WorldWideScience

Sample records for applying radiation safety

  1. Applying radiation safety standards in radiotherapy

    International Nuclear Information System (INIS)

    The International Basic Safety Standards for Protection against Ionizing Radiation and for the Safety of Radiation Sources (BSS) cover the application of ionizing radiation for all practices and interventions and are, therefore, basic and general in nature. Users of radiation sources have to apply these basic requirements to their own particular practices. This requires a degree of 'interpretation' by the user, which can result in varying levels of regulatory compliance and inconsistencies between applications of the BSS to similar practices. In this context, the preamble of the BSS states that: The [regulatory body] may need to provide guidance on how certain regulatory requirements are to be fulfilled for various practices, for example in regulatory guideline documents. In order to guide the user to achieve a good standard of protection and to achieve a consistent national approach to licensing and inspection, some countries have developed practice specific regulatory guidance, while others have practice specific regulations. For obvious reasons, national regulatory guidance is tailored to a country's own legislation and regulations. This can lead to problems if the guidance is used in other States without appropriate modification to take local requirements into account. There would therefore appear to be scope for producing internationally harmonized guidance, while bearing in mind that the ultimate responsibility for the regulatory documents rests with the State. Some regions have taken the initiative of preparing guidance to facilitate the regional harmonization of regulatory control of certain common practices (e.g. radiotherapy). A number of draft regulatory guidance documents for the main practices involving the use of ionizing radiation have already been prepared. This initiative indicates that there is a global demand for such documents. In particular, it is felt that countries participating in the IAEA's technical cooperation model project on Upgrading

  2. Applying radiation safety standards in diagnostic radiology and interventional procedures using x rays

    International Nuclear Information System (INIS)

    The International Basic Safety Standards for Protection against Ionizing Radiation and for the Safety of Radiation Sources (BSS) cover the application of ionizing radiation for all practices and interventions and are, therefore, basic and general in nature. Users of radiation sources have to apply those basic requirements to their own particular practices. That requires a degree of 'interpretation' by the user, which can result in varying levels of regulatory compliance and inconsistencies between applications of the BSS to similar practices. In this context, the Preamble of the BSS states that: 'The [regulatory body] may need to provide guidance on how certain regulatory requirements are to be fulfilled for various practices, for example in regulatory guideline documents.' In order to guide the user to achieve a good standard of protection and to achieve a consistent national approach to licensing and inspection, some countries have developed practice specific regulatory guidance, while others have practice specific regulations. National regulatory guidance is tailored to a country's own legislation and regulations for obvious reasons. This can lead to problems if the guidance is used in other States without appropriate modification to take local requirements into account. There would appear, therefore, to be scope for producing internationally harmonized guidance, while bearing in mind that the ultimate responsibility for the regulatory documents rests with the State. Some regions have taken the initiative of preparing guidance to facilitate the regional harmonization of regulatory control of certain common practices (e.g. radiology). In particular, it is felt that States participating in the IAEA's technical cooperation Model Project on Upgrading Radiation and Waste Safety Infrastructure would benefit significantly from the availability of practice specific guidance. Member States could then more readily develop their own guidance tailored to their own

  3. Applying radiation

    International Nuclear Information System (INIS)

    The invention discloses a method and apparatus for applying radiation by producing X-rays of a selected spectrum and intensity and directing them to a desired location. Radiant energy is directed from a laser onto a target to produce such X-rays at the target, which is so positioned adjacent to the desired location as to emit the X-rays toward the desired location; or such X-rays are produced in a region away from the desired location, and are channeled to the desired location. The radiant energy directing means may be shaped (as with bends; adjustable, if desired) to circumvent any obstruction between the laser and the target. Similarly, the X-ray channeling means may be shaped (as with fixed or adjustable bends) to circumvent any obstruction between the region where the X-rays are produced and the desired location. For producing a radiograph in a living organism the X-rays are provided in a short pulse to avoid any blurring of the radiograph from movement of or in the organism. For altering tissue in a living organism the selected spectrum and intensity are such as to affect substantially the tissue in a preselected volume without injuring nearby tissue. Typically, the selected spectrum comprises the range of about 0.1 to 100 keV, and the intensity is selected to provide about 100 to 1000 rads at the desired location. The X-rays may be produced by stimulated emission thereof, typically in a single direction

  4. Radiation and waste safety

    International Nuclear Information System (INIS)

    Most of the ionizing radiation that people are exposed to in day-to-day activities comes from natural, rather than manmade, sources. Nuclear radiation is a powerful source of benefit to mankind, whether applied in the field of medicine, agriculture, environmental management or elsewhere. The health effects of radiation - both natural and artificial - are relatively well understood and can be minimized through careful safety measures and practices. The Department of Technical Co-operation is sponsoring a programme with the support of the Nuclear Safety Department aiming at establishing Basic Safety Standard requirements in all Member States. (IAEA)

  5. Radiation physics and shielding codes and analyses applied to design-assist and safety analyses of CANDUR and ACRTM reactors

    International Nuclear Information System (INIS)

    This paper discusses the radiation physics and shielding codes and analyses applied in the design of CANDU and ACR reactors. The focus is on the types of analyses undertaken rather than the inputs supplied to the engineering disciplines. Nevertheless, the discussion does show how these analyses contribute to the engineering design. Analyses in radiation physics and shielding can be categorized as either design-assist or safety and licensing (accident) analyses. Many of the analyses undertaken are designated 'design-assist' where the analyses are used to generate recommendations that directly influence plant design. These recommendations are directed at mitigating or reducing the radiation hazard of the nuclear power plant with engineered systems and components. Thus the analyses serve a primary safety function by ensuring the plant can be operated with acceptable radiation hazards to the workers and public. In addition to this role of design assist, radiation physics and shielding codes are also deployed in safety and licensing assessments of the consequences of radioactive releases of gaseous and liquid effluents during normal operation and gaseous effluents following accidents. In the latter category, the final consequences of accident sequences, expressed in terms of radiation dose to members of the public, and inputs to accident analysis, e.g., decay heat in fuel following a loss-of-coolant accident, are also calculated. Another role of the analyses is to demonstrate that the design of the plant satisfies the principle of ALARA (as low as reasonably achievable) radiation doses. This principle is applied throughout the design process to minimize worker and public doses. The principle of ALARA is an inherent part of all design-assist recommendations and safety and licensing assessments. The main focus of an ALARA exercise at the design stage is to minimize the radiation hazards at the source. This exploits material selection and impurity specifications and relies

  6. Radiation Safety Compliance.

    Science.gov (United States)

    Koth, Jana; Smith, Marcia Hess

    2016-05-01

    This article discusses radiation safety programs, including the members of the radiation safety team, their roles, and the challenges they face, with a focus on the radiation safety officer's duties. Agencies that regulate radiation safety also are described. The importance of minimizing patient dose, ensuring that dosimetry badges are worn correctly, and using therapeutic radioactive materials safely are addressed. Finally, radiologic technologists' role in using radiation safely is discussed, and the principles of time, distance, and shielding are reviewed. PMID:27146175

  7. Occupational radiation protection. Safety guide

    International Nuclear Information System (INIS)

    Occupational exposure to ionizing radiation can occur in a range of industries, medical institutions, educational and research establishments and nuclear fuel cycle facilities. Adequate radiation protection of workers is essential for the safe and acceptable use of radiation, radioactive materials and nuclear energy. In 1996, the Agency published Safety Fundamentals on Radiation Protection and the Safety of Radiation Sources (IAEA Safety Series No. 120) and International Basic Safety Standards for Protection against Ionizing, Radiation and for the Safety of Radiation Sources (IAEA Safety Series No. 115), both of which were jointly sponsored by the Food and Agriculture Organization of the United Nations, the IAEA, the International Labour Organisation, the OECD Nuclear Energy Agency, the Pan American Health Organization and the World Health Organization. These publications set out, respectively, the objectives and principles for radiation safety and the requirements to be met to apply the principles and to achieve the objectives. The establishment of safety requirements and guidance on occupational radiation protection is a major component of the support for radiation safety provided by the IAEA to its Member States. The objective of the IAEA's occupational protection programme is to promote an internationally harmonized approach to the optimization of occupational radiation protection, through the development and application of guidelines for restricting radiation exposures and applying current radiation protection techniques in the workplace. Guidance on meeting the requirements of the Basic Safety Standards for occupational protection is provided in three interrelated Safety Guides, one giving general guidance on the development of occupational radiation protection programmes and two giving more detailed guidance on the monitoring and assessment of workers' exposure due to external radiation sources and from intakes of radionuclides, respectively. These Safety

  8. Radiation safety audit

    International Nuclear Information System (INIS)

    Audit has been seen as one of the effective methods to ensure harmonization in radiation protection. A radiation safety audit is a formal safety performance examination of existing or future work activities by an independent team. Regular audit will assist the management in its mission to maintain the facilities environment that is inherently safe for its employees. The audits review the adequacy of facilities for the type of use, training, and competency of workers, supervision by authorized users, availability of survey instruments, security of radioactive materials, minimization of personnel exposure to radiation, safety equipment, and the required record keeping. All approved areas of use are included in these periodic audits. Any deficiency found in the audit shall be corrected as soon as possible after they are reported. Radiation safety audit is a proactive approach to improve radiation safety practices and identify and prevent any potential radiation accident. It is an excellent tool to identify potential problem to radiation users and to assure that safety measures to eliminate or reduce the problems are fully considered. Radiation safety audit will help to develop safety culture of the facility. It is intended to be the cornerstone of a safety program designed to aid the facility, staff and management in maintaining a safe environment in which activities are carried out. The initiative of this work is to evaluate the need of having a proper audit as one of the mechanism to manage the safety using ionizing radiation. This study is focused on the need of having a proper radiation safety audit to identify deviations and deficiencies of radiation protection programmes. It will be based on studies conducted on several institutes/radiation facilities in Malaysia in 2006. Steps will then be formulated towards strengthening radiation safety through proper audit. This will result in a better working situation and confidence in the radiation protection community

  9. APPLIED FARM FOOD SAFETY

    OpenAIRE

    Ender, Judit; Mikaczo, Andrea

    2008-01-01

    Recently there have been more and more foodborne illnesses being associated with fresh vegetable produce. In response to this, consumer confidence has been lowered with the safety of the vegetable industry. So, many retailers have recently announced programs requiring growers to have independent third-party inspections. The goal with this essay is to introduce a vegetable farm and reveal its food safety procedures from the seeding through shipping,. reviewing, evaluating, and strengthening cu...

  10. RF radiation safety handbook

    International Nuclear Information System (INIS)

    Radio frequency radiation can be dangerous in a number of ways. Hazards include electromagnetic compatibility and interference, electro-explosive vapours and devices, and direct effects on the human body. This book is a general introduction to the sources and nature of RF radiation. It describes the ways in which our current knowledge, based on relevant safety standards, can be used to safeguard people from any harmful effects of RF radiation. The book is designed for people responsible for, or concerned with, safety. This target audience will primarily be radio engineers, but includes those skilled in other disciplines including medicine, chemistry or mechanical engineering. The book covers the problems of RF safety management, including the use of measuring instruments and methods, and a review of current safety standards. The implications for RF design engineers are also examined. (Author)

  11. Radiation protection and the safety of radiation sources

    International Nuclear Information System (INIS)

    These Safety Fundamentals cover the protection of human beings against ionizing radiation (gamma and X rays and alpha, beta and other particles that can induce ionization as they interact with biological materials), referred to herein subsequently as radiation, and the safety of sources that produce ionizing radiation. The Fundamentals do not apply to non-ionizing radiation such as microwave, ultraviolet, visible and infrared radiation. They do not apply either to the control of non-radiological aspects of health and safety. They are, however, part of the overall framework of health and safety

  12. Radiation safety at irradiation facilities

    International Nuclear Information System (INIS)

    . Earlier in 1992, the IAEA published a Safety Guide that provides device specific guidance regarding the design, operation and regulation of industrial irradiators. This applies to all types of irradiation facilities, whether operated on a commercial basis or for research and development purposes. This section is not a comprehensive work on radiation safety. It is intended to give pointers where one can find more information, such as IAEA publications and other international guidelines. There are other safety regulations (local, national or international) in addition to radiation safety that will not be addressed here

  13. Radiation safety audit system - safety perspectives

    International Nuclear Information System (INIS)

    In 2005 Safety and Health at the University of Western Australia (UWA) implemented a system of Radiation Safety Audits. The system was implemented to ensure complete audits were carried out annually for each section of the University with radiation safety issues. The audits cover those aspects of radiation safety regulated in the Radiation Safety Act of Western Australia and include high powered lasers, UV emitting devices, radioactive materials, x-ray machines. In relation to these there are regulated considerations for equipment registration, location of use and storage registration, licensing of individual to use radiation, training, documentation, working rules, personal monitoring, calibrations and supervision. Within the University there are University systems to control materials and equipment coming onto campus, risk assessment protocols required for each new project or type of work, local permits and waste disposal. UWA Safety and Health have an active role in delivering control of radiation safety and ensuring that safety systems are appropriate relevant and used in an immediate and useful manner. Safety and Health has importantly built a network of key people on campus, made sure they are assisted, valued and that the systems are seen as a way to improve efficiency in delivering real, relevant and useful radiation safety outcomes. The systems include uniform documentation across campus, clear expectations and an ongoing interest from Safety and Health to ensure the systems remain alive. This has allowed the audits to become efficient and effective both for the sections involved but also for Safety and health in its recording systems and improvement follow up process.

  14. Recent trends in particle accelerator radiation safety

    International Nuclear Information System (INIS)

    The use of particle accelerators in applied and research activities continues to expand, bringing new machines with higher energy and current capabilities which create radiation safety problems not commonly encountered before. An overview is given of these increased ionizing radiation hazards, along with a discussion of some of the new techniques required in evaluating and controlling them. A computer search of the literature provided a relatively comprehensive list of publications describing accelerator radiation safety problems and related subjects

  15. Radiation Safety (Qualifications) Regulations 1980

    International Nuclear Information System (INIS)

    These Regulations, promulgated pursuant to the provisions of the Radiation Safety Act, 1975-1979, require persons engaged in activities involving radiation to pass a radiation safety examination or to possess an approved qualification in radiation. The National Health and Medical Research Council is authorised to exempt persons from compliance with these requirements or, conversely, to impose such requirements on persons other than those designated. (NEA)

  16. Radiation Safety for Sustainable Development

    International Nuclear Information System (INIS)

    The objective of radiation safety is Assessments of Natural Radioactivity and its Radiological. The following topics were discussed during the conference: AFROSAFE Championing Radiation Safety in Africa, Radiation Calibration, and Development and Validation of a Laser Induced Breakdown Spectrometry Method for Cancer Detection and Characterization. Young Generation in NUCLEAR Initiative to Promote Nuclear Science and Technology, Radiation Protection Safety Culture and Application of Nuclear Techniques in Industry and the Environment were discuss. Rapid Chemometric X-Ray Fluorescence approaches for spectral Diagnostics of Cancer utilizing Tissue Trace Metals and Speciation profiles. Fundamental role of medical physics in Radiation Therapy

  17. Occupational radiation safety in mining

    International Nuclear Information System (INIS)

    The first International Conference on Occupational Radiation Safety in Mining was held three years ago in Golden, Colorado, U.S.A., and it provided an excellent forum for an exchange of information on the many scientific, technical and operational aspects of radiation safety in mining. I am aware of the broad spectrum of epidemiological, engineering and related studies which have been pursued during the past three years with a view to achieving further improvements in radiation protection and I expect that the information on these studies will contribute significantly to a wider understanding of subject, and in particular, the means by which radiation safety measures in mining can be optimized

  18. The radiation safety standards programme

    International Nuclear Information System (INIS)

    In this lecture the development of radiation safety standards by the IAEA which is a statutory function of the IAEA is presented. The latest editions of the basic safety standards published by the IAEA in cooperation with ICRP, FAO, ILO, NEA/OECD, PAHO and WHO are reviewed

  19. Radiation safety in X-ray facilities

    International Nuclear Information System (INIS)

    The guide specifies the radiation safety requirements for structural shielding and other safety arrangements used in X-ray facilities in medical and veterinary X-ray activities and in industry, research and education. The guide is also applicable to premises in which X-ray equipment intended for radiation therapy and operating at a voltage of less than 25 kV is used. The guide applies to new X-ray facilities in which X-ray equipment that has been used elsewhere is transferred. The radiation safety requirements for radiation therapy X-ray devices operating at a voltage exceeding 25 kV, and for the premices in which such devices are used, are set out in Guide ST 2.2

  20. Radiation safety in X-ray facilities

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-09-01

    The guide specifies the radiation safety requirements for structural shielding and other safety arrangements used in X-ray facilities in medical and veterinary X-ray activities and in industry, research and education. The guide is also applicable to premises in which X-ray equipment intended for radiation therapy and operating at a voltage of less than 25 kV is used. The guide applies to new X-ray facilities in which X-ray equipment that has been used elsewhere is transferred. The radiation safety requirements for radiation therapy X-ray devices operating at a voltage exceeding 25 kV, and for the premices in which such devices are used, are set out in Guide ST 2.2.

  1. Difficulties in applying operational technical safety specifications

    International Nuclear Information System (INIS)

    Technical Operation specifications are defined regulations (safety limits, radiation protection, limiting operation conditions) that must be fulfilled to ensure the safety operation of the plant during service life. The operational specifications are evaluated initially according to design concept and risk analysis, but they are subject to regular revisions every two years in order to take into account evolution of safety and lessons learned during operation. Safety authorities inspect everything related to operational specifications at two levels: 1) analysis of specifications proposed by EDF; and 2) analysis according to the operational experience

  2. Applying radiation health effects data to radiation protection policies

    International Nuclear Information System (INIS)

    Data from the peer-reviewed scientific literature establish a sound basis to define a low-dose, low-dose-rate, dose-response. These data include human health dose-response studies; immunologically 'whole' animal studies; and cellular and molecular biological studies of complete biological systems for the relevant immunological and physiological responses. Initiatives are required to constructively apply these data to both radiation research and radiation protection policies. First, current low level radiation health effects research must apply existing data to define research projects to integrate and confirm existing dose-response data, with specific emphasis on the biological bases that exist in definitive and reproducible cellular and biological dose-response. Second, dose-response assessment must identify and incorporate all existing substantial and confirmed data, including natural radiation sources, to establish the bases for radiation protection policy for interventions to protect public health and safety. A preliminary assessment of these data is applied to: 1) Specify research that can be constructively applied to describe radiation health effects dose-response. 2) Apply health effects dose-response to radiation and radioactivity applications policies to maximize radiation health effects interventions for occupational applications, medical applications, and other radiation and radioactive materials applications controls to cost-effectively assure public health and safety. An assessment of the proposed revisions to ICRP radiation protection policies is provided that associates the basis for administrative limits with the previous proposal of the US NRC for a 'Below Regulatory Concern' (BRC) policy. This proposal ignores the context of the fact that very low levels of radiation exposure are far within the variations of natural radiation exposures, and therefore can have no gross net consequences. The equivalent failure of the BRC proposal resulted in quick

  3. Radiation safety under extreme conditions

    International Nuclear Information System (INIS)

    A description is given of the main radiation safety provisions implemented during the erection of the encapsulation of Unit 4 of the Chernobyl nuclear power plant after the accident on 26 April 1986. The radiation situation at the site during the work was characterized by high radiation levels and radioactive contamination of the area and the buildings. The situation was highly complex and developments were difficult to forecast. In view of the extremely dangerous radiation conditions, the large volume of construction and assembly work had to be carried out within a very limited period of time. Work in the vicinity of the destroyed unit was carried out only after radiation reconnaissance had been performed, the main radiation sources determined, and safe working regulations formulated. Both traditional and specially developed methods were used to monitor the radiation situation. On the basis of radiation reconnaissance and radiation situation monitoring results, organizational and technical measures were developed and implemented to ensure the radiation safety of personnel. During the construction work, extensive use was made of remote controlled machinery and technology and various types of radiation protection cabins and screens were employed. Great emphasis was placed on the implementation of technical health precautions. A health checkpoint regime was instituted in the exclusion zone around the plant with changing areas, radiation monitoring areas, and shower rooms. Staff were equipped with special clothing, special footwear, and apparatus to protect the respiratory organs. By November 1986 the destroyed unit had been rendered safe and conditions restored for continued operation of the three remaining units. Radiation safety requirements were complied with during the work. (author). 6 refs, 5 figs, 1 tab

  4. Radiation safety - an IAEA perspective

    International Nuclear Information System (INIS)

    The activities of the IAEA relating to radiation safety cover: The preparation of International Standards for Protection against Ionizing Radiation and for the Safety of Radiation Sources - it is expected that the new Basic Safety Standards will be adopted by the sponsoring organizations in 1994. The radiological consequences of the Chernobyl accident: the thyroid cancer controversy - the hypothesis that must be tested is whether the reported increased incidence of thyroid cancer due to exposure to radioactive iodine released in the Chernobyl accident, and there are several questions that must be answered before a firm conclusion can be reached. Emergency Response Services (ERS): In March 1993, at the request of Viet Nam, which invoked the Energency Assistance Convention, a medical team organized by the IAEA went to Hanoi and assisted in arranging for an overexposed person to be transferred from Viet Nam to Paris for specialized medical treatment. In April 1993, the ERS was used to inform Member States of the consequences of an explosion at the Tomsk 7 fuel reprocessing plant in Siberia, Russia, which caused a radiation leak. Reassessing the long range transport of radioactive material through the environment: Data from the Chernobyl accident have been used for model validation in the Atmospheric Transport Model Evaluation Study (ATMES). A follow-up programme, the European Tracer Experiment (ETEX) with experimental studies of long range atmospheric movements over Europe has been established in order to increase knowledge and prediction capability. As part of the programme, a non-toxic atmospheric tracer will be released under suitable conditions in 1994. The Radiation Protection Advisory Teams Service (RAPAT): In many of the developing countries visited, the lack of an adequate infrastructure for radiation protection is the main obstacle to improved radiation protection. Strengthening radiation and nuclear safety infrastructures in successor states of the USSR: The

  5. International basic safety standards for protecting against ionizing radiation and for the safety of radiation sources

    International Nuclear Information System (INIS)

    The purpose of the Standards is to establish basic requirements for protection against the risks associated with exposure to ionizing radiation (hereinafter termed radiation) and for the safety of radiation sources that may deliver such exposure. The Standards have been developed from widely accepted radiation protection and safety principles, such as those published in the Annals of the ICRP and the IAEA Safety Series. They are intended to ensure the safety of all types of radiation sources and, in doing so, to complement standards already developed for large and complex radiation sources, such as nuclear reactors and radioactive waste management facilities. For the sources, more specific standards, such as those issued by the IAEA, are typically needed to achieve acceptable levels of safety. As these more specific standards are generally consistent with the Standards, in complying with them, such more complex installations will also generally comply with the Standards. The Standards are limited to specifying basic requirements of radiation protection and safety, with some guidance on how to apply them. General guidance on applying some of the requirements is available in the publications of the Sponsoring Organizations and additional guidance will be developed as needed in the light of experience gained in the application of the Standards. Tabs

  6. Radiation safety without borders initiative

    International Nuclear Information System (INIS)

    The Radiation Safety Without Borders (RSWB) initiative provides peer support to radiation safety professionals in developing countries, which bolsters the country's infrastructure and may lead the way for IRPA Associate membership. The Health Physics Society (HPS) recognizes that many nations do not possess the infrastructure to adequately control and beneficially use ionizing radiation. In a substantial number of countries, organized radiation protection programs are minimal. The RSWB initiative relies on HPS volunteers to assist their counterparts in developing countries with emerging health physics and radiation safety programs, but whose resources are limited, to provide tools that promote and support infrastructure and help these professionals help themselves. RSWB experience to date has shown that by providing refurbished instruments, promoting visits to a HPS venue, or visiting a country just to look provide valuable technical and social infrastructure experiences often missing in the developing nation's cadre of radiation safety professionals. HPS/RSWB with the assistance of the International Atomic Energy Agency (IAEA) pairs chapters with a country, with the expectation that the country's professional radiation safety personnel will form a foreign HPS chapter, and the country eventually will become an IRPA Associate. Although still in its formative stage, RSWB nonetheless has gotten valuable information in spite of the small number of missions. The RSWB initiative continues to have significant beneficial impacts, including: Improving the radiation safety infrastructure of the countries that participate; Assisting those countries without professional radiation safety societies to form one; Strengthening the humanitarian efforts of the United States; Enhancing Homeland Security efforts through improved control of radioactive material internationally. Developing countries, including those in Latin America, underwritten by IAEA, may take advantage of resources

  7. Radiation Safety (Qualifications) Amendment Regulations 1984

    International Nuclear Information System (INIS)

    These Regulations amend the Radiation Safety (Qualifications) Regulations 1980 by establishing the fees to be paid for the radiation safety examination to be passed by persons engaged in activities involving radiation. (NEA)

  8. Radiation Safety of Electromagnetic Waves

    International Nuclear Information System (INIS)

    The wide spread of Electromagnetic Waves (EMW) through the power lines, multimedia, communications, devices, appliances, etc., are well known. The probable health hazards associated with EMW and the radiation safety criteria are to be reviewed. However, the principles of the regulatory safety are based on radiation protection procedure, intervention to combat the relevant risk and to mitigate consequences. The oscillating electric magnetic fields (EMF) of the electromagnetic radiation (EMR) induce electrical hazards. The extremely high power EMR can cause fire hazards and explosions of pyrotechnic (Rad Haz). Biological hazards of EMF result as dielectric heat, severe burn, as well as the hazards of eyes. Shielding is among the technical protective measures against EMR hazards. Others are limitation of time of exposure and separation distance apart of the EMR source. Understanding and safe handling of the EMR sources are required to feel safety.

  9. Radiation safety and protection

    Energy Technology Data Exchange (ETDEWEB)

    Grzywacz, R.B.

    1988-10-01

    Often overlooked are the consequences of low-level radiation. This article increases awareness of the short- and long-term effects of x-rays on the podiatrist, his staff and patients. Protection can be achieved for all concerned by using the radiographic techniques, low-cost ways for dosage reduction, and monitoring devices discussed. A good x-ray examination should always provide the best diagnostic information while minimizing risk.7 references.

  10. Radiation Safety Considerations for LHD Experiments

    Science.gov (United States)

    Uda, T.; Yamanishi, H.; Miyake, H.; Kodaira, J.; Sakuma, Y.; Hirabayashi, H.; Obayashi, H.; Yamada, H.; Motojima, O.

    1997-06-01

    For experiments with the Large Helical Device (LHD) which is now under construction at the Toki site in Japan, radiation safety issues were discussed. In the course of plasma experiments, radiations such as X-rays, induced γ-rays, and neutrons increase. From a safety point of view, these radiation exposures to the environment should be controlled to limit the annual dose to less than 50 μSv at the site boundary. In order to meet this, an area monitoring system named RMSAFE (Radiation Monitoring System Applicable to Fusion Experiments) has been developed and partly installed. This can discriminate and measure radiations including burst-like emissions due to plasma shots from natural radiations. For the present period, this system is operating to monitor the natural radiation levels before the LHD operation. It was observed that the radiation levels strongly depend on rain levels and ground state. An indoor area monitoring system has already been implemented on site, to measure radiations from NBI and ECH test shots, and it shows good monitoring ability. Also, thermoluminescence dosimetry has been applied. The importance of investigating the radiological behavior under natural conditions with continuous monitoring is shown.

  11. Monitoring System For Improving Radiation Safety Management

    International Nuclear Information System (INIS)

    Medi SMARTS (Medical Survey Mapping Automatic Radiation Tracing System), a gamma radiation monitoring system, was installed in a nuclear medicine department. In this paper the evaluation of the system's ability to improve radiation safety management is presented. The system is based on a state of the art software that continuously collects on line radiation measurements for display, analysis and logging. Radiation is measured by GM tubes; the signal is transferred to a data processing unit and then via an RS-485 communication line to a computer. The system automatically identifies the detector type and its calibration factor, thus providing compatibility, maintainability and versatility when changing detectors. Radiation levels are displayed on the nuclear medicine department map at six locations. The system has been operating continuously for more than one year, documenting abnormal events caused by routine operation or failure incidents. In cases where abnormal working conditions were encountered, an alarm message was sent automatically to the supervisor via his tele-pager. An interesting issue observed during the system evaluation, was the inability to distinguish between high radiation levels caused by proper routine operation and those caused by safety failure incidents. The solution included examination of two parameters, radiation levels as well as their duration period. A careful analysis of the historical data, applying the appropriated combined parameters determined for each location, verified that such a system can identify abnormal events, provide alarms to warn in case of incidents and improve standard operating procedures

  12. Industrial safety and applied health physics. Annual report for 1977

    International Nuclear Information System (INIS)

    Progress is reported on the following: radiation monitoring with regard to personnel monitoring and health physics instrumentation; environs surveillance with regard to atmospheric monitoring, water monitoring, radiation background measurements, and soil and grass samples; radiation and safety surveys with regard to laboratory operations monitoring, radiation incidents, and laundry monitoring; industrial safety and special projects with regard to accident analysis, disabling injuries, and safety awards

  13. Safety Culture on radiation protection

    International Nuclear Information System (INIS)

    It can be defined radiation protection culture as the set of technical and social standards applied to the management of the operation of a nuclear facility concerning the reduction of the exposure to radiation of workers and members of the public, together with the behaviour and attitudes of the individuals from the organization towards that objective. Because the basic principles of radiation protection are self-evident and are totally justified, and the thesis drawn from the article is that no effective radiation protection culture yet exists within the organization, it must be concluded that what is wrong from the system are the attitudes and behavior of the individuals. In this article some factors and elements needed to motivate all persons within the organization towards the creation of a radiation protection culture are delineated and presented. (Author)

  14. Radiation safety handbook for ionizing and nonionizing radiation

    International Nuclear Information System (INIS)

    The Handbook is directed primarily to users of radiation sources throughout the Food and Drug Administration. Specific precautions regarding the possession and use of radiation sources in meeting the Agency's objectives are an inherent responsibility of all employees. In addition, the increased emphasis on occupational safety and health and the responsibilities placed on the Department by Public Law and Executive Order make it mandatory that all organizational levels and activities conform to the intent of this Handbook. The policies and procedures described in this document apply to all Agency operators and activities and are intended to protect employees and the general public

  15. Radiation Authority and Nuclear Safety in Finland (STUK)

    International Nuclear Information System (INIS)

    Created in 1958 as an institute in charge of inspecting radioactive equipment used in hospitals, STUK is nowadays a specialised organisation whose functions cover all fields for applying radiation and nuclear safety. (Author)

  16. Requirements of radiation protection and safety for nuclear medicine services

    International Nuclear Information System (INIS)

    The requirements of radiation protection and safety for nuclear medicine services are established. The norms is applied to activities related to the radiopharmaceuticals for therapeutics and 'in vivo' diagnostics purposes. (M.C.K.)

  17. Basic Safety Standards for Radiation Protection

    International Nuclear Information System (INIS)

    Pursuant to the provisions of its Statute relevant to the adoption and application of safety standards for protection against radiation, the Agency convened a panel of experts which formulated the Basic Safety Standards set forth in this publication. The panel met under the chairmanship of Professor L. Bugnard, Director of the French Institut National d'Hygiene, and representatives of the United Nations and of several of its specialized agencies participated in its work. The Basic Safety Standards thus represent the result of a most careful assessment of the variety of complex scientific and administrative problems involved. Nevertheless, of course, they will need to be revised from time to time in the light of advances in scientific knowledge, of comments received from Member States and of the work of other competent international organizations. The Agency's Board of Governors in June 1962 approved the Standards as a first edition, subject to later revision as mentioned above, and authorized Director General Sigvard Eklund to apply the Standards in Agency and Agency-assisted operations and to invite Governments of Member States to take them as a basis in formulating national regulations or recommendations on protection against the dangers arising from ionizing radiations. It is mainly for this last purpose that the Basic Safety Standards are now being published in the Safety Series; but it is hoped that this publication will also interest a much wider circle of readers.

  18. Regulatory control of radiation sources. Safety guide

    International Nuclear Information System (INIS)

    The basic requirements for the protection of persons against exposure to ionizing radiation and for the safety of radiation sources were established in the International Basic Safety Standards for Protection against Ionizing Radiation and for the Safety of Radiation Sources (the Basic Safety Standards), jointly sponsored by the Food and Agriculture Organization of the United Nations (FAO), the International Atomic Energy Agency (IAEA), the International Labour Organization (ILO), the OECD Nuclear Energy Agency (OECD/ NEA), the Pan American Health Organization (PAHO) and the World Health Organization (WHO) (the Sponsoring Organizations). The application of the Basic Safety Standards is based on the presumption that national infrastructures are in place to enable governments to discharge their responsibilities for radiation protection and safety. Requirements relating to the legal and governmental infrastructure for the safety of nuclear facilities and sources of ionizing radiation, radiation protection, the safe management of radioactive waste and the safe transport of radioactive material are established in the Safety Requirements on Legal and Governmental Infrastructure for Nuclear, Radiation, Radioactive Waste and Transport Safety, Safety Standards Series No. GS-R-1. This Safety Guide, which is jointly sponsored by the FAO, the IAEA, the International Labour Office, the PAHO and the WHO, gives detailed guidance on the key elements for the organization and operation of a national regulatory infrastructure for radiation safety, with particular reference to the functions of the national regulatory body that are necessary to ensure the implementation of the Basic Safety Standards. The Safety Guide is based technically on material first published in IAEA-TECDOC-10671, which was jointly sponsored by the FAO, the IAEA, the OECD/NEA, the PAHO and the WHO. The requirements established in GS-R-1 have been taken into account. The Safety Guide is oriented towards national

  19. Proceeding of Radiation Safety and Environment

    International Nuclear Information System (INIS)

    Scientific Presentation of Radiation Safety and Environment was held on 20-21 august 1996 at Center of Research Atomic Energy Pasar Jum'at, Jakarta, Indonesia. Have presented 50 papers about Radiation Safety, dosimetry and standardization, environment protection and radiation effect

  20. Radiation safety systems at the NSLS

    International Nuclear Information System (INIS)

    This report describes design principles that were used to establish the radiation safety systems at the National Synchrotron Light Source. The author described existing safety systems and the history of partial system failures. 1 fig

  1. Industrial safety and applied health physics. Annual report for 1977

    Energy Technology Data Exchange (ETDEWEB)

    Auxier, J.A.; Davis, D.M.

    1978-06-01

    Progress is reported on the following: radiation monitoring with regard to personnel monitoring and health physics instrumentation; environs surveillance with regard to atmospheric monitoring, water monitoring, radiation background measurements, and soil and grass samples; radiation and safety surveys with regard to laboratory operations monitoring, radiation incidents, and laundry monitoring; industrial safety and special projects with regard to accident analysis, disabling injuries, and safety awards. (HLW)

  2. The basic safety standards on diskette. International basic safety standards for protection against ionizing radiation and for the safety of radiation sources

    International Nuclear Information System (INIS)

    The program SS115 contains the text and data from Safety Series No. 115: 'International basic safety standards for protecting against ionizing radiation and for the safety of radiation sources' published by the IAEA in Vienna in 1996. The purpose of the Standards is to establish basic requirements for protection against the risks associated with exposure to ionizing radiation and for the safety of radiation sources that may deliver such exposure. The Standards have been developed from widely accepted radiation protection and safety principles, such as those published in the Annals of the ICRP and the IAEA Safety Series. They are intended to ensure the safety of all types of radiation sources and, in doing so, to complement standards already developed for large and complex radiation sources, such as nuclear reactors and radioactive waste management facilities. For the sources, more specific standards, such as those issued by the IAEA, are typically needed to achieve acceptable levels of safety. As these more specific standards are generally consistent with the Standards, in complying with them, such more complex installations will also generally comply with the Standards. The Standards are limited to specifying basic requirements of radiation protection and safety, with some guidance on how to apply them. General guidance on applying some of the requirements is available in the publications of the Sponsoring Organizations and additional guidance will be developed as needed in the light of experience gained in the application of the Standards

  3. NTS Offsite Radiation Safety Program

    International Nuclear Information System (INIS)

    The United States began conducting nuclear tests at what was then called the Nevade Proving Grounds on January 27, 1951. In those days of the cold war, the testing of nuclear weapons was done in the atmosphere, where the explosive devices were located on the surface, set at the top of towers, suspended from balloons, dropped from aircraft, or even fired from a cannon. Some were placed in tunnels or in uncased and unstemmed holes. Altogether, between 1951 and 1958, when the President declared a moratorium on nuclear testing, the Atomic Energy Commission conducted 119 tests on the Nevada Test Site. The Site was operated for this purpose a few months during each year except for 1954 and 1956, when all U.S. nuclear tests were conducted in the Pacific Islands. In 1954, the Atomic Energy Commission and the U.S. Public Health Service signed an agreement making the Public Health Service (PHS) responsible for carrying out a continuing program of offsite radiological safety for U.S. nuclear weapons testing. In 1955, the PHS began to conduct the Offsite Radiation Safety Program with the test series called Operation Teapot. When the U.S. Environmental Protection Agency (EPA) was established in 1970, the PHS Laboratory in Las Vegas responsible for the offsite Program became a part of the new Agency, and EPA has continued the Program since that time

  4. Radiation protection and safety of radiation sources: International basic safety standards. General safety requirements. Pt. 3

    International Nuclear Information System (INIS)

    This publication is the new edition of the International Basic Safety Standards. The edition is co-sponsored by seven other international organizations — European Commission (EC/Euratom), FAO, ILO, OECD/NEA, PAHO, UNEP and WHO. It replaces the interim edition that was published in November 2011 and the previous edition of the International Basic Safety Standards which was published in 1996. It has been extensively revised and updated to take account of the latest finding of the United Nations Scientific Committee on the Effects of Atomic Radiation, and the latest recommendations of the International Commission on Radiological Protection. The publication details the requirements for the protection of people and the environment from harmful effects of ionizing radiation and for the safety of radiation sources. All circumstances of radiation exposure are considered

  5. Promoting safety culture in radiation industry through radiation audit

    International Nuclear Information System (INIS)

    This paper illustrates the Malaysian experience in implementing and promoting effective radiation safety program. Current management practice demands that an organization inculcate culture of safety in preventing radiation hazard. The aforementioned objectives of radiation protection can only be met when it is implemented and evaluated continuously. Commitment from the workforce to treat safety as a priority and the ability to turn a requirement into a practical language is also important to implement radiation safety policy efficiently. Maintaining and improving safety culture is a continuous process. There is a need to establish a program to measure, review and audit health and safety performance against predetermined standards. This program is known as radiation safety audit and is able to reveal where and when action is needed to make improvements to the systems of controls. A structured and proper radiation self-auditing system is seen as the sole requirement to meet the current and future needs in sustainability of radiation safety. As a result safety culture, which has been a vital element on safety in many industries can be improved and promote changes, leading to good safety performance and excellence. (author)

  6. Safety of radiation sources in Slovenia

    International Nuclear Information System (INIS)

    The Republic of Slovenia, a central European country which has been independent since 1991, has about 2 million inhabitants and an area of 20,256 km2 . The Constitutional Law on Enforcement of the Basic Constitutional Charter on the Autonomy and Independence of the Republic of Slovenia, adopted on 23 June 1991 (Off. Gaz. of the R of Slovenia No. 1/91), provided that all the laws adopted by the Socialist Federal Republic (SFR) of Yugoslavia should remain in force in the Republic of Slovenia pending the adoption of appropriate legislation by the Slovene Parliament. Under the Slovene Constitution, all international treaties ratified by Slovenia constitute an integral part of Slovenia's legislation and can be applied directly. In Slovenia, all regular types of ionizing radiation source are being used for peaceful purposes and are covered by a system for their safe use and control. All radiation sources and radioactive materials are registered and under regulatory control. Inspections are carried out periodically by the Health Inspectorate of the Republic of Slovenia (HIRS) and, in the case of nuclear installations, the Slovene Nuclear Safety Administration (SNSA). Technical checks on radiation sources are carried out periodically by technical support organizations: the Jozef Stefan Institute and the Institute for Occupational Safety (IOS). (author)

  7. Applied health physics and safety annual report for 1976

    International Nuclear Information System (INIS)

    Progress is reported in the following areas of research: personnel monitoring; health physics instrumentation; atmospheric monitoring; water monitoring; radiation background measurements; soil samples; laboratory operations monitoring; radiation incidents; laundry monitoring; accident analysis; and industrial safety

  8. Assessment of radiation safety in well logging

    International Nuclear Information System (INIS)

    Radiation safety assessments required by current regulations are a means to verify compliance with the requirements. Different methods have been used for this purpose. In the paper the results of applying the method of risk matrices, applied for the first time in the practice of well logging are exposed. For each initiating event frequency of occurrence, the severity of its consequences and the probability of failure of the barriers identified were evaluated. Starting from these assumptions, the risk associated is determined for each of the identified accident sequences, using for this the SEVRRA code 'Risk Assessment System', originally designed for use in radiotherapy. As an result sequences increased risk associated with the practice of well logging were identified, which is the starting point for the further implementation of a coherent program of dose optimization in practice.

  9. Radiation protection and safety infrastructures in Albania

    International Nuclear Information System (INIS)

    The paper intends to present the evolution and actual situation of radiation protection and safety infrastructure in Albania, focusing in its establishing and functioning in accordance with BBS and other important documents of specialized international organizations. There are described the legal framework of radiation safety, the regulatory authority, the services as well the practice of their functioning. The issue of the establishing and functioning of the radiation safety infrastructure in Albania was considered as a prerequisite for a good practices development in the peaceful uses of radiation sources . The existence of the adequate legislation and the regulatory authority, functioning based in the Basic Safety Standards (BSS), are the necessary condition providing the fulfilment of the most important issues in the mentioned field. The first document on radiation protection in Albania stated that 'for the safe use of radiation sources it is mandatory that the legal person should have a valid permission issued by Radiation Protection Commission'. A special organ was established in the Ministry of Health to supervise providing of the radiation protection measures. This organization of radiation protection showed many lacks as result of the low efficiency . The personnel monitoring, import, transport, waste management and training of workers were in charge of Institute of Nuclear Physics (INP). In 1992 an IAEA RAPAT mission visited Albania and proposed some recommendations for radiation protection improvements. The mission concluded that 'the legislation of the radiation protection should be developed'. In 1995 Albania was involved in the IAEA Model Project 'Upgrading of Radiation Protection Infrastructure'. This project, which is still in course, intended to establish the modern radiation safety infrastructures in the countries with low efficiency ones and to update and upgrade all aspects related with radiation safety: legislation and regulations, regulatory

  10. A proposal for an international convention on radiation safety

    International Nuclear Information System (INIS)

    One century has passed since harmful effects of radiation on living tissues were recognized. Organized efforts to reduce radiation hazards began in early 1920s. Major efforts by the ICRP since 1928, aided by ICRU, greatly helped in formulating principles, policies and guidance for radiation protection. The WHO formally recognized ICRP in 1956 and began implementing ICRP recommendations and guidance throughout the world. The IAEA, after it took office in 1957, began to establish or adopt standards of safety based on ICRP recommendations and provide for application of these standards in the field of atomic energy. Later on, other pertinent international organizations joined IAEA in establishing the Basic Safety Standards on radiation safety. The IAEA has issued, until now, nearly couple of hundred safety related documents on radiation safety and waste management. However, in spite of all such international efforts for three quarter of a century, there has been no effective universal control in radiation safety. Problems exist at the user, national, international and manufacturers and suppliers levels. Other problems are management of spent sources and smuggling of sources across international borders. Although, radiation and radionuclides are used by all countries of the world, regulatory and technical control measures in many countries are either lacking or inadequate. The recommendations and technical guidance provided by the international organizations are only advisory and carry no mandatory force to oblige countries to apply them. Member States approve IAEA safety standards and guides at the technical meetings and General Conference, but many of them do not apply these. An International Convention is, therefore, essential to establish international instrument to ensure universal application of radiation safety. (author)

  11. Obtaining Food Safety by Applying HACCP System

    OpenAIRE

    ION CRIVEANU; NATALIŢA MARIA SPERDEA; RADU CATALIN CRIVEANU

    2012-01-01

    In order to increase the confidence of the trading partners and consumers in the products which are sold on the market, enterprises producing food are required to implement the food safety system HACCP,a particularly useful system because the manufacturer is not able to fully control finished products . SR EN ISO 22000:2005 establishes requirements for a food safety management system where an organization in the food chain needs to proove its ability to control food safety hazards in order to...

  12. Radiation safety consideration during intraoperative radiation therapy

    International Nuclear Information System (INIS)

    Using in-house-designed phantoms, the authors evaluated radiation exposure rates in the vicinity of a newly acquired intraoperative radiation therapy (IORT) system: Axxent Electronic Brachytherapy System. The authors also investigated the perimeter radiation levels during three different clinical intraoperative treatments (breast, floor of the mouth and bilateral neck cancer patients). Radiation surveys during treatment delivery indicated that IORT using the surface applicator and IORT using balloons inserted into patient body give rise to exposure rates of 200 mR h-1, 30 cm from a treated area. To reduce the exposure levels, movable lead shields should be used as they reduce the exposure rates by >95 %. The authors' measurements suggest that intraoperative treatment using the 50-kVp X-ray source can be administered in any regular operating room without the need for radiation shielding modification as long as the operators utilise lead aprons and/or stand behind lead shields. (authors)

  13. Radiation Safety in Industrial Radiography. Specific Safety Guide (Arabic Edition)

    International Nuclear Information System (INIS)

    This Safety Guide provides recommendations for ensuring radiation safety in industrial radiography used in non-destructive testing. This includes industrial radiography work that utilizes X ray and gamma sources, both in shielded facilities that have effective engineering controls and outside shielded facilities using mobile sources. Contents: 1. Introduction; 2. Duties and responsibilities; 3. Safety assessment; 4. Radiation protection programme; 5. Training and qualification; 6. Individual monitoring of workers; 7. Workplace monitoring; 8. Control of radioactive sources; 9. Safety of industrial radiography sources and exposure devices; 10. Radiography in shielded enclosures; 11. Site radiography; 12. Transport of radioactive sources; 13. Emergency preparedness and response; Appendix: IAEA categorization of radioactive sources; Annex I: Example safety assessment; Annex II: Overview of industrial radiography sources and equipment; Annex III: Examples of accidents in industrial radiography.

  14. Radiation Safety in Industrial Radiography. Specific Safety Guide

    International Nuclear Information System (INIS)

    This Safety Guide provides recommendations for ensuring radiation safety in industrial radiography used in non-destructive testing. This includes industrial radiography work that utilizes X ray and gamma sources, both in shielded facilities that have effective engineering controls and in outside shielded facilities using mobile sources. Contents: 1. Introduction; 2. Duties and responsibilities; 3. Safety assessment; 4. Radiation protection programme; 5. Training and qualification; 6. Individual monitoring of workers; 7. Workplace monitoring; 8. Control of radioactive sources; 9. Safety of industrial radiography sources and exposure devices; 10. Radiography in shielded enclosures; 11. Site radiography; 12. Transport of radioactive sources; 13. Emergency preparedness and response; Appendix: IAEA categorization of radioactive sources; Annex I: Example safety assessment; Annex II: Overview of industrial radiography sources and equipment; Annex III: Examples of accidents in industrial radiography.

  15. Radiation Safety in Industrial Radiography. Specific Safety Guide (Spanish Edition)

    International Nuclear Information System (INIS)

    This Safety Guide provides recommendations for ensuring radiation safety in industrial radiography used in non-destructive testing. This includes industrial radiography work that utilizes X ray and gamma sources, both in shielded facilities that have effective engineering controls and in outside shielded facilities using mobile sources. Contents: 1. Introduction; 2. Duties and responsibilities; 3. Safety assessment; 4. Radiation protection programme; 5. Training and qualification; 6. Individual monitoring of workers; 7. Workplace monitoring; 8. Control of radioactive sources; 9. Safety of industrial radiography sources and exposure devices; 10. Radiography in shielded enclosures; 11. Site radiography; 12. Transport of radioactive sources; 13. Emergency preparedness and response; Appendix: IAEA categorization of radioactive sources; Annex I: Example safety assessment; Annex II: Overview of industrial radiography sources and equipment; Annex III: Examples of accidents in industrial radiography

  16. OBTAINING FOOD SAFETY BY APPLYING HACCP SYSTEM

    Directory of Open Access Journals (Sweden)

    ION CRIVEANU

    2012-01-01

    Full Text Available In order to increase the confidence of the trading partners and consumers in the products which are sold on the market, enterprises producing food are required to implement the food safety system HACCP,a particularly useful system because the manufacturer is not able to fully control finished products . SR EN ISO 22000:2005 establishes requirements for a food safety management system where an organization in the food chain needs to proove its ability to control food safety hazards in order to ensure that food is safe at the time of human consumption. This paper presents the main steps which ensure food safety using the HACCP system, and SR EN ISO 20000:2005 requirements for food safety.

  17. Effective education in radiation safety for nurses

    International Nuclear Information System (INIS)

    In order to establish an efficient training program of radiation safety for nurses, studies have been carried out on the basis of questionnaires. Collaboration of nurses, who are usually standing closest to the patient, is necessary in order to offer safe radiological diagnostics/treatment. The authors distributed the questionnaire to 134 nurses in five polyclinic hospitals in Japan. Important questions were: fear of radiation exposure, knowledge on the radiation treatment, understanding the impact on pregnancy, and so on. Most of the nurses feel themselves uneasy against exposure to radiation. They do not have enough knowledge of radiological treatment. They do not know exactly what is the impact of the radiation on pregnant women. Such tendency is more pronounced, when nurses spend less time working in the radiological department. Nurses play important roles in radiological diagnostics/treatment. Therefore, a well-developed education system for radiation safety is essential. The training for the radiation safety in medicine should be done in the context of general safety in medicine. Education programs in undergraduate school and at the working place should be coordinated efficiently in order to ensure that both nurses and patients are informed about the meaning of radiation safety. (authors)

  18. The Argentine Approach to Radiation Safety: Its Ethical Basis

    International Nuclear Information System (INIS)

    The ethical bases of Argentina's radiation safety approach are reviewed. The applied principles are those recommended and established internationally, namely: the principle of justification of decisions that alters the radiation exposure situation; the principle of optimization of protection and safety; the principle of individual protection for restricting possible inequitable outcomes of optimized safety; and the implicit principle of inter generational prudence for protection future generations and the habitat. The principles are compared vis-a-vis the prevalent ethical doctrines: justification vis-a-vis teleology; optimization vis-a-vis utilitarianism; individual protection vis-a-vis de ontology; and, inter generational prudence vis-a-vis aretaicism (or virtuosity). The application of the principles and their ethics in Argentina is analysed. These principles are applied to All exposure to radiation harm; namely, to exposures to actual doses and to exposures to actual risk and potential doses, including those related to the safety of nuclear installations, and they are harmonized and applied in conjunction. It is concluded that building a bridge among all available ethical doctrines and applying it to radiation safety against actual doses and actual risk and potential doses is at the roots of the successful nuclear regulatory experience in Argentina.

  19. Challenges in promoting radiation safety culture

    International Nuclear Information System (INIS)

    Safety has quickly become an industry performance measure, and the emphasis on its reliability has always been part of a strategic commitment. This paper presents an approach taken by Malaysian Nuclear Agency (Nuclear Malaysia) and authority to develop and implement safety culture for industries that uses radioactive material and radiation sources. Maintaining and improving safety culture is a continuous process. There is a need to establish a program to measure, review and audit health and safety performance against predetermined standards. Proper safety audit will help to identify the non-compliance of safety culture as well as the deviation of management, individual and policy level commitment; review of radiation protection program and activities should be preceded. (author)

  20. Deriving and applying generally applicable safety principles

    Energy Technology Data Exchange (ETDEWEB)

    Spray, S.D.

    1998-08-01

    The nuclear detonation safety of modern nuclear weapons depends on a coordinated safety theme incorporating three general safety principles: isolation, inoperability, and incompatibility. The success of this approach has encouraged them to study whether these and/or other principles might be useful in other applications. Not surprisingly, no additional first-principles (based on physical laws) have been identified. However, a more widely applicable definition and application of the principle-based approach has been developed, resulting in a selection of strategies that are basically subsets and varied combinations of the more general principles above. However, identification of principles to be relied on is only one step in providing a safe design. As one other important example, coordinating overall architecture and strategy is essential: the authors term this a safety theme.

  1. Safety requirements applied to research reactors in France

    International Nuclear Information System (INIS)

    Full text: In France, there are currently some twenty research reactors in operation with a thermal powers up to a hundred megawatts. General safety requirements such as the redundancy and separation of protection system channels, continuous monitoring of confinement barriers and containment building leak tightness with respect to underlying soils and the underground water have been gradually established and applied. Regarding the seismic risk and those risks relating to the industrial environment and transportation of hazardous materials, the rules applying to research reactor design are the same as those applying to power reactors, albeit with some adaptations due to the specific features of certain reactors (short operating time or low radioactive product inventory). The following safety requirements applying specifically to the confinement barriers of pool-type research reactors should be noted: there must be no fuel cladding dryout under the various operating conditions; in the case of plate type fuels, this requirement implies checking the absence of flow redistribution in the hottest cooling channel; reactors must not be operated with a fuel element affected by clad failure; in such situations, the reactor must be automatically shut down and the fuel element in question removed and stored in a leaktight container; the core must not be uncovered in the event of a pipe break in the reactor coolant system or a window failure in neutron beam channels; this requirement is met through the integrated design of the reactor primary coolant system, which is installed in a 'water block', and through the implementation of automatic isolation valves on the neutron beam channels. The most significant specific approach adopted in France for the design of pool-type reactors using uranium and aluminum metal fuels is to take into account a BORAX-type explosive reactivity accident. For this type of accident, which is supposed to lead to total meltdown of the core under water

  2. AFROSAFE Championing Radiation Safety in Africa

    International Nuclear Information System (INIS)

    AFRASAFE is a campaign that was formed by Pan African congress of Radiology and imaging (PACOR) and other radiation health workers in Africa in Feb 2015. Its main objective is to unite with a common goal to identify and address issues arising from radiation protection in medicine in Africa. Through this campaign, we state that we shall promote adherence to policies, strategies and activities for the promotion of radiation safety and for maximization of benefits from radiological medical procedures. The campaign strengthens the overall radiation protection of patients, health workers and public. It promotes safe and appropriate use of ionizing radiation in medicine and enhances global information to help improve the benefit/risk dialogue with patients and the public. It enhances the safety and quality of radiological procedures in medicine, and encourages safety in diagnostic and therapeutic equipment and facilities. The issue of research in radiation protection and safety needs to be promoted. This presentation will outline the six strategic objectives and the implementation tools for radiation safety in medicine in Kenya, the challenges and way forward to achieve our goal. (Author)

  3. Radiation safety aspects of fluorescent lamp starters incorporating radiation source

    International Nuclear Information System (INIS)

    A fluorescent lamp starter is a switch applies the voltage to the fluorescent tube after sufficient preheating to allow the tube to conduct an electric current. Radioactive substances used in the starters are 85Kr, 147Pm, 3H and 232Th. In India, fluorescent lamp starters are classified as consumer products and users are outside regulatory control. However, regulatory control is exercised over the manufacturers at the production stage. Tritium activity measured in the lamp starters ranged from 400-4500 Bq with a mean activity of 1.78 kBq. Thorium activity measured varied from 0.44-3.3 mg. The results of radiation safety assessment of the workplace and radioactivity estimation in the starters are discussed in this paper. (author)

  4. Radiation Safety (General) Regulations 1983 (Western Australia)

    International Nuclear Information System (INIS)

    The provisions of the Regulations cover, inter alia, the general precautions and requirements relating to radiation safety of the public and radiation workers and registration of irradiating apparatus or premises on which such apparatus is operated. In addition, the Regulations set forth requirements for the operation of such apparatus and for the premises involved. (NEA)

  5. Basic safety standards for radiation protection

    International Nuclear Information System (INIS)

    A short review is made of the pathological effects of ionizing radiations. The basic safety standards for the various categories of persons likely to be exposed to radioactive radiation or materials are developed as well as their significance and the mind governing their application

  6. Radiation imaging for basic and applied research

    International Nuclear Information System (INIS)

    To peer into the interiors of a microscopic and macroscopic objects has been the dream of scientist and engineers for centuries. New frontiers in research and development in many branches of science and engineering such as biology, chemistry, engineering, geology, medical or physics have evolved around visual representation of the measurable property of an object, or phenomenon. Visualization using optical radiations provide limited information and often to look into the interiors of microscopic and macroscopic objects, probing with radiations such as x-ray or neutron is required. Such radiations are not directly visible and in order to unravel the data and images unfolded by such radiations, use of luminescent materials which convert these radiations into visible spectrum is required. Radiation imaging techniques have evolved in last few years and with this, new applications in the field of basic and applied sciences have developed. This has put greater demand on the development of new phosphors and scintillators suited for specific applications. This paper reviews new developments in radiation imaging techniques and applications and highlight the use of various phosphors and scintillators for such applications. As the subject is vast, only a few selected topics will be discussed on which work is being carried out at BARC. (author)

  7. Optical fiber-applied radiation detection system

    International Nuclear Information System (INIS)

    A technique to measure radiation by using plastic scintillation fibers doped radiation fluorescent (scintillator) to plastic optical fiber for a radiation sensor, was developed. The technique contains some superiority such as high flexibility due to using fibers, relatively easy large area due to detecting portion of whole of fibers, and no electromagnetic noise effect due to optical radiation detection and signal transmission. Measurable to wide range of and continuous radiation distribution along optical fiber cable at a testing portion using scintillation fiber and flight time method, the optical fiber-applied radiation sensing system can effectively monitor space radiation dose or apparatus operation condition monitoring. And, a portable type scintillation optical fiber body surface pollution monitor can measure pollution concentration of radioactive materials attached onto body surface by arranging scintillation fiber processed to a plate with small size and flexibility around a man to be tested. Here were described on outline and fundamental properties of various application products using these plastic scintillation fiber. (G.K.)

  8. Basic knowledge on radiation safety in medicine

    International Nuclear Information System (INIS)

    After the accident at the Fukushima Dai-ichi Nuclear Power Plant (NPP) of the Tokyo Electric Power Co. Inc., our daily life is affected by radiation in many ways. From now on, we have to live with this existing exposure situation by promoting radiation literacy. For this purpose, basic knowledge on medical radiation safety is demonstrated comparing with Fukushima Accident 2011. In this article, the importance of mental care for affected people is described concerning relationships with medical accidents. (author)

  9. Management information system applied to radiation protection services

    Energy Technology Data Exchange (ETDEWEB)

    Grossi, Pablo Andrade; Souza, Leonardo Soares de; Figueiredo, Geraldo Magela; Figueiredo, Arthur, E-mail: pabloag@cdtn.br, E-mail: lss@cdtn.br, E-mail: gmf@cdtn.br, E-mail: arthurqof@gmail.com [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2013-07-01

    An effective management information system based on technology, information and people is necessary to improve the safety on all processes and operations subjected to radiation risks. The complex and multisource information flux from all radiation protection activities on nuclear organizations requires a robust tool/system to highlight the strengths and weaknesses and identify behaviors and trends on the activities requiring radiation protection programs. Those organized and processed data are useful to reach a successful management and to support the human decision-making on nuclear organization. This paper presents recent improvements on a management information system based on the radiation protection directives and regulations from Brazilian regulatory body. This radiation protection control system is applied to any radiation protection services and research institutes subjected to Brazilian nuclear regulation and is a powerful tool for continuous management, not only indicating how the health and safety activities are going, but why they are not going as well as planned showing up the critical points. (author)

  10. Radiation protection and safety in industrial radiography

    International Nuclear Information System (INIS)

    The use of ionizing radiation, particularly in medicine and industry, is growing throughout the world, with further expansion likely as technical developments result from research. One of the longest established applications of ionizing radiation is industrial radiography, which uses both X radiation and gamma radiation to investigate the integrity of equipment and structures. Industrial radiography is widespread in almost all Member States. It is indispensable to the quality assurance required in modern engineering practice and features in the work of multinational companies and small businesses alike. Industrial radiography is extremely versatile. The equipment required is relatively inexpensive and simple to operate. It may be highly portable and capable of being operated by a single worker in a wide range of different conditions, such as at remote construction sites, offshore locations and cross-country pipelines as well as in complex fabrication facilities. The associated hazards demand that safe working practices be developed in order to minimize the potential exposure of radiographers and other persons who may be in the vicinity of the work. The use of shielded enclosures (fixed facilities), with effective safety devices, significantly reduces any radiation exposures arising from the work. This Safety Report summarizes good and current state of the art practices in industrial radiography and provides technical advice on radiation protection and safety. It contains information for Regulatory Authorities, operating organizations, workers, equipment manufacturers and client organizations, with the intention of explaining their responsibilities and means to enhance radiation protection and safety in industrial radiography

  11. Radiation safety aspects at Indus accelerator complex

    International Nuclear Information System (INIS)

    Indus Accelerator Complex at Raja Ramanna Center for Advanced Technology houses two synchrotron radiation sources Indus-1 and Indus-2 that are being operated round-the-clock to cater to the needs of the research community. Indus-1 is a 450 MeV electron storage ring and Indus-2 is presently being operated with electrons stored at 2 GeV. Bremsstrahlung radiation and photo-neutrons form the major radiation environment in Indus Accelerator Complex. They are produced due to loss of electron-beam occurring at different stages of operation of various accelerators located in the complex. The synchrotron radiation (SR) also contributes as a potential hazard. In order to ensure safety of synchrotron radiation users and operation and maintenance staff working in the complex from this radiation, an elaborate radiation safety system is in place. The system comprises a Personnel Protection System (PPS) and a Radiation Monitoring System (RMS). The PPS includes zoning, radiation shielding, door interlocks, a search and scram system and machine operation trip-interlocks. The RMS consists of area radiation monitors and beam loss monitors, whose data is available online in the Indus control room. Historical data of radiation levels is also available for data analysis. Synchrotron radiation beamlines at Indus-2 are handled in a special manner owing to the possibility of exposure to synchrotron radiation. Shielding hutches with SR monitors are installed at each beamline of Indus-2. Health Physics Unit also carries out regular radiological surveillance for photons and neutrons during various modes of operation and data is logged shift wise. The operation staff is appropriately trained and qualified as per the recommendations of Atomic Energy Regulatory Board (AERB). Safety training is also imparted to the beamline users. Safe operation procedures and operation checklists are being followed strictly. A radiation instrument calibration facility is also being set-up at RRCAT. The radiation

  12. Center for Applied Radiation Research (CARR)

    Science.gov (United States)

    Fogarty, Thomas N.

    1997-01-01

    Prairie View A&M University (PVAMU) Center for Applied Radiation Research (CARR) was established in 1995 to address the tasks, missions and technological needs of NASA. CARR is built on a tradition of radiation research at Prairie View A&M started in 1984 with NASA funding. This continuing program has lead to: (1) A more fundamental and practical understanding of radiation effects on electronics and materials; (2) A dialog between space, military and commercial electronics manufacturers; (3) Innovative electronic circuit designs; (4) Development of state-of-the-art research facilities at PVAMU; (5) Expanded faculty and staff to mentor student research; and (6) Most importantly, increased flow in the pipeline leading to expanded participation of African-Americans and other minorities in science and technological fields of interest to NASA.

  13. The IAEA safety standards for radiation, waste and nuclear safety

    International Nuclear Information System (INIS)

    This paper presents a brief description of the standards for radiation, waste and nuclear safety established by the International Atomic Energy Agency (IAEA). It provides a historical overview of their development and also summarizes the standards' current preparation and review process. The final paragraphs offer an outlook on future developments. (author)

  14. Radiation safety for site radiography

    International Nuclear Information System (INIS)

    This guidance is an update of the 1975 Code of Practice for Site Radiography and is for the use of employers and their radiographers who carry out site work. The subject is discussed under the following headings: Administrative organization, Personnel requirements, Equipment (x-ray and gamma-ray equipment, security, pipeline crawler equipment and safety equipment) Work methods and monitoring, Carriage of sources, Contingency plans, Legal considerations. (U.K.)

  15. International radiation safety recommendations on decommissioning

    International Nuclear Information System (INIS)

    the radiological hazards resulting from the activities associated with the decommissioning of nuclear reactors, primarily with decommissioning after planned final shutdown. Many of the provisions are also applicable to decommissioning after an abnormal event that has resulted in serious facility damage or contamination. In this case, this Safety Guide may be used as a basis for developing special decommissioning provisions, although additional considerations will be necessary. Due to the short extension of the present paper, we will emphasize only on some critical tasks of decommissioning research reactors. The removal of nuclear fuel from the reactor installation at the end of its operational lifetime should preferably be performed as part of operations or as one of the initial activities in decommissioning. At the beginning of decommissioning, all readily removable radioactive sources (operational waste, sealed sources, liquids) should be removed for reuse, storage in approved location or disposal. The removal of sources will normally result in a significant reduction of the radiation hazards. The operating organization should have, or have access to, competent staff to cover areas such as: safety requirements of the licence, radiation protection, waste management, quality management etc. Personnel should be competent to perform their assigned work safely. The management and staff involved in the decommissioning project should be made aware of and trained, if necessary, in the methods of minimizing the waste generated in the tasks assigned. Appropriate levels of control and supervision should be provided to ensure safety. The organizational structure to be employed during decommissioning should be described in the decommissioning plan. In the description of the organizational structure, there should be a clear delineation of authorities and responsibilities amongst the various units. This is particularly necessary when the operating organization uses outside

  16. Radiation safety of soil moisture neutron probes

    International Nuclear Information System (INIS)

    The neutron probe measures sub-surface moisture in soil and other materials by means of high energy neutrons and a slow (thermal) neutron detector. Exposure to radiation, including neutrons, especially at high doses, can cause detrimental health effects. In order to achieve operational radiation safety, there must be compliance with protection and safety standards. The design and manufacture of commercially available neutron moisture gauges are such that risks to the health of the user have been greatly reduced. The major concern is radiation escape from the soil during measurement, especially under dry conditions and when the radius of influence is large. With appropriate work practices as well as good design and manufacture of gauges, recorded occupational doses have been well below recommended annual limits. It can be concluded that the use of neutron gauges poses not only acceptable health and safety risks but, in fact, the risks are negligible. Neutron gauges should not be classified as posing high potential health hazards. (author)

  17. Regulatory Control of Radiation Sources. Safety Guide

    International Nuclear Information System (INIS)

    This Safety Guide is intended to assist States in implementing the requirements established in Safety Standards Series No. GS-R-1, Legal and Governmental Infrastructure for Nuclear, Radiation, Radioactive Waste and Transport Safety, for a national regulatory infrastructure to regulate any practice involving radiation sources in medicine, industry, research, agriculture and education. The Safety Guide provides advice on the legislative basis for establishing regulatory bodies, including the effective independence of the regulatory body. It also provides guidance on implementing the functions and activities of regulatory bodies: the development of regulations and guides on radiation safety; implementation of a system for notification and authorization; carrying out regulatory inspections; taking necessary enforcement actions; and investigating accidents and circumstances potentially giving rise to accidents. The various aspects relating to the regulatory control of consumer products are explained, including justification, optimization of exposure, safety assessment and authorization. Guidance is also provided on the organization and staffing of regulatory bodies. Contents: 1. Introduction; 2. Legal framework for a regulatory infrastructure; 3. Principal functions and activities of the regulatory body; 4. Regulatory control of the supply of consumer products; 5. Functions of the regulatory body shared with other governmental agencies; 6. Organization and staffing of the regulatory body; 7. Documentation of the functions and activities of the regulatory body; 8. Support services; 9. Quality management for the regulatory system.

  18. Radiation safety and care of patients

    International Nuclear Information System (INIS)

    The objective of this chapter is to acquaint the reader with radiation safety measures which can be pursued to minimize radiation load to the patient and staff. The basic principle is that all unnecessary administration should be avoided and a number of simple techniques be used to reduce radiation dose. For example, the kidney excretes many radionuclides. Drinking plenty of fluid and frequent bladder emptying can minimize absorbed dose to the bladder. Thyroid blocking agents must be used if radioactive iodine is being administered to avoid unnecessary radiation exposure to the thyroid gland. When it is necessary to administer radioactive substances to a female of childbearing age, the radiation exposure should be minimum and information whether the patient is pregnant or not must be obtained. Alternatives techniques, which do not involve ionizing radiation, should also be considered. (author)

  19. B190 computer controlled radiation monitoring and safety interlock system

    Energy Technology Data Exchange (ETDEWEB)

    Espinosa, D L; Fields, W F; Gittins, D E; Roberts, M L

    1998-08-01

    The Center for Accelerator Mass Spectrometry (CAMS) in the Earth and Environmental Sciences Directorate at Lawrence Livermore National Laboratory (LLNL) operates two accelerators and is in the process of installing two new additional accelerators in support of a variety of basic and applied measurement programs. To monitor the radiation environment in the facility in which these accelerators are located and to terminate accelerator operations if predetermined radiation levels are exceeded, an updated computer controlled radiation monitoring system has been installed. This new system also monitors various machine safety interlocks and again terminates accelerator operations if machine interlocks are broken. This new system replaces an older system that was originally installed in 1988. This paper describes the updated B190 computer controlled radiation monitoring and safety interlock system.

  20. Establishment of radiation protection and safety programme in Nuclear Medicine

    International Nuclear Information System (INIS)

    Radiation is useful because of its ability to penetrate tissue, allowing imaging of internal structures. However radiation may produce harmful biological effects. Observations of exposed human populations and animal experimentation indicate that exposure to low levels of radiation over a period of time may lead to stochastic radiation effects. Exposures to high levels of radiation above threshold also leads to deterministic effects. Establishment of radiation protection and safety programme and implement it without fail may help prevent deterministic effect and limit chances of stochastic effects. This is achieved by assigning responsibilities to the proposed organizational structure, management commitment to safety culture by providing continuous education and training to employees, regular reviewing and auditing of radiation safety policies. Occupational, public and environmental radiation exposure is further achieved by implementation of set local rules and operational procedures, proper management of radioactive waste and safe transport of radioactive material. Medical radiation exposure is achieved by justified procedures, optimization of doses, guidance levels, quality assurance and quality control programme through image quality, radiopharmaceutical quality and records keeping of radiation doses, calibration certificates of equipment used, equipment service and test certificates. Diagnostic radiopharmaceuticals must deliver the minimum possible radiation dose to the patient while therapeutic radiopharmaceuticals must deliver the maximum dose to the target organ or tissue, while minimizing the dose to non-target tissues such as the bone marrow. Special considerations shall be given to pregnant and breast-feeding patients. The proper facility design and shielding of a nuclear medicine facility shall further provide for the radiation protection to the worker, the patient, public and the environment. Precautions should be given to radioactive patients as there

  1. Radiation protection and radiation safety: CERN and its host states to sign a tripartite agreement.

    CERN Multimedia

    2010-01-01

    On 15 November CERN and its Host States will sign a tripartite agreement that replaces the existing bilateral agreements in matters of radiation protection and radiation safety at CERN. It will provide, for the first time, a single forum where the three parties will discuss how maximum overall safety can best be achieved in the specific CERN context.   CERN has always maintained close collaboration with its Host States in matters of safety. “The aim of this collaboration is especially to ensure best practice in the field of radiation protection and the safe operation of CERN’s facilities”, explains Ralf Trant, Head of the Occupational Health & Safety and Environmental Protection (HSE) Unit. Until today, CERN’s collaboration with its Host States was carried out under two sets of bilateral agreements: depending on which side of the French-Swiss border they were being carried out on, a different framework applied to the same activities. This approach has b...

  2. Radiation safety and inventory of sealed radiation sources in Pakistan

    International Nuclear Information System (INIS)

    Sealed radiation sources (SRS) of various types and activities are widely used in industry, medicine, agriculture, research and teaching in Pakistan. The proper maintenance of records of SRS is mandatory for users/licensees. Since 1956, more than 2000 radiation sources of different isotopes having activities of Bq to TBq have been imported. Of these, several hundred sources have been disposed of and some have been exported/returned to the suppliers. To ensure the safety and security of the sources and to control and regulate the safe use of radiation sources in various disciplines, the Directorate of Nuclear Safety and Radiation Protection (DNSRP), the implementing arm of the regulatory authority in the country, has introduced a system for notifying, registering and licensing the use of all types of SRS. In order to update the inventory of SRS used throughout the country, the DNSRP has developed a database. (author)

  3. Radiation safety in Australia's mineral sands industry

    International Nuclear Information System (INIS)

    This brochure is part of a training package aiming to explain in simple terms what radiation is, how it affects people's lives and how, in the specific case of the mineral sand industry, the risk of ill-effects from low-level radioactivity could be effectively guarded against by simple and easily followed safety precautions. ills

  4. Radiation safety in veterinary practice

    International Nuclear Information System (INIS)

    It is stated that the Code is based on the recommendations of the International Commission on Radiological Protection and is in harmony with related national codes and legislation. The Code is in chapters, entitled: need for the Code; scope of the Code (establishments, persons, hazards); administrative measures for radiological protection; medical measures for radiological protection; operational measures for radiological protection; premises and equipment for radiography; procedures for radiography (general, large animal radiography, radiography undertaken outside the Designated Area); fluoroscopy; other uses of ionizing radiations (therapeutic use of x-rays, use of sealed radioactive sources, use of unsealed radioactive substances). Appendices include the following topics: maximum permissible doses and dose limits; advisory services; definitions, records, symbols and specimen local rules. (U.K.)

  5. Radiation safety research at Indus accelerator complex

    International Nuclear Information System (INIS)

    A brief description of the radiation safety research being carried out at the electron synchrotron radiation sources, Indus-1 (450 MeV) and Indus-2 (2.5 GeV) is presented. As these sources being operated at high energy, the radiation environment is primarily due to the interaction of these electrons with accelerating structure, when beam loss takes place, and subsequent development of electromagnetic cascade. Radiation in the cascade mainly consists of the Bremsstrahlung component which initiates photo-neutron production. Characteristics of these radiations are that the energy can be as high up to the energy of the accelerated electron. This gives rise to problems in detection and personnel dosimetry due to dose buildup effects. The angular dependency and pulsed nature of these radiations complicate the issue of detection. Besides, accidental loss of beam in the vacuum envelope of the accelerator, in addition to normal loss calls for appropriate evaluation of these contributions for personnel radiation safety. Attempts made to understand these problems and the research and development work carried out at Indus Accelerator Complex in order to address them will be discussed. (author)

  6. Radiation safety in fluoroscopy for neuraxial injections.

    Science.gov (United States)

    Fink, Gerry E

    2009-08-01

    Certified Registered Nurse Anesthetists (CRNAs) perform epidural steroid injections for chronic back and extremity pain. Placing epidural needles using fluoroscopy and confirming the needle placement by epidurogram has been suggested as a means to increase the efficacy of epidural injections while decreasing complications. Because of the risk of radiation injury to patients and staff when using fluoroscopy, the purpose of this article is to review the concepts of fluoroscopy and radiation safety for CRNAs. Following a literature search using keywords such as fluoroscopy, radiation injury, and radiation safety, relevant articles were identified. In addition, the reference lists of these articles were reviewed to identify other pertinent sources regarding this topic. The risks of stochastic and deterministic effects from radiation exposure necessitate the need for practitioners who are knowledgeable in equipment, patient, and procedure related factors that influence radiation exposure. Practitioner conduct, using the as-low-as-reasonably achievable (ALARA) principle, results in choices regarding these factors that minimize the time and intensity of radiation exposure to patients, anesthesia providers, and staff. PMID:19731844

  7. Application of radiation safety principles and criteria in safety reassessment of radioactive waste disposed in near-surface facilities of the radon state corporation

    International Nuclear Information System (INIS)

    The paper analyses regulatory requirements applied in the design and construction of radioactive waste disposal facilities at sites of the Radon State Corporation and considers approaches on use of radiation safety principles and criteria in their safety reassessment

  8. Radiation protection and safety of radiation sources international basic safety standards

    CERN Document Server

    International Atomic Energy Agency. Vienna

    2014-01-01

    The Board of Governors of the IAEA first approved Basic Safety Standards in June 1962; they were published by the IAEA as IAEA Safety Series No. 9. A revised edition was issued in 1967. A third revision was published by the IAEA as the 1982 Edition of IAEA Safety Series No. 9 ; this edition was jointly sponsored by the IAEA, ILO, OECD/NEA and the WHO. The next edition was International Basic Safety Standards for Protection against Ionizing Radiation and for the Safety of Radiation Sources, published by the IAEA as IAEA Safety Series No. 115 in February 1996, and jointly sponsored by the FAO, IAEA, ILO, OECD/NEA, PAHO and the WHO.

  9. Progress report: 1996 Radiation Safety Systems Division

    International Nuclear Information System (INIS)

    The activities of Radiation Safety Systems Division include (i) development of specialised monitoring systems and radiation safety information network, (ii) radiation hazards control at the nuclear fuel cycle facilities, the radioisotope programmes at Bhabha Atomic Research Centre (BARC) and for the accelerators programme at BARC and Centre for Advanced Technology (CAT), Indore. The systems on which development and upgradation work was carried out during the year included aerial gamma spectrometer, automated environment monitor using railway network, radioisotope package monitor and air monitors for tritium and alpha active aerosols. Other R and D efforts at the division included assessment of risk for radiation exposures and evaluation of ICRP 60 recommendations in the Indian context, shielding evaluation and dosimetry for the new upcoming accelerator facilities and solid state nuclear track detector techniques for neutron measurements. The expertise of the divisional members was provided for 36 safety committees of BARC and Atomic Energy Regulatory Board (AERB). Twenty three publications were brought out during the year 1996. (author)

  10. Radiation safety assessment and development of environmental radiation monitoring technology

    CERN Document Server

    Choi, B H; Kim, S G

    2002-01-01

    The Periodic Safety Review(PSR) of the existing nuclear power plants is required every ten years according to the recently revised atomic energy acts. The PSR of Kori unit 1 and Wolsong unit 1 that have been operating more than ten years is ongoing to comply the regulations. This research project started to develop the techniques necessary for the PSR. The project developed the following four techniques at the first stage for the environmental assessment of the existing plants. 1) Establishment of the assessment technology for contamination and accumulation trends of radionuclides, 2) alarm point setting of environmental radiation monitoring system, 3) Development of Radiation Safety Evaluation Factor for Korean NPP, and 4) the evaluation of radiation monitoring system performance and set-up of alarm/warn set point. A dynamic compartment model to derive a relationship between the release rates of gas phase radionuclides and the concentrations in the environmental samples. The model was validated by comparing ...

  11. Radiation safety status at Swedish nuclear power plants 2010

    International Nuclear Information System (INIS)

    According to the Swedish Radiation Safety Authority's (SSM's) appropriation, the Authority shall report the radiation safety status of the Swedish nuclear power plants to the government by 31 May 2011

  12. Radiation Protection and Safety infrastructure in Albania

    International Nuclear Information System (INIS)

    On 1995 Albania Parliament approved the Radiation Protection Act, which established the Radiation Protection Commission as Regulatory Body and Radiation Protection Office as an executive office. The licensing of private and public companies is a duty of RPC and the inspections, enforcement, import - export control, safety and security of radioactive materials, are tasks of RPO. Regulations on licence and inspection, safe handling of radioactive sources, radioactive waste management and transport of radioactive materials have been approved. The Codes of practice in diagnostic radiology, radiotherapy and nuclear medicine have been prepared. Institute of Nuclear Physics carry out monitoring of personal dosimetry, response to the radiological emergencies, calibration of dosimetric equipment's, management of radioactive waste, etc. Based in the IAEA documents, a new Radiation Protection Act is under preparation

  13. Social and economical aspects of radiation safety

    International Nuclear Information System (INIS)

    The problems of increasing nuclear power economic efficiency as compared with nonnuclear power sources, as well as those of improving NPP safety and public positive opinion are considered. It is shown that NPP economic efficiency increase is possible by using the tank boiling water cooled reactors with natural coolant circulation. It is stressed that the main specific feature of the new version of the Radiation Safety Standards NRB-99 is the establishment of more severe limiting values for permissible dose loads. At the same time the new Standards are based on the concept of linear thresholdless radiation effects on biological objects. Basing on the analysis of radiation effects on living tissue cells realized by modelling the complex of radiation flux effects on tissue cells and their living functions reproduction processes due to reparation system activity in the form of some Markov random process with continuous time and final number of states it is proved that small radiation loads are of infinitesimal danger for a person against the background of other harmful factors of modern life

  14. Prediction of nuclear power plant radiation safety

    International Nuclear Information System (INIS)

    Taking into account domestic and foreign experience an engineer technique for the quantitative analysis and estimation of the expected level of NPP radiation safety for surrounding inhabitants is developed. The technique is based on the probability-statistical approach and includes the calculation for probability of possible accident situations on the basis of quantitative estimation of equipment reliability during normal operation, protection and accident localization; analysis of possible discharge of radioactive substance out of the NPP caused by accidents analysis of radioactive substance distribution over the country, the calculation of individual and collective risks for inhabitants. The advantages of the technique, possibility and prospects of its practical realization for increasing the efficiency of activities to ensure NPP radiation safety during the designing stage

  15. Safety of radiation sources and radioactive materials

    International Nuclear Information System (INIS)

    The activities involving the use of radiation sources and radioactive materials must be subject to the control of national authorities dedicated to their regulation. Nuclear regulatory bodies should be established with an adequate infrastructure, independence and technical competence and knowledge to provide the people with an appropriate to level of protection against harmful effects of ionizing radiation. In Argentina, the Nuclear Regulatory Authority (ARN) is empowered to regulate and control all nuclear activities with regard to radiological and nuclear safety, physical protection and non proliferation matters. Its regulatory system for radiation sources and radioactive materials comprises a registration, licensing and inspection regime. Due to the appearance of a considerable number of illicit traffic events involving radiation sources and radioactive materials in several countries and at their borders, the specialized national and international community identified and adopted supplementary measures to those of 'safety' aim at preventing and responding to such events. These measures are known as 'security measures'. The International Atomic Energy Agency (IAEA) is the main international forum in which its Member States are discussing the problems associated with the illicit traffic of radioactive materials and radiation sources. A main product of these discussions is the implementation of an Action Plan that includes 'security' measures. The objective of this article is to analyze when the adoption of additional 'security' measures is indispensable. The analysis considers two cases of illicit trafficking: one involving radiation sources under regulatory control; and the other involving 'orphan sources'. Orphan sources constitute the most important challenge to be addressed since these radiation sources are out of adequate control. The absence of additional measures (named 'security measures') to prevent and detect such sources, reduce the possibility of

  16. Radiation safety issues related to radiolabeled antibodies

    International Nuclear Information System (INIS)

    Techniques related to the use of radiolabeled antibodies in humans are reviewed and evaluated in this report. It is intended as an informational resource for the US Nuclear Regulatory Commission (NRC) and NRC licensees. Descriptions of techniques and health and safety issues are provided. Principal methods for labeling antibodies are summarized to help identify related radiation safety problems in the preparation of dosages for administration to patients. The descriptions are derived from an extensive literature review and consultations with experts in the field. A glossary of terms and acronyms is also included. An assessment was made of the extent of the involvement of organizations (other than the NRC) with safety issues related to radiolabeled antibodies, in order to identify regulatory issues which require attention. Federal regulations and guides were also reviewed for their relevance. A few (but significant) differences between the use of common radiopharmaceuticals and radiolabeled antibodies were observed. The clearance rate of whole, radiolabeled immunoglobulin is somewhat slower than common radiopharmaceuticals, and new methods of administration are being used. New nuclides are being used or considered (e.g., Re-186 and At-211) for labeling antibodies. Some of these nuclides present new dosimetry, instrument calibration, and patient management problems. Subjects related to radiation safety that require additional research are identified. 149 refs., 3 figs., 20 tabs

  17. Radiation safety and protection on the nuclear power plants

    International Nuclear Information System (INIS)

    The main issues of the radiation safety and protection provision on the nuclear power plants are considered in this monograph. The description of the basic sources of the radiation danger on NPPs, the principles, the methods and the means of the safety and radiation monitoring provision are shown. The special attention is paid to the issues of the ionizing radiation regulation

  18. Radiation Safety Awareness Among Medical Staff

    International Nuclear Information System (INIS)

    The common access to imaging methods based on ionizing radiation requires also radiation protection. The knowledge of ionizing radiation exposure risks among the medical staff is essential for planning diagnostic procedures and therapy. Evaluation of the knowledge of radiation safety during diagnostic procedures among the medical staff. The study consisted of a questionnaire survey. The questionnaire consisted of seven closed-ended questions concerning the knowledge of the effects of exposure to ionizing radiation as well as questions related to responder’s profession and work experience. The study group included a total of 150 individuals from four professional groups: nurses, doctors, medical technicians, support staff. The study was carried out in the three largest hospitals in Gdańsk between July and October 2013. The highest rates of correct answers to questions related to the issue of radiation protection were provided by the staff of radiology facilities and emergency departments with 1–5 years of professional experience. The most vulnerable group in terms of the knowledge of these issues consisted of individuals working at surgical wards with 11–15 years of professional experience. Education in the field of radiological protection should be a subject of periodic training of medical personnel regardless of position and length of service

  19. Radiation Protection and Safety of Radiation Sources: International Basic Safety Standards. General Safety Requirements. Pt. 3 (Chinese Edition)

    International Nuclear Information System (INIS)

    This publication is the new edition of the International Basic Safety Standards. The edition is co-sponsored by seven other international organizations — European Commission (EC/Euratom), FAO, ILO, OECD/NEA, PAHO, UNEP and WHO. It replaces the interim edition that was published in November 2011 and the previous edition of the International Basic Safety Standards which was published in 1996. It has been extensively revised and updated to take account of the latest finding of the United Nations Scientific Committee on the Effects of Atomic Radiation, and the latest recommendations of the International Commission on Radiological Protection. The publication details the requirements for the protection of people and the environment from harmful effects of ionizing radiation and for the safety of radiation sources. All circumstances of radiation exposure are considered

  20. Radiation protection and safety of radiation sources: International basic safety standards. General safety requirements. Pt. 3 (Russian Edition)

    International Nuclear Information System (INIS)

    This publication is the new edition of the International Basic Safety Standards. The edition is co-sponsored by seven other international organizations — European Commission (EC/Euratom), FAO, ILO, OECD/NEA, PAHO, UNEP and WHO. It replaces the interim edition that was published in November 2011 and the previous edition of the International Basic Safety Standards which was published in 1996. It has been extensively revised and updated to take account of the latest finding of the United Nations Scientific Committee on the Effects of Atomic Radiation, and the latest recommendations of the International Commission on Radiological Protection. The publication details the requirements for the protection of people and the environment from harmful effects of ionizing radiation and for the safety of radiation sources. All circumstances of radiation exposure are considered

  1. Radiation Protection and Safety of Radiation Sources: International Basic Safety Standards. General Safety Requirements. Pt. 3 (Arabic Edition)

    International Nuclear Information System (INIS)

    This publication is the new edition of the International Basic Safety Standards. The edition is co-sponsored by seven other international organizations — European Commission (EC/Euratom), FAO, ILO, OECD/NEA, PAHO, UNEP and WHO. It replaces the interim edition that was published in November 2011 and the previous edition of the International Basic Safety Standards which was published in 1996. It has been extensively revised and updated to take account of the latest finding of the United Nations Scientific Committee on the Effects of Atomic Radiation, and the latest recommendations of the International Commission on Radiological Protection. The publication details the requirements for the protection of people and the environment from harmful effects of ionizing radiation and for the safety of radiation sources. All circumstances of radiation exposure are considered

  2. Nuclear and radiation safety in Kazakhstan

    International Nuclear Information System (INIS)

    Major factors by which the radiation situation in Kazakhstan is formed are: enterprises of nuclear fuel cycle, including uranium mining and milling activity and geological exploration of uranium; nuclear power plant and research reactors; residues of atmospheric and underground nuclear explosions, which were conducted for military and peaceful purposes at different test sites; mining and milling of commercial minerals accompanied by radioactive substances; use of radioactive sources in industry, medicine, agriculture and scientific research. Since 1991, after getting sovereignty, creation was started of an own legislative basis of the country for the field of atomic energy use. It includes laws, regulations and standards for nuclear and radiation safety of nuclear installations, personnel, involved in the activity with using of atomic energy, population and environment. An applicable system of state regulation in this area (including a central regulatory body in the field of atomic energy use) and various ministries, agencies and committees, was created. As a result of these reforms, regulatory activities were improved in the country. This paper presents the current matters of nuclear and radiation safety in Kazakhstan and some difficulties which Kazakhstan encountered during the transition to an independent state. (author)

  3. Nuclear and radiation safety in Kazakhstan

    International Nuclear Information System (INIS)

    Major factors, by which the radiation situation in Kazakhstan is formed, are: enterprises of nuclear fuel cycle, including uranium mining and milling activity and geological exploration of uranium; nuclear power plant and research reactors; residues of atmospheric and underground nuclear explosions, which were conducted for military and peaceful purposes at the different test sites; mining and milling of commercial minerals accompanied by radioactive substances; using of radioactive sources in industry, medicine, agriculture and scientific research. Since 1991, after getting of sovereignty there was started creation of own legislative basis of the country for the field of atomic energy use. It includes laws, regulation and standards for nuclear and radiation safety of nuclear installations, personnel, involved in the activity with using of atomic energy, population and environment. Applicable system of state regulation in this area, including the central regulatory body in the field of atomic energy use and various ministries, agencies and committees, was created. As a result of these reforms, regulatory activities were improved in the country. This paper presents the current matters of nuclear and radiation safety in Kazakhstan and some difficulties, which Kazakhstan encountered during the transition to an independent state. (author)

  4. Radiation safety shield for a syringe

    International Nuclear Information System (INIS)

    Safety apparatus for use in administering radioactive serums by a syringe, without endangering the health and safety of the medical operators is described. The apparatus consists of a sheath and a shield which can be retracted into the sheath to assay the radioactive serum in an assay well. The shield can be moved from the retracted position into an extended position when the serum is to be injected into the patient. To protect the operator, the shield can be constructed of tantalum or any like high density substance to attenuate the radiation, emanating from the radioactive serums contained in the syringe, from passing to the atmosphere. A lead glass window is provided so that the operator can determine the exact quantity of the radioactive serum which is contained in the syringe

  5. The 7 basic tools of quality applied to radiological safety

    International Nuclear Information System (INIS)

    This work seeks to establish a series of correspondences among the search of the quality and the optimization of the doses received by the occupationally exposed personnel. There are treated about the seven basic statistic tools of the quality: the Pareto technique, Cause effect diagrams, Stratification, Verification sheet, Histograms, Dispersion diagrams and Graphics and control frames applied to the Radiological Safety

  6. Communication on radiation safety: ability and sensibility

    International Nuclear Information System (INIS)

    Nuclear Communication Issues today, combine aspects of nuclear science, public approach and psychological subjects. The principal objectives are to systematize nuclear public information and to prepare researchers or communicators in a position to comment on the nuclear issues of our stage. The programme should focused on progress of nuclear energy, public perception of risk, conflicts among scientists, as the radiation effect at low doses, and how nuclear industry and scientists may better communicate information concerning the potential for hazard to property, health and the environment. There will be occasions where the competent authority should have formal link with other organizations, as in case of abnormal situation or emergency. Particular attention should be paid to the exchange of distinct parts in order to avoid misinterpretation or mistakes when divulging information to the public.Communication is emphasized in the IAEA Basic Safety Standards, [1] as well as, the current approach created to enlarge the relationship between man, practices and protection by the encouragement of a better understanding and implementation of the Safety Culture concept. The application of this concept involves better protection on Radiation Safety to workers, public and environment not only reducing accidents, but also avoiding unnecessary stresses and strains due to intensified operations. This means an advance towards the humanization of practices, equally observed by industrialized and developing countries. Finally, this paper also comment about two very important lessons that there were not yet learned as in reality necessary, considering the goals for a competent Nuclear Communication: the psychological effects of Chernobyl accident in April 1986 resulted from the lack of public information; the psychological effects of the Radiological Accident in Goiania resulted from the misunderstanding of the basic concept of ionizing radiation, which was translated into fear and

  7. Basic safety standards for radiation protection. 1982 ed

    International Nuclear Information System (INIS)

    The International Atomic Energy Agency, the World Health Organization, the International Labour Organisation and the Nuclear Energy Agency of the OECD have undertaken to provide jointly a world-wide basis for harmonized and up-to-date radiation protection standards. The new Basic Safety Standards for Radiation Protection are based upon the latest recommendations by the International Commission on Radiological Protection (ICRP) which are essentially contained in its Publication No.26. These new Basic Safety Standards have been elaborated by an Advisory Group of Experts which met in Vienna from 10-14 October 1977, from 23-27 October 1978 and from 1-12 December 1980 under the joint auspices of the IAEA, ILO, WHO and the Nuclear Energy Agency of the OECD. Comments on the draft Basic Safety Standards received from Member States and relevant organizations were taken into account by the Advisory Group in the process of preparation of the revised Basic Safety Standards for Radiation Protection, which are published by the IAEA on behalf of the four sponsoring organizations. One of the main features of this revision is an increased emphasis on the recommendation to keep all exposures to ionizing radiation as low as reasonably achievable, economic and social factors being taken into account; consequently, radiation protection should not only apply the basic dose limits but also comply with this recommendation. Detailed guidance is given to assist those who have to decide on the implementation of this recommendation in particular cases. Another important feature is the recommendation of a more coherent method for achieving consistency in limiting risks to health, irrespective of whether the risk is of uniform or non-uniform exposure of the body.

  8. Maintenance of radiation safety information system

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Ho Sun [Korea Institute of Nuclear Safety, Taejon (Korea, Republic of); Park, Moon Il; Chung, Chong Kyu; Lim, Bock Soo; Kim, Hyung Uk; Chang, Kwang Il; Nam, Kwan Hyun; Cho, Hye Ryan [AD center incubation LAB, Taejon (Korea, Republic of)

    2001-12-15

    The objectives of radiation safety information system maintenance are to maintain the requirement of users, change of job process and upgrade of the system performance stably and effectively while system maintenance. We conduct the code of conduct recommended by IAEA, management of radioisotope inventory database systematically using analysis for the state of inventory database integrated in this system. This system and database will be support the regulatory guidance, rule making and information to the MOST, KINS, other regulatory related organization and general public optimizationally.

  9. Radiation protection aspects of design for nuclear power plants. Safety guide

    International Nuclear Information System (INIS)

    The IAEA's Statute authorizes the Agency to establish safety standards to protect health and minimize danger to life and property - standards which the IAEA must use in its own operations, and which a State can apply by means of its regulatory provisions for nuclear and radiation safety. A comprehensive body of safety standards under regular review, together with the IAEA's assistance in their application, has become a key element in a global safety regime. In the mid-1990s, a major overhaul of the IAEA's safety standards programme was initiated, with a revised oversight committee structure and a systematic approach to updating the entire corpus of standards. The new standards that have resulted are of a high calibre and reflect best practices in Member States. With the assistance of the Commission on Safety Standards, the IAEA is working to promote the global acceptance and use of its safety standards. Safety standards are only effective, however, if they are properly applied in practice. The IAEA's safety services - which range in scope from engineering safety, operational safety, and radiation, transport and waste safety to regulatory matters and safety culture in organizations - assist Member States in applying the standards and appraise their effectiveness. These safety services enable valuable insights to be shared and continue to urge all Member States to make use of them. Regulating nuclear and radiation safety is a national responsibility, and many Member States have decided to adopt the IAEA's safety standards for use in their national regulations. For the Contracting Parties to the various international safety conventions, IAEA standards provide a consistent, reliable means of ensuring the effective fulfilment of obligations under the conventions. The standards are also applied by designers, manufacturers and operators around the world to enhance nuclear and radiation safety in power generation, medicine, industry, agriculture, research and education

  10. Radiation protection aspects in the design of nuclear power plants. Safety guide

    International Nuclear Information System (INIS)

    The IAEA's Statute authorizes the Agency to establish safety standards to protect health and minimize danger to life and property - standards which the IAEA must use in its own operations, and which a State can apply by means of its regulatory provisions for nuclear and radiation safety. A comprehensive body of safety standards under regular review, together with the IAEA's assistance in their application, has become a key element in a global safety regime. In the mid-1990s, a major overhaul of the IAEA's safety standards programme was initiated, with a revised oversight committee structure and a systematic approach to updating the entire corpus of standards. The new standards that have resulted are of a high calibre and reflect best practices in Member States. With the assistance of the Commission on Safety Standards, the IAEA is working to promote the global acceptance and use of its safety standards. Safety standards are only effective, however, if they are properly applied in practice. The IAEA's safety services - which range in scope from engineering safety, operational safety, and radiation, transport and waste safety to regulatory matters and safety culture in organizations - assist Member States in applying the standards and appraise their effectiveness. These safety services enable valuable insights to be shared and continue to urge all Member States to make use of them. Regulating nuclear and radiation safety is a national responsibility, and many Member States have decided to adopt the IAEA's safety standards for use in their national regulations. For the Contracting Parties to the various international safety conventions, IAEA standards provide a consistent, reliable means of ensuring the effective fulfilment of obligations under the conventions. The standards are also applied by designers, manufacturers and operators around the world to enhance nuclear and radiation safety in power generation, medicine, industry, agriculture, research and education

  11. Education and Training in Radiation, Transport and Waste Safety Newsletter, No. 2b, May 2013

    International Nuclear Information System (INIS)

    The IAEA Strategic Approach to Education and Training in Radiation, Transport and Waste Safety (2011-2020) provides a framework for establishing a sustainable education and training infrastructure in Member States that addresses national needs for building and maintaining competence in radiation, transport and waste safety that is consistent with IAEA Safety Standards. For this purpose, IAEA's General Conference has encouraged Member States to develop a national strategy for education and training, underlining the fundamental importance of sustainable programmes for building competence in radiation, transport and waste safety, as a key component of safety infrastructure. Furthermore Member States that receive assistance from IAEA are obliged to apply IAEA Safety Standards which require, inter alia, governments to establish a national policy and strategy for safety, including provisions for acquiring and maintaining the necessary competence nationally for ensuring safety. IAEA's Division of Radiation, Transport and Waste Safety is assisting Member States to develop their own national strategies in Asia and the Pacific via the Regional project RAS/9/066 on ''Strengthening Education and training Infrastructure, and Building Competence in Radiation Safety'', which includes, inter alia, Regional Workshops on National Strategies for education and training in radiation transport and waste safety. IAEA's Regional Training Centres (RTCs) in Malaysia and Syrian Arabic Republic are key partners in the Asian and the Pacific region.

  12. Education and Training in Radiation, Transport and Waste Safety Newsletter, No. 2d, June 2013

    International Nuclear Information System (INIS)

    The IAEA Strategic Approach to Education and Training in Radiation, Transport and Waste Safety (2011-2020) provides a framework for establishing a sustainable education and training infrastructure in Member States that addresses national needs for building and maintaining competence in radiation, transport and waste safety that is consistent with IAEA Safety Standards. For this purpose, IAEA's General Conference has encouraged Member States to develop a national strategy for education and training, underlining the fundamental importance of sustainable programmes for building competence in radiation, transport and waste safety, as a key component of safety infrastructure. Furthermore Member States that receive assistance from IAEA are obliged to apply IAEA Safety Standards which require, inter alia, governments to establish a national policy and strategy for safety, including provisions for acquiring and maintaining the necessary competence nationally for ensuring safety. IAEA's Division of Radiation, Transport and Waste Safety is assisting Member States to develop their own national strategies in Latin America via the Regional Project RLA/9/070 on ''Strengthening Education and training Infrastructure, and Building Competence in Radiation Safety'', which includes, inter alia, Regional Workshops on National Strategies for education and training in radiation transport and waste safety. IAEA's Regional Training Centres (RTCs) in Argentina and Brazil are key partners in the Latin-American region.

  13. Education and Training in Radiation, Transport and Waste Safety Newsletter, No. 2c, May 2013

    International Nuclear Information System (INIS)

    The IAEA Strategic Approach to Education and Training in Radiation, Transport and Waste Safety (2011-2020) provides a framework for establishing a sustainable education and training infrastructure in Member States that addresses national needs for building and maintaining competence in radiation, transport and waste safety that is consistent with IAEA Safety Standards. For this purpose, IAEA's General Conference has encouraged Member States to develop a national strategy for education and training, underlining the fundamental importance of sustainable programmes for building competence in radiation, transport and waste safety, as a key component of safety infrastructure. Furthermore Member States that receive assistance from IAEA are obliged to apply IAEA Safety Standards which require, inter alia, governments to establish a national policy and strategy for safety, including provisions for acquiring and maintaining the necessary competence nationally for ensuring safety. IAEA's Division of Radiation, Transport and Waste Safety is assisting Member States to develop their own national strategies in Europe via the Regional Project RER/9/109 on ''Strengthening Education and training Infrastructure, and Building Competence in Radiation Safety'', which includes, inter alia, Regional Workshops on National Strategies for education and training in radiation transport and waste safety. IAEA's Regional Training Centres (RTCs) in Greece and Belarus are key partners in the European region.

  14. Education and Training in Radiation, Transport and Waste Safety Newsletter, No. 2a, May 2013

    International Nuclear Information System (INIS)

    The IAEA Strategic Approach to Education and Training in Radiation, Transport and Waste Safety (2011-2020) provides a framework for establishing a sustainable education and training infrastructure in Member States that addresses national needs for building and maintaining competence in radiation, transport and waste safety that is consistent with IAEA Safety Standards. For this purpose, IAEA's General Conference has encouraged Member States to develop a national strategy for education and training, underlining the fundamental importance of sustainable programmes for building competence in radiation, transport and waste safety, as a key component of safety infrastructure. Furthermore Member States that receive assistance from IAEA are obliged to apply IAEA Safety Standards which require, inter alia, governments to establish a national policy and strategy for safety, including provisions for acquiring and maintaining the necessary competence nationally for ensuring safety. IAEA's Division of Radiation, Transport and Waste Safety is assisting Member States to develop their own national strategies in Africa via the Regional project RAF/9/04 on ''Strengthening Education and training Infrastructure, and Building Competence in Radiation Safety'', which includes, inter alia, Regional Workshops on National Strategies for education and training in radiation transport and waste safety. AFRA Regional Designated Centres, in Algeria, Ghana and Morocco, equivalent to the IAEA's Regional Training Centres (RTCs) present in all the other regions, are key partners in the African region.

  15. National infrastructures for radiation safety: Towards effective and sustainable systems

    International Nuclear Information System (INIS)

    PAHO/WHO initiated radiological health activities in the 1950s, promoting public health aspects of radiation and providing fellowships for the training of physicians and other professionals in radiation medicine. According to official records, a Radiation Protection Unit was established at the regional level in 1960 to oversee 'the peaceful applications of nuclear energy'.The concern about radiological emergencies caused by medical radioactive sources no longer in use is driving PAHO to work on a joint cooperation with the IAEA to help countries in the Americas in the safe management, replacement, conditioning and safety storage of spent or disused radioactive sources. In countries without an infrastructure in radiation protection, the latter task is difficult. The region has obtained benefits from the collaboration between PAHO and the IAEA. However, there are some PAHO member States which are not Member States of the IAEA. Although PAHO is giving them technical cooperation in radiological health, should they possess or wish to possess any radiation source, PAHO suggests that they apply for IAEA membership for additional technical co-operation. Since the application of radiation in the medical field is a health issue, PAHO encourages the ministries of health for full participation involvement in the development of national policies regarding radiation safety. Thus, a closer relationship between the atomic energy commissions (where applicable) and ministries of health is desirable in each country. Finally, PAHO is willing to exchange information and collaborate in joint activities with international organizations, for example, in the IAEA's technical co-operation Model Project for Upgrading Radiation Protection Infrastructure

  16. Radiation shielding and safety analysis for SPring-8

    International Nuclear Information System (INIS)

    The methods of shielding design and safety analysis applied to SPring-8 are summarized. SPring-8, a third generation synchrotron radiation facility, is the facility with the highest stored electron energy of 8 GeV and very low beam emittance of 5.5 nm·rad. Because of these distinguished features, a variety of radiation issues have to be taken up, requiring the latest information for analyses. In this technical report are described the calculational methods and the conditions for the following shielding matters as well as verification of the validity; a bulk shielding, synchrotron radiation beamline shielding, skyshine, streaming through ducts and mazes, induced activities in air, cooling water and targets, and incident analysis due to abnormal beam losses. (author)

  17. Radiation shielding and safety analysis for SPring-8

    Energy Technology Data Exchange (ETDEWEB)

    Asano, Yoshihiro; Sasamoto, Nobuo [Japan Atomic Energy Research Inst., Kamigori, Hyogo (Japan). Kansai Research Establishment

    1998-03-01

    The methods of shielding design and safety analysis applied to SPring-8 are summarized. SPring-8, a third generation synchrotron radiation facility, is the facility with the highest stored electron energy of 8 GeV and very low beam emittance of 5.5 nm{center_dot}rad. Because of these distinguished features, a variety of radiation issues have to be taken up, requiring the latest information for analyses. In this technical report are described the calculational methods and the conditions for the following shielding matters as well as verification of the validity; a bulk shielding, synchrotron radiation beamline shielding, skyshine, streaming through ducts and mazes, induced activities in air, cooling water and targets, and incident analysis due to abnormal beam losses. (author)

  18. Radiation safety of children in X-ray examinations

    International Nuclear Information System (INIS)

    Problem of radiation safety of children in X-ray examinations is studied on the base of review of Soviet and foreign publications. Data on frequency of X-ray investigations and radiation loadings depending on sex and age of children are presented. Devices used in children X-ray examinations are decsribed. Recommendations on improving radiation safety of patients in pediatrics are given

  19. Exemption of the use of radiation from the safety licence and reporting obligation

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-07-01

    The primary means of controlling the use of radiation is the safety licence procedure. The safety licence, and the granting of the licence, are regulated in the section 16 of the Finnish Radiation Act (592/1991). In section 17 of the act, certain practices are exempted from the safety licence. In addition to these practices, the Radiation and Nuclear Safety (STUK) may (on the basis of the same legal clause) exempt other types of radiation use from the safety licence, if it is possible to ascertain with sufficient reliability that the use of the radiation will not cause damage or danger to health. This guide presents the conditions applying to exemption from the safety licence for the use of radiation and reporting obligation, and also the exemption values for radioactive substances which, if exceeded, will entail the application of the safety licence and notification procedure for the use of radiation in question. The guide also presents exemptions in the use of exemption values, and requirements associated with the exemption of radiation appliances. However, the guide does not apply to the use of nuclear energy.

  20. Thermoluminescence Dosimetry Applied to Radiation Protection

    DEFF Research Database (Denmark)

    Christensen, Poul; Bøtter-Jensen, Lars; Majborn, Benny

    1982-01-01

    This is a general review of the present state of the development and application of thermoluminescence dosimetry (TLD) for radiation protection purposes. A description is given of commonly used thermoluminescent dosimeters and their main dosimetric properties, e.g. energy response, dose range......, fading, and LET dependence. The applications of thermoluminescence dosimetry in routine personnel monitoring, accident dosimetry, u.v. radiation dosimetry, and environmental monitoring are discussed with particular emphasis on current problems in routine personnel monitoring. Finally, the present state...

  1. Radiation protection and safety guide no. GRPB-G-4: inspection

    International Nuclear Information System (INIS)

    The use of ionizing radiation and radiation sources in Ghana is on the increase due to national developmental efforts in Health Care, Food and Agriculture, Industry, Science and Technology. This regulatory Guide has been developed to assist both the Regulatory Body (Radiation Protection Board) and operating organizations to perform systematic inspections commensurate with the level of hazard associated with the application of radiation sources and radioactive materials. The present Guide applies to the Radiation Protection and Safety inspection and/or audit conducted by the Radiation Protection Board or Radiation Safety Officer. The present Guide is applicable in Ghana and to foreign suppliers of radiation sources. The present Guide applies to notifying person, licensee, or registrant and unauthorized practice

  2. The first symposium of Research Center for Radiation Safety, NIRS. Perspective of future studies of radiation safety

    International Nuclear Information System (INIS)

    This paper summarizes presentations given in the title symposium, held at the Conference Room of National Institute of Radiological Sciences (NIRS) on November 29 and 30, 2001. Contained are Introductory remarks: Basic presentations concerning exposure dose in man; Environmental levels of radiation and radioactivity, environmental radon level and exposure dose, and radiation levels in the specific environment (like in the aircraft): Special lecture (biological effects given by space environment) concerning various needs for studies of radiation safety; Requirement for open investigations, from the view of utilization, research and development of atomic energy, from the clinical aspect, and from the epidemiological aspect: Special lecture (safety in utilization of atomic energy and radiation-Activities of Nuclear Safety Commission of Japan) concerning present state and perspective of studies of radiation safety; Safety of radiation and studies of biological effects of radiation-perspective, and radiation protection and radiation safety studies: Studies in the Research Center for Radiation Safety; Summary of studies in the center, studies of the biological effects of neutron beam, carcinogenesis by radiation and living environmental factors-complicated effects, and studies of hereditary effects: Panel discussion (future direction of studies of radiation safety for the purpose of the center's direction): and concluding remarks. (N.I.)

  3. Radiation chemistry applied to drug design

    International Nuclear Information System (INIS)

    Radiation chemistry can contribute to drug design by quantifying redox properties of drugs and where free radicals are suspected intermediates in drug action, radiation can be used to generate these putative species and help characterise relevant reactions. Steady radiolysis produces radicals at a readily-varied but quantified rate; pulse radiolysis with fast spectrophotometric and/or conductimetric detection enables the kinetic properties of radicals to be monitored directly. Using these methods, radical intermediates from drugs with specific cytotoxicity towards hypoxic cells have been shown to react rapidly with oxygen. Radical oxidants from activated neutrophils include superoxide and hydroxyl radicals, and radiation-chemical methods have an important role to play in rational drug design to exploit such oxidative chemistry. Antioxidants can also be evaluated quantitatively by radiolysis methods; the conjugation reactions of thiyl radicals with thiolate and oxygen are now recognised to be major contributions of pulse radiolysis to thiol biochemistry. (author)

  4. Radiation chemistry applied to drug design

    Energy Technology Data Exchange (ETDEWEB)

    Wardman, P.; Candeias, L.P.; Everett, S.A. (Mount Vernon Hospital, Northwood (United Kingdom). Cancer Research Campaign Gray Lab.); Tracy, M. (SRI International, Menlo Park, CA (United States))

    1994-01-01

    Radiation chemistry can contribute to drug design by quantifying redox properties of drugs and where free radicals are suspected intermediates in drug action, radiation can be used to generate these putative species and help characterise relevant reactions. Steady radiolysis produces radicals at a readily-varied but quantified rate; pulse radiolysis with fast spectrophotometric and/or conductimetric detection enables the kinetic properties of radicals to be monitored directly. Using these methods, radical intermediates from drugs with specific cytotoxicity towards hypoxic cells have been shown to react rapidly with oxygen. Radical oxidants from activated neutrophils include superoxide and hydroxyl radicals, and radiation-chemical methods have an important role to play in rational drug design to exploit such oxidative chemistry. Antioxidants can also be evaluated quantitatively by radiolysis methods; the conjugation reactions of thiyl radicals with thiolate and oxygen are now recognised to be major contributions of pulse radiolysis to thiol biochemistry. (author).

  5. Applying a realistic evaluation model to occupational safety interventions

    DEFF Research Database (Denmark)

    Pedersen, Louise Møller

    2016-01-01

    characteristics of key actors (defined mechanisms), and the interplay between them, and can be categorized as expected or unexpected. However, little is known about ’how’ to include context and mechanisms in evaluations of intervention effectiveness. A revised realistic evaluation model has been introduced as a...... method to overcome these challenges. Focus is: What works, for whom, under what circumstances, in what respects, and how? Contextual factors such as underreporting of accidents/injuries and mechanisms, e.g. leader motivation, are included in the model and proposed to be measured using quantitative and...... qualitative methods. This revised model has, however, not been applied in a real life context. Method: The model is applied in a controlled, four-component, integrated behaviour-based and safety culture-based safety intervention study (2008-2010) in a medium-sized wood manufacturing company. The interventions...

  6. Radiation safety actuality in Republic of Moldova

    International Nuclear Information System (INIS)

    Radioecological monitoring issues and radiation safety are actual in the Republic of Moldova. Japan events show us the possibility of natural disasters. Republic of Moldova is surrounded by 8 NPPs, the closest being at the distance of 160 km. Moldovas territory is in seismic zone where underground earthquake shocks reaches 7 points or more. Thatis why radiation safety and radioecological monitoring is actual in our republic. Traces of Chernobyl were left in Moldovas soils. The fallouts of radio nuclides formed on the soil surfaces in the Republic of Moldova following the Chernobyl Nuclear Power Station Accident have been continuously affected by attacks of both natural and technicaly generated agents since the time of fallout. During the past decade a shift in emphasis has taken place regarding the need for more complete and accurate information on reservoir sedimentation. Classical sedimentation surveys involve repeated field measurement and, therefore, this is probably the most costly and time consuming method. The application of radio nuclides, particularly Cs 137, for water erosion and sedimentation studies in Republic of Moldova has not been attempted so far. This paper presents the results obtained on reservoir sedimentation rates in an area subjected to wide range in land degradation dy sheet-rill erosion. The profil characteristics support the assumption that in most undisturbed sites there is a sharp decline in Cs 137 activity with increasing dept. Such an asymmetrical distribution of the Cs 137 would suggest a standard pattern in the form of a cantilever. If the validity of this assamption is accepted it is possible to define two major types of Cs 137 cantilever distribution: shallow and deep buried cantilever. The main criterion in classifying these pattents lies generally in the shape of Cs 137 depth profile and particularly in burial magnitude of Cs 137 peak derived from Chernobyl. Hills area has been impacted by greatest sendimentation. This regional

  7. Possible approaches to the improvement in radiation safety criteria for space flights

    International Nuclear Information System (INIS)

    Possible methods of further improvement of formation of radiation safety criterion for space flights applied to the problem of radiation protection both of determined and probability sources are discussed. The hypothetic interplanetary flight using three variants of engines determining different time conditions of radiation effect: liquid-propellant rocket engine, low-thrust rocket engine with nuclear power plant supply, nuclear rocket engine is considered. An attempt is made to describe radiation hazard in terms of effective residual dose. It is shown that using the nation of effective residual dose the radiation safety criterion must be integral over the flight time. Radiation protection optimization in the interplanetary flight is carried out. It has been found that substitution of dose-effect threshold dependence for the smooth one extends the field of optimum search and permits to obtain versions with less mass expenditures for ensuring radiation safety

  8. Radiation safety aspects in the use of radiation sources in industrial and heath-care applications

    International Nuclear Information System (INIS)

    The principle underlying the philosophy of radiation protection and safety is to ensure that there exists an appropriate standard of protection and safety for humans, without unduly limiting the benefits of the practices giving rise to exposure or incurring disproportionate costs in interventions. To realise these objectives, the International Commission on Radiation Protection (ICRP-60) and IAEA's Safety Series (IAEA Safety Series 120, 1996) have enunciated the following criteria for the application and use of radiation: (1) justification of practices; (2) optimisation of protection; (3) dose limitation and (4) safety of sources. Though these criteria are the basic tenets of radiation protection, the radiation hazard potentials of individual applications vary and the methods to achieve the above mentioned objectives principles are different. This paper gives a brief overview of the various applications of radiation and radioactive sources in India, their radiation hazard perspective and the radiation safety measures provided to achieve the basic radiation protection philosophy. (author)

  9. Review of radiation safety in the cardiac catheterization laboratory

    International Nuclear Information System (INIS)

    With the increasing use of coronary arteriography and interventional procedures, radiation exposure to patients and personnel working in cardiac catheterization laboratories has increased. Proper technique to minimize both patient and operator exposure is necessary. A practical approach to radiation safety in the cardiac catheterization laboratory is presented. This discussion should be useful to facilities with well-established radiation safety programs as well as facilities that require restructuring to cope with the radiation environment in a modern cardiac catheterization laboratory

  10. Code of practice for safety in laboratory - non ionising radiation

    International Nuclear Information System (INIS)

    The code identifies the non-ionizing radiation encountered in laboratories and the associated hazards. The code is intended as a laboratory standard reference document for general information on safety requirements relating to the usage of non-ionizing radiations in laboratories. The nonionizing radiations cover in this code, namely, are ultraviolet radiation, visible light, radio-frequency radiation, lasers, sound waves and ultrasonic radiation. (author)

  11. Optical fiber applied to radiation detection

    International Nuclear Information System (INIS)

    In the last years, the production of optical fibers cables has make possible the development of a range of spectroscopic probes for in situ analysis performing beyond nondestructive tests, environmental monitoring, security investigation, application in radiotherapy for dose monitoring, verification and validation. In this work, a system using an optical fiber cable to light signal transmission from a NaI(Tl) radiation detector is presented. The innovative device takes advantage mainly of the optical fibers small signal attenuation and immunity to electromagnetic interference to application for radiation detection systems. The main aim was to simplify the detection system making it to reach areas where the conventional device cannot access due to its lack of mobility and external dimensions. Some tests with this innovative system are presented and the results stimulate the continuity of the researches. (author)

  12. NCRP Program Area Committee 2: Operational Radiation Safety

    Energy Technology Data Exchange (ETDEWEB)

    Pryor, Kathryn H.; Goldin, Eric M.

    2016-02-29

    Program Area Committee 2 of the National Council on Radiation Protection and Measurements provides guidance for radiation safety in occupational settings in a variety of industries and activities. The committee completed three reports in recent years covering recommendations for the development and administration of radiation safety programs for smaller educational institutions, requirements for self-assessment programs that improve radiation safety and identify and correct deficiencies, and a comprehensive process for effective investigation of radiological incidents. Ongoing work includes a report on sealed radioactive source controls and oversight of a report on radioactive nanomaterials focusing on gaps within current radiation safety programs. Future efforts may deal with operational radiation safety programs in fields such as the safe use of handheld and portable X-Ray fluorescence analyzers, occupational airborne radioactive contamination, unsealed radioactive sources, or industrial accelerators.

  13. Communications on nuclear, radiation, transport and waste safety: a practical handbook

    International Nuclear Information System (INIS)

    Basic requirements to be met by national infrastructures for radiation protection and safety are stated in the International basic safety Standards for Protection against Ionizing radiation and for safety of radiation Sources. These include a requirement 'to set up appropriate means of informing the public, its representatives and the information media about the health and safety aspects of activities involving exposure to radiation and about regulatory processes.' This publication is intended for national regulatory authorities, to provide them with guidance on the principles and methods that can be applied in communicating nuclear safety to different audiences under different circumstances. This report presumes the existence of adequate national infrastructure including an independent regulatory authority with sufficient powers and resources to meet its responsibilities

  14. Environmental and source monitoring for purposes of radiation protection. Safety guide

    International Nuclear Information System (INIS)

    The IAEA's Statute authorizes the Agency to establish safety standards to protect health and minimize danger to life and property - standards which the IAEA must use in its own operations, and which a State can apply by means of its regulatory provisions for nuclear and radiation safety. A comprehensive body of safety standards under regular review, together with the IAEA's assistance in their application, has become a key element in a global safety regime. In the mid-1990s, a major overhaul of the IAEA's safety standards programme was initiated, with a revised oversight committee structure and a systematic approach to updating the entire corpus of standards. The new standards that have resulted are of a high calibre and reflect best practices in Member States. With the assistance of the Commission on Safety Standards, the IAEA is working to promote the global acceptance and use of its safety standards. Safety standards are only effective, however, if they are properly applied in practice. The IAEA's safety services which range in scope from engineering safety, operational safety, and radiation, transport and waste safety to regulatory matters and safety culture in organizations assist Member States in applying the standards and appraise their effectiveness. These safety services enable valuable insights to be shared and continue to urge all Member States to make use of them. Regulating nuclear and radiation safety is a national responsibility, and many Member States have decided to adopt the IAEA's safety standards for use in their national regulations. For the Contracting Parties to the various international safety conventions, IAEA standards provide a consistent, reliable means of ensuring the effective fulfilment of obligations under the conventions. The standards are also applied by designers, manufacturers and operators around the world to enhance nuclear and radiation safety in power generation, medicine, industry, agriculture, research and education. The

  15. New law on radiation protection and radiation safety, of people, properties and environment. Uruguay 2013

    International Nuclear Information System (INIS)

    Scope.- This Law applies to all situations involving exposure or potential exposure to ionizing radiation, including relating to the possession, uses, development etc, which are carried out within the territory of the Republic of Uruguay. Objective.- Substantial objective of this law is to ensure the protection and radiation safety, in regard to the protection of occupationally exposes, to the general public, property and the environment from the negative effects of radiation risks and radiation induced damage avoiding or mitigating them, also ensuring the physical protection of sources and facilities. Definitions.- Among other concepts are defined the following: Protection and Radiation Safety, Nuclear Safety, Radioactive Material, Nuclear material, Ionizing radiation, Dosimetry, Safeguard etc. Regulatory authority.- The National Regulatory Authority Radiation Safety is he competent authority for the implementation of this law and its regulations. This regulatory body integrates the Ministry of Industry, Energy and Mining. Exclusive, independence and autonomy.- Regulatory Authority is unique in Uruguay in terms of controlling the emission of ionizing radiation, will feature technical independence and technical and professional autonomy, remaining institutionally separate from all other activities that promotes or develop nuclear technology or provide related services. - Capability • Promote and spread a level users and society in general, the rules concerning the protection and radiation safety, as well as the benefits of the peaceful uses of ionizing radiation. • Develop and monitor compliance with all regulations regarding the protection and radiation safety. • Develop standards, technical regulations, codes of practice and safety activities in nuclear technology and should periodically update them according with technological developments and the recommendations of the International Atomic Energy Agency ( IAEA) is applied • Authorize the import, export

  16. Study of fieldbus technology applied in a sterilization plant control and safety systems

    International Nuclear Information System (INIS)

    Several sterilization processes have been used in these years for treatment of countless products. Some processes use high temperatures, thermal shocks and chemical agents. With the discovery of the ionizing radiation and its posterior technological developments turned possible application of that process, in 1960, also in the the sterilization, denominated radiation sterilization. This process became also applied in another areas of health and industrial as food conservation, gemstones enhancement and others. The radiation sterilization requests an effective control and it needs a high level of safety. The commercial use of the computers applied in industrial automation provides and the domain of new technologies in this field provides new applications then new designs now is possible. The Fieldbus technology, a new digital communication protocol, like a Local Area Network, can be an alternative in the cobalt-60 irradiation plant. The present work suggests, evaluates, qualifies and quantifies this possibility. (author)

  17. Radiation in the human environment: health effects, safety and acceptability

    International Nuclear Information System (INIS)

    This paper reports selectively on three other aspects of radiation (used throughout to mean ionizing radiation) in the human environment: the human health effects of radiation, radiation safety policy and practices, and the acceptability of scientifically justified practices involving radiation exposures. Our argument is that the science of radiation biology, the judgemental techniques of radiation safety, and the social domain of radiation acceptability express different types of expertise that should complement - and not conflict with or substitute for - one another. Unfortunately, communication problems have arisen among these three communities and even between the various disciplines represented within a community. These problems have contributed greatly to the misperceptions many people have about radiation and which are frustrating a constructive dialogue on how radiation can be harnessed to benefit mankind. Our analysis seeks to assist those looking for a strategic perspective from which to reflect on their interaction with practices involving radiation exposures. (author)

  18. Radiation safety for baggage x-ray inspection systems

    International Nuclear Information System (INIS)

    This book is an outgrowth of a course on radiation safety aimed at technicians responsible for conducting maintenance on baggage x-ray inspection systems used in federally operated facilities. The need for a single reference book became apparent to the instructor in 1984. In an effort to provide a cohesive development of the subject, a set of lecture notes was prepared and revised annually since 1984, from which this book has evolved. This book is intended to present concepts necessary for an elementary but comprehensive knowledge of radiation safety. While some material coverage may appear somewhat detailed, it is a deliberate attempt to strengthen areas of demonstrated weaknesses observed in course attenders and to provide guidance on the numerous questions about man-made radiation asked by course attenders over the years. Numerical examples are included in most chapters for clarity and ease of understanding. The problems given at the end of most chapters provide the reader with the opportunity of applying the material presented in the chapters to situations of practical interest. It is important that these problems be considered an integral part of the course and students attempt to solve them. 36 refs., 9 tabs., 17 figs

  19. Radiation safety of staff and public in nuclear medicine procedures

    International Nuclear Information System (INIS)

    Use of radio-pharmaceuticals in nuclear medicine results in radiation exposure to the staff and public. This exposure is to be kept as low as reasonably achievable by observing necessary safety precautions in day to day work with radionuclides. This paper discusses the nuclear practices where potential exposure exists and mentions the radiation safety procedures that to be followed. (author)

  20. Upgrade of accelerator radiation safety system for SPring-8

    International Nuclear Information System (INIS)

    The accelerator safety interlock system to protect persons from the radiation damages has been operated in SPring-8. The accelerator safety interlock system is monitoring the condition of safety equipment. If the condition is unsafe, the system stops the electron beam. The accelerator safety interlock system currently running is based on the operation mode control. Since the operation mode based system is quite complex, the system has some problems. Therefore, we are planning to construct new accelerator safety interlock system. We'll report the situation of current accelerator safety interlock system and the conceptual design of new accelerator safety interlock system. (author)

  1. Integration of radiation protection in safety management: sharing best practices between radiation protection and other safety areas

    International Nuclear Information System (INIS)

    Full text: The Institute for Reference Materials and Measurements (IRMM) located in Geel is one of the seven institutes of the Joint Research Centre of the European Commission (EC, DG JRC). The institute was founded in 1960 as a nuclear research centre, but has gradually shifted its activities to also include 'non-nuclear' domains, mainly in the areas of food safety and environmental surveillance. As the activities on the IRMM site are currently quite diversified, they necessitate the operation of nuclear controlled areas, accelerators, as well as bio safety restricted areas and chemical laboratories. Therefore, the care for occupational health and safety and for environmental protection has to take into consideration various types of hazards and threats. Recently an integrated management system according to ISO-9001, ISO-14001 and OHSAS-18001 was implemented. The integrated system combines 'vertically' quality, occupational health and safety and environmental issues and covers 'horizontally' the nuclear, biological and chemical fields. The paper outlines how the radiation protection can be included in an overall health, safety and environmental management system. It will give various practical examples where synergies can be applied: 1-) the overall policy; 2-) The assessment and ranking of all risks and the identification, in a combined way, of the appropriate prevention measures; 3-) The planning and review of related actions; 4-) The monitoring, auditing and registration of anomalies and incidents and the definition of corrective actions; 5-) The training of personnel based on lessons learned from past experiences; 6-) The organisation of an internal emergency plan dealing with nuclear and non-nuclear hazards. Based on these examples, the benefits of having an integrated approach are commented. In addition, the paper will illustrate how the recent ICRP fundamental recommendations and more particularly some of the principles of radiation protection such as

  2. Industrial safety and applied health physics. Annual report for 1980

    International Nuclear Information System (INIS)

    Information is reported in sections entitled: radiation monitoring; Environmental Management Program; radiation and safety surveys; industrial safety and special projects; Office of Operational Safety; and training, lectures, publications, and professional activities. There were no external or internal exposures to personnel which exceeded the standards for radiation protection as defined in DOE Manual Chapter 0524. Only 35 employees received whole body dose equivalents of 10 mSv (1 rem) or greater. There were no releases of gaseous waste from the Laboratory which were of a level that required an incident report to DOE. There were no releases of liquid radioactive waste from the Laboratory which were of a level that required an incident report to DOE. The quantity of those radionuclides of primary concern in the Clinch River, based on the concentration measured at White Oak Dam and the dilution afforded by the Clinch River, averaged 0.16 percent of the concentration guide. The average background level at the Perimeter Air Monitoring (PAM) stations during 1980 was 9.0 μrad/h (0.090 μGy/h). Soil samples were collected at all perimeter and remote monitoring stations and analyzed for eleven radionuclides including plutonium and uranium. Plutonium-239 content ranged from 0.37 Bq/kg (0.01 pCi/g) to 1.5 Bq/kg (0.04 pCi/g), and the uranium-235 content ranged from 0.7 Bq/kg (0.02 pCi/g) to 16 Bq/kg (0.43 pCi/g). Grass samples were collected at all perimeter and remote monitoring stations and analyzed for twelve radionuclides including plutonium and uranium. Plutonium-239 content ranged from 0.04 Bq/kg (0.001 pCi/g) to 0.07 Bq/kg (0.002 pCi/g), and the uranium-235 content ranged from 0.37 Bq/kg (0.01 pCi/g) to 12 Bq/kg

  3. A prediction model for the radiation safety management behavior of medical cyclotrons

    International Nuclear Information System (INIS)

    This study attempted to provide reference materials for improving the behavior level in radiation safety managements by drawing a prediction model that affects the radiation safety management behavior because the radiation safety management of medical Cyclotrons, which can be used to produce radioisotopes, is an important factor that protects radiation caused diseases not only for radiological operators but average users. In addition, this study obtained follows results through the investigation applied from January 2 to January 30, 2008 for the radiation safety managers employed in 24 authorized organizations, which have already installed Cyclotrons, through applying a specific form of questionnaire in which the validity was guaranteed by reference study, site investigation, and focus discussion by related experts. The radiation safety management were configured as seven steps: step 1 is a production preparation step, step 2 is an RI production step, step 3 is a synthesis step, step 4 is a distribution step, step 5 is a quality control step, step 6 is a carriage container packing step, and step 7 is a transportation step. It was recognized that the distribution step was the most exposed as 15 subjects (62.5%), the items of 'the sanction and permission related works' and 'the guarantee of installation facilities and production equipment' were the most difficult as 9 subjects (37.5%), and in the trouble steps in such exposure, the item of 'the synthesis and distribution' steps were 4 times, respectively (30.8%). In the score of the behavior level in radiation safety managements, the minimum and maximum scores were 2.42 and 4.00, respectively, and the average score was 3.46 ± 0.47 out of 4. Prosperity and well-being programs in the behavior and job in radiation safety managements (r=0.529) represented a significant correlation statistically. In the drawing of a prediction model based on the factors that affected the behavior in radiation safety managements, general

  4. Upgrade of accelerator radiation safety system for SPring-8 (2)

    International Nuclear Information System (INIS)

    Radiation safety interlock system for the SPring-8 accelerator complex, which protects personnel from radiation hazard induced by electron beams and synchrotron radiation, has been operating over a decade. In the past 10 years, the accelerator was upgraded to extend accelerator/beam-transport areas, and it was implemented new functions. The safety interlock system was also extended. The extended radiation safety interlock system had the complicated safety logic to handle the upgraded accelerator because the safety interlock system was closely related to “Operation MODE” of the accelerator, which is the combination of accelerator/beam-transport areas in operation. This circumstance provoked extensive discussions on the design of new radiation safety interlock system to satisfy the requirements and smooth migration from the old system to the new one. The construction of the new radiation safety interlock system was finalized in September 2010. And the system started the user operation in October 2010. We will report the design of the new radiation safety interlock system and introduction results. (author)

  5. AN ADVANCED TOOL FOR APPLIED INTEGRATED SAFETY MANAGEMENT

    Energy Technology Data Exchange (ETDEWEB)

    Potts, T. Todd; Hylko, James M.; Douglas, Terence A.

    2003-02-27

    WESKEM, LLC's Environmental, Safety and Health (ES&H) Department had previously assessed that a lack of consistency, poor communication and using antiquated communication tools could result in varying operating practices, as well as a failure to capture and disseminate appropriate Integrated Safety Management (ISM) information. To address these issues, the ES&H Department established an Activity Hazard Review (AHR)/Activity Hazard Analysis (AHA) process for systematically identifying, assessing, and controlling hazards associated with project work activities during work planning and execution. Depending on the scope of a project, information from field walkdowns and table-top meetings are collected on an AHR form. The AHA then documents the potential failure and consequence scenarios for a particular hazard. Also, the AHA recommends whether the type of mitigation appears appropriate or whether additional controls should be implemented. Since the application is web based, the information is captured into a single system and organized according to the >200 work activities already recorded in the database. Using the streamlined AHA method improved cycle time from over four hours to an average of one hour, allowing more time to analyze unique hazards and develop appropriate controls. Also, the enhanced configuration control created a readily available AHA library to research and utilize along with standardizing hazard analysis and control selection across four separate work sites located in Kentucky and Tennessee. The AHR/AHA system provides an applied example of how the ISM concept evolved into a standardized field-deployed tool yielding considerable efficiency gains in project planning and resource utilization. Employee safety is preserved through detailed planning that now requires only a portion of the time previously necessary. The available resources can then be applied to implementing appropriate engineering, administrative and personal protective equipment

  6. Safety and Radiation Protection at Swedish Nuclear Power Plants 2005

    International Nuclear Information System (INIS)

    -to-date and documented safety analyses must be prepared and actively be included in both the preventive safety work and in connection with plant modifications. The licensees have implemented design analysis projects for a long period of time and clarified and stringent regulations for safety analyses have entered into force in 2005. As a result, updated safety reports exist for many of the facilities and schedules exist for the supplementary work that remains to be done. SKI's reinforced supervision of Barsebaeck 2 continued until the closure of the reactor on May 31, 2005. In SKI's opinion, BKAB mainly handled the lengthy facility closure in a satisfactory manner. The handling of nuclear waste at the nuclear facilities has mainly functioned well. The same applies to the operation of the Repository for Low and Intermediate-level Operational Waste (SFR-1) and the Central Interim Storage Facility for Spent Nuclear Fuel (CLAB). The overall evaluation of the Swedish Radiation Protection Authority (SSI) is that radiation protection at Swedish nuclear power plants has functioned well in 2005. The total radiation dose to the personnel at Swedish nuclear power plants was 9.2 manSv, which agrees with the average value of the total radiation doses over the last five years (9 manSv). No-one received a radiation dose in excess of the established dose limits and the radiation levels in the facilities are largely unchanged compared with previous years. The radiation doses to the public from the Swedish nuclear power plants continue to be low. SSI considers that continuous work is also needed in the future at the facilities to further reduce radioactive releases by applying the best available technique (BAT) and other measures. The control measurements that SSI is conducting on environmental samples from around the nuclear power facilities as well as on radioactive releases to water show a good agreement with the licensees' own measurements

  7. Safety and Radiation Protection at Swedish Nuclear Power Plants 2005

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-05-15

    other things. Up-to-date and documented safety analyses must be prepared and actively be included in both the preventive safety work and in connection with plant modifications. The licensees have implemented design analysis projects for a long period of time and clarified and stringent regulations for safety analyses have entered into force in 2005. As a result, updated safety reports exist for many of the facilities and schedules exist for the supplementary work that remains to be done. SKI's reinforced supervision of Barsebaeck 2 continued until the closure of the reactor on May 31, 2005. In SKI's opinion, BKAB mainly handled the lengthy facility closure in a satisfactory manner. The handling of nuclear waste at the nuclear facilities has mainly functioned well. The same applies to the operation of the Repository for Low and Intermediate-level Operational Waste (SFR-1) and the Central Interim Storage Facility for Spent Nuclear Fuel (CLAB). The overall evaluation of the Swedish Radiation Protection Authority (SSI) is that radiation protection at Swedish nuclear power plants has functioned well in 2005. The total radiation dose to the personnel at Swedish nuclear power plants was 9.2 manSv, which agrees with the average value of the total radiation doses over the last five years (9 manSv). No-one received a radiation dose in excess of the established dose limits and the radiation levels in the facilities are largely unchanged compared with previous years. The radiation doses to the public from the Swedish nuclear power plants continue to be low. SSI considers that continuous work is also needed in the future at the facilities to further reduce radioactive releases by applying the best available technique (BAT) and other measures. The control measurements that SSI is conducting on environmental samples from around the nuclear power facilities as well as on radioactive releases to water show a good agreement with the licensees' own measurements.

  8. Radiation safety interlock system at Indus accelerator complex

    International Nuclear Information System (INIS)

    A Radiation Safety Interlock System (a part of Radiation Safety System) that ensures protection of personnel during the facility operation from radiation hazards induced by electron beam and synchrotron radiation has been in operation very effectively for over a decade at Indus Accelerator complex (IAC). Radiation Safety Interlock System (RSIS) consists of two parts - Safety Interlock Unit (SIU) and Mode Selection Unit (MSU). Separate Safety Interlock Units are provided for four machine areas of IAC, namely Microtron and Booster, Indus-1 storage ring, Indus-1 user hall and Indus-2 storage ring. The efficacy of the Safety Interlock Units of Indus-1 user hall, Indus-1 storage ring and Indus-2 storage ring is governed by the operation modes that are selected through Mode Selection Unit. RSIS has been modified during past 1 and 1/2 year by addition of new interlock features and changes in the final beam control scheme. Machine Safety Interlock System (MSIS) was also interlocked with RSIS to facilitate termination of machine operation in case of any unsafe condition of Indus-2 systems. This paper describes the design philosophy, recent modifications, implementation and future upgrade plans of the present Radiation Safety Interlock Systems at Indus accelerator complex. (author)

  9. Challenges in strengthening radiation safety and security programme in Malaysia

    International Nuclear Information System (INIS)

    This paper illustrates the Malaysian experience in implementing steps in strengthening radiation safety and security through certification of radiation safety personnel, which is dedicated to meet the current and future needs in sustainability of radiation safety and security systems. Commitment from the workforce to treat safety as a priority and the ability to turn a requirement into a practical language is also important in implementing the radiation safety policy efficiently. Through this effort, we are able to create a basis for adequate protection of workers, the public and the environment and encourage licensees to manage radiation safety and security based on performance, and not on compliance culture, with the final objective of professing a safety culture through self regulation. This will certainly benefit an organisation with ultimate goals are to continuously strive for a healthy, accident free and environmentally sound workplace and community, while providing the technical support needed to meet the national mission. This will strengthen the radiation safety and security programme and could be used to assist in manpower development once Malaysia makes the decision to embark on a nuclear power programme. (author)

  10. Industrial safety and applied health physics. Annual report for 1978

    International Nuclear Information System (INIS)

    There were no external or internal exposures to personnel which exceeded the standards for radiation protection as defined in DOE Manual Chapter 0524. Only 39 employees received whole body dose equivalents of one rem or greater. The highest whole body dose equivalent to an employee was 3.3 rem. The highest internal exposure was less than 25% of a maximum permissible dose for any calendar quarter. During 1978, 23 portable instruments were added to the inventory and 228 retired. The total number in service on January 1, 1979, was 1023. There were no releases of gaseous waste or liquid radioactive waste from the laboratory which were of a level that required an incident report to DOE. The average background level at the PAM stations during 1978 was 9.3 μR/hr, or 81 mR/yr. Soil samples were collected at all perimeter and remote monitoring stations and analyzed for eleven radionuclides including plutonium and uranium. Grass samples were collected and analyzed for twelve radionuclides including plutonium and uranium. During 1978, the Radiation and Safety Surveys personnel continued to assist the operating groups in keeping contamination, air concentrations, and personnel exposure levels below the established maximum permissible levels. Fourteen radiation incidents involving radioactive materials were recorded during 1978. Of the 582,000 articles of wearing apparel and 192,000 articles, such as mops, laundry bags, towels, etc., monitored during 1978 about four percent were found to be contaminated. Three lost workday cases occurred at ORNL in 1978, a frequency rate of 0.07. The Serious Injury frequency rate for 1978 was 1.40, as based on the new OSHA system for recording injuries and illness (RII). A total of 55 days were lost or charged for the three lost workday cases in 1978

  11. Towards a radiation safety culture at Universidad Nacional de Colombia

    International Nuclear Information System (INIS)

    Full text: During the 20th century, nuclear and radiation techniques for research, teaching, and medical and engineering practice slowly appeared at the National University of Colombia, mainly at the Bogota, Medellin and Manizales branches. Each individual laboratory or researcher obtained the license for the use of the radioactive source, or radiation emitting apparatus. However, the University as a whole does not have as yet a Radiation Safety Manual, nor an inventory of laboratories using radiation. From the viewpoint of radiation safety and culture, this situation is undesirable, and may easily lead to inappropriate waste management practices, including the possibility of orphan sources (one such source has been already found). As part of the program of environmental management of dangerous wastes promoted by the National Division of Laboratories of our University, an office of radiation safety was created in the year 2006. This paper describes the situation that was found, the activities that have been carried out, some of the difficulties that we have met, and the plans that we have to help shape a safety culture at our institution. Currently we are pursuing an inventory of laboratories using radioactive sources and radiation emitting apparatuses, starting with the branches in Bogota and Manizales which are perceived as the most urgent to deal with. Fortunately, the branch in Medellin has been for about a decade under the care of a former radiation safety officer of our national Institute of Nuclear Affairs, who presently teaches there. During 2006 and 2007, 13 laboratories using radioactive sources were visited in the Bogota branch. Safety procedures and waste handling protocols were checked, safety manuals prepared and/or revised, and recommendations for safety culture provided. During 2008 we will visit Manizales, and will continue visiting a number of X-ray machines used in the Bogota branch for engineering, veterinary, and diagnostic, and surgery medical

  12. Radiation safety and vascular access: attitudes among cardiologists worldwide

    International Nuclear Information System (INIS)

    Objectives: To determine opinions and perceptions of interventional cardiologists on the topic of radiation and vascular access choice. Background: Transradial approach for cardiac catheterization has been increasing in popularity worldwide. There is evidence that transradial access (TRA) may be associated with increasing radiation doses compared to transfemoral access (TFA). Methods: We distributed a questionnaire to collect opinions of interventional cardiologists around the world. Results: Interventional cardiologists (n = 5332) were contacted by email to complete an on-line survey from September to October 2013. The response rate was 20% (n = 1084). TRA was used in 54% of percutaneous coronary interventions (PCIs). Most TRAs (80%) were performed with right radial access (RRA). Interventionalists perceived that TRA was associated with higher radiation exposure compared to TFA and that RRA was associated with higher radiation exposure that left radial access (LRA). Older interventionalists were more likely to use radiation protection equipment and those who underwent radiation safety training gave more importance to ALARA (as low as reasonably achievable). Nearly half the respondents stated they would perform more TRA if the radiation exposure was similar to TFA. While interventionalists in the United States placed less importance to certain radiation protective equipment, European operators were more concerned with physician and patient radiation. Conclusions: Interventionalists worldwide reported higher perceived radiation doses with TRA compared to TFA and RRA compared to LRA. Efforts should be directed toward encouraging consistent radiation safety training. Major investment and application of novel radiation protection tools and radiation dose reduction strategies should be pursued. - Highlights: • We examined radiation safety and arterial access practices among 1000 cardiologists. • Radial access is perceived as having higher radiation dose compared to

  13. Radiation safety and vascular access: attitudes among cardiologists worldwide

    Energy Technology Data Exchange (ETDEWEB)

    Vidovich, Mladen I., E-mail: miv@uic.edu [Department of Medicine, Division of Cardiology, University of Illinois at Chicago, Chicago, Illinois (United States); Khan, Asrar A. [Department of Medicine, Division of Cardiology, University of Illinois at Chicago, Chicago, Illinois (United States); Xie, Hui [Division of Epidemiology and Biostatistics and Cancer Center, University of Illinois at Chicago, Chicago, Illinois (United States); Shroff, Adhir R. [Department of Medicine, Division of Cardiology, University of Illinois at Chicago, Chicago, Illinois (United States)

    2015-03-15

    Objectives: To determine opinions and perceptions of interventional cardiologists on the topic of radiation and vascular access choice. Background: Transradial approach for cardiac catheterization has been increasing in popularity worldwide. There is evidence that transradial access (TRA) may be associated with increasing radiation doses compared to transfemoral access (TFA). Methods: We distributed a questionnaire to collect opinions of interventional cardiologists around the world. Results: Interventional cardiologists (n = 5332) were contacted by email to complete an on-line survey from September to October 2013. The response rate was 20% (n = 1084). TRA was used in 54% of percutaneous coronary interventions (PCIs). Most TRAs (80%) were performed with right radial access (RRA). Interventionalists perceived that TRA was associated with higher radiation exposure compared to TFA and that RRA was associated with higher radiation exposure that left radial access (LRA). Older interventionalists were more likely to use radiation protection equipment and those who underwent radiation safety training gave more importance to ALARA (as low as reasonably achievable). Nearly half the respondents stated they would perform more TRA if the radiation exposure was similar to TFA. While interventionalists in the United States placed less importance to certain radiation protective equipment, European operators were more concerned with physician and patient radiation. Conclusions: Interventionalists worldwide reported higher perceived radiation doses with TRA compared to TFA and RRA compared to LRA. Efforts should be directed toward encouraging consistent radiation safety training. Major investment and application of novel radiation protection tools and radiation dose reduction strategies should be pursued. - Highlights: • We examined radiation safety and arterial access practices among 1000 cardiologists. • Radial access is perceived as having higher radiation dose compared to

  14. Sweden's Cooperation with Eastern Europe in Radiation Safety 2010

    International Nuclear Information System (INIS)

    The Swedish Radiation Safety Authority implemented in 2010 cooperation projects in Russia, Ukraine, Georgia, Armenia, Lithuania and Moldova based on instructions from the Swedish Government and agreements with the European Union and the Swedish International Development Cooperation Agency, SIDA. The projects aim at achieving a net contribution to radiation safety (including nuclear safety, nuclear security and non-proliferation as well as radiation protection and emergency preparedness) for the benefit of the host country as well as Sweden. This report gives an overview of all the projects implemented in 2010

  15. Nuclear safety and radiation protection in France in 2011

    International Nuclear Information System (INIS)

    The first part of this voluminous report describe the different ASN (Nuclear Safety Authority) actions: nuclear activities (ionising radiation and health and environmental risks), principles and stakeholders in nuclear safety regulation, radiation protection and protection of the environment, regulation, regulation of nuclear activities and exposure to ionizing radiation, radiological emergencies, public information and transparency, international relations. It also gives an overview of nuclear safety and radiation protection activities in the different French regions. The second part addresses activities regulated by the ASN: medical uses of ionizing radiation, non-medical uses of ionizing radiation, transport of radioactive materials, nuclear power plants, nuclear fuel cycle installations, nuclear research facilities and various nuclear installations, safe decommissioning of basic nuclear installations, radioactive waste and contaminated sites and soils

  16. Framework for applying probabilistic safety analysis in nuclear regulation

    International Nuclear Information System (INIS)

    The traditional regulatory framework has served well to assure the protection of public health and safety. It has been recognized, however, that in a few circumstances, this deterministic framework has lead to an extensive expenditure on matters hat have little to do with the safe and reliable operation of the plant. Developments of plant-specific PSA have offered a new and powerful analytical tool in the evaluation of the safety of the plant. Using PSA insights as an aid to decision making in the regulatory process is now known as 'risk-based' or 'risk-informed' regulation. Numerous activities in the U.S. nuclear industry are focusing on applying this new approach to modify regulatory requirements. In addition, other approaches to regulations are in the developmental phase and are being evaluated. One is based on the performance monitoring and results and it is known as performance-based regulation. The other, called the blended approach, combines traditional deterministic principles with PSA insights and performance results. (author)

  17. Radiation sources safety and radioactive materials security regulation in Ukraine

    International Nuclear Information System (INIS)

    Radiation sources are widely used in Ukraine. There are about 2500 users in industry, science, education and about 2800 in medicine. About 80,000 sealed radiation sources with total kerma-equivalent of 450 Gy*M2/sec are used in Ukraine. The exact information about the radiation sources and their users will be provided in 2001 after the expected completion of the State inventory of radiation sources in Ukraine. In order to ensure radiation source safety in Ukraine, a State System for regulation of activities dealing with radiation sources has been established. The system includes the following elements: establishment of norms, rules and standards of radiation safety; authorization activity, i.e. issuance of permits (including those in the form of licences) for activities dealing with radiation sources; supervisory activity, i.e. control over observance of norms, rules and standards of radiation safety and fulfilment of conditions of licences for activities dealing with radiation sources, and also enforcement. Comprehensive nuclear legislation was developed and implemented from 1991 to 2000. Radiation source safety is regulated by three main nuclear laws in Ukraine: On the use of nuclear energy and radiation safety (passed on 8 February 1995); On Human Protection from Impact of Ionizing Radiation (passed on 14 January 1998); On permissive activity in the area of nuclear energy utilization (passed on 11 January 2000). The regulatory authorities in Ukraine are the Ministry for Ecology and Natural Resources (Nuclear Regulatory Department) and the Ministry of Health (State sanitary-epidemiology supervision). According to the legislation, activities dealing with radiation sources are forbidden without an officially issued permit in Ukraine. Permitted activities with radiation sources are envisaged: licensing of production, storage and maintenance of radiation sources; licensing of the use of radiation sources; obligatory certification of radiation sources and transport

  18. 10. Latin American Regional Congress IRPA Protection and Radiation Safety

    International Nuclear Information System (INIS)

    The 10.Latin American Regional Congress IRPA Protection and Radiation Safety was organized by the Radioprotection Argentine Society, in Buenos Aires, between the april 12 and 17, 2015. In this event, were presented almost 400 papers about these subjects: radiation protection in medicine and industry; radiological and nuclear emergencies; NORM (Natural Occurring Radioactive Materials); reactors; radiation dosimetry; radiotherapy; non-ionizing radiations; policies and communications; etc.

  19. Radiation safety management system in a radioactive facility

    International Nuclear Information System (INIS)

    Full text: This paper illustrates the Cuban experience in implementing and promoting an effective radiation safety system for the Centre of Isotopes, the biggest radioactive facility of our country. Current management practice demands that an organization inculcate culture of safety in preventing radiation hazard. The aforementioned objectives of radiation protection can only be met when it is implemented and evaluated continuously. Commitment from the workforce to treat safety as a priority and the ability to turn a requirement into a practical language is also important to implement radiation safety policy efficiently. Maintaining and improving safety culture is a continuous process. There is a need to establish a program to measure, review and audit health and safety performance against predetermined standards. All those areas of the radiation protection program are considered (e.g. licensing and training of the staff, occupational exposure, authorization of the practices, control of the radioactive material, radiological occurrences, monitoring equipment, radioactive waste management, public exposure due to airborne effluents, audits and safety costs). A set of indicators designed to monitor key aspects of operational safety performance are used. Their trends over a period of time are analyzed with the modern information technologies, because this can provide an early warning to plant management for searching causes behind the observed changes. In addition to analyze the changes and trends, these indicators are compared against identified targets and goals to evaluate performance strengths and weaknesses. A structured and proper radiation self-auditing system is seen as a basic requirement to meet the current and future needs in sustainability of radiation safety. The integrated safety management system establishment has been identified as a goal and way for the continuous improvement. (author)

  20. 10 CFR 34.42 - Radiation Safety Officer for industrial radiography.

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false Radiation Safety Officer for industrial radiography. 34.42... SAFETY REQUIREMENTS FOR INDUSTRIAL RADIOGRAPHIC OPERATIONS Radiation Safety Requirements § 34.42 Radiation Safety Officer for industrial radiography. The RSO shall ensure that radiation safety...

  1. Monitoring and crisis system of radiation safety

    International Nuclear Information System (INIS)

    In this paper we have briefly described our practical experiences with the most complex Radiation Monitoring System we have designed. This system consists of number of stations; those data are collected in the main crisis center of the whole system. The main center integrates RMS Central Database, the IMS Model Suite workstation and the Graphics workstation. The radiations probes of the RP series are the base for stationary , portable sets and for sets measuring underwater radiation. The radiation and meteorological data, which are necessary for reasonable interpretation of radiation data, are archived in RMS Central database. The Lagrangian trajectory model from the IMS Model Suite serves for radiation dispersion modeling. (authors)

  2. SAFETY

    CERN Multimedia

    Niels Dupont

    2013-01-01

    CERN Safety rules and Radiation Protection at CMS The CERN Safety rules are defined by the Occupational Health & Safety and Environmental Protection Unit (HSE Unit), CERN’s institutional authority and central Safety organ attached to the Director General. In particular the Radiation Protection group (DGS-RP1) ensures that personnel on the CERN sites and the public are protected from potentially harmful effects of ionising radiation linked to CERN activities. The RP Group fulfils its mandate in collaboration with the CERN departments owning or operating sources of ionising radiation and having the responsibility for Radiation Safety of these sources. The specific responsibilities concerning "Radiation Safety" and "Radiation Protection" are delegated as follows: Radiation Safety is the responsibility of every CERN Department owning radiation sources or using radiation sources put at its disposition. These Departments are in charge of implementing the requi...

  3. Radiation safety in Indonesia: An overview of infrastructures

    International Nuclear Information System (INIS)

    Basic Safety Standards state that essential of a national infrastructure are: legislation and regulation; a Regulatory Authority empowered to authorize and inspect regulated activities and to enforce the legislation and regulations; sufficient resources; and adequate numbers of trained personnel. This paper discussed history, present and prospects future of radiation safety infrastructures in Indonesia. After The Second World War and the declaration of freedom, Indonesia initiated to realize that the potential hazard of the use of ionizing radiation should be controlled. The first highest regulation concerning control of the use of ionizing radiation was Act. No. 31 Year 1964. To execute the Act, The Government Regulation No. 33 Year 1965 has been enacted. Then to implement radiation safety, The First Regulation for Radiation Safety was The Government Regulation No. 11 Year 1975 followed the others regulations. Due to the development in nuclear science and technology, the Act. No. 31 Year 1964 was superseded by The Act No.10 Year 1997. The main different of the new act is separation the authority in executing and controlling into different institution. The regulatory body is now called Nuclear Energy Control Board (BAPETEN), and one of the executing bodies which is National Nuclear Energy Agency (BATAN). Resources (facilities and services), education and training programs to support radiation safety infrastructures are also discussed in this paper. By the competent authorities and institutions, Indonesia has the legal legislation and adequate infrastructure to ensure implementation, enforcement and compliance with the radiation safety nationally in the near future. (author)

  4. Study of fieldbus technology confiability when applied in a Sterilization plant control and safety systems

    International Nuclear Information System (INIS)

    Several sterilization processes have been used in these years for treatment of countless products. Some processes use high temperatures, thermal shocks and chemical agents. With the discovery of the ionizing radiation and its posterior technological developments turned possible the application of that process, in 1960, also in the sterilization, denominated radiation sterilization. This process became also applied in another areas of health and industrial as food conservation, gemstones enhancement and others. The radiation sterilization requests an effective control and it needs a high level of safety. The commercial use of the computers applied in industrial automation provides and the domain of new technologies in this field provides news applications then new designs now is possible. The Fieldbus technology, a new digital communication protocol, like a Local Area Network, can be an alternative in the cobalt-60 irradiation plant. This paper show preliminary study about confiability in systems using Fieldbus technology. This technology was simulated in sterilization plant control and safety systems and the fail probability was quantified using Fail Tree Analysis Method. Fieldbus technology can be used in sterilization plants because the confiability in this systems is like PLCs and relays systems, was the conclusion

  5. The IAEA's sub programme on the safety of radiation sources and the security of radioactive materials

    International Nuclear Information System (INIS)

    In compliance with its mandate to establish standards of safety and to provide for their application with respect to radiation sources, the International Atomic Energy Agency has developed a subprogramme aimed at providing Member States guidance and assistance on achieving regulatory control and the safe use of the sources. The guidance addresses the establishment of a Regulatory Programme, with focus on a system for notification and authorization (registration and licensing) and inspection of radiation sources, including check lists for review of safety. It also includes methods for assessing its effectiveness of the Regulatory Programme and is complemented with tools for the management of data by the Regulatory Authority and Services to assist Member States in assessment and implementation of the programme. In addition, technical guidance for the safety of radiation sources includes both prospective and retrospective safety assessment. Retrospective methods have been used resulting in the publication and dissemination of information and lessons from accidents, both individual accident reports and lessons from collection of accident for the practices with major sources (industrial radiography, irradiators and radiotherapy). Prospective methods will include guidance on the application of the principles of radiation protection to potential exposure, as well as methods to apply the principles, such as identification and evaluation of scenarios. Practice specific reports will address the major radiation sources. A research programme will be dedicated to apply Probabilistic Safety Assessment (PSA) to radiation sources. (author)

  6. Radiation safety program in a high dose rate brachytherapy facility

    International Nuclear Information System (INIS)

    The use of remote afterloading equipment has been developed to improve radiation safety in the delivery of treatment in brachytherapy. Several accidents, however, have been reported involving high dose-rate brachytherapy system. These events, together with the desire to address the concerns of radiation workers, and the anticipated adoption of the International Basic Safety Standards for Protection Against Ionizing Radiation (IAEA, 1996), led to the development of the radiation safety program at the Department of Radiotherapy, Jose R. Reyes Memorial Medical Center and at the Division of Radiation Oncology, St. Luke's Medical Center. The radiation safety program covers five major aspects: quality control/quality assurance, radiation monitoring, preventive maintenance, administrative measures and quality audit. Measures for evaluation of effectiveness of the program include decreased unnecessary exposures of patients and staff, improved accuracy in treatment delivery and increased department efficiency due to the development of staff vigilance and decreased anxiety. The success in the implementation required the participation and cooperation of all the personnel involved in the procedures and strong management support. This paper will discuss the radiation safety program for a high dose rate brachytherapy facility developed at these two institutes which may serve as a guideline for other hospitals intending to install a similar facility. (author)

  7. Systematic approach to training for competence building in radiation safety

    International Nuclear Information System (INIS)

    Competence building involves four main attributes, namely, knowledge, skills, operating experience and attitude to radiation safety. These multi-attribute requirements demand a systematic approach to education and training of regulatory staff, licensees/registrants and service providers to ensure commensurate competence in performance of responsibilities and duties to specified standards. In order to address issues of competencies required in radiation safety a national programme for qualification and certification has been initiated for regulatory staff, operators, radiation safety officers and qualified experts. Since the inception of this programme in 1993, 40 training events have been organized involving 423 individuals. This programme is at various levels of implementation due to financial and human resource constraints. A department for Human Resource Development and Research was established in 2000 to enhance and ensure the sustainability of the effectiveness of capacity building in radiation safety. (author)

  8. Radiation safety status at a bio medical research centre

    International Nuclear Information System (INIS)

    Radioisotopes are being used for biomedical research purpose at School of Life Science, Jawaharlal Nehru University for the last twenty five years. Present paper analyses the overall status of radiation safety at this Centre

  9. An evaluation of the uranium mine radiation safety course

    International Nuclear Information System (INIS)

    The report evaluates the Uranium Mine Radiation Safety Course focussing on the following areas: effectivenss of the course; course content; instructional quality; course administration. It notes strengths and weaknesses in these areas and offers preliminary recommendations for future action

  10. Investigation of radiation safety and safety culture of medical sanitation vocation in Suzhou

    International Nuclear Information System (INIS)

    Objective: To investigate the construction of radiation safety and safety culture of medical sanitation vocation in Suzhou. Methods: All medical units registered in administration center of Suzhou were included. The above selected medical units were completely investigated, district and county under the same condition of quality control. Results: The radiation safety and safety culture are existing differences among different property and grade hospitals of medicai sanitation vocation in Suzhou. Conclusion: The construction of radiation safety and safety culture is generally occupying in good level in suhzou, but there are obvious differences among different property and grade hospitals. The main reason for the differences in the importance attached to by the hospital decision-making and department management officials as well as the staff personal. (authors)

  11. Radiation Safety of Accelerator Facility with Regard to Regulation

    International Nuclear Information System (INIS)

    The radiation safety of accelerator facility and the status of the facilities according to licensee in Indonesia as well as lesson learned from the accidents are described. The atomic energy Act No. 10 of 1997 enacted by the Government of Indonesia which is implemented in Radiation Safety Government Regulation No. 63 and 64 as well as practice-specific model regulation for licensing request are discussed. (author)

  12. The safety of radiation sources and radioactive materials in China

    International Nuclear Information System (INIS)

    The report describes the present infrastructure for the safety of radiation sources in China, where applications of radiation sources have become more and more widespread in the past years. In particular, it refers to the main functions of the National Nuclear Safety Administration of the State Environmental Protection Administration (SEPA), which is acting as the regulatory body for nuclear and radiation safety at nuclear installations, the Ministry of Public Health which issues licences for the use of radiation sources, and the Ministry of Public Security, which deals with the security of radiation sources. The report also refers to the main requirements of the existing regulatory system for radiation safety, i.e. the basic dose limits for radiation workers and the public, the licensing system for nuclear installations and for radioisotope-based and other irradiation devices, and the environmental impact assessment system. Information on the nationwide survey of radiation sources carried out by SEPA in 1991 is provided, and on some accidents that occurred in China due to loss of control of radiation sources and errors in the operation of irradiation facilities. (author)

  13. Radiation Authority and Nuclear Safety in Finland (STUK); La autoridad de Radiacion y Seguridad Nuclear de Finlandia (STUK)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-07-01

    Created in 1958 as an institute in charge of inspecting radioactive equipment used in hospitals, STUK is nowadays a specialised organisation whose functions cover all fields for applying radiation and nuclear safety. (Author)

  14. Report on nuclear and radiation safety in Slovenia in 1999

    International Nuclear Information System (INIS)

    The Slovenian Nuclear Safety Administration (SNSA) has prepared Report on Nuclear and Radiation Safety in Slovenia in 1999. This is one of the regular forms of reporting on the work of the Administration to the Government and National Assembly of the Republic of Slovenia.

  15. Developments of radiation safety requirements for the management of radiation devices

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hee Seock [Pohang Accelerator Lab, Pohang (Korea, Republic of); Choi, Jin Ho [Gachun University of Medicine and science, Incheon (Korea, Republic of); Cheong, Yuon Young [Asan Medical Center, Seoul (Korea, Republic of)] (and others)

    2002-03-15

    The approach of the risk-informed regulatory options was studied to develop the radiation safety requirements for the managements for radiation devices. The task analysis, exposure, accident scenario development, risk analysis, and systematic approach for regulatory options was considered in full, based on the NRC report, 'NUREG/CR-6642', and the translation of its core part was conducted for ongoing research. In this methodology, the diamond tree that includes human factors, etc, additionally with normal event tree, was used. According to the analysis results of this approach, the risk analysis and the development of regulatory options were applied for the electron linear accelerators and the qualitative results were obtained. Because the field user groups were participated in this study could contribute to the basis establishment of the risk-informed regulation policy through securing consensus and inducing particle interests. It will make an important role of establishing the detail plan of ongoing research.

  16. Ionising radiation safety training in the Australian Defence Organisation (ADO)

    International Nuclear Information System (INIS)

    Training personnel in ionising radiation safety within the Australian Defence Organisation (ADO) requires addressing some unique features of an organisation employing both military and civilian personnel. Activities may include those of a civil nature (such as industrial and medical radiography), specific military requirements (for training and emergency response) and scientific research and development. Some personnel may be assigned to full-time duties associated with radiation. However, most are designated as radiation protection officers as a secondary duty. A further complication is that most military personnel are subjected to postings at regular intervals. The ADO's Directorate of Defence Occupational Health and Safety has established an Ionising Radiation Safety Subcommittee to monitor not only the adequacy of the internal Ionising Radiation Safety Manual but also the training requirements. A Training Course, responding to these requirements, has been developed to emphasize, basic radiation theory and protection, operation of radiation monitors available in the ADO, an understanding of the Ionising Radiation Safety Manual, day-to-day radiation safety in units and establishments, and appropriate responses to radiation accidents and emergencies. In addition, students are briefed on a limited number of peripheral topics and participate in some site visits. Currently, two Courses are held annually, each with about twenty students. Most of the material is presented by ADO personnel with external contractor support. The three Courses held to date have proved successful, both for the students and the ADO generally. To seek national accreditation of the course through the Australian National Training Authority, as a first step, competency standards have been proposed. (authors)

  17. Special safety requirements applied to Brazilian nuclear power plant

    International Nuclear Information System (INIS)

    Some safety aspects of the Angra 2 and 3 nuclear power plants are presented. An analysis of the civil and mechanical project of these nuclear power plant having in view a safety analysis is done. (E.G.)

  18. Multigroup albedo method applied to gamma radiation shielding

    International Nuclear Information System (INIS)

    The Albedo method, when applied to shielding calculations, is characterized by following the radiation through the materials, determining the reflected, absorbed and transmitted fractions of the incident current, independently of flux calculations. The excellent results obtained to neutron shielding cases in which the diffusion approximation could be applied motivated this work, where the method was applied in order to develop a multigroup and multilayered algorithm. A gamma radiation shielding simulation was carried out to a system constituted by three infinite slabs of varied materials and six energy groups. The results obtained by Albedo Method were the same generated by ANISN, a consecrated deterministic nuclear code. Concludingly, this work demonstrates the validity of Albedo Method to gamma radiation shielding analysis through its agreement with the full Transport Equation. (author)

  19. Radiation protection and safety: for nuclear technology development support

    International Nuclear Information System (INIS)

    A study about ICRP 60 changes as well as legal aspects and radiation protection activities in Uruguay was reported in this article. Special attention in the personnel dosimetry, radioactive sources control and their national inventory, SSDL, radioactive wastes management and SAMARI system can found among main activities developed in the Radiation Protection and Nuclear Safety Sector in National Nuclear Technology Direction

  20. Probabilistic safety analysis of radiation treatments with linear accelerator (Spanish Ed.)

    International Nuclear Information System (INIS)

    This publication addresses the issue of accidental exposures of radiotherapy patients and how to avoid them. More proactive approaches are required to anticipate and thus avoid situations that could lead to accidental exposures. In this context, the International Atomic Energy Agency (IAEA) and the Ibero American Forum of Radiation and Nuclear and Safety Regulatory Agencies (the FORO) have applied proactive methods, such as probabilistic safety assessment to radiotherapy treatments with accelerators. The methodology and results of this exercise are described in this publication.

  1. Ionising radiation safety training in the Australian defence organisation (ADO)

    International Nuclear Information System (INIS)

    Full text: Training personnel in ionising radiation safety within the Australian Defence Organisation (ADO) requires addressing some unique features of an organisation employing both military and civilian personnel. Activities may include those of a civil nature (such as industrial and medical radiography), specific military requirements (for training and emergency response) and scientific research and development. Some personnel may be assigned to full-time duties associated with radiation, while others may be designated as radiation protection officers in remote units with few duties to perform in this role. A further complication is that most military personnel are subjected to postings at regular intervals. The ADO's Directorate of Defence Occupational Health and Safety has established an Ionising Radiation Safety Subcommittee to monitor not only the adequacy of the internal Ionising Radiation Safety Manual but also the training requirements. A training course, responding to these requirements, has been developed to emphasise: basic radiation theory and protection; operation of radiation monitors available in the ADO; an understanding of the Safety Manual; day-to-day radiation safety in units and establishments; and appropriate responses to radiation accidents and emergencies. In addition, students are briefed on a limited number of peripheral topics and participate in some site visits. Currently, two Courses are held annually, each with about twenty students. Most of the material is presented by ADO personnel with external contractor support. The three Courses held to date have proved sufficiently successful, both for the students and the ADO generally, to seek national accreditation through the Australian National Training Authority and, as a first step, competency standards have been identified

  2. Nuclear power plant radiation: personnel safety aspects

    International Nuclear Information System (INIS)

    Reactor using water as coolant, moderator, and heat transfer can produce a sufficiently great internal and external radiation caused by contamination. The process of contamination and actions that must be taken to avoid radiation workers from receiving more than the maximum permissible dose are presented. (author)

  3. Building competence in radiation protection and the safe use of radiation sources. Safety guide (Arabic ed.)

    International Nuclear Information System (INIS)

    This Safety Guide makes recommendations concerning the building of competence in protection and safety within a national radiation protection infrastructure and provides guidance for setting up the structure for a national strategy. It relates to the training and assessment of qualification of new personnel and the retraining of existing personnel in order to develop and maintain appropriate levels of competence. It provides the necessary guidance to meet the requirements laid down in Safety Series No. 115, International Basic Safety Standards for Protection against Ionizing Radiation and for the Safety of Radiation Sources. Contents: 1. Introduction; 2. Responsibilities for building competence in protection and safety; 3. Education, training and work experience; 4. A national strategy for building competence in protection and safety.

  4. Control of radiation sources through regulatory inspections of radiation safety in Brazilian industries

    International Nuclear Information System (INIS)

    This work presents a brief description of the situation of Brazilian Regulatory Authority about safety control on industrial radioactive installations. It shows the national regulatory infrastructure responsible for radiation safety inspections, the regulation infrastructure, the national inventory of industrial installations, the national system of inspection and enforcement and the national system for qualifying the radiation protection officer. Some results of regulatory safety inspections are also showed in this work. (author)

  5. Control of radiation sources through regulatory inspections of radiation safety in Brazilian industries

    International Nuclear Information System (INIS)

    This work presents a brief description of the situation of Brazilian Regulatory Authority with regard to safety control of industrial radioactive installations. It shows the national regulatory infrastructure responsible for radiation safety inspections, the regulation infrastructure, the national inventory of industrial installations, the national system of inspection and enforcement and the national system for qualifying radiation protection officers. Some results of regulatory safety inspections are also shown. (author)

  6. The Advanced Light Source (ALS) Radiation Safety System

    International Nuclear Information System (INIS)

    The Advanced Light Source (ALS) at the Lawrence Berkeley Laboratory (LBL) is a 1.5 Gev synchrotron light source facility consisting of a 120 kev electron gun, 50 Mev linear accelerator, 1.5 Gev booster synchrotron, 200 meter circumference electron storage ring, and many photon beamline transport systems for research. Figure 1. ALS floor plan. Pairs of neutron and gamma radiation monitors are shown as dots numbered from 1 to 12. The Radiation Safety System for the ALS has been designed and built with a primary goal of providing protection against inadvertent personnel exposure to gamma and neutron radiation and, secondarily, to enhance the electrical safety of select magnet power supplies

  7. Ordinance on the Finnish Centre of Radiation and Nuclear Safety

    International Nuclear Information System (INIS)

    This Ordinance was adopted in implementation of the 1983 Act setting up the Finnish Centre for Radiation and Nuclear Safety and the 1987 Nuclear Energy Act and entered into force on 1 November 1990. The Ordinance specifies the tasks of the Centre, as provided under both Acts, and gives it several supplementary responsibilities. In addition to its overall competence in respect of radiation safety, the Centre will carry out research into and supervise the health effects of radiation and maintain a laboratory for national measurements in that field. The Ordinance also sets out the Centre's organisation chart and the staff duties

  8. Radiation safety concerns during interventional radiology

    International Nuclear Information System (INIS)

    Interventional radiological procedures are on the increase by virtue of the fact that these procedures replace highly invasive surgical and other procedures. Radiation dose to patients and hospital workers are of significance since these procedures tend to impart large dose to them. Moreover, long term risk from radiation absorbed by patients is of concern since the life expectancy of major fraction of patients is long after undergoing the procedure. This study intends to measure radiation dose imparted to patients as well as personnel- radiologists, technologists, nurses, etc. and estimate the risk factor involved

  9. Practice specific model regulations: Radiation safety of non-medical irradiation facilities. Interim report for comment

    International Nuclear Information System (INIS)

    The International Basic Safety Standards for Protection against Ionizing Radiation and for the Safety of Radiation Sources (Standards or BSS) were published as IAEA Safety Series No. 115 in 1996. This publication is the culmination of efforts over the past decades towards harmonization of radiation protection and safety standards internationally, and is jointly sponsored by the Food and Agriculture Organisation of the United Nations (FAO), the International Atomic Energy Agency (IAEA), the International Labour Organisation (ILO), the OECD Nuclear Energy Agency (OECD/NEA), the Pan American Health Organisation (PAHO) and the World Health Organisation (WHO). The purpose of the Standards is to establish basic requirements for protection against the risks associated with exposure to ionizing radiation and for the safety of radiation sources that may deliver such exposure (hereinafter called 'radiation safety'). The requirements are based on the principles set out in the Safety Fundamentals, published as IAEA Safety Series Nos 110 and 120. The Standards can be implemented only through an effective radiation safety infrastructure that includes adequate laws and regulations, an efficient regulatory system, supporting experts and services, and a 'safety culture' shared by all those with responsibilities for protection, including both management and workers. IAEA-TECDOC-1067, Organization and Implementation of a National Regulatory Infrastructure Governing Protection against Ionizing Radiation and the Safety of Radiation Sources, provides detailed guidance on how to establish or improve national radiation safety infrastructure in order to implement the requirements of the Standards. The TECDOC covers the elements of a radiation safety infrastructure at the national level needed to apply the Standards to radiation sources such as those used in medicine, agriculture, research, industry and education. It also provides advice on approaches to the organization and operation of

  10. 77 FR 26287 - Cooperative Agreement To Support the Joint Institute for Food Safety and Applied Nutrition...

    Science.gov (United States)

    2012-05-03

    ... Food Safety and Applied Nutrition, JIFSAN (U01) AGENCY: Food and Drug Administration, HHS. ACTION... the support of the Joint Institute for Food Safety and Applied Nutrition (JIFSAN). FDA believes that.... FDA faces an increasing number of critical and complex food safety and public health issues...

  11. Albedo method applied to coupled neutron-gamma shielding radiations

    International Nuclear Information System (INIS)

    The Albedo Theory was applied in order to develop an one-group algorithm for coupled neutron-gamma shielding calculations. The configuration analyzed consists of multilayered plane systems, where a incident neutron current generates gamma radiation through neutron-gamma reactions. The results obtained by Albedo Method and ANISN code have shown excellent agreement. (author)

  12. Safety study on ultra-violet radiation

    International Nuclear Information System (INIS)

    Ultra-violet radiation (UVR) falls under category of non-ionising radiation (NIR). Excessive exposure to ultra-violet radiation (UVR) may cause significant health hazard to human beings. The sun is the main source of UVR which produce the radiation in the form of solar radiation. Due to its ability to cause hazard, a study of UV solar radiation exposure was conducted around Bangi, Selangor. For this preliminary study, selected measurement location were around Universiti Kebangsaan Malaysia (UKM) and MINT. The study was carried out by direct measurement of the radiation quantitatively with due consideration given on variation of time, cloud and weather condition. Research radiometer model IL 1700 with three different sensors were used for measurement of UV-A, UV-B and UV-C and they were connected to Laptop with LabView software for data analysis. The results were compared with the permissible exposure limits recommended by IRPA/ICNIRP. In addition to assessment of direct exposure to UVR the study also look into the effectiveness of absorption for some material such as tinted glass and different kind of clothing. The results showed that UV-A, UV-B and UV-C emitted directly from the sun around UKM and MINT were below the permissible limit recommended by IRPA/ICNIRP for members of public (30 J/m2 or 1mWm-2). Besides that, they study found that tinted glass was effective to protect us from excessive exposure to UVR . For clothing we found that the silk fabric with light colour is more applicable for filtering UV radiation, compare to the other type of fabric. (Author)

  13. Thermal Radiation for Structural Fire Safety Design

    DEFF Research Database (Denmark)

    Hertz, Kristian Dahl

    2006-01-01

    The lecture notes give a short introduction of the theory of thermal radiation. The most elementary concepts and methods are presented in order to give a fundamental knowledge for calculation of the load bearing capacities of fire exposed building constructions.......The lecture notes give a short introduction of the theory of thermal radiation. The most elementary concepts and methods are presented in order to give a fundamental knowledge for calculation of the load bearing capacities of fire exposed building constructions....

  14. Thermal Radiation for Structural Fire Safety Design

    DEFF Research Database (Denmark)

    Hertz, Kristian

    1999-01-01

    The lecture note gives a short introduction of the theory of thermal radiation. The most elementary concepts and methods are presented in order to give a fundamental knowledge for calculation of the load bearing capacities of fire exposed building constructions.......The lecture note gives a short introduction of the theory of thermal radiation. The most elementary concepts and methods are presented in order to give a fundamental knowledge for calculation of the load bearing capacities of fire exposed building constructions....

  15. VI Congress on radiation research (radiobiology, radioecology, radiation safety). Abstracts. Volume 1 (sections I-VII)

    International Nuclear Information System (INIS)

    The collection contains abstracts at the VI Congress on radiation studies, a program that included various aspects of the action of ionizing and non-ionizing radiation on living organisms, problems of radioecology and radiation safety of human health and environment. Congress is confined to the 25th anniversary of the accident at the Chernobyl NPP. Several reports have summarized the 25-years studying the effects of the accident, articulated forecasts and the main directions of further research. The first volume contains the plenary reports, presentations on the sections of radiation biochemistry and molecular radiobiology, radiation genetics, radiation immunology and hematology, medical and biological aspects of radiation effect, mechanisms of low dose and low intensity radiation effects, long-term effects of radiation. Radiation protection and modification of radiation effects, radiobiology of tumors, problems of radiation therapy are under consideration

  16. Efficacy of a radiation safety education initiative in reducing radiation exposure in the pediatric IR suite

    International Nuclear Information System (INIS)

    The use of ionizing radiation is essential for diagnostic and therapeutic imaging in the interventional radiology (IR) suite. As the complexity of procedures increases, radiation exposure risk increases. We believed that reinforcing staff education and awareness would help optimize radiation safety. To evaluate the effect of a radiation safety education initiative on IR staff radiation safety practices and patient radiation exposure. After each fluoroscopic procedure performed in the IR suite during a 4-month period, dose-area product (DAP), fluoroscopy time, and use of shielding equipment (leaded eyeglasses and hanging lead shield) by IR physicians were recorded. A lecture and article were then given to IR physicians and technologists that reviewed ALARA principles for optimizing radiation dose. During the following 4 months, those same parameters were recorded after each procedure. Before education 432 procedures were performed and after education 616 procedures were performed. Physician use of leaded eyeglasses and hanging shield increased significantly after education. DAP and fluoroscopy time decreased significantly for uncomplicated peripherally inserted central catheters (PICC) procedures and non-PICC procedures after education, but did not change for complicated PICC procedures. Staff radiation safety education can improve IR radiation safety practices and thus decrease exposure to radiation of both staff and patients. (orig.)

  17. Radiation safety and formation of public opinion

    International Nuclear Information System (INIS)

    Full text: Team-administrative system of long years has been a reason of environmental pollution and health consequences and still does. This includes soil pollution with pesticides, ecological condition of micro and macro flora of the Caspian Sea, soil pollution with oil, deforestation and etc. Scientists and environmental NGOs have given some information to public and public opinion has already been formed on this issue. But public opinion is not necessarily formed on radiation - the most important and invisible problem. The reason of this is that radiation danger has been hidden as a closed theme from the public. After the soviet collapse this problem is also being revealed. Number of NGOs have held the seminar on this issue and given some information to public. The researches cover the following problems:To hold the public monitoring in the fields polluted with oil and separate it from the other fields by determining the fields polluted with radiation. To take measures in order to prevent public entrance to these fields; To inform about the usage of radiation based equipment in the industrial fields and to hold the regular monitoring; To advertise the differential signs of radiation sources in the city landfill and other polluted zones; To broaden the advocacy on ultraviolet rays and their influence to human health; To disseminate the brochures and advertisement papers on high technical radiation and their influence to human health; To analyze the radio environmental condition around the Gabala Radar Station; To advocate the possible radiation danger in using the x-ray and other medical equipment; Analyze the possible radon danger in shipping materials; To create the idea on possible transition of radioactive gases and elements from neighbor countries; Creation of idea on possible danger around the high voltage. The formation of public opinion on mentioned problem will depend on combining the scientists' and NGOs activities

  18. New ICRP recommendations and radiation safety of an NPP

    International Nuclear Information System (INIS)

    In March 2007 the fundamental radiation protection recommendations used world-widely in nuclear facilities were approved by the ICRP. Implementation of radiation safety standards in an NPP is a challenging issue related to all NPP phases from planning a site and its design to its decommissioning also because if neglected it could be very difficult if not impossible to implement improvement of radiation safety later during operation or decommissioning without a substantial cost. The standards are changing with a period of 15 years which is small regarding a prolonged lifetime of many NPPs and also foreseen lifetime of new NPPs, i.e. 60 years. The new recommendations are actually an upgrading of the ICRP 60. Among other changes new sets of wR and wT are given, as well as an update of around 50 different values related to doses. Two new concepts are also tackled i.e. terrorist attacks and protection of the environment. The influence of the new recommendations on the radiation safety of NPPs can be analysed by a selection of four renewed or new concepts: types of exposure situation, dose constraints, source-related approach and safety and security. Their implementation could lead to upgrading the radiation safety of future or existing NPPs as well as of decommissioning processes. Some of the concepts were already extensively and successfully used by designers of modifications or of new NPPs, as well as by operators. (author)

  19. IAEA safety glossary. Terminology used in nuclear safety and radiation protection. 2007 ed

    International Nuclear Information System (INIS)

    In developing and establishing standards of safety for protecting people and the environment from harmful effects of ionizing radiation and for the safety of facilities and activities that give rise to radiation risks, clear communication on scientific and technical concepts is essential. The principles, requirements and recommendations that are established and explained in the IAEA's safety standards and elaborated upon in other publications must be clearly expressed. To this end, this Safety Glossary defines and explains technical terms used in IAEA safety standards and other safety related publications, and provides information on their usage. The primary purpose of the Safety Glossary is to harmonize terminology and usage in the IAEA safety standards for protecting people and the environment from harmful effects of ionizing radiation, and in their application. Once definitions of terms have been established, they are, in general, intended to be observed in safety standards and other safety related publications and in the work of the IAEA Department of Nuclear Safety and Security generally. The achievement of consistently high quality in its publications contributes to the authority and credibility of the IAEA, and thus to its influence and effectiveness. High quality in publications and documents is achieved not only by review to ensure that the relevant requirements are met, but also by managing their preparation so as to achieve high quality in their drafting. The Safety Glossary provides guidance primarily for the drafters and reviewers of safety standards, including IAEA technical officers and consultants and bodies for the endorsement of safety standards. The Safety Glossary is also a source of information for users of IAEA safety standards and other safety and security related IAEA publications and for other IAEA staff - notably writers, editors, translators, revisers and interpreters. Users of the Safety Glossary, in particular drafters of national

  20. Radiation safety training for accelerator facilities

    International Nuclear Information System (INIS)

    In November 1992, a working group was formed within the U.S. Department of Energy's (DOE's) accelerator facilities to develop a generic safety training program to meet the basic requirements for individuals working in accelerator facilities. This training, by necessity, includes sections for inserting facility-specific information. The resulting course materials were issued by DOE as a handbook under its technical standards in 1996. Because experimenters may be at a facility for only a short time and often at odd times during the day, the working group felt that computer-based training would be useful. To that end, Lawrence Livermore National Laboratory (LLNL) and Argonne National Laboratory (ANL) together have developed a computer-based safety training program for accelerator facilities. This interactive course not only enables trainees to receive facility- specific information, but time the training to their schedule and tailor it to their level of expertise

  1. Economic aspects of radiation safety in hospitals

    International Nuclear Information System (INIS)

    Radiation protection procedures to be adhered to while using radiological equipment in hospitals both for the patients and the medical personnel are described in detail. The hazards resulting from careless handling of equipment and the need for adequately trained staff to handle the equipment is stressed. (A.K.)

  2. Safety and Radiation Protection at Swedish Nuclear Power Plants 2004

    International Nuclear Information System (INIS)

    In 2004, no severe events occurred which challenged the safety at Swedish nuclear power plants. Two events were classified as Level 1 events on the 7-point International Nuclear Event Scale. The events are described in the chapter Operating Experience. During the year, relatively little new degradation and deficiencies were detected in the reactor barriers. The number of fuel defects is constantly decreasing. The same applies to the number of defects in the pressure-bearing systems. On the other hand, SKI has observed that damage is beginning to occur in the reactor containment. Applied control programmes are effective and capture most of the damage at an early stage before safety is affected. However, individual defects have been detected in material where such degradation was not anticipated and which is currently not regularly checked. SKI will follow up these observations thoroughly in order to judge whether there is a need for increased inspections. During the year, two defects found in the reactor containment were reported. The damage and degradation that occurred indicate that the causes were mainly due to defects during construction, or during subsequent plant modification. Taking into account the difficulty of inspecting the reactor containments and other vital building structures reliably, it is important for the licensees to continue to study possible ageing and degradation mechanisms that can affect the integrity and safety of the components. SKI continuously follows the progress of the degradation in the mechanical devices and building structures that form the plant barriers and defence-in-depth system. This includes both overall evaluations of the progress of degradation as a whole and the progress of degradation in each facility. Furthermore, the occurrence of different degradation mechanisms is followed. The power companies have intensified the rate of investment in nuclear power plants. Modernization work and safety reviews stipulated by the

  3. Education and training on radiation safety for Asian countries

    International Nuclear Information System (INIS)

    The long-term program for development and Utilization of nuclear energy planned by Japan Atomic Energy Commission decided to promote the international corporation with Asian countries in nuclear fields. PNC (Power Reactor and Nuclear Fuel Development Corporation) has three programs in radiation safety field. They are STA program, JICA program and IAEA/RCA program. It is necessary to continue international cooperative activities to establish safety culture for development and utilization of nuclear energy in Asian countries

  4. Report on nuclear and radiation safety in Slovenia in 2000

    International Nuclear Information System (INIS)

    The Slovenian Nuclear Safety Administration (SNSA), in co-operation with the Health Inspectorate of the Republic of Slovenia, the Administration for Civil Protection and Disaster Relief and the Ministry of the Interior, has prepared a Report on Nuclear and Radiation Safety in the Republic of Slovenia for 2000. This is one of the regular forms of reporting on the work of the Administration to the Government and National Assembly of the Republic of Slovenia.

  5. Enhanced safety of radiation workers: a regulatory approach

    International Nuclear Information System (INIS)

    Radiation safety should not only be strictly implemented, but also believed and understood by the workers, the unions, the media and the general public as being fairly and adequately enforced. It is not at all sufficient that only those in the operational management levels satisfy themselves that workers' safety is properly taken care of, but it is necessary that the workers and their unions are also convinced about it and share this management view

  6. Nuclear and radiation safety in Slovenia. Annual report 2000

    International Nuclear Information System (INIS)

    The Slovenian Nuclear Safety Administration (SNSA), in co-operation with the Health Inspectorate of the Republic of Slovenia, the Administration for Civil Protection and Disaster Relief and the Ministry of the Interior, has prepared a Report on Nuclear and Radiation Safety in the Republic of Slovenia for 2000. This is one of the regular forms of reporting on the work of the Administration to the Government and National Assembly of the Republic of Slovenia. (author)

  7. Impact of New Radiation Safety Standards on Licensing Requirements of Nuclear Power Plant

    International Nuclear Information System (INIS)

    As the outcomes of the newly introduced safety philosophies, new and more strict safety design requirements for nuclear installation are expected to be introduced. New in-depth defence measures should be incorporated into the design and operation procedure for a nuclear installation, to compensate for potential failures in protection or safety measures. The new requirements will also apply to licensing of NPP's operation as well as to licensing of nuclear sites, especially for radioactive waste disposal sites. This paper intends to give an overview of possible impacts of new internationally agreed basic safety standards with respect to NPP and related technologies. Recently issued new basic safety standards for radiation protection are introducing some new safety principles which may have essential impact on future licensing requirements regarding nuclear power plants and radioactive waste installations. These new standards recognize exposures under normal conditions ('practices') and intervention conditions. The term interventions describes the human activities that seek to reduce the existing radiation exposure or existing likelihood of incurring exposure which is not part of a controlled practice. The other new development in safety standards is the introduction of so called potential exposure based on the experience gained from a number of radiation accidents. This exposure is not expected to be delivered with certainty but it may result from an accident at a source or owing to an event or sequence of events of a probabilistic nature, including equipment failures and operating errors. (author)

  8. Radiation protection, radiation safety and radiation shielding assessment of HIE-ISOLDE

    International Nuclear Information System (INIS)

    The high intensity and energy ISOLDE (HIE-ISOLDE) project is an upgrade to the existing ISOLDE facility at CERN. The foreseen increase in the nominal intensity and the energy of the primary proton beam of the existing ISOLDE facility aims at increasing the intensity of the produced radioactive ion beams (RIBs). The currently existing ISOLDE facility uses the proton beam from the proton-synchrotron booster with an energy of 1.4 GeV and an intensity up to 2 μA. After upgrade (final stage), the HIE-ISOLDE facility is supposed to run at an energy up to 2 GeV and an intensity up to 4 μA. The foreseen upgrade imposes constrains, from the radiation protection and the radiation safety point of view, to the existing experimental and supply areas. Taking into account the upgraded energy and intensity of the primary proton beam, a new assessment of the radiation protection and radiation safety of the HIE-ISOLDE facility is necessary. Special attention must be devoted to the shielding assessment of the beam dumps and of the experimental areas. In this work the state-of-the-art Monte Carlo particle transport simulation program FLUKA was used to perform the computation of the ambient dose equivalent rate distribution and of the particle fluxes in the projected HIE-ISOLDE facility (taking into account the upgrade nominal primary proton beam energy and intensity) and the shielding assessment of the facility, with the aim of identifying in the existing facility (ISOLDE) the critical areas and locations where new or reinforced shielding may be necessary. The consequences of the upgraded proton beam parameters on the operational radiation protection of the facility were studied. (authors)

  9. Treaty implementation applied to conventions on nuclear safety

    International Nuclear Information System (INIS)

    Given that safety is the number one priority for the nuclear industry, it would seem normal that procedures exist to ensure the effective implementation of the provisions of the conventions on nuclear safety, as already exist for numerous international treaties. Unfortunately, these procedures are either weak or even nonexistent. Therefore, consideration must be given to whether this weakness represents a genuine deficiency in ensuring the main objective of these conventions, which is to achieve a high level of nuclear safety worldwide. But, before one can even address that issue, a prior question must be answered: does the specific nature of the international legal framework on nuclear safety automatically result in a lack of non-compliance procedures in international conventions on the subject? If so, the lack of procedures is justified, despite the drawbacks. The specific nature of the international law on nuclear safety, which in 1994 shaped the content of the CNS by notably not 'allowing' (even today) the incorporation of precise international rules have been taken into account. The next step is to examine whether the absence of non-compliance procedures (which could have been integrated into the text) is a hindrance in ensuring the objectives of the conventions on nuclear safety, and to examine the procedures that could have been used, based on existing provisions in other areas of international law (environmental law, financial law, disarmament law, human rights, etc.). International environmental law will be the main source of this study, as it has certain similarities with the international law on nuclear safety due to the sometimes vague nature of its obligations and irrespective of the fact that one of the purposes of nuclear safety is in particular to protect the environment from radiological hazards. Indeed, the provisions of the law on nuclear safety are mainly technical and designed to guarantee the normal operation of nuclear facilities

  10. Report on the Uranium Mine Radiation Safety Course

    International Nuclear Information System (INIS)

    Since 1981 the Canadian Institute for Radiation Safety (CAIRS) has administered a semi-annual course on radiation safety in uranium mines under contract to and in consultation with the Atomic Energy Control Board (AECB). The course is intended primarily for representatives from mining companies, regulatory agencies, unions, and mine and mill workers. By the terms of its contract with the AECB, CAIRS is required to submit a report on each course it conducts. This is the report on the June 1987 course. It lists the course objectives and the timetable, outlines for each lecture, the lecturers' resumes, and the participants. The students' evaluations of the course are included

  11. Computer-based and web-based radiation safety training

    Energy Technology Data Exchange (ETDEWEB)

    Owen, C., LLNL

    1998-03-01

    The traditional approach to delivering radiation safety training has been to provide a stand-up lecture of the topic, with the possible aid of video, and to repeat the same material periodically. New approaches to meeting training requirements are needed to address the advent of flexible work hours and telecommuting, and to better accommodate individuals learning at their own pace. Computer- based and web-based radiation safety training can provide this alternative. Computer-based and web- based training is an interactive form of learning that the student controls, resulting in enhanced and focused learning at a time most often chosen by the student.

  12. Regulatory Control of Radiation Sources. Safety Guide (Arabic Edition)

    International Nuclear Information System (INIS)

    This Safety Guide is intended to assist States in implementing the requirements established in Safety Standards Series No. GS-R-1, Legal and Governmental Infrastructure for Nuclear, Radiation, Radioactive Waste and Transport Safety, for a national regulatory infrastructure to regulate any practice involving radiation sources in medicine, industry, research, agriculture and education. The Safety Guide provides advice on the legislative basis for establishing regulatory bodies, including the effective independence of the regulatory body. It also provides guidance on implementing the functions and activities of regulatory bodies: the development of regulations and guides on radiation safety; implementation of a system for notification and authorization; carrying out regulatory inspections; taking necessary enforcement actions; and investigating accidents and circumstances potentially giving rise to accidents. The various aspects relating to the regulatory control of consumer products are explained, including justification, optimization of exposure, safety assessment and authorization. Guidance is also provided on the organization and staffing of regulatory bodies. Contents: 1. Introduction; 2. Legal framework for a regulatory infrastructure; 3. Principal functions and activities of the regulatory body; 4. Regulatory control of the supply of consumer products; 5. Functions of the regulatory body shared with other governmental agencies; 6. Organization and staffing of the regulatory body; 7. Documentation of the functions and activities of the regulatory body; 8. Support services; 9. Quality management for the regulatory system.

  13. Safety design guide for radiation protection for CANDU 9

    International Nuclear Information System (INIS)

    This safety design guide describes the radiation protection philosophy, objectives and requirements to be used through out the design of CANDU 9. After describing the hazards associated with different systems, equipments and components, the guide then, identifies the regulatory limits which must be satisfied during operation of the plant and outlines the principal features of a viable radiation protection design. Finally, the guide identifies the specific design requirement which is systems and structures must satisfy. As a part of the ALARA approach, the guide also describes a Radiation Exposure Control Program. This program is a systemic review of the radiation exposures accumulated in the operation, inspection, maintenance or repair of each system or component. The program will be demonstrate that we have, from a radiological view point, an optimized design. The change status of the regulatory requirements, code and standards should be traced and this safety design guide shall be updated accordingly. 13 tabs. (Author) .new

  14. The controversy over radiation safety. A historical overview.

    Science.gov (United States)

    Walker, J S

    1989-08-01

    The hazards of ionizing radiation have aroused concern since a short time after the discovery of x-rays and natural radioactivity in the 1890s. Misuse of x-rays and radium prompted efforts to encourage radiation safety and to set limits on exposure, culminating in the first recommended "tolerance doses" in 1934. After World War II, the problems of radiation protection became more complex because of the growing number of people subjected to radiation injury and the creation of radioactive elements that had never existed before the achievement of atomic fission. Judging the hazards of radiation became a matter of spirited controversy. Major public debates over the dangers of radioactive fallout from atmospheric bomb testing in the 1950s and early 1960s and the risks of nuclear power generation in later periods focused attention on the uncertainties about the consequences of exposure to low-level radiation and the difficulties of resolving them. PMID:2664237

  15. Report on nuclear and radiation safety in Slovenia in 1997

    International Nuclear Information System (INIS)

    The Slovenian Nuclear Safety Administration (SNSA), in co-operation with the Health Inspectorate of the Republic of Slovenia, the Administration for Civil Protection and Disaster Relief and the Ministry of the Interior, has prepared a Report on Nuclear and Radiation Safety in the Republic of Slovenia for 1997. This is one of the regular forms of reporting on the work of the Administration to the Government and National Assembly of the Republic of Slovenia. Contributions to the report were furthermore prepared by competent authorities in the field of nuclear safety: the Agency for Radwaste Management (ARAO), the Milan Copic Nuclear Training Centre, etc. The report contains 19 chapters.

  16. Nuclear and radiation safety in Slovenia. Annual report 1997

    International Nuclear Information System (INIS)

    The Slovenian Nuclear Safety Administration (SNSA), in co-operation with the Health Inspectorate of the Republic of Slovenia, the Administration for Civil Protection and Disaster Relief and the Ministry of the Interior, has prepared a Report on Nuclear and Radiation Safety in the Republic of Slovenia for 1997. This is one of the regular forms of reporting on the work of the Administration to the Government and National Assembly of the Republic of Slovenia. Contributions to the report were furthermore prepared by competent authorities in the field of nuclear safety: the Agency for Radwaste Management (ARAO), the Milan Copic Nuclear Training Centre, etc. The report contains 17 chapters. (author)

  17. Safety instruction for execution tasks involving ionizing radiations

    International Nuclear Information System (INIS)

    Basic directives are presented allow operations with ionizing radiations in industrial areas with high levels of safety. Contractual, technical, operational and administrative criteria are established for the safe performance of x-rays and gamographies and the use of fixed radiation based equipment (indicators of level, density, flow, etc) as well as precautions to be taken during project, procurement, transportation, assembly and maintenance of such equipment. Finally procedures are suggested for emergencies involving radioactive sources. (author)

  18. Radiation safety. Handbook for laboratory workers in the USA

    International Nuclear Information System (INIS)

    The aim of the Handbook is to provide a source of information on radiation safety for those who are involved in the use of ionizing radiation in the laboratory. The potential reader may be a laboratory worker in the university or biomedical setting or the safety professional who desires a basic understanding of radiation protection within the research environment. The Handbook may be used as a reference by the radiation protection specialist or Radiation Safety Officer. To this end, liberal use is made of Appendices to make the Handbook a source of reference for a wide spectrum of readership while avoiding complicating the main body of the text. Each chapter or appendix is designed to stand alone. A complete reading of the Handbook will show that topics may be covered more than once. For example, one may read about the hazards and protective measures on handling radioiodine in Chapter 5 on Practical Radiation Protection as well as in Appendix 19 on Safe Handling of 125I. Extensive use of figures, rather than tables has been made to present data, in the belief that these produce a good visual representation to a level of precision which is sufficient for most purposes of radiation protection in laboratories. The reader must remember that this Handbook should be taken as a guide only to the applicable regulations. You must consult the appropriate state or federal regulation directly or receive advice of a qualified radiation safety professional. Also, some information in the Appendices, such as commercially available training institutions or radioactive waste brokers, may change with time. Telephone numbers are given for the reader to call directly and check the services provided

  19. Radiation safety at the West Valley Demonstration Project

    International Nuclear Information System (INIS)

    This is a report on the Radiation Safety Program at the West Valley Demonstration Project (WVDP). This Program covers a number of activities that support high-level waste solidification, stabilization of facilities, and decontamination and decommissioning activities at the Project. The conduct of the Program provides confidence that all occupational radiation exposures received during operational tasks at the Project are within limits, standards, and program requirements, and are as low as reasonably achievable

  20. Postgraduate educational course in radiation protection and the safety of radiation sources. Standard syllabus

    International Nuclear Information System (INIS)

    The aim of the Postgraduate Educational Course in Radiation Protection and the Safety of Radiation Sources is to meet the needs of professionals at graduate level, or the equivalent, for initial training to acquire a sound basis in radiation protection and the safety of radiation sources. The course also aims to provide the necessary basic tools for those who will become trainers in radiation protection and in the safe use of radiation sources in their countries. It is designed to provide both theoretical and practical training in the multidisciplinary scientific and/or technical bases of international recommendations and standards on radiation protection and their implementation. The participants should have had a formal education to a level equivalent to a university degree in the physical, chemical or life sciences or engineering and should have been selected to work in the field of radiation protection and the safe use of radiation sources in their countries. The present revision of the Standard Syllabus takes into account the requirements of the International Basic Safety Standards for Protection against Ionizing Radiation and for the Safety of Radiation Sources (BSS), IAEA Safety Series No. 115 (1996) and recommendations of related Safety Guides, as well as experience gained from the Postgraduate Educational Course on Radiation Protection and Safety of Radiation Sources held in several regions in recent years. The general aim of the course, as mentioned, is the same. Some of the improvements in the present version are as follows: The learning objective of each part is specified. The prerequisites for each part are specified. The structure of the syllabus has been changed: the parts on Principles of Radiation Protection and on Regulatory Control were moved ahead of Dose Assessment and after Biological Effects of Radiation. The part on the interface with nuclear safety was dropped and a module on radiation protection in nuclear power plants has been included. A

  1. Radiation safety for the emergency situation of the power plant accident. Radiation safety in society and its education

    International Nuclear Information System (INIS)

    Great East Japan Earthquake and Tsunamis, and following Fukushima Daiichi Nuclear Power Accident brought about great impact on society in Japan. Accident analysis of inside reactor was studied by reactor physics or reactor engineering knowledge, while dissipation of a large amount of radioactive materials outside reactor facilities, and radiation and radioactivity effects on people by way of atmosphere, water and soil were dealt with radiation safety or radiation protection. Due to extremely low frequency and experience of an emergency, there occurred a great confusion in the response of electric power company concerned, relevant regulating competent authorities, local government and media, and related scholars and researchers, which caused great anxieties amount affected residents and people. This article described radiation safety in the society and its education. Referring to actual examples, how radiation safety or radiation protection knowledge should be dealt with emergency risk management in the society was discussed as well as problem of education related with nuclear power, radiation and prevention of disaster and fostering of personnel for relevant people. (T. Tanaka)

  2. Radiation protection databases of nuclear safety regulatory authority

    International Nuclear Information System (INIS)

    Radiation protection and nuclear safety of nuclear installations have a common objective, protection against ionising radiation. The operational safety of a nuclear power plant is evaluated using performance indicators as for instance collective radiation exposure, unit capability factor, unplanned capability loss factor, etc. As stated by WANO (World Association of Nuclear Operators) the performance indicators are 'a management tool so each operator can monitor its own performance and progress, set challenging goals for improvement and consistently compare performance with that of other plants or industry'. In order to make the analysis of the performance indicators feasible to an operator as well as to regulatory authorities a suitable database should be created based on the data related to a facility or facilities. Moreover, the international bodies found out that the comparison of radiation protection in nuclear facilities in different countries could be feasible only if the databases with well defined parameters are established. The article will briefly describe the development of international databases regarding radiation protection related to nuclear facilities. The issues related to the possible development of the efficient radiation protection control of a nuclear facility based on experience of the Slovenian Nuclear Safety Administration will be presented. (author)

  3. Radiation safety and regulatory aspects of Industrial Ionising Radiation Gauging Devices (IRGD)

    International Nuclear Information System (INIS)

    In order to have an effective control on the use of these radiation sources and also to ensure the radiological safety of the user, as well as of the general public, the Government of India had promulgated the Radiation Protection Rules, 1971 under Atomic Energy Act, 1962. The Atomic Energy Regulatory Board (AERB) is the office of the competent authority for enforcing rules and regulations in respect of radiological safety

  4. Radiation and electrical safety systems for PEP

    International Nuclear Information System (INIS)

    At SLAC, the Personnel Protection System (PPS) protects people from radiation hazards. For PEP, the system has been expanded to include protection against electrical and RF hazards. This paper describes the overall system design, giving particular attention to the novel features not found in similar systems in other areas of SLAC. These include the Restricted Access Mode to allow limited occupancy in the ring while high voltage or RF may be present, the automatic badge reader system for improving the efficiency of entry logging and control, and the solid state lighting control system for switching large lighting loads with minimum electro-magetic interference

  5. Statistical analysis applied to safety culture self-assessment

    International Nuclear Information System (INIS)

    Interviews and opinion surveys are instruments used to assess the safety culture in an organization as part of the Safety Culture Enhancement Programme. Specific statistical tools are used to analyse the survey results. This paper presents an example of an opinion survey with the corresponding application of the statistical analysis and the conclusions obtained. Survey validation, Frequency statistics, Kolmogorov-Smirnov non-parametric test, Student (T-test) and ANOVA means comparison tests and LSD post-hoc multiple comparison test, are discussed. (author)

  6. Radiation safety interlocks at the NSLS

    International Nuclear Information System (INIS)

    The function of the NSLS interlock systems is to insure that no one is in an area where there is hazardous radiation, and to turn off the radiation source if a person somehow gains access to such an area. The interlock systems for the high hazard areas meet the following design requirements: (1) The system is redundant, that is no single failure can render the system unsafe. This is done by providing 2 independent systems or circuits; (2) In so far as possible, the two circuits are physically different. This minimizes the possibility of related coincident failures; (3) The design is fail safe. This means that the most likely failure modes leave the system in a safe condition. For example, the following failures are safe: Loss of power in any part of the system, any combination of shorts to ground, and any combination of open circuits; and (4) The interlock system must be testable. Redundancy sometimes makes testing difficult, but testing schemes must be worked out, since an untested interlock is undependable

  7. radiation safety culture for developing country: Basis for s minimum operational radiation protection programme

    International Nuclear Information System (INIS)

    The purpose of this document is to present a methodology for an integrated strategy aiming at establishing an adequate radiation Safety infrastructure for developing countries, non major power reactor programme. Its implementation will allow these countries, about 50% of the IAEA's Member States, to improve marginal radiation safety, specially to those recipients of technical assistance and do not meet the Minimum radiation Safety Requirements of the IAEA's Basic Safety Standards for radiation protection Progress in the implementation of safety regulations depends on the priority of the government and its understanding and conviction about the basic requirements for protection against the risks associated with exposure to ionizing radiation. There is no doubt to conclude that the reasons for the deficiency of sources control and dose limitation are related to the lack of an appropriate legal and regulatory framework, specially considering the establishment of an adequate legislation; A minimum legal infrastructure; A minimum operational radiation safety programme; Alternatives for a Point of Optimum Contact, to avoid overlap and conflict, that is: A 'Memorandum of Understanding' among Regulatory Authorities in the Country, dealing with similar type of licensing and inspection

  8. Qualified Presumption of Safety (QPS) is a generic risk assessment approach applied by the European Food Safety Authority (EFSA)

    DEFF Research Database (Denmark)

    Leuschner, R. G. K.; Robinson, T. P.; Hugas, M.; Cocconcelli, P. S.; Richard-Forget, F.; Klein, G.; Licht, Tine Rask; Nguyen-The, C.; Querol, A.; Richardson, M.; Suarez, J.E.; Thrane, Ulf; Vlak, J. M.; von Wright, A.

    2010-01-01

    Qualified Presumption of Safety (QPS) is a generic risk assessment approach applied by the European Food Safety Authority (EFSA) to notified biological agents aiming at simplifying risk assessments across different scientific Panels and Units. The aim of this review is to outline the implementation...

  9. Recommendations to improve radiation safety during invasive cardiovascular procedures

    International Nuclear Information System (INIS)

    In this paper we present guidelines aimed to improve radiation safety during invasive cardiovascular procedures. Unwanted effects upon patients and medical personnel are conventionally classified. A program of Quality Assurance is proposed, an aspect of which is a program for radiologic protection, including operator protection, radiation monitoring, shielding and personnel training. Permanent and specific actions should be taken at every cardiovascular lab, before, during and after interventions. In order to implement these guidelines and actions, a fundamental step is a review of current legislation. Specific programs for quality control and radiologic protection along with a definition of acceptable radiation exposure doses are required

  10. A bioethical perspective on radiation protection and ''safety''

    International Nuclear Information System (INIS)

    Three problems of major concern to policymakers whose task it is to protect public health by setting standards for ''safe'' radiation management are reviewed. The first problem is to decide if current conceptual tools for assessing basic harms to valued living systems are ethically adequate. The second is how to set safety standards on the basis of informed consent to scientific evidence presented by experts who disagree in interpreting that evidence. The third problem is how to resolve conflicting philosophies about radiation protection. Principles which might serve as guidance in the formulation of social policies for radiation health protection are suggested. (H.K.)

  11. 24 CFR 1005.111 - What safety and quality standards apply?

    Science.gov (United States)

    2010-04-01

    ... 24 Housing and Urban Development 4 2010-04-01 2010-04-01 false What safety and quality standards... URBAN DEVELOPMENT LOAN GUARANTEES FOR INDIAN HOUSING § 1005.111 What safety and quality standards apply? (a) Loans guaranteed under section 184 must be for dwelling units which meet the safety and...

  12. Designing Crane Controls with applied Mechanical and Electrical Safety Features

    Science.gov (United States)

    Lytle, Bradford P.; Walczak, Thomas A.; Delgado, H. (Technical Monitor)

    2002-01-01

    The use of overhead traveling bridge cranes in many varied applications is common practice. In particular, the use of cranes in the nuclear, military, commercial, aerospace, and other industries can involve safety critical situations. Considerations for Human Injury or Casualty, Loss of Assets, Endangering the Environment, or Economic Reduction must be addressed. Traditionally, in order to achieve additional safety in these applications, mechanical systems have been augmented with a variety of devices. These devices assure that a mechanical component failure shall reduce the risk of a catastrophic loss of the correct and/or safe load carrying capability. ASME NOG-1-1998, (Rules for Construction of Overhead and Gantry Cranes, Top Running Bridge, and Multiple Girder), provides design standards for cranes in safety critical areas. Over and above the minimum safety requirements of todays design standards, users struggle with obtaining a higher degree of reliability through more precise functional specifications while attempting to provide "smart" safety systems. Electrical control systems also may be equipped with protective devices similar to the mechanical design features. Demands for improvement of the cranes "control system" is often recognized, but difficult to quantify for this traditionally "mechanically" oriented market. Finite details for each operation must be examined and understood. As an example, load drift (or small motions) at close tolerances can be unacceptable (and considered critical). To meet these high functional demands encoders and other devices are independently added to control systems to provide motion and velocity feedback to the control drive. This paper will examine the implementation of Programmable Electronic Systems (PES). PES is a term this paper will use to describe any control system utilizing any programmable electronic device such as Programmable Logic Controllers (PLC), or an Adjustable Frequency Drive (AID) 'smart' programmable

  13. Pakistan nuclear safety and radiation protection regulation 1990

    International Nuclear Information System (INIS)

    In this act regulations of nuclear safety and radiation protection in Pakistan has been explained. A legal and licensing procedure to handle protection of nuclear materials, processing storage of radioactive products has been described under this regulation. In these regulations full explanation of accidental exposure, delegation of powers and record keeping/waste disposal of radioactive has been given. (A.B.)

  14. Radiation safety in X-ray diagnostic installations

    International Nuclear Information System (INIS)

    Safety measures to be strictly adhered to in handling X-ray equipment and exposing patients to X-radiation are described in detail. Hazards resulting from ignorance and careless handling are mentioned. Methods of shielding are indicated. (A.K.)

  15. Australian Radiation Protection and Nuclear Safety Regulations 1999

    International Nuclear Information System (INIS)

    This document contains statutory rules made under the Australian Radiation and Nuclear Safety Act 1998 defining how specified standards to be observed, practices and procedures to be followed and measures to be taken by controlled persons in relation to activities relating to controlled facilities, as well as in relation to dealings with controlled apparatus or controlled material

  16. Australian Radiation Protection and Nuclear Safety Regulations 1999

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-11-01

    This document contains statutory rules made under the Australian Radiation and Nuclear Safety Act 1998 defining how specified standards to be observed, practices and procedures to be followed and measures to be taken by controlled persons in relation to activities relating to controlled facilities, as well as in relation to dealings with controlled apparatus or controlled material

  17. Australian radiation protection and nuclear safety (consequential amendments) Bill 1998. Explanatory memorandum

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-12-31

    The purpose of this Bill is to make consequential changes to the Australian Nuclear Science and Technology Organisation Act 1987 (the ANSTO Act) and to provide for transitional arrangements to cover the operation of controlled facilities and the handling of radiation sources while applications for licences to cover these facilities and activities are being made under the proposed Australian Radiation Protection and Nuclear Safety Act 1998 (the ARPANS Act) For this purpose, the Bill: (a) repeals Parts VI and VII A of the ANSTO Act under which, respectively, the Safety Review Committee and the Nuclear Safety Bureau are established, as the functions of the Committee and Bureau will be transferred to the CEO of the Australian Radiation Protection and Nuclear Safety Agency, established under the ARPANS Act; (b) makes transitional arrangements for the transfer of the assets and liabilities of the Nuclear Safety Bureau to the Commonwealth, and confers on the CEO of ARPANSA the powers of the Director of the Nuclear Safety Bureau in relation to the Australian Nuclear Science and Technology Organisation during the transitional period before the offenses provisions commence to operate under the ARPANS Act; (c) repeals the Environment Protection (Nuclear Codes) Act 1978. That Act provides for the development and endorsement of Codes of Practice which will be undertaken under the auspices of ARPANSA; (d) provides that Commonwealth entities have a transition period of 6 months after the ARPANS Act commences to apply for a licence to authorize specified activities under that Act

  18. Corporate Functional Management Evaluation of the LLNL Radiation Safety Organization

    Energy Technology Data Exchange (ETDEWEB)

    Sygitowicz, L S

    2008-03-20

    A Corporate Assess, Improve, and Modernize review was conducted at Lawrence Livermore National Laboratory (LLNL) to evaluate the LLNL Radiation Safety Program and recommend actions to address the conditions identified in the Internal Assessment conducted July 23-25, 2007. This review confirms the findings of the Internal Assessment of the Institutional Radiation Safety Program (RSP) including the noted deficiencies and vulnerabilities to be valid. The actions recommended are a result of interviews with about 35 individuals representing senior management through the technician level. The deficiencies identified in the LLNL Internal Assessment of the Institutional Radiation Safety Program were discussed with Radiation Safety personnel team leads, customers of Radiation Safety Program, DOE Livermore site office, and senior ES&H management. There are significant issues with the RSP. LLNL RSP is not an integrated, cohesive, consistently implemented program with a single authority that has the clear roll and responsibility and authority to assure radiological operations at LLNL are conducted in a safe and compliant manner. There is no institutional commitment to address the deficiencies that are identified in the internal assessment. Some of these deficiencies have been previously identified and corrective actions have not been taken or are ineffective in addressing the issues. Serious funding and staffing issues have prevented addressing previously identified issues in the Radiation Calibration Laboratory, Internal Dosimetry, Bioassay Laboratory, and the Whole Body Counter. There is a lack of technical basis documentation for the Radiation Calibration Laboratory and an inadequate QA plan that does not specify standards of work. The Radiation Safety Program lack rigor and consistency across all supported programs. The implementation of DOE Standard 1098-99 Radiological Control can be used as a tool to establish this consistency across LLNL. The establishment of a site

  19. Radiation Safety Management Guidelines for PET-CT: Focus on Behavior and Environment

    International Nuclear Information System (INIS)

    Our purpose is to specify behavior and environmental factors aimed at reducing the exposed dosage caused by PET-CT and to develop radiation safety management guidelines adequate for domestic circumstances. We have used a multistep-multimethod as the methodological approach to design and to carry out the research both in quality and quantity, including an analysis on previous studies, professional consultations and a survey. The survey includes responses from 139 practitioners in charged of 109 PET-CTs installed throughout Korea(reported by the Korean Society of Nuclear Medicine, 2010). The research use 156 questions using Cronbach's α (alpha) coefficients which were: 0.818 for 'the necessity of setting and installing the radiation protective environment'; 0.916 for 'the necessity of radiation protection', 'setting and installing the radiation protective environment'; and 0.885 for 'radiation protection'. The check list, derived from the radiation safety management guidelines focused on behavior and environment, was composed of 20 items for the radiation protective environment: including 5 items for the patient; 4 items for the guardian; 3 items for the radiologist; and 8 items applied to everyone involved; for a total of 26 items for the radiation protective behavior including: 12 items for the patient; 1 item for the guardian, 7 items for the radiologist; and 6 items applied to everyone involved. The specific check list is shown in (Table 5-6). Since our country has no safety management guidelines of its own to reduce the exposed dosage caused by PET-CTs, we believe the guidelines developed through this study means great deal to the field as it is not only appropriate for domestic circumstances, but also contains specific check lists for each target who may be exposed to radiation in regards to behavior and environment.

  20. Radiation Safety Management Guidelines for PET-CT: Focus on Behavior and Environment

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Jin Wook [Cancer Imaging Center, National University Cancer Hospital, Seoul (Korea, Republic of); Han, Eun Ok [Dept. of Radiological Technology, Daegu Health College, Seoul (Korea, Republic of)

    2011-09-15

    Our purpose is to specify behavior and environmental factors aimed at reducing the exposed dosage caused by PET-CT and to develop radiation safety management guidelines adequate for domestic circumstances. We have used a multistep-multimethod as the methodological approach to design and to carry out the research both in quality and quantity, including an analysis on previous studies, professional consultations and a survey. The survey includes responses from 139 practitioners in charged of 109 PET-CTs installed throughout Korea(reported by the Korean Society of Nuclear Medicine, 2010). The research use 156 questions using Cronbach's {alpha} (alpha) coefficients which were: 0.818 for 'the necessity of setting and installing the radiation protective environment'; 0.916 for 'the necessity of radiation protection', 'setting and installing the radiation protective environment'; and 0.885 for 'radiation protection'. The check list, derived from the radiation safety management guidelines focused on behavior and environment, was composed of 20 items for the radiation protective environment: including 5 items for the patient; 4 items for the guardian; 3 items for the radiologist; and 8 items applied to everyone involved; for a total of 26 items for the radiation protective behavior including: 12 items for the patient; 1 item for the guardian, 7 items for the radiologist; and 6 items applied to everyone involved. The specific check list is shown in (Table 5-6). Since our country has no safety management guidelines of its own to reduce the exposed dosage caused by PET-CTs, we believe the guidelines developed through this study means great deal to the field as it is not only appropriate for domestic circumstances, but also contains specific check lists for each target who may be exposed to radiation in regards to behavior and environment.

  1. A management system integrating radiation protection and safety supporting safety culture in the hospital

    International Nuclear Information System (INIS)

    Quality assurance has been identified as an important part of radiation protection and safety for a considerable time period. A rational expansion and improvement of quality assurance is to integrate radiation protection and safety in a management system. The aim of this study was to explore factors influencing the implementing strategy when introducing a management system including radiation protection and safety in hospitals and to outline benefits of such a system. The main experience from developing a management system is that it is possible to create a vast number of common policies and routines for the whole hospital, resulting in a cost-efficient system. One of the key benefits is the involvement of management at all levels, including the hospital director. Furthermore, a transparent system will involve staff throughout the organisation as well. A management system supports a common view on what should be done, who should do it and how the activities are reviewed. An integrated management system for radiation protection and safety includes key elements supporting a safety culture. (authors)

  2. Safety Training: Ergonomics - Applying ergonomic principles in the workplace

    CERN Multimedia

    Isabelle Cusato

    2010-01-01

        We propose a half day awareness session on the hazards posed by a poor posture while working on a screen (back pain, eyestrain, sore wrists…) and best practices to address them. The next sessions will be held on 18 November 2010 (morning session in French and afternoon session in English). The registration via the Safety Training catalogue is mandatory. Places will be allocated in order of receipt. For any further information, please contact Isabelle Cusato, 73811.  

  3. Industrial Safety and Applied Health Physics Division, annual report for 1982

    Energy Technology Data Exchange (ETDEWEB)

    1983-12-01

    Activities during the past year are summarized for the Health Physics Department, the Environmental Management Department, and the Safety Department. The Health Physics Department conducts radiation and safety surveys, provides personnel monitoring services for both external and internal radiation, and procures, services, and calibrates appropriate portable and stationary health physics instruments. The Environmental Management Department insures that the activities of the various organizations within ORNL are carried out in a responsible and safe manner. This responsibility involves the measurement, field monitoring, and evaluation of the amounts of radionuclides and hazardous materials released to the environment and the control of hazardous materials used within ORNL. The department also collaborates in the design of ORNL Facilities to help reduce the level of materials released to the environment. The Safety Department is responsible for maintaining a high level of staff safety. This includes aspects of both operational and industrial safety and also coordinates the activities of the Director's Safety Review Committee. (ACR)

  4. Industrial Safety and Applied Health Physics Division, annual report for 1982

    International Nuclear Information System (INIS)

    Activities during the past year are summarized for the Health Physics Department, the Environmental Management Department, and the Safety Department. The Health Physics Department conducts radiation and safety surveys, provides personnel monitoring services for both external and internal radiation, and procures, services, and calibrates appropriate portable and stationary health physics instruments. The Environmental Management Department insures that the activities of the various organizations within ORNL are carried out in a responsible and safe manner. This responsibility involves the measurement, field monitoring, and evaluation of the amounts of radionuclides and hazardous materials released to the environment and the control of hazardous materials used within ORNL. The department also collaborates in the design of ORNL Facilities to help reduce the level of materials released to the environment. The Safety Department is responsible for maintaining a high level of staff safety. This includes aspects of both operational and industrial safety and also coordinates the activities of the Director's Safety Review Committee

  5. Safety and Radiation Protection at Swedish Nuclear Power Plants 2007

    International Nuclear Information System (INIS)

    transparent basis for making decisions in safety matters. During the year it has however become apparent that further improvement measures are necessary. The plant has had a relatively large number of operational disturbances during 2007 which have been analysed in order to implement suitable measures. Modernisation projects follow the time schedules which were decided earlier for implementation in order to comply with the regulations. Some measures are already completed, others are underway, and the programme will continue until 2013. SKI is supervising the progress of the modernisation and the improvements to the physical protection of the plants. Forsmark Kraftgrupp AB has applied for permission to increase the thermal power in reactors Forsmark 1 - 3. The government has not as yet granted permission for these power increases. SKI has approved trial operation for Ringhals 1 and Ringhals 3 at the increased power levels during the year. For Ringhals 3 this is the first stage of the planned power increases. Ringhals has also applied to increase the thermal power in Ringhals 4. The government has granted permission for the thermal power increase in Oskarshamn 3. SKI is currently performing a safety review of this application. Oskarshamn have made an application to increase the thermal power in Oskarshamn 2. During 2007 SKI has performed inspections to control how nuclear safeguards are managed by the nuclear power stations. In all 80 inspections have been carried out. Nothing has been found during these inspections to indicate that there are any deficiencies in the nuclear safeguard activities. No serious incidents or accidents have occurred resulting in abnormal radiation exposure of personnel. Radioactive releases from the plants have resulted in calculated doses to the most exposed person in the critical group that are well below the environmental impact goal of 10 microsievert. Forsmark, which in recent years has had recurrent problems with the measurement of airborne

  6. Safety and Radiation Protection at Swedish Nuclear Power Plants 2007

    Energy Technology Data Exchange (ETDEWEB)

    2008-07-01

    transparent basis for making decisions in safety matters. During the year it has however become apparent that further improvement measures are necessary. The plant has had a relatively large number of operational disturbances during 2007 which have been analysed in order to implement suitable measures. Modernisation projects follow the time schedules which were decided earlier for implementation in order to comply with the regulations. Some measures are already completed, others are underway, and the programme will continue until 2013. SKI is supervising the progress of the modernisation and the improvements to the physical protection of the plants. Forsmark Kraftgrupp AB has applied for permission to increase the thermal power in reactors Forsmark 1-3. The government hasn't yet granted permission for these power increases. SKI has approved trial operation for Ringhals 1 and Ringhals 3 at the increased power levels during the year. For Ringhals 3 this is the first stage of the planned power increases. Ringhals has also applied to increase the thermal power in Ringhals 4. The government has granted permission for the thermal power increase in Oskarshamn 3. SKI is currently performing a safety review of this application. Oskarshamn have made an application to increase the thermal power in Oskarshamn 2. During 2007 SKI has performed inspections to control how nuclear safeguards are managed by the nuclear power stations. In all 80 inspections have been carried out. Nothing has been found during these inspections to indicate that there are any deficiencies in the nuclear safeguard activities. No serious incidents or accidents have occurred resulting in abnormal radiation exposure of personnel. Radioactive releases from the plants have resulted in calculated doses to the most exposed person in the critical group that are well below the environmental impact goal of 10 microsievert. Forsmark, which in recent years has had recurrent problems with the measurement of airborne

  7. Establishment of database for radiation exposure and safety assessment

    Energy Technology Data Exchange (ETDEWEB)

    Choi, G. S.; Kim, J. H. [Science Culture Research Institute, Seoul (Korea, Republic of)

    2005-12-15

    The nuclear electric energy in our country plays a major role for the national industrial development as well as for the secure living of the peoples. It is, however, considered as a socially dreadful elements because of the radiation materials exposed into the environment. In effect, the DB is intended to serve for the reference to the epidemical study upon the low-level radiation exposure involving the nuclear facilities, radio-isotope business enterprises, and the related workers at the radiation sites. In connection with the development of nuclear energy, the low-level radiation, associated with the radioisotope materials exposed into our environment out of nuclear facilities, is believed to possibly raise significant hazardous effects toward human persons. Therefor, it is necessary to take a positive counter measures by means of comprehensive quantitative estimates on its possibilities. In consequence, the low-level radiation effects do not bring about the immediate hazard cases, however, appear to possibly pose the lately caused diseases such as cancer cause, life reduction, and creation of mutation, etc. Therefore, it is intended to set up the social security with the secure safety, by conducting an advanced safety study on the low-level radiation.

  8. Establishment of database for radiation exposure and safety assessment

    International Nuclear Information System (INIS)

    The nuclear electric energy in our country plays a major role for the national industrial development as well as for the secure living of the peoples. It is, however, considered as a socially dreadful elements because of the radiation materials exposed into the environment. In effect, the DB is intended to serve for the reference to the epidemical study upon the low-level radiation exposure involving the nuclear facilities, radio-isotope business enterprises, and the related workers at the radiation sites. In connection with the development of nuclear energy, the low-level radiation, associated with the radioisotope materials exposed into our environment out of nuclear facilities, is believed to possibly raise significant hazardous effects toward human persons. Therefor, it is necessary to take a positive counter measures by means of comprehensive quantitative estimates on its possibilities. In consequence, the low-level radiation effects do not bring about the immediate hazard cases, however, appear to possibly pose the lately caused diseases such as cancer cause, life reduction, and creation of mutation, etc. Therefore, it is intended to set up the social security with the secure safety, by conducting an advanced safety study on the low-level radiation

  9. Building competence in radiation protection and the safe use of radiation sources. Safety guide

    International Nuclear Information System (INIS)

    An essential element of a national infrastructure for radiation protection and safety is the maintenance of an adequate number of competent personnel. This Safety Guide makes recommendations concerning the building of competence in protection and safety, which relate to the training and assessment of qualification of new personnel and retraining of existing personnel in order to develop and maintain appropriate levels of competence. This Safety Guide addresses training in protection and safety aspects in relation to all practices and intervention situations in nuclear and radiation related technologies. This document covers the following aspects: the categories of persons to be trained. The requirements for education, training and experience for each category. The processes of qualification and authorization of persons. A national strategy for building competence

  10. Building competence in radiation protection and the safe use of radiation sources. Safety guide

    International Nuclear Information System (INIS)

    An essential element of a national infrastructure for radiation protection and safety is the maintenance of an adequate number of competent personnel. This Safety Guide makes recommendations concerning the building of competence in protection and safety, which relate to the training and assessment of qualification of new personnel and retraining of existing personnel in order to develop and maintain appropriate levels of competence. This Safety Guide addresses training in protection and safety aspects in relation to all practices and intervention situations in nuclear and radiation related technologies. This document covers the following aspects: the categories of persons to be trained; the requirements for education, training and experience for each category; the processes of qualification and authorization of persons; a national strategy for building competence

  11. Radiation Safety and Education in the Applicants of the Final Test for the Expert of Pain Medicine

    OpenAIRE

    Park, Pyong Eun; Park, Jung Min; Kang, Joo Eun; Cho, Jae Hun; Cho, Suk Ju; Kim, Jae Hun; Sim, Woo Seog; Kim, Yong Chul

    2012-01-01

    Background The C-arm fluoroscope is known as the most important equipment in pain interventions. This study was conducted to investigate the completion rate of education on radiation safety, the knowledge of radiation exposure, the use of radiation protection, and so on. Methods Unsigned questionnaires were collected from the 27 pain physicians who applied for the final test to become an expert in pain medicine in 2011. The survey was composed of 12 questions about the position of the hospita...

  12. The IAEA Technical Co-operation Model Project on Upgrading Radiation Protection Infrastructure: A proactive approach for improving safety

    International Nuclear Information System (INIS)

    An unprecedented international co-operative effort has been launched to improve radiation and waste safety infrastructure in more than fifty IAEA Member States within the framework of the IAEA's Technical Co-operation Model Project on Upgrading Radiation Protection Infrastructure. The objectives of the project are to establish an adequate radiation and waste safety infrastructure, compatible with the International Basic Safety Standards for Protection against Ionizing Radiation and for the Safety of Radiation Sources, in those Member States receiving IAEA assistance, including a system of notification, authorization and control of radiation sources, and an inventory of radiation sources and installations. These objectives are in line with the statutory mandate of the IAEA, which provides that safety standards are also to be applied to its own operations, including all technical co-operation activities. The paper describes the IAEA's proactive approach used to design, implement and assess the project. By the end of September 2001, about 77% of the participating countries had their laws promulgated and regulatory authorities established; more than 42% had their regulations adopted; about 50% had a system for the notification, authorization and control of radiation sources in place and operational; and about 80% had an inventory system of radiation sources and installations in place and operational. (author)

  13. Radiation safety status at Swedish nuclear power plants 2010; Straalsaekerhetslaeget vid de svenska kaernkraftverken 2010

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-05-15

    According to the Swedish Radiation Safety Authority's (SSM's) appropriation, the Authority shall report the radiation safety status of the Swedish nuclear power plants to the government by 31 May 2011.

  14. Regulatory aspects of radiation sources safety in Albania

    International Nuclear Information System (INIS)

    In this paper are presented the regulatory aspects of the radiation sources safety in Albania, based in the new Radiological Protection Act and Regulations. The radiation protection infrastructures and procedures are described as well as their functioning for the implementation of relevant activities such as licensing and regular inspection, personal dose monitoring, emergency preparedness which are developed in the frame of the IAEA Technical Co-operation Programme. The issue of the security of radiation sources is dealt in close relation with the preparation and use of the inventory of all radiation sources in the country. A special attention is paid to the identification and location of lost sources for their finding and secure storage. (author)

  15. VI Congress on radiation research (radiobiology, radioecology, radiation safety). Abstracts. Volume 2 (sections VIII-XIV)

    International Nuclear Information System (INIS)

    The collection contains abstracts at the VI Congress on radiation research, in which program is included various aspects of ionizing and non-ionizing radiations on living organisms, problems of radioecology and radiation safety of humans and the environment. The Congress is dedicated to the 25th anniversary of the Chernobyl accident . Several reports have summarized the 25-year study of the effects of the accident, formulated forecasts and the main directions of further research. The second volume includes reports in sections : radioecology, combined effect of radiation and other environmental factors, agricultural radioecology, radiobiology of heavy ions, theoretical problems of radiobiology, systematic radiobiology. Radiobiology of non-ionizing radiation, biological effects, electromagnetic safety and regulation, radiobiological and radioecological education are discussed

  16. Applying radiation protection issues to hospitals radiological emergency preparedness

    International Nuclear Information System (INIS)

    Updating Hospitals emergency preparedness to Radiological Emergency situations was an opportunity to reevaluate key issues: What is the main threat - Nuclear or Radiological? RDD or industrial? As a result of such a discussion-what kind of radiation monitors to select? Should they be similar to those other emergency organizations use? What Personal Protective Equipment (PPE) level to decide on? Who are hospital emergency team members and how deep is there radiation protection knowledge? How and where to train them? Are drills needed? How often so normal hospital activity is not disturbed? What kind of manuals to prepare? This paper describes the process that led to the change of policy from preparedness to nuclear accidents only, to all kind of radiological emergencies with an emphasis on radiological terror. Supply of new radiation and contamination detection equipment took place, same as the one that other emergency teams have. A new and simple level C PPE applied. Training set different team members on same level. Several manuals prepared: How to prepare Hospital to contaminated casualties in order to minimize normal routine - in case there is an information on contaminated casualties on the way and in case it was discovered after they arrived, how to treat a contaminated casualty, to decontaminate him or not? How to decide that a casualty is contaminated or not? What to do with casualties belongings? What to do with contaminated equipment? How to exit a contaminated zone? How to set hospital back to ordinary work? etc. (author)

  17. WHO's global initiative on radiation safety in health care settings

    International Nuclear Information System (INIS)

    Advances in medical radiation technology have resulted in significant gains in the diagnosis and treatment of human diseases. Medical use of ionizing radiation has become by far the largest artificial source of radiation exposure. Although individual cancer risk associated with diagnostic exposures is low, overall exposure is becoming a public health concern due to the widespread use of radiation in health care settings, which is foreseen to continue rising. According to its global health mandate, WHO has an important role to play in preventing unjustified exposures while promoting and ensuring safe use of radiation in medicine. In order to underscore its commitment to this field, WHO started a global initiative on Radiation Safety in Health Care Settings to support Member States in the implementation of the international radiation safety standards in medicine. This new initiative will bring together key stakeholders, including international organizations, professional and scientific societies, health authorities and policy makers. Actions of the initiative will focus on public health aspects related to risks and benefits of diagnostic radiology, image guided interventions, radiotherapy and nuclear medicine. Based on a scientific evidence, special consideration will be given to critical sub-populations (e.g. children and pregnant women), to high dose procedures and to unintended exposures. Practical materials focusing on the justification and optimization principles of radiation protection will be developed and disseminated, such as evidence-based good practice manuals. In addition, advocacy and communication tools will be produced and made available widely. Contribution to the development of education and training programs will be also considered. (author)

  18. Radiation Safety of Gamma, Electron and X Ray Irradiation Facilities. Specific Safety Guide (Spanish Edition)

    International Nuclear Information System (INIS)

    The objective of this Safety Guide is to provide recommendations on how to meet the requirements of the BSS with regard to irradiation facilities. This Safety Guide provides specific, practical recommendations on the safe design and operation of gamma, electron and X ray irradiators for use by operating organizations and the designers of these facilities, and by regulatory bodies. SCOPE. The facilities considered in this publication include five types of irradiator, whether operated on a commercial basis or for research and development purposes. This publication is concerned with radiation safety issues and not with the uses of irradiators, nor does it cover the irradiation of product or its quality management. The five types of irradiator are: - Panoramic dry source storage irradiators; - Underwater irradiators, in which both the source and the product being irradiated are under water; - Panoramic wet source storage irradiators; - Electron beam irradiation facilities, in which irradiation is performed in an area that is potentially accessible to personnel, but that is kept inaccessible during the irradiation process; - X ray irradiation facilities, in which irradiation is performed in an area that is potentially accessible to personnel, but that is kept inaccessible during the irradiation process. Consideration of non-radiation-related risks and of the benefits resulting from the operation of irradiators is outside the scope of this Safety Guide. The practices of radiotherapy and radiography are also outside the scope of this Safety Guide. Category I gamma irradiators (i.e. 'self-shielded' irradiators) are outside the scope of this Safety Guide

  19. Radiation protection safety in Uganda -- Experience and prospects of the National Radiation Protection Service

    International Nuclear Information System (INIS)

    The Uganda National Radiation Protection Service (NRPS) is a technical body under the Atomic Energy Control Board, established by Law - the Atomic Energy Decree of 1972, Decree No. 12, to oversee and enforce safety of radiation sources, practices and workers; and to protect the patients, members of the public and the environment from the dangers of ionizing radiation and radioactive wastes. The Ionizing Radiation Regulations (Standards) - Statutory Instruments Supplement No. 21 of 1996 -- back up the Law. The Law requires all users, importers and operators of radiation sources and radioactive materials to notify the NRPS for registration and licensing. The NRPS is responsible for licensing and for the regulatory enforcement of compliance to the requirements for the safety of radiation sources and practices. There are about 200 diagnostic X-ray units, two radiotherapy centres, one nuclear medicine unit, several neutron probes, about three level gauges and two non-destructive testing sources and a number of small sealed sources in teaching and research institutions. About 50% of these sources have been entered in our inventory using the RAIS software provided by the IAEA. There are about 500 radiation workers and 250 underground miners. The NRPS covers about 50% of the radiation workers. It is planned that by June 2001, all occupational workers will be monitored, bringing coverage to 100%. The Government of Uganda is making the necessary legal, administrative and technical arrangements aimed at establishing the National Radiation Protection Commission as an autonomous regulatory authority. The Atomic Energy Decree of 1972 and Regulations of 1996 are being revised to provide for the National Radiation Protection Commission and to make it comply with the requirements of the International Basic Safety Standards Safety Series No. 115. (author)

  20. Education of radiation safety specialists at Faculty of Medicine of Vilnius University

    International Nuclear Information System (INIS)

    Vilnius University is the first institution of higher education in Lithuania that began to teach students on radiation safety. The special course of radiation hygiene was delivered to students in 1962-1992. In 1992 it was introduced residency of radiation hygiene and graduated students qualified for title of radiation hygiene specialist. The residency lasted one year and included six cycles: fundamentals of nuclear physics, statistics and noninfectious epidemiology, radiobiology, radiological research methods, controls of radiation safety and hygienic analysis of radiation safety. From 1994 Vilnius University has been educating and training professionals of public health. The specialists of radiation safety aren't been training as isolated branch. All courses is divided into two parts. The first one is included into bachelor, the second part - into master study. The bachelor study consists of 2 credits (16 hours for lectures and 32 hours for practical studies). The future bachelors study introduction of radiation safety, elements of nuclear physics, dose limit values, fundamentals of radiological protection, natural radiation. The master study consists of 2 credits (8 hours for lectures and 48 hours for practical studies). The future masters study specific problems of radiation safety in medicine and industry, the safety problems of nuclear power - stations, the problems of radioactive wastes, radiation biology, radiation risk. Radiation safety study model in Faculty of medicine of Vilnius University differs from study model in most European countries as it makes great play of radiation safety while usual model includes radiation safety as insignificant part of environmental health. (author)

  1. Update on radiation safety and dose reduction in pediatric neuroradiology

    International Nuclear Information System (INIS)

    The number of medical X-ray imaging procedures is growing exponentially across the globe. Even though the overall benefit from medical X-ray imaging procedures far outweighs any associated risks, it is crucial to take all necessary steps to minimize radiation risks to children without jeopardizing image quality. Among the X-ray imaging studies, except for interventional fluoroscopy procedures, CT studies constitute higher dose and therefore draw considerable scrutiny. A number of technological advances have provided ways for better and safer CT imaging. This article provides an update on the radiation safety of patients and staff and discusses dose optimization in medical X-ray imaging within pediatric neuroradiology. (orig.)

  2. Update on radiation safety and dose reduction in pediatric neuroradiology

    Energy Technology Data Exchange (ETDEWEB)

    Mahesh, Mahadevappa [Johns Hopkins University School of Medicine, The Russell H. Morgan Department of Radiology and Radiological Science, Baltimore, MD (United States)

    2015-09-15

    The number of medical X-ray imaging procedures is growing exponentially across the globe. Even though the overall benefit from medical X-ray imaging procedures far outweighs any associated risks, it is crucial to take all necessary steps to minimize radiation risks to children without jeopardizing image quality. Among the X-ray imaging studies, except for interventional fluoroscopy procedures, CT studies constitute higher dose and therefore draw considerable scrutiny. A number of technological advances have provided ways for better and safer CT imaging. This article provides an update on the radiation safety of patients and staff and discusses dose optimization in medical X-ray imaging within pediatric neuroradiology. (orig.)

  3. Towards a convention on radiation safety and security

    International Nuclear Information System (INIS)

    An international legally biding undertaking that specifically addresses safety and security of ionizing radiation (or radiation in short) is an overdue necessity. Such an instrument has been requested by the scientific community for a long time. A quarter of a century has elapsed since it was first considered a growing necessity. The time seems to be ripe for legal experts to negotiate a Convention on Radiation Safety and Security. Thee purpose of this paper is to review the developments leading to such a conclusion and to refresh the request. Since their discoveries more that 100 years ago, the phenomena of radioactivity and the radiation emitted by radioactive substances and ad hoc apparatuses (such as x-ray machines and accelerators) have become widely used for human well being. Their use in medicine, for instance, has grown to such an extent as to become the major source of human radiation exposure. While radiation usage is very beneficial for mankind, endeavours involving radiation shall be safe and secure. Although the vast majority of radioactive sources used around the world are managed safely and securely, and bring many benefits to humankind, accidents involving radiation sources have occurred, some with serious —even fatal— consequences. Many of these accidents has been reported by the International Atomic Energy Agency; see for example references (IAEA, 1988, 1996b, 1998b, 2000a,b,c, 2002a,b). Thus, starting around the last decade of the past century, there was growing international concern about radiation sources that for one reason or another were not subject to regulatory control or over which regulatory control had been lost. Historically, the protection of people against radiation and implicitly the safe use of radiation sources have been governed by recommendations from the International Commission on Radiological Protection (ICRP), a professional charity founded in 1928, which over the years has developed, maintained, and elaborated an

  4. Safety of natural radiation exposure. A meta-analysis of epidemiological studies on natural radiation

    International Nuclear Information System (INIS)

    People have been exposed every time and everywhere to natural radiation and ''intuitively'' know the safety of this radiation exposure. On the other hand the theory of no threshold value on radiological carcinogenesis is known widely, and many people feel danger with even a smallest dose of radiation exposure. The safety of natural radiation exposure can be used for the risk communication with the public. For this communication, the safety of natural radiation exposure should be proved ''scientifically''. Safety is often discussed scientifically as the risks of the mortality from many practices, and the absolute risks of safe practices on the public are 1E-5 to 1E-6. The risks based on the difference of natural radiation exposure on carcinogenesis have been analyzed by epidemiological studies. Much of the epidemiological studies have been focused on the relationship between radiation doses and cancer mortalities, and their results have been described as relative risks or correlation factors. In respect to the safety, however, absolute risks are necessary for the discussion. Cancer mortalities depend not only on radiation exposure, but also on ethnic groups, sexes, ages, social classes, foods, smoking, environmental chemicals, medical radiation, etc. In order to control these confounding factors, the data are collected from restricted groups or/and localities, but any these ecological studies can not perfectly compensate the confounding factors. So positive or negative values of relative risks or the meaningful correlation factors can not be confirmed that their values are derived originally from the difference of their exposure doses. The absolute risks on these epidemiological studies are also affected by many factors containing radiation exposure. The absolute risk or the upper value of the confidence limit obtained from the epidemiological study which is well regulated confounding factors is possible to be a maximum risk on the difference of the exposure doses

  5. Radiation safety in sea transport of radioactive material in Japan

    International Nuclear Information System (INIS)

    Radiation safety for sea transport of radioactive material in Japan has been discussed based on records of the exposed dose of sea transport workers and measured data of dose rate equivalents distribution inboard exclusive radioactive material shipping vessels. Recent surveyed records of the exposed doses of workers who engaged in sea transport operation indicate that exposed doses of transport workers are significantly low. Measured distribution of the exposed dose equivalents inboard those vessels indicates that dose rate equivalents inside those vessels are lower than levels regulated by the transport regulations of Japan. These facts clarify that radiation safety of inboard environment and handling of transport casks in sea transport of radioactive material in Japan are assured

  6. Radiation safety in sea transport of radioactive material in Japan

    Energy Technology Data Exchange (ETDEWEB)

    Odano, N. [National Maritime Research Inst., Tokyo (Japan); Yanagi, H. [Nuclear Fuel Transport Co., Ltd., Tokyo (Japan)

    2004-07-01

    Radiation safety for sea transport of radioactive material in Japan has been discussed based on records of the exposed dose of sea transport workers and measured data of dose rate equivalents distribution inboard exclusive radioactive material shipping vessels. Recent surveyed records of the exposed doses of workers who engaged in sea transport operation indicate that exposed doses of transport workers are significantly low. Measured distribution of the exposed dose equivalents inboard those vessels indicates that dose rate equivalents inside those vessels are lower than levels regulated by the transport regulations of Japan. These facts clarify that radiation safety of inboard environment and handling of transport casks in sea transport of radioactive material in Japan are assured.

  7. Thyroid cancer radioiodine therapy: health service performance and radiation safety

    International Nuclear Information System (INIS)

    Greek Atomic Energy Commission collected data related to radioiodine I-131 therapy (RAIT) delivery to differentiated thyroid carcinoma patients, for the period 2003-13, corresponding to 100 % of hospitals at national level. Radiation safety and health service performance outcome indicators were assessed. The numbers of hospitals and nuclear medicine (NM) therapy wards, as well as RAIT annual frequencies, have increased. Geographical inhomogeneous distribution of existing infrastructure is recorded. In some cases, the observed inefficient use of NM therapy wards seems to be due to lack of human resources (e.g. nurses). Regular assessment of appropriate key indicators could serve as a useful tool for radiation safety monitoring and health service performance improvement. (authors)

  8. Thyroid cancer radioiodine therapy: health service performance and radiation safety.

    Science.gov (United States)

    Vogiatzi, S; Liossis, A; Lamprinakou, M

    2015-07-01

    Greek Atomic Energy Commission collected data related to radioiodine I-131 therapy (RAIT) delivery to differentiated thyroid carcinoma patients, for the period 2003-13, corresponding to 100 % of hospitals at national level. Radiation safety and health service performance outcome indicators were assessed. The numbers of hospitals and nuclear medicine (NM) therapy wards, as well as RAIT annual frequencies, have increased. Geographical inhomogeneous distribution of existing infrastructure is recorded. In some cases, the observed inefficient use of NM therapy wards seems to be due to lack of human resources (e.g. nurses). Regular assessment of appropriate key indicators could serve as a useful tool for radiation safety monitoring and health service performance improvement. PMID:25809109

  9. Educational and experiential effects on radiographers' radiation safety behavior

    International Nuclear Information System (INIS)

    Forty-four radiographers from 11 hospitals in Northern California were observed for radiation safety behaviors in six categories. A multiple regression analysis was performed to determine if there was a significant relationship between the six radiation safety behaviors and the radiographer's age, sex, type of professional training, years since completion of professional training, years of professional practice, time of day, and exposure frequency. The multiple regression analysis showed that there was a significant relationship between use of gonadal shielding and years since completion of professional training, years of professional practice, type of training, and age. The multiple regression analysis also showed that the number of repeated films due to technical error was significantly related to the type of professional training a radiographer received

  10. Industrial safety and applied health physics. Annual report, 1979

    International Nuclear Information System (INIS)

    In connection with personnel monitoring, there were no external or internal exposures to personnel which exceeded the standards for radiation protection as defined in DOE Manual Chapter 0524. Only 55 employees received whole-body dose equivalent of one rem or greater. The highest whole-body dose equivalent to an employee was 2.8 rem. The highest internal exposure was less than one-half of a maximum permissible dose for any calendar quarter. During 1979, 57 portable health physics instruments were added to the inventory and 75 retired. The total number in service on January 1, 1979, was 977. With regards to environmental monitoring, there were no releases of gaseous waste from the Laboratory which were of a level that required an incident report to DOE. There were no releases of liquid radioactive waste from the Laboratory which were of a level that required an incident report to DOE. Soil samples were collected at all perimeter and remote monitoring stations and analyzed for eleven radionuclides including plutonium and uranium. Plutonium-239 content ranged from 0.01 to 0.06 pCi/g, and the uranium-235 content ranged from 0.01 to 0.05 pCi/g. Grass samples were collected at all perimeter and remote monitoring stations and analyzed for twelve radionuclides including plutonium and uranium. Plutonium-239 content ranged from 0.001 to 0.010 pCi/g, and uranium-235 content ranged from 0.001 to 0.010 pCi/g. Two radiation incidents involving radioactive materials were recorded during 1979. This compares with 14 incidents in 1978

  11. Correlation of QA and radiation safety problems in nuclear medicine

    International Nuclear Information System (INIS)

    Full text: As a rule, these problems are considered independently of one another when practical recommendations on quality assurance (QA) and patient radiation safety in radionuclide diagnostics and therapy are developed and formulated. International standards and recommendations, the IAEA standards including guidelines on QA and radiation safety are independently elaborated, officially approved and used in clinical practice. Nevertheless, the adequate level of radiation safety can not be achieved without observance of all QA requirements. For different QA technologies the relation between patient radiation exposure and overall patient radiation safety can be direct and indirect. The organizational and purely medical activities entering the overall QA system for radionuclide diagnostics and therapy, influence the radiation safety by binary logic principle: under successful nuclear medical procedure delivery and reliable radiation accident prevention, radiation treatment is considered to be justified and clinically efficient and vice versa. These activities include: - radionuclide diagnostics or radionuclide therapy prescription (case history records, medical documentation, suggested diagnosis, indication and contra-indication, nuclear-medical procedure tolerance forecast); - radionuclide diagnostics or radionuclide therapy planning (information and preliminary patient preparation essential for most of the radionuclide therapy techniques, choice of the necessary radiopharmaceutical and its introduction); - radiopharmaceutical introduction (absence of the extravascular injection during the intravenous introduction and the skin radioactive contamination during the oral introduction); - objective assessment of radionuclide diagnostics (valid diagnostic decision determination) or radionuclide therapy results (patient supervision in dynamics); - software functional capabilities and reliability in measurement results processing during radionuclide diagnostics or absorbed

  12. Radiation protection, safety and associated problems in industrial radiography

    International Nuclear Information System (INIS)

    Industrial radiography is an indispensable tool for non-destructive testing. Its use entails potential radiation exposure to the operator as well as to the public. Since such radiation has the potential to be harmful, there is a need to limit radiation exposure to a level at which the risk is believed to be acceptable to the individual and to society. The Radiation Protection Society and the Department of National Health believe that the level of protection provided for radiation workers should be comparable with that in other 'safe' industries. The total risk for radiation workers includes the risk of non-radiation related accidents in the various occupations, as well as the special risks of radiation exposure. Industrial radiographers have one of the poorest safety records of all non-medical radiation workers. Operator errors and management errors seem to be the primary contributors to most accidental high exposures. It is necessary to remember that industrial radiography has to be carried out in a wide variety of work places under many different working conditions, both by day and by night. High energy end emissivity (X-ray output or source activity) is required for the radiation to be transmitted through specimens, because these are normally constructed of thick and dense materials such as steel. Additionally, most radiographic sources must be portable to permit use in field locations. On the negative side it must be mentioned that studies undertaken abroad conclude that the most important factors contributing to unsafe operations are human related. Careful planning of the method of work is essential if unnecessary risks are to be avoided. The most effective way of reducing accidents would seem to be to train employees to adhere to established and well documented procedures, to exercise common sense and sound judgement, and to use the protective equipment and devices provided in the manner specified. 2 tabs., 3 refs

  13. Radiation Safety Act 1975 - No 44 of 1975

    International Nuclear Information System (INIS)

    This Act regulates the use of radioactive substances and irradiating apparatus, including particle accelerators as well as certain specified electronic products. The Act lays down a licensing and registration system for such substances and apparatus; it sets up a Radiological Council to administer the Act and to advise the Minister responsible for public health on matters of radiation safety. The radioactive Substances Act 1954 and the Amending Acts of 1960 and 1964 are repealed. (NEA)

  14. Developing the radiation protection safety culture in the UK

    International Nuclear Information System (INIS)

    In the UK, as elsewhere, there is potential to improve how radiological challenges are addressed through improvement in, or development of, a strong radiation protection (RP) safety culture. In preliminary work in the UK, two areas have been identified as having a strong influence on UK society: the healthcare and nuclear industry sectors. Each has specific challenges, but with many overlapping common factors. Other sectors will benefit from further consideration. In order to make meaningful comparisons between these two principal sectors, this paper is primarily concerned with cultural aspects of RP in the working environment and occupational exposures rather than patient doses. The healthcare sector delivers a large collective dose to patients each year, particularly for diagnostic purposes, which continues to increase. Although patient dose is not the focus, it must be recognised that collective patient dose is inevitably linked to collective occupational exposure, especially in interventional procedures. The nuclear industry faces major challenges as work moves from operations to decommissioning on many sites. This involves restarting work in the plants responsible for the much higher radiation doses of the 1960/70s, but also performing tasks that are considerably more difficult and hazardous than those original performed in these plants. Factors which influence RP safety culture in the workplace are examined, and proposals are considered for a series of actions that may lead to an improvement in RP culture with an associated reduction in dose in many work areas. These actions include methods to improve knowledge and awareness of radiation safety, plus ways to influence management and colleagues in the workplace. The exchange of knowledge about safety culture between the nuclear industry and medical areas may act to develop RP culture in both sectors, and have a wider impact in other sectors where exposures to ionising radiations can occur. (memorandum)

  15. Experience in radiation safety assessments for uranium ore mining and processing

    International Nuclear Information System (INIS)

    Based on the experience gained during the expert assessments of the radiation safety activities at uranium facilities, it has been show that it is needed to develop detailed requirements for the structure and content of design documentation for the justification of radiation safety, enhance radiation monitoring at and around uranium facilities, revise existing regulations, develop guidance to assess the impact of uranium facilities on workers, the public and the environment , and ensure radiation monitoring and radiation safety in exploration work at uranium deposits

  16. International harmonization of radiation protection and safety standards. The role of the United Nations system

    International Nuclear Information System (INIS)

    extensive 928-page report, and in 1994 its supplementary 272-page report, to the UNGA. A new UNSCEAR report is expected by the end of 2000. On the other hand, the International Commission on Radiological Protection (ICRP), which in 1990 had revised its standing recommendations, has now issued a number of documents to apply these recommendations in specific situations. In 1991 six organizations - FAO, ILO, NEA/OECD, PAHO, WHO, and IAEA - created a Joint Secretariat coordinated by the International Atomic Energy Organization (IAEA) with the purpose of establishing the International Basic Standards for Protection against Ionizing Radiation and the Safety of Radiation Sources (the so-called BSS). This was the peak of decades of work and marked an unprecedented international co-operation that involved hundreds of experts from the Member States of the sponsoring organizations establishing the BSS. Within this framework, the objective of this paper is to present the significant role that the United Nations system of international organizations could play to achieve a genuine international consensus on radiation protection and safety standards. Not surprisingly, the paper will concentrate on the role and functions of the IAEA. The IAEA, is the only organization in the UN family with specific statutory functions, duties and responsibilities in the establishing international standards for radiation protection and safety. By analysing the functions and roles of UNSCEAR and the IAEA, it is clear how the UN policy on this matter has been built up and where it now stands. It should be emphasized that both UNSCEAR and the IAEA are not free 'think tanks'. They are governmental organizations. Their policies therefore reflect those of their constituencies, namely their Member States. Thus, the paper summarizes the status of UN policies on the health effects of radiation exposure, particularly on the controversial issue of the effects of low level radiation, as well as on the approach for

  17. Delivering a radiation protection dividend: systemic capacity-building for the radiation safety profession in Africa

    Directory of Open Access Journals (Sweden)

    Julian Hilton

    2014-12-01

    Full Text Available Many African countries planning to enter the nuclear energy “family” have little or no experience of meeting associated radiation safety demands, whether operational or regulatory. Uses of radiation in medicine in the continent, whether for diagnostic or clinical purposes, are rapidly growing while the costs of equipment, and hence of access to services, are falling fast. In consequence, many patients and healthcare workers are facing a wide array of unfamiliar challenges, both operational and ethical, without any formal regulatory or professional framework for managing them safely. This, combined with heighted awareness of safety issues post Fukushima, means the already intense pressure on radiation safety professionals in such domains as NORM industries and security threatens to reach breaking point. A systematic competency-based capacity-building programme for RP professionals in Africa is required (Resolution of the Third AFRIRPA13 Regional Conference, Nairobi, September 2010. The goal is to meet recruitment and HR needs in the rapidly emerging radiation safety sector, while also addressing stakeholder concerns in respect of promoting and meeting professional and ethical standards. The desired outcome is an RP “dividend” to society as a whole. A curriculum model is presented, aligned to safety procedures and best practices such as Safety Integrity Level and Layer of Protection analysis; it emphasizes proactive risk communication both with direct and indirect stakeholders; and it outlines disciplinary options and procedures for managers and responsible persons for dealing with unsafe or dangerous behavior at work. This paper reports on progress to date. It presents a five-tier development pathway starting from a generic foundation course, suitable for all RP professionals, accompanied by specialist courses by domain, activity or industry. Delivery options are discussed. Part of the content has already been developed and delivered as

  18. Applying the ionising radiation regulations to radon in the UK workplace

    International Nuclear Information System (INIS)

    As a response to the identification of a health risk from workplace radon in the UK, the Ionising Radiations Regulations include the protection of workers from excessive levels of radon. Employers are required to make risk assessments, and the interpretation of the Health and Safety Executive is that the regulations apply to workplace premises in locations already designated as Radon Affected Areas for domestic purposes, with the difference that in workplaces, it is the maximum winter radon concentration rather than the annual average which is the parameter of interest. This paper discusses the rationale behind the current regulatory environment, outlines the role and duties of Accredited Radiation Protection Advisers and summarises the strategies necessary to conform to the regulations. (authors)

  19. Safety and radiation protection in Indian nuclear power plants

    International Nuclear Information System (INIS)

    Full text: Nuclear energy, an important option for electricity generation is environment friendly, technologically proven, economically competitive and associated with the advantages of energy security and diversity. At present, India has an installed nuclear power generation capacity of 4120 M We with 6 more reactors are under construction/ commissioning at 4 sites. Nuclear power program, in India, as of now is primarily based on pressurized heavy water technology and these reactors are designed with safety features, such as, independent and diverse shut down systems, emergency core cooling system, double containment; pressure suppression pool etc. The principles of redundancy, diversity, fail-safe and passive systems are used in the design. The fundamental safety objective is to protect people and the environment from harmful effects of ionizing radiation. In this regard the prime responsibility for safety rests with the organization responsible for facilities and activities that give rise to radiation risks and is achieved by establishing and maintaining the necessary competence, providing adequate training and information, establishing procedures and arrangements to maintain safety under all conditions; verifying appropriate design and the adequate quality of facilities and activities and of their associated equipment; ensuring the safe control of all radioactive material that is used, produced, stored or transported, ensuring the safe control of all radioactive waste that is generated. 'Radiation Protection for Nuclear Facilities', issued by Atomic Energy Regulatory Board (the regulatory authority for NPPs in India) is the basic document for following radiation protection procedures in NPPs. Approved work procedures for all radiation jobs exist. Pre job briefing and post job analysis are carried out. Radiation protection is integrated with plant operation. Radiation levels indicate the performance of several systems. Several measures are adopted in design and

  20. Food Safety Detection Methods Applied to National Special Rectification of Product Quality and Food Safety

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    @@ Afour-month period of national special rectification for product quality and food safety officially started on August 25, and was focused on eight fields, including those of agricultural products and processed foods.

  1. Radiation protection training of radiation safety officers in Finland in 2008

    International Nuclear Information System (INIS)

    The Radiation and Nuclear Safety Authority (STUK) carried out a survey on the radiation protection training of radiation safety officers (RSO) in Finland in 2008. The aim of the survey was to obtain information on the conformity and uniformity of the training provided in different training organisations. A previous survey concerning radiation protection training was carried out in 2003. That survey determined the training needs of radiation users and radiation safety officers as well the radiation protection training included in vocational training and supplementary training. This report presents the execution and results of the survey in 2008. According to the responses, the total amount of RSO training fulfilled the requirements presented in Guide ST 1.8 in the most fields of competence. The emphasis of the RSO training differed between organisations, even for training in the same field of competence. Certain issues in Guide ST 1.8 were dealt quite superficially or even not at all in some training programmes. In some fields of competence, certain matters were entirely left to individual study. No practical training with radiation equipment or sources was included in the RSO training programme of some organisations. Practical training also varied considerably between organisations, even within the same field of competence. The duties in the use of radiation were often considered as practical training with radiation equipment and sources. Practical training from the point of view of a radiation safety officer was brought up in the responses of only one organisation. The number of questions and criteria for passing RSO exams also varied between organisations. Trainers who provided RSO training for the use of radiation in health care sectors had reached a higher vocational training level and received more supplementary training in radiation protection in the previous 5 years than trainers who provided RSO training for the use of radiation in industry, research, and

  2. Applying systems thinking to law enforcement safety: recommendation for a comprehensive safety management framework

    OpenAIRE

    DeBoard, Maggie A.

    2015-01-01

    Each year, approximately 100,000 police officers experience work-related occupational injuries, and more than 100 are killed on the job, in training accidents, routine operations, and emergency response. Many of these injuries and deaths are considered preventable. Although the law enforcement profession has recently begun to place an emphasis on safety, with the goal of reducing injuries and fatalities, no systematic or comprehensive approach to safety management exists to oversee and coordi...

  3. Safety of radiation sources: basic requirements for the regulatory control

    International Nuclear Information System (INIS)

    All countries of the world use radiation sources in medicine, industry, scientific research and teaching. Radioactivity is also part of our planet and the space. Man has ever been exposed to natural radiation. Accidents with radioactive sources, specially the ones occurred in Ciudad Juarez, Mexico, in 1983-1984 and in Goiania, Brazil, in 1987, made the nuclear community face up the necessity of a through revision of their basic safety requirements. The accidents caused the death of exposed persons and other serious consequences. It is extremely important to maintain an effective control of sources in order to prevent these serious accidents. The normative structure must follow international principles where workers exposure to ionizing radiation is restricted and the environment is protected (author)

  4. Radiation safety and protection in US dental hygiene programs

    International Nuclear Information System (INIS)

    A survey of radiation safety and protection measures used by programs teaching dental hygiene indicated some areas for concern. No barriers or radiation shieldings were used between operator and patient in four programs. Radiation monitoring devices were not worn by faculty operators in 16% of the programs. Fewer than half of the programs used thyroid shields for patients on a routine basis. Insufficient filtration for the kilovolt peak employed was used by 14% of the programs, and for 19% more the filtration was unknown or unspecified. Three programs used closed cones. Rectangular collimation was not used at all by 63% of the programs, and only 20% used E speed film routinely. Quality assurance for equipment maintenance and for film processing were in place at only 54% and 49% of the programs, respectively

  5. Postgraduate educational course in radiation protection and the safety of radiation sources. Standard syllabus

    International Nuclear Information System (INIS)

    The aim of the Postgraduate Educational Course in Radiation Protection and the Safety of Radiation Sources is to meet the needs of professionals at graduate level, or the equivalent, for initial training to acquire a sound basis in radiation protection and the safety of radiation sources. The course also aims to provide the necessary basic tools for those who will become trainers in radiation protection and in the safe use of radiation sources in their countries. It is designed to provide both theoretical and practical training in the multidisciplinary scientific and/or technical bases of international recommendations and standards on radiation protection and their implementation. The participants should have had a formal education to a level equivalent to a university degree in the physical, chemical or life sciences or engineering and should have been selected to work in the field of radiation protection and the safe use of radiation sources in their countries. The present revision of the Standard Syllabus takes into account the requirements of the International Basic Safety Standards for Protection against Ionizing Radiation and for the Safety of Radiation Sources (BSS), IAEA Safety Series No. 115 (1996) and recommendations of related Safety Guides, as well as experience gained from the Postgraduate Educational Course on Radiation Protection and Safety of Radiation Sources held in several regions in recent years. The general aim of the course, as mentioned, is the same. Some of the improvements in the present version are as follows: The learning objective of each part is specified. The prerequisites for each part are specified. The structure of the syllabus has been changed: the parts on Principles of Radiation Protection and on Regulatory Control were moved ahead of Dose Assessment and after Biological Effects of Radiation. The part on the interface with nuclear safety was dropped and a module on radiation protection in nuclear power plants has been included. A

  6. The Art World's Concept of Negative Space Applied to System Safety Management

    Science.gov (United States)

    Goodin, James Ronald (Ronnie)

    2005-01-01

    Tools from several different disciplines can improve system safety management. This paper relates the Art World with our system safety world, showing useful art schools of thought applied to system safety management, developing an art theory-system safety bridge. This bridge is then used to demonstrate relations with risk management, the legal system, personnel management and basic management (establishing priorities). One goal of this presentation/paper is simply to be a fun diversion from the many technical topics presented during the conference.

  7. Radiation and waste safety training and education: Malaysian experience

    International Nuclear Information System (INIS)

    The increasing use of radiation in various economic sectors requires proper safety practices and standard, thus the need for training. The creation of training opportunities such as on-the-job training, modular training, scientific visit, fellowship training, collaborative training and post-graduate educational training as well as the introduction of suitable training approaches are strategized to meet customer needs and enhance the application of nuclear technology in various sectors for economic growth and product competitiveness. This paper attempts to illustrate the Malaysian experience in implementing radiation and waste safety training for enhancing safety performance in an organization. It also acts as catalyst for economic well being of the nation. In this regard, due consideration has to be given for sustainable training programmes. As such, training must be customer-focus, relevant and attractive. Hence, the customer-focus and demand-driven training have been successfully introduced into the market to meet the needs. In general, incentive is an integral element to stimulate customer interest. This paper will also delve on these stimuli - fiscal, professional and personal, which have been proven attractive. (author)

  8. A Study on Enhancement of Understanding of Radiation and Safety Management

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Dong Han; Park, Ji Young; Lee, Jae Uk; Bae, Jun Woo; Kim, Hee Reyoung [Ulsan National Institute of Science and Technology, Ulsan (Korea, Republic of)

    2014-10-15

    Concerns for radiation exposure have been increased from small and big radiation works or experiments with radiation generator (RG) or radiation isotopes (RI) at institutions using radiation in Korea. Actually, due to radiation exposure occurred on the process of handling RI, etc., The exposure should be maintained as low as reasonably possible. To do this, above all, suitable training and establishment of safety culture have to be preceded. In this respect, an education institution is a place where people learn first about handling radiations in various specialties with purposes including academic research, and the first learned habits and practices acts as the basis for safety management of radiation when they continue to do radiation work after going into the society. Hereford, it is needed to establish the right safety culture on radiation for its safe managing. In the present study, the direction for the right understandings and safety improvement are suggested through the radiation survey on education institutions and preparation of safety guidances for users. The basic guidance at the radiation experiment was prepared for the right understanding of the radiation to prevent radiation accidents from careless handling by workers based on the surveyed results for education institutions. It is expected to be used as fundamentals for improvement for radiation safety management of workers and researchers and, further, safety policy for national nuclear energy and radiations.

  9. A Study on Enhancement of Understanding of Radiation and Safety Management

    International Nuclear Information System (INIS)

    Concerns for radiation exposure have been increased from small and big radiation works or experiments with radiation generator (RG) or radiation isotopes (RI) at institutions using radiation in Korea. Actually, due to radiation exposure occurred on the process of handling RI, etc., The exposure should be maintained as low as reasonably possible. To do this, above all, suitable training and establishment of safety culture have to be preceded. In this respect, an education institution is a place where people learn first about handling radiations in various specialties with purposes including academic research, and the first learned habits and practices acts as the basis for safety management of radiation when they continue to do radiation work after going into the society. Hereford, it is needed to establish the right safety culture on radiation for its safe managing. In the present study, the direction for the right understandings and safety improvement are suggested through the radiation survey on education institutions and preparation of safety guidances for users. The basic guidance at the radiation experiment was prepared for the right understanding of the radiation to prevent radiation accidents from careless handling by workers based on the surveyed results for education institutions. It is expected to be used as fundamentals for improvement for radiation safety management of workers and researchers and, further, safety policy for national nuclear energy and radiations

  10. Guidelines for radiation safety in interventional cardiology (JCS 2006)

    International Nuclear Information System (INIS)

    The guidelines are made for physicians in cardiovascular field who may be unfamiliar to radiation safety, to understand and know it easily. The introductory chapter describes the basic knowledge for management of radiation exposure and clinical feature of radiation-induced dermal damages like classification, clinical progress and case presentation. Following chapter is itemized, explained in a style of Q and A, and contains sections of; the fundamental knowledge's of radiation exposure management and of radiation skin damage, informed consent and measures for excessive exposure and skin damage crisis, factors influencing the exposure dose, contrivances to reduce the dose in patients, additional factors affecting the crisis of skin damage, contrivances to reduce the dose in medical personnel exposure, management of imaging instruments, methods to measure the exposure dose in patients, intervention in vessels other than the coronary artery, electro-physiological examinations and treatments, nuclear medical diagnoses, CT examinations, diagnosis and treatment of pregnant women, and present states in other countries. (T.I.)

  11. Radioactivity in consumer products : radiation safety and regulatory appraisal

    International Nuclear Information System (INIS)

    Use of radioactive materials in consumer products is in vogue almost since the discovery of radioactivity. There has been a rapid growth in the use of radioactive material in various consumer products such as Ionization Chamber Smoke Detectors (ICSD), Static eliminators, etc. In addition, there are certain manufacturing processes wherein the Naturally Occurring Radioactive Material (NORM) get incorporated in the consumer products. Certain phosphatic fertilizers, titanium dioxide pigments, phospho gypsum plaster boards are some examples in this category. The manufacture and use of these products result in radiation dose to the public apart from radiation exposure to the personnel involved in the manufacturing process. Appropriate radiation control measures have to be taken in the design, manufacture and use of consumer products to ensure that the radiation doses to the public and the population at large do not exceed the relevant limits. While appropriate regulatory controls and surveillance are established for manufacture and use of certain products, these are still to be recognised and established in respect of certain other processes and products. The current status of radiation safety and regulatory control and the lack of these in respect of some products are discussed in this paper. (author). 5 refs

  12. 76 FR 25576 - Pipeline Safety: Applying Safety Regulations to All Rural Onshore Hazardous Liquid Low-Stress Lines

    Science.gov (United States)

    2011-05-05

    ... mandate. Phase one, through a final rule published on June 3, 2008, (73 FR 31634), applied full Part 195... 195. This was part of phase one, as discussed above. (2) On July 31, 2008, (73 FR 44800) OMB Control... Federal Register on June 22, 2010, (75 FR 35366) that proposed to extend Part 195 safety requirements...

  13. Organizing of public movement for radiation safety of the population

    International Nuclear Information System (INIS)

    Full text: The possibilities of organizing of public anti nuclear movement in the Caspian region are discussed. The potential of public organizations in the regional countries and international programs and projects supporting this movement is considered. The activity of the following organizations is mentioned: Public movement Semipalatinsk-Nevada (Kazakhstan); Antinuclear movement 'Narin'(Kazakhstan); 'Social - ecological union'(Russia); Association 'Fovgal', scientific-ecological society 'Ekoil'; 'Radioecological society (Azerbaijan); 'Anti-Radiation Movement'(Georgia); 'Radioecology-21'(Georgia). International organizations - Caspian Program ISAR, Scientific Program NATO, IAEA and others play an important role in maintenance of radiation safety of the region. Especially it is necessary to mention the project on Export control of the nuclear materials of double destination (USA). The necessity of support of this movement from public of region is mentioned and an important role in this plays public organizations. The contribution of 'Ruzgar'in organizing of public anti-nuclear movement during the implementation of joint projects 'Along the Caspian', creation of the movement 'For clean Caspian', 'The impact of Gabala radiolocation station on the environment'and others. The following issues are stressed: 1.Lobbying the adoption of legislative and normative acts and their harmonization in a scale of the Caspian region; 2.Creating the cooperation between regional countries for joint solution of regional problems of radiation safety; 3.Increasing of a level of public awareness about this issue and providing public participation in decision-making; 4.Organizing a struggle against 'radiophobia'

  14. Importance of Bladder Radioactivity for Radiation Safety in Nuclear Medicine

    Directory of Open Access Journals (Sweden)

    Salih Sinan Gültekin

    2013-12-01

    Full Text Available Objective: Most of the radiopharmaceuticals used in nuclear medicine are excreted via the urinary system. This study evaluated the importance of a reduction in bladder radioactivity for radiation safety. Methods: The study group of 135 patients underwent several organ scintigraphies [40/135; thyroid scintigraphy (TS, 30/135; whole body bone scintigraphy (WBS, 35/135; myocardial perfusion scintigraphy (MPS and 30/135; renal scintigraphy (RS] by a technologist within 1 month. In full and empty conditions, static bladder images and external dose rate measurements at 0.25, 0.50, 1, 1.5 and 2 m distances were obtained and decline ratios were calculated from these two data sets. Results: External radiation dose rates were highest in patients undergoing MPS. External dose rates at 0.25 m distance for TS, TKS, MPS and BS were measured to be 56, 106, 191 and 72 μSv h-1 for full bladder and 29, 55, 103 and 37 μSv h-1 for empty bladder, respectively. For TS, WBS, MPS and RS, respectively, average decline ratios were calculated to be 52%, 55%, 53% and 54% in the scintigraphic assessment and 49%, 51%, 49%, 50% and 50% in the assessment with Geiger counter. Conclusion: Decline in bladder radioactivity is important in terms of radiation safety. Patients should be encouraged for micturition after each scintigraphic test. Spending time together with radioactive patients at distances less than 1 m should be kept to a minimum where possible.

  15. Radiation protection and safety of nuclear installations - Interface problems

    International Nuclear Information System (INIS)

    The paper discusses the application of the limitation of risk involved in 'criterion curves', safety goals and reliability criteria as one of the main interfaces between radiation protection and quantitative nuclear safety. Several problems of trade-off are also important areas of interface. Maintenance and inspection are planned with the aim of reducing accidental risk, but can involve increased occupational exposures to radiation. The paper discusses the problem as a case involving exposures and potential exposures, occupational risk and public risk. Other typical trade-offs involve shifting exposures between occupational groups or between workers and the public. These problems of interface are particular cases of decision making, which in radiation protection is typified by the optimization requirement of the system of dose limitation. Difficult conceptual problems are involved in extending the use of optimization to the case of probabilistic exposures. The paper examines these difficulties which become increasingly complicated for low probability-high consequence situations. The use of expectation values becomes invalid in such situations and also the possibility of high doses (beyond the range of stochastic linearity) requires special consideration. Different tools of decision analysis theory are mentioned as possible aids for the application of the optimization requirement. 10 refs

  16. EPA's occupational radiation safety and health protection program

    International Nuclear Information System (INIS)

    The purpose of this paper is to describe EPA's Occupational Radiation, Safety, and Health Protection Program (open-quotes Programclose quotes), from its inception to the present day, emphasizing problems encountered and solutions derived in developing and implementing a centrally administered national health physics program. The Program uses written policies, guidance, practices, and methods, as well as a Radiation Safety Information Management System (RADSIMS) to manage and oversee individual Program components and trends. These components include (1) training and education, (2) monitoring and dosimetry, (3) medical/health physics guidance, and (4) quality assurance/control/improvement. The Program, which is currently operational in all ten EPA Regions, is unique in that it incorporates a national database (consistent among all Regions), tied by telecommunications into a VAX computer at Headquarters, into a health physics monitoring system for the purpose of ensuring that EPA workers occupational exposure to ionizing radiation is maintained at levels as low as reasonably achievable (ALARA). Development and implementation of the Program has evolved into four distinct phases starting in FY92: (1) EPA Region IV developed a pilot-program with Headquarters, and quality action teams were formed to develop Program components and policies; phases (2) and (3) the Program was expanded into EPA Regions V, VII, and VIII (FY93) and then the remaining six regions (FY94). Phase (4) continued the implementation of the Program as needed agency-wide so as to include EPA applicable program offices and possibly some laboratories during FY96

  17. Radiation safety assessment of mobile telephone base stations

    International Nuclear Information System (INIS)

    Mobile telephone is fast getting popular among users and in fact it has become one of the fastest selling electronic products in the world. More base stations are expected to be built to meet such high demands and this has caused great concerned among members of the public, especially those living close to the stations, about the potential harmful health effects of radiofrequency (RF) radiation produced by such facilities. A project was initiated by MINT in early 2000 with aims to assess the radiation levels present in the areas around the base stations and to establish baseline data on the pattern and trend of the radiation emission from each different set up of the facilities. This paper highlights some basics facts about mobile telephones and preliminary findings of the project. The assessment has been carried out at 16 base station sites and the results indicate that the radiation levels present around these sites are very low. Their broadband readings vary between below the detection limit of 0.3μWatts/cm2 to 11 μWatts/cm2 and they are comparable to normal background radiation present in places away from any base stations. The highest level observed was 1.5% of the exposure limit recommended for members of the public. However, locations at close distance in front of the the antenna can be very serious in term of radiation exposure since the radiation level here can easily exceed the permissible exposure limit for public. Safety precaution needs to be taken when entering these areas and they should be out of bound for members of the public. (Author)

  18. Radiation safety, protection and recommendations in dentistry - a review

    International Nuclear Information System (INIS)

    Radiation is the transmission of energy through space and matter. Diagnostic radiology uses ionizing radiations which have sufficient energy to ionize atoms or molecules in biological and other systems. X-rays used in diagnostic radiology are a potent mutagenic agent, capable of inducing both gene mutations and chromosomal aberrations. X-rays are extensively used in medical and dental practice for the purpose of diagnosis and treatment. X-rays provide useful information and aid in diagnosis but at the same time they also have the potential to cause harmful effects. In dentistry X-rays are used mainly for diagnosis. Radiation in doses required for dentistry may not present any major risks, however these small doses are not necessarily risk free. Hence, no exposure to X-rays can be considered completely free of risk, so the use of radiation by dentists is accompanied by a responsibility to ensure appropriate protection. Several radiation safety measures have been recommended and advocated to reduce harmful effects. Dental professionals are the only practitioners who perform radiographical examination of their patients themselves. Although the exposure used in dentistry is low every effort should be made to reduce radiation in order to prevent the accumulated dose to the dentist in their lifetime. The dose reduction can be achieved in three main steps. They are decision making, optimising radiologic procedures and patient protection. The potential for undesirable effects must be balanced against the benefits obtained from radiographs. Therefore, the aim of the paper is to review important parameters that must be taken into consideration in the clinical set up to reduce radiation exposure to patients and dental personnel. (author)

  19. Progress report: nuclear safety and radiation protection in 2006

    International Nuclear Information System (INIS)

    For the French Nuclear Safety Authority (Asn), the year 2006 was marked by two important nuclear laws being passed, one of which brought about a major change in its status. The year was a relatively satisfactory one with regard to nuclear safety, although the picture was more contrasted concerning radiation protection: in this area, more particularly in the medical field, the overall impression of good progress is offset by the declaration of a number of radiotherapy accidents. Given the benefits expected from radiotherapy treatment by the patient suffering from cancer, the conditions in which this activity is carried out are a subject of major concern for Asn, in the light of the serious risks linked to patient over-exposure. ( some important points as follows: the law on transparency and security in the nuclear field, the law on sustainable management of radioactive materials and waste, Asn: an independent administrative authority, EPR reactor project safety, I.R.R.S.: an international audit of Asn in 2006, harmonization of nuclear safety, cancer radiotherapy, improved information of the public after the T.S.N. law, taking account of organisational and human factors). (N.C.)

  20. Nuclear and radiation safety in Slovenia. Annual report 2001

    International Nuclear Information System (INIS)

    The Slovenian Nuclear Safety Administration (SNSA) has prepared a Report on Nuclear and Radiation Safety in Slovenia for 2001 as a regular form of reporting to the citizens of the Republic of Slovenia on the activities related to the nuclear fuel cycle and the use of the ionising sources. The report has been prepared in collaboration with the Health Inspectorate of the Republic of Slovenia (HIRS), the Administration for Civil Protection and Disaster Relief (ACPDR), the Pool for Assurance and Reinsurance of Liability for Nuclear Damage and the Pool for Decommissioning of the NPP Krsko and for the Radwaste Disposal from the NPP Krsko. The reports of the Agency for Radioactive Waste Management (ARAO), the Institute of Oncology, the Department of Nuclear Medicine of the Medical Centre Ljubljana and the technical support organisations are also included. The SNSA made no crucial modifications to the reports of the above mentioned institutions. The modifications were made just facilitate a reading of the reports. (author)

  1. Report on nuclear and radiation safety in Slovenia in 2001

    International Nuclear Information System (INIS)

    The Slovenian Nuclear Safety Administration (SNSA) has prepared a Report on Nuclear and Radiation Safety in Slovenia for 2001 as a regular form of reporting to the citizens of the Republic of Slovenia on the activities related to the nuclear fuel cycle and the use of the ionising sources. The report has been prepared in collaboration with the Health Inspectorate of the Republic of Slovenia (HIRS), the Administration for Civil Protection and Disaster Relief (ACPDR), the Pool for Assurance and Reinsurance of Liability for Nuclear Damage and the Pool for Decommissioning of the NPP Krsko and for the Radwaste Disposal from the NPP Krsko. The reports of the Agency for Radioactive Waste Management (ARAO), the Institute of Oncology, the Department of Nuclear Medicine of the Medical Centre Ljubljana and the technical support organisations are also included. The SNSA made no crucial modifications to the reports of the above mentioned institutions. The modifications were made just facilitate a reading of the reports.

  2. Safety and effects of radiation on food bacteria

    International Nuclear Information System (INIS)

    The radiosensitivity of bacteria and safety of food bacteria after irradiation are stated. There are no bacteria in the medical equipment after radiation sterilization. Effects of radiation on microorganism, phase change of microorganism after sterilization are explained. The results of international researches are reported by 'Wholesomeness of food irradiated with doses above 10 kGy', WHO Report 890. The mutant rate of microorganism under the condition of irradiation is almost the same as ultra violet ray and medicine. The radiosensitivity of Escherichia coli S2 strain in phosphoric acid buffer solution, the effect of oxygen on the survival rate of Pseudomonas in phosphoric acid buffer solution, repair of DNA injury after irradiation, necessary dose of irradiation, radiosensitivities of various kinds of microorganisms in 0.067 M phosphoric acid buffer solution with dissolved air, and changes in microflora of Vienna sausages after irradiation with gamma-rays and storage at 10 deg C are reported. (S.Y.)

  3. Update on radiation safety and dose reduction in pediatric neuroradiology.

    Science.gov (United States)

    Mahesh, Mahadevappa

    2015-09-01

    The number of medical X-ray imaging procedures is growing exponentially across the globe. Even though the overall benefit from medical X-ray imaging procedures far outweighs any associated risks, it is crucial to take all necessary steps to minimize radiation risks to children without jeopardizing image quality. Among the X-ray imaging studies, except for interventional fluoroscopy procedures, CT studies constitute higher dose and therefore draw considerable scrutiny. A number of technological advances have provided ways for better and safer CT imaging. This article provides an update on the radiation safety of patients and staff and discusses dose optimization in medical X-ray imaging within pediatric neuroradiology. PMID:26346142

  4. Radiation safety aspects of the TESLA test facility, phase 2

    International Nuclear Information System (INIS)

    The commissioning of the TESLA test facility (TTF) in its second phase of the Deutsches Elektronen-Synchrotron (DESY) in Hamburg, Germany started by the end of 2004. It had been planned to test accelerator components in cold technology and to be operated for users as a vacuum ultraviolet free electron laser (VUV-FEL). The primary electron beam is accelerated to energies up to 1.6 GeV then collimated and fed either into the undulator section or into the bypass line. At their ends the electron beam is directed into a common absorber while the photon radiation such as VUV laser light and synchrotron light enter the FEL experimental hall. Here some radiation safety issues are addressed: beam loss considerations, primary beam containment and bremsstrahlung

  5. Radiation Protection and Safety Department - annual report 1977

    International Nuclear Information System (INIS)

    The duties cover tasks relative to radiation protection and safety on behalf of the institutes and departments of Kernforschungszentrum Karlsruhe and environmental monitoring for the whole Nuclear Research Center as well as own research and development work, mainly performed under the Nuclear Research Center and the Nuclear Safeguards Project. The centers of interest of R and D activities were: investigation of the atmospheric diffusion in the micro- and meso-scale, study of the radiological consequences of accidents in reactors under probabilistic aspects, implementation of nuclear fuel safeguarding systems, improvements in radiation protection measurement technology. This report gives details of the different duties, indicates the results of 1977 routine measurements, and reports about new results of investigations and developments of the working groups of the department. (orig.)

  6. The personnel protection system for a Synchrotron Radiation Accelerator Facility: Radiation safety perspective

    International Nuclear Information System (INIS)

    The Personnel Protection System (PPS) at the Stanford Synchrotron Radiation Laboratory is summarized and reviewed from the radiation safety point of view. The PPS, which is designed to protect people from radiation exposure to beam operation, consists of the Access Control System (ACS) and the Beam Containment System (BCS), The ACS prevents people from being exposed to the very high radiation level inside the shielding housing (also called a PPS area). The ACS for a PPS area consists of the shielding housing and a standard entry module at every entrance. The BCS prevents people from being exposed to the radiation outside a PPS area due to normal and abnormal beam losses. The BCS consists of the shielding (shielding housing and metal shielding in local areas), beam stoppers, active current limiting devices, and an active radiation monitor system. The system elements for the ACS and BCS and the associated interlock network are described. The policies and practices in setting up the PPS are compared with some requirements in the US Department of Energy draft Order of Safety of Accelerator Facilities

  7. The system of radiation protection applied in Czechoslovakia

    International Nuclear Information System (INIS)

    The concept of the radiation protection system (RPS) that has been gradually set up in Czechoslovakia was based on the Recommendations of the International Commission on Radiological Protection. A decree defines the responsibility, as well as more detailed obligations of organizations using radiation sources, as regards the protection of workers as well as the public, and includes the obligation to ensure an effective monitoring of radiation situations and of doses to persons. Expert supervision of adherence to the radiation protection regulations is carried out by the Hygiene Service, a public health inspection service whose activities in radiation protection are set up at the regional and central level. In each region there is a Radiation Hygiene Department with qualified personnel and appropriate instrumentation for the evaluation of exposure situations which may occur in the region. The departments supervise all workplaces using radiation sources, prepare binding recommendations to the regional health offices regarding the design of laboratories, licenses for the use of radiation sources, and approval for the start or termination of a practice. Central components of the structure directing the RPS in the country are the chief health officers of Bohemia and Slovakia and their expert bases - the Radiation Hygiene Centres at the Institutes for Hygiene and Epidemiology in both Republics. Apart from preparation or radiation protection standards and regulations, guidance as to methods and quality assurance for the work of regional Departments, these expert bases play a co-ordinating role in the system of handling radiation accidents and providing medical assistance to overexposed people. The Radiation Hygiene Centre in Prague acts as a centre for the radiation monitoring network in cases of nuclear accidents, in which the regional stations, nuclear power plants, research institutes and other bodies participate. A system of technical services in radiation protection

  8. Nuclear Safety and Radiation Protection in France in 2005

    International Nuclear Information System (INIS)

    In 2005, the Asn pursued its significant investment in radiation protection and reaffirms its ambition to become as efficient in radiation protection as it is in nuclear safety as of 2009. 2005 was a year of great progress for the Asn as it consolidated its organisation and working methods, in accordance with the 2005-2007 strategic plan it set for itself. The Asn continued progress in the field of radiation protection has given rise to various new regulations to improve the legislative and regulatory framework in this area. The Asn plans to step up its efforts to ensure better monitoring of patient exposure to ionizing radiation and to provide better management of radon-related risks, particularly in housing. Fully aware that its newfound power in this area requires outside evaluation, the Asn has asked the International Atomic Energy Agency (IAEA) to organize an I.R.R.S. (Integrated Regulatory Review Service) assignment consisting of a peer-conducted audit. The IAEA has confirmed that this audit will take place in November 2006. (N.C.)

  9. Radiation protection in Portugal: health, safety and legal aspects

    International Nuclear Information System (INIS)

    The paper describes the basic legal and technical principles governing radiation protection in Portugal. The methods used in the medical surveillance of occupationally exposed persons (especially in the assessment of biological effects) are described and the results of recent studies carried out with a view to improving biological dosimetry techniques are reported. An account is also given of dosimetry at nuclear centres in mines, at research establishments, in industry and in hospitals and private clinics, the accumulated doses being examined in the light of international recommendations relating to radiation protection. Statistical data on the granting of licences to different kinds of establishment are considered from the radiation safety point of view by the authors, who also describe the methods used for controlling waste from nuclear facilities and the measures taken in such special situations as the visit of a nuclear-powered ship to a Portuguese port or the disposal of radioactive waste into the Atlantic Ocean. A brief account is given of recent efforts to check on radioactive pollution (especially the contamination of milk by 90Sr). Lastly, the criteria followed in licensing and controlling Portuguese establishments which work with radioactive substances or other radiation sources are reviewed and, on the basis of experience, a critical appraisal is made of the application of the fundamental technical and legal principles, which presupposes the necessary co-operation between license-issuing authority, facility operator and staff

  10. Radiological protection for medical exposure to ionizing radiation. Safety guide

    International Nuclear Information System (INIS)

    radiotherapy owing to an ageing population. In addition, further growth in medical radiology can be expected in developing States, where at present facilities and services are often lacking. The risks associated with these expected increases in medical exposures should be outweighed by the benefits. For the purposes of radiation protection, ionizing radiation exposures are divided into three types: Medical exposure, which is mainly the exposure of patients as part of their diagnosis or treatment (see below); Occupational exposure, which is the exposure of workers incurred in the course of their work, with some specific exclusions; and Public exposure, which comprises all other exposures of members of the public that are susceptible to human control. Medical exposure is defined in the International Basic Safety Standards for Protection against Ionizing Radiation and for the Safety of Radiation Sources (BSS, the Standards) as: 'Exposure incurred by patients as part of their own medical or dental diagnosis or treatment; by persons, other than those occupationally exposed, knowingly while voluntarily helping in the support and comfort of patients; and by volunteers in a programme of biomedical research involving their exposure.' This Safety Guide covers all of the medical exposures defined above, with emphasis on the radiological protection of patients, but does not cover exposures of workers or the public derived from the application of medical radiation sources. Guidance relating to these exposures can be found in the Safety Guide on Occupational Radiation Protection. In addition to the IAEA, several intergovernmental and international organizations, among them the European Commission, the International Commission on Radiological Protection (ICRP), the Pan American Health Organization (PAHO) and the World Health Organization (WHO), have already published numerous recommendations, guides and codes of practice relevant to this subject area. National authorities should therefore

  11. Optimization of measures for radiation safety and social security provision during man-caused radioactive contamination of large areas

    International Nuclear Information System (INIS)

    The paper describes optimization of measures undertaken to overcome effects of the large-scale radiation impact on the ground and population. It generalizes structural and content principles for developing target programs as a proven system of measures reducing the extent of such effects. Authors present a sample set of interdependent measures for provision of radiation safety and social security as applied to the Semipalatinsk Test Site and its affected areas. (author)

  12. Radiation safety management in health care - The application of Quality Function Deployment

    International Nuclear Information System (INIS)

    The paper presents a study of the potential for applying the Quality Function Deployment (QFD) method to the analysis of the framework for safety management contained in the Ionising Radiation (Medical Exposure) Regulations (IRMER) of 2000. The QFD method has been successfully applied to many industrial and manufacturing processes in order to ensure that quality is built into products at the outset rather than tested for after their production. In this context, the term quality is used to describe the degree to which the needs and requirements of the customer are fulfilled. More frequently, now, the QFD approach is being applied to health care in order to engineer clinical processes that can best fulfil the needs of the patient. In the case of diagnostic radiology, safety management must not only be concerned with radiation protection but, more importantly, with the accuracy and consistency of any diagnostic outcome. Both are important patient needs. A first stage analysis of IRMER 2000 is presented that assesses how patients' needs are expressed by the individual IRMER components of justification, optimisation, clinical audit, expert advice, equipment and training. The analysis involved a QFD assessment by four radiation protection experts with over 100 man-years of experience. A second stage analysis assesses how the individual IRMER components have been engineered into a safety management framework through specific requirements embodied in IRMER 2000. The results of this assessment are discussed in terms of clinical, human, operational management and equipment related aspects of the radiological process. This study highlights how the QFD approach may be applied to engineer specific aspects of radiological practice that play a key role in ensuring that patients' needs are fully met. As an example, clinical audit requirements are analysed by means of the QFD method to indicate the design requirements of information and knowledge based systems that can provide the

  13. A study on radiation shielding and safety analysis for a synchrotron radiation beamline

    International Nuclear Information System (INIS)

    Methods of shielding design and safety analysis are presented for a beam-line of synchrotron radiation. This paper consists of the shielding and safety study of synchrotron radiation with extremely intense and low energy photon below several hundreds keV, and the study for the behavior of remarkable high-energy photons up to 8 GeV, which can creep into beam-lines. A new shielding design code, STAC8 was developed to estimate the leakage dose outside the beam line hutch (an enclosure of the beam, optical elements or experimental instruments) easily and quickly with satisfactory accuracy. The code can calculate consistently from sources of synchrotron radiation to dose equivalent outside hutches with considering the build up effect and polarization effect. Validity of the code was verified by comparing its calculations with those of Monte Carlo simulations and measurement results of the doses inside the hutch of the BL14C of Photon Factory in the High Energy Accelerator Research Organization (KEK), showing good agreements. The shielding design calculations using STAC8 were carried out to apply to the practical beam-lines with the considering polarization effect and clarified the characteristics of the typical beam-line of the third generation synchrotron radiation facility, SPring-8. In addition, the shielding calculations were compared with the measurement outside the shield wall of the bending magnet beam-line of SPring-8, and showed fairly good agreement. The new shielding problems, which have usually been neglected in shielding designs for existing synchrotron radiation facilities, are clarified through the analysis of the beam-line shielding of SPring-8. The synchrotron radiation from the SPring-8 has such extremely high-intensity involving high energy photons that the scattered synchrotron radiation from the concrete floor of the hutch, the ground shine, causes a seriously high dose. The method of effective shielding is presented. For the estimation of the gas

  14. A study on radiation shielding and safety analysis for a synchrotron radiation beamline

    Energy Technology Data Exchange (ETDEWEB)

    Asano, Yoshihiro [Japan Atomic Energy Research Inst., Kansai Research Establishment, Synchrotron Radiation Research Center, Mikazuhi, Hyogo (Japan)

    2001-03-01

    Methods of shielding design and safety analysis are presented for a beam-line of synchrotron radiation. This paper consists of the shielding and safety study of synchrotron radiation with extremely intense and low energy photon below several hundreds keV, and the study for the behavior of remarkable high-energy photons up to 8 GeV, which can creep into beam-lines. A new shielding design code, STAC8 was developed to estimate the leakage dose outside the beam line hutch (an enclosure of the beam, optical elements or experimental instruments) easily and quickly with satisfactory accuracy. The code can calculate consistently from sources of synchrotron radiation to dose equivalent outside hutches with considering the build up effect and polarization effect. Validity of the code was verified by comparing its calculations with those of Monte Carlo simulations and measurement results of the doses inside the hutch of the BL14C of Photon Factory in the High Energy Accelerator Research Organization (KEK), showing good agreements. The shielding design calculations using STAC8 were carried out to apply to the practical beam-lines with the considering polarization effect and clarified the characteristics of the typical beam-line of the third generation synchrotron radiation facility, SPring-8. In addition, the shielding calculations were compared with the measurement outside the shield wall of the bending magnet beam-line of SPring-8, and showed fairly good agreement. The new shielding problems, which have usually been neglected in shielding designs for existing synchrotron radiation facilities, are clarified through the analysis of the beam-line shielding of SPring-8. The synchrotron radiation from the SPring-8 has such extremely high-intensity involving high energy photons that the scattered synchrotron radiation from the concrete floor of the hutch, the ground shine, causes a seriously high dose. The method of effective shielding is presented. For the estimation of the gas

  15. Providing current radiation safety according to new version of 'Ukrytie' object regulation

    International Nuclear Information System (INIS)

    Main provisions are given of the 'Ukryttia' object's Regulation related to provision of radiation safety during the object's operation. The safety is provided due to the realization by the object's personnel of functions of global monitoring of current radiation conditions, as well as of the measures of operative or preventive suppression of radiation abnormalities sources

  16. Radiation Safety System for SPIDER Neutral Beam Accelerator

    Science.gov (United States)

    Sandri, S.; Coniglio, A.; D'Arienzo, M.; Poggi, C.

    2011-12-01

    SPIDER (Source for Production of Ion of Deuterium Extracted from RF Plasma only) and MITICA (Megavolt ITER Injector Concept Advanced) are the ITER neutral beam injector (NBI) testing facilities of the PRIMA (Padova Research Injector Megavolt Accelerated) Center. Both injectors accelerate negative deuterium ions with a maximum energy of 1 MeV for MITICA and 100 keV for SPIDER with a maximum beam current of 40 A for both experiments. The SPIDER facility is classified in Italy as a particle accelerator. At present, the design of the radiation safety system for the facility has been completed and the relevant reports have been presented to the Italian regulatory authorities. Before SPIDER can operate, approval must be obtained from the Italian Regulatory Authority Board (IRAB) following a detailed licensing process. In the present work, the main project information and criteria for the SPIDER injector source are reported together with the analysis of hypothetical accidental situations and safety issues considerations. Neutron and photon nuclear analysis is presented, along with special shielding solutions designed to meet Italian regulatory dose limits. The contribution of activated corrosion products (ACP) to external exposure of workers has also been assessed. Nuclear analysis indicates that the photon contribution to worker external exposure is negligible, and the neutron dose can be considered by far the main radiation protection issue. Our results confirm that the injector has no important radiological impact on the population living around the facility.

  17. Radiation Safety System for SPIDER Neutral Beam Accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Sandri, S.; Poggi, C. [ENEA, Radiation Protection Institute, IRP-FUAC, Frascati (Italy); Coniglio, A. [Medical Physics Department, S. Giovanni Calibita Hospital, Fatebenefratelli, Isola Tiberina, Roma (Italy); D' Arienzo, M. [ENEA, Ionizing Radiation Metrology National Institute, METR, Casaccia, Rome (Italy)

    2011-12-13

    SPIDER (Source for Production of Ion of Deuterium Extracted from RF Plasma only) and MITICA (Megavolt ITER Injector Concept Advanced) are the ITER neutral beam injector (NBI) testing facilities of the PRIMA (Padova Research Injector Megavolt Accelerated) Center. Both injectors accelerate negative deuterium ions with a maximum energy of 1 MeV for MITICA and 100 keV for SPIDER with a maximum beam current of 40 A for both experiments. The SPIDER facility is classified in Italy as a particle accelerator. At present, the design of the radiation safety system for the facility has been completed and the relevant reports have been presented to the Italian regulatory authorities. Before SPIDER can operate, approval must be obtained from the Italian Regulatory Authority Board (IRAB) following a detailed licensing process. In the present work, the main project information and criteria for the SPIDER injector source are reported together with the analysis of hypothetical accidental situations and safety issues considerations. Neutron and photon nuclear analysis is presented, along with special shielding solutions designed to meet Italian regulatory dose limits. The contribution of activated corrosion products (ACP) to external exposure of workers has also been assessed. Nuclear analysis indicates that the photon contribution to worker external exposure is negligible, and the neutron dose can be considered by far the main radiation protection issue. Our results confirm that the injector has no important radiological impact on the population living around the facility.

  18. From aviation to medicine: applying concepts of aviation safety to risk management in ambulatory care

    OpenAIRE

    Wilf-Miron, R; Lewenhoff, I; Benyamini, Z; Aviram, A

    2003-01-01

    

 The development of a medical risk management programme based on the aviation safety approach and its implementation in a large ambulatory healthcare organisation is described. The following key safety principles were applied: (1) errors inevitably occur and usually derive from faulty system design, not from negligence; (2) accident prevention should be an ongoing process based on open and full reporting; (3) major accidents are only the "tip of the iceberg" of processes that indicate possi...

  19. Safety assessment plans for authorization and inspection of radiation sources

    International Nuclear Information System (INIS)

    The objective of this TECDOC is to enhance the efficacy, quality and efficiency of the whole regulatory process. It provides advice on good practice administrative procedures for the regulatory process for preparation of applications, granting of authorizations, inspection, and enforcement. It also provides information on the development and use of standard safety assessment plans for authorization and inspection. The plans are intended to be used in conjunction with more detailed advice related to specific practices. In this sense, this TECDOC provides advice on a systematic approach to evaluations of protection and safety while other IAEA Safety Guides assist the user to distinguish between the acceptable and the unacceptable. This TECDOC covers administrative advice to facilitate the regulatory process governing authorization and inspection. It also covers the use of standard assessment and inspection plans and provides simplified plans for the more common, well established uses of radiation sources in medicine and industry, i.e. sources for irradiation facilities, industrial radiography, well logging, industrial gauging, unsealed sources in industry, X ray diagnosis, nuclear medicine, teletherapy and brachytherapy

  20. Radiation safety system (RSS) backbones: Design, engineering, fabrication and installation

    Energy Technology Data Exchange (ETDEWEB)

    Wilmarth, J.E.; Sturrock, J.C.; Gallegos, F.R.

    1998-12-01

    The Radiation Safety System (RSS) Backbones are part of an electrical/electronic/mechanical system insuring safe access and exclusion of personnel to areas at the Los Alamos Neutron Science Center (LANSCE) accelerator. The RSS Backbones control the safety fusible beam plugs which terminate transmission of accelerated ion beams in response to predefined conditions. Any beam or access fault of the backbone inputs will cause insertion of the beam plugs in the low energy beam transport. The Backbones serve the function of tying the beam plugs to the access control systems, beam spill monitoring systems and current-level limiting systems. In some ways the Backbones may be thought of as a spinal column with beam plugs at the head and nerve centers along the spinal column. The two Linac Backbone segments and experimental area segments form a continuous cable plant over 3,500 feet from beam plugs to the tip on the longest tail. The Backbones were installed in compliance with current safety standards, such as installation of the two segments in separate conduits or tray. Monitoring for ground-faults and input wiring verification was an added enhancement to the system. The system has the capability to be tested remotely.

  1. Radiation safety system (RSS) backbones: Design, engineering, fabrication and installation

    International Nuclear Information System (INIS)

    The Radiation Safety System (RSS) Backbones are part of an electrical/electronic/mechanical system insuring safe access and exclusion of personnel to areas at the Los Alamos Neutron Science Center (LANSCE) accelerator. The RSS Backbones control the safety fusible beam plugs which terminate transmission of accelerated ion beams in response to predefined conditions. Any beam or access fault of the backbone inputs will cause insertion of the beam plugs in the low energy beam transport. The Backbones serve the function of tying the beam plugs to the access control systems, beam spill monitoring systems and current-level limiting systems. In some ways the Backbones may be thought of as a spinal column with beam plugs at the head and nerve centers along the spinal column. The two Linac Backbone segments and experimental area segments form a continuous cable plant over 3,500 feet from beam plugs to the tip on the longest tail. The Backbones were installed in compliance with current safety standards, such as installation of the two segments in separate conduits or tray. Monitoring for ground-faults and input wiring verification was an added enhancement to the system. The system has the capability to be tested remotely

  2. Radiation safety of gamma and electron irradiation facilities

    International Nuclear Information System (INIS)

    There are currently some 160 gamma irradiation facilities and over 600 electron beam facilities in operation throughout virtually all Member States of the IAEA. The most widespread uses of these facilities are for the sterilization of medical and pharmaceutical products, the preservation of foodstuffs, polymer synthesis and modification, and the eradication of insect infestation. The safety record of this industry has been very good. Nevertheless, there is a potential for accidents with serious consequences. Gamma and electron beam facilities produce very high dose rates during irradiation, so that a person accidentally present in the irradiation chamber can receive a lethal dose within minutes or seconds. Precautions against uncontrolled entry must therefore be taken. Furthermore, gamma irradiation facilities contain large amounts of radioactivity and if the mechanism for retracting the source is damaged, the source may remain exposed, inhibiting direct access to carry out remedial work. Contamination can result from corroded or damaged sources, and decontamination can be very expensive. These aspects clearly indicate the need to achieve a high degree of safety and reliability in the facilities. This can be accomplished by effective quality control together with careful design, manufacture, installation, operation and decommissioning. The guidance in this Safety Series publication is intended for competent authorities responsible for regulating the use of radiation sources as well as the manufacturers, suppliers, installers and users of gamma and electron beam facilities. 20 refs, 6 figs

  3. Innovative approach to training radiation safety regulatory professionals

    International Nuclear Information System (INIS)

    Full text: The supply of human resources required to adequately manage a radiation safety regulatory program has diminished in the last five years. Competing professional opportunities and a reduction in the number of health physics secondary schools have made it necessary to look at alternative methods of training. There are limited educational programs in the US that prepare our professionals for careers in the Radiation Regulatory Programs. The state of Florida's radiation control program embraced a new methodology using a combination of didactic and work experience using qualification journals, subject matter experts, and formalized training to develop a qualified pool of employees to perform the regulatory functions and emergency response requirements of a state radiation control program. This program uses a task-based approach to identify training needs and draws upon current staff to develop and implement the training. This has led to a task-oriented staff capable of responding to basic regulatory and emergency response activities within one year of employment. Florida's program lends itself to other states or countries with limited resources that have experienced staff attrition due to retirement or competing employment opportunities. Information on establishing a 'task-based' pool of employees that can perform basic regulatory functions and emergency response after one year of employment will be described. Initial task analysis of core functions and methodology is used to determine the appropriate training methodology for these functions. Instructions will be provided on the methodology used to 'mentor' new employees and then incorporate the new employees into the established core functions and be a useful employee at the completion of the first year of employment. New training philosophy and regime may be useful in assisting in the development of programs in countries and states with limited resources for training radiation protection personnel. (author)

  4. Proceedings of the 2nd annual meeting of Japanese Society of Radiation Safety Management 2003 Tsukuba

    International Nuclear Information System (INIS)

    This is the program and the proceedings of the 2nd annual meeting of Japanese Society of Radiation Safety Management held from December 3rd through the 5th of 2003. The sessions held were: (1) Research on Low-level Waste, (2) Topics related to Detector, Measurement, and Instrument, (3) Dose Level and Imaging Plate, (4) Radiation, (5) Safety Education and Safety Evaluation. The poster sessions held were: (1) Safety Education, Safety Evaluation, Shielding, and so on, (2) Control System and Control Technology, (3) Detector and Radiation Measurement, (4) Topics Related to Imaging Plate, (5) Environment and Radiation Measurement, and (6) Radiation Control. Symposia held were: (1) 'Regarding Basic Concept to Incorporate International Exemption Level in Regulation' as the keynote lecture and (2) 'Regarding Correspondence Associated with Legal Revision and Radiation Safety Regulation'. Regarding these topics, after the explanation from each area, panel discussions were held. (S.K.)

  5. Applying different quality and safety models in healthcare improvement work: Boundary objects and system thinking

    International Nuclear Information System (INIS)

    A number of theoretical models can be applied to help guide quality improvement and patient safety interventions in hospitals. However there are often significant differences between such models and, therefore, their potential contribution when applied in diverse contexts. The aim of this paper is to explore how two such models have been applied by hospitals to improve quality and safety. We describe and compare the models: (1) The Organizing for Quality (OQ) model, and (2) the Design for Integrated Safety Culture (DISC) model. We analyze the theoretical foundations of the models, and show, by using a retrospective comparative case study approach from two European hospitals, how these models have been applied to improve quality and safety. The analysis shows that differences appear in the theoretical foundations, practical approaches and applications of the models. Nevertheless, the case studies indicate that the choice between the OQ and DISC models is of less importance for guiding the practice of quality and safety improvement work, as they are both systemic and share some important characteristics. The main contribution of the models lay in their role as boundary objects directing attention towards organizational and systems thinking, culture, and collaboration

  6. Educational effect for the attendance frequency of radiation safety training course and using radioisotope

    International Nuclear Information System (INIS)

    Radiation safety training course has been started on March, 2001 by Radioisotope Research Center, University of Tokushima. And the RI Center has also given re-training course for three years from 2001 to 2003. In the recent courses, a radiation worker's knowledge and recognition about Radiation Safety Handling was investigated, relating with the attendance frequency of those courses. It was found that the basic radiation safety behavior such as putting on monitoring badge, lab coat still was not understood for some persons. On the other hand, the RI center's radiation safety training course gave a correct knowledge and recognition on the radiation safety for most of radiation workers. Furthermore, the times of the attendance improved about that recognition. (author)

  7. Proceedings of the Eighth Scientific Presentation on Environment and Radiation Safety

    International Nuclear Information System (INIS)

    The eight of proceeding scientific meeting environmental and radiation safety are research activity report have been presented in August 23-24,2000. There are 33 articles that presented in two groups A : 16 articles about (biomedical and environmental safety) ; B : 17 articles about (dosimetry; standardization and radiation protection) The porpose of the preceeding be able to reference research activity for Development Health and Personnel Safety, Dosimetry Calibration Nuclear Medicine, Boimedical and in particular for Radiation Monitoring. There are 33 articles indexed individually

  8. The use of human factors methods to identify and mitigate safety issues in radiation therapy

    International Nuclear Information System (INIS)

    Background and purpose: New radiation therapy technologies can enhance the quality of treatment and reduce error. However, the treatment process has become more complex, and radiation dose is not always delivered as intended. Using human factors methods, a radiotherapy treatment delivery process was evaluated, and a redesign was undertaken to determine the effect on system safety. Material and methods: An ethnographic field study and workflow analysis was conducted to identify human factors issues of the treatment delivery process. To address specific issues, components of the user interface were redesigned through a user-centered approach. Sixteen radiation therapy students were then used to experimentally evaluate the redesigned system through a usability test to determine the effectiveness in mitigating use errors. Results: According to findings from the usability test, the redesigned system successfully reduced the error rates of two common errors (p < .04 and p < .01). It also improved the mean task completion time by 5.5% (p < .02) and achieved a higher level of user satisfaction. Conclusions: These findings demonstrated the importance and benefits of applying human factors methods in the design of radiation therapy systems. Many other opportunities still exist to improve patient safety in this area using human factors methods.

  9. On applying safety archetypes to the Fukushima accident to identify nonlinear influencing factors

    Energy Technology Data Exchange (ETDEWEB)

    Sousa, A.L., E-mail: alsousa@cnen.gov.br [Comissao Nacional de Energia Nuclear (CNEN), Rio de Janeiro, RJ (Brazil); Ribeiro, A.C.O., E-mail: antonio.ribeiro@bayer.com [Bayer Crop Science Brasil S.A., Belford Roxo, RJ (Brazil); Duarte, J.P., E-mail: julianapduarte@poli.ufrj.br [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Escola Politecnica. Departamento de Engenharia Nuclear; Frutuoso e Melo, P.F., E-mail: frutuoso@nuclear.ufrj.br [Coordenacao dos Programas de Pos-Graduacao em Engenharia (COOPE/UFRJ), RJ (Brazil). Programa de Engenharia Nuclear

    2013-07-01

    Nuclear power plants are typically characterized as high reliable organizations. In other words, they are organizations defined as relatively error free over a long period of time. Another relevant characteristic of the nuclear industry is that safety efforts are credited to design. However, major accidents, like the Fukushima accident, have shown that new tools are needed to identify latent deficiencies and help improve their safety level. Safety archetypes proposed elsewhere (e. g., safety issues stalled in the face of technological advances and eroding safety) consonant with International Atomic Energy Agency (IAEA) efforts are used to examine different aspects of accidents in a systemic perspective of the interaction between individuals, technology and organizational factors. Safety archetypes can help consider nonlinear interactions. Effects are rarely proportional to causes and what happens locally in a system (near the current operating point) often does not apply to distant regions (other system states), so that one has to consider the so-called nonlinear interactions. This is the case, for instance, with human probability failure estimates and safety level identification. In this paper, we discuss the Fukushima accident in order to show how archetypes can highlight nonlinear interactions of factors that influenced it and how to maintain safety levels in order to prevent other accidents. The initial evaluation of the set of archetypes suggested in the literature showed that at least four of them are applicable to the Fukushima accident, as is inferred from official reports on the accident. These are: complacency (that is, the effects of complacency on safety), decreased safety awareness, fixing on symptoms and not the real causes and eroding safety. (author)

  10. On applying safety archetypes to the Fukushima accident to identify nonlinear influencing factors

    International Nuclear Information System (INIS)

    Nuclear power plants are typically characterized as high reliable organizations. In other words, they are organizations defined as relatively error free over a long period of time. Another relevant characteristic of the nuclear industry is that safety efforts are credited to design. However, major accidents, like the Fukushima accident, have shown that new tools are needed to identify latent deficiencies and help improve their safety level. Safety archetypes proposed elsewhere (e. g., safety issues stalled in the face of technological advances and eroding safety) consonant with International Atomic Energy Agency (IAEA) efforts are used to examine different aspects of accidents in a systemic perspective of the interaction between individuals, technology and organizational factors. Safety archetypes can help consider nonlinear interactions. Effects are rarely proportional to causes and what happens locally in a system (near the current operating point) often does not apply to distant regions (other system states), so that one has to consider the so-called nonlinear interactions. This is the case, for instance, with human probability failure estimates and safety level identification. In this paper, we discuss the Fukushima accident in order to show how archetypes can highlight nonlinear interactions of factors that influenced it and how to maintain safety levels in order to prevent other accidents. The initial evaluation of the set of archetypes suggested in the literature showed that at least four of them are applicable to the Fukushima accident, as is inferred from official reports on the accident. These are: complacency (that is, the effects of complacency on safety), decreased safety awareness, fixing on symptoms and not the real causes and eroding safety. (author)

  11. Radiation safety at the university of Rochester's laser fusion research facility

    International Nuclear Information System (INIS)

    The University of Rochester operates the laboratory for Laser Energetics (LLE) which conducts research in the area of inertial confinement fusion. Unique radiological concerns include working with large quantities (up to 370 TBq) of tritium, decontamination of tritium-contaminated components, high neutron fluxes (up to 3 x 1015 neutrons per shot) and neutron activation of target chamber materials, and minimizing environmental releases of tritium from the tritium fill station and the target chamber. Some of these concerns will be heightened in 2000 when research commences using cryogenic targets, each containing up to 28 GBq of tritium. In addition, all 'routine' radiological concerns remain. These problems were addressed through a series of engineered and administrative controls, chiefly developed by LLE staff. The result is a high-quality radiation safety program with low radiation exposure to personnel, low environmental releases, and constant awareness of radiological concerns. Specific measures taken include: 1. Use of specially engineered containment systems to minimize the potential for leakage while filling tritium 'balloons' 2. Use of uranium getters, each capable of holding the entire tritium inventory 3. Development of new tritium scavenging and effluent monitoring systems to minimize tritium release to the environment 4. Modifications to these systems to allow the use of high-activity cryogenic targets beginning in the year 2000 5. Personnel monitoring systems to carefully track personnel exposure to neutron radiation from neutron-producing shots, gamma exposure from neutron-activated components, and possible uptake of tritium during operations 6. Development of a comprehensive training program that covers all aspects of radiation safety as applied to this particular facility 7. Development of detailed Standard Operating Procedures for all aspects of LLE operations This paper describes the systems in use to achieve an exemplary record of radiation safety

  12. System of the radiation safety provisions during application of the ionizing radiation sources in the radiation technology

    International Nuclear Information System (INIS)

    It is noted that in the connection with expansion of the scale of the ionozing radiation sources application in the radiation technology, contingent of persons engaged in operations connected with ionizing radiations application is continiously growing. In this connection, necessity appears to ensure safety of the personnel and population and also to provide radioisotopic purity of the items produced. One of the indices of the radiation safety system is the personnel irradiation level. It is shown that in the exploitation of such a powerful radiation technique as the gamma-irradiation installations and electron accelerators, the doses of the personnel irradiation do not exceed 1.5 ber/year. The personnel irradiation levels in performing gamma-flaw detection in the stationary conditions equals to 0.3 - 0.5 ber/year, and during application of the portable flaw-detectors equals to 2 - 3 ber/year. The radioisotope radiation sources produced nowdays, practically exclude possibilities for radioactive contaminations of the environment and the products subject to irradiations. It is noted that in the USSR some sanitary-legislative and metodological documents have been developed, regulating projecting, constructing and exploitation of different types of radiation technique. Such documents (ESP-gamma, ESP-electron) have been developed and continue to be developed for the CMEA member-states. It is noted that carrying out the complex technical and organizational arrangements aimed at the securing radiation protection during the ionizing radiation sources application has permitted to improve working conditions and to lower considerably the personnel irradiation levels (up to 1.5 -2 times in the period from 1960 to 1975)

  13. Application of SSNTD for maintenance of radiation and nuclear safety of the Sarcophagus

    International Nuclear Information System (INIS)

    Object 'Shelter' (known world-wide as the Sarcophagus) is a source of very high radiological and nuclear hazard. Transfer of the Sarcophagus into an ecologically safe site is a task not only for Ukraine but also for the world community. A composite approach to maintenance of radiation and nuclear safety of the Sarcophagus applying spectrometric methods using solid state nuclear track detectors (SSNTD) is suggested in this paper. The aspects are: (1) monitoring of transuranium element inhalation intake to a human body of nuclear workers; (2) neutron flux evaluation in some premises of the Sarcophagus; (3) fuel hot particle detection in air of working zones; (4) radon and thoron simultaneous measurements

  14. The crime prevention and safety system for the radiation handling facilities using network image server

    International Nuclear Information System (INIS)

    A crime prevention and safety system using the image was built for the radiation handling facilities. The system employs an internet network. A specific surveillance monitor would be unnecessary in those facilities where the internet is prepared. The following conclusions were derived as a result of applying this system. (1) Because images were preserved by the digital style, those at the time of accident could be searched easily. (2) The system combined with sensor light and sign deterrent has high ability for warning. (3) A real-time surveillance in the night time can be easily realized. (author)

  15. Proceedings of the 8th annual meeting of Japanese Society of Radiation Safety Management 2009 Nagasaki

    International Nuclear Information System (INIS)

    This is the program and the proceedings of the 8th annual meeting of Japanese Society of Radiation Safety Management held from December 2nd through the 4th of 2009. The sessions held were: (1) Exposure Reduction and Dose Level Evaluation/ Shielding Design 1 and 2, (2) Standardization Activities regarding Radiation Protection, (3) Emission and Drainage Control/Contamination Inspection/Waste Handling and Clearance, (4) Radiation Measurement 1 and 2, (5) Education Method/Radiation and Utilization of Radioactive Isotopes, and (6) Safety Control of Radiation Source. Two keynote lectures held were: (1) 'Acknowledgment of Radiation Risk' and 'Trend in Radiation Safety Administration'. The topic of one international symposium held was 'International Strategy for Radiation Risk Control'. One special session held was 'Toward Standardization of Safety Handling Law of Radioactive Iodine' by the ad hoc committee. Also, 47 poster sessions were held. (S.K.)

  16. Current status and development perspectives of state nuclear and radiation safety regulation in the Russian Federation

    International Nuclear Information System (INIS)

    transition of the safe use of atomic energy regulation to the regulatory framework where technical regulations will be applied in the Russian Federation], it is necessary to complete very soon the development of federal rules and regulations in the nuclear field (including regulations on the production and use of MOX fuel) and concentrate efforts on producing within stringent time limits a number of technical regulations, including the generic technical regulation 'On Nuclear and Radiation Safety'. It will be also necessary to introduce relevant changes to some federal laws and legal acts of the Russian Federation. Substantial assistance in this respect is rendered by experts of the G-8 Nuclear Safety and Security Working Group, EC regulatory bodies and international organizations (IAEA, OECD/NEA). b) According to the 'Fundamentals of State Policy Pertaining to Ensuring Nuclear and Radiation Safety in the Russian Federation for the Period up to Year 2010 and Further Perspective', approved by the President of the Russian Federation on 4 December 2004, it is necessary to solve a number of significant tasks aimed at enhancing the state safety regulation of atomic energy use, including the improvement of the licensing and oversight effectiveness. c) It has become imminent to develop an emergency response concept in the system of Gosatomnadzor of Russia and the concept of state regulation of nuclear and radiation safety for facilities produced by peaceful nuclear explosion

  17. Principles and practice of radiation safety and protection in the application of nuclear techniques in water resource development and management

    International Nuclear Information System (INIS)

    Nigeria, as is the case with many other countries of the world, is facing a problem with water supply and there is therefore a need to diversify the technology employed in the search for and management of water resources. Nuclear technology, including the use of isotopes (natural and artificial) has been found to be able to play a vital role in this search. The application of this technology is wide and varied in the types of radiation sources that can be applied as well as the type of problems that need to be solved. for example, in the search for groundwater, environmental isotopes such as 3H and 14C may be applied while NAA and XRF may become useful in the monitoring of fresh water quality. Neutron moisture probes and gamma-gamma well logging are sources of radiation that may be employed in the management of water sources for proper irrigation just as active and stable isotopes may be applied as tracers for the detection of leaks in pipes for domestic water. Because of this diversity, the radiation safety and protection problems associated with the application of nuclear technology in water resource development and management will depend on the particular condition of use. In this paper the aspects of radiation safety and the protection of human health and the environment from the detrimental effects of ionising radiation will be considered. The presentation will underscore the importance of an understanding of the nature and properties of ionising radiation and the associated hazards, familiarise participants with terminology used in radiation protection, highlight the relevant legislation in radiation safety and protection, give the basic principles of radiation protection with an emphasis on the importance of keeping doses as low as reasonably achievable (ALARA)

  18. The German radiation protection infrastructure with emphasis on the safety of radiation sources and radioactive material

    International Nuclear Information System (INIS)

    Through federalism, Germany has a complicated but well functioning regulatory infrastructure for the safety and security of radiation sources based on a clear legal system. The main features of this infrastructure include the legal framework, the authorization and control systems and the responsibilities of different regulatory authorities, which this paper will describe. In connection with the legal framework, the provisions to control the import/export of radiation sources are briefly discussed and some information is given about the registries of sources. Protection and response measures related to unusual events concerning radiation sources, including orphan sources, will be cited. Also, the education and training of different target groups and punitive actions are touched upon in the paper. Conclusions will be drawn for future national and international actions. (author)

  19. DOE contractor radiation safety CBT [computer based training] course

    International Nuclear Information System (INIS)

    Westinghouse Hanford Company developed a generic Radiation Worker safety CBT course for Department of Energy contractors. Task analysis concentrated on actual and potential tasks and included visits to fourteen different contractor sites. Team Design and Prototype verification formed the major portion of the development phase. Lesson entry was accomplished using the WISE author system from WICAT Systems, Inc. The course features graded task simulations for both Pretest and Final; fourteen Topics in five Lessons, each Topic keyed to ''Critical Acts'' and Questions in the Pretest and Final; Automatic, Intensive, and Manual modes of instruction available for each Lesson; Practical Problems and Sample Questions associated with each Topic; and provisions for local configuration in several areas. The course is deliverable on IBM PC compatible equipment. 2 refs

  20. Standards for radiation protection instrumentation: design of safety standards and testing procedures

    International Nuclear Information System (INIS)

    This paper describes by means of examples the role of safety standards for radiation protection and the testing and qualification procedures. The development and qualification of radiation protection instrumentation is a significant part of the work of TUV NORD SysTec, an independent expert organisation in Germany. The German Nuclear Safety Standards Commission (KTA) establishes regulations in the field of nuclear safety. The examples presented may be of importance for governments and nuclear safety authorities, for nuclear operators and for manufacturers worldwide. They demonstrate the advantage of standards in the design of radiation protection instrumentation for new power plants, in the upgrade of existing instrumentation to nuclear safety standards or in the application of safety standards to newly developed equipment. Furthermore, they show how authorities may proceed when safety standards for radiation protection instrumentation are not yet established or require actualization. (author)

  1. Report for spreading culture of medical radiation safety in Korea: Mainly the activities of the Korean alliance for radiation safety and culture in medicine (KARSM)

    International Nuclear Information System (INIS)

    There are many concerns about radiation exposure in Korea after Fukushima Nuclear Plant Accident on 2011 in Japan. As some isotope materials are detected in Korea, people get worried about the radioactive material. In addition, the mass media create an air of anxiety that jump on the people’s fear instead of scientific approach. Therefore, for curbing this flow, health, medical institute from the world provide a variety of information about medical radiation safety and hold the campaign which can give people the image that medical radiation is safe. At this, the Korean Food and Drug Administration(KFDA) suggested that make the alliance of medical radiation safety and culture on August, 2011. Seven societies and institutions related medical radiation started to research and advertise the culture of medical radiation safety in Korea. In this report, mainly introduce the activities of the Korean Alliance for Radiation Safety and Culture in Medicine(KARSM) for spreading culture of medical radiation safety from 2011 to 2012

  2. Resolution No. 6/04 Regulations for the recognition of the competence of services for radiation safety

    International Nuclear Information System (INIS)

    This Regulation aims to establish the rules that govern the process to recognize the competence of services for radiation safety, they are no authorized under Resolution No. 25, dated May 29, 1998, the Ministry of Science, Technology and Environment, Authorization Regulation Practices Associated with Use of Ionizing Radiation, in order to ensure that services that are related to the practices associated with the use of nuclear energy, with the requisite expertise. This Regulation applies to all natural or legal persons performing or purporting to perform service activities for radiation safety in the country. These services are: 2.1. Individual Radiation Monitoring Services, in one or more of the following areas: 2.1.1. Control of external exposure a) Electromagnetic Radiation. b) beta radiation. c) neutron radiation. 2.1.2. Control of internal contamination a) Determination of internal contamination by direct measurements. b) Determination of internal contamination by analysis of biological samples. c) Monitoring of air, personal and total. 2.2. Service environmental measurements and samples. 2.3. Service control radioactive contamination in foods. 2.4. Service measuring dose rate, surface contamination and air pollution. 2.5. Calibration and verification of equipment. 2.6. Service courses in radio-logical protection. 2.7. Consultancy services in radiation protection. 2.8. Service control radioactive contamination in scrap. 2.9. Service quality control equipment that is used in the practices associated with the use of ionizing radiation. 2.10. Any other service in the field of radiation safety in scope and interest of end-National Center for Nuclear Safety.

  3. Employing ionizing radiation to enhance food safety. A review

    International Nuclear Information System (INIS)

    Food irradiation is employed to ensure food safety or food sterility, extend its shelf-life and reduce the losses due to sprouting, ripening or pests. In the Czech Republic mainly spices, mixed spices and dried vegetables are exposed to ionizing radiation. The leading suppliers of irradiated foodstuffs in Europe are Belgium, France and the Netherlands. In the USA, food irradiation is more common and there are also attempts to enforce irradiation not only for food safety, but also for technological purposes. Even though irradiation is a prospective technology, its application causes physico-chemical changes that may affect nutritional adequacy and sensory characteristics of irradiated food. In this paper, the chemical changes of basic food components (proteins, saccharides, fats) are reviewed. Some chemical changes lead to the formation of radiolytic products whose risks are still subject of scientific research. It is expected that the main use of gamma irradiation will be the treatment of diets for patients suffering from different disorders of the immune system, allergic patients or for the army and space flights. Irradiation may be a critical control point in the production of some types of foodstuffs

  4. Main principles of low-power HTGR radiation safety ensurance

    International Nuclear Information System (INIS)

    A low-power reactor plant VGM is being developed as a pilot-commercial plant and has to be a prototype for the future nuclear power plants for different energy-process purposes and must show HTGR properties ensuring their absolute safety under all operating conditions, including emergency ones. HTGR is characterized by the passive inherent safety means availability, which are not dependent on nuclear power plant personnel actions. Realization of these eliminates HTGR harmful radiation and ecological influence on population and nature. First of all to such means and properties we refer to: a great range between operating temperatures and material and structure damage temperatures; the qualities of high-temperature fuel used, the damage of which rises under the temperatures above 1600 deg. C are of particular importance; high thermal response time due to the high material and structure heat capacity, and low core energy intensity; a possibility of ensuring a reactivity negative temperature coefficient all over the temperature range; one-phase coolant and its chemical inertia

  5. Radiation Safety Professional Certification Process in a Multi-Disciplinary Association

    International Nuclear Information System (INIS)

    There is no one set of criteria that defines the radiation safety professional in Canada. The many varied positions, from university and medical to industry and mining, define different qualifications to manage radiation safety programs. The national regulatory body has to assess many different qualifications when determining if an individual is acceptable to be approved for the role of radiation safety officer under any given licence. Some professional organizations specify education requirements and work experience as a prerequisite to certification. The education component specifies a degree of some type but does not identify specific courses or competencies within that degree. This could result in individuals with varying levels of radiation safety experience and training. The Canadian Radiation Protection Association (CRPA), responding to a need identified by the membership of the association, has initiated a process where the varying levels of knowledge of radiation safety can be addressed for radiation safety professionals. By identifying a core level set of radiation safety competencies, the basic level of radiation safety officer for smaller organizations can be met. By adding specialty areas, education can be pursued to define the more complex needs of larger organizations. This competency based process meets the needs of licensees who do not require highly trained health physicists in order to meet the licensing requirements and at the same time provides a stepping stone for those who wish to pursue a more specialized health physics option. (Author) 8 refs

  6. Industrial Safety and Applied Health Physics Division annual report for 1981

    International Nuclear Information System (INIS)

    Activities over the past year are summarized for the Health Physics Department, the Environmental Management Program, and the Safety Department. The Health Physics Department conducts radiation and safety surveys, provides personnel monitoring services for both external and internal radiation, and procures, services, and calibrates appropriate portable and stationary health physics instruments. It was determined that the maximum whole-body dose sustained by an employee was about 3.8 rems, which is 76% of the applicable standard of 5 rems. The greatest cumulative dose to the skin of the whole body received by an employee during 1981 was about 5.9 rems, or 39% of the applicable standard of 15 rems. Atmospheric iodine sampled by the Department of Environmental Management at the perimeter stations averged 0.13E to 14 μCi/cc during 1981. This average represents 131I released to uncontrolled areas. All air samples taken had values below the allowable standards. The concentrations of 90Sr in milk from both the immediate and remote environs of ORNL are also within FRC range I. The average value of 1.5 E to 9 μCi/mL represents 0.5% of the CG/sub w/ for drinking water applicable to individuals in the general population. The Safety Department reported that the continuing emphasis on safety during CY 1981 resulted in significant improvements in the ORNL safety program: safety performance was better than all CY 1981 on-the-job injury and illness goals. Through December 31, 1981, the Laboratory had worked 600 days and accumulated 14,015,826 exposure-hours since the last lost-work-day case

  7. Safety of radiation sources and security of radioactive materials. Contributed papers

    International Nuclear Information System (INIS)

    The International Atomic Energy Agency (IAEA) in co-operation with the European Commission (EC), International Criminal Police Organization (INTERPOL) and the World Customs Organization (WCO) organized an International Conference on the Safety of Radiation Sources and the Security of Radioactive Materials, in Dijon, France, from 14 to 18 September 1998. The Government of France hosted this Conference through the Commissariat a l'energie atomique, Direction des applications militaires (CEA/DAM). This TECDOC contains the contributed papers dealing with the topics of this Conference which were accepted by the Conference Programme Committee for presentation. The papers written in one of the two working languages of the Conference, English or French are presented here each by a separate abstract. Ten technical sessions covered the following subjects: the regulatory control of radiation sources, including systems for notification, authorization and inspection; safety assessment techniques applied to radiation sources and design and technological measures including defense in depth and good engineering practice; managerial measures, including safety culture, human factors, quality assurance, qualified experts, training and education; learning from operational experience; international co-operation, including reporting systems and databases; verification of compliance, monitoring of compliance and assessment of the effectiveness of national programmes for the safety of sources; measures to prevent breaches in the security of radioactive materials, experience with criminal acts involving radioactive materials; detection and identification technologies for illicitly trafficked radioactive materials; response to detected cases and seized radioactive materials, strengthening of the awareness, training and exchange of information. The IAEA plans to issue the proceedings of this Conference containing the invited presentations, rapporteurs and Chairpersons overviews and summaries

  8. Romanian experience on safety and security of radiation sources

    International Nuclear Information System (INIS)

    Romania has established the first administrative structure for controlling the deployment of the nuclear activities in 1961 and the first Romanian nuclear law was published in 1974. In the present, it is in force the Law no. 111, published in 1996 and republished in 2003. Moreover, there are available facilities and services to the persons authorized to manage radioactive sources. The regulation for safety and security of radioactive sources was amended two times in order to implement the international recommendations for setting up the national system for accounting and control of radiation sources and to coordinate the recovery activities. As part of national control programme, the national inventory of sources and devices is updated permanently, when issuing a new authorization, when modifying an existing one, or when renewing an authorization system and records in the database. The government responsibility for the orphan sources is stated in the law on radioactive waste management and decommissioning fund. There is a protocol between CNCAN, Ministry of Internal and Ministry of Health and Family regarding the co-operation in the case of finding orphan sources. When a radiation source is spent, it becomes radioactive waste that has to be disposed off properly. Depending on the case, the holder of a spent source has the possibility either to return the radioactive source to its manufacturer for regeneration or to transfer it to the Radioactive Waste Treatment Facility. (author)

  9. An investigation into the actual condition of radiation safety control

    International Nuclear Information System (INIS)

    The result of investigation on the real condition of radiation safety control is reported with some considerations. The investigation was made in April, 1975, by means of questionnaires to 418 companies, and the responses were obtained from 126 companies, i.e. 11 research laboratories, 98 manufacturing factories, and 17 inspection facilities. The average integrated dose in the inspection facilities was 0.91 rem/year, the most among three. The exposure dose in most of the research laboratories and manufacturing factories investigated was within the limit of 0.5 rem/year, and that in the inspection facilities was distributed over from the background level to 5 rem/year. The ratios of the workers engaged in radiation operation and the workers possessing the licences related to non-destructive examination to all employees were investigated, but they were not at satisfactory level. Regarding the abandonment of radioactive isotopes, 63.5% of the companies answered deliver the radioactive isotopes to be abandoned to Japan Isotope Association, and 25.7% let equipment makers to take them back. As for the education and training of operators for the safe treatment of radioactive substances and the prevention of accidents, most of the companies answered gave the education once or twice a year, and to those who just entered the companies, but more substantial education in desirable. (Nishino, S.)

  10. Implementation of ANSI 13.36 radiation safety training for workers

    International Nuclear Information System (INIS)

    In 1999, new standard, ANSI 13.36 'Radiation Safety Training for Workers,' was completed. The standard is unique in that it emphasizes establishing a training program and performance-based training, rather than simply prescribing objectives. The standard includes a comprehensive list of topics to be addressed, as applicable, and also addresses basic criteria, including instructor qualifications. The standard is based on input from a wide array of regulatory agencies, universities, national laboratories, and nuclear power entities. The standard allows for a graded approach to the development and implementation of the training program. The working group that developed the new standard was reluctant to establish a broad program of specific course objectives because of the diversity of radiation workers and because of a concern that knowledge-based training might be misapplied. In conformance with performance-based training, the working group felt that the length of training should not be arbitrarily prescribed, but derived from the training system development and process. Similarly, passing scores should not be arbitrarily established, but based on specified goals and the characteristics of test questions. The standard shall apply to radiation workers likely to receive in a year an occupational whole-body dose in excess of 100 mrem, 2% of any applicable dose limit, or whose dose could be significant if the person did not receive training. 'Likely to receive' includes evaluation of normal and abnormal situations, but not accidents or emergencies. The standard should apply to radiation workers who operate radiation-generating devices or handle radioactive materials whose dose is likely to be less than 100 mrem per year or 2% of any applicable annual dose limit. It should also apply to individuals whose duties may occasionally bring them into areas where radiation exposures could occur and where it is possible that an occupational dose in excess of 100 mrem per year

  11. Radiation safety aspects in CA-thyroid treatment

    International Nuclear Information System (INIS)

    The isolation room in hospital at the All India Institute of Medical Sciences (AIIMS), New Delhi (India) is located on the 6th floor of the ward block with two beds. Effluent from the isolation room flows down to ground floor through an independent ducting line and then directed to the delay tank system through manholes. Routine radiation survey around the isolation room, along the plumbing line from 6th floor to the ground level, along the manholes and around the fencing of the storage delay tank is being done. Measurements in and around the isolation rooms are done daily whereas other measurements are done at least once a week normally on the day of maximum discharge of radioactivity in the effluent. The average radiation dose levels near the patient bed in general ward on 6th floor which is in front of the isolation room is 0.3 to 0.35 μSv/h which is slightly higher than the background level (0.2 μSv/h). Dose levels along the plumbing line from 6th to 1st floor is around 0.6 μSv/h at the sites accessible to public. Radiation level in manhole number 1 to 5 varies from 3 to 0.9 μSv/h whereas manholes from 6 to 10 show the dose rate from 0.5 to 0.4 μSv/h. The radiation dose rate around the fence remains between 0.2-0.3 μSv/h. There is no habitation above manholes 1 to 5 nor that area is accessible to public. There is free passage above manholes 6-8 and again there is no habitation near manhole 9 and 10. Measurements show that the activity release from delay tank and its dilution in the main sewer is within tolerance limits. Mandatory routine measurements have been helpful to maintain our confidence level on radiation safety standards at our centre. (author)

  12. Proceedings of the 7th annual meeting of Japanese Society of Radiation Safety Management 2008 Kanazawa

    International Nuclear Information System (INIS)

    This is the program and the proceedings of the 7th annual meeting of Japanese Society of Radiation Safety Management held from December 3rd through the 5th of 2008. The sessions held were: (1) Software, (2) Radiation Education 1 and 2, (3) Radiation Measurement 1 to 3, (4) Radiation Safety Control, (5) Contamination Control, and (6) Exposed Dose and Dose Level Evaluation. Two special sessions held were: (1) 'Handmade Software for Radiation Safety Control' and (2) 'Learning Radiation Safety Control from Latest Accidents'. 3 keynote lectures were held. 2 invited lectures by the researchers from the United States and Russia were also held. Also, the topic of one panel discussion was 'Goals of Academic Societies related to Radiation Control'. In addition, 2 luncheon seminars were held. (S.K.)

  13. Radiation processing of leafy vegetables to ensure their microbial safety

    International Nuclear Information System (INIS)

    Leafy vegetables which are consumed in raw form such as spinach, coriander and mint were found to be heavily burdened with microbial load including presumptive coliform, an indicator of pathogenic contaminations. Total aerobic plate counts in fresh spinach, coriander and mint samples collected from different location of Mumbai and nearby cities were found to be in the order of ∼ 107 to ∼ 108 CFU/g. In these samples yeast and mould count was in the order of ∼105 CFU/g and presumptive coliform in the order of ∼ 104 to ∼105 CFU/g. As per USFDA coliform load in the food commodity should be nil. The finding thus indicates that these fresh vegetables are not safe for raw consumption. Hence there is utmost need of process which can ensure the safety by reducing their microbial load below permissible level (<104 CFU/gm) and coliform load to nil without affecting the appearance and quality of such produce. In this study gamma radiation was used for hygienization of leafy vegetables. The sample were first cleaned in potable water followed by sodium hypochlorite wash (200 ppm for 20 min), air dried, packed in styrofoam based tray, wrapped with cling film and radiation processed at 1 to 2.5 kGy and stored at 4 and 10℃ . Post irradiation microbiological analysis of radiation processed samples was carried out at in 2 kGy irradiated samples total plate count was below ∼103 CFU/g and presumptive coliform count was below detectable level. Yeast and mould count in these samples also reduced to below ∼ 103 CFU/g. Based on the study the following combination treatment can be given to raw leafy vegetables, washing with potable water (5 min) → sodium hypochlorite (200 ppm 20 min) wash → Air drying → Packaging in styrofoam based tray and wrapping with cling film → Irradiation at 2 kGy → storage at 4℃ . Besides ensuring safety the treatment also resulted in increased shelf life extension of the commodities up to 20 days. (author)

  14. The Safety Assessment of OPR-1000 for Station Blackout Applying Combined Deterministic and Probabilistic Procedure

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Dong Gu; Ahn, Seung-Hoon; Cho, Dae-Hyung [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of)

    2015-05-15

    This is termed station blackout (SBO). However, it does not generally include the loss of available AC power to safety buses fed by station batteries through inverters or by alternate AC sources. Historically, risk analysis results have indicated that SBO was a significant contributor to overall core damage frequency. In this study, the safety assessment of OPR-1000 nuclear power plant for SBO accident, which is a typical beyond design basis accident and important contributor to overall plant risk, is performed by applying the combined deterministic and probabilistic procedure (CDPP). In addition, discussions are made for reevaluation of SBO risk at OPR-1000 by eliminating excessive conservatism in existing PSA. The safety assessment of OPR-1000 for SBO accident, which is a typical BDBA and significant contributor to overall plant risk, was performed by applying the combined deterministic and probabilistic procedure. However, the reference analysis showed that the CDF and CCDP did not meet the acceptable risk, and it was confirmed that the SBO risk should be reevaluated. By estimating the offsite power restoration time appropriately, the SBO risk was reevaluated, and it was finally confirmed that current OPR-1000 system lies in the acceptable risk against the SBO. In addition, it was demonstrated that the proposed CDPP is applicable to safety assessment of BDBAs in nuclear power plants without significant erosion of the safety margin.

  15. Propagator description of radiation transport, applied to lighting discharges

    Energy Technology Data Exchange (ETDEWEB)

    Wichaidit, C; Hitchon, W N G [Department of Electrical and Computer Engineering, University of Wisconsin, 1415 Engineering Drive, Madison, WI 53706 (United States); Lawler, J E [Department of Physics, University of Wisconsin, 1150 University Avenue, Madison, WI 53706 (United States); Lister, G G, E-mail: wichaidi@gmail.co [OSRAM SYLVANIA Inc., 71 Cherry Hill Dr., Beverly, MA 01915 (United States)

    2009-01-21

    Radiation transport calculations based on the use of propagators (or Green's functions) are presented for the Hg resonance at 254 nm in the complete frequency redistribution regime. This resonance radiation plays a dominant role in the power balance of fluorescent lamps. Recent studies have suggested that transport modes above the fundamental are important in some lamp discharges. The Holstein transmittance function T(R) used to evaluate the probabilities is generated by numerical integration across the line profile at low and medium opacity. Complete hyperfine and isotopic patterns with a Voigt profile for each component are used in the model. A simple analytic expression for T(R) from a pure Lorentzian profile is used at high opacity. The calculation includes radial cataphoresis (a radial-dependent ground state Hg density). Evaluation of propagator matrix elements-probabilities of photons travelling from one cell to another-is done by integrating T(R) with the source points distributed radially across the source cell in cylindrical geometry. A radiation transport matrix or propagator function obtained from direct integration is compared with very detailed Monte Carlo simulations of radiation transport in cylindrical geometry. The probability matrix is then used in a self-consistent fluorescent lamp discharge model. Details of the numerical model are discussed. The trapped decay rates at different discharge currents and temperatures obtained by fluorescent lamp discharge simulations are compared with those calculated from an analytic formula.

  16. Communication and Public Information in Development and Maintenance of Radiation Safety

    International Nuclear Information System (INIS)

    The natural source of Non-Ionizing radiation (NIR) in our environment is the sun. Artificial NIR is widely used in medical and industrial applications and also in households. The most important medical NIR applications are phototherapy, surgical lasers and magnetic resonance imaging. In industry NIR is applied in radio frequency heaters and laser printing. NIR has applications even in entertainment and cosmetics: High power lasers are used in light shows and sun beds emit artificial ultraviolet radiation (UVR) for tanning. From the safety point of view the field is indeed very wide from harmless and common items to devices which can cause acute health hazards. The use of non-ionizing radiation needs neither any safety licence nor other kind of authorisation. The users of NIR devices varies from professionals in health care or lighting technology to those who only use them as a sideline in their main work like beauticians. Also laypersons use various NIR devices like microwave ovens, laser pointers and mobile phones. Many NIR devices are used in applications where the user does not have the knowledge to understand the health risks associated with the device. Thus the only way is to educate the users by communication and public information. (orig.)

  17. Regulatory aspects of the radiation safety in the medical practice

    International Nuclear Information System (INIS)

    The biological effects of the ionizing radiations can be stochastic and non-stochastic. These latter show a dose-effect relation with defined level of threshold dose. The stochastic effects lack of the threshold dose and the possibility of their occurrence is proportional to the received dose. The radiation protection objetive is to avoid the occurrence of the non-stochastic effects and to limit the probability of the stochastic effects, based on three principles: justification, dose limitation and optimization. All use of radiation source must be justified by real benefits; nevertheless, the risks are not limited, so dose limits to reduce them must be adopted. In the medical practice, both worker and patient expositions are considered. In case of patients, the concept of dose limits is not applied, but justification and optimization, are used. The Authorities of Radiological Inspection are: the National Atomic Energy Comission for the use of radioactive sources, and the Secretary of Health for X-ray equipments. Both organisms work in coordination since 1967 (M.E.L.)

  18. Proceedings of the Seminar on Environmental and Radiation Safety Aspect at Non-nuclear Industry

    International Nuclear Information System (INIS)

    The Seminar on Environmental and Radiation Safety Aspect at Non-nuclear Industry held on March 2003 in Jakarta. The purpose of this Seminar be able to information exchange among research workers in National Nuclear Energy Agency. The Seminar discussed about Science and Technology of Radiation Safety and Environment. There are 17 papers which have separated index. (PPIN)

  19. Radiation safety considerations and compliance within equine veterinary clinics: Results of an Australian survey

    International Nuclear Information System (INIS)

    Objective: To examine current knowledge and the level of compliance of radiation safety principles in equine veterinary clinics within Australia. Method: Surveys were sent to equine veterinary surgeons working in Australia. The survey was delivered both online and in hardcopy format; it comprised 49 questions, 15 of these directly related to radiation safety. The participants were asked about their current and previous use of radiation-producing equipment. Information regarding their level of knowledge and application of radiation safety principles and practice standards was collected and analysed. Results: The use of radiation-producing equipment was evident in 94% of responding clinics (a combination of X-ray, CT and/or Nuclear Medicine Cameras). Of those with radiation-producing equipment, 94% indicated that they hold a radiation licence, 78% had never completed a certified radiation safety course and 19% of participants did not use a personal radiation monitor. In 14% of cases, radiation safety manuals or protocols were not available within clinics. Conclusions: The study has shown that knowledge and application of guidelines as provided by the Code of Practice for Radiation Protection in Veterinary Medicine (2009) is poorly adhered to. The importance of compliance with regulatory requirements is pivotal in minimising occupational exposure to ionising radiation in veterinary medicine, thus there is a need for increased education and training in the area. - Highlights: • Application of the Code of Practice for Veterinary Medicine is poorly adhered to. • Majority of veterinary clinics had not completed certified radiation safety course. • One-fifth of participants did not use personal radiation monitoring. • Increased education and training in area of radiation safety and protection required to generate compliance in clinics

  20. A collaborative effort of medical and educational facilities for radiation safety training of nurses

    International Nuclear Information System (INIS)

    The proper understanding of radiation safety by nursing staffs in hospitals are essential not only for radiation protection of themselves against occupational radiation exposure but for quality nursing for patients who receive medical radiation exposure. The education program on radiation in nursing schools in Japan is, however, rather limited, and is insufficient for nurses to acquire basic knowledge of radiation safety and protection. Therefore, the radiation safety training of working nurses is quite important. A hospital-based training needs assignment of radiation technologists and radiologists as instructors, which may result in temporary shortage of these staffs for patients' services. Additionally, the equipments and facilities for radiation training in a hospital might not be satisfactory. In order to provide an effective education regarding radiation for working nurses, the radiation safety training course has been conducted for nurse of the university hospital by the collaboration of medical and educational staffs in Nagasaki University. This course was given for 6 hours in Radioisotope Research Center, a research and education facility for radiation workers using radioisotopes. The curriculum of this course included basics of radiation, effects of radiation on human health, procedures in clinical settings for radiation protection and practical training by using survey meters, which were mainly based on the radiation safety training for beginners according to the Japanese law concerning radiation safety with a modification to focus on medical radiation exposure. This course has been given to approximately 25 nurses in a time, and held 13 times in May 2000 through October 2003 for 317 nurse overall. The pre-instruction questionnaire revealed that 60% of nurses felt fears about radiation diagnosis or therapy, which reduced to less than 15% in the post-instruction surveillance. The course also motivated nurses to give an answer to patients' questions about

  1. Improving radiation worker safety at the Chernobyl Shelter

    International Nuclear Information System (INIS)

    The Shelter (i.e. 'sarcophagus') enclosing the remains of the Chernobyl Nuclear Power Plant Unit 4 that was destroyed in the April 1986 accident presents a unique radiological and nuclear safety challenge. The Chomobyl Shelter holds over 190 tons of irradiated nuclear fuel in the form of lava fuel containing masses and dust. Hazards include very high radiation, surface contamination and transient airborne radioactivity concentrations. A state-of-the-art radiation protection program is needed to support international efforts stabilize the Chornobyl Shelter, reduce the potential for major structural failure, minimize the consequences of a such an event, and develop a long-term strategy and study for its conversion into an environmentally safe site. This project consists of the first phase of efforts to transfer health physics technology necessary to support stabilization of the Chornobyl Shelter. Technical specifications for each major system and component were jointly developed by staff from the U.S. Department of Energy's Pacific Northwest National Laboratory and the Chornobyl Shelter. Major elements of this technology transfer include equipment for external dose control (electronic dosimeters, thermoluminescent dosimeter (TLD) system, portable radiation survey instruments, and area radiation monitors), internal dose control (whole body counter, bioassay system design and technical support), health physics training, and other radiological technical support. A work planning system that includes the capability to collect data such as radiological surveys, photographs, video clips, and other data, was developed from a system demonstrated at the U.S. Department of Energy's Hanford Site. An access control system similar to one used at several commercial nuclear facilities in the U.S. was converted for bilingual support (Russian and English). Technology for improving contamination control includes HEPA-ventilation and vacuum cleaner systems, semi-permanent and portable

  2. Basic Safety Standards for Radiation Protection - 1967 Edition

    International Nuclear Information System (INIS)

    This first revision of the Basic Safety Standards was approved by the IAEA Board of Governors in September 1965. It was prepared with the assistance of a panel of experts chaired by Prof. L. Bugnard, Director of the French Institut National d'Hygiene, and attended by representatives of several international organizations. Comments from Member States were considered and changes were introduced on the basis of recommendations made by the International Commission on Radiological Protection in 1966. The Director General of the IAEA has been authorized by the Board to apply the revised Standards to IAEA and IAEA-assisted operations. It has also been recommended that the national regulations of Member States should conform, as far as is practicable, to the revised Standards. (author)

  3. Evaluation of safety, an unavoidable requirement in the applications of ionizing radiations

    International Nuclear Information System (INIS)

    The safety assessments should be conducted as a means to evaluate compliance with safety requirements (and thus the application of fundamental safety principles) for all facilities and activities in order to determine the measures to be taken to ensure safety. It is an essential tool in decision making. For long time we have linked the safety assessment to nuclear facilities and not to all practices involving the use of ionizing radiation in daily life. However, the main purpose of the safety assessment is to determine if it has reached an appropriate level of safety for an installation or activity and if it has fulfilled the objectives of safety and basic safety criteria set by the designer, operating organization and the regulatory body under the protection and safety requirements set out in the International Basic safety Standards for Protection against Ionizing Radiation and for the Safety of Radiation Sources. This paper presents some criteria and personal experiences with the new international recommendations on this subject and its practical application in the region and demonstrates the importance of this requirement. Reflects the need to train personnel of the operator and the regulatory body in the proportional application of this requirement in practice with ionizing radiation

  4. Implementation of human factors activities for assuring nuclear and radiation safety

    International Nuclear Information System (INIS)

    Implementation of safety culture in the nuclear and radiation facilities should be achieved by introduction of organizational, educational, fitness for duty and recruitment measures focused to the safety goal. Adequate level of nuclear and radiation safety should be achieved by changes in working procedures, level of knowledge, the way of communication and the level of individual working availability. These changes demand modifications of workers' attitudes and facility's policy to the safety and these changes lead to the implementation of safety culture. (author). 3 refs

  5. Notification and authorization for the use of radiation sources (supplement to IAEA Safety Standards Series No. GS-G-1.5)

    International Nuclear Information System (INIS)

    The achievement and maintenance of a high level of safety in the use of radiation sources depend on there being a sound legal and governmental infrastructure, including a national regulatory body with well-defined responsibilities and functions. These responsibilities and functions include establishing and implementing a system for notification and authorization for control over radiation sources, including a system for review and assessment of applications for authorization. The Safety Requirements publication entitled Legal and Governmental Infrastructure for Nuclear, Radiation, Radioactive Waste and Transport Safety establishes the requirements for legal and governmental infrastructure. The term 'infrastructure' refers to the underlying structure of systems and organizations. This includes requirements concerning the establishment of a regulatory body for radiation sources and the responsibilities and functions assigned to it. The International Basic Safety Standards for Protection against Ionizing Radiation and for the Safety of Radiation Sources (the Basic Safety Standards or the BSS) establish basic requirements for protection against risks associated with exposure to ionizing radiation and for the safety of radiation sources. The application of the BSS is based on the presumption that national infrastructures are in place to enable governments to discharge their responsibilities to for radiation protection and safety. This TECDOC provides practical guidance on the process for dealing with applications for authorization and accepting notifications to regulatory bodies. Examples of guidelines that may be used by persons required to notify or apply for authorization and of the regulatory body's review and assessment procedures are provided in the Appendices. The TECDOC is oriented towards national regulatory infrastructures concerned with protection and safety for radiation sources used in medicine, industry, agriculture, research and education

  6. Australian Radiation Protection and Nuclear Safety Act 1998. Act No 133

    International Nuclear Information System (INIS)

    A set of legislation consisting of three Acts in the field of radiation protection and nuclear safety was passed by both Houses of Parliament on 10 December 1998 and was proclaimed on 5 February 1999. Act No. 133 - Australian Radiation Protection and Nuclear Safety Act, which is a framework Law, established the Australian Radiation Protection and Nuclear Safety Agency (ARPANSA) as the regulatory body for radiation protection and nuclear safety, in place of the Nuclear Safety Bureau. The Chief Executive Officer of ARPANSA, who is appointed by the Governor-General for a term of up to 5 years, is obliged to submit annual and quarterly reports to the Minister on the operations of the Chief Executive Officer, ARPANSA, the Council, the Radiation Health Committee and the Nuclear Safety Committee. The Council is a consultative body which examines issues relating to radiation protection and nuclear safety and advises the Chief Executive Officer on these issues as well as on the adoption of recommendations, policies and codes. The Radiation Health Committee and the Nuclear Safety Committee are to be established as advisory committees to the Chief Executive Officer or the Council. Both committees should draft national policies, codes and standards in their respective fields and review their effectiveness periodically. The second in this series of legislation, Act No. 134, Australian Radiation Protection and Nuclear Safety (License Charges) Act requires holders of both facility and source licenses to pay an annual charge, to be prescribed by the regulations. The third, Act No. 135 , Australian Radiation Protection and Nuclear Safety (Consequential Amendments) Act repeals those provisions of the 1987 Australian Nuclear Science and Technology Organisation Act which concern the Nuclear Safety Bureau, and the 1978 Environment Protection Act as a whole

  7. Australian Radiation Protection and Nuclear Safety Act 1998. Act No 133

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-11-01

    A set of legislation consisting of three Acts in the field of radiation protection and nuclear safety was passed by both Houses of Parliament on 10 December 1998 and was proclaimed on 5 February 1999. Act No. 133 - Australian Radiation Protection and Nuclear Safety Act, which is a framework Law, established the Australian Radiation Protection and Nuclear Safety Agency (ARPANSA) as the regulatory body for radiation protection and nuclear safety, in place of the Nuclear Safety Bureau. The Chief Executive Officer of ARPANSA, who is appointed by the Governor-General for a term of up to 5 years, is obliged to submit annual and quarterly reports to the Minister on the operations of the Chief Executive Officer, ARPANSA, the Council, the Radiation Health Committee and the Nuclear Safety Committee. The Council is a consultative body which examines issues relating to radiation protection and nuclear safety and advises the Chief Executive Officer on these issues as well as on the adoption of recommendations, policies and codes. The Radiation Health Committee and the Nuclear Safety Committee are to be established as advisory committees to the Chief Executive Officer or the Council. Both committees should draft national policies, codes and standards in their respective fields and review their effectiveness periodically. The second in this series of legislation, Act No. 134, Australian Radiation Protection and Nuclear Safety (License Charges) Act requires holders of both facility and source licenses to pay an annual charge, to be prescribed by the regulations. The third, Act No. 135 , Australian Radiation Protection and Nuclear Safety (Consequential Amendments) Act repeals those provisions of the 1987 Australian Nuclear Science and Technology Organisation Act which concern the Nuclear Safety Bureau, and the 1978 Environment Protection Act as a whole

  8. An overview of application and radiation safety aspects of linear accelerators in Brazilian industry

    International Nuclear Information System (INIS)

    This work presents a brief description of the situation of Brazilian Regulatory Authority about safety control on Industrial Linear Accelerators Installations. It shows the national regulatory infrastructure responsible for radiation safety inspections, the regulation infrastructure, the national inventory of industrial installations, the national system of inspection and enforcement and the national system for qualifying the radiation protection officer. Some results of regulatory safety inspections are also showed in this work. (author)

  9. An overview of applications and radiation safety aspects of linear accelerators in Brazilian industry

    International Nuclear Information System (INIS)

    This work presents a brief description of the situation of Brazilian Regulatory Authority about safety control on Industrial Linear Accelerators Installations. It shows the national regulatory infrastructure responsible for radiation safety inspections, the regulation infrastructure, the national inventory of industrial installations, the national system of inspection and enforcement and the national system for qualifying the radiation protection officer. Some results of regulatory safety inspections are also showed in this work. (author)

  10. Risk analysis methods: their importance for safety assessment of practices using radiation

    International Nuclear Information System (INIS)

    Radiation safety has been based for many years on verification of compliance with regulatory requirements, codes of practice and international standards, which can be considered prescriptive methods. Accident analyses have been published, lessons have been learned and safety assessments have incorporated the need to check whether a facility is ready to avoid accidents similar to the reported ones. These approaches can be also called 'reactive methods'. They have in common the fundamental limitation of being restricted to reported experience, but do not take into account other potential events, which were never published or never happened, i.e. latent risks. Moreover, they focus on accident sequences with major consequences and low probability but may not pay enough attention to other sequences leading to lower, but still significant consequences with higher probability. More proactive approaches are, therefore, needed, to assess risk in radiation facilities. They aim at identifying all potential equipment faults and human error, which can lead to predefined unwanted consequences and are based on the general risk equation: Risk = Probability of occurrence of an accidental sequence * magnitude of the consequences. In this work, a review is given of the experience obtained by the countries of the Ibero American Forum of Nuclear and Radiation Safety Regulatory Organizations, by applying proactive methods to radiotherapy practice. In particular, probabilistic safety assessment (PSA) used for external beam treatments with linear electron accelerators and two studies, on cobalt 60 therapy and brachytherapy using the risk-matrix approach are presented. The work has identified event sequences, their likelihood of occurrence, the consequences, the efficiency of interlocks and control checks and the global importance in terms of overall risk, to facilitate decision making and implementation of preventive measures. A comparison is presented of advantages and limitations of

  11. Neuro-oncology update: radiation safety and nursing care during interstitial brachytherapy

    International Nuclear Information System (INIS)

    Radiation control and safety are major considerations for nursing personnel during the care of patients receiving brachytherapy. Since the theory and practice of radiation applications are not part of the routine curriculum of nursing programs, the education of nurses and other health care professionals in radiation safety procedures is important. Regulatory agencies recommend that an annual safety course be given to all persons frequenting, using, or associated with patients containing radioactive materials. This article presents pertinent aspects of the principles and procedures of radiation safety, the role of personnel dose-monitoring devices, and the value of additional radiation control features, such as a lead cubicle, during interstitial brain implants. One institution's protocol and procedures for the care of high-intensity iridium-192 brain implants are discussed. Preoperative teaching guidelines and nursing interventions included in the protocol focus on radiation control principles

  12. Australian Radiation Protection and Nuclear Safety Act 1998. Guide to the Australian radiation protection and nuclear safety licensing framework. 1. ed.

    International Nuclear Information System (INIS)

    The purpose of this guide is to provide information to Commonwealth entities who may require a license under the Australian Radiation Protection and Nuclear Safety (ARPANS) Act 1998 to enable them to posses, have control of, use, operate or dispose of radiation sources. The guide describes to which agencies and what activities require licensing. It also addresses general administrative and legal matters such as appeal procedures, ongoing licensing requirements, monitoring and compliance. Applicants are advised to consult the Australian Radiation Protection and Nuclear Safety Act 1998 and accompanying Regulations when submitting applications

  13. Australian Radiation Protection and Nuclear Safety Act 1998. Guide to the Australian radiation protection and nuclear safety licensing framework; 1. ed

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    The purpose of this guide is to provide information to Commonwealth entities who may require a license under the Australian Radiation Protection and Nuclear Safety (ARPANS) Act 1998 to enable them to posses, have control of, use, operate or dispose of radiation sources. The guide describes to which agencies and what activities require licensing. It also addresses general administrative and legal matters such as appeal procedures, ongoing licensing requirements, monitoring and compliance. Applicants are advised to consult the Australian Radiation Protection and Nuclear Safety Act 1998 and accompanying Regulations when submitting applications

  14. Radiobiological basis for setting neutron radiation safety standards

    International Nuclear Information System (INIS)

    Present neutron standards, adopted more than 20 yr ago from a weak radiobiological data base, have been in doubt for a number of years and are currently under challenge. Moreover, recent dosimetric re-evaluations indicate that Hiroshima neutron doses may have been much lower than previously thought, suggesting that direct data for neutron-induced cancer in humans may in fact not be available. These recent developments make it urgent to determine the extent to which neutron cancer risk in man can be estimated from data that are available. Two approaches are proposed here that are anchored in particularly robust epidemiological and experimental data and appear most likely to provide reliable estimates of neutron cancer risk in man. The first approach uses gamma-ray dose-response relationships for human carcinogenesis, available from Nagasaki (Hiroshima data are also considered), together with highly characterized neutron and gamma-ray data for human cytogenetics. When tested against relevant experimental data, this approach either adequately predicts or somewhat overestimates neutron tumorigenesis (and mutagenesis) in animals. The second approach also uses the Nagasaki gamma-ray cancer data, but together with neutron RBEs from animal tumorigenesis studies. Both approaches give similar results and provide a basis for setting neutron radiation safety standards. They appear to be an improvement over previous approaches, including those that rely on highly uncertain maximum neutron RBEs and unnecessary extrapolations of gamma-ray data to very low doses. Results suggest that, at the presently accepted neutron dose limit of 0.5 rad/yr, the cancer mortality risk to radiation workers is not very different from accidental mortality risks to workers in various nonradiation occupations

  15. The nuclear safety and the radiation protection in France in 2003

    International Nuclear Information System (INIS)

    Nine points are reviewed: the law project relative to the safety and openness in nuclear field, the safety of the European PWR type Reactor, the priorities in radiation protection, inspection of radiation protection, the surveillance of patients exposure to ionizing radiations, the hot days and dryness of summer 2003 and the functioning of nuclear power plant, the national planning of radioactive waste management, the becoming of high level and years living radioactive waste, the European nuclear policy. (N.C.)

  16. Safety of radiation sources and security of radioactive materials. A Romanian approach

    International Nuclear Information System (INIS)

    After a brief explanation on the scope of applications of nuclear energy and practices with ionizing radiation in Romania, the report explains the current national infrastructure for radiation safety making reference in particular to the National Commission for Nuclear Activities Control as the regulatory authority for the safety of radiation sources. The report also describes the existing legal framework, provides information on the list of normative acts in force, and on the system of authorization, inspection and enforcement, which operates effectively. (author)

  17. Inter-comparison of safety culture within selected practices in Ghana utilising ionising radiation

    International Nuclear Information System (INIS)

    The safety culture of selected practices and facilities in Ghana utilising radiation sources or radiation emitting devices has been assessed using a performance indicator, which provided status information on management and operating staff commitment to safety. The questionnaire was based on the following broad areas: general safety considerations, safety policy at the facility level, safety practices at the facility level, definition of responsibility, staff training, safety of the physical structure of the facility and the emergency plans. The analysis showed that the percentage levels of commitment to safety for the respective practices are as follows: conventional radiography, 23.3-90.0%; research reactor, 73.3 %; gamma irradiation facility, 53.3%; radiotherapy, 76.7%; X-ray scanner, 80.0%; gamma scanner, 76.7%; industrial radiography 86.7% and nuclear density practice, 78%. None of the practices or facilities was able to satisfy all the requirements that will ensure a 100% level of safety culture. (authors)

  18. A safety assessment methodology applied to CNS/ATM-based air traffic control system

    International Nuclear Information System (INIS)

    In the last decades, the air traffic system has been changing to adapt itself to new social demands, mainly the safe growth of worldwide traffic capacity. Those changes are ruled by the Communication, Navigation, Surveillance/Air Traffic Management (CNS/ATM) paradigm , based on digital communication technologies (mainly satellites) as a way of improving communication, surveillance, navigation and air traffic management services. However, CNS/ATM poses new challenges and needs, mainly related to the safety assessment process. In face of these new challenges, and considering the main characteristics of the CNS/ATM, a methodology is proposed at this work by combining 'absolute' and 'relative' safety assessment methods adopted by the International Civil Aviation Organization (ICAO) in ICAO Doc.9689 , using Fluid Stochastic Petri Nets (FSPN) as the modeling formalism, and compares the safety metrics estimated from the simulation of both the proposed (in analysis) and the legacy system models. To demonstrate its usefulness, the proposed methodology was applied to the 'Automatic Dependent Surveillance-Broadcasting' (ADS-B) based air traffic control system. As conclusions, the proposed methodology assured to assess CNS/ATM system safety properties, in which FSPN formalism provides important modeling capabilities, and discrete event simulation allowing the estimation of the desired safety metric.

  19. The product formula algorithm applied to linear and radiation diffusion

    International Nuclear Information System (INIS)

    We extend an unconditionally stable, explicit algorithm due to DeRaedt and Richardson, Farrell, and Long to include various linear and radiation diffusion problems in one and two dimensions with open and/or reflecting boundary conditions. We consider the ramifications of the ordering ambiguity problem (a feature that arises in the product formula scheme). In order to improve accuracy, we introduce a new type of subcycling based on the Lie-Trotter product formula. We consider a one-dimensional test problem which consists of a slab of material with a constant driving temperature source on one side. We compare the analytic and numerical results for the time evolution of the temperature profile in the linear and radiation diffusion problems as a function of Courant factor (α). We find excellent agreement except when α much-gt 1. For large α, the transient temperature profiles exhibit a open-quotes staircase close-quote like behavior. However, we show (albeit, not rigorously) that all solutions regardless of α approximately converge to the correct steady state solution. We also present results for a two-dimensional problem consisting of a constant driving temperature source on one side of a slab of material with an optically thick region interior to the slab

  20. Chemical analysis applied to the radiation sterilization of solid ketoprofen

    Science.gov (United States)

    Colak, S.; Maquille, A.; Tilquin, B.

    2006-01-01

    The aim of this work is to investigate the feasibility of radiation sterilization of ketoprofen from a chemical point of view. Although irradiated ketoprofen has already been studied in the literature [Katusin-Razem et al., Radiat. Phys. Chem. 73 111-116 (2005)], new results, on the basis of electron spin resonance (ESR) measurements and the use of hyphenated techniques (GC-MS and LC-MS), are obtained. The ESR spectra of irradiated ketoprofen consists of four unresolved resonance peaks and the mean G-value of ketoprofen is found to be 4 +/- 0.9 nmoles/J, which is very small. HPLC-UV analyses indicate that no significant loss of ketoprofen is detected after irradiation. LC-MS-MS analyses show that the structures of the non-volatile final products are similar to ketoprofen. Benzaldehyde is detected in the irradiated samples after dynamic-extraction GC-MS. The analyses show that ketoprofen is radioresistant and therefore might be radiosterilized.

  1. What Parents Should Know about Medical Radiation Safety

    Science.gov (United States)

    ... Radiation- related cancer risks at low doses among atomic bomb survivors. Radiation Research 2000; 154:178-186. Preston ... E, Tokuoka S, et al. Solid cancer incidence in atomic bomb survivors: 1958-1998. Radiation Research 2007; 168:1- ...

  2. Radiation and nuclear safety included in the environmental health programme

    International Nuclear Information System (INIS)

    Finland is currently preparing a national environmental health programme, the objective of which is to chart the main environmental health problems in Finland, to identify means for securing a healthy environment, and to draw up a practical action programme for preventing and rectifying problems pertaining to environmental health. Radiation and nuclear safety form an essential part of preventive health care. The action programme is based on decisions and programmes approved at the WHO Conference on the Environment and Health, held in Helsinki in June 1994. In addition to the state of the Finnish environment and the health of the Finnish population, the programme addresses the relevant international issues, in particular in areas adjacent to Finland. The Committee on Environmental Health is expected to complete its work by the end of the year. A wide range of representatives from various branches of administration have contributed to the preparation of the programme. Besides physical, biological and chemical factors, the environmental factors affecting health also include the physical environment and the psychological, social and aesthetic features of the environment. Similarly, environmental factors that have an impact on the health of present or future generations, on the essential preconditions of life and on the quality of life are investigated. The serious risk to nature caused by human actions is also considered as a potential risk to human health. (orig.)

  3. Radiation safety and quality control in the cyclotron laboratory

    International Nuclear Information System (INIS)

    Radiation safety was determined to maintain quality control in the cyclotron laboratory. Based on the results of 438 runs in the Faraday cup (20 μA for 10 min), 20 runs on 18O-water target (40 μA for 2 h) and 10 runs on 18O-gas targets (30 μA for 45 min), we have established that occupationally exposed workers remain 10 ± 5 times below federal regulatory limits (FRLs) in the cyclotron vault, 30 ± 8 times below FRL in the radiochemistry laboratory and 200 ± 10 times below the FRL outside the cyclotron laboratory during beam operation. (The FRL for unrestricted area are <20 μSv in 1 h.) The non-occupationally exposed workers serving in offices in the vicinity of the cyclotron vault within 100 m distance remained 200 times below the FRL irrespective of beam being on or off, suggesting that routine beam operation of 40 μA for 2 h once a day during office hours is safe provided quality control and system performance measures as discussed in this report are strictly maintained. (authors)

  4. Problems in radiation safety of personell dealing with tritium

    International Nuclear Information System (INIS)

    The problems of radiation safety of personnel working with tritium in oil-fields, at poultry plants when ionizing air, in watch making and instrument making industries, scientific laboratories are considered. The irradiation levels of the personnel engaged in preparation of tritium compounds and products constitute 0.1-1.2 rem quaterly. The dynamics of forming an internal irradiation dose are close to linear and the levels of tritium content in body are practically constant. When working in oil-fields, especially dangerous are the operations of diluting HTO in tanks and pumping labelled water into oil wells, where the dose amounts to 10-100 mrem per operation. The results of irradiation at poultry plants, evaluations of irradiation levels for personnel and population using the poultry bred in the atmosphere containing tritium are presented. Discussed are also the problems of radiotoxicity relating to tritium luminous compounds of permanent action as well as the results of studying their intake by animals and their distribution in the organism and excretion

  5. Borehole disposal of spent radiation sources: 2. initial safety assessment

    International Nuclear Information System (INIS)

    Large numbers of spent radiation sources from the medical and other technical professions exist in many countries, even countries that do not possess facilities related to the nuclear fuel cycle, that have to be disposed. This is particularly the case in Africa, South America and some members of the Russian Federation. Since these sources need to be handled separately from the other types of radioactive waste, mainly because of their activity to volume ratio, countries (even those with access to operational repositories) find it difficult to manage and dispose this waste. This has led to the use of boreholes as disposal units for these spent sources by some members of the Russian Federation and in South Africa. However, the relatively shallow boreholes used by these countries are not suitable for the disposal of isotopes with long half-lifes, such as 226Ra and 241Am. With this in mind the Atomic Energy Corporation of South Africa initiated the development of the BOSS disposal concept n-tilde an acronym for Borehole disposal Of Spent Sources n-tilde as part of an International Atomic Energy Agency (IAEA) AFRA 1-14 Technical Corporation (TC) project. In this paper, an initial assessment of long-term postclosure safety of the concept is discussed. (author)

  6. Radiation safety standards: space hazards vs. terrestrial hazards

    International Nuclear Information System (INIS)

    Policies regarding the setting of standards for radiation exposure for astronauts and other workers in space are discussed. The first recommendations for dose limitation and the underlying philosophy of these recommendations, which were put out in 1970, are examined, and consequences for the standards if the same philosophy of allowing a doubling in overall cancer risk for males aged 30-35 over a 20-year period were applied to more recent risk estimates are calculated, leading to values about a factor of 4 below the 1970 recommendation. Standards set since 1930 for terrestrial occupational exposures, which lead to a maximum lifetime risk of about 2.3 percent, are then considered, and the space and terrestrial exposure risks for fatal cancers at maximum lifetime dose are compared with industrial accidental death rates. Attention is also given to the question of the potential effects of HZE particles in space and to the possibility that HZE particle effects, rather than radiation carcinogenesis, might be the limiting factor. 17 references

  7. Enforcement of radiation safety standards and experience in the regulatory control of exposures

    International Nuclear Information System (INIS)

    Regulatory provisions for radiation protection and their enforcement in India are discussed in this paper. The rules and regulations framed for radiation safety cover all the nuclear fuel cycle activities as well as the application of radiation sources in industrial, medical and research institutions. The enforcement aspects and experience in the control of exposures are presented. (author)

  8. Ionizing and Nonionizing Radiation Protection. Module SH-35. Safety and Health.

    Science.gov (United States)

    Center for Occupational Research and Development, Inc., Waco, TX.

    This student module on ionizing and nonionizing radiation protection is one of 50 modules concerned with job safety and health. This module describes various types of ionizing and nonionizing radiation, and the situations in the workplace where potential hazards from radiation may exist. Following the introduction, 13 objectives (each keyed to a…

  9. Experiments in atomic and applied physics using synchrotron radiation

    International Nuclear Information System (INIS)

    A diverse program in atomic and applied physics using x rays produced at the X-26 beam line at the Brookhaven National Synchrotron Light Source is in progress. The atomic physics program studies the properties of multiply-ionized atoms using the x rays for photo-excitation and ionization of neutral atoms and ion beams. The applied physics program builds on the techniques and results of the atomic physics work to develop new analytical techniques for elemental and chemical characterization of materials. The results are then used for a general experimental program in biomedical sciences, geo- and cosmochemistry, and materials sciences. The present status of the program is illustrated by describing selected experiments. Prospects for development of new experimental capabilities are discussed in terms of a heavy ion storage ring for atomic physics experiments and the feasibility of photoelectron microscopy for high spatial resolution analytical work. 21 refs., 11 figs., 2 tabs

  10. Education and Training in Radiation, Transport and Waste Safety Newsletter, No. 3, May 2014

    International Nuclear Information System (INIS)

    Building competence through education and training in radiation protection, radioactive waste safety, and safety in transport of radioactive material is fundamental to the establishment of a comprehensive and sustainable national infrastructure for radiation safety, which in turn is essential for the beneficial uses of radiation while ensuring appropriate protection of workers, patients, the public and the environment. IAEA’s Division of Radiation, Transport and Waste Safety provides direct assistance to Member States via a range of tools and mechanisms, such as by organizing educational and training events, developing standardized syllabi with supporting material and documents, and by fostering methodologies to build sustainable competence and enhance effectiveness in the provision of training. The main objective is to support Member States in the application of the IAEA Safety Standards. Seminars and additional activities are also promoted to broaden knowledge on relevant areas for an effective application of the standards

  11. ASN report of the status of nuclear safety and radiation protection in France in 2012

    International Nuclear Information System (INIS)

    After a presentation of the French Nuclear Safety Authority (ASN), its missions, some key figures illustrating its activities and its organisation, this report proposes an overview of marking events and of actions undertaken by the ASN after the Fukushima accident. Then, the report proposes a detailed and commented overview of actions undertaken by the ASN in different fields and domains: nuclear activities, principles and actors of nuclear safety and radiation protection control, regulation, control of nuclear activities and of exposures to ionizing radiations, radiological and post-accidental emergency situations, public information and transparency, international relationships, regional overview of nuclear safety and radiation protection. The last part addresses activities controlled by the ASN: medical use of ionizing radiations, industrial, research and veterinary uses and source safety, transport of radioactive materials, electronuclear plants, installations related to nuclear fuel cycle, nuclear research and other nuclear installations, safety of dismantling of base nuclear installations, radioactive wastes and polluted sites

  12. Radiation protection in dentistry. Recommended safety procedures for the use of dental x-ray equipment. Safety code 30

    International Nuclear Information System (INIS)

    The Radiation Protection Bureau has prepared a series of documents on safety codes to set out requirements for the safe use of radiation-emitting equipment. This Safety Code has been prepared to provide specific guidance to the dentist, dental hygienist, dental assistant and other support personnel concerned with safety procedures and equipment performance. Dental radiography is one of the most valuable tools used in modern dental health care. It makes possible the diagnosis of physical conditions that would otherwise be difficult to identify. The use of dental radiological procedures must be carefully managed, because x-radiation has the potential for damaging healthy cells and tissues. Although no known occurrence of cancer or genetic damage has been observed from radiation doses delivered in modern dentistry, and until more evidence is available, one should practice radiation hygiene with the same care as would be dictated if a hazard were known to exist. The aim of radiation protection in dentistry is to obtain the desired clinical information with minimal radiation exposure to patients, dental personnel and the public. 15 tabs

  13. Development of radiation protection and measurement technology -A study on the radiation and environmental safety-

    International Nuclear Information System (INIS)

    Reference radiation fields which can meet the national and international standard and criteria such as the ANSI N13.11 have been designed, produced and evaluated to maintain the national traceability and reliability of the radiation measurement and to provide precise calibration of the various radiation measuring instruments as well as standard irradiation of the personal dosimeters for the performance evaluation. Existing dose calculation algorithm has been improved to correctly evaluate the shallow dose from the β(Ti-204) + γ(Cs-137) mixed radiation exposure by applying the TLD response correction function newly derived in this study. A mathematical algorithm to calculate the internal dose from inhalation of the uranium isotopes has been developed on the basis of the ICRP-30 respiratory tract model. Detailed performance analysis of the KAERI lung counter has been carried out to participate in the intercomparison of lung dosimetry. A preliminary and basic study on the quantitative method of optimal dose reduction based on the ALARA concept has been performed to technically support and strengthen the national radiation protection infrastructure. (Author)

  14. Study on development of education model and its evaluation system for radiation safety

    CERN Document Server

    Seo, K W; Nam, Y M

    2002-01-01

    As one of the detailed action strategy of multi object preparedness for strengthening of radiation safety management by MOST, this project was performed, in order to promote the safety culture for user and radiation worker through effective education program. For the prevention of radiological accident and effective implementation of radiation safety education and training, this project has been carried out the development of education model and its evaluation system on radiation safety. In the development of new education model, education course was classified; new and old radiation worker, temporary worker, lecturer and manager. The education model includes the contents of expanding the education opportunity and workplace training. In the development of evaluation system, the recognition criteria for commission-education institute and inside-education institute which should establish by law were suggested for evaluation program. The recognition criteria contains classification, student, method, facilities, ...

  15. Radiation safety during construction of the encapsulation at the Chernobyl nuclear power plant

    International Nuclear Information System (INIS)

    A review is given of the main radiation safety problems which were solved during design and construction of the encapsulation for Unit 4 of the Chernobyl nuclear power plant which was destroyed in the accident of 26 April 1986. Information is given on the conditions under which large scale restoration work was performed, and on the design stipulations laid down for construction of the encapsulation for the destroyed unit. The paper discusses the technical, organizational and health measures which were used to ensure that radiation safety regulations and standards were observed during construction. The problems of organizing a radiation safety service inside the construction and assembly organization which built the encapsulation are discussed. Finally, conclusions are drawn with regard to the experience which has been gained in the area of radiation safety implementation during large scale post-accident restoration work under problematic radiation conditions such as those at the Chernobyl nuclear power plant site. (author). 7 refs, 6 figs, 1 tab

  16. Neutron activation: an invaluable technique for teaching applied radiation

    International Nuclear Information System (INIS)

    This experiment introduces students to the important method of neutron activation. A sample of aluminium was irradiated with neutrons from an isotropic 241Am-Be source. Using γ-ray spectroscopy, two radionuclide products were identified as 27Mg and 28Al. Applying a cadmium cut-off filter and an optimum irradiation time of 45 min, the half-life of 27Mg was determined as 9.46±0.50 min. The half-life of the 28Al radionuclide was determined as 2.28±0.10 min using a polythene moderator and an optimum irradiation time of 10 min. (author)

  17. Radiation safety assessment of cobalt 60 external beam radiotherapy using the risk-matrix method

    International Nuclear Information System (INIS)

    External beam radiotherapy is the only practice in which humans are placed directly in a radiation beam with the intention to deliver a very high dose. This is why safety in radiotherapy is very critical, and is a matter of interest to both radiotherapy departments and regulatory bodies. Accidental exposures have occurred throughout the world, thus showing the need for systematic safety assessments, capable to identify preventive measures and to minimize consequences of accidental exposure. Risk-matrix is a systematic approach which combines the relevant event features to assess the overall risk of each particular event. Once an event sequence is identified, questions such as how frequent the event, how severe the potential consequences and how reliable the existing safety measures are answered in a risk-matrix table. The ultimate goal is to achieve that the overall risk for events with severe consequences should always be low o very low. In the present study, the risk-matrix method has been applied to an hypothetical radiotherapy department, which could be equivalent to an upper level hospital of the Ibero American region, in terms of safety checks and preventive measures. The application of the method has identified 76 event sequences and revealed that the hypothetical radiotherapy department is sufficiently protected (low risk) against them, including 23 event sequences with severe consequences. The method has revealed that the risk of these sequences could grow to high level if certain specific preventive measures were degraded with time. This study has identified these preventive measures, thus facilitating a rational allocation of resources in regular controls to detect any loss of reliability. The method has proven to have an important practical value and is affordable at hospital level. The elaborated risk-matrix can be easily adapted to local circumstances, in terms of existing controls and safety measures. This approach can help hospitals to identify

  18. Radiation and Reason Why radiation at modest dose rates is quite harmless and current radiation safety regulations are flawed

    CERN Document Server

    CERN. Geneva

    2013-01-01

    Data on the impact of ionising radiation on life are examined in the light of evolutionary biology. This comparison confirms that fear of nuclear radiation is not justified by science itself; rather it originates in a failure of public trust in nuclear science, a relic of the international politics of the Cold War era. Current ionisation safety regulations appease this fear but without scientific support and they need fundamental reformulation. This should change the reaction to accidents like Fukushima, the cost of nuclear energy and the application of nuclear technology to the supply of food and fresh water. Such a boost to the world economy would require that more citizens study and appreciate the science involved – and then tell others -- not as much fun as the Higgs, perhaps, but no less important! www.radiationandreason.com

  19. ESR/alanine dosimetry applied to radiation processing

    International Nuclear Information System (INIS)

    The radiation processing of food products is specified in terms of absorbed dose, and processing quality is assessed on the basis of absorbed dose measurements. The validity of process quality control is highly dependent on the quality of the measurements and associated instrumentation; in this respect, dosimetry calibration by an Organization with official status provides an essential guarantee of validity to the quality control steps taken. The Laboratoire de Metrologie des Rayonnements Ionisants (L.M.R.I.) is the primary standards and evaluation laboratory approved by the Bureau National de Metrologie (B.N.M.), which is the French National Bureau of Standards. The LMRI implements correlation procedures in response to the various requirements which arise in connection with high doses and doserates. Such procedures are mainly based on ESR/alanine spectrometry, a dosimetry technique ideally suited to that purpose. Dosemeter geometry and design are tailored to operating conditions. Photon dosemeters consist of a detector material in powder or compacted form, and a wall with thickness and chemical composition consistent with the application. Electron dosemeters have a detector core of compacted alanine with thickness down to a few tenths of a millimeter. The ESR/alanine dosimetry technique, developed at LMRI is a flexible, reliable and accurate tool which effectively meets the various requirements arising in the field of reference dosimetry, where high doses and doserates are involved. (author)

  20. Progress in the Regulation of Radiation Environmental Safety in the Utilization of Mineral Resources in China

    International Nuclear Information System (INIS)

    In the paper, the background to the progress made in the regulation of radiation environmental safety in the utilization of mineral resources other than uranium (thorium) ores in China is first introduced. The regulatory experience of radiation environmental safety in the utilization of mineral resources in international organizations and industrial countries (e.g. International Commission on Radiological Protection, IAEA, European Union and United States of America) is surveyed and analysed. Finally, the scope and requirements of regulation on the radiation environmental safety in the utilization of mineral resources in China are stated. (author)

  1. Operations report 1985 of the Department of Safety and Radiation Protection

    International Nuclear Information System (INIS)

    Under the heading 'Licensing' the report deals with licensing procedures and the handling of nuclear-fuels and radioactive materials. Operational radiation protection is concerned with operational and personnel monitoring, mathematical methods and safety analyses. Environmental protection deals with emission control, immission monitoring and meteorological measurements, and safety technology with α/β-analysis, dosimetry, equipment servicing and mechanics, nuclear material safeguards. Other subdepartments take care of industrial safety, physical protection, emergency protection and training. Subjects dealt with, too, are dispersion pollutants in atmosphere and environment, further development of radiation protection methods, and the bibliography of radiation protection in KFA. (HK)

  2. On the state of the radiation safety in the atomic energy and nuclear industry of Russia

    International Nuclear Information System (INIS)

    The general aspects of the activity of organs of government in the field of human radiation protection and some other problems of nuclear industry connecting with the new economic and politic situation in Russia have been discussed. There are present information about the organs of government relating to the questions of radiation safety and the major directions of governmental policy in this fields. Some problems of the elimination of the consequences of the accidents in NPPs (Chernobyl, Chelyabinsk), the programs of the radiation safety improvement of population and the information about new normative nuclear safety documents have also been written in this report. (author)

  3. Nuclear safety, radiation protection, availability and environment body (OSRDE) at EDF: A tool for optimizing safety in terms of major decisions

    International Nuclear Information System (INIS)

    The production of electricity at nuclear power plants is one of the foundations of development of Electricite de France (EDF). Alongside renewable energies, it will remain one of the most important areas for EDF in future years. The durability of this commitment is closely linked to public confidence in this energy and in those managing it. Professionals in the nuclear domain are faced with a great many demands, including safety, radiation protection, availability and the environment. Occasionally these requirements can conflict with each other and, in view of the fact that safety must always remain the number one priority, they necessitate complex and difficult arbitration methods that must be explained to the persons responsible for applying the decisions. The actions taken to improve quality on a daily basis both at an individual and group level constitute the most effective means of reconciling the requirements linked to nuclear safety, radiation protection, availability and the environment, and will consequently improve the safety performance of all its nuclear power plants by optimizing the way in which the other domains are taken into consideration. From 1996 onwards, the management of the Nuclear Production Division has been identifying these arbitration issues and it has deployed the General Directorate of Safety and Radiation Protection, one of the levers of safety management. The job of this directorate is to perform a post-analysis of the decision making process leading up to an important decision with a view to improving the professionalism of the decision makers by ensuring that the existing processes are subjected to constant scrutiny. The opening up of the energy market increases the importance of this lever in guaranteeing that the aspect of safety remains the number one priority uppermost in the minds of all the decision makers. Following the major commitment made by the Nuclear Production Division in terms of the management of radiation

  4. Five Years of a Computer Based New Training Program in Safety and Radiation Protection

    International Nuclear Information System (INIS)

    One of the main goals of the Department of Human Resources Development is to give employees fundamental knowledge, refreshing know-how and increasing safety awareness. In this regard safety deals with risks in operating nuclear facilities, including radiation, industrial risks and fire. Israeli Work Supervision (informing and training employees, 1992) (1) and work safety regulations (industrial safety and health for ionization radiation employees) state the need for training by the employer at least once a year. The employer also must take means to verify that the employees actually understand what they were trained for

  5. The activity at the state organs of Russia in the field for providing radiation safety

    International Nuclear Information System (INIS)

    The principles of reliable, efficient radiation safety of enterprises, research institute and organizations of Minatom of Russian Federation, environmental protection and some other problems have been discussed in this report. It consists of three parts. The first contents the information of the governmental and industrial safety systems on the territory of Russian Federation. The second part comprises the findings distinguishing the safety of the NPPs and the enterprises of nuclear industry. Some problems of the actual researches and application developments including the development of new international nuclear safety standards based on recommendations of International Committee of Radiation Protection have been written in third part. (author)

  6. Feasibility study of applying the passive safety system concept to fusion–fission hybrid reactor

    International Nuclear Information System (INIS)

    The fusion–fission hybrid reactor can produce energy, breed nuclear fuel, and handle the nuclear waste, etc., with the fusion neutron source striking the subcritical blanket. The passive safety system consists of passive residual heat removal system, passive safety injection system and automatic depressurization system was adopted into the fusion–fission hybrid reactor in this paper. Modeling and nodalization of primary loop, partial secondary loop and passive core cooling system for the fusion–fission hybrid reactor using relap5 were conducted and small break LOCA on cold leg was analyzed. The results of key transient parameters indicated that the actuation of passive safety system could mitigate the accidental consequence of the 4-inch cold leg small break LOCA on cold leg in the early time effectively. It is feasible to apply the passive safety system concept to fusion–fission hybrid reactor. The minimum collapsed liquid level had great increase if doubling the volume of CMTs to increase its coolant injection and had no increase if doubling the volume of ACCs

  7. ASN report on the status of nuclear safety and radiation protection in France in 2011

    International Nuclear Information System (INIS)

    The first part of this huge report proposes a detailed overview of ASN activities in different fields: ionizing radiations related to nuclear activities and risks for health and the environment, principles and actors of nuclear safety control, of radiation protection and of protection of the environment, regulation, control of nuclear activities and exposures to ionizing radiations, emergency situations, public information and transparency, international relationships, regional overview of nuclear safety and radiation protection. The second part addresses the activities controlled by the ASN: medical use of ionizing radiations, non medical use of ionizing radiations, transport of radioactive materials, electronuclear power stations, facilities involved in the nuclear fuel cycle, research facilities and other nuclear installations, the safety of dismantling of nuclear base installations, radioactive wastes and polluted sites and soils

  8. The role of the International Atomic Energy Agency in radiation and waste safety

    International Nuclear Information System (INIS)

    The International Atomic Energy Agency is specifically required by its Statute 'to establish or adopt ... standards of safety for protection of health and minimization of danger to life and property ... and to provide for the application of these standards ...'. Standards encompass three main elements: legally binding international undertakings among States; globally agreed international safety standards; and the provision for facilitating the application of those standards. Radiation safety standards are national responsibilities, but there is considerable value in formulating harmonized approaches throughout the world. The Agency has attempted to do this by establishing internationally agreed safety standards and by prompting their application. Of prime importance are the Basic Safety Standards for Protection against Ionizing Radiation and for the Safety of Radiation Sources. These deal with the basic requirements that must be met in order to ensure an adequate standard of safety. More detailed guidance on the application of these requirements is given in Safety Guides established under them. Fuller technical support is given in a series of Safety Reports. A number of Safety Guides are relevant to this meeting. An existing Safety Guide on exemption is being revised to cover related topics such as exclusion and clearance, and this is the subject of a separate presentation. As part of the programme to combat illicit trafficking in radioactive materials, a new Safety Guide on the topic is being developed. Both are near completion. Another Safety Guide is being produced to elaborate the requirements in the Basic Safety Standards on the safety of radioactive sources. The topics of illicit trafficking in radioactive materials and the safety of radioactive sources were given added impetus by resolutions of the last General Conference of the Agency. This paper provides an overview of these activities of the Agency. (author)

  9. Sequential procedure for the design of checklists applied to the patient safety

    Directory of Open Access Journals (Sweden)

    Pardal-Refoyo JL

    2014-07-01

    Full Text Available Introduction: Checklists are cognitive mnemonic aid to guide in performing complex tasks under stress or fatigue, reduce errors of omission and identify critical incidents function. There is a lack of specific methodological aid for their processing. Objective: The aim of the study was to design a structured development of checklists applied to patient safety process (PS. Material and methods: Systematic review. Ten papers were selected, five related to the structure of the checklists, three related to PS research methods (root cause analysis -RCA- and failure mode and effects analysis -FMEA-, one related to construction indicators and one with consensus methods. Results: A sequential process in 15 steps was designed to help the development of LV applied to the SP collecting elements proposed in the literature reviewed. Conclusions: The development of LV SP applied to a particular process should follow a sequential model which includes the literature review, the ACR and FMEA methods and consensus.

  10. Radiation Protection and Nuclear Safety Regulatory Inspection: a happy marriage?

    International Nuclear Information System (INIS)

    As the subsidiary of the Belgian Federal Agency for Nuclear Control (FANC), Bel V performs the regulatory inspections and safety assessments in nuclear installations, according to the Belgian Royal Decree of July 20. 2001. This Royal Decree is not meant to give a recipe on how to perform inspections and therefore requires interpretation. This paper presents the inspection techniques and practices applied by the Bel V inspectors in order to comply with the spirit of the Royal Decree, using the available resources. AT Bel V the inspections are based on the sampling principle in combination with the experience feedback process. Inspections occur frequently, typically once a week. Concerning documentation, the inspector looks at a sample of documents, the licensee knows he has to produce high-quality documents that have to be correct and as a consequence the licensee has to set internal independent review. If the inspector were to look at every document, the licensee may consider the inspector as a mere reviewer as he checks every document and the global quality of the documentation may decrease. In order to optimize the inspections, the inspection reports circulate among all the members of Bel V (inspectors and experts). Everyone is invited to comment these reports if he deems that the inspector should be made aware of an important issue, that the inspector should take a closer look at a certain aspect,.... These remarks help the inspector to prepare the next inspection. The slides of the presentation have been added at the end of the paper

  11. Relationship between knowledge, attitude, behavior, and self-efficacy on the radiation safety management of radiation workers in medical institutions

    International Nuclear Information System (INIS)

    Radiation safety managements in medical institutions are needed to protect certain radiation damages as a part of National Coalition. This study investigates the characteristics of self-efficacy that become the major factor on the knowledge, attitude, and behavior on the radiation safety management of radiation workers as an approach of educational aspects and analyzes the relationship between such factors to provide basic materials for improving the activity level of radiation safety managements. In order to implement the goal of this study, a survey was performed for 1,200 workers who were engaged in radiation treatments in medical centers, such as general hospital, university hospital, private hospital, and public health center for 42 days from July 23, 2006. Then, the results of the analysis can be summarized as follows: 1. Average scores on knowledge, attitude, and behavior in the radiation safety management were presented as 75.76±11.20, 90.55±8.59, 80.58±11.70, respectively. Also, the average score of self-efficacy was recorded as 73.55±9.82. 2. Knowledge levels in the radiation safety management showed significant differences according to the sex, age, marriage, education, and experience. Also, males of married, older, highly educated, and largely experienced represented high knowledge levels. Attitude levels in the radiation safety management showed certain significant differences according to the type of medical centers in which private hospitals showed a relatively low level compared to that of high levels in university hospitals. Behavior levels in the radiation safety management also represented significant differences according to the age, marriage, education, experience, and types of medical centers. Factors in married, general hospital, older, highly educated, and largely experienced showed high behavior levels. In addition, the self-efficacy showed certain differences according to the marriage and types of medical centers. Factors in married

  12. Radiation Protection Programmes for the Transport of Radioactive Material. Safety Guide (Spanish Edition)

    International Nuclear Information System (INIS)

    This Safety Guide provides guidance on meeting the requirements for the establishment of radiation protection programmes (RPPs) for the transport of radioactive material, to optimize radiation protection in order to meet the requirements for radiation protection that underlie the Regulations for the Safe Transport of Radioactive Material. This Guide covers general aspects of meeting the requirements for radiation protection, but does not cover criticality safety or other possible hazardous properties of radioactive material. The annexes of this Guide include examples of RPPs, relevant excerpts from the Transport Regulations, examples of total dose per transport index handled, a checklist for road transport, specific segregation distances and emergency instructions for vehicle operators

  13. Some aspects of RF radiation safety guidelines on urgent protective measures in case of radiation emergency at NPP

    International Nuclear Information System (INIS)

    Full text: The work is aimed at developing a decision making strategy and tools for putting into practice the principles of reasonableness and optimization when applying countermeasures in case of a radiation related accident at a nuclear power plant in RF. The presentation discusses results of the study of the legal framework in the RF for decision making to protect the personnel and public in case of a radiation-related accident Consideration is given to issues of methodological support for emergency response systems at NPPs, as required by the RF radiation safety norms to protect personnel and the public. This work was performed as part of methodological support to the national emergency center of Rosenergoatom comprising several technical support centers on the base of leading institutes with large scientific potential in the fields of nuclear power use, environmental and public protection, radioecology etc. Such centers were set up for scientific and technical support to decision making in case of emergency at NPPs. Specialists of die centers are able to quickly assess the emerging situation and propose a set of measures to minimize damage, drawing on expert judgements. The radiation safety guidelines (NRB-99) lays down requirements and criteria for decision making to protect the public in different phases of a radiation accident which should be used when implementing countermeasures and developing emergency response plans with allowance for specific situation and local conditions. These criteria provide a basis for designating areas of emergency response that would be optimum for specific population points, intervention measures etc. Dealing with these tasks requires development of normative and methodological documentation taking into account both the NRB-99 requirements and international recommendations. In accordance with NRB-99: expected and averted radiation doses are the key criteria to be used in application of any protection measures in radiation

  14. Safety Study of the X-Ray Reference Laboratory for Radiation Protection Levels (IR-14D)

    International Nuclear Information System (INIS)

    This report is a study about the safety of the X-ray reference laboratory that has been recently constructed in the building 2 of the CIEMAT. After a brief description of the apparatus, we present the method used to calculate the exposure and absorbed dose rates in the most characteristic points of the laboratory. This method takes into account the spectral distribution of the radiation beams as a function of the accelerating voltage. The built-up factors of the absorbent materials have been considered to calculate the transmission of the radiation beams through the filters and shielding. Scattered radiations has been introduced in the calculations by means of a semiempirical method. This model supposes that multiple scattering processes give an isotropic contribution to the reflected beams and the single scattered can be described in terms of the differential cross section of Klein-Nishina. The results of this study have been applied to determine the maximum dose equivalent that the personnel of the laboratory could receive in normal operation conditions. (Author) 5 refs

  15. Comparison of Design and Practices for Radiation Safety among Five Synchrotron Radiation Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Liu, James C.; Rokni, Sayed H.; /SLAC; Asano, Yoshihiro; /JAERI-RIKEN, Hyogo; Casey, William R.; /Brookhaven; Donahue, Richard J.; /LBL, Berkeley

    2005-06-29

    There are more and more third-generation synchrotron radiation (SR) facilities in the world that utilize low emittance electron (or positron) beam circulating in a storage ring to generate synchrotron light for various types of experiments. A storage ring based SR facility consists of an injector, a storage ring, and many SR beamlines. When compared to other types of accelerator facilities, the design and practices for radiation safety of storage ring and SR beamlines are unique to SR facilities. Unlike many other accelerator facilities, the storage ring and beamlines of a SR facility are generally above ground with users and workers occupying the experimental floor frequently. The users are generally non-radiation workers and do not wear dosimeters, though basic facility safety training is required. Thus, the shielding design typically aims for an annual dose limit of 100 mrem over 2000 h without the need for administrative control for radiation hazards. On the other hand, for operational and cost considerations, the concrete ring wall (both lateral and ratchet walls) is often desired to be no more than a few feet thick (with an even thinner roof). Most SR facilities have similar operation modes and beam parameters (both injection and stored) for storage ring and SR beamlines. The facility typically operates almost full year with one-month start-up period, 10-month science program for experiments (with short accelerator physics studies and routine maintenance during the period of science program), and a month-long shutdown period. A typical operational mode for science program consists of long periods of circulating stored beam (which decays with a lifetime in tens of hours), interposed with short injection events (in minutes) to fill the stored current. The stored beam energy ranges from a few hundreds MeV to 10 GeV with a low injection beam power (generally less than 10 watts). The injection beam energy can be the same as, or lower than, the stored beam energy

  16. Nuclear safety and radiation protection report of Blayais nuclear facilities - 2012

    International Nuclear Information System (INIS)

    This safety report was established in accordance with articles L. 125-15 and L. 125-16 of the French environmental code. It presents, first, the NPPs (INBs no. 86 and 110). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2012, if any, are reported as well as the radioactive and non-radioactive effluents discharge in the environment. Finally, the radioactive materials and wastes generated by the facility are presented (type of waste, quantities, conditioning process). The document concludes with a presentation of the actions of communication and public information made by the direction of the facility. A glossary and the list of recommendations from the Committees for health, safety and working conditions are given in appendix. (J.S.)

  17. Nuclear safety and radiation protection report of the Belleville-sur-Loire nuclear facilities - 2014

    International Nuclear Information System (INIS)

    This safety report was established in accordance with articles L. 125-15 and L. 125-16 of the French environmental code. It presents, first, the NPPs (INBs no. 127 and 128). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2014, if any, are reported as well as the radioactive and non-radioactive effluents discharge in the environment. Finally, the radioactive materials and wastes generated by the facility are presented (type of waste, quantities, conditioning process). The document concludes with a presentation of the actions of communication and public information made by the direction of the facility. A glossary and the list of recommendations from the Committees for health, safety and working conditions are given in appendix

  18. Nuclear safety and radiation protection report of the Chooz nuclear facilities - 2014

    International Nuclear Information System (INIS)

    This safety report was established in accordance with articles L. 125-15 and L. 125-16 of the French environmental code. It presents, first, the NPPs (INBs no. 139, 144 and 163 (under dismantling)). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2014, if any, are reported as well as the radioactive and non-radioactive effluents discharge in the environment. Finally, the radioactive materials and wastes generated by the facility are presented (type of waste, quantities, conditioning process). The document concludes with a presentation of the actions of communication and public information made by the direction of the facility. A glossary and the list of recommendations from the Committees for health, safety and working conditions are given in appendix

  19. Nuclear safety and radiation protection report of the Cruas-Meysse nuclear facilities - 2014

    International Nuclear Information System (INIS)

    This safety report was established in accordance with articles L. 125-15 and L. 125-16 of the French environmental code. It presents, first, the NPPs (INBs no. 111 and 112). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2014, if any, are reported as well as the radioactive and non-radioactive effluents discharge in the environment. Finally, the radioactive materials and wastes generated by the facility are presented (type of waste, quantities, conditioning process). The document concludes with a presentation of the actions of communication and public information made by the direction of the facility. A glossary and the list of recommendations from the Committees for health, safety and working conditions are given in appendix

  20. Nuclear safety and radiation protection report of the Civaux nuclear facilities - 2013

    International Nuclear Information System (INIS)

    This safety report was established in accordance with articles L. 125-15 and L. 125-16 of the French environmental code. It presents, first, the NPPs (INBs no. 158 and 159). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2013, if any, are reported as well as the radioactive and non-radioactive effluents discharge in the environment. Finally, the radioactive materials and wastes generated by the facility are presented (type of waste, quantities, conditioning process). The document concludes with a presentation of the actions of communication and public information made by the direction of the facility. A glossary and the list of recommendations from the Committees for health, safety and working conditions are given in appendix

  1. Nuclear safety and radiation protection report of the Paluel nuclear facilities - 2014

    International Nuclear Information System (INIS)

    This safety report was established in accordance with articles L. 125-15 and L. 125-16 of the French environmental code. It presents, first, the NPPs (INBs no. 103, 104, 114 and 115). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2014, if any, are reported as well as the radioactive and non-radioactive effluents discharge in the environment. Finally, the radioactive materials and wastes generated by the facility are presented (type of waste, quantities, conditioning process). The document concludes with a presentation of the actions of communication and public information made by the direction of the facility. A glossary and the list of recommendations from the Committees for health, safety and working conditions are given in appendix

  2. Nuclear safety and radiation protection report of the Belleville-sur-Loire nuclear facilities - 2013

    International Nuclear Information System (INIS)

    This safety report was established in accordance with articles L. 125-15 and L. 125-16 of the French environmental code. It presents, first, the NPPs (INBs no. 127 and 128). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2013, if any, are reported as well as the radioactive and non-radioactive effluents discharge in the environment. Finally, the radioactive materials and wastes generated by the facility are presented (type of waste, quantities, conditioning process). The document concludes with a presentation of the actions of communication and public information made by the direction of the facility. A glossary and the list of recommendations from the Committees for health, safety and working conditions are given in appendix

  3. Nuclear safety and radiation protection report of the Chooz nuclear facilities - 2013

    International Nuclear Information System (INIS)

    This safety report was established in accordance with articles L. 125-15 and L. 125-16 of the French environmental code. It presents, first, the NPPs (INBs no. 139, 144 and 163 (under dismantling)). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2013, if any, are reported as well as the radioactive and non-radioactive effluents discharge in the environment. Finally, the radioactive materials and wastes generated by the facility are presented (type of waste, quantities, conditioning process). The document concludes with a presentation of the actions of communication and public information made by the direction of the facility. A glossary and the list of recommendations from the Committees for health, safety and working conditions are given in appendix

  4. Nuclear safety and radiation protection report of the Blayais nuclear facilities - 2014

    International Nuclear Information System (INIS)

    This safety report was established in accordance with articles L. 125-15 and L. 125-16 of the French environmental code. It presents, first, the NPPs (INBs no. 86 and 110). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2014, if any, are reported as well as the radioactive and non-radioactive effluents discharge in the environment. Finally, the radioactive materials and wastes generated by the facility are presented (type of waste, quantities, conditioning process). The document concludes with a presentation of the actions of communication and public information made by the direction of the facility. A glossary and the list of recommendations from the Committees for health, safety and working conditions are given in appendix

  5. Nuclear safety and radiation protection report of the Nogent-sur-Seine nuclear facilities - 2013

    International Nuclear Information System (INIS)

    This safety report was established in accordance with articles L. 125-15 and L. 125-16 of the French environmental code. It presents, first, the NPPs (INBs no. 129 and 130). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2013, if any, are reported as well as the radioactive and non-radioactive effluents discharge in the environment. Finally, the radioactive materials and wastes generated by the facility are presented (type of waste, quantities, conditioning process). The document concludes with a presentation of the actions of communication and public information made by the direction of the facility. A glossary and the list of recommendations from the Committees for health, safety and working conditions are given in appendix

  6. Nuclear safety and radiation protection report of the Nogent-sur-Seine nuclear facilities - 2014

    International Nuclear Information System (INIS)

    This safety report was established in accordance with articles L. 125-15 and L. 125-16 of the French environmental code. It presents, first, the NPPs (INBs no. 129 and 130). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2014, if any, are reported as well as the radioactive and non-radioactive effluents discharge in the environment. Finally, the radioactive materials and wastes generated by the facility are presented (type of waste, quantities, conditioning process). The document concludes with a presentation of the actions of communication and public information made by the direction of the facility. A glossary and the list of recommendations from the Committees for health, safety and working conditions are given in appendix

  7. Nuclear safety and radiation protection report of the Civaux nuclear facilities - 2014

    International Nuclear Information System (INIS)

    This safety report was established in accordance with articles L. 125-15 and L. 125-16 of the French environmental code. It presents, first, the NPPs (INBs no. 158 and 159). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2014, if any, are reported as well as the radioactive and non-radioactive effluents discharge in the environment. Finally, the radioactive materials and wastes generated by the facility are presented (type of waste, quantities, conditioning process). The document concludes with a presentation of the actions of communication and public information made by the direction of the facility. A glossary and the list of recommendations from the Committees for health, safety and working conditions are given in appendix

  8. Nuclear safety and radiation protection report of the Blayais nuclear facilities - 2013

    International Nuclear Information System (INIS)

    This safety report was established in accordance with articles L. 125-15 and L. 125-16 of the French environmental code. It presents, first, the NPPs (INBs no. 86 and 110). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2013, if any, are reported as well as the radioactive and non-radioactive effluents discharge in the environment. Finally, the radioactive materials and wastes generated by the facility are presented (type of waste, quantities, conditioning process). The document concludes with a presentation of the actions of communication and public information made by the direction of the facility. A glossary and the list of recommendations from the Committees for health, safety and working conditions are given in appendix

  9. Nuclear safety and radiation protection report of the Dampierre-en-Burly nuclear facilities - 2013

    International Nuclear Information System (INIS)

    This safety report was established in accordance with articles L. 125-15 and L. 125-16 of the French environmental code. It presents, first, the NPPs (INBs no. 84 and 85). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2013, if any, are reported as well as the radioactive and non-radioactive effluents discharge in the environment. Finally, the radioactive materials and wastes generated by the facility are presented (type of waste, quantities, conditioning process). The document concludes with a presentation of the actions of communication and public information made by the direction of the facility. A glossary and the list of recommendations from the Committees for health, safety and working conditions are given in appendix

  10. Nuclear safety and radiation protection report of the Golfech nuclear facilities - 2014

    International Nuclear Information System (INIS)

    This safety report was established in accordance with articles L. 125-15 and L. 125-16 of the French environmental code. It presents, first, the NPPs (INBs no. 135 and 142). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2014, if any, are reported as well as the radioactive and non-radioactive effluents discharge in the environment. Finally, The radioactive materials and wastes generated by the facility are presented (type of waste, quantities, conditioning process). The document concludes with a presentation of the actions of communication and public information made by the direction of the facility. A glossary and the list of recommendations from the Committees for health, safety and working conditions are given in appendix

  11. Nuclear safety and radiation protection report of the Dampierre-en-Burly nuclear facilities - 2014

    International Nuclear Information System (INIS)

    This safety report was established in accordance with articles L. 125-15 and L. 125-16 of the French environmental code. It presents, first, the NPPs (INBs no. 84 and 85). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2014, if any, are reported as well as the radioactive and non-radioactive effluents discharge in the environment. Finally, the radioactive materials and wastes generated by the facility are presented (type of waste, quantities, conditioning process). The document concludes with a presentation of the actions of communication and public information made by the direction of the facility. A glossary and the list of recommendations from the Committees for health, safety and working conditions are given in appendix

  12. Nuclear safety and radiation protection report of the Paluel nuclear facilities - 2013

    International Nuclear Information System (INIS)

    This safety report was established in accordance with articles L. 125-15 and L. 125-16 of the French environmental code. It presents, first, the NPPs (INBs no. 103, 104, 114 and 115). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2013, if any, are reported as well as the radioactive and non-radioactive effluents discharge in the environment. Finally, the radioactive materials and wastes generated by the facility are presented (type of waste, quantities, conditioning process). The document concludes with a presentation of the actions of communication and public information made by the direction of the facility. A glossary and the list of recommendations from the Committees for health, safety and working conditions are given in appendix

  13. What You Should Know About Pediatric Nuclear Medicine and Radiation Safety

    Science.gov (United States)

    ... Radiation Safety www.imagegently.org What is nuclear medicine? Nuclear medicine uses radioactive isotopes to create pictures of the human body. ... help doctors find health problems and plan treatment. Nuclear medicine tests can find infections, birth defects, injuries and ...

  14. Topical issues in nuclear, radiation and radioactive waste safety. Contributed papers

    International Nuclear Information System (INIS)

    The IAEA International Conference on Topical Issues in Nuclear, Radiation and Radioactive Waste Safety was held in Vienna, Austria, 30 August - 4 September 1998 with the objective to foster the exchange of information on topical issues in nuclear, radiation and radioactive waste safety, with the aim of consolidating an international consensus on: the present status of these issues; priorities for future work; and needs for strengthening international co-operation, including recommendations for the IAEA's future activities. The document includes 43 papers presented at the Conference dealing with the following topical issues: Safety Management; Backfitting, Upgrading and Modernization of NPPs; Regulatory Strategies; Occupational Radiation Protection: Trends and Developments; Situations of Chronic Exposure to Residual Radioactive Materials: Decommissioning and Rehabilitation and Reclamation of Land; Radiation Safety in the Far Future: The Issue of Long Term Waste Disposal. A separate abstract and indexing were provided for each paper

  15. Proceedings of the 5. Regional congress on radiation protection and safety; 2. Iberian and Latin American Congress on Radiological Protection Societies; Regional IRPA Congress

    International Nuclear Information System (INIS)

    The Fifth Regional Congress on Radiation Protection and Nuclear Safety has been held in Recife (Brazil), from 29th April to 4th May 2001. The congress was hosted by the Brazilian Radiation Protection Society, under the joint sponsorship of FRALC and UFPE-DEN Department of Nuclear Energy. Its designation as a Regional IRPA Congress has been requested. The main purpose of the meeting was to bring together professionals from the industry, universities and research laboratories to present and discuss the latest research results, and to review the state of the art on applied and fundamental aspects of the radiation protection. These specialists have talked about nuclear safety and radiological protection, radiation natural exposure, biological effect of radiation, radiotherapy and medical radiological safety, radiological safety in industry and research. In their discussions, also were included subjects related to radiological safety of nuclear and radioactive facilities, radioactive waste management, radioactive material transport, environmental radiological monitoring program, radiological emergency and accidents, instruments and dosimetry, basic safety standards of protection against radiation

  16. Report on the actual state of the basic, applied research and industrial applications of the radiation in Mexico

    International Nuclear Information System (INIS)

    In this report the main works of basic, applied research and industrial applications that are carried out in Mexico, about radiations (radiation chemistry, technology, applications, use and isotope production, etc.): infrastructure, radiation sources, groups and research programs are presented. (Author)

  17. Mobile phone radiation health risk controversy: the reliability and sufficiency of science behind the safety standards

    OpenAIRE

    Leszczynski Dariusz; Xu Zhengping

    2010-01-01

    Abstract There is ongoing discussion whether the mobile phone radiation causes any health effects. The International Commission on Non-Ionizing Radiation Protection, the International Committee on Electromagnetic Safety and the World Health Organization are assuring that there is no proven health risk and that the present safety limits protect all mobile phone users. However, based on the available scientific evidence, the situation is not as clear. The majority of the evidence comes from in ...

  18. On the strategy of the Republic of Tajikistan in the sphere of radiation safety

    International Nuclear Information System (INIS)

    Full text: Current situation. During the period of the USSR breakup, the radiation safety in the Republic of Tajikistan was not at the due level because of the secrecy of many problems. Population of Tajikistan practically was not informed about situation with the radiation safety around the tailing dumps of the Northern Tajikistan. In the 90 's of the past century, the infrastructure of the radiation safety of the RT was destroyed. At present, the strategy of the Republic of Tajikistan in the field of radiation safety for 2008-2015 is under development. There are 4 laws and 7 provisions on radiation safety in force in the Republic of Tajikistan. Aims and tasks of the Republic of Tajikistan in the sphere of radiation safety. The aim of the Republic of Tajikistan in the sphere of the radiation safety consists in creation of the highly efficient system in the sphere of RS. In order to achieve the aims of the strategy, it is proposed to resolve the following tasks: a) Conservation and re-cultivation of the uranium industry wastes; b) Strengthening the regulatory structure on the RS; c) Development and modernization of the radiotherapy and nuclear medicine; d) Development of the laboratories base on RS (at present, there is no control over the norms of RS); e) Production of a catalogue on the sites contaminated by radioactivity; f) Development of the map of the geo-pathogenous zones of the Republic; g) Reconstruction of the RCBRW; h) Physical protection of all the facilities using IRS; i) Issuing licenses in accordance with the Law of the Republic of Tajikistan 'On the Radiation Safety'; j) Transportation and burial of the spent RS; k) Personnel training and strengthening the materials and technological base. (author)

  19. Radiation Safety in Practice: Towards an International Safety Regime - the Role of the IAEA

    International Nuclear Information System (INIS)

    This paper presents the IAEA's activities in the area of building a harmonised global safety regime, and highlights some related challenges faced by the international nuclear community. Since 2008 marked the 50th commemorative anniversary of IAEA safety standards, the paper starts with the evolution of the process for developing safety standards and provides some examples of achieving a harmonised approach to safety. The paper also presents some near term and future challenges to be considered by the international nuclear community. (author)

  20. Medical management of radiation safety and control of ionizing radiation sources in Armenia

    International Nuclear Information System (INIS)

    The events of the last 10 years, Spitak earthquake (1988) and collapse of the former USSR brought forth the changes of the political situation in Armenia and significant disorder in economy, industry, relations, including the radiation safety (RS) and control of the organization of the activities connected with the ionizing radiation sources (IRSs). In 1989 the Armenian Nuclear Power Plant was shut down, and in 1994 it was restarted. In Armenia there are about 750 X-ray rooms, 10 radionuclide diagnostic laboratories, 20 gamma and X-ray units; 95 enterprises in industry, science and technology use the IRSs with different purposes, there are 5 electron particle accelerators of different power capacity. About 6,000 individuals have constant contact to IRS: the roentgenologists, radiologists, the staff of NPP, accelerators, etc. Besides, more than 3,000 liquidators of the Chernobyl NPP disaster live in Armenia. Nowadays, the precise infrastructure of RS is established in Armenia. The regulating body is the 'State Atom Authority', performing the control, coordination and licensing of both enterprises and specialists. Ministry of Health Ministry of Internal Affairs, Ministry of Ecology perform the control of IRSs' delivery into the Republic of Armenia and then their proper use and waste disposal in Armenia. (author)

  1. Science and regulation 50 years hand in hand in radiation safety work in Finland

    International Nuclear Information System (INIS)

    The first predecessor of the present Nuclear and Radiation Safety Authority of Finland (STUK) was founded in 1958 to regulate the use of radiation and to study artificial radiation in the environment. In those days radiation was used only in medical and industrial applications and there were also first indications that atmospheric nuclear tests might cause significant exposure to radiation, especially in the Northern Finland. Focusing activities of the new Institute of Radiation Physics, as STUK was called in those days, to these two activities laid foundation for the operations culture where regulators and scientists work together to achieve the optimum level of safety. Since those early days STUK has continued this operations model and developed it to include also other activities. Today STUK is the national regulatory body for both radiation protection and nuclear safety, but at the same time it is a research organisation and an expert body, supporting for instance the national emergency preparedness for nuclear and radiation accidents. This has brought great synergy benefits and given STUK an opportunity to use the limited national resources in the most effective way. This paper describes the main functions of STUK in its fifty years' operation and highlights the arguments favouring to keep regulatory and research activities as close to each other as possible. In today's world nuclear safety, radiation protection, and radiological preparedness and security issues are so closely connected with each other that organisations dealing with them should have comprehensive knowledge about all of them. (author)

  2. Applying Qualitative Hazard Analysis to Support Quantitative Safety Analysis for Proposed Reduced Wake Separation Conops

    Science.gov (United States)

    Shortle, John F.; Allocco, Michael

    2005-01-01

    This paper describes a scenario-driven hazard analysis process to identify, eliminate, and control safety-related risks. Within this process, we develop selective criteria to determine the applicability of applying engineering modeling to hypothesized hazard scenarios. This provides a basis for evaluating and prioritizing the scenarios as candidates for further quantitative analysis. We have applied this methodology to proposed concepts of operations for reduced wake separation for closely spaced parallel runways. For arrivals, the process identified 43 core hazard scenarios. Of these, we classified 12 as appropriate for further quantitative modeling, 24 that should be mitigated through controls, recommendations, and / or procedures (that is, scenarios not appropriate for quantitative modeling), and 7 that have the lowest priority for further analysis.

  3. International Expert Team Concludes IAEA Peer Review of Poland's Regulatory Framework for Nuclear and Radiation Safety

    International Nuclear Information System (INIS)

    Full text: International safety experts last week concluded a two-week International Atomic Energy Agency (IAEA) mission to review the regulatory framework for nuclear and radiation safety in Poland. In its preliminary report, the Integrated Regulatory Review Service (IRRS) mission team found that Poland's nuclear regulator, Panstwowa Agencja Atomistyki (PAA), has a clear commitment to safety, a high level of transparency, competent staff and leadership, and a good recognition of challenges ahead related to Poland's efforts to develop nuclear power. ''Poland's regulatory framework and the work of PAA give high confidence of strong radiation protection for the Polish people. Further, there has been significant progress in the development of Poland's regulatory framework in preparation for the challenge of regulating nuclear power,'' said team leader Robert Lewis, a senior executive in the US Nuclear Regulatory Commission. The mission was conducted at the request of the Government of Poland from 15-25 April. The team was made up of 11 regulatory experts from Belgium, the Czech Republic, Finland, France, the Republic of Korea, Slovakia, Slovenia, Sweden, the United Arab Emirates, the United Kingdom and the United States, as well as five IAEA staff members. The IRRS review team was very thorough in its review, and we welcome its advice on how to continue to improve our programmes to protect people and the environment, said Janusz Wlodarski, President of PAA. The team interviewed members of PAA and officials from various ministries, as well as key players in the Polish safety framework. Such IRRS missions are peer reviews based on IAEA Safety Standards, not inspections or audits. Among its main observations the IRRS review team identified the following good practices: Applying the considerable experience of PAA's senior management to regulatory issues; The introduction of changes to Poland's laws and regulations following broad public consultation at an early stage in

  4. IAEA safety glossary. Terminology used in nuclear, radiation, radioactive waste and transport safety. Version 1.0. Working material

    International Nuclear Information System (INIS)

    The IAEA safety standards for nuclear installations, radiation protection, radioactive waste management and the transport of radioactive materials have been historically developed in four separate programmes, each of them developing its own terminology. The purpose was to explain the meaning of technical terms that might be unfamiliar to a reader; to explain any special meanings assigned to common words or terms and to define precisely how terms are used in particular publications to avoid ambiguity concerning some important aspects of their meaning. It is intended primarily to provide guidance to the drafters and reviewers of Agency safety related publications, including IAEA Technical officers, consultants and members of Technical Committees, Advisory Groups and safety standards advisory bodies. It is also likely to be a useful source of information for other Agency staff, notably editors and translators, and for external users of IAEA safety related publications

  5. Critical Characteristics of Radiation Detection System Components to be Dedicated for use in Safety Class and Safety Significant System

    International Nuclear Information System (INIS)

    This document identifies critical characteristics of components to be dedicated for use in Safety Significant (SS) Systems, Structures, or Components (SSCs). This document identifies the requirements for the components of the common, radiation area, monitor alarm in the WESF pool cell. These are procured as Commercial Grade Items (CGI), with the qualification testing and formal dedication to be performed at the Waste Encapsulation Storage Facility (WESF) for use in safety significant systems. System modifications are to be performed in accordance with the approved design. Components for this change are commercially available and interchangeable with the existing alarm configuration This document focuses on the operational requirements for alarm, declaration of the safety classification, identification of critical characteristics, and interpretation of requirements for procurement. Critical characteristics are identified herein and must be verified, followed by formal dedication, prior to the components being used in safety related applications

  6. Applying Hamming Code to Memory System of Safety Grade PLC (POSAFE-Q) Processor Module

    International Nuclear Information System (INIS)

    If some errors such as inverted bits occur in the memory, instructions and data will be corrupted. As a result, the PLC may execute the wrong instructions or refer to the wrong data. Hamming Code can be considered as the solution for mitigating this mis operation. In this paper, we apply hamming Code, then, we inspect whether hamming code is suitable for to the memory system of the processor module. In this paper, we applied hamming code to existing safety grade PLC (POSAFE-Q). Inspection data are collected and they will be referred for improving the PLC in terms of the soundness. In our future work, we will try to improve time delay caused by hamming calculation. It will include CPLD optimization and memory architecture or parts alteration. In addition to these hamming code-based works, we will explore any methodologies such as mirroring for the soundness of safety grade PLC. Hamming code-based works can correct bit errors, but they have limitation in multi bits errors

  7. Nuclear safety criteria applied in site selection - the practice in France

    International Nuclear Information System (INIS)

    In France, the safety of nuclear facilities is the responsibility of the Ministry for Industry and Research (Central Department for the Safety of Nuclear Facilities). The first part of the paper deals with the conception and contents of the site studies which are included in a safety report with the object of obtaining authorization to go ahead with work on the establishment of a facility. The conception is governed by the following two considerations: (a) the site is a place where the natural elements and living organisms occur and which is characterized by the permanent presence of the human factor, while the proposed nuclear facility will - like any industrial facility - present risks and have an impact on the site, particularly through the discharge of radioactive effluent and potentially in consequence of a nuclear accident; (b) the site exercises an influence - in fact, it even imposes constraints - on the nuclear facility. The site study as submitted by the operators to the authorities responsible for the safety evaluation traditionally consists of six sections, covering: (I) description and history of the site; (II) meteorological conditions; (III) hydrology of the area; (IV) geological and seismological conditions; (V) ecological factors; (VI) natural and/or previous radioactivity at the site. These six sections contain the data which serve as a basis for applying the two considerations spelled out above. However, the two corresponding directions of study and analysis do not settle the fundamental problem of the distribution of the population around the site. Methods for dealing with this problem are suggested in the second part of the paper; they take into account the efforts made so far at the international level. The authors consider that limiting criteria should not be based solely on the radioactive effluent discharges associated with normal operation but on the radioactivity releases associated with accidents. The methods proposed by them constitute

  8. A Methods and procedures to apply probabilistic safety Assessment (PSA) techniques to the cobalt-therapy process. Cuban experience

    International Nuclear Information System (INIS)

    This paper presents the results of the Probabilistic Safety Analysis (PSA) to the Cobalt Therapy Process, which was performed as part of the International Atomic Energy Agency's Coordinated Research Project (CRP) to Investigate Appropriate Methods and Procedures to Apply Probabilistic Safety Assessment (PSA) Techniques to Large Radiation Sources. The primary methodological tools used in the analysis were Failure Modes and Effects Analysis (FMEA), Event Trees and Fault Trees. These tools were used to evaluate occupational, public and medical exposures during cobalt therapy treatment. The emphasis of the study was on the radiological protection of patients. During the course of the PSA, several findings were analysed concerning the cobalt treatment process. In relation with the Undesired Events Probabilities, the lowest exposures probabilities correspond to the public exposures during the treatment process (Z21); around 10-10 per year, being the workers exposures (Z11); around 10-4 per year. Regarding to the patient, the Z33 probabilities prevail (not desired dose to normal tissue) and Z34 (not irradiated portion to target volume). Patient accidental exposures are also classified in terms of the extent to which the error is likely to affect individual treatments, individual patients, or all the patients treated on a specific unit. Sensitivity analyses were realised to determine the influence of certain tasks or critical stages on the results. As a conclusion the study establishes that the PSA techniques may effectively and reasonably determine the risk associated to the cobalt-therapy treatment process, though there are some weaknesses in its methodological application for this kind of study requiring further research. These weaknesses are due to the fact that the traditional PSA has been mainly applied to complex hardware systems designed to operate with a high automation level, whilst the cobalt therapy treatment is a relatively simple hardware system with a

  9. Study of radiation safety conditions in different hospitals in Nepal

    International Nuclear Information System (INIS)

    Radiology in Nepal began in 1923, but the current date niguna no infrastructure in radiation protection to control the use of ionizing radiation in different areas. Only recently Nepal is part of the IAEA and this should be a support and an acceleration creating the right conditions. The purpose of this study was to determine the status of radiation protection in medicine. Due to the lack of regulation, monitoring or quality control, not even recommended.

  10. Development of radiation safety monitoring system at gamma greenhouse gamma facility

    International Nuclear Information System (INIS)

    This paper is discussing about installation of radiation safety monitoring system at Gamma Greenhouse Gamma facility, Agrotechnology and Bioscience Division (BAB). This facility actually is an outdoor type irradiation facility, which first in Nuclear Malaysia and the only one in Malaysia. Source Cs-137 (801 Curie) was use as radiation source and it located at the centre of 30 metres diameter size of open irradiation area. The radiation measurement and monitoring system to be equipped in this facility were required the proper equipment and devices, specially purpose for application at outside of building. Research review, literature study and discussion with the equipment manufacturers was being carried out, in effort to identify the best system should be developed. Factors such as tropical climate, environment surrounding and security were considered during selecting the proper system. Since this facility involving with panoramic radiation type, several critical and strategic locations have been fixed with radiation detectors, up to the distance at 200 meter from the radiation source. Apart from that, this developed system also was built for capable to provide the online real-time reading (using internet). In general, it can be summarized that the radiation safety monitoring system for outdoor type irradiation facility was found much different and complex compared to the system for indoor type facility. Keyword: radiation monitoring, radiation safety, Gamma Greenhouse, outdoor irradiation facility, panoramic radiation. (Author)

  11. The radiation techniques of tomotherapy & intensity-modulated radiation therapy applied to lung cancer

    OpenAIRE

    Zhu, Zhengfei; Fu, Xiaolong

    2015-01-01

    Radiotherapy (RT) plays an important role in the management of lung cancer. Development of radiation techniques is a possible way to improve the effect of RT by reducing toxicities through better sparing the surrounding normal tissues. This article will review the application of two forms of intensity-modulated radiation therapy (IMRT), fixed-field IMRT and helical tomotherapy (HT) in lung cancer, including dosimetric and clinical studies. The advantages and potential disadvantages of these t...

  12. Automated Radiation Measurements for Aviation Safety (ARMAS) Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Commercial aircrew members and frequent flyers face radiation hazards from the effects of cosmic rays and solar energetic particles. During significant solar...

  13. ENSURING RADIATION SAFETY AT THE XXVII WORLD SUMMER UNIVERSIADE IN KAZAN BY ROSPOTREBNADZOR BODIES AND ORGANIZATIONS Communication 1. Ensuring radiation safety at the preparatory phase

    Directory of Open Access Journals (Sweden)

    G. G. Onischenko

    2013-01-01

    Full Text Available After the terrorist attack at theBostonMarathon, Federal and Republican executive bodies took increased security measures during the XXVII World Summer Universiade inKazan. Bodies and Organizations of the Federal Service for Surveillance on Consumer Rights Protection and Human Well-being (Rospotrebnadzor were participants of all preparatory activities and directly provided security of the Student Games inKazan. This report analyzes the experience of providing radiation safety by Rospotrebnadzor experts at the stage of preparation for the Universiade. So far, Rospotrebnadzor organizations had no experience of providing radiation safety of such large-scale events. Analysis of the performed work with account for both positive and negative experiences is especially important in the context of preparations for the safety providing of the Olympic Winter Games inSochiin 2014. 

  14. Assessment of occupational exposure due to external sources of radiation. Safety guide

    International Nuclear Information System (INIS)

    Occupational exposure to ionizing radiation can occur in a range of industries, medical institutions, educational and research establishments and nuclear fuel cycle facilities. Adequate radiation protection of workers is essential for the safe and acceptable use of radiation, radioactive materials and nuclear energy. The three Safety Guides on occupational radiation protection are jointly sponsored by the IAEA and the International Labour Office. The Agency gratefully acknowledges the contribution of the European Commission to the development of the present Safety Guide. The present Safety Guide addresses the assessment of exposure due to external sources of radiation in the workplace. Such exposure can result from a number of sources within a workplace, and the monitoring of workers and the workplace in such situations is an integral part of any occupational radiation protection programme. The assessment of exposure due to external radiation sources depends critically upon knowledge of the radiation type and energy and the conditions of exposure. The present Safety Guide reflects the major changes over the past decade in international practice in external dose assessment

  15. Radiation safety culture for developing country. Adoption of the minimum operational radiation protection programme in developing country

    International Nuclear Information System (INIS)

    The purpose for this document was to present some Itemization about the Minimum Radiation safety Requirements and an Integrated strategy Aiming at Establishing an Adequate Infrastructure for developing country, non major power reactor programme. The capacity for its implementation will allow these countries, about 50% of the IAEA's Member States, to improve marginal radiation protection, specially those recipients of technical assistance and do not meet the minimum requirements of the IAEA's Basic Safety Standards for Radiation Protection, reasonably progress in the implementation of safety regulations depends on the concept of priority of the government and its understanding and conviction about the basic requirements for protection against the risks associated with exposure to ionizing radiation. Considering the above assumption, there is no doubt to conclude that reasons for the deficiency of sources control and dose limitation in many countries, are related to the lack of an appropriate legal and regulatory framework, specially considering the establishment of: an adequate legislation; a minimum legal infrastructure; a minimum operational radiation safety programme; alternatives for a point of optimum contact among competent authorities in the country, dealing with similar type of licensing and inspection. (author)

  16. Consideration of Radiation Dose Terms of the Korea Nuclear Safety Act for Evaluation of Dose Limit of Radiation Workers

    International Nuclear Information System (INIS)

    'Peepok-bangsaseolyang' is a term defined as the sum of the radiation doses exposed externally and internally according to Subparagraph 19 of Article 2 of the Korea Nuclear Safety Act (KNSA). Table 1 of Enforcement Decree of the KNSA provides effective dose limit and equivalent dose limit for radiation workers. Dose limit is the upper limit of Peepok-bangsaseolyang according to Subparagraph 5 of Article 2 of Enforcement Decree of the KNSA. Notice of Korea Nuclear Safety and Security (KNSSC) No.2012-29 defines effective dose and equivalent dose. To utilize these requirements for dose limit of radiation workers, a simple diagram of all kind of radiation doses described in the KNSA, called 'dose pedigree of Peepok-bangsaseolyang' has been developed. This dose pedigree of Peepok-bangsaseolyang is described herein, and, in order to be available more effectively in our regulatory system, some suggestions are presented

  17. Radiation safety control on Ulchin NPP Unit 1 s/g sleeving

    International Nuclear Information System (INIS)

    Ulchin NPP unit 1 has been entered its tenth operation year. As the operation years went by, S/G tubes' defects have been reported, which was analyzed mainly due to PWSCC through ECT and various studies. In the ninth overhaul, technical staffs of Ulchin unit 1 decided to do sleeve installation for defected tubes. This sleeve installation was a second experience on our plant in KEPCO. The sleeving tubes were estimated to 600 pieces, but increased to 987 pieces by ECT results. As the sleeve installation was performed in high radiation level, we have considered various radiation safety, i e. protection of radiation source and internal exposure. The collective radiation exposure dose was recorded to 142.32 man-mSv and no internal exposed person was discovered. But there are some requirements to improve radiation safety for reducing exposure dose to radiation. PWSCC : Primary Water Side Stress Corrosion Crack (author)

  18. Importance of the Radiations Safety officer in the optimisation of occupational doses

    International Nuclear Information System (INIS)

    The decree 86-1103 of October 2 1986, relating to the protection of the health of workers and the general public against the dangers arising from ionizing radiation, describes the function and the tasks of radiation safety officers. In article 17, we can read In any institution concerned by this present decree, handling and use of radioactive sources or electrical generator, of ionizing radiation, shall always be carried out under the surveillance of a RADIATION SAFETY OFFICER. This officer is designated by the employer and has attended a radiation protection course successfully. This radiation protection course consists in a few days course given by a registered institution. Health institutions are concerned by this decree just like any company, except nuclear power plant. (Author)

  19. Applied Strategies for Improving Patient Safety: A Comprehensive Process To Improve Care in Rural and Frontier Communities

    Science.gov (United States)

    Westfall, John M.; Fernald, Douglas H.; Staton, Elizabeth W.; VanVorst, Rebecca; West, David; Pace, Wilson D.

    2004-01-01

    Medical errors and patient safety have gained increasing attention throughout all areas of medical care. Understanding patient safety in rural settings is crucial for improving care in rural communities. To describe a system to decrease medical errors and improve care in rural and frontier primary care offices. Applied Strategies for Improving…

  20. Sports injuries, drowning and exposure to radiation concern Canada Safety Council meeting

    International Nuclear Information System (INIS)

    Hazards associated with surface sports, aquatic sports and exposure to radiation were considered at a meeting of the Canada Safety Council in late 1979. The session on radiation noted that 6 of 20000 radiation workers wearing dosimeters were exposed to a dose in excess of 5 rem, the annual limit set by the Atomic Energy Control Board. Radiographers were in the job classification receiving the highest doses of ionizing radiation. Concern was expressed for the emission of damaging radiation from broken mercury vapour lamps. Increased regulation rather than training was seen as the most effective solution. (T.I.)

  1. The radiation safety information computational center (RSICC) - Forty years of nuclear knowledge management

    International Nuclear Information System (INIS)

    Established in 1962, RSICC has seen 40 years of research and growth in the areas of radiation transport, radiation shielding, and radiation safety. During this period, the use of computers was initiated and RSICC has been innovative in the knowledge management of the products (software and data) developed within the user community. RSICC technology base includes about 1400 computer codes and about 300 data packages, representing the legacy of many scientists, both living and dead. Over the years, more than 5000 scientists have used the center at one time or another. Today, the number of registered users is close to 5000. Through software and data dissemination, RSICC has served as the focal point for this network of researchers, and promoted the exchange and enhancement of technology. In 1994, RSIC was changed to Radiation Safety Information Computational Center (RSICC), a change that was dictated by wider application of RSICC's software collection and rapidly moving Internet technology. RSICC's mission is to provide in-depth coverage of the radiation transport field to meet the needs of the international shielding community. RSICC collects, organizes, evaluates and disseminates technical information involving shielding and protection from the radiation associated with fission and fusion reactors, outer space, accelerators, weapons, medical facilities, and nuclear waste management. The Center provides in-depth coverage of radiation transport topics: - Radiation production and sources, - Criticality safety, - Radiation protection and shielding, - Radiation detectors and measurements, - Shielding materials properties, - Radiation waste management, - Shields and shipping cask design, - Radiation safety and assessment, - Atmospheric dispersion and environmental dose, - The physics of the interaction of radiation with matter. In support of a number of government-sponsored programs, RSICC - Collects, maintains, analyzes, and distributes technical computing software in

  2. General radiation hygiene and safety aspects in dental radiography

    International Nuclear Information System (INIS)

    A presentation of all essential aspects concerning practical radiation hygiene in dental radiography is given. The report reflects the established opinion and practice of the National Institute of Radiation Hygiene evolved through many years of experience in this field. The principal target group includes all dental staff members in Norway

  3. Radiation safety audit of a high volume Nuclear Medicine Department

    International Nuclear Information System (INIS)

    Professional radiation exposure cannot be avoided in nuclear medicine practices. It can only be minimized up to some extent by implementing good work practices. The aim of our study was to audit the professional radiation exposure and exposure rate of radiation worker working in and around Department of nuclear medicine and molecular imaging, Tata Memorial Hospital. We calculated the total number of nuclear medicine and positron emission tomography/computed tomography (PET/CT) procedures performed in our department and the radiation exposure to the radiation professionals from year 2009 to 2012. We performed an average of 6478 PET/CT scans and 3856 nuclear medicine scans/year from January 2009 to December 2012. The average annual whole body radiation exposure to nuclear medicine physician, technologist and nursing staff are 1.74 mSv, 2.93 mSv and 4.03 mSv respectively. Efficient management and deployment of personnel is of utmost importance to optimize radiation exposure in a high volume nuclear medicine setup in order to work without anxiety of high radiation exposure

  4. Nuclear Reactor RA Safety Report, Vol. 9, Radiation protection

    International Nuclear Information System (INIS)

    Instrumentation for Radiation protection existing at the RA reactor is dating mostly from the period 1957-1959 when the reactor has been built. With some minor exception it was produced in USSR. Radiation protection system was constructed based on specific design project, somewhat modified original USSR project which has been indispensable because of some modification of the building design. During the past 27 years no renewal of the instrumentation was done, only maintenance was performed. Instrumentation consists of old electronic devices which caused difficulties and even prevented regular maintenance because of lack of spare parts. Instrumentation for radiation protection at the RA reactor is classified as follows: centralized dosimetry system; stationary dosimetry instrumentation, movable and personal dosimetry systems. Apart from the scheme of dosimetry instrumentation this volume includes description of radiation protection procedures; protection devices; radiation doses and dose limit data; program for environmental radioactivity control; medical control procedures

  5. Post-graduate course on radiation protection and nuclear safety. Vol. 1,2

    International Nuclear Information System (INIS)

    The course handbook on radiation protection and nuclear safety containing two parts some was prepared mainly by scientists of the Nuclear Regulatory Authority (ARN) of the Argentine Republic, under the auspices of the International Atomic Energy Agency. The contents o this handbook have the principals aspects: radiation detection, radio dosimetry, biological effects of the ionizing radiation, occupational exposure, environmental effects, contamination and decontamination, radioactive waste management, transport of radioactive materials, medical and industrial applications and the Argentine regulatory system

  6. Proceedings of the 9th annual meeting of Japanese Society of Radiation Safety Management 2010 Hiroshima

    International Nuclear Information System (INIS)

    This is the entitled program and proceedings held from December 1st through 3rd of 2010. The sessions including poster, invited/special speeches etc. are exposure reduction and dose level evaluation, shielding design, radioactive waste handling and its effective use, radiation measurement, safety control of radiation source, radioactive waste management (aerosol, liquid), education on radiation, molecular imaging, image analysis, radioactivity in environment, contamination inspection. (J.P.N)

  7. Training requirements for persons with specific radiation safety roles defined in United Kingdom legislation

    International Nuclear Information System (INIS)

    This article describes the respective roles of key persons who have specific responsibilities under United Kingdom (UK) legislation for ensuring that work with sources of ionising radiation is undertaken safely. It also considers the training requirements for these people and how they are typically addressed. Particular focus is placed on the roles of persons who directly supervise work with ionising radiation and the qualified experts who provide advice on radiation protection legislation and safety requirements. (orig.)

  8. Law on protection against ionising radiation and nuclear safety in Slovenia

    International Nuclear Information System (INIS)

    The existing legislation related to nuclear and radiation safety in Slovenia was introduced in 80's. The necessity for the new law is based on the new radiation safety standards (ICRP 60) and the intention of Slovenia to harmonize the legislation with the European Union. The harmonization means adoption of the basic safety standards and other relevant directives and regulations of Euratom. The nuclear safety section of this law is based on the legally binding international conventions ratified by Slovenia. The general approach is similar to that of some members of Nuclear Energy Agency (OECD). The guidelines of the law were set by the Ministry of the Environment and Spatial Planning, Nuclear Safety Administration, and Ministry of Health. The expert group of the Ministry of Environment and Spatial Planning and the Ministry of Health together with the representatives of the users of the ionising sources and representatives of the nuclear sector, prepared the draft of the subject law. The emphasis in this paper is given to main topics and solutions related to the control of the occupationally exposed workers, radiation safety, licensing, nuclear and waste safety, and radiation protection of people and patients. (authors)

  9. Research projects of the Finnish Centre for Radiation and Nuclear Safety 1996-1997

    International Nuclear Information System (INIS)

    The research activities of the Finnish Centre for Radiation and Nuclear Safety (STUK) are based on the Centre's primary task of preventing and restricting adverse effects of radiation. As a rule, studies concerning nuclear safety (part 1 of the publication) are studies originating from the regulatory function of STUK; these are directed and funded by the Centre but the Centre does not carry them out itself. In contrast, studies dealing with radiation exposure and health risks (part 2 of the publication) are conducted by the Centre itself, often in cooperation with some other research institute or university. Results of these studies are published in open scientific literature

  10. Radiation safety infrastructure in developing countries: a proactive approach for integrated and continuous improvement

    International Nuclear Information System (INIS)

    The International Atomic Energy Agency (the Agency) is authorized, by its statute, to establish or adopt safety standards for the protection of health and minimization of danger to life and property, and to provide for their application to its own operations as well as to operations under its control or supervision. The Agency has been assisting, since the mid 1960's, its Member States through mainly its Technical Cooperation Programme (TCP) to improve their national radiation safety infrastructures. However up to the early nineties, assistance was specific and mostly ad hoc and did not systematically utilize an integrated and harmonized approach to achieving effective and sustainable national radiation safety infrastructures in Member States. An unprecedented and integrated international cooperative effort was launched by the Agency in 1994 to establish and/or upgrade the national radiation safety infrastructure in more than 90 countries within the framework of its TCP through the so-called Model Project on Upgrading Radiation Protection Infrastructure. In this project proactive co-operation with Member States was used in striving towards achieving an effective and sustainable radiation safety infrastructure, compatible with the International Basic Safety Standards for Protection against Ionizing Radiation and for the Safety of Radiation Sources (the BSS) and related standards. Extension to include compatibility with the guidance of the Code of Conduct on the Safety and Security of Radioactive Sources occurred towards the end of the Model Project in December 2004, and with the more recent ensuing follow up projects that started in 2005. The Model Project started with 5 countries in 1994 and finished with 91 countries in 2004. Up to the end of 2007 more than one hundred Member States had been participating in follow up projects covering six themes - namely: legislative and regulatory infrastructure; occupational radiation protection; radiation protection in medical

  11. Radiation safety infrastructure in developing countries: a proactive approach for integrated and continuous improvement

    International Nuclear Information System (INIS)

    The International Atomic Energy Agency (the Agency) is authorized, by its statute, to establish or adopt safety standards for the protection of health and minimization of danger to life and property, and to provide for their application to its own operations as well as to operations under its control or supervision. The Agency has been assisting, since the mid 1960 's, its Member States through mainly its Technical Cooperation Programme (TCP) to improve their national radiation safety infrastructures. However up to the early nineties, assistance was specific and mostly ad hoc and did not systematically utilize an integrated and harmonized approach to achieving effective and sustainable national radiation safety infrastructures in Member States. An unprecedented and integrated international cooperative effort was launched by the Agency in 1994 to establish and/or upgrade the national radiation safety infrastructure in more than 90 countries within the framework of its TCP through the so-called Model project on upgrading radiation protection infrastructure. In this project proactive co-operation with Member States was used in striving towards achieving an effective and sustainable radiation safety infrastructure, compatible with the International basic safety standards for protection against ionizing radiation and for the safety of radiation sources (the BSS) and related standards. Extension to include compatibility with the guidance of the Code of Conduct on the Safety and Security of Radioactive Sources occurred towards the end of the Model Project in December 2004, and with the more recent ensuing follow up projects that started in 2005. The Model Project started with 5 countries in 1994 and finished with 91 countries in 2004. Up to the end of 2007 more than one hundred Member States had been participating in follow up projects covering six themes - namely: legislative and regulatory infrastructure; occupational radiation protection; radiation protection in

  12. Plus 90 and counting: Countries rise to the challenge of radiation safety

    International Nuclear Information System (INIS)

    Full text: Radiation science is the source of tools and technologies that help to address some of the most pressing issues of our times - human health, food and agriculture, industry, energy and environmental management. In many cases, the data and information gathered by applying radiation-based technologies simply cannot be obtained through any other means. Nor can the impressive results. Consider these figures. On average, over 25 million nuclear imaging procedures are carried out per year around the world to diagnose disease; annually, almost 10 million people benefit from radiopharmaceuticals (radioactive drugs), often in the context of cancer treatment. At the same time, advanced molecular and radioisotope techniques are being used to develop more effective measures to combat infectious diseases such as malaria, hepatitis, and tuberculosis. Techniques to fortify staple food crops provide vital nutrients to populations that have enough to eat, but lack the variety needed to be well-nourished. The ability to eliminate harmful bacteria and pests from the surface of raw produce enhances storage and transport - and opens opportunities to export markets. Radiation-based technologies, many of which have proven effective over decades of use in the developed world, now contribute to virtually every sector of society. In keeping with the underlying principles of the United Nations, the IAEA is committed to ensuring that all of its Member States have equal access to the advantages offered by these powerful tools. In return, the States must accept the responsibility for protecting the public and the environment from radiation exposure. Yet about once every other day, authorities at one of the world's busiest ports Rotterdam in The Netherlands detect radioactive material in shipments of scrap metal coming through their docks. Mostly the sources of radiation are pieces of old hospital equipment or industrial instruments that do not pose high health risks. The scrap metal

  13. National training course on radiation safety, Its insertion in the cuban system of education and training

    International Nuclear Information System (INIS)

    The Center for Radiation Protection and Hygiene has been organizing, since more than ten years, the national training course on Radiation Safety, taking into account the particular needs of the Country in this area. The curriculum of the course, after some years of improvements, is showed and some aspects related to its design and insertion in the national system of education and training in Radiation Safety are discussed. The maintenance of an updated database of participants has demonstrated to be a very useful tool for dissemination of knowledge in Radiation Safety and for a continuously improvement of the imparted courses and offered services. The importance of the participation of the Regulatory Authority in the Course, from its organization phase, is also stressed

  14. Proceedings of the 6. Argentine congress on radiation protection and nuclear safety

    International Nuclear Information System (INIS)

    The 6th Argentine Congress on Radiation Protection and Nuclear Safety was organized by the Radioprotection Argentine Society, in Buenos Aires, between the 22 and 24 of september of 1998. In this event, were presented almost 66 papers in the following sessions, about these subjects: 1.- Safety in nuclear installations. 2.- Control of nuclear material and physical protection of nuclear installations. 3.- Programs of quality assurance. 4.- Training, technical information and public information. 5.- Physical dosimetry. 6.- Physical dosimetry and occupational radiation protection. 7.- Exposure of the natural radiation. 8.- Environmental radiological safety. 9.- Biological effects of the ionizing radiations and biological dosimetry. 10.- Radiological protection of the medical practice and the radiological emergencies. 11.- Radioactive wastes management. 12.- Transport of radioactive materials

  15. EDF - The Inspector General's report on Nuclear Safety and Radiation Protection 2012

    International Nuclear Information System (INIS)

    After a first chapter in which the Inspector General states his own vision of facts and results regarding nuclear safety and radiation protection for 2012, the next chapters address the following topics: the contrasted results of nuclear operating safety, the need to remain vigilant in nuclear safety management, the challenge of occupational safety, the need of new ambitious goals for radiation protection, an updated training which must be better led by line management, maintenance as a strategic issue, the long road ahead for nuclear technical information system (SDIN), the need of better attention to chemistry in operations, the new impetus of EPRs, plant life extension conditioned by nuclear safety, the mobilization of nuclear operators after Fukushima, and noteworthy operating events

  16. Report on administrative work at radiation safety center in fiscal year 2000

    Energy Technology Data Exchange (ETDEWEB)

    Uda, Tatsuhiko; Sakuma, Yoichi; Kawano, Takao; Yamanishi, Hirokuni; Shinotsuka, Kazunori; Asakura, Yamato; Miyake, Hitoshi

    2002-05-01

    National Institute for Fusion Science constructed Large Helical Device (LHD) which is the largest magnetic confinement plasma experimental device using super conductive magnet coils. It took eight years to construct and the first plasma shot had been carried out on March 1998. Since then plasma confinement experiments have been improved. This is the report of administrative work at the radiation safety center considering radiation protection for workers at the LHD and related devices, and radiation monitoring in the site. Major scope is as follows. (1) Radiation measurement and dose monitoring in the radiation controlled area and in the site using particularly developed monitoring system named as Radiation Monitoring System Applicable to Fusion Experiments (RMSAFE). (2) Establishment of education and registration system for radiation workers and access control system for the LHD controlled area. I hope that as like the published report of fiscal year 1999, the present report will be helpful for management of future radiation protection in the research institute. (author)

  17. Report on administrative work at radiation safety center in fiscal year 2000

    International Nuclear Information System (INIS)

    National Institute for Fusion Science constructed Large Helical Device (LHD) which is the largest magnetic confinement plasma experimental device using super conductive magnet coils. It took eight years to construct and the first plasma shot had been carried out on March 1998. Since then plasma confinement experiments have been improved. This is the report of administrative work at the radiation safety center considering radiation protection for workers at the LHD and related devices, and radiation monitoring in the site. Major scope is as follows. (1) Radiation measurement and dose monitoring in the radiation controlled area and in the site using particularly developed monitoring system named as Radiation Monitoring System Applicable to Fusion Experiments (RMSAFE). (2) Establishment of education and registration system for radiation workers and access control system for the LHD controlled area. I hope that as like the published report of fiscal year 1999, the present report will be helpful for management of future radiation protection in the research institute. (author)

  18. Some elementary concepts of radiation health and safety in underground uranium mines

    International Nuclear Information System (INIS)

    Some elementary concepts of radiation health and safety in underground uranium mines are discussed. This report reviews the main radiation sources which contribute to the contamination of mine atmospheres and hence to the exposure of mine workers. A brief discussion of the biological effects of ionizing radiation, with special reference to radon and its progeny, is followed by the introduction of the presently accepted radiation indexes for radiation hazard (WL) and radiation exposure (WLM). Finally, a succinct review of the available techniques for radiation control and monitoring in underground uranium mines is complemented by a discussion of various methods of personnel radiation protection, including the use of respirators, job rotation, personnel dosimetry and medical surveillance

  19. Guidebook on radiation shielding safety for nuclear fuel facilities Q and A volume

    International Nuclear Information System (INIS)

    The Q and A volume of 'Guidebook on Radiation Shielding Safety for Nuclear Fuel Facilities' describes questions and answers which are commonly raised by the novices of shielding design and shielding safety evaluation. In this report, there are about 40 sets of Q and A which are classified by 7 different subjects, namely, (1) outlines of shielding, (2) methodology of shielding design, (3) shielding materials, (4) bulk shielding, (5) streaming, (6) skyshine, and (7) certification of shielding performance. The draft of the report has been discussed and summarized by the members of the specialists group for demonstration of shielding safety by analysis, committee for safety research on nuclear facilities. (author)

  20. Proceedings of the 5th annual meeting of Japanese Society of Radiation Safety Management 2006 Nagoya

    International Nuclear Information System (INIS)

    This is the program and the proceedings of the 5th annual meeting of Japanese Society of Radiation Safety Management held from November 29th through December 1st of 2006. The sessions held are: (1) Radiation Measurement 1, (2) Education Method, (3) Radiation Control, (4) Waste Handling, Contamination Inspection, and Renewal, (5) Exposure Reduction, Radiation Evaluation, and Radioactivity Control (6) Radiation Measurement 2, (7) Operation Environment, (8) Medical Exposure, (9) Radiation Measurement 3, (10) Software, IT Technology, and Data Processing, (11) Emission and Drainage Handling, and (12) Radiation Effect and Contamination Countermeasure. The poster sessions held are: (1) Radiation Measurement, (2) Environmental Radiation, (3) Scattering Rate, Penetration Rate, and Contamination Inspection, (4) Education Method, (5) Medical Exposure, (6) Access Control and Software, and (7) Radiation Control Method and Monitoring. The symposia held are: (1) 'Toward Establishment of Guideline for Safe X-ray Handling Education' and 'International Situation of Radiation Safety'. 2 keynote lectures were also held. (S.K.)

  1. Assessment of radiation safety awareness among nuclear medicine nurses: a pilot study

    International Nuclear Information System (INIS)

    All nuclear medicine nurses need to have some knowledge and awareness on radiation safety. At present, there is no study to address this issue in Malaysia. The aims of this study were (1) to determine the level of knowledge and awareness on radiation safety among nuclear medicine nurses at Putrajaya Hospital in Malaysia and (2) to assess the effectiveness of a training program provided by the hospital to increase the knowledge and awareness of the nuclear medicine nurses. A total of 27 respondents attending a training program on radiation safety were asked to complete a questionnaire. The questionnaire consists 16 items and were categorized into two main areas, namely general radiation knowledge and radiation safety. Survey data were collected before and after the training and were analyzed using descriptive statistics and paired sample t-test. Respondents were scored out of a total of 16 marks with 8 marks for each area. The findings showed that the range of total scores obtained by the nuclear medicine nurses before and after the training were 6-14 (with a mean score of 11.19) and 13-16 marks (with a mean score of 14.85), respectively. Findings also revealed that the mean score for the area of general radiation knowledge (7.59) was higher than that of the radiation safety (7.26). Currently, the knowledge and awareness on radiation safety among the nuclear medicine nurses are at the moderate level. It is recommended that a national study be conducted to assess and increase the level of knowledge and awareness among all nuclear medicine nurses in Malaysia

  2. Evaluation of Safety in a Radiation Oncology Setting Using Failure Mode and Effects Analysis

    International Nuclear Information System (INIS)

    Purpose: Failure mode and effects analysis (FMEA) is a widely used tool for prospectively evaluating safety and reliability. We report our experiences in applying FMEA in the setting of radiation oncology. Methods and Materials: We performed an FMEA analysis for our external beam radiation therapy service, which consisted of the following tasks: (1) create a visual map of the process, (2) identify possible failure modes; assign risk probability numbers (RPN) to each failure mode based on tabulated scores for the severity, frequency of occurrence, and detectability, each on a scale of 1 to 10; and (3) identify improvements that are both feasible and effective. The RPN scores can span a range of 1 to 1000, with higher scores indicating the relative importance of a given failure mode. Results: Our process map consisted of 269 different nodes. We identified 127 possible failure modes with RPN scores ranging from 2 to 160. Fifteen of the top-ranked failure modes were considered for process improvements, representing RPN scores of 75 and more. These specific improvement suggestions were incorporated into our practice with a review and implementation by each department team responsible for the process. Conclusions: The FMEA technique provides a systematic method for finding vulnerabilities in a process before they result in an error. The FMEA framework can naturally incorporate further quantification and monitoring. A general-use system for incident and near miss reporting would be useful in this regard.

  3. Final repository Morsleben. Operational safety and radiation protection

    International Nuclear Information System (INIS)

    The Information booklet on the final repository Morsleben prepared by BfS includes information on the following issues: stability of the repository, water in repository, operational radiation protection, discharge of radioactive materials, environmental monitoring.

  4. Automated Radiation Measurements for Aviation Safety (ARMAS) Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The existing state-of-the-art for physics-based, data-driven, climatological specification of the global radiation environment is the capability embodied by Nowcast...

  5. Radiation safety knowledge and practices among Irish orthopaedic trainees.

    LENUS (Irish Health Repository)

    Nugent, M

    2014-04-23

    Fluoroscopy is frequently used in orthopaedic surgery, particularly in a trauma setting. Exposure of patients and staff to ionising radiation has been studied extensively; however, little work has been done to evaluate current knowledge and practices among orthopaedic trainees.

  6. Goal Structured Notation in a Radiation Hardening Safety Case for COTS-Based Spacecraft

    Science.gov (United States)

    Witulski, Arthur; Austin, Rebekah; Reed, Robert; Karsai, Gabor; Mahadevan, Nag; Sierawski, Brian; Evans, John; LaBel, Ken

    2016-01-01

    A systematic approach is presented to constructing a radiation assurance case using Goal Structured Notation (GSN) for spacecraft containing COTS parts. The GSN paradigm is applied to an SRAM single-event upset experiment board designed to fly on a CubeSat November 2016. Construction of a radiation assurance case without use of hardened parts or extensive radiation testing is discussed.

  7. Investigation on ionizing radiations emission sources and on workplace radiation safety in medical establishments in Burkina Faso

    International Nuclear Information System (INIS)

    The aims of the investigation were: to identify all the medical establishments using ionizing radiations, to appraise the quality of the buildings and radiation emission equipment, to collect data of workers occupationally exposed and their workplace conditions, and to make suggestions for the safe use of ionizing radiations. Data collected should contribute in the implementation of a Thermo Luminescent Dosimeter (TLD) based individual dosimetry. This study allowed us to know that 36 medical establishments are using ionizing radiations only for conventional radiology. 157 workers are involved in this activity, and many of them are living in Ouagadougou, the capital. We observed that the radiation protection is not well developed in the country, as only 9 of the 36 establishments are provided with photographical dosimeters by Radiation protection and Nuclear Safety Institute (RNSI) of France; radiations measurement instruments are lacking and protection equipment is insufficient. There are no radiological zones marked and no sufficient competences built in radiation protection. Workers don't have clear information on the safety of their workplace. The equipment is for the most old and its maintenance is not regularly done because of lack of skills. So, it is urgent that Burkina Faso regulates radiation protection field. The regulatory authority should take the decrees of application of the law. Radiology services have to be well equipped with protection equipment, radiation measurement equipment, and good quality devices of radiology. The radiology premises must be inspected and building of new ones done according to the norms. Workers are to be well trained about radiation protection and monitored by individual dosimetry in order to fulfil the requirements of the law. (author)

  8. Radiation safety estimation for a new radiation shielding system of Co-60 irradiator of the IIIA, Cuba

    International Nuclear Information System (INIS)

    New design of the radiation shielding system of IIIA irradiator was simulated using MCNP code. Exposure doses inside the irradiator on goods maze and outside the irradiator were calculated by both analytical solution of the radiation transport equation and MCNP simulation. The results show a good agreement between the two methods. The result illustrated that the new design of IIIA irradiator has been covered radiation safety. Dose rates at loading and un-loading stations are smaller than 1.0 µSv/h, and that at outside irradiator is about 0.5 µSv/h. (author)

  9. Radiation protection and safety guide no. GRPB-G-1: qualification and certification of radiation protection personnel

    International Nuclear Information System (INIS)

    A number of accidents with radiation sources are invariably due to human factors. The achievement and maintenance of proficiency in protection and safety in working with radiation devices is a necessary prerequisite. This guide specifies the national scheme and minimum requirements for qualification and certification of radiation protection personnel. The objective is to ensure adequate level of skilled personnel by continuous upgrading of knowledge and skill of personnel. The following sectors are covered by this guide: medicine, industry, research and training, nuclear facility operations, miscellaneous activities

  10. Results of activities of the State Office for Nuclear Safety in the supervision of nuclear safety and radiation protection in 1995

    International Nuclear Information System (INIS)

    Based on the Annual Report 1995 of the State Office for Nuclear Safety, the article summarizes results of activities of the State Office for Nuclear Safety in connection with its responsibilities in the field of supervision of nuclear safety and radiation protection in the Czech Republic. The first part of the report evaluates nuclear safety of nuclear power plants, other nuclear facilities and major radiation sources. The second part comprises information on the results of supervision of radiation protection in the Czech Republic and gives details about the radiological situation within the country. 10 tabs., 10 figs

  11. Method of neutralising the effects of electromagnetic radiation in a radiation detector and a radiation detector applying the procedure

    International Nuclear Information System (INIS)

    Circuitry is described by means of which radiation detectors of the Neher-White type, employing ionisation chambers can be unaffected by electromagnetic radiation which would otherwise cause inductive effects leading to erroneous signals. It is therefore unnecessary to use shielded cables for these instruments. (JIW)

  12. Implementation of BSS-115 and the patient directives in radiation safety regulations of TAEK

    International Nuclear Information System (INIS)

    The use of radiation sources offers a wide range of benefits throughout the world in medicine, research and industry. Precautions are, however, necessary in order to limit the exposure of persons to the radiation that is emitted. The International Basic Safety Standards for Protection against Ionizing Radiation and for the Safety of Radiation Sources (BSS) were published as IAEA Safety Series No:115 in 1996 [1]. This publication marks the culmination of efforts that have continued over the past decades towards harmonization of radiation protection and safety standards internationally. The purpose of the Standards is to establish basic requirements for the protection against the risks associated with exposure to ionizing radiation and for the safety of radiation sources that may deliver such exposure. The Standards are based primarily on the recommendations of the ICRP which is a non-govermantal scientific organization to establish basic principles and recommendations for radiation protection; the most recent recommendations of the ICRP were issued in 1991 [2]. In 1997, the Council of the European Union published a new directive laying down the general principles of the radiation protection of individuals undergoing exposures to ionizing radiations related to medical exposures (Directive 97/43 Euratom) [4]. Directive 97/43 Euratom is a supplement on Directive 96/29 Euratom [3] on the basic safety standards for the protection of the health of workers and the general public against the dangers arising from ionizing radiations. The European Directives 96/29 - 97/43 Euratom and BSS-115 constitute a complete and coherent set of regulatory measures on radiation protection. In Turkey, the infrastructure exists to account for ionizing radiation sources by, for example, a system of licensing, legislative requirements on the user to keep appropriate records and perhaps to report to the TAEK on a periodic basis or, in the case of imported items (including re-export procedures

  13. Implementation of ICRP-60, BBS-115 and the patient directives in radiation safety regulations of TAEK

    International Nuclear Information System (INIS)

    The use of radiation sources offers a wide range of benefits throughout the world in medicine, research and industry. Precautions are, however, necessary in order to limit the exposure of persons to the radiation that is emitted. The International Basic Safety Standards for Protection against Ionizing Radiation and for the Safety of Radiation Sources (BSS) were published as IAEA Safety Series No 115 in 1996. This publication marks the culmination of efforts that have continued over the past decades towards harmonization of radiation protection and safety standards internationally. The purpose of the Standards is to establish basic requirements for the protection against the risks associated with exposure to ionizing radiation and for the safety of radiation sources that may deliver such exposure. The Standards are based primarily on the recommendations of the ICRP which is a non-governmental scientific organization to establish basic principles and recommendations for radiation protection; the most recent recommendations of the ICRP were issued in 1991. In 1997, the Council of the European Union published a new directive laying down the general principles of the radiation protection of individuals undergoing exposures to ionizing radiations related to medical exposures (Directive 97/43 Euratom). Directive 97/43 Euratom is a supplement to Directive 96/29 Euratom on the basic safety standards for the protection of the health of workers and the general public against the dangers arising from ionizing radiations. The European Directives 96/29-97/43 Euratom and BSS-115 constitute a complete and coherent set of regulatory measures on radiation protection. In Turkey, the infrastructure exists to account for ionizing radiation sources by, for example, a system of licensing, legislative requirements on the user to keep appropriate records and perhaps to report to the TAEK on a periodic basis or, in the case of imported items (including re-export procedures) and customs

  14. The ICRP principles applied to radiation protection of the patient in diagnostic radiology

    International Nuclear Information System (INIS)

    The International Commission on Radiation Protection (ICRP) has published new recommendations in Publication 60. These take account of the new biological information and trends in the setting of radiation protection standards since 1977. The main principle for radiation protection of the patient is that the exposure should be justified not only at a broad level but also with respect to the individual patient. Protection arrangements should be optimised using reference dose levels as an upper bound of the optimisation process. The reference levels should be applied with flexibility and based on sound clinical judgement. (authors)

  15. Interaction between gamma radiation and toxicity of three insecticides applied to the blowfly Lucilia Cuprina

    International Nuclear Information System (INIS)

    Effect of gamma-radiation on the toxicity of D.D.T., Lindane and Dieldrin was studied using females of the blowfly Lucilia cuprina Wied. Variable doses of insecticides were applied on the 3-day old adult blowflies which emerged from irradiated pupae. The radiation doses were given 48 hours before emergence. The results indicated that pupal irradiation slightly increased the susceptibility of insects to the insecticides and in case of Dieldrin LD50 was reached quicker than other two compounds. It is suggested that the alteration in response may be due to an internal stimulus due to radiation which cannot be solely attributed to the loss of detoxification mechanism. (author)

  16. The Revised International Basic Safety Standards and Their Potential Impact on Radiation Protection in Medicine

    International Nuclear Information System (INIS)

    The Revised International Basic Safety Standards (international BSS) were published as an interim edition in November 2011. The international BSS cover radiation protection in all uses of radiation and have an important role in many countries, especially in the developing world. Issues of particular relevance for the next decade, addressed in the international BSS include responsibilities for patient radiation protection, justification for medical exposure of individual patients, imaging of asymptomatic individuals for the early detection of disease, software that can influence the delivery of medical exposure, diagnostic reference levels, voluntary safety reporting systems, radiological reviews, personal monitoring and the dose limit for the lens of the eye. The international BSS should provide an effective regulatory basis for radiation protection in medicine for the next decade, but effective implementation is needed. Further, the international BSS not only set the basic requirements but also provide the foundation for enabling additional actions to continuously improve radiation protection in medicine. (author)

  17. Radiation safety and quality control assurance in X-ray diagnostics 1998

    International Nuclear Information System (INIS)

    The report is based on a seminar course of lectures 'Radiation safety and quality assurance in X-ray diagnostics 1998' organized by the Radiation and Nuclear Safety Authority (STUK) in Finland. The lectures included actual information on X-ray examinations: methods of quality assurance, methods of measuring and calculating patient doses, examination frequencies, patient doses, occupational doses, and radiation risks. Paediatric X-ray examinations and interventional procedures were the most specific topics. The new Council Directive 97/43/Euratom on medical exposure, and the European Guidelines on quality criteria for diagnostic radiographic images, were discussed in several lectures. Lectures on general radiation threats and preparedness, examples of radiation accidents, and emergency preparedness in hospitals were also included. (editor)

  18. Attitude of the Korean dentists towards radiation safety and selection criteria

    International Nuclear Information System (INIS)

    X-ray exposure should be clinically justified and each exposure should be expected to give patients benefits. Since dental radiographic examination is one of the most frequent radiological procedures, radiation hazard becomes an important public health concern. The purpose of this study was to investigate the attitude of Korean dentists about radiation safety and use of criteria for selecting the frequency and type of radiographic examinations. The study included 267 Korean dentists. Five questions related to radiation safety were asked of each of them. These questions were about factors associated with radiation protection of patients and operators including the use of radiographic selection criteria for intraoral radiographic procedures. The frequency of prescription of routine radiographic examination (an example is a panoramic radiograph for screening process for occult disease) was 34.1%, while that of selective radiography was 64.0%. Dentists' discussion of radiation risk and benefit with patients was infrequent. More than half of the operators held the image receptor by themselves during intraoral radiographic examinations. Lead apron/thyroid collars for patient protection were used by fewer than 22% of dental offices. Rectangular collimation was utilized by fewer than 15% of dental offices. The majority of Korean dentists in the study did not practice radiation protection procedures which would be required to minimize exposure to unnecessary radiation for patients and dental professionals. Mandatory continuing professional education in radiation safety and development of Korean radiographic selection criteria is recommended.

  19. Attitude of the Korean dentists towards radiation safety and selection criteria

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Byung Do [Dept. of Oral and Maxillofacial Radiology and Wonkwang Dental Research Institute, College of Dentistry, Wonkwang University, Iksan (Korea, Republic of); Ludlow, John B. [Graduate Program in Oral and Maxillofacial Radiology, School of Dentistry, University of North Carolina, Chapel Hill (United States)

    2013-09-15

    X-ray exposure should be clinically justified and each exposure should be expected to give patients benefits. Since dental radiographic examination is one of the most frequent radiological procedures, radiation hazard becomes an important public health concern. The purpose of this study was to investigate the attitude of Korean dentists about radiation safety and use of criteria for selecting the frequency and type of radiographic examinations. The study included 267 Korean dentists. Five questions related to radiation safety were asked of each of them. These questions were about factors associated with radiation protection of patients and operators including the use of radiographic selection criteria for intraoral radiographic procedures. The frequency of prescription of routine radiographic examination (an example is a panoramic radiograph for screening process for occult disease) was 34.1%, while that of selective radiography was 64.0%. Dentists' discussion of radiation risk and benefit with patients was infrequent. More than half of the operators held the image receptor by themselves during intraoral radiographic examinations. Lead apron/thyroid collars for patient protection were used by fewer than 22% of dental offices. Rectangular collimation was utilized by fewer than 15% of dental offices. The majority of Korean dentists in the study did not practice radiation protection procedures which would be required to minimize exposure to unnecessary radiation for patients and dental professionals. Mandatory continuing professional education in radiation safety and development of Korean radiographic selection criteria is recommended.

  20. Proceedings of the 4th annual meeting of Japanese Society of Radiation Safety Management 2005 Kyoto

    International Nuclear Information System (INIS)

    This is the program and the proceedings of the 4th annual meeting of Japanese Society of Radiation Safety Management held from November 23rd through the 25th of 2005. The sessions held were: (1) Medical Exposure, (2) Environmental Measurement and Radiation Source Handling, (3) Radiation Measurement and Influence of Electromagnetic Waves, (4) Utilization of Irradiation, (5) Countermeasures against Contamination and Inspection of Contamination, (6) Imaging Plate, (7) Controlled Measurement and Dose Evaluation, (8) Working Environment Measurement 1, (9) Working Environment Measurement 2, (10) Establishment of Software and System, (11) Radiation Education 1, (12) Radiation Education 2, and (13) Exposure Reduction and Safety Control. The poster sessions held were: (1) Exposure Reduction and Radiation Evaluation, (2) Radiation Measurement and Influence of Electromagnetic Waves, (3) Education Training, (4) Safety Control, (5) Software, Data Handling, and Shielding Calculation, and (6) Environmental Radioactivity. The keynote lectures held were: (1) 'Situation of Medical Exposure' and (2) 'Cosmic Radiation While Boarding on Airplanes'. The symposia held were: (1) 'Food Irradiation' and (2) 'Life Science'. (S.K.)