, if d_min is large, then G cannot be embedded in a small number of dimensi...
Thermodynamics of Rh nuclear spins calculated by exact diagonalization
DEFF Research Database (Denmark)
Lefmann, K.; Ipsen, J.; Rasmussen, F.B.;
2000-01-01
We have employed the method of exact diagonalization to obtain the full-energy spectrum of a cluster of 16 Rh nuclear spins, having dipolar and RK interactions between first and second nearest neighbours only. We have used this to calculate the nuclear spin entropy, and our results at both positive...
Green function diagonal for a class of heat equations
Kwiatkowski, Grzegorz
2011-01-01
A construction of the heat kernel diagonal is considered as element of generalized Zeta function, that, being meromorfic function, its gradient at the origin defines determinant of a differential operator in a technique for regularizing quadratic path integral. Some classes of explicit expression in the case of finite-gap potential coefficient of the heat equation are constructed.
Convergence of GAOR Iterative Method with Strictly Diagonally Dominant Matrices
Directory of Open Access Journals (Sweden)
Guangbin Wang
2011-01-01
Full Text Available We discuss the convergence of GAOR method for linear systems with strictly diagonally dominant matrices. Moreover, we show that our results are better than ones of Darvishi and Hessari (2006, Tian et al. (2008 by using three numerical examples.
Penguins and Pandas: A Note on Teaching Cantor's Diagonal Argument
Rauff, James V.
2008-01-01
Cantor's diagonal proof that the set of real numbers is uncountable is one of the most famous arguments in modern mathematics. Mathematics students usually see this proof somewhere in their undergraduate experience, but it is rarely a part of the mathematical curriculum of students of the fine arts or humanities. This note describes contexts that…
Why the South Pacific Convergence Zone is diagonal
van der Wiel, Karin; Matthews, Adrian J.; Joshi, Manoj M.; Stevens, David P.
2016-03-01
During austral summer, the majority of precipitation over the Pacific Ocean is concentrated in the South Pacific Convergence Zone (SPCZ). The surface boundary conditions required to support the diagonally (northwest-southeast) oriented SPCZ are determined through a series of experiments with an atmospheric general circulation model. Continental configuration and orography do not have a significant influence on SPCZ orientation and strength. The key necessary boundary condition is the zonally asymmetric component of the sea surface temperature (SST) distribution. This leads to a strong subtropical anticyclone over the southeast Pacific that, on its western flank, transports warm moist air from the equator into the SPCZ region. This moisture then intensifies (diagonal) bands of convection that are initiated by regions of ascent and reduced static stability ahead of the cyclonic vorticity in Rossby waves that are refracted toward the westerly duct over the equatorial Pacific. The climatological SPCZ is comprised of the superposition of these diagonal bands of convection. When the zonally asymmetric SST component is reduced or removed, the subtropical anticyclone and its associated moisture source is weakened. Despite the presence of Rossby waves, significant moist convection is no longer triggered; the SPCZ disappears. The diagonal SPCZ is robust to large changes (up to ±6 °C) in absolute SST (i.e. where the SST asymmetry is preserved). Extreme cooling (change <-6 °C) results in a weaker and more zonal SPCZ, due to decreasing atmospheric temperature, moisture content and convective available potential energy.
Thermodynamics of Rh nuclear spins calculated by exact diagonalization
DEFF Research Database (Denmark)
Lefmann, K.; Ipsen, J.; Rasmussen, F.B.
2000-01-01
We have employed the method of exact diagonalization to obtain the full-energy spectrum of a cluster of 16 Rh nuclear spins, having dipolar and RK interactions between first and second nearest neighbours only. We have used this to calculate the nuclear spin entropy, and our results at both positi...
Diagonalization of bosonic quadratic Hamiltonians by Bogoliubov transformations
DEFF Research Database (Denmark)
Nam, Phan Thanh; Napiorkowski, Marcin; Solovej, Jan Philip
2016-01-01
We provide general conditions for which bosonic quadratic Hamiltonians on Fock spaces can be diagonalized by Bogoliubov transformations. Our results cover the case when quantum systems have infinite degrees of freedom and the associated one-body kinetic and paring operators are unbounded. Our...
Tamil Nadu and the Diagonal Divide in Sex Ratios
A.S. Bedi (Arjun Singh); S. Srinivasan (Sharada)
2009-01-01
textabstractBetween 1961 and 2001, India’s 0-6 sex ratio has steadily declined. Despite evidence to the contrary, this ratio is often characterised in terms of a diagonal divide with low 0-6 sex ratios in northern and western India and normal 0-6 sex ratios in eastern and southern India. While unexp
CERN. Geneva
2015-01-01
Most physics results at the LHC end in a likelihood ratio test. This includes discovery and exclusion for searches as well as mass, cross-section, and coupling measurements. The use of Machine Learning (multivariate) algorithms in HEP is mainly restricted to searches, which can be reduced to classification between two fixed distributions: signal vs. background. I will show how we can extend the use of ML classifiers to distributions parameterized by physical quantities like masses and couplings as well as nuisance parameters associated to systematic uncertainties. This allows for one to approximate the likelihood ratio while still using a high dimensional feature vector for the data. Both the MEM and ABC approaches mentioned above aim to provide inference on model parameters (like cross-sections, masses, couplings, etc.). ABC is fundamentally tied Bayesian inference and focuses on the “likelihood free” setting where only a simulator is available and one cannot directly compute the likelihood for the dat...
Kim, W G; Park, J J; Oh, S I
2001-01-01
We report a reliable chronic heart failure model in sheep using sequential ligation of the homonymous artery and its diagonal branch. After a left anterior thoracotomy in Corridale sheep, the homonymous artery was ligated at a point approximately 40% of the distance from the apex to the base of the heart, and after 1 hour, the diagonal vessel was ligated at a point at the same level. Hemodynamic measurements were done preligation, 30 minutes after the homonymous artery ligation, and 1 hour after diagonal branch ligation. The electrocardiograms were obtained as needed, and cardiac function was also evaluated with ultrasonography. After a predetermined interval (2 months for five animals and 3 months for two animals), the animals were reevaluated in the same way as before, and were killed for postmortem examination of their hearts. All seven animals survived the experimental procedures. Statistically significant decreases in systemic arterial blood pressure and cardiac output and increases in pulmonary artery capillary wedge pressure were observed 1 hour after sequential ligation of the homonymous artery and its diagonal branch. Untrasonographic analyses demonstrated variable degrees of anteroseptal dyskinesia and akinesia in all animals. The data from animals at 2 months after coronary artery ligation showed significant increases in central venous pressure, pulmonary artery pressure, and pulmonary artery capillary wedge pressure. Left ventricular enddiastolic dimension and left ventricular end-systolic dimension on ultrasonographic studies were also increased. Electrocardiography showed severe ST elevation immediately after the ligation and pathologic Q waves were found at 2 months after ligation. The thin walled infarcted areas with chamber enlargement were clearly seen in the hearts removed at 2 and 3 months after ligation. In conclusion, we could achieve a reliable ovine model of chronic heart failure using a simple concept of sequential ligation of the
Tatko, Chad D; Waters, Marcey L
2003-11-01
Cation-pi interactions are common in proteins, but their contribution to the stability and specificity of protein structure has not been well established. In this study, we examined the impact of cation-pi interactions in a diagonal position of a beta-hairpin peptide through comparison of the interaction of Phe or Trp with Lys or Arg. The diagonal interactions ranged from -0.20 to -0.48 kcal/mole. Our experimental values for the diagonal cation-pi interactions are similar to those found in alpha-helical studies. Upfield shifting of the Lys and Arg side chains indicates that the geometries of cation-pi interactions adopted in the 12-residue beta-hairpin are comparable to those found in protein structures. The Lys was found to interact through the polarized Cepsilon, and the Arg is stacked against the aromatic ring of Phe or Trp. Folding of these peptides was found to be enthalpically favorable (DeltaH degrees equals approximately -3 kcal/mole) and entropically unfavorable (DeltaS degrees equals approximately -8 cal mole(-1) K(-1)).
Institute of Scientific and Technical Information of China (English)
XIEBing_Hao; ZHANGHong－Biao; 等
2002-01-01
An algebraic diagonalization method is proposed.As two examples,the Hamiltonians of BCS ground state under mean-field approximation and XXZ antiferromagnetic model in linear spin-wave frame have been diagonalized by using SU(2),SU(1,1) Lie algebraic method,respectively.Meanwhile,the eignenstates of the above two models are revealed to be SU(2),SU(1,1) coherent states,respectively,The relation between the usual Bogoliubov-Valatin transformation and the algebraic method in a special case is also discussed.
Non-diagonal four-dimensional cohomogeneity-one Einstein metrics in various signatures
Dunajski, Maciej
2016-01-01
Most known four-dimensional cohomogeneity-one Einstein metrics are diagonal in the basis defined by the left-invariant one-forms, though some essentially non-diagonal ones are known. We consider the problem of explicitly seeking non-diagonal Einstein metrics, and we find solutions which in some cases exhaust the possibilities. In particular we construct new examples of neutral signature non--diagonal Bianchi type VIII Einstein metrics with self--dual Weyl tensor.
Kondo physics of the Anderson impurity model by distributional exact diagonalization
Motahari, S.; Requist, R.; Jacob, D.
2016-12-01
The distributional exact diagonalization (DED) scheme is applied to the description of Kondo physics in the Anderson impurity model. DED maps Anderson's problem of an interacting impurity level coupled to an infinite bath onto an ensemble of finite Anderson models, each of which can be solved by exact diagonalization. An approximation to the self-energy of the original infinite model is then obtained from the ensemble-averaged self-energy. Using Friedel's sum rule, we show that the particle number constraint, a central ingredient of the DED scheme, ultimately imposes Fermi liquid behavior on the ensemble-averaged self-energy, and thus is essential for the description of Kondo physics within DED. Using the numerical renormalization group (NRG) method as a benchmark, we show that DED yields excellent spectra, both inside and outside the Kondo regime for a moderate number of bath sites. Only for very strong correlations (U /Γ ≫10 ) does the number of bath sites needed to achieve good quantitative agreement become too large to be computationally feasible.
Shrinkage-based diagonal Hotelling’s tests for high-dimensional small sample size data
Dong, Kai
2015-09-16
DNA sequencing techniques bring novel tools and also statistical challenges to genetic research. In addition to detecting differentially expressed genes, testing the significance of gene sets or pathway analysis has been recognized as an equally important problem. Owing to the “large pp small nn” paradigm, the traditional Hotelling’s T2T2 test suffers from the singularity problem and therefore is not valid in this setting. In this paper, we propose a shrinkage-based diagonal Hotelling’s test for both one-sample and two-sample cases. We also suggest several different ways to derive the approximate null distribution under different scenarios of pp and nn for our proposed shrinkage-based test. Simulation studies show that the proposed method performs comparably to existing competitors when nn is moderate or large, but it is better when nn is small. In addition, we analyze four gene expression data sets and they demonstrate the advantage of our proposed shrinkage-based diagonal Hotelling’s test.
Natures of Rotating Stall Cell in a Diagonal Flow Fan
Institute of Scientific and Technical Information of China (English)
N. SHIOMI; K. KANEKO; T. SETOGUCHI
2005-01-01
In order to clarify the natures of a rotating stall cell, the experimental investigation was carried out in a high specific-speed diagonal flow fan. The pressure field on the casing wall and the velocity fields at the rotor inlet and outlet were measured under rotating stall condition with a fast response pressure transducer and a single slant hot-wire probe, respectively. The data were processed using the "Double Phase-Locked Averaging (DPLA)"technique, which enabled to obtain the unsteady flow field with a rotating stall cell in the relative co-ordinate system fixed to the rotor. As a result, the structure and behavior of the rotating stall cell in a high specific-speed diagonal flow fan were shown.
Block-bordered diagonalization and parallel iterative solvers
Energy Technology Data Exchange (ETDEWEB)
Alvarado, F.; Dag, H.; Bruggencate, M. ten [Univ. of Wisconsin, Madison, WI (United States)
1994-12-31
One of the most common techniques for enhancing parallelism in direct sparse matrix methods is the reorganization of a matrix into a blocked-bordered structure. Incomplete LDU factorization is a very good preconditioner for PCG in serial environments. However, the inherent sequential nature of the preconditioning step makes it less desirable in parallel environments. This paper explores the use of BBD (Blocked Bordered Diagonalization) in connection with ILU preconditioners. The paper shows that BBD-based ILU preconditioners are quite amenable to parallel processing. Neglecting entries from the entire border can result in a blocked diagonal matrix. The result is a great increase in parallelism at the expense of additional iterations. Experiments on the Sequent Symmetry shared memory machine using (mostly) power system that matrices indicate that the method is generally better than conventional ILU preconditioners and in many cases even better than partitioned inverse preconditioners, without the initial setup disadvantages of partitioned inverse preconditioners.
GEAR CRACK EARLY DIAGNOSIS USING BISPECTRUM DIAGONAL SLICE
Institute of Scientific and Technical Information of China (English)
无
2003-01-01
A study of bispectral analysis in gearbox condition monitoring is presented.The theory of bispectrum and quadratic phase coupling (QPC) is first introduced, and then equations for computing bispectrum slices are obtained.To meet the needs of online monitoring, a simplified method of computing bispectrum diagonal slice is adopted.Industrial gearbox vibration signals measured from normal and tooth cracked conditions are analyzed using the above method.Experiments results indicate that bispectrum can effectively suppress the additive Gaussian noise and chracterize the QPC phenomenon.It is also shown that the 1-D bispectrum diagonal slice can capture the non-Gaussian and nonlinear feature of gearbox vibration when crack occurred, hence, this method can be employed to gearbox real time monitoring and early diagnosis.
The Diagonal Compression Field Method using Circular Fans
DEFF Research Database (Denmark)
Hansen, Thomas
2005-01-01
This paper presents a new design method, which is a modification of the diagonal compression field method, the modification consisting of the introduction of circular fan stress fields. The traditional method does not allow changes of the concrete compression direction throughout a given beam...... fields may be used whenever changes in the concrete compression direction are desired. To illustrate the new design method, a specific example of a prestressed concrete beam is calculated....
Diagonalization and representation results for nonpositive sesquilinear form measures
Hytönen, Tuomas; Pellonpää, Juha-Pekka; Ylinen, Kari
2008-02-01
We study decompositions of operator measures and more general sesquilinear form measures E into linear combinations of positive parts, and their diagonal vector expansions. The underlying philosophy is to represent E as a trace class valued measure of bounded variation on a new Hilbert space related to E. The choice of the auxiliary Hilbert space fixes a unique decomposition with certain properties, but this choice itself is not canonical. We present relations to Naimark type dilations and direct integrals.
A method of diagonalization for sfermion mass matrices
Aranda, Alfredo; Noriega-Papaqui, R
2009-01-01
We present a method of diagonalization for the sfermion mass matrices of the minimal supersymmetric standard model (MSSM). It provides analytical expressions for the masses and mixing angles of rather general hermitian sfermion mass matrices, and allows the study of scenarios that extend the usual constrained - MSSM. Three signature cases are presented explicitly and a general study of flavor changing neutral current processes is outlined in the discussion.
Strong Linear Correlation Between Eigenvalues and Diagonal Matrix Elements
Shen, J J; Zhao, Y M; Yoshinaga, N
2008-01-01
We investigate eigenvalues of many-body systems interacting by two-body forces as well as those of random matrices. We find a strong linear correlation between eigenvalues and diagonal matrix elements if both of them are sorted from the smaller values to larger ones. By using this linear correlation we are able to predict reasonably all eigenvalues of given shell model Hamiltonian without complicated iterations.
Optimized Paraunitary Filter Banks for Time-Frequency Channel Diagonalization
Ju, Ziyang; Hunziker, Thomas; Dahlhaus, Dirk
2010-12-01
We adopt the concept of channel diagonalization to time-frequency signal expansions obtained by DFT filter banks. As a generalization of the frequency domain channel representation used by conventional orthogonal frequency-division multiplexing receivers, the time-frequency domain channel diagonalization can be applied to time-variant channels and aperiodic signals. An inherent error in the case of doubly dispersive channels can be limited by choosing adequate windows underlying the filter banks. We derive a formula for the mean-squared sample error in the case of wide-sense stationary uncorrelated scattering (WSSUS) channels, which serves as objective function in the window optimization. Furthermore, an enhanced scheme for the parameterization of tight Gabor frames enables us to constrain the window in order to define paraunitary filter banks. We show that the design of windows optimized for WSSUS channels with known statistical properties can be formulated as a convex optimization problem. The performance of the resulting windows is investigated under different channel conditions, for different oversampling factors, and compared against the performance of alternative windows. Finally, a generic matched filter receiver incorporating the proposed channel diagonalization is discussed which may be essential for future reconfigurable radio systems.
Optimized Paraunitary Filter Banks for Time-Frequency Channel Diagonalization
Directory of Open Access Journals (Sweden)
Ju Ziyang
2010-01-01
Full Text Available We adopt the concept of channel diagonalization to time-frequency signal expansions obtained by DFT filter banks. As a generalization of the frequency domain channel representation used by conventional orthogonal frequency-division multiplexing receivers, the time-frequency domain channel diagonalization can be applied to time-variant channels and aperiodic signals. An inherent error in the case of doubly dispersive channels can be limited by choosing adequate windows underlying the filter banks. We derive a formula for the mean-squared sample error in the case of wide-sense stationary uncorrelated scattering (WSSUS channels, which serves as objective function in the window optimization. Furthermore, an enhanced scheme for the parameterization of tight Gabor frames enables us to constrain the window in order to define paraunitary filter banks. We show that the design of windows optimized for WSSUS channels with known statistical properties can be formulated as a convex optimization problem. The performance of the resulting windows is investigated under different channel conditions, for different oversampling factors, and compared against the performance of alternative windows. Finally, a generic matched filter receiver incorporating the proposed channel diagonalization is discussed which may be essential for future reconfigurable radio systems.
Quantum Diagonalization Method in the Tavis-Cummings Model
Fujii, K; Kato, R; Suzuki, T; Wada, Y; Fujii, Kazuyuki; Higashida, Kyoko; Kato, Ryosuke; Suzuki, Tatsuo; Wada, Yukako
2004-01-01
To obtain the explicit form of evolution operator in the Tavis-Cummings model we must calculate the term ${e}^{-itg(S_{+}\\otimes a+S_{-}\\otimes a^{\\dagger})}$ explicitly which is very hard. In this paper we try to make the quantum matrix $A\\equiv S_{+}\\otimes a+S_{-}\\otimes a^{\\dagger}$ diagonal to calculate ${e}^{-itgA}$ and, moreover, to know a deep structure of the model. For the case of one, two and three atoms we give such a diagonalization which is first nontrivial examples as far as we know, and reproduce the calculations of ${e}^{-itgA}$ given in quant-ph/0404034. We also give a hint to an application to a noncommutative differential geometry. However, a quantum diagonalization is not unique and is affected by some ambiguity arising from the noncommutativity of operators in quantum physics. Our method may open a new point of view in Mathematical Physics or Quantum Physics.
Directory of Open Access Journals (Sweden)
Martina Glogowatz
2012-08-01
Full Text Available We study strictly hyperbolic partial differential operators of second-order with non-smooth coefficients. After modeling them as semiclassical Colombeau equations of log-type we provide a factorization procedure on some time-space-frequency domain. As a result the operator is written as a product of two semiclassical first-order constituents of log-type which approximates the modelled operator microlocally at infinite points. We then present a diagonalization method so that microlocally at infinity the governing equation is equal to a coupled system of two semiclassical first-order strictly hyperbolic pseudodifferential equations. Furthermore we compute the coupling effect. We close with some remarks on the results and future directions.
Diagonal queue medical image steganography with Rabin cryptosystem.
Jain, Mamta; Lenka, Saroj Kumar
2016-03-01
The main purpose of this work is to provide a novel and efficient method to the image steganography area of research in the field of biomedical, so that the security can be given to the very precious and confidential sensitive data of the patient and at the same time with the implication of the highly reliable algorithms will explode the high security to the precious brain information from the intruders. The patient information such as patient medical records with personal identification information of patients can be stored in both storage and transmission. This paper describes a novel methodology for hiding medical records like HIV reports, baby girl fetus, and patient's identity information inside their Brain disease medical image files viz. scan image or MRI image using the notion of obscurity with respect to a diagonal queue least significant bit substitution. Data structure queue plays a dynamic role in resource sharing between multiple communication parties and when secret medical data are transferred asynchronously (secret medical data not necessarily received at the same rate they were sent). Rabin cryptosystem is used for secret medical data writing, since it is computationally secure against a chosen-plaintext attack and shows the difficulty of integer factoring. The outcome of the cryptosystem is organized in various blocks and equally distributed sub-blocks. In steganography process, various Brain disease cover images are organized into various blocks of diagonal queues. The secret cipher blocks and sub-blocks are assigned dynamically to selected diagonal queues for embedding. The receiver gets four values of medical data plaintext corresponding to one ciphertext, so only authorized receiver can identify the correct medical data. Performance analysis was conducted using MSE, PSNR, maximum embedding capacity as well as by histogram analysis between various Brain disease stego and cover images.
Exact diagonalization: the Bose-Hubbard model as an example
Zhang, J. M.; Dong, R. X.
2010-05-01
We take the Bose-Hubbard model to illustrate exact diagonalization techniques in a pedagogical way. We follow the route of first generating all the basis vectors, then setting up the Hamiltonian matrix with respect to this basis and finally using the Lanczos algorithm to solve low lying eigenstates and eigenvalues. Emphasis is placed on how to enumerate all the basis vectors and how to use the hashing trick to set up the Hamiltonian matrix or matrices corresponding to other quantities. Although our route is not necessarily the most efficient one in practice, the techniques and ideas introduced are quite general and may find use in many other problems.
Reducing Memory Cost of Exact Diagonalization using Singular Value Decomposition
Energy Technology Data Exchange (ETDEWEB)
Weinstein, Marvin; /SLAC; Auerbach, Assa; /Stanford U., Phys. Dept. /Technion; Chandra, V.Ravi; /Technion
2011-11-04
We present a modified Lanczos algorithm to diagonalize lattice Hamiltonians with dramatically reduced memory requirements. The lattice of size N is partitioned into two subclusters. At each iteration the Lanczos vector is projected into a set of n{sub svd} smaller subcluster vectors using singular value decomposition. For low entanglement entropy S{sub ee}, (satisfied by short range Hamiltonians), we expect the truncation error to vanish as exp(-n{sup 1/S{sub ee}}{sub svd}). Convergence is tested for the Heisenberg model on Kagome clusters of up to 36 sites, with no symmetries exploited, using less than 15GB of memory. Generalization to multiple partitioning is discussed.
Experimental Investigation of Stator Flow in Diagonal Flow Fan
Institute of Scientific and Technical Information of China (English)
Jie Wang; Yoichi Kinoue; Norimasa Shiomi; Toshiaki Setoguchi; Kenji Kaneko; Yingzi Jin
2008-01-01
perimental investigations were conducted for the internal flow of the stator of the diagonal flow fan. Comer separation near the hub surface and the suction surface of the stator blade are focused on. At the design flow rate, the values of the axial velocity and the total pressure at stator outlet decrease near the suction surface at around the hub surface by the influence of the comer wall. At low flow rate of 80-90 % of the design flow rate, the comer separation between the suction surface and the hub surface can be found, which become widely spread at 80 % of the design flow rate.
Experimental investigation of stator flow in diagonal flow fan
Wang, Jie; Kinoue, Yoichi; Shiomi, Norimasa; Setoguchi, Toshiaki; Kaneko, Kenji; Jin, Yingzi
2008-12-01
Experimental investigations were conducted for the internal flow of the stator of the diagonal flow fan. Corner separation near the hub surface and the suction surface of the stator blade are focused on. At the design flow rate, the values of the axial velocity and the total pressure at stator outlet decrease near the suction surface at around the hub surface by the influence of the corner wall. At low flow rate of 80-90 % of the design flow rate, the corner separation between the suction surface and the hub surface can be found, which become widely spread at 80 % of the design flow rate.
Diagonal Cracking and Shear Strength of Reinforced Concrete Beams
DEFF Research Database (Denmark)
Zhang, Jin-Ping
1997-01-01
found by the usual plastic theory, a physical explanation is given for this phenomenon and a way to estimate the shear capacity of reinforced concrete beams, based on the theory of plasticity, is described. The theoretical calculations are shown to be in fairly good agreement with test results from......The shear failure of non-shear-reinforced concrete beams with normal shear span ratios is observed to be governed in general by the formation of a critical diagonal crack. Under the hypothesis that the cracking of concrete introduces potential yield lines which may be more dangerous than the ones...
On the performance of diagonal lattice space-time codes
Abediseid, Walid
2013-11-01
There has been tremendous work done on designing space-time codes for the quasi-static multiple-input multiple output (MIMO) channel. All the coding design up-to-date focuses on either high-performance, high rates, low complexity encoding and decoding, or targeting a combination of these criteria [1]-[9]. In this paper, we analyze in details the performance limits of diagonal lattice space-time codes under lattice decoding. We present both lower and upper bounds on the average decoding error probability. We first derive a new closed-form expression for the lower bound using the so-called sphere lower bound. This bound presents the ultimate performance limit a diagonal lattice space-time code can achieve at any signal-to-noise ratio (SNR). The upper bound is then derived using the union-bound which demonstrates how the average error probability can be minimized by maximizing the minimum product distance of the code. Combining both the lower and the upper bounds on the average error probability yields a simple upper bound on the the minimum product distance that any (complex) lattice code can achieve. At high-SNR regime, we discuss the outage performance of such codes and provide the achievable diversity-multiplexing tradeoff under lattice decoding. © 2013 IEEE.
Alcohol dimers--how much diagonal OH anharmonicity?
Kollipost, Franz; Papendorf, Kim; Lee, Yu-Fang; Lee, Yuan-Pern; Suhm, Martin A
2014-08-14
The OH bond of methanol, ethanol and t-butyl alcohol becomes more anharmonic upon hydrogen bonding and the infrared intensity ratio between the overtone and the fundamental transition of the bridging OH stretching mode decreases drastically. FTIR spectroscopy of supersonic slit jet expansions allows to quantify these effects for isolated alcohol dimers, enabling a direct comparison to anharmonic vibrational predictions. The diagonal anharmonicity increase amounts to 15-18%, growing with increasing alkyl substitution. The overtone/fundamental IR intensity ratio, which is on the order of 0.1 or more for isolated alcohols, drops to 0.004-0.001 in the hydrogen-bonded OH group, making overtone detection very challenging. Again, alkyl substitution enhances the intensity suppression. Vibrational second order perturbation theory appears to capture these effects in a semiquantitative way. Harmonic quantum chemistry predictions for the hydrogen bond-induced OH stretching frequency shift (the widely used infrared signature of hydrogen bonding) are insufficient, and diagonal anharmonicity corrections from experiment make the agreement between theory and experiment worse. Inclusion of anharmonic cross terms between hydrogen bond modes and the OH stretching mode is thus essential, as is a high level electronic structure theory. The isolated molecule results are compared to matrix isolation data, complementing earlier studies in N2 and Ar by the more weakly interacting Ne and p-H2 matrices. Matrix effects on the hydrogen bond donor vibration are quantified.
The "diagonal effect": a systematic error in oblique antisaccades.
Koehn, John D; Roy, Elizabeth; Barton, Jason J S
2008-08-01
Antisaccades are known to show greater variable error and also a systematic hypometria in their amplitude compared with visually guided prosaccades. In this study, we examined whether their accuracy in direction (as opposed to amplitude) also showed a systematic error. We had human subjects perform prosaccades and antisaccades to goals located at a variety of polar angles. In the first experiment, subjects made prosaccades or antisaccades to one of eight equidistant locations in each block, whereas in the second, they made saccades to one of two equidistant locations per block. In the third, they made antisaccades to one of two locations at different distances but with the same polar angle in each block. Regardless of block design, the results consistently showed a saccadic systematic error, in that oblique antisaccades (but not prosaccades) requiring unequal vertical and horizontal vector components were deviated toward the 45 degrees diagonal meridians. This finding could not be attributed to range effects in either Cartesian or polar coordinates. A perceptual origin of the diagonal effect is suggested by similar systematic errors in other studies of memory-guided manual reaching or perceptual estimation of direction, and may indicate a common spatial bias when there is uncertain information about spatial location.
Directory of Open Access Journals (Sweden)
Xiaotian Xu
2015-09-01
Full Text Available The small polaron, a one-dimensional lattice model of interacting spinless fermions, with generic non-diagonal boundary terms is studied by the off-diagonal Bethe ansatz method. The presence of the Grassmann valued non-diagonal boundary fields gives rise to a typical U(1-symmetry-broken fermionic model. The exact spectra of the Hamiltonian and the associated Bethe ansatz equations are derived by constructing an inhomogeneous T–Q relation.
Natural Diagonal Riemannian Almost Product and Para-Hermitian Cotangent Bundles
Druta-Romaniuc, Simona-Luiza
2011-01-01
We obtain the natural diagonal almost product and locally product structures on the total space of the cotangent bundle of a Riemannian manifold. We find the Riemannian almost product (locally product) and the (almost) para-Hermitian cotangent bundles of natural diagonal lift type. We prove the characterization theorem for the natural diagonal (almost) para-K\\"ahlerian structures on the total spaces of the cotangent bundle.
Diagonal complexes and the integral homology of the automorphism group of a free product
Griffin, James
2010-01-01
We calculate the integral (co)homology of the group of symmetric automorphisms of a free product. We proceed by constructing a moduli space of cactus products and to describe this space a theory of diagonal complexes is introduced. In doing so we offer a generalisation of the theory of right-angled Artin groups in that each diagonal complex defines what we call a diagonal right-angled Artin group (DRAAG).
An Off Diagonal Marcinkiewicz Interpolation Theorem on Lorentz Spaces
Institute of Scientific and Technical Information of China (English)
Yi Yu LIANG; Li Guang LIU; Da Chun YANG
2011-01-01
Let(X,μ)be a measure space.In this paper,using some ideas from Grafakos and Kalton,the authors establish an of diagonal Marcinkiewicz interpolation theorem for a quasilinear operator T in Lorentz spaces Lp,q(X)with p,q∈(0,∞],which is a corrected version of Theorem 1.4.19 in[Grafakos,L.:Classical Fourier Analysis,Second Edition,Graduate Texts in Math.,No.249,Springer,New York,2008]and which,in the case that T is linear or nonnegative sublineaa,P∈[1,∞)and q∈[1,∞),was obtained by Stein and Weiss [Introduction to Fourier Analysis on Euclidean Spaces,Princeton University Press,Princeton,N.J.,1971].
Efficient numerical diagonalization of hermitian 3x3 matrices
Kopp, J
2006-01-01
A very common problem in science is the numerical diagonalization of symmetric or hermitian 3x3 matrices. Since standard "black box" packages may be very inefficient if the number of matrices is large, we study several alternatives. We consider optimized implementations of the Jacobi, QL, and Cuppen algorithms and compare them with a new, carefully designed analytical method relying on Cardano's formula for the eigenvalues and on vector cross products for the eigenvectors. This analytical algorithm outperforms the other algorithms by more than a factor of 2, but may be less accurate if the eigenvalues differ greatly in magnitude. Jacobi is the most accurate, but also the slowest method, while QL and Cuppen are good general purpose algorithms. For all algorithms, we give an overview of the underlying mathematical ideas, and present detailed benchmark results. C and Fortran implementations of our code are available for download from http://www.mpi-hd.mpg.de/~jkopp/3x3/ .
Exact Diagonalization of Heisenberg SU(N) models.
Nataf, Pierre; Mila, Frédéric
2014-09-19
Building on advanced results on permutations, we show that it is possible to construct, for each irreducible representation of SU(N), an orthonormal basis labeled by the set of standard Young tableaux in which the matrix of the Heisenberg SU(N) model (the quantum permutation of N-color objects) takes an explicit and extremely simple form. Since the relative dimension of the full Hilbert space to that of the singlet space on n sites increases very fast with N, this formulation allows us to extend exact diagonalizations of finite clusters to much larger values of N than accessible so far. Using this method, we show that, on the square lattice, there is long-range color order for SU(5), spontaneous dimerization for SU(8), and evidence in favor of a quantum liquid for SU(10).
Diagonalization of the XXZ Hamiltonian by Vertex Operators
Davies, B; Jimbo, M; Miwa, T; Nakayashiki, A; Davies, Brian; Foda, Omar; Jimbo, Michio; Miwa, Tetsuji; Nakayashiki, Atsushi
1993-01-01
We diagonalize the anti-ferroelectric XXZ-Hamiltonian directly in the thermodynamic limit, where the model becomes invariant under the action of affine U_q( sl(2) ). Our method is based on the representation theory of quantum affine algebras, the related vertex operators and KZ equation, and thereby bypasses the usual process of starting from a finite lattice, taking the thermodynamic limit and filling the Dirac sea. From recent results on the algebraic structure of the corner transfer matrix of the model, we obtain the vacuum vector of the Hamiltonian. The rest of the eigenvectors are obtained by applying the vertex operators, which act as particle creation operators in the space of eigenvectors. We check the agreement of our results with those obtained using the Bethe Ansatz in a number of cases, and with others obtained in the scaling limit --- the $su(2)$-invariant Thirring model.
Non-Diagonal and Mixed Squark Production at Hadron Colliders
Bozzi, G; Klasen, M
2005-01-01
We calculate squared helicity amplitudes for non-diagonal and mixed squark pair production at hadron colliders, taking into account not only loop-induced QCD diagrams, but also previously unconsidered electroweak channels, which turn out to be dominant. Mixing effects are included for both top and bottom squarks. Numerical results are presented for several SUSY benchmark scenarios at both the CERN LHC and the Fermilab Tevatron, including the possibilities of light stops or sbottoms. The latter should be easily observed at the Tevatron in associated production of stops and sbottoms for a large range of stop masses and almost independently of the stop mixing angle. Asymmetry measurements for light stops at the polarized BNL RHIC collider are also briefly discussed.
Performance Study of Diagonally Segmented Piezoelectric Vibration Energy Harvester
Energy Technology Data Exchange (ETDEWEB)
Kim, Jae Eun [Catholic Univ. of Daegu, Daegu (Korea, Republic of)
2013-08-15
This study proposes a piezoelectric vibration energy harvester composed of two diagonally segmented energy harvesting units. An auxiliary structural unit is attached to the tip of a host structural unit cantilevered to a vibrating base, where the two components have beam axes in opposite directions from each other and matched short-circuit resonant frequencies. Contrary to the usual observations in two resonant frequency-matched structures, the proposed structure shows little eigenfrequency separation and yields a mode sequence change between the first two modes. These lead to maximum power generation around a specific frequency. By using commercial finite element software, it is shown that the magnitude of the output power from the proposed vibration energy harvester can be substantially improved in comparison with those from conventional cantilevered energy harvesters with the same footprint area and magnitude of a tip mass.
Eye movements during mental time travel follow a diagonal line.
Hartmann, Matthias; Martarelli, Corinna S; Mast, Fred W; Stocker, Kurt
2014-11-01
Recent research showed that past events are associated with the back and left side, whereas future events are associated with the front and right side of space. These spatial-temporal associations have an impact on our sensorimotor system: thinking about one's past and future leads to subtle body sways in the sagittal dimension of space (Miles, Nind, & Macrae, 2010). In this study we investigated whether mental time travel leads to sensorimotor correlates in the horizontal dimension of space. Participants were asked to mentally displace themselves into the past or future while measuring their spontaneous eye movements on a blank screen. Eye gaze was directed more rightward and upward when thinking about the future than when thinking about the past. Our results provide further insight into the spatial nature of temporal thoughts, and show that not only body, but also eye movements follow a (diagonal) "time line" during mental time travel.
Quantum transport in chains with noisy off-diagonal couplings.
Pereverzev, Andrey; Bittner, Eric R
2005-12-22
We present a model for conductivity and energy diffusion in a linear chain described by a quadratic Hamiltonian with Gaussian noise. We show that when the correlation matrix is diagonal, the noise-averaged Liouville-von Neumann equation governing the time evolution of the system reduces to the [Lindblad, Commun. Math. Phys. 48, 119 (1976)] equation with Hermitian Lindblad operators. We show that the noise-averaged density matrix for the system expectation values of the energy density and the number density satisfies discrete versions of the heat and diffusion equations. Transport coefficients are given in terms of model Hamiltonian parameters. We discuss conditions on the Hamiltonian under which the noise-averaged expectation value of the total energy remains constant. For chains placed between two heat reservoirs, the gradient of the energy density along the chain is linear.
The Diagonal Compression Field Method using Circular Fans
DEFF Research Database (Denmark)
Hansen, Thomas
2006-01-01
In a concrete beam with transverse stirrups the shear forces are carried by inclined compression in the concrete. Along the tensile zone and the compression zone of the beam the transverse components of the inclined compressions are transferred to the stirrups, which are thus subjected to tension....... Since the eighties the diagonal compression field method has been used to design transverse shear reinforcement in concrete beams. The method is based on the lower-bound theorem of the theory of plasticity, and it has been adopted in Eurocode 2. The paper presents a new design method, which...... with low shear stresses. The larger inclination (the smaller -value) of the uniaxial concrete stress the more transverse shear reinforcement is needed; hence it would be optimal if the -value for a given beam could be set to a low value in regions with high shear stresses and thereafter increased...
Bertolesi, Elisa; Milani, Gabriele; Poggi, Carlo
2016-12-01
Two FE modeling techniques are presented and critically discussed for the non-linear analysis of tuff masonry panels reinforced with FRCM and subjected to standard diagonal compression tests. The specimens, tested at the University of Naples (Italy), are unreinforced and FRCM retrofitted walls. The extensive characterization of the constituent materials allowed adopting here very sophisticated numerical modeling techniques. In particular, here the results obtained by means of a micro-modeling strategy and homogenization approach are compared. The first modeling technique is a tridimensional heterogeneous micro-modeling where constituent materials (bricks, joints, reinforcing mortar and reinforcing grid) are modeled separately. The second approach is based on a two-step homogenization procedure, previously developed by the authors, where the elementary cell is discretized by means of three-noded plane stress elements and non-linear interfaces. The non-linear structural analyses are performed replacing the homogenized orthotropic continuum with a rigid element and non-linear spring assemblage (RBSM). All the simulations here presented are performed using the commercial software Abaqus. Pros and cons of the two approaches are herein discussed with reference to their reliability in reproducing global force-displacement curves and crack patterns, as well as to the rather different computational effort required by the two strategies.
Pade approximants of random Stieltjes series
Marklof, Jens; Wolowski, Lech
2007-01-01
We consider the random continued fraction S(t) := 1/(s_1 + t/(s_2 + t/(s_3 + >...))) where the s_n are independent random variables with the same gamma distribution. For every realisation of the sequence, S(t) defines a Stieltjes function. We study the convergence of the finite truncations of the continued fraction or, equivalently, of the diagonal Pade approximants of the function S(t). By using the Dyson--Schmidt method for an equivalent one-dimensional disordered system, and the results of Marklof et al. (2005), we obtain explicit formulae (in terms of modified Bessel functions) for the almost-sure rate of convergence of these approximants, and for the almost-sure distribution of their poles.
Approximate eigenvalue determination of geometrically frustrated magnetic molecules
Directory of Open Access Journals (Sweden)
A.M. Läuchli
2009-01-01
Full Text Available Geometrically frustrated magnetic molecules have attracted a lot of interest in the field of molecular magnetism as well as frustrated Heisenberg antiferromagnets. In this article we demonstrate how an approximate diagonalization scheme can be used in order to obtain thermodynamic and spectroscopic information about frustrated magnetic molecules. To this end we theoretically investigate an antiferromagnetically coupled spin system with cuboctahedral structure modeled by an isotropic Heisenberg Hamiltonian.
Agarwalla, Sanjib Kumar; Saha, Debashis; Takeuchi, Tatsu
2015-01-01
In this article we unravel the role of matter effect in neutrino oscillation in the presence of lepton-flavor-conserving, non-universal non-standard interactions (NSI's) of the neutrino. Employing the Jacobi method, we derive approximate analytical expressions for the effective mass-squared differences and mixing angles in matter. It is shown that, within the effective mixing matrix, the Standard Model (SM) W-exchange interaction only affects $\\theta_{12}$ and $\\theta_{13}$, while the flavor-diagonal NSI's only affect $\\theta_{23}$. The CP-violating phase $\\delta$ remains unaffected. Using our simple and compact analytical approximation, we study the impact of the flavor-diagonal NSI's on the neutrino oscillation probabilities for various appearance and disappearance channels. At higher energies and longer baselines, it is found that the impact of the NSI's can be significant in the numu to numu channel, which can probed in future atmospheric neutrino experiments, if the NSI's are of the order of their curren...
Algebraic Bethe Ansatz for O(2N) sigma models with integrable diagonal boundaries
Gombor, Tamas
2015-01-01
The finite volume problem of O(2N) sigma models with integrable diagonal boundaries on a finite interval is investigated. The double row transfer matrix is diagonalized by Algebraic Bethe Ansatz. The boundary Bethe Yang equations for the particle rapidities and the accompanying Bethe Ansatz equations are derived.
On the diagonal susceptibility of the two-dimensional Ising model
Energy Technology Data Exchange (ETDEWEB)
Tracy, Craig A. [Department of Mathematics, University of California, Davis, California 95616 (United States); Widom, Harold [Department of Mathematics, University of California, Santa Cruz, California 95064 (United States)
2013-12-15
We consider the diagonal susceptibility of the isotropic 2D Ising model for temperatures below the critical temperature. For a parameter k related to temperature and the interaction constant, we extend the diagonal susceptibility to complex k inside the unit disc, and prove the conjecture that the unit circle is a natural boundary.
Off-diagonal Bethe ansatz solution of the XXX spin-chain with arbitrary boundary conditions
Cao, Junpeng; Shi, Kangjie; Wang, Yupeng
2013-01-01
With the off-diagonal Bethe ansatz method proposed recently by the present authors, we exactly diagonalize the $XXX$ spin chain with arbitrary boundary fields. By constructing a functional relation between the eigenvalues of the transfer matrix and the quantum determinant, the associated $T-Q$ relation and the Bethe ansatz equations are derived.
Off-diagonal Bethe ansatz solution of the XXX spin chain with arbitrary boundary conditions
Cao, Junpeng; Yang, Wen-Li; Shi, Kangjie; Wang, Yupeng
2013-10-01
Employing the off-diagonal Bethe ansatz method proposed recently by the present authors, we exactly diagonalize the XXX spin chain with arbitrary boundary fields. By constructing a functional relation between the eigenvalues of the transfer matrix and the quantum determinant, the associated T-Q relation and the Bethe ansatz equations are derived.
Institute of Scientific and Technical Information of China (English)
Liu Zi-Xin; Wen Sheng-Hui; Li Ming
2008-01-01
A combination of the iterative perturbation theory (ITP) of the dynamical mean field theory (DMFT) and coherent-potential approximation (CPA) is generalized to the double exchange model with orbital degeneracy. The Hubbard interaction and the off-diagonal components for the hopping matrix tmnijn(m≠n) are considered in our calculation of spectrum and optical conductivity. The numerical results show that the effects of the non-diagonal hopping matrix elements are important.
Directory of Open Access Journals (Sweden)
Maria Malejki
2007-01-01
Full Text Available We investigate the problem of approximation of eigenvalues of some self-adjoint operator in the Hilbert space \\(l^2(\\mathbb{N}\\ by eigenvalues of suitably chosen principal finite submatrices of an infinite Jacobi matrix that defines the operator considered. We assume the Jacobi operator is bounded from below with compact resolvent. In our research we estimate the asymptotics (with \\(n\\to \\infty\\ of the joint error of approximation for the first \\(n\\ eigenvalues and eigenvectors of the operator by the eigenvalues and eigenvectors of the finite submatrix of order \\(n \\times n\\. The method applied in our research is based on the Rayleigh-Ritz method and Volkmer's results included in [H. Volkmer, Error Estimates for Rayleigh-Ritz Approximations of Eigenvalues and Eigenfunctions of the Mathieu and Spheroidal Wave Equation, Constr. Approx. 20 (2004, 39-54]. We extend the method to cover a class of infinite symmetric Jacobi matrices with three diagonals satisfying some polynomial growth estimates.
多元代数函数逼近的存在性与局部性质%The Existence and Local Behavior of Multivariate Algebraic Function Approximations
Institute of Scientific and Technical Information of China (English)
郑成德; 王仁宏
2004-01-01
The existing scheme of rational polynomial approximants, defined by multivariate power series, is extended to define approximants with branch points. The existence theorem is obtained. The basic properties used to define the rational approximants can be preserved almost intactly. Especially, the local behavior of the diagonal bivariate quadratic algebraic function approximation is analysed.
On the Gravitational Energy Associated with Spacetimes of Diagonal Metric
Korunur, M; Salti, M; Korunur, Murat; Havare, Ali; Salti, Mustafa
2006-01-01
In order to evaluate the energy distribution (due to matter and fields including gravitation) associated with a spacetime model of generalized diagonal metric, we consider the Einstein, Bergmann-Thomson and Landau-Lifshitz energy and/or momentum definitions both in Einstein's theory of general relativity and the teleparallel gravity (the tetrad theory of gravitation). We find the same energy distribution using Einstein and Bergmann-Thomson formulations, but we also find that the energy-momentum prescription of Landau-Lifshitz disagree in general with these definitions. We also give eight different well-known spacetime models as examples, and considering these models and using our results, we calculate the energy distributions associated with them. Furthermore, we show that for the Bianci type-I all the formulations give the same result. This result agrees with the previous works of Cooperstock-Israelit, Rosen, Johri {\\it et al.}, Banerjee-Sen, Xulu, Vargas and Salt{\\i} {\\it et al.} and supports the viewpoints...
Efficient Numerical Diagonalization of Hermitian 3 × 3 Matrices
Kopp, Joachim
A very common problem in science is the numerical diagonalization of symmetric or hermitian 3 × 3 matrices. Since standard "black box" packages may be too inefficient if the number of matrices is large, we study several alternatives. We consider optimized implementations of the Jacobi, QL, and Cuppen algorithms and compare them with an alytical method relying on Cardano's formula for the eigenvalues and on vector cross products for the eigenvectors. Jacobi is the most accurate, but also the slowest method, while QL and Cuppen are good general purpose algorithms. The analytical algorithm outperforms the others by more than a factor of 2, but becomes inaccurate or may even fail completely if the matrix entries differ greatly in magnitude. This can mostly be circumvented by using a hybrid method, which falls back to QL if conditions are such that the analytical calculation might become too inaccurate. For all algorithms, we give an overview of the underlying mathematical ideas, and present detailed benchmark results. C and Fortran implementations of our code are available for download from .
[Improvement of child survival in Mexico: the diagonal approach].
Sepúlveda, Jaime; Bustreo, Flavia; Tapia, Roberto; Rivera, Juan; Lozano, Rafael; Olaiz, Gustavo; Partida, Virgilio; García-García, Ma de Lourdes; Valdespino, José Luis
2007-01-01
Public health interventions aimed at children in Mexico have placed the country among the seven countries on track to achieve the goal of child mortality reduction by 2015. We analysed census data, mortality registries, the nominal registry of children, national nutrition surveys, and explored temporal association and biological plausibility to explain the reduction of child, infant, and neonatal mortality rates. During the past 25 years, child mortality rates declined from 64 to 23 per 1000 livebirths. A dramatic decline in diarrhoea mortality rates was recorded. Polio, diphtheria, and measles were eliminated. Nutritional status of children improved significantly for wasting, stunting, and underweight. A selection of highly cost-effective interventions bridging clinics and homes, what we called the diagonal approach, were central to this progress. Although a causal link to the reduction of child mortality was not possible to establish, we saw evidence of temporal association and biological plausibility to the high level of coverage of public health interventions, as well as significant association to the investments in women education, social protection, water, and sanitation. Leadership and continuity of public health policies, along with investments on institutions and human resources strengthening, were also among the reasons for these achievements.
Improvement of child survival in Mexico: the diagonal approach.
Sepúlveda, Jaime; Bustreo, Flavia; Tapia, Roberto; Rivera, Juan; Lozano, Rafael; Oláiz, Gustavo; Partida, Virgilio; García-García, Lourdes; Valdespino, José Luis
2006-12-01
Public health interventions aimed at children in Mexico have placed the country among the seven countries on track to achieve the goal of child mortality reduction by 2015. We analysed census data, mortality registries, the nominal registry of children, national nutrition surveys, and explored temporal association and biological plausibility to explain the reduction of child, infant, and neonatal mortality rates. During the past 25 years, child mortality rates declined from 64 to 23 per 1000 livebirths. A dramatic decline in diarrhoea mortality rates was recorded. Polio, diphtheria, and measles were eliminated. Nutritional status of children improved significantly for wasting, stunting, and underweight. A selection of highly cost-effective interventions bridging clinics and homes, what we called the diagonal approach, were central to this progress. Although a causal link to the reduction of child mortality was not possible to establish, we saw evidence of temporal association and biological plausibility to the high level of coverage of public health interventions, as well as significant association to the investments in women education, social protection, water, and sanitation. Leadership and continuity of public health policies, along with investments on institutions and human resources strengthening, were also among the reasons for these achievements.
Rosta, Edina; Warshel, Arieh
2012-01-01
Understanding the relationship between the adiabatic free energy profiles of chemical reactions and the underlining diabatic states is central to the description of chemical reactivity. The diabatic states form the theoretical basis of Linear Free Energy Relationships (LFERs) and thus play a major role in physical organic chemistry and related fields. However, the theoretical justification for some of the implicit LFER assumptions has not been fully established by quantum mechanical studies. This study follows our earlier works(1,2) and uses the ab initio frozen density functional theory (FDFT) method(3) to evaluate both the diabatic and adiabatic free energy surfaces and to determine the corresponding off-diagonal coupling matrix elements for a series of S(N)2 reactions. It is found that the off-diagonal coupling matrix elements are almost the same regardless of the nucleophile and the leaving group but change upon changing the central group. Furthermore, it is also found that the off diagonal elements are basically the same in gas phase and in solution, even when the solvent is explicitly included in the ab initio calculations. Furthermore, our study establishes that the FDFT diabatic profiles are parabolic to a good approximation thus providing a first principle support to the origin of LFER. These findings further support the basic approximation of the EVB treatment.
Sub-Ohmic spin-boson model with off-diagonal coupling: ground state properties.
Lü, Zhiguo; Duan, Liwei; Li, Xin; Shenai, Prathamesh M; Zhao, Yang
2013-10-28
We have carried out analytical and numerical studies of the spin-boson model in the sub-ohmic regime with the influence of both the diagonal and the off-diagonal coupling accounted for, via the Davydov D1 variational ansatz. While a second-order phase transition is known to be exhibited by this model in the presence of diagonal coupling only, we demonstrate the emergence of a discontinuous first order phase transition upon incorporation of the off-diagonal coupling. A plot of the ground state energy versus magnetization highlights the discontinuous nature of the transition between the isotropic (zero magnetization) state and nematic (finite magnetization) phases. We have also calculated the entanglement entropy and a discontinuity found at a critical coupling strength further supports the discontinuous crossover in the spin-boson model in the presence of off-diagonal coupling. It is further revealed via a canonical transformation approach that for the special case of identical exponents for the spectral densities of the diagonal and the off-diagonal coupling, there exists a continuous crossover from a single localized phase to doubly degenerate localized phase with differing magnetizations.
Diophantine approximation and badly approximable sets
DEFF Research Database (Denmark)
Kristensen, S.; Thorn, R.; Velani, S.
2006-01-01
. The classical set Bad of `badly approximable' numbers in the theory of Diophantine approximation falls within our framework as do the sets Bad(i,j) of simultaneously badly approximable numbers. Under various natural conditions we prove that the badly approximable subsets of Omega have full Hausdorff dimension......Let (X,d) be a metric space and (Omega, d) a compact subspace of X which supports a non-atomic finite measure m. We consider `natural' classes of badly approximable subsets of Omega. Loosely speaking, these consist of points in Omega which `stay clear' of some given set of points in X....... Applications of our general framework include those from number theory (classical, complex, p-adic and formal power series) and dynamical systems (iterated function schemes, rational maps and Kleinian groups)....
Batalha-Filho, Henrique; Congrains, Carlos; Carvalho, Antônio Freire; Ferreira, Kátia Maria; Del Lama, Marco Antonio
2016-01-01
The South America encompasses the highest levels of biodiversity found anywhere in the world and its rich biota is distributed among many different biogeographical regions. However, many regions of South America are still poorly studied, including its xeric environments, such as the threatened Caatinga and Cerrado phytogeographical domains. In particular, the effects of Quaternary climatic events on the demography of endemic species from xeric habitats are poorly understood. The present study uses an integrative approach to reconstruct the evolutionary history of Partamona rustica, an endemic stingless bee from dry forest diagonal in Brazil, in a spatial-temporal framework. In this sense, we sequenced four mitochondrial genes and genotyped eight microsatellite loci. Our results identified two population groups: one to the west and the other to the east of the São Francisco River Valley (SFRV). These groups split in the late Pleistocene, and the Approximate Bayesian Computation approach and phylogenetic reconstruction indicated that P. rustica originated in the west of the SFRV, subsequently colonising eastern region. Our tests of migration detected reduced gene flow between these groups. Finally, our results also indicated that the inferences both from the genetic data analyses and from the spatial distribution modelling are compatible with historical demographic stability. PMID:27723778
Directory of Open Access Journals (Sweden)
Norimasa Shiomi
2003-01-01
Full Text Available We carried out investigations for the purpose of clarifying the rotor outlet flow fields with rotating stall cell in a diagonal-flow fan. The test fan was a high–specific-speed (ns=1620 type of diagonal-flow fan that had 6 rotor blades and 11 stator blades. It has been shown that the number of the stall cell is 1, and its propagating speed is approximately 80% of its rotor speed, although little has been known about the behavior of the stall cell because a flow field with a rotating stall cell is essentially unsteady. In order to capture the behavior of the stall cell at the rotor outlet flow fields, hot-wire surveys were performed using a single-slant hotwire probe. The data obtained by these surveys were processed by means of a double phase-locked averaging technique, which enabled us to capture the flow field with the rotating stall cell in the reference coordinate system fixed to the rotor. As a result, time-dependent ensemble averages of the three-dimensional velocity components at the rotor outlet flow fields were obtained. The behavior of the stall cell was shown for each velocity component, and the flow patterns on the meridional planes were illustrated.
Del Rey Fernández, David C.; Boom, Pieter D.; Zingg, David W.
2017-02-01
Combined with simultaneous approximation terms, summation-by-parts (SBP) operators offer a versatile and efficient methodology that leads to consistent, conservative, and provably stable discretizations. However, diagonal-norm operators with a repeating interior-point operator that have thus far been constructed suffer from a loss of accuracy. While on the interior, these operators are of degree 2p, at a number of nodes near the boundaries, they are of degree p, and therefore of global degree p - meaning the highest degree monomial for which the operators are exact at all nodes. This implies that for hyperbolic problems and operators of degree greater than unity they lead to solutions with a global order of accuracy lower than the degree of the interior-point operator. In this paper, we develop a procedure to construct diagonal-norm first-derivative SBP operators that are of degree 2p at all nodes and therefore can lead to solutions of hyperbolic problems of order 2 p + 1. This is accomplished by adding nonzero entries in the upper-right and lower-left corners of SBP operator matrices with a repeating interior-point operator. This modification necessitates treating these new operators as elements, where mesh refinement is accomplished by increasing the number of elements in the mesh rather than increasing the number of nodes. The significant improvements in accuracy of this new family, for the same repeating interior-point operator, are demonstrated in the context of the linear convection equation.
Strömberg, Eric A; Nyberg, Joakim; Hooker, Andrew C
2016-12-01
With the increasing popularity of optimal design in drug development it is important to understand how the approximations and implementations of the Fisher information matrix (FIM) affect the resulting optimal designs. The aim of this work was to investigate the impact on design performance when using two common approximations to the population model and the full or block-diagonal FIM implementations for optimization of sampling points. Sampling schedules for two example experiments based on population models were optimized using the FO and FOCE approximations and the full and block-diagonal FIM implementations. The number of support points was compared between the designs for each example experiment. The performance of these designs based on simulation/estimations was investigated by computing bias of the parameters as well as through the use of an empirical D-criterion confidence interval. Simulations were performed when the design was computed with the true parameter values as well as with misspecified parameter values. The FOCE approximation and the Full FIM implementation yielded designs with more support points and less clustering of sample points than designs optimized with the FO approximation and the block-diagonal implementation. The D-criterion confidence intervals showed no performance differences between the full and block diagonal FIM optimal designs when assuming true parameter values. However, the FO approximated block-reduced FIM designs had higher bias than the other designs. When assuming parameter misspecification in the design evaluation, the FO Full FIM optimal design was superior to the FO block-diagonal FIM design in both of the examples.
Asymptotic correctability of Bell-diagonal quantum states and maximum tolerable bit error rates
Ranade, K S; Ranade, Kedar S.; Alber, Gernot
2005-01-01
The general conditions are discussed which quantum state purification protocols have to fulfill in order to be capable of purifying Bell-diagonal qubit-pair states, provided they consist of steps that map Bell-diagonal states to Bell-diagonal states and they finally apply a suitably chosen Calderbank-Shor-Steane code to the outcome of such steps. As a main result a necessary and a sufficient condition on asymptotic correctability are presented, which relate this problem to the magnitude of a characteristic exponent governing the relation between bit and phase errors under the purification steps. These conditions allow a straightforward determination of maximum tolerable bit error rates of quantum key distribution protocols whose security analysis can be reduced to the purification of Bell-diagonal states.
Free field approach to diagonalization of boundary transfer matrix : recent advances
Kojima, Takeo
2011-01-01
We diagonalize infinitely many commuting operators $T_B(z)$. We call these operators $T_B(z)$ the boundary transfer matrix associated with the quantum group and the elliptic quantum group. The boundary transfer matrix is related to the solvable model with a boundary. When we diagonalize the boundary transfer matrix, we can calculate the correlation functions for the solvable model with a boundary. We review the free field approach to diagonalization of the boundary transfer matrix $T_B(z)$ associated with $U_q(A_2^{(2)})$ and $U_{q,p}(\\hat{sl_N})$. We construct the free field realizations of the eigenvectors of the boundary transfer matrix $T_B(z)$. This paper includes new unpublished formula of the eigenvector for $U_q(A_2^{(2)})$. It is thought that this diagonalization method can be extended to more general quantum group $U_q(g)$ and elliptic quantum group $U_{q,p}(g)$.
QUASI-DIAGONALIZATION FOR A SINGULARLY PERTURBED DIFFERENTIAL SYSTEM WITH TWO PARAMETERS
Institute of Scientific and Technical Information of China (English)
无
2011-01-01
By two successive linear transformations,a singularly perturbed differential system with two parameters is quasi-diagonalized. The method of variation of constants and the principle of contraction map are used to prove the existence of the transformations.
Localization in band random matrix models with and without increasing diagonal elements.
Wang, Wen-ge
2002-06-01
It is shown that localization of eigenfunctions in the Wigner band random matrix model with increasing diagonal elements can be related to localization in a band random matrix model with random diagonal elements. The relation is obtained by making use of a result of a generalization of Brillouin-Wigner perturbation theory, which shows that reduced Hamiltonian matrices with relatively small dimensions can be introduced for nonperturbative parts of eigenfunctions, and by employing intermediate basis states, which can improve the method of the reduced Hamiltonian matrix. The latter model deviates from the standard band random matrix model mainly in two aspects: (i) the root mean square of diagonal elements is larger than that of off-diagonal elements within the band, and (ii) statistical distributions of the matrix elements are close to the Lévy distribution in their central parts, except in the high top regions.
A Summary of Design Formulas for Beams Having Thin Webs in Diagonal Tension
Kuhn, Paul
1933-01-01
This report presents an explanation of the fundamental principles and a summary of the essential formulas for the design of diagonal-tension field beams, i.e. beams with very thin webs, as developed by Professor Wagner of Germany.
线性变换对角化问题浅析%Diagonalization of Linear Transformation
Institute of Scientific and Technical Information of China (English)
王玉梅
2011-01-01
For the linear transform and matrix diagonalization diagonalization similar to the link between the easily understood by matrix diagonalization to study the relative complexity of diagonalization of the linear transformation, and then by studying the eige%对于线性变换对角化与矩阵相似对角化之间的联系,通过对易理解的矩阵的对角化问题来研究相对复杂线性变换的对角化问题,然后通过研究特征值与特征向量的性质,再研究对角化的必要条件与充分条件,从而更轻松的理解并掌握线性变换的对角化问题。
Pietracaprina, Francesca; Gogolin, Christian; Goold, John
2016-01-01
The diagonal ensemble is the infinite time average of a quantum state following unitary dynamics. In analogy to the time average of a classical phase space dynamics, it is intimately related to the ergodic properties of the quantum system giving information on the spreading of the initial state in the eigenstates of the Hamiltonian. In this work we apply a concept from quantum information, known as total correlations, to the diagonal ensemble. Forming an upper-bound on the multipartite entang...
Taking correlations in GPS least squares adjustments into account with a diagonal covariance matrix
Kermarrec, Gaël; Schön, Steffen
2016-09-01
Based on the results of Luati and Proietti (Ann Inst Stat Math 63:673-686, 2011) on an equivalence for a certain class of polynomial regressions between the diagonally weighted least squares (DWLS) and the generalized least squares (GLS) estimator, an alternative way to take correlations into account thanks to a diagonal covariance matrix is presented. The equivalent covariance matrix is much easier to compute than a diagonalization of the covariance matrix via eigenvalue decomposition which also implies a change of the least squares equations. This condensed matrix, for use in the least squares adjustment, can be seen as a diagonal or reduced version of the original matrix, its elements being simply the sums of the rows elements of the weighting matrix. The least squares results obtained with the equivalent diagonal matrices and those given by the fully populated covariance matrix are mathematically strictly equivalent for the mean estimator in terms of estimate and its a priori cofactor matrix. It is shown that this equivalence can be empirically extended to further classes of design matrices such as those used in GPS positioning (single point positioning, precise point positioning or relative positioning with double differences). Applying this new model to simulated time series of correlated observations, a significant reduction of the coordinate differences compared with the solutions computed with the commonly used diagonal elevation-dependent model was reached for the GPS relative positioning with double differences, single point positioning as well as precise point positioning cases. The estimate differences between the equivalent and classical model with fully populated covariance matrix were below the mm for all simulated GPS cases and below the sub-mm for the relative positioning with double differences. These results were confirmed by analyzing real data. Consequently, the equivalent diagonal covariance matrices, compared with the often used elevation
Diagonal Kernel Point Estimation of th-Order Discrete Volterra-Wiener Systems
Directory of Open Access Journals (Sweden)
Pirani Massimiliano
2004-01-01
Full Text Available The estimation of diagonal elements of a Wiener model kernel is a well-known problem. The new operators and notations proposed here aim at the implementation of efficient and accurate nonparametric algorithms for the identification of diagonal points. The formulas presented here allow a direct implementation of Wiener kernel identification up to the th order. Their efficiency is demonstrated by simulations conducted on discrete Volterra systems up to fifth order.
The Spectrum and the Spectral Type of the Off-Diagonal Fibonacci Operator
Damanik, David
2008-01-01
We consider Jacobi matrices with zero diagonal and off-diagonals given by elements of the hull of the Fibonacci sequence and show that the spectrum has zero Lebesgue measure and all spectral measures are purely singular continuous. In addition, if the two hopping parameters are distinct but sufficiently close to each other, we show that the spectrum is a dynamically defined Cantor set, which has a variety of consequences for its local and global fractal dimension.
Leike, Reimar H
2016-01-01
In Bayesian statistics probability distributions express beliefs. However, for many problems the beliefs cannot be computed analytically and approximations of beliefs are needed. We seek a ranking function that quantifies how "embarrassing" it is to communicate a given approximation. We show that there is only one ranking under the requirements that (1) the best ranked approximation is the non-approximated belief and (2) that the ranking judges approximations only by their predictions for actual outcomes. We find that this ranking is equivalent to the Kullback-Leibler divergence that is frequently used in the literature. However, there seems to be confusion about the correct order in which its functional arguments, the approximated and non-approximated beliefs, should be used. We hope that our elementary derivation settles the apparent confusion. We show for example that when approximating beliefs with Gaussian distributions the optimal approximation is given by moment matching. This is in contrast to many su...
Diagonal Loading of Robust General-Rank Beamformer for Direction of Arrival Mismatch
Directory of Open Access Journals (Sweden)
Z.U. Khan
2013-05-01
Full Text Available This study presents a technique which utilizes the movement of the peak of the main beam towards the presumed signal direction with negative diagonal loading for robust general-rank beamformer. The main beam symmetry along presumed signal direction is improved by this movement. When desired signal is contained in the data snapshots, the conventional beamformers face the problem of performance degradation even if there is a small mismatch between the presumed and the actual signal direction. Diagonal loading is a popular technique to mitigate this problem. There is no definite criterion to find diagonal loading level. A new diagonal loading method has been proposed in the literature which utilizes the movement of the peak of main beam towards the presumed signal direction with positive diagonal loading. The proposed technique works iteratively for the selection of negative diagonal loading level to move the main beam at a position to get the beam symmetry at desired level and hence the desired robustness. The mismatched signal will not be cancelled as long as it is within the half of the width of the main beam. But there is the tradeoff between this robustness and interference cancelling capability.
In Vivo Imaging Reveals Composite Coding for Diagonal Motion in the Drosophila Visual System
Zhou, Wei; Chang, Jin
2016-01-01
Understanding information coding is important for resolving the functions of visual neural circuits. The motion vision system is a classic model for studying information coding as it contains a concise and complete information-processing circuit. In Drosophila, the axon terminals of motion-detection neurons (T4 and T5) project to the lobula plate, which comprises four regions that respond to the four cardinal directions of motion. The lobula plate thus represents a topographic map on a transverse plane. This enables us to study the coding of diagonal motion by investigating its response pattern. By using in vivo two-photon calcium imaging, we found that the axon terminals of T4 and T5 cells in the lobula plate were activated during diagonal motion. Further experiments showed that the response to diagonal motion is distributed over the following two regions compared to the cardinal directions of motion—a diagonal motion selective response region and a non-selective response region—which overlap with the response regions of the two vector-correlated cardinal directions of motion. Interestingly, the sizes of the non-selective response regions are linearly correlated with the angle of the diagonal motion. These results revealed that the Drosophila visual system employs a composite coding for diagonal motion that includes both independent coding and vector decomposition coding. PMID:27695103
DEFF Research Database (Denmark)
Sørensen, Karsten Engsig
Afhandlingen analysere de konkurrenceretlige og selskabsretlige regler som er bestemmende for hvordan et joint venture samarbejde er struktureret......Afhandlingen analysere de konkurrenceretlige og selskabsretlige regler som er bestemmende for hvordan et joint venture samarbejde er struktureret...
... chap 275. Raftery AT, Lim E, Ostor AJK. Joint disorders. In: Raftery AT, Lim E, Ostor AJK, eds. ... A.M. Editorial team. Related MedlinePlus Health Topics Joint Disorders Browse the Encyclopedia A.D.A.M., Inc. ...
M.N. Hoogendoorn (Martin)
2009-01-01
textabstractEen veel voorkomende wijze van samenwerking tussen ondernemingen is het uitvoeren van activiteiten in de vorm van een joint venture. Een joint venture is bijna altijd een afzonderlijke juridische entiteit. De partners in de joint venture voeren gezamenlijk de zeggenschap uit. In internat
On Element SDD Approximability
Avron, Haim; Toledo, Sivan
2009-01-01
This short communication shows that in some cases scalar elliptic finite element matrices cannot be approximated well by an SDD matrix. We also give a theoretical analysis of a simple heuristic method for approximating an element by an SDD matrix.
Approximate iterative algorithms
Almudevar, Anthony Louis
2014-01-01
Iterative algorithms often rely on approximate evaluation techniques, which may include statistical estimation, computer simulation or functional approximation. This volume presents methods for the study of approximate iterative algorithms, providing tools for the derivation of error bounds and convergence rates, and for the optimal design of such algorithms. Techniques of functional analysis are used to derive analytical relationships between approximation methods and convergence properties for general classes of algorithms. This work provides the necessary background in functional analysis a
Approximation of distributed delays
Lu, Hao; Eberard, Damien; Simon, Jean-Pierre
2010-01-01
We address in this paper the approximation problem of distributed delays. Such elements are convolution operators with kernel having bounded support, and appear in the control of time-delay systems. From the rich literature on this topic, we propose a general methodology to achieve such an approximation. For this, we enclose the approximation problem in the graph topology, and work with the norm defined over the convolution Banach algebra. The class of rational approximates is described, and a constructive approximation is proposed. Analysis in time and frequency domains is provided. This methodology is illustrated on the stabilization control problem, for which simulations results show the effectiveness of the proposed methodology.
Sparse approximation with bases
2015-01-01
This book systematically presents recent fundamental results on greedy approximation with respect to bases. Motivated by numerous applications, the last decade has seen great successes in studying nonlinear sparse approximation. Recent findings have established that greedy-type algorithms are suitable methods of nonlinear approximation in both sparse approximation with respect to bases and sparse approximation with respect to redundant systems. These insights, combined with some previous fundamental results, form the basis for constructing the theory of greedy approximation. Taking into account the theoretical and practical demand for this kind of theory, the book systematically elaborates a theoretical framework for greedy approximation and its applications. The book addresses the needs of researchers working in numerical mathematics, harmonic analysis, and functional analysis. It quickly takes the reader from classical results to the latest frontier, but is written at the level of a graduate course and do...
Volume localized spin echo correlation spectroscopy with suppression of 'diagonal' peaks.
Banerjee, Abhishek; Chandrakumar, N
2014-02-01
Two dimensional homonuclear (1)H correlation spectroscopy is of considerable interest for volume localized spectral studies, both in vivo and in vitro, of biological as well as material objects. The information principally sought from correlation spectra resides in the cross-peaks, which are often masked however by the presence of diagonal peaks in COSY, or 'pseudo-diagonal' peaks at F1=0 in SECSY. It has therefore been a concern to suppress these diagonal or 'pseudo-diagonal' peaks, in order to ensure that cross-peak information is fully discernible. We present here a report of our work on volume localized DIagonal Suppressed Spin Echo Correlation specTroscopy (LDISSECT) and demonstrate its performance in comparison to the standard volume localized SECSY experiment, employing brain metabolite phantoms in a gel. The sequence works in the inhomogeneous, multi-component environment by exploiting the short acquisition time to suppress undesired information by employing an additional rf pulse. A brief description of the pulse sequence, its theory, and simulations are also included, besides experimental benchmarking on two brain metabolite phantoms in gel phase.
Sex determination in modern Greeks using diagonal measurements of molar teeth.
Zorba, Eleni; Moraitis, Konstantinos; Eliopoulos, Constantine; Spiliopoulou, Chara
2012-04-10
Sex determination is a necessary step in the investigation of unidentified human remains from a forensic context. Teeth, as one of the strongest tissues in the human body, can be used for this purpose. Most studies of sexual dimorphism in teeth are based on the traditional mesiodistal and buccolingual crown measurements. The purpose of this study is to examine the degree of sexual dimorphism in permanent molars of modern Greeks using crown and cervical diagonal diameters, and to evaluate their applicability in sex determination. A total of 344 permanent molars in 107 individuals (53 male and 54 female) from the Athens Collection were examined. Crown and cervical diagonal diameters of both maxillary and mandibular molars were measured. It was found that males have larger molars than females and in 19 out of 24 dimensions measured male molars exceeded female molars significantly (Pdiagonal diameters have found to be more sexually diamorphic than crown diagonal diameters. In discriminant function analysis the variables entered more frequently were the cervical diagonal diameters mainly of mandibular molars. Classification accuracy was found to be 93% for the total sample, 77.4% for upper jaw, and 88.4% for the lower jaw. Accuracy rates were higher for cervical than crown diagonal diameters. The data generated from the present study suggest that this metric method can be useful and reliable for sex determination, especially when the traditional dental measurements are not applicable.
Approximation techniques for engineers
Komzsik, Louis
2006-01-01
Presenting numerous examples, algorithms, and industrial applications, Approximation Techniques for Engineers is your complete guide to the major techniques used in modern engineering practice. Whether you need approximations for discrete data of continuous functions, or you''re looking for approximate solutions to engineering problems, everything you need is nestled between the covers of this book. Now you can benefit from Louis Komzsik''s years of industrial experience to gain a working knowledge of a vast array of approximation techniques through this complete and self-contained resource.
Achieser, N I
2004-01-01
A pioneer of many modern developments in approximation theory, N. I. Achieser designed this graduate-level text from the standpoint of functional analysis. The first two chapters address approximation problems in linear normalized spaces and the ideas of P. L. Tchebysheff. Chapter III examines the elements of harmonic analysis, and Chapter IV, integral transcendental functions of the exponential type. The final two chapters explore the best harmonic approximation of functions and Wiener's theorem on approximation. Professor Achieser concludes this exemplary text with an extensive section of pr
Relativistic quasiparticle random phase approximation in deformed nuclei
Energy Technology Data Exchange (ETDEWEB)
Pena Arteaga, D.
2007-06-25
Covariant density functional theory is used to study the influence of electromagnetic radiation on deformed superfluid nuclei. The relativistic Hartree-Bogolyubov equations and the resulting diagonalization problem of the quasiparticle random phase approximation are solved for axially symmetric systems in a fully self-consistent way by a newly developed parallel code. Three different kinds of high precision energy functionals are investigated and special care is taken for the decoupling of the Goldstone modes. This allows the microscopic investigation of Pygmy and scissor resonances in electric and magnetic dipole fields. Excellent agreement with recent experiments is found and new types of modes are predicted for deformed systems with large neutron excess. (orig.)
Expectation Consistent Approximate Inference
DEFF Research Database (Denmark)
Opper, Manfred; Winther, Ole
2005-01-01
We propose a novel framework for approximations to intractable probabilistic models which is based on a free energy formulation. The approximation can be understood from replacing an average over the original intractable distribution with a tractable one. It requires two tractable probability dis...
Shrinkage-based diagonal discriminant analysis and its applications in high-dimensional data.
Pang, Herbert; Tong, Tiejun; Zhao, Hongyu
2009-12-01
High-dimensional data such as microarrays have brought us new statistical challenges. For example, using a large number of genes to classify samples based on a small number of microarrays remains a difficult problem. Diagonal discriminant analysis, support vector machines, and k-nearest neighbor have been suggested as among the best methods for small sample size situations, but none was found to be superior to others. In this article, we propose an improved diagonal discriminant approach through shrinkage and regularization of the variances. The performance of our new approach along with the existing methods is studied through simulations and applications to real data. These studies show that the proposed shrinkage-based and regularization diagonal discriminant methods have lower misclassification rates than existing methods in many cases.
Rossi-Arnaud, Clelia; Pieroni, Laura; Spataro, Pietro; Baddeley, Alan
2012-09-01
Previous studies, using a modified version of the sequential Corsi block task to examine the impact of symmetry on visuospatial memory, showed an advantage of vertical symmetry over non-symmetrical sequences, but no effect of horizontal or diagonal symmetry. The present four experiments investigated the mechanisms underlying the encoding of vertical, horizontal and diagonal configurations using simultaneous presentation and a dual-task paradigm. Results indicated that the recall of vertically symmetric arrays was always better than that of all other patterns and was not influenced by any of the concurrent tasks. Performance with horizontally or diagonally symmetrical patterns differed, with high performing participants showing little effect of concurrent tasks, while low performers were disrupted by concurrent visuospatial and executive tasks. A verbal interference had no effect on either group. Implications for processes involved in the encoding of symmetry are discussed, together with the crucial importance of individual differences.
Gevaert, Kris; Van Damme, Petra; Martens, Lennart; Vandekerckhove, Joël
2005-10-01
Diagonal electrophoresis/chromatography was described 40 years ago and was used to isolate specific sets of peptides from simple peptide mixtures such as protease digests of purified proteins. Recently, we have adapted the core technology of diagonal chromatography so that the technique can be used in so-called gel-free, peptide-centric proteome studies. Here we review the different procedures we have developed over the past few years, sorting of methionyl, cysteinyl, amino terminal, and phosphorylated peptides. We illustrate the power of the technique, termed COFRADIC (combined fractional diagonal chromatography), in the case of a peptide-centric analysis of a sputum sol phase sample of a patient suffering from chronic obstructive pulmonary disease (COPD). We were able to identify an unexpectedly high number of intracellular proteins next to known biomarkers.
Approximate Modified Policy Iteration
Scherrer, Bruno; Ghavamzadeh, Mohammad; Geist, Matthieu
2012-01-01
Modified policy iteration (MPI) is a dynamic programming (DP) algorithm that contains the two celebrated policy and value iteration methods. Despite its generality, MPI has not been thoroughly studied, especially its approximation form which is used when the state and/or action spaces are large or infinite. In this paper, we propose three approximate MPI (AMPI) algorithms that are extensions of the well-known approximate DP algorithms: fitted-value iteration, fitted-Q iteration, and classification-based policy iteration. We provide an error propagation analysis for AMPI that unifies those for approximate policy and value iteration. We also provide a finite-sample analysis for the classification-based implementation of AMPI (CBMPI), which is more general (and somehow contains) than the analysis of the other presented AMPI algorithms. An interesting observation is that the MPI's parameter allows us to control the balance of errors (in value function approximation and in estimating the greedy policy) in the fina...
Ordered cones and approximation
Keimel, Klaus
1992-01-01
This book presents a unified approach to Korovkin-type approximation theorems. It includes classical material on the approximation of real-valuedfunctions as well as recent and new results on set-valued functions and stochastic processes, and on weighted approximation. The results are notonly of qualitative nature, but include quantitative bounds on the order of approximation. The book is addressed to researchers in functional analysis and approximation theory as well as to those that want to applythese methods in other fields. It is largely self- contained, but the readershould have a solid background in abstract functional analysis. The unified approach is based on a new notion of locally convex ordered cones that are not embeddable in vector spaces but allow Hahn-Banach type separation and extension theorems. This concept seems to be of independent interest.
Breit-Wigner approximation for propagators of mixed unstable states
Fuchs, Elina
2016-01-01
For systems of unstable particles that mix with each other, an approximation of the fully momentum-dependent propagator matrix is presented in terms of a sum of simple Breit-Wigner propagators that are multiplied with finite on-shell wave function normalisation factors. The latter are evaluated at the complex poles of the propagators. The pole structure of general propagator matrices is carefully analysed, and it is demonstrated that in the proposed approximation imaginary parts arising from absorptive parts of loop integrals are properly taken into account. Applying the formalism to the neutral MSSM Higgs sector with complex parameters, very good numerical agreement is found between cross sections based on the full propagators and the corresponding cross sections based on the described approximation. The proposed approach does not only technically simplify the treatment of propagators with non-vanishing off-diagonal contributions, it is shown that it can also facilitate an improved theoretical prediction of ...
Time-dependent renormalized Redfield theory II for off-diagonal transition in reduced density matrix
Kimura, Akihiro
2016-09-01
In our previous letter (Kimura, 2016), we constructed time-dependent renormalized Redfield theory (TRRT) only for diagonal transition in a reduced density matrix. In this letter, we formulate the general expression for off-diagonal transition in the reduced density matrix. We discuss the applicability of TRRT by numerically comparing the dependencies on the energy gap of the exciton relaxation rate by using the TRRT and the modified Redfield theory (MRT). In particular, we roughly show that TRRT improves MRT for the detailed balance about the excitation energy transfer reaction.
On the Reduction of a Complex Matrix to Triangular or Diagonal by Consimilarity
Institute of Scientific and Technical Information of China (English)
Tongsong Jiang; Musheng Wei
2006-01-01
Two n × n complex matrices A and B are said to be consimilar if S-1 AS = B for some nonsingular n × n complex matrix S. This paper, by means of real representation of a complex matrix, studies problems of reducing a given n × n complex matrix A to triangular or diagonal form by consimilarity, not only gives necessary and sufficient conditions for contriangularization and condiagonalization of a complex matrix, but also derives an algebraic technique of reducing a matrix to triangular or diagonal form by consimilarity.
Exact solution of the trigonometric SU(3 spin chain with generic off-diagonal boundary reflections
Directory of Open Access Journals (Sweden)
Guang-Liang Li
2016-09-01
Full Text Available The nested off-diagonal Bethe ansatz is generalized to study the quantum spin chain associated with the SUq(3 R-matrix and generic integrable non-diagonal boundary conditions. By using the fusion technique, certain closed operator identities among the fused transfer matrices at the inhomogeneous points are derived. The corresponding asymptotic behaviors of the transfer matrices and their values at some special points are given in detail. Based on the functional analysis, a nested inhomogeneous T–Q relations and Bethe ansatz equations of the system are obtained. These results can be naturally generalized to cases related to the SUq(n algebra.
Energy Technology Data Exchange (ETDEWEB)
Jiang, Tongsong, E-mail: jiangtongsong@sina.com [Department of Mathematics, Linyi University, Linyi, Shandong 276005 (China); Department of Mathematics, Heze University, Heze, Shandong 274015 (China); Jiang, Ziwu; Zhang, Zhaozhong [Department of Mathematics, Linyi University, Linyi, Shandong 276005 (China)
2015-08-15
In the study of the relation between complexified classical and non-Hermitian quantum mechanics, physicists found that there are links to quaternionic and split quaternionic mechanics, and this leads to the possibility of employing algebraic techniques of split quaternions to tackle some problems in complexified classical and quantum mechanics. This paper, by means of real representation of a split quaternion matrix, studies the problem of diagonalization of a split quaternion matrix and gives algebraic techniques for diagonalization of split quaternion matrices in split quaternionic mechanics.
Exact solution of the trigonometric SU(3) spin chain with generic off-diagonal boundary reflections
Li, Guang-Liang; Cao, Junpeng; Hao, Kun; Wen, Fakai; Yang, Wen-Li; Shi, Kangjie
2016-09-01
The nested off-diagonal Bethe ansatz is generalized to study the quantum spin chain associated with the SUq (3)R-matrix and generic integrable non-diagonal boundary conditions. By using the fusion technique, certain closed operator identities among the fused transfer matrices at the inhomogeneous points are derived. The corresponding asymptotic behaviors of the transfer matrices and their values at some special points are given in detail. Based on the functional analysis, a nested inhomogeneous T-Q relations and Bethe ansatz equations of the system are obtained. These results can be naturally generalized to cases related to the SUq (n) algebra.
Exact solution of the trigonometric SU(3) spin chain with generic off-diagonal boundary reflections
Li, Guang-Liang; Hao, Kun; Yang, Wen-Li; Shi, Kangjie
2016-01-01
The nested off-diagonal Bethe Ansatz is generalized to study the quantum spin chain associated with the $SU_q(3)$ R-matrix and generic integrable non-diagonal boundary conditions. By using the fusion technique, certain closed operator identities among the fused transfer matrices at the inhomogeneous points are derived. The corresponding asymptotic behaviors of the transfer matrices and their values at some special points are given in detail. Based on the functional analysis, a nested inhomogeneous T-Q relations and Bethe Ansatz equations of the system are obtained. These results can be naturally generalized to cases related to the $SU_q(n)$ algebra.
Boundary energy of the open XXX chain with a non-diagonal boundary term
Nepomechie, Rafael I
2013-01-01
We analyze the ground state of the open spin-1/2 isotropic quantum spin chain with a non-diagonal boundary term using a recently proposed Bethe ansatz solution. As the coefficient of the non-diagonal boundary term tends to zero, the Bethe roots split evenly into two sets: those that remain finite, and those that become infinite. We argue that the former satisfy conventional Bethe equations, while the latter satisfy a generalization of the Richardson-Gaudin equations. We derive an expression for the leading correction to the boundary energy in terms of the boundary parameters.
Boundary energy of the open XXX chain with a non-diagonal boundary term
Nepomechie, Rafael I.; Wang, Chunguang
2014-01-01
We analyze the ground state of the open spin-1/2 isotropic quantum spin chain with a non-diagonal boundary term using a recently proposed Bethe ansatz solution. As the coefficient of the non-diagonal boundary term tends to zero, the Bethe roots split evenly into two sets: those that remain finite, and those that become infinite. We argue that the former satisfy conventional Bethe equations, while the latter satisfy a generalization of the Richardson-Gaudin equations. We derive an expression for the leading correction to the boundary energy in terms of the boundary parameters.
Bias-corrected diagonal discriminant rules for high-dimensional classification.
Huang, Song; Tong, Tiejun; Zhao, Hongyu
2010-12-01
Diagonal discriminant rules have been successfully used for high-dimensional classification problems, but suffer from the serious drawback of biased discriminant scores. In this article, we propose improved diagonal discriminant rules with bias-corrected discriminant scores for high-dimensional classification. We show that the proposed discriminant scores dominate the standard ones under the quadratic loss function. Analytical results on why the bias-corrected rules can potentially improve the predication accuracy are also provided. Finally, we demonstrate the improvement of the proposed rules over the original ones through extensive simulation studies and real case studies.
2016-09-09
exercise of authority by combatant commanders and other joint force commanders (JFCs), and prescribes joint doctrine for operations and training. It...interdiction requirements and dependable, interoperable, and secure communications architecture to exercise control. The JFC exercises C2 through...moving across open desert terrain were more vulnerable to interdiction by coalition airpower than dispersed Serbian forces that benefited from trees
Approximate and renormgroup symmetries
Energy Technology Data Exchange (ETDEWEB)
Ibragimov, Nail H. [Blekinge Institute of Technology, Karlskrona (Sweden). Dept. of Mathematics Science; Kovalev, Vladimir F. [Russian Academy of Sciences, Moscow (Russian Federation). Inst. of Mathematical Modeling
2009-07-01
''Approximate and Renormgroup Symmetries'' deals with approximate transformation groups, symmetries of integro-differential equations and renormgroup symmetries. It includes a concise and self-contained introduction to basic concepts and methods of Lie group analysis, and provides an easy-to-follow introduction to the theory of approximate transformation groups and symmetries of integro-differential equations. The book is designed for specialists in nonlinear physics - mathematicians and non-mathematicians - interested in methods of applied group analysis for investigating nonlinear problems in physical science and engineering. (orig.)
Approximating Stationary Statistical Properties
Institute of Scientific and Technical Information of China (English)
Xiaoming WANG
2009-01-01
It is well-known that physical laws for large chaotic dynamical systems are revealed statistically. Many times these statistical properties of the system must be approximated numerically. The main contribution of this manuscript is to provide simple and natural criterions on numerical methods (temporal and spatial discretization) that are able to capture the stationary statistical properties of the underlying dissipative chaotic dynamical systems asymptotically. The result on temporal approximation is a recent finding of the author, and the result on spatial approximation is a new one. Applications to the infinite Prandtl number model for convection and the barotropic quasi-geostrophic model are also discussed.
Directory of Open Access Journals (Sweden)
Malvina Baica
1985-01-01
Full Text Available The author uses a new modification of Jacobi-Perron Algorithm which holds for complex fields of any degree (abbr. ACF, and defines it as Generalized Euclidean Algorithm (abbr. GEA to approximate irrationals.
Approximations in Inspection Planning
DEFF Research Database (Denmark)
Engelund, S.; Sørensen, John Dalsgaard; Faber, M. H.
2000-01-01
Planning of inspections of civil engineering structures may be performed within the framework of Bayesian decision analysis. The effort involved in a full Bayesian decision analysis is relatively large. Therefore, the actual inspection planning is usually performed using a number of approximations....... One of the more important of these approximations is the assumption that all inspections will reveal no defects. Using this approximation the optimal inspection plan may be determined on the basis of conditional probabilities, i.e. the probability of failure given no defects have been found...... by the inspection. In this paper the quality of this approximation is investigated. The inspection planning is formulated both as a full Bayesian decision problem and on the basis of the assumption that the inspection will reveal no defects....
The Karlqvist approximation revisited
Tannous, C
2015-01-01
The Karlqvist approximation signaling the historical beginning of magnetic recording head theory is reviewed and compared to various approaches progressing from Green, Fourier, Conformal mapping that obeys the Sommerfeld edge condition at angular points and leads to exact results.
Gautschi, Walter; Rassias, Themistocles M
2011-01-01
Approximation theory and numerical analysis are central to the creation of accurate computer simulations and mathematical models. Research in these areas can influence the computational techniques used in a variety of mathematical and computational sciences. This collection of contributed chapters, dedicated to renowned mathematician Gradimir V. Milovanovia, represent the recent work of experts in the fields of approximation theory and numerical analysis. These invited contributions describe new trends in these important areas of research including theoretic developments, new computational alg
Directory of Open Access Journals (Sweden)
Maksim Duškin
2015-11-01
Full Text Available Approximation and supposition This article compares exponents of approximation (expressions like Russian около, примерно, приблизительно, более, свыше and the words expressing supposition (for example Russian скорее всего, наверное, возможно. These words are often confused in research, in particular researchers often mention exponents of supposition in case of exponents of approximation. Such approach arouses some objections. The author intends to demonstrate in this article a notional difference between approximation and supposition, therefore the difference between exponents of these two notions. This difference could be described by specifying different attitude of approximation and supposition to the notion of knowledge. Supposition implies speaker’s ignorance of the exact number, while approximation does not mean such ignorance. The article offers examples proving this point of view.
Approximate kernel competitive learning.
Wu, Jian-Sheng; Zheng, Wei-Shi; Lai, Jian-Huang
2015-03-01
Kernel competitive learning has been successfully used to achieve robust clustering. However, kernel competitive learning (KCL) is not scalable for large scale data processing, because (1) it has to calculate and store the full kernel matrix that is too large to be calculated and kept in the memory and (2) it cannot be computed in parallel. In this paper we develop a framework of approximate kernel competitive learning for processing large scale dataset. The proposed framework consists of two parts. First, it derives an approximate kernel competitive learning (AKCL), which learns kernel competitive learning in a subspace via sampling. We provide solid theoretical analysis on why the proposed approximation modelling would work for kernel competitive learning, and furthermore, we show that the computational complexity of AKCL is largely reduced. Second, we propose a pseudo-parallelled approximate kernel competitive learning (PAKCL) based on a set-based kernel competitive learning strategy, which overcomes the obstacle of using parallel programming in kernel competitive learning and significantly accelerates the approximate kernel competitive learning for large scale clustering. The empirical evaluation on publicly available datasets shows that the proposed AKCL and PAKCL can perform comparably as KCL, with a large reduction on computational cost. Also, the proposed methods achieve more effective clustering performance in terms of clustering precision against related approximate clustering approaches.
An Approximate Bayesian Fundamental Frequency Estimator
DEFF Research Database (Denmark)
Nielsen, Jesper Kjær; Christensen, Mads Græsbøll; Jensen, Søren Holdt
2012-01-01
Joint fundamental frequency and model order estimation is an important problem in several applications such as speech and music processing. In this paper, we develop an approximate estimation algorithm of these quantities using Bayesian inference. The inference about the fundamental frequency...... and the model order is based on a probability model which corresponds to a minimum of prior information. From this probability model, we give the exact posterior distributions on the fundamental frequency and the model order, and we also present analytical approximations of these distributions which lower...
Congestion Control for ATM Networks Based on Diagonal Recurrent Neural Networks
Institute of Scientific and Technical Information of China (English)
HuangYunxian; YanWei
1997-01-01
An adaptive control model and its algorithms based on simple diagonal recurrent neural networks are presented for the dynamic congestion control in broadband ATM networks.Two simple dynamic queuing models of real networks are used to test the performance of the suggested control scheme.
Pietracaprina, F.; Gogolin, C.; Goold, J.
2017-03-01
The diagonal ensemble is the infinite time average of a quantum state following unitary dynamics in systems without degeneracies. In analogy to the time average of a classical phase-space dynamics, it is intimately related to the ergodic properties of the quantum system giving information on the spreading of the initial state in the eigenstates of the Hamiltonian. In this work we apply a concept from quantum information, known as total correlations, to the diagonal ensemble. Forming an upper bound on the multipartite entanglement, it quantifies the combination of both classical and quantum correlations in a mixed state. We generalize the total correlations of the diagonal ensemble to more general α -Renyi entropies and focus on the cases α =1 and α =2 with further numerical extensions in mind. Here we show that the total correlations of the diagonal ensemble is a generic indicator of ergodicity breaking, displaying a subextensive behavior when the system is ergodic. We demonstrate this by investigating its scaling in a range of spin chain models focusing not only on the cases of integrability breaking but also emphasize its role in understanding the transition from an ergodic to a many-body localized phase in systems with disorder or quasiperiodicity.
Mahomed, Ozayr Haroon; Asmall, Shaidah; Freeman, Melvyn
2014-11-01
The integrated chronic disease management model provides a systematic framework for creating a fundamental change in the orientation of the health system. This model adopts a diagonal approach to health system strengthening by establishing a service-linked base to training, supervision, and the opportunity to try out, assess, and implement integrated interventions.
Off-diagonal ekpyrotic scenarios and equivalence of modified, massive and/or Einstein gravity
Directory of Open Access Journals (Sweden)
Sergiu I. Vacaru
2016-01-01
Full Text Available Using our anholonomic frame deformation method, we show how generic off-diagonal cosmological solutions depending, in general, on all spacetime coordinates and undergoing a phase of ultra-slow contraction can be constructed in massive gravity. In this paper, there are found and studied new classes of locally anisotropic and (inhomogeneous cosmological metrics with open and closed spatial geometries. The late time acceleration is present due to effective cosmological terms induced by nonlinear off-diagonal interactions and graviton mass. The off-diagonal cosmological metrics and related Stückelberg fields are constructed in explicit form up to nonholonomic frame transforms of the Friedmann–Lamaître–Robertson–Walker (FLRW coordinates. We show that the solutions include matter, graviton mass and other effective sources modeling nonlinear gravitational and matter fields interactions in modified and/or massive gravity, with polarization of physical constants and deformations of metrics, which may explain certain dark energy and dark matter effects. There are stated and analyzed the conditions when such configurations mimic interesting solutions in general relativity and modifications and recast the general Painlevé–Gullstrand and FLRW metrics. Finally, we elaborate on a reconstruction procedure for a subclass of off-diagonal cosmological solutions which describe cyclic and ekpyrotic universes, with an emphasis on open issues and observable signatures.
DEFF Research Database (Denmark)
Zhang, Shuai; Zhao, Kun; Ying, Zhinong
2015-01-01
A diagonal antenna-chassis mode is investigated in long-term evolution multiple-input-multiple-output (LTE MIMO) antennas. The MIMO bandwidth is defined in this paper as the overlap range of the low-envelope correlation coefficient, high total efficiency, and -6-dB impedance matching bandwidths...
Off-diagonal long-range order in generalized Hubbard models
Michielsen, Kristel; Raedt, Hans De
1997-01-01
We present stochastic diagonalization results for the ground-state energy and the largest eigenvalue of the two-fermion density matrix of the BCS reduced Hamiltonian, the Hubbard model, and the Hubbard model with correlated hopping. The system-size dependence of this eigenvalue is used to study the
Yildiz Ulus, Aysegul
2013-01-01
This paper examines experimental and algorithmic contributions of advanced calculators (graphing and computer algebra system, CAS) in teaching the concept of "diagonalization," one of the key topics in Linear Algebra courses taught at the undergraduate level. Specifically, the proposed hypothesis of this study is to assess the effective…
POLARONS IN THE 3-BAND PEIERLS-HUBBARD MODEL - AN EXACT DIAGONALIZATION STUDY
DOBRY, A; GRECO, A; LORENZANA, J; RIERA, J
1994-01-01
We have studied the three-band Peierls-Hubbard model describing the Cu-O layers in high-T(c) superconductors by using Lanczos diagonalization and assuming infinite mass for the ions. When the system is doped with one hole, and for lambda (the electron-lattice coupling strength) greater than a critic
Off-diagonal Yukawa Couplings in the s-channel Charged Higgs Production at LHC
Hashemi, Majid
2015-01-01
The search for the heavy charged Higgs (mH+ > mtop) has been mainly based on the o?ff-shell top pair production process. However, resonance production in s-channel single top events is an important channel to search for this particle. In a previous work, it was shown that this process, i.e., qq' -> H+ -> tb + h.c., can lead to comparable results to what is already obtained from LHC searches through gb -> tH- process. What was obtained was, however, based on diagonal Yukawa couplings between incoming quarks assuming cs as the main incoming pair due to the CKM matrix element being close to unity. The aim of this paper is to show that off-diagonal couplings, like cb, may lead to substantial contributions to the cross section, even if the corresponding CKM matrix element is two orders of magnitude smaller. For this reason, the cross section is calculated for each initial state including all diagonal and off-diagonal terms, and all is finally added together to get the total cross section which is observed to be ~ ...
The effects of pelvic diagonal movements and resistance on the lumbar multifidus
Lee, Ji-Yeon; Lee, Dong-Yeop; Hong, Ji-Heon; Yu, Jae-Ho; Kim, Jin Seop
2017-01-01
[Purpose] The purpose of this study was to compare the effects of pelvic diagonal movements, made with and without resistance, on the thickness of lumbar multifidus muscles. [Subjects and Methods] Participants in this study were healthy subjects who had no musculoskeletal disorders or lumbar-related pain. Participants were positioned on their side and instructed to lie with their hip flexor at 40 degrees. Ultrasonography was used for measurement, and the values of two calculations were averaged. [Results] The thickness of ipsilateral lumbar multifidus muscles showed a significant difference following the exercise of pelvic diagonal movements. The results of anterior elevation movements and posterior depression movements also demonstrated significant difference. There was no significant difference in lumbar multifidus muscles thickness between movements made with and without resistance. [Conclusion] These findings suggest that pelvic diagonal movements can be an effective method to promote muscular activation of the ipsilateral multifidus. Furthermore, researchers have concluded that resistance is not required during pelvic diagonal movements to selectively activate the core muscles. PMID:28356650
Stability of matrices with sufficiently strong negative-dominant-diagonal submatrices
Nieuwenhuis, H.J.; Schoonbeek, L.
1997-01-01
A well-known sufficient condition for stability of a system of linear first-order differential equations is that the matrix of the homogeneous dynamics has a negative dominant diagonal. However, this condition cannot be applied to systems of second-order differential equations. In this paper we intr
Relation between Feynman cycles and off-diagonal long-range order.
Ueltschi, Daniel
2006-10-27
The usual order parameter for Bose-Einstein condensation involves the off-diagonal correlation function of Penrose and Onsager, but an alternative is Feynman's notion of infinite cycles. We present a formula that relates both order parameters. We discuss its validity with the help of rigorous results and heuristic arguments. The conclusion is that infinite cycles do not always represent the Bose condensate.
对角方阵的变换群%Transformaion Group of Diagonal Square Matrices
Institute of Scientific and Technical Information of China (English)
张世德; 李程
2011-01-01
In this paper,we show that the transformaion group of diagonal square matrices is a subgroup of direct product Sn × Sn of symetric groups of order n, if the sets of elements of each row, each column and the two diagonals are kept constant, respectively. The diagonal Latin squares, pair of orthogonal daigonal Latin squares, magic squares, magic squares of high dgree, addition multiplacation magic squares are diagonal square matrices. This paper plays an important role in the study of construction and enumeration of the objects above.%在不改变对角方阵各行、各列、主对角线、次对角线的元素之集的条件下,其变换群是n次对称群Sn的直积Sn×Sn的子群,因对角拉丁方、对角拉丁方正交侣、幻方、高次幻方、加乘幻方均属此类方阵,本文对构作这类对象及研究它们的计数有重要意义.
Monotone Boolean approximation
Energy Technology Data Exchange (ETDEWEB)
Hulme, B.L.
1982-12-01
This report presents a theory of approximation of arbitrary Boolean functions by simpler, monotone functions. Monotone increasing functions can be expressed without the use of complements. Nonconstant monotone increasing functions are important in their own right since they model a special class of systems known as coherent systems. It is shown here that when Boolean expressions for noncoherent systems become too large to treat exactly, then monotone approximations are easily defined. The algorithms proposed here not only provide simpler formulas but also produce best possible upper and lower monotone bounds for any Boolean function. This theory has practical application for the analysis of noncoherent fault trees and event tree sequences.
Pietracaprina, Francesca; Ros, Valentina; Scardicchio, Antonello
2016-02-01
In this paper we analyze the predictions of the forward approximation in some models which exhibit an Anderson (single-body) or many-body localized phase. This approximation, which consists of summing over the amplitudes of only the shortest paths in the locator expansion, is known to overestimate the critical value of the disorder which determines the onset of the localized phase. Nevertheless, the results provided by the approximation become more and more accurate as the local coordination (dimensionality) of the graph, defined by the hopping matrix, is made larger. In this sense, the forward approximation can be regarded as a mean-field theory for the Anderson transition in infinite dimensions. The sum can be efficiently computed using transfer matrix techniques, and the results are compared with the most precise exact diagonalization results available. For the Anderson problem, we find a critical value of the disorder which is 0.9 % off the most precise available numerical value already in 5 spatial dimensions, while for the many-body localized phase of the Heisenberg model with random fields the critical disorder hc=4.0 ±0.3 is strikingly close to the most recent results obtained by exact diagonalization. In both cases we obtain a critical exponent ν =1 . In the Anderson case, the latter does not show dependence on the dimensionality, as it is common within mean-field approximations. We discuss the relevance of the correlations between the shortest paths for both the single- and many-body problems, and comment on the connections of our results with the problem of directed polymers in random medium.
On Convex Quadratic Approximation
den Hertog, D.; de Klerk, E.; Roos, J.
2000-01-01
In this paper we prove the counterintuitive result that the quadratic least squares approximation of a multivariate convex function in a finite set of points is not necessarily convex, even though it is convex for a univariate convex function. This result has many consequences both for the field of
Prestack wavefield approximations
Alkhalifah, Tariq
2013-09-01
The double-square-root (DSR) relation offers a platform to perform prestack imaging using an extended single wavefield that honors the geometrical configuration between sources, receivers, and the image point, or in other words, prestack wavefields. Extrapolating such wavefields, nevertheless, suffers from limitations. Chief among them is the singularity associated with horizontally propagating waves. I have devised highly accurate approximations free of such singularities which are highly accurate. Specifically, I use Padé expansions with denominators given by a power series that is an order lower than that of the numerator, and thus, introduce a free variable to balance the series order and normalize the singularity. For the higher-order Padé approximation, the errors are negligible. Additional simplifications, like recasting the DSR formula as a function of scattering angle, allow for a singularity free form that is useful for constant-angle-gather imaging. A dynamic form of this DSR formula can be supported by kinematic evaluations of the scattering angle to provide efficient prestack wavefield construction. Applying a similar approximation to the dip angle yields an efficient 1D wave equation with the scattering and dip angles extracted from, for example, DSR ray tracing. Application to the complex Marmousi data set demonstrates that these approximations, although they may provide less than optimal results, allow for efficient and flexible implementations. © 2013 Society of Exploration Geophysicists.
Norton, Andrew H.
1991-01-01
Local spline approximants offer a means for constructing finite difference formulae for numerical solution of PDEs. These formulae seem particularly well suited to situations in which the use of conventional formulae leads to non-linear computational instability of the time integration. This is explained in terms of frequency responses of the FDF.
Merging Belief Propagation and the Mean Field Approximation
DEFF Research Database (Denmark)
Riegler, Erwin; Kirkelund, Gunvor Elisabeth; Manchón, Carles Navarro
2010-01-01
We present a joint message passing approach that combines belief propagation and the mean field approximation. Our analysis is based on the region-based free energy approximation method proposed by Yedidia et al., which allows to use the same objective function (Kullback-Leibler divergence) as a ...
Directory of Open Access Journals (Sweden)
Sebastián B. Lamot
2007-08-01
Full Text Available El surco diagonal es un signo encontrado en el lóbulo de la oreja, que estaría relacionado con la enfermedad arterial coronaria. Nuestro objetivo fue estudiar la utilidad del signo. Se examinaron 104 pacientes (entre 30 y 80 años clasificados por sexo y edad. Cuarenta y nueve tenían enfermedad arterial coronaria diagnosticada por coronariografía (obstrucción > del 70% en una de las grandes arterias y/o gamagrafía de perfusión miocárdica con Talio 201 (defecto fijo. El grupo control estuvo compuesto por 55 pacientes (asintomáticos, con electrocardiograma normal. Los datos obtenidos fueron sensibilidad (61.2%, especificidad (78.2%, valor predictivo positivo de (71.4% y valor predictivo negativo (69.3%.. Observamos una relación significativa entre la presencia de surco diagonal y enfermedad arterial coronaria. Consideramos que este signo podría resultar de utilidad en la práctica clínica, fundamentalmente para los pacientes entre 30 y 60 años.The diagonal earlobe crease is a sign theorically related to coronary artery disease. The purpose of this study was to prove the usefulness of this sign. A total of 104 patients were examined (ages 30 to 80 grouped by age and sex. Forty nine of them were diagnosed of having coronary artery disease by coronary angiography (a 70% obstruction of one of the major arteries, and/or myocardial perfusion imaging with Thallium 201 (fixed defects. The control group included 55 patients (asymptomatic with normal electrocardiogram. Data here obtained included sensitivity (61.2%, specificity (78.2%, positive predictive value (71.4% and negative predictive value (69.3%. We found a significant relation between the presence of the diagonal earlobe crease and coronary artery disease. We consider it a sign that could prove useful in clinical practice, mainly among patients aged between 30 and 60.
Doorway States in the Random-Phase Approximation
De Pace, A; Weidenmueller, H A
2014-01-01
By coupling a doorway state to a see of random background states, we develop the theory of doorway states in the framework of the random-phase approximation (RPA). Because of the symmetry of the RPA equations, that theory is radically different from the standard description of doorway states in the shell model. We derive the Pastur equation in the limit of large matrix dimension and show that the results agree with those of matrix diagonalization in large spaces. The complexity of the Pastur equation does not allow for an analytical approach that would approximately describe the doorway state. Our numerical results display unexpected features: The coupling of the doorway state with states of opposite energy leads to strong mutual attraction.
Doorway states in the random-phase approximation
Energy Technology Data Exchange (ETDEWEB)
De Pace, A., E-mail: depace@to.infn.it [Istituto Nazionale di Fisica Nucleare, Sezione di Torino, via P.Giuria 1, I-10125 Torino (Italy); Molinari, A. [Dipartimento di Fisica Teorica dell’Università di Torino, via P.Giuria 1, I-10125 Torino (Italy); Istituto Nazionale di Fisica Nucleare, Sezione di Torino, via P.Giuria 1, I-10125 Torino (Italy); Weidenmüller, H.A. [Max-Planck-Institut für Kernphysik, D-69029 Heidelberg (Germany)
2014-12-15
By coupling a doorway state to a sea of random background states, we develop the theory of doorway states in the framework of the random-phase approximation (RPA). Because of the symmetry of the RPA equations, that theory is radically different from the standard description of doorway states in the shell model. We derive the Pastur equation in the limit of large matrix dimension and show that the results agree with those of matrix diagonalization in large spaces. The complexity of the Pastur equation does not allow for an analytical approach that would approximately describe the doorway state. Our numerical results display unexpected features: The coupling of the doorway state with states of opposite energy leads to strong mutual attraction.
Approximation methods for the partition functions of anharmonic systems
Energy Technology Data Exchange (ETDEWEB)
Lew, P.; Ishida, T.
1979-07-01
The analytical approximations for the classical, quantum mechanical and reduced partition functions of the diatomic molecule oscillating internally under the influence of the Morse potential have been derived and their convergences have been tested numerically. This successful analytical method is used in the treatment of anharmonic systems. Using Schwinger perturbation method in the framework of second quantization formulism, the reduced partition function of polyatomic systems can be put into an expression which consists separately of contributions from the harmonic terms, Morse potential correction terms and interaction terms due to the off-diagonal potential coefficients. The calculated results of the reduced partition function from the approximation method on the 2-D and 3-D model systems agree well with the numerical exact calculations.
Indian Academy of Sciences (India)
Alih Taqi Al-Bayati
2013-02-01
The nuclear structures of 18O and 18F nuclei are studied using particle–particle Tamm–Dancoff approximation (pp TDA) and particle–particle random phase approximation (pp RPA). All possible single-particle states of the allowed angular momenta are considered in the 0p and 1s–0d shells. The Hamiltonian is diagonalized in the presence of Warburton and Brown interactions. The results containing energy-level schemes and transition strength (2) are compared with the available experimental data.
Prestack traveltime approximations
Alkhalifah, Tariq Ali
2011-01-01
Most prestack traveltime relations we tend work with are based on homogeneous (or semi-homogenous, possibly effective) media approximations. This includes the multi-focusing or double square-root (DSR) and the common reflection stack (CRS) equations. Using the DSR equation, I analyze the associated eikonal form in the general source-receiver domain. Like its wave-equation counterpart, it suffers from a critical singularity for horizontally traveling waves. As a result, I derive expansion based solutions of this eikonal based on polynomial expansions in terms of the reflection and dip angles in a generally inhomogenous background medium. These approximate solutions are free of singularities and can be used to estimate travetimes for small to moderate offsets (or reflection angles) in a generally inhomogeneous medium. A Marmousi example demonstrates the usefulness of the approach. © 2011 Society of Exploration Geophysicists.
Topics in Metric Approximation
Leeb, William Edward
This thesis develops effective approximations of certain metrics that occur frequently in pure and applied mathematics. We show that distances that often arise in applications, such as the Earth Mover's Distance between two probability measures, can be approximated by easily computed formulas for a wide variety of ground distances. We develop simple and easily computed characterizations both of norms measuring a function's regularity -- such as the Lipschitz norm -- and of their duals. We are particularly concerned with the tensor product of metric spaces, where the natural notion of regularity is not the Lipschitz condition but the mixed Lipschitz condition. A theme that runs throughout this thesis is that snowflake metrics (metrics raised to a power less than 1) are often better-behaved than ordinary metrics. For example, we show that snowflake metrics on finite spaces can be approximated by the average of tree metrics with a distortion bounded by intrinsic geometric characteristics of the space and not the number of points. Many of the metrics for which we characterize the Lipschitz space and its dual are snowflake metrics. We also present applications of the characterization of certain regularity norms to the problem of recovering a matrix that has been corrupted by noise. We are able to achieve an optimal rate of recovery for certain families of matrices by exploiting the relationship between mixed-variable regularity conditions and the decay of a function's coefficients in a certain orthonormal basis.
Institute of Scientific and Technical Information of China (English)
蒋长锦
2002-01-01
A nonlinear system with 3 equations and 3 unknowns was got by using symplectic conditions to reduce the system with 8 equations and 4 unknowns, which the coefficients of 4-stage and 4-order diagonally implicit symplectic Runge-Kutta methods must satisfy. An optimal problem was constructed from the nonlinear system. We investigated on the minimum points of the optimal problem and obtained 9 approximate of them. The 9 computational solutions are obtaind respectively,when Broyden-Flecher-Shanno quasi-Newton methods for solve nonlinear equations was used. These solutions can be regarded as the coefficients of fourth-stage and fourth-order diagonally implicit Runge-Kutta methods respectively.
Ke, Rihuan; Ng, Michael K.; Sun, Hai-Wei
2015-12-01
In this paper, we study the block lower triangular Toeplitz-like with tri-diagonal blocks system which arises from the time-fractional partial differential equation. Existing fast numerical solver (e.g., fast approximate inversion method) cannot handle such linear system as the main diagonal blocks are different. The main contribution of this paper is to propose a fast direct method for solving this linear system, and to illustrate that the proposed method is much faster than the classical block forward substitution method for solving this linear system. Our idea is based on the divide-and-conquer strategy and together with the fast Fourier transforms for calculating Toeplitz matrix-vector multiplication. The complexity needs O (MNlog2 M) arithmetic operations, where M is the number of blocks (the number of time steps) in the system and N is the size (number of spatial grid points) of each block. Numerical examples from the finite difference discretization of time-fractional partial differential equations are also given to demonstrate the efficiency of the proposed method.
Quasilocal charges and the complete GGE for field theories with non-diagonal scattering
Vernier, Eric
2016-01-01
It has recently been shown that some integrable spin chains possess a set of quasilocal conserved charges, with the classic example being the spin-$\\frac{1}{2}$ XXZ Heisenberg chain. These charges have been proven to be essential for properly describing stationary states after a quantum quench, and must be included in the generalized Gibbs ensemble (GGE). We find that similar charges are also necessary for the GGE description of integrable quantum field theories with non-diagonal scattering. A stationary state in a non-diagonal scattering theory is completely specified by fixing the mode-ocuppation density distributions of physical particles, as well auxiliary particles which carry no energy or momentum. We show that the set of conserved charges with integer Lorentz spin, related to the integrability of the model, are unable to fix the distributions of these auxiliary particles, since these charges can only fix kinematical properties of physical particles. The field theory analogs of quasilocal lattice charge...
Exact solutions in modified massive gravity and off-diagonal wormhole deformations
Energy Technology Data Exchange (ETDEWEB)
Vacaru, Sergiu I. [Alexandru Ioan Cuza University, Rector' s Office, Iasi (Romania); CERN, Theory Division, Geneva 23 (Switzerland)
2014-03-15
We explore off-diagonal deformations of 'prime' metrics in Einstein gravity (for instance, for wormhole configurations) into 'target' exact solutions in f(R,T)-modified and massive/bi-metric gravity theories. The new classes of solutions may, or may not, possess Killing symmetries and can be characterized by effective induced masses, anisotropic polarized interactions, and cosmological constants. For nonholonomic deformations with (conformal) ellipsoid/ toroid and/or solitonic symmetries and, in particular, for small eccentricity rotoid configurations, we can generate wormhole-like objects matching an external black ellipsoid--de Sitter geometries. We conclude that there are nonholonomic transforms and/or non-trivial limits to exact solutions in general relativity when modified/massive gravity effects are modeled by off-diagonal and/or nonholonomic parametric interactions. (orig.)
Fundamental Group and Euler Characteristic of Permutation Products and Fat Diagonals
Kallel, Sadok
2010-01-01
Permutation products and their various "fat diagonal" subspaces are studied from the topological and geometric point of view. We first write down an expression for the fundamental group of any permutation product of a connected space $X$, having the homotopy type of a simplicial complex, in terms of $\\pi_1(X)$ and $H_1(X;{\\mathbb Z})$. We then prove that the fundamental group of the configuration space of $n$-points on $X$ of which multiplicities do not exceed $n/2$ coincides with $H_1(X;{\\mathbb Z})$. Useful additivity properties for the Euler characteristic are then spelled out and used to give explicit formulae for the Euler characteristics of various fat diagonals. Several examples and calculations are included.
Ngo, Van A
2013-01-01
We propose a combination between the theory of diagonal entropy representing far-from-equilibrium ensembles and Jarzynski Equality to explore thermalization effects on thermodynamic quantities such as temperature, entropy, mechanical work and free-energy changes. Applying the theory to a quantum harmonic oscillator, we find that diagonal entropy offers a definition of temperature for closed systems far from equilibrium, and a better sampling of reaction pathways than the conventional von Neumann entropy. We also apply the theory to a many-body system of hard-core boson lattice, and discuss the ideas of how to estimate temperature, entropy and measure work distribution functions. The theory suggests a powerful technique to study non-equilibrium dynamics in quantum systems by means of performing work in a series of quenches.
Jain, Mamta; Kumar, Anil; Choudhary, Rishabh Charan
2016-09-09
In this article, we have proposed an improved diagonal queue medical image steganography for patient secret medical data transmission using chaotic standard map, linear feedback shift register, and Rabin cryptosystem, for improvement of previous technique (Jain and Lenka in Springer Brain Inform 3:39-51, 2016). The proposed algorithm comprises four stages, generation of pseudo-random sequences (pseudo-random sequences are generated by linear feedback shift register and standard chaotic map), permutation and XORing using pseudo-random sequences, encryption using Rabin cryptosystem, and steganography using the improved diagonal queues. Security analysis has been carried out. Performance analysis is observed using MSE, PSNR, maximum embedding capacity, as well as by histogram analysis between various Brain disease stego and cover images.
Off-Diagonal Deformations of Kerr Metrics and Black Ellipsoids in Heterotic Supergravity
Vacaru, Sergiu I
2016-01-01
Geometric methods for constructing exact solutions of motion equations with first order $\\alpha ^{\\prime }$ corrections to the heterotic supergravity action implying a non-trivial Yang-Mills sector and six dimensional, 6-d, almost-K\\"{a}hler internal spaces are studied. In 10-d spacetimes, general parametrizations for generic off-diagonal metrics, nonlinear and linear connections and matter sources, when the equations of motion decouple in very general forms are considered. This allows us to construct a variety of exact solutions when the coefficients of fundamental geometric/physical objects depend on all higher dimensional spacetime coordinates via corresponding classes of generating and integration functions, generalized effective sources and integration constants. Such generalized solutions are determined by generic off-diagonal metrics and nonlinear and/or linear connections. In particular, as configurations which are warped/compactified to lower dimensions and for Levi-Civita connections. The correspond...
Li, Yifan; Liang, Xihui; Zuo, Ming J.
2017-02-01
This paper presents a novel signal processing scheme, diagonal slice spectrum assisted optimal scale morphological filter (DSS-OSMF), for rolling element fault diagnosis. In this scheme, the concept of quadratic frequency coupling (QFC) is firstly defined and the ability of diagonal slice spectrum (DSS) in detection QFC is derived. The DSS-OSMF possesses the merits of depressing noise and detecting QFC. It can remove fault independent frequency components and give a clear representation of fault symptoms. A simulated vibration signal and experimental vibration signals collected from a bearing test rig are employed to evaluate the effectiveness of the proposed method. Results show that the proposed method has a superior performance in extracting fault features of defective rolling element bearing. In addition, comparisons are performed between a multi-scale morphological filter (MMF) and a DSS-OSMF. DSS-OSMF outperforms MMF in detection of an outer race fault and a rolling element fault of a rolling element bearing.
Direct current hopping conductance in one-dimensional diagonal disordered systems
Institute of Scientific and Technical Information of China (English)
Ma Song-Shan; Xu Hui; Liu Xiao-Liang; Xiao Jian-Rong
2006-01-01
Based on a tight-binding disordered model describing a single electron band, we establish a direct current (dc) electronic hopping transport conductance model of one-dimensional diagonal disordered systems, and also derive a dc conductance formula. By calculating the dc conductivity, the relationships between electric field and conductivity and between temperature and conductivity are analysed, and the role played by the degree of disorder in electronic transport is studied. The results indicate the conductivity of systems decreasing with the increase of the degree of disorder, characteristics of negative differential dependence of resistance on temperature at low temperatures in diagonal disordered systems, and the conductivity of systems decreasing with the increase of electric field, featuring the non-Ohm's law conductivity.
Energy Technology Data Exchange (ETDEWEB)
Chalasani, P.; Saias, I. [Los Alamos National Lab., NM (United States); Jha, S. [Carnegie Mellon Univ., Pittsburgh, PA (United States)
1996-04-08
As increasingly large volumes of sophisticated options (called derivative securities) are traded in world financial markets, determining a fair price for these options has become an important and difficult computational problem. Many valuation codes use the binomial pricing model, in which the stock price is driven by a random walk. In this model, the value of an n-period option on a stock is the expected time-discounted value of the future cash flow on an n-period stock price path. Path-dependent options are particularly difficult to value since the future cash flow depends on the entire stock price path rather than on just the final stock price. Currently such options are approximately priced by Monte carlo methods with error bounds that hold only with high probability and which are reduced by increasing the number of simulation runs. In this paper the authors show that pricing an arbitrary path-dependent option is {number_sign}-P hard. They show that certain types f path-dependent options can be valued exactly in polynomial time. Asian options are path-dependent options that are particularly hard to price, and for these they design deterministic polynomial-time approximate algorithms. They show that the value of a perpetual American put option (which can be computed in constant time) is in many cases a good approximation to the value of an otherwise identical n-period American put option. In contrast to Monte Carlo methods, the algorithms have guaranteed error bounds that are polynormally small (and in some cases exponentially small) in the maturity n. For the error analysis they derive large-deviation results for random walks that may be of independent interest.
Finite elements and approximation
Zienkiewicz, O C
2006-01-01
A powerful tool for the approximate solution of differential equations, the finite element is extensively used in industry and research. This book offers students of engineering and physics a comprehensive view of the principles involved, with numerous illustrative examples and exercises.Starting with continuum boundary value problems and the need for numerical discretization, the text examines finite difference methods, weighted residual methods in the context of continuous trial functions, and piecewise defined trial functions and the finite element method. Additional topics include higher o
Energy Technology Data Exchange (ETDEWEB)
Chulaevsky, Victor, E-mail: victor.tchoulaevski@univ-reims.fr [Universite de Reims, Departement de Mathematiques (France)
2012-12-15
We propose a simplified version of the Multi-Scale Analysis of Anderson models on a lattice and, more generally, on a countable graph with polynomially bounded growth of balls, with diagonal disorder represented by an IID or strongly mixing correlated potential. We apply the new scaling procedure to discrete Schroedinger operators and obtain localization bounds on eigenfunctions and eigenfunction correlators in arbitrarily large finite subsets of the graph which imply the spectral and strong dynamical localization in the entire graph.
Spin-12 XYZ model revisit: General solutions via off-diagonal Bethe ansatz
Directory of Open Access Journals (Sweden)
Junpeng Cao
2014-09-01
Full Text Available The spin-12 XYZ model with both periodic and anti-periodic boundary conditions is studied via the off-diagonal Bethe ansatz method. The exact spectra of the Hamiltonians and the Bethe ansatz equations are derived by constructing the inhomogeneous T–Q relations, which allow us to treat both the even N (the number of lattice sites and odd N cases simultaneously in a unified approach.
A Parallel Algorithm for Solving Block-diagonal Structured Large Linear System
Institute of Scientific and Technical Information of China (English)
SHEN Jie; ZHANG Zhong-lin; CHENG Ji-lin
2001-01-01
A parallel algorithm for solving block-diagonal structured large linear system is presented.This algorithm is based on the "gradient-simplex" method. It partitions a large linear system into several small linear subsystems so that they can be solved in parallel. The algorithm has the merit of high speed and is suitable for the large linear systems with less coupling constrains. The efficiency and applicability of the method is also analyzed.
Generalized Synchronization of Different Chaotic Systems Based on Nonnegative Off-Diagonal Structure
Directory of Open Access Journals (Sweden)
Ling Guo
2013-01-01
Full Text Available The generalized synchronization problem is studied in this paper for different chaotic systems with the aid of the direct design method. Based on Lyapunov stability theory and matrix theory, some sufficient conditions guaranteeing the stability of a nonlinear system with nonnegative off-diagonal structure are obtained. Then the control scheme is designed from the stable system by the direct design method. Finally, two numerical simulations are provided to verify the effectiveness and feasibility of the proposed method.
Boundary form factors in the Smirnov--Fateev model with a diagonal boundary $S$ matrix
Lashkevich, Michael
2008-01-01
The boundary conditions with diagonal boundary $S$ matrix and the boundary form factors for the Smirnov--Fateev model on a half line has been considered in the framework of the free field representation. In contrast to the case of the sine-Gordon model, in this case the free field representation is shown to impose severe restrictions on the boundary $S$ matrix, so that a finite number of solutions is only consistent with the free field realization.
Generalized cost-criterion-based learning algorithm for diagonal recurrent neural networks
Wang, Yongji; Wang, Hong
2000-05-01
A new generalized cost criterion based learning algorithm for diagonal recurrent neural networks is presented, which is with form of recursive prediction error (RPE) and has second convergent order. A guideline for the choice of the optimal learning rate is derived from convergence analysis. The application of this method to dynamic modeling of typical chemical processes shows that the generalized cost criterion RPE (QRPE) has higher modeling precision than BP trained MLP and quadratic cost criterion trained RPE (QRPE).
Self-similar solutions with fat tails for a coagulation equation with diagonal kernel
Niethammer, Barbara
2011-01-01
We consider self-similar solutions of Smoluchowski's coagulation equation with a diagonal kernel of homogeneity $\\gamma < 1$. We show that there exists a family of second-kind self-similar solutions with power-law behavior $x^{-(1+\\rho)}$ as $x \\to \\infty$ with $\\rho \\in (\\gamma,1)$. To our knowledge this is the first example of a non-solvable kernel for which the existence of such a family has been established.
Institute of Scientific and Technical Information of China (English)
王宗国; 覃绍京; 康凯; 王垂林
2012-01-01
We calculated numerically the localization length of one-dimensional Anderson model with correlated diagonal disorder. For zero energy point in the weak disorder limit, we showed that the localization length changes continuously as the correlation of the disorder increases. We found that higher order terms of the correlation must be included into the current perturbation result in order to give the correct localization length, arid to connect smoothly the anomaly at zero correlation with the perturbation result for large correlation.
Workshop report on large-scale matrix diagonalization methods in chemistry theory institute
Energy Technology Data Exchange (ETDEWEB)
Bischof, C.H.; Shepard, R.L.; Huss-Lederman, S. [eds.
1996-10-01
The Large-Scale Matrix Diagonalization Methods in Chemistry theory institute brought together 41 computational chemists and numerical analysts. The goal was to understand the needs of the computational chemistry community in problems that utilize matrix diagonalization techniques. This was accomplished by reviewing the current state of the art and looking toward future directions in matrix diagonalization techniques. This institute occurred about 20 years after a related meeting of similar size. During those 20 years the Davidson method continued to dominate the problem of finding a few extremal eigenvalues for many computational chemistry problems. Work on non-diagonally dominant and non-Hermitian problems as well as parallel computing has also brought new methods to bear. The changes and similarities in problems and methods over the past two decades offered an interesting viewpoint for the success in this area. One important area covered by the talks was overviews of the source and nature of the chemistry problems. The numerical analysts were uniformly grateful for the efforts to convey a better understanding of the problems and issues faced in computational chemistry. An important outcome was an understanding of the wide range of eigenproblems encountered in computational chemistry. The workshop covered problems involving self- consistent-field (SCF), configuration interaction (CI), intramolecular vibrational relaxation (IVR), and scattering problems. In atomic structure calculations using the Hartree-Fock method (SCF), the symmetric matrices can range from order hundreds to thousands. These matrices often include large clusters of eigenvalues which can be as much as 25% of the spectrum. However, if Cl methods are also used, the matrix size can be between 10{sup 4} and 10{sup 9} where only one or a few extremal eigenvalues and eigenvectors are needed. Working with very large matrices has lead to the development of
Modeling animal-vehicle collisions using diagonal inflated bivariate Poisson regression.
Lao, Yunteng; Wu, Yao-Jan; Corey, Jonathan; Wang, Yinhai
2011-01-01
Two types of animal-vehicle collision (AVC) data are commonly adopted for AVC-related risk analysis research: reported AVC data and carcass removal data. One issue with these two data sets is that they were found to have significant discrepancies by previous studies. In order to model these two types of data together and provide a better understanding of highway AVCs, this study adopts a diagonal inflated bivariate Poisson regression method, an inflated version of bivariate Poisson regression model, to fit the reported AVC and carcass removal data sets collected in Washington State during 2002-2006. The diagonal inflated bivariate Poisson model not only can model paired data with correlation, but also handle under- or over-dispersed data sets as well. Compared with three other types of models, double Poisson, bivariate Poisson, and zero-inflated double Poisson, the diagonal inflated bivariate Poisson model demonstrates its capability of fitting two data sets with remarkable overlapping portions resulting from the same stochastic process. Therefore, the diagonal inflated bivariate Poisson model provides researchers a new approach to investigating AVCs from a different perspective involving the three distribution parameters (λ(1), λ(2) and λ(3)). The modeling results show the impacts of traffic elements, geometric design and geographic characteristics on the occurrences of both reported AVC and carcass removal data. It is found that the increase of some associated factors, such as speed limit, annual average daily traffic, and shoulder width, will increase the numbers of reported AVCs and carcass removals. Conversely, the presence of some geometric factors, such as rolling and mountainous terrain, will decrease the number of reported AVCs.
The decoherence of quantum entanglement and teleportation in Bell-diagonal states
Institute of Scientific and Technical Information of China (English)
QIN Meng; LI Yan-Biao; WANG Xiao; BAI Zhong
2012-01-01
We study the dynamics of entanglement and teleportation in Bell-diagonal states. Using the concepts of concurrence and fidelity,the analytical expressions of the entanglement,the output entanglement and the average fidelity with decoherence are obtained for this model.We discover a class of initial states in which the output entanglement and the average fidelity are destroyed by decoherence. The quality of teleportation depends on the system parameters and time.
DIAGONALLY COMPENSATED REDUCTION AND MULTISPLITTING OF A SYMMETRIC POSITIVE DEFINITE MATRIX
Institute of Scientific and Technical Information of China (English)
无
2000-01-01
To solve the symmetric positive definite linear system Ax = b on parallel and vector machines, multisplitting methods are considered. Here the s.p.d. (symmetric positive definite) matrix A need not be assumed in a special form (e.g. the dissection form [11]). The main tool for deriving our methods is the diagonally compensated reduction (cf. [1]). The convergence of such methods is also discussed by using this tool.
Approximation of quadrilaterals by rational quadrilaterals in the plane
Indian Academy of Sciences (India)
2017-02-01
Many questions about triangles and quadrilaterals with rational sides, diagonals and areas can be reduced to solving certain diophantine equations. We look at a number of such questions including the question of approximating arbitrary triangles and quadrilaterals by those with rational sides, diagonals and areas. We transform these problems into questions on the existence of infinitely many rational solutions on a two parameter family of quartic curves. This is further transformed to a two parameter family of elliptic curves to deduce our main result concerning density of points on a line which are at a rational distance from three collinear points (Theorem 4). We deducefrom this a new proof of density of rational quadrilaterals in the space of all quadrilaterals (Theorem 39). The other main result (Theorem 3) of this article is on the density of rational triangles which is related to analyzing rational points on the unit circle. Interestingly, this enables us to deduce that parallelograms with rational sides and area are dense in the class of all parallelograms. We also give a criterion for density of certain sets in topological spaces using local product structure and prove the density Theorem 6 in the appendix section. An application of this proves the density of rational points as stated in Theorem 31.
Thermalization away from integrability and the role of operator off-diagonal elements.
Konstantinidis, N P
2015-05-01
We investigate the rate of thermalization of local operators in the one-dimensional anisotropic antiferromagnetic Heisenberg model with next-nearest neighbor interactions that break integrability. This is done by calculating the scaling of the difference of the diagonal and canonical thermal ensemble values as a function of system size, and by directly calculating the time evolution of the expectation values of the operators with the Chebyshev polynomial expansion. Spatial and spin symmetry is exploited and the Hamiltonian is divided into subsectors according to their symmetry. The rate of thermalization depends on the proximity to the integrable limit. When integrability is weakly broken thermalization is slow, and becomes faster the stronger the next-nearest neighbor interaction is. Three different regimes for the rate of thermalization with respect to the strength of the integrability breaking parameter are identified. These are shown to be directly connected with the relative strength of the low and higher energy difference off-diagonal operator matrix elements in the symmetry eigenbasis of the Hamiltonian. Close to the integrable limit the off-diagonal matrix elements peak at higher energies and high-frequency fluctuations are important and slow down thermalization. Away from the integrable limit a strong low-energy peak gradually develops that takes over the higher frequency fluctuations and leads to quicker thermalization.
Diagonal-free 3D/4D HN,HN-TROSY-NOESY-TROSY.
Diercks, Tammo; Truffault, Vincent; Coles, Murray; Millet, Oscar
2010-02-24
Structural biology by NMR spectroscopy relies on measuring interproton distances via NOE cross-signals in nuclear Overhauser effect spectroscopy (NOESY) spectra. In proteins, the subset of H(N)-H'(N) NOE contacts is most important for deriving initial structural models and for spectral assignment by "NOE walking". Here we present a fully optimized NMR experiment for measuring these pivotal contacts: diagonal-free 3D/4D HN,HN-TROSY-NOESY-TROSY. It combines all of the critical requirements for extracting the optimal H(N)-H'(N) distance information: the highest resolution by consistent transverse relaxation-optimized spectroscopy (TROSY) evolution, the largest spectral dispersion in two (15)N dimensions, and maximal coverage and purity through specific suppression of the intense diagonal signals that are the main source of overlap, artifacts, and bias in any NOESY spectrum. Most notably, diagonal suppression here comes without compromising the NOE cross-signal intensities. This optimized experiment appears to be ideal for a broad range of structural studies, particularly on large deuterated, partially unfolded, helical, and membrane proteins.
Block-diagonal discriminant analysis and its bias-corrected rules.
Pang, Herbert; Tong, Tiejun; Ng, Michael
2013-06-01
High-throughput expression profiling allows simultaneous measure of tens of thousands of genes at once. These data have motivated the development of reliable biomarkers for disease subtypes identification and diagnosis. Many methods have been developed in the literature for analyzing these data, such as diagonal discriminant analysis, support vector machines, and k-nearest neighbor methods. The diagonal discriminant methods have been shown to perform well for high-dimensional data with small sample sizes. Despite its popularity, the independence assumption is unlikely to be true in practice. Recently, a gene module based linear discriminant analysis strategy has been proposed by utilizing the correlation among genes in discriminant analysis. However, the approach can be underpowered when the samples of the two classes are unbalanced. In this paper, we propose to correct the biases in the discriminant scores of block-diagonal discriminant analysis. In simulation studies, our proposed method outperforms other approaches in various settings. We also illustrate our proposed discriminant analysis method for analyzing microarray data studies.
Approximate Bayesian computation.
Directory of Open Access Journals (Sweden)
Mikael Sunnåker
Full Text Available Approximate Bayesian computation (ABC constitutes a class of computational methods rooted in Bayesian statistics. In all model-based statistical inference, the likelihood function is of central importance, since it expresses the probability of the observed data under a particular statistical model, and thus quantifies the support data lend to particular values of parameters and to choices among different models. For simple models, an analytical formula for the likelihood function can typically be derived. However, for more complex models, an analytical formula might be elusive or the likelihood function might be computationally very costly to evaluate. ABC methods bypass the evaluation of the likelihood function. In this way, ABC methods widen the realm of models for which statistical inference can be considered. ABC methods are mathematically well-founded, but they inevitably make assumptions and approximations whose impact needs to be carefully assessed. Furthermore, the wider application domain of ABC exacerbates the challenges of parameter estimation and model selection. ABC has rapidly gained popularity over the last years and in particular for the analysis of complex problems arising in biological sciences (e.g., in population genetics, ecology, epidemiology, and systems biology.
DEFF Research Database (Denmark)
Pristed Nielsen, Helene
2013-01-01
Starting from Crenshaw´s point that antiracism often fails to interrogate patriarchy and that feminism often reproduces racist practices (1991: 1252), this paper asks: What are the theoretical reasons for believing that feminism and anti-racism can be regarded as fighting for the joint purpose of...
S-Approximation: A New Approach to Algebraic Approximation
Directory of Open Access Journals (Sweden)
M. R. Hooshmandasl
2014-01-01
Full Text Available We intend to study a new class of algebraic approximations, called S-approximations, and their properties. We have shown that S-approximations can be used for applied problems which cannot be modeled by inclusion based approximations. Also, in this work, we studied a subclass of S-approximations, called Sℳ-approximations, and showed that this subclass preserves most of the properties of inclusion based approximations but is not necessarily inclusionbased. The paper concludes by studying some basic operations on S-approximations and counting the number of S-min functions.
De Boeij, W. P.; Pshenichnikov, M. S.; Wiersma, D. A.
1996-01-01
We demonstrate a novel technique for efficient vibrational mode suppression in stimulated photon echo by diagonal time-gating. This is especially important if the system exhibits non-Markovian optical dynamics.
Ranade, K S; Alber, Gernot; Ranade, Kedar S.
2007-01-01
The concept of asymptotic correctability of Bell-diagonal quantum states is generalised to elementary quantum systems of higher dimensions. Based on these results basic properties of quantum state purification protocols are investigated which are capable of purifying tensor products of Bell-diagonal states and which are based on $B$-steps of the Gottesman-Lo-type with the subsequent application of a Calderbank-Shor-Steane quantum code. Consequences for maximum tolerable error rates of quantum cryptographic protocols are discussed.
A New Upper Bound for A-1 of a Strictly α-Diagonally Dominant M-Matrix
Directory of Open Access Journals (Sweden)
Zhanshan Yang
2013-01-01
Full Text Available A new upper bound for A-1 of a real strictly diagonally dominant M-matrix A is present, and a new lower bound of the smallest eigenvalue λminA of A is given, which improved the results in the literature. Furthermore, an upper bound for A-1 of a real strictly α-diagonally dominant M-matrix is shown.
Jung, Ju-Hyeon; Lee, Sang-Yeol
2016-01-01
The aim of this study was to determine the effects of resistance direction in hip joint stabilization exercise on change in lateral abdominal muscle thickness in healthy adults. Twenty-six healthy adults were randomly allocated to either a hip stabilization exercise by hip straight resistance group (n=12) or a hip diagonal resistance group (n=14). The outcome measures included contraction thickness ratio in transversus abdominis (TrA), internal oblique (IO) and external oblique, and TrA lateral slide were assessed during the abdominal drawing-in maneuver by b-mode ultrasound. The researcher measured the abdominal muscle thickness of each participant before the therapist began the intervention and at the moment intervention was applied. There was a significant difference in lateral abdominal muscle thickness between the straight resistance exercise of hip joint group and the diagonal resistance exercise of hip joint group. Significant differences were found between the two groups in the percentage of change of muscle thickness of the TrA (P=0.018) and in the thickness ratio of the TrA (P=0.018). Stability exercise accompanied by diagonal resistance on the hip joint that was applied in this study can induce automatic contraction of the IO and TrA, which provides stability to the lumbar spine. PMID:27807520
Prestack traveltime approximations
Alkhalifah, Tariq Ali
2012-05-01
Many of the explicit prestack traveltime relations used in practice are based on homogeneous (or semi-homogenous, possibly effective) media approximations. This includes the multifocusing, based on the double square-root (DSR) equation, and the common reflection stack (CRS) approaches. Using the DSR equation, I constructed the associated eikonal form in the general source-receiver domain. Like its wave-equation counterpart, it suffers from a critical singularity for horizontally traveling waves. As a result, I recasted the eikonal in terms of the reflection angle, and thus, derived expansion based solutions of this eikonal in terms of the difference between the source and receiver velocities in a generally inhomogenous background medium. The zero-order term solution, corresponding to ignoring the lateral velocity variation in estimating the prestack part, is free of singularities and can be used to estimate traveltimes for small to moderate offsets (or reflection angles) in a generally inhomogeneous medium. The higher-order terms include limitations for horizontally traveling waves, however, we can readily enforce stability constraints to avoid such singularities. In fact, another expansion over reflection angle can help us avoid these singularities by requiring the source and receiver velocities to be different. On the other hand, expansions in terms of reflection angles result in singularity free equations. For a homogenous background medium, as a test, the solutions are reasonably accurate to large reflection and dip angles. A Marmousi example demonstrated the usefulness and versatility of the formulation. © 2012 Society of Exploration Geophysicists.
Improved Approximations for Some Polymer Extension Models
Petrosyan, Rafayel
2016-01-01
We propose approximations for force-extension dependencies for the freely jointed chain (FJC) and worm-like chain (WLC) models as well as for extension-force dependence for the WLC model. Proposed expressions show less than 1% relative error in the useful range of the corresponding variables. These results can be applied for fitting force-extension curves obtained in molecular force spectroscopy experiments. Particularly they can be useful for cases where one has geometries of springs in series and/or in parallel where particular combination of expressions should be used for fitting the data. All approximations have been obtained following the same procedure of determining the asymptotes and then reducing the relative error of that expression by adding an appropriate term obtained from fitting its absolute error.
Distributionally Robust Joint Chance Constrained Problem under Moment Uncertainty
Directory of Open Access Journals (Sweden)
Ke-wei Ding
2014-01-01
Full Text Available We discuss and develop the convex approximation for robust joint chance constraints under uncertainty of first- and second-order moments. Robust chance constraints are approximated by Worst-Case CVaR constraints which can be reformulated by a semidefinite programming. Then the chance constrained problem can be presented as semidefinite programming. We also find that the approximation for robust joint chance constraints has an equivalent individual quadratic approximation form.
Fidelity of the diagonal ensemble signals the many-body localization transition
Hu, Taotao; Xue, Kang; Li, Xiaodan; Zhang, Yan; Ren, Hang
2016-11-01
In this work, we use exact matrix diagonalization to explore the many-body localization (MBL) transition in a random-field Heisenberg chain. We demonstrate that the fidelity and fidelity susceptibility can be utilized to characterize the interaction-driven many-body localization transition in this closed spin system which is in agreement with previous analytical and numerical results [S. Garnerone, N. T. Jacobson, S. Haas, and P. Zanardi, Phys. Rev. Lett. 102, 057205 (2009), 10.1103/PhysRevLett.102.057205; P. Zanardi and N. Paunkovic, Phys. Rev. E 74, 031123 (2006), 10.1103/PhysRevE.74.031123]. In particular, instead of ground-state fidelity, we test the fidelity between two diagonal ensembles related by a small parameter perturbation δ h , it is special that here the parameter perturbation δ hi for each site are random variables like hi. It shows that fidelity of the diagonal ensemble develop a pronounced drop at the transition. We utilize fidelity to estimate the critical disorder strength hc for different system size, we get hc∈ [2.5,3.9] and get a power-law decay with an exponent of roughly -1.49 (2 ) for system size N , and can extrapolate hcinf of the infinite system is about 2.07 which all agree with a recent work by Huse and Pal, in which the MBL transition in the same model was predicted to be hc [2,4]. We also estimate the scaling of maximum of averaged fidelity susceptibility as a function of system size N , it shows a power law increase with an exponent of about 5.05(1).
Off-diagonal deformations of Kerr metrics and black ellipsoids in heterotic supergravity
Vacaru, Sergiu I.; Irwin, Klee
2017-01-01
Geometric methods for constructing exact solutions of equations of motion with first order α ^' } corrections to the heterotic supergravity action implying a nontrivial Yang-Mills sector and six-dimensional, 6-d, almost-Kähler internal spaces are studied. In 10-d spacetimes, general parametrizations for generic off-diagonal metrics, nonlinear and linear connections, and matter sources, when the equations of motion decouple in very general forms are considered. This allows us to construct a variety of exact solutions when the coefficients of fundamental geometric/physical objects depend on all higher-dimensional spacetime coordinates via corresponding classes of generating and integration functions, generalized effective sources and integration constants. Such generalized solutions are determined by generic off-diagonal metrics and nonlinear and/or linear connections; in particular, as configurations which are warped/compactified to lower dimensions and for Levi-Civita connections. The corresponding metrics can have (non-) Killing and/or Lie algebra symmetries and/or describe (1+2)-d and/or (1+3)-d domain wall configurations, with possible warping nearly almost-Kähler manifolds, with gravitational and gauge instantons for nonlinear vacuum configurations and effective polarizations of cosmological and interaction constants encoding string gravity effects. A series of examples of exact solutions describing generic off-diagonal supergravity modifications to black hole/ellipsoid and solitonic configurations are provided and analyzed. We prove that it is possible to reproduce the Kerr and other type black solutions in general relativity (with certain types of string corrections) in the 4-d case and to generalize the solutions to non-vacuum configurations in (super-) gravity/string theories.
Methods of Approximation Theory in Complex Analysis and Mathematical Physics
Saff, Edward
1993-01-01
The book incorporates research papers and surveys written by participants ofan International Scientific Programme on Approximation Theory jointly supervised by Institute for Constructive Mathematics of University of South Florida at Tampa, USA and the Euler International Mathematical Instituteat St. Petersburg, Russia. The aim of the Programme was to present new developments in Constructive Approximation Theory. The topics of the papers are: asymptotic behaviour of orthogonal polynomials, rational approximation of classical functions, quadrature formulas, theory of n-widths, nonlinear approximation in Hardy algebras,numerical results on best polynomial approximations, wavelet analysis. FROM THE CONTENTS: E.A. Rakhmanov: Strong asymptotics for orthogonal polynomials associated with exponential weights on R.- A.L. Levin, E.B. Saff: Exact Convergence Rates for Best Lp Rational Approximation to the Signum Function and for Optimal Quadrature in Hp.- H. Stahl: Uniform Rational Approximation of x .- M. Rahman, S.K. ...
Operators of Approximations and Approximate Power Set Spaces
Institute of Scientific and Technical Information of China (English)
ZHANG Xian-yong; MO Zhi-wen; SHU Lan
2004-01-01
Boundary inner and outer operators are introduced; and union, intersection, complement operators of approximations are redefined. The approximation operators have a good property of maintaining union, intersection, complement operators, so the rough set theory has been enriched from the operator-oriented and set-oriented views. Approximate power set spaces are defined, and it is proved that the approximation operators are epimorphisms from power set space to approximate power set spaces. Some basic properties of approximate power set space are got by epimorphisms in contrast to power set space.
Magnetic Dispersion of the Diagonal Incommensurate Phase in Lightly Doped La2
Energy Technology Data Exchange (ETDEWEB)
Matsuda, M. [Japan Atomic Energy Agency (JAEA); Fujita, M. [Tohoku University, Japan; Wakimoto, S [Japan Atomic Energy Agency (JAEA); Fernandez-Baca, Jaime A [ORNL; Tranquada, John M. [Brookhaven National Laboratory (BNL); Yamada, K. [Tohoku University, Japan
2008-01-01
We present inelastic neutron scattering experiments on a single-domain crystal of lightly doped La1:96Sr0:04CuO4. We find that the magnetic excitation spectrum in this insulating phase with a diagonal incommensurate spin modulation is remarkably similar to that in the superconducting regime, where the spin modulation is bond parallel. In particular, we find that the dispersion slope at low energy is essentially independent of doping and temperature over a significant range. The energy at which the excitations cross the commensurate antiferromagnetic wave vector increases roughly linearly with doping through the underdoped regime.
THE STRESS SUBSPACE OF HYBRID STRESS ELEMENT AND THE DIAGONALIZATION METHOD FOR FLEXIBILITY MATRIX H
Institute of Scientific and Technical Information of China (English)
张灿辉; 冯伟; 黄黔
2002-01-01
The following is proved: 1 ) The linear independence of assumed stress modes is the necessary and sufficient condition for the nonsingular fiexibility matrix; 2) The equivalent assumed stress modes lead to the identical hybrid element. The Hilbert stress subspace of the assumed stress modes is established. So, it is easy to derive the equivalent orthogonal normal stress modes by Schmidt 's method. Because of the resulting diagonal fiexibility matrix, the identical hybrid element is free from the complex matrix inversion so that the hybrid efficiency is improved greatly. The numerical examples show that the method is effective.
Design and analysis of a novel chaotic diagonal recurrent neural network
Wang, Libiao; Meng, Zhuo; Sun, Yize; Guo, Lei; Zhou, Mingxing
2015-09-01
A chaotic neural network model with logistic mapping is proposed to improve the performance of the conventional diagonal recurrent neural network. The network shows rich dynamic behaviors that contribute to escaping from a local minimum to reach the global minimum easily. Then, a simple parameter modulated chaos controller is adopted to enhance convergence speed of the network. Furthermore, an adaptive learning algorithm with the robust adaptive dead zone vector is designed to improve the generalization performance of the network, and weights convergence for the network with the adaptive dead zone vectors is proved in the sense of Lyapunov functions. Finally, the numerical simulation is carried out to demonstrate the correctness of the theory.
CONVERGENCE OF PARALLEL DIAGONAL ITERATION OF RUNGE-KUTTA METHODS FOR DELAY DIFFERENTIAL EQUATIONS
Institute of Scientific and Technical Information of China (English)
Xiao-hua Ding; Mingzhu Liu
2004-01-01
Implicit Runge-Kutta method is highly accurate and stable for stiff initial value prob-lem. But the iteration technique used to solve implicit Runge-Kutta method requires lots of computational efforts. In this paper, we extend the Parallel Diagonal Iterated Runge-Kutta(PDIRK) methods to delay differential equations(DDEs). We give the convergence region of PDIRK methods, and analyze the speed of convergence in three parts for the P-stability region of the Runge-Kutta corrector method. Finally, we analysis the speed-up factor through a numerical experiment. The results show that the PDIRK methods to DDEs are efficient.
Ship motion extreme short time prediction of ship pitch based on diagonal recurrent neural network
Institute of Scientific and Technical Information of China (English)
SHEN Yan; XIE Mei-ping
2005-01-01
A DRNN (diagonal recurrent neural network) and its RPE (recurrent prediction error) learning algorithm are proposed in this paper .Using of the simple structure of DRNN can reduce the capacity of calculation. The principle of RPE learning algorithm is to adjust weights along the direction of Gauss-Newton. Meanwhile, it is unnecessary to calculate the second local derivative and the inverse matrixes, whose unbiasedness is proved. With application to the extremely short time prediction of large ship pitch, satisfactory results are obtained. Prediction effect of this algorithm is compared with that of auto-regression and periodical diagram method, and comparison results show that the proposed algorithm is feasible.
Feedback diagonal canonical form and its application to stabilization of nonlinear systems
Institute of Scientific and Technical Information of China (English)
CHENG Daizhan; HU Qingxi; QIN Huashu
2005-01-01
This paper considers the problem of stabilization of a class of nonlinear systems, which are possibly of non-minimum phase. A new feedback-equivalent canonical form, called diagonal normal form, of linear control systems is proposed. Using it, the corresponding normal form of affine nonlinear control systems is obtained. Based on this new normal form and the design technique of center manifold, a new constructing method for stabilizing control is presented. Certain examples are included to demonstrate the design strategy of stabilizers.
Numerical Investigation on the Separated Flow of Axial Flow Stator in Diagonal Flow Fan
Kinoue, Yoichi; Shiomi, Norimasa; Setoguchi, Toshiaki; Kaneko, Kenji; Jin, Yingzi
2010-06-01
Experimental and numerical investigations were conducted for the internal flow of the stator of the diagonal flow fan. Corner separation near the hub surface and the suction surface of the stator blade are focused on. At low flow rate of 80% of the design flow rate, the corner separation between the suction surface and the hub surface can be found in both experimental and numerical results. Separation vortices are found in the computed oil flow on both suction and hub surfaces at 80% of the design flow rate in the three-dimensional numerical simulation.
Self-Calibration of Radio Astronomical Arrays With Non-Diagonal Noise Covariance Matrix
Wijnholds, Stefan J
2010-01-01
The radio astronomy community is currently building a number of phased array telescopes. The calibration of these telescopes is hampered by the fact that covariances of signals from closely spaced antennas are sensitive to noise coupling and to variations in sky brightness on large spatial scales. These effects are difficult and computationally expensive to model. We propose to model them phenomenologically using a non-diagonal noise covariance matrix. The parameters can be estimated using a weighted alternating least squares (WALS) algorithm iterating between the calibration parameters and the additive nuisance parameters. We demonstrate the effectiveness of our method using data from the low frequency array (LOFAR) prototype station.
Diagonalization-free implementation of spin relaxation theory for large spin systems
Kuprov, Ilya
2010-01-01
The Liouville space spin relaxation theory equations are reformulated in such a way as to avoid the computationally expensive Hamiltonian diagonalization step, replacing it by numerical evaluation of the integrals in the generalized cumulant expansion. The resulting algorithm is particularly useful in the cases where the static part of the Ha-miltonian is dominated by interactions other than Zeeman (e.g. in quadrupolar reson-ance, low-field EPR and Spin Chemistry). When used together with state space re-striction tools, the algorithm reported is capable of computing full relaxation supero-perators for NMR systems with more than 15 spins.
On the topological complexity and the homotopy cofibre of the diagonal map
Calcines, J
2011-01-01
In this paper we analyze some relationships between the topological complexity of a space $X$ and the category of $C_{\\Delta_X},$ the homotopy cofibre of the diagonal map $\\Delta_X:X\\rightarrow X\\times X.$ As a consequence of this work and of a result by M. Farber, S. Tabachnikov and S. Yuzvinsky, we obtain that the immersion problem for the real projective space $\\RP^n$ is equivalent to the computation of the L.-S. category of $C_{\\Delta_{\\RP^n}}.$
First Diagonal Coronary Artery: Left Ventricular Fistula Presenting as Unstable Angina
Directory of Open Access Journals (Sweden)
Murat Sener
2013-01-01
Full Text Available Coronary artery fistulae are characterized by communications between a coronary artery and a cardiac chamber or another vascular structure. They are usually congenital, but acquired forms may occur. Most patients are usually asymptomatic. However, some studies have emphasized that the incidence of symptoms and complications increases with age, particularly after the age of 20 (Liberthson et al. 1979, Hong et al. 2004. We aimed to present a very rare form of fistula originating from the first diagonal artery and connecting into the left ventricle.
First diagonal coronary artery: left ventricular fistula presenting as unstable angina.
Sener, Murat; Akkaya, Mehmet; Bilici, Muammer
2013-01-01
Coronary artery fistulae are characterized by communications between a coronary artery and a cardiac chamber or another vascular structure. They are usually congenital, but acquired forms may occur. Most patients are usually asymptomatic. However, some studies have emphasized that the incidence of symptoms and complications increases with age, particularly after the age of 20 (Liberthson et al. 1979, Hong et al. 2004). We aimed to present a very rare form of fistula originating from the first diagonal artery and connecting into the left ventricle.
The Planar Shape of Rock Joints
Zhang, Lianyang; Einstein, Herbert H.
2010-02-01
Knowing the planar shape of discontinuities is important when characterizing discontinuities in a rock mass. However, the real discontinuity shape is rarely known, since the rock mass is usually inaccessible in three dimensions. Information on discontinuity shape is limited and often open to more than one interpretation. This paper discusses the planar shape of rock joints, the most common discontinuities in rock. First, a brief literature review about the shape of joints is presented, including some information on joint-surface morphology, inferences from observed trace lengths on different sampling planes, information based on experimental studies, and joint shapes assumed by different researchers. This review shows that joints not affected by adjacent geological structures such as bedding boundaries or pre-existing fractures tend to be elliptical (or approximately circular but rarely). Joints affected by or intersecting such geological structures tend to be rectangular. Then, using the general stereological relationship between trace length distributions and joint size distributions developed by Zhang et al. (Geotechnique 52(6):419-433, 2002) for elliptical joints, the effect of sampling plane orientation on trace lengths is investigated. This study explains why the average trace lengths of non-equidimensional (elliptical or similar polygonal) joints on two sampling planes can be about equal and thus the conclusion that rock joints are equidimensional (circular) drawn from the fact that the average trace lengths on two sampling planes are approximately equal can be wrong. Finally, methods for characterizing the shape and size of joints (elliptical or rectangular) from trace length data are recommended, and the appropriateness of using elliptical joint shapes to represent polygonal, especially rectangular, joints is discussed.
Forces and mechanical energy fluctuations during diagonal stride roller skiing; running on wheels?
Kehler, Alyse L; Hajkova, Eliska; Holmberg, Hans-Christer; Kram, Rodger
2014-11-01
Mechanical energy can be conserved during terrestrial locomotion in two ways: the inverted pendulum mechanism for walking and the spring-mass mechanism for running. Here, we investigated whether diagonal stride cross-country roller skiing (DIA) utilizes similar mechanisms. Based on previous studies, we hypothesized that running and DIA would share similar phase relationships and magnitudes of kinetic energy (KE), and gravitational potential energy (GPE) fluctuations, indicating elastic energy storage and return, as if roller skiing is like 'running on wheels'. Experienced skiers (N=9) walked and ran at 1.25 and 3 m s(-1), respectively, and roller skied with DIA at both speeds on a level dual-belt treadmill that recorded perpendicular and parallel forces. We calculated the KE and GPE of the center of mass from the force recordings. As expected, the KE and GPE fluctuated with an out-of-phase pattern during walking and an in-phase pattern during running. Unlike walking, during DIA, the KE and GPE fluctuations were in phase, as they are in running. However, during the glide phase, KE was dissipated as frictional heat and could not be stored elastically in the tendons, as in running. Elastic energy storage and return epitomize running and thus we reject our hypothesis. Diagonal stride cross-country skiing is a biomechanically unique movement that only superficially resembles walking or running.
Counting spanning trees of the hypercube and its $q$-analogs by explicit block diagonalization
Srinivasan, Murali K
2011-01-01
The number of spanning trees of a graph $G$ is called the {\\em complexity} of $G$ and is denoted $c(G)$. Let C(n) denote the {\\em (binary) hypercube} of dimension $n$. A classical result in enumerative combinatorics (based on explicit diagonalization) states that $c(C(n)) = \\prod_{k=2}^n (2k)^{n\\choose k}$. In this paper we use the explicit block diagonalization methodology to derive formulas for the complexity of two $q$-analogs of C(n), the {\\em nonbinary hypercube} $\\Cq(n)$, defined for $q\\geq 2$, and the {\\em vector space analog of the hypercube} $\\Cfq(n)$, defined for prime powers $q$. We consider the nonbinary and vector space analogs of the Boolean algebra. We show the existence, in both cases, of a graded Jordan basis (with respect to the up operator) that is orthogonal (with respect to the standard inner product) and we write down explicit formulas for the ratio of the lengths of the successive vectors in the Jordan chains (i.e., the singular values). With respect to (the normalizations of) these bas...
The effects of skiing velocity on mechanical aspects of diagonal cross-country skiing.
Andersson, Erik; Pellegrini, Barbara; Sandbakk, Oyvind; Stüggl, Thomas; Holmberg, Hans-Christer
2014-09-01
Cycle and force characteristics were examined in 11 elite male cross-country skiers using the diagonal stride technique while skiing uphill (7.5°) on snow at moderate (3.5 ± 0.3 m/s), high (4.5 ± 0.4 m/s), and maximal (5.6 ± 0.6 m/s) velocities. Video analysis (50 Hz) was combined with plantar (leg) force (100 Hz), pole force (1,500 Hz), and photocell measurements. Both cycle rate and cycle length increased from moderate to high velocity, while cycle rate increased and cycle length decreased at maximal compared to high velocity. The kick time decreased 26% from moderate to maximal velocity, reaching 0.14 s at maximal. The relative kick and gliding times were only altered at maximal velocity, where these were longer and shorter, respectively. The rate of force development increased with higher velocity. At maximal velocity, sprint-specialists were 14% faster than distance-specialists due to greater cycle rate, peak leg force, and rate of leg force development. In conclusion, large peak leg forces were applied rapidly across all velocities and the shorter relative gliding and longer relative kick phases at maximal velocity allow maintenance of kick duration for force generation. These results emphasise the importance of rapid leg force generation in diagonal skiing.
On the inclusion of the diagonal Born-Oppenheimer correction in surface hopping methods
Gherib, Rami; Ryabinkin, Ilya G; Izmaylov, Artur F
2016-01-01
The diagonal Born-Oppenheimer correction (DBOC) stems from the diagonal second derivative coupling term in the adiabatic representation, and it can have an arbitrary large magnitude when a gap between neighbouring Born-Oppenheimer (BO) potential energy surfaces (PESs) is closing. Nevertheless, DBOC is typically neglected in mixed quantum-classical methods of simulating nonadiabatic dynamics (e.g., fewest-switch surface hopping (FSSH) method). A straightforward addition of DBOC to BO PESs in the FSSH method, FSSH+D, has been shown to lead to numerically much inferior results for models containing conical intersections. More sophisticated variation of the DBOC inclusion, phase-space surface-hopping (PSSH) was more successful than FSSH+D but on model problems without conical intersections. This work comprehensively assesses the role of DBOC in nonadiabatic dynamics of two electronic state problems and the performance of FSSH, FSSH+D, and PSSH methods in variety of one- and two-dimensional models. Our results sho...
Selecting protein N-terminal peptides by combined fractional diagonal chromatography.
Staes, An; Impens, Francis; Van Damme, Petra; Ruttens, Bart; Goethals, Marc; Demol, Hans; Timmerman, Evy; Vandekerckhove, Joël; Gevaert, Kris
2011-07-14
In recent years, procedures for selecting the N-terminal peptides of proteins with analysis by mass spectrometry have been established to characterize protease-mediated cleavage and protein α-N-acetylation on a proteomic level. As a pioneering technology, N-terminal combined fractional diagonal chromatography (COFRADIC) has been used in numerous studies in which these protein modifications were investigated. Derivatization of primary amines--which can include stable isotope labeling--occurs before trypsin digestion so that cleavage occurs after arginine residues. Strong cation exchange (SCX) chromatography results in the removal of most of the internal peptides. Diagonal, reversed-phase peptide chromatography, in which the two runs are separated by reaction with 2,4,6-trinitrobenzenesulfonic acid, results in the removal of the C-terminal peptides and remaining internal peptides and the fractionation of the sample. We describe here the fully matured N-terminal COFRADIC protocol as it is currently routinely used, including the most substantial improvements (including treatment with glutamine cyclotransferase and pyroglutamyl aminopeptidase to remove pyroglutamate before SCX, and a sample pooling scheme to reduce the overall number of liquid chromatography-tandem mass spectrometry analyses) that were made since its original publication. Completion of the N-terminal COFRADIC procedure takes ~5 d.
Caffeine elicits c-Fos expression in horizontal diagonal band cholinergic neurons.
Reznikov, Leah R; Pasumarthi, Ravi K; Fadel, Jim R
2009-12-09
Caffeine is a widely self-administered psychostimulant with purported neuroprotective and procognitive effects in rodent models of aging. The cholinergic basal forebrain is important for arousal and attention and is implicated in age-related cognitive decline. Accordingly, we determined the effects of caffeine on cholinergic neuron activation in the rat basal forebrain. Young adult (age 2 months) male rats were treated with caffeine (0, 10, or 50 mg/kg) and killed 2 h later. Caffeine significantly increased c-Fos expression in cholinergic neurons of the horizontal limb of the diagonal band of Broca but not other basal forebrain regions such as the medial septum or substantia innominata. The horizontal limb of the diagonal band of Broca provides cholinergic innervation to the olfactory bulb, suggesting that deficits in this structure may contribute to diminished olfactory function observed in Alzheimer's disease patients. These results suggest that part of the cognitive-enhancing effects of caffeine may be mediated through activation of this part of the cholinergic basal forebrain.
Randomly Generating Four Mixed Bell-Diagonal States with a Concurrences Sum to Unity
Institute of Scientific and Technical Information of China (English)
S. P. Toh; Hishamuddin Zainuddin; Kim Eng Foo
2012-01-01
A two-qubit system in quantum information theory is the simplest bipartite quantum system and its concurrence for pure and mixed states is well known. As a subset of two-qubit systems, Bell-diagonal states can be depicted by a very simple geometrical representation of a tetrahedron with sides of length 2√2. Based on this geometric representation, we propose a simple approach to randomly generate four mixed Bell decomposable states in which the sum of their concurrence is equal to one.%A two-qubit system in quantum information theory is the simplest bipartite quantum system and its concurrence for pure and mixed states is well known.As a subset of two-qubit systems,Bell-diagonal states can be depicted by a very simple geometrical representation of a tetrahedron with sides of length 2(√2).Based on this geometric representation,we propose a simple approach to randomly generate four mixed Bell decomposable states in which the sum of their concurrence is equal to one.
Modified dynamical supergravity breaking and off-diagonal super-Higgs effects
Gheorghiu, Tamara; Vacaru, Olivia; Vacaru, Sergiu
2015-03-01
We argue that generic off-diagonal vacuum and nonvacuum solutions for Einstein manifolds mimic physical effects in modified gravity theories (MGTs) and encode certain models of the f(R,T,\\ldots ), Hořava type with dynamical Lorentz symmetry breaking, induced effective mass for the graviton, etc. Our main goal is to investigate the dynamical breaking of local supersymmetry determined by off-diagonal solutions in MGTs and encoded as effective Einstein spaces. This includes the Deser-Zumino super-Higgs effect, for instance, for a one-loop potential in a simple but representative model of N=1,D=4 supergravity. We develop and apply new geometrical techniques that allow us to decouple the gravitational field equations and integrate them in a very general form with the metric and vielbein fields depending on all the spacetime coordinates by means of various generating and integration functions and parameters. We study how solutions in MGTs may be related to the dynamical generation of a gravitino mass and supersymmetry breaking.
Thermoelectric behavior of conducting polymers: On the possibility of off-diagonal thermoelectricity
Energy Technology Data Exchange (ETDEWEB)
Mateeva, N.; Testardi, L. [TecOne, Inc., Tallahassee, FL (United States); Niculescu, H. [TecOne, Inc., Tallahassee, FL (United States)]|[Florida A and M Univ./Florida State Univ., Tallahassee, FL (United States) Coll. of Engineering; Schlenoff, J. [TecOne, Inc., Tallahassee, FL (United States)]|[Florida State Univ., Tallahassee, FL (United States). Chemistry Dept.
1998-12-01
Non-cubic materials, when structurally aligned, possess sufficient anisotropy to exhibit thermoelectric effects where the electrical and thermal paths can be orthogonal due to off-diagonal thermoelectricity (ODTE). The authors discuss the benefits of this form of thermoelectricity for device applications and describe a search for suitable thermoelectric properties in the air-stable conducting polymers polyaniline and polypyrrole. They find, at 300K for diagonal (ordinary) thermoelectricity (DTE), the general correlation that the logarithm of the electrical conductivity varies linearly with the Seebeck coefficient on doping, but with a proportionality in excess of a prediction from theory. The correlation is unexpected in its universality and unfavorable in its consequences for applications in DTE and ODTE. A standard model suggests that conduction by carriers of both signs occurs in these polymers, which thus leads to reduced thermoelectric efficiency. They also discuss polyacetylene (which is not air-stable), where this ambipolar conduction does not occur, and where properties seem more favorable for thermoelectricity.
Levandovskyy, Viktor
2011-01-01
This paper is a sequel to "Computing diagonal form and Jacobson normal form of a matrix using Groebner bases", J. of Symb. Computation, 46 (5), 2011. We present a new fraction-free algorithm for the computation of a diagonal form of a matrix over a certain non-commutative Euclidean domain over a computable field with the help of Gr\\"obner bases. This algorithm is formulated in a general constructive framework of non-commutative Ore localizations of $G$-algebras (OLGAs). We split the computation of a normal form of a matrix into the diagonalization and the normalization processes. Both of them can be made fraction-free. For a matrix $M$ over an OLGA we provide a diagonalization algorithm to compute $U,V$ and $D$ with fraction-free entries such that $UMV=D$ holds and $D$ is diagonal. The fraction-free approach gives us more information on the system of linear functional equations and its solutions, than the classical setup of an operator algebra with rational functions coefficients. In particular, one can handl...
Nonlinear Approximation Using Gaussian Kernels
Hangelbroek, Thomas
2009-01-01
It is well-known that non-linear approximation has an advantage over linear schemes in the sense that it provides comparable approximation rates to those of the linear schemes, but to a larger class of approximands. This was established for spline approximations and for wavelet approximations, and more recently for homogeneous radial basis function (surface spline) approximations. However, no such results are known for the Gaussian function. The crux of the difficulty lies in the necessity to vary the tension parameter in the Gaussian function spatially according to local information about the approximand: error analysis of Gaussian approximation schemes with varying tension are, by and large, an elusive target for approximators. We introduce and analyze in this paper a new algorithm for approximating functions using translates of Gaussian functions with varying tension parameters. Our scheme is sophisticated to a degree that it employs even locally Gaussians with varying tensions, and that it resolves local ...
Forms of Approximate Radiation Transport
Brunner, G
2002-01-01
Photon radiation transport is described by the Boltzmann equation. Because this equation is difficult to solve, many different approximate forms have been implemented in computer codes. Several of the most common approximations are reviewed, and test problems illustrate the characteristics of each of the approximations. This document is designed as a tutorial so that code users can make an educated choice about which form of approximate radiation transport to use for their particular simulation.
International Conference Approximation Theory XIV
Schumaker, Larry
2014-01-01
This volume developed from papers presented at the international conference Approximation Theory XIV, held April 7–10, 2013 in San Antonio, Texas. The proceedings contains surveys by invited speakers, covering topics such as splines on non-tensor-product meshes, Wachspress and mean value coordinates, curvelets and shearlets, barycentric interpolation, and polynomial approximation on spheres and balls. Other contributed papers address a variety of current topics in approximation theory, including eigenvalue sequences of positive integral operators, image registration, and support vector machines. This book will be of interest to mathematicians, engineers, and computer scientists working in approximation theory, computer-aided geometric design, numerical analysis, and related approximation areas.
Exact constants in approximation theory
Korneichuk, N
1991-01-01
This book is intended as a self-contained introduction for non-specialists, or as a reference work for experts, to the particular area of approximation theory that is concerned with exact constants. The results apply mainly to extremal problems in approximation theory, which in turn are closely related to numerical analysis and optimization. The book encompasses a wide range of questions and problems: best approximation by polynomials and splines; linear approximation methods, such as spline-approximation; optimal reconstruction of functions and linear functionals. Many of the results are base
Investigation of the off-diagonal Seebeck effect and Peltier effect on textured YBa 2Cu 3O 7-δ
He, Z. H.; Zhong, F. Q.; Luo, Y. Y.; Wu, M.; Gavalek, W.; Liang, K. F.; Fung, P. C. W.
1997-08-01
Both of the off-diagonal Seebeck effect and the off-diagonal Peltier effect were investigated with the use of the same textured sample YBa 2Cu 3O 7-δ (Y-123) and the same experimental setup. The reliability of the measurement is studied by applying different heat-conductive mediums. The flatness of both of the sample and the heat-conducting block, and the matching between them are found very important for the reduction of the heat resistance. The annealing effect on the Sxz is also studied and found in accordance with that studied by the thermoelectric power.
Preconditioned Diagonally Dominant Properties of H-matrix%H-矩阵的预条件对角占优性
Institute of Scientific and Technical Information of China (English)
薛炜
2014-01-01
本文主要研究了如何建立适当的预条件矩阵，把一个非对角占优的H-矩阵转化为对角占优矩阵，并得到了相应的结论。并且对此结论给出了相关的数值例子。%This paper mainly studies how to establish appropriate preconditioned matrices for transforming a H-matrix which is non-diagonal y dominant matrix into the diagonal y dominant matrix, obtains the corresponding conclusion and presents the related numerical example of this conclusion.
DEFF Research Database (Denmark)
Sørensen, John Dalsgaard; Thoft-Christensen, Palle
In this paper the preliminary results obtained by tests on tubular joints are presented. The joints are T-joints and the loading is static. It is the intention in continuation of these tests to perform tests on other types of joints (e.g. Y-joints) and also with dynamic loading. The purpose...... of the test is partly to obtain empirical data for the ultimate load-carrying capacity of tubular T-joints and partly to obtain some experience in performing tests with tubular joints. It is well known that tubular joints are usually designed in offshore engineering on the basis of empirical formulas obtained...
Spacesuit mobility knee joints
Vykukal, H. C. (Inventor)
1979-01-01
Pressure suit mobility joints are for use in interconnecting adjacent segments of an hermetically sealed spacesuit in which low torques, low leakage and a high degree of reliability are required. Each of the joints is a special purpose joint characterized by substantially constant volume and low torque characteristics and includes linkages which restrain the joint from longitudinal distension and includes a flexible, substantially impermeable diaphragm of tubular configuration spanning the distance between pivotally supported annuli. The diaphragms of selected joints include rolling convolutions for balancing the joints, while various joints include wedge-shaped sections which enhance the range of motion for the joints.
Study on diagonal hammer of three kind metals composite casting with block protecting handle
Directory of Open Access Journals (Sweden)
Liu Hui
2016-01-01
Full Text Available Hammer crusher is widely used in cement, ceramic, mining and electricityother industries, hammer head is one of important parts in crusher, its abrasion performance directly affects the service life of hammer crusher and economic cost. According to bimetalcomposite hammer head is often appear “Hammer handle wear and tear”,“Composite difficult” and the set of casting alloy block hammer head set piece of “come off” phenomenon, which design a set piece type bimetal composite casting straight diagonal hammer, make full use of high chromium cast iron wear resistance and the toughness of low alloy steel. Design a protect block structure reasonably that solve the hammer when the actual production of composite interface is difficult to control and “the problem of hammer head wear” for use. Solve the problem of hammer head wear actively, achieve “energy saving, emission reduction and environmental protection”.
Non-diagonal boundary conditions for gl(1|1) super spin chains
Energy Technology Data Exchange (ETDEWEB)
Grabinski, Andre M; Frahm, Holger, E-mail: frahm@itp.uni-hannover.d [Institut fuer Theoretische Physik, Leibniz Universitaet Hannover, Appelstrasse 2, 30167 Hannover (Germany)
2010-01-29
We study a one-dimensional model of free fermions with gl(1|1) supersymmetry and demonstrate how non-diagonal boundary conditions can be incorporated into the framework of the graded quantum inverse scattering method (gQISM) by means of super matrices with entries from a superalgebra. For super Hermitian twists and open boundary conditions subject to a certain constraint, we solve the eigenvalue problem for the super transfermatrix by means of the graded algebraic Bethe ansatz technique (gABA) starting from a fermionic coherent state. For generic boundary conditions the algebraic Bethe ansatz cannot be applied. In this case the spectrum of the super transfermatrix is obtained from a functional relation.
Diagonal and transition magnetic moments of negative parity heavy baryons in QCD sum rules
Aliev, T M; Barakat, T; Savcı, M
2015-01-01
Diagonal and transition magnetic moments of the negative parity, spin-1/2 heavy baryons are studied in framework of the light cone QCD sum rules. By constructing the sum rules for different Lorentz structures, the unwanted contributions coming from negative (positive) to positive (negative) parity transitions are removed. It is obtained that the magnetic moments of all baryons, except $\\Lambda_b^0$, $\\Sigma_c^+$ and $\\Xi_c^{\\prime +}$, are quite large. It is also found that the transition magnetic moments between neutral negative parity heavy $\\Xi_Q^{\\prime 0}$ and $\\Xi_Q^0$ baryons are very small. Magnetic moments of the $\\Sigma_Q \\to \\Lambda_Q$ and $ \\Xi_Q^{\\prime \\pm} \\to \\Xi_Q^\\pm$ transitions are quite large and can be measured in further experiments.
Zoeller, Ludwig
2016-04-01
Modern methods of low temperature thermochronology are able to throw light on the geomorphological development of macrorelief landforms. A rarely investigated problem concerns the orientation and morphotectonic evolution of Central European uplands (low to mid-elevation mountain ranges). A conspicuous NW-SE striking boundary takes course through Germany from the Osning and Teutoburg Forest in the NW to the Bavarian Forest in the SE. I call this line the "geomorphological diagonal". East of this line, more or less NW-SE striking morphotectonic features (e.g., Harz Mountains, Sudety) dominate the macrorelief up to the eastern border of Central Europe (Thornquist-Teysseire Lineament), with the exception of the Ohre Rift and Central Bohemia. West of this line, the macrorelief is either characterized by NNE-SSW to N-S oriented structures (e.g., Upper Rhine Rift) and, to a lesser extent, by (S)SW-(E)NE mountain ranges (southern Rhenish Slate Mountains and Ore Mountains) or by no predominance at all. In the Lower Rhine Embayment and along the Middle Rhine River, (N)NW-(S)SE directed morphotectonic features influence the low mountain ranges. In several cases geologists have proven that NW-SE morphotectonic structures are related to the Upper Cretaceous (Santonian to Campanian) "basin inversion" (e.g., von Eynatten et al. 2008). A compilation of low temperature thermochronological data (AFT, [U-Th]/He) from Central Europe clearly supports strong crustal cooling during the Upper Cretaceous and lowermost Tertiary in morphotectonically protruded crustal blocks east of the geomorphological diagonal, whereas west of it the age data available so far exhibit a much larger scatter from Upper Paleozoic to Tertiary without clear evidence of an outstanding Upper Cretaceous crustal cooling event. Based on this data I hypothesize that east of the diagonal macroforms of uplifted denudation surfaces ("peneplains" or "etchplains") may be inherited from the Cretaceous whereas west of it
Energy Technology Data Exchange (ETDEWEB)
Serra, Maria; Husar, Attila; Feroldi, Diego; Riera, Jordi [Institut de Robotica i Informatica Industrial, Universitat Politecnica de Catalunya, Consejo Superior de Investigaciones Cientificas, C. Llorens i Artigas 4, 08028 Barcelona (Spain)
2006-08-25
This work is focused on the selection of operating conditions in polymer electrolyte membrane fuel cells. It analyses efficiency and controllability aspects, which change from one operating point to another. Specifically, several operating points that deliver the same amount of net power are compared, and the comparison is done at different net power levels. The study is based on a complex non-linear model, which has been linearised at the selected operating points. Different linear analysis tools are applied to the linear models and results show important controllability differences between operating points. The performance of diagonal control structures with PI controllers at different operating points is also studied. A method for the tuning of the controllers is proposed and applied. The behaviour of the controlled system is simulated with the non-linear model. Conclusions indicate a possible trade-off between controllability and optimisation of hydrogen consumption. (author)
Solving block linear systems with low-rank off-diagonal blocks is easily parallelizable
Energy Technology Data Exchange (ETDEWEB)
Menkov, V. [Indiana Univ., Bloomington, IN (United States)
1996-12-31
An easily and efficiently parallelizable direct method is given for solving a block linear system Bx = y, where B = D + Q is the sum of a non-singular block diagonal matrix D and a matrix Q with low-rank blocks. This implicitly defines a new preconditioning method with an operation count close to the cost of calculating a matrix-vector product Qw for some w, plus at most twice the cost of calculating Qw for some w. When implemented on a parallel machine the processor utilization can be as good as that of those operations. Order estimates are given for the general case, and an implementation is compared to block SSOR preconditioning.
Non-diagonal charged lepton mass matrix and non-zero {theta}{sub 13}
Energy Technology Data Exchange (ETDEWEB)
Acosta, J. Alberto, E-mail: kripton0x@gmail.com [Facultad de Ciencias, CUICBAS, Universidad de Colima, Colima (Mexico); Aranda, Alfredo, E-mail: fefo@ucol.mx [Facultad de Ciencias, CUICBAS, Universidad de Colima, Colima (Mexico); Dual C-P Institute of High Energy Physics (Mexico); Buen-Abad, Manuel A., E-mail: manuelbuenabadnajar@gmail.com [Facultad de Ciencias, CUICBAS, Universidad de Colima, Colima (Mexico); Rojas, Alma D., E-mail: alma.drp@gmail.com [Facultad de Ciencias, CUICBAS, Universidad de Colima, Colima (Mexico)
2013-01-29
Assuming that the neutrino mass matrix is diagonalized by the tribimaximal mixing matrix, we explore the textures for the charged lepton mass matrix that render a U{sub PMNS} lepton mixing matrix consistent with data. In particular we are interested in finding the textures with the maximum number of zeros. We explore the cases of real matrices with three and four zeros and find that only ten matrices with three zeros provide solutions in agreement with data. We present the successful Yukawa textures including the relative sizes of their non-zero entries as well as some new and interesting relations among the entries of these textures in terms of the charged lepton masses. We also show that these relations can be obtained directly from a parametrization of the charged lepton mixing matrix U{sub l}.
Fragility and environmental degradation in rural areas of the temperate arid argentinian diagonal
Directory of Open Access Journals (Sweden)
Julia Inés Gabella
2017-01-01
Full Text Available The aim of this paper is to analyze the climatic characteristics of Patagones district, located in the south of pampeana region (Argentina. We also determine its insertion into the temperate arid argentinian diagonal to understand it as a fragile area of climate transition, exposed to degradation processes derived from human action. Qualitative and quantitative approaches were combined in order to arrive to the objetive. The climatic characterization of the area was conducted by applying the water balance method and the calculation and analysis of the Standardized Precipitation Index (SPI. It was found in Patagones district a permanent disconnection between natural and climatic conditions and the logics of capitalists’ production, which are not adapted to the natural conditions of the territory and have generated environmental degradation of the rural space.
High-precision evaluation of Wigner's d-matrix by exact diagonalization
Feng, X M; Yang, W; Jin, G R
2015-01-01
The precise calculations of the Wigner's d-matrix are important in various research fields. Due to the presence of large numbers, direct calculations of the matrix using the Wigner's formula suffer from loss of precision. We present a simple method to avoid this problem by expanding the d-matrix into a complex Fourier series and calculate the Fourier coefficients by exactly diagonalizing the angular-momentum operator $J_{y}$ in the eigenbasis of $J_{z}$. This method allows us to compute the d-matrix and its various derivatives for spins up to a few thousand. The precision of the d-matrix from our method is about $10^{-14}$ for spins up to $100$.
High-gain step-profiled integrated diagonal horn-antennas
Eleftheriades, George V.; Rebeiz, Gabriel M.
1992-05-01
A new step-profiled integrated-horn antenna is proposed. The antenna allows gains in the range of 17-20 dB to be achieved using standard (100) silicon wafers. The antenna is diagonally fed and exhibits very good circular symmetry within the 10-dB beamwidth. It has a fundamental Gaussian coupling efficiency of 83 percent. It is demonstrated that the profiled antenna has a radiation pattern similar to that of its smooth envelope horn, provided that the discontinuity between successive wafers does not exceed 0.15 lambda. The integrated stepped-profile horn performs much better than a corresponding smooth 70 deg flare-angle integrated horn of the same aperture size. The integrated step-profile horn is very well-suited for radio-astonomical and remote-sensing millimeter-wave imaging arrays requiring a large number of focal-plane elements.
Lotfollahi, Mehrdad; Mehdi Alinia, Mohammad; Taciroglu, Ertugrul
2011-09-01
This paper presents a validated, high fidelity finite element modeling procedure for Diagonally Braced Moment-Resisting Frames (DBMRFs). The model can accurately capture the DBMRF response prior to and through the brace-buckling regime. The model was calibrated through parametric sensitivity studies, which were performed to ascertain the effects of mesh refinement, initial brace imperfection shapes and amplitudes, and the effects of beam-column connection types on the developed analytical model. The validated analytical model can be used for further investigations on the buckling characteristics of the gusset brace system, and for predicting the yield mechanisms, failure modes, and deformation capacities of multistory DBMRFs. The model can also be used for determining frame ductilities, as well as regions of concentration of plastic strains within the frame members and the gusset brace system.
The feature extraction of ship radiated noise with Fourth Order Cumulant diagonal slice
Institute of Scientific and Technical Information of China (English)
FAN Yangyu; SUN Jincai; HAO Chongyang; LI Ya'an
2004-01-01
After analyzed Fourth Order Cumulant (FOC) of harmonic signals theoretically, the FOC is divided into three parts. The first is the cubic frequency (phase) coupling components.The second is the double frequency (phase) coupling components (ω1 + ω2 = ω3 + ω4). The last is the rest components. On the basis of the study, the FOC diagonal slice is used to extract the cubic frequency (phase) coupling feature, double frequency (phase) coupling feature and the "sub-band energy" feature of ship-radiated noise. In terms of the fea tures, the three type ships are classified by artificial neural network. The correct classification rates of A, B and C ships are 92.5%, 92.7%, 88.6%, respectively. The results show the method is effective and practical.
Wideband Diagonal Quadruple-Ridge Orthomode Transducer for Circular Polarization Detection
Coutts, Gordon M.
2011-06-01
A novel diagonal quadruple-ridge OMT with a compact geometry is proposed for detecting circularly polarized signals when used in conjunction with a 90 degree phase shifter. X-Band OMT prototypes, covering 8 GHz-12 GHz, have been fabricated and tested, and exceed specifications by a wide margin, with no evidence of trapped-mode resonances in the operating bandwidth. In addition to having good reflection and transmission performance, measured results show that the fabricated OMT performs well in separating orthogonal circularly polarized signal components. The OMT design is discussed in detail, focusing on impedance matching as well as the methods used to avoid in-band trapped-mode resonances. Since the OMT design focuses on performance, manufacturability and ease of tuning, the new design would be well suited to array applications. Furthermore, the new OMT design is amenable to multiple-pixel feeds as a result of its narrow geometry.
Rodríguez, Santiago; Chen, Xiao-He; Day, Ian N M
2004-04-01
Polymorphic dinucleotide repeat loci ('microsatellite markers') are found in varying abundance throughout the genomes of most organisms. They have been extensively used for genetic studies, but conventional techniques used for their genotyping require sophisticated equipment. Microplate array diagonal gel electrophoresis (MADGE) has previously been extended to economical high-throughput genotyping of trinucleotide and tetranucleotide microsatellite amplicons. However, the capability of this technique to resolve the alleles of dinucleotide repeat loci has not been explored previously. Here we show that a modified microsatellite-MADGE approach can provide sufficient resolution for dinucleotide repeat typing. This enables economical and convenient set up for analysis of single markers in many samples in parallel, suitable, for example, for population association studies.
The 'diagonal' approach to Global Fund financing: a cure for the broader malaise of health systems?
Directory of Open Access Journals (Sweden)
Baker Brook K
2008-03-01
Full Text Available Abstract Background The potentially destructive polarisation between 'vertical' financing (aiming for disease-specific results and 'horizontal' financing (aiming for improved health systems of health services in developing countries has found its way to the pages of Foreign Affairs and the Financial Times. The opportunity offered by 'diagonal' financing (aiming for disease-specific results through improved health systems seems to be obscured in this polarisation. In April 2007, the board of the Global Fund to fight AIDS, Tuberculosis and Malaria agreed to consider comprehensive country health programmes for financing. The new International Health Partnership Plus, launched in September 2007, will help low-income countries to develop such programmes. The combination could lead the Global Fund to fight AIDS, Tuberculosis and Malaria to a much broader financing scope. Discussion This evolution might be critical for the future of AIDS treatment in low-income countries, yet it is proposed at a time when the Global Fund to fight AIDS, Tuberculosis and Malaria is starved for resources. It might be unable to meet the needs of much broader and more expensive proposals. Furthermore, it might lose some of its exceptional features in the process: its aim for international sustainability, rather than in-country sustainability, and its capacity to circumvent spending restrictions imposed by the International Monetary Fund. Summary The authors believe that a transformation of the Global Fund to fight AIDS, Tuberculosis and Malaria into a Global Health Fund is feasible, but only if accompanied by a substantial increase of donor commitments to the Global Fund. The transformation of the Global Fund into a 'diagonal' and ultimately perhaps 'horizontal' financing approach should happen gradually and carefully, and be accompanied by measures to safeguard its exceptional features.
Block-diagonal representations for covariance-based anomalous change detectors
Energy Technology Data Exchange (ETDEWEB)
Matsekh, Anna M [Los Alamos National Laboratory; Theiler, James P [Los Alamos National Laboratory
2010-01-01
We use singular vectors of the whitened cross-covariance matrix of two hyper-spectral images and the Golub-Kahan permutations in order to obtain equivalent tridiagonal representations of the coefficient matrices for a family of covariance-based quadratic Anomalous Change Detection (ACD) algorithms. Due to the nature of the problem these tridiagonal matrices have block-diagonal structure, which we exploit to derive analytical expressions for the eigenvalues of the coefficient matrices in terms of the singular values of the whitened cross-covariance matrix. The block-diagonal structure of the matrices of the RX, Chronochrome, symmetrized Chronochrome, Whitened Total Least Squares, Hyperbolic and Subpixel Hyperbolic Anomalous Change Detectors are revealed by the white singular value decomposition and Golub-Kahan transformations. Similarities and differences in the properties of these change detectors are illuminated by their eigenvalue spectra. We presented a methodology that provides the eigenvalue spectrum for a wide range of quadratic anomalous change detectors. Table I summarizes these results, and Fig. I illustrates them. Although their eigenvalues differ, we find that RX, HACD, Subpixel HACD, symmetrized Chronochrome, and WTLSQ share the same eigenvectors. The eigen vectors for the two variants of Chronochrome defined in (18) are different, and are different from each other, even though they share many (but not all, unless d{sub x} = d{sub y}) eigenvalues. We demonstrated that it is sufficient to compute SVD of the whitened cross covariance matrix of the data in order to almost immediately obtain highly structured sparse matrices (and their eigenvalue spectra) of the coefficient matrices of these ACD algorithms in the white SVD-transformed coordinates. Converting to the original non-white coordinates, these eigenvalues will be modified in magnitude but not in sign. That is, the number of positive, zero-valued, and negative eigenvalues will be conserved.
Puelles, Luis; Morales-Delgado, N; Merchán, P; Castro-Robles, B; Martínez-de-la-Torre, M; Díaz, C; Ferran, J L
2016-07-01
The telencephalic subpallium is the source of various GABAergic interneuron cohorts that invade the pallium via tangential migration. Based on genoarchitectonic studies, the subpallium has been subdivided into four major domains: striatum, pallidum, diagonal area and preoptic area (Puelles et al. 2013; Allen Developing Mouse Brain Atlas), and a larger set of molecularly distinct progenitor areas (Flames et al. 2007). Fate mapping, genetic lineage-tracing studies, and other approaches have suggested that each subpallial subdivision produces specific sorts of inhibitory interneurons, distinguished by differential peptidic content, which are distributed tangentially to pallial and subpallial target territories (e.g., olfactory bulb, isocortex, hippocampus, pallial and subpallial amygdala, striatum, pallidum, septum). In this report, we map descriptively the early differentiation and apparent migratory dispersion of mouse subpallial somatostatin-expressing (Sst) cells from E10.5 onward, comparing their topography with the expression patterns of the genes Dlx5, Gbx2, Lhx7-8, Nkx2.1, Nkx5.1 (Hmx3), and Shh, which variously label parts of the subpallium. Whereas some experimental results suggest that Sst cells are pallidal, our data reveal that many, if not most, telencephalic Sst cells derive from de diagonal area (Dg). Sst-positive cells initially only present at the embryonic Dg selectively populate radially the medial part of the bed nucleus striae terminalis (from paraseptal to amygdaloid regions) and part of the central amygdala; they also invade tangentially the striatum, while eschewing the globus pallidum and the preoptic area, and integrate within most cortical and nuclear pallial areas between E10.5 and E16.5.
Tree wavelet approximations with applications
Institute of Scientific and Technical Information of China (English)
XU Yuesheng; ZOU Qingsong
2005-01-01
We construct a tree wavelet approximation by using a constructive greedy scheme(CGS). We define a function class which contains the functions whose piecewise polynomial approximations generated by the CGS have a prescribed global convergence rate and establish embedding properties of this class. We provide sufficient conditions on a tree index set and on bi-orthogonal wavelet bases which ensure optimal order of convergence for the wavelet approximations encoded on the tree index set using the bi-orthogonal wavelet bases. We then show that if we use the tree index set associated with the partition generated by the CGS to encode a wavelet approximation, it gives optimal order of convergence.
The DSUBm approximation scheme for the coupled cluster method and applications to quantum magnets
Directory of Open Access Journals (Sweden)
R.F. Bishop
2009-01-01
Full Text Available A new approximate scheme, DSUBm, is described for the coupled cluster method. We apply it to two well-studied (spin-1/2 Heisenberg antiferromagnet spin-lattice models, namely: the XXZ and the XY models on the square lattice in two dimensions. Results are obtained in each case for the ground-state energy, the sublattice magnetization and the quantum critical point. They are in good agreement with those from such alternative methods as spin-wave theory, series expansions, exact diagonalization techniques, quantum Monte Carlo methods and those from the CCM using the LSUBm scheme.
Hardware Efficient Approximative Matrix Inversion for Linear Pre-Coding in Massive MIMO
Prabhu, Hemanth; Edfors, Ove; Rodrigues, Joachim; Liu, Liang; Rusek, Fredrik
2014-01-01
This paper describes a hardware efficient linear pre-coder for Massive MIMO Base Stations (BSs) comprising a very large number of antennas, say, in the order of 100s, serving multiple users simultaneously. To avoid hardware demanding direct matrix inversions required for the Zero-Forcing (ZF) pre-coder, we use low complexity Neumann series based approximations. Furthermore, we propose a method to speed-up the convergence of the Neumann series by using tri-diagonal pre-condition matrices, whic...
Cvetic, G
1998-01-01
An approximation algorithm is proposed to transform truncated QCD (or QED) series for observables. The approximation is a modification of the Baker-Gammel approximants, and is independent of the renormalization scale (RScl) $\\mu$ -- the coupling parameter $\\alpha(\\mu)$ in the series and in the resulting approximants can evolve according to the perturbative renormalization group equation (RGE) to any chosen loop order. The proposed algorithm is a natural generalization of the recently proposed method of diagonal Padé approximants, the latter making the result RScl-invariant in large-$\\beta_0$ approximation for ${\\alpha}(\\mu)$. The algorithm described below can extract large amount of information from a calculated available truncated perturbative series for an observable, by implicitly resumming large classes of diagrams.
Seismic Behavor of RC Beam-Column Joint with Additional Bars under Cyclic Loading
Institute of Scientific and Technical Information of China (English)
LU Xilin; Tonny H.URUKAP; LI Sen
2011-01-01
The behavior of Beam-Column Joints in moment resisting frame structures are susceptible to damage caused by seismic effects due to poor performance of the joint. A good number of researches were carried out to understand the complex mechanism of RC joints which are considered in seismic design code practices presently adopted. The traditional construction detailing of transverse reinforcement have shown serious joint failure.This paper introduces a new design philosophy involving the use of additional diagonal bars within the joint particularly suitable for low to medium seismic effects in earthquake zones throughout the world. In lieu to this study, ten (10) full-scale interior beam-column specimens were constructed with various additional reinforcement details and configurations as will be discussed in the later. The experiment provided adequate results to proof the idea of additional bars as suitable approach in reinforced concrete structures where earthquake is eminent. While compared with overall cracking observation during the test, the specimen with additional bars (diagonal and straight) had shown few cracks on the column than the ones without. Furthermore, concrete confinement is certainly an important design method as recommended by certain international codes.
Uniform approximation by (quantum) polynomials
Drucker, A.; de Wolf, R.
2011-01-01
We show that quantum algorithms can be used to re-prove a classical theorem in approximation theory, Jackson's Theorem, which gives a nearly-optimal quantitative version of Weierstrass's Theorem on uniform approximation of continuous functions by polynomials. We provide two proofs, based respectivel
Diophantine approximation and automorphic spectrum
Ghosh, Anish; Nevo, Amos
2010-01-01
The present paper establishes qunatitative estimates on the rate of diophantine approximation in homogeneous varieties of semisimple algebraic groups. The estimates established generalize and improve previous ones, and are sharp in a number of cases. We show that the rate of diophantine approximation is controlled by the spectrum of the automorphic representation, and is thus subject to the generalised Ramanujan conjectures.
Beyond the random phase approximation
DEFF Research Database (Denmark)
Olsen, Thomas; Thygesen, Kristian S.
2013-01-01
We assess the performance of a recently proposed renormalized adiabatic local density approximation (rALDA) for ab initio calculations of electronic correlation energies in solids and molecules. The method is an extension of the random phase approximation (RPA) derived from time-dependent density...
Approximation by planar elastic curves
DEFF Research Database (Denmark)
Brander, David; Gravesen, Jens; Nørbjerg, Toke Bjerge
2016-01-01
We give an algorithm for approximating a given plane curve segment by a planar elastic curve. The method depends on an analytic representation of the space of elastic curve segments, together with a geometric method for obtaining a good initial guess for the approximating curve. A gradient-driven...
Nonlinear approximation with redundant dictionaries
DEFF Research Database (Denmark)
Borup, Lasse; Nielsen, M.; Gribonval, R.
2005-01-01
In this paper we study nonlinear approximation and data representation with redundant function dictionaries. In particular, approximation with redundant wavelet bi-frame systems is studied in detail. Several results for orthonormal wavelets are generalized to the redundant case. In general...
Diagonalization of infinite transfer matrix of boundary $U_{q,p}(A_{N-1}^{(1)})$ face model
Kojima, Takeo
2010-01-01
We study infinitely many commuting operators $T_B(z)$, which we call infinite transfer matrix of boundary $U_{q,p}(A_{N-1}^{(1)})$ face model. We diagonalize infinite transfer matrix $T_B(z)$ by using free field realizations of the vertex operators of the elliptic quantum group $U_{q,p}(A_{N-1}^{(1)})$.
Diagonalization of transfer matrix of supersymmetry $u_q(\\hat{sl}(m+1|n+1))$ chain with a boundary
Kojima, Takeo
2012-01-01
We study the supersymmetry $U_q(\\hat{sl}(M+1|N+1))$ analogue of the supersymmetric t-J model with a boundary, in the framework of the algebraic analysis method. We diagonalize the commuting transfer matrix by using the bosonization of the vertex operator associated with the quantum affine supersymmetry.
Litofsky, Joshua; Viswanathan, Rama
2015-01-01
Matrix diagonalization, the key technique at the heart of modern computational chemistry for the numerical solution of the Schrödinger equation, can be easily introduced in the physical chemistry curriculum in a pedagogical context using simple Hückel molecular orbital theory for p bonding in molecules. We present details and results of…
Riazuddin, M
2001-01-01
By a simple extension of the standard model in which ($e-\\mu -\\tau $) universality is not conserved, we present a scenario within the framework of see-saw mechanism in which the neutrino mass matrix is strictly off-diagonal in the flavor basis. We show that a version of this scenario can accomodate the atmospheric $\
Senatorov, V V; Renaud, L P
1999-01-01
Recent investigations in the rat have implicated a noradrenergic innervation to the horizontal nucleus of the diagonal band of Broca as a critical link in a neural circuit that conveys baroreceptor information centrally to inhibit the firing of vasopressin-secreting neurons in the hypothalamic supraoptic nucleus. In this study we used small intra-diagonal band injections of a retrograde tracer, rhodamine latex microspheres, in combination with tyrosine hydroxylase histochemistry to identify brainstem noradrenergic cells contributing to this innervation. In three cases where tracer injections were limited to the horizontal limb of the diagonal band, we observed 20-50 double-labelled neurons ipsilaterally in the dorsal part of the locus coeruleus (A6) and the caudal nucleus tractus solitarius (A2), and bilaterally in the caudal ventrolateral medulla (A1). Double-labelled neurons were also noted in the ventral tegmental area (dopaminergic A10 cell group). Although all major brainstem noradrenergic cell groups contribute fibers to the horizontal limb of the nucleus of diagonal band, data from physiological studies suggest that the noradrenergic A2 neurons in the nucleus tractus solitarius are the most likely pathway through which it receives this baroreceptor information.
Approximate circuits for increased reliability
Energy Technology Data Exchange (ETDEWEB)
Hamlet, Jason R.; Mayo, Jackson R.
2015-12-22
Embodiments of the invention describe a Boolean circuit having a voter circuit and a plurality of approximate circuits each based, at least in part, on a reference circuit. The approximate circuits are each to generate one or more output signals based on values of received input signals. The voter circuit is to receive the one or more output signals generated by each of the approximate circuits, and is to output one or more signals corresponding to a majority value of the received signals. At least some of the approximate circuits are to generate an output value different than the reference circuit for one or more input signal values; however, for each possible input signal value, the majority values of the one or more output signals generated by the approximate circuits and received by the voter circuit correspond to output signal result values of the reference circuit.
Approximate circuits for increased reliability
Energy Technology Data Exchange (ETDEWEB)
Hamlet, Jason R.; Mayo, Jackson R.
2015-08-18
Embodiments of the invention describe a Boolean circuit having a voter circuit and a plurality of approximate circuits each based, at least in part, on a reference circuit. The approximate circuits are each to generate one or more output signals based on values of received input signals. The voter circuit is to receive the one or more output signals generated by each of the approximate circuits, and is to output one or more signals corresponding to a majority value of the received signals. At least some of the approximate circuits are to generate an output value different than the reference circuit for one or more input signal values; however, for each possible input signal value, the majority values of the one or more output signals generated by the approximate circuits and received by the voter circuit correspond to output signal result values of the reference circuit.
Global approximation of convex functions
Azagra, D
2011-01-01
We show that for every (not necessarily bounded) open convex subset $U$ of $\\R^n$, every (not necessarily Lipschitz or strongly) convex function $f:U\\to\\R$ can be approximated by real analytic convex functions, uniformly on all of $U$. In doing so we provide a technique which transfers results on uniform approximation on bounded sets to results on uniform approximation on unbounded sets, in such a way that not only convexity and $C^k$ smoothness, but also local Lipschitz constants, minimizers, order, and strict or strong convexity, are preserved. This transfer method is quite general and it can also be used to obtain new results on approximation of convex functions defined on Riemannian manifolds or Banach spaces. We also provide a characterization of the class of convex functions which can be uniformly approximated on $\\R^n$ by strongly convex functions.
Schafer, R. M.; Sain, M. K.
1980-01-01
The paper presents the CARDIAD (complex acceptability region for diagonal dominance) method for achieving the diagonal dominance condition in the inverse Nyquist array approach to the analysis and design of multivariable systems in the frequency domain. A design example is given for a sixth order, 4-input, 4-output model of a turbofan engine.
DEFF Research Database (Denmark)
Sørensen, Karsten Engsig
2001-01-01
The article analysis problems connected with corporate joint ventures. Among others the possible conflicts between the joint venture agreement and the statutes of the companies is examined, as well as certain problems connected to the fact that the joint venture partners have created commen control...... over their joint company....
Gamow-Teller resonances and a separable approximation for Skyrme tensor interactions
Directory of Open Access Journals (Sweden)
Severyukhin A. P.
2012-12-01
Full Text Available A finite rank separable approximation for the quasiparticle random phase approximation (QRPA with Skyrme interactions is applied to study properties of the Gamow-Teller (GT resonances in the neutron-rich Cd isotopes. This approximation enables one to reduce considerably the dimension of matrix that must be diagonalized to perform QRPA calculations in a very large configuration space. Our results from the SGII Skyrme interaction with the tensor interactions and the density-dependent zero-range pairing interaction show that the GT distribution is noticeably modified when the tensor correlations are taken into account. In particular, for 130Cd the dominant peak is moved 3.6 MeV downward and 10% of the GT distribution is shifted to the high excitation energy region near E=50MeV.
Directory of Open Access Journals (Sweden)
Jaime Sepúlveda
2007-01-01
Full Text Available Las intervenciones en salud pública dirigidas a niños en México han ubicado a este país entre los siete países encaminados a cumplir las metas de reducción de la mortalidad infantil para 2015. La información para este estudio se ha tomado de diferentes fuentes: los censos poblacionales; los registros de mortalidad de la Secretaría de Salud y del Instituto Nacional de Estadística, Geografía e Informática; el registro nominal de niños recolectado por el Programa de Vacunación Universal; y las encuestas nacionales de nutrición. Con estos datos se estudió la asociación temporal y la plausibilidad biológica de las diferentes intervenciones en salud pública, para explicar la reducción de las tasas de mortalidad entre niños, infantes y recién nacidos. Las tasas de mortalidad en menores de cinco años han descendido de casi 64 muertes a menos de 23 por cada 1 000 niños nacidos vivos registrados en los últimos 25 años. Se observó una reducción drástica en las tasas de mortalidad por diarrea, junto con la eliminación de polio, difteria y sarampión. El estado nutricional de los niños mejoró de manera significativa en cuanto a bajo peso para la talla, baja talla para la edad y bajo peso para la edad. En los últimos 25 años, se mantuvieron intervenciones altamente costo-efectivas que acercaron los servicios de salud de atención primaria a los hogares, lo que aquí se ha llamado estrategia diagonal. A pesar de que no es posible establecer una relación de causalidad entre la reducción de la mortalidad en menores de cinco años y los factores investigados, se presenta evidencia basada en la asociación temporal y en la plausibilidad biológica que indica que la alta cobertura de las intervenciones de salud pública, los avances en educación de las mujeres, protección social, disponibilidad de agua potable y saneamiento, así como nutrición, impactaron en el resultado observado. Por otro lado, el liderazgo y la continuidad
Zhao, Jie; Hou, Tiesheng; Wang, Xinwei; Ma, Shengzhong
2003-04-01
Posterior lumbar interbody fusion (PLIF) using threaded cages has gained wide popularity for lumbosacral spinal disease. Our biomechanical tests showed that PLIF using a single diagonal cage with unilateral facetectomy does add a little to spinal stability and provides equal or even higher postoperative stability than PLIF using two posterior cages with bilateral facetectomy. Studies also demonstrated that cages placed using a posterior approach did not cause the same increase in spinal stiffness seen with pedicle screw instrumentation, and we concluded that cages should not be used posteriorly without other forms of fixation. On the other hand, placement of two cages using a posterior approach does have the disadvantage of risk to the bilateral nerve roots. We therefore performed a prospective study to determine whether PLIF can be accomplished by utilizing a single diagonal fusion cage with the application of supplemental transpedicular screw/rod instrumentation. Twenty-seven patients underwent a PLIF using one single fusion cage (BAK, Sulzer Spine-Tech, Minneapolis, MN, USA) inserted posterolaterally and oriented anteromedially on the symptomatic side with unilateral facetectomy and at the same level supplemental fixation with a transpedicular screw/rod system. The internal fixation systems included 12 SOCON spinal systems (Aesculap AG, Germany) and 15 TSRH spinal systems (Medtronic Sofamor Danek, USA). The inclusion criteria were grade 1 to 2 lumbar isthmic spondylolisthesis, lumbar degenerative spondylolisthesis, and recurrent lumbar disc herniations with instability. Patients had at least 1 year of low back pain and/or unilateral sciatica and a severely restricted functional ability in individuals aged 28-55 years. Patients with more than grade 2 spondylolisthesis or adjacent-level degeneration were excluded from the study. Patients were clinically assessed prior to surgery by an independent assessor; they were then reassessed at 1, 3, 6, 12, 18, and 24
Behaviour of fibre-reinforced high-performance concrete in exterior beam-column joint
Muthupriya, P.; Boobalan, S. C.; Vishnuram, B. G.
2014-09-01
This paper presents the effect of reinforced high performance concrete (HPC) in exterior beam-column joint with and without fibre under monotonic loading. In this experimental investigation, cross-diagonal bars have been provided at the joint for reducing the congestion of reinforcement in joints, and also M75 grade of concrete with optimum mix proportion of 10 % silica fume and 0.3 % glass fibre was used. Four exterior beam-column joint sub-assemblages were tested. The specimens were divided into two types based on the reinforcement detailing. Type A comprises two joint sub-assemblages with joint detailing as per construction code of practice in India (IS 456-2000), and Type B comprises two joint sub-assemblages with joint detailing as per ductile detailing code of practice in India (IS 13920-1993). In each group there was one specimen of control mix and the remaining one specimen of fibre-reinforced mix. All the test specimens were designed to satisfy the strong column-weak beam concept. The performances of specimens were compared with the control mix and the fibre-reinforced mix. The results show that exterior beam-column joint specimens with silica fume and glass fibre in the HPC mix showed better performance.
Binary nucleation beyond capillarity approximation
Kalikmanov, V.I.
2010-01-01
Large discrepancies between binary classical nucleation theory (BCNT) and experiments result from adsorption effects and inability of BCNT, based on the phenomenological capillarity approximation, to treat small clusters. We propose a model aimed at eliminating both of these deficiencies. Adsorption
Weighted approximation with varying weight
Totik, Vilmos
1994-01-01
A new construction is given for approximating a logarithmic potential by a discrete one. This yields a new approach to approximation with weighted polynomials of the form w"n"(" "= uppercase)P"n"(" "= uppercase). The new technique settles several open problems, and it leads to a simple proof for the strong asymptotics on some L p(uppercase) extremal problems on the real line with exponential weights, which, for the case p=2, are equivalent to power- type asymptotics for the leading coefficients of the corresponding orthogonal polynomials. The method is also modified toyield (in a sense) uniformly good approximation on the whole support. This allows one to deduce strong asymptotics in some L p(uppercase) extremal problems with varying weights. Applications are given, relating to fast decreasing polynomials, asymptotic behavior of orthogonal polynomials and multipoint Pade approximation. The approach is potential-theoretic, but the text is self-contained.
Approximate Implicitization Using Linear Algebra
Directory of Open Access Journals (Sweden)
Oliver J. D. Barrowclough
2012-01-01
Full Text Available We consider a family of algorithms for approximate implicitization of rational parametric curves and surfaces. The main approximation tool in all of the approaches is the singular value decomposition, and they are therefore well suited to floating-point implementation in computer-aided geometric design (CAGD systems. We unify the approaches under the names of commonly known polynomial basis functions and consider various theoretical and practical aspects of the algorithms. We offer new methods for a least squares approach to approximate implicitization using orthogonal polynomials, which tend to be faster and more numerically stable than some existing algorithms. We propose several simple propositions relating the properties of the polynomial bases to their implicit approximation properties.
Approximate common divisors via lattices
Cohn, Henry
2011-01-01
We analyze the multivariate generalization of Howgrave-Graham's algorithm for the approximate common divisor problem. In the m-variable case with modulus N and approximate common divisor of size N^beta, this improves the size of the error tolerated from N^(beta^2) to N^(beta^((m+1)/m)), under a commonly used heuristic assumption. This gives a more detailed analysis of the hardness assumption underlying the recent fully homomorphic cryptosystem of van Dijk, Gentry, Halevi, and Vaikuntanathan. While these results do not challenge the suggested parameters, a 2^sqrt(n) approximation algorithm for lattice basis reduction in n dimensions could be used to break these parameters. We have implemented our algorithm, and it performs better in practice than the theoretical analysis suggests. Our results fit into a broader context of analogies between cryptanalysis and coding theory. The multivariate approximate common divisor problem is the number-theoretic analogue of noisy multivariate polynomial interpolation, and we ...
Kinematic and dynamic analysis of an anatomically based knee joint.
Lee, Kok-Meng; Guo, Jiajie
2010-05-01
This paper presents a knee-joint model to provide a better understanding on the interaction between natural joints and artificial mechanisms for design and control of rehabilitation exoskeletons. The anatomically based knee model relaxes several commonly made assumptions that approximate a human knee as engineering pin-joint in exoskeleton design. Based on published MRI data, we formulate the kinematics of a knee-joint and compare three mathematical approximations; one model bases on two sequential circles rolling a flat plane; and the other two are mathematically differentiable ellipses-based models with and without sliding at the contact. The ellipses-based model taking sliding contact into accounts shows that the rolling-sliding ratio of a knee-joint is not a constant but has an average value consistent with published measurements. This knee-joint kinematics leads to a physically more accurate contact-point trajectory than methods based on multiple circles or lines, and provides a basis to derive a knee-joint kinetic model upon which the effects of a planar exoskeleton mechanism on the internal joint forces and torque during flexion can be numerically investigated. Two different knee-joint kinetic models (pin-joint approximation and anatomically based model) are compared against a condition with no exoskeleton. The leg and exoskeleton form a closed kinematic chain that has a significant effect on the joint forces in the knee. Human knee is more tolerant than pin-joint in negotiating around a singularity but its internal forces increase with the exoskeleton mass-to-length ratio. An oversimplifying pin-joint approximation cannot capture the finite change in the knee forces due to the singularity effect.
Reliable Function Approximation and Estimation
2016-08-16
AFRL-AFOSR-VA-TR-2016-0293 Reliable Function Approximation and Estimation Rachel Ward UNIVERSITY OF TEXAS AT AUSTIN 101 EAST 27TH STREET STE 4308...orthogonal polynomial bases from a minimal number of pointwise function evaluations. Based on a model of weighted sparsity which we in- troduced, we...Institution name University of Texas at Austin Grant/Contract Title The full title of the funded effort. (YIP): Reliable function approximation and estimation
Mathematical algorithms for approximate reasoning
Murphy, John H.; Chay, Seung C.; Downs, Mary M.
1988-01-01
Most state of the art expert system environments contain a single and often ad hoc strategy for approximate reasoning. Some environments provide facilities to program the approximate reasoning algorithms. However, the next generation of expert systems should have an environment which contain a choice of several mathematical algorithms for approximate reasoning. To meet the need for validatable and verifiable coding, the expert system environment must no longer depend upon ad hoc reasoning techniques but instead must include mathematically rigorous techniques for approximate reasoning. Popular approximate reasoning techniques are reviewed, including: certainty factors, belief measures, Bayesian probabilities, fuzzy logic, and Shafer-Dempster techniques for reasoning. A group of mathematically rigorous algorithms for approximate reasoning are focused on that could form the basis of a next generation expert system environment. These algorithms are based upon the axioms of set theory and probability theory. To separate these algorithms for approximate reasoning various conditions of mutual exclusivity and independence are imposed upon the assertions. Approximate reasoning algorithms presented include: reasoning with statistically independent assertions, reasoning with mutually exclusive assertions, reasoning with assertions that exhibit minimum overlay within the state space, reasoning with assertions that exhibit maximum overlay within the state space (i.e. fuzzy logic), pessimistic reasoning (i.e. worst case analysis), optimistic reasoning (i.e. best case analysis), and reasoning with assertions with absolutely no knowledge of the possible dependency among the assertions. A robust environment for expert system construction should include the two modes of inference: modus ponens and modus tollens. Modus ponens inference is based upon reasoning towards the conclusion in a statement of logical implication, whereas modus tollens inference is based upon reasoning away
Twisted inhomogeneous Diophantine approximation and badly approximable sets
Harrap, Stephen
2010-01-01
For any real pair i, j geq 0 with i+j=1 let Bad(i, j) denote the set of (i, j)-badly approximable pairs. That is, Bad(i, j) consists of irrational vectors x:=(x_1, x_2) in R^2 for which there exists a positive constant c(x) such that max {||qx_1||^(-i), ||qx_2||^(-j)} > c(x)/q for all q in N. Building on a result of Kurzweil, a new characterization of the set Bad(i, j) in terms of `well-approximable' vectors in the area of `twisted' inhomogeneous Diophantine approximation is established. In addition, it is shown that Bad^x(i, j), the `twisted' inhomogeneous analogue of Bad(i, j), has full Hausdorff dimension 2 when x is chosen from the set Bad(i, j).
Topology optimization for free vibrations using combined approximations
DEFF Research Database (Denmark)
Bogomolny, Michael
2010-01-01
This study shows how the Combined Approximations (CA) can be used for reducing the computational effort in Topology Optimization for free vibrations. The previously developed approach is based on the integration of several concepts and methods, including matrix factorization, series expansion......, and reduced basis. In this paper the CA method is used for repeated eigenvalue analysis. Ad joint sensitivity analysis is developed such that the inaccuracies of the approximation are taken into consideration. Several 2-D and 3-D numerical examples show how optimal topology designs can be achieved...
Triple Diagonal modeling: A mechanism to focus productivity improvement for business success
Energy Technology Data Exchange (ETDEWEB)
Levine, L.O. [Pacific Northwest Lab., Richland, WA (United States); Villareal, L.D. [Army Depot, Corpus Christi, TX (United States)
1993-09-01
Triple Diagonal (M) modeling is a technique to help quickly diagnose an organization`s existing production system and to identify significant improvement opportunities in executing, controlling, and planning operations. TD modeling is derived from ICAM Definition Language (IDEF 0)-also known as Structured Analysis and Design Technique. It has been used successfully at several Department of Defense remanufacturing facilities trying to accomplish significant production system modernization. TD has several advantages over other modeling techniques. First, it quickly does ``As-ls`` analysis and then moves on to identify improvements. Second, creating one large diagram makes it easier to share the TD model throughout an organization, rather than the many linked 8 1/2 {times} 11`` drawings used in traditional decomposition approaches. Third, it acts as a communication mechanism to share understanding about improvement opportunities that may cross existing functional/organizational boundaries. Finally, TD acts as a vehicle to build a consensus on a prioritized list of improvement efforts that ``hangs togethers as an agenda for systemic changes in the production system and the improved integration of support functions.
On the relative energy associated with space-times of diagonal metrics
Indian Academy of Sciences (India)
Murat Korunur; Mustafa Salti; Ali havare
2007-05-01
In order to evaluate the energy distribution (due to matter and ﬁelds including gravitation) associated with a space-time model of generalized diagonal metric, we consider the Einstein, Bergmann–Thomson and Landau–Lifshitz energy and/or momentum deﬁnitions both in Einstein's theory of general relativity and the teleparallel gravity (the tetrad theory of gravitation). We ﬁnd same energy distribution using Einstein and Bergmann–Thomson formulations, but we also ﬁnd that the energy–momentum prescription of Landau–Lifshitz disagree in general with these deﬁnitions. We also give eight different well-known space-time models as examples, and considering these models and using our results, we calculate the energy distributions associated with them. Furthermore, we show that for the Bianchi Type-I models all the formulations give the same result. This result agrees with the previous works of Cooperstock–Israelit, Rosen, Johri et al, Banerjee–Sen, Xulu, Vargas and Saltı et al and supports the viewpoints of Albrow and Tryon.
Directory of Open Access Journals (Sweden)
Mounir Esslaoui
2013-06-01
Full Text Available The combination of multiuser multiple-input multiple-output (MU-MIMO technology with orthogonal frequency division multiplexing (OFDM is an attractive solution for next generation of wireless local area networks (WLANs, currently standardized within IEEE 802.11ac, and the fourth-generation (4G mobile cellular wireless systems to achieve a very high system throughput while satisfying quality of service (QoS constraints. In particular, Block Diagonalization (BD scheme is a low-complexity precoding technique for MU-MIMO downlink channels, which completely pre-cancels the multiuser interference. The major issue of the BD scheme is that the number of users that can be simultaneously supported is limited by the ratio of the number of base station transmit antennas to the number of user receive antennas. When the number of users is large, a subset of users must be selected, and selection algorithms should be designed to maximize the total system throughput. In this paper, the BD technique is extended to MU-MIMO-OFDM systems and a low complexity user scheduling algorithm is proposed to find the optimal subset of users that should transmit simultaneously, in light of the instantaneous channel state information (CSI, such that the total system sum-rate capacity is maximized. Simulation results show that the proposed scheduling algorithm achieves a good trade-off between sum-rate capacity performance and computational complexity.
Field-distribution in EAP-transducers with diagonal-edge contacts
Hoffstadt, Thorben; Graf, Christian; Maas, Jürgen
2013-04-01
Dielectric Electroactive Polymers belong to a new class of smart materials, whose functional principle is based on electrostatic forces. They can either be used as actuators to provide considerable stretch ratios or as generators to convert mechanical strain energy into electrical energy by use of an initial amount of energy. Since the polymer material and also the covering compliant electrodes show non-ideal electrical properties, like finite resistivity and conductivity respectively, design rules have to be derived, in order to optimize the transducer. The electrode conductivity in connection with the polymer resistivity causes a voltage drop along the electrode surface, resulting in a reduced actuation strain or energy conversion. To minimize its parasitic effects, the influence of this effect is studied by the field-distribution based on a model obtained with the equivalent network method. It is shown that the proposed model provides accurate results that can be used to study the effect of contacting electrodes with diagonal-edge contacts in combination with alternating contacts in between.
Kumar, Rajesh; Srivastava, Smriti; Gupta, J R P
2017-03-01
In this paper adaptive control of nonlinear dynamical systems using diagonal recurrent neural network (DRNN) is proposed. The structure of DRNN is a modification of fully connected recurrent neural network (FCRNN). Presence of self-recurrent neurons in the hidden layer of DRNN gives it an ability to capture the dynamic behaviour of the nonlinear plant under consideration (to be controlled). To ensure stability, update rules are developed using lyapunov stability criterion. These rules are then used for adjusting the various parameters of DRNN. The responses of plants obtained with DRNN are compared with those obtained when multi-layer feed forward neural network (MLFFNN) is used as a controller. Also, in example 4, FCRNN is also investigated and compared with DRNN and MLFFNN. Robustness of the proposed control scheme is also tested against parameter variations and disturbance signals. Four simulation examples including one-link robotic manipulator and inverted pendulum are considered on which the proposed controller is applied. The results so obtained show the superiority of DRNN over MLFFNN as a controller.
Comment on "Benchmarking Compressed Sensing, Super-Resolution, and Filter Diagonalization"
Mandelshtam, Vladimir A
2016-01-01
In a recent paper [Int. J. Quant. Chem. (2016) DOI: 10.1002/qua.25144, arXiv:1502.06579] Markovich, Blau, Sanders, and Aspuru-Guzik presented a numerical evaluation and comparison of three methods, Compressed Sensing (CS), Super-Resolution (SR), and Filter Diagonalization (FDM), on their ability of "recovering information" from time signals, concluding that CS and RS outperform FDM. We argue that this comparison is invalid for the following reasons. FDM is a well established method designed for solving the harmonic inversion problem or, similarly, for the problem of spectral estimation, and as such should be applied only to problems of this kind. The authors incorrectly assume that the problem of data fitting is equivalent to the spectral estimation problem, regardless of what parametric form is used, and, consequently, in all five numerical examples FDM is applied to the wrong problem. Moreover, the authors' implementation of FDM turned out to be incorrect, leading to extremely bad results, caused by numeric...
Achieving Effective Universal Health Coverage And Diagonal Approaches To Care For Chronic Illnesses.
Knaul, Felicia Marie; Bhadelia, Afsan; Atun, Rifat; Frenk, Julio
2015-09-01
Health systems in low- and middle-income countries were designed to provide episodic care for acute conditions. However, the burden of disease has shifted to be overwhelmingly dominated by chronic conditions and illnesses that require health systems to function in an integrated manner across a spectrum of disease stages from prevention to palliation. Low- and middle-income countries are also aiming to ensure health care access for all through universal health coverage. This article proposes a framework of effective universal health coverage intended to meet the challenge of chronic illnesses. It outlines strategies to strengthen health systems through a "diagonal approach." We argue that the core challenge to health systems is chronicity of illness that requires ongoing and long-term health care. The example of breast cancer within the broader context of health system reform in Mexico is presented to illustrate effective universal health coverage along the chronic disease continuum and across health systems functions. The article concludes with recommendations to strengthen health systems in order to achieve effective universal health coverage.
Imtiaz, Waqas A.; Ilyas, M.; Khan, Yousaf
2016-11-01
This paper propose a new code to optimize the performance of spectral amplitude coding-optical code division multiple access (SAC-OCDMA) system. The unique two-matrix structure of the proposed enhanced multi diagonal (EMD) code and effective correlation properties, between intended and interfering subscribers, significantly elevates the performance of SAC-OCDMA system by negating multiple access interference (MAI) and associated phase induce intensity noise (PIIN). Performance of SAC-OCDMA system based on the proposed code is thoroughly analyzed for two detection techniques through analytic and simulation analysis by referring to bit error rate (BER), signal to noise ratio (SNR) and eye patterns at the receiving end. It is shown that EMD code while using SDD technique provides high transmission capacity, reduces the receiver complexity, and provides better performance as compared to complementary subtraction detection (CSD) technique. Furthermore, analysis shows that, for a minimum acceptable BER of 10-9 , the proposed system supports 64 subscribers at data rates of up to 2 Gbps for both up-down link transmission.
The diagonal spin basis and calculation of processes involving polarized particles
Galynsky, M V
1998-01-01
The review of developed by the authors new techniques for covariant calculation of matrix elements in QED, the so-called formalism of "Diagonal Spin Basis" (DSB), is presented. In DSB spin 4-vectors of in- and out- fermions are expressed just in terms of their 4-momenta. In this approach the little Lorentz group, common for the initial and final states,is realized. This brings the spin operators of in- and out-particles to coincidence. The developed approach is valid both for massive fermions and for massless ones. There occur no problems with accounting for spin flip amplitudes in it. Just 4-momenta of particles participating in reactions are required in it to construct the mathematical apparatus for calculations of matrix elements. We apply this formalism to the next processes: 1) Möller and Bhabha bremsstrahlung ($e^{\\pm}e^- \\to e^{\\pm}e^- \\gamma$) in the ultrarelativistic limit when initial particles and photon are helicity polarized; 2) Compton back-scattering of photons of intensive circularly polarize...
Fixed-complexity vector perturbation with Block diagonalization for MU-MIMO systems
Mohaisen, Manar; Chang, KyungHi; Ji, Seunghwan; Joung, Jinsoup
2009-01-01
Block diagonalization (BD) is an attractive technique that transforms the multi-user multiple-input multiple-output (MU-MIMO) channel into parallel single-user MIMO (SU-MIMO) channels with zero inter-user interference (IUI). In this paper, we combine the BD technique with two deterministic vector perturbation (VP) algorithms that reduce the transmit power in MU-MIMO systems with linear precoding. These techniques are the fixed-complexity sphere encoder (FSE) and the QR-decomposition with M-algorithm encoder (QRDM-E). In contrast to the conventional BD VP technique, which is based on the sphere encoder (SE), the proposed techniques have fixed complexity and a tradeoff between performance and complexity can be achieved by controlling the size of the set of candidates for the perturbation vector. Simulation results and analysis demonstrate the properness of the proposed techniques for the next generation mobile communications systems which are latency and computational complexity limited. In MU-MIMO system with ...
Replica Fourier Tansforms on Ultrametric Trees, and Block-Diagonalizing Multi-Replica Matrices
de Dominicis, C.; Carlucci, D. M.; Temesvári, T.
1997-01-01
The analysis of objects living on ultrametric trees, in particular the block-diagonalization of 4-replica matrices M^{α β;γ^δ}, is shown to be dramatically simplified through the introduction of properly chosen operations on those objects. These are the Replica Fourier Transforms on ultrametric trees. Those transformations are defined and used in the present work. On montre que l'analyse d'objets vivant sur un arbre ultramétrique, en particulier, la diagonalisation par blocs d'une matrice M^{α β;γ^δ} dépendant de 4-répliques, se simplifie de façon dramatique si l'on introduit les opérations appropriées sur ces objets. Ce sont les Transformées de Fourier de Répliques sur un arbre ultramétrique. Ces transformations sont définies et utilisées dans le présent travail.
Diagonal and Low-Rank Matrix Decompositions, Correlation Matrices, and Ellipsoid Fitting
Saunderson, James; Parrilo, Pablo A; Willsky, Alan S
2012-01-01
In this paper we establish links between, and new results for, three problems that are not usually considered together. The first is a matrix decomposition problem that arises in areas such as statistical modeling and signal processing: given a matrix $X$ formed as the sum of an unknown diagonal matrix and an unknown low rank positive semidefinite matrix, decompose $X$ into these constituents. The second problem we consider is to determine the facial structure of the set of correlation matrices, a convex set also known as the elliptope. This convex body, and particularly its facial structure, plays a role in applications from combinatorial optimization to mathematical finance. The third problem is a basic geometric question: given points $v_1,v_2,...,v_n\\in \\R^k$ (where $n > k$) determine whether there is a centered ellipsoid passing \\emph{exactly} through all of the points. We show that in a precise sense these three problems are equivalent. Furthermore we establish a simple sufficient condition on a subspac...
Diagonally Implicit Runge-Kutta Methods for Ordinary Differential Equations. A Review
Kennedy, Christopher A.; Carpenter, Mark H.
2016-01-01
A review of diagonally implicit Runge-Kutta (DIRK) methods applied to rst-order ordinary di erential equations (ODEs) is undertaken. The goal of this review is to summarize the characteristics, assess the potential, and then design several nearly optimal, general purpose, DIRK-type methods. Over 20 important aspects of DIRKtype methods are reviewed. A design study is then conducted on DIRK-type methods having from two to seven implicit stages. From this, 15 schemes are selected for general purpose application. Testing of the 15 chosen methods is done on three singular perturbation problems. Based on the review of method characteristics, these methods focus on having a stage order of two, sti accuracy, L-stability, high quality embedded and dense-output methods, small magnitudes of the algebraic stability matrix eigenvalues, small values of aii, and small or vanishing values of the internal stability function for large eigenvalues of the Jacobian. Among the 15 new methods, ESDIRK4(3)6L[2]SA is recommended as a good default method for solving sti problems at moderate error tolerances.
Microplate array diagonal gel electrophoresis for cohort studies of microsatellite loci.
Chen, Xiao-he; O'Dell, Sandra D; Day, Ian N M
2002-05-01
After PCR amplification, we have achieved precise sizing of trinucleotide and tetranucleotide microsatellite alleles on 96-well open-faced polyacrylamide microplate array diagonal gel electrophoresis (MADGE) gels: two tetranucleotide repeats, HUMTHOI (five alleles 248-263 bp) and DYS390 (eight alleles 200-228 bp), and DYS392, a trinucleotide repeat (eight alleles 210-231 bp). A gel matrix of Duracryl, a high mechanical strength polyacrylamide derivative, and appropriate ionic conditions provide the 1.3%-1.5% band resolution required. No end-labeling of primers is needed, as the sensitive Vistra Green intercalating dye is used for the visualization of bands. Co-run markers bracketing the PCR fragments ensure accurate sizing without inter-lane variability. Electrophoresis of multiple gels in a thermostatically controlled tank allows up to 1000 samples to be run in 90 min. Gel images were analyzed using a Fluorlmager 595 fluorescent scanning system, and alleles were identified using Phoretix software for band migration measurement and Microsoft Excel to compute fragment sizes. Estimated sizes were interpolated precisely to achieve accurate binning. Microsatellite-MADGE represents a utilitarian methodfor high-throughput genotyping in cohort studies, using standard laboratory equipment.
Zhao, Jian; Zhang, Feng; Chen, Xiaoqing; Yao, Yu
2011-03-01
Few reports have described the combined use of unilateral pedicle screw fixation and interbody fusion for lumbar stenosis. We retrospectively reviewed 79 patients with lumbar stenosis. The rationale and effectiveness of unilateral pedicle screw fixation were studied from biomechanical and clinical perspectives, aiming to reduce stiffness of the implant. All patients were operated with posterior interbody fusion using a diagonal cage in combination with unilateral transpedicular screw fixation and had reached the 3-year follow-up interval after operation. The mean operating time was 115 minutes (range=95-150 min) and the mean estimated blood loss was 150 mL (range=100-200 mL). The mean duration of hospital stay was 10 days (range=7-15 days). Clinical outcomes were assessed prior to surgery and reassessed at intervals using Denis' pain and work scales. Fusion status was determined from X-rays and CT scans. At the final follow-up, the clinical results were satisfactory and patients showed significantly improved scores (pdiagonal cage with unilateral transpedicular fixation is an effective treatment for decompressive surgery for lumbar stenosis.
Friedlander, Arthur H; López-López, José; Velasco-Ortega, Eugenio
2012-01-01
In Spain a significant number of individuals die from atherosclerotic disease of the coronary and carotid arteries without having classic risk factors and prodomal symptoms. The diagonal ear lobe crease (DELC) has been characterized in the medical literature as a surrogate marker which can identify high risk patients having occult atherosclerosis. This topic however has not been examined in either the medical or dental literature emanating from Spain. The majority of clinical, angiography and postmortem reports support the premise that DELC is a valuable extravascular physical sign able to distinguish some patients at risk of succumbing to atherosclerosis of the coronary arteries. A minority of studies have however failed to support this hypothesis. More recently reports using B mode ultrasound have also linked DELC to atherosclerosis of the carotid artery and another report has related DELC to the presence of calcified carotid artery atheromas on panoramic radiographs. DELC is readily visible during head and neck cancer screening examinations. In conjunction with the patient's medical history, vital signs, and panoramic radiograph, the DELC may assist in atherosclerotic risk.
Grasping the diagonal: controlling attention to illusory stimuli for action and perception.
Stöttinger, Elisabeth; Aigner, Stefan; Hanstein, Klara; Perner, Josef
2009-03-01
Since the pioneering work of [Aglioti, S., DeSouza, J. F., & Goodale, M. A. (1995). Size-contrast illusions deceive the eye but not the hand. Current Biology, 5(6), 679-685] visual illusions have been used to provide evidence for the functional division of labour within the visual system-one system for conscious perception and the other system for unconscious guidance of action. However, these studies were criticised for attentional mismatch between action and perception conditions and for the fact that grip size is not determined by the size of an object but also by surrounding obstacles. Stoettinger and Perner [Stoettinger, E., & Perner, J., (2006). Dissociating size representations for action and for conscious judgment: Grasping visual illusions without apparent obstacles. Consciousness and Cognition, 15, 269-284] used the diagonal illusion controlling for the influence of surrounding features on grip size and bimanual grasping to rule out attentional mismatch. Unfortunately, the latter objective was not fully achieved. In the present study, attentional mismatch was avoided by using only the dominant hand for action and for indicating perceived size. Results support the division of labour: Grip aperture follows actual size independent of illusory effects, while finger-thumb span indications of perceived length are clearly influenced by the illusion.
Directory of Open Access Journals (Sweden)
Sarah Jane Hobbs
2016-06-01
Full Text Available Background. Although the trot is described as a diagonal gait, contacts of the diagonal pairs of hooves are not usually perfectly synchronized. Although subtle, the timing dissociation between contacts of each diagonal pair could have consequences on gait dynamics and provide insight into the functional strategies employed. This study explores the mechanical effects of different diagonal dissociation patterns when speed was matched between individuals and how these effects link to moderate, natural changes in trotting speed. We anticipate that hind-first diagonal dissociation at contact increases with speed, diagonal dissociation at contact can reduce collision-based energy losses and predominant dissociation patterns will be evident within individuals. Methods. The study was performed in two parts: in the first 17 horses performed speed-matched trotting trials and in the second, five horses each performed 10 trotting trials that represented a range of individually preferred speeds. Standard motion capture provided kinematic data that were synchronized with ground reaction force (GRF data from a series of force plates. The data were analyzed further to determine temporal, speed, GRF, postural, mass distribution, moment, and collision dynamics parameters. Results. Fore-first, synchronous, and hind-first dissociations were found in horses trotting at (3.3 m/s ± 10%. In these speed-matched trials, mean centre of pressure (COP cranio-caudal location differed significantly between the three dissociation categories. The COP moved systematically and significantly (P = .001 from being more caudally located in hind-first dissociation (mean location = 0.41 ± 0.04 through synchronous (0.36 ± 0.02 to a more cranial location in fore-first dissociation (0.32 ± 0.02. Dissociation patterns were found to influence function, posture, and balance parameters. Over a moderate speed range, peak vertical forelimb GRF had a strong relationship with dissociation
Modeling of Human Joint Structures.
1982-09-01
Radial Lateral " epicondyle Olecranon Radius Ulna Figure 3. Lateral aspect of the right elbow joint. -17- Annular Ligament This strong band encircles... elbow joint, knee joint, human joints, shoulder joint, ankle joint, joint models, hip joint, ligaments. 20. ABSTRACT (Continue on reverse side If...ligaments. -A rather extended discussion of the articulations and anatomical descriptions of the elbow , shoulder, hip, knee and ankle joints are
Approximating Graphic TSP by Matchings
Mömke, Tobias
2011-01-01
We present a framework for approximating the metric TSP based on a novel use of matchings. Traditionally, matchings have been used to add edges in order to make a given graph Eulerian, whereas our approach also allows for the removal of certain edges leading to a decreased cost. For the TSP on graphic metrics (graph-TSP), the approach yields a 1.461-approximation algorithm with respect to the Held-Karp lower bound. For graph-TSP restricted to a class of graphs that contains degree three bounded and claw-free graphs, we show that the integrality gap of the Held-Karp relaxation matches the conjectured ratio 4/3. The framework allows for generalizations in a natural way and also leads to a 1.586-approximation algorithm for the traveling salesman path problem on graphic metrics where the start and end vertices are prespecified.
Approximation methods in probability theory
Čekanavičius, Vydas
2016-01-01
This book presents a wide range of well-known and less common methods used for estimating the accuracy of probabilistic approximations, including the Esseen type inversion formulas, the Stein method as well as the methods of convolutions and triangle function. Emphasising the correct usage of the methods presented, each step required for the proofs is examined in detail. As a result, this textbook provides valuable tools for proving approximation theorems. While Approximation Methods in Probability Theory will appeal to everyone interested in limit theorems of probability theory, the book is particularly aimed at graduate students who have completed a standard intermediate course in probability theory. Furthermore, experienced researchers wanting to enlarge their toolkit will also find this book useful.
Reinforcement Learning via AIXI Approximation
Veness, Joel; Hutter, Marcus; Silver, David
2010-01-01
This paper introduces a principled approach for the design of a scalable general reinforcement learning agent. This approach is based on a direct approximation of AIXI, a Bayesian optimality notion for general reinforcement learning agents. Previously, it has been unclear whether the theory of AIXI could motivate the design of practical algorithms. We answer this hitherto open question in the affirmative, by providing the first computationally feasible approximation to the AIXI agent. To develop our approximation, we introduce a Monte Carlo Tree Search algorithm along with an agent-specific extension of the Context Tree Weighting algorithm. Empirically, we present a set of encouraging results on a number of stochastic, unknown, and partially observable domains.
Concept Approximation between Fuzzy Ontologies
Institute of Scientific and Technical Information of China (English)
无
2006-01-01
Fuzzy ontologies are efficient tools to handle fuzzy and uncertain knowledge on the semantic web; but there are heterogeneity problems when gaining interoperability among different fuzzy ontologies. This paper uses concept approximation between fuzzy ontologies based on instances to solve the heterogeneity problems. It firstly proposes an instance selection technology based on instance clustering and weighting to unify the fuzzy interpretation of different ontologies and reduce the number of instances to increase the efficiency. Then the paper resolves the problem of computing the approximations of concepts into the problem of computing the least upper approximations of atom concepts. It optimizes the search strategies by extending atom concept sets and defining the least upper bounds of concepts to reduce the searching space of the problem. An efficient algorithm for searching the least upper bounds of concept is given.
Approximate Sparse Regularized Hyperspectral Unmixing
Directory of Open Access Journals (Sweden)
Chengzhi Deng
2014-01-01
Full Text Available Sparse regression based unmixing has been recently proposed to estimate the abundance of materials present in hyperspectral image pixel. In this paper, a novel sparse unmixing optimization model based on approximate sparsity, namely, approximate sparse unmixing (ASU, is firstly proposed to perform the unmixing task for hyperspectral remote sensing imagery. And then, a variable splitting and augmented Lagrangian algorithm is introduced to tackle the optimization problem. In ASU, approximate sparsity is used as a regularizer for sparse unmixing, which is sparser than l1 regularizer and much easier to be solved than l0 regularizer. Three simulated and one real hyperspectral images were used to evaluate the performance of the proposed algorithm in comparison to l1 regularizer. Experimental results demonstrate that the proposed algorithm is more effective and accurate for hyperspectral unmixing than state-of-the-art l1 regularizer.
Cave, Robert J.; Newton, Marshall D.
1997-06-01
Two independent methods are presented for the nonperturbative calculation of the electronic coupling matrix element (Hab) for electron transfer reactions using ab initio electronic structure theory. The first is based on the generalized Mulliken-Hush (GMH) model, a multistate generalization of the Mulliken Hush formalism for the electronic coupling. The second is based on the block diagonalization (BD) approach of Cederbaum, Domcke, and co-workers. Detailed quantitative comparisons of the two methods are carried out based on results for (a) several states of the system Zn2OH2+ and (b) the low-lying states of the benzene-Cl atom complex and its contact ion pair. Generally good agreement between the two methods is obtained over a range of geometries. Either method can be applied at an arbitrary nuclear geometry and, as a result, may be used to test the validity of the Condon approximation. Examples of nonmonotonic behavior of the electronic coupling as a function of nuclear coordinates are observed for Zn2OH2+. Both methods also yield a natural definition of the effective distance (rDA) between donor (D) and acceptor (A) sites, in contrast to earlier approaches which required independent estimates of rDA, generally based on molecular structure data.
Transfinite Approximation of Hindman's Theorem
Beiglböck, Mathias
2010-01-01
Hindman's Theorem states that in any finite coloring of the integers, there is an infinite set all of whose finite sums belong to the same color. This is much stronger than the corresponding finite form, stating that in any finite coloring of the integers there are arbitrarily long finite sets with the same property. We extend the finite form of Hindman's Theorem to a "transfinite" version for each countable ordinal, and show that Hindman's Theorem is equivalent to the appropriate transfinite approximation holding for every countable ordinal. We then give a proof of Hindman's Theorem by directly proving these transfinite approximations.
Mouse genetic models for temporomandibular joint development and disorders.
Suzuki, A; Iwata, J
2016-01-01
The temporomandibular joint (TMJ) is a synovial joint essential for hinge and sliding movements of the mammalian jaw. Temporomandibular joint disorders (TMD) are dysregulations of the muscles or the TMJ in structure, function, and physiology, and result in pain, limited mandibular mobility, and TMJ noise and clicking. Although approximately 40-70% adults in the USA have at least one sign of TMD, the etiology of TMD remains largely unknown. Here, we highlight recent advances in our understanding of TMD in mouse models.
Mouse genetic models for temporomandibular joint development and disorders
Suzuki, A.; Iwata, J.
2015-01-01
The temporomandibular joint (TMJ) is a synovial joint essential for hinge and sliding movements of the mammalian jaw. Temporomandibular joint disorders (TMD) are dysregulations of the muscles or the TMJ in structure, function, and physiology, and result in pain, limited mandibular mobility, and TMJ noise and clicking. Although approximately 40–70% adults in the USA have at least one sign of TMD, the etiology of TMD remains largely unknown. Here, we highlight recent advances in our understandi...
Joint fluid culture ... fungi, or viruses grow. This is called a culture. If these germs are detected, other tests may ... is no special preparation needed for the lab culture. How to prepare for the removal of joint ...
Sacroiliac joint pain - aftercare
... this page: //medlineplus.gov/ency/patientinstructions/000610.htm Sacroiliac joint pain - aftercare To use the sharing features on this page, please enable JavaScript. The sacroiliac joint (SIJ) is a term used to describe the ...
Knee joint replacement - slideshow
... this page: //medlineplus.gov/ency/presentations/100088.htm Knee joint replacement - series—Normal anatomy To use the ... to slide 4 out of 4 Overview The knee is a complex joint. It contains the distal ...
Tree wavelet approximations with applications
Institute of Scientific and Technical Information of China (English)
无
2005-01-01
[1]Baraniuk, R. G., DeVore, R. A., Kyriazis, G., Yu, X. M., Near best tree approximation, Adv. Comput. Math.,2002, 16: 357-373.[2]Cohen, A., Dahmen, W., Daubechies, I., DeVore, R., Tree approximation and optimal encoding, Appl. Comput.Harmonic Anal., 2001, 11: 192-226.[3]Dahmen, W., Schneider, R., Xu, Y., Nonlinear functionals of wavelet expansions-adaptive reconstruction and fast evaluation, Numer. Math., 2000, 86: 49-101.[4]DeVore, R. A., Nonlinear approximation, Acta Numer., 1998, 7: 51-150.[5]Davis, G., Mallat, S., Avellaneda, M., Adaptive greedy approximations, Const. Approx., 1997, 13: 57-98.[6]DeVore, R. A., Temlyakov, V. N., Some remarks on greedy algorithms, Adv. Comput. Math., 1996, 5: 173-187.[7]Kashin, B. S., Temlyakov, V. N., Best m-term approximations and the entropy of sets in the space L1, Mat.Zametki (in Russian), 1994, 56: 57-86.[8]Temlyakov, V. N., The best m-term approximation and greedy algorithms, Adv. Comput. Math., 1998, 8:249-265.[9]Temlyakov, V. N., Greedy algorithm and m-term trigonometric approximation, Constr. Approx., 1998, 14:569-587.[10]Hutchinson, J. E., Fractals and self similarity, Indiana. Univ. Math. J., 1981, 30: 713-747.[11]Binev, P., Dahmen, W., DeVore, R. A., Petruchev, P., Approximation classes for adaptive methods, Serdica Math.J., 2002, 28: 1001-1026.[12]Gilbarg, D., Trudinger, N. S., Elliptic Partial Differential Equations of Second Order, Berlin: Springer-Verlag,1983.[13]Ciarlet, P. G., The Finite Element Method for Elliptic Problems, New York: North Holland, 1978.[14]Birman, M. S., Solomiak, M. Z., Piecewise polynomial approximation of functions of the class Wαp, Math. Sb.,1967, 73: 295-317.[15]DeVore, R. A., Lorentz, G. G., Constructive Approximation, New York: Springer-Verlag, 1993.[16]DeVore, R. A., Popov, V., Interpolation of Besov spaces, Trans. Amer. Math. Soc., 1988, 305: 397-414.[17]Devore, R., Jawerth, B., Popov, V., Compression of wavelet decompositions, Amer. J. Math., 1992, 114: 737-785.[18]Storozhenko, E
On the performance of diagonal lattice space-time codes for the quasi-static MIMO channel
Abediseid, Walid
2013-06-01
There has been tremendous work done on designing space-time codes for the quasi-static multiple-input multiple-output (MIMO) channel. All the coding design to date focuses on either high-performance, high rates, low complexity encoding and decoding, or targeting a combination of these criteria. In this paper, we analyze in detail the performance of diagonal lattice space-time codes under lattice decoding. We present both upper and lower bounds on the average error probability. We derive a new closed form expression of the lower bound using the so-called sphere-packing bound. This bound presents the ultimate performance limit a diagonal lattice space-time code can achieve at any signal-to-noise ratio (SNR). The upper bound is simply derived using the union-bound and demonstrates how the average error probability can be minimized by maximizing the minimum product distance of the code. © 2013 IEEE.
Vacaru, Sergiu I
2015-01-01
We re-investigate how generic off-diagonal cosmological solutions depending, in general, on all spacetime coordinates can be constructed in massive and f-modified gravity using the anholonomic frame deformation method. There are constructed new classes of locally anisotropic and (in) homogeneous cosmological metrics with open and closed spatial geometries. By resorting such solutions, we show that they describe the late time acceleration due to effective cosmological terms induced by nonlinear off-diagonal interactions, possible modifications of the gravitational action and graviton mass. The cosmological metrics and related St\\" uckelberg fields are constructed in explicit form up to nonholonomic frame transforms of the Friedmann-Lama\\^{\\i}tre-Robertson-Walker (FLRW) coordinates. The solutions include matter, graviton mass and other effective sources modelling nonlinear gravitational and matter fields interactions with polarization of physical constants and deformations of metrics, which may explain dark ene...
Institute of Scientific and Technical Information of China (English)
Guo Yuqin; Li Fuzhu; Jiang Hong; Wang Xiaochun
2005-01-01
According to the characteristics of a complex cover panel, its geometry shape is described by the NURBS surface with great description capability. With the reference to the surface classification determined by Gauss curvature, the proportion of the mid-surface area between before and after being developed is derived from the displacement variation of the mid-surface in the normal vector direction of the sheet metal during the sheet metal forming process. Hereby, based on the curve development theory in differential geometry, a novel diagonal point by point surface development method is put forward to estimate a complex cover panel's blank contour efficiently. By comparing the sample's development result of diagonal point by point surface development method with that of available one-step method, the validity of the proposed surface development method is verified.
Lacroix, D; Bender, M
2008-01-01
Multi-reference calculations along the lines of the Generator Coordinate Method or the restoration of broken symmetries within the nuclear Energy Density Functional (EDF) framework are becoming a standard tool in nuclear structure physics. These calculations rely on the extension of a single-reference energy functional, of the Gogny or the Skyrme types, to non-diagonal energy kernels. There is no rigorous constructive framework for this extension so far. The commonly accepted way proceeds by formal analogy with the expressions obtained when applying the generalized Wick theorem to the non-diagonal matrix element of a Hamilton operator between two product states. It is pointed out that this procedure is ill-defined when extended to EDF calculations as the generalized Wick theorem is taken outside of its range of applicability. In particular, such a procedure is responsible for the appearance of spurious divergences and steps in multi-reference EDF energies, as was recently observed in calculations restoring pa...
Lin, Lin; Huhs, Georg; Yang, Chao
2014-01-01
We describe a scheme for efficient large-scale electronic-structure calculations based on the combination of the pole expansion and selected inversion (PEXSI) technique with the SIESTA method, which uses numerical atomic orbitals within the Kohn-Sham density functional theory (KSDFT) framework. The PEXSI technique can efficiently utilize the sparsity pattern of the Hamiltonian and overlap matrices generated in SIESTA, and for large systems has a much lower computational complexity than that associated with the matrix diagonalization procedure. The PEXSI technique can be used to evaluate the electron density, free energy, atomic forces, density of states and local density of states without computing any eigenvalue or eigenvector of the Kohn-Sham Hamiltonian. It can achieve accuracy fully comparable to that obtained from a matrix diagonalization procedure for general systems, including metallic systems at low temperature. The PEXSI method is also highly scalable. With the recently developed massively parallel P...
High Sensitivity Magnetic Sensors Based on Off-diagonal Magnetoimpedance in Amorphous FeCoSiB Wires
Directory of Open Access Journals (Sweden)
N.A. Yudanov
2013-12-01
Full Text Available The magnetoimpedance (MI effect has a potential for the development of high performance magnetic sensors. For sensor applications, off-diagonal configuration is preferable when the MI element is excited by ac current and the output is detected from the coil. In the present work, the off-diagonal sensor design was advanced by utilising a complex waveform excitation produced by a microcontroller and applied to a multiple wire MI element. For optimised excitation with a waveform close to a positive half sine form and characteristic frequency of 8 MHz the field resolution of about 60 mV/Oe was achieved. The pulse excitation does not require an additional bias since it includes controllable low frequency components. The concept of microcontroller driven sensor element could be attractive for the development of intellectual sensors.
Gevaert, Kris; Impens, Francis; Van Damme, Petra; Ghesquière, Bart; Hanoulle, Xavier; Vandekerckhove, Joël
2007-12-01
Numerous gel-free proteomics techniques have been reported over the past few years, introducing a move from proteins to peptides as bits of information in qualitative and quantitative proteome studies. Many shotgun proteomics techniques randomly sample thousands of peptides in a qualitative and quantitative manner but overlook the vast majority of protein modifications that are often crucial for proper protein structure and function. Peptide-based proteomic approaches have thus been developed to profile a diverse set of modifications including, but not at all limited, to phosphorylation, glycosylation and ubiquitination. Typical here is that each modification needs a specific, tailor-made analytical procedure. In this minireview, we discuss how one technique - diagonal reverse-phase chromatography - is applied to study two different types of protein modification: protein processing and protein N-glycosylation. Additionally, we discuss an activity-based proteome study in which purine-binding proteins were profiled by diagonal chromatography.
Domain wall partition function of the eight-vertex model with a non-diagonal reflecting end
Yang, Wen-Li; Feng, Jun; Hao, Kun; Shi, Kang-Jie; Sun, Cheng-Yi; Yang, Zhan-Ying; Zhang, Yao-Zhong
2011-01-01
With the help of the Drinfeld twist or factorizing F-matrix for the eight-vertex SOS model, we obtain the explicit determinant expression of the partition function of the eight-vertex model with a generic non-diagonal reflecting end and domain wall boundary condition. Our result shows that, contrary to the eight-vertex model without a reflection end, the partition function can be expressed as a single determinant.
Guinter Neutzling Schneid; Rubens Chaves de Oliveira; Osvaldo Vieira
2016-01-01
The dimensional stability of the paper may change due to middle exchange moisture, releasing the latent stress acquired into the manufacturing process. One result of this tension release is the diagonal curl. This study aims to conduct a sensitivity analysis of the different input’s variables of an industrial paper machine, along with some laboratory measurements, in order to identify the importance in production of paperboard quality control and relate to the property of the paper called...
Institute of Scientific and Technical Information of China (English)
Li Ta-tsien(李大潜); Peng Yue-Jun
2003-01-01
Abstract We prove that the C0 boundedness of solution impliesthe global existence and uniqueness of C1 solution to the initial-boundary value problem for linearly degenerate quasilinear hyperbolic systems of diagonal form with nonlinear boundary conditions. Thus, if the C1 solution to the initial-boundary value problem blows up in a finite time, then the solution itself must tend to the infinity at the starting point of singularity.
Garrido-Sanabria, Emilio R.; Perez-Cordova, Miriam G.; Colom, Luis V.
2011-01-01
The medial septum/diagonal band complex (MSDB) controls hippocampal excitability, rhythms and plastic processes. Medial septal neuronal populations display heterogeneous firing patterns. In addition, some of these populations degenerate during age-related disorders (e.g. cholinergic neurons). Thus, it is particularly important to examine the intrinsic properties of theses neurons in order to create new agents that effectively modulate hippocampal excitability and enhance memory processes. Her...
Institute of Scientific and Technical Information of China (English)
Yong Fu YANG
2011-01-01
For an inhomogeneous quasilinear hyperbolic system of diagonal form, under the assumptions that the system is linearly degenerate and the C1 norm of the boundary data is bounded, we show that the mechanism of the formation of singularities of C1 classical solution to the Goursat problem with C1 compatibility conditions at the origin must be an ODE type. The similar result is also obtained for the weakly discontinuous solution with C0 compatibility conditions at the origin.
Syud, F A; Stanger, H E; Gellman, S H
2001-09-12
The contributions of interstrand side chain-side chain contacts to beta-sheet stability have been examined with an autonomously folding beta-hairpin model system. RYVEV(D)PGOKILQ-NH2 ((D)P = D-proline, O = ornithine) has previously been shown to adopt a beta-hairpin conformation in aqueous solution, with a two-residue loop at D-Pro-Gly. In the present study, side chains that display interstrand NOEs (Tyr-2, Lys-9, and Leu-11) are mutated to alanine or serine, and the conformational impact of the mutations is assessed. In the beta-hairpin conformation Tyr-2 and Leu-11 are directly across from one another (non-hydrogen bonded pair). This "lateral" juxtaposition of two hydrophobic side chains appears to contribute to beta-hairpin conformational stability, which is consistent with results from other beta-sheet model studies and with statistical analyses of interstrand residue contacts in protein crystal structures. Interaction between the side chains of Tyr-2 and Lys-9 also stabilizes the beta-hairpin conformation. Tyr-2/Lys-9 is a "diagonal" interstrand juxtaposition because these residues are not directly across from one another in terms of the hydrogen bonding registry between the strands. This diagonal interaction arises from the right-handed twist that is commonly observed among beta-sheets. Evidence of diagonal side chain-side chain contacts has been observed in other autonomously folding beta-sheet model systems, but we are not aware of other efforts to determine whether a diagonal interaction contributes to beta-sheet stability.
Rational approximation of vertical segments
Salazar Celis, Oliver; Cuyt, Annie; Verdonk, Brigitte
2007-08-01
In many applications, observations are prone to imprecise measurements. When constructing a model based on such data, an approximation rather than an interpolation approach is needed. Very often a least squares approximation is used. Here we follow a different approach. A natural way for dealing with uncertainty in the data is by means of an uncertainty interval. We assume that the uncertainty in the independent variables is negligible and that for each observation an uncertainty interval can be given which contains the (unknown) exact value. To approximate such data we look for functions which intersect all uncertainty intervals. In the past this problem has been studied for polynomials, or more generally for functions which are linear in the unknown coefficients. Here we study the problem for a particular class of functions which are nonlinear in the unknown coefficients, namely rational functions. We show how to reduce the problem to a quadratic programming problem with a strictly convex objective function, yielding a unique rational function which intersects all uncertainty intervals and satisfies some additional properties. Compared to rational least squares approximation which reduces to a nonlinear optimization problem where the objective function may have many local minima, this makes the new approach attractive.
Approximate Reasoning with Fuzzy Booleans
Broek, van den P.M.; Noppen, J.A.R.
2004-01-01
This paper introduces, in analogy to the concept of fuzzy numbers, the concept of fuzzy booleans, and examines approximate reasoning with the compositional rule of inference using fuzzy booleans. It is shown that each set of fuzzy rules is equivalent to a set of fuzzy rules with singleton crisp ante
Some results in Diophantine approximation
DEFF Research Database (Denmark)
in the formal Laurent series over F3. The first paper is on intrinsic Diophantine approximation in the Cantor set in the formal Laurent series over F3. The summary contains a short motivation, the results of the paper and sketches of the proofs, mainly focusing on the ideas involved. The details of the proofs...
Truthful approximations to range voting
DEFF Research Database (Denmark)
Filos-Ratsika, Aris; Miltersen, Peter Bro
We consider the fundamental mechanism design problem of approximate social welfare maximization under general cardinal preferences on a finite number of alternatives and without money. The well-known range voting scheme can be thought of as a non-truthful mechanism for exact social welfare...
Approximation on the complex sphere
Alsaud, Huda; Kushpel, Alexander; Levesley, Jeremy
2012-01-01
We develop new elements of harmonic analysis on the complex sphere on the basis of which Bernstein's, Jackson's and Kolmogorov's inequalities are established. We apply these results to get order sharp estimates of $m$-term approximations. The results obtained is a synthesis of new results on classical orthogonal polynomials, harmonic analysis on manifolds and geometric properties of Euclidean spaces.
WKB Approximation in Noncommutative Gravity
Directory of Open Access Journals (Sweden)
Maja Buric
2007-12-01
Full Text Available We consider the quasi-commutative approximation to a noncommutative geometry defined as a generalization of the moving frame formalism. The relation which exists between noncommutativity and geometry is used to study the properties of the high-frequency waves on the flat background.
On badly approximable complex numbers
DEFF Research Database (Denmark)
Esdahl-Schou, Rune; Kristensen, S.
We show that the set of complex numbers which are badly approximable by ratios of elements of , where has maximal Hausdorff dimension. In addition, the intersection of these sets is shown to have maximal dimension. The results remain true when the sets in question are intersected with a suitably...
Approximation properties of haplotype tagging
Directory of Open Access Journals (Sweden)
Dreiseitl Stephan
2006-01-01
Full Text Available Abstract Background Single nucleotide polymorphisms (SNPs are locations at which the genomic sequences of population members differ. Since these differences are known to follow patterns, disease association studies are facilitated by identifying SNPs that allow the unique identification of such patterns. This process, known as haplotype tagging, is formulated as a combinatorial optimization problem and analyzed in terms of complexity and approximation properties. Results It is shown that the tagging problem is NP-hard but approximable within 1 + ln((n2 - n/2 for n haplotypes but not approximable within (1 - ε ln(n/2 for any ε > 0 unless NP ⊂ DTIME(nlog log n. A simple, very easily implementable algorithm that exhibits the above upper bound on solution quality is presented. This algorithm has running time O((2m - p + 1 ≤ O(m(n2 - n/2 where p ≤ min(n, m for n haplotypes of size m. As we show that the approximation bound is asymptotically tight, the algorithm presented is optimal with respect to this asymptotic bound. Conclusion The haplotype tagging problem is hard, but approachable with a fast, practical, and surprisingly simple algorithm that cannot be significantly improved upon on a single processor machine. Hence, significant improvement in computatational efforts expended can only be expected if the computational effort is distributed and done in parallel.
Pythagorean Approximations and Continued Fractions
Peralta, Javier
2008-01-01
In this article, we will show that the Pythagorean approximations of [the square root of] 2 coincide with those achieved in the 16th century by means of continued fractions. Assuming this fact and the known relation that connects the Fibonacci sequence with the golden section, we shall establish a procedure to obtain sequences of rational numbers…
Approximate Reanalysis in Topology Optimization
DEFF Research Database (Denmark)
Amir, Oded; Bendsøe, Martin P.; Sigmund, Ole
2009-01-01
In the nested approach to structural optimization, most of the computational effort is invested in the solution of the finite element analysis equations. In this study, the integration of an approximate reanalysis procedure into the framework of topology optimization of continuum structures...
Merging Belief Propagation and the Mean Field Approximation: A Free Energy Approach
DEFF Research Database (Denmark)
Riegler, Erwin; Kirkelund, Gunvor Elisabeth; Manchón, Carles Navarro
2013-01-01
We present a joint message passing approach that combines belief propagation and the mean field approximation. Our analysis is based on the region-based free energy approximation method proposed by Yedidia et al. We show that the message passing fixed-point equations obtained with this combinatio...
Low Rank Approximation in $G_0W_0$ Approximation
Shao, Meiyue; Yang, Chao; Liu, Fang; da Jornada, Felipe H; Deslippe, Jack; Louie, Steven G
2016-01-01
The single particle energies obtained in a Kohn--Sham density functional theory (DFT) calculation are generally known to be poor approximations to electron excitation energies that are measured in transport, tunneling and spectroscopic experiments such as photo-emission spectroscopy. The correction to these energies can be obtained from the poles of a single particle Green's function derived from a many-body perturbation theory. From a computational perspective, the accuracy and efficiency of such an approach depends on how a self energy term that properly accounts for dynamic screening of electrons is approximated. The $G_0W_0$ approximation is a widely used technique in which the self energy is expressed as the convolution of a non-interacting Green's function ($G_0$) and a screened Coulomb interaction ($W_0$) in the frequency domain. The computational cost associated with such a convolution is high due to the high complexity of evaluating $W_0$ at multiple frequencies. In this paper, we discuss how the cos...
Wittenbrink, Nils; Venghaus, Florian; Williams, David; Eisfeld, Wolfgang
2016-11-01
A new diabatization method is presented, which is suitable for the development of accurate high-dimensional coupled potential energy surfaces for use in quantum dynamics studies. The method is based on the simultaneous use of adiabatic wave function and energy data, respectively, and combines block-diagonalization and diabatization by ansatz approaches. It thus is called hybrid diabatization. The adiabatic wave functions of suitable ab initio calculations are projected onto a diabatic state space and the resulting vectors are orthonormalized like in standard block-diagonalization. A parametrized diabatic model Hamiltonian is set up as an ansatz for which the block-diagonalization data can be utilized to find the optimal model. Finally, the parameters are optimized with respect to the ab initio reference data such that the deviations between adiabatic energies and eigenvalues of the model as well as projected state vectors and eigenvectors of the model are minimized. This approach is particularly advantageous for problems with a complicated electronic structure where the diabatic state space must be of higher dimension than the number of calculated adiabatic states. This is an efficient way to handle problems with intruder states, which are very common for reactive systems. The use of wave function information also increases the information content for each data point without additional cost, which is beneficial in handling the undersampling problem for high-dimensional systems. The new method and its performance are demonstrated by application to three prototypical systems, ozone (O3), methyl iodide (CH3I), and propargyl (H2CCCH).
Werner-Allen, Jon W; Coggins, Brian E; Zhou, Pei
2010-05-01
Amide-amide NOESY provides important distance constraints for calculating global folds of large proteins, especially integral membrane proteins with beta-barrel folds. Here, we describe a diagonal-suppressed 4-D NH-NH TROSY-NOESY-TROSY (ds-TNT) experiment for NMR studies of large proteins. The ds-TNT experiment employs a spin state selective transfer scheme that suppresses diagonal signals while providing TROSY optimization in all four dimensions. Active suppression of the strong diagonal peaks greatly reduces the dynamic range of observable signals, making this experiment particularly suitable for use with sparse sampling techniques. To demonstrate the utility of this method, we collected a high resolution 4-D ds-TNT spectrum of a 23kDa protein using randomized concentric shell sampling (RCSS), and we used FFT-CLEAN processing for further reduction of aliasing artifacts - the first application of these techniques to a NOESY experiment. A comparison of peak parameters in the high resolution 4-D dataset with those from a conventionally-sampled 3-D control spectrum shows an accurate reproduction of NOE crosspeaks in addition to a significant reduction in resonance overlap, which largely eliminates assignment ambiguity. Likewise, a comparison of 4-D peak intensities and volumes before and after application of the CLEAN procedure demonstrates that the reduction of aliasing artifacts by CLEAN does not systematically distort NMR signals.
Diagonal Earlobe Crease as a Significant Marker for Coronary Artery Disease: A Case-control Study
Kamal, Rida; Kausar, Komal; Minto, Moeed H; Ilyas, Fariha; Assad, Salman; Shah, Saeed U
2017-01-01
Objectives: To investigate the association between diagonal earlobe crease (DELC) and coronary artery disease (CAD). Limited data exists in South Asia and no prior studies have been performed in Pakistan to assess this relationship. Methods: In this case-control study, 200 participants from December 2015 to March 2016 at Shifa International Hospital, Islamabad, Pakistan were enrolled. Consecutive non-probability sampling was used to recruit patients. Cases were enrolled from cardiac care unit (CCU) of the hospital with angiography-proven CAD. Controls were selected from surgical, medical and neurology units of the hospital if they had no previously established evidence or symptoms of CAD. Patients were evaluated in terms of age and any history of hypertension, diabetes and/or smoking. Cases and controls were examined separately by two investigators for the unilateral or bilateral presence of DELC of the lobular portion of either auricle. Patients with ear piercings were excluded from the study. The data was analyzed in statistical product and service solutions (SPSS) (IBM, Delaware, Chicago), and an online statistical software. Results: Out of the 200 patients, 126 (63%) were males and 74 (37%) were females. In the 100 cases, 76 had DELC and 24 had no crease whereas, among the 100 controls, 36 had DELC and 64 had no DELC (p statistically significant (p 0.05). Conclusion: There is a significant association between DELC and CAD. This is the first case-control study from South Asia disclosing this important correlation. Our study also reports a high frequency of DELC in patients suffering from hypertension and diabetes mellitus. No association between smoking and DELC was found.
Leão, Richardson N; Targino, Zé H; Colom, Luis V; Fisahn, André
2015-02-01
The medial septum/diagonal band of Broca (MS/DBB) is crucial for hippocampal theta rhythm generation (4-12 Hz). However, the mechanisms behind theta rhythmogenesis are still under debate. The MS/DBB consists, in its majority, of three neuronal populations that use acetylcholine, GABA, or glutamate as neurotransmitter. While the firing patterns of septal neurons enable the MS/DBB to generate rhythmic output critical for the generation of the hippocampal theta rhythm, the ability to synchronize these action potentials is dependent on the interconnectivity between the three major MS/DBB neuronal populations, yet little is known about intraseptal connections. Here we assessed the connectivity between pairs of MS/DBB neurons with paired patch-clamp recordings. We found that glutamatergic and GABAergic neurons provide intraseptal connections and produce sizable currents in MS/DBB postsynaptic cells. We also analyzed linear and nonlinear relationships between the action potentials fired by pairs of neurons belonging to various MS/DBB neuronal populations. Our results show that while the synchrony index for action potential firing was significantly higher in pairs of GABAergic neurons, coherence of action potential firing in the theta range was similarly low in all pairs analyzed. Recurrence analysis demonstrated that individual action potentials were more recurrent in cholinergic neurons than in other cell types. Implementing sparse connectivity in a computer model of the MS/DBB network reproduced our experimental data. We conclude that the interplay between the intrinsic membrane properties of different MS/DBB neuronal populations and the connectivity among these populations underlie the ability of the MS/DBB network to critically contribute to hippocampal theta rhythmogenesis.
Rotational Angles and Velocities During Down the Line and Diagonal Across Court Volleyball Spikes
Directory of Open Access Journals (Sweden)
Justin R. Brown
2014-05-01
Full Text Available The volleyball spike is an explosive movement that is frequently used to end a rally and earn a point. High velocity spikes are an important skill for a successful volleyball offense. Although the influence of vertical jump height and arm velocity on spiked ball velocity (SBV have been investigated, little is known about the relationship of shoulder and hip angular kinematics with SBV. Other sport skills, like the baseball pitch share similar movement patterns and suggest trunk rotation is important for such movements. The purpose of this study was to examine the relationship of both shoulder and hip angular kinematics with ball velocity during the volleyball spike. Methods: Fourteen Division I collegiate female volleyball players executed down the line (DL and diagonally across-court (DAC spikes in a laboratory setting to measure shoulder and hip angular kinematics and velocities. Each spike was analyzed using a 10 Camera Raptor-E Digital Real Time Camera System. Results: DL SBV was significantly greater than for DAC, respectively (17.54±2.35 vs. 15.97±2.36 m/s, p<0.05. The Shoulder Hip Separation Angle (S-HSA, Shoulder Angular Velocity (SAV, and Hip Angular Velocity (HAV were all significantly correlated with DAC SBV. S-HSA was the most significant predictor of DAC SBV as determined by regression analysis. Conclusions: This study provides support for a relationship between a greater S-HSA and SBV. Future research should continue to 1 examine the influence of core training exercise and rotational skill drills on SBV and 2 examine trunk angular velocities during various types of spikes during play.
Lim, S. P.; Sheng, D. N.
2016-07-01
A many-body localized (MBL) state is a new state of matter emerging in a disordered interacting system at high-energy densities through a disorder-driven dynamic phase transition. The nature of the phase transition and the evolution of the MBL phase near the transition are the focus of intense theoretical studies with open issues in the field. We develop an entanglement density matrix renormalization group (En-DMRG) algorithm to accurately target highly excited states for MBL systems. By studying the one-dimensional Heisenberg spin chain in a random field, we demonstrate the accuracy of the method in obtaining energy eigenstates and the corresponding statistical results of quantum states in the MBL phase. Based on large system simulations by En-DMRG for excited states, we demonstrate some interesting features in the entanglement entropy distribution function, which is characterized by two peaks: one at zero and another one at the quantized entropy S =ln2 with an exponential decay tail on the S >ln2 side. Combining En-DMRG with exact diagonalization simulations, we demonstrate that the transition from the MBL phase to the delocalized ergodic phase is driven by rare events where the locally entangled spin pairs develop power-law correlations. The corresponding phase diagram contains an intermediate or crossover regime, which has power-law spin-z correlations resulting from contributions of the rare events. We discuss the physical picture for the numerical observations in this regime, where various distribution functions are distinctly different from results deep in the ergodic and MBL phases for finite-size systems. Our results may provide new insights for understanding the phase transition in such systems.
Nicotine induction of theta frequency oscillations in rodent medial septal diagonal band in vitro
Institute of Scientific and Technical Information of China (English)
Cheng-biao LU; Cheng-zhang LI; Dong-liang LI; Zaineb HENDERSON
2013-01-01
Aim:This study aimed to examine the role of the nicotinic receptor (nAChR) in the generation of theta oscillations (4-12 Hz) in vitro.Methods:Electrophysiological studies were performed on medial septal diagonal band area (MSDB) slices to measure theta oscillation.Immunofluorescence and confocal microscopy studies were carried out to detect α4 nAChR and β2 nAChR subunits in perfused-fixed tissue from VGluT2-GFP and GAD67-GFP transgenic mice.Results:Application of nicotine to MSDB slices produced persistent theta oscillations in which area power increased in a doseresponsive manner.This activity was inhibited by GABAA receptor antagonists and partially by ionotropic glutamate receptor antagonists,indicating the involvement of local GABAergic and glutamatergic neurons in the production of the rhythmic activity.The nicotineinduced theta activity was also inhibited selectively by non-α7*nAChR antagonists,suggesting the presence of these receptor types on GABAergic and glutamatergic neuron populatjons in the MSDB.This was confirmed by immunofluorescence and confocal microscopy studies in transgenic mice in which the GABAergic and glutamatergic neurons express green fluorescent protein (GFP),showing Iocalisation of β2 nAChR and α4 nAChR subunits,the most common constituents of non-α7*nAChRs,in both cell types in the MSDB.Conclusion:Theta activity in the MSDB may be generated by tonic stimulation of non-α7*nAChRs.
Approximate Inference for Wireless Communications
DEFF Research Database (Denmark)
Hansen, Morten
This thesis investigates signal processing techniques for wireless communication receivers. The aim is to improve the performance or reduce the computationally complexity of these, where the primary focus area is cellular systems such as Global System for Mobile communications (GSM) (and extensions...... complexity can potentially lead to limited power consumption, which translates into longer battery life-time in the handsets. The scope of the thesis is more specifically to investigate approximate (nearoptimal) detection methods that can reduce the computationally complexity significantly compared...... to the optimal one, which usually requires an unacceptable high complexity. Some of the treated approximate methods are based on QL-factorization of the channel matrix. In the work presented in this thesis it is proven how the QL-factorization of frequency-selective channels asymptotically provides the minimum...
Approximate Privacy: Foundations and Quantification
Feigenbaum, Joan; Schapira, Michael
2009-01-01
Increasing use of computers and networks in business, government, recreation, and almost all aspects of daily life has led to a proliferation of online sensitive data about individuals and organizations. Consequently, concern about the privacy of these data has become a top priority, particularly those data that are created and used in electronic commerce. There have been many formulations of privacy and, unfortunately, many negative results about the feasibility of maintaining privacy of sensitive data in realistic networked environments. We formulate communication-complexity-based definitions, both worst-case and average-case, of a problem's privacy-approximation ratio. We use our definitions to investigate the extent to which approximate privacy is achievable in two standard problems: the second-price Vickrey auction and the millionaires problem of Yao. For both the second-price Vickrey auction and the millionaires problem, we show that not only is perfect privacy impossible or infeasibly costly to achieve...
Hydrogen Beyond the Classic Approximation
Scivetti, I
2003-01-01
The classical nucleus approximation is the most frequently used approach for the resolution of problems in condensed matter physics.However, there are systems in nature where it is necessary to introduce the nuclear degrees of freedom to obtain a correct description of the properties.Examples of this, are the systems with containing hydrogen.In this work, we have studied the resolution of the quantum nuclear problem for the particular case of the water molecule.The Hartree approximation has been used, i.e. we have considered that the nuclei are distinguishable particles.In addition, we have proposed a model to solve the tunneling process, which involves the resolution of the nuclear problem for configurations of the system away from its equilibrium position
Validity of the Eikonal Approximation
Kabat, Daniel
1992-01-01
We summarize results on the reliability of the eikonal approximation in obtaining the high energy behavior of a two particle forward scattering amplitude. Reliability depends on the spin of the exchanged field. For scalar fields the eikonal fails at eighth order in perturbation theory, when it misses the leading behavior of the exchange-type diagrams. In a vector theory the eikonal gets the exchange diagrams correctly, but fails by ignoring certain non-exchange graphs which dominate the asymp...
Many Faces of Boussinesq Approximations
Vladimirov, Vladimir A
2016-01-01
The \\emph{equations of Boussinesq approximation} (EBA) for an incompressible and inhomogeneous in density fluid are analyzed from a viewpoint of the asymptotic theory. A systematic scaling shows that there is an infinite number of related asymptotic models. We have divided them into three classes: `poor', `reasonable' and `good' Boussinesq approximations. Each model can be characterized by two parameters $q$ and $k$, where $q =1, 2, 3, \\dots$ and $k=0, \\pm 1, \\pm 2,\\dots$. Parameter $q$ is related to the `quality' of approximation, while $k$ gives us an infinite set of possible scales of velocity, time, viscosity, \\emph{etc.} Increasing $q$ improves the quality of a model, but narrows the limits of its applicability. Parameter $k$ allows us to vary the scales of time, velocity and viscosity and gives us the possibility to consider any initial and boundary conditions. In general, we discover and classify a rich variety of possibilities and restrictions, which are hidden behind the routine use of the Boussinesq...
Approximate Counting of Graphical Realizations.
Erdős, Péter L; Kiss, Sándor Z; Miklós, István; Soukup, Lajos
2015-01-01
In 1999 Kannan, Tetali and Vempala proposed a MCMC method to uniformly sample all possible realizations of a given graphical degree sequence and conjectured its rapidly mixing nature. Recently their conjecture was proved affirmative for regular graphs (by Cooper, Dyer and Greenhill, 2007), for regular directed graphs (by Greenhill, 2011) and for half-regular bipartite graphs (by Miklós, Erdős and Soukup, 2013). Several heuristics on counting the number of possible realizations exist (via sampling processes), and while they work well in practice, so far no approximation guarantees exist for such an approach. This paper is the first to develop a method for counting realizations with provable approximation guarantee. In fact, we solve a slightly more general problem; besides the graphical degree sequence a small set of forbidden edges is also given. We show that for the general problem (which contains the Greenhill problem and the Miklós, Erdős and Soukup problem as special cases) the derived MCMC process is rapidly mixing. Further, we show that this new problem is self-reducible therefore it provides a fully polynomial randomized approximation scheme (a.k.a. FPRAS) for counting of all realizations.
Approximate Counting of Graphical Realizations.
Directory of Open Access Journals (Sweden)
Péter L Erdős
Full Text Available In 1999 Kannan, Tetali and Vempala proposed a MCMC method to uniformly sample all possible realizations of a given graphical degree sequence and conjectured its rapidly mixing nature. Recently their conjecture was proved affirmative for regular graphs (by Cooper, Dyer and Greenhill, 2007, for regular directed graphs (by Greenhill, 2011 and for half-regular bipartite graphs (by Miklós, Erdős and Soukup, 2013. Several heuristics on counting the number of possible realizations exist (via sampling processes, and while they work well in practice, so far no approximation guarantees exist for such an approach. This paper is the first to develop a method for counting realizations with provable approximation guarantee. In fact, we solve a slightly more general problem; besides the graphical degree sequence a small set of forbidden edges is also given. We show that for the general problem (which contains the Greenhill problem and the Miklós, Erdős and Soukup problem as special cases the derived MCMC process is rapidly mixing. Further, we show that this new problem is self-reducible therefore it provides a fully polynomial randomized approximation scheme (a.k.a. FPRAS for counting of all realizations.
Diagonal Invariant Ideals of Topologically Graded C*-algebras%拓扑分次C*-代数中的对角不变理想
Institute of Scientific and Technical Information of China (English)
许庆祥; 张小波
2005-01-01
We study diagonal invariant ideals of topologically graded C*-algebras over discrete groups. Since all Toeplitz algebras defined on discrete groups are topologically graded, the results in this paper have improved the first author's previous works on this topic.
Is Early Joint Attention Associated with School-Age Pragmatic Language?
Gillespie-Lynch, Kristen; Khalulyan, Allie; del Rosario, Mithi; McCarthy, Brigid; Gomez, Lovella; Sigman, Marian; Hutman, Ted
2015-01-01
In order to evaluate evidence for the social-cognitive theory of joint attention, we examined relations between initiation of and response to joint attention at 12 and 18 months of age and pragmatic and structural language approximately 6 years later among children with and without autism spectrum disorder. Initiation of joint attention at 18…
Rollout Sampling Approximate Policy Iteration
Dimitrakakis, Christos
2008-01-01
Several researchers have recently investigated the connection between reinforcement learning and classification. We are motivated by proposals of approximate policy iteration schemes without value functions which focus on policy representation using classifiers and address policy learning as a supervised learning problem. This paper proposes variants of an improved policy iteration scheme which addresses the core sampling problem in evaluating a policy through simulation as a multi-armed bandit machine. The resulting algorithm offers comparable performance to the previous algorithm achieved, however, with significantly less computational effort. An order of magnitude improvement is demonstrated experimentally in two standard reinforcement learning domains: inverted pendulum and mountain-car.
Approximate Deconvolution Reduced Order Modeling
Xie, Xuping; Wang, Zhu; Iliescu, Traian
2015-01-01
This paper proposes a large eddy simulation reduced order model(LES-ROM) framework for the numerical simulation of realistic flows. In this LES-ROM framework, the proper orthogonal decomposition(POD) is used to define the ROM basis and a POD differential filter is used to define the large ROM structures. An approximate deconvolution(AD) approach is used to solve the ROM closure problem and develop a new AD-ROM. This AD-ROM is tested in the numerical simulation of the one-dimensional Burgers equation with a small diffusion coefficient(10^{-3})
Emergency Entry with One Control Torque: Non-Axisymmetric Diagonal Inertia Matrix
Llama, Eduardo Garcia
2011-01-01
In another work, a method was presented, primarily conceived as an emergency backup system, that addressed the problem of a space capsule that needed to execute a safe atmospheric entry from an arbitrary initial attitude and angular rate in the absence of nominal control capability. The proposed concept permits the arrest of a tumbling motion, orientation to the heat shield forward position and the attainment of a ballistic roll rate of a rigid spacecraft with the use of control in one axis only. To show the feasibility of such concept, the technique of single input single output (SISO) feedback linearization using the Lie derivative method was employed and the problem was solved for different number of jets and for different configurations of the inertia matrix: the axisymmetric inertia matrix (I(sub xx) > I(sub yy) = I(sub zz)), a partially complete inertia matrix with I(sub xx) > I(sub yy) > I(sub zz), I(sub xz) not = 0 and a realistic complete inertia matrix with I(sub xx) > I(sub yy) > I)sub zz), I(sub ij) not= 0. The closed loop stability of the proposed non-linear control on the total angle of attack, Theta, was analyzed through the zero dynamics of the internal dynamics for the case where the inertia matrix is axisymmetric (I(sub xx) > I(sub yy) = I(sub zz)). This note focuses on the problem of the diagonal non-axisymmetric inertia matrix (I(sub xx) > I(sub yy) > I(sub zz)), which is half way between the axisymmetric and the partially complete inertia matrices. In this note, the control law for this type of inertia matrix will be determined and its closed-loop stability will be analyzed using the same methods that were used in the other work. In particular, it will be proven that the control system is stable in closed-loop when the actuators only provide a roll torque.
Musielak-Orlicz-Hardy Spaces Associated with Operators Satisfying Reinforced Off-Diagonal Estimates
Directory of Open Access Journals (Sweden)
Bui The Anh
2013-02-01
Full Text Available Let X be a metric space with doubling measure and L a one-to-one operator of type ω having a bounded H∞ -functional calculus in L2(X satisfying the reinforced (pL; qL off-diagonal estimates on balls, where pL ∊ [1; 2 and qL ∊ (2;∞]. Let φ : X × [0;∞ → [0;∞ be a function such that φ (x;· is an Orlicz function, φ(·;t ∊ A∞(X (the class of uniformly Muckenhoupt weights, its uniformly critical upper type index l(φ ∊ (0;1] and φ(·; t satisfies the uniformly reverse Hölder inequality of order (qL/l(φ′, where (qL/l(φ′ denotes the conjugate exponent of qL/l(φ. In this paper, the authors introduce a Musielak-Orlicz-Hardy space Hφ;L(X, via the Lusin-area function associated with L, and establish its molecular characterization. In particular, when L is nonnegative self-adjoint and satisfies the Davies-Gaffney estimates, the atomic characterization of Hφ,L(X is also obtained. Furthermore, a sufficient condition for the equivalence between Hφ,L(ℝn and the classical Musielak-Orlicz-Hardy space Hv(ℝn is given. Moreover, for the Musielak-Orlicz-Hardy space Hφ,L(ℝn associated with the second order elliptic operator in divergence form on ℝn or the Schrödinger operator L := −Δ + V with 0 ≤ V ∊ L1loc(ℝn, the authors further obtain its several equivalent characterizations in terms of various non-tangential and radial maximal functions; finally, the authors show that the Riesz transform ∇L−1/2 is bounded from Hφ,L(ℝn to the Musielak-Orlicz space Lφ(ℝn when i(φ ∊ (0; 1], from Hφ,L(ℝn to Hφ(ℝn when i(φ ∊ (; 1], and from Hφ,L(ℝn to the weak Musielak-Orlicz-Hardy space WHφ(ℝn when i(φ=is attainable and φ(·; t ∊ A1(X, where i(φ denotes the uniformly critical lower type index of φ
Double-composite rectangular truss bridge and its joint analysis
Directory of Open Access Journals (Sweden)
Yongjian Liu
2015-08-01
Full Text Available This paper describes a novel composite tubular truss bridge with concrete slab and concrete-filled rectangular chords. With concrete slab plus truss system and joints reinforced with concrete and Perfobond Leiste rib, double composite truss bridge proved to be a fairly suitable solution in negative moment area. Perfobond Leiste shear connector (PBL is widely implemented in the composite structure for its outstanding fatigue resistance. In this pilot bridge, Perfobond Leister ribs (PBR were installed in the truss girder's joints, which played double roles as shear connector and stiffener. An erection method and overall bridge structural analysis were then presented. Typical joints in the pilot bridge were selected to analyze the effect of PBR. Investigation of the effect of PBR in concrete-filled tubular joints was elaborated. Comparison has revealed that concrete-filled tubular joints with PBR have much higher constraint capability than joints without PBR. For rectangular tubular truss, the punching shear force of the concrete filled joint with PBR is approximately 43% larger than that of the joint without PBR. Fatigue performance of the joint installed with PBR was improved, which was found through analysis of the stress concentration factor of joint. The PBR installed in the joints mitigated the stress concentration factor in the chord face. Therefore, the advantages of this new type of bridge are demonstrated, including the convenience of construction using rectangular truss, innovative concept of structural design and better global and local performances.
Generalized multiband typical medium dynamical cluster approximation: Application to (Ga,Mn)N
Zhang, Yi; Nelson, R.; Siddiqui, Elisha; Tam, K.-M.; Yu, U.; Berlijn, T.; Ku, W.; Vidhyadhiraja, N. S.; Moreno, J.; Jarrell, M.
2016-12-01
We generalize the multiband typical medium dynamical cluster approximation and the formalism introduced by Blackman, Esterling, and Berk so that it can deal with localization in multiband disordered systems with both diagonal and off-diagonal disorder with complicated potentials. We also introduce an ansatz for the momentum-resolved typical density of states that greatly improves the numerical stability of the method while preserving the independence of scattering events at different frequencies. Starting from the first-principles effective Hamiltonian, we apply this method to the diluted magnetic semiconductor Ga1 -xMnxN , and find the impurity band is completely localized for Mn concentrations x 10 the impurity band has delocalized states but the chemical potential resides at or above the mobility edge. So, the system is always insulating within the experimental compositional limit (x ≈0.10 ) due to Anderson localization. However, for 0.03 10 hole doping could make the system metallic, allowing double-exchange mediated, or enhanced, ferromagnetism. The developed method is expected to have a large impact on first-principles studies of Anderson localization.
Plasma Physics Approximations in Ares
Energy Technology Data Exchange (ETDEWEB)
Managan, R. A.
2015-01-08
Lee & More derived analytic forms for the transport properties of a plasma. Many hydro-codes use their formulae for electrical and thermal conductivity. The coefficients are complex functions of Fermi-Dirac integrals, F_{n}( μ/θ ), the chemical potential, μ or ζ = ln(1+e^{ μ/θ} ), and the temperature, θ = kT. Since these formulae are expensive to compute, rational function approximations were fit to them. Approximations are also used to find the chemical potential, either μ or ζ . The fits use ζ as the independent variable instead of μ/θ . New fits are provided for A^{α} (ζ ),A^{β} (ζ ), ζ, f(ζ ) = (1 + e^{-μ/θ})F_{1/2}(μ/θ), F_{1/2}'/F_{1/2}, F_{c}^{α}, and F_{c}^{β}. In each case the relative error of the fit is minimized since the functions can vary by many orders of magnitude. The new fits are designed to exactly preserve the limiting values in the non-degenerate and highly degenerate limits or as ζ→ 0 or ∞. The original fits due to Lee & More and George Zimmerman are presented for comparison.
Managing Joint Production Motivation
DEFF Research Database (Denmark)
Lindenberg, Siegwart; Foss, Nicolai Juul
2011-01-01
We contribute to the microfoundations of organizational performance by proffering the construct of joint production motivation. Under such motivational conditions individuals see themselves as part of a joint endeavor, each with his or her own roles and responsibilities; generate shared represent...... representations of actions and tasks; cognitively coordinate cooperation; and choose their own behaviors in terms of joint goals. Using goal-framing theory, we explain how motivation for joint production can be managed by cognitive/symbolic management and organizational design.......We contribute to the microfoundations of organizational performance by proffering the construct of joint production motivation. Under such motivational conditions individuals see themselves as part of a joint endeavor, each with his or her own roles and responsibilities; generate shared...
Johnson, D H
2009-01-01
What constitutes jointly Poisson processes remains an unresolved issue. This report reviews the current state of the theory and indicates how the accepted but unproven model equals that resulting from the small time-interval limit of jointly Bernoulli processes. One intriguing consequence of these models is that jointly Poisson processes can only be positively correlated as measured by the correlation coefficient defined by cumulants of the probability generating functional.
Joint Program Management Handbook
1994-12-01
the Engieermg and Manufacuring Devopment Phase. Nfilestoae HI- Develommen Annros Devopment approval marks a significant step for any program, but it is...to review concept formulaton. Systems Engilneertn As with service programs, systems engineering in joint program management is an essential tool . I...MANAGEMENT HANDBOOK On=e wd Umawtaiutt As discussed in Chapter 7, systems analysis of relationships is a usef tool for joint program managers. The joint
Approximate Uncertainty Modeling in Risk Analysis with Vine Copulas.
Bedford, Tim; Daneshkhah, Alireza; Wilson, Kevin J
2016-04-01
Many applications of risk analysis require us to jointly model multiple uncertain quantities. Bayesian networks and copulas are two common approaches to modeling joint uncertainties with probability distributions. This article focuses on new methodologies for copulas by developing work of Cooke, Bedford, Kurowica, and others on vines as a way of constructing higher dimensional distributions that do not suffer from some of the restrictions of alternatives such as the multivariate Gaussian copula. The article provides a fundamental approximation result, demonstrating that we can approximate any density as closely as we like using vines. It further operationalizes this result by showing how minimum information copulas can be used to provide parametric classes of copulas that have such good levels of approximation. We extend previous approaches using vines by considering nonconstant conditional dependencies, which are particularly relevant in financial risk modeling. We discuss how such models may be quantified, in terms of expert judgment or by fitting data, and illustrate the approach by modeling two financial data sets.
Yang, Henglong; Cheng, Yu-Hen; Chen, Ming-Hong; Lin, Yu-Hsuan
2016-09-01
The feasibility of applying a five-inch diagonal white organic light-emitting diode (WOLED) as a desk lamp was experimentally investigated by quantitatively comparing its two-dimensional (2D) optical intensity profile to that of a traditional 3M desk lamp equipped with optical diffuser. The 2D optical distribution patterns as the function of vertical distances to a surface of a five-inch diagonal WOLED were obtained by using rapid rotating measurement technique consisted of a sample holder on a rotational stage and a fixed photo detector with optical power meter. The 2D optical intensity profile on a surface can be rapidly established in a relatively small space by recording the reading from the fixed photo detector as rotating the sample holder. This rapid measurement technique is suitable for practical application in quality engineering without larger space. A WOLED is a compact and thin lighting source with planar device structure without additional optical components. Its optical intensity profile on a plane is expected to be different from traditional lighting sources. The optical distribution pattern of a desk lamp requires a relatively large area on a surface with relatively uniformed intensity distribution. The quantitative analysis of the similarity between WOLED and 3M desk lamp was conducted by comparing the optimal zones defined as the area within 75% of the maximum intensity in 2D optical distribution pattern. Our preliminary result showed that the optimal zone of a five-inch diagonal WOLED at 45cm vertical distance is highly similar to that of the 3M desk lamp with optical diffuser.
Analytical approximations for spiral waves
Energy Technology Data Exchange (ETDEWEB)
Löber, Jakob, E-mail: jakob@physik.tu-berlin.de; Engel, Harald [Institut für Theoretische Physik, Technische Universität Berlin, Hardenbergstrasse 36, EW 7-1, 10623 Berlin (Germany)
2013-12-15
We propose a non-perturbative attempt to solve the kinematic equations for spiral waves in excitable media. From the eikonal equation for the wave front we derive an implicit analytical relation between rotation frequency Ω and core radius R{sub 0}. For free, rigidly rotating spiral waves our analytical prediction is in good agreement with numerical solutions of the linear eikonal equation not only for very large but also for intermediate and small values of the core radius. An equivalent Ω(R{sub +}) dependence improves the result by Keener and Tyson for spiral waves pinned to a circular defect of radius R{sub +} with Neumann boundaries at the periphery. Simultaneously, analytical approximations for the shape of free and pinned spirals are given. We discuss the reasons why the ansatz fails to correctly describe the dependence of the rotation frequency on the excitability of the medium.
Dodgson's Rule Approximations and Absurdity
McCabe-Dansted, John C
2010-01-01
With the Dodgson rule, cloning the electorate can change the winner, which Young (1977) considers an "absurdity". Removing this absurdity results in a new rule (Fishburn, 1977) for which we can compute the winner in polynomial time (Rothe et al., 2003), unlike the traditional Dodgson rule. We call this rule DC and introduce two new related rules (DR and D&). Dodgson did not explicitly propose the "Dodgson rule" (Tideman, 1987); we argue that DC and DR are better realizations of the principle behind the Dodgson rule than the traditional Dodgson rule. These rules, especially D&, are also effective approximations to the traditional Dodgson's rule. We show that, unlike the rules we have considered previously, the DC, DR and D& scores differ from the Dodgson score by no more than a fixed amount given a fixed number of alternatives, and thus these new rules converge to Dodgson under any reasonable assumption on voter behaviour, including the Impartial Anonymous Culture assumption.
Approximate reduction of dynamical systems
Tabuada, Paulo; Julius, Agung; Pappas, George J
2007-01-01
The reduction of dynamical systems has a rich history, with many important applications related to stability, control and verification. Reduction of nonlinear systems is typically performed in an exact manner - as is the case with mechanical systems with symmetry--which, unfortunately, limits the type of systems to which it can be applied. The goal of this paper is to consider a more general form of reduction, termed approximate reduction, in order to extend the class of systems that can be reduced. Using notions related to incremental stability, we give conditions on when a dynamical system can be projected to a lower dimensional space while providing hard bounds on the induced errors, i.e., when it is behaviorally similar to a dynamical system on a lower dimensional space. These concepts are illustrated on a series of examples.
Approximation by double Walsh polynomials
Directory of Open Access Journals (Sweden)
Ferenc Móricz
1992-01-01
Full Text Available We study the rate of approximation by rectangular partial sums, Cesàro means, and de la Vallée Poussin means of double Walsh-Fourier series of a function in a homogeneous Banach space X. In particular, X may be Lp(I2, where 1≦p<∞ and I2=[0,1×[0,1, or CW(I2, the latter being the collection of uniformly W-continuous functions on I2. We extend the results by Watari, Fine, Yano, Jastrebova, Bljumin, Esfahanizadeh and Siddiqi from univariate to multivariate cases. As by-products, we deduce sufficient conditions for convergence in Lp(I2-norm and uniform convergence on I2 as well as characterizations of Lipschitz classes of functions. At the end, we raise three problems.
Diophantine approximations and Diophantine equations
Schmidt, Wolfgang M
1991-01-01
"This book by a leading researcher and masterly expositor of the subject studies diophantine approximations to algebraic numbers and their applications to diophantine equations. The methods are classical, and the results stressed can be obtained without much background in algebraic geometry. In particular, Thue equations, norm form equations and S-unit equations, with emphasis on recent explicit bounds on the number of solutions, are included. The book will be useful for graduate students and researchers." (L'Enseignement Mathematique) "The rich Bibliography includes more than hundred references. The book is easy to read, it may be a useful piece of reading not only for experts but for students as well." Acta Scientiarum Mathematicarum
On quantum and approximate privacy
Klauck, H
2001-01-01
This paper studies privacy in communication complexity. The focus is on quantum versions of the model and on protocols with only approximate privacy against honest players. We show that the privacy loss (the minimum divulged information) in computing a function can be decreased exponentially by using quantum protocols, while the class of privately computable functions (i.e., those with privacy loss 0) is not increased by quantum protocols. Quantum communication combined with small information leakage on the other hand makes certain functions computable (almost) privately which are not computable using quantum communication without leakage or using classical communication with leakage. We also give an example of an exponential reduction of the communication complexity of a function by allowing a privacy loss of o(1) instead of privacy loss 0.
Approximate analytic solutions to the NPDD: Short exposure approximations
Close, Ciara E.; Sheridan, John T.
2014-04-01
There have been many attempts to accurately describe the photochemical processes that take places in photopolymer materials. As the models have become more accurate, solving them has become more numerically intensive and more 'opaque'. Recent models incorporate the major photochemical reactions taking place as well as the diffusion effects resulting from the photo-polymerisation process, and have accurately described these processes in a number of different materials. It is our aim to develop accessible mathematical expressions which provide physical insights and simple quantitative predictions of practical value to material designers and users. In this paper, starting with the Non-Local Photo-Polymerisation Driven Diffusion (NPDD) model coupled integro-differential equations, we first simplify these equations and validate the accuracy of the resulting approximate model. This new set of governing equations are then used to produce accurate analytic solutions (polynomials) describing the evolution of the monomer and polymer concentrations, and the grating refractive index modulation, in the case of short low intensity sinusoidal exposures. The physical significance of the results and their consequences for holographic data storage (HDS) are then discussed.
A Reduced Order, One Dimensional Model of Joint Response
Energy Technology Data Exchange (ETDEWEB)
DOHNER,JEFFREY L.
2000-11-06
As a joint is loaded, the tangent stiffness of the joint reduces due to slip at interfaces. This stiffness reduction continues until the direction of the applied load is reversed or the total interface slips. Total interface slippage in joints is called macro-slip. For joints not undergoing macro-slip, when load reversal occurs the tangent stiffness immediately rebounds to its maximum value. This occurs due to stiction effects at the interface. Thus, for periodic loads, a softening and rebound hardening cycle is produced which defines a hysteretic, energy absorbing trajectory. For many jointed sub-structures, this hysteretic trajectory can be approximated using simple polynomial representations. This allows for complex joint substructures to be represented using simple non-linear models. In this paper a simple one dimensional model is discussed.
Magnetic dispersion of the diagonal incommensurate phase in lightly doped La2-xSrxCuO4.
Matsuda, M; Fujita, M; Wakimoto, S; Fernandez-Baca, J A; Tranquada, J M; Yamada, K
2008-11-07
We present inelastic neutron scattering experiments on a single-domain crystal of lightly doped La1.96Sr0.04CuO4. We find that the magnetic excitation spectrum in this insulating phase with a diagonal incommensurate spin modulation is remarkably similar to that in the superconducting regime, where the spin modulation is bond parallel. In particular, we find that the dispersion slope at low energy is essentially independent of doping and temperature over a significant range. The energy at which the excitations cross the commensurate antiferromagnetic wave vector increases roughly linearly with doping through the underdoped regime.
Institute of Scientific and Technical Information of China (English)
HOU Guo-Lin; Alatancang
2009-01-01
In the present paper, the spectrums of off-diagonal infinite-dimensional Hamiltonian operators are studied.At first, we prove that the spectrum, the continuous-spectrum, and the union of the point-spectrum and residual-spectrum of the operators are symmetric with respect to real axis and imaginary axis.Then for the purpose of reducing the dimension of the studied problems, the spectrums of the operators are expressed by the spectrums of the product of two self-adjoint operators in state space.At last, the above-mentioned results are applied to plane elasticity problems, which shows the practicability of the results.
Islam, Md Rafiqul; Mahmud, Abdullah Al; Islam, Md Saiful; Babu, Hafiz Md Hasan
2010-01-01
This paper describes an integrated framework for SOC test automation. This framework is based on a new approach for Wrapper/TAM co-optimization based on rectangle packing considering the diagonal length of the rectangles to emphasize on both TAM widths required by a core and its corresponding testing time. In this paper, we propose an efficient algorithm to construct wrappers that reduce testing time for cores. We then use rectangle packing to develop an integrated scheduling algorithm that incorporates power constraints in the test schedule. The test power consumption is important to consider since exceeding the system's power limit might damage the system.
Oshima, K
2001-01-01
Spontaneous symmetry breaking in (1+1)-dimensional $\\phi^{4}$ theory is studied with discretized light-front quantization. Taking effects of non-diagonal interactions into account, the first few terms of the commutation relations $[a_{0},a_{n}]$ are recalculated in the $\\hbar$ expansion. Our result of the critical coupling is still consistent with the equal-time result $22\\mu^{2}/\\hbar \\le \\lambda_{\\rm{cr}} \\le 55.5\\mu^{2}/\\hbar$. We also have examined effects of regarding the ratio of the bare coupling constant to a renormalized mass as an independent parameter in the $\\hbar$ expansion.
Directory of Open Access Journals (Sweden)
Søren Holdt Jensen
2007-01-01
Full Text Available We survey the definitions and use of rank-revealing matrix decompositions in single-channel noise reduction algorithms for speech signals. Our algorithms are based on the rank-reduction paradigm and, in particular, signal subspace techniques. The focus is on practical working algorithms, using both diagonal (eigenvalue and singular value decompositions and rank-revealing triangular decompositions (ULV, URV, VSV, ULLV, and ULLIV. In addition, we show how the subspace-based algorithms can be analyzed and compared by means of simple FIR filter interpretations. The algorithms are illustrated with working Matlab code and applications in speech processing.
Directory of Open Access Journals (Sweden)
Ma Bao-Li
2013-09-01
Full Text Available In this work, we investigate the trajectory tracking and point stabilization problems of asymmetric underactuated surface ships with non-diagonal inertia and damping matrices. By combining the novel state and input transformations, the direct Lyapunov approach, and the nonlinear time-varying tools, the trajectory tracking controller is derived, guaranteeing global κ-exponential convergence of state trajectory to the reference one satisfying mild persistent exciting conditions. By properly designing the reference trajectory, the proposed tracking scheme is also generalized to achieve global uniform asymptotic point stabilization. Simulation examples are given to illustrate the effectiveness of the proposed control schemes.
Institute of Scientific and Technical Information of China (English)
Yingmin Jia
2009-01-01
This paper mainly studies the model matching problem of multiple-output-delay systems in which the reference model is assigned to a diagonal transfer function matrix.A new model matching controller structure is first developed,and then,it is shown that the controller is feasible if and only if the sets of Diophantine equations have common solutions.The obtained controller allows a parametric representation,which shows that an adaptive scheme can be used to tolerate parameter variations in the plants.The resulting adaptive law can guarantee the global stability of the closed-loop systems and the convergence of the output error.
Martel, S. J.
2015-12-01
Physical breakdown of rock across a broad scale spectrum involves fracturing. In many areas large fractures develop near the topographic surface, with sheeting joints being among the most impressive. Sheeting joints share many geometric, textural, and kinematic features with other joints (opening-mode fractures) but differ in that they are (a) discernibly curved, (b) open near the topographic surface, and (c) form subparallel to the topographic surface. Where sheeting joints are geologically young, the surface-parallel compressive stresses are typically several MPa or greater. Sheeting joints are best developed beneath domes, ridges, and saddles; they also are reported, albeit rarely, beneath valleys or bowls. A mechanism that accounts for all these associations has been sought for more than a century: neither erosion of overburden nor high lateral compressive stresses alone suffices. Sheeting joints are not accounted for by Mohr-Coulomb shear failure criteria. Principles of linear elastic fracture mechanics, together with the mechanical effect of a curved topographic surface, do provide a basis for understanding sheeting joint growth and the pattern sheeting joints form. Compressive stresses parallel to a singly or doubly convex topographic surface induce a tensile stress perpendicular to the surface at shallow depths; in some cases this alone could overcome the weight of overburden to open sheeting joints. If regional horizontal compressive stresses, augmented by thermal stresses, are an order of magnitude or so greater than a characteristic vertical stress that scales with topographic amplitude, then topographic stress perturbations can cause sheeting joints to open near the top of a ridge. This topographic effect can be augmented by pressure within sheeting joints arising from water, ice, or salt. Water pressure could be particularly important in helping drive sheeting joints downslope beneath valleys. Once sheeting joints have formed, the rock sheets between
MR diagnosis of temporomandibular joint. A study of joint effusion
Energy Technology Data Exchange (ETDEWEB)
Kaneda, Takashi; Yamashiro, Mitsuaki; Ozawa, Kaoru; Suzuki, Hiromi; Okada, Hiroyuki; Yamamoto, Hirotsugu [Nihon Univ., Matsudo, Chiba (Japan). School of Dentistry
1998-03-01
The purposes of this study were to evaluate the relationship between correlation of MR joint effusion of the temporomandibular joint and disk position, to evaluate the relationship between joint effusion and aging, and to assess the frequency of MR joint effusion of bilateral temporomandibular joints. The temporomandibular joints of 192 patients with clinical symptoms of temporomandibular joint disorders were imaged bilaterally using high field, surface-coil MR imaging. Oblique sagittal and coronal proton density-weighted and T2-weighted images were obtained. Imaging findings of joint effusion were correlated with disk position, aging, and bilateral temporomandibular joints. MR showed effusion in 4% of the joints with normal superior disk position, 36% of the joints with disk displacement with reduction, and 45% of the joints with disk displacement without reduction. There were significant differences in the incidence of joint effusion between normal disk position and anterior disk displacement with or without reduction. Younger patients less than 40 years were significant higher the incidence of joint effusion than those of older patients. A significant association was seen between joint effusion and aging. MR showed effusion in 17% of the unilateral temporomandibular joint, 24% of the bilateral temporomandibular joints. There was no significant difference between unilateral and bilateral case. These results indicated that joint effusion using MR imaging was associated with varied temporomandibular joint pathologic states. (author)
Acromioclavicular Joint Separations
2013-01-01
Published online: 16 December 2012 # Springer Science+Business Media New York 2012 Abstract Acromioclavicular (AC) joint separations are common...injuries. The sports most likely to cause AC joint dislocations are football, soccer , hockey, rugby, and skiing, among others [9, 28, 29]. The major cause
Randomized approximate nearest neighbors algorithm.
Jones, Peter Wilcox; Osipov, Andrei; Rokhlin, Vladimir
2011-09-20
We present a randomized algorithm for the approximate nearest neighbor problem in d-dimensional Euclidean space. Given N points {x(j)} in R(d), the algorithm attempts to find k nearest neighbors for each of x(j), where k is a user-specified integer parameter. The algorithm is iterative, and its running time requirements are proportional to T·N·(d·(log d) + k·(d + log k)·(log N)) + N·k(2)·(d + log k), with T the number of iterations performed. The memory requirements of the procedure are of the order N·(d + k). A by-product of the scheme is a data structure, permitting a rapid search for the k nearest neighbors among {x(j)} for an arbitrary point x ∈ R(d). The cost of each such query is proportional to T·(d·(log d) + log(N/k)·k·(d + log k)), and the memory requirements for the requisite data structure are of the order N·(d + k) + T·(d + N). The algorithm utilizes random rotations and a basic divide-and-conquer scheme, followed by a local graph search. We analyze the scheme's behavior for certain types of distributions of {x(j)} and illustrate its performance via several numerical examples.
Jointness for the Rest of Us: Reforming Joint Professional Development
2016-06-10
service members for joint employment . Similar to their enlisted counterparts, the training, education and professional development of DOD civilian...the U.S. Armed forces sought by Congressional legislators and Defense leaders is not possible as long as joint education and training are limited to a...SUBJECT TERMS joint training, joint education , Goldwater Nichols Act, jointness, joint development reform analytics 16. SECURITY CLASSIFICATION OF
Exact diagonalization of non-Hermitian so(3,2) models: Generalized two-mode boson systems
Zhang, Hong-Biao; Wang, Gangcheng
2016-12-01
We propose a unified approach to exactly diagonalize generalized non-Hermitian so(3,2) models. This approach is a series of similarity transformations, which is constructed by some similarity transformation operators associated with su(1,1) and su(2) subalgebras of so(3,2) Lie algebra. During this diagonalization, it is worth noting that a key step is to get rid of the terms E ˆ ± and F ˆ ± together via the proper similarity transformations first. In this way, exact solutions of the non-Hermitian so(3,2) models are obtained. Meanwhile we give the corresponding eigenstates, which are regarded as Lie algebra so(3,2) coherent-like number states. The results can cover the generic form of the eigenvalues and eigenstates to the generalized non-Hermitian two-mode boson systems with the discrete spectrum, including 2D PT-symmetric and non-PT-symmetric oscillators as the special cases. Also they are true for the Hermitian case.
Mou, Si; Sun, Liangliang; Dovichi, Norman J
2013-11-19
While reversible protein phosphorylation plays an important role in many cellular processes, simple and reliable measurement of the stoichiometry of phosphorylation can be challenging. This measurement is confounded by differences in the ionization efficiency of phosphorylated and unphosphorylated sites during analysis by mass spectrometry. Here, we demonstrate diagonal capillary electrophoresis-mass spectrometry for the accurate determination of this stoichiometry. Diagonal capillary electrophoresis is a two-dimensional separation method that incorporates an immobilized alkaline phosphatase microreactor at the distal end of the first capillary and employs identical electrophoretic separation modes in both dimensions. The first dimension is used to separate a mixture of the phosphorylated and unphosphorylated forms of a peptide. Fractions are parked in the reactor where they undergo complete dephosphorylation. The products are then periodically transferred to the second capillary and analyzed by mass spectrometry (MS). Because the phosphorylated and unphosphorylated forms differ in charge, they are well resolved in the first dimension separation. Because the unphosphorylated and dephosphorylated peptides are identical, there is no bias in ionization efficiency, and phosphorylation stoichiometry can be determined by the ratio of the signal of the two forms. A calibration curve was generated from mixtures of a phosphorylated standard peptide and its unphosphorylated form, prepared in a bovine serum albumin tryptic digest. This proof of principle experiment demonstrated a linear response across nearly 2 orders of magnitude in stoichiometry.
Côrtes, A.M.A.
2015-02-20
The recently introduced divergence-conforming B-spline discretizations allow the construction of smooth discrete velocity–pressure pairs for viscous incompressible flows that are at the same time inf-sup stable and pointwise divergence-free. When applied to discretized Stokes equations, these spaces generate a symmetric and indefinite saddle-point linear system. Krylov subspace methods are usually the most efficient procedures to solve such systems. One of such methods, for symmetric systems, is the Minimum Residual Method (MINRES). However, the efficiency and robustness of Krylov subspace methods is closely tied to appropriate preconditioning strategies. For the discrete Stokes system, in particular, block-diagonal strategies provide efficient preconditioners. In this article, we compare the performance of block-diagonal preconditioners for several block choices. We verify how the eigenvalue clustering promoted by the preconditioning strategies affects MINRES convergence. We also compare the number of iterations and wall-clock timings. We conclude that among the building blocks we tested, the strategy with relaxed inner conjugate gradients preconditioned with incomplete Cholesky provided the best results.
Obtaining exact value by approximate computations
Institute of Scientific and Technical Information of China (English)
Jing-zhong ZHANG; Yong FENG
2007-01-01
Numerical approximate computations can solve large and complex problems fast. They have the advantage of high efficiency. However they only give approximate results, whereas we need exact results in some fields. There is a gap between approximate computations and exact results.In this paper, we build a bridge by which exact results can be obtained by numerical approximate computations.
Fuzzy Set Approximations in Fuzzy Formal Contexts
Institute of Scientific and Technical Information of China (English)
Mingwen Shao; Shiqing Fan
2006-01-01
In this paper, a kind of multi-level formal concept is introduced. Based on the proposed multi-level formal concept, we present a pair of rough fuzzy set approximations within fuzzy formal contexts. By the proposed rough fuzzy set approximations, we can approximate a fuzzy set according to different precision level. We discuss the properties of the proposed approximation operators in detail.
Obtaining exact value by approximate computations
Institute of Scientific and Technical Information of China (English)
2007-01-01
Numerical approximate computations can solve large and complex problems fast.They have the advantage of high efficiency.However they only give approximate results,whereas we need exact results in some fields.There is a gap between approximate computations and exact results. In this paper,we build a bridge by which exact results can be obtained by numerical approximate computations.
TURBO EQUALIZATION WITH JOINTLY GAUSSIAN EQUALIZER
Institute of Scientific and Technical Information of China (English)
Jiang Sen; Sun Hong; Li Ping
2005-01-01
A Jointly Gaussian (JG) equalizer is derived for turbo equalization based on an augmented real matrix representation of channel model and a Gaussian approximation of the received symbol sequence. Using matrix inversion lemma and Cholesky decomposition, a lowcomplexity implementation of JG equalizer is also presented. The simulation results and complexity comparison confirm that turbo equalization with JG equalizer has a better performance and a lower complexity than the existing turbo equalization with linear minimum mean squared error equalizer.
Temporomandibular joint dysfunction following shotgun injury.
Taglialatela Scafati, C; Taglialatela Scafati, S; Gargiulo, M; Cassese, M; Parascandolo, S
2008-04-01
Shotgun injuries to the maxillofacial region may have minor or, more often, devastating consequences. The most important factor in determining the extent of injury is the distance of the victim from the muzzle of the gun: usually, the longer the distance, the less severe the damage. Here is reported a case of shotgun injury sustained from a distance of approximately 10 m in which the deeper penetration of a single lead pellet led to significant involvement of the temporomandibular joint.
Total ankle joint replacement.
2016-02-01
Ankle arthritis results in a stiff and painful ankle and can be a major cause of disability. For people with end-stage ankle arthritis, arthrodesis (ankle fusion) is effective at reducing pain in the shorter term, but results in a fixed joint, and over time the loss of mobility places stress on other joints in the foot that may lead to arthritis, pain and dysfunction. Another option is to perform a total ankle joint replacement, with the aim of giving the patient a mobile and pain-free ankle. In this article we review the efficacy of this procedure, including how it compares to ankle arthrodesis, and consider the indications and complications.
2008-04-23
Åèìáëáíáçå= oÉëÉ~êÅÜ=póãéçëáìã= JOINT ROBOTICS PROGRAM Published: 23 April 2008 by Joel Brown and Paul Varian 5th Annual Acquisition Research...3. DATES COVERED 00-00-2008 to 00-00-2008 4. TITLE AND SUBTITLE Joint Robotics Program 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM...ëóåÉêÖó=Ñçê=áåÑçêãÉÇ=ÅÜ~åÖÉ=======- 464 - = = Joint Robotics Program Presenter: Joel Brown, Defense Acquisition University Author: Paul Varian
Directory of Open Access Journals (Sweden)
Gabriel F. Valencia Clement
2010-04-01
Full Text Available Masonry and steel components used in constructing buildings are in a constant state of motion. Volumetric changes are produced by temperature variation and deformation resulting from static or dynamic loading and in some materials, such as masonry, due to moisture content. This article addresses means of determining when expansion and seismic joints are required and how to proportion and design appropriate joints, specifically in steel buildings. It does not cover the study of expansion joints in concrete structures, in masonry construction or in non-structural (architectural elements.
Institute of Scientific and Technical Information of China (English)
ZHANG Min-Cang; HUANG-FU Guo-Qing
2011-01-01
@@ The Schr(o)dinger equation with the Hulthén potential is studied by working in a complete square integrable basis that carries a tridiagonal matrix representation of the wave operator.The arbitrary e-wave solutions are obtained by using an approximation of the centrifugal term.The resulting three-term recursion relation for the expansion coefficients of the wavefunction is presented and the wavefunctions are expressed in terms of the Jocobi polynomial.The discrete spectrum of the bound states is obtained by the diagonalization of the recursion relation.%The Schr(o)dinger equation with the Hulthén potential is studied by working in a complete square integrable basis that carries a tridiagonal matrix representation of the wave operator. The arbitrary e-wave solutions are obtained by using an approximation of the centrifugal term. The resulting three-term recursion relation for the expansion coefficients of the wavefunction is presented and the wavefunctions are expressed in terms of the Jocobi polynomial. The discrete spectrum of the bound states is obtained by the diagonalization of the recursion relation.
Frye, G D; Fincher, A S; Grover, C A; Jayaprabhu, S
1996-05-13
The impact of chronic ethanol treatment, sufficient to induce tolerance and physical dependence, on GABAA receptor function was studied in acutely isolated neurons from the medial septum/nucleus diagonal band (MS/nDB) of adult rats using whole cell, patch-clamp recordings. In ethanol-naive Controls, GABA (0.3-300 microM) induced concentration-dependent increases in Cl- current with a threshold of 0.3-1 microM, a mean maximal current of 7645 +/- 2148 pA at 100-300 microM, an EC50 of 11.3 +/- 1.3 microM and a slope of 1.53 +/- 0.07. GABA-activated currents in neurons from animals receiving two weeks of ethanol liquid diet treatment did not differ significantly on any of these measures. The rate of GABAA receptor desensitization (t1/2 = 6.49 +/- 1.19 s) estimated as the time required for loss of 50% of peak current during sustained application of 10 microM GABA, as well as the residual steady state current remaining following complete desensitization for controls was unchanged by chronic ethanol. The impact of chronic ethanol treatment on the GABAA receptor modulation by lanthanum and zinc which act as positive and negative allosteric modulators, respectively, was also evaluated. Test pulses of 3 microM GABA in control neurons showed maximal potentiation by 141 +/- 30% at approximately 1000 microM lanthanum with an EC50 of 107 +/- 34 microM and a slope of approximately 1. Lanthanum potentiation remained the same following chronic ethanol treatment. Initial estimates based on fitted concentration response curves suggested that maximal inhibition of 3 microM GABA responses by zinc at the level of 70.2 +/- 8.5% in control cells was significantly increased by chronic ethanol treatment to 95.3 +/- 2.5%, although the IC50 of 60.2 +/- 25 microM was not changed. However, this difference was not supported by direct tests of maximal 3-10 mM zinc concentrations. These results suggest that chronic ethanol treatment, sufficient to induce tolerance and physical dependence, probably
Large off-diagonal magnetoelectric coupling in the quantum paraelectric antiferromagnet EuTiO3
Shvartsman, V. V.; Borisov, P.; Kleemann, W.; Kamba, S.; Katsufuji, T.
2010-02-01
The third-order E2H2 -type magnetoelectric (ME) response of polycrystalline EuTiO3 changes sign under magnetic bias and shows a large anomaly at the antiferromagnetic (AF)-paramagnetic phase boundary below TN≈5.3K . It is attributed to critical fluctuations of the AF order parameter reinforced by quantum paraelectric polar correlations. The underlying biquadratic spin-lattice coupling involves electric field induced Dzyaloshinskii-Moriya interaction as described within mean-field approximation. Single domaining by ME annealing (or cooling) significantly enhances the response by additional EH and EH2 effects.
Morris, N P; Harris, S J; Henderson, Z
1999-01-01
The medial septum/diagonal band complex is composed predominantly of cholinergic and GABAergic neurons, and it projects to the hippocampal formation. A proportion of the GABAergic neurons contain parvalbumin, a calcium-binding protein that has previously been localized in fast-spiking, non-accommodating GABAergic neurons in the cerebral cortex and neostriatum. The aim of the present study was to determine whether parvalbumin is localized preferentially in a similar electrophysiological class of neuron in the medial septum/diagonal band complex. The study was carried out using in vitro intracellular recording, intracellular biocytin filling and parvalbumin immunocytochemistry. Three main classes of neurons were identified according to standard criteria: burst-firing, slow-firing and fast-firing neuronal populations. The fast-firing neurons were subdivided into two subpopulations based on whether or not they displayed accommodation. The fast-spiking, non-accommodating cells were furthermore found to be spontaneously active at resting potentials, and to possess action potentials of significantly (P studies showing parvalbumin to be localized solely in GABAergic neurons in the medial septum/diagonal band complex. In conclusion, these findings suggest the presence of a previously uncharacterized population of neurons in the medial septum/diagonal band complex that generate high-frequency, non-adaptive discharge. This property correlates with the localization of parvalbumin in these neurons, which suggests that parvalbumin fulfils the same role in the medial septum/diagonal band complex that it does in other parts of the brain. The fast-spiking neurons in the medial septum/diagonal band complex may play an essential role in the GABAergic influence of the septum on the hippocampal formation.
Federal Laboratory Consortium — The Joint Quantum Institute (JQI) is pursuing that goal through the work of leading quantum scientists from the Department of Physics of the University of Maryland...
... my joints more healthy? Definitions What can go wrong? Although you might think arthritis affects only older ... Discovery Into Health ® Home | Health Information | Research | Funding | News & Events | About Us | Portal en español | Asian-Language ...
Dane, D. H.
1971-01-01
Joint permits smooth and easy movement of disabled arm and is smaller, lighter and less expensive than previous models. Device is interchangeable and may be used on either arm at the shoulder or at the elbow.
Functional hand proportion is approximated by the Fibonacci series.
Choo, K W-Q; Quah, W-K; Chang, G-H; Chan, J Y
2012-08-01
The debatable relationship of functional human hand proportion with the Fibonacci series has remained an obscure scientific enigma short of clinical interest. The main difficulty of proving such a relationship lies in defining what should constitute true functional proportion. In this study, we re-evaluate this unique relationship using hand flexion creases as anatomical surrogates for the functional axes of joint rotation. Standardised desktop photocopies of palmar views of both hands in full digital extension and abduction were obtained from 100 healthy male volunteers of Chinese ethnicity. The functional axes were represented by the distal digital crease (distal interphalangeal joint, DIPJ), proximal digital crease (proximal interphalangeal joint, PIPJ), as well as the midpoint between the palmar digital and transverse palmar creases (metacarpophalangeal joint, MCPJ). The ratio of DIPJ-Fingertip:PIPJ-DIPJ:MCPJ-PIPJ (p3:p2:p1) was measured by two independent observers and represented as standard deviation about the mean, and then compared to the theoretical ratio of 1:1:2. Our results showed that, for the 2nd to 5th digits, the p2:p3 ratios were 0.97 ± ± 0.09, 1.10 ± 0.10, 1.04 ± 0.12, and 0.80 ± 0.08, respectively; whilst the p1:p2 ratios were 1.91 ± 0.17, 1.98 ± 0.14, 1.89 ± 0.16, and 2.09 ± 0.24, respectively. When the data were analysed for all digits, they showed a combined p3:p2:p1 ratio of 1:0.98:2.01. In conclusion, our results suggest that functional human hand proportion, as defined by flexion creases, is approximated by the Fibonacci series.
Testing a random phase approximation for bounded turbulent flow
Ulitsky, Mark; Clark, Tim; Turner, Leaf
1999-05-01
Tractable implementation of a spectral closure requires that the modal representation of the energy satisfy a restricted random phase approximation (RRPA). This condition is exactly satisfied when the statistical system is homogeneous and the basis functions are Fourier modes. In this case, the ensemble average of the spectral covariance diagonalizes, i.e., =δ(k1+k2), where c(k,t) is a Fourier coefficient in a Galerkin representation of the velocity field. However, for inhomogeneous statistical systems in which the Fourier system is inappropriate, the RRPA requires validation. We use direct numerical simulations (DNSs) of the Navier-Stokes and truncated Euler equations to test the degree to which the RRPA is satisfied when applied to a recent representation due to Turner (LANL Unclassified Report No. LA-UR-96-3257) of a bounded turbulent rectangular channel flow with free slip, stress free walls. It is shown that a complete test of the RRPA for a fully inhomogeneous DNS with N3 grid points actually requires N3+1 members in the ensemble. The ``randomness'' of the phase can be characterized by a probability density function (PDF) of the modulus of the normalized spectral covariance. Results reveal that for both the Navier-Stokes and Euler systems the PDF does not change in time as the turbulence decays, and that the PDF for the Euler system is virtually identical to the one produced from an ensemble of random fields. This result is consistent with the equipartition of energy for the Euler system, in which the RRPA becomes an exact result rather than an approximation as the number of realizations approaches N3+1. The slight differences observed between the PDF produced from the random fields and the one from the Navier-Stokes system are thus shown to be entirely a result of the presence of a finite viscosity. It is also shown that there is great variation between statistics computed over the ensemble and those for a single realization.
Energy Technology Data Exchange (ETDEWEB)
Park, S.R. [Inha University, Inchon (Korea); Kim, Y.J.; Kim, T.W. [Doowon Technical College, Ansung (Korea)
1999-12-01
This paper presents a quasi-three-dimensional calculation method considered a spanwise mixing effect in a diagonal flow impeller. The effect of this spanwise mixing caused by spanwise distribution of blade loading is evaluated by a secondary flow theory. In order to verify the validity of this method, it is applied to the analysis of a diagonal flow fan designed under a vortex type of constant circumferential velocity and that of a free vortex. The comparison of the calculated result with experimental data shows a good agreement except the regions near the casing where the flow field is affected by the tip leakage flow. (author). 18 refs., 10 figs.
H-MATRICES AND S-DOUBLY DIAGONALLY DOMINANT MATRICES%H-矩阵和S-双对角占优矩阵
Institute of Scientific and Technical Information of China (English)
杨月婷; 徐成贤
2004-01-01
In this paper, the concept of the s-doubly diagonally dominant matrices is introduced and the properties of these matrices are discussed. With the properties of the s-doubly diagonally dominant matrices and the properties of comparison matrices, some equivalent conditions for H-matrices are presented. These conditions generalize and improve existing results about the equivalent conditions for H-matrices. Applications and examples using these new equivalent conditions are also presented, and a new inclusion region of k-multiple eigenvalues of matrices is obtained.
George, Christy; Chandrakumar, Narayanan
2014-08-01
Overhauser-DNP-enhanced homonuclear 2D (19)F correlation spectroscopy with diagonal suppression is presented for small molecules in the solution state at moderate fields. Multi-frequency, multi-radical studies demonstrate that these relatively low-field experiments may be operated with sensitivity rivalling that of standard 200-1000 MHz NMR spectroscopy. Structural information is accessible without a sensitivity penalty, and diagonal suppressed 2D NMR correlations emerge despite the general lack of multiplet resolution in the 1D ODNP spectra. This powerful general approach avoids the rather stiff excitation, detection, and other special requirements of high-field (19)F NMR spectroscopy.
Concrete Pavement Joint Deterioration
2016-01-01
Concrete pavements are an important part of our national infrastructure. In recent years the relatively small number of reported joints deteriorating prematurely in concrete pavements around Indiana has increased. Changes over the past 45 years in INDOT specification, pavement materials, designs and construction practices, and current de-icing materials were examined and related to the durability of concrete at the joints of existing pavements. A survey of concrete pavements across the state ...
APPROXIMATE SAMPLING THEOREM FOR BIVARIATE CONTINUOUS FUNCTION
Institute of Scientific and Technical Information of China (English)
杨守志; 程正兴; 唐远炎
2003-01-01
An approximate solution of the refinement equation was given by its mask, and the approximate sampling theorem for bivariate continuous function was proved by applying the approximate solution. The approximate sampling function defined uniquely by the mask of the refinement equation is the approximate solution of the equation, a piece-wise linear function, and posseses an explicit computation formula. Therefore the mask of the refinement equation is selected according to one' s requirement, so that one may controll the decay speed of the approximate sampling function.
Bernstein-type approximations of smooth functions
Directory of Open Access Journals (Sweden)
Andrea Pallini
2007-10-01
Full Text Available The Bernstein-type approximation for smooth functions is proposed and studied. We propose the Bernstein-type approximation with definitions that directly apply the binomial distribution and the multivariate binomial distribution. The Bernstein-type approximations generalize the corresponding Bernstein polynomials, by considering definitions that depend on a convenient approximation coefficient in linear kernels. In the Bernstein-type approximations, we study the uniform convergence and the degree of approximation. The Bernstein-type estimators of smooth functions of population means are also proposed and studied.
Ward, Michael E.; Harkins, Bruce D.
1993-01-01
Many recuperators have components which react to corrosive gases and are used in applications where the donor fluid includes highly corrosive gases. These recuperators have suffered reduced life, increased service or maintenance, and resulted in increased cost. The present joint when used with recuperators increases the use of ceramic components which do not react to highly corrosive gases. Thus, the present joint used with the present recuperator increases the life, reduces the service and maintenance, and reduces the increased cost associated with corrosive action of components used to manufacture recuperators. The present joint is comprised of a first ceramic member, a second ceramic member, a mechanical locking device having a groove defined in one of the first ceramic member and the second ceramic member. The joint and the mechanical locking device is further comprised of a refractory material disposed in the groove and contacting the first ceramic member and the second ceramic member. The present joint mechanically provides a high strength load bearing joint having good thermal cycling characteristics, good resistance to a corrosive environment and good steady state strength at elevated temperatures.
Features of Rotating Stall Cell in a Diagonal Flow Fan(in Case of Mid-loading Rotor)
Institute of Scientific and Technical Information of China (English)
N. SHIOMI; K. KANEKO; Y. KINOUE; T. SETOGUCHI
2006-01-01
The structure and behavior of rotating stall cell were experimentally clarified in a diagonal flow fan. The specific-speed of the fan was 1140 (r/min, m3/min, m), and the total pressure-rise coefficient at design flow-rate was 0.345. The static pressure on outer casing wall and the total pressure at rotor inlet and outlet were measured using a high response pressure transducer. The measured data were processed by the use of DPLA technique, and the structure and behavior of rotating stall cell were obtained. As a result, the stall cell extent for circumferential and spanwise direction and the pressure distributions inside stall cell were clarified. The details of stall cell propagation were also shown.
Institute of Scientific and Technical Information of China (English)
Shouping SHANG; Fangyuan ZHOU; Wei LIU
2009-01-01
Because there is a great demand of reinforce-ment and retrofitting of aged structures nationwide, as well as the rapid development of innovative building materials,the adoption of strengthening RC structures using new inorganic materials has become possible. High-performance ferrocement laminate (HPFL) is an effective method of strengthening concrete structure. High-performance ferrocement laminate is a new type of inorganic material with the advantages such as high strength, small contraction, good bonding properties, etc.This paper introduces the formula of cross-section bending capacity for strengthening concrete beams with HPEL. A comparative analysis of experimental data, as well as the calculation of diagonal section bearing capacity of concrete members, is given.
DEFF Research Database (Denmark)
Larsen, Trine R; Bache, Nicolai; Gramsbergen, Jan Bert;
2011-01-01
Protein nitration take place on tyrosine residues under oxidative stress conditions and may influence a number of processes including enzyme activity, protein-protein interactions and phospho-tyrosine signalling pathways. Nitrated proteins have been identified in a number of diseases, however......, the study of these proteins has been compromised by the lack of good methods for identifying nitrated proteins, their nitration sites and the level of nitration. Here, we present a method for identification of nitrated peptides that allows the site specific assignment of nitration, is easy to use...... and reproducible, and opens up for the possibility to quantify the level of nitration of specific peptides as function of different oxidative conditions, namely combined fractional diagonal chromatography (COFRADIC) in combination with off-line nano-LC-MALDI. We identify six nitrated peptides from in vitro...
Thermodynamic limit and boundary energy of the su(3) spin chain with non-diagonal boundary fields
Wen, Fakai; Yang, Tao; Yang, Zhanying; Cao, Junpeng; Hao, Kun; Yang, Wen-Li
2017-02-01
We investigate the thermodynamic limit of the su (n)-invariant spin chain models with unparallel boundary fields. It is found that the contribution of the inhomogeneous term in the associated T-Q relation to the ground state energy does vanish in the thermodynamic limit. This fact allows us to calculate the boundary energy of the system. Taking the su (2) (or the XXX) spin chain and the su (3) spin chain as concrete examples, we have studied the corresponding boundary energies of the models. The method used in this paper can be generalized to study the thermodynamic properties and boundary energy of other high rank models with non-diagonal boundary fields.
Proximal Tibiofibular Joint: An overview
Directory of Open Access Journals (Sweden)
Tze Wang Chan
2016-06-01
Full Text Available Proximal tibiofibular joint is a frequently neglected joint which can be a source of lateral knee pain. Open surgery is the current mainstay of surgical management of proximal tibiofibular joint disorders. The proximal tibiofibular arthroscopy allows access to the joint and adjacent important ligamentous structures. This forms the basis of further development of arthroscopic procedures for a variety of pathologies.
[Biomechanics of the ankle joint].
Zwipp, H
1989-03-01
According to Fick, the tree-dimensional patterns of foot motion are best characterized as jawlike movement. Anatomically and biomechanically, this process represents conjoined, synchronous motion within the three mobile segments of the hindfoot: the ankle joint, the posterior subtalar joint, and the anterior subtalar joint. Foot kinematics can be described more completely if the anterior subtalar joint is defined not only as the talocalcaneal navicular joint, but as including the calcaneocuboid joint, thus representing the transverse joint of the tarsus, i.e., the Chopart joint. The axes of these three joints can be defined precisely. In some parts they represent a screwlike motion, clockwise or counter-clockwise, around the central ligamentous structures (fibulotibial ligament, talocalcaneal interosseous ligament, bifurcate ligament). The individual anatomy and structure of these ligaments provide variations in the degree and direction of foot motion. A precise knowledge of foot kinematics is important in surgical ligament and joint reconstruction and in selective foot arthrodeses.
Some relations between entropy and approximation numbers
Institute of Scientific and Technical Information of China (English)
郑志明
1999-01-01
A general result is obtained which relates the entropy numbers of compact maps on Hilbert space to its approximation numbers. Compared with previous works in this area, it is particularly convenient for dealing with the cases where the approximation numbers decay rapidly. A nice estimation between entropy and approximation numbers for noncompact maps is given.
Approximation properties of fine hyperbolic graphs
Indian Academy of Sciences (India)
Benyin Fu
2016-05-01
In this paper, we propose a definition of approximation property which is called the metric invariant translation approximation property for a countable discrete metric space. Moreover, we use the techniques of Ozawa’s to prove that a fine hyperbolic graph has the metric invariant translation approximation property.
NONLINEAR APPROXIMATION WITH GENERAL WAVE PACKETS
Institute of Scientific and Technical Information of China (English)
L. Borup; M. Nielsen
2005-01-01
We study nonlinear approximation in the Triebel-Lizorkin spaces with dictionaries formed by dilating and translating one single function g. A general Jackson inequality is derived for best m-term approximation with such dictionaries. In some special cases where g has a special structure, a complete characterization of the approximation spaces is derived.
Applications of Discrepancy Theory in Multiobjective Approximation
Glaßer, Christian; Witek, Maximilian
2011-01-01
We apply a multi-color extension of the Beck-Fiala theorem to show that the multiobjective maximum traveling salesman problem is randomized 1/2-approximable on directed graphs and randomized 2/3-approximable on undirected graphs. Using the same technique we show that the multiobjective maximum satisfiablilty problem is 1/2-approximable.
Advanced Concepts and Methods of Approximate Reasoning
1989-12-01
and L. Valverde. On mode and implication in approximate reasoning. In M.M. Gupta, A. Kandel, W. Bandler , J.B. Kiszka, editors, Approximate Reasoning and...190, 1981. [43] E. Trillas and L. Valverde. On mode and implication in approximate reasoning. In M.M. Gupta, A. Kandel, W. Bandler , J.B. Kiszka
Nonlinear approximation with dictionaries, I: Direct estimates
DEFF Research Database (Denmark)
Gribonval, Rémi; Nielsen, Morten
$-term approximation with algorithmic constraints: thresholding and Chebychev approximation classes are studied respectively. We consider embeddings of the Jackson type (direct estimates) of sparsity spaces into the mentioned approximation classes. General direct estimates are based on the geometry of the Banach space...
Nonlinear approximation with bi-framelets
DEFF Research Database (Denmark)
Borup, Lasse; Nielsen, Morten; Gribonval, Rémi
2005-01-01
We study the approximation in Lebesgue spaces of wavelet bi-frame systems given by translations and dilations of a finite set of generators. A complete characterization of the approximation spaces associated with best m-term approximation of wavelet bi-framelet systems is given. The characterizat...
Axiomatic Characterizations of IVF Rough Approximation Operators
Directory of Open Access Journals (Sweden)
Guangji Yu
2014-01-01
Full Text Available This paper is devoted to the study of axiomatic characterizations of IVF rough approximation operators. IVF approximation spaces are investigated. The fact that different IVF operators satisfy some axioms to guarantee the existence of different types of IVF relations which produce the same operators is proved and then IVF rough approximation operators are characterized by axioms.
Fractal Trigonometric Polynomials for Restricted Range Approximation
Chand, A. K. B.; Navascués, M. A.; Viswanathan, P.; Katiyar, S. K.
2016-05-01
One-sided approximation tackles the problem of approximation of a prescribed function by simple traditional functions such as polynomials or trigonometric functions that lie completely above or below it. In this paper, we use the concept of fractal interpolation function (FIF), precisely of fractal trigonometric polynomials, to construct one-sided uniform approximants for some classes of continuous functions.
Approximate Nearest Neighbor Queries among Parallel Segments
DEFF Research Database (Denmark)
Emiris, Ioannis Z.; Malamatos, Theocharis; Tsigaridas, Elias
2010-01-01
We develop a data structure for answering efficiently approximate nearest neighbor queries over a set of parallel segments in three dimensions. We connect this problem to approximate nearest neighbor searching under weight constraints and approximate nearest neighbor searching on historical data...
Cvetic, G
2001-01-01
A renormalization-scale-invariant generalization of the diagonal Pade approximants (dPA), developed previously, is extended so that it becomes renormalization-scheme-invariant as well. We do this explicitly when two terms beyond the leading order (NNLO,$\\sim {\\alpha}_s^3$) are known in the truncated perturbation series (TPS). Invariance under the change of the leading scheme parameter c_2 is achieved via a variant of the principle of minimal sensitivity. The subleading parameter c_3 is fixed so that a scale- and scheme-invariant Borel transform of the resummation approximant gives the correct location of the leading infrared renormalon pole. The leading higher-twist contribution, or a part of it, is thus believed to be contained implicitly in the resummation. We applied the approximant to the Bjorken polarized sum rule (BjPSR) at $Q^2 = 3 GeV^2$ and obtained in {bar MS} scheme ${\\alpha}_s(M_Z)=0.111^{+0.005}_{-0.012}$ or $0.113^{+0.004}_{-0.019}$, for two frameworks of extraction of the BjPSR-integral values ...
Joint ventures in medical services.
Rublee, D A
1987-01-01
This paper is an overview of joint-venture activity in healthcare, describing trends in joint ventures and raising issues for physicians. The purposes are to discuss the major current facets of joint-venture alliances in healthcare and to identify policy issues that arise from the trend to use joint ventures as an organizational tool. Speculation is made about the future role of joint ventures in the organization of healthcare.
Resonant-state expansion Born Approximation
Doost, M B
2015-01-01
The Born Approximation is a fundamental formula in Physics, it allows the calculation of weak scattering via the Fourier transform of the scattering potential. I extend the Born Approximation by including in the formula the Fourier transform of a truncated basis of the infinite number of appropriately normalised resonant states. This extension of the Born Approximation is named the Resonant-State Expansion Born Approximation or RSE Born Approximation. The resonant-states of the system can be calculated using the recently discovered RSE perturbation theory for electrodynamics and normalised correctly to appear in spectral Green's functions via the flux volume normalisation.
Temporomandibular joint examination reviewed
Directory of Open Access Journals (Sweden)
L. Guarda Nardini
2011-09-01
Full Text Available The temporo-mandibular joint (TMJ it’s a joint closely related to the skull base, the spine, and the jaws; all these anatomical structures must be taken in consideration when evaluating pain involving the tmj. In order to detect patients affected by pathology or dysfunctions of the tmj, physical examination is of great value in orienting the diagnosis. Inspection must consider the symmetry of the body, the dental status and the type of occlusion. Palpation is a way to assess contractiont involving the muscles of the masticatory system and of the neck. Auscultation, based on articular noise provides means to determine whether we are dealing with degeneration of the joint or a dislocation of the intrarticular disc. In order to confirm the diagnosis obtained with the clinical evaluation, it’s useful to perform imaging techniques as opt, tomography and TC of the tmj and electromyokineosiography – index of the mandibular functionality and of the muscles status. MRI and dynamic MRI are among the non invasive exams which give the greatest amount of information, regarding the disc position and the joint degeneration. Arthroscopy is an invasive technique that allows early diagnosis of degeneration and is helpful to reveal early inflammatory processes of the joint.
Temporomandibular joint disorders.
Buescher, Jennifer J
2007-11-15
Temporomandibular joint disorders are common in adults; as many as one third of adults report having one or more symptoms, which include jaw or neck pain, headache, and clicking or grating within the joint. Most symptoms improve without treatment, but various noninvasive therapies may reduce pain for patients who have not experienced relief from self-care therapies. Physical therapy modalities (e.g., iontophoresis, phonophoresis), psychological therapies (e.g., cognitive behavior therapy), relaxation techniques, and complementary therapies (e.g., acupuncture, hypnosis) are all used for the treatment of temporomandibular joint disorders; however, no therapies have been shown to be uniformly superior for the treatment of pain or oral dysfunction. Noninvasive therapies should be attempted before pursuing invasive, permanent, or semi-permanent treatments that have the potential to cause irreparable harm. Dental occlusion therapy (e.g., oral splinting) is a common treatment for temporomandibular joint disorders, but a recent systematic review found insufficient evidence for or against its use. Some patients with intractable temporomandibular joint disorders develop chronic pain syndrome and may benefit from treatment, including antidepressants or cognitive behavior therapy.
Distal radioulnar joint injuries
Directory of Open Access Journals (Sweden)
Binu P Thomas
2012-01-01
Full Text Available Distal radioulnar joint is a trochoid joint relatively new in evolution. Along with proximal radioulnar joint , forearm bones and interosseous membrane, it allows pronosupination and load transmission across the wrist. Injuries around distal radioulnar joint are not uncommon, and are usually associated with distal radius fractures,fractures of the ulnar styloid and with the eponymous Galeazzi or Essex_Lopresti fractures. The injury can be purely involving the soft tissue especially the triangular fibrocartilage or the radioulnar ligaments.The patients usually present with ulnar sided wrist pain, features of instability, or restriction of rotation. Difficulty in carrying loads in the hand is a major constraint for these patients. Thorough clinical examination to localize point of tenderness and appropriate provocative tests help in diagnosis. Radiology and MRI are extremely useful, while arthroscopy is the gold standard for evaluation. The treatment protocols are continuously evolving and range from conservative, arthroscopic to open surgical methods. Isolated dislocation are uncommon. Basal fractures of the ulnar styloid tend to make the joint unstable and may require operative intervention. Chronic instability requires reconstruction of the stabilizing ligaments to avoid onset of arthritis. Prosthetic replacement in arthritis is gaining acceptance in the management of arthritis.