Fast wavelet based sparse approximate inverse preconditioner
Energy Technology Data Exchange (ETDEWEB)
Wan, W.L. [Univ. of California, Los Angeles, CA (United States)
1996-12-31
Incomplete LU factorization is a robust preconditioner for both general and PDE problems but unfortunately not easy to parallelize. Recent study of Huckle and Grote and Chow and Saad showed that sparse approximate inverse could be a potential alternative while readily parallelizable. However, for special class of matrix A that comes from elliptic PDE problems, their preconditioners are not optimal in the sense that independent of mesh size. A reason may be that no good sparse approximate inverse exists for the dense inverse matrix. Our observation is that for this kind of matrices, its inverse entries typically have piecewise smooth changes. We can take advantage of this fact and use wavelet compression techniques to construct a better sparse approximate inverse preconditioner. We shall show numerically that our approach is effective for this kind of matrices.
Approximate Inverse Preconditioners with Adaptive Dropping
Czech Academy of Sciences Publication Activity Database
Kopal, J.; Rozložník, Miroslav; Tůma, Miroslav
2015-01-01
Roč. 84, June (2015), s. 13-20 ISSN 0965-9978 R&D Projects: GA ČR(CZ) GAP108/11/0853; GA ČR GA13-06684S Institutional support: RVO:67985807 Keywords : approximate inverse * Gram-Schmidt orthogonalization * incomplete decomposition * preconditioned conjugate gradient method * algebraic preconditioning * pivoting Subject RIV: BA - General Mathematics Impact factor: 1.673, year: 2015
A Sparse Approximate Inverse Preconditioner for Nonsymmetric Linear Systems
Czech Academy of Sciences Publication Activity Database
Benzi, M.; Tůma, Miroslav
1998-01-01
Roč. 19, č. 3 (1998), s. 968-994 ISSN 1064-8275 R&D Projects: GA ČR GA201/93/0067; GA AV ČR IAA230401 Keywords : large sparse systems * interative methods * preconditioning * approximate inverse * sparse linear systems * sparse matrices * incomplete factorizations * conjugate gradient -type methods Subject RIV: BA - General Mathematics Impact factor: 1.378, year: 1998
Czech Academy of Sciences Publication Activity Database
Benzi, M.; Kouhia, R.; Tůma, Miroslav
2001-01-01
Roč. 190, - (2001), s. 6533-6554 ISSN 0045-7825 R&D Projects: GA AV ČR IAA2030801; GA ČR GA201/00/0080 Institutional research plan: AV0Z1030915 Keywords : preconditioning * conjugate gradient * factorized sparse approximate inverse * block algorithms * finite elements * shells Subject RIV: BA - General Mathematics Impact factor: 0.913, year: 2001
Approximate inverse preconditioning of iterative methods for nonsymmetric linear systems
Energy Technology Data Exchange (ETDEWEB)
Benzi, M. [Universita di Bologna (Italy); Tuma, M. [Inst. of Computer Sciences, Prague (Czech Republic)
1996-12-31
A method for computing an incomplete factorization of the inverse of a nonsymmetric matrix A is presented. The resulting factorized sparse approximate inverse is used as a preconditioner in the iterative solution of Ax = b by Krylov subspace methods.
Parallel iterative solvers and preconditioners using approximate hierarchical methods
Energy Technology Data Exchange (ETDEWEB)
Grama, A.; Kumar, V.; Sameh, A. [Univ. of Minnesota, Minneapolis, MN (United States)
1996-12-31
In this paper, we report results of the performance, convergence, and accuracy of a parallel GMRES solver for Boundary Element Methods. The solver uses a hierarchical approximate matrix-vector product based on a hybrid Barnes-Hut / Fast Multipole Method. We study the impact of various accuracy parameters on the convergence and show that with minimal loss in accuracy, our solver yields significant speedups. We demonstrate the excellent parallel efficiency and scalability of our solver. The combined speedups from approximation and parallelism represent an improvement of several orders in solution time. We also develop fast and paralellizable preconditioners for this problem. We report on the performance of an inner-outer scheme and a preconditioner based on truncated Green`s function. Experimental results on a 256 processor Cray T3D are presented.
Approximate tensor-product preconditioners for very high order discontinuous Galerkin methods
Pazner, Will; Persson, Per-Olof
2018-02-01
In this paper, we develop a new tensor-product based preconditioner for discontinuous Galerkin methods with polynomial degrees higher than those typically employed. This preconditioner uses an automatic, purely algebraic method to approximate the exact block Jacobi preconditioner by Kronecker products of several small, one-dimensional matrices. Traditional matrix-based preconditioners require O (p2d) storage and O (p3d) computational work, where p is the degree of basis polynomials used, and d is the spatial dimension. Our SVD-based tensor-product preconditioner requires O (p d + 1) storage, O (p d + 1) work in two spatial dimensions, and O (p d + 2) work in three spatial dimensions. Combined with a matrix-free Newton-Krylov solver, these preconditioners allow for the solution of DG systems in linear time in p per degree of freedom in 2D, and reduce the computational complexity from O (p9) to O (p5) in 3D. Numerical results are shown in 2D and 3D for the advection, Euler, and Navier-Stokes equations, using polynomials of degree up to p = 30. For many test cases, the preconditioner results in similar iteration counts when compared with the exact block Jacobi preconditioner, and performance is significantly improved for high polynomial degrees p.
Bousserez, Nicolas; Henze, Daven; Bowman, Kevin; Liu, Junjie; Jones, Dylan; Keller, Martin; Deng, Feng
2013-04-01
This work presents improved analysis error estimates for 4D-Var systems. From operational NWP models to top-down constraints on trace gas emissions, many of today's data assimilation and inversion systems in atmospheric science rely on variational approaches. This success is due to both the mathematical clarity of these formulations and the availability of computationally efficient minimization algorithms. However, unlike Kalman Filter-based algorithms, these methods do not provide an estimate of the analysis or forecast error covariance matrices, these error statistics being propagated only implicitly by the system. From both a practical (cycling assimilation) and scientific perspective, assessing uncertainties in the solution of the variational problem is critical. For large-scale linear systems, deterministic or randomization approaches can be considered based on the equivalence between the inverse Hessian of the cost function and the covariance matrix of analysis error. For perfectly quadratic systems, like incremental 4D-Var, Lanczos/Conjugate-Gradient algorithms have proven to be most efficient in generating low-rank approximations of the Hessian matrix during the minimization. For weakly non-linear systems though, the Limited-memory Broyden-Fletcher-Goldfarb-Shanno (L-BFGS), a quasi-Newton descent algorithm, is usually considered the best method for the minimization. Suitable for large-scale optimization, this method allows one to generate an approximation to the inverse Hessian using the latest m vector/gradient pairs generated during the minimization, m depending upon the available core memory. At each iteration, an initial low-rank approximation to the inverse Hessian has to be provided, which is called preconditioning. The ability of the preconditioner to retain useful information from previous iterations largely determines the efficiency of the algorithm. Here we assess the performance of different preconditioners to estimate the inverse Hessian of a
Ayuso Dios, Blanca
2013-10-30
We introduce and analyze two-level and multilevel preconditioners for a family of Interior Penalty (IP) discontinuous Galerkin (DG) discretizations of second order elliptic problems with large jumps in the diffusion coefficient. Our approach to IPDG-type methods is based on a splitting of the DG space into two components that are orthogonal in the energy inner product naturally induced by the methods. As a result, the methods and their analysis depend in a crucial way on the diffusion coefficient of the problem. The analysis of the proposed preconditioners is presented for both symmetric and non-symmetric IP schemes; dealing simultaneously with the jump in the diffusion coefficient and the non-nested character of the relevant discrete spaces presents additional difficulties in the analysis, which precludes a simple extension of existing results. However, we are able to establish robustness (with respect to the diffusion coefficient) and near-optimality (up to a logarithmic term depending on the mesh size) for both two-level and BPX-type preconditioners, by using a more refined Conjugate Gradient theory. Useful by-products of the analysis are the supporting results on the construction and analysis of simple, efficient and robust two-level and multilevel preconditioners for non-conforming Crouzeix-Raviart discretizations of elliptic problems with jump coefficients. Following the analysis, we present a sequence of detailed numerical results which verify the theory and illustrate the performance of the methods. © 2013 American Mathematical Society.
Ayuso Dios, Blanca; Holst, Michael; Zhu, Yunrong; Zikatanov, Ludmil
2013-01-01
We introduce and analyze two-level and multilevel preconditioners for a family of Interior Penalty (IP) discontinuous Galerkin (DG) discretizations of second order elliptic problems with large jumps in the diffusion coefficient. Our approach to IPDG-type methods is based on a splitting of the DG space into two components that are orthogonal in the energy inner product naturally induced by the methods. As a result, the methods and their analysis depend in a crucial way on the diffusion coefficient of the problem. The analysis of the proposed preconditioners is presented for both symmetric and non-symmetric IP schemes; dealing simultaneously with the jump in the diffusion coefficient and the non-nested character of the relevant discrete spaces presents additional difficulties in the analysis, which precludes a simple extension of existing results. However, we are able to establish robustness (with respect to the diffusion coefficient) and near-optimality (up to a logarithmic term depending on the mesh size) for both two-level and BPX-type preconditioners, by using a more refined Conjugate Gradient theory. Useful by-products of the analysis are the supporting results on the construction and analysis of simple, efficient and robust two-level and multilevel preconditioners for non-conforming Crouzeix-Raviart discretizations of elliptic problems with jump coefficients. Following the analysis, we present a sequence of detailed numerical results which verify the theory and illustrate the performance of the methods. © 2013 American Mathematical Society.
Energy Technology Data Exchange (ETDEWEB)
Lin, Lin [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Computational Research Division; Yang, Chao [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Computational Research Division
2013-10-28
We discuss techniques for accelerating the self consistent field (SCF) iteration for solving the Kohn-Sham equations. These techniques are all based on constructing approximations to the inverse of the Jacobian associated with a fixed point map satisfied by the total potential. They can be viewed as preconditioners for a fixed point iteration. We point out different requirements for constructing preconditioners for insulating and metallic systems respectively, and discuss how to construct preconditioners to keep the convergence rate of the fixed point iteration independent of the size of the atomistic system. We propose a new preconditioner that can treat insulating and metallic system in a unified way. The new preconditioner, which we call an elliptic preconditioner, is constructed by solving an elliptic partial differential equation. The elliptic preconditioner is shown to be more effective in accelerating the convergence of a fixed point iteration than the existing approaches for large inhomogeneous systems at low temperature.
Factorized Approximate Inverses With Adaptive Dropping
Czech Academy of Sciences Publication Activity Database
Kopal, Jiří; Rozložník, Miroslav; Tůma, Miroslav
2016-01-01
Roč. 38, č. 3 (2016), A1807-A1820 ISSN 1064-8275 R&D Projects: GA ČR GA13-06684S Grant - others:GA MŠk(CZ) LL1202 Institutional support: RVO:67985807 Keywords : approximate inverses * incomplete factorization * Gram–Schmidt orthogonalization * preconditioned iterative methods Subject RIV: BA - General Mathematics Impact factor: 2.195, year: 2016
Bagci, Hakan
2014-11-11
We study sweeping preconditioners for symmetric and positive definite block tridiagonal systems of linear equations. The algorithm provides an approximate inverse that can be used directly or in a preconditioned iterative scheme. These algorithms are based on replacing the Schur complements appearing in a block Gaussian elimination direct solve by hierarchical matrix approximations with reduced off-diagonal ranks. This involves developing low rank hierarchical approximations to inverses. We first provide a convergence analysis for the algorithm for reduced rank hierarchical inverse approximation. These results are then used to prove convergence and preconditioning estimates for the resulting sweeping preconditioner.
Bagci, Hakan; Pasciak, Joseph E.; Sirenko, Kostyantyn
2014-01-01
We study sweeping preconditioners for symmetric and positive definite block tridiagonal systems of linear equations. The algorithm provides an approximate inverse that can be used directly or in a preconditioned iterative scheme. These algorithms are based on replacing the Schur complements appearing in a block Gaussian elimination direct solve by hierarchical matrix approximations with reduced off-diagonal ranks. This involves developing low rank hierarchical approximations to inverses. We first provide a convergence analysis for the algorithm for reduced rank hierarchical inverse approximation. These results are then used to prove convergence and preconditioning estimates for the resulting sweeping preconditioner.
Approximation of Bayesian Inverse Problems for PDEs
Cotter, S. L.; Dashti, M.; Stuart, A. M.
2010-01-01
Inverse problems are often ill posed, with solutions that depend sensitively on data.n any numerical approach to the solution of such problems, regularization of some form is needed to counteract the resulting instability. This paper is based on an approach to regularization, employing a Bayesian formulation of the problem, which leads to a notion of well posedness for inverse problems, at the level of probability measures. The stability which results from this well posedness may be used as t...
Application of polynomial preconditioners to conservation laws
Geurts, Bernardus J.; van Buuren, R.; Lu, H.
2000-01-01
Polynomial preconditioners which are suitable in implicit time-stepping methods for conservation laws are reviewed and analyzed. The preconditioners considered are either based on a truncation of a Neumann series or on Chebyshev polynomials for the inverse of the system-matrix. The latter class of
On quasiclassical approximation in the inverse scattering method
International Nuclear Information System (INIS)
Geogdzhaev, V.V.
1985-01-01
Using as an example quasiclassical limits of the Korteweg-de Vries equation and nonlinear Schroedinger equation, the quasiclassical limiting variant of the inverse scattering problem method is presented. In quasiclassical approximation the inverse scattering problem for the Schroedinger equation is reduced to the classical inverse scattering problem
Frame approximation of pseudo-inverse operators
DEFF Research Database (Denmark)
Christensen, Ole
2001-01-01
Let T denote an operator on a Hilbert space (H, [.,.]), and let {f(i)}(i=1)(infinity) be a frame for the orthogonal complement of the kernel NT. We construct a sequence of operators {Phi (n)} of the form Phi (n) (.) = Sigma (n)(i=1) [., g(t)(n)]f(i) which converges to the psuedo-inverse T+ of T i...... in the strong operator topology as n --> infinity. The operators {Phi (n)} can be found using finite-dimensional methods. We also prove an adaptive iterative version of the result. (C) 2001 Academic Press....
Approximation of the inverse G-frame operator
Indian Academy of Sciences (India)
... projection method for -frames which works for all conditional -Riesz frames. We also derive a method for approximation of the inverse -frame operator which is efficient for all -frames. We show how the inverse of -frame operator can be approximated as close as we like using finite-dimensional linear algebra.
Approximate 2D inversion of airborne TEM data
DEFF Research Database (Denmark)
Christensen, N.B.; Wolfgram, Peter
2006-01-01
We propose an approximate two-dimensional inversion procedure for transient electromagnetic data. The method is a two-stage procedure, where data are first inverted with 1D multi-layer models. The 1D model section is then considered as data for the next inversion stage that produces the 2D model...... section. For moving platform data there is translational invariance and the second part of the inversion becomes a deconvolution. The convolution kernels are computed by perturbing one model element in an otherwise homogeneous 2D section and calculating full nonlinear responses. These responses...... are then inverted with 1D models to produce a 1D model section. This section is the convolution kernel for the deconvolution. Within its limitations, the approximate 2D inversion performs well. Theoretical modeling shows that it delivers model sections that are a definite improvement over 1D model sections...
Kaporin, I. E.
2012-02-01
In order to precondition a sparse symmetric positive definite matrix, its approximate inverse is examined, which is represented as the product of two sparse mutually adjoint triangular matrices. In this way, the solution of the corresponding system of linear algebraic equations (SLAE) by applying the preconditioned conjugate gradient method (CGM) is reduced to performing only elementary vector operations and calculating sparse matrix-vector products. A method for constructing the above preconditioner is described and analyzed. The triangular factor has a fixed sparsity pattern and is optimal in the sense that the preconditioned matrix has a minimum K-condition number. The use of polynomial preconditioning based on Chebyshev polynomials makes it possible to considerably reduce the amount of scalar product operations (at the cost of an insignificant increase in the total number of arithmetic operations). The possibility of an efficient massively parallel implementation of the resulting method for solving SLAEs is discussed. For a sequential version of this method, the results obtained by solving 56 test problems from the Florida sparse matrix collection (which are large-scale and ill-conditioned) are presented. These results show that the method is highly reliable and has low computational costs.
Element-topology-independent preconditioners for parallel finite element computations
Park, K. C.; Alexander, Scott
1992-01-01
A family of preconditioners for the solution of finite element equations are presented, which are element-topology independent and thus can be applicable to element order-free parallel computations. A key feature of the present preconditioners is the repeated use of element connectivity matrices and their left and right inverses. The properties and performance of the present preconditioners are demonstrated via beam and two-dimensional finite element matrices for implicit time integration computations.
An Adaptive Multilevel Factorized Sparse Approximate Inverse Preconditioning
Czech Academy of Sciences Publication Activity Database
Kopal, Jiří; Rozložník, Miroslav; Tůma, Miroslav
2017-01-01
Roč. 113, November (2017), s. 19-24 ISSN 0965-9978 R&D Projects: GA ČR GA13-06684S Grant - others:GA MŠk(CZ) LL1202 Institutional support: RVO:67985807 Keywords : approximate inverse * Gram–Schmidt orthogonalization * incomplete factorization * multilevel methods * preconditioned conjugate gradient method Subject RIV: BA - General Mathematics OBOR OECD: Applied mathematics Impact factor: 3.000, year: 2016
Towards an ideal preconditioner for linearized Navier-Stokes problems
Energy Technology Data Exchange (ETDEWEB)
Murphy, M.F. [Univ. of Bristol (United Kingdom)
1996-12-31
Discretizing certain linearizations of the steady-state Navier-Stokes equations gives rise to nonsymmetric linear systems with indefinite symmetric part. We show that for such systems there exists a block diagonal preconditioner which gives convergence in three GMRES steps, independent of the mesh size and viscosity parameter (Reynolds number). While this {open_quotes}ideal{close_quotes} preconditioner is too expensive to be used in practice, it provides a useful insight into the problem. We then consider various approximations to the ideal preconditioner, and describe the eigenvalues of the preconditioned systems. Finally, we compare these preconditioners numerically, and present our conclusions.
On rational approximation methods for inverse source problems
Rundell, William
2011-02-01
The basis of most imaging methods is to detect hidden obstacles or inclusions within a body when one can only make measurements on an exterior surface. Such is the ubiquity of these problems, the underlying model can lead to a partial differential equation of any of the major types, but here we focus on the case of steady-state electrostatic or thermal imaging and consider boundary value problems for Laplace\\'s equation. Our inclusions are interior forces with compact support and our data consists of a single measurement of (say) voltage/current or temperature/heat flux on the external boundary. We propose an algorithm that under certain assumptions allows for the determination of the support set of these forces by solving a simpler "equivalent point source" problem, and which uses a Newton scheme to improve the corresponding initial approximation. © 2011 American Institute of Mathematical Sciences.
On rational approximation methods for inverse source problems
Rundell, William; Hanke, Martin
2011-01-01
The basis of most imaging methods is to detect hidden obstacles or inclusions within a body when one can only make measurements on an exterior surface. Such is the ubiquity of these problems, the underlying model can lead to a partial differential equation of any of the major types, but here we focus on the case of steady-state electrostatic or thermal imaging and consider boundary value problems for Laplace's equation. Our inclusions are interior forces with compact support and our data consists of a single measurement of (say) voltage/current or temperature/heat flux on the external boundary. We propose an algorithm that under certain assumptions allows for the determination of the support set of these forces by solving a simpler "equivalent point source" problem, and which uses a Newton scheme to improve the corresponding initial approximation. © 2011 American Institute of Mathematical Sciences.
Zhang, Zhendong; Schuster, Gerard T.; Liu, Yike; Hanafy, Sherif M.; Li, Jing
2016-01-01
We present a surface-wave inversion method that inverts for the S-wave velocity from the Rayleigh wave dispersion curve using a difference approximation to the gradient of the misfit function. We call this wave equation inversion of skeletonized
Approximation Of Multi-Valued Inverse Functions Using Clustering And Sugeno Fuzzy Inference
Walden, Maria A.; Bikdash, Marwan; Homaifar, Abdollah
1998-01-01
Finding the inverse of a continuous function can be challenging and computationally expensive when the inverse function is multi-valued. Difficulties may be compounded when the function itself is difficult to evaluate. We show that we can use fuzzy-logic approximators such as Sugeno inference systems to compute the inverse on-line. To do so, a fuzzy clustering algorithm can be used in conjunction with a discriminating function to split the function data into branches for the different values of the forward function. These data sets are then fed into a recursive least-squares learning algorithm that finds the proper coefficients of the Sugeno approximators; each Sugeno approximator finds one value of the inverse function. Discussions about the accuracy of the approximation will be included.
Chavez Chavez, Gustavo Ivan
2017-12-07
We present a robust and scalable preconditioner for the solution of large-scale linear systems that arise from the discretization of elliptic PDEs amenable to rank compression. The preconditioner is based on hierarchical low-rank approximations and the cyclic reduction method. The setup and application phases of the preconditioner achieve log-linear complexity in memory footprint and number of operations, and numerical experiments exhibit good weak and strong scalability at large processor counts in a distributed memory environment. Numerical experiments with linear systems that feature symmetry and nonsymmetry, definiteness and indefiniteness, constant and variable coefficients demonstrate the preconditioner applicability and robustness. Furthermore, it is possible to control the number of iterations via the accuracy threshold of the hierarchical matrix approximations and their arithmetic operations, and the tuning of the admissibility condition parameter. Together, these parameters allow for optimization of the memory requirements and performance of the preconditioner.
Isogeometric BDDC deluxe preconditioners for linear elasticity
Pavarino, L. F.
2018-03-14
Balancing Domain Decomposition by Constraints (BDDC) preconditioners have been shown to provide rapidly convergent preconditioned conjugate gradient methods for solving many of the very ill-conditioned systems of algebraic equations which often arise in finite element approximations of a large variety of problems in continuum mechanics. These algorithms have also been developed successfully for problems arising in isogeometric analysis. In particular, the BDDC deluxe version has proven very successful for problems approximated by Non-Uniform Rational B-Splines (NURBS), even those of high order and regularity. One main purpose of this paper is to extend the theory, previously fully developed only for scalar elliptic problems in the plane, to problems of linear elasticity in three dimensions. Numerical experiments supporting the theory are also reported. Some of these experiments highlight the fact that the development of the theory can help to decrease substantially the dimension of the primal space of the BDDC algorithm, which provides the necessary global component of these preconditioners, while maintaining scalability and good convergence rates.
Isogeometric BDDC deluxe preconditioners for linear elasticity
Pavarino, L. F.; Scacchi, S.; Widlund, O. B.; Zampini, Stefano
2018-01-01
Balancing Domain Decomposition by Constraints (BDDC) preconditioners have been shown to provide rapidly convergent preconditioned conjugate gradient methods for solving many of the very ill-conditioned systems of algebraic equations which often arise in finite element approximations of a large variety of problems in continuum mechanics. These algorithms have also been developed successfully for problems arising in isogeometric analysis. In particular, the BDDC deluxe version has proven very successful for problems approximated by Non-Uniform Rational B-Splines (NURBS), even those of high order and regularity. One main purpose of this paper is to extend the theory, previously fully developed only for scalar elliptic problems in the plane, to problems of linear elasticity in three dimensions. Numerical experiments supporting the theory are also reported. Some of these experiments highlight the fact that the development of the theory can help to decrease substantially the dimension of the primal space of the BDDC algorithm, which provides the necessary global component of these preconditioners, while maintaining scalability and good convergence rates.
Zhang, Zhendong
2016-07-26
We present a surface-wave inversion method that inverts for the S-wave velocity from the Rayleigh wave dispersion curve using a difference approximation to the gradient of the misfit function. We call this wave equation inversion of skeletonized surface waves because the skeletonized dispersion curve for the fundamental-mode Rayleigh wave is inverted using finite-difference solutions to the multi-dimensional elastic wave equation. The best match between the predicted and observed dispersion curves provides the optimal S-wave velocity model. Our method can invert for lateral velocity variations and also can mitigate the local minimum problem in full waveform inversion with a reasonable computation cost for simple models. Results with synthetic and field data illustrate the benefits and limitations of this method. © 2016 Elsevier B.V.
Khaniani, Hassan
This thesis proposes a "standard strategy" for iterative inversion of elastic properties from the seismic reflection data. The term "standard" refers to the current hands-on commercial techniques that are used for the seismic imaging and inverse problem. The method is established to reduce the computation time associated with elastic Full Waveform Inversion (FWI) methods. It makes use of AVO analysis, prestack time migration and corresponding forward modeling in an iterative scheme. The main objective is to describe the iterative inversion procedure used in seismic reflection data using simplified mathematical expression and their numerical applications. The frame work of the inversion is similar to (FWI) method but with less computational costs. The reduction of computational costs depends on the data conditioning (with or without multiple data), the level of the complexity of geological model and acquisition condition such as Signal to Noise Ratio (SNR). Many processing methods consider multiple events as noise and remove it from the data. This is the motivation for reducing the computational cost associated with Finite Difference Time Domain (FDTD) forward modeling and Reverse Time Migration (RTM)-based techniques. Therefore, a one-way solution of the wave equation for inversion is implemented. While less computationally intensive depth imaging methods are available by iterative coupling of ray theory and the Born approximation, it is shown that we can further reduce the cost of inversion by dropping the cost of ray tracing for traveltime estimation in a way similar to standard Prestack Time Migration (PSTM) and the corresponding forward modeling. This requires the model to have smooth lateral variations in elastic properties, so that the traveltime of the scatterpoints can be approximated by a Double Square Root (DSR) equation. To represent a more realistic and stable solution of the inverse problem, while considering the phase of supercritical angles, the
Directory of Open Access Journals (Sweden)
Xin-Jia Meng
2015-01-01
Full Text Available Multidisciplinary reliability is an important part of the reliability-based multidisciplinary design optimization (RBMDO. However, it usually has a considerable amount of calculation. The purpose of this paper is to improve the computational efficiency of multidisciplinary inverse reliability analysis. A multidisciplinary inverse reliability analysis method based on collaborative optimization with combination of linear approximations (CLA-CO is proposed in this paper. In the proposed method, the multidisciplinary reliability assessment problem is first transformed into a problem of most probable failure point (MPP search of inverse reliability, and then the process of searching for MPP of multidisciplinary inverse reliability is performed based on the framework of CLA-CO. This method improves the MPP searching process through two elements. One is treating the discipline analyses as the equality constraints in the subsystem optimization, and the other is using linear approximations corresponding to subsystem responses as the replacement of the consistency equality constraint in system optimization. With these two elements, the proposed method realizes the parallel analysis of each discipline, and it also has a higher computational efficiency. Additionally, there are no difficulties in applying the proposed method to problems with nonnormal distribution variables. One mathematical test problem and an electronic packaging problem are used to demonstrate the effectiveness of the proposed method.
Inverse scattering problem for a magnetic field in the Glauber approximation
International Nuclear Information System (INIS)
Bogdanov, I.V.
1985-01-01
New results in the general theory of scattering are obtained. An inverse problem at fixed energy for an axisymmetric magnetic field is formulated and solved within the frames of the quantum-mechanical Glauber approximation. The solution is found in quadratures in the form of an explicit inversion algorithm reproducing a vector potential by the angular dependence of the scattering amplitude. Extreme transitions from the eikonal inversion method to the classical and Born ones are investigated. Integral and differential equations are derived for the eikonal amplitude that ensure the real value of the vector potential and its energy independence. Magnetoelectric analogies the existence of equivalent axisymmetric electric and magnetic fields scattering charged particles in the same manner both in the Glauber and Born approximation are established. The mentioned analogies permit to simulate ion-potential scattering by potential one that is of interest from the practical viewpoint. Three-dimensional (excentral) eikonal inverse problems for the electric and magnetic fields are discussed. The results of the paper can be used in electron optics
Decoupled deblurring filter and its application to elastic migration and inversion
Feng, Zongcai
2017-08-17
We present a decoupled deblurring filter that approximates the multiparameter Hessian inverse by using local filters to approximate its submatrices for the same and different parameter classes. Numerical tests show that the filter not only reduces the footprint noise, balances the amplitudes and increases the resolution of the elastic migration images, but also mitigates the crosstalk artifacts. When used as a preconditioner, it accelerates the convergence rate for elastic inversion.
Energy spectrum inverse problem of q -deformed harmonic oscillator and WBK approximation
International Nuclear Information System (INIS)
Sang, Nguyen Anh; Thuy, Do Thi Thu; Loan, Nguyen Thi Ha; Lan, Nguyen Tri; Viet, Nguyen Ai
2016-01-01
Using the connection between q-deformed harmonic oscillator and Morse-like anharmonic potential we investigate the energy spectrum inverse problem. Consider some energy levels of energy spectrum of q -deformed harmonic oscillator are known, we construct the corresponding Morse-like potential then find out the deform parameter q . The application possibility of using the WKB approximation in the energy spectrum inverse problem was discussed for the cases of parabolic potential (harmonic oscillator), Morse-like potential ( q -deformed harmonic oscillator). so we consider our deformed-three-levels simple model, where the set-parameters of Morse potential and the corresponding set-parameters of level deformations are easily and explicitly defined. For practical problems, we propose the deformed- three-levels simple model, where the set-parameters of Morse potential and the corresponding set-parameters of level deformations are easily and explicitly defined. (paper)
The approximate inverse in action: IV. Semi-discrete equations in a Banach space setting
International Nuclear Information System (INIS)
Schuster, T; Schöpfer, F; Rieder, A
2012-01-01
This article concerns the method of approximate inverse to solve semi-discrete, linear operator equations in Banach spaces. Semi-discrete means that we search for a solution in an infinite-dimensional Banach space having only a finite number of data available. In this sense the situation is applicable to a large variety of applications where a measurement process delivers a discretization of an infinite-dimensional data space. The method of approximate inverse computes scalar products of the data with pre-computed reconstruction kernels which are associated with mollifiers and the dual of the model operator. The convergence, approximation power and regularization property of this method when applied to semi-discrete operator equations in Hilbert spaces has been investigated in three prequels to this paper. Here we extend these results to a Banach space setting. We prove convergence and stability for general Banach spaces and reproduce the results specifically for the integration operator acting on the space of continuous functions. (paper)
Approximate inverse for the common offset acquisition geometry in 2D seismic imaging
Grathwohl, Christine; Kunstmann, Peer; Quinto, Eric Todd; Rieder, Andreas
2018-01-01
We explore how the concept of approximate inverse can be used and implemented to recover singularities in the sound speed from common offset measurements in two space dimensions. Numerical experiments demonstrate the performance of the method. We gratefully acknowledge financial support by the Deutsche Forschungsgemeinschaft (DFG) through CRC 1173. Quinto additionally thanks the Otto Mønsteds Fond and U.S. National Science Foundation (under grants DMS 1311558 and DMS 1712207) for their support. He thanks colleagues at DTU and KIT for their warm hospitality while this research was being done.
A frozen Gaussian approximation-based multi-level particle swarm optimization for seismic inversion
Energy Technology Data Exchange (ETDEWEB)
Li, Jinglai, E-mail: jinglaili@sjtu.edu.cn [Institute of Natural Sciences, Department of Mathematics, and MOE Key Laboratory of Scientific and Engineering Computing, Shanghai Jiao Tong University, Shanghai 200240 (China); Lin, Guang, E-mail: lin491@purdue.edu [Department of Mathematics, School of Mechanical Engineering, Purdue University, West Lafayette, IN 47907 (United States); Computational Sciences and Mathematics Division, Pacific Northwest National Laboratory, Richland, WA 99352 (United States); Yang, Xu, E-mail: xuyang@math.ucsb.edu [Department of Mathematics, University of California, Santa Barbara, CA 93106 (United States)
2015-09-01
In this paper, we propose a frozen Gaussian approximation (FGA)-based multi-level particle swarm optimization (MLPSO) method for seismic inversion of high-frequency wave data. The method addresses two challenges in it: First, the optimization problem is highly non-convex, which makes hard for gradient-based methods to reach global minima. This is tackled by MLPSO which can escape from undesired local minima. Second, the character of high-frequency of seismic waves requires a large number of grid points in direct computational methods, and thus renders an extremely high computational demand on the simulation of each sample in MLPSO. We overcome this difficulty by three steps: First, we use FGA to compute high-frequency wave propagation based on asymptotic analysis on phase plane; Then we design a constrained full waveform inversion problem to prevent the optimization search getting into regions of velocity where FGA is not accurate; Last, we solve the constrained optimization problem by MLPSO that employs FGA solvers with different fidelity. The performance of the proposed method is demonstrated by a two-dimensional full-waveform inversion example of the smoothed Marmousi model.
Approximation in generalized Hardy classes and resolution of inverse problems for tokamaks
International Nuclear Information System (INIS)
Fisher, Y.
2011-11-01
This thesis concerns both the theoretical and constructive resolution of inverse problems for isotropic diffusion equation in planar domains, simply and doubly connected. From partial Cauchy boundary data (potential, flux), we look for those quantities on the remaining part of the boundary, where no information is available, as well as inside the domain. The proposed approach proceeds by considering solutions to the diffusion equation as real parts of complex valued solutions to some conjugated Beltrami equation. These particular generalized analytic functions allow to introduce Hardy classes, where the inverse problem is stated as a best constrained approximation issue (bounded extrema problem), and thereby is regularized. Hence, existence and smoothness properties, together with density results of traces on the boundary, ensure well-posedness. An application is studied, to a free boundary problem for a magnetically confined plasma in the tokamak Tore Supra (CEA Cadarache France). The resolution of the approximation problem on a suitable basis of functions (toroidal harmonics) leads to a qualification criterion for the estimated plasma boundary. A descent algorithm makes it decrease, and refines the estimations. The method does not require any integration of the solution in the overall domain. It furnishes very accurate numerical results, and could be extended to other devices, like JET or ITER. (author)
Farrell, Patricio
2015-04-30
© 2015John Wiley & Sons, Ltd. Symmetric collocation methods with RBFs allow approximation of the solution of a partial differential equation, even if the right-hand side is only known at scattered data points, without needing to generate a grid. However, the benefit of a guaranteed symmetric positive definite block system comes at a high computational cost. This cost can be alleviated somewhat by considering compactly supported RBFs and a multiscale technique. But the condition number and sparsity will still deteriorate with the number of data points. Therefore, we study certain block diagonal and triangular preconditioners. We investigate ideal preconditioners and determine the spectra of the preconditioned matrices before proposing more practical preconditioners based on a restricted additive Schwarz method with coarse grid correction. Numerical results verify the effectiveness of the preconditioners.
Inverse bremsstrahlung heating beyond the first Born approximation for dense plasmas in laser fields
International Nuclear Information System (INIS)
Moll, M; Schlanges, M; Bornath, Th; Krainov, V P
2012-01-01
Inverse bremsstrahlung (IB) heating, an important process in the laser-matter interaction, involves two different kinds of interaction—the interaction of the electrons with the external laser field and the electron-ion interaction. This makes analytical approaches very difficult. In a quantum perturbative approach to the IB heating rate in strong laser fields, usually the first Born approximation with respect to the electron-ion potential is considered, whereas the influence of the electric field is taken exactly in the Volkov wave functions. In this paper, a perturbative treatment is presented adopting a screened electron-ion interaction potential. As a new result, we derive the momentum-dependent, angle-averaged heating rate in the first Born approximation. Numerical results are discussed for a broad range of field strengths, and the conditions for the applicability of a linear approximation for the heating rate are analyzed in detail. Going a step further in the perturbation series, we consider the transition amplitude in the second Born approximation, which enables us to calculate the heating rate up to the third order of the interaction strength. (paper)
International Nuclear Information System (INIS)
Otero, F A; Frontini, G L; Elicabe, G E
2011-01-01
An analytic model for the scattering of a spherical particle with spherical inclusions has been proposed under the RG approximation. The model can be used without limitations to describe an X-ray scattering experiment. However, for light scattering several conditions must be fulfilled. Based on this model an inverse methodology is proposed to estimate the radii of host particle and inclusions, the number of inclusions and the Distance Distribution Functions (DDF's) of the distances between inclusions and the distances between inclusions and the origin of coordinates. The methodology is numerically tested in a light scattering example in which the host particle is eliminated by matching the refractive indices of host particle and medium. The results obtained for this cluster particle are very satisfactory.
Zhang, Li-qiang; Ma, Ting-ting; Yu, Chang-shui
2018-03-01
The computability of the quantifier of a given quantum resource is the essential challenge in the resource theory and the inevitable bottleneck for its application. Here we focus on the measurement-induced nonlocality and present a redefinition in terms of the skew information subject to a broken observable. It is shown that the obtained quantity possesses an obvious operational meaning, can tackle the noncontractivity of the measurement-induced nonlocality and has analytic expressions for pure states, (2 ⊗d )-dimensional quantum states, and some particular high-dimensional quantum states. Most importantly, an inverse approximate joint diagonalization algorithm, due to its simplicity, high efficiency, stability, and state independence, is presented to provide almost-analytic expressions for any quantum state, which can also shed light on other aspects in physics. To illustrate applications as well as demonstrate the validity of the algorithm, we compare the analytic and numerical expressions of various examples and show their perfect consistency.
Badia, Santiago; Martín, Alberto F.; Planas, Ramon
2014-10-01
The thermally coupled incompressible inductionless magnetohydrodynamics (MHD) problem models the flow of an electrically charged fluid under the influence of an external electromagnetic field with thermal coupling. This system of partial differential equations is strongly coupled and highly nonlinear for real cases of interest. Therefore, fully implicit time integration schemes are very desirable in order to capture the different physical scales of the problem at hand. However, solving the multiphysics linear systems of equations resulting from such algorithms is a very challenging task which requires efficient and scalable preconditioners. In this work, a new family of recursive block LU preconditioners is designed and tested for solving the thermally coupled inductionless MHD equations. These preconditioners are obtained after splitting the fully coupled matrix into one-physics problems for every variable (velocity, pressure, current density, electric potential and temperature) that can be optimally solved, e.g., using preconditioned domain decomposition algorithms. The main idea is to arrange the original matrix into an (arbitrary) 2 × 2 block matrix, and consider an LU preconditioner obtained by approximating the corresponding Schur complement. For every one of the diagonal blocks in the LU preconditioner, if it involves more than one type of unknowns, we proceed the same way in a recursive fashion. This approach is stated in an abstract way, and can be straightforwardly applied to other multiphysics problems. Further, we precisely explain a flexible and general software design for the code implementation of this type of preconditioners.
Inverse periodic problem for the discrete approximation of the Schroedinger nonlinear equation
International Nuclear Information System (INIS)
Bogolyubov, N.N.; Prikarpatskij, A.K.; AN Ukrainskoj SSR, Lvov. Inst. Prikladnykh Problem Mekhaniki i Matematiki)
1982-01-01
The problem of numerical solution of the Schroedinger nonlinear equation (1) iPSIsub(t) = PSIsub(xx)+-2(PSI)sup(2)PSI. The numerical solution of nonlinear differential equation supposes its discrete approximation is required for the realization of the computer calculation process. Tor the equation (1) there exists the following discrete approximation by variable x(2) iPSIsub(n, t) = (PSIsub(n+1)-2PSIsub(n)+PSIsub(n-1))/(Δx)sup(2)+-(PSIsub(n))sup(2)(PSIsub(n+1)+PSIsub(n-1)), n=0, +-1, +-2... where PSIsub(n)(+) is the corresponding value of PSI(x, t) function in the node and divisions with the equilibrium step Δx. The main problem is obtaining analytically exact solutions of the equations (2). The analysis of the equation system (2) is performed on the base of the discrete analogue of the periodic variant of the inverse scattering problem method developed with the aid of nonlinear equations of the Korteweg-de Vries type. Obtained in explicit form are analytical solutions of the equations system (2). The solutions are expressed through the Riemann THETA-function [ru
Domain decomposed preconditioners with Krylov subspace methods as subdomain solvers
Energy Technology Data Exchange (ETDEWEB)
Pernice, M. [Univ. of Utah, Salt Lake City, UT (United States)
1994-12-31
Domain decomposed preconditioners for nonsymmetric partial differential equations typically require the solution of problems on the subdomains. Most implementations employ exact solvers to obtain these solutions. Consequently work and storage requirements for the subdomain problems grow rapidly with the size of the subdomain problems. Subdomain solves constitute the single largest computational cost of a domain decomposed preconditioner, and improving the efficiency of this phase of the computation will have a significant impact on the performance of the overall method. The small local memory available on the nodes of most message-passing multicomputers motivates consideration of the use of an iterative method for solving subdomain problems. For large-scale systems of equations that are derived from three-dimensional problems, memory considerations alone may dictate the need for using iterative methods for the subdomain problems. In addition to reduced storage requirements, use of an iterative solver on the subdomains allows flexibility in specifying the accuracy of the subdomain solutions. Substantial savings in solution time is possible if the quality of the domain decomposed preconditioner is not degraded too much by relaxing the accuracy of the subdomain solutions. While some work in this direction has been conducted for symmetric problems, similar studies for nonsymmetric problems appear not to have been pursued. This work represents a first step in this direction, and explores the effectiveness of performing subdomain solves using several transpose-free Krylov subspace methods, GMRES, transpose-free QMR, CGS, and a smoothed version of CGS. Depending on the difficulty of the subdomain problem and the convergence tolerance used, a reduction in solution time is possible in addition to the reduced memory requirements. The domain decomposed preconditioner is a Schur complement method in which the interface operators are approximated using interface probing.
Behroozmand, Ahmad A.; Auken, Esben; Fiandaca, Gianluca; Christiansen, Anders Vest; Christensen, Niels B.
2012-08-01
We present a new, efficient and accurate forward modelling and inversion scheme for magnetic resonance sounding (MRS) data. MRS, also called surface-nuclear magnetic resonance (surface-NMR), is the only non-invasive geophysical technique that directly detects free water in the subsurface. Based on the physical principle of NMR, protons of the water molecules in the subsurface are excited at a specific frequency, and the superposition of signals from all protons within the excited earth volume is measured to estimate the subsurface water content and other hydrological parameters. In this paper, a new inversion scheme is presented in which the entire data set is used, and multi-exponential behaviour of the NMR signal is approximated by the simple stretched-exponential approach. Compared to the mono-exponential interpretation of the decaying NMR signal, we introduce a single extra parameter, the stretching exponent, which helps describe the porosity in terms of a single relaxation time parameter, and helps to determine correct initial amplitude and relaxation time of the signal. Moreover, compared to a multi-exponential interpretation of the MRS data, the decay behaviour is approximated with considerably fewer parameters. The forward response is calculated in an efficient numerical manner in terms of magnetic field calculation, discretization and integration schemes, which allows fast computation while maintaining accuracy. A piecewise linear transmitter loop is considered for electromagnetic modelling of conductivities in the layered half-space providing electromagnetic modelling of arbitrary loop shapes. The decaying signal is integrated over time windows, called gates, which increases the signal-to-noise ratio, particularly at late times, and the data vector is described with a minimum number of samples, that is, gates. The accuracy of the forward response is investigated by comparing a MRS forward response with responses from three other approaches outlining
Franssens, G; De Maziére, M; Fonteyn, D
2000-08-20
A new derivation is presented for the analytical inversion of aerosol spectral extinction data to size distributions. It is based on the complex analytic extension of the anomalous diffraction approximation (ADA). We derive inverse formulas that are applicable to homogeneous nonabsorbing and absorbing spherical particles. Our method simplifies, generalizes, and unifies a number of results obtained previously in the literature. In particular, we clarify the connection between the ADA transform and the Fourier and Laplace transforms. Also, the effect of the particle refractive-index dispersion on the inversion is examined. It is shown that, when Lorentz's model is used for this dispersion, the continuous ADA inverse transform is mathematically well posed, whereas with a constant refractive index it is ill posed. Further, a condition is given, in terms of Lorentz parameters, for which the continuous inverse operator does not amplify the error.
Chen, Liwen; Xu, Qiang
2018-02-01
This paper proposes new iterative algorithms for the unknown input and state recovery from the system outputs using an approximate inverse of the strictly proper linear time-invariant (LTI) multivariable system. One of the unique advantages from previous system inverse algorithms is that the output differentiation is not required. The approximate system inverse is stable due to the systematic optimal design of a dummy feedthrough D matrix in the state-space model via the feedback stabilization. The optimal design procedure avoids trial and error to identify such a D matrix which saves tremendous amount of efforts. From the derived and proved convergence criteria, such an optimal D matrix also guarantees the convergence of algorithms. Illustrative examples show significant improvement of the reference input signal tracking by the algorithms and optimal D design over non-iterative counterparts on controllable or stabilizable LTI systems, respectively. Case studies of two Boeing-767 aircraft aerodynamic models further demonstrate the capability of the proposed methods.
DEFF Research Database (Denmark)
Christensen, Ole; Lindner, Alexander M
2001-01-01
We give lower frame bounds for finite subfamilies of a frame of exponentials {e(i lambdak(.))}k is an element ofZ in L-2(-pi,pi). We also present a method for approximation of the inverse frame operator corresponding to {e(i lambdak(.))}k is an element ofZ, where knowledge of the frame bounds for...
Seismic Imaging and Velocity Analysis Using a Pseudo Inverse to the Extended Born Approximation
Alali, Abdullah A.
2018-05-01
Prestack depth migration requires an accurate kinematic velocity model to image the subsurface correctly. Wave equation migration velocity analysis techniques aim to update the background velocity model by minimizing image residuals to achieve the correct model. The most commonly used technique is differential semblance optimization (DSO), which depends on applying an image extension and penalizing the energy in the non-physical extension. However, studies show that the conventional DSO gradient is contaminated with artifact noise and unwanted oscillations which might lead to local minima. To deal with this issue and improve the stability of DSO, recent studies proposed to use an inversion formula rather than migration to obtain the image. Migration is defined as the adjoint of Born modeling. Since the inversion is complicated and expensive, a pseudo inverse is used instead. A pseudo inverse formula has been developed recently for the horizontal space shift extended Born. This formula preserves the true amplitude and reduces the artifact noise even when an incorrect velocity is used. Although the theory for such an inverse is well developed, it has only been derived and tested on laterally homogeneous models. This is because the formula contains a derivative of the image with respect to a vertical extension evaluated at zero offset. Implementing the vertical extension is computationally expensive, which means this derivative needs to be computed without applying the additional extension. For laterally invariant models, the inverse is simplified and this derivative is eliminated. I implement the full asymptotic inverse to the extended Born to account for laterally heterogeneity. I compute the derivative of the image with respect to a vertical extension without performing any additional shift. This is accomplished by applying the derivative to the imaging condition and utilizing the chain rule. The fact that this derivative is evaluated at zero offset vertical
International Nuclear Information System (INIS)
Hamman, E.; Zorgati, R.
1995-01-01
Eddy current non-destructive testing is used by EDF to detect flaws affecting conductive objects such as steam generator tubes. With a view to obtaining ever more accurate information on equipment integrity, thereby facilitating diagnosis, studies aimed at using measurements to reconstruct an image of the flaw have been proceeding now for about ten years. In this context, our approach to eddy current imaging is based on inverse problem formalism. The direct problem, involving a mathematical model linking measurements provided by a probe with variables characterizing the defect, is dealt with elsewhere. Using the model results, we study the possibility of inverting it, i.e. of reconstructing an image of the flaw from the measurements. We first give an overview of the different inversion techniques, representative of the state of the art and all based on linearization of the inverse problem by means of the Born approximation. The model error resulting from an excessive Born approximation nevertheless severely limits the quantity of the images which can be obtained. In order to counteract this often critical error and extend the eddy current imaging application field, we have to del with the non-linear inverse problem. A method derived from recent research is proposed and implemented to ensure consistency with the exact model. Based on an 'optimization' type approach and provided with a convergence theorem, the method is highly efficient. (authors). 17 refs., 7 figs., 1 append
Preconditioner-free Wiener filtering with a dense noise matrix
Huffenberger, Kevin M.
2018-05-01
This work extends the Elsner & Wandelt (2013) iterative method for efficient, preconditioner-free Wiener filtering to cases in which the noise covariance matrix is dense, but can be decomposed into a sum whose parts are sparse in convenient bases. The new method, which uses multiple messenger fields, reproduces Wiener-filter solutions for test problems, and we apply it to a case beyond the reach of the Elsner & Wandelt (2013) method. We compute the Wiener-filter solution for a simulated Cosmic Microwave Background (CMB) map that contains spatially varying, uncorrelated noise, isotropic 1/f noise, and large-scale horizontal stripes (like those caused by atmospheric noise). We discuss simple extensions that can filter contaminated modes or inverse-noise-filter the data. These techniques help to address complications in the noise properties of maps from current and future generations of ground-based Microwave Background experiments, like Advanced ACTPol, Simons Observatory, and CMB-S4.
Cui, Tiangang; Marzouk, Youssef; Willcox, Karen
2016-06-01
Two major bottlenecks to the solution of large-scale Bayesian inverse problems are the scaling of posterior sampling algorithms to high-dimensional parameter spaces and the computational cost of forward model evaluations. Yet incomplete or noisy data, the state variation and parameter dependence of the forward model, and correlations in the prior collectively provide useful structure that can be exploited for dimension reduction in this setting-both in the parameter space of the inverse problem and in the state space of the forward model. To this end, we show how to jointly construct low-dimensional subspaces of the parameter space and the state space in order to accelerate the Bayesian solution of the inverse problem. As a byproduct of state dimension reduction, we also show how to identify low-dimensional subspaces of the data in problems with high-dimensional observations. These subspaces enable approximation of the posterior as a product of two factors: (i) a projection of the posterior onto a low-dimensional parameter subspace, wherein the original likelihood is replaced by an approximation involving a reduced model; and (ii) the marginal prior distribution on the high-dimensional complement of the parameter subspace. We present and compare several strategies for constructing these subspaces using only a limited number of forward and adjoint model simulations. The resulting posterior approximations can rapidly be characterized using standard sampling techniques, e.g., Markov chain Monte Carlo. Two numerical examples demonstrate the accuracy and efficiency of our approach: inversion of an integral equation in atmospheric remote sensing, where the data dimension is very high; and the inference of a heterogeneous transmissivity field in a groundwater system, which involves a partial differential equation forward model with high dimensional state and parameters.
2011-04-01
L1u. Assume that geodesic lines, generated by the eikonal equation corresponding to the function c (x) are regular, i.e. any two points in R3 can be...source x0 is located far from Ω, then similarly with (107) ∆l (x, x0) ≈ 0 in Ω. The function l (x, x0) satisfies the eikonal equation [38] |∇xl (x, x0...called “inverse kinematic problem” which aims to recover the function c (x) from the eikonal equation assuming that the function l (x, x0) is known for
International Nuclear Information System (INIS)
Chan, C.K.; Hoffman, D.K.; Evans, J.W.
1985-01-01
Local, i.e., multiplicative, operators satisfy well-known linear factorization relations wherein matrix elements (between states associated with a complete set of wave functions) can be obtained as a linear combination of those out of the ground state (the input data). Analytic derivation of factorization relations for general state input data results in singular integral expressions for the coefficients, which can, however, be regularized using consistency conditions between matrix elements out of a single (nonground) state. Similar results hold for suitable ''symmetry class'' averaged matrix elements where the symmetry class projection operators are ''complete.'' In several cases where the wave functions or projection operators incorporate orthogonal polynomial dependence, we show that the ground state factorization relations have a simplified structure allowing an alternative derivation of the general factorization relations via an infinite matrix inversion procedure. This form is shown to have some advantages over previous versions. In addition, this matrix inversion procedure obtains all consistency conditions (which is not always the case from regularization of singular integrals)
Porr, Bernd; von Ferber, Christian; Wörgötter, Florentin
2003-04-01
In "Isotropic Sequence Order Learning" (pp. 831-864 in this issue), we introduced a novel algorithm for temporal sequence learning (ISO learning). Here, we embed this algorithm into a formal nonevaluating (teacher free) environment, which establishes a sensor-motor feedback. The system is initially guided by a fixed reflex reaction, which has the objective disadvantage that it can react only after a disturbance has occurred. ISO learning eliminates this disadvantage by replacing the reflex-loop reactions with earlier anticipatory actions. In this article, we analytically demonstrate that this process can be understood in terms of control theory, showing that the system learns the inverse controller of its own reflex. Thereby, this system is able to learn a simple form of feedforward motor control.
Preconditioners Based on the ISM Factorization
Czech Academy of Sciences Publication Activity Database
Bru, R.; Cerdán, J.; Marín, J.; Mas, J.; Tůma, Miroslav
2015-01-01
Roč. 23, č. 3 (2015), s. 17-27 ISSN 1224-1784 R&D Projects: GA ČR GA13-06684S Institutional support: RVO:67985807 Keywords : preconditioned iterative methods * incomplete decompositions * approximate inverses * linear least squares Subject RIV: BA - General Mathematics Impact factor: 0.383, year: 2015 http://emis.muni.cz/journals/ASUO/mathematics_/anale2015vol3/Bru_R.__Cerdan_J.__Marin_J.__Mas_J.__Tuma_M..pdf
Brown, Malcolm
2009-01-01
Inversions are fascinating phenomena. They are reversals of the normal or expected order. They occur across a wide variety of contexts. What do inversions have to do with learning spaces? The author suggests that they are a useful metaphor for the process that is unfolding in higher education with respect to education. On the basis of…
Fast Multipole-Based Elliptic PDE Solver and Preconditioner
Ibeid, Huda
2016-12-07
Exascale systems are predicted to have approximately one billion cores, assuming Gigahertz cores. Limitations on affordable network topologies for distributed memory systems of such massive scale bring new challenges to the currently dominant parallel programing model. Currently, there are many efforts to evaluate the hardware and software bottlenecks of exascale designs. It is therefore of interest to model application performance and to understand what changes need to be made to ensure extrapolated scalability. Fast multipole methods (FMM) were originally developed for accelerating N-body problems for particle-based methods in astrophysics and molecular dynamics. FMM is more than an N-body solver, however. Recent efforts to view the FMM as an elliptic PDE solver have opened the possibility to use it as a preconditioner for even a broader range of applications. In this thesis, we (i) discuss the challenges for FMM on current parallel computers and future exascale architectures, with a focus on inter-node communication, and develop a performance model that considers the communication patterns of the FMM for spatially quasi-uniform distributions, (ii) employ this performance model to guide performance and scaling improvement of FMM for all-atom molecular dynamics simulations of uniformly distributed particles, and (iii) demonstrate that, beyond its traditional use as a solver in problems for which explicit free-space kernel representations are available, the FMM has applicability as a preconditioner in finite domain elliptic boundary value problems, by equipping it with boundary integral capability for satisfying conditions at finite boundaries and by wrapping it in a Krylov method for extensibility to more general operators. Compared with multilevel methods, FMM is capable of comparable algebraic convergence rates down to the truncation error of the discretized PDE, and it has superior multicore and distributed memory scalability properties on commodity
A parallel sweeping preconditioner for frequency-domain seismic wave propagation
Poulson, Jack
2012-09-01
We present a parallel implementation of Engquist and Ying\\'s sweeping preconditioner, which exploits radiation boundary conditions in order to form an approximate block LDLT factorization of the Helmholtz operator with only O(N4/3) work and an application (and memory) cost of only O(N logN). The approximate factorization is then used as a preconditioner for GMRES, and we show that essentially O(1) iterations are required for convergence, even for the full SEG/EAGE over-thrust model at 30 Hz. In particular, we demonstrate the solution of said problem in a mere 15 minutes on 8192 cores of TACC\\'s Lonestar, which may be the largest-scale 3D heterogeneous Helmholtz calculation to date. Generalizations of our parallel strategy are also briefly discussed for time-harmonic linear elasticity and Maxwell\\'s equations.
An evaluation of parallel multigrid as a solver and a preconditioner for singular perturbed problems
Energy Technology Data Exchange (ETDEWEB)
Oosterlee, C.W. [Inst. for Algorithms and Scientific Computing, Sankt Augustin (Germany); Washio, T. [C& C Research Lab., Sankt Augustin (Germany)
1996-12-31
In this paper we try to achieve h-independent convergence with preconditioned GMRES and BiCGSTAB for 2D singular perturbed equations. Three recently developed multigrid methods are adopted as a preconditioner. They are also used as solution methods in order to compare the performance of the methods as solvers and as preconditioners. Two of the multigrid methods differ only in the transfer operators. One uses standard matrix- dependent prolongation operators from. The second uses {open_quotes}upwind{close_quotes} prolongation operators, developed. Both employ the Galerkin coarse grid approximation and an alternating zebra line Gauss-Seidel smoother. The third method is based on the block LU decomposition of a matrix and on an approximate Schur complement. This multigrid variant is presented in. All three multigrid algorithms are algebraic methods.
International Nuclear Information System (INIS)
Pozdnyakov, Yu.A.; Terenetskij, K.O.
1981-01-01
The approximate method for solution of the inverse scattering problem (ISP) at fixed energy for complex spherically symmetric potentials decreasing faster 1/r is considered. The method is based on using a generalized WKB approximation. For the designed potential V(r) a sufficiently ''close'' reference potential V(r) has been chosen. For both potentials S-matrix elements (ME) have been calculated and inversion procedure has been carried out. S-ME have been calculated for integral-valued and intermediate angular moment values. S-ME are presented in a graphical form for being restored reference, and restored potentials for proton scattering with Esub(p)=49.48 MeV energy on 12 C nuclei. The restoration is the better the ''closer'' the sought-for potential to the reference one. This allows to specify the potential by means of iterations: the restored potential can be used as a reference one, etc. The operation of a restored potential smoothing before the following iteration is introduced. Drawbacks and advantages of the ISP solution method under consideration are pointed out. The method application is strongly limited by the requirement that the energy should be higher than a certain ''critical'' one. The method is applicable in a wider region of particle energies (in the low-energies direction) than the ordinary WKB method. The method is more simple in realization conformably to complex potentials. The investigations carried out of the proposed ISP solution method at fixed energy for complex spherically-symmetric potentials allow to conclude that the method can be successFully applied to specify the central part of interaction of nucleons, α-particles and heavy ions of average and high energies with atomic nuclei [ru
Object-Oriented Software Tools for the Construction of Preconditioners
Directory of Open Access Journals (Sweden)
Eva Mossberg
1997-01-01
Full Text Available In recent years, there has been considerable progress concerning preconditioned iterative methods for large and sparse systems of equations arising from the discretization of differential equations. Such methods are particularly attractive in the context of high-performance (parallel computers. However, the implementation of a preconditioner is a nontrivial task. The focus of the present contribution is on a set of object-oriented software tools that support the construction of a family of preconditioners based on fast transforms. By combining objects of different classes, it is possible to conveniently construct any preconditioner within this family.
Block-triangular preconditioners for PDE-constrained optimization
Rees, Tyrone; Stoll, Martin
2010-01-01
In this paper we investigate the possibility of using a block-triangular preconditioner for saddle point problems arising in PDE-constrained optimization. In particular, we focus on a conjugate gradient-type method introduced by Bramble and Pasciak that uses self-adjointness of the preconditioned system in a non-standard inner product. We show when the Chebyshev semi-iteration is used as a preconditioner for the relevant matrix blocks involving the finite element mass matrix that the main drawback of the Bramble-Pasciak method-the appropriate scaling of the preconditioners-is easily overcome. We present an eigenvalue analysis for the block-triangular preconditioners that gives convergence bounds in the non-standard inner product and illustrates their competitiveness on a number of computed examples. Copyright © 2010 John Wiley & Sons, Ltd.
Block-triangular preconditioners for PDE-constrained optimization
Rees, Tyrone
2010-11-26
In this paper we investigate the possibility of using a block-triangular preconditioner for saddle point problems arising in PDE-constrained optimization. In particular, we focus on a conjugate gradient-type method introduced by Bramble and Pasciak that uses self-adjointness of the preconditioned system in a non-standard inner product. We show when the Chebyshev semi-iteration is used as a preconditioner for the relevant matrix blocks involving the finite element mass matrix that the main drawback of the Bramble-Pasciak method-the appropriate scaling of the preconditioners-is easily overcome. We present an eigenvalue analysis for the block-triangular preconditioners that gives convergence bounds in the non-standard inner product and illustrates their competitiveness on a number of computed examples. Copyright © 2010 John Wiley & Sons, Ltd.
International Nuclear Information System (INIS)
Aboanber, A E; Nahla, A A
2002-01-01
A method based on the Pade approximations is applied to the solution of the point kinetics equations with a time varying reactivity. The technique consists of treating explicitly the roots of the inhour formula. A significant improvement has been observed by treating explicitly the most dominant roots of the inhour equation, which usually would make the Pade approximation inaccurate. Also the analytical inversion method which permits a fast inversion of polynomials of the point kinetics matrix is applied to the Pade approximations. Results are presented for several cases of Pade approximations using various options of the method with different types of reactivity. The formalism is applicable equally well to non-linear problems, where the reactivity depends on the neutron density through temperature feedback. It was evident that the presented method is particularly good for cases in which the reactivity can be represented by a series of steps and performed quite well for more general cases
An Empirical Analysis of the Performance of Preconditioners for SPD Systems
George, Thomas; Gupta, Anshul; Sarin, Vivek
2012-01-01
study of the most popular preconditioner and iterative solver combinations for symmetric positive-definite systems. We introduce a methodology for a rigorous comparative evaluation of various preconditioners, including the use of some simple but powerful
A Parallel Sweeping Preconditioner for Heterogeneous 3D Helmholtz Equations
Poulson, Jack
2013-05-02
A parallelization of a sweeping preconditioner for three-dimensional Helmholtz equations without large cavities is introduced and benchmarked for several challenging velocity models. The setup and application costs of the sequential preconditioner are shown to be O(γ2N4/3) and O(γN logN), where γ(ω) denotes the modestly frequency-dependent number of grid points per perfectly matched layer. Several computational and memory improvements are introduced relative to using black-box sparse-direct solvers for the auxiliary problems, and competitive runtimes and iteration counts are reported for high-frequency problems distributed over thousands of cores. Two open-source packages are released along with this paper: Parallel Sweeping Preconditioner (PSP) and the underlying distributed multifrontal solver, Clique. © 2013 Society for Industrial and Applied Mathematics.
A note on the preconditioner Pm=(I+Sm)
Kohno, Toshiyuki; Niki, Hiroshi
2009-03-01
Kotakemori et al. [H. Kotakemori, K. Harada, M. Morimoto, H. Niki, A comparison theorem for the iterative method with the preconditioner (I+Smax), Journal of Computational and Applied Mathematics 145 (2002) 373-378] have reported that the convergence rate of the iterative method with a preconditioner Pm=(I+Sm) was superior to one of the modified Gauss-Seidel method under the condition. These authors derived a theorem comparing the Gauss-Seidel method with the proposed method. However, through application of a counter example, Wen Li [Wen Li, A note on the preconditioned GaussSeidel (GS) method for linear systems, Journal of Computational and Applied Mathematics 182 (2005) 81-91] pointed out that there exists a special matrix that does not satisfy this comparison theorem. In this note, we analyze the reason why such a to counter example may be produced, and propose a preconditioner to overcome this problem.
Scalable Domain Decomposition Preconditioners for Heterogeneous Elliptic Problems
Directory of Open Access Journals (Sweden)
Pierre Jolivet
2014-01-01
Full Text Available Domain decomposition methods are, alongside multigrid methods, one of the dominant paradigms in contemporary large-scale partial differential equation simulation. In this paper, a lightweight implementation of a theoretically and numerically scalable preconditioner is presented in the context of overlapping methods. The performance of this work is assessed by numerical simulations executed on thousands of cores, for solving various highly heterogeneous elliptic problems in both 2D and 3D with billions of degrees of freedom. Such problems arise in computational science and engineering, in solid and fluid mechanics. While focusing on overlapping domain decomposition methods might seem too restrictive, it will be shown how this work can be applied to a variety of other methods, such as non-overlapping methods and abstract deflation based preconditioners. It is also presented how multilevel preconditioners can be used to avoid communication during an iterative process such as a Krylov method.
A universal preconditioner for simulating condensed phase materials
Energy Technology Data Exchange (ETDEWEB)
Packwood, David; Ortner, Christoph, E-mail: c.ortner@warwick.ac.uk [Mathematics Institute, University of Warwick, Coventry CV4 7AL (United Kingdom); Kermode, James, E-mail: j.r.kermode@warwick.ac.uk [Warwick Centre for Predictive Modelling, School of Engineering, University of Warwick, Coventry CV4 7AL (United Kingdom); Mones, Letif [Mathematics Institute, University of Warwick, Coventry CV4 7AL (United Kingdom); Engineering Laboratory, University of Cambridge, Trumpington Street, Cambridge CB2 1PZ (United Kingdom); Bernstein, Noam [Center for Materials Physics and Technology, Naval Research Laboratory, Washington, DC 20375 (United States); Woolley, John [Department of Physics, University of Warwick, Coventry CV4 7AL (United Kingdom); Gould, Nicholas [Scientific Computing Department, STFC-Rutherford Appleton Laboratory Chilton, Oxfordshire OX11 0QX (United Kingdom); Csányi, Gábor, E-mail: gc121@cam.ac.uk [Engineering Laboratory, University of Cambridge, Trumpington Street, Cambridge CB2 1PZ (United Kingdom)
2016-04-28
We introduce a universal sparse preconditioner that accelerates geometry optimisation and saddle point search tasks that are common in the atomic scale simulation of materials. Our preconditioner is based on the neighbourhood structure and we demonstrate the gain in computational efficiency in a wide range of materials that include metals, insulators, and molecular solids. The simple structure of the preconditioner means that the gains can be realised in practice not only when using expensive electronic structure models but also for fast empirical potentials. Even for relatively small systems of a few hundred atoms, we observe speedups of a factor of two or more, and the gain grows with system size. An open source Python implementation within the Atomic Simulation Environment is available, offering interfaces to a wide range of atomistic codes.
International Nuclear Information System (INIS)
Ranaivo Nomenjanahary, F.; Rakoto, H.; Ratsimbazafy, J.B.
1994-08-01
This paper is concerned with resistivity sounding measurements performed from single site (vertical sounding) or from several sites (profiles) within a bounded area. The objective is to present an accurate information about the study area and to estimate the likelihood of the produced quantitative models. The achievement of this objective obviously requires quite relevant data and processing methods. It also requires interpretation methods which should take into account the probable effect of an heterogeneous structure. In front of such difficulties, the interpretation of resistivity sounding data inevitably involves the use of inversion methods. We suggest starting the interpretation in simple situation (1-D approximation), and using the rough but correct model obtained as an a-priori model for any more refined interpretation. Related to this point of view, special attention should be paid for the inverse problem applied to the resistivity sounding data. This inverse problem is nonlinear, while linearity inherent in the functional response used to describe the physical experiment. Two different approaches are used to build an approximate but higher dimensional inversion of geoelectrical data: the linear approach and the bayesian statistical approach. Some illustrations of their application in resistivity sounding data acquired at Tritrivakely volcanic lake (single site) and at Mahitsy area (several sites) will be given. (author). 28 refs, 7 figs
A comparison of deflation and the balancing Neumann-Neumann preconditioner
Nabben, R.; Vuik, C.
2004-01-01
In this paper we compare various preconditioners for the numerical solution of partial differential equations. We compare the well-known balancing Neumann Neumann preconditioner used in domain decomposition methods with a so-called deflation preconditioner. We prove that the effective condition
The Importance of Structure in Incomplete Factorization Preconditioners
Czech Academy of Sciences Publication Activity Database
Scott, J.; Tůma, Miroslav
2011-01-01
Roč. 51, č. 2 (2011), s. 385-404 ISSN 0006-3835 Grant - others:GA AV ČR(CZ) M100300902 Institutional research plan: CEZ:AV0Z10300504 Keywords : sparse symmetric linear systems * incomplete factorizations * preconditioners * level-based approach Subject RIV: BA - General Mathematics Impact factor: 0.724, year: 2011
Directory of Open Access Journals (Sweden)
Hozejowski Leszek
2012-04-01
Full Text Available The paper is devoted to a computational problem of predicting a local heat transfer coefficient from experimental temperature data. The experimental part refers to boiling flow of a refrigerant in a minichannel. Heat is dissipated from heating alloy to the flowing liquid due to forced convection. The mathematical model of the problem consists of the governing Poisson equation and the proper boundary conditions. For accurate results it is required to smooth the measurements which was obtained by using Trefftz functions. The measurements were approximated with a linear combination of Trefftz functions. Due to the computational procedure in which the measurement errors are known, it was possible to smooth the data and also to reduce the residuals of approximation on the boundaries.
Chui, Siu Lit; Lu, Ya Yan
2004-03-01
Wide-angle full-vector beam propagation methods (BPMs) for three-dimensional wave-guiding structures can be derived on the basis of rational approximants of a square root operator or its exponential (i.e., the one-way propagator). While the less accurate BPM based on the slowly varying envelope approximation can be efficiently solved by the alternating direction implicit (ADI) method, the wide-angle variants involve linear systems that are more difficult to handle. We present an efficient solver for these linear systems that is based on a Krylov subspace method with an ADI preconditioner. The resulting wide-angle full-vector BPM is used to simulate the propagation of wave fields in a Y branch and a taper.
Parallel alternating direction preconditioner for isogeometric simulations of explicit dynamics
Łoś, Marcin
2015-04-27
In this paper we present a parallel implementation of the alternating direction preconditioner for isogeometric simulations of explicit dynamics. The Alternating Direction Implicit (ADI) algorithm, belongs to the category of matrix-splitting iterative methods, was proposed almost six decades ago for solving parabolic and elliptic partial differential equations, see [1–4]. The new version of this algorithm has been recently developed for isogeometric simulations of two dimensional explicit dynamics [5] and steady-state diffusion equations with orthotropic heterogenous coefficients [6]. In this paper we present a parallel version of the alternating direction implicit algorithm for three dimensional simulations. The algorithm has been incorporated as a part of PETIGA an isogeometric framework [7] build on top of PETSc [8]. We show the scalability of the parallel algorithm on STAMPEDE linux cluster up to 10,000 processors, as well as the convergence rate of the PCG solver with ADI algorithm as preconditioner.
Scalable and Robust BDDC Preconditioners for Reservoir and Electromagnetics Modeling
Zampini, S.; Widlund, O.B.; Keyes, David E.
2015-01-01
The purpose of the study is to show the effectiveness of recent algorithmic advances in Balancing Domain Decomposition by Constraints (BDDC) preconditioners for the solution of elliptic PDEs with highly heterogeneous coefficients, and discretized by means of the finite element method. Applications to large linear systems generated by div- and curl- conforming finite elements discretizations commonly arising in the contexts of modelling reservoirs and electromagnetics will be presented.
Scalable and Robust BDDC Preconditioners for Reservoir and Electromagnetics Modeling
Zampini, S.
2015-09-13
The purpose of the study is to show the effectiveness of recent algorithmic advances in Balancing Domain Decomposition by Constraints (BDDC) preconditioners for the solution of elliptic PDEs with highly heterogeneous coefficients, and discretized by means of the finite element method. Applications to large linear systems generated by div- and curl- conforming finite elements discretizations commonly arising in the contexts of modelling reservoirs and electromagnetics will be presented.
Fymat, A. L.; Smith, C. B.
1979-01-01
It is shown that the inverse analytical solutions, provided separately by Fymat and Box-McKellar, for reconstructing particle size distributions from remote spectral transmission measurements under the anomalous diffraction approximation can be derived using a cosine and a sine transform, respectively. Sufficient conditions of validity of the two formulas are established. Their comparison shows that the former solution is preferable to the latter in that it requires less a priori information (knowledge of the particle number density is not needed) and has wider applicability. For gamma-type distributions, and either a real or a complex refractive index, explicit expressions are provided for retrieving the distribution parameters; such expressions are, interestingly, proportional to the geometric area of the polydispersion.
Parallel RFSAI-BFGS Preconditioners for Large Symmetric Eigenproblems
Directory of Open Access Journals (Sweden)
L. Bergamaschi
2013-01-01
the linearized Newton system to solve Au=q(uu, q(u being the Rayleigh quotient. In a previous work (Bergamaschi and Martínez, 2013 the sequence of preconditioned Jacobians is proven to remain close to the identity matrix if the initial preconditioned Jacobian is so. Numerical results onto matrices arising from various realistic problems with size up to 1.5 million unknowns account for the efficiency and the scalability of the proposed low rank update of the RFSAI preconditioner. The overall RFSAI-BFGS preconditioned Newton algorithm has shown comparable efficiencies with a well-established eigenvalue solver on all the test problems.
Triangular preconditioners for saddle point problems with a penalty term
Energy Technology Data Exchange (ETDEWEB)
Klawonn, A. [Westfaelische Wilhelms-Universitaet, Muenster (Germany)
1996-12-31
Triangular preconditioners for a class of saddle point problems with a penalty term are considered. An important example is the mixed formulation of the pure displacement problem in linear elasticity. It is shown that the spectrum of the preconditioned system is contained in a real, positive interval, and that the interval bounds can be made independent of the discretization and penalty parameters. This fact is used to construct bounds of the convergence rate of the GMRES method used with an energy norm. Numerical results are given for GMRES and BI-CGSTAB.
Multiparameter Inversion: Cramer's Rule for Pseudodifferential Operators
Directory of Open Access Journals (Sweden)
Rami Nammour
2011-01-01
a matrix. The approximate solution of the linearized multiparameter problem so produced involves no ray theory computations. It may be sufficiently accurate for some purposes; for others, it can serve as a preconditioner to enhance the convergence of standard iterative methods.
An Empirical Analysis of the Performance of Preconditioners for SPD Systems
George, Thomas
2012-08-01
Preconditioned iterative solvers have the potential to solve very large sparse linear systems with a fraction of the memory used by direct methods. However, the effectiveness and performance of most preconditioners is not only problem dependent, but also fairly sensitive to the choice of their tunable parameters. As a result, a typical practitioner is faced with an overwhelming number of choices of solvers, preconditioners, and their parameters. The diversity of preconditioners makes it difficult to analyze them in a unified theoretical model. A systematic empirical evaluation of existing preconditioned iterative solvers can help in identifying the relative advantages of various implementations. We present the results of a comprehensive experimental study of the most popular preconditioner and iterative solver combinations for symmetric positive-definite systems. We introduce a methodology for a rigorous comparative evaluation of various preconditioners, including the use of some simple but powerful metrics. The detailed comparison of various preconditioner implementations and a state-of-the-art direct solver gives interesting insights into their relative strengths and weaknesses. We believe that these results would be useful to researchers developing preconditioners and iterative solvers as well as practitioners looking for appropriate sparse solvers for their applications. © 2012 ACM.
Weakly intrusive low-rank approximation method for nonlinear parameter-dependent equations
Giraldi, Loic; Nouy, Anthony
2017-01-01
This paper presents a weakly intrusive strategy for computing a low-rank approximation of the solution of a system of nonlinear parameter-dependent equations. The proposed strategy relies on a Newton-like iterative solver which only requires evaluations of the residual of the parameter-dependent equation and of a preconditioner (such as the differential of the residual) for instances of the parameters independently. The algorithm provides an approximation of the set of solutions associated with a possibly large number of instances of the parameters, with a computational complexity which can be orders of magnitude lower than when using the same Newton-like solver for all instances of the parameters. The reduction of complexity requires efficient strategies for obtaining low-rank approximations of the residual, of the preconditioner, and of the increment at each iteration of the algorithm. For the approximation of the residual and the preconditioner, weakly intrusive variants of the empirical interpolation method are introduced, which require evaluations of entries of the residual and the preconditioner. Then, an approximation of the increment is obtained by using a greedy algorithm for low-rank approximation, and a low-rank approximation of the iterate is finally obtained by using a truncated singular value decomposition. When the preconditioner is the differential of the residual, the proposed algorithm is interpreted as an inexact Newton solver for which a detailed convergence analysis is provided. Numerical examples illustrate the efficiency of the method.
Weakly intrusive low-rank approximation method for nonlinear parameter-dependent equations
Giraldi, Loic
2017-06-30
This paper presents a weakly intrusive strategy for computing a low-rank approximation of the solution of a system of nonlinear parameter-dependent equations. The proposed strategy relies on a Newton-like iterative solver which only requires evaluations of the residual of the parameter-dependent equation and of a preconditioner (such as the differential of the residual) for instances of the parameters independently. The algorithm provides an approximation of the set of solutions associated with a possibly large number of instances of the parameters, with a computational complexity which can be orders of magnitude lower than when using the same Newton-like solver for all instances of the parameters. The reduction of complexity requires efficient strategies for obtaining low-rank approximations of the residual, of the preconditioner, and of the increment at each iteration of the algorithm. For the approximation of the residual and the preconditioner, weakly intrusive variants of the empirical interpolation method are introduced, which require evaluations of entries of the residual and the preconditioner. Then, an approximation of the increment is obtained by using a greedy algorithm for low-rank approximation, and a low-rank approximation of the iterate is finally obtained by using a truncated singular value decomposition. When the preconditioner is the differential of the residual, the proposed algorithm is interpreted as an inexact Newton solver for which a detailed convergence analysis is provided. Numerical examples illustrate the efficiency of the method.
Approximate Schur complement preconditioning of the lowest order nodal discretizations
Energy Technology Data Exchange (ETDEWEB)
Moulton, J.D.; Ascher, U.M. [Univ. of British Columbia, Vancouver, British Columbia (Canada); Morel, J.E. [Los Alamos National Lab., NM (United States)
1996-12-31
Particular classes of nodal methods and mixed hybrid finite element methods lead to equivalent, robust and accurate discretizations of 2nd order elliptic PDEs. However, widespread popularity of these discretizations has been hindered by the awkward linear systems which result. The present work exploits this awkwardness, which provides a natural partitioning of the linear system, by defining two optimal preconditioners based on approximate Schur complements. Central to the optimal performance of these preconditioners is their sparsity structure which is compatible with Dendy`s black box multigrid code.
On preconditioner updates for sequences of saddle-point linear systems
Directory of Open Access Journals (Sweden)
Simone Valentina De
2018-02-01
Full Text Available Updating preconditioners for the solution of sequences of large and sparse saddle- point linear systems via Krylov methods has received increasing attention in the last few years, because it allows to reduce the cost of preconditioning while keeping the efficiency of the overall solution process. This paper provides a short survey of the two approaches proposed in the literature for this problem: updating the factors of a preconditioner available in a block LDLT form, and updating a preconditioner via a limited-memory technique inspired by quasi-Newton methods.
Fast Multipole-Based Preconditioner for Sparse Iterative Solvers
Ibeid, Huda; Yokota, Rio; Keyes, David E.
2014-01-01
Among optimal hierarchical algorithms for the computational solution of elliptic problems, the Fast Multipole Method (FMM) stands out for its adaptability to emerging architectures, having high arithmetic intensity, tunable accuracy, and relaxed global synchronization requirements. We demonstrate that, beyond its traditional use as a solver in problems for which explicit free-space kernel representations are available, the FMM has applicability as a preconditioner in finite domain elliptic boundary value problems, by equipping it with boundary integral capability for finite boundaries and by wrapping it in a Krylov method for extensibility to more general operators. Compared with multilevel methods, it is capable of comparable algebraic convergence rates down to the truncation error of the discretized PDE, and it has superior multicore and distributed memory scalability properties on commodity architecture supercomputers.
Preconditioner considerations for an aerodynamic Newton-Krylov solver
International Nuclear Information System (INIS)
Chisholm, T.; Zingg, D.W.
2003-01-01
A fast Newton-Krylov algorithm is presented for solving the compressible Navier-Stokes equations on structured multi-block grids with application to turbulent aerodynamic flows. The one-equation Spalart-Allmaras model is used to provide the turbulent viscosity. The optimization of the algorithm is discussed. ILU(4) is suggested for a preconditioner, operating on a modified Jacobian matrix. An RCM reordering is used, with a suggested root node in the wake. The advantages of a matrix-free technique for forming matrix-vector products are shown. Three test cases are used to demonstrate convergence rates. Single-element cases are solved in less than 60 seconds on a desktop computer, while the solution of a multi-element case can be found in about 10 minutes. (author)
Adaptive Selection of Primal Constraints for Isogeometric BDDC Deluxe Preconditioners
Beirã o Da Veiga, L.; Pavarino, L. F.; Scacchi, S.; Widlund, O. B.; Zampini, Stefano
2017-01-01
Isogeometric analysis has been introduced as an alternative to finite element methods in order to simplify the integration of computer-aided design (CAD) software and the discretization of variational problems of continuum mechanics. In contrast with the finite element case, the basis functions of isogeometric analysis are often not nodal. As a consequence, there are fat interfaces which can easily lead to an increase in the number of interface variables after a decomposition of the parameter space into subdomains. Building on earlier work on the deluxe version of the BDDC (balancing domain decomposition by constraints) family of domain decomposition algorithms, several adaptive algorithms are developed in this paper for scalar elliptic problems in an effort to decrease the dimension of the global, coarse component of these preconditioners. Numerical experiments provide evidence that this work can be successful, yielding scalable and quasi-optimal adaptive BDDC algorithms for isogeometric discretizations.
Adaptive Selection of Primal Constraints for Isogeometric BDDC Deluxe Preconditioners
Beirão Da Veiga, L.
2017-02-23
Isogeometric analysis has been introduced as an alternative to finite element methods in order to simplify the integration of computer-aided design (CAD) software and the discretization of variational problems of continuum mechanics. In contrast with the finite element case, the basis functions of isogeometric analysis are often not nodal. As a consequence, there are fat interfaces which can easily lead to an increase in the number of interface variables after a decomposition of the parameter space into subdomains. Building on earlier work on the deluxe version of the BDDC (balancing domain decomposition by constraints) family of domain decomposition algorithms, several adaptive algorithms are developed in this paper for scalar elliptic problems in an effort to decrease the dimension of the global, coarse component of these preconditioners. Numerical experiments provide evidence that this work can be successful, yielding scalable and quasi-optimal adaptive BDDC algorithms for isogeometric discretizations.
Fast Multipole-Based Preconditioner for Sparse Iterative Solvers
Ibeid, Huda
2014-05-04
Among optimal hierarchical algorithms for the computational solution of elliptic problems, the Fast Multipole Method (FMM) stands out for its adaptability to emerging architectures, having high arithmetic intensity, tunable accuracy, and relaxed global synchronization requirements. We demonstrate that, beyond its traditional use as a solver in problems for which explicit free-space kernel representations are available, the FMM has applicability as a preconditioner in finite domain elliptic boundary value problems, by equipping it with boundary integral capability for finite boundaries and by wrapping it in a Krylov method for extensibility to more general operators. Compared with multilevel methods, it is capable of comparable algebraic convergence rates down to the truncation error of the discretized PDE, and it has superior multicore and distributed memory scalability properties on commodity architecture supercomputers.
2010-12-01
discontinuous coefficients on geometrically nonconforming substructures. Technical Report Serie A 634, Instituto de Matematica Pura e Aplicada, Brazil, 2009...Instituto de Matematica Pura e Aplicada, Brazil, 2010. submitted. [41] M. Dryja, M. V. Sarkis, and O. B. Widlund. Multilevel Schwarz methods for
A calderón multiplicative preconditioner for the combined field integral equation
Bagci, Hakan; Andriulli, Francesco P.; Cools, Kristof; Olyslager, Femke; Michielssen, Eric
2009-01-01
A Calderón multiplicative preconditioner (CMP) for the combined field integral equation (CFIE) is developed. Just like with previously proposed Caldern-preconditioned CFIEs, a localization procedure is employed to ensure that the equation
Chavez Chavez, Gustavo Ivan; Turkiyyah, George; Zampini, Stefano; Keyes, David E.
2017-01-01
and the cyclic reduction method. The setup and application phases of the preconditioner achieve log-linear complexity in memory footprint and number of operations, and numerical experiments exhibit good weak and strong scalability at large processor counts in a
Antonietti, P. F.; Ayuso Dios, Blanca; Bertoluzza, S.; Pennacchio, M.
2014-01-01
We propose and study an iterative substructuring method for an h-p Nitsche-type discretization, following the original approach introduced in Bramble et al. Math. Comp. 47(175):103–134, (1986) for conforming methods. We prove quasi-optimality with respect to the mesh size and the polynomial degree for the proposed preconditioner. Numerical experiments assess the performance of the preconditioner and verify the theory. © 2014, Springer-Verlag Italia.
Antonietti, P. F.
2014-05-13
We propose and study an iterative substructuring method for an h-p Nitsche-type discretization, following the original approach introduced in Bramble et al. Math. Comp. 47(175):103–134, (1986) for conforming methods. We prove quasi-optimality with respect to the mesh size and the polynomial degree for the proposed preconditioner. Numerical experiments assess the performance of the preconditioner and verify the theory. © 2014, Springer-Verlag Italia.
Incomplete augmented Lagrangian preconditioner for steady incompressible Navier-Stokes equations.
Tan, Ning-Bo; Huang, Ting-Zhu; Hu, Ze-Jun
2013-01-01
An incomplete augmented Lagrangian preconditioner, for the steady incompressible Navier-Stokes equations discretized by stable finite elements, is proposed. The eigenvalues of the preconditioned matrix are analyzed. Numerical experiments show that the incomplete augmented Lagrangian-based preconditioner proposed is very robust and performs quite well by the Picard linearization or the Newton linearization over a wide range of values of the viscosity on both uniform and stretched grids.
Chen, Hao; Lv, Wen; Zhang, Tongtong
2018-05-01
We study preconditioned iterative methods for the linear system arising in the numerical discretization of a two-dimensional space-fractional diffusion equation. Our approach is based on a formulation of the discrete problem that is shown to be the sum of two Kronecker products. By making use of an alternating Kronecker product splitting iteration technique we establish a class of fixed-point iteration methods. Theoretical analysis shows that the new method converges to the unique solution of the linear system. Moreover, the optimal choice of the involved iteration parameters and the corresponding asymptotic convergence rate are computed exactly when the eigenvalues of the system matrix are all real. The basic iteration is accelerated by a Krylov subspace method like GMRES. The corresponding preconditioner is in a form of a Kronecker product structure and requires at each iteration the solution of a set of discrete one-dimensional fractional diffusion equations. We use structure preserving approximations to the discrete one-dimensional fractional diffusion operators in the action of the preconditioning matrix. Numerical examples are presented to illustrate the effectiveness of this approach.
Freund, Roland
1988-01-01
Conjugate gradient type methods are considered for the solution of large linear systems Ax = b with complex coefficient matrices of the type A = T + i(sigma)I where T is Hermitian and sigma, a real scalar. Three different conjugate gradient type approaches with iterates defined by a minimal residual property, a Galerkin type condition, and an Euclidian error minimization, respectively, are investigated. In particular, numerically stable implementations based on the ideas behind Paige and Saunder's SYMMLQ and MINRES for real symmetric matrices are proposed. Error bounds for all three methods are derived. It is shown how the special shift structure of A can be preserved by using polynomial preconditioning. Results on the optimal choice of the polynomial preconditioner are given. Also, some numerical experiments for matrices arising from finite difference approximations to the complex Helmholtz equation are reported.
Fast multipole preconditioners for sparse matrices arising from elliptic equations
Ibeid, Huda
2017-11-09
Among optimal hierarchical algorithms for the computational solution of elliptic problems, the fast multipole method (FMM) stands out for its adaptability to emerging architectures, having high arithmetic intensity, tunable accuracy, and relaxable global synchronization requirements. We demonstrate that, beyond its traditional use as a solver in problems for which explicit free-space kernel representations are available, the FMM has applicability as a preconditioner in finite domain elliptic boundary value problems, by equipping it with boundary integral capability for satisfying conditions at finite boundaries and by wrapping it in a Krylov method for extensibility to more general operators. Here, we do not discuss the well developed applications of FMM to implement matrix-vector multiplications within Krylov solvers of boundary element methods. Instead, we propose using FMM for the volume-to-volume contribution of inhomogeneous Poisson-like problems, where the boundary integral is a small part of the overall computation. Our method may be used to precondition sparse matrices arising from finite difference/element discretizations, and can handle a broader range of scientific applications. It is capable of algebraic convergence rates down to the truncation error of the discretized PDE comparable to those of multigrid methods, and it offers potentially superior multicore and distributed memory scalability properties on commodity architecture supercomputers. Compared with other methods exploiting the low-rank character of off-diagonal blocks of the dense resolvent operator, FMM-preconditioned Krylov iteration may reduce the amount of communication because it is matrix-free and exploits the tree structure of FMM. We describe our tests in reproducible detail with freely available codes and outline directions for further extensibility.
Fast multipole preconditioners for sparse matrices arising from elliptic equations
Ibeid, Huda; Yokota, Rio; Pestana, Jennifer; Keyes, David E.
2017-01-01
Among optimal hierarchical algorithms for the computational solution of elliptic problems, the fast multipole method (FMM) stands out for its adaptability to emerging architectures, having high arithmetic intensity, tunable accuracy, and relaxable global synchronization requirements. We demonstrate that, beyond its traditional use as a solver in problems for which explicit free-space kernel representations are available, the FMM has applicability as a preconditioner in finite domain elliptic boundary value problems, by equipping it with boundary integral capability for satisfying conditions at finite boundaries and by wrapping it in a Krylov method for extensibility to more general operators. Here, we do not discuss the well developed applications of FMM to implement matrix-vector multiplications within Krylov solvers of boundary element methods. Instead, we propose using FMM for the volume-to-volume contribution of inhomogeneous Poisson-like problems, where the boundary integral is a small part of the overall computation. Our method may be used to precondition sparse matrices arising from finite difference/element discretizations, and can handle a broader range of scientific applications. It is capable of algebraic convergence rates down to the truncation error of the discretized PDE comparable to those of multigrid methods, and it offers potentially superior multicore and distributed memory scalability properties on commodity architecture supercomputers. Compared with other methods exploiting the low-rank character of off-diagonal blocks of the dense resolvent operator, FMM-preconditioned Krylov iteration may reduce the amount of communication because it is matrix-free and exploits the tree structure of FMM. We describe our tests in reproducible detail with freely available codes and outline directions for further extensibility.
Research on an efficient preconditioner using GMRES method for the MOC
International Nuclear Information System (INIS)
Takeda, Satoshi; Kitada, Takanori; Smith, Michael A.
2011-01-01
The modeling accuracy of reactor analysis techniques has improved considerably with the progressive improvements in computational capabilities. The method of characteristics (MOC) solves the neutron transport equation using tracking lines which simulates the neutron paths. The MOC is an accurate calculation method and is becoming a major solver because of the rapid advancement of the computer. In this methodology, the transport equation is discretized into many spatial meshes and energy wise groups. And the discretization generates a large system which needs a lot of computational costs. To reduce computational costs of MOC calculation, we investigate the Generalized Minimal RESidual (GMRES) method as an accelerator and developed an efficient preconditioner for the MOC calculation. The preconditioner we developed was made by simplifying rigorous preconditioner. And the efficiency was verified by comparing the number of iterations which is calculated by one dimensional MOC code
Domain decomposition method of stochastic PDEs: a two-level scalable preconditioner
International Nuclear Information System (INIS)
Subber, Waad; Sarkar, Abhijit
2012-01-01
For uncertainty quantification in many practical engineering problems, the stochastic finite element method (SFEM) may be computationally challenging. In SFEM, the size of the algebraic linear system grows rapidly with the spatial mesh resolution and the order of the stochastic dimension. In this paper, we describe a non-overlapping domain decomposition method, namely the iterative substructuring method to tackle the large-scale linear system arising in the SFEM. The SFEM is based on domain decomposition in the geometric space and a polynomial chaos expansion in the probabilistic space. In particular, a two-level scalable preconditioner is proposed for the iterative solver of the interface problem for the stochastic systems. The preconditioner is equipped with a coarse problem which globally connects the subdomains both in the geometric and probabilistic spaces via their corner nodes. This coarse problem propagates the information quickly across the subdomains leading to a scalable preconditioner. For numerical illustrations, a two-dimensional stochastic elliptic partial differential equation (SPDE) with spatially varying non-Gaussian random coefficients is considered. The numerical scalability of the the preconditioner is investigated with respect to the mesh size, subdomain size, fixed problem size per subdomain and order of polynomial chaos expansion. The numerical experiments are performed on a Linux cluster using MPI and PETSc parallel libraries.
Domain Decomposition Preconditioners for Multiscale Flows in High-Contrast Media
Galvis, Juan; Efendiev, Yalchin
2010-01-01
In this paper, we study domain decomposition preconditioners for multiscale flows in high-contrast media. We consider flow equations governed by elliptic equations in heterogeneous media with a large contrast in the coefficients. Our main goal is to develop domain decomposition preconditioners with the condition number that is independent of the contrast when there are variations within coarse regions. This is accomplished by designing coarse-scale spaces and interpolators that represent important features of the solution within each coarse region. The important features are characterized by the connectivities of high-conductivity regions. To detect these connectivities, we introduce an eigenvalue problem that automatically detects high-conductivity regions via a large gap in the spectrum. A main observation is that this eigenvalue problem has a few small, asymptotically vanishing eigenvalues. The number of these small eigenvalues is the same as the number of connected high-conductivity regions. The coarse spaces are constructed such that they span eigenfunctions corresponding to these small eigenvalues. These spaces are used within two-level additive Schwarz preconditioners as well as overlapping methods for the Schur complement to design preconditioners. We show that the condition number of the preconditioned systems is independent of the contrast. More detailed studies are performed for the case when the high-conductivity region is connected within coarse block neighborhoods. Our numerical experiments confirm the theoretical results presented in this paper. © 2010 Society for Industrial and Applied Mathematics.
Mercier, Sylvain; Gratton, Serge; Tardieu, Nicolas; Vasseur, Xavier
2017-12-01
Many applications in structural mechanics require the numerical solution of sequences of linear systems typically issued from a finite element discretization of the governing equations on fine meshes. The method of Lagrange multipliers is often used to take into account mechanical constraints. The resulting matrices then exhibit a saddle point structure and the iterative solution of such preconditioned linear systems is considered as challenging. A popular strategy is then to combine preconditioning and deflation to yield an efficient method. We propose an alternative that is applicable to the general case and not only to matrices with a saddle point structure. In this approach, we consider to update an existing algebraic or application-based preconditioner, using specific available information exploiting the knowledge of an approximate invariant subspace or of matrix-vector products. The resulting preconditioner has the form of a limited memory quasi-Newton matrix and requires a small number of linearly independent vectors. Numerical experiments performed on three large-scale applications in elasticity highlight the relevance of the new approach. We show that the proposed method outperforms the deflation method when considering sequences of linear systems with varying matrices.
Whiteley, J. P.
2017-10-01
Large, incompressible elastic deformations are governed by a system of nonlinear partial differential equations. The finite element discretisation of these partial differential equations yields a system of nonlinear algebraic equations that are usually solved using Newton's method. On each iteration of Newton's method, a linear system must be solved. We exploit the structure of the Jacobian matrix to propose a preconditioner, comprising two steps. The first step is the solution of a relatively small, symmetric, positive definite linear system using the preconditioned conjugate gradient method. This is followed by a small number of multigrid V-cycles for a larger linear system. Through the use of exemplar elastic deformations, the preconditioner is demonstrated to facilitate the iterative solution of the linear systems arising. The number of GMRES iterations required has only a very weak dependence on the number of degrees of freedom of the linear systems.
International Nuclear Information System (INIS)
Chinn, G.; Huang, S.C.
1997-01-01
A major drawback of statistical iterative image reconstruction for emission computed tomography is its high computational cost. The ill-posed nature of tomography leads to slow convergence for standard gradient-based iterative approaches such as the steepest descent or the conjugate gradient algorithm. In this paper new theory and methods for a class of preconditioners are developed for accelerating the convergence rate of iterative reconstruction. To demonstrate the potential of this class of preconditioners, a preconditioned conjugate gradient (PCG) iterative algorithm for weighted least squares reconstruction (WLS) was formulated for emission tomography. Using simulated positron emission tomography (PET) data of the Hoffman brain phantom, it was shown that the convergence rate of the PCG can reduce the number of iterations of the standard conjugate gradient algorithm by a factor of 2--8 times depending on the convergence criterion
Tensor-product preconditioners for higher-order space-time discontinuous Galerkin methods
Diosady, Laslo T.; Murman, Scott M.
2017-02-01
A space-time discontinuous-Galerkin spectral-element discretization is presented for direct numerical simulation of the compressible Navier-Stokes equations. An efficient solution technique based on a matrix-free Newton-Krylov method is developed in order to overcome the stiffness associated with high solution order. The use of tensor-product basis functions is key to maintaining efficiency at high-order. Efficient preconditioning methods are presented which can take advantage of the tensor-product formulation. A diagonalized Alternating-Direction-Implicit (ADI) scheme is extended to the space-time discontinuous Galerkin discretization. A new preconditioner for the compressible Euler/Navier-Stokes equations based on the fast-diagonalization method is also presented. Numerical results demonstrate the effectiveness of these preconditioners for the direct numerical simulation of subsonic turbulent flows.
Tensor-Product Preconditioners for Higher-Order Space-Time Discontinuous Galerkin Methods
Diosady, Laslo T.; Murman, Scott M.
2016-01-01
space-time discontinuous-Galerkin spectral-element discretization is presented for direct numerical simulation of the compressible Navier-Stokes equat ions. An efficient solution technique based on a matrix-free Newton-Krylov method is developed in order to overcome the stiffness associated with high solution order. The use of tensor-product basis functions is key to maintaining efficiency at high order. Efficient preconditioning methods are presented which can take advantage of the tensor-product formulation. A diagonalized Alternating-Direction-Implicit (ADI) scheme is extended to the space-time discontinuous Galerkin discretization. A new preconditioner for the compressible Euler/Navier-Stokes equations based on the fast-diagonalization method is also presented. Numerical results demonstrate the effectiveness of these preconditioners for the direct numerical simulation of subsonic turbulent flows.
A calderón multiplicative preconditioner for the combined field integral equation
Bagci, Hakan
2009-10-01
A Calderón multiplicative preconditioner (CMP) for the combined field integral equation (CFIE) is developed. Just like with previously proposed Caldern-preconditioned CFIEs, a localization procedure is employed to ensure that the equation is resonance-free. The iterative solution of the linear system of equations obtained via the CMP-based discretization of the CFIE converges rapidly regardless of the discretization density and the frequency of excitation. © 2009 IEEE.
Czech Academy of Sciences Publication Activity Database
Axelsson, Owe; Blaheta, Radim; Byczanski, Petr; Karátson, J.; Ahmad, B.
2015-01-01
Roč. 280, č. 280 (2015), s. 141-157 ISSN 0377-0427 R&D Projects: GA MŠk ED1.1.00/02.0070 Institutional support: RVO:68145535 Keywords : preconditioners * heterogeneous coefficients * regularized saddle point Inner–outer iterations * Darcy flow Subject RIV: BA - General Mathematics Impact factor: 1.328, year: 2015 http://www.sciencedirect.com/science/article/pii/S0377042714005238
Efficient Tridiagonal Preconditioner for the Matrix-Free Truncated Newton Method
Czech Academy of Sciences Publication Activity Database
Lukšan, Ladislav; Vlček, Jan
2014-01-01
Roč. 235, 25 May (2014), s. 394-407 ISSN 0096-3003 R&D Projects: GA ČR GA13-06684S Institutional support: RVO:67985807 Keywords : unconstrained optimization * large scale optimization * matrix-free truncated Newton method * preconditioned conjugate gradient method * preconditioners obtained by the directional differentiation * numerical algorithms Subject RIV: BA - General Mathematics Impact factor: 1.551, year: 2014
Rational Approximations of the Inverse Gaussian Function.
Byars, Jackson A.; Roscoe, John T.
There are at least two situations in which the behavioral scientist wishes to transform uniformly distributed data into normally distributed data: (1) In studies of sampling distributions where uniformly distributed pseudo-random numbers are generated by a computer but normally distributed numbers are desired; and (2) In measurement applications…
International Nuclear Information System (INIS)
Azmy, Y.Y.
1996-01-01
The formal development of the Adjacent-cell Preconditioner (AP) and its implementation in the TORT code are briefly reviewed. Based on earlier experience with diffusion type acceleration, and excellent results in slab geometry the reciprocal averaging formula is used to mix the preconditioner elements across material and mesh discontinuities. Numerical testing of the method employing the Burre Suite of Test Problems (BSTeP), a collection of 144 cases covering a wide range in parameter space, using AP, Partial Current Rebalance (PCR), and TWODANT's Diffusion Synthetic Acceleration (DSA) is presented. While AP outperforms the other two methods for the majority of the cases included in BSTeP it consumes many more iterations than can be explained by spectral analysis of the homogeneous model problem in cases with sharp material discontinuity. In order to verify this undesirable behavior and explore potential remedies a model problem, the Periodic Horizontal Interface (PHI), is developed that permits discontinuity of nuclear properties and cell height across the interface. Fourier mode decomposition is applied to AP with the reciprocal averaging mixing formula for the PHI configuration and shown to possess a spectral radius that approaches unity as the material discontinuity gets larger. The question of whether an unconditionally stable AP exists for PHI is tackled and preliminary indications are negative. Novel preconditioners that have nontraditional cell-coupling schemes that remain stable in these regimes may have to be sought
Turcksin, Bruno; Ragusa, Jean C.; Morel, Jim E.
2012-01-01
It is well known that the diffusion synthetic acceleration (DSA) methods for the Sn equations become ineffective in the Fokker-Planck forward-peaked scattering limit. In response to this deficiency, Morel and Manteuffel (1991) developed an angular multigrid method for the 1-D Sn equations. This method is very effective, costing roughly twice as much as DSA per source iteration, and yielding a maximum spectral radius of approximately 0.6 in the Fokker-Planck limit. Pautz, Adams, and Morel (PAM) (1999) later generalized the angular multigrid to 2-D, but it was found that the method was unstable with sufficiently forward-peaked mappings between the angular grids. The method was stabilized via a filtering technique based on diffusion operators, but this filtering also degraded the effectiveness of the overall scheme. The spectral radius was not bounded away from unity in the Fokker-Planck limit, although the method remained more effective than DSA. The purpose of this article is to recast the multidimensional PAM angular multigrid method without the filtering as an Sn preconditioner and use it in conjunction with the Generalized Minimal RESidual (GMRES) Krylov method. The approach ensures stability and our computational results demonstrate that it is also significantly more efficient than an analogous DSA-preconditioned Krylov method.
International Nuclear Information System (INIS)
Ogino, Masao
2016-01-01
Actual problems in science and industrial applications are modeled by multi-materials and large-scale unstructured mesh, and the finite element analysis has been widely used to solve such problems on the parallel computer. However, for large-scale problems, the iterative methods for linear finite element equations suffer from slow or no convergence. Therefore, numerical methods having both robust convergence and scalable parallel efficiency are in great demand. The domain decomposition method is well known as an iterative substructuring method, and is an efficient approach for parallel finite element methods. Moreover, the balancing preconditioner achieves robust convergence. However, in case of problems consisting of very different materials, the convergence becomes bad. There are some research to solve this issue, however not suitable for cases of complex shape and composite materials. In this study, to improve convergence of the balancing preconditioner for multi-materials, a balancing preconditioner combined with the diagonal scaling preconditioner, called Scaled-BDD method, is proposed. Some numerical results are included which indicate that the proposed method has robust convergence for the number of subdomains and shows high performances compared with the original balancing preconditioner. (author)
Preconditioners for state-constrained optimal control problems with Moreau-Yosida penalty function
Pearson, John W.
2012-11-21
Optimal control problems with partial differential equations as constraints play an important role in many applications. The inclusion of bound constraints for the state variable poses a significant challenge for optimization methods. Our focus here is on the incorporation of the constraints via the Moreau-Yosida regularization technique. This method has been studied recently and has proven to be advantageous compared with other approaches. In this paper, we develop robust preconditioners for the efficient solution of the Newton steps associated with the fast solution of the Moreau-Yosida regularized problem. Numerical results illustrate the efficiency of our approach. © 2012 John Wiley & Sons, Ltd.
Adjacent-cell Preconditioners for solving optically thick neutron transport problems
International Nuclear Information System (INIS)
Azmy, Y.Y.
1994-01-01
We develop, analyze, and test a new acceleration scheme for neutron transport methods, the Adjacent-cell Preconditioner (AP) that is particularly suited for solving optically thick problems. Our method goes beyond Diffusion Synthetic Acceleration (DSA) methods in that it's spectral radius vanishes with increasing cell thickness. In particular, for the ID case the AP method converges immediately, i.e. in one iteration, to 10 -4 pointwise relative criterion in problems with dominant cell size of 10 mfp or thicker. Also the AP has a simple formalism and is cell-centered hence, multidimensional and high order extensions are easier to develop, and more efficient to implement
Using Runtime Systems Tools to Implement Efficient Preconditioners for Heterogeneous Architectures
Directory of Open Access Journals (Sweden)
Roussel Adrien
2016-11-01
Full Text Available Solving large sparse linear systems is a time-consuming step in basin modeling or reservoir simulation. The choice of a robust preconditioner strongly impact the performance of the overall simulation. Heterogeneous architectures based on General Purpose computing on Graphic Processing Units (GPGPU or many-core architectures introduce programming challenges which can be managed in a transparent way for developer with the use of runtime systems. Nevertheless, algorithms need to be well suited for these massively parallel architectures. In this paper, we present preconditioning techniques which enable to take advantage of emerging architectures. We also present our task-based implementations through the use of the HARTS (Heterogeneous Abstract RunTime System runtime system, which aims to manage the recent architectures. We focus on two preconditoners. The first is ILU(0 preconditioner implemented on distributing memory systems. The second one is a multi-level domain decomposition method implemented on a shared-memory system. Obtained results are then presented on corresponding architectures, which open the way to discuss on the scalability of such methods according to numerical performances while keeping in mind that the next step is to propose a massively parallel implementations of these techniques.
On performance of Krylov smoothing for fully-coupled AMG preconditioners for VMS resistive MHD
Energy Technology Data Exchange (ETDEWEB)
Lin, Paul T. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Shadid, John N. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Univ. of New Mexico, Albuquerque, NM (United States). Department of Mathematics and Statistics,; Tsuji, Paul H. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
2017-11-01
Here, this study explores the performance and scaling of a GMRES Krylov method employed as a smoother for an algebraic multigrid (AMG) preconditioned Newton- Krylov solution approach applied to a fully-implicit variational multiscale (VMS) nite element (FE) resistive magnetohydrodynamics (MHD) formulation. In this context a Newton iteration is used for the nonlinear system and a Krylov (GMRES) method is employed for the linear subsystems. The efficiency of this approach is critically dependent on the scalability and performance of the AMG preconditioner for the linear solutions and the performance of the smoothers play a critical role. Krylov smoothers are considered in an attempt to reduce the time and memory requirements of existing robust smoothers based on additive Schwarz domain decomposition (DD) with incomplete LU factorization solves on each subdomain. Three time dependent resistive MHD test cases are considered to evaluate the method. The results demonstrate that the GMRES smoother can be faster due to a decrease in the preconditioner setup time and a reduction in outer GMRESR solver iterations, and requires less memory (typically 35% less memory for global GMRES smoother) than the DD ILU smoother.
Acceleration of Multidimensional Discrete Ordinates Methods Via Adjacent-Cell Preconditioners
International Nuclear Information System (INIS)
Azmy, Y.Y.
2000-01-01
The adjacent-cell preconditioner (AP) formalism originally derived in slab geometry is extended to multidimensional Cartesian geometry for generic fixed-weight, weighted diamond difference neutron transport methods. This is accomplished for the thick-cell regime (KAP) and thin-cell regime (NAP). A spectral analysis of the resulting acceleration schemes demonstrates their excellent spectral properties for model problem configurations, characterized by a uniform mesh of infinite extent and homogeneous material composition, each in its own cell-size regime. Thus, the spectral radius of KAP vanishes as the computational cell size approaches infinity, but it exceeds unity for very thin cells, thereby implying instability. In contrast, NAP is stable and robust for all cell sizes, but its spectral radius vanishes more slowly as the cell size increases. For this reason, and to avoid potential complication in the case of cells that are thin in one dimension and thick in another, NAP is adopted in the remainder of this work. The most important feature of AP for practical implementation in production level codes is that it is cell centered, reducing the size of the algebraic system comprising the acceleration stage compared to face-centered schemes. Boundary conditions for finite extent problems and a mixing formula across material and cell-size discontinuity are derived and used to implement NAP in a test code, AHOT, and a production code, TORT. Numerical testing for algebraically linear iterative schemes for the cases embodied in Burre's Suite of Test Problems demonstrates the high efficiency of the new method in reducing the number of iterations required to achieve convergence, especially for optically thick cells where acceleration is most needed. Also, for algebraically nonlinear (adaptive) methods, AP generally performs better than the partial current rebalance method in TORT and the diffusion synthetic acceleration method in TWODANT. Finally, application of the AP
Bagci, Hakan
2010-08-01
A well-conditioned coupled set of surface (S) and volume (V) electric field integral equations (S-EFIE and V-EFIE) for analyzing wave interactions with densely discretized composite structures is presented. Whereas the V-EFIE operator is well-posed even when applied to densely discretized volumes, a classically formulated S-EFIE operator is ill-posed when applied to densely discretized surfaces. This renders the discretized coupled S-EFIE and V-EFIE system ill-conditioned, and its iterative solution inefficient or even impossible. The proposed scheme regularizes the coupled set of S-EFIE and V-EFIE using a Calderón multiplicative preconditioner (CMP)-based technique. The resulting scheme enables the efficient analysis of electromagnetic interactions with composite structures containing fine/subwavelength geometric features. Numerical examples demonstrate the efficiency of the proposed scheme. © 2006 IEEE.
Reynolds, Daniel R.
2012-01-01
Single-fluid resistive magnetohydrodynamics (MHD) is a fluid description of fusion plasmas which is often used to investigate macroscopic instabilities in tokamaks. In MHD modeling of tokamaks, it is often desirable to compute MHD phenomena to resistive time scales or a combination of resistive-Alfvén time scales, which can render explicit time stepping schemes computationally expensive. We present recent advancements in the development of preconditioners for fully nonlinearly implicit simulations of single-fluid resistive tokamak MHD. Our work focuses on simulations using a structured mesh mapped into a toroidal geometry with a shaped poloidal cross-section, and a finite-volume spatial discretization of the partial differential equation model. We discretize the temporal dimension using a fully implicit or the backwards differentiation formula method, and solve the resulting nonlinear algebraic system using a standard inexact Newton-Krylov approach, provided by the sundials library. The focus of this paper is on the construction and performance of various preconditioning approaches for accelerating the convergence of the iterative solver algorithms. Effective preconditioners require information about the Jacobian entries; however, analytical formulae for these Jacobian entries may be prohibitive to derive/implement without error. We therefore compute these entries using automatic differentiation with OpenAD. We then investigate a variety of preconditioning formulations inspired by standard solution approaches in modern MHD codes, in order to investigate their utility in a preconditioning context. We first describe the code modifications necessary for the use of the OpenAD tool and sundials solver library. We conclude with numerical results for each of our preconditioning approaches in the context of pellet-injection fueling of tokamak plasmas. Of these, our optimal approach results in a speedup of a factor of 3 compared with non-preconditioned implicit tests, with
A model reduction approach to numerical inversion for a parabolic partial differential equation
International Nuclear Information System (INIS)
Borcea, Liliana; Druskin, Vladimir; Zaslavsky, Mikhail; Mamonov, Alexander V
2014-01-01
We propose a novel numerical inversion algorithm for the coefficients of parabolic partial differential equations, based on model reduction. The study is motivated by the application of controlled source electromagnetic exploration, where the unknown is the subsurface electrical resistivity and the data are time resolved surface measurements of the magnetic field. The algorithm presented in this paper considers inversion in one and two dimensions. The reduced model is obtained with rational interpolation in the frequency (Laplace) domain and a rational Krylov subspace projection method. It amounts to a nonlinear mapping from the function space of the unknown resistivity to the small dimensional space of the parameters of the reduced model. We use this mapping as a nonlinear preconditioner for the Gauss–Newton iterative solution of the inverse problem. The advantage of the inversion algorithm is twofold. First, the nonlinear preconditioner resolves most of the nonlinearity of the problem. Thus the iterations are less likely to get stuck in local minima and the convergence is fast. Second, the inversion is computationally efficient because it avoids repeated accurate simulations of the time-domain response. We study the stability of the inversion algorithm for various rational Krylov subspaces, and assess its performance with numerical experiments. (paper)
A model reduction approach to numerical inversion for a parabolic partial differential equation
Borcea, Liliana; Druskin, Vladimir; Mamonov, Alexander V.; Zaslavsky, Mikhail
2014-12-01
We propose a novel numerical inversion algorithm for the coefficients of parabolic partial differential equations, based on model reduction. The study is motivated by the application of controlled source electromagnetic exploration, where the unknown is the subsurface electrical resistivity and the data are time resolved surface measurements of the magnetic field. The algorithm presented in this paper considers inversion in one and two dimensions. The reduced model is obtained with rational interpolation in the frequency (Laplace) domain and a rational Krylov subspace projection method. It amounts to a nonlinear mapping from the function space of the unknown resistivity to the small dimensional space of the parameters of the reduced model. We use this mapping as a nonlinear preconditioner for the Gauss-Newton iterative solution of the inverse problem. The advantage of the inversion algorithm is twofold. First, the nonlinear preconditioner resolves most of the nonlinearity of the problem. Thus the iterations are less likely to get stuck in local minima and the convergence is fast. Second, the inversion is computationally efficient because it avoids repeated accurate simulations of the time-domain response. We study the stability of the inversion algorithm for various rational Krylov subspaces, and assess its performance with numerical experiments.
Two numerical methods for an inverse problem for the 2-D Helmholtz equation
Gryazin, Y A; Lucas, T R
2003-01-01
Two solution methods for the inverse problem for the 2-D Helmholtz equation are developed, tested, and compared. The proposed approaches are based on a marching finite-difference scheme which requires the solution of an overdetermined system at each step. The preconditioned conjugate gradient method is used for rapid solutions of these systems and an efficient preconditioner has been developed for this class of problems. Underlying target applications include the imaging of land mines, unexploded ordinance, and pollutant plumes in environmental cleanup sites, each formulated as an inverse problem for a 2-D Helmholtz equation. The images represent the electromagnetic properties of the respective underground regions. Extensive numerical results are presented.
CERN. Geneva
2015-01-01
Most physics results at the LHC end in a likelihood ratio test. This includes discovery and exclusion for searches as well as mass, cross-section, and coupling measurements. The use of Machine Learning (multivariate) algorithms in HEP is mainly restricted to searches, which can be reduced to classification between two fixed distributions: signal vs. background. I will show how we can extend the use of ML classifiers to distributions parameterized by physical quantities like masses and couplings as well as nuisance parameters associated to systematic uncertainties. This allows for one to approximate the likelihood ratio while still using a high dimensional feature vector for the data. Both the MEM and ABC approaches mentioned above aim to provide inference on model parameters (like cross-sections, masses, couplings, etc.). ABC is fundamentally tied Bayesian inference and focuses on the “likelihood free” setting where only a simulator is available and one cannot directly compute the likelihood for the dat...
Schmidt, Wolfgang M
1980-01-01
"In 1970, at the U. of Colorado, the author delivered a course of lectures on his famous generalization, then just established, relating to Roth's theorem on rational approxi- mations to algebraic numbers. The present volume is an ex- panded and up-dated version of the original mimeographed notes on the course. As an introduction to the author's own remarkable achievements relating to the Thue-Siegel-Roth theory, the text can hardly be bettered and the tract can already be regarded as a classic in its field."(Bull.LMS) "Schmidt's work on approximations by algebraic numbers belongs to the deepest and most satisfactory parts of number theory. These notes give the best accessible way to learn the subject. ... this book is highly recommended." (Mededelingen van het Wiskundig Genootschap)
International Nuclear Information System (INIS)
Namatame, Hirofumi; Taniguchi, Masaki
1994-01-01
Photoelectron spectroscopy is regarded as the most powerful means since it can measure almost perfectly the occupied electron state. On the other hand, inverse photoelectron spectroscopy is the technique for measuring unoccupied electron state by using the inverse process of photoelectron spectroscopy, and in principle, the similar experiment to photoelectron spectroscopy becomes feasible. The development of the experimental technology for inverse photoelectron spectroscopy has been carried out energetically by many research groups so far. At present, the heightening of resolution of inverse photoelectron spectroscopy, the development of inverse photoelectron spectroscope in which light energy is variable and so on are carried out. But the inverse photoelectron spectroscope for vacuum ultraviolet region is not on the market. In this report, the principle of inverse photoelectron spectroscopy and the present state of the spectroscope are described, and the direction of the development hereafter is groped. As the experimental equipment, electron guns, light detectors and so on are explained. As the examples of the experiment, the inverse photoelectron spectroscopy of semimagnetic semiconductors and resonance inverse photoelectron spectroscopy are reported. (K.I.)
Yusa, Yasunori; Okada, Hiroshi; Yamada, Tomonori; Yoshimura, Shinobu
2018-04-01
A domain decomposition method for large-scale elastic-plastic problems is proposed. The proposed method is based on a quasi-Newton method in conjunction with a balancing domain decomposition preconditioner. The use of a quasi-Newton method overcomes two problems associated with the conventional domain decomposition method based on the Newton-Raphson method: (1) avoidance of a double-loop iteration algorithm, which generally has large computational complexity, and (2) consideration of the local concentration of nonlinear deformation, which is observed in elastic-plastic problems with stress concentration. Moreover, the application of a balancing domain decomposition preconditioner ensures scalability. Using the conventional and proposed domain decomposition methods, several numerical tests, including weak scaling tests, were performed. The convergence performance of the proposed method is comparable to that of the conventional method. In particular, in elastic-plastic analysis, the proposed method exhibits better convergence performance than the conventional method.
An improved saddlepoint approximation.
Gillespie, Colin S; Renshaw, Eric
2007-08-01
Given a set of third- or higher-order moments, not only is the saddlepoint approximation the only realistic 'family-free' technique available for constructing an associated probability distribution, but it is 'optimal' in the sense that it is based on the highly efficient numerical method of steepest descents. However, it suffers from the problem of not always yielding full support, and whilst [S. Wang, General saddlepoint approximations in the bootstrap, Prob. Stat. Lett. 27 (1992) 61.] neat scaling approach provides a solution to this hurdle, it leads to potentially inaccurate and aberrant results. We therefore propose several new ways of surmounting such difficulties, including: extending the inversion of the cumulant generating function to second-order; selecting an appropriate probability structure for higher-order cumulants (the standard moment closure procedure takes them to be zero); and, making subtle changes to the target cumulants and then optimising via the simplex algorithm.
Moghaderi, Hamid; Dehghan, Mehdi; Donatelli, Marco; Mazza, Mariarosa
2017-12-01
Fractional diffusion equations (FDEs) are a mathematical tool used for describing some special diffusion phenomena arising in many different applications like porous media and computational finance. In this paper, we focus on a two-dimensional space-FDE problem discretized by means of a second order finite difference scheme obtained as combination of the Crank-Nicolson scheme and the so-called weighted and shifted Grünwald formula. By fully exploiting the Toeplitz-like structure of the resulting linear system, we provide a detailed spectral analysis of the coefficient matrix at each time step, both in the case of constant and variable diffusion coefficients. Such a spectral analysis has a very crucial role, since it can be used for designing fast and robust iterative solvers. In particular, we employ the obtained spectral information to define a Galerkin multigrid method based on the classical linear interpolation as grid transfer operator and damped-Jacobi as smoother, and to prove the linear convergence rate of the corresponding two-grid method. The theoretical analysis suggests that the proposed grid transfer operator is strong enough for working also with the V-cycle method and the geometric multigrid. On this basis, we introduce two computationally favourable variants of the proposed multigrid method and we use them as preconditioners for Krylov methods. Several numerical results confirm that the resulting preconditioning strategies still keep a linear convergence rate.
Energy Technology Data Exchange (ETDEWEB)
Chen, Ke [Univ. of Liverpool (United Kingdom)
1996-12-31
We study various preconditioning techniques for the iterative solution of boundary integral equations, and aim to provide a theory for a class of sparse preconditioners. Two related ideas are explored here: singularity separation and inverse approximation. Our preliminary conclusion is that singularity separation based preconditioners perform better than approximate inverse based while it is desirable to have both features.
Ingram, WT
2012-01-01
Inverse limits provide a powerful tool for constructing complicated spaces from simple ones. They also turn the study of a dynamical system consisting of a space and a self-map into a study of a (likely more complicated) space and a self-homeomorphism. In four chapters along with an appendix containing background material the authors develop the theory of inverse limits. The book begins with an introduction through inverse limits on [0,1] before moving to a general treatment of the subject. Special topics in continuum theory complete the book. Although it is not a book on dynamics, the influen
Masuda, Y; Misztal, I; Legarra, A; Tsuruta, S; Lourenco, D A L; Fragomeni, B O; Aguilar, I
2017-01-01
This paper evaluates an efficient implementation to multiply the inverse of a numerator relationship matrix for genotyped animals () by a vector (). The computation is required for solving mixed model equations in single-step genomic BLUP (ssGBLUP) with the preconditioned conjugate gradient (PCG). The inverse can be decomposed into sparse matrices that are blocks of the sparse inverse of a numerator relationship matrix () including genotyped animals and their ancestors. The elements of were rapidly calculated with the Henderson's rule and stored as sparse matrices in memory. Implementation of was by a series of sparse matrix-vector multiplications. Diagonal elements of , which were required as preconditioners in PCG, were approximated with a Monte Carlo method using 1,000 samples. The efficient implementation of was compared with explicit inversion of with 3 data sets including about 15,000, 81,000, and 570,000 genotyped animals selected from populations with 213,000, 8.2 million, and 10.7 million pedigree animals, respectively. The explicit inversion required 1.8 GB, 49 GB, and 2,415 GB (estimated) of memory, respectively, and 42 s, 56 min, and 13.5 d (estimated), respectively, for the computations. The efficient implementation required <1 MB, 2.9 GB, and 2.3 GB of memory, respectively, and <1 sec, 3 min, and 5 min, respectively, for setting up. Only <1 sec was required for the multiplication in each PCG iteration for any data sets. When the equations in ssGBLUP are solved with the PCG algorithm, is no longer a limiting factor in the computations.
Approximate systems with confluent bonding mappings
Lončar, Ivan
2001-01-01
If X = {Xn, pnm, N} is a usual inverse system with confluent (monotone) bonding mappings, then the projections are confluent (monotone). This is not true for approximate inverse system. The main purpose of this paper is to show that the property of Kelley (smoothness) of the space Xn is a sufficient condition for the confluence (monotonicity) of the projections.
International Nuclear Information System (INIS)
Azmy, Y.Y.
1999-01-01
The author proposes preconditioning as a viable acceleration scheme for the inner iterations of transport calculations in slab geometry. In particular he develops Adjacent-Cell Preconditioners (AP) that have the same coupling stencil as cell-centered diffusion schemes. For lowest order methods, e.g., Diamond Difference, Step, and 0-order Nodal Integral Method (ONIM), cast in a Weighted Diamond Difference (WDD) form, he derives AP for thick (KAP) and thin (NAP) cells that for model problems are unconditionally stable and efficient. For the First-Order Nodal Integral Method (INIM) he derives a NAP that possesses similarly excellent spectral properties for model problems. The two most attractive features of the new technique are:(1) its cell-centered coupling stencil, which makes it more adequate for extension to multidimensional, higher order situations than the standard edge-centered or point-centered Diffusion Synthetic Acceleration (DSA) methods; and (2) its decreasing spectral radius with increasing cell thickness to the extent that immediate pointwise convergence, i.e., in one iteration, can be achieved for problems with sufficiently thick cells. He implemented these methods, augmented with appropriate boundary conditions and mixing formulas for material heterogeneities, in the test code APID that he uses to successfully verify the analytical spectral properties for homogeneous problems. Furthermore, he conducts numerical tests to demonstrate the robustness of the KAP and NAP in the presence of sharp mesh or material discontinuities. He shows that the AP for WDD is highly resilient to such discontinuities, but for INIM a few cases occur in which the scheme does not converge; however, when it converges, AP greatly reduces the number of iterations required to achieve convergence
A systematic approach to robust preconditioning for gradient-based inverse scattering algorithms
International Nuclear Information System (INIS)
Nordebo, Sven; Fhager, Andreas; Persson, Mikael; Gustafsson, Mats
2008-01-01
This paper presents a systematic approach to robust preconditioning for gradient-based nonlinear inverse scattering algorithms. In particular, one- and two-dimensional inverse problems are considered where the permittivity and conductivity profiles are unknown and the input data consist of the scattered field over a certain bandwidth. A time-domain least-squares formulation is employed and the inversion algorithm is based on a conjugate gradient or quasi-Newton algorithm together with an FDTD-electromagnetic solver. A Fisher information analysis is used to estimate the Hessian of the error functional. A robust preconditioner is then obtained by incorporating a parameter scaling such that the scaled Fisher information has a unit diagonal. By improving the conditioning of the Hessian, the convergence rate of the conjugate gradient or quasi-Newton methods are improved. The preconditioner is robust in the sense that the scaling, i.e. the diagonal Fisher information, is virtually invariant to the numerical resolution and the discretization model that is employed. Numerical examples of image reconstruction are included to illustrate the efficiency of the proposed technique
Côrtes, A.M.A.
2015-02-20
The recently introduced divergence-conforming B-spline discretizations allow the construction of smooth discrete velocity–pressure pairs for viscous incompressible flows that are at the same time inf-sup stable and pointwise divergence-free. When applied to discretized Stokes equations, these spaces generate a symmetric and indefinite saddle-point linear system. Krylov subspace methods are usually the most efficient procedures to solve such systems. One of such methods, for symmetric systems, is the Minimum Residual Method (MINRES). However, the efficiency and robustness of Krylov subspace methods is closely tied to appropriate preconditioning strategies. For the discrete Stokes system, in particular, block-diagonal strategies provide efficient preconditioners. In this article, we compare the performance of block-diagonal preconditioners for several block choices. We verify how the eigenvalue clustering promoted by the preconditioning strategies affects MINRES convergence. We also compare the number of iterations and wall-clock timings. We conclude that among the building blocks we tested, the strategy with relaxed inner conjugate gradients preconditioned with incomplete Cholesky provided the best results.
Cô rtes, A.M.A.; Coutinho, A.L.G.A.; Dalcin, L.; Calo, Victor M.
2015-01-01
The recently introduced divergence-conforming B-spline discretizations allow the construction of smooth discrete velocity–pressure pairs for viscous incompressible flows that are at the same time inf-sup stable and pointwise divergence-free. When applied to discretized Stokes equations, these spaces generate a symmetric and indefinite saddle-point linear system. Krylov subspace methods are usually the most efficient procedures to solve such systems. One of such methods, for symmetric systems, is the Minimum Residual Method (MINRES). However, the efficiency and robustness of Krylov subspace methods is closely tied to appropriate preconditioning strategies. For the discrete Stokes system, in particular, block-diagonal strategies provide efficient preconditioners. In this article, we compare the performance of block-diagonal preconditioners for several block choices. We verify how the eigenvalue clustering promoted by the preconditioning strategies affects MINRES convergence. We also compare the number of iterations and wall-clock timings. We conclude that among the building blocks we tested, the strategy with relaxed inner conjugate gradients preconditioned with incomplete Cholesky provided the best results.
Mapping moveout approximations in TI media
Stovas, Alexey; Alkhalifah, Tariq Ali
2013-01-01
Moveout approximations play a very important role in seismic modeling, inversion, and scanning for parameters in complex media. We developed a scheme to map one-way moveout approximations for transversely isotropic media with a vertical axis of symmetry (VTI), which is widely available, to the tilted case (TTI) by introducing the effective tilt angle. As a result, we obtained highly accurate TTI moveout equations analogous with their VTI counterparts. Our analysis showed that the most accurate approximation is obtained from the mapping of generalized approximation. The new moveout approximations allow for, as the examples demonstrate, accurate description of moveout in the TTI case even for vertical heterogeneity. The proposed moveout approximations can be easily used for inversion in a layered TTI medium because the parameters of these approximations explicitly depend on corresponding effective parameters in a layered VTI medium.
Mapping moveout approximations in TI media
Stovas, Alexey
2013-11-21
Moveout approximations play a very important role in seismic modeling, inversion, and scanning for parameters in complex media. We developed a scheme to map one-way moveout approximations for transversely isotropic media with a vertical axis of symmetry (VTI), which is widely available, to the tilted case (TTI) by introducing the effective tilt angle. As a result, we obtained highly accurate TTI moveout equations analogous with their VTI counterparts. Our analysis showed that the most accurate approximation is obtained from the mapping of generalized approximation. The new moveout approximations allow for, as the examples demonstrate, accurate description of moveout in the TTI case even for vertical heterogeneity. The proposed moveout approximations can be easily used for inversion in a layered TTI medium because the parameters of these approximations explicitly depend on corresponding effective parameters in a layered VTI medium.
Directory of Open Access Journals (Sweden)
Joel Sereno
2010-01-01
Full Text Available Inverse kinematics is the process of converting a Cartesian point in space into a set of joint angles to more efficiently move the end effector of a robot to a desired orientation. This project investigates the inverse kinematics of a robotic hand with fingers under various scenarios. Assuming the parameters of a provided robot, a general equation for the end effector point was calculated and used to plot the region of space that it can reach. Further, the benefits obtained from the addition of a prismatic joint versus an extra variable angle joint were considered. The results confirmed that having more movable parts, such as prismatic points and changing angles, increases the effective reach of a robotic hand.
International Nuclear Information System (INIS)
Desesquelles, P.
1997-01-01
Computer Monte Carlo simulations occupy an increasingly important place between theory and experiment. This paper introduces a global protocol for the comparison of model simulations with experimental results. The correlated distributions of the model parameters are determined using an original recursive inversion procedure. Multivariate analysis techniques are used in order to optimally synthesize the experimental information with a minimum number of variables. This protocol is relevant in all fields if physics dealing with event generators and multi-parametric experiments. (authors)
Diophantine approximation and badly approximable sets
DEFF Research Database (Denmark)
Kristensen, S.; Thorn, R.; Velani, S.
2006-01-01
. The classical set Bad of `badly approximable' numbers in the theory of Diophantine approximation falls within our framework as do the sets Bad(i,j) of simultaneously badly approximable numbers. Under various natural conditions we prove that the badly approximable subsets of Omega have full Hausdorff dimension...
Approximation methods in probability theory
Čekanavičius, Vydas
2016-01-01
This book presents a wide range of well-known and less common methods used for estimating the accuracy of probabilistic approximations, including the Esseen type inversion formulas, the Stein method as well as the methods of convolutions and triangle function. Emphasising the correct usage of the methods presented, each step required for the proofs is examined in detail. As a result, this textbook provides valuable tools for proving approximation theorems. While Approximation Methods in Probability Theory will appeal to everyone interested in limit theorems of probability theory, the book is particularly aimed at graduate students who have completed a standard intermediate course in probability theory. Furthermore, experienced researchers wanting to enlarge their toolkit will also find this book useful.
Robust Approximate Inverse Preconditioning for the Conjugate Gradient Method
Czech Academy of Sciences Publication Activity Database
Benzi, M.; Cullum, J. K.; Tůma, Miroslav
2000-01-01
Roč. 22, č. 4 (2000), s. 1318-1332 ISSN 1064-8275 R&D Projects: GA AV ČR IAA2030706; GA AV ČR IAA2030801 Institutional research plan: AV0Z1030915 Subject RIV: BA - General Mathematics Impact factor: 1.421, year: 2000
Bayesian seismic AVO inversion
Energy Technology Data Exchange (ETDEWEB)
Buland, Arild
2002-07-01
A new linearized AVO inversion technique is developed in a Bayesian framework. The objective is to obtain posterior distributions for P-wave velocity, S-wave velocity and density. Distributions for other elastic parameters can also be assessed, for example acoustic impedance, shear impedance and P-wave to S-wave velocity ratio. The inversion algorithm is based on the convolutional model and a linearized weak contrast approximation of the Zoeppritz equation. The solution is represented by a Gaussian posterior distribution with explicit expressions for the posterior expectation and covariance, hence exact prediction intervals for the inverted parameters can be computed under the specified model. The explicit analytical form of the posterior distribution provides a computationally fast inversion method. Tests on synthetic data show that all inverted parameters were almost perfectly retrieved when the noise approached zero. With realistic noise levels, acoustic impedance was the best determined parameter, while the inversion provided practically no information about the density. The inversion algorithm has also been tested on a real 3-D dataset from the Sleipner Field. The results show good agreement with well logs but the uncertainty is high. The stochastic model includes uncertainties of both the elastic parameters, the wavelet and the seismic and well log data. The posterior distribution is explored by Markov chain Monte Carlo simulation using the Gibbs sampler algorithm. The inversion algorithm has been tested on a seismic line from the Heidrun Field with two wells located on the line. The uncertainty of the estimated wavelet is low. In the Heidrun examples the effect of including uncertainty of the wavelet and the noise level was marginal with respect to the AVO inversion results. We have developed a 3-D linearized AVO inversion method with spatially coupled model parameters where the objective is to obtain posterior distributions for P-wave velocity, S
Energy Technology Data Exchange (ETDEWEB)
Kalashnikova, Irina
2012-05-01
A numerical study aimed to evaluate different preconditioners within the Trilinos Ifpack and ML packages for the Quantum Computer Aided Design (QCAD) non-linear Poisson problem implemented within the Albany code base and posed on the Ottawa Flat 270 design geometry is performed. This study led to some new development of Albany that allows the user to select an ML preconditioner with Zoltan repartitioning based on nodal coordinates, which is summarized. Convergence of the numerical solutions computed within the QCAD computational suite with successive mesh refinement is examined in two metrics, the mean value of the solution (an L{sup 1} norm) and the field integral of the solution (L{sup 2} norm).
Pseudoinverse preconditioners and iterative methods for large dense linear least-squares problems
Directory of Open Access Journals (Sweden)
Oskar Cahueñas
2013-05-01
Full Text Available We address the issue of approximating the pseudoinverse of the coefficient matrix for dynamically building preconditioning strategies for the numerical solution of large dense linear least-squares problems. The new preconditioning strategies are embedded into simple and well-known iterative schemes that avoid the use of the, usually ill-conditioned, normal equations. We analyze a scheme to approximate the pseudoinverse, based on Schulz iterative method, and also different iterative schemes, based on extensions of Richardson's method, and the conjugate gradient method, that are suitable for preconditioning strategies. We present preliminary numerical results to illustrate the advantages of the proposed schemes.
Gao, Longfei; Calo, Victor M.
2015-01-01
In this paper, we combine the Alternating Direction Implicit (ADI) algorithm with the concept of preconditioning and apply it to linear systems discretized from the 2D steady-state diffusion equations with orthotropic heterogeneous coefficients by the finite element method assuming tensor product basis functions. Specifically, we adopt the compound iteration idea and use ADI iterations as the preconditioner for the outside Krylov subspace method that is used to solve the preconditioned linear system. An efficient algorithm to perform each ADI iteration is crucial to the efficiency of the overall iterative scheme. We exploit the Kronecker product structure in the matrices, inherited from the tensor product basis functions, to achieve high efficiency in each ADI iteration. Meanwhile, in order to reduce the number of Krylov subspace iterations, we incorporate partially the coefficient information into the preconditioner by exploiting the local support property of the finite element basis functions. Numerical results demonstrated the efficiency and quality of the proposed preconditioner. © 2014 Elsevier B.V. All rights reserved.
The Inverse of Banded Matrices
2013-01-01
indexed entries all zeros. In this paper, generalizing a method of Mallik (1999) [5], we give the LU factorization and the inverse of the matrix Br,n (if it...r ≤ i ≤ r, 1 ≤ j ≤ r, with the remaining un-indexed entries all zeros. In this paper generalizing a method of Mallik (1999) [5...matrices and applications to piecewise cubic approximation, J. Comput. Appl. Math. 8 (4) (1982) 285–288. [5] R.K. Mallik , The inverse of a lower
Three-Dimensional Induced Polarization Parallel Inversion Using Nonlinear Conjugate Gradients Method
Directory of Open Access Journals (Sweden)
Huan Ma
2015-01-01
Full Text Available Four kinds of array of induced polarization (IP methods (surface, borehole-surface, surface-borehole, and borehole-borehole are widely used in resource exploration. However, due to the presence of large amounts of the sources, it will take much time to complete the inversion. In the paper, a new parallel algorithm is described which uses message passing interface (MPI and graphics processing unit (GPU to accelerate 3D inversion of these four methods. The forward finite differential equation is solved by ILU0 preconditioner and the conjugate gradient (CG solver. The inverse problem is solved by nonlinear conjugate gradients (NLCG iteration which is used to calculate one forward and two “pseudo-forward” modelings and update the direction, space, and model in turn. Because each source is independent in forward and “pseudo-forward” modelings, multiprocess modes are opened by calling MPI library. The iterative matrix solver within CULA is called in each process. Some tables and synthetic data examples illustrate that this parallel inversion algorithm is effective. Furthermore, we demonstrate that the joint inversion of surface and borehole data produces resistivity and chargeability results are superior to those obtained from inversions of individual surface data.
Rizzi, F.; Morris, K.; Sargsyan, K.; Mycek, P.; Safta, C.; Le Maî tre, O.; Knio, Omar; Debusschere, B.J.
2017-01-01
We discuss algorithm-based resilience to silent data corruptions (SDCs) in a task-based domain-decomposition preconditioner for partial differential equations (PDEs). The algorithm exploits a reformulation of the PDE as a sampling problem, followed by a solution update through data manipulation that is resilient to SDCs. The implementation is based on a server-client model where all state information is held by the servers, while clients are designed solely as computational units. Scalability tests run up to ∼ 51K cores show a parallel efficiency greater than 90%. We use a 2D elliptic PDE and a fault model based on random single and double bit-flip to demonstrate the resilience of the application to synthetically injected SDC. We discuss two fault scenarios: one based on the corruption of all data of a target task, and the other involving the corruption of a single data point. We show that for our application, given the test problem considered, a four-fold increase in the number of faults only yields a 2% change in the overhead to overcome their presence, from 7% to 9%. We then discuss potential savings in energy consumption via dynamic voltage/frequency scaling, and its interplay with fault-rates, and application overhead.
Rizzi, F.
2017-05-25
We discuss algorithm-based resilience to silent data corruptions (SDCs) in a task-based domain-decomposition preconditioner for partial differential equations (PDEs). The algorithm exploits a reformulation of the PDE as a sampling problem, followed by a solution update through data manipulation that is resilient to SDCs. The implementation is based on a server-client model where all state information is held by the servers, while clients are designed solely as computational units. Scalability tests run up to ∼ 51K cores show a parallel efficiency greater than 90%. We use a 2D elliptic PDE and a fault model based on random single and double bit-flip to demonstrate the resilience of the application to synthetically injected SDC. We discuss two fault scenarios: one based on the corruption of all data of a target task, and the other involving the corruption of a single data point. We show that for our application, given the test problem considered, a four-fold increase in the number of faults only yields a 2% change in the overhead to overcome their presence, from 7% to 9%. We then discuss potential savings in energy consumption via dynamic voltage/frequency scaling, and its interplay with fault-rates, and application overhead.
International Nuclear Information System (INIS)
Ginsburg, C.A.
1980-01-01
In many problems, a desired property A of a function f(x) is determined by the behaviour of f(x) approximately equal to g(x,A) as x→xsup(*). In this letter, a method for resuming the power series in x of f(x) and approximating A (modulated Pade approximant) is presented. This new approximant is an extension of a resumation method for f(x) in terms of rational functions. (author)
Approximation Properties of Certain Summation Integral Type Operators
Directory of Open Access Journals (Sweden)
Patel P.
2015-03-01
Full Text Available In the present paper, we study approximation properties of a family of linear positive operators and establish direct results, asymptotic formula, rate of convergence, weighted approximation theorem, inverse theorem and better approximation for this family of linear positive operators.
Inversion of potential field data using the finite element method on parallel computers
Gross, L.; Altinay, C.; Shaw, S.
2015-11-01
In this paper we present a formulation of the joint inversion of potential field anomaly data as an optimization problem with partial differential equation (PDE) constraints. The problem is solved using the iterative Broyden-Fletcher-Goldfarb-Shanno (BFGS) method with the Hessian operator of the regularization and cross-gradient component of the cost function as preconditioner. We will show that each iterative step requires the solution of several PDEs namely for the potential fields, for the adjoint defects and for the application of the preconditioner. In extension to the traditional discrete formulation the BFGS method is applied to continuous descriptions of the unknown physical properties in combination with an appropriate integral form of the dot product. The PDEs can easily be solved using standard conforming finite element methods (FEMs) with potentially different resolutions. For two examples we demonstrate that the number of PDE solutions required to reach a given tolerance in the BFGS iteration is controlled by weighting regularization and cross-gradient but is independent of the resolution of PDE discretization and that as a consequence the method is weakly scalable with the number of cells on parallel computers. We also show a comparison with the UBC-GIF GRAV3D code.
Inverse problems of geophysics
International Nuclear Information System (INIS)
Yanovskaya, T.B.
2003-07-01
This report gives an overview and the mathematical formulation of geophysical inverse problems. General principles of statistical estimation are explained. The maximum likelihood and least square fit methods, the Backus-Gilbert method and general approaches for solving inverse problems are discussed. General formulations of linearized inverse problems, singular value decomposition and properties of pseudo-inverse solutions are given
Sparse approximation with bases
2015-01-01
This book systematically presents recent fundamental results on greedy approximation with respect to bases. Motivated by numerous applications, the last decade has seen great successes in studying nonlinear sparse approximation. Recent findings have established that greedy-type algorithms are suitable methods of nonlinear approximation in both sparse approximation with respect to bases and sparse approximation with respect to redundant systems. These insights, combined with some previous fundamental results, form the basis for constructing the theory of greedy approximation. Taking into account the theoretical and practical demand for this kind of theory, the book systematically elaborates a theoretical framework for greedy approximation and its applications. The book addresses the needs of researchers working in numerical mathematics, harmonic analysis, and functional analysis. It quickly takes the reader from classical results to the latest frontier, but is written at the level of a graduate course and do...
Approximate symmetries of Hamiltonians
Chubb, Christopher T.; Flammia, Steven T.
2017-08-01
We explore the relationship between approximate symmetries of a gapped Hamiltonian and the structure of its ground space. We start by considering approximate symmetry operators, defined as unitary operators whose commutators with the Hamiltonian have norms that are sufficiently small. We show that when approximate symmetry operators can be restricted to the ground space while approximately preserving certain mutual commutation relations. We generalize the Stone-von Neumann theorem to matrices that approximately satisfy the canonical (Heisenberg-Weyl-type) commutation relations and use this to show that approximate symmetry operators can certify the degeneracy of the ground space even though they only approximately form a group. Importantly, the notions of "approximate" and "small" are all independent of the dimension of the ambient Hilbert space and depend only on the degeneracy in the ground space. Our analysis additionally holds for any gapped band of sufficiently small width in the excited spectrum of the Hamiltonian, and we discuss applications of these ideas to topological quantum phases of matter and topological quantum error correcting codes. Finally, in our analysis, we also provide an exponential improvement upon bounds concerning the existence of shared approximate eigenvectors of approximately commuting operators under an added normality constraint, which may be of independent interest.
Inverse problem in nuclear physics
International Nuclear Information System (INIS)
Zakhariev, B.N.
1976-01-01
The method of reconstruction of interaction from the scattering data is formulated in the frame of the R-matrix theory in which the potential is determined by position of resonance Esub(lambda) and their reduced widths γ 2 lambda. In finite difference approximation for the Schroedinger equation this new approach allows to make the logics of the inverse problem IP more clear. A possibility of applications of IP formalism to various nuclear systems is discussed. (author)
Approximating distributions from moments
Pawula, R. F.
1987-11-01
A method based upon Pearson-type approximations from statistics is developed for approximating a symmetric probability density function from its moments. The extended Fokker-Planck equation for non-Markov processes is shown to be the underlying foundation for the approximations. The approximation is shown to be exact for the beta probability density function. The applicability of the general method is illustrated by numerous pithy examples from linear and nonlinear filtering of both Markov and non-Markov dichotomous noise. New approximations are given for the probability density function in two cases in which exact solutions are unavailable, those of (i) the filter-limiter-filter problem and (ii) second-order Butterworth filtering of the random telegraph signal. The approximate results are compared with previously published Monte Carlo simulations in these two cases.
CONTRIBUTIONS TO RATIONAL APPROXIMATION,
Some of the key results of linear Chebyshev approximation theory are extended to generalized rational functions. Prominent among these is Haar’s...linear theorem which yields necessary and sufficient conditions for uniqueness. Some new results in the classic field of rational function Chebyshev...Furthermore a Weierstrass type theorem is proven for rational Chebyshev approximation. A characterization theorem for rational trigonometric Chebyshev approximation in terms of sign alternation is developed. (Author)
Energy Technology Data Exchange (ETDEWEB)
Stathopoulos, A.; Fischer, C.F. [Vanderbilt Univ., Nashville, TN (United States); Saad, Y.
1994-12-31
The solution of the large, sparse, symmetric eigenvalue problem, Ax = {lambda}x, is central to many scientific applications. Among many iterative methods that attempt to solve this problem, the Lanczos and the Generalized Davidson (GD) are the most widely used methods. The Lanczos method builds an orthogonal basis for the Krylov subspace, from which the required eigenvectors are approximated through a Rayleigh-Ritz procedure. Each Lanczos iteration is economical to compute but the number of iterations may grow significantly for difficult problems. The GD method can be considered a preconditioned version of Lanczos. In each step the Rayleigh-Ritz procedure is solved and explicit orthogonalization of the preconditioned residual ((M {minus} {lambda}I){sup {minus}1}(A {minus} {lambda}I)x) is performed. Therefore, the GD method attempts to improve convergence and robustness at the expense of a more complicated step.
Approximation techniques for engineers
Komzsik, Louis
2006-01-01
Presenting numerous examples, algorithms, and industrial applications, Approximation Techniques for Engineers is your complete guide to the major techniques used in modern engineering practice. Whether you need approximations for discrete data of continuous functions, or you''re looking for approximate solutions to engineering problems, everything you need is nestled between the covers of this book. Now you can benefit from Louis Komzsik''s years of industrial experience to gain a working knowledge of a vast array of approximation techniques through this complete and self-contained resource.
Expectation Consistent Approximate Inference
DEFF Research Database (Denmark)
Opper, Manfred; Winther, Ole
2005-01-01
We propose a novel framework for approximations to intractable probabilistic models which is based on a free energy formulation. The approximation can be understood from replacing an average over the original intractable distribution with a tractable one. It requires two tractable probability dis...
Ordered cones and approximation
Keimel, Klaus
1992-01-01
This book presents a unified approach to Korovkin-type approximation theorems. It includes classical material on the approximation of real-valuedfunctions as well as recent and new results on set-valued functions and stochastic processes, and on weighted approximation. The results are notonly of qualitative nature, but include quantitative bounds on the order of approximation. The book is addressed to researchers in functional analysis and approximation theory as well as to those that want to applythese methods in other fields. It is largely self- contained, but the readershould have a solid background in abstract functional analysis. The unified approach is based on a new notion of locally convex ordered cones that are not embeddable in vector spaces but allow Hahn-Banach type separation and extension theorems. This concept seems to be of independent interest.
A Joint Method of Envelope Inversion Combined with Hybrid-domain Full Waveform Inversion
CUI, C.; Hou, W.
2017-12-01
Full waveform inversion (FWI) aims to construct high-precision subsurface models by fully using the information in seismic records, including amplitude, travel time, phase and so on. However, high non-linearity and the absence of low frequency information in seismic data lead to the well-known cycle skipping problem and make inversion easily fall into local minima. In addition, those 3D inversion methods that are based on acoustic approximation ignore the elastic effects in real seismic field, and make inversion harder. As a result, the accuracy of final inversion results highly relies on the quality of initial model. In order to improve stability and quality of inversion results, multi-scale inversion that reconstructs subsurface model from low to high frequency are applied. But, the absence of very low frequencies (time domain and inversion in the frequency domain. To accelerate the inversion, we adopt CPU/GPU heterogeneous computing techniques. There were two levels of parallelism. In the first level, the inversion tasks are decomposed and assigned to each computation node by shot number. In the second level, GPU multithreaded programming is used for the computation tasks in each node, including forward modeling, envelope extraction, DFT (discrete Fourier transform) calculation and gradients calculation. Numerical tests demonstrated that the combined envelope inversion + hybrid-domain FWI could obtain much faithful and accurate result than conventional hybrid-domain FWI. The CPU/GPU heterogeneous parallel computation could improve the performance speed.
Parallelizable approximate solvers for recursions arising in preconditioning
Energy Technology Data Exchange (ETDEWEB)
Shapira, Y. [Israel Inst. of Technology, Haifa (Israel)
1996-12-31
For the recursions used in the Modified Incomplete LU (MILU) preconditioner, namely, the incomplete decomposition, forward elimination and back substitution processes, a parallelizable approximate solver is presented. The present analysis shows that the solutions of the recursions depend only weakly on their initial conditions and may be interpreted to indicate that the inexact solution is close, in some sense, to the exact one. The method is based on a domain decomposition approach, suitable for parallel implementations with message passing architectures. It requires a fixed number of communication steps per preconditioned iteration, independently of the number of subdomains or the size of the problem. The overlapping subdomains are either cubes (suitable for mesh-connected arrays of processors) or constructed by the data-flow rule of the recursions (suitable for line-connected arrays with possibly SIMD or vector processors). Numerical examples show that, in both cases, the overhead in the number of iterations required for convergence of the preconditioned iteration is small relatively to the speed-up gained.
Approximate and renormgroup symmetries
Energy Technology Data Exchange (ETDEWEB)
Ibragimov, Nail H. [Blekinge Institute of Technology, Karlskrona (Sweden). Dept. of Mathematics Science; Kovalev, Vladimir F. [Russian Academy of Sciences, Moscow (Russian Federation). Inst. of Mathematical Modeling
2009-07-01
''Approximate and Renormgroup Symmetries'' deals with approximate transformation groups, symmetries of integro-differential equations and renormgroup symmetries. It includes a concise and self-contained introduction to basic concepts and methods of Lie group analysis, and provides an easy-to-follow introduction to the theory of approximate transformation groups and symmetries of integro-differential equations. The book is designed for specialists in nonlinear physics - mathematicians and non-mathematicians - interested in methods of applied group analysis for investigating nonlinear problems in physical science and engineering. (orig.)
Approximate and renormgroup symmetries
International Nuclear Information System (INIS)
Ibragimov, Nail H.; Kovalev, Vladimir F.
2009-01-01
''Approximate and Renormgroup Symmetries'' deals with approximate transformation groups, symmetries of integro-differential equations and renormgroup symmetries. It includes a concise and self-contained introduction to basic concepts and methods of Lie group analysis, and provides an easy-to-follow introduction to the theory of approximate transformation groups and symmetries of integro-differential equations. The book is designed for specialists in nonlinear physics - mathematicians and non-mathematicians - interested in methods of applied group analysis for investigating nonlinear problems in physical science and engineering. (orig.)
Approximations of Fuzzy Systems
Directory of Open Access Journals (Sweden)
Vinai K. Singh
2013-03-01
Full Text Available A fuzzy system can uniformly approximate any real continuous function on a compact domain to any degree of accuracy. Such results can be viewed as an existence of optimal fuzzy systems. Li-Xin Wang discussed a similar problem using Gaussian membership function and Stone-Weierstrass Theorem. He established that fuzzy systems, with product inference, centroid defuzzification and Gaussian functions are capable of approximating any real continuous function on a compact set to arbitrary accuracy. In this paper we study a similar approximation problem by using exponential membership functions
Potvin, Guy
2015-10-01
We examine how the Rytov approximation describing log-amplitude and phase fluctuations of a wave propagating through weak uniform turbulence can be generalized to the case of turbulence with a large-scale nonuniform component. We show how the large-scale refractive index field creates Fermat rays using the path integral formulation for paraxial propagation. We then show how the second-order derivatives of the Fermat ray action affect the Rytov approximation, and we discuss how a numerical algorithm would model the general Rytov approximation.
Geometric approximation algorithms
Har-Peled, Sariel
2011-01-01
Exact algorithms for dealing with geometric objects are complicated, hard to implement in practice, and slow. Over the last 20 years a theory of geometric approximation algorithms has emerged. These algorithms tend to be simple, fast, and more robust than their exact counterparts. This book is the first to cover geometric approximation algorithms in detail. In addition, more traditional computational geometry techniques that are widely used in developing such algorithms, like sampling, linear programming, etc., are also surveyed. Other topics covered include approximate nearest-neighbor search, shape approximation, coresets, dimension reduction, and embeddings. The topics covered are relatively independent and are supplemented by exercises. Close to 200 color figures are included in the text to illustrate proofs and ideas.
International Nuclear Information System (INIS)
Knobloch, A.F.
1980-01-01
A simplified cost approximation for INTOR parameter sets in a narrow parameter range is shown. Plausible constraints permit the evaluation of the consequences of parameter variations on overall cost. (orig.) [de
Hierarchical matrix approximation of large covariance matrices
Litvinenko, Alexander
2015-01-07
We approximate large non-structured covariance matrices in the H-matrix format with a log-linear computational cost and storage O(n log n). We compute inverse, Cholesky decomposition and determinant in H-format. As an example we consider the class of Matern covariance functions, which are very popular in spatial statistics, geostatistics, machine learning and image analysis. Applications are: kriging and optimal design
Hierarchical matrix approximation of large covariance matrices
Litvinenko, Alexander
2015-01-05
We approximate large non-structured covariance matrices in the H-matrix format with a log-linear computational cost and storage O(nlogn). We compute inverse, Cholesky decomposition and determinant in H-format. As an example we consider the class of Matern covariance functions, which are very popular in spatial statistics, geostatistics, machine learning and image analysis. Applications are: kriging and op- timal design.
Hierarchical matrix approximation of large covariance matrices
Litvinenko, Alexander; Genton, Marc G.; Sun, Ying; Tempone, Raul
2015-01-01
We approximate large non-structured covariance matrices in the H-matrix format with a log-linear computational cost and storage O(n log n). We compute inverse, Cholesky decomposition and determinant in H-format. As an example we consider the class of Matern covariance functions, which are very popular in spatial statistics, geostatistics, machine learning and image analysis. Applications are: kriging and optimal design
Hierarchical matrix approximation of large covariance matrices
Litvinenko, Alexander; Genton, Marc G.; Sun, Ying; Tempone, Raul
2015-01-01
We approximate large non-structured covariance matrices in the H-matrix format with a log-linear computational cost and storage O(nlogn). We compute inverse, Cholesky decomposition and determinant in H-format. As an example we consider the class of Matern covariance functions, which are very popular in spatial statistics, geostatistics, machine learning and image analysis. Applications are: kriging and op- timal design.
Gautschi, Walter; Rassias, Themistocles M
2011-01-01
Approximation theory and numerical analysis are central to the creation of accurate computer simulations and mathematical models. Research in these areas can influence the computational techniques used in a variety of mathematical and computational sciences. This collection of contributed chapters, dedicated to renowned mathematician Gradimir V. Milovanovia, represent the recent work of experts in the fields of approximation theory and numerical analysis. These invited contributions describe new trends in these important areas of research including theoretic developments, new computational alg
Approximate kernel competitive learning.
Wu, Jian-Sheng; Zheng, Wei-Shi; Lai, Jian-Huang
2015-03-01
Kernel competitive learning has been successfully used to achieve robust clustering. However, kernel competitive learning (KCL) is not scalable for large scale data processing, because (1) it has to calculate and store the full kernel matrix that is too large to be calculated and kept in the memory and (2) it cannot be computed in parallel. In this paper we develop a framework of approximate kernel competitive learning for processing large scale dataset. The proposed framework consists of two parts. First, it derives an approximate kernel competitive learning (AKCL), which learns kernel competitive learning in a subspace via sampling. We provide solid theoretical analysis on why the proposed approximation modelling would work for kernel competitive learning, and furthermore, we show that the computational complexity of AKCL is largely reduced. Second, we propose a pseudo-parallelled approximate kernel competitive learning (PAKCL) based on a set-based kernel competitive learning strategy, which overcomes the obstacle of using parallel programming in kernel competitive learning and significantly accelerates the approximate kernel competitive learning for large scale clustering. The empirical evaluation on publicly available datasets shows that the proposed AKCL and PAKCL can perform comparably as KCL, with a large reduction on computational cost. Also, the proposed methods achieve more effective clustering performance in terms of clustering precision against related approximate clustering approaches. Copyright © 2014 Elsevier Ltd. All rights reserved.
Wave-equation dispersion inversion
Li, Jing
2016-12-08
We present the theory for wave-equation inversion of dispersion curves, where the misfit function is the sum of the squared differences between the wavenumbers along the predicted and observed dispersion curves. The dispersion curves are obtained from Rayleigh waves recorded by vertical-component geophones. Similar to wave-equation traveltime tomography, the complicated surface wave arrivals in traces are skeletonized as simpler data, namely the picked dispersion curves in the phase-velocity and frequency domains. Solutions to the elastic wave equation and an iterative optimization method are then used to invert these curves for 2-D or 3-D S-wave velocity models. This procedure, denoted as wave-equation dispersion inversion (WD), does not require the assumption of a layered model and is significantly less prone to the cycle-skipping problems of full waveform inversion. The synthetic and field data examples demonstrate that WD can approximately reconstruct the S-wave velocity distributions in laterally heterogeneous media if the dispersion curves can be identified and picked. The WD method is easily extended to anisotropic data and the inversion of dispersion curves associated with Love waves.
Perturbation expansions generated by an approximate propagator
International Nuclear Information System (INIS)
Znojil, M.
1987-01-01
Starting from a knowledge of an approximate propagator R at some trial energy guess E 0 , a new perturbative prescription for p-plet of bound states and of their energies is proposed. It generalizes the Rayleigh-Schroedinger (RS) degenerate perturbation theory to the nondiagonal operators R (eliminates a RS need of their diagnolisation) and defines an approximate Hamiltonian T by mere inversion. The deviation V of T from the exact Hamiltonian H is assumed small only after a substraction of a further auxiliary Hartree-Fock-like separable ''selfconsistent'' potential U of rank p. The convergence is illustrated numerically on the anharmonic oscillator example
Seismic waveform inversion best practices: regional, global and exploration test cases
Modrak, Ryan; Tromp, Jeroen
2016-09-01
Reaching the global minimum of a waveform misfit function requires careful choices about the nonlinear optimization, preconditioning and regularization methods underlying an inversion. Because waveform inversion problems are susceptible to erratic convergence associated with strong nonlinearity, one or two test cases are not enough to reliably inform such decisions. We identify best practices, instead, using four seismic near-surface problems, one regional problem and two global problems. To make meaningful quantitative comparisons between methods, we carry out hundreds of inversions, varying one aspect of the implementation at a time. Comparing nonlinear optimization algorithms, we find that limited-memory BFGS provides computational savings over nonlinear conjugate gradient methods in a wide range of test cases. Comparing preconditioners, we show that a new diagonal scaling derived from the adjoint of the forward operator provides better performance than two conventional preconditioning schemes. Comparing regularization strategies, we find that projection, convolution, Tikhonov regularization and total variation regularization are effective in different contexts. Besides questions of one strategy or another, reliability and efficiency in waveform inversion depend on close numerical attention and care. Implementation details involving the line search and restart conditions have a strong effect on computational cost, regardless of the chosen nonlinear optimization algorithm.
On Covering Approximation Subspaces
Directory of Open Access Journals (Sweden)
Xun Ge
2009-06-01
Full Text Available Let (U';C' be a subspace of a covering approximation space (U;C and X⊂U'. In this paper, we show that and B'(X⊂B(X∩U'. Also, iff (U;C has Property Multiplication. Furthermore, some connections between outer (resp. inner definable subsets in (U;C and outer (resp. inner definable subsets in (U';C' are established. These results answer a question on covering approximation subspace posed by J. Li, and are helpful to obtain further applications of Pawlak rough set theory in pattern recognition and artificial intelligence.
On Convex Quadratic Approximation
den Hertog, D.; de Klerk, E.; Roos, J.
2000-01-01
In this paper we prove the counterintuitive result that the quadratic least squares approximation of a multivariate convex function in a finite set of points is not necessarily convex, even though it is convex for a univariate convex function. This result has many consequences both for the field of
Prestack wavefield approximations
Alkhalifah, Tariq
2013-01-01
The double-square-root (DSR) relation offers a platform to perform prestack imaging using an extended single wavefield that honors the geometrical configuration between sources, receivers, and the image point, or in other words, prestack wavefields. Extrapolating such wavefields, nevertheless, suffers from limitations. Chief among them is the singularity associated with horizontally propagating waves. I have devised highly accurate approximations free of such singularities which are highly accurate. Specifically, I use Padé expansions with denominators given by a power series that is an order lower than that of the numerator, and thus, introduce a free variable to balance the series order and normalize the singularity. For the higher-order Padé approximation, the errors are negligible. Additional simplifications, like recasting the DSR formula as a function of scattering angle, allow for a singularity free form that is useful for constant-angle-gather imaging. A dynamic form of this DSR formula can be supported by kinematic evaluations of the scattering angle to provide efficient prestack wavefield construction. Applying a similar approximation to the dip angle yields an efficient 1D wave equation with the scattering and dip angles extracted from, for example, DSR ray tracing. Application to the complex Marmousi data set demonstrates that these approximations, although they may provide less than optimal results, allow for efficient and flexible implementations. © 2013 Society of Exploration Geophysicists.
DEFF Research Database (Denmark)
Madsen, Rasmus Elsborg
2005-01-01
The Dirichlet compound multinomial (DCM), which has recently been shown to be well suited for modeling for word burstiness in documents, is here investigated. A number of conceptual explanations that account for these recent results, are provided. An exponential family approximation of the DCM...
Approximation by Cylinder Surfaces
DEFF Research Database (Denmark)
Randrup, Thomas
1997-01-01
We present a new method for approximation of a given surface by a cylinder surface. It is a constructive geometric method, leading to a monorail representation of the cylinder surface. By use of a weighted Gaussian image of the given surface, we determine a projection plane. In the orthogonal...
Prestack wavefield approximations
Alkhalifah, Tariq
2013-09-01
The double-square-root (DSR) relation offers a platform to perform prestack imaging using an extended single wavefield that honors the geometrical configuration between sources, receivers, and the image point, or in other words, prestack wavefields. Extrapolating such wavefields, nevertheless, suffers from limitations. Chief among them is the singularity associated with horizontally propagating waves. I have devised highly accurate approximations free of such singularities which are highly accurate. Specifically, I use Padé expansions with denominators given by a power series that is an order lower than that of the numerator, and thus, introduce a free variable to balance the series order and normalize the singularity. For the higher-order Padé approximation, the errors are negligible. Additional simplifications, like recasting the DSR formula as a function of scattering angle, allow for a singularity free form that is useful for constant-angle-gather imaging. A dynamic form of this DSR formula can be supported by kinematic evaluations of the scattering angle to provide efficient prestack wavefield construction. Applying a similar approximation to the dip angle yields an efficient 1D wave equation with the scattering and dip angles extracted from, for example, DSR ray tracing. Application to the complex Marmousi data set demonstrates that these approximations, although they may provide less than optimal results, allow for efficient and flexible implementations. © 2013 Society of Exploration Geophysicists.
Prestack traveltime approximations
Alkhalifah, Tariq Ali
2011-01-01
Most prestack traveltime relations we tend work with are based on homogeneous (or semi-homogenous, possibly effective) media approximations. This includes the multi-focusing or double square-root (DSR) and the common reflection stack (CRS) equations. Using the DSR equation, I analyze the associated eikonal form in the general source-receiver domain. Like its wave-equation counterpart, it suffers from a critical singularity for horizontally traveling waves. As a result, I derive expansion based solutions of this eikonal based on polynomial expansions in terms of the reflection and dip angles in a generally inhomogenous background medium. These approximate solutions are free of singularities and can be used to estimate travetimes for small to moderate offsets (or reflection angles) in a generally inhomogeneous medium. A Marmousi example demonstrates the usefulness of the approach. © 2011 Society of Exploration Geophysicists.
Topology, calculus and approximation
Komornik, Vilmos
2017-01-01
Presenting basic results of topology, calculus of several variables, and approximation theory which are rarely treated in a single volume, this textbook includes several beautiful, but almost forgotten, classical theorems of Descartes, Erdős, Fejér, Stieltjes, and Turán. The exposition style of Topology, Calculus and Approximation follows the Hungarian mathematical tradition of Paul Erdős and others. In the first part, the classical results of Alexandroff, Cantor, Hausdorff, Helly, Peano, Radon, Tietze and Urysohn illustrate the theories of metric, topological and normed spaces. Following this, the general framework of normed spaces and Carathéodory's definition of the derivative are shown to simplify the statement and proof of various theorems in calculus and ordinary differential equations. The third and final part is devoted to interpolation, orthogonal polynomials, numerical integration, asymptotic expansions and the numerical solution of algebraic and differential equations. Students of both pure an...
Acute puerperal uterine inversion
International Nuclear Information System (INIS)
Hussain, M.; Liaquat, N.; Noorani, K.; Bhutta, S.Z; Jabeen, T.
2004-01-01
Objective: To determine the frequency, causes, clinical presentations, management and maternal mortality associated with acute puerperal inversion of the uterus. Materials and Methods: All the patients who developed acute puerperal inversion of the uterus either in or outside the JPMC were included in the study. Patients of chronic uterine inversion were not included in the present study. Abdominal and vaginal examination was done to confirm and classify inversion into first, second or third degrees. Results: 57036 deliveries and 36 acute uterine inversions occurred during the study period, so the frequency of uterine inversion was 1 in 1584 deliveries. Mismanagement of third stage of labour was responsible for uterine inversion in 75% of patients. Majority of the patients presented with shock, either hypovolemic (69%) or neurogenic (13%) in origin. Manual replacement of the uterus under general anaesthesia with 2% halothane was successfully done in 35 patients (97.5%). Abdominal hysterectomy was done in only one patient. There were three maternal deaths due to inversion. Conclusion: Proper education and training regarding placental delivery, diagnosis and management of uterine inversion must be imparted to the maternity care providers especially to traditional birth attendants and family physicians to prevent this potentially life-threatening condition. (author)
Approximate Bayesian recursive estimation
Czech Academy of Sciences Publication Activity Database
Kárný, Miroslav
2014-01-01
Roč. 285, č. 1 (2014), s. 100-111 ISSN 0020-0255 R&D Projects: GA ČR GA13-13502S Institutional support: RVO:67985556 Keywords : Approximate parameter estimation * Bayesian recursive estimation * Kullback–Leibler divergence * Forgetting Subject RIV: BB - Applied Statistics, Operational Research Impact factor: 4.038, year: 2014 http://library.utia.cas.cz/separaty/2014/AS/karny-0425539.pdf
Approximating Preemptive Stochastic Scheduling
Megow Nicole; Vredeveld Tjark
2009-01-01
We present constant approximative policies for preemptive stochastic scheduling. We derive policies with a guaranteed performance ratio of 2 for scheduling jobs with release dates on identical parallel machines subject to minimizing the sum of weighted completion times. Our policies as well as their analysis apply also to the recently introduced more general model of stochastic online scheduling. The performance guarantee we give matches the best result known for the corresponding determinist...
Optimization and approximation
Pedregal, Pablo
2017-01-01
This book provides a basic, initial resource, introducing science and engineering students to the field of optimization. It covers three main areas: mathematical programming, calculus of variations and optimal control, highlighting the ideas and concepts and offering insights into the importance of optimality conditions in each area. It also systematically presents affordable approximation methods. Exercises at various levels have been included to support the learning process.
On transparent potentials: a Born approximation study
International Nuclear Information System (INIS)
Coudray, C.
1980-01-01
In the frame of the scattering inverse problem at fixed energy, a class of potentials transparent in Born approximation is obtained. All these potentials are spherically symmetric and are oscillating functions of the reduced radial variable. Amongst them, the Born approximation of the transparent potential of the Newton-Sabatier method is found. In the same class, quasi-transparent potentials are exhibited. Very general features of potentials transparent in Born approximation are then stated. And bounds are given for the exact scattering amplitudes corresponding to most of the potentials previously exhibited. These bounds, obtained at fixed energy, and for large values of the angular momentum, are found to be independent on the energy
Cyclic approximation to stasis
Directory of Open Access Journals (Sweden)
Stewart D. Johnson
2009-06-01
Full Text Available Neighborhoods of points in $mathbb{R}^n$ where a positive linear combination of $C^1$ vector fields sum to zero contain, generically, cyclic trajectories that switch between the vector fields. Such points are called stasis points, and the approximating switching cycle can be chosen so that the timing of the switches exactly matches the positive linear weighting. In the case of two vector fields, the stasis points form one-dimensional $C^1$ manifolds containing nearby families of two-cycles. The generic case of two flows in $mathbb{R}^3$ can be diffeomorphed to a standard form with cubic curves as trajectories.
International Nuclear Information System (INIS)
El Sawi, M.
1983-07-01
A simple approach employing properties of solutions of differential equations is adopted to derive an appropriate extension of the WKBJ method. Some of the earlier techniques that are commonly in use are unified, whereby the general approximate solution to a second-order homogeneous linear differential equation is presented in a standard form that is valid for all orders. In comparison to other methods, the present one is shown to be leading in the order of iteration, and thus possibly has the ability of accelerating the convergence of the solution. The method is also extended for the solution of inhomogeneous equations. (author)
The relaxation time approximation
International Nuclear Information System (INIS)
Gairola, R.P.; Indu, B.D.
1991-01-01
A plausible approximation has been made to estimate the relaxation time from a knowledge of the transition probability of phonons from one state (r vector, q vector) to other state (r' vector, q' vector), as a result of collision. The relaxation time, thus obtained, shows a strong dependence on temperature and weak dependence on the wave vector. In view of this dependence, relaxation time has been expressed in terms of a temperature Taylor's series in the first Brillouin zone. Consequently, a simple model for estimating the thermal conductivity is suggested. the calculations become much easier than the Callaway model. (author). 14 refs
Polynomial approximation on polytopes
Totik, Vilmos
2014-01-01
Polynomial approximation on convex polytopes in \\mathbf{R}^d is considered in uniform and L^p-norms. For an appropriate modulus of smoothness matching direct and converse estimates are proven. In the L^p-case so called strong direct and converse results are also verified. The equivalence of the moduli of smoothness with an appropriate K-functional follows as a consequence. The results solve a problem that was left open since the mid 1980s when some of the present findings were established for special, so-called simple polytopes.
Finite elements and approximation
Zienkiewicz, O C
2006-01-01
A powerful tool for the approximate solution of differential equations, the finite element is extensively used in industry and research. This book offers students of engineering and physics a comprehensive view of the principles involved, with numerous illustrative examples and exercises.Starting with continuum boundary value problems and the need for numerical discretization, the text examines finite difference methods, weighted residual methods in the context of continuous trial functions, and piecewise defined trial functions and the finite element method. Additional topics include higher o
Inverse logarithmic potential problem
Cherednichenko, V G
1996-01-01
The Inverse and Ill-Posed Problems Series is a series of monographs publishing postgraduate level information on inverse and ill-posed problems for an international readership of professional scientists and researchers. The series aims to publish works which involve both theory and applications in, e.g., physics, medicine, geophysics, acoustics, electrodynamics, tomography, and ecology.
Inverse Kinematics using Quaternions
DEFF Research Database (Denmark)
Henriksen, Knud; Erleben, Kenny; Engell-Nørregård, Morten
In this project I describe the status of inverse kinematics research, with the focus firmly on the methods that solve the core problem. An overview of the different methods are presented Three common methods used in inverse kinematics computation have been chosen as subject for closer inspection....
Approximate Bayesian computation.
Directory of Open Access Journals (Sweden)
Mikael Sunnåker
Full Text Available Approximate Bayesian computation (ABC constitutes a class of computational methods rooted in Bayesian statistics. In all model-based statistical inference, the likelihood function is of central importance, since it expresses the probability of the observed data under a particular statistical model, and thus quantifies the support data lend to particular values of parameters and to choices among different models. For simple models, an analytical formula for the likelihood function can typically be derived. However, for more complex models, an analytical formula might be elusive or the likelihood function might be computationally very costly to evaluate. ABC methods bypass the evaluation of the likelihood function. In this way, ABC methods widen the realm of models for which statistical inference can be considered. ABC methods are mathematically well-founded, but they inevitably make assumptions and approximations whose impact needs to be carefully assessed. Furthermore, the wider application domain of ABC exacerbates the challenges of parameter estimation and model selection. ABC has rapidly gained popularity over the last years and in particular for the analysis of complex problems arising in biological sciences (e.g., in population genetics, ecology, epidemiology, and systems biology.
Chavez, Gustavo Ivan
2017-07-10
This dissertation introduces a novel fast direct solver and preconditioner for the solution of block tridiagonal linear systems that arise from the discretization of elliptic partial differential equations on a Cartesian product mesh, such as the variable-coefficient Poisson equation, the convection-diffusion equation, and the wave Helmholtz equation in heterogeneous media. The algorithm extends the traditional cyclic reduction method with hierarchical matrix techniques. The resulting method exposes substantial concurrency, and its arithmetic operations and memory consumption grow only log-linearly with problem size, assuming bounded rank of off-diagonal matrix blocks, even for problems with arbitrary coefficient structure. The method can be used as a standalone direct solver with tunable accuracy, or as a black-box preconditioner in conjunction with Krylov methods. The challenges that distinguish this work from other thrusts in this active field are the hybrid distributed-shared parallelism that can demonstrate the algorithm at large-scale, full three-dimensionality, and the three stressors of the current state-of-the-art multigrid technology: high wavenumber Helmholtz (indefiniteness), high Reynolds convection (nonsymmetry), and high contrast diffusion (inhomogeneity). Numerical experiments corroborate the robustness, accuracy, and complexity claims and provide a baseline of the performance and memory footprint by comparisons with competing approaches such as the multigrid solver hypre, and the STRUMPACK implementation of the multifrontal factorization with hierarchically semi-separable matrices. The companion implementation can utilize many thousands of cores of Shaheen, KAUST\\'s Haswell-based Cray XC-40 supercomputer, and compares favorably with other implementations of hierarchical solvers in terms of time-to-solution and memory consumption.
The random phase approximation
International Nuclear Information System (INIS)
Schuck, P.
1985-01-01
RPA is the adequate theory to describe vibrations of the nucleus of very small amplitudes. These vibrations can either be forced by an external electromagnetic field or can be eigenmodes of the nucleus. In a one dimensional analogue the potential corresponding to such eigenmodes of very small amplitude should be rather stiff otherwise the motion risks to be a large amplitude one and to enter a region where the approximation is not valid. This means that nuclei which are supposedly well described by RPA must have a very stable groundstate configuration (must e.g. be very stiff against deformation). This is usually the case for doubly magic nuclei or close to magic nuclei which are in the middle of proton and neutron shells which develop a very stable groundstate deformation; we take the deformation as an example but there are many other possible degrees of freedom as, for example, compression modes, isovector degrees of freedom, spin degrees of freedom, and many more
The quasilocalized charge approximation
International Nuclear Information System (INIS)
Kalman, G J; Golden, K I; Donko, Z; Hartmann, P
2005-01-01
The quasilocalized charge approximation (QLCA) has been used for some time as a formalism for the calculation of the dielectric response and for determining the collective mode dispersion in strongly coupled Coulomb and Yukawa liquids. The approach is based on a microscopic model in which the charges are quasilocalized on a short-time scale in local potential fluctuations. We review the conceptual basis and theoretical structure of the QLC approach and together with recent results from molecular dynamics simulations that corroborate and quantify the theoretical concepts. We also summarize the major applications of the QLCA to various physical systems, combined with the corresponding results of the molecular dynamics simulations and point out the general agreement and instances of disagreement between the two
An inverse heat transfer problem for optimization of the thermal ...
Indian Academy of Sciences (India)
This paper takes a different approach towards identiﬁcation of the thermal process in machining, using inverse heat transfer problem. Inverse heat transfer method allows the closest possible experimental and analytical approximation of thermal state for a machining process. Based on a temperature measured at any point ...
Discrete inverse scattering theory and the continuum limit
International Nuclear Information System (INIS)
Berryman, J.G.; Greene, R.R.
1978-01-01
The class of satisfactory difference approximations for the Schroedinger equation in discrete inverse scattering theory is shown smaller than previously supposed. A fast algorithm (analogous to the Levinson algorithm for Toeplitz matrices) is found for solving the discrete inverse problem. (Auth.)
Seismic inverse scattering in the downward continuation approach
Stolk, C.C.; de Hoop, M.V.
Seismic data are commonly modeled by a linearization around a smooth background medium in combination with a high frequency approximation. The perturbation of the medium coefficient is assumed to contain the discontinuities. This leads to two inverse problems, first the linearized inverse problem
Modeling of uncertainties in statistical inverse problems
International Nuclear Information System (INIS)
Kaipio, Jari
2008-01-01
In all real world problems, the models that tie the measurements to the unknowns of interest, are at best only approximations for reality. While moderate modeling and approximation errors can be tolerated with stable problems, inverse problems are a notorious exception. Typical modeling errors include inaccurate geometry, unknown boundary and initial data, properties of noise and other disturbances, and simply the numerical approximations of the physical models. In principle, the Bayesian approach to inverse problems, in which all uncertainties are modeled as random variables, is capable of handling these uncertainties. Depending on the type of uncertainties, however, different strategies may be adopted. In this paper we give an overview of typical modeling errors and related strategies within the Bayesian framework.
International Nuclear Information System (INIS)
Burkhard, N.R.
1979-01-01
The gravity inversion code applies stabilized linear inverse theory to determine the topography of a subsurface density anomaly from Bouguer gravity data. The gravity inversion program consists of four source codes: SEARCH, TREND, INVERT, and AVERAGE. TREND and INVERT are used iteratively to converge on a solution. SEARCH forms the input gravity data files for Nevada Test Site data. AVERAGE performs a covariance analysis on the solution. This document describes the necessary input files and the proper operation of the code. 2 figures, 2 tables
Ensemble Kalman methods for inverse problems
International Nuclear Information System (INIS)
Iglesias, Marco A; Law, Kody J H; Stuart, Andrew M
2013-01-01
The ensemble Kalman filter (EnKF) was introduced by Evensen in 1994 (Evensen 1994 J. Geophys. Res. 99 10143–62) as a novel method for data assimilation: state estimation for noisily observed time-dependent problems. Since that time it has had enormous impact in many application domains because of its robustness and ease of implementation, and numerical evidence of its accuracy. In this paper we propose the application of an iterative ensemble Kalman method for the solution of a wide class of inverse problems. In this context we show that the estimate of the unknown function that we obtain with the ensemble Kalman method lies in a subspace A spanned by the initial ensemble. Hence the resulting error may be bounded above by the error found from the best approximation in this subspace. We provide numerical experiments which compare the error incurred by the ensemble Kalman method for inverse problems with the error of the best approximation in A, and with variants on traditional least-squares approaches, restricted to the subspace A. In so doing we demonstrate that the ensemble Kalman method for inverse problems provides a derivative-free optimization method with comparable accuracy to that achieved by traditional least-squares approaches. Furthermore, we also demonstrate that the accuracy is of the same order of magnitude as that achieved by the best approximation. Three examples are used to demonstrate these assertions: inversion of a compact linear operator; inversion of piezometric head to determine hydraulic conductivity in a Darcy model of groundwater flow; and inversion of Eulerian velocity measurements at positive times to determine the initial condition in an incompressible fluid. (paper)
Approximate quantum Markov chains
Sutter, David
2018-01-01
This book is an introduction to quantum Markov chains and explains how this concept is connected to the question of how well a lost quantum mechanical system can be recovered from a correlated subsystem. To achieve this goal, we strengthen the data-processing inequality such that it reveals a statement about the reconstruction of lost information. The main difficulty in order to understand the behavior of quantum Markov chains arises from the fact that quantum mechanical operators do not commute in general. As a result we start by explaining two techniques of how to deal with non-commuting matrices: the spectral pinching method and complex interpolation theory. Once the reader is familiar with these techniques a novel inequality is presented that extends the celebrated Golden-Thompson inequality to arbitrarily many matrices. This inequality is the key ingredient in understanding approximate quantum Markov chains and it answers a question from matrix analysis that was open since 1973, i.e., if Lieb's triple ma...
Prestack traveltime approximations
Alkhalifah, Tariq Ali
2012-05-01
Many of the explicit prestack traveltime relations used in practice are based on homogeneous (or semi-homogenous, possibly effective) media approximations. This includes the multifocusing, based on the double square-root (DSR) equation, and the common reflection stack (CRS) approaches. Using the DSR equation, I constructed the associated eikonal form in the general source-receiver domain. Like its wave-equation counterpart, it suffers from a critical singularity for horizontally traveling waves. As a result, I recasted the eikonal in terms of the reflection angle, and thus, derived expansion based solutions of this eikonal in terms of the difference between the source and receiver velocities in a generally inhomogenous background medium. The zero-order term solution, corresponding to ignoring the lateral velocity variation in estimating the prestack part, is free of singularities and can be used to estimate traveltimes for small to moderate offsets (or reflection angles) in a generally inhomogeneous medium. The higher-order terms include limitations for horizontally traveling waves, however, we can readily enforce stability constraints to avoid such singularities. In fact, another expansion over reflection angle can help us avoid these singularities by requiring the source and receiver velocities to be different. On the other hand, expansions in terms of reflection angles result in singularity free equations. For a homogenous background medium, as a test, the solutions are reasonably accurate to large reflection and dip angles. A Marmousi example demonstrated the usefulness and versatility of the formulation. © 2012 Society of Exploration Geophysicists.
Sharp spatially constrained inversion
DEFF Research Database (Denmark)
Vignoli, Giulio G.; Fiandaca, Gianluca G.; Christiansen, Anders Vest C A.V.C.
2013-01-01
We present sharp reconstruction of multi-layer models using a spatially constrained inversion with minimum gradient support regularization. In particular, its application to airborne electromagnetic data is discussed. Airborne surveys produce extremely large datasets, traditionally inverted...... by using smoothly varying 1D models. Smoothness is a result of the regularization constraints applied to address the inversion ill-posedness. The standard Occam-type regularized multi-layer inversion produces results where boundaries between layers are smeared. The sharp regularization overcomes...... inversions are compared against classical smooth results and available boreholes. With the focusing approach, the obtained blocky results agree with the underlying geology and allow for easier interpretation by the end-user....
International Nuclear Information System (INIS)
Rosenwald, J.-C.
2008-01-01
The lecture addressed the following topics: Optimizing radiotherapy dose distribution; IMRT contributes to optimization of energy deposition; Inverse vs direct planning; Main steps of IMRT; Background of inverse planning; General principle of inverse planning; The 3 main components of IMRT inverse planning; The simplest cost function (deviation from prescribed dose); The driving variable : the beamlet intensity; Minimizing a 'cost function' (or 'objective function') - the walker (or skier) analogy; Application to IMRT optimization (the gradient method); The gradient method - discussion; The simulated annealing method; The optimization criteria - discussion; Hard and soft constraints; Dose volume constraints; Typical user interface for definition of optimization criteria; Biological constraints (Equivalent Uniform Dose); The result of the optimization process; Semi-automatic solutions for IMRT; Generalisation of the optimization problem; Driving and driven variables used in RT optimization; Towards multi-criteria optimization; and Conclusions for the optimization phase. (P.A.)
Inverse source problems for eddy current equations
International Nuclear Information System (INIS)
Rodríguez, Ana Alonso; Valli, Alberto; Camaño, Jessika
2012-01-01
We study the inverse source problem for the eddy current approximation of Maxwell equations. As for the full system of Maxwell equations, we show that a volume current source cannot be uniquely identified by knowledge of the tangential components of the electromagnetic fields on the boundary, and we characterize the space of non-radiating sources. On the other hand, we prove that the inverse source problem has a unique solution if the source is supported on the boundary of a subdomain or if it is the sum of a finite number of dipoles. We address the applicability of this result for the localization of brain activity from electroencephalography and magnetoencephalography measurements. (paper)
Saddlepoint Approximations in Conditional Inference
1990-06-11
Then the inverse transform can be written as (%, Y) = (T, q(T, Z)) for some function q. When the transform is not one to one, the domain should be...general regularity conditions described at the beginning of this section hold and that the solution t1 in (9) exists. Denote the inverse transform by (X, Y...density hn(t 0 l z) are desired. Then the inverse transform (Y, ) = (T, q(T, Z)) exists and the variable v in the cumulant generating function K(u, v
Nonlinear adaptive inverse control via the unified model neural network
Jeng, Jin-Tsong; Lee, Tsu-Tian
1999-03-01
In this paper, we propose a new nonlinear adaptive inverse control via a unified model neural network. In order to overcome nonsystematic design and long training time in nonlinear adaptive inverse control, we propose the approximate transformable technique to obtain a Chebyshev Polynomials Based Unified Model (CPBUM) neural network for the feedforward/recurrent neural networks. It turns out that the proposed method can use less training time to get an inverse model. Finally, we apply this proposed method to control magnetic bearing system. The experimental results show that the proposed nonlinear adaptive inverse control architecture provides a greater flexibility and better performance in controlling magnetic bearing systems.
Self-similar factor approximants
International Nuclear Information System (INIS)
Gluzman, S.; Yukalov, V.I.; Sornette, D.
2003-01-01
The problem of reconstructing functions from their asymptotic expansions in powers of a small variable is addressed by deriving an improved type of approximants. The derivation is based on the self-similar approximation theory, which presents the passage from one approximant to another as the motion realized by a dynamical system with the property of group self-similarity. The derived approximants, because of their form, are called self-similar factor approximants. These complement the obtained earlier self-similar exponential approximants and self-similar root approximants. The specific feature of self-similar factor approximants is that their control functions, providing convergence of the computational algorithm, are completely defined from the accuracy-through-order conditions. These approximants contain the Pade approximants as a particular case, and in some limit they can be reduced to the self-similar exponential approximants previously introduced by two of us. It is proved that the self-similar factor approximants are able to reproduce exactly a wide class of functions, which include a variety of nonalgebraic functions. For other functions, not pertaining to this exactly reproducible class, the factor approximants provide very accurate approximations, whose accuracy surpasses significantly that of the most accurate Pade approximants. This is illustrated by a number of examples showing the generality and accuracy of the factor approximants even when conventional techniques meet serious difficulties
Inverse design of multicomponent assemblies
Piñeros, William D.; Lindquist, Beth A.; Jadrich, Ryan B.; Truskett, Thomas M.
2018-03-01
Inverse design can be a useful strategy for discovering interactions that drive particles to spontaneously self-assemble into a desired structure. Here, we extend an inverse design methodology—relative entropy optimization—to determine isotropic interactions that promote assembly of targeted multicomponent phases, and we apply this extension to design interactions for a variety of binary crystals ranging from compact triangular and square architectures to highly open structures with dodecagonal and octadecagonal motifs. We compare the resulting optimized (self- and cross) interactions for the binary assemblies to those obtained from optimization of analogous single-component systems. This comparison reveals that self-interactions act as a "primer" to position particles at approximately correct coordination shell distances, while cross interactions act as the "binder" that refines and locks the system into the desired configuration. For simpler binary targets, it is possible to successfully design self-assembling systems while restricting one of these interaction types to be a hard-core-like potential. However, optimization of both self- and cross interaction types appears necessary to design for assembly of more complex or open structures.
Action understanding as inverse planning.
Baker, Chris L; Saxe, Rebecca; Tenenbaum, Joshua B
2009-12-01
Humans are adept at inferring the mental states underlying other agents' actions, such as goals, beliefs, desires, emotions and other thoughts. We propose a computational framework based on Bayesian inverse planning for modeling human action understanding. The framework represents an intuitive theory of intentional agents' behavior based on the principle of rationality: the expectation that agents will plan approximately rationally to achieve their goals, given their beliefs about the world. The mental states that caused an agent's behavior are inferred by inverting this model of rational planning using Bayesian inference, integrating the likelihood of the observed actions with the prior over mental states. This approach formalizes in precise probabilistic terms the essence of previous qualitative approaches to action understanding based on an "intentional stance" [Dennett, D. C. (1987). The intentional stance. Cambridge, MA: MIT Press] or a "teleological stance" [Gergely, G., Nádasdy, Z., Csibra, G., & Biró, S. (1995). Taking the intentional stance at 12 months of age. Cognition, 56, 165-193]. In three psychophysical experiments using animated stimuli of agents moving in simple mazes, we assess how well different inverse planning models based on different goal priors can predict human goal inferences. The results provide quantitative evidence for an approximately rational inference mechanism in human goal inference within our simplified stimulus paradigm, and for the flexible nature of goal representations that human observers can adopt. We discuss the implications of our experimental results for human action understanding in real-world contexts, and suggest how our framework might be extended to capture other kinds of mental state inferences, such as inferences about beliefs, or inferring whether an entity is an intentional agent.
Impurity levels: corrections to the effective mass approximation
International Nuclear Information System (INIS)
Bentosela, F.
1977-07-01
Some rigorous results concerning the effective mass approximation used for the calculation of the impurity levels in semiconductors are presented. Each energy level is expressed as an asymptotic series in the inverse of the dielectric constant K, in the case where the impurity potential is 1/μ
Approximation of reliability of direct genomic breeding values
Two methods to efficiently approximate theoretical genomic reliabilities are presented. The first method is based on the direct inverse of the left hand side (LHS) of mixed model equations. It uses the genomic relationship matrix for a small subset of individuals with the highest genomic relationshi...
Sinc-Approximations of Fractional Operators: A Computing Approach
Directory of Open Access Journals (Sweden)
Gerd Baumann
2015-06-01
Full Text Available We discuss a new approach to represent fractional operators by Sinc approximation using convolution integrals. A spin off of the convolution representation is an effective inverse Laplace transform. Several examples demonstrate the application of the method to different practical problems.
International Conference Approximation Theory XV
Schumaker, Larry
2017-01-01
These proceedings are based on papers presented at the international conference Approximation Theory XV, which was held May 22–25, 2016 in San Antonio, Texas. The conference was the fifteenth in a series of meetings in Approximation Theory held at various locations in the United States, and was attended by 146 participants. The book contains longer survey papers by some of the invited speakers covering topics such as compressive sensing, isogeometric analysis, and scaling limits of polynomials and entire functions of exponential type. The book also includes papers on a variety of current topics in Approximation Theory drawn from areas such as advances in kernel approximation with applications, approximation theory and algebraic geometry, multivariate splines for applications, practical function approximation, approximation of PDEs, wavelets and framelets with applications, approximation theory in signal processing, compressive sensing, rational interpolation, spline approximation in isogeometric analysis, a...
DEFF Research Database (Denmark)
Mosegaard, Klaus
2012-01-01
For non-linear inverse problems, the mathematical structure of the mapping from model parameters to data is usually unknown or partly unknown. Absence of information about the mathematical structure of this function prevents us from presenting an analytical solution, so our solution depends on our......-heuristics are inefficient for large-scale, non-linear inverse problems, and that the 'no-free-lunch' theorem holds. We discuss typical objections to the relevance of this theorem. A consequence of the no-free-lunch theorem is that algorithms adapted to the mathematical structure of the problem perform more efficiently than...... pure meta-heuristics. We study problem-adapted inversion algorithms that exploit the knowledge of the smoothness of the misfit function of the problem. Optimal sampling strategies exist for such problems, but many of these problems remain hard. © 2012 Springer-Verlag....
Inverse scale space decomposition
DEFF Research Database (Denmark)
Schmidt, Marie Foged; Benning, Martin; Schönlieb, Carola-Bibiane
2018-01-01
We investigate the inverse scale space flow as a decomposition method for decomposing data into generalised singular vectors. We show that the inverse scale space flow, based on convex and even and positively one-homogeneous regularisation functionals, can decompose data represented...... by the application of a forward operator to a linear combination of generalised singular vectors into its individual singular vectors. We verify that for this decomposition to hold true, two additional conditions on the singular vectors are sufficient: orthogonality in the data space and inclusion of partial sums...... of the subgradients of the singular vectors in the subdifferential of the regularisation functional at zero. We also address the converse question of when the inverse scale space flow returns a generalised singular vector given that the initial data is arbitrary (and therefore not necessarily in the range...
Generalized inverses theory and computations
Wang, Guorong; Qiao, Sanzheng
2018-01-01
This book begins with the fundamentals of the generalized inverses, then moves to more advanced topics. It presents a theoretical study of the generalization of Cramer's rule, determinant representations of the generalized inverses, reverse order law of the generalized inverses of a matrix product, structures of the generalized inverses of structured matrices, parallel computation of the generalized inverses, perturbation analysis of the generalized inverses, an algorithmic study of the computational methods for the full-rank factorization of a generalized inverse, generalized singular value decomposition, imbedding method, finite method, generalized inverses of polynomial matrices, and generalized inverses of linear operators. This book is intended for researchers, postdocs, and graduate students in the area of the generalized inverses with an undergraduate-level understanding of linear algebra.
Some results on inverse scattering
International Nuclear Information System (INIS)
Ramm, A.G.
2008-01-01
A review of some of the author's results in the area of inverse scattering is given. The following topics are discussed: (1) Property C and applications, (2) Stable inversion of fixed-energy 3D scattering data and its error estimate, (3) Inverse scattering with 'incomplete' data, (4) Inverse scattering for inhomogeneous Schroedinger equation, (5) Krein's inverse scattering method, (6) Invertibility of the steps in Gel'fand-Levitan, Marchenko, and Krein inversion methods, (7) The Newton-Sabatier and Cox-Thompson procedures are not inversion methods, (8) Resonances: existence, location, perturbation theory, (9) Born inversion as an ill-posed problem, (10) Inverse obstacle scattering with fixed-frequency data, (11) Inverse scattering with data at a fixed energy and a fixed incident direction, (12) Creating materials with a desired refraction coefficient and wave-focusing properties. (author)
A 2.5-D Diffraction Tomography Inversion Scheme for Ground Penetrating Radar
DEFF Research Database (Denmark)
Meincke, Peter
1999-01-01
A new 2.5-D inversion scheme is derived for ground penetrating radar (GPR) that applies to a monostatic fixed-offset measurement configuration. The inversion scheme, which is based upon the first Born approximation and the pseudo-inverse operator, takes rigorously into account the planar air...
Hierarchical low-rank approximation for high dimensional approximation
Nouy, Anthony
2016-01-01
Tensor methods are among the most prominent tools for the numerical solution of high-dimensional problems where functions of multiple variables have to be approximated. Such high-dimensional approximation problems naturally arise in stochastic analysis and uncertainty quantification. In many practical situations, the approximation of high-dimensional functions is made computationally tractable by using rank-structured approximations. In this talk, we present algorithms for the approximation in hierarchical tensor format using statistical methods. Sparse representations in a given tensor format are obtained with adaptive or convex relaxation methods, with a selection of parameters using crossvalidation methods.
Hierarchical low-rank approximation for high dimensional approximation
Nouy, Anthony
2016-01-07
Tensor methods are among the most prominent tools for the numerical solution of high-dimensional problems where functions of multiple variables have to be approximated. Such high-dimensional approximation problems naturally arise in stochastic analysis and uncertainty quantification. In many practical situations, the approximation of high-dimensional functions is made computationally tractable by using rank-structured approximations. In this talk, we present algorithms for the approximation in hierarchical tensor format using statistical methods. Sparse representations in a given tensor format are obtained with adaptive or convex relaxation methods, with a selection of parameters using crossvalidation methods.
Three-dimensional inversion of multisource array electromagnetic data
Tartaras, Efthimios
Three-dimensional (3-D) inversion is increasingly important for the correct interpretation of geophysical data sets in complex environments. To this effect, several approximate solutions have been developed that allow the construction of relatively fast inversion schemes. One such method that is fast and provides satisfactory accuracy is the quasi-linear (QL) approximation. It has, however, the drawback that it is source-dependent and, therefore, impractical in situations where multiple transmitters in different positions are employed. I have, therefore, developed a localized form of the QL approximation that is source-independent. This so-called localized quasi-linear (LQL) approximation can have a scalar, a diagonal, or a full tensor form. Numerical examples of its comparison with the full integral equation solution, the Born approximation, and the original QL approximation are given. The objective behind developing this approximation is to use it in a fast 3-D inversion scheme appropriate for multisource array data such as those collected in airborne surveys, cross-well logging, and other similar geophysical applications. I have developed such an inversion scheme using the scalar and diagonal LQL approximation. It reduces the original nonlinear inverse electromagnetic (EM) problem to three linear inverse problems. The first of these problems is solved using a weighted regularized linear conjugate gradient method, whereas the last two are solved in the least squares sense. The algorithm I developed provides the option of obtaining either smooth or focused inversion images. I have applied the 3-D LQL inversion to synthetic 3-D EM data that simulate a helicopter-borne survey over different earth models. The results demonstrate the stability and efficiency of the method and show that the LQL approximation can be a practical solution to the problem of 3-D inversion of multisource array frequency-domain EM data. I have also applied the method to helicopter-borne EM
Angle-domain inverse scattering migration/inversion in isotropic media
Li, Wuqun; Mao, Weijian; Li, Xuelei; Ouyang, Wei; Liang, Quan
2018-07-01
The classical seismic asymptotic inversion can be transformed into a problem of inversion of generalized Radon transform (GRT). In such methods, the combined parameters are linearly attached to the scattered wave-field by Born approximation and recovered by applying an inverse GRT operator to the scattered wave-field data. Typical GRT-style true-amplitude inversion procedure contains an amplitude compensation process after the weighted migration via dividing an illumination associated matrix whose elements are integrals of scattering angles. It is intuitional to some extent that performs the generalized linear inversion and the inversion of GRT together by this process for direct inversion. However, it is imprecise to carry out such operation when the illumination at the image point is limited, which easily leads to the inaccuracy and instability of the matrix. This paper formulates the GRT true-amplitude inversion framework in an angle-domain version, which naturally degrades the external integral term related to the illumination in the conventional case. We solve the linearized integral equation for combined parameters of different fixed scattering angle values. With this step, we obtain high-quality angle-domain common-image gathers (CIGs) in the migration loop which provide correct amplitude-versus-angle (AVA) behavior and reasonable illumination range for subsurface image points. Then we deal with the over-determined problem to solve each parameter in the combination by a standard optimization operation. The angle-domain GRT inversion method keeps away from calculating the inaccurate and unstable illumination matrix. Compared with the conventional method, the angle-domain method can obtain more accurate amplitude information and wider amplitude-preserved range. Several model tests demonstrate the effectiveness and practicability.
Bayesian probability theory and inverse problems
International Nuclear Information System (INIS)
Kopec, S.
1994-01-01
Bayesian probability theory is applied to approximate solving of the inverse problems. In order to solve the moment problem with the noisy data, the entropic prior is used. The expressions for the solution and its error bounds are presented. When the noise level tends to zero, the Bayesian solution tends to the classic maximum entropy solution in the L 2 norm. The way of using spline prior is also shown. (author)
An inverse problem in a parabolic equation
Directory of Open Access Journals (Sweden)
Zhilin Li
1998-11-01
Full Text Available In this paper, an inverse problem in a parabolic equation is studied. An unknown function in the equation is related to two integral equations in terms of heat kernel. One of the integral equations is well-posed while another is ill-posed. A regularization approach for constructing an approximate solution to the ill-posed integral equation is proposed. Theoretical analysis and numerical experiment are provided to support the method.
Forms of Approximate Radiation Transport
Brunner, G
2002-01-01
Photon radiation transport is described by the Boltzmann equation. Because this equation is difficult to solve, many different approximate forms have been implemented in computer codes. Several of the most common approximations are reviewed, and test problems illustrate the characteristics of each of the approximations. This document is designed as a tutorial so that code users can make an educated choice about which form of approximate radiation transport to use for their particular simulation.
Approximation by planar elastic curves
DEFF Research Database (Denmark)
Brander, David; Gravesen, Jens; Nørbjerg, Toke Bjerge
2016-01-01
We give an algorithm for approximating a given plane curve segment by a planar elastic curve. The method depends on an analytic representation of the space of elastic curve segments, together with a geometric method for obtaining a good initial guess for the approximating curve. A gradient......-driven optimization is then used to find the approximating elastic curve....
Inversion assuming weak scattering
DEFF Research Database (Denmark)
Xenaki, Angeliki; Gerstoft, Peter; Mosegaard, Klaus
2013-01-01
due to the complex nature of the field. A method based on linear inversion is employed to infer information about the statistical properties of the scattering field from the obtained cross-spectral matrix. A synthetic example based on an active high-frequency sonar demonstrates that the proposed...
Calculation of the inverse data space via sparse inversion
Saragiotis, Christos
2011-01-01
The inverse data space provides a natural separation of primaries and surface-related multiples, as the surface multiples map onto the area around the origin while the primaries map elsewhere. However, the calculation of the inverse data is far from trivial as theory requires infinite time and offset recording. Furthermore regularization issues arise during inversion. We perform the inversion by minimizing the least-squares norm of the misfit function by constraining the $ell_1$ norm of the solution, being the inverse data space. In this way a sparse inversion approach is obtained. We show results on field data with an application to surface multiple removal.
Inverse Problems and Uncertainty Quantification
Litvinenko, Alexander
2014-01-06
In a Bayesian setting, inverse problems and uncertainty quantification (UQ) - the propagation of uncertainty through a computational (forward) modelare strongly connected. In the form of conditional expectation the Bayesian update becomes computationally attractive. This is especially the case as together with a functional or spectral approach for the forward UQ there is no need for time- consuming and slowly convergent Monte Carlo sampling. The developed sampling- free non-linear Bayesian update is derived from the variational problem associated with conditional expectation. This formulation in general calls for further discretisa- tion to make the computation possible, and we choose a polynomial approximation. After giving details on the actual computation in the framework of functional or spectral approximations, we demonstrate the workings of the algorithm on a number of examples of increasing complexity. At last, we compare the linear and quadratic Bayesian update on the small but taxing example of the chaotic Lorenz 84 model, where we experiment with the influence of different observation or measurement operators on the update.
Inverse Problems and Uncertainty Quantification
Litvinenko, Alexander; Matthies, Hermann G.
2014-01-01
In a Bayesian setting, inverse problems and uncertainty quantification (UQ) - the propagation of uncertainty through a computational (forward) modelare strongly connected. In the form of conditional expectation the Bayesian update becomes computationally attractive. This is especially the case as together with a functional or spectral approach for the forward UQ there is no need for time- consuming and slowly convergent Monte Carlo sampling. The developed sampling- free non-linear Bayesian update is derived from the variational problem associated with conditional expectation. This formulation in general calls for further discretisa- tion to make the computation possible, and we choose a polynomial approximation. After giving details on the actual computation in the framework of functional or spectral approximations, we demonstrate the workings of the algorithm on a number of examples of increasing complexity. At last, we compare the linear and quadratic Bayesian update on the small but taxing example of the chaotic Lorenz 84 model, where we experiment with the influence of different observation or measurement operators on the update.
Inverse problems and uncertainty quantification
Litvinenko, Alexander
2013-12-18
In a Bayesian setting, inverse problems and uncertainty quantification (UQ)— the propagation of uncertainty through a computational (forward) model—are strongly connected. In the form of conditional expectation the Bayesian update becomes computationally attractive. This is especially the case as together with a functional or spectral approach for the forward UQ there is no need for time- consuming and slowly convergent Monte Carlo sampling. The developed sampling- free non-linear Bayesian update is derived from the variational problem associated with conditional expectation. This formulation in general calls for further discretisa- tion to make the computation possible, and we choose a polynomial approximation. After giving details on the actual computation in the framework of functional or spectral approximations, we demonstrate the workings of the algorithm on a number of examples of increasing complexity. At last, we compare the linear and quadratic Bayesian update on the small but taxing example of the chaotic Lorenz 84 model, where we experiment with the influence of different observation or measurement operators on the update.
Exact constants in approximation theory
Korneichuk, N
1991-01-01
This book is intended as a self-contained introduction for non-specialists, or as a reference work for experts, to the particular area of approximation theory that is concerned with exact constants. The results apply mainly to extremal problems in approximation theory, which in turn are closely related to numerical analysis and optimization. The book encompasses a wide range of questions and problems: best approximation by polynomials and splines; linear approximation methods, such as spline-approximation; optimal reconstruction of functions and linear functionals. Many of the results are base
International Conference Approximation Theory XIV
Schumaker, Larry
2014-01-01
This volume developed from papers presented at the international conference Approximation Theory XIV, held April 7–10, 2013 in San Antonio, Texas. The proceedings contains surveys by invited speakers, covering topics such as splines on non-tensor-product meshes, Wachspress and mean value coordinates, curvelets and shearlets, barycentric interpolation, and polynomial approximation on spheres and balls. Other contributed papers address a variety of current topics in approximation theory, including eigenvalue sequences of positive integral operators, image registration, and support vector machines. This book will be of interest to mathematicians, engineers, and computer scientists working in approximation theory, computer-aided geometric design, numerical analysis, and related approximation areas.
Bispectral Inversion: The Construction of a Time Series from Its Bispectrum
1988-04-13
take the inverse transform . Since the goal is to compute a time series given its bispectrum, it would also be nice to stay entirely in the frequency...domain and be able to go directly from the bispectrum to the Fourier transform of the time series without the need to inverse transform continuous...the picture. The approximations arise from representing the bicovariance, which is the inverse transform of a continuous function, by the inverse disrte
The impact of approximations and arbitrary choices on geophysical images
Valentine, Andrew P.; Trampert, Jeannot
2016-01-01
Whenever a geophysical image is to be constructed, a variety of choices must be made. Some, such as those governing data selection and processing, or model parametrization, are somewhat arbitrary: there may be little reason to prefer one choice over another. Others, such as defining the theoretical framework within which the data are to be explained, may be more straightforward: typically, an `exact' theory exists, but various approximations may need to be adopted in order to make the imaging problem computationally tractable. Differences between any two images of the same system can be explained in terms of differences between these choices. Understanding the impact of each particular decision is essential if images are to be interpreted properly-but little progress has been made towards a quantitative treatment of this effect. In this paper, we consider a general linearized inverse problem, applicable to a wide range of imaging situations. We write down an expression for the difference between two images produced using similar inversion strategies, but where different choices have been made. This provides a framework within which inversion algorithms may be analysed, and allows us to consider how image effects may arise. In this paper, we take a general view, and do not specialize our discussion to any specific imaging problem or setup (beyond the restrictions implied by the use of linearized inversion techniques). In particular, we look at the concept of `hybrid inversion', in which highly accurate synthetic data (typically the result of an expensive numerical simulation) is combined with an inverse operator constructed based on theoretical approximations. It is generally supposed that this offers the benefits of using the more complete theory, without the full computational costs. We argue that the inverse operator is as important as the forward calculation in determining the accuracy of results. We illustrate this using a simple example, based on imaging the
Energy Technology Data Exchange (ETDEWEB)
Lebrun, D.
1997-05-22
The aim of the dissertation is the linearized inversion of multicomponent seismic data for 3D elastic horizontally stratified media, using Born approximation. A Jacobian matrix is constructed; it will be used to model seismic data from elastic parameters. The inversion technique, relying on single value decomposition (SVD) of the Jacobian matrix, is described. Next, the resolution of inverted elastic parameters is quantitatively studies. A first use of the technique is shown in the frame of an evaluation of a sea bottom acquisition (synthetic data). Finally, a real data set acquired with conventional marine technique is inverted. (author) 70 refs.
Approximate truncation robust computed tomography—ATRACT
International Nuclear Information System (INIS)
Dennerlein, Frank; Maier, Andreas
2013-01-01
We present an approximate truncation robust algorithm to compute tomographic images (ATRACT). This algorithm targets at reconstructing volumetric images from cone-beam projections in scenarios where these projections are highly truncated in each dimension. It thus facilitates reconstructions of small subvolumes of interest, without involving prior knowledge about the object. Our method is readily applicable to medical C-arm imaging, where it may contribute to new clinical workflows together with a considerable reduction of x-ray dose. We give a detailed derivation of ATRACT that starts from the conventional Feldkamp filtered-backprojection algorithm and that involves, as one component, a novel original formula for the inversion of the two-dimensional Radon transform. Discretization and numerical implementation are discussed and reconstruction results from both, simulated projections and first clinical data sets are presented. (paper)
Electrochemically driven emulsion inversion
Johans, Christoffer; Kontturi, Kyösti
2007-09-01
It is shown that emulsions stabilized by ionic surfactants can be inverted by controlling the electrical potential across the oil-water interface. The potential dependent partitioning of sodium dodecyl sulfate (SDS) was studied by cyclic voltammetry at the 1,2-dichlorobenzene|water interface. In the emulsion the potential control was achieved by using a potential-determining salt. The inversion of a 1,2-dichlorobenzene-in-water (O/W) emulsion stabilized by SDS was followed by conductometry as a function of added tetrapropylammonium chloride. A sudden drop in conductivity was observed, indicating the change of the continuous phase from water to 1,2-dichlorobenzene, i.e. a water-in-1,2-dichlorobenzene emulsion was formed. The inversion potential is well in accordance with that predicted by the hydrophilic-lipophilic deviation if the interfacial potential is appropriately accounted for.
Electron dose map inversion based on several algorithms
International Nuclear Information System (INIS)
Li Gui; Zheng Huaqing; Wu Yican; Fds Team
2010-01-01
The reconstruction to the electron dose map in radiation therapy was investigated by constructing the inversion model of electron dose map with different algorithms. The inversion model of electron dose map based on nonlinear programming was used, and this model was applied the penetration dose map to invert the total space one. The realization of this inversion model was by several inversion algorithms. The test results with seven samples show that except the NMinimize algorithm, which worked for just one sample, with great error,though,all the inversion algorithms could be realized to our inversion model rapidly and accurately. The Levenberg-Marquardt algorithm, having the greatest accuracy and speed, could be considered as the first choice in electron dose map inversion.Further tests show that more error would be created when the data close to the electron range was used (tail error). The tail error might be caused by the approximation of mean energy spectra, and this should be considered to improve the method. The time-saving and accurate algorithms could be used to achieve real-time dose map inversion. By selecting the best inversion algorithm, the clinical need in real-time dose verification can be satisfied. (authors)
DEFF Research Database (Denmark)
Gale, A.S.; Surlyk, Finn; Anderskouv, Kresten
2013-01-01
Evidence from regional stratigraphical patterns in Santonian−Campanian chalk is used to infer the presence of a very broad channel system (5 km across) with a depth of at least 50 m, running NNW−SSE across the eastern Isle of Wight; only the western part of the channel wall and fill is exposed. W......−Campanian chalks in the eastern Isle of Wight, involving penecontemporaneous tectonic inversion of the underlying basement structure, are rejected....
Reactivity in inverse micelles
International Nuclear Information System (INIS)
Brochette, Pascal
1987-01-01
This research thesis reports the study of the use of micro-emulsions of water in oil as reaction support. Only the 'inverse micelles' domain of the ternary mixing (water/AOT/isooctane) has been studied. The main addressed issues have been: the micro-emulsion disturbance in presence of reactants, the determination of reactant distribution and the resulting kinetic theory, the effect of the interface on electron transfer reactions, and finally protein solubilization [fr
International Nuclear Information System (INIS)
Steinhauer, L.C.; Romea, R.D.; Kimura, W.D.
1997-01-01
A new method for laser acceleration is proposed based upon the inverse process of transition radiation. The laser beam intersects an electron-beam traveling between two thin foils. The principle of this acceleration method is explored in terms of its classical and quantum bases and its inverse process. A closely related concept based on the inverse of diffraction radiation is also presented: this concept has the significant advantage that apertures are used to allow free passage of the electron beam. These concepts can produce net acceleration because they do not satisfy the conditions in which the Lawson-Woodward theorem applies (no net acceleration in an unbounded vacuum). Finally, practical aspects such as damage limits at optics are employed to find an optimized set of parameters. For reasonable assumptions an acceleration gradient of 200 MeV/m requiring a laser power of less than 1 GW is projected. An interesting approach to multi-staging the acceleration sections is also presented. copyright 1997 American Institute of Physics
Intersections, ideals, and inversion
International Nuclear Information System (INIS)
Vasco, D.W.
1998-01-01
Techniques from computational algebra provide a framework for treating large classes of inverse problems. In particular, the discretization of many types of integral equations and of partial differential equations with undetermined coefficients lead to systems of polynomial equations. The structure of the solution set of such equations may be examined using algebraic techniques.. For example, the existence and dimensionality of the solution set may be determined. Furthermore, it is possible to bound the total number of solutions. The approach is illustrated by a numerical application to the inverse problem associated with the Helmholtz equation. The algebraic methods are used in the inversion of a set of transverse electric (TE) mode magnetotelluric data from Antarctica. The existence of solutions is demonstrated and the number of solutions is found to be finite, bounded from above at 50. The best fitting structure is dominantly one dimensional with a low crustal resistivity of about 2 ohm-m. Such a low value is compatible with studies suggesting lower surface wave velocities than found in typical stable cratons
Intersections, ideals, and inversion
Energy Technology Data Exchange (ETDEWEB)
Vasco, D.W.
1998-10-01
Techniques from computational algebra provide a framework for treating large classes of inverse problems. In particular, the discretization of many types of integral equations and of partial differential equations with undetermined coefficients lead to systems of polynomial equations. The structure of the solution set of such equations may be examined using algebraic techniques.. For example, the existence and dimensionality of the solution set may be determined. Furthermore, it is possible to bound the total number of solutions. The approach is illustrated by a numerical application to the inverse problem associated with the Helmholtz equation. The algebraic methods are used in the inversion of a set of transverse electric (TE) mode magnetotelluric data from Antarctica. The existence of solutions is demonstrated and the number of solutions is found to be finite, bounded from above at 50. The best fitting structure is dominantly onedimensional with a low crustal resistivity of about 2 ohm-m. Such a low value is compatible with studies suggesting lower surface wave velocities than found in typical stable cratons.
Trimming and procrastination as inversion techniques
Backus, George E.
1996-12-01
By examining the processes of truncating and approximating the model space (trimming it), and by committing to neither the objectivist nor the subjectivist interpretation of probability (procrastinating), we construct a formal scheme for solving linear and non-linear geophysical inverse problems. The necessary prior information about the correct model xE can be either a collection of inequalities or a probability measure describing where xE was likely to be in the model space X before the data vector y0 was measured. The results of the inversion are (1) a vector z0 that estimates some numerical properties zE of xE; (2) an estimate of the error δz = z0 - zE. As y0 is finite dimensional, so is z0, and hence in principle inversion cannot describe all of xE. The error δz is studied under successively more specialized assumptions about the inverse problem, culminating in a complete analysis of the linear inverse problem with a prior quadratic bound on xE. Our formalism appears to encompass and provide error estimates for many of the inversion schemes current in geomagnetism, and would be equally applicable in geodesy and seismology if adequate prior information were available there. As an idealized example we study the magnetic field at the core-mantle boundary, using satellite measurements of field elements at sites assumed to be almost uniformly distributed on a single spherical surface. Magnetospheric currents are neglected and the crustal field is idealized as a random process with rotationally invariant statistics. We find that an appropriate data compression diagonalizes the variance matrix of the crustal signal and permits an analytic trimming of the idealized problem.
Some results in Diophantine approximation
DEFF Research Database (Denmark)
Pedersen, Steffen Højris
the basic concepts on which the papers build. Among other it introduces metric Diophantine approximation, Mahler’s approach on algebraic approximation, the Hausdorff measure, and properties of the formal Laurent series over Fq. The introduction ends with a discussion on Mahler’s problem when considered......This thesis consists of three papers in Diophantine approximation, a subbranch of number theory. Preceding these papers is an introduction to various aspects of Diophantine approximation and formal Laurent series over Fq and a summary of each of the three papers. The introduction introduces...
Limitations of shallow nets approximation.
Lin, Shao-Bo
2017-10-01
In this paper, we aim at analyzing the approximation abilities of shallow networks in reproducing kernel Hilbert spaces (RKHSs). We prove that there is a probability measure such that the achievable lower bound for approximating by shallow nets can be realized for all functions in balls of reproducing kernel Hilbert space with high probability, which is different with the classical minimax approximation error estimates. This result together with the existing approximation results for deep nets shows the limitations for shallow nets and provides a theoretical explanation on why deep nets perform better than shallow nets. Copyright © 2017 Elsevier Ltd. All rights reserved.
Testing earthquake source inversion methodologies
Page, Morgan T.; Mai, Paul Martin; Schorlemmer, Danijel
2011-01-01
Source Inversion Validation Workshop; Palm Springs, California, 11-12 September 2010; Nowadays earthquake source inversions are routinely performed after large earthquakes and represent a key connection between recorded seismic and geodetic data
Spherical Approximation on Unit Sphere
Directory of Open Access Journals (Sweden)
Eman Samir Bhaya
2018-01-01
Full Text Available In this paper we introduce a Jackson type theorem for functions in LP spaces on sphere And study on best approximation of functions in spaces defined on unit sphere. our central problem is to describe the approximation behavior of functions in spaces for by modulus of smoothness of functions.
Inverse scattering with supersymmetric quantum mechanics
International Nuclear Information System (INIS)
Baye, Daniel; Sparenberg, Jean-Marc
2004-01-01
The application of supersymmetric quantum mechanics to the inverse scattering problem is reviewed. The main difference with standard treatments of the inverse problem lies in the simple and natural extension to potentials with singularities at the origin and with a Coulomb behaviour at infinity. The most general form of potentials which are phase-equivalent to a given potential is discussed. The use of singular potentials allows adding or removing states from the bound spectrum without contradicting the Levinson theorem. Physical applications of phase-equivalent potentials in nuclear reactions and in three-body systems are described. Derivation of a potential from the phase shift at fixed orbital momentum can also be performed with the supersymmetric inversion by using a Bargmann-type approximation of the scattering matrix or phase shift. A unique singular potential without bound states can be obtained from any phase shift. A limited number of bound states depending on the singularity can then be added. This inversion procedure is illustrated with nucleon-nucleon scattering
Multiscale Phase Inversion of Seismic Data
Fu, Lei
2017-12-02
We present a scheme for multiscale phase inversion (MPI) of seismic data that is less sensitive to the unmodeled physics of wave propagation and a poor starting model than standard full waveform inversion (FWI). To avoid cycle-skipping, the multiscale strategy temporally integrates the traces several times, i.e. high-order integration, to produce low-boost seismograms that are used as input data for the initial iterations of MPI. As the iterations proceed, higher frequencies in the data are boosted by using integrated traces of lower order as the input data. The input data are also filtered into different narrow frequency bands for the MPI implementation. At low frequencies, we show that MPI with windowed reflections approximates wave equation inversion of the reflection traveltimes, except no traveltime picking is needed. Numerical results with synthetic acoustic data show that MPI is more robust than conventional multiscale FWI when the initial model is far from the true model. Results from synthetic viscoacoustic and elastic data show that MPI is less sensitive than FWI to some of the unmodeled physics. Inversion of marine data shows that MPI is more robust and produces modestly more accurate results than FWI for this data set.
Approximate circuits for increased reliability
Hamlet, Jason R.; Mayo, Jackson R.
2015-08-18
Embodiments of the invention describe a Boolean circuit having a voter circuit and a plurality of approximate circuits each based, at least in part, on a reference circuit. The approximate circuits are each to generate one or more output signals based on values of received input signals. The voter circuit is to receive the one or more output signals generated by each of the approximate circuits, and is to output one or more signals corresponding to a majority value of the received signals. At least some of the approximate circuits are to generate an output value different than the reference circuit for one or more input signal values; however, for each possible input signal value, the majority values of the one or more output signals generated by the approximate circuits and received by the voter circuit correspond to output signal result values of the reference circuit.
Inverse planning and optimization: a comparison of solutions
Energy Technology Data Exchange (ETDEWEB)
Ringor, Michael [School of Health Sciences, Purdue University, West Lafayette, IN (United States); Papiez, Lech [Department of Radiation Oncology, Indiana University, Indianapolis, IN (United States)
1998-09-01
The basic problem in radiation therapy treatment planning is to determine an appropriate set of treatment parameters that would induce an effective dose distribution inside a patient. One can approach this task as an inverse problem, or as an optimization problem. In this presentation, we compare both approaches. The inverse problem is presented as a dose reconstruction problem similar to tomography reconstruction. We formulate the optimization problem as linear and quadratic programs. Explicit comparisons are made between the solutions obtained by inversion and those obtained by optimization for the case in which scatter and attenuation are ignored (the NS-NA approximation)
Theory of the inverse Faraday effect in metals
International Nuclear Information System (INIS)
Hertel, Riccardo
2006-01-01
An analytic expression is given for the inverse Faraday effect, i.e., for the magnetization occurring in a transparent medium exposed to a circularly polarized high-frequency electromagnetic wave. Using a microscopic approach based on the Drude approximation of a free-electron gas, the magnetization of the medium due to the inverse Faraday effect is identified as the result of microscopic solenoidal currents generated by the electromagnetic wave. In contrast to the better known phenomenological derivation, this microscopic treatment provides important information on the frequency dependence of the inverse Faraday effect
Displacement Parameter Inversion for a Novel Electromagnetic Underground Displacement Sensor
Directory of Open Access Journals (Sweden)
Nanying Shentu
2014-05-01
Full Text Available Underground displacement monitoring is an effective method to explore deep into rock and soil masses for execution of subsurface displacement measurements. It is not only an important means of geological hazards prediction and forecasting, but also a forefront, hot and sophisticated subject in current geological disaster monitoring. In previous research, the authors had designed a novel electromagnetic underground horizontal displacement sensor (called the H-type sensor by combining basic electromagnetic induction principles with modern sensing techniques and established a mutual voltage measurement theoretical model called the Equation-based Equivalent Loop Approach (EELA. Based on that work, this paper presents an underground displacement inversion approach named “EELA forward modeling-approximate inversion method”. Combining the EELA forward simulation approach with the approximate optimization inversion theory, it can deduce the underground horizontal displacement through parameter inversion of the H-type sensor. Comprehensive and comparative studies have been conducted between the experimentally measured and theoretically inversed values of horizontal displacement under counterpart conditions. The results show when the measured horizontal displacements are in the 0–100 mm range, the horizontal displacement inversion discrepancy is generally tested to be less than 3 mm under varied tilt angles and initial axial distances conditions, which indicates that our proposed parameter inversion method can predict underground horizontal displacement measurements effectively and robustly for the H-type sensor and the technique is applicable for practical geo-engineering applications.
National Research Council Canada - National Science Library
Hatch, Andrew G; Smith, Ralph C; De, Tathagata; Salapaka, Murti V
2005-01-01
.... In this paper, we illustrate the construction of inverse filters, based on homogenized energy models, which can be used to approximately linearize the piezoceramic transducer behavior for linear...
Introduction to Schroedinger inverse scattering
International Nuclear Information System (INIS)
Roberts, T.M.
1991-01-01
Schroedinger inverse scattering uses scattering coefficients and bound state data to compute underlying potentials. Inverse scattering has been studied extensively for isolated potentials q(x), which tend to zero as vertical strokexvertical stroke→∞. Inverse scattering for isolated impurities in backgrounds p(x) that are periodic, are Heaviside steps, are constant for x>0 and periodic for x<0, or that tend to zero as x→∞ and tend to ∞ as x→-∞, have also been studied. This paper identifies literature for the five inverse problems just mentioned, and for four other inverse problems. Heaviside-step backgrounds are discussed at length. (orig.)
Approximate Dynamic Programming: Combining Regional and Local State Following Approximations.
Deptula, Patryk; Rosenfeld, Joel A; Kamalapurkar, Rushikesh; Dixon, Warren E
2018-06-01
An infinite-horizon optimal regulation problem for a control-affine deterministic system is solved online using a local state following (StaF) kernel and a regional model-based reinforcement learning (R-MBRL) method to approximate the value function. Unlike traditional methods such as R-MBRL that aim to approximate the value function over a large compact set, the StaF kernel approach aims to approximate the value function in a local neighborhood of the state that travels within a compact set. In this paper, the value function is approximated using a state-dependent convex combination of the StaF-based and the R-MBRL-based approximations. As the state enters a neighborhood containing the origin, the value function transitions from being approximated by the StaF approach to the R-MBRL approach. Semiglobal uniformly ultimately bounded (SGUUB) convergence of the system states to the origin is established using a Lyapunov-based analysis. Simulation results are provided for two, three, six, and ten-state dynamical systems to demonstrate the scalability and performance of the developed method.
Massively Parallel Geostatistical Inversion of Coupled Processes in Heterogeneous Porous Media
Ngo, A.; Schwede, R. L.; Li, W.; Bastian, P.; Ippisch, O.; Cirpka, O. A.
2012-04-01
The quasi-linear geostatistical approach is an inversion scheme that can be used to estimate the spatial distribution of a heterogeneous hydraulic conductivity field. The estimated parameter field is considered to be a random variable that varies continuously in space, meets the measurements of dependent quantities (such as the hydraulic head, the concentration of a transported solute or its arrival time) and shows the required spatial correlation (described by certain variogram models). This is a method of conditioning a parameter field to observations. Upon discretization, this results in as many parameters as elements of the computational grid. For a full three dimensional representation of the heterogeneous subsurface it is hardly sufficient to work with resolutions (up to one million parameters) of the model domain that can be achieved on a serial computer. The forward problems to be solved within the inversion procedure consists of the elliptic steady-state groundwater flow equation and the formally elliptic but nearly hyperbolic steady-state advection-dominated solute transport equation in a heterogeneous porous medium. Both equations are discretized by Finite Element Methods (FEM) using fully scalable domain decomposition techniques. Whereas standard conforming FEM is sufficient for the flow equation, for the advection dominated transport equation, which rises well known numerical difficulties at sharp fronts or boundary layers, we use the streamline diffusion approach. The arising linear systems are solved using efficient iterative solvers with an AMG (algebraic multigrid) pre-conditioner. During each iteration step of the inversion scheme one needs to solve a multitude of forward and adjoint problems in order to calculate the sensitivities of each measurement and the related cross-covariance matrix of the unknown parameters and the observations. In order to reduce interprocess communications and to improve the scalability of the code on larger clusters
The efficiency of Flory approximation
International Nuclear Information System (INIS)
Obukhov, S.P.
1984-01-01
The Flory approximation for the self-avoiding chain problem is compared with a conventional perturbation theory expansion. While in perturbation theory each term is averaged over the unperturbed set of configurations, the Flory approximation is equivalent to the perturbation theory with the averaging over the stretched set of configurations. This imposes restrictions on the integration domain in higher order terms and they can be treated self-consistently. The accuracy δν/ν of Flory approximation for self-avoiding chain problems is estimated to be 2-5% for 1 < d < 4. (orig.)
Ionogram inversion for a tilted ionosphere
International Nuclear Information System (INIS)
Wright, J.W.
1990-01-01
Digital ionosondes such as the Dynasonde disclose that the ionosphere is seldom horizontal even when it is plane stratified to a good approximation. The local magnetic dip does not then determine correctly the radiowave propagation angle for inversion of the ionogram to a plasma density profile. The measured echo direction of arrival can be used together with the known dip for an improved propagation angle. The effects are small for simple one-parameter laminae but become important when differential (ordinary, extraordinary) retardations are used to aid correction for valley and starting ambiguities. The resulting profile describes the plasma distribution along the direction of observation, rather than the vertical; it thus conveys information about horizontal gradients. Observations suggest that advantages in inversion methods may be practicable for application to modern ionosonde recordings, by which local lateral structure can be described in greater detail. 20 refs
Voxel inversion of airborne electromagnetic data for improved model integration
Fiandaca, Gianluca; Auken, Esben; Kirkegaard, Casper; Vest Christiansen, Anders
2014-05-01
Inversion of electromagnetic data has migrated from single site interpretations to inversions including entire surveys using spatial constraints to obtain geologically reasonable results. Though, the model space is usually linked to the actual observation points. For airborne electromagnetic (AEM) surveys the spatial discretization of the model space reflects the flight lines. On the contrary, geological and groundwater models most often refer to a regular voxel grid, not correlated to the geophysical model space, and the geophysical information has to be relocated for integration in (hydro)geological models. We have developed a new geophysical inversion algorithm working directly in a voxel grid disconnected from the actual measuring points, which then allows for informing directly geological/hydrogeological models. The new voxel model space defines the soil properties (like resistivity) on a set of nodes, and the distribution of the soil properties is computed everywhere by means of an interpolation function (e.g. inverse distance or kriging). Given this definition of the voxel model space, the 1D forward responses of the AEM data are computed as follows: 1) a 1D model subdivision, in terms of model thicknesses, is defined for each 1D data set, creating "virtual" layers. 2) the "virtual" 1D models at the sounding positions are finalized by interpolating the soil properties (the resistivity) in the center of the "virtual" layers. 3) the forward response is computed in 1D for each "virtual" model. We tested the new inversion scheme on an AEM survey carried out with the SkyTEM system close to Odder, in Denmark. The survey comprises 106054 dual mode AEM soundings, and covers an area of approximately 13 km X 16 km. The voxel inversion was carried out on a structured grid of 260 X 325 X 29 xyz nodes (50 m xy spacing), for a total of 2450500 inversion parameters. A classical spatially constrained inversion (SCI) was carried out on the same data set, using 106054
Plasma diagnostics by Abel inversion in hyperbolic geometry
International Nuclear Information System (INIS)
Alhasi, A.S.; Elliott, J.A.
1992-01-01
Plasma confined in the UMIST linear quadrupole adopts a configuration with approximately hyperbolic symmetry. The normal diagnostic is a Langmuir probe, but we have developed an alternative method using optical emission tomography based upon an analytic Abel inversion. Plasma radiance is obtained as a function of a parameter identifying magnetic flux surfaces. The inversion algorithm has been tested using artificial data. Experimentally, the results show that ionizing collisions cause the confined plasma distribution to broaden as the plasma travels through the confining field. This is shown to be a consequence of the approximate incompressibility of the E x B flow. (author)
Inverse Faraday Effect Revisited
Mendonça, J. T.; Ali, S.; Davies, J. R.
2010-11-01
The inverse Faraday effect is usually associated with circularly polarized laser beams. However, it was recently shown that it can also occur for linearly polarized radiation [1]. The quasi-static axial magnetic field by a laser beam propagating in plasma can be calculated by considering both the spin and the orbital angular momenta of the laser pulse. A net spin is present when the radiation is circularly polarized and a net orbital angular momentum is present if there is any deviation from perfect rotational symmetry. This orbital angular momentum has recently been discussed in the plasma context [2], and can give an additional contribution to the axial magnetic field, thus enhancing or reducing the inverse Faraday effect. As a result, this effect that is usually attributed to circular polarization can also be excited by linearly polarized radiation, if the incident laser propagates in a Laguerre-Gauss mode carrying a finite amount of orbital angular momentum.[4pt] [1] S. ALi, J.R. Davies and J.T. Mendonca, Phys. Rev. Lett., 105, 035001 (2010).[0pt] [2] J. T. Mendonca, B. Thidé, and H. Then, Phys. Rev. Lett. 102, 185005 (2009).
Approximate Implicitization Using Linear Algebra
Directory of Open Access Journals (Sweden)
Oliver J. D. Barrowclough
2012-01-01
Full Text Available We consider a family of algorithms for approximate implicitization of rational parametric curves and surfaces. The main approximation tool in all of the approaches is the singular value decomposition, and they are therefore well suited to floating-point implementation in computer-aided geometric design (CAGD systems. We unify the approaches under the names of commonly known polynomial basis functions and consider various theoretical and practical aspects of the algorithms. We offer new methods for a least squares approach to approximate implicitization using orthogonal polynomials, which tend to be faster and more numerically stable than some existing algorithms. We propose several simple propositions relating the properties of the polynomial bases to their implicit approximation properties.
Rollout sampling approximate policy iteration
Dimitrakakis, C.; Lagoudakis, M.G.
2008-01-01
Several researchers have recently investigated the connection between reinforcement learning and classification. We are motivated by proposals of approximate policy iteration schemes without value functions, which focus on policy representation using classifiers and address policy learning as a
Weighted approximation with varying weight
Totik, Vilmos
1994-01-01
A new construction is given for approximating a logarithmic potential by a discrete one. This yields a new approach to approximation with weighted polynomials of the form w"n"(" "= uppercase)P"n"(" "= uppercase). The new technique settles several open problems, and it leads to a simple proof for the strong asymptotics on some L p(uppercase) extremal problems on the real line with exponential weights, which, for the case p=2, are equivalent to power- type asymptotics for the leading coefficients of the corresponding orthogonal polynomials. The method is also modified toyield (in a sense) uniformly good approximation on the whole support. This allows one to deduce strong asymptotics in some L p(uppercase) extremal problems with varying weights. Applications are given, relating to fast decreasing polynomials, asymptotic behavior of orthogonal polynomials and multipoint Pade approximation. The approach is potential-theoretic, but the text is self-contained.
Framework for sequential approximate optimization
Jacobs, J.H.; Etman, L.F.P.; Keulen, van F.; Rooda, J.E.
2004-01-01
An object-oriented framework for Sequential Approximate Optimization (SAO) isproposed. The framework aims to provide an open environment for thespecification and implementation of SAO strategies. The framework is based onthe Python programming language and contains a toolbox of Python
Approximate deconvolution models of turbulence analysis, phenomenology and numerical analysis
Layton, William J
2012-01-01
This volume presents a mathematical development of a recent approach to the modeling and simulation of turbulent flows based on methods for the approximate solution of inverse problems. The resulting Approximate Deconvolution Models or ADMs have some advantages over more commonly used turbulence models – as well as some disadvantages. Our goal in this book is to provide a clear and complete mathematical development of ADMs, while pointing out the difficulties that remain. In order to do so, we present the analytical theory of ADMs, along with its connections, motivations and complements in the phenomenology of and algorithms for ADMs.
Parallelized Three-Dimensional Resistivity Inversion Using Finite Elements And Adjoint State Methods
Schaa, Ralf; Gross, Lutz; Du Plessis, Jaco
2015-04-01
resistivity. The Hessian of the regularization term is used as preconditioner which requires an additional PDE solution in each iteration step. As it turns out, the relevant PDEs are naturally formulated in the finite element framework. Using the domain decomposition method provided in Escript, the inversion scheme has been parallelized for distributed memory computers with multi-core shared memory nodes. We show numerical examples from simple layered models to complex 3D models and compare with the results from other methods. The inversion scheme is furthermore tested on a field data example to characterise localised freshwater discharge in a coastal environment.. References: L. Gross and C. Kemp (2013) Large Scale Joint Inversion of Geophysical Data using the Finite Element Method in escript. ASEG Extended Abstracts 2013, http://dx.doi.org/10.1071/ASEG2013ab306
Numerical Inversion for the Multiple Fractional Orders in the Multiterm TFDE
Directory of Open Access Journals (Sweden)
Chunlong Sun
2017-01-01
Full Text Available The fractional order in a fractional diffusion model is a key parameter which characterizes the anomalous diffusion behaviors. This paper deals with an inverse problem of determining the multiple fractional orders in the multiterm time-fractional diffusion equation (TFDE for short from numerics. The homotopy regularization algorithm is applied to solve the inversion problem using the finite data at one interior point in the space domain. The inversion fractional orders with random noisy data give good approximations to the exact order demonstrating the efficiency of the inversion algorithm and numerical stability of the inversion problem.
Directory of Open Access Journals (Sweden)
Markus Spiliotis
Full Text Available Inverse fusion PCR cloning (IFPC is an easy, PCR based three-step cloning method that allows the seamless and directional insertion of PCR products into virtually all plasmids, this with a free choice of the insertion site. The PCR-derived inserts contain a vector-complementary 5'-end that allows a fusion with the vector by an overlap extension PCR, and the resulting amplified insert-vector fusions are then circularized by ligation prior transformation. A minimal amount of starting material is needed and experimental steps are reduced. Untreated circular plasmid, or alternatively bacteria containing the plasmid, can be used as templates for the insertion, and clean-up of the insert fragment is not urgently required. The whole cloning procedure can be performed within a minimal hands-on time and results in the generation of hundreds to ten-thousands of positive colonies, with a minimal background.
International Nuclear Information System (INIS)
Hicks, H.R.; Dory, R.A.; Holmes, J.A.
1983-01-01
We illustrate in some detail a 2D inverse-equilibrium solver that was constructed to analyze tokamak configurations and stellarators (the latter in the context of the average method). To ensure that the method is suitable not only to determine equilibria, but also to provide appropriately represented data for existing stability codes, it is important to be able to control the Jacobian, tilde J is identical to delta(R,Z)/delta(rho, theta). The form chosen is tilde J = J 0 (rho)R/sup l/rho where rho is a flux surface label, and l is an integer. The initial implementation is for a fixed conducting-wall boundary, but the technique can be extended to a free-boundary model
Nuclear Hartree-Fock approximation testing and other related approximations
International Nuclear Information System (INIS)
Cohenca, J.M.
1970-01-01
Hartree-Fock, and Tamm-Dancoff approximations are tested for angular momentum of even-even nuclei. Wave functions, energy levels and momenta are comparatively evaluated. Quadripole interactions are studied following the Elliott model. Results are applied to Ne 20 [pt
Transmuted Generalized Inverse Weibull Distribution
Merovci, Faton; Elbatal, Ibrahim; Ahmed, Alaa
2013-01-01
A generalization of the generalized inverse Weibull distribution so-called transmuted generalized inverse Weibull dis- tribution is proposed and studied. We will use the quadratic rank transmutation map (QRTM) in order to generate a flexible family of probability distributions taking generalized inverse Weibull distribution as the base value distribution by introducing a new parameter that would offer more distributional flexibility. Various structural properties including explicit expression...
Solving of L0 norm constrained EEG inverse problem.
Xu, Peng; Lei, Xu; Hu, Xiao; Yao, Dezhong
2009-01-01
l(0) norm is an effective constraint used to solve EEG inverse problem for a sparse solution. However, due to the discontinuous and un-differentiable properties, it is an open issue to solve the l(0) norm constrained problem, which is usually instead solved by using some alternative functions like l(1) norm to approximate l(0) norm. In this paper, a continuous and differentiable function having the same form as the transfer function of Butterworth low-pass filter is introduced to approximate l(0) norm constraint involved in EEG inverse problem. The new approximation based approach was compared with l(1) norm and LORETA solutions on a realistic head model using simulated sources. The preliminary results show that this alternative approximation to l(0) norm is promising for the estimation of EEG sources with sparse distribution.
Shearlets and Optimally Sparse Approximations
DEFF Research Database (Denmark)
Kutyniok, Gitta; Lemvig, Jakob; Lim, Wang-Q
2012-01-01
Multivariate functions are typically governed by anisotropic features such as edges in images or shock fronts in solutions of transport-dominated equations. One major goal both for the purpose of compression as well as for an efficient analysis is the provision of optimally sparse approximations...... optimally sparse approximations of this model class in 2D as well as 3D. Even more, in contrast to all other directional representation systems, a theory for compactly supported shearlet frames was derived which moreover also satisfy this optimality benchmark. This chapter shall serve as an introduction...... to and a survey about sparse approximations of cartoon-like images by band-limited and also compactly supported shearlet frames as well as a reference for the state-of-the-art of this research field....
Diophantine approximation and Dirichlet series
Queffélec, Hervé
2013-01-01
This self-contained book will benefit beginners as well as researchers. It is devoted to Diophantine approximation, the analytic theory of Dirichlet series, and some connections between these two domains, which often occur through the Kronecker approximation theorem. Accordingly, the book is divided into seven chapters, the first three of which present tools from commutative harmonic analysis, including a sharp form of the uncertainty principle, ergodic theory and Diophantine approximation to be used in the sequel. A presentation of continued fraction expansions, including the mixing property of the Gauss map, is given. Chapters four and five present the general theory of Dirichlet series, with classes of examples connected to continued fractions, the famous Bohr point of view, and then the use of random Dirichlet series to produce non-trivial extremal examples, including sharp forms of the Bohnenblust-Hille theorem. Chapter six deals with Hardy-Dirichlet spaces, which are new and useful Banach spaces of anal...
Approximations to camera sensor noise
Jin, Xiaodan; Hirakawa, Keigo
2013-02-01
Noise is present in all image sensor data. Poisson distribution is said to model the stochastic nature of the photon arrival process, while it is common to approximate readout/thermal noise by additive white Gaussian noise (AWGN). Other sources of signal-dependent noise such as Fano and quantization also contribute to the overall noise profile. Question remains, however, about how best to model the combined sensor noise. Though additive Gaussian noise with signal-dependent noise variance (SD-AWGN) and Poisson corruption are two widely used models to approximate the actual sensor noise distribution, the justification given to these types of models are based on limited evidence. The goal of this paper is to provide a more comprehensive characterization of random noise. We concluded by presenting concrete evidence that Poisson model is a better approximation to real camera model than SD-AWGN. We suggest further modification to Poisson that may improve the noise model.
Rational approximations for tomographic reconstructions
International Nuclear Information System (INIS)
Reynolds, Matthew; Beylkin, Gregory; Monzón, Lucas
2013-01-01
We use optimal rational approximations of projection data collected in x-ray tomography to improve image resolution. Under the assumption that the object of interest is described by functions with jump discontinuities, for each projection we construct its rational approximation with a small (near optimal) number of terms for a given accuracy threshold. This allows us to augment the measured data, i.e., double the number of available samples in each projection or, equivalently, extend (double) the domain of their Fourier transform. We also develop a new, fast, polar coordinate Fourier domain algorithm which uses our nonlinear approximation of projection data in a natural way. Using augmented projections of the Shepp–Logan phantom, we provide a comparison between the new algorithm and the standard filtered back-projection algorithm. We demonstrate that the reconstructed image has improved resolution without additional artifacts near sharp transitions in the image. (paper)
Approximate reasoning in physical systems
International Nuclear Information System (INIS)
Mutihac, R.
1991-01-01
The theory of fuzzy sets provides excellent ground to deal with fuzzy observations (uncertain or imprecise signals, wavelengths, temperatures,etc.) fuzzy functions (spectra and depth profiles) and fuzzy logic and approximate reasoning. First, the basic ideas of fuzzy set theory are briefly presented. Secondly, stress is put on application of simple fuzzy set operations for matching candidate reference spectra of a spectral library to an unknown sample spectrum (e.g. IR spectroscopy). Thirdly, approximate reasoning is applied to infer an unknown property from information available in a database (e.g. crystal systems). Finally, multi-dimensional fuzzy reasoning techniques are suggested. (Author)
Face Recognition using Approximate Arithmetic
DEFF Research Database (Denmark)
Marso, Karol
Face recognition is image processing technique which aims to identify human faces and found its use in various diﬀerent ﬁelds for example in security. Throughout the years this ﬁeld evolved and there are many approaches and many diﬀerent algorithms which aim to make the face recognition as eﬀective...... processing applications the results do not need to be completely precise and use of the approximate arithmetic can lead to reduction in terms of delay, space and power consumption. In this paper we examine possible use of approximate arithmetic in face recognition using Eigenfaces algorithm....
Calculation of the inverse data space via sparse inversion
Saragiotis, Christos; Doulgeris, Panagiotis C.; Verschuur, Dirk Jacob Eric
2011-01-01
The inverse data space provides a natural separation of primaries and surface-related multiples, as the surface multiples map onto the area around the origin while the primaries map elsewhere. However, the calculation of the inverse data is far from
Inverse feasibility problems of the inverse maximum flow problems
Indian Academy of Sciences (India)
199–209. c Indian Academy of Sciences. Inverse feasibility problems of the inverse maximum flow problems. ADRIAN DEACONU. ∗ and ELEONOR CIUREA. Department of Mathematics and Computer Science, Faculty of Mathematics and Informatics, Transilvania University of Brasov, Brasov, Iuliu Maniu st. 50,. Romania.
Approximate Reanalysis in Topology Optimization
DEFF Research Database (Denmark)
Amir, Oded; Bendsøe, Martin P.; Sigmund, Ole
2009-01-01
In the nested approach to structural optimization, most of the computational effort is invested in the solution of the finite element analysis equations. In this study, the integration of an approximate reanalysis procedure into the framework of topology optimization of continuum structures...
Approximate Matching of Hierarchial Data
DEFF Research Database (Denmark)
Augsten, Nikolaus
-grams of a tree are all its subtrees of a particular shape. Intuitively, two trees are similar if they have many pq-grams in common. The pq-gram distance is an efficient and effective approximation of the tree edit distance. We analyze the properties of the pq-gram distance and compare it with the tree edit...
Approximation of Surfaces by Cylinders
DEFF Research Database (Denmark)
Randrup, Thomas
1998-01-01
We present a new method for approximation of a given surface by a cylinder surface. It is a constructive geometric method, leading to a monorail representation of the cylinder surface. By use of a weighted Gaussian image of the given surface, we determine a projection plane. In the orthogonal...
Approximation properties of haplotype tagging
Directory of Open Access Journals (Sweden)
Dreiseitl Stephan
2006-01-01
Full Text Available Abstract Background Single nucleotide polymorphisms (SNPs are locations at which the genomic sequences of population members differ. Since these differences are known to follow patterns, disease association studies are facilitated by identifying SNPs that allow the unique identification of such patterns. This process, known as haplotype tagging, is formulated as a combinatorial optimization problem and analyzed in terms of complexity and approximation properties. Results It is shown that the tagging problem is NP-hard but approximable within 1 + ln((n2 - n/2 for n haplotypes but not approximable within (1 - ε ln(n/2 for any ε > 0 unless NP ⊂ DTIME(nlog log n. A simple, very easily implementable algorithm that exhibits the above upper bound on solution quality is presented. This algorithm has running time O((2m - p + 1 ≤ O(m(n2 - n/2 where p ≤ min(n, m for n haplotypes of size m. As we show that the approximation bound is asymptotically tight, the algorithm presented is optimal with respect to this asymptotic bound. Conclusion The haplotype tagging problem is hard, but approachable with a fast, practical, and surprisingly simple algorithm that cannot be significantly improved upon on a single processor machine. Hence, significant improvement in computatational efforts expended can only be expected if the computational effort is distributed and done in parallel.
All-Norm Approximation Algorithms
Azar, Yossi; Epstein, Leah; Richter, Yossi; Woeginger, Gerhard J.; Penttonen, Martti; Meineche Schmidt, Erik
2002-01-01
A major drawback in optimization problems and in particular in scheduling problems is that for every measure there may be a different optimal solution. In many cases the various measures are different ℓ p norms. We address this problem by introducing the concept of an All-norm ρ-approximation
Truthful approximations to range voting
DEFF Research Database (Denmark)
Filos-Ratsika, Aris; Miltersen, Peter Bro
We consider the fundamental mechanism design problem of approximate social welfare maximization under general cardinal preferences on a finite number of alternatives and without money. The well-known range voting scheme can be thought of as a non-truthful mechanism for exact social welfare...
On badly approximable complex numbers
DEFF Research Database (Denmark)
Esdahl-Schou, Rune; Kristensen, S.
We show that the set of complex numbers which are badly approximable by ratios of elements of , where has maximal Hausdorff dimension. In addition, the intersection of these sets is shown to have maximal dimension. The results remain true when the sets in question are intersected with a suitably...
Approximate reasoning in decision analysis
Energy Technology Data Exchange (ETDEWEB)
Gupta, M M; Sanchez, E
1982-01-01
The volume aims to incorporate the recent advances in both theory and applications. It contains 44 articles by 74 contributors from 17 different countries. The topics considered include: membership functions; composite fuzzy relations; fuzzy logic and inference; classifications and similarity measures; expert systems and medical diagnosis; psychological measurements and human behaviour; approximate reasoning and decision analysis; and fuzzy clustering algorithms.
Rational approximation of vertical segments
Salazar Celis, Oliver; Cuyt, Annie; Verdonk, Brigitte
2007-08-01
In many applications, observations are prone to imprecise measurements. When constructing a model based on such data, an approximation rather than an interpolation approach is needed. Very often a least squares approximation is used. Here we follow a different approach. A natural way for dealing with uncertainty in the data is by means of an uncertainty interval. We assume that the uncertainty in the independent variables is negligible and that for each observation an uncertainty interval can be given which contains the (unknown) exact value. To approximate such data we look for functions which intersect all uncertainty intervals. In the past this problem has been studied for polynomials, or more generally for functions which are linear in the unknown coefficients. Here we study the problem for a particular class of functions which are nonlinear in the unknown coefficients, namely rational functions. We show how to reduce the problem to a quadratic programming problem with a strictly convex objective function, yielding a unique rational function which intersects all uncertainty intervals and satisfies some additional properties. Compared to rational least squares approximation which reduces to a nonlinear optimization problem where the objective function may have many local minima, this makes the new approach attractive.
Pythagorean Approximations and Continued Fractions
Peralta, Javier
2008-01-01
In this article, we will show that the Pythagorean approximations of [the square root of] 2 coincide with those achieved in the 16th century by means of continued fractions. Assuming this fact and the known relation that connects the Fibonacci sequence with the golden section, we shall establish a procedure to obtain sequences of rational numbers…
Ultrafast Approximation for Phylogenetic Bootstrap
Bui Quang Minh, [No Value; Nguyen, Thi; von Haeseler, Arndt
Nonparametric bootstrap has been a widely used tool in phylogenetic analysis to assess the clade support of phylogenetic trees. However, with the rapidly growing amount of data, this task remains a computational bottleneck. Recently, approximation methods such as the RAxML rapid bootstrap (RBS) and
Mathematical properties of numerical inversion for jet calibrations
Energy Technology Data Exchange (ETDEWEB)
Cukierman, Aviv [Physics Department, Stanford University, Stanford, CA 94305 (United States); SLAC National Accelerator Laboratory, Stanford University, Menlo Park, CA 94025 (United States); Nachman, Benjamin, E-mail: bnachman@cern.ch [Physics Department, Stanford University, Stanford, CA 94305 (United States); SLAC National Accelerator Laboratory, Stanford University, Menlo Park, CA 94025 (United States); Physics Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94704 (United States)
2017-06-21
Numerical inversion is a general detector calibration technique that is independent of the underlying spectrum. This procedure is formalized and important statistical properties are presented, using high energy jets at the Large Hadron Collider as an example setting. In particular, numerical inversion is inherently biased and common approximations to the calibrated jet energy tend to over-estimate the resolution. Analytic approximations to the closure and calibrated resolutions are demonstrated to effectively predict the full forms under realistic conditions. Finally, extensions of numerical inversion are presented which can reduce the inherent biases. These methods will be increasingly important to consider with degraded resolution at low jet energies due to a much higher instantaneous luminosity in the near future.
Confidence Intervals for Asbestos Fiber Counts: Approximate Negative Binomial Distribution.
Bartley, David; Slaven, James; Harper, Martin
2017-03-01
The negative binomial distribution is adopted for analyzing asbestos fiber counts so as to account for both the sampling errors in capturing only a finite number of fibers and the inevitable human variation in identifying and counting sampled fibers. A simple approximation to this distribution is developed for the derivation of quantiles and approximate confidence limits. The success of the approximation depends critically on the use of Stirling's expansion to sufficient order, on exact normalization of the approximating distribution, on reasonable perturbation of quantities from the normal distribution, and on accurately approximating sums by inverse-trapezoidal integration. Accuracy of the approximation developed is checked through simulation and also by comparison to traditional approximate confidence intervals in the specific case that the negative binomial distribution approaches the Poisson distribution. The resulting statistics are shown to relate directly to early research into the accuracy of asbestos sampling and analysis. Uncertainty in estimating mean asbestos fiber concentrations given only a single count is derived. Decision limits (limits of detection) and detection limits are considered for controlling false-positive and false-negative detection assertions and are compared to traditional limits computed assuming normal distributions. Published by Oxford University Press on behalf of the British Occupational Hygiene Society 2017.
Face inversion increases attractiveness.
Leder, Helmut; Goller, Juergen; Forster, Michael; Schlageter, Lena; Paul, Matthew A
2017-07-01
Assessing facial attractiveness is a ubiquitous, inherent, and hard-wired phenomenon in everyday interactions. As such, it has highly adapted to the default way that faces are typically processed: viewing faces in upright orientation. By inverting faces, we can disrupt this default mode, and study how facial attractiveness is assessed. Faces, rotated at 90 (tilting to either side) and 180°, were rated on attractiveness and distinctiveness scales. For both orientations, we found that faces were rated more attractive and less distinctive than upright faces. Importantly, these effects were more pronounced for faces rated low in upright orientation, and smaller for highly attractive faces. In other words, the less attractive a face was, the more it gained in attractiveness by inversion or rotation. Based on these findings, we argue that facial attractiveness assessments might not rely on the presence of attractive facial characteristics, but on the absence of distinctive, unattractive characteristics. These unattractive characteristics are potentially weighed against an individual, attractive prototype in assessing facial attractiveness. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.
Inverse problem in hydrogeology
Carrera, Jesús; Alcolea, Andrés; Medina, Agustín; Hidalgo, Juan; Slooten, Luit J.
2005-03-01
The state of the groundwater inverse problem is synthesized. Emphasis is placed on aquifer characterization, where modelers have to deal with conceptual model uncertainty (notably spatial and temporal variability), scale dependence, many types of unknown parameters (transmissivity, recharge, boundary conditions, etc.), nonlinearity, and often low sensitivity of state variables (typically heads and concentrations) to aquifer properties. Because of these difficulties, calibration cannot be separated from the modeling process, as it is sometimes done in other fields. Instead, it should be viewed as one step in the process of understanding aquifer behavior. In fact, it is shown that actual parameter estimation methods do not differ from each other in the essence, though they may differ in the computational details. It is argued that there is ample room for improvement in groundwater inversion: development of user-friendly codes, accommodation of variability through geostatistics, incorporation of geological information and different types of data (temperature, occurrence and concentration of isotopes, age, etc.), proper accounting of uncertainty, etc. Despite this, even with existing codes, automatic calibration facilitates enormously the task of modeling. Therefore, it is contended that its use should become standard practice. L'état du problème inverse des eaux souterraines est synthétisé. L'accent est placé sur la caractérisation de l'aquifère, où les modélisateurs doivent jouer avec l'incertitude des modèles conceptuels (notamment la variabilité spatiale et temporelle), les facteurs d'échelle, plusieurs inconnues sur différents paramètres (transmissivité, recharge, conditions aux limites, etc.), la non linéarité, et souvent la sensibilité de plusieurs variables d'état (charges hydrauliques, concentrations) des propriétés de l'aquifère. A cause de ces difficultés, le calibrage ne peut êtreséparé du processus de modélisation, comme c'est le
Zhang, Dongliang
2013-01-01
To increase the illumination of the subsurface and to eliminate the dependency of FWI on the source wavelet, we propose multiples waveform inversion (MWI) that transforms each hydrophone into a virtual point source with a time history equal to that of the recorded data. These virtual sources are used to numerically generate downgoing wavefields that are correlated with the backprojected surface-related multiples to give the migration image. Since the recorded data are treated as the virtual sources, knowledge of the source wavelet is not required, and the subsurface illumination is greatly enhanced because the entire free surface acts as an extended source compared to the radiation pattern of a traditional point source. Numerical tests on the Marmousi2 model show that the convergence rate and the spatial resolution of MWI is, respectively, faster and more accurate then FWI. The potential pitfall with this method is that the multiples undergo more than one roundtrip to the surface, which increases attenuation and reduces spatial resolution. This can lead to less resolved tomograms compared to conventional FWI. The possible solution is to combine both FWI and MWI in inverting for the subsurface velocity distribution.
An interpretation of signature inversion
International Nuclear Information System (INIS)
Onishi, Naoki; Tajima, Naoki
1988-01-01
An interpretation in terms of the cranking model is presented to explain why signature inversion occurs for positive γ of the axially asymmetric deformation parameter and emerges into specific orbitals. By introducing a continuous variable, the eigenvalue equation can be reduced to a one dimensional Schroedinger equation by means of which one can easily understand the cause of signature inversion. (author)
Inverse problems for Maxwell's equations
Romanov, V G
1994-01-01
The Inverse and Ill-Posed Problems Series is a series of monographs publishing postgraduate level information on inverse and ill-posed problems for an international readership of professional scientists and researchers. The series aims to publish works which involve both theory and applications in, e.g., physics, medicine, geophysics, acoustics, electrodynamics, tomography, and ecology.
Iterative methods for 3D implicit finite-difference migration using the complex Padé approximation
International Nuclear Information System (INIS)
Costa, Carlos A N; Campos, Itamara S; Costa, Jessé C; Neto, Francisco A; Schleicher, Jörg; Novais, Amélia
2013-01-01
Conventional implementations of 3D finite-difference (FD) migration use splitting techniques to accelerate performance and save computational cost. However, such techniques are plagued with numerical anisotropy that jeopardises the correct positioning of dipping reflectors in the directions not used for the operator splitting. We implement 3D downward continuation FD migration without splitting using a complex Padé approximation. In this way, the numerical anisotropy is eliminated at the expense of a computationally more intensive solution of a large-band linear system. We compare the performance of the iterative stabilized biconjugate gradient (BICGSTAB) and that of the multifrontal massively parallel direct solver (MUMPS). It turns out that the use of the complex Padé approximation not only stabilizes the solution, but also acts as an effective preconditioner for the BICGSTAB algorithm, reducing the number of iterations as compared to the implementation using the real Padé expansion. As a consequence, the iterative BICGSTAB method is more efficient than the direct MUMPS method when solving a single term in the Padé expansion. The results of both algorithms, here evaluated by computing the migration impulse response in the SEG/EAGE salt model, are of comparable quality. (paper)
Algebraic properties of generalized inverses
Cvetković‐Ilić, Dragana S
2017-01-01
This book addresses selected topics in the theory of generalized inverses. Following a discussion of the “reverse order law” problem and certain problems involving completions of operator matrices, it subsequently presents a specific approach to solving the problem of the reverse order law for {1} -generalized inverses. Particular emphasis is placed on the existence of Drazin invertible completions of an upper triangular operator matrix; on the invertibility and different types of generalized invertibility of a linear combination of operators on Hilbert spaces and Banach algebra elements; on the problem of finding representations of the Drazin inverse of a 2x2 block matrix; and on selected additive results and algebraic properties for the Drazin inverse. In addition to the clarity of its content, the book discusses the relevant open problems for each topic discussed. Comments on the latest references on generalized inverses are also included. Accordingly, the book will be useful for graduate students, Ph...
Parameterization analysis and inversion for orthorhombic media
Masmoudi, Nabil
2018-05-01
Accounting for azimuthal anisotropy is necessary for the processing and inversion of wide-azimuth and wide-aperture seismic data because wave speeds naturally depend on the wave propagation direction. Orthorhombic anisotropy is considered the most effective anisotropic model that approximates the azimuthal anisotropy we observe in seismic data. In the framework of full wave form inversion (FWI), the large number of parameters describing orthorhombic media exerts a considerable trade-off and increases the non-linearity of the inversion problem. Choosing a suitable parameterization for the model, and identifying which parameters in that parameterization could be well resolved, are essential to a successful inversion. In this thesis, I derive the radiation patterns for different acoustic orthorhombic parameterization. Analyzing the angular dependence of the scattering of the parameters of different parameterizations starting with the conventionally used notation, I assess the potential trade-off between the parameters and the resolution in describing the data and inverting for the parameters. In order to build practical inversion strategies, I suggest new parameters (called deviation parameters) for a new parameterization style in orthorhombic media. The novel parameters denoted ∈d, ƞd and δd are dimensionless and represent a measure of deviation between the vertical planes in orthorhombic anisotropy. The main feature of the deviation parameters consists of keeping the scattering of the vertical transversely isotropic (VTI) parameters stationary with azimuth. Using these scattering features, we can condition FWI to invert for the parameters which the data are sensitive to, at different stages, scales, and locations in the model. With this parameterization, the data are mainly sensitive to the scattering of 3 parameters (out of six that describe an acoustic orthorhombic medium): the horizontal velocity in the x1 direction, ∈1 which provides scattering mainly near
APPROXIMATION AND INVERSION OF A COMPLEX METEOROLOGICAL SYSTEM VIA LOCAL LINEAR FILTERS. (R825381)
The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...
Seismic Imaging and Velocity Analysis Using a Pseudo Inverse to the Extended Born Approximation
Alali, Abdullah A.
2018-01-01
the correct model. The most commonly used technique is differential semblance optimization (DSO), which depends on applying an image extension and penalizing the energy in the non-physical extension. However, studies show that the conventional DSO gradient
Beyond the random phase approximation
DEFF Research Database (Denmark)
Olsen, Thomas; Thygesen, Kristian S.
2013-01-01
We assess the performance of a recently proposed renormalized adiabatic local density approximation (rALDA) for ab initio calculations of electronic correlation energies in solids and molecules. The method is an extension of the random phase approximation (RPA) derived from time-dependent density...... functional theory and the adiabatic connection fluctuation-dissipation theorem and contains no fitted parameters. The new kernel is shown to preserve the accurate description of dispersive interactions from RPA while significantly improving the description of short-range correlation in molecules, insulators......, and metals. For molecular atomization energies, the rALDA is a factor of 7 better than RPA and a factor of 4 better than the Perdew-Burke-Ernzerhof (PBE) functional when compared to experiments, and a factor of 3 (1.5) better than RPA (PBE) for cohesive energies of solids. For transition metals...
Hydrogen: Beyond the Classic Approximation
International Nuclear Information System (INIS)
Scivetti, Ivan
2003-01-01
The classical nucleus approximation is the most frequently used approach for the resolution of problems in condensed matter physics.However, there are systems in nature where it is necessary to introduce the nuclear degrees of freedom to obtain a correct description of the properties.Examples of this, are the systems with containing hydrogen.In this work, we have studied the resolution of the quantum nuclear problem for the particular case of the water molecule.The Hartree approximation has been used, i.e. we have considered that the nuclei are distinguishable particles.In addition, we have proposed a model to solve the tunneling process, which involves the resolution of the nuclear problem for configurations of the system away from its equilibrium position
Approximation errors during variance propagation
International Nuclear Information System (INIS)
Dinsmore, Stephen
1986-01-01
Risk and reliability analyses are often performed by constructing and quantifying large fault trees. The inputs to these models are component failure events whose probability of occuring are best represented as random variables. This paper examines the errors inherent in two approximation techniques used to calculate the top event's variance from the inputs' variance. Two sample fault trees are evaluated and several three dimensional plots illustrating the magnitude of the error over a wide range of input means and variances are given
WKB approximation in atomic physics
International Nuclear Information System (INIS)
Karnakov, Boris Mikhailovich
2013-01-01
Provides extensive coverage of the Wentzel-Kramers-Brillouin approximation and its applications. Presented as a sequence of problems with highly detailed solutions. Gives a concise introduction for calculating Rydberg states, potential barriers and quasistationary systems. This book has evolved from lectures devoted to applications of the Wentzel-Kramers-Brillouin- (WKB or quasi-classical) approximation and of the method of 1/N -expansion for solving various problems in atomic and nuclear physics. The intent of this book is to help students and investigators in this field to extend their knowledge of these important calculation methods in quantum mechanics. Much material is contained herein that is not to be found elsewhere. WKB approximation, while constituting a fundamental area in atomic physics, has not been the focus of many books. A novel method has been adopted for the presentation of the subject matter, the material is presented as a succession of problems, followed by a detailed way of solving them. The methods introduced are then used to calculate Rydberg states in atomic systems and to evaluate potential barriers and quasistationary states. Finally, adiabatic transition and ionization of quantum systems are covered.
International Nuclear Information System (INIS)
Kimura, W.D.
1993-01-01
The final report describes work performed to investigate inverse Cherenkov acceleration (ICA) as a promising method for laser particle acceleration. In particular, an improved configuration of ICA is being tested in a experiment presently underway on the Accelerator Test Facility (ATF). In the experiment, the high peak power (∼ 10 GW) linearly polarized ATF CO 2 laser beam is converted to a radially polarized beam. This is beam is focused with an axicon at the Cherenkov angle onto the ATF 50-MeV e-beam inside a hydrogen gas cell, where the gas acts as the phase matching medium of the interaction. An energy gain of ∼12 MeV is predicted assuming a delivered laser peak power of 5 GW. The experiment is divided into two phases. The Phase I experiments, which were completed in the spring of 1992, were conducted before the ATF e-beam was available and involved several successful tests of the optical systems. Phase II experiments are with the e-beam and laser beam, and are still in progress. The ATF demonstrated delivery of the e-beam to the experiment in Dec. 1992. A preliminary ''debugging'' run with the e-beam and laser beam occurred in May 1993. This revealed the need for some experimental modifications, which have been implemented. The second run is tentatively scheduled for October or November 1993. In parallel to the experimental efforts has been ongoing theoretical work to support the experiment and investigate improvement and/or offshoots. One exciting offshoot has been theoretical work showing that free-space laser acceleration of electrons is possible using a radially-polarized, axicon-focused laser beam, but without any phase-matching gas. The Monte Carlo code used to model the ICA process has been upgraded and expanded to handle different types of laser beam input profiles
Inverse Problems in a Bayesian Setting
Matthies, Hermann G.
2016-02-13
In a Bayesian setting, inverse problems and uncertainty quantification (UQ)—the propagation of uncertainty through a computational (forward) model—are strongly connected. In the form of conditional expectation the Bayesian update becomes computationally attractive. We give a detailed account of this approach via conditional approximation, various approximations, and the construction of filters. Together with a functional or spectral approach for the forward UQ there is no need for time-consuming and slowly convergent Monte Carlo sampling. The developed sampling-free non-linear Bayesian update in form of a filter is derived from the variational problem associated with conditional expectation. This formulation in general calls for further discretisation to make the computation possible, and we choose a polynomial approximation. After giving details on the actual computation in the framework of functional or spectral approximations, we demonstrate the workings of the algorithm on a number of examples of increasing complexity. At last, we compare the linear and nonlinear Bayesian update in form of a filter on some examples.
Inverse Problems in a Bayesian Setting
Matthies, Hermann G.; Zander, Elmar; Rosić, Bojana V.; Litvinenko, Alexander; Pajonk, Oliver
2016-01-01
In a Bayesian setting, inverse problems and uncertainty quantification (UQ)—the propagation of uncertainty through a computational (forward) model—are strongly connected. In the form of conditional expectation the Bayesian update becomes computationally attractive. We give a detailed account of this approach via conditional approximation, various approximations, and the construction of filters. Together with a functional or spectral approach for the forward UQ there is no need for time-consuming and slowly convergent Monte Carlo sampling. The developed sampling-free non-linear Bayesian update in form of a filter is derived from the variational problem associated with conditional expectation. This formulation in general calls for further discretisation to make the computation possible, and we choose a polynomial approximation. After giving details on the actual computation in the framework of functional or spectral approximations, we demonstrate the workings of the algorithm on a number of examples of increasing complexity. At last, we compare the linear and nonlinear Bayesian update in form of a filter on some examples.
Introduction to the mathematics of inversion in remote sensing and indirect measurements
Twomey, S
2013-01-01
Developments in Geomathematics, 3: Introduction to the Mathematics of Inversion in Remote Sensing and Indirect Measurements focuses on the application of the mathematics of inversion in remote sensing and indirect measurements, including vectors and matrices, eigenvalues and eigenvectors, and integral equations. The publication first examines simple problems involving inversion, theory of large linear systems, and physical and geometric aspects of vectors and matrices. Discussions focus on geometrical view of matrix operations, eigenvalues and eigenvectors, matrix products, inverse of a matrix, transposition and rules for product inversion, and algebraic elimination. The manuscript then tackles the algebraic and geometric aspects of functions and function space and linear inversion methods, as well as the algebraic and geometric nature of constrained linear inversion, least squares solution, approximation by sums of functions, and integral equations. The text examines information content of indirect sensing m...
Support Minimized Inversion of Acoustic and Elastic Wave Scattering
Safaeinili, Ali
Inversion of limited data is common in many areas of NDE such as X-ray Computed Tomography (CT), Ultrasonic and eddy current flaw characterization and imaging. In many applications, it is common to have a bias toward a solution with minimum (L^2)^2 norm without any physical justification. When it is a priori known that objects are compact as, say, with cracks and voids, by choosing "Minimum Support" functional instead of the minimum (L^2)^2 norm, an image can be obtained that is equally in agreement with the available data, while it is more consistent with what is most probably seen in the real world. We have utilized a minimum support functional to find a solution with the smallest volume. This inversion algorithm is most successful in reconstructing objects that are compact like voids and cracks. To verify this idea, we first performed a variational nonlinear inversion of acoustic backscatter data using minimum support objective function. A full nonlinear forward model was used to accurately study the effectiveness of the minimized support inversion without error due to the linear (Born) approximation. After successful inversions using a full nonlinear forward model, a linearized acoustic inversion was developed to increase speed and efficiency in imaging process. The results indicate that by using minimum support functional, we can accurately size and characterize voids and/or cracks which otherwise might be uncharacterizable. An extremely important feature of support minimized inversion is its ability to compensate for unknown absolute phase (zero-of-time). Zero-of-time ambiguity is a serious problem in the inversion of the pulse-echo data. The minimum support inversion was successfully used for the inversion of acoustic backscatter data due to compact scatterers without the knowledge of the zero-of-time. The main drawback to this type of inversion is its computer intensiveness. In order to make this type of constrained inversion available for common use, work
Linear GPR inversion for lossy soil and a planar air-soil interface
DEFF Research Database (Denmark)
Meincke, Peter
2001-01-01
A three-dimensional inversion scheme for fixed-offset ground penetrating radar (GPR) is derived that takes into account the loss in the soil and the planar air-soil interface. The forward model of this inversion scheme is based upon the first Born approximation and the dyadic Green function...
Potentials of the inverse scattering problem in the three-nucleon problem
International Nuclear Information System (INIS)
Pushkash, A.M.; Simenog, I.V.; Shapoval, D.V.
1993-01-01
Possibilities of using the method of the inverse scattering problem for describing simultaneously the two-nucleon and the low-energy three-nucleon data in the S-interaction approximation are examined. 20 refs., 3 figs., 1 tab
A Generalization of the Spherical Inversion
Ramírez, José L.; Rubiano, Gustavo N.
2017-01-01
In the present article, we introduce a generalization of the spherical inversion. In particular, we define an inversion with respect to an ellipsoid, and prove several properties of this new transformation. The inversion in an ellipsoid is the generalization of the elliptic inversion to the three-dimensional space. We also study the inverse images…
International Nuclear Information System (INIS)
Anon.
1994-01-01
The impact of some spectacular colliding beam records this summer has been muted by the cryptic terminology which scientists invariably use when describing their best achievements. Early this century, nuclear physicists calculated the collision rate of a particle beam with a sample of stationary atoms by multiplying the intensity of the beam (particles per unit area per second), the total number of targets, and the area of each target. In searching for a yardstick to measure this effective 'cross-section', they first thought of a unit called a 'barn', equal to 10 -24 square centimetres, the approximate surface area of a nucleus. A beam crossing such an area would be almost certain to produce a nuclear collision - 'as easy as hitting a barn door'
The quasi-diffusive approximation in transport theory: Local solutions
International Nuclear Information System (INIS)
Celaschi, M.; Montagnini, B.
1995-01-01
The one velocity, plane geometry integral neutron transport equation is transformed into a system of two equations, one of them being the equation of continuity and the other a generalized Fick's law, in which the usual diffusion coefficient is replaced by a self-adjoint integral operator. As the kernel of this operator is very close to the Green function of a diffusion equation, an approximate inversion by means of a second order differential operator allows to transform these equations into a purely differential system which is shown to be equivalent, in the simplest case, to a diffusion-like equation. The method, the principles of which have been exposed in a previous paper, is here extended and applied to a variety of problems. If the inversion is properly performed, the quasi-diffusive solutions turn out to be quite accurate, even in the vicinity of the interface between different material regions, where elementary diffusion theory usually fails. 16 refs., 3 tabs
Approximate solutions to Mathieu's equation
Wilkinson, Samuel A.; Vogt, Nicolas; Golubev, Dmitry S.; Cole, Jared H.
2018-06-01
Mathieu's equation has many applications throughout theoretical physics. It is especially important to the theory of Josephson junctions, where it is equivalent to Schrödinger's equation. Mathieu's equation can be easily solved numerically, however there exists no closed-form analytic solution. Here we collect various approximations which appear throughout the physics and mathematics literature and examine their accuracy and regimes of applicability. Particular attention is paid to quantities relevant to the physics of Josephson junctions, but the arguments and notation are kept general so as to be of use to the broader physics community.
Approximate Inference for Wireless Communications
DEFF Research Database (Denmark)
Hansen, Morten
This thesis investigates signal processing techniques for wireless communication receivers. The aim is to improve the performance or reduce the computationally complexity of these, where the primary focus area is cellular systems such as Global System for Mobile communications (GSM) (and extensions...... to the optimal one, which usually requires an unacceptable high complexity. Some of the treated approximate methods are based on QL-factorization of the channel matrix. In the work presented in this thesis it is proven how the QL-factorization of frequency-selective channels asymptotically provides the minimum...
Quantum tunneling beyond semiclassical approximation
International Nuclear Information System (INIS)
Banerjee, Rabin; Majhi, Bibhas Ranjan
2008-01-01
Hawking radiation as tunneling by Hamilton-Jacobi method beyond semiclassical approximation is analysed. We compute all quantum corrections in the single particle action revealing that these are proportional to the usual semiclassical contribution. We show that a simple choice of the proportionality constants reproduces the one loop back reaction effect in the spacetime, found by conformal field theory methods, which modifies the Hawking temperature of the black hole. Using the law of black hole mechanics we give the corrections to the Bekenstein-Hawking area law following from the modified Hawking temperature. Some examples are explicitly worked out.
Generalized Gradient Approximation Made Simple
International Nuclear Information System (INIS)
Perdew, J.P.; Burke, K.; Ernzerhof, M.
1996-01-01
Generalized gradient approximations (GGA close-quote s) for the exchange-correlation energy improve upon the local spin density (LSD) description of atoms, molecules, and solids. We present a simple derivation of a simple GGA, in which all parameters (other than those in LSD) are fundamental constants. Only general features of the detailed construction underlying the Perdew-Wang 1991 (PW91) GGA are invoked. Improvements over PW91 include an accurate description of the linear response of the uniform electron gas, correct behavior under uniform scaling, and a smoother potential. copyright 1996 The American Physical Society
Impulse approximation in solid helium
International Nuclear Information System (INIS)
Glyde, H.R.
1985-01-01
The incoherent dynamic form factor S/sub i/(Q, ω) is evaluated in solid helium for comparison with the impulse approximation (IA). The purpose is to determine the Q values for which the IA is valid for systems such a helium where the atoms interact via a potential having a steeply repulsive but not infinite hard core. For 3 He, S/sub i/(Q, ω) is evaluated from first principles, beginning with the pair potential. The density of states g(ω) is evaluated using the self-consistent phonon theory and S/sub i/(Q,ω) is expressed in terms of g(ω). For solid 4 He resonable models of g(ω) using observed input parameters are used to evaluate S/sub i/(Q,ω). In both cases S/sub i/(Q, ω) is found to approach the impulse approximation S/sub IA/(Q, ω) closely for wave vector transfers Q> or approx. =20 A -1 . The difference between S/sub i/ and S/sub IA/, which is due to final state interactions of the scattering atom with the remainder of the atoms in the solid, is also predominantly antisymmetric in (ω-ω/sub R/), where ω/sub R/ is the recoil frequency. This suggests that the symmetrization procedure proposed by Sears to eliminate final state contributions should work well in solid helium
Finite approximations in fluid mechanics
International Nuclear Information System (INIS)
Hirschel, E.H.
1986-01-01
This book contains twenty papers on work which was conducted between 1983 and 1985 in the Priority Research Program ''Finite Approximations in Fluid Mechanics'' of the German Research Society (Deutsche Forschungsgemeinschaft). Scientists from numerical mathematics, fluid mechanics, and aerodynamics present their research on boundary-element methods, factorization methods, higher-order panel methods, multigrid methods for elliptical and parabolic problems, two-step schemes for the Euler equations, etc. Applications are made to channel flows, gas dynamical problems, large eddy simulation of turbulence, non-Newtonian flow, turbomachine flow, zonal solutions for viscous flow problems, etc. The contents include: multigrid methods for problems from fluid dynamics, development of a 2D-Transonic Potential Flow Solver; a boundary element spectral method for nonstationary viscous flows in 3 dimensions; navier-stokes computations of two-dimensional laminar flows in a channel with a backward facing step; calculations and experimental investigations of the laminar unsteady flow in a pipe expansion; calculation of the flow-field caused by shock wave and deflagration interaction; a multi-level discretization and solution method for potential flow problems in three dimensions; solutions of the conservation equations with the approximate factorization method; inviscid and viscous flow through rotating meridional contours; zonal solutions for viscous flow problems
Plasma Physics Approximations in Ares
International Nuclear Information System (INIS)
Managan, R. A.
2015-01-01
Lee & More derived analytic forms for the transport properties of a plasma. Many hydro-codes use their formulae for electrical and thermal conductivity. The coefficients are complex functions of Fermi-Dirac integrals, Fn( μ/θ ), the chemical potential, μ or ζ = ln(1+e μ/θ ), and the temperature, θ = kT. Since these formulae are expensive to compute, rational function approximations were fit to them. Approximations are also used to find the chemical potential, either μ or ζ . The fits use ζ as the independent variable instead of μ/θ . New fits are provided for A α (ζ ),A β (ζ ), ζ, f(ζ ) = (1 + e -μ/θ )F 1/2 (μ/θ), F 1/2 '/F 1/2 , F c α , and F c β . In each case the relative error of the fit is minimized since the functions can vary by many orders of magnitude. The new fits are designed to exactly preserve the limiting values in the non-degenerate and highly degenerate limits or as ζ→ 0 or ∞. The original fits due to Lee & More and George Zimmerman are presented for comparison.
Limitations of the acoustic approximation for seismic crosshole tomography
Marelli, Stefano; Maurer, Hansruedi
2010-05-01
Modelling and inversion of seismic crosshole data is a challenging task in terms of computational resources. Even with the significant increase in power of modern supercomputers, full three-dimensional elastic modelling of high-frequency waveforms generated from hundreds of source positions in several boreholes is still an intractable task. However, it has been recognised that full waveform inversion offers substantially more information compared with traditional travel time tomography. A common strategy to reduce the computational burden for tomographic inversion is to approximate the true elastic wave propagation by acoustic modelling. This approximation assumes that the solid rock units can be treated like fluids (with no shear wave propagation) and is generally considered to be satisfactory so long as only the earliest portions of the recorded seismograms are considered. The main assumption is that most of the energy in the early parts of the recorded seismograms is carried by the faster compressional (P-) waves. Although a limited number of studies exist on the effects of this approximation for surface/marine synthetic reflection seismic data, and show it to be generally acceptable for models with low to moderate impedance contrasts, to our knowledge no comparable studies have been published on the effects for cross-borehole transmission data. An obvious question is whether transmission tomography should be less affected by elastic effects than surface reflection data when only short time windows are applied to primarily capture the first arriving wavetrains. To answer this question we have performed 2D and 3D investigations on the validity of the acoustic approximation for an elastic medium and using crosshole source-receiver configurations. In order to generate consistent acoustic and elastic data sets, we ran the synthetic tests using the same finite-differences time-domain elastic modelling code for both types of simulations. The acoustic approximation was
Statistical perspectives on inverse problems
DEFF Research Database (Denmark)
Andersen, Kim Emil
of the interior of an object from electrical boundary measurements. One part of this thesis concerns statistical approaches for solving, possibly non-linear, inverse problems. Thus inverse problems are recasted in a form suitable for statistical inference. In particular, a Bayesian approach for regularisation...... problem is given in terms of probability distributions. Posterior inference is obtained by Markov chain Monte Carlo methods and new, powerful simulation techniques based on e.g. coupled Markov chains and simulated tempering is developed to improve the computational efficiency of the overall simulation......Inverse problems arise in many scientific disciplines and pertain to situations where inference is to be made about a particular phenomenon from indirect measurements. A typical example, arising in diffusion tomography, is the inverse boundary value problem for non-invasive reconstruction...
Size Estimates in Inverse Problems
Di Cristo, Michele
2014-01-01
Detection of inclusions or obstacles inside a body by boundary measurements is an inverse problems very useful in practical applications. When only finite numbers of measurements are available, we try to detect some information on the embedded
Wave-equation dispersion inversion
Li, Jing; Feng, Zongcai; Schuster, Gerard T.
2016-01-01
We present the theory for wave-equation inversion of dispersion curves, where the misfit function is the sum of the squared differences between the wavenumbers along the predicted and observed dispersion curves. The dispersion curves are obtained
Testing earthquake source inversion methodologies
Page, Morgan T.
2011-01-01
Source Inversion Validation Workshop; Palm Springs, California, 11-12 September 2010; Nowadays earthquake source inversions are routinely performed after large earthquakes and represent a key connection between recorded seismic and geodetic data and the complex rupture process at depth. The resulting earthquake source models quantify the spatiotemporal evolution of ruptures. They are also used to provide a rapid assessment of the severity of an earthquake and to estimate losses. However, because of uncertainties in the data, assumed fault geometry and velocity structure, and chosen rupture parameterization, it is not clear which features of these source models are robust. Improved understanding of the uncertainty and reliability of earthquake source inversions will allow the scientific community to use the robust features of kinematic inversions to more thoroughly investigate the complexity of the rupture process and to better constrain other earthquakerelated computations, such as ground motion simulations and static stress change calculations.
Parameter estimation and inverse problems
Aster, Richard C; Thurber, Clifford H
2005-01-01
Parameter Estimation and Inverse Problems primarily serves as a textbook for advanced undergraduate and introductory graduate courses. Class notes have been developed and reside on the World Wide Web for faciliting use and feedback by teaching colleagues. The authors'' treatment promotes an understanding of fundamental and practical issus associated with parameter fitting and inverse problems including basic theory of inverse problems, statistical issues, computational issues, and an understanding of how to analyze the success and limitations of solutions to these probles. The text is also a practical resource for general students and professional researchers, where techniques and concepts can be readily picked up on a chapter-by-chapter basis.Parameter Estimation and Inverse Problems is structured around a course at New Mexico Tech and is designed to be accessible to typical graduate students in the physical sciences who may not have an extensive mathematical background. It is accompanied by a Web site that...
Inversion Therapy: Can It Relieve Back Pain?
Inversion therapy: Can it relieve back pain? Does inversion therapy relieve back pain? Is it safe? Answers from Edward R. Laskowski, M.D. Inversion therapy doesn't provide lasting relief from back ...
Thermal measurements and inverse techniques
Orlande, Helcio RB; Maillet, Denis; Cotta, Renato M
2011-01-01
With its uncommon presentation of instructional material regarding mathematical modeling, measurements, and solution of inverse problems, Thermal Measurements and Inverse Techniques is a one-stop reference for those dealing with various aspects of heat transfer. Progress in mathematical modeling of complex industrial and environmental systems has enabled numerical simulations of most physical phenomena. In addition, recent advances in thermal instrumentation and heat transfer modeling have improved experimental procedures and indirect measurements for heat transfer research of both natural phe
Computation of inverse magnetic cascades
International Nuclear Information System (INIS)
Montgomery, D.
1981-10-01
Inverse cascades of magnetic quantities for turbulent incompressible magnetohydrodynamics are reviewed, for two and three dimensions. The theory is extended to the Strauss equations, a description intermediate between two and three dimensions appropriate to tokamak magnetofluids. Consideration of the absolute equilibrium Gibbs ensemble for the system leads to a prediction of an inverse cascade of magnetic helicity, which may manifest itself as a major disruption. An agenda for computational investigation of this conjecture is proposed
A method of inversion of satellite magnetic anomaly data
Mayhew, M. A.
1977-01-01
A method of finding a first approximation to a crustal magnetization distribution from inversion of satellite magnetic anomaly data is described. Magnetization is expressed as a Fourier Series in a segment of spherical shell. Input to this procedure is an equivalent source representation of the observed anomaly field. Instability of the inversion occurs when high frequency noise is present in the input data, or when the series is carried to an excessively high wave number. Preliminary results are given for the United States and adjacent areas.
Conjugate-gradient preconditioning methods for shift-variant PET image reconstruction.
Fessler, J A; Booth, S D
1999-01-01
Gradient-based iterative methods often converge slowly for tomographic image reconstruction and image restoration problems, but can be accelerated by suitable preconditioners. Diagonal preconditioners offer some improvement in convergence rate, but do not incorporate the structure of the Hessian matrices in imaging problems. Circulant preconditioners can provide remarkable acceleration for inverse problems that are approximately shift-invariant, i.e., for those with approximately block-Toeplitz or block-circulant Hessians. However, in applications with nonuniform noise variance, such as arises from Poisson statistics in emission tomography and in quantum-limited optical imaging, the Hessian of the weighted least-squares objective function is quite shift-variant, and circulant preconditioners perform poorly. Additional shift-variance is caused by edge-preserving regularization methods based on nonquadratic penalty functions. This paper describes new preconditioners that approximate more accurately the Hessian matrices of shift-variant imaging problems. Compared to diagonal or circulant preconditioning, the new preconditioners lead to significantly faster convergence rates for the unconstrained conjugate-gradient (CG) iteration. We also propose a new efficient method for the line-search step required by CG methods. Applications to positron emission tomography (PET) illustrate the method.
EDITORIAL: Inverse Problems in Engineering
West, Robert M.; Lesnic, Daniel
2007-01-01
Presented here are 11 noteworthy papers selected from the Fifth International Conference on Inverse Problems in Engineering: Theory and Practice held in Cambridge, UK during 11-15 July 2005. The papers have been peer-reviewed to the usual high standards of this journal and the contributions of reviewers are much appreciated. The conference featured a good balance of the fundamental mathematical concepts of inverse problems with a diverse range of important and interesting applications, which are represented here by the selected papers. Aspects of finite-element modelling and the performance of inverse algorithms are investigated by Autrique et al and Leduc et al. Statistical aspects are considered by Emery et al and Watzenig et al with regard to Bayesian parameter estimation and inversion using particle filters. Electrostatic applications are demonstrated by van Berkel and Lionheart and also Nakatani et al. Contributions to the applications of electrical techniques and specifically electrical tomographies are provided by Wakatsuki and Kagawa, Kim et al and Kortschak et al. Aspects of inversion in optical tomography are investigated by Wright et al and Douiri et al. The authors are representative of the worldwide interest in inverse problems relating to engineering applications and their efforts in producing these excellent papers will be appreciated by many readers of this journal.
Approximating the minimum cycle mean
Directory of Open Access Journals (Sweden)
Krishnendu Chatterjee
2013-07-01
Full Text Available We consider directed graphs where each edge is labeled with an integer weight and study the fundamental algorithmic question of computing the value of a cycle with minimum mean weight. Our contributions are twofold: (1 First we show that the algorithmic question is reducible in O(n^2 time to the problem of a logarithmic number of min-plus matrix multiplications of n-by-n matrices, where n is the number of vertices of the graph. (2 Second, when the weights are nonnegative, we present the first (1 + ε-approximation algorithm for the problem and the running time of our algorithm is ilde(O(n^ω log^3(nW/ε / ε, where O(n^ω is the time required for the classic n-by-n matrix multiplication and W is the maximum value of the weights.
Asgharzadeh, Hafez; Borazjani, Iman
2017-02-15
diagonal of the Jacobian further improves the performance by 42 - 74% compared to the full Jacobian. The NKM with an analytical Jacobian showed better performance than the fixed point Runge-Kutta because it converged with higher time steps and in approximately 30% less iterations even when the grid was stretched and the Reynold number was increased. In fact, stretching the grid decreased the performance of all methods, but the fixed-point Runge-Kutta performance decreased 4.57 and 2.26 times more than NKM with a diagonal Jacobian when the stretching factor was increased, respectively. The NKM with a diagonal analytical Jacobian and matrix-free method with an analytical preconditioner are the fastest methods and the superiority of one to another depends on the flow problem. Furthermore, the implemented methods are fully parallelized with parallel efficiency of 80-90% on the problems tested. The NKM with the analytical Jacobian can guide building preconditioners for other techniques to improve their performance in the future.
Asgharzadeh, Hafez; Borazjani, Iman
2016-01-01
diagonal of the Jacobian further improves the performance by 42 – 74% compared to the full Jacobian. The NKM with an analytical Jacobian showed better performance than the fixed point Runge-Kutta because it converged with higher time steps and in approximately 30% less iterations even when the grid was stretched and the Reynold number was increased. In fact, stretching the grid decreased the performance of all methods, but the fixed-point Runge-Kutta performance decreased 4.57 and 2.26 times more than NKM with a diagonal Jacobian when the stretching factor was increased, respectively. The NKM with a diagonal analytical Jacobian and matrix-free method with an analytical preconditioner are the fastest methods and the superiority of one to another depends on the flow problem. Furthermore, the implemented methods are fully parallelized with parallel efficiency of 80–90% on the problems tested. The NKM with the analytical Jacobian can guide building preconditioners for other techniques to improve their performance in the future. PMID:28042172
Nonlinear approximation with dictionaries I. Direct estimates
DEFF Research Database (Denmark)
Gribonval, Rémi; Nielsen, Morten
2004-01-01
We study various approximation classes associated with m-term approximation by elements from a (possibly) redundant dictionary in a Banach space. The standard approximation class associated with the best m-term approximation is compared to new classes defined by considering m-term approximation w...
Approximate cohomology in Banach algebras | Pourabbas ...
African Journals Online (AJOL)
We introduce the notions of approximate cohomology and approximate homotopy in Banach algebras and we study the relation between them. We show that the approximate homotopically equivalent cochain complexes give the same approximate cohomologies. As a special case, approximate Hochschild cohomology is ...
Homogeneous approximation property for continuous shearlet transforms in higher dimensions
Directory of Open Access Journals (Sweden)
Yu Su
2016-07-01
Full Text Available Abstract This paper is concerned with the generalization of the homogeneous approximation property (HAP for a continuous shearlet transform to higher dimensions. First, we give a pointwise convergence result on the inverse shearlet transform in higher dimensions. Second, we show that every pair of admissible shearlets possess the HAP in the sense of L 2 ( R d $L^{2}(R^{d}$ . Third, we give a sufficient condition for the pointwise HAP to hold, which depends on both shearlets and functions to be reconstructed.
On Nash-Equilibria of Approximation-Stable Games
Awasthi, Pranjal; Balcan, Maria-Florina; Blum, Avrim; Sheffet, Or; Vempala, Santosh
One reason for wanting to compute an (approximate) Nash equilibrium of a game is to predict how players will play. However, if the game has multiple equilibria that are far apart, or ɛ-equilibria that are far in variation distance from the true Nash equilibrium strategies, then this prediction may not be possible even in principle. Motivated by this consideration, in this paper we define the notion of games that are approximation stable, meaning that all ɛ-approximate equilibria are contained inside a small ball of radius Δ around a true equilibrium, and investigate a number of their properties. Many natural small games such as matching pennies and rock-paper-scissors are indeed approximation stable. We show furthermore there exist 2-player n-by-n approximation-stable games in which the Nash equilibrium and all approximate equilibria have support Ω(log n). On the other hand, we show all (ɛ,Δ) approximation-stable games must have an ɛ-equilibrium of support O(Δ^{2-o(1)}/ɛ2{log n}), yielding an immediate n^{O(Δ^{2-o(1)}/ɛ^2log n)}-time algorithm, improving over the bound of [11] for games satisfying this condition. We in addition give a polynomial-time algorithm for the case that Δ and ɛ are sufficiently close together. We also consider an inverse property, namely that all non-approximate equilibria are far from some true equilibrium, and give an efficient algorithm for games satisfying that condition.
Mantle conductivity obtained by 3-D inversion of magnetic satellite data
DEFF Research Database (Denmark)
Kuvshinov, A.; Olsen, Nils
distributed geomagnetic observatories. Due to the high computational load of a 3-D inversion (requiring thousands of forward calculations), a comprehensive numerical framework is developed to increase the efficiency of the inversion.In particular, we take an advantage of specific features of the IE approach...... and perform the most consuming-time part of the IE forward simulations (the calculation of electric and magnetic tensor Green’s functions) only once. Approximate calculation of the data sensitivities also gives essential speed up of the inversion. We validate our inversion scheme using synthetic induction...
Inversion of the total cross sections for electron-molecule and electron-atom scattering
International Nuclear Information System (INIS)
Lun, D.R.; Amos, K.; Allen, L.J.
1994-01-01
Inverse scattering theory has been applied to construct the interaction potentials from total cross sections as a function of energy for electrons scattered off of atoms and molecules. The underlying potentials are assumed to be real and energy independent and are evaluated using the Eikonal approximation and with real phase shifts determined from the total cross sections. The inversion potentials have been determined using either a high energy limit approximation or by using a fixed energy inversion method at select energies. These procedures have been used to analyse e - - CH 4 , e - - SiH 4 , e - -Kr and e - -Xe scattering data in particular. 14 refs., 1 tabs., 3 figs
A local adaptive method for the numerical approximation in seismic wave modelling
Directory of Open Access Journals (Sweden)
Galuzzi Bruno G.
2017-12-01
Full Text Available We propose a new numerical approach for the solution of the 2D acoustic wave equation to model the predicted data in the field of active-source seismic inverse problems. This method consists in using an explicit finite difference technique with an adaptive order of approximation of the spatial derivatives that takes into account the local velocity at the grid nodes. Testing our method to simulate the recorded seismograms in a marine seismic acquisition, we found that the low computational time and the low approximation error of the proposed approach make it suitable in the context of seismic inversion problems.
An angularly refineable phase space finite element method with approximate sweeping procedure
International Nuclear Information System (INIS)
Kophazi, J.; Lathouwers, D.
2013-01-01
An angularly refineable phase space finite element method is proposed to solve the neutron transport equation. The method combines the advantages of two recently published schemes. The angular domain is discretized into small patches and patch-wise discontinuous angular basis functions are restricted to these patches, i.e. there is no overlap between basis functions corresponding to different patches. This approach yields block diagonal Jacobians with small block size and retains the possibility for S n -like approximate sweeping of the spatially discontinuous elements in order to provide efficient preconditioners for the solution procedure. On the other hand, the preservation of the full FEM framework (as opposed to collocation into a high-order S n scheme) retains the possibility of the Galerkin interpolated connection between phase space elements at arbitrary levels of discretization. Since the basis vectors are not orthonormal, a generalization of the Riemann procedure is introduced to separate the incoming and outgoing contributions in case of unstructured meshes. However, due to the properties of the angular discretization, the Riemann procedure can be avoided at a large fraction of the faces and this fraction rapidly increases as the level of refinement increases, contributing to the computational efficiency. In this paper the properties of the discretization scheme are studied with uniform refinement using an iterative solver based on the S 2 sweep order of the spatial elements. The fourth order convergence of the scalar flux is shown as anticipated from earlier schemes and the rapidly decreasing fraction of required Riemann faces is illustrated. (authors)
Neutron inverse kinetics via Gaussian Processes
International Nuclear Information System (INIS)
Picca, Paolo; Furfaro, Roberto
2012-01-01
Highlights: ► A novel technique for the interpretation of experiments in ADS is presented. ► The technique is based on Bayesian regression, implemented via Gaussian Processes. ► GPs overcome the limits of classical methods, based on PK approximation. ► Results compares GPs and ANN performance, underlining similarities and differences. - Abstract: The paper introduces the application of Gaussian Processes (GPs) to determine the subcriticality level in accelerator-driven systems (ADSs) through the interpretation of pulsed experiment data. ADSs have peculiar kinetic properties due to their special core design. For this reason, classical – inversion techniques based on point kinetic (PK) generally fail to generate an accurate estimate of reactor subcriticality. Similarly to Artificial Neural Networks (ANNs), Gaussian Processes can be successfully trained to learn the underlying inverse neutron kinetic model and, as such, they are not limited to the model choice. Importantly, GPs are strongly rooted into the Bayes’ theorem which makes them a powerful tool for statistical inference. Here, GPs have been designed and trained on a set of kinetics models (e.g. point kinetics and multi-point kinetics) for homogeneous and heterogeneous settings. The results presented in the paper show that GPs are very efficient and accurate in predicting the reactivity for ADS-like systems. The variance computed via GPs may provide an indication on how to generate additional data as function of the desired accuracy.
An Entropic Estimator for Linear Inverse Problems
Directory of Open Access Journals (Sweden)
Amos Golan
2012-05-01
Full Text Available In this paper we examine an Information-Theoretic method for solving noisy linear inverse estimation problems which encompasses under a single framework a whole class of estimation methods. Under this framework, the prior information about the unknown parameters (when such information exists, and constraints on the parameters can be incorporated in the statement of the problem. The method builds on the basics of the maximum entropy principle and consists of transforming the original problem into an estimation of a probability density on an appropriate space naturally associated with the statement of the problem. This estimation method is generic in the sense that it provides a framework for analyzing non-normal models, it is easy to implement and is suitable for all types of inverse problems such as small and or ill-conditioned, noisy data. First order approximation, large sample properties and convergence in distribution are developed as well. Analytical examples, statistics for model comparisons and evaluations, that are inherent to this method, are discussed and complemented with explicit examples.
Wave-equation reflection traveltime inversion
Zhang, Sanzong
2011-01-01
The main difficulty with iterative waveform inversion using a gradient optimization method is that it tends to get stuck in local minima associated within the waveform misfit function. This is because the waveform misfit function is highly nonlinear with respect to changes in the velocity model. To reduce this nonlinearity, we present a reflection traveltime tomography method based on the wave equation which enjoys a more quasi-linear relationship between the model and the data. A local crosscorrelation of the windowed downgoing direct wave and the upgoing reflection wave at the image point yields the lag time that maximizes the correlation. This lag time represents the reflection traveltime residual that is back-projected into the earth model to update the velocity in the same way as wave-equation transmission traveltime inversion. No travel-time picking is needed and no high-frequency approximation is assumed. The mathematical derivation and the numerical examples are presented to partly demonstrate its efficiency and robustness. © 2011 Society of Exploration Geophysicists.
Producing a steady-state population inversion
International Nuclear Information System (INIS)
Richards, R.K.; Griffin, D.C.
1986-03-01
An observed steady-state transition at 17.5 nm is identified as the 2p 5 3s3p 4 S/sub 3/2/ → 2p 6 3p 2 P/sub 3/2/ transition in Na-like aluminum. The upper level is populated by electron inner shell ionization of metastable Mg-like aluminum. From the emission intensity, the rate coefficient for populating the upper level is calculated to be approximately 5 x 10 -10 ) cm 3 /sec. Since the upper level is quasimetastable with a lifetime 22 times longer than the lower level, it may be possible to produce a population inversion, if a competing process to populate the lower level can be reduced
The inverse problem for Schwinger pair production
Directory of Open Access Journals (Sweden)
F. Hebenstreit
2016-02-01
Full Text Available The production of electron–positron pairs in time-dependent electric fields (Schwinger mechanism depends non-linearly on the applied field profile. Accordingly, the resulting momentum spectrum is extremely sensitive to small variations of the field parameters. Owing to this non-linear dependence it is so far unpredictable how to choose a field configuration such that a predetermined momentum distribution is generated. We show that quantum kinetic theory along with optimal control theory can be used to approximately solve this inverse problem for Schwinger pair production. We exemplify this by studying the superposition of a small number of harmonic components resulting in predetermined signatures in the asymptotic momentum spectrum. In the long run, our results could facilitate the observation of this yet unobserved pair production mechanism in quantum electrodynamics by providing suggestions for tailored field configurations.
Inverse Diffusion Curves Using Shape Optimization.
Zhao, Shuang; Durand, Fredo; Zheng, Changxi
2018-07-01
The inverse diffusion curve problem focuses on automatic creation of diffusion curve images that resemble user provided color fields. This problem is challenging since the 1D curves have a nonlinear and global impact on resulting color fields via a partial differential equation (PDE). We introduce a new approach complementary to previous methods by optimizing curve geometry. In particular, we propose a novel iterative algorithm based on the theory of shape derivatives. The resulting diffusion curves are clean and well-shaped, and the final image closely approximates the input. Our method provides a user-controlled parameter to regularize curve complexity, and generalizes to handle input color fields represented in a variety of formats.
Confidence bands for inverse regression models
International Nuclear Information System (INIS)
Birke, Melanie; Bissantz, Nicolai; Holzmann, Hajo
2010-01-01
We construct uniform confidence bands for the regression function in inverse, homoscedastic regression models with convolution-type operators. Here, the convolution is between two non-periodic functions on the whole real line rather than between two periodic functions on a compact interval, since the former situation arguably arises more often in applications. First, following Bickel and Rosenblatt (1973 Ann. Stat. 1 1071–95) we construct asymptotic confidence bands which are based on strong approximations and on a limit theorem for the supremum of a stationary Gaussian process. Further, we propose bootstrap confidence bands based on the residual bootstrap and prove consistency of the bootstrap procedure. A simulation study shows that the bootstrap confidence bands perform reasonably well for moderate sample sizes. Finally, we apply our method to data from a gel electrophoresis experiment with genetically engineered neuronal receptor subunits incubated with rat brain extract
Likelihood Approximation With Hierarchical Matrices For Large Spatial Datasets
Litvinenko, Alexander
2017-09-03
We use available measurements to estimate the unknown parameters (variance, smoothness parameter, and covariance length) of a covariance function by maximizing the joint Gaussian log-likelihood function. To overcome cubic complexity in the linear algebra, we approximate the discretized covariance function in the hierarchical (H-) matrix format. The H-matrix format has a log-linear computational cost and storage O(kn log n), where the rank k is a small integer and n is the number of locations. The H-matrix technique allows us to work with general covariance matrices in an efficient way, since H-matrices can approximate inhomogeneous covariance functions, with a fairly general mesh that is not necessarily axes-parallel, and neither the covariance matrix itself nor its inverse have to be sparse. We demonstrate our method with Monte Carlo simulations and an application to soil moisture data. The C, C++ codes and data are freely available.
Frozen Gaussian approximation for 3D seismic tomography
Chai, Lihui; Tong, Ping; Yang, Xu
2018-05-01
Three-dimensional (3D) wave-equation-based seismic tomography is computationally challenging in large scales and high-frequency regime. In this paper, we apply the frozen Gaussian approximation (FGA) method to compute 3D sensitivity kernels and seismic tomography of high-frequency. Rather than standard ray theory used in seismic inversion (e.g. Kirchhoff migration and Gaussian beam migration), FGA is used to compute the 3D high-frequency sensitivity kernels for travel-time or full waveform inversions. Specifically, we reformulate the equations of the forward and adjoint wavefields for the purpose of convenience to apply FGA, and with this reformulation, one can efficiently compute the Green’s functions whose convolutions with source time function produce wavefields needed for the construction of 3D kernels. Moreover, a fast summation method is proposed based on local fast Fourier transform which greatly improves the speed of reconstruction as the last step of FGA algorithm. We apply FGA to both the travel-time adjoint tomography and full waveform inversion (FWI) on synthetic crosswell seismic data with dominant frequencies as high as those of real crosswell data, and confirm again that FWI requires a more sophisticated initial velocity model for the convergence than travel-time adjoint tomography. We also numerically test the accuracy of applying FGA to local earthquake tomography. This study paves the way to directly apply wave-equation-based seismic tomography methods into real data around their dominant frequencies.
ANNIT - An Efficient Inversion Algorithm based on Prediction Principles
Růžek, B.; Kolář, P.
2009-04-01
Solution of inverse problems represents meaningful job in geophysics. The amount of data is continuously increasing, methods of modeling are being improved and the computer facilities are also advancing great technical progress. Therefore the development of new and efficient algorithms and computer codes for both forward and inverse modeling is still up to date. ANNIT is contributing to this stream since it is a tool for efficient solution of a set of non-linear equations. Typical geophysical problems are based on parametric approach. The system is characterized by a vector of parameters p, the response of the system is characterized by a vector of data d. The forward problem is usually represented by unique mapping F(p)=d. The inverse problem is much more complex and the inverse mapping p=G(d) is available in an analytical or closed form only exceptionally and generally it may not exist at all. Technically, both forward and inverse mapping F and G are sets of non-linear equations. ANNIT solves such situation as follows: (i) joint subspaces {pD, pM} of original data and model spaces D, M, resp. are searched for, within which the forward mapping F is sufficiently smooth that the inverse mapping G does exist, (ii) numerical approximation of G in subspaces {pD, pM} is found, (iii) candidate solution is predicted by using this numerical approximation. ANNIT is working in an iterative way in cycles. The subspaces {pD, pM} are searched for by generating suitable populations of individuals (models) covering data and model spaces. The approximation of the inverse mapping is made by using three methods: (a) linear regression, (b) Radial Basis Function Network technique, (c) linear prediction (also known as "Kriging"). The ANNIT algorithm has built in also an archive of already evaluated models. Archive models are re-used in a suitable way and thus the number of forward evaluations is minimized. ANNIT is now implemented both in MATLAB and SCILAB. Numerical tests show good
Inverse source problems in elastodynamics
Bao, Gang; Hu, Guanghui; Kian, Yavar; Yin, Tao
2018-04-01
We are concerned with time-dependent inverse source problems in elastodynamics. The source term is supposed to be the product of a spatial function and a temporal function with compact support. We present frequency-domain and time-domain approaches to show uniqueness in determining the spatial function from wave fields on a large sphere over a finite time interval. The stability estimate of the temporal function from the data of one receiver and the uniqueness result using partial boundary data are proved. Our arguments rely heavily on the use of the Fourier transform, which motivates inversion schemes that can be easily implemented. A Landweber iterative algorithm for recovering the spatial function and a non-iterative inversion scheme based on the uniqueness proof for recovering the temporal function are proposed. Numerical examples are demonstrated in both two and three dimensions.
Inversion of the star transform
International Nuclear Information System (INIS)
Zhao, Fan; Schotland, John C; Markel, Vadim A
2014-01-01
We define the star transform as a generalization of the broken ray transform introduced by us in previous work. The advantages of using the star transform include the possibility to reconstruct the absorption and the scattering coefficients of the medium separately and simultaneously (from the same data) and the possibility to utilize scattered radiation which, in the case of conventional x-ray tomography, is discarded. In this paper, we derive the star transform from physical principles, discuss its mathematical properties and analyze numerical stability of inversion. In particular, it is shown that stable inversion of the star transform can be obtained only for configurations involving odd number of rays. Several computationally-efficient inversion algorithms are derived and tested numerically. (paper)
Inverse comptonization vs. thermal synchrotron
International Nuclear Information System (INIS)
Fenimore, E.E.; Klebesadel, R.W.; Laros, J.G.
1983-01-01
There are currently two radiation mechanisms being considered for gamma-ray bursts: thermal synchrotron and inverse comptonization. They are mutually exclusive since thermal synchrotron requires a magnetic field of approx. 10 12 Gauss whereas inverse comptonization cannot produce a monotonic spectrum if the field is larger than 10 11 and is too inefficient relative to thermal synchrotron unless the field is less than 10 9 Gauss. Neither mechanism can explain completely the observed characteristics of gamma-ray bursts. However, we conclude that thermal synchrotron is more consistent with the observations if the sources are approx. 40 kpc away whereas inverse comptonization is more consistent if they are approx. 300 pc away. Unfortunately, the source distance is still not known and, thus, the radiation mechanism is still uncertain
Inverse photoemission of uranium oxides
International Nuclear Information System (INIS)
Roussel, P.; Morrall, P.; Tull, S.J.
2009-01-01
Understanding the itinerant-localised bonding role of the 5f electrons in the light actinides will afford an insight into their unusual physical and chemical properties. In recent years, the combination of core and valance band electron spectroscopies with theoretic modelling have already made significant progress in this area. However, information of the unoccupied density of states is still scarce. When compared to the forward photoemission techniques, measurements of the unoccupied states suffer from significantly less sensitivity and lower resolution. In this paper, we report on our experimental apparatus, which is designed to measure the inverse photoemission spectra of the light actinides. Inverse photoemission spectra of UO 2 and UO 2.2 along with the corresponding core and valance electron spectra are presented in this paper. UO 2 has been reported previously, although through its inclusion here it allows us to compare and contrast results from our experimental apparatus to the previous Bremsstrahlung Isochromat Spectroscopy and Inverse Photoemission Spectroscopy investigations
Optimization for nonlinear inverse problem
International Nuclear Information System (INIS)
Boyadzhiev, G.; Brandmayr, E.; Pinat, T.; Panza, G.F.
2007-06-01
The nonlinear inversion of geophysical data in general does not yield a unique solution, but a single model, representing the investigated field, is preferred for an easy geological interpretation of the observations. The analyzed region is constituted by a number of sub-regions where the multi-valued nonlinear inversion is applied, which leads to a multi-valued solution. Therefore, combining the values of the solution in each sub-region, many acceptable models are obtained for the entire region and this complicates the geological interpretation of geophysical investigations. In this paper are presented new methodologies, capable to select one model, among all acceptable ones, that satisfies different criteria of smoothness in the explored space of solutions. In this work we focus on the non-linear inversion of surface waves dispersion curves, which gives structural models of shear-wave velocity versus depth, but the basic concepts have a general validity. (author)
Some Phenomena on Negative Inversion Constructions
Sung, Tae-Soo
2013-01-01
We examine the characteristics of NDI (negative degree inversion) and its relation with other inversion phenomena such as SVI (subject-verb inversion) and SAI (subject-auxiliary inversion). The negative element in the NDI construction may be" not," a negative adverbial, or a negative verb. In this respect, NDI has similar licensing…
Size Estimates in Inverse Problems
Di Cristo, Michele
2014-01-06
Detection of inclusions or obstacles inside a body by boundary measurements is an inverse problems very useful in practical applications. When only finite numbers of measurements are available, we try to detect some information on the embedded object such as its size. In this talk we review some recent results on several inverse problems. The idea is to provide constructive upper and lower estimates of the area/volume of the unknown defect in terms of a quantity related to the work that can be expressed with the available boundary data.
-Dimensional Fractional Lagrange's Inversion Theorem
Directory of Open Access Journals (Sweden)
F. A. Abd El-Salam
2013-01-01
Full Text Available Using Riemann-Liouville fractional differential operator, a fractional extension of the Lagrange inversion theorem and related formulas are developed. The required basic definitions, lemmas, and theorems in the fractional calculus are presented. A fractional form of Lagrange's expansion for one implicitly defined independent variable is obtained. Then, a fractional version of Lagrange's expansion in more than one unknown function is generalized. For extending the treatment in higher dimensions, some relevant vectors and tensors definitions and notations are presented. A fractional Taylor expansion of a function of -dimensional polyadics is derived. A fractional -dimensional Lagrange inversion theorem is proved.
Darwin's "strange inversion of reasoning".
Dennett, Daniel
2009-06-16
Darwin's theory of evolution by natural selection unifies the world of physics with the world of meaning and purpose by proposing a deeply counterintuitive "inversion of reasoning" (according to a 19th century critic): "to make a perfect and beautiful machine, it is not requisite to know how to make it" [MacKenzie RB (1868) (Nisbet & Co., London)]. Turing proposed a similar inversion: to be a perfect and beautiful computing machine, it is not requisite to know what arithmetic is. Together, these ideas help to explain how we human intelligences came to be able to discern the reasons for all of the adaptations of life, including our own.
Inverse transport theory and applications
International Nuclear Information System (INIS)
Bal, Guillaume
2009-01-01
Inverse transport consists of reconstructing the optical properties of a domain from measurements performed at the domain's boundary. This review concerns several types of measurements: time-dependent, time-independent, angularly resolved and angularly averaged measurements. We review recent results on the reconstruction of the optical parameters from such measurements and the stability of such reconstructions. Inverse transport finds applications e.g. in medical imaging (optical tomography, optical molecular imaging) and in geophysical imaging (remote sensing in the Earth's atmosphere). (topical review)
Inverse Interval Matrix: A Survey
Czech Academy of Sciences Publication Activity Database
Rohn, Jiří; Farhadsefat, R.
2011-01-01
Roč. 22, - (2011), s. 704-719 E-ISSN 1081-3810 R&D Projects: GA ČR GA201/09/1957; GA ČR GC201/08/J020 Institutional research plan: CEZ:AV0Z10300504 Keywords : interval matrix * inverse interval matrix * NP-hardness * enclosure * unit midpoint * inverse sign stability * nonnegative invertibility * absolute value equation * algorithm Subject RIV: BA - General Mathematics Impact factor: 0.808, year: 2010 http://www.math.technion.ac.il/iic/ ela / ela -articles/articles/vol22_pp704-719.pdf
Particulate inverse opal carbon electrodes for lithium-ion batteries.
Kang, Da-Young; Kim, Sang-Ok; Chae, Yu Jin; Lee, Joong Kee; Moon, Jun Hyuk
2013-01-29
Inverse opal carbon materials were used as anodes for lithium ion batteries. We applied particulate inverse opal structures and their dispersion in the formation of anode electrodes via solution casting. We prepared aminophenyl-grafted inverse opal carbons (a-IOC), inverse opal carbons with mesopores (mIOC), and bare inverse opal carbons (IOC) and investigated the electrochemical behavior of these samples as anode materials. Surface modification by aminophenyl groups was confirmed by XPS measurements. TEM images showed mesopores, and the specific area of mIOC was compared with that of IOC using BET analysis. A half-cell test was performed to compare a-IOC with IOC and mIOC with IOC. In the case of the a-IOC structure, the cell test revealed no improvement in the reversible specific capacity or the cycle performance. The mIOC cell showed a reversible specific capacity of 432 mAh/g, and the capacity was maintained at 88%-approximately 380 mAh/g-over 20 cycles.
Sparse inverse covariance estimation with the graphical lasso.
Friedman, Jerome; Hastie, Trevor; Tibshirani, Robert
2008-07-01
We consider the problem of estimating sparse graphs by a lasso penalty applied to the inverse covariance matrix. Using a coordinate descent procedure for the lasso, we develop a simple algorithm--the graphical lasso--that is remarkably fast: It solves a 1000-node problem ( approximately 500,000 parameters) in at most a minute and is 30-4000 times faster than competing methods. It also provides a conceptual link between the exact problem and the approximation suggested by Meinshausen and Bühlmann (2006). We illustrate the method on some cell-signaling data from proteomics.
Superconductivity in Pb inverse opal
International Nuclear Information System (INIS)
Aliev, Ali E.; Lee, Sergey B.; Zakhidov, Anvar A.; Baughman, Ray H.
2007-01-01
Type-II superconducting behavior was observed in highly periodic three-dimensional lead inverse opal prepared by infiltration of melted Pb in blue (D = 160 nm), green (D = 220 nm) and red (D = 300 nm) opals and followed by the extraction of the SiO 2 spheres by chemical etching. The onset of a broad phase transition (ΔT = 0.3 K) was shifted from T c = 7.196 K for bulk Pb to T c = 7.325 K. The upper critical field H c2 (3150 Oe) measured from high-field hysteresis loops exceeds the critical field for bulk lead (803 Oe) fourfold. Two well resolved peaks observed in the hysteresis loops were ascribed to flux penetration into the cylindrical void space that can be found in inverse opal structure and into the periodic structure of Pb nanoparticles. The red inverse opal shows pronounced oscillations of magnetic moment in the mixed state at low temperatures, T 0.9T c has been observed for all of the samples studied. The magnetic field periodicity of resistivity modulation is in good agreement with the lattice parameter of the inverse opal structure. We attribute the failure to observe pronounced modulation in magneto-resistive measurement to difficulties in the precision orientation of the sample along the magnetic field
Inverse problem of solar oscillations
International Nuclear Information System (INIS)
Sekii, T.; Shibahashi, H.
1987-01-01
The authors present some preliminary results of numerical simulation to infer the sound velocity distribution in the solar interior from the oscillation data of the Sun as the inverse problem. They analyze the acoustic potential itself by taking account of some factors other than the sound velocity, and infer the sound velocity distribution in the deep interior of the Sun
A thermodynamic approximation of the groundstate of antiferromagnetic Heisenberg spin-1/2 lattices
Tielen, G.I.; Iske, P.L.; Caspers, W.J.; Caspers, W.J.
1991-01-01
The exact ground state of finite Heisenberg spin−1/2 lattices isstudied. The coefficients of the so-called Ising configurations contributing to the ground state are approximated by Boltzmann-like expressions. These expressions contain a parameter that may be related to an inverse temperature.
DEFF Research Database (Denmark)
Guedes, J.M.; Rodrigues, H.C.; Bendsøe, Martin P.
2003-01-01
This paper describes a computational model, based on inverse homogenization and topology design, for approximating energy bounds for two-phase composites under multiple load cases. The approach allows for the identification of possible single-scale cellular materials that give rise to the optimal...
Workflows for Full Waveform Inversions
Boehm, Christian; Krischer, Lion; Afanasiev, Michael; van Driel, Martin; May, Dave A.; Rietmann, Max; Fichtner, Andreas
2017-04-01
Despite many theoretical advances and the increasing availability of high-performance computing clusters, full seismic waveform inversions still face considerable challenges regarding data and workflow management. While the community has access to solvers which can harness modern heterogeneous computing architectures, the computational bottleneck has fallen to these often manpower-bounded issues that need to be overcome to facilitate further progress. Modern inversions involve huge amounts of data and require a tight integration between numerical PDE solvers, data acquisition and processing systems, nonlinear optimization libraries, and job orchestration frameworks. To this end we created a set of libraries and applications revolving around Salvus (http://salvus.io), a novel software package designed to solve large-scale full waveform inverse problems. This presentation focuses on solving passive source seismic full waveform inversions from local to global scales with Salvus. We discuss (i) design choices for the aforementioned components required for full waveform modeling and inversion, (ii) their implementation in the Salvus framework, and (iii) how it is all tied together by a usable workflow system. We combine state-of-the-art algorithms ranging from high-order finite-element solutions of the wave equation to quasi-Newton optimization algorithms using trust-region methods that can handle inexact derivatives. All is steered by an automated interactive graph-based workflow framework capable of orchestrating all necessary pieces. This naturally facilitates the creation of new Earth models and hopefully sparks new scientific insights. Additionally, and even more importantly, it enhances reproducibility and reliability of the final results.
DEFF Research Database (Denmark)
Meincke, Peter
2001-01-01
A new 2.5D inversion scheme is derived for fixed-offset ground penetrating radar (GPR) that takes into account the planar air-soil interface. The inversion scheme is based upon the first Born approximation and a far-field approximation of the dyadic Green function for a two-layer medium....
Trajectory averaging for stochastic approximation MCMC algorithms
Liang, Faming
2010-01-01
to the stochastic approximation Monte Carlo algorithm [Liang, Liu and Carroll J. Amer. Statist. Assoc. 102 (2007) 305-320]. The application of the trajectory averaging estimator to other stochastic approximationMCMC algorithms, for example, a stochastic
Reduction of Linear Programming to Linear Approximation
Vaserstein, Leonid N.
2006-01-01
It is well known that every Chebyshev linear approximation problem can be reduced to a linear program. In this paper we show that conversely every linear program can be reduced to a Chebyshev linear approximation problem.
Complexity analysis of accelerated MCMC methods for Bayesian inversion
International Nuclear Information System (INIS)
Hoang, Viet Ha; Schwab, Christoph; Stuart, Andrew M
2013-01-01
The Bayesian approach to inverse problems, in which the posterior probability distribution on an unknown field is sampled for the purposes of computing posterior expectations of quantities of interest, is starting to become computationally feasible for partial differential equation (PDE) inverse problems. Balancing the sources of error arising from finite-dimensional approximation of the unknown field, the PDE forward solution map and the sampling of the probability space under the posterior distribution are essential for the design of efficient computational Bayesian methods for PDE inverse problems. We study Bayesian inversion for a model elliptic PDE with an unknown diffusion coefficient. We provide complexity analyses of several Markov chain Monte Carlo (MCMC) methods for the efficient numerical evaluation of expectations under the Bayesian posterior distribution, given data δ. Particular attention is given to bounds on the overall work required to achieve a prescribed error level ε. Specifically, we first bound the computational complexity of ‘plain’ MCMC, based on combining MCMC sampling with linear complexity multi-level solvers for elliptic PDE. Our (new) work versus accuracy bounds show that the complexity of this approach can be quite prohibitive. Two strategies for reducing the computational complexity are then proposed and analyzed: first, a sparse, parametric and deterministic generalized polynomial chaos (gpc) ‘surrogate’ representation of the forward response map of the PDE over the entire parameter space, and, second, a novel multi-level Markov chain Monte Carlo strategy which utilizes sampling from a multi-level discretization of the posterior and the forward PDE. For both of these strategies, we derive asymptotic bounds on work versus accuracy, and hence asymptotic bounds on the computational complexity of the algorithms. In particular, we provide sufficient conditions on the regularity of the unknown coefficients of the PDE and on the
Some relations between entropy and approximation numbers
Institute of Scientific and Technical Information of China (English)
郑志明
1999-01-01
A general result is obtained which relates the entropy numbers of compact maps on Hilbert space to its approximation numbers. Compared with previous works in this area, it is particularly convenient for dealing with the cases where the approximation numbers decay rapidly. A nice estimation between entropy and approximation numbers for noncompact maps is given.
Axiomatic Characterizations of IVF Rough Approximation Operators
Directory of Open Access Journals (Sweden)
Guangji Yu
2014-01-01
Full Text Available This paper is devoted to the study of axiomatic characterizations of IVF rough approximation operators. IVF approximation spaces are investigated. The fact that different IVF operators satisfy some axioms to guarantee the existence of different types of IVF relations which produce the same operators is proved and then IVF rough approximation operators are characterized by axioms.
An approximation for kanban controlled assembly systems
Topan, E.; Avsar, Z.M.
2011-01-01
An approximation is proposed to evaluate the steady-state performance of kanban controlled two-stage assembly systems. The development of the approximation is as follows. The considered continuous-time Markov chain is aggregated keeping the model exact, and this aggregate model is approximated
Operator approximant problems arising from quantum theory
Maher, Philip J
2017-01-01
This book offers an account of a number of aspects of operator theory, mainly developed since the 1980s, whose problems have their roots in quantum theory. The research presented is in non-commutative operator approximation theory or, to use Halmos' terminology, in operator approximants. Focusing on the concept of approximants, this self-contained book is suitable for graduate courses.
Inverse photon-photon processes
International Nuclear Information System (INIS)
Carimalo, C.; Crozon, M.; Kesler, P.; Parisi, J.
1981-12-01
We here consider inverse photon-photon processes, i.e. AB → γγX (where A, B are hadrons, in particular protons or antiprotons), at high energies. As regards the production of a γγ continuum, we show that, under specific conditions the study of such processes might provide some information on the subprocess gg γγ, involving a quark box. It is also suggested to use those processes in order to systematically look for heavy C = + structures (quarkonium states, gluonia, etc.) showing up in the γγ channel. Inverse photon-photon processes might thus become a new and fertile area of investigation in high-energy physics, provided the difficult problem of discriminating between direct photons and indirect ones can be handled in a satisfactory way
Hedland, D. A.; Degonia, P. K.
1974-01-01
The RAE-1 spacecraft inversion performed October 31, 1972 is described based upon the in-orbit dynamical data in conjunction with results obtained from previously developed computer simulation models. The computer simulations used are predictive of the satellite dynamics, including boom flexing, and are applicable during boom deployment and retraction, inter-phase coast periods, and post-deployment operations. Attitude data, as well as boom tip data, were analyzed in order to obtain a detailed description of the dynamical behavior of the spacecraft during and after the inversion. Runs were made using the computer model and the results were analyzed and compared with the real time data. Close agreement between the actual recorded spacecraft attitude and the computer simulation results was obtained.
Parameter Estimation for Partial Differential Equations by Collage-Based Numerical Approximation
Directory of Open Access Journals (Sweden)
Xiaoyan Deng
2009-01-01
into a minimization problem of a function of several variables after the partial differential equation is approximated by a differential dynamical system. Then numerical schemes for solving this minimization problem are proposed, including grid approximation and ant colony optimization. The proposed schemes are applied to a parameter estimation problem for the Belousov-Zhabotinskii equation, and the results show that the proposed approximation method is efficient for both linear and nonlinear partial differential equations with respect to unknown parameters. At worst, the presented method provides an excellent starting point for traditional inversion methods that must first select a good starting point.
Analysis of corrections to the eikonal approximation
Hebborn, C.; Capel, P.
2017-11-01
Various corrections to the eikonal approximations are studied for two- and three-body nuclear collisions with the goal to extend the range of validity of this approximation to beam energies of 10 MeV/nucleon. Wallace's correction does not improve much the elastic-scattering cross sections obtained at the usual eikonal approximation. On the contrary, a semiclassical approximation that substitutes the impact parameter by a complex distance of closest approach computed with the projectile-target optical potential efficiently corrects the eikonal approximation. This opens the possibility to analyze data measured down to 10 MeV/nucleon within eikonal-like reaction models.
Elastic reflection waveform inversion with variable density
Li, Yuanyuan; Li, Zhenchun; Alkhalifah, Tariq Ali; Guo, Qiang
2017-01-01
Elastic full waveform inversion (FWI) provides a better description of the subsurface than those given by the acoustic assumption. However it suffers from a more serious cycle skipping problem compared with the latter. Reflection waveform inversion
Multiple Scattering Model for Optical Coherence Tomography with Rytov Approximation
Li, Muxingzi
2017-04-24
Optical Coherence Tomography (OCT) is a coherence-gated, micrometer-resolution imaging technique that focuses a broadband near-infrared laser beam to penetrate into optical scattering media, e.g. biological tissues. The OCT resolution is split into two parts, with the axial resolution defined by half the coherence length, and the depth-dependent lateral resolution determined by the beam geometry, which is well described by a Gaussian beam model. The depth dependence of lateral resolution directly results in the defocusing effect outside the confocal region and restricts current OCT probes to small numerical aperture (NA) at the expense of lateral resolution near the focus. Another limitation on OCT development is the presence of a mixture of speckles due to multiple scatterers within the coherence length, and other random noise. Motivated by the above two challenges, a multiple scattering model based on Rytov approximation and Gaussian beam optics is proposed for the OCT setup. Some previous papers have adopted the first Born approximation with the assumption of small perturbation of the incident field in inhomogeneous media. The Rytov method of the same order with smooth phase perturbation assumption benefits from a wider spatial range of validity. A deconvolution method for solving the inverse problem associated with the first Rytov approximation is developed, significantly reducing the defocusing effect through depth and therefore extending the feasible range of NA.
Solution accelerators for large scale 3D electromagnetic inverse problems
International Nuclear Information System (INIS)
Newman, Gregory A.; Boggs, Paul T.
2004-01-01
We provide a framework for preconditioning nonlinear 3D electromagnetic inverse scattering problems using nonlinear conjugate gradient (NLCG) and limited memory (LM) quasi-Newton methods. Key to our approach is the use of an approximate adjoint method that allows for an economical approximation of the Hessian that is updated at each inversion iteration. Using this approximate Hessian as a preconditoner, we show that the preconditioned NLCG iteration converges significantly faster than the non-preconditioned iteration, as well as converging to a data misfit level below that observed for the non-preconditioned method. Similar conclusions are also observed for the LM iteration; preconditioned with the approximate Hessian, the LM iteration converges faster than the non-preconditioned version. At this time, however, we see little difference between the convergence performance of the preconditioned LM scheme and the preconditioned NLCG scheme. A possible reason for this outcome is the behavior of the line search within the LM iteration. It was anticipated that, near convergence, a step size of one would be approached, but what was observed, instead, were step lengths that were nowhere near one. We provide some insights into the reasons for this behavior and suggest further research that may improve the performance of the LM methods
Analytical approximation of neutron physics data
International Nuclear Information System (INIS)
Badikov, S.A.; Vinogradov, V.A.; Gaj, E.V.; Rabotnov, N.S.
1984-01-01
The method for experimental neutron-physical data analytical approximation by rational functions based on the Pade approximation is suggested. It is shown that the existence of the Pade approximation specific properties in polar zones is an extremely favourable analytical property essentially extending the convergence range and increasing its rate as compared with polynomial approximation. The Pade approximation is the particularly natural instrument for resonance curve processing as the resonances conform to the complex poles of the approximant. But even in a general case analytical representation of the data in this form is convenient and compact. Thus representation of the data on the neutron threshold reaction cross sections (BOSPOR constant library) in the form of rational functions lead to approximately twenty fold reduction of the storaged numerical information as compared with the by-point calculation at the same accWracy
A unified approach to the Darwin approximation
International Nuclear Information System (INIS)
Krause, Todd B.; Apte, A.; Morrison, P. J.
2007-01-01
There are two basic approaches to the Darwin approximation. The first involves solving the Maxwell equations in Coulomb gauge and then approximating the vector potential to remove retardation effects. The second approach approximates the Coulomb gauge equations themselves, then solves these exactly for the vector potential. There is no a priori reason that these should result in the same approximation. Here, the equivalence of these two approaches is investigated and a unified framework is provided in which to view the Darwin approximation. Darwin's original treatment is variational in nature, but subsequent applications of his ideas in the context of Vlasov's theory are not. We present here action principles for the Darwin approximation in the Vlasov context, and this serves as a consistency check on the use of the approximation in this setting
An Approximate Approach to Automatic Kernel Selection.
Ding, Lizhong; Liao, Shizhong
2016-02-02
Kernel selection is a fundamental problem of kernel-based learning algorithms. In this paper, we propose an approximate approach to automatic kernel selection for regression from the perspective of kernel matrix approximation. We first introduce multilevel circulant matrices into automatic kernel selection, and develop two approximate kernel selection algorithms by exploiting the computational virtues of multilevel circulant matrices. The complexity of the proposed algorithms is quasi-linear in the number of data points. Then, we prove an approximation error bound to measure the effect of the approximation in kernel matrices by multilevel circulant matrices on the hypothesis and further show that the approximate hypothesis produced with multilevel circulant matrices converges to the accurate hypothesis produced with kernel matrices. Experimental evaluations on benchmark datasets demonstrate the effectiveness of approximate kernel selection.
Bounded-Degree Approximations of Stochastic Networks
Energy Technology Data Exchange (ETDEWEB)
Quinn, Christopher J.; Pinar, Ali; Kiyavash, Negar
2017-06-01
We propose algorithms to approximate directed information graphs. Directed information graphs are probabilistic graphical models that depict causal dependencies between stochastic processes in a network. The proposed algorithms identify optimal and near-optimal approximations in terms of Kullback-Leibler divergence. The user-chosen sparsity trades off the quality of the approximation against visual conciseness and computational tractability. One class of approximations contains graphs with speci ed in-degrees. Another class additionally requires that the graph is connected. For both classes, we propose algorithms to identify the optimal approximations and also near-optimal approximations, using a novel relaxation of submodularity. We also propose algorithms to identify the r-best approximations among these classes, enabling robust decision making.
On a complete topological inverse polycyclic monoid
Directory of Open Access Journals (Sweden)
S. O. Bardyla
2016-12-01
Full Text Available We give sufficient conditions when a topological inverse $\\lambda$-polycyclic monoid $P_{\\lambda}$ is absolutely $H$-closed in the class of topological inverse semigroups. For every infinite cardinal $\\lambda$ we construct the coarsest semigroup inverse topology $\\tau_{mi}$ on $P_\\lambda$ and give an example of a topological inverse monoid $S$ which contains the polycyclic monoid $P_2$ as a dense discrete subsemigroup.
Moving Least Squares Method for a One-Dimensional Parabolic Inverse Problem
Directory of Open Access Journals (Sweden)
Baiyu Wang
2014-01-01
Full Text Available This paper investigates the numerical solution of a class of one-dimensional inverse parabolic problems using the moving least squares approximation; the inverse problem is the determination of an unknown source term depending on time. The collocation method is used for solving the equation; some numerical experiments are presented and discussed to illustrate the stability and high efficiency of the method.
International Nuclear Information System (INIS)
D’Amore, L; Campagna, R; Murli, A; Galletti, A; Marcellino, L
2012-01-01
The scientific and application-oriented interest in the Laplace transform and its inversion is testified by more than 1000 publications in the last century. Most of the inversion algorithms available in the literature assume that the Laplace transform function is available everywhere. Unfortunately, such an assumption is not fulfilled in the applications of the Laplace transform. Very often, one only has a finite set of data and one wants to recover an estimate of the inverse Laplace function from that. We propose a fitting model of data. More precisely, given a finite set of measurements on the real axis, arising from an unknown Laplace transform function, we construct a dth degree generalized polynomial smoothing spline, where d = 2m − 1, such that internally to the data interval it is a dth degree polynomial complete smoothing spline minimizing a regularization functional, and outside the data interval, it mimics the Laplace transform asymptotic behavior, i.e. it is a rational or an exponential function (the end behavior model), and at the boundaries of the data set it joins with regularity up to order m − 1, with the end behavior model. We analyze in detail the generalized polynomial smoothing spline of degree d = 3. This choice was motivated by the (ill)conditioning of the numerical computation which strongly depends on the degree of the complete spline. We prove existence and uniqueness of this spline. We derive the approximation error and give a priori and computable bounds of it on the whole real axis. In such a way, the generalized polynomial smoothing spline may be used in any real inversion algorithm to compute an approximation of the inverse Laplace function. Experimental results concerning Laplace transform approximation, numerical inversion of the generalized polynomial smoothing spline and comparisons with the exponential smoothing spline conclude the work. (paper)
Inversion: A Most Useful Kind of Transformation.
Dubrovsky, Vladimir
1992-01-01
The transformation assigning to every point its inverse with respect to a circle with given radius and center is called an inversion. Discusses inversion with respect to points, circles, angles, distances, space, and the parallel postulate. Exercises related to these topics are included. (MDH)
Probabilistic Geoacoustic Inversion in Complex Environments
2015-09-30
Probabilistic Geoacoustic Inversion in Complex Environments Jan Dettmer School of Earth and Ocean Sciences, University of Victoria, Victoria BC...long-range inversion methods can fail to provide sufficient resolution. For proper quantitative examination of variability, parameter uncertainty must...project aims to advance probabilistic geoacoustic inversion methods for complex ocean environments for a range of geoacoustic data types. The work is
Enhanced approximate cloaking by SH and FSH lining
International Nuclear Information System (INIS)
Li, Jingzhi; Liu, Hongyu; Sun, Hongpeng
2012-01-01
We consider approximate cloaking from a regularization viewpoint introduced in Kohn et al (2008 Inverse Problems 24 015016) for EIT and further investigated in Kohn et al (2010 Commun. Pure Appl. Math. 63 0973–1016) and Liu (2009 Inverse Problems 25 045006) for the Helmholtz equation. The cloaking schemes given by Kohn et al and Liu are shown to be (optimally) within |ln ρ| −1 in 2D and ρ in 3D of perfect cloaking, where ρ denotes the regularization parameter. In this paper, we show that by employing a sound-hard layer right outside the cloaked region, one could (optimally) achieve ρ N in R N , N ≥ 2, which significantly enhances the near-cloak. We then develop a cloaking scheme by making use of a lossy layer with well-chosen parameters. The lossy-layer cloaking scheme is shown to possess the same cloaking performance as the one with a sound-hard layer. Moreover, it is shown that the lossy layer could be taken as a finite realization of the sound-hard layer. Numerical experiments are also presented to assess the cloaking performances of all the cloaking schemes for comparisons. (paper)
Multiparameter Elastic Full Waveform Inversion with Facies-based Constraints
Zhang, Zhen-dong; Alkhalifah, Tariq; Naeini, Ehsan Zabihi; Sun, Bingbing
2018-03-01
Full waveform inversion (FWI) incorporates all the data characteristics to estimate the parameters described by the assumed physics of the subsurface. However, current efforts to utilize full waveform inversion beyond improved acoustic imaging, like in reservoir delineation, faces inherent challenges related to the limited resolution and the potential trade-off between the elastic model parameters. Some anisotropic parameters are insufficiently updated because of their minor contributions to the surface collected data. Adding rock physics constraints to the inversion helps mitigate such limited sensitivity, but current approaches to add such constraints are based on including them as a priori knowledge mostly valid around the well or as a global constraint for the whole area. Since similar rock formations inside the Earth admit consistent elastic properties and relative values of elasticity and anisotropy parameters (this enables us to define them as a seismic facies), utilizing such localized facies information in FWI can improve the resolution of inverted parameters. We propose a novel approach to use facies-based constraints in both isotropic and anisotropic elastic FWI. We invert for such facies using Bayesian theory and update them at each iteration of the inversion using both the inverted models and a prior information. We take the uncertainties of the estimated parameters (approximated by radiation patterns) into consideration and improve the quality of estimated facies maps. Four numerical examples corresponding to different acquisition, physical assumptions and model circumstances are used to verify the effectiveness of the proposed method.
Wave-equation Qs Inversion of Skeletonized Surface Waves
Li, Jing
2017-02-08
We present a skeletonized inversion method that inverts surface-wave data for the Qs quality factor. Similar to the inversion of dispersion curves for the S-wave velocity model, the complicated surface-wave arrivals are skeletonized as simpler data, namely the amplitude spectra of the windowed Rayleigh-wave arrivals. The optimal Qs model is the one that minimizes the difference in the peak frequencies of the predicted and observed Rayleigh wave arrivals using a gradient-based wave-equation optimization method. Solutions to the viscoelastic wave-equation are used to compute the predicted Rayleigh-wave arrivals and the misfit gradient at every iteration. This procedure, denoted as wave-equation Qs inversion (WQs), does not require the assumption of a layered model and tends to have fast and robust convergence compared to full waveform inversion (FWI). Numerical examples with synthetic and field data demonstrate that the WQs method can accurately invert for a smoothed approximation to the subsurface Qs distribution as long as the Vs model is known with sufficient accuracy.
Multiparameter Elastic Full Waveform Inversion with Facies-based Constraints
Zhang, Zhendong
2018-03-20
Full waveform inversion (FWI) incorporates all the data characteristics to estimate the parameters described by the assumed physics of the subsurface. However, current efforts to utilize full waveform inversion beyond improved acoustic imaging, like in reservoir delineation, faces inherent challenges related to the limited resolution and the potential trade-off between the elastic model parameters. Some anisotropic parameters are insufficiently updated because of their minor contributions to the surface collected data. Adding rock physics constraints to the inversion helps mitigate such limited sensitivity, but current approaches to add such constraints are based on including them as a priori knowledge mostly valid around the well or as a global constraint for the whole area. Since similar rock formations inside the Earth admit consistent elastic properties and relative values of elasticity and anisotropy parameters (this enables us to define them as a seismic facies), utilizing such localized facies information in FWI can improve the resolution of inverted parameters. We propose a novel approach to use facies-based constraints in both isotropic and anisotropic elastic FWI. We invert for such facies using Bayesian theory and update them at each iteration of the inversion using both the inverted models and a prior information. We take the uncertainties of the estimated parameters (approximated by radiation patterns) into consideration and improve the quality of estimated facies maps. Four numerical examples corresponding to different acquisition, physical assumptions and model circumstances are used to verify the effectiveness of the proposed method.
Wave-equation Qs Inversion of Skeletonized Surface Waves
Li, Jing; Dutta, Gaurav; Schuster, Gerard T.
2017-01-01
We present a skeletonized inversion method that inverts surface-wave data for the Qs quality factor. Similar to the inversion of dispersion curves for the S-wave velocity model, the complicated surface-wave arrivals are skeletonized as simpler data, namely the amplitude spectra of the windowed Rayleigh-wave arrivals. The optimal Qs model is the one that minimizes the difference in the peak frequencies of the predicted and observed Rayleigh wave arrivals using a gradient-based wave-equation optimization method. Solutions to the viscoelastic wave-equation are used to compute the predicted Rayleigh-wave arrivals and the misfit gradient at every iteration. This procedure, denoted as wave-equation Qs inversion (WQs), does not require the assumption of a layered model and tends to have fast and robust convergence compared to full waveform inversion (FWI). Numerical examples with synthetic and field data demonstrate that the WQs method can accurately invert for a smoothed approximation to the subsurface Qs distribution as long as the Vs model is known with sufficient accuracy.
Inverse problems and uncertainty quantification
Litvinenko, Alexander; Matthies, Hermann G.
2013-01-01
computation in the framework of functional or spectral approximations, we demonstrate the workings of the algorithm on a number of examples of increasing complexity. At last, we compare the linear and quadratic Bayesian update on the small but taxing example
Isomorphs in the phase diagram of a model liquid without inverse power law repulsion
DEFF Research Database (Denmark)
Veldhorst, Arnold Adriaan; Bøhling, Lasse; Dyre, J. C.
2012-01-01
scattering function are calculated. The results are shown to reflect a hidden scale invariance; despite its exponential repulsion the Buckingham potential is well approximated by an inverse power-law plus a linear term in the region of the first peak of the radial distribution function. As a consequence...... the dynamics of the viscous Buckingham liquid is mimicked by a corresponding model with purely repulsive inverse-power-law interactions. The results presented here closely resemble earlier results for Lennard-Jones type liquids, demonstrating that the existence of strong correlations and isomorphs does...... not depend critically on the mathematical form of the repulsion being an inverse power law....
Wenchuan Ms8.0 earthquake coseismic slip distribution inversion
Directory of Open Access Journals (Sweden)
Hongbo Tan
2015-05-01
Full Text Available By using GPS and gravity data before and after the Wenchuan Ms8.0 earthquake and combining data from geological surveys and geophysical inversion studies, an initial coseismic fault model is constructed. The dip angle changes of the fault slip distribution on the fault plane are inversed, and the inversion results show that the shape of the fault resembles a double-shovel. The Yingxiu–Beichuan Fault is approximately 330 km long, the surface fault dip angle is 65.1°, which gradually reduces with increasing depth to 0° at the detachment layer at a depth of 19.62 km. The Guanxian–Jiangyou Fault is approximately 90 km long, and its dip angle at the surface is 55.3°, which gradually reduces with increasing depth; the fault joins the Yingxiu–Beichuan Fault at 13.75 km. Coseismic slip mainly occurs above a depth of 19 km. There are five concentrated rupture areas, Yingxiu, Wenchuan, Hanwang, Beichuan, and Pingwu, which are consistent with geological survey results and analyses of the aftershock distribution. The rupture mainly has a thrust component with a small dextral strike–slip component. The maximum slip was more than 10 m, which occurred near Beichuan and Hanwang. The seismic moment is 7.84 × 1020 Nm (Mw7.9, which is consistent with the seismological results.
Cosmological applications of Padé approximant
International Nuclear Information System (INIS)
Wei, Hao; Yan, Xiao-Peng; Zhou, Ya-Nan
2014-01-01
As is well known, in mathematics, any function could be approximated by the Padé approximant. The Padé approximant is the best approximation of a function by a rational function of given order. In fact, the Padé approximant often gives better approximation of the function than truncating its Taylor series, and it may still work where the Taylor series does not converge. In the present work, we consider the Padé approximant in two issues. First, we obtain the analytical approximation of the luminosity distance for the flat XCDM model, and find that the relative error is fairly small. Second, we propose several parameterizations for the equation-of-state parameter (EoS) of dark energy based on the Padé approximant. They are well motivated from the mathematical and physical points of view. We confront these EoS parameterizations with the latest observational data, and find that they can work well. In these practices, we show that the Padé approximant could be an useful tool in cosmology, and it deserves further investigation
Cosmological applications of Padé approximant
Wei, Hao; Yan, Xiao-Peng; Zhou, Ya-Nan
2014-01-01
As is well known, in mathematics, any function could be approximated by the Padé approximant. The Padé approximant is the best approximation of a function by a rational function of given order. In fact, the Padé approximant often gives better approximation of the function than truncating its Taylor series, and it may still work where the Taylor series does not converge. In the present work, we consider the Padé approximant in two issues. First, we obtain the analytical approximation of the luminosity distance for the flat XCDM model, and find that the relative error is fairly small. Second, we propose several parameterizations for the equation-of-state parameter (EoS) of dark energy based on the Padé approximant. They are well motivated from the mathematical and physical points of view. We confront these EoS parameterizations with the latest observational data, and find that they can work well. In these practices, we show that the Padé approximant could be an useful tool in cosmology, and it deserves further investigation.
Energy Technology Data Exchange (ETDEWEB)
Renard, F.
2003-01-01
The goal of seismic inversion is to recover an Earth model that best fits some observed data. To reach that goal, we have to minimize an objective function that measures the amplitude of the misfits according to a norm to be chosen in data space. In general, the used norm is the L2 norm. Unfortunately, such a norm is not adapted to data corrupted by correlated noise: the noise is in that case inverted as signal and the inversion results are unacceptable. The goal of this thesis is to obtain satisfactory results to the inverse problem in that situation. For this purpose, we study two inverse problems: reflection tomography and waveform inversion. In reflection tomography, we propose a new formulation of the continuum inverse problem which relies on a H1 norm in data space. This allows us to account for the correlated nature of the noise that corrupts the kinematic information. However, this norm does not give more satisfactory results than the ones obtained with the classical formalism. This is why, for sake of simplicity, we recommend to use this classical formalism. Then we try to understand how to properly sample the kinematic information so as to obtain an accurate approximation of the continuum inverse problem. In waveform inversion, we propose to directly invert data corrupted by some correlated noise. A first idea consists in rejecting the noise in the residues. In that goal, we can use a semi-norm to formulate the inverse problem. This technique gives very good results, except when the data are corrupted by random noise. Thus we propose a second method which consists in retrieving, by solving an inverse problem, the signal and the noise whose sum best fits the data. This technique gives very satisfactory results, even if some random noise pollutes the data, and is moreover solved, thanks to an original algorithm, in a very efficient way. (author)
Inverse Compton gamma-rays from pulsars
International Nuclear Information System (INIS)
Morini, M.
1983-01-01
A model is proposed for pulsar optical and gamma-ray emission where relativistic electrons beams: (i) scatter the blackbody photons from the polar cap surface giving inverse Compton gamma-rays and (ii) produce synchrotron optical photons in the light cylinder region which are then inverse Compton scattered giving other gamma-rays. The model is applied to the Vela pulsar, explaining the first gamma-ray pulse by inverse Compton scattering of synchrotron photons near the light cylinder and the second gamma-ray pulse partly by inverse Compton scattering of synchrotron photons and partly by inverse Compton scattering of the thermal blackbody photons near the star surface. (author)
Point-source inversion techniques
Langston, Charles A.; Barker, Jeffrey S.; Pavlin, Gregory B.
1982-11-01
A variety of approaches for obtaining source parameters from waveform data using moment-tensor or dislocation point source models have been investigated and applied to long-period body and surface waves from several earthquakes. Generalized inversion techniques have been applied to data for long-period teleseismic body waves to obtain the orientation, time function and depth of the 1978 Thessaloniki, Greece, event, of the 1971 San Fernando event, and of several events associated with the 1963 induced seismicity sequence at Kariba, Africa. The generalized inversion technique and a systematic grid testing technique have also been used to place meaningful constraints on mechanisms determined from very sparse data sets; a single station with high-quality three-component waveform data is often sufficient to discriminate faulting type (e.g., strike-slip, etc.). Sparse data sets for several recent California earthquakes, for a small regional event associated with the Koyna, India, reservoir, and for several events at the Kariba reservoir have been investigated in this way. Although linearized inversion techniques using the moment-tensor model are often robust, even for sparse data sets, there are instances where the simplifying assumption of a single point source is inadequate to model the data successfully. Numerical experiments utilizing synthetic data and actual data for the 1971 San Fernando earthquake graphically demonstrate that severe problems may be encountered if source finiteness effects are ignored. These techniques are generally applicable to on-line processing of high-quality digital data, but source complexity and inadequacy of the assumed Green's functions are major problems which are yet to be fully addressed.
Inversion of GPS meteorology data
Directory of Open Access Journals (Sweden)
K. Hocke
Full Text Available The GPS meteorology (GPS/MET experiment, led by the Universities Corporation for Atmospheric Research (UCAR, consists of a GPS receiver aboard a low earth orbit (LEO satellite which was launched on 3 April 1995. During a radio occultation the LEO satellite rises or sets relative to one of the 24 GPS satellites at the Earth's horizon. Thereby the atmospheric layers are successively sounded by radio waves which propagate from the GPS satellite to the LEO satellite. From the observed phase path increases, which are due to refraction of the radio waves by the ionosphere and the neutral atmosphere, the atmospheric parameter refractivity, density, pressure and temperature are calculated with high accuracy and resolution (0.5–1.5 km. In the present study, practical aspects of the GPS/MET data analysis are discussed. The retrieval is based on the Abelian integral inversion of the atmospheric bending angle profile into the refractivity index profile. The problem of the upper boundary condition of the Abelian integral is described by examples. The statistical optimization approach which is applied to the data above 40 km and the use of topside bending angle profiles from model atmospheres stabilize the inversion. The retrieved temperature profiles are compared with corresponding profiles which have already been calculated by scientists of UCAR and Jet Propulsion Laboratory (JPL, using Abelian integral inversion too. The comparison shows that in some cases large differences occur (5 K and more. This is probably due to different treatment of the upper boundary condition, data runaways and noise. Several temperature profiles with wavelike structures at tropospheric and stratospheric heights are shown. While the periodic structures at upper stratospheric heights could be caused by residual errors of the ionospheric correction method, the periodic temperature fluctuations at heights below 30 km are most likely caused by atmospheric waves (vertically
Multilevel Monte Carlo in Approximate Bayesian Computation
Jasra, Ajay
2017-02-13
In the following article we consider approximate Bayesian computation (ABC) inference. We introduce a method for numerically approximating ABC posteriors using the multilevel Monte Carlo (MLMC). A sequential Monte Carlo version of the approach is developed and it is shown under some assumptions that for a given level of mean square error, this method for ABC has a lower cost than i.i.d. sampling from the most accurate ABC approximation. Several numerical examples are given.
Uniform analytic approximation of Wigner rotation matrices
Hoffmann, Scott E.
2018-02-01
We derive the leading asymptotic approximation, for low angle θ, of the Wigner rotation matrix elements, dm1m2 j(θ ) , uniform in j, m1, and m2. The result is in terms of a Bessel function of integer order. We numerically investigate the error for a variety of cases and find that the approximation can be useful over a significant range of angles. This approximation has application in the partial wave analysis of wavepacket scattering.
Exact and approximate multiple diffraction calculations
International Nuclear Information System (INIS)
Alexander, Y.; Wallace, S.J.; Sparrow, D.A.
1976-08-01
A three-body potential scattering problem is solved in the fixed scatterer model exactly and approximately to test the validity of commonly used assumptions of multiple scattering calculations. The model problem involves two-body amplitudes that show diffraction-like differential scattering similar to high energy hadron-nucleon amplitudes. The exact fixed scatterer calculations are compared to Glauber approximation, eikonal-expansion results and a noneikonal approximation
Bent approximations to synchrotron radiation optics
International Nuclear Information System (INIS)
Heald, S.
1981-01-01
Ideal optical elements can be approximated by bending flats or cylinders. This paper considers the applications of these approximate optics to synchrotron radiation. Analytic and raytracing studies are used to compare their optical performance with the corresponding ideal elements. It is found that for many applications the performance is adequate, with the additional advantages of lower cost and greater flexibility. Particular emphasis is placed on obtaining the practical limitations on the use of the approximate elements in typical beamline configurations. Also considered are the possibilities for approximating very long length mirrors using segmented mirrors
Local density approximations for relativistic exchange energies
International Nuclear Information System (INIS)
MacDonald, A.H.
1986-01-01
The use of local density approximations to approximate exchange interactions in relativistic electron systems is reviewed. Particular attention is paid to the physical content of these exchange energies by discussing results for the uniform relativistic electron gas from a new point of view. Work on applying these local density approximations in atoms and solids is reviewed and it is concluded that good accuracy is usually possible provided self-interaction corrections are applied. The local density approximations necessary for spin-polarized relativistic systems are discussed and some new results are presented
Approximate maximum parsimony and ancestral maximum likelihood.
Alon, Noga; Chor, Benny; Pardi, Fabio; Rapoport, Anat
2010-01-01
We explore the maximum parsimony (MP) and ancestral maximum likelihood (AML) criteria in phylogenetic tree reconstruction. Both problems are NP-hard, so we seek approximate solutions. We formulate the two problems as Steiner tree problems under appropriate distances. The gist of our approach is the succinct characterization of Steiner trees for a small number of leaves for the two distances. This enables the use of known Steiner tree approximation algorithms. The approach leads to a 16/9 approximation ratio for AML and asymptotically to a 1.55 approximation ratio for MP.
APPROXIMATIONS TO PERFORMANCE MEASURES IN QUEUING SYSTEMS
Directory of Open Access Journals (Sweden)
Kambo, N. S.
2012-11-01
Full Text Available Approximations to various performance measures in queuing systems have received considerable attention because these measures have wide applicability. In this paper we propose two methods to approximate the queuing characteristics of a GI/M/1 system. The first method is non-parametric in nature, using only the first three moments of the arrival distribution. The second method treads the known path of approximating the arrival distribution by a mixture of two exponential distributions by matching the first three moments. Numerical examples and optimal analysis of performance measures of GI/M/1 queues are provided to illustrate the efficacy of the methods, and are compared with benchmark approximations.
Traveltime approximations for transversely isotropic media with an inhomogeneous background
Alkhalifah, Tariq
2011-05-01
A transversely isotropic (TI) model with a tilted symmetry axis is regarded as one of the most effective approximations to the Earth subsurface, especially for imaging purposes. However, we commonly utilize this model by setting the axis of symmetry normal to the reflector. This assumption may be accurate in many places, but deviations from this assumption will cause errors in the wavefield description. Using perturbation theory and Taylor\\'s series, I expand the solutions of the eikonal equation for 2D TI media with respect to the independent parameter θ, the angle the tilt of the axis of symmetry makes with the vertical, in a generally inhomogeneous TI background with a vertical axis of symmetry. I do an additional expansion in terms of the independent (anellipticity) parameter in a generally inhomogeneous elliptically anisotropic background medium. These new TI traveltime solutions are given by expansions in and θ with coefficients extracted from solving linear first-order partial differential equations. Pade approximations are used to enhance the accuracy of the representation by predicting the behavior of the higher-order terms of the expansion. A simplification of the expansion for homogenous media provides nonhyperbolic moveout descriptions of the traveltime for TI models that are more accurate than other recently derived approximations. In addition, for 3D media, I develop traveltime approximations using Taylor\\'s series type of expansions in the azimuth of the axis of symmetry. The coefficients of all these expansions can also provide us with the medium sensitivity gradients (Jacobian) for nonlinear tomographic-based inversion for the tilt in the symmetry axis. © 2011 Society of Exploration Geophysicists.
Traveltime approximations for transversely isotropic media with an inhomogeneous background
Alkhalifah, Tariq
2011-01-01
A transversely isotropic (TI) model with a tilted symmetry axis is regarded as one of the most effective approximations to the Earth subsurface, especially for imaging purposes. However, we commonly utilize this model by setting the axis of symmetry normal to the reflector. This assumption may be accurate in many places, but deviations from this assumption will cause errors in the wavefield description. Using perturbation theory and Taylor's series, I expand the solutions of the eikonal equation for 2D TI media with respect to the independent parameter θ, the angle the tilt of the axis of symmetry makes with the vertical, in a generally inhomogeneous TI background with a vertical axis of symmetry. I do an additional expansion in terms of the independent (anellipticity) parameter in a generally inhomogeneous elliptically anisotropic background medium. These new TI traveltime solutions are given by expansions in and θ with coefficients extracted from solving linear first-order partial differential equations. Pade approximations are used to enhance the accuracy of the representation by predicting the behavior of the higher-order terms of the expansion. A simplification of the expansion for homogenous media provides nonhyperbolic moveout descriptions of the traveltime for TI models that are more accurate than other recently derived approximations. In addition, for 3D media, I develop traveltime approximations using Taylor's series type of expansions in the azimuth of the axis of symmetry. The coefficients of all these expansions can also provide us with the medium sensitivity gradients (Jacobian) for nonlinear tomographic-based inversion for the tilt in the symmetry axis. © 2011 Society of Exploration Geophysicists.
Sub-Millimeter Tests of the Newtonian Inverse Square Law
International Nuclear Information System (INIS)
Adelberger, Eric
2005-01-01
It is remarkable that small-scale experiments can address important open issues in fundamental science such as: 'why is gravity so weak compared to the other interactions?' and 'why is the cosmological constant so small compared to the predictions of quantum mechanics?' String theory ideas (new scalar particles and extra dimensions) and other notions hint that Newton's Inverse-Square Law could break down at distances less than 1 mm. I will review some motivations for testing the Inverse-Square Law, and discuss recent mechanical experiments with torsion balances, small-scillators, micro-cantilevers, and ultra-cold neutrons. Our torsion-balance experiments have probed for gravitational-strength interactions with length scales down to 70 micrometers, which is approximately the diameter of a human hair.
A variational Bayesian method to inverse problems with impulsive noise
Jin, Bangti
2012-01-01
We propose a novel numerical method for solving inverse problems subject to impulsive noises which possibly contain a large number of outliers. The approach is of Bayesian type, and it exploits a heavy-tailed t distribution for data noise to achieve robustness with respect to outliers. A hierarchical model with all hyper-parameters automatically determined from the given data is described. An algorithm of variational type by minimizing the Kullback-Leibler divergence between the true posteriori distribution and a separable approximation is developed. The numerical method is illustrated on several one- and two-dimensional linear and nonlinear inverse problems arising from heat conduction, including estimating boundary temperature, heat flux and heat transfer coefficient. The results show its robustness to outliers and the fast and steady convergence of the algorithm. © 2011 Elsevier Inc.
Inverse problems in systems biology
International Nuclear Information System (INIS)
Engl, Heinz W; Lu, James; Müller, Stefan; Flamm, Christoph; Schuster, Peter; Kügler, Philipp
2009-01-01
Systems biology is a new discipline built upon the premise that an understanding of how cells and organisms carry out their functions cannot be gained by looking at cellular components in isolation. Instead, consideration of the interplay between the parts of systems is indispensable for analyzing, modeling, and predicting systems' behavior. Studying biological processes under this premise, systems biology combines experimental techniques and computational methods in order to construct predictive models. Both in building and utilizing models of biological systems, inverse problems arise at several occasions, for example, (i) when experimental time series and steady state data are used to construct biochemical reaction networks, (ii) when model parameters are identified that capture underlying mechanisms or (iii) when desired qualitative behavior such as bistability or limit cycle oscillations is engineered by proper choices of parameter combinations. In this paper we review principles of the modeling process in systems biology and illustrate the ill-posedness and regularization of parameter identification problems in that context. Furthermore, we discuss the methodology of qualitative inverse problems and demonstrate how sparsity enforcing regularization allows the determination of key reaction mechanisms underlying the qualitative behavior. (topical review)
The seismic reflection inverse problem
International Nuclear Information System (INIS)
Symes, W W
2009-01-01
The seismic reflection method seeks to extract maps of the Earth's sedimentary crust from transient near-surface recording of echoes, stimulated by explosions or other controlled sound sources positioned near the surface. Reasonably accurate models of seismic energy propagation take the form of hyperbolic systems of partial differential equations, in which the coefficients represent the spatial distribution of various mechanical characteristics of rock (density, stiffness, etc). Thus the fundamental problem of reflection seismology is an inverse problem in partial differential equations: to find the coefficients (or at least some of their properties) of a linear hyperbolic system, given the values of a family of solutions in some part of their domains. The exploration geophysics community has developed various methods for estimating the Earth's structure from seismic data and is also well aware of the inverse point of view. This article reviews mathematical developments in this subject over the last 25 years, to show how the mathematics has both illuminated innovations of practitioners and led to new directions in practice. Two themes naturally emerge: the importance of single scattering dominance and compensation for spectral incompleteness by spatial redundancy. (topical review)
Inversion theory and conformal mapping
Blair, David E
2000-01-01
It is rarely taught in an undergraduate or even graduate curriculum that the only conformal maps in Euclidean space of dimension greater than two are those generated by similarities and inversions in spheres. This is in stark contrast to the wealth of conformal maps in the plane. The principal aim of this text is to give a treatment of this paucity of conformal maps in higher dimensions. The exposition includes both an analytic proof in general dimension and a differential-geometric proof in dimension three. For completeness, enough complex analysis is developed to prove the abundance of conformal maps in the plane. In addition, the book develops inversion theory as a subject, along with the auxiliary theme of circle-preserving maps. A particular feature is the inclusion of a paper by Carath�odory with the remarkable result that any circle-preserving transformation is necessarily a M�bius transformation, not even the continuity of the transformation is assumed. The text is at the level of advanced undergr...
LHC Report: 2 inverse femtobarns!
Mike Lamont for the LHC Team
2011-01-01
The LHC is enjoying a confluence of twos. This morning (Friday 5 August) we passed 2 inverse femtobarns delivered in 2011; the peak luminosity is now just over 2 x1033 cm-2s-1; and recently fill 2000 was in for nearly 22 hours and delivered around 90 inverse picobarns, almost twice 2010's total. In order to increase the luminosity we can increase of number of bunches, increase the number of particles per bunch, or decrease the transverse beam size at the interaction point. The beam size can be tackled in two ways: either reduce the size of the injected bunches or squeeze harder with the quadrupole magnets situated on either side of the experiments. Having increased the number of bunches to 1380, the maximum possible with a 50 ns bunch spacing, a one day meeting in Crozet decided to explore the other possibilities. The size of the beams coming from the injectors has been reduced to the minimum possible. This has brought an increase in the peak luminosity of about 50% and the 2 x 1033 cm...
Instrument developments for inverse photoemission
International Nuclear Information System (INIS)
Brenac, A.
1987-02-01
Experimental developments principally concerning electron sources for inverse photoemission are presented. The specifications of the electron beam are derived from experiment requirements, taking into account the limitations encountered (space charge divergence). For a wave vector resolution of 0.2 A -1 , the maximum current is 25 microA at 20 eV. The design of a gun providing such a beam in the range 5 to 50 eV is presented. Angle-resolved inverse photoemission experiments show angular effects at 30 eV. For an energy of 10 eV, angular effects should be stronger, but the low efficiency of the spectrometer in this range makes the experiments difficult. The total energy resolution of 0.3 eV is the result mainly of electron energy spread, as expected. The electron sources are based on field effect electron emission from a cathode consisting of a large number of microtips. The emission arises from a few atomic cells for each tip. The ultimate theoretical energy spread is 0.1 eV. This value is not attained because of an interface resistance problem. A partial solution of this problem allows measurement of an energy spread of 0.9 eV for a current of 100 microA emitted at 60 eV. These cathodes have a further advantage in that emission can occur at a low temperature [fr
Inverse problems and inverse scattering of plane waves
Ghosh Roy, Dilip N
2001-01-01
The purpose of this text is to present the theory and mathematics of inverse scattering, in a simple way, to the many researchers and professionals who use it in their everyday research. While applications range across a broad spectrum of disciplines, examples in this text will focus primarly, but not exclusively, on acoustics. The text will be especially valuable for those applied workers who would like to delve more deeply into the fundamentally mathematical character of the subject matter.Practitioners in this field comprise applied physicists, engineers, and technologists, whereas the theory is almost entirely in the domain of abstract mathematics. This gulf between the two, if bridged, can only lead to improvement in the level of scholarship in this highly important discipline. This is the book''s primary focus.
Diagonal Pade approximations for initial value problems
International Nuclear Information System (INIS)
Reusch, M.F.; Ratzan, L.; Pomphrey, N.; Park, W.
1987-06-01
Diagonal Pade approximations to the time evolution operator for initial value problems are applied in a novel way to the numerical solution of these problems by explicitly factoring the polynomials of the approximation. A remarkable gain over conventional methods in efficiency and accuracy of solution is obtained. 20 refs., 3 figs., 1 tab
Approximation properties of fine hyperbolic graphs
Indian Academy of Sciences (India)
2016-08-26
Aug 26, 2016 ... In this paper, we propose a definition of approximation property which is called the metric invariant translation approximation property for a countable discrete metric space. Moreover, we use ... Department of Applied Mathematics, Shanghai Finance University, Shanghai 201209, People's Republic of China ...
Approximation properties of fine hyperbolic graphs
Indian Academy of Sciences (India)
2010 Mathematics Subject Classification. 46L07. 1. Introduction. Given a countable discrete group G, some nice approximation properties for the reduced. C∗-algebras C∗ r (G) can give us the approximation properties of G. For example, Lance. [7] proved that the nuclearity of C∗ r (G) is equivalent to the amenability of G; ...
Non-Linear Approximation of Bayesian Update
Litvinenko, Alexander
2016-01-01
We develop a non-linear approximation of expensive Bayesian formula. This non-linear approximation is applied directly to Polynomial Chaos Coefficients. In this way, we avoid Monte Carlo sampling and sampling error. We can show that the famous Kalman Update formula is a particular case of this update.
Simultaneous approximation in scales of Banach spaces
International Nuclear Information System (INIS)
Bramble, J.H.; Scott, R.
1978-01-01
The problem of verifying optimal approximation simultaneously in different norms in a Banach scale is reduced to verification of optimal approximation in the highest order norm. The basic tool used is the Banach space interpolation method developed by Lions and Peetre. Applications are given to several problems arising in the theory of finite element methods
Approximation algorithms for guarding holey polygons ...
African Journals Online (AJOL)
Guarding edges of polygons is a version of art gallery problem.The goal is finding the minimum number of guards to cover the edges of a polygon. This problem is NP-hard, and to our knowledge there are approximation algorithms just for simple polygons. In this paper we present two approximation algorithms for guarding ...
Efficient automata constructions and approximate automata
Watson, B.W.; Kourie, D.G.; Ngassam, E.K.; Strauss, T.; Cleophas, L.G.W.A.
2008-01-01
In this paper, we present data structures and algorithms for efficiently constructing approximate automata. An approximate automaton for a regular language L is one which accepts at least L. Such automata can be used in a variety of practical applications, including network security pattern
Efficient automata constructions and approximate automata
Watson, B.W.; Kourie, D.G.; Ngassam, E.K.; Strauss, T.; Cleophas, L.G.W.A.; Holub, J.; Zdárek, J.
2006-01-01
In this paper, we present data structures and algorithms for efficiently constructing approximate automata. An approximate automaton for a regular language L is one which accepts at least L. Such automata can be used in a variety of practical applications, including network security pattern
Spline approximation, Part 1: Basic methodology
Ezhov, Nikolaj; Neitzel, Frank; Petrovic, Svetozar
2018-04-01
In engineering geodesy point clouds derived from terrestrial laser scanning or from photogrammetric approaches are almost never used as final results. For further processing and analysis a curve or surface approximation with a continuous mathematical function is required. In this paper the approximation of 2D curves by means of splines is treated. Splines offer quite flexible and elegant solutions for interpolation or approximation of "irregularly" distributed data. Depending on the problem they can be expressed as a function or as a set of equations that depend on some parameter. Many different types of splines can be used for spline approximation and all of them have certain advantages and disadvantages depending on the approximation problem. In a series of three articles spline approximation is presented from a geodetic point of view. In this paper (Part 1) the basic methodology of spline approximation is demonstrated using splines constructed from ordinary polynomials and splines constructed from truncated polynomials. In the forthcoming Part 2 the notion of B-spline will be explained in a unique way, namely by using the concept of convex combinations. The numerical stability of all spline approximation approaches as well as the utilization of splines for deformation detection will be investigated on numerical examples in Part 3.
Nonlinear approximation with general wave packets
DEFF Research Database (Denmark)
Borup, Lasse; Nielsen, Morten
2005-01-01
We study nonlinear approximation in the Triebel-Lizorkin spaces with dictionaries formed by dilating and translating one single function g. A general Jackson inequality is derived for best m-term approximation with such dictionaries. In some special cases where g has a special structure, a complete...
Quirks of Stirling's Approximation
Macrae, Roderick M.; Allgeier, Benjamin M.
2013-01-01
Stirling's approximation to ln "n"! is typically introduced to physical chemistry students as a step in the derivation of the statistical expression for the entropy. However, naive application of this approximation leads to incorrect conclusions. In this article, the problem is first illustrated using a familiar "toy…
Non-Linear Approximation of Bayesian Update
Litvinenko, Alexander
2016-06-23
We develop a non-linear approximation of expensive Bayesian formula. This non-linear approximation is applied directly to Polynomial Chaos Coefficients. In this way, we avoid Monte Carlo sampling and sampling error. We can show that the famous Kalman Update formula is a particular case of this update.
Approximations for stop-loss reinsurance premiums
Reijnen, Rajko; Albers, Willem/Wim; Kallenberg, W.C.M.
2005-01-01
Various approximations of stop-loss reinsurance premiums are described in literature. For a wide variety of claim size distributions and retention levels, such approximations are compared in this paper to each other, as well as to a quantitative criterion. For the aggregate claims two models are
Improved Dutch Roll Approximation for Hypersonic Vehicle
Directory of Open Access Journals (Sweden)
Liang-Liang Yin
2014-06-01
Full Text Available An improved dutch roll approximation for hypersonic vehicle is presented. From the new approximations, the dutch roll frequency is shown to be a function of the stability axis yaw stability and the dutch roll damping is mainly effected by the roll damping ratio. In additional, an important parameter called roll-to-yaw ratio is obtained to describe the dutch roll mode. Solution shows that large-roll-to-yaw ratio is the generate character of hypersonic vehicle, which results the large error for the practical approximation. Predictions from the literal approximations derived in this paper are compared with actual numerical values for s example hypersonic vehicle, results show the approximations work well and the error is below 10 %.
Approximate error conjugation gradient minimization methods
Kallman, Jeffrey S
2013-05-21
In one embodiment, a method includes selecting a subset of rays from a set of all rays to use in an error calculation for a constrained conjugate gradient minimization problem, calculating an approximate error using the subset of rays, and calculating a minimum in a conjugate gradient direction based on the approximate error. In another embodiment, a system includes a processor for executing logic, logic for selecting a subset of rays from a set of all rays to use in an error calculation for a constrained conjugate gradient minimization problem, logic for calculating an approximate error using the subset of rays, and logic for calculating a minimum in a conjugate gradient direction based on the approximate error. In other embodiments, computer program products, methods, and systems are described capable of using approximate error in constrained conjugate gradient minimization problems.
A new parameterization for waveform inversion in acoustic orthorhombic media
Masmoudi, Nabil
2016-05-26
Orthorhombic anisotropic model inversion is extra challenging because of the multiple parameter nature of the inversion problem. The high number of parameters required to describe the medium exerts considerable trade-off and additional nonlinearity to a full-waveform inversion (FWI) application. Choosing a suitable set of parameters to describe the model and designing an effective inversion strategy can help in mitigating this problem. Using the Born approximation, which is the central ingredient of the FWI update process, we have derived radiation patterns for the different acoustic orthorhombic parameterizations. Analyzing the angular dependence of scattering (radiation patterns) of the parameters of different parameterizations starting with the often used Thomsen-Tsvankin parameterization, we have assessed the potential trade-off between the parameters and the resolution in describing the data and inverting for the parameters. The analysis led us to introduce new parameters ϵd, δd, and ηd, which have azimuthally dependent radiation patterns, but keep the scattering potential of the transversely isotropic parameters stationary with azimuth (azimuth independent). The novel parameters ϵd, δd, and ηd are dimensionless and represent a measure of deviation between the vertical planes in orthorhombic anisotropy. Therefore, these deviation parameters offer a new parameterization style for an acoustic orthorhombic medium described by six parameters: three vertical transversely isotropic (VTI) parameters, two deviation parameters, and one parameter describing the anisotropy in the horizontal symmetry plane. The main feature of any parameterization based on the deviation parameters, is the azimuthal independency of the modeled data with respect to the VTI parameters, which allowed us to propose practical inversion strategies based on our experience with the VTI parameters. This feature of the new parameterization style holds for even the long-wavelength components of
Energy Technology Data Exchange (ETDEWEB)
Maliassov, S.Y. [Texas A& M Univ., College Station, TX (United States)
1996-12-31
An approach to the construction of an iterative method for solving systems of linear algebraic equations arising from nonconforming finite element discretizations with nonmatching grids for second order elliptic boundary value problems with anisotropic coefficients is considered. The technique suggested is based on decomposition of the original domain into nonoverlapping subdomains. The elliptic problem is presented in the macro-hybrid form with Lagrange multipliers at the interfaces between subdomains. A block diagonal preconditioner is proposed which is spectrally equivalent to the original saddle point matrix and has the optimal order of arithmetical complexity. The preconditioner includes blocks for preconditioning subdomain and interface problems. It is shown that constants of spectral equivalence axe independent of values of coefficients and mesh step size.
Inverse scattering theory foundations of tomography with diffracting wavefields
International Nuclear Information System (INIS)
Devaney, A.J.
1987-01-01
The underlying mathematical models employed in reflection and transmission computed tomography using diffracting wavefields (called diffraction tomography) are reviewed and shown to have a rigorous basis in inverse scattering theory. In transmission diffraction tomography the underlying wave model is shown to be the Rytov approximation to the complex phase of the wavefield transmitted by the object being probed while in reflection diffraction tomography the underlying wave model is shown to be the Born approximation to the backscattered wavefield from the object. In both cases the goal of the reconstruction process is the determination of the objects's complex index of refraction as a function of position r/sup →/ and, possibly, the frequency ω of the probing wavefield. By use of these approximations the reconstruction problem for both transmission and reflection diffraction tomography can be cast into the simple and elegant form of linearized inverse scattering theory. Linearized inverse scattering theory is shown to lead directly to generalized projection-slice theorems for both reflection and transmission diffraction tomography that provide a simple mathematical relationship between the object's complex index of refraction (the unknown) and the data (the complex phase of the transmitted wave or the complex amplitude of the reflected wave). The conventional projection-slice theorem of X-ray CT is shown to result from the generalized projection-slice theorem for transmission diffraction tomography in the limit of vanishing wavelength (in the absence of wave effects). Fourier based and back-projection type reconstruction algorithms are shown to be directly derivable from the generalized projection-slice theorems
Wake Vortex Inverse Model User's Guide
Lai, David; Delisi, Donald
2008-01-01
NorthWest Research Associates (NWRA) has developed an inverse model for inverting landing aircraft vortex data. The data used for the inversion are the time evolution of the lateral transport position and vertical position of both the port and starboard vortices. The inverse model performs iterative forward model runs using various estimates of vortex parameters, vertical crosswind profiles, and vortex circulation as a function of wake age. Forward model predictions of lateral transport and altitude are then compared with the observed data. Differences between the data and model predictions guide the choice of vortex parameter values, crosswind profile and circulation evolution in the next iteration. Iterations are performed until a user-defined criterion is satisfied. Currently, the inverse model is set to stop when the improvement in the rms deviation between the data and model predictions is less than 1 percent for two consecutive iterations. The forward model used in this inverse model is a modified version of the Shear-APA model. A detailed description of this forward model, the inverse model, and its validation are presented in a different report (Lai, Mellman, Robins, and Delisi, 2007). This document is a User's Guide for the Wake Vortex Inverse Model. Section 2 presents an overview of the inverse model program. Execution of the inverse model is described in Section 3. When executing the inverse model, a user is requested to provide the name of an input file which contains the inverse model parameters, the various datasets, and directories needed for the inversion. A detailed description of the list of parameters in the inversion input file is presented in Section 4. A user has an option to save the inversion results of each lidar track in a mat-file (a condensed data file in Matlab format). These saved mat-files can be used for post-inversion analysis. A description of the contents of the saved files is given in Section 5. An example of an inversion input
Directory of Open Access Journals (Sweden)
Ichitaro Yamazaki
2015-01-01
of their low-rank properties. To compute a low-rank approximation of a dense matrix, in this paper, we study the performance of QR factorization with column pivoting or with restricted pivoting on multicore CPUs with a GPU. We first propose several techniques to reduce the postprocessing time, which is required for restricted pivoting, on a modern CPU. We then examine the potential of using a GPU to accelerate the factorization process with both column and restricted pivoting. Our performance results on two eight-core Intel Sandy Bridge CPUs with one NVIDIA Kepler GPU demonstrate that using the GPU, the factorization time can be reduced by a factor of more than two. In addition, to study the performance of our implementations in practice, we integrate them into a recently developed software StruMF which algebraically exploits such low-rank structures for solving a general sparse linear system of equations. Our performance results for solving Poisson's equations demonstrate that the proposed techniques can significantly reduce the preconditioner construction time of StruMF on the CPUs, and the construction time can be further reduced by 10%–50% using the GPU.
Inverse diffusion theory of photoacoustics
International Nuclear Information System (INIS)
Bal, Guillaume; Uhlmann, Gunther
2010-01-01
This paper analyzes the reconstruction of diffusion and absorption parameters in an elliptic equation from knowledge of internal data. In the application of photoacoustics, the internal data are the amount of thermal energy deposited by high frequency radiation propagating inside a domain of interest. These data are obtained by solving an inverse wave equation, which is well studied in the literature. We show that knowledge of two internal data based on well-chosen boundary conditions uniquely determines two constitutive parameters in diffusion and Schrödinger equations. Stability of the reconstruction is guaranteed under additional geometric constraints of strict convexity. No geometric constraints are necessary when 2n internal data for well-chosen boundary conditions are available, where n is spatial dimension. The set of well-chosen boundary conditions is characterized in terms of appropriate complex geometrical optics solutions
Optimization and inverse problems in electromagnetism
Wiak, Sławomir
2003-01-01
From 12 to 14 September 2002, the Academy of Humanities and Economics (AHE) hosted the workshop "Optimization and Inverse Problems in Electromagnetism". After this bi-annual event, a large number of papers were assembled and combined in this book. During the workshop recent developments and applications in optimization and inverse methodologies for electromagnetic fields were discussed. The contributions selected for the present volume cover a wide spectrum of inverse and optimal electromagnetic methodologies, ranging from theoretical to practical applications. A number of new optimal and inverse methodologies were proposed. There are contributions related to dedicated software. Optimization and Inverse Problems in Electromagnetism consists of three thematic chapters, covering: -General papers (survey of specific aspects of optimization and inverse problems in electromagnetism), -Methodologies, -Industrial Applications. The book can be useful to students of electrical and electronics engineering, computer sci...
Reverse Universal Resolving Algorithm and inverse driving
DEFF Research Database (Denmark)
Pécseli, Thomas
2012-01-01
Inverse interpretation is a semantics based, non-standard interpretation of programs. Given a program and a value, an inverse interpreter finds all or one of the inputs, that would yield the given value as output with normal forward evaluation. The Reverse Universal Resolving Algorithm is a new...... variant of the Universal Resolving Algorithm for inverse interpretation. The new variant outperforms the original algorithm in several cases, e.g., when unpacking a list using inverse interpretation of a pack program. It uses inverse driving as its main technique, which has not been described in detail...... before. Inverse driving may find application with, e.g., supercompilation, thus suggesting a new kind of program inverter....
Solution to the inversely stated transient source-receptor problem
International Nuclear Information System (INIS)
Sajo, E.; Sheff, J.R.
1995-01-01
Transient source-receptor problems are traditionally handled via the Boltzmann equation or through one of its variants. In the atmospheric transport of pollutants, meteorological uncertainties in the planetary boundary layer render only a few approximations to the Boltzmann equation useful. Often, due to the high number of unknowns, the atmospheric source-receptor problem is ill-posed. Moreover, models to estimate downwind concentration invariably assume that the source term is known. In this paper, an inverse methodology is developed, based on downwind measurement of concentration and that of meterological parameters to estimate the source term
Regression with Sparse Approximations of Data
DEFF Research Database (Denmark)
Noorzad, Pardis; Sturm, Bob L.
2012-01-01
We propose sparse approximation weighted regression (SPARROW), a method for local estimation of the regression function that uses sparse approximation with a dictionary of measurements. SPARROW estimates the regression function at a point with a linear combination of a few regressands selected...... by a sparse approximation of the point in terms of the regressors. We show SPARROW can be considered a variant of \\(k\\)-nearest neighbors regression (\\(k\\)-NNR), and more generally, local polynomial kernel regression. Unlike \\(k\\)-NNR, however, SPARROW can adapt the number of regressors to use based...
Conditional Density Approximations with Mixtures of Polynomials
DEFF Research Database (Denmark)
Varando, Gherardo; López-Cruz, Pedro L.; Nielsen, Thomas Dyhre
2015-01-01
Mixtures of polynomials (MoPs) are a non-parametric density estimation technique especially designed for hybrid Bayesian networks with continuous and discrete variables. Algorithms to learn one- and multi-dimensional (marginal) MoPs from data have recently been proposed. In this paper we introduce...... two methods for learning MoP approximations of conditional densities from data. Both approaches are based on learning MoP approximations of the joint density and the marginal density of the conditioning variables, but they differ as to how the MoP approximation of the quotient of the two densities...
Hardness and Approximation for Network Flow Interdiction
Chestnut, Stephen R.; Zenklusen, Rico
2015-01-01
In the Network Flow Interdiction problem an adversary attacks a network in order to minimize the maximum s-t-flow. Very little is known about the approximatibility of this problem despite decades of interest in it. We present the first approximation hardness, showing that Network Flow Interdiction and several of its variants cannot be much easier to approximate than Densest k-Subgraph. In particular, any $n^{o(1)}$-approximation algorithm for Network Flow Interdiction would imply an $n^{o(1)}...
Approximation of the semi-infinite interval
Directory of Open Access Journals (Sweden)
A. McD. Mercer
1980-01-01
Full Text Available The approximation of a function f∈C[a,b] by Bernstein polynomials is well-known. It is based on the binomial distribution. O. Szasz has shown that there are analogous approximations on the interval [0,∞ based on the Poisson distribution. Recently R. Mohapatra has generalized Szasz' result to the case in which the approximating function is αe−ux∑k=N∞(uxkα+β−1Γ(kα+βf(kαuThe present note shows that these results are special cases of a Tauberian theorem for certain infinite series having positive coefficients.
Mathematical analysis, approximation theory and their applications
Gupta, Vijay
2016-01-01
Designed for graduate students, researchers, and engineers in mathematics, optimization, and economics, this self-contained volume presents theory, methods, and applications in mathematical analysis and approximation theory. Specific topics include: approximation of functions by linear positive operators with applications to computer aided geometric design, numerical analysis, optimization theory, and solutions of differential equations. Recent and significant developments in approximation theory, special functions and q-calculus along with their applications to mathematics, engineering, and social sciences are discussed and analyzed. Each chapter enriches the understanding of current research problems and theories in pure and applied research.
Inverse kinematics of OWI-535 robotic arm
DEBENEC, PRIMOŽ
2015-01-01
The thesis aims to calculate the inverse kinematics for the OWI-535 robotic arm. The calculation of the inverse kinematics determines the joint parameters that provide the right pose of the end effector. The pose consists of the position and orientation, however, we will focus only on the second one. Due to arm limitations, we have created our own type of the calculation of the inverse kinematics. At first we have derived it only theoretically, and then we have transferred the derivation into...
Automatic Flight Controller With Model Inversion
Meyer, George; Smith, G. Allan
1992-01-01
Automatic digital electronic control system based on inverse-model-follower concept being developed for proposed vertical-attitude-takeoff-and-landing airplane. Inverse-model-follower control places inverse mathematical model of dynamics of controlled plant in series with control actuators of controlled plant so response of combination of model and plant to command is unity. System includes feedback to compensate for uncertainties in mathematical model and disturbances imposed from without.
Lectures on the inverse scattering method
International Nuclear Information System (INIS)
Zakharov, V.E.
1983-06-01
In a series of six lectures an elementary introduction to the theory of inverse scattering is given. The first four lectures contain a detailed theory of solitons in the framework of the KdV equation, together with the inverse scattering theory of the one-dimensional Schroedinger equation. In the fifth lecture the dressing method is described, while the sixth lecture gives a brief review of the equations soluble by the inverse scattering method. (author)
Bayesian approach to inverse statistical mechanics
Habeck, Michael
2014-05-01
Inverse statistical mechanics aims to determine particle interactions from ensemble properties. This article looks at this inverse problem from a Bayesian perspective and discusses several statistical estimators to solve it. In addition, a sequential Monte Carlo algorithm is proposed that draws the interaction parameters from their posterior probability distribution. The posterior probability involves an intractable partition function that is estimated along with the interactions. The method is illustrated for inverse problems of varying complexity, including the estimation of a temperature, the inverse Ising problem, maximum entropy fitting, and the reconstruction of molecular interaction potentials.
Time-reversal and Bayesian inversion
Debski, Wojciech
2017-04-01
Probabilistic inversion technique is superior to the classical optimization-based approach in all but one aspects. It requires quite exhaustive computations which prohibit its use in huge size inverse problems like global seismic tomography or waveform inversion to name a few. The advantages of the approach are, however, so appealing that there is an ongoing continuous afford to make the large inverse task as mentioned above manageable with the probabilistic inverse approach. One of the perspective possibility to achieve this goal relays on exploring the internal symmetry of the seismological modeling problems in hand - a time reversal and reciprocity invariance. This two basic properties of the elastic wave equation when incorporating into the probabilistic inversion schemata open a new horizons for Bayesian inversion. In this presentation we discuss the time reversal symmetry property, its mathematical aspects and propose how to combine it with the probabilistic inverse theory into a compact, fast inversion algorithm. We illustrate the proposed idea with the newly developed location algorithm TRMLOC and discuss its efficiency when applied to mining induced seismic data.
Inverse Kinematics of a Serial Robot
Directory of Open Access Journals (Sweden)
Amici Cinzia
2016-01-01
Full Text Available This work describes a technique to treat the inverse kinematics of a serial manipulator. The inverse kinematics is obtained through the numerical inversion of the Jacobian matrix, that represents the equation of motion of the manipulator. The inversion is affected by numerical errors and, in different conditions, due to the numerical nature of the solver, it does not converge to a reasonable solution. Thus a soft computing approach is adopted to mix different traditional methods to obtain an increment of algorithmic convergence.
Multilevel weighted least squares polynomial approximation
Haji-Ali, Abdul-Lateef; Nobile, Fabio; Tempone, Raul; Wolfers, Sö ren
2017-01-01
, obtaining polynomial approximations with a single level method can become prohibitively expensive, as it requires a sufficiently large number of samples, each computed with a sufficiently small discretization error. As a solution to this problem, we propose
Low Rank Approximation Algorithms, Implementation, Applications
Markovsky, Ivan
2012-01-01
Matrix low-rank approximation is intimately related to data modelling; a problem that arises frequently in many different fields. Low Rank Approximation: Algorithms, Implementation, Applications is a comprehensive exposition of the theory, algorithms, and applications of structured low-rank approximation. Local optimization methods and effective suboptimal convex relaxations for Toeplitz, Hankel, and Sylvester structured problems are presented. A major part of the text is devoted to application of the theory. Applications described include: system and control theory: approximate realization, model reduction, output error, and errors-in-variables identification; signal processing: harmonic retrieval, sum-of-damped exponentials, finite impulse response modeling, and array processing; machine learning: multidimensional scaling and recommender system; computer vision: algebraic curve fitting and fundamental matrix estimation; bioinformatics for microarray data analysis; chemometrics for multivariate calibration; ...
Nonlinear Ritz approximation for Fredholm functionals
Directory of Open Access Journals (Sweden)
Mudhir A. Abdul Hussain
2015-11-01
Full Text Available In this article we use the modify Lyapunov-Schmidt reduction to find nonlinear Ritz approximation for a Fredholm functional. This functional corresponds to a nonlinear Fredholm operator defined by a nonlinear fourth-order differential equation.
Euclidean shortest paths exact or approximate algorithms
Li, Fajie
2014-01-01
This book reviews algorithms for the exact or approximate solution of shortest-path problems, with a specific focus on a class of algorithms called rubberband algorithms. The coverage includes mathematical proofs for many of the given statements.
Square well approximation to the optical potential
International Nuclear Information System (INIS)
Jain, A.K.; Gupta, M.C.; Marwadi, P.R.
1976-01-01
Approximations for obtaining T-matrix elements for a sum of several potentials in terms of T-matrices for individual potentials are studied. Based on model calculations for S-wave for a sum of two separable non-local potentials of Yukawa type form factors and a sum of two delta function potentials, it is shown that the T-matrix for a sum of several potentials can be approximated satisfactorily over all the energy regions by the sum of T-matrices for individual potentials. Based on this, an approximate method for finding T-matrix for any local potential by approximating it by a sum of suitable number of square wells is presented. This provides an interesting way to calculate the T-matrix for any arbitary potential in terms of Bessel functions to a good degree of accuracy. The method is applied to the Saxon-Wood potentials and good agreement with exact results is found. (author)
Approximation for the adjoint neutron spectrum
International Nuclear Information System (INIS)
Suster, Luis Carlos; Martinez, Aquilino Senra; Silva, Fernando Carvalho da
2002-01-01
The proposal of this work is the determination of an analytical approximation which is capable to reproduce the adjoint neutron flux for the energy range of the narrow resonances (NR). In a previous work we developed a method for the calculation of the adjoint spectrum which was calculated from the adjoint neutron balance equations, that were obtained by the collision probabilities method, this method involved a considerable quantity of numerical calculation. In the analytical method some approximations were done, like the multiplication of the escape probability in the fuel by the adjoint flux in the moderator, and after these approximations, taking into account the case of the narrow resonances, were substituted in the adjoint neutron balance equation for the fuel, resulting in an analytical approximation for the adjoint flux. The results obtained in this work were compared to the results generated with the reference method, which demonstrated a good and precise results for the adjoint neutron flux for the narrow resonances. (author)
Saddlepoint approximation methods in financial engineering
Kwok, Yue Kuen
2018-01-01
This book summarizes recent advances in applying saddlepoint approximation methods to financial engineering. It addresses pricing exotic financial derivatives and calculating risk contributions to Value-at-Risk and Expected Shortfall in credit portfolios under various default correlation models. These standard problems involve the computation of tail probabilities and tail expectations of the corresponding underlying state variables. The text offers in a single source most of the saddlepoint approximation results in financial engineering, with different sets of ready-to-use approximation formulas. Much of this material may otherwise only be found in original research publications. The exposition and style are made rigorous by providing formal proofs of most of the results. Starting with a presentation of the derivation of a variety of saddlepoint approximation formulas in different contexts, this book will help new researchers to learn the fine technicalities of the topic. It will also be valuable to quanti...
Methods of Fourier analysis and approximation theory
Tikhonov, Sergey
2016-01-01
Different facets of interplay between harmonic analysis and approximation theory are covered in this volume. The topics included are Fourier analysis, function spaces, optimization theory, partial differential equations, and their links to modern developments in the approximation theory. The articles of this collection were originated from two events. The first event took place during the 9th ISAAC Congress in Krakow, Poland, 5th-9th August 2013, at the section “Approximation Theory and Fourier Analysis”. The second event was the conference on Fourier Analysis and Approximation Theory in the Centre de Recerca Matemàtica (CRM), Barcelona, during 4th-8th November 2013, organized by the editors of this volume. All articles selected to be part of this collection were carefully reviewed.
Pion-nucleus cross sections approximation
International Nuclear Information System (INIS)
Barashenkov, V.S.; Polanski, A.; Sosnin, A.N.
1990-01-01
Analytical approximation of pion-nucleus elastic and inelastic interaction cross-section is suggested, with could be applied in the energy range exceeding several dozens of MeV for nuclei heavier than beryllium. 3 refs.; 4 tabs
APPROXIMATE DEVELOPMENTS FOR SURFACES OF REVOLUTION
Directory of Open Access Journals (Sweden)
Mădălina Roxana Buneci
2016-12-01
Full Text Available The purpose of this paper is provide a set of Maple procedures to construct approximate developments of a general surface of revolution generalizing the well-known gore method for sphere