WorldWideScience

Sample records for applying mathematical models

  1. Applied impulsive mathematical models

    CERN Document Server

    Stamova, Ivanka

    2016-01-01

    Using the theory of impulsive differential equations, this book focuses on mathematical models which reflect current research in biology, population dynamics, neural networks and economics. The authors provide the basic background from the fundamental theory and give a systematic exposition of recent results related to the qualitative analysis of impulsive mathematical models. Consisting of six chapters, the book presents many applicable techniques, making them available in a single source easily accessible to researchers interested in mathematical models and their applications. Serving as a valuable reference, this text is addressed to a wide audience of professionals, including mathematicians, applied researchers and practitioners.

  2. Applied Mathematics, Modelling and Computational Science

    CERN Document Server

    Kotsireas, Ilias; Makarov, Roman; Melnik, Roderick; Shodiev, Hasan

    2015-01-01

    The Applied Mathematics, Modelling, and Computational Science (AMMCS) conference aims to promote interdisciplinary research and collaboration. The contributions in this volume cover the latest research in mathematical and computational sciences, modeling, and simulation as well as their applications in natural and social sciences, engineering and technology, industry, and finance. The 2013 conference, the second in a series of AMMCS meetings, was held August 26–30 and organized in cooperation with AIMS and SIAM, with support from the Fields Institute in Toronto, and Wilfrid Laurier University. There were many young scientists at AMMCS-2013, both as presenters and as organizers. This proceedings contains refereed papers contributed by the participants of the AMMCS-2013 after the conference. This volume is suitable for researchers and graduate students, mathematicians and engineers, industrialists, and anyone who would like to delve into the interdisciplinary research of applied and computational mathematics ...

  3. Applied mathematics

    CERN Document Server

    Logan, J David

    2013-01-01

    Praise for the Third Edition"Future mathematicians, scientists, and engineers should find the book to be an excellent introductory text for coursework or self-study as well as worth its shelf space for reference." -MAA Reviews Applied Mathematics, Fourth Edition is a thoroughly updated and revised edition on the applications of modeling and analyzing natural, social, and technological processes. The book covers a wide range of key topics in mathematical methods and modeling and highlights the connections between mathematics and the applied and nat

  4. Applied mathematics

    International Nuclear Information System (INIS)

    The 1988 progress report of the Applied Mathematics center (Polytechnic School, France), is presented. The research fields of the Center are the scientific calculus, the probabilities and statistics and the video image synthesis. The research topics developed are: the analysis of numerical methods, the mathematical analysis of the physics and mechanics fundamental models, the numerical solution of complex models related to the industrial problems, the stochastic calculus and the brownian movement, the stochastic partial differential equations, the identification of the adaptive filtering parameters, the discrete element systems, statistics, the stochastic control and the development, the image synthesis techniques for education and research programs. The published papers, the congress communications and the thesis are listed

  5. Predictive control applied to an evaporator mathematical model

    Directory of Open Access Journals (Sweden)

    Daniel Alonso Giraldo Giraldo

    2010-07-01

    Full Text Available This paper outlines designing a predictive control model (PCM applied to a mathematical model of a falling film evaporator with mechanical steam compression like those used in the dairy industry. The controller was designed using the Connoisseur software package and data gathered from the simulation of a non-linear mathematical model. A control law was obtained from minimising a cost function sublect to dynamic system constraints, using a quadratic programme (QP algorithm. A linear programming (LP algorithm was used for finding a sub-optimal operation point for the process in stationary state.

  6. Mathematical models applied in inductive non-destructive testing

    Energy Technology Data Exchange (ETDEWEB)

    Wac-Wlodarczyk, A.; Goleman, R.; Czerwinski, D. [Technical University of Lublin, 20 618 Lublin, Nadbystrzycka St 38a (Poland); Gizewski, T. [Technical University of Lublin, 20 618 Lublin, Nadbystrzycka St 38a (Poland)], E-mail: t.gizewski@pollub.pl

    2008-10-15

    Non-destructive testing are the wide group of investigative methods of non-homogenous material. Methods of computer tomography, ultrasonic, magnetic and inductive methods still developed are widely applied in industry. In apparatus used for non-destructive tests, the analysis of signals is made on the basis of complex system answers. The answer is linearized due to the model of research system. In this paper, the authors will discuss the applications of the mathematical models applied in investigations of inductive magnetic materials. The statistical models and other gathered in similarity classes will be taken into consideration. Investigation of mathematical models allows to choose the correct method, which in consequence leads to precise representation of the inner structure of examined object. Inductive research of conductive media, especially those with ferromagnetic properties, are run with high frequency magnetic field (eddy-currents method), which considerably decrease penetration depth.

  7. Mathematical models applied in inductive non-destructive testing

    International Nuclear Information System (INIS)

    Non-destructive testing are the wide group of investigative methods of non-homogenous material. Methods of computer tomography, ultrasonic, magnetic and inductive methods still developed are widely applied in industry. In apparatus used for non-destructive tests, the analysis of signals is made on the basis of complex system answers. The answer is linearized due to the model of research system. In this paper, the authors will discuss the applications of the mathematical models applied in investigations of inductive magnetic materials. The statistical models and other gathered in similarity classes will be taken into consideration. Investigation of mathematical models allows to choose the correct method, which in consequence leads to precise representation of the inner structure of examined object. Inductive research of conductive media, especially those with ferromagnetic properties, are run with high frequency magnetic field (eddy-currents method), which considerably decrease penetration depth

  8. International Conference on Applied Mathematics, Modeling and Computational Science & Annual meeting of the Canadian Applied and Industrial Mathematics

    CERN Document Server

    Bélair, Jacques; Kunze, Herb; Makarov, Roman; Melnik, Roderick; Spiteri, Raymond J

    2016-01-01

    Focusing on five main groups of interdisciplinary problems, this book covers a wide range of topics in mathematical modeling, computational science and applied mathematics. It presents a wealth of new results in the development of modeling theories and methods, advancing diverse areas of applications and promoting interdisciplinary interactions between mathematicians, scientists, engineers and representatives from other disciplines. The book offers a valuable source of methods, ideas, and tools developed for a variety of disciplines, including the natural and social sciences, medicine, engineering, and technology. Original results are presented on both the fundamental and applied level, accompanied by an ample number of real-world problems and examples emphasizing the interdisciplinary nature and universality of mathematical modeling, and providing an excellent outline of today’s challenges. Mathematical modeling, with applied and computational methods and tools, plays a fundamental role in modern science a...

  9. Mathematical modelling applied to LiDAR data

    Directory of Open Access Journals (Sweden)

    Javier Estornell

    2013-06-01

    Full Text Available The aim of this article is to explain the application of several mathematic calculations to LiDAR (Light Detection And Ranging data to estimate vegetation parameters and modelling the relief of a forest area in the town of Chiva (Valencia. To represent the surface that describes the topography of the area, firstly, morphological filters were applied iteratively to select LiDAR ground points. From these data, the Triangulated Irregular Network (TIN structure was applied to model the relief of the area. From LiDAR data the canopy height model (CHM was also calculated. This model allowed obtaining bare soil, shrub and tree vegetation mapping in the study area. In addition, biomass was estimated from measurements taken in the field in 39 circular plots of radius 0.5 m and the 95th percentile of the LiDAR height datanincluded in each plot. The results indicated a high relationship between the two variables (measurednbiomass and 95th percentile with a coeficient of determination (R2 of 0:73. These results reveal the importance of using mathematical modelling to obtain information of the vegetation and land relief from LiDAR data.

  10. Mathematical modeling applied to the left ventricle of heart

    CERN Document Server

    Ranjbar, Saeed

    2014-01-01

    Background: How can mathematics help us to understand the mechanism of the cardiac motion? The best known approach is to take a mathematical model of the fibered structure, insert it into a more-or-less complex model of cardiac architecture, and then study the resulting fibers of activation that propagate through the myocardium. In our paper, we have attempted to create a novel software capable of demonstrate left ventricular (LV) model in normal hearts. Method: Echocardiography was performed on 70 healthy volunteers. Data evaluated included: velocity (radial, longitudinal, rotational and vector point), displacement (longitudinal and rotational), strain rate (longitudinal and circumferential) and strain (radial, longitudinal and circumferential) of all 16 LV myocardial segments. Using these data, force vectors of myocardial samples were estimated by MATLAB software, interfaced in the echocardiograph system. Dynamic orientation contraction (through the cardiac cycle) of every individual myocardial fiber could ...

  11. Mathematical model of gas plasma applied to chronic wounds

    Energy Technology Data Exchange (ETDEWEB)

    Wang, J. G.; Liu, X. Y.; Liu, D. W.; Lu, X. P. [State Key Lab of Advanced Electromagnetic Engineering and Technology, Huazhong University of Science and Technology, WuHan, HuBei 430074 (China); Zhang, Y. T. [Shandong Provincial Key Lab of UHV Technology and Gas Discharge Physics, School of Electrical Engineering, Shandong University, Jinan, Shandong Province 250061 (China)

    2013-11-15

    Chronic wounds are a major burden for worldwide health care systems, and patients suffer pain and discomfort from this type of wound. Recently gas plasmas have been shown to safely speed chronic wounds healing. In this paper, we develop a deterministic mathematical model formulated by eight-species reaction-diffusion equations, and use it to analyze the plasma treatment process. The model follows spatial and temporal concentration within the wound of oxygen, chemoattractants, capillary sprouts, blood vessels, fibroblasts, extracellular matrix material, nitric oxide (NO), and inflammatory cell. Two effects of plasma, increasing NO concentration and reducing bacteria load, are considered in this model. The plasma treatment decreases the complete healing time from 25 days (normal wound healing) to 17 days, and the contributions of increasing NO concentration and reducing bacteria load are about 1/4 and 3/4, respectively. Increasing plasma treatment frequency from twice to three times per day accelerates healing process. Finally, the response of chronic wounds of different etiologies to treatment with gas plasmas is analyzed.

  12. Applying Mathematical Processes (AMP)

    Science.gov (United States)

    Kathotia, Vinay

    2011-01-01

    This article provides insights into the "Applying Mathematical Processes" resources, developed by the Nuffield Foundation. It features Nuffield AMP activities--and related ones from Bowland Maths--that were designed to support the teaching and assessment of key processes in mathematics--representing a situation mathematically, analysing,…

  13. Applied Mathematics Seminar 1982

    International Nuclear Information System (INIS)

    This report contains the abstracts of the lectures delivered at 1982 Applied Mathematics Seminar of the DPD/LCC/CNPq and Colloquy on Applied Mathematics of LCC/CNPq. The Seminar comprised 36 conferences. Among these, 30 were presented by researchers associated to brazilian institutions, 9 of them to the LCC/CNPq, and the other 6 were given by visiting lecturers according to the following distribution: 4 from the USA, 1 from England and 1 from Venezuela. The 1981 Applied Mathematics Seminar was organized by Leon R. Sinay and Nelson do Valle Silva. The Colloquy on Applied Mathematics was held from october 1982 on, being organized by Ricardo S. Kubrusly and Leon R. Sinay. (Author)

  14. Mathematical modelling

    CERN Document Server

    2016-01-01

    This book provides a thorough introduction to the challenge of applying mathematics in real-world scenarios. Modelling tasks rarely involve well-defined categories, and they often require multidisciplinary input from mathematics, physics, computer sciences, or engineering. In keeping with this spirit of modelling, the book includes a wealth of cross-references between the chapters and frequently points to the real-world context. The book combines classical approaches to modelling with novel areas such as soft computing methods, inverse problems, and model uncertainty. Attention is also paid to the interaction between models, data and the use of mathematical software. The reader will find a broad selection of theoretical tools for practicing industrial mathematics, including the analysis of continuum models, probabilistic and discrete phenomena, and asymptotic and sensitivity analysis.

  15. Mathematical Modeling Applied to Prediction of Landslides in Southern Brazil

    Science.gov (United States)

    Silva, Lúcia; Araújo, João; Braga, Beatriz; Fernandes, Nelson

    2013-04-01

    Mass movements are natural phenomena that occur on the slopes and are important agents working in landscape development. These movements have caused serious damage to infrastructure and properties. In addition to the mass movements occurring in natural slopes, there is also a large number of accidents induced by human action in the landscape. The change of use and land cover for the introduction of agriculture is a good example that have affected the stability of slopes. Land use and/or land cover changes have direct and indirect effects on slope stability and frequently represent a major factor controlling the occurrence of man-induced mass movements. In Brazil, especially in the southern and southeastern regions, areas of original natural rain forest have been continuously replaced by agriculture during the last decades, leading to important modifications in soil mechanical properties and to major changes in hillslope hydrology. In these regions, such effects are amplified due to the steep hilly topography, intense summer rainfall events and dense urbanization. In November 2008, a major landslide event took place in a rural area with intensive agriculture in the state of Santa Catarina (Morro do Baú) where many catastrophic landslides were triggered after a long rainy period. In this area, the natural forest has been replaced by huge banana and pine plantations. The state of Santa Catarina in recent decades has been the scene of several incidents of mass movements such as this catastrophic event. In this study, based on field mapping and modeling, we characterize the role played by geomorphological and geological factors in controlling the spatial distribution of landslides in the Morro do Baú area. In order to attain such objective, a digital elevation model of the basin was generated with a 10m grid in which the topographic parameters were obtained. The spatial distribution of the scars from this major event was mapped from another image, obtained immediately

  16. Applied mathematics made simple

    CERN Document Server

    Murphy, Patrick

    1982-01-01

    Applied Mathematics: Made Simple provides an elementary study of the three main branches of classical applied mathematics: statics, hydrostatics, and dynamics. The book begins with discussion of the concepts of mechanics, parallel forces and rigid bodies, kinematics, motion with uniform acceleration in a straight line, and Newton's law of motion. Separate chapters cover vector algebra and coplanar motion, relative motion, projectiles, friction, and rigid bodies in equilibrium under the action of coplanar forces. The final chapters deal with machines and hydrostatics. The standard and conte

  17. Applying Mathematical Optimization Methods to an ACT-R Instance-Based Learning Model

    Science.gov (United States)

    Said, Nadia; Engelhart, Michael; Kirches, Christian; Körkel, Stefan; Holt, Daniel V.

    2016-01-01

    Computational models of cognition provide an interface to connect advanced mathematical tools and methods to empirically supported theories of behavior in psychology, cognitive science, and neuroscience. In this article, we consider a computational model of instance-based learning, implemented in the ACT-R cognitive architecture. We propose an approach for obtaining mathematical reformulations of such cognitive models that improve their computational tractability. For the well-established Sugar Factory dynamic decision making task, we conduct a simulation study to analyze central model parameters. We show how mathematical optimization techniques can be applied to efficiently identify optimal parameter values with respect to different optimization goals. Beyond these methodological contributions, our analysis reveals the sensitivity of this particular task with respect to initial settings and yields new insights into how average human performance deviates from potential optimal performance. We conclude by discussing possible extensions of our approach as well as future steps towards applying more powerful derivative-based optimization methods. PMID:27387139

  18. Methods of applied mathematics

    CERN Document Server

    Hildebrand, Francis B

    1992-01-01

    This invaluable book offers engineers and physicists working knowledge of a number of mathematical facts and techniques not commonly treated in courses in advanced calculus, but nevertheless extremely useful when applied to typical problems in many different fields. It deals principally with linear algebraic equations, quadratic and Hermitian forms, operations with vectors and matrices, the calculus of variations, and the formulations and theory of linear integral equations. Annotated problems and exercises accompany each chapter.

  19. Applying Mathematical Optimization Methods to an ACT-R Instance-Based Learning Model.

    Directory of Open Access Journals (Sweden)

    Nadia Said

    Full Text Available Computational models of cognition provide an interface to connect advanced mathematical tools and methods to empirically supported theories of behavior in psychology, cognitive science, and neuroscience. In this article, we consider a computational model of instance-based learning, implemented in the ACT-R cognitive architecture. We propose an approach for obtaining mathematical reformulations of such cognitive models that improve their computational tractability. For the well-established Sugar Factory dynamic decision making task, we conduct a simulation study to analyze central model parameters. We show how mathematical optimization techniques can be applied to efficiently identify optimal parameter values with respect to different optimization goals. Beyond these methodological contributions, our analysis reveals the sensitivity of this particular task with respect to initial settings and yields new insights into how average human performance deviates from potential optimal performance. We conclude by discussing possible extensions of our approach as well as future steps towards applying more powerful derivative-based optimization methods.

  20. Mathematical modelling

    DEFF Research Database (Denmark)

    Blomhøj, Morten

    2004-01-01

    Developing competences for setting up, analysing and criticising mathematical models are normally seen as relevant only from and above upper secondary level. The general belief among teachers is that modelling activities presuppose conceptual understanding of the mathematics involved. Mathematical...... modelling, however, can be seen as a practice of teaching that place the relation between real life and mathematics into the centre of teaching and learning mathematics, and this is relevant at all levels. Modelling activities may motivate the learning process and help the learner to establish cognitive...... roots for the construction of important mathematical concepts. In addition competences for setting up, analysing and criticising modelling processes and the possible use of models is a formative aim in this own right for mathematics teaching in general education. The paper presents a theoretical...

  1. Appropriate Mathematical Model of DC Servo Motors Applied in SCARA Robots

    Directory of Open Access Journals (Sweden)

    Attila L. Bencsik

    2004-11-01

    Full Text Available In the first part of the presentation detailed description of the modular technical system built up of electric components and end-effectors is given. Each of these components was developed at different industrial companies separately. The particular mechatronic unit under consideration was constructed by the use of the appropriate mathematical model of these units. The aim of this presentation is to publish the results achieved by the use of a mathematical modeling technique invented and applied in the development of different mechatronic units as drives and actuators. The unified model describing the whole system was developed with the integration of the models valid to the particular components. In the phase of testing the models a program approximating typical realistic situations in terms of work-loads and physical state of the system during operation was developed and applied. The main innovation here presented consists in integrating the conclusions of professional experiences the developers gained during their former R&D activity in different professional environments. The control system is constructed on the basis of classical methods, therefore the results of the model investigations can immediately be utilized by the developer of the whole complex system, which for instance may be an industrial robot.

  2. Positive Mathematical Programming Approaches – Recent Developments in Literature and Applied Modelling

    Directory of Open Access Journals (Sweden)

    Thomas Heckelei

    2012-05-01

    Full Text Available This paper reviews and discusses the more recent literature and application of Positive Mathematical Programming in the context of agricultural supply models. Specifically, advances in the empirical foundation of parameter specifications as well as the economic rationalisation of PMP models – both criticized in earlier reviews – are investigated. Moreover, the paper provides an overview on a larger set of models with regular/repeated policy application that apply variants of PMP. Results show that most applications today avoid arbitrary parameter specifications and rely on exogenous information on supply responses to calibrate model parameters. However, only few approaches use multiple observations to estimate parameters, which is likely due to the still considerable technical challenges associated with it. Equally, we found only limited reflection on the behavioral or technological assumptions that could rationalise the PMP model structure while still keeping the model’s advantages.

  3. Mathematical model of metal-hydride phase change applied to Yttrium

    International Nuclear Information System (INIS)

    We present a mathematical model for the kinetics of hydriding and dehydriding of metal powders. The single powder particle is considered. Its shape is approximated by one of the symmetric ones: sphere, long thin cylinder (wire), or flat thin plate. A few concurrent processes are considered. The model equations are derived from the mass conservation law. We consider the case of the 'shrinking core' morphology, i.e. formation of the hydride skin on the surface of the particle with subsequent growth of this skin. We consider three successive stages of the phase change: skin development, skin growth, and final saturation or degassing. We apply the model to experimental data for Yttrium and show that the approximation of the experimental curves by the model ones is comparable for different cycles and different shapes for similar sets of the kinetic parameters. This also shows that shape of powder particles do not influence significantly on the kinetics of hydriding and dehydriding

  4. Mathematical model of metal-hydride phase change applied to Yttrium

    Science.gov (United States)

    Chernov, I. A.; Manicheva, S. V.; Gabis, I. E.

    2013-08-01

    We present a mathematical model for the kinetics of hydriding and dehydriding of metal powders. The single powder particle is considered. Its shape is approximated by one of the symmetric ones: sphere, long thin cylinder (wire), or flat thin plate. A few concurrent processes are considered. The model equations are derived from the mass conservation law. We consider the case of the "shrinking core" morphology, i.e. formation of the hydride skin on the surface of the particle with subsequent growth of this skin. We consider three successive stages of the phase change: skin development, skin growth, and final saturation or degassing. We apply the model to experimental data for Yttrium and show that the approximation of the experimental curves by the model ones is comparable for different cycles and different shapes for similar sets of the kinetic parameters. This also shows that shape of powder particles do not influence significantly on the kinetics of hydriding and dehydriding.

  5. Applied mathematics reviews, v.1

    CERN Document Server

    Anastassiou, George A

    2000-01-01

    Applied mathematics connects the mathematical theory to the reality by solving real world problems and shows the power of the science of mathematics, greatly improving our lives. Therefore it plays a very active and central role in the scientific world.This volume contains 14 high quality survey articles - incorporating original results and describing the main research activities of contemporary applied mathematics - written by top people in the field. The articles have been written in review style, so that the researcher can have a quick and thorough view of what is happening in the main subf

  6. Fundamental mathematical model shows that applied electrical field enhances chemotherapy delivery to tumors.

    Science.gov (United States)

    Moarefian, Maryam; Pascal, Jennifer A

    2016-02-01

    Biobarriers imposed by the tumor microenvironment create a challenge to deliver chemotherapeutics effectively. Electric fields can be used to overcome these biobarriers in the form of electrochemotherapy, or by applying an electric field to tissue after chemotherapy has been delivered systemically. A fundamental understanding of the underlying physical phenomena governing tumor response to an applied electrical field is lacking. Building upon the work of Pascal et al. [1], a mathematical model that predicts the fraction of tumor killed due to a direct current (DC) applied electrical field and chemotherapy is developed here for tumor tissue surrounding a single, straight, cylindrical blood vessel. Results show the typical values of various parameters related to properties of the electrical field, tumor tissue and chemotherapy drug that have the most significant influence on the fraction of tumor killed. We show that the applied electrical field enhances tumor death due to chemotherapy and that the direction and magnitude of the applied electrical field have a significant impact on the fraction of tumor killed. PMID:26656676

  7. A Review of Applied Mathematics

    OpenAIRE

    Ó Náraigh, Lennon; Ní Shúilleabháin, Aoibhinn

    2015-01-01

    Applied Mahtematics is a subject which deals with problmes arising inthe physical, life, and social sciences as well as in engineering and provides a broad body of knowledge for use in a wide spectrum of research and insdustry. Applied Mathematics is an important school subject which builds students' mathematical and problem solving skills. The subject has remained on the periphery of school time-tables and, without the commitment and enthusiasm of Applied Maths teachers, would likely be omit...

  8. Applied analysis mathematical methods in natural science

    CERN Document Server

    Senba, Takasi

    2004-01-01

    This book provides a general introduction to applied analysis; vectoranalysis with physical motivation, calculus of variation, Fourieranalysis, eigenfunction expansion, distribution, and so forth,including a catalogue of mathematical theories, such as basicanalysis, topological spaces, complex function theory, real analysis,and abstract analysis. This book also gives fundamental ideas ofapplied mathematics to discuss recent developments in nonlinearscience, such as mathematical modeling of reinforced random motion ofparticles, semi-conductor device equation in applied physics, andchemotaxis in

  9. Applied Computational Mathematics in Social Sciences

    CERN Document Server

    Damaceanu, Romulus-Catalin

    2010-01-01

    Applied Computational Mathematics in Social Sciences adopts a modern scientific approach that combines knowledge from mathematical modeling with various aspects of social science. Special algorithms can be created to simulate an artificial society and a detailed analysis can subsequently be used to project social realities. This Ebook specifically deals with computations using the NetLogo platform, and is intended for researchers interested in advanced human geography and mathematical modeling studies.

  10. Mathematical model of Lame Problem for Simplified Elastic Theory applied to Controlled-Clearance Pressure Balances

    CERN Document Server

    Silvano, Saragosa

    2010-01-01

    This paper is based on the original work of the master degree thesis [1] and also represents a revision of the models and the correlations with the analytical solutions given by other authors in the previous publications from 2003 to 2007. All the publications from 2003 to 2007 about simplified analytical methods applied to controlled-clearance pressure balances are not original re-elaborations (with some errors) of the thesis[1]. The analysis described in this paper starts with the mathematical model of thick-walled cylinder based on the solution of the Lame Equations applied to Mechanical theory of elastic equilibrium [5] for the formulation of the so called Simplified Elastic Theory that represents an analytical approach used in the study of the pressure balances. This analysis is well known as Lame problem. The solution of the Lame problem is used to determine the pressure distortion coefficient of controlled-clearance pressure balances. The analysis in this paper includes the case of pressure balances wi...

  11. A First Course in Applied Mathematics

    CERN Document Server

    Rebaza, Jorge

    2012-01-01

    Explore real-world applications of selected mathematical theory, concepts, and methods Exploring related methods that can be utilized in various fields of practice from science and engineering to business, A First Course in Applied Mathematics details how applied mathematics involves predictions, interpretations, analysis, and mathematical modeling to solve real-world problems. Written at a level that is accessible to readers from a wide range of scientific and engineering fields, the book masterfully blends standard topics with modern areas of application and provides the needed foundation

  12. Review Of Applied Mathematical Models For Describing The Behaviour Of Aqueous Humor In Eye Structures

    Directory of Open Access Journals (Sweden)

    Dzierka M.

    2015-12-01

    Full Text Available In the paper, currently used methods for modeling the flow of the aqueous humor through eye structures are presented. Then a computational model based on rheological models of Newtonian and non-Newtonian fluids is proposed. The proposed model may be used for modeling the flow of the aqueous humor through the trabecular meshwork. The trabecular meshwork is modeled as an array of rectilinear parallel capillary tubes. The flow of Newtonian and non-Newtonian fluids is considered. As a results of discussion mathematical equations of permeability of porous media and velocity of fluid flow through porous media have been received.

  13. Mathematics for Teaching: A Form of Applied Mathematics

    Science.gov (United States)

    Stylianides, Gabriel J.; Stylianides, Andreas J.

    2010-01-01

    In this article we elaborate a conceptualisation of "mathematics for teaching" as a form of applied mathematics (using Bass's idea of characterising mathematics education as a form of applied mathematics) and we examine implications of this conceptualisation for the mathematical preparation of teachers. Specifically, we focus on issues of design…

  14. Applying Mathematical Tools to Accelerate Vaccine Development: Modeling Shigella Immune Dynamics

    OpenAIRE

    Davis, Courtney L.; Wahid, Rezwanul; Toapanta, Franklin R.; Simon, Jakub K.; Sztein, Marcelo B.; Levy, Doron

    2013-01-01

    We establish a mathematical framework for studying immune interactions with Shigella, a bacteria that kills over one million people worldwide every year. The long-term goal of this novel approach is to inform Shigella vaccine design by elucidating which immune components and bacterial targets are crucial for establishing Shigella immunity. Our delay differential equation model focuses on antibody and B cell responses directed against antigens like lipopolysaccharide in Shigella’s outer membra...

  15. Mathematical modelling of metabolism

    DEFF Research Database (Denmark)

    Gombert, Andreas Karoly; Nielsen, Jens

    2000-01-01

    Mathematical models of the cellular metabolism have a special interest within biotechnology. Many different kinds of commercially important products are derived from the cell factory, and metabolic engineering can be applied to improve existing production processes, as well as to make new process...... availability of genomic information and powerful analytical techniques, mathematical models also serve as a tool for understanding the cellular metabolism and physiology.......Mathematical models of the cellular metabolism have a special interest within biotechnology. Many different kinds of commercially important products are derived from the cell factory, and metabolic engineering can be applied to improve existing production processes, as well as to make new processes...

  16. Applying mathematical tools to accelerate vaccine development: modeling Shigella immune dynamics.

    Directory of Open Access Journals (Sweden)

    Courtney L Davis

    Full Text Available We establish a mathematical framework for studying immune interactions with Shigella, a bacteria that kills over one million people worldwide every year. The long-term goal of this novel approach is to inform Shigella vaccine design by elucidating which immune components and bacterial targets are crucial for establishing Shigella immunity. Our delay differential equation model focuses on antibody and B cell responses directed against antigens like lipopolysaccharide in Shigella's outer membrane. We find that antibody-based vaccines targeting only surface antigens cannot elicit sufficient immunity for protection. Additional boosting prior to infection would require a four-orders-of-magnitude increase in antibodies to sufficiently prevent epithelial invasion. However, boosting anti-LPS B memory can confer protection, which suggests these cells may correlate with immunity. We see that IgA antibodies are slightly more effective per molecule than IgG, but more total IgA is required due to spatial functionality. An extension of the model reveals that targeting both LPS and epithelial entry proteins is a promising avenue to advance vaccine development. This paper underscores the importance of multifaceted immune targeting in creating an effective Shigella vaccine. It introduces mathematical models to the Shigella vaccine development effort and lays a foundation for joint theoretical/experimental/clinical approaches to Shigella vaccine design.

  17. Mathematical modelling techniques

    CERN Document Server

    Aris, Rutherford

    1995-01-01

    ""Engaging, elegantly written."" - Applied Mathematical ModellingMathematical modelling is a highly useful methodology designed to enable mathematicians, physicists and other scientists to formulate equations from a given nonmathematical situation. In this elegantly written volume, a distinguished theoretical chemist and engineer sets down helpful rules not only for setting up models but also for solving the mathematical problems they pose and for evaluating models.The author begins with a discussion of the term ""model,"" followed by clearly presented examples of the different types of mode

  18. Industrial and Applied Mathematics in China

    CERN Document Server

    Li, Ta-Tsien

    2009-01-01

    This new volume introduces readers to the current topics of industrial and applied mathematics in China, with applications to material science, information science, mathematical finance and engineering. The authors utilize mathematics for the solution of problems. The purposes of the volume are to promote research in applied mathematics and computational science; further the application of mathematics to new methods and techniques useful in industry and science; and provide for the exchange of information between the mathematical, industrial, and scientific communities.

  19. Mathematics applied to nuclear geophysics

    International Nuclear Information System (INIS)

    One of the powerful auxiliary to nuclear geophysics is the obtention and interpretation of the alpha and gamma radiation spectra. This work discuss, qualitative and quantitative, the lost information problem, motivated by the noise in the process of information codification. The decodification process must be suppield by the appropriate mathematical model on the measure system to recovery the information from nuclear source. (C.D.G.)

  20. Advances in interdisciplinary applied discrete mathematics

    CERN Document Server

    Kaul, Hemanshu

    2010-01-01

    In the past 50 years, discrete mathematics has developed as a far-reaching and popular language for modeling fundamental problems in computer science, biology, sociology, operations research, economics, engineering, etc. The same model may appear in different guises, or a variety of models may have enough similarities such that same ideas and techniques can be applied in diverse applications. This book focuses on fields such as consensus and voting theory, clustering, location theory, mathematical biology, and optimization that have seen an upsurge of new and exciting works over the past two d

  1. A mathematical modeling applied to the study of two forms of artistic representation

    Directory of Open Access Journals (Sweden)

    Henrique Marins de Carvalho

    2015-01-01

    Full Text Available The cultural manifestation of the Arican indigenous people from Chile, through the designs found in their garments was analyzed. Comparing their techniques of mosaic formation, using geometric transformations (bijection plans in itself, it was investigated whether, mathematically, its evolution could be explained.The mosaics, as well as the known works of Escher, are constructed from the application of translations, rotations, reflections or slip reflections of an initial motif (a rosette. The archaeological clothing pieces of the Arican people were then analyzed in the same evolutionary perspective of such applications.With similar purpose - understanding the relationship between music and the evolution and complexity of a possible mathematical representation - were analyzed the geometric transformations and excerpts from three works of Johann Sebastian Bach, exponent German composer of the Baroque period.It was possible to see the link between the improvement and refinement of musical composition mathematics, particularly in the geometry necessary to translate the musical representation into a graphic symbol.It is concluded, then, the existence of a possible line between artistic evolution (the artistic culture of a people or the work of a musician and mathematical representation / geometry of such manifestations. In other words, it was possible to formulate conjectures in a search to find a possible relationship between the development degree of a given culture or musical piece and the development of a science, if mathematics, able to explain it.

  2. Using LabVIEW for Applying Mathematical Models in Representing Phenomena

    Science.gov (United States)

    Faraco, G.; Gabriele, L.

    2007-01-01

    Simulations make it possible to explore physical and biological phenomena, where conducting the real experiment is impracticable or difficult. The implementation of a software program describing and simulating a given physical situation encourages the understanding of a phenomenon itself. Fifty-nine students, enrolled at the Mathematical Methods…

  3. Encyclopedia of applied and computational mathematics

    CERN Document Server

    2015-01-01

    EACM is a comprehensive reference work covering the vast field of applied and computational mathematics. Applied mathematics itself accounts for at least 60 per cent of mathematics, and the emphasis on computation reflects the current and constantly growing importance of computational methods in all areas of applications. EACM emphasizes the strong links of applied mathematics with major areas of science, such as physics, chemistry, biology, and computer science, as well as specific fields like atmospheric ocean science. In addition, the mathematical input to modern engineering and technology form another core component of EACM.

  4. Applied mathematics analysis of the multibody systems

    Science.gov (United States)

    Sahin, H.; Kar, A. K.; Tacgin, E.

    2012-08-01

    A methodology is developed for the analysis of the multibody systems that is applied on the vehicle as a case study. The previous study emphasizes the derivation of the multibody dynamics equations of motion for bogie [2]. In this work, we have developed a guide-way for the analysis of the dynamical behavior of the multibody systems for mainly validation, verification of the realistic mathematical model and partly for the design of the alternative optimum vehicle parameters.

  5. Mathematical Decision Models Applied for Qualifying and Planning Areas Considering Natural Hazards and Human Dealing

    Science.gov (United States)

    Anton, Jose M.; Grau, Juan B.; Tarquis, Ana M.; Sanchez, Elena; Andina, Diego

    2014-05-01

    The authors were involved in the use of some Mathematical Decision Models, MDM, to improve knowledge and planning about some large natural or administrative areas for which natural soils, climate, and agro and forest uses where main factors, but human resources and results were important, natural hazards being relevant. In one line they have contributed about qualification of lands of the Community of Madrid, CM, administrative area in centre of Spain containing at North a band of mountains, in centre part of Iberian plateau and river terraces, and also Madrid metropolis, from an official study of UPM for CM qualifying lands using a FAO model from requiring minimums of a whole set of Soil Science criteria. The authors set first from these criteria a complementary additive qualification, and tried later an intermediate qualification from both using fuzzy logic. The authors were also involved, together with colleagues from Argentina et al. that are in relation with local planners, for the consideration of regions and of election of management entities for them. At these general levels they have adopted multi-criteria MDM, used a weighted PROMETHEE, and also an ELECTRE-I with the same elicited weights for the criteria and data, and at side AHP using Expert Choice from parallel comparisons among similar criteria structured in two levels. The alternatives depend on the case study, and these areas with monsoon climates have natural hazards that are decisive for their election and qualification with an initial matrix used for ELECTRE and PROMETHEE. For the natural area of Arroyos Menores at South of Rio Cuarto town, with at North the subarea of La Colacha, the loess lands are rich but suffer now from water erosions forming regressive ditches that are spoiling them, and use of soils alternatives must consider Soil Conservation and Hydraulic Management actions. The use of soils may be in diverse non compatible ways, as autochthonous forest, high value forest, traditional

  6. The Applied Mathematics for Power Systems (AMPS)

    Energy Technology Data Exchange (ETDEWEB)

    Chertkov, Michael [Los Alamos National Laboratory

    2012-07-24

    Increased deployment of new technologies, e.g., renewable generation and electric vehicles, is rapidly transforming electrical power networks by crossing previously distinct spatiotemporal scales and invalidating many traditional approaches for designing, analyzing, and operating power grids. This trend is expected to accelerate over the coming years, bringing the disruptive challenge of complexity, but also opportunities to deliver unprecedented efficiency and reliability. Our Applied Mathematics for Power Systems (AMPS) Center will discover, enable, and solve emerging mathematics challenges arising in power systems and, more generally, in complex engineered networks. We will develop foundational applied mathematics resulting in rigorous algorithms and simulation toolboxes for modern and future engineered networks. The AMPS Center deconstruction/reconstruction approach 'deconstructs' complex networks into sub-problems within non-separable spatiotemporal scales, a missing step in 20th century modeling of engineered networks. These sub-problems are addressed within the appropriate AMPS foundational pillar - complex systems, control theory, and optimization theory - and merged or 'reconstructed' at their boundaries into more general mathematical descriptions of complex engineered networks where important new questions are formulated and attacked. These two steps, iterated multiple times, will bridge the growing chasm between the legacy power grid and its future as a complex engineered network.

  7. ON THE EVOLUTION OF APPLIED MATHEMATICS

    Institute of Scientific and Technical Information of China (English)

    林家翘

    2003-01-01

    The recent trend in the application of mathematics to biological sciences is discussed in historical perspective. It is suggested that this new development should be regarded as a natural evolution of applied mathematics in the expansion of its scope. The mathematical concepts and methods to be used are not expected to be substantially different from those used in traditional applied mathematics. For illustration, we sketch an application of the kinetic theory of the study of dissipative systems to the study of the structure and function of protein molecules. The traditional concepts and methods of statistical physics can be successfully applied to yield predictions for comparison with empirical data.

  8. Applied Academics. Applied Mathematics: Drafting. Curriculum Bulletin VE-53.

    Science.gov (United States)

    Cincinnati Public Schools, OH. Div. of Student Services.

    This publication contains the Applied Mathematics Curriculum (Drafting) for grades 11 and 12 for the Cincinnati (Ohio) Public Schools. The curriculum is part of a larger program (the Applied Academics Program), which emphasizes the integration of mathematics and the language arts with vocational content. Included in the document is a description…

  9. Mathematical modelling of the radiation-induced bystander effect and transmissible genomic instability applied to cancer

    Energy Technology Data Exchange (ETDEWEB)

    Little, M.P. (Dept. of Epidemiology and Public Health, Imperial College Faculty of Medicine, London (United Kingdom)); Prise, K.; Folkard, M. (Gray Cancer Institute, Mount Vernon Hospital, Northwood (United Kingdom)); Belyakov, O. (Radiation and Nuclear Safety Authority, Research and Environmental Surveillance, Radiation Biology Laboratory, Helsinki (Finland))

    2008-12-15

    A variety of quasi-mechanistic models of carcinogenesis are reviewed, and in particular, the multi-stage model of Armitage and Doll and the two-mutation model of Moolgavkar, Venzon, and Knudson. Both the latter models, and various generalizations of them also, are capable of describing at least qualitatively many of the observed patterns of excess cancer risk following ionizing radiation exposure. However, there are certain inconsistencies with the biological and epidemiological data both for the multi-stage model and the two-mutation model. In particular, there are indications that the two-mutation model is not totally suitable for describing the pattern of excess risk for solid cancers that is often seen after exposure to radiation, although leukaemia may be better fitted by this type of model. Generalizations of the model of Moolgavkar, Venzon, and Knudson which require three or more mutations, and models allowing for genomic instability, are easier to reconcile with the epidemiological and biological data relating to solid cancers. Bystander effects, whereby cells that are not directly exposed to ionizing radiation exhibit adverse biological effects, have been observed in a number of experimental systems. In contrast to the large amount of work on developing carcinogenesis models over the last 50 years, there has been comparatively little work on developing quasi-mechanistic models of the bystander effect, reflecting the comparatively recently available experimental data elucidating this phenomenon. The few quasi-mechanistic models of the bystander effect that have been developed are surveyed. In particular, a novel stochastic model of the radiation-induced bystander effect is considered that takes account of spatial location, cell killing and repopulation, features not explicitly taken into account in many previous models. The ionizing radiation dose- and time-responses of this model are explored, and it is shown to exhibit pronounced downward curvature in the

  10. The 1989 progress report: Applied Mathematics

    International Nuclear Information System (INIS)

    The 1989 progress report of the laboratory of Applied Mathematics of the Polytechnic School (France) is presented. The investigations reported were performed in the following fields: mathematical and numerical aspects of wave propagation, nonlinear hyperbolic fluid mechanics, numerical simulations and mathematical aspects of semiconductors and electron beams, mechanics of solids, plasticity, viscoelasticity, stochastic, automatic and statistic calculations, synthesis and image processing. The published papers, the conferences and the Laboratory staff are listed

  11. Proceedings of the workshop on applied mathematics

    International Nuclear Information System (INIS)

    The Workshop on Applied Mathematics was held at the Cockcroft Centre, Deep River, Ontario, 1992 February 7-8. The purpose of the workshop was to provide a forum for applied mathematicians to survey the use and to discuss the future of applied mathematics at AECL Research. There were 57 participants at the workshop A total of eight 30-minute and 25 15-minute talks were presented describing mathematical techniques used in the whole range of activities at AECL Research, from numerical simulation of fluid flow through eddy current testing to quantum algebra and accelerator physics

  12. Optimization of grapevine yield by applying mathematical models to obtain quality wine products

    Science.gov (United States)

    Alina, Dobrei; Alin, Dobrei; Eleonora, Nistor; Teodor, Cristea; Marius, Boldea; Florin, Sala

    2016-06-01

    Relationship between the crop load and the grape yield and quality is a dynamic process, specific for wine cultivars and for fresh consumption varieties. Modeling these relations is important for the improvement of technological works. This study evaluated the interrelationship of crop load (B - buds number) and several production parameters (Y - yield; S - sugar; A - acidity; GaI - Glucoacidimetric index; AP - alcoholic potential; F - flavorings, WA - wine alcohol; SR - sugar residue, in Muscat Ottonel wine cultivar and Y - yield; S - sugar; A - acidity; GaI - Glucoacidimetric Index; CP - commercial production; BS - berries size in the Victoria table grape cultivar). In both varieties have been identified correlations between the independent variable (B - buds number as a result of pruning and training practices) and quality parameters analyzed (r = -0.699 for B vsY relationship; r = 0.961 for the relationship B vs S; r = -0.959 for B vs AP relationship; r = 0.743 for the relationship Y vs S, p cultivar, respectively r = -0.907 for relationship B vs Y; r = -0.975 for B vs CP relationship; r = -0.971 for relationship B vs BS; r = 0.990 for CP vs BS relationship in the Victoria cultivar. Through regression analysis were obtained models that describe the variation concerning production and quality parameters in relation to the independent variable (B - buds number) with statistical significance results.

  13. Optimization of grapevine yield by applying mathematical models to obtain quality wine products

    Science.gov (United States)

    Alina, Dobrei; Alin, Dobrei; Eleonora, Nistor; Teodor, Cristea; Marius, Boldea; Florin, Sala

    2016-06-01

    Relationship between the crop load and the grape yield and quality is a dynamic process, specific for wine cultivars and for fresh consumption varieties. Modeling these relations is important for the improvement of technological works. This study evaluated the interrelationship of crop load (B - buds number) and several production parameters (Y - yield; S - sugar; A - acidity; GaI - Glucoacidimetric index; AP - alcoholic potential; F - flavorings, WA - wine alcohol; SR - sugar residue, in Muscat Ottonel wine cultivar and Y - yield; S - sugar; A - acidity; GaI - Glucoacidimetric Index; CP - commercial production; BS - berries size in the Victoria table grape cultivar). In both varieties have been identified correlations between the independent variable (B - buds number as a result of pruning and training practices) and quality parameters analyzed (r = -0.699 for B vsY relationship; r = 0.961 for the relationship B vs S; r = -0.959 for B vs AP relationship; r = 0.743 for the relationship Y vs S, p r = -0.907 for relationship B vs Y; r = -0.975 for B vs CP relationship; r = -0.971 for relationship B vs BS; r = 0.990 for CP vs BS relationship in the Victoria cultivar. Through regression analysis were obtained models that describe the variation concerning production and quality parameters in relation to the independent variable (B - buds number) with statistical significance results.

  14. Intelligent mathematics II applied mathematics and approximation theory

    CERN Document Server

    Duman, Oktay

    2016-01-01

    This special volume is a collection of outstanding more applied articles presented in AMAT 2015 held in Ankara, May 28-31, 2015, at TOBB Economics and Technology University. The collection is suitable for Applied and Computational Mathematics and Engineering practitioners, also for related graduate students and researchers. Furthermore it will be a useful resource for all science and engineering libraries. This book includes 29 self-contained and well-edited chapters that can be among others useful for seminars in applied and computational mathematics, as well as in engineering.

  15. International Conference on Advances in Applied Mathematics

    CERN Document Server

    Hammami, Mohamed; Masmoudi, Afif

    2015-01-01

    This contributed volume presents some recent theoretical advances in mathematics and its applications in various areas of science and technology.   Written by internationally recognized scientists and researchers, the chapters in this book are based on talks given at the International Conference on Advances in Applied Mathematics (ICAAM), which took place December 16-19, 2013, in Hammamet, Tunisia.  Topics discussed at the conference included spectral theory, operator theory, optimization, numerical analysis, ordinary and partial differential equations, dynamical systems, control theory, probability, and statistics.  These proceedings aim to foster and develop further growth in all areas of applied mathematics.

  16. Applied mathematics for science and engineering

    CERN Document Server

    Glasgow, Larry A

    2014-01-01

    Prepare students for success in using applied mathematics for engineering practice and post-graduate studies moves from one mathematical method to the next sustaining reader interest and easing the application of the techniques Uses different examples from chemical, civil, mechanical and various other engineering fields Based on a decade's worth of the authors lecture notes detailing the topic of applied mathematics for scientists and engineers Concisely writing with numerous examples provided including historical perspectives as well as a solutions manual for academic adopters

  17. Discussions on Applied Mathematics in Decision-Making Modeling with Decision Support Systems and Knowledge Based Systems

    OpenAIRE

    Sabina-Cristiana NECULA

    2010-01-01

    This paper tries to discuss some findings in mathematical decision-making modeling models with applications in business processes. We start by presenting some technological implications and implementations of decision-making models. After this we discuss some implementations realized by us and that consists in a neural network, a JAVA implementation of the decision-making model, an expert systems-shell implementation and an implementation with ontology and inference engine. The paper ends wit...

  18. Teaching Mathematical Modeling in Mathematics Education

    Science.gov (United States)

    Saxena, Ritu; Shrivastava, Keerty; Bhardwaj, Ramakant

    2016-01-01

    Mathematics is not only a subject but it is also a language consisting of many different symbols and relations. Taught as a compulsory subject up the 10th class, students are then able to choose whether or not to study mathematics as a main subject. The present paper discusses mathematical modeling in mathematics education. The article provides…

  19. Applied mathematics for engineers and physicists

    CERN Document Server

    Pipes, Louis A

    2014-01-01

    One of the most widely used reference books on applied mathematics for a generation, distributed in multiple languages throughout the world, this text is geared toward use with a one-year advanced course in applied mathematics for engineering students. The treatment assumes a solid background in the theory of complex variables and a familiarity with complex numbers, but it includes a brief review. Chapters are as self-contained as possible, offering instructors flexibility in designing their own courses. The first eight chapters explore the analysis of lumped parameter systems. Succeeding topi

  20. An introduction to mathematical modeling

    CERN Document Server

    Bender, Edward A

    2000-01-01

    Employing a practical, ""learn by doing"" approach, this first-rate text fosters the development of the skills beyond the pure mathematics needed to set up and manipulate mathematical models. The author draws on a diversity of fields - including science, engineering, and operations research - to provide over 100 reality-based examples. Students learn from the examples by applying mathematical methods to formulate, analyze, and criticize models. Extensive documentation, consisting of over 150 references, supplements the models, encouraging further research on models of particular interest. The

  1. Continuum mechanics the birthplace of mathematical models

    CERN Document Server

    Allen, Myron B

    2015-01-01

    Continuum mechanics is a standard course in many graduate programs in engineering and applied mathematics as it provides the foundations for the various differential equations and mathematical models that are encountered in fluid mechanics, solid mechanics, and heat transfer.  This book successfully makes the topic more accessible to advanced undergraduate mathematics majors by aligning the mathematical notation and language with related courses in multivariable calculus, linear algebra, and differential equations; making connections with other areas of applied mathematics where parial differe

  2. Gulf International Conference on Applied Mathematics 2013

    CERN Document Server

    Advances in Applied Mathematics

    2014-01-01

    This volume contains contributions from the Gulf International Conference in Applied Mathematics, held at the Gulf University for Science & Technology. The proceedings reflects the three major themes of the conference. The first of these was mathematical biology, including a keynote address by Professor Philip Maini. The second theme was computational science/numerical analysis, including a keynote address by Professor Grigorii Shishkin. The conference also addressed more general applications topics, with papers in business applications, fluid mechanics, optimization, scheduling problems, and engineering applications, as well as a keynote by Professor Ali Nayfeh.

  3. Study guide for applied finite mathematics

    CERN Document Server

    Macri, Nicholas A

    1982-01-01

    Study Guide for Applied Finite Mathematics, Third Edition is a study guide that introduces beginners to the fundamentals of finite mathematics and its various realistic and relevant applications. Some applications of probability, game theory, and Markov chains are given. Each chapter includes exercises, and each set begins with basic computational ""drill"" problems and then progresses to problems with more substance.Comprised of 10 chapters, this book begins with exercises related to set theory and concepts such as the union and intersection of sets. Exercises on Cartesian coordinate

  4. Developing mathematical modelling competence

    DEFF Research Database (Denmark)

    Blomhøj, Morten; Jensen, Tomas Højgaard

    2003-01-01

    In this paper we introduce the concept of mathematical modelling competence, by which we mean being able to carry through a whole mathematical modelling process in a certain context. Analysing the structure of this process, six sub-competences are identified. Mathematical modelling competence...... cannot be reduced to these six sub-competences, but they are necessary elements in the development of mathematical modelling competence. Experience from the development of a modelling course is used to illustrate how the different nature of the sub-competences can be used as a tool for finding the...... balance between different kinds of activities in a particular educational setting. Obstacles of social, cognitive and affective nature for the students' development of mathematical modelling competence are reported and discussed in relation to the sub-competences....

  5. Global Conference on Applied Physics and Mathematics

    CERN Document Server

    2016-01-01

    The Global Conference on Applied Physics and Mathematics is organized by academics and researchers belonging to different scientific areas of the C3i/Polytechnic Institute of Portalegre (Portugal) and the University of Extremadura (Spain) with the technical support of ScienceKnow Conferences. The event has the objective of creating an international forum for academics, researchers and scientists from worldwide to discuss worldwide results and proposals regarding to the soundest issues related to Applied Physics and Mathematics. This event will include the participation of renowned keynote speakers, oral presentations, posters sessions and technical conferences related to the topics dealt with in the Scientific Program as well as an attractive social and cultural program. The papers will be published in the Proceedings e-books. The proceedings of the conference will be sent to possible indexing on Thomson Reuters (selective by Thomson Reuters, not all-inclusive) and Google Scholar. Those communications con...

  6. Creative Thinking Ability to Increase Student Mathematical of Junior High School by Applying Models Numbered Heads Together

    Science.gov (United States)

    Lince, Ranak

    2016-01-01

    Mathematical ability of students creative thinking is a component that must be mastered by the student. Mathematical creative thinking plays an important role, both in solving the problem and well, even in high school students. Therefore, efforts are needed to convey ideas in mathematics. But the reality is not yet developed the ability to…

  7. Mathematical models of morphogenesis

    Directory of Open Access Journals (Sweden)

    Dilão Rui

    2015-01-01

    Full Text Available Morphogenesis is the ensemble of phenomena that generates the form and shape of organisms. Organisms are classified according to some of its structural characteristics, to its metabolism and to its form. In particular, the empirical classification associated with the phylum concept is related with the form and shape of organisms. In the first part of this talk, we introduce the class of mathematical models associated the Turing approach to pattern formation. In the Turing approach, morphogenesis models are described by reaction-diffusion parabolic partial differential equations. Based on this formalism, we present a mathematical model describing the first two hours of development of the fruit fly Drosophila. In the second part of this talk, we present results on Pareto optimality to calibrate and validate mathematical models.

  8. Principles of mathematical modeling

    CERN Document Server

    Dym, Clive

    2004-01-01

    Science and engineering students depend heavily on concepts of mathematical modeling. In an age where almost everything is done on a computer, author Clive Dym believes that students need to understand and "own" the underlying mathematics that computers are doing on their behalf. His goal for Principles of Mathematical Modeling, Second Edition, is to engage the student reader in developing a foundational understanding of the subject that will serve them well into their careers. The first half of the book begins with a clearly defined set of modeling principles, and then introduces a set of foundational tools including dimensional analysis, scaling techniques, and approximation and validation techniques. The second half demonstrates the latest applications for these tools to a broad variety of subjects, including exponential growth and decay in fields ranging from biology to economics, traffic flow, free and forced vibration of mechanical and other systems, and optimization problems in biology, structures, an...

  9. Concepts of mathematical modeling

    CERN Document Server

    Meyer, Walter J

    2004-01-01

    Appropriate for undergraduate and graduate students, this text features independent sections that illustrate the most important principles of mathematical modeling, a variety of applications, and classic models. Students with a solid background in calculus and some knowledge of probability and matrix theory will find the material entirely accessible. The range of subjects includes topics from the physical, biological, and social sciences, as well as those of operations research. Discussions cover related mathematical tools and the historical eras from which the applications are drawn. Each sec

  10. Electrical engineering is an applied mathematics

    Science.gov (United States)

    Zainal, Yuda Bakti; Sambasri, Susanto; Widodo, Rohani Jahja

    2015-05-01

    This paper presents developments and applications of Electrical Engieering (EE) as an Applied Mathematic (AM). Several characteristics of EE can be linked to human behavior. EE can "think" in the sense that they can replace to some extent, human operation. It is a concept or principle that seems to fundamental in nature and not necessarily peculiar to engineering. EE theory can be discussed from four viewpoints as: an intellectual discipline within science and the philosophy of science, a part of engineering, with industrial applications and Social Systems (SS) of the present and the future. In global communication, developed countries and developing countries should build several attractive and sound symbiosis bridges, to prevent loss of universe balances. EE applications have social impacts not only in developed countries but also in developing countries.

  11. Mathematical modeling in psychological researches

    Directory of Open Access Journals (Sweden)

    Aleksandra Zyolko

    2013-04-01

    Full Text Available The author considers the nature of mathematical modeling and its significance in psychological researches. The author distinguishes the types of mathematical models: deterministic, stochastic models and synergetic models. The system approach is proposed as an instrument of implementation of mathematical modelling in psychological research.

  12. Building fire zone model with symbolic mathematics

    Institute of Scientific and Technical Information of China (English)

    武红梅; 郜冶; 周允基

    2009-01-01

    To apply the fire modelling for the fire engineer with symbolic mathematics,the key equations of a zone model were demonstrated. There were thirteen variables with nine constraints,so only four ordinary differential equations (ODEs) were required to solve. A typical fire modelling with two-room structure was studied. Accordingly,the source terms included in the ODEs were simplified and modelled,and the fourth Runge-Kutta method was used to solve the ordinary differential equations (ODEs) with symbolic mathematics. Then a zone model could be used with symbolic mathematics. It is proposed that symbolic mathematics is possible for use by fire engineer.

  13. Finite mathematics models and applications

    CERN Document Server

    Morris, Carla C

    2015-01-01

    Features step-by-step examples based on actual data and connects fundamental mathematical modeling skills and decision making concepts to everyday applicability Featuring key linear programming, matrix, and probability concepts, Finite Mathematics: Models and Applications emphasizes cross-disciplinary applications that relate mathematics to everyday life. The book provides a unique combination of practical mathematical applications to illustrate the wide use of mathematics in fields ranging from business, economics, finance, management, operations research, and the life and social sciences.

  14. Authenticity of Mathematical Modeling

    Science.gov (United States)

    Tran, Dung; Dougherty, Barbara J.

    2014-01-01

    Some students leave high school never quite sure of the relevancy of the mathematics they have learned. They fail to see links between school mathematics and the mathematics of everyday life that requires thoughtful decision making and often complex problem solving. Is it possible to bridge the gap between school mathematics and the mathematics in…

  15. International Conference on Applied Mathematics and Informatics

    CERN Document Server

    Vasilieva, Olga

    2015-01-01

    This book highlights recent compelling research results and trends in various aspects of contemporary mathematics, emphasizing applications to real-world situations. The chapters present exciting new findings and developments in situations where mathematical rigor is combined with common sense. A multi-disciplinary approach, both within each chapter and in the volume as a whole, leads to practical insights that may result in a more synthetic understanding of specific global issues—as well as their possible solutions. The volume will be of interest not only to experts in mathematics, but also to graduate students, scientists, and practitioners from other fields including physics, biology, geology, management, and medicine.

  16. Mathematical Modeling: Convoying Merchant Ships

    Science.gov (United States)

    Mathews, Susann M.

    2004-01-01

    This article describes a mathematical model that connects mathematics with social studies. Students use mathematics to model independent versus convoyed ship deployments and sinkings to determine if the British should have convoyed their merchant ships during World War I. During the war, the British admiralty opposed sending merchant ships grouped…

  17. Quantum mechanics as applied mathematical statistics

    International Nuclear Information System (INIS)

    Basic mathematical apparatus of quantum mechanics like the wave function, probability density, probability density current, coordinate and momentum operators, corresponding commutation relation, Schroedinger equation, kinetic energy, uncertainty relations and continuity equation is discussed from the point of view of mathematical statistics. It is shown that the basic structure of quantum mechanics can be understood as generalization of classical mechanics in which the statistical character of results of measurement of the coordinate and momentum is taken into account and the most important general properties of statistical theories are correctly respected.

  18. Mathematical modeling with multidisciplinary applications

    CERN Document Server

    Yang, Xin-She

    2013-01-01

    Features mathematical modeling techniques and real-world processes with applications in diverse fields Mathematical Modeling with Multidisciplinary Applications details the interdisciplinary nature of mathematical modeling and numerical algorithms. The book combines a variety of applications from diverse fields to illustrate how the methods can be used to model physical processes, design new products, find solutions to challenging problems, and increase competitiveness in international markets. Written by leading scholars and international experts in the field, the

  19. Assessing Science Students' Attitudes to Mathematics: A Case Study on a Modelling Project with Mathematical Software

    Science.gov (United States)

    Lim, L. L.; Tso, T. -Y.; Lin, F. L.

    2009-01-01

    This article reports the attitudes of students towards mathematics after they had participated in an applied mathematical modelling project that was part of an Applied Mathematics course. The students were majoring in Earth Science at the National Taiwan Normal University. Twenty-six students took part in the project. It was the first time a…

  20. Comprehensive text book of applied mathematics

    CERN Document Server

    Gupta, Rakesh

    2009-01-01

    ""This book is a comprehensive package for knowledge sharing on Mathematics. The language of the book is simple and self-explanatory, this will help the students to grasp the fundamentals of the subject easily. The book follows a to the point approach and lays stress on the understanding of the core concepts. Appropriate number of MCQs are given for each topic that are of great help to the students appearing for competitive and State Board examinations."

  1. Quantitative Analysis of the Interdisciplinarity of Applied Mathematics.

    Science.gov (United States)

    Xie, Zheng; Duan, Xiaojun; Ouyang, Zhenzheng; Zhang, Pengyuan

    2015-01-01

    The increasing use of mathematical techniques in scientific research leads to the interdisciplinarity of applied mathematics. This viewpoint is validated quantitatively here by statistical and network analysis on the corpus PNAS 1999-2013. A network describing the interdisciplinary relationships between disciplines in a panoramic view is built based on the corpus. Specific network indicators show the hub role of applied mathematics in interdisciplinary research. The statistical analysis on the corpus content finds that algorithms, a primary topic of applied mathematics, positively correlates, increasingly co-occurs, and has an equilibrium relationship in the long-run with certain typical research paradigms and methodologies. The finding can be understood as an intrinsic cause of the interdisciplinarity of applied mathematics. PMID:26352604

  2. Mathematical Modeling in Mathematics Education: Basic Concepts and Approaches

    Science.gov (United States)

    Erbas, Ayhan Kürsat; Kertil, Mahmut; Çetinkaya, Bülent; Çakiroglu, Erdinç; Alacaci, Cengiz; Bas, Sinem

    2014-01-01

    Mathematical modeling and its role in mathematics education have been receiving increasing attention in Turkey, as in many other countries. The growing body of literature on this topic reveals a variety of approaches to mathematical modeling and related concepts, along with differing perspectives on the use of mathematical modeling in teaching and…

  3. Mathematical modeling of laser lipolysis

    Directory of Open Access Journals (Sweden)

    Reynaud Jean

    2008-02-01

    Full Text Available Abstract Background and Objectives Liposuction continues to be one of the most popular procedures performed in cosmetic surgery. As the public's demand for body contouring continues, laser lipolysis has been proposed to improve results, minimize risk, optimize patient comfort, and reduce the recovery period. Mathematical modeling of laser lipolysis could provide a better understanding of the laser lipolysis process and could determine the optimal dosage as a function of fat volume to be removed. Study design/Materials and Methods An Optical-Thermal-Damage Model was formulated using finite-element modeling software (Femlab 3.1, Comsol Inc. The general model simulated light distribution using the diffusion approximation of the transport theory, temperature rise using the bioheat equation and laser-induced injury using the Arrhenius damage model. Biological tissue was represented by two homogenous regions (dermis and fat layer with a nonlinear air-tissue boundary condition including free convection. Video recordings were used to gain a better understanding of the back and forth movement of the cannula during laser lipolysis in order to consider them in our mathematical model. Infrared video recordings were also performed in order to compare the actual surface temperatures to our calculations. The reduction in fat volume was determined as a function of the total applied energy and subsequently compared to clinical data reported in the literature. Results In patients, when using cooled tumescent anesthesia, 1064 nm Nd:YAG laser or 980 nm diode laser: (6 W, back and forth motion: 100 mm/s give similar skin surface temperature (max: 41°C. These measurements are in accordance with those obtained by mathematical modeling performed with a 1 mm cannula inserted inside the hypodermis layer at 0.8 cm below the surface. Similarly, the fat volume reduction observed in patients at 6-month follow up can be determined by mathematical modeling. This fat reduction

  4. IEMAE: mathematics & statistics applied to civil engineering & building

    OpenAIRE

    Serrat Piè, Carles

    2009-01-01

    IEMAE (Institut d’Estadística i Matemàtica Aplicada a l’Edificació - Institute of Statistics and Mathematics Applied to the Building Construction) is an academic institution interested in solving Multidisciplinary problems in the civil and building engineering area by using statistics and mathematics disciplines

  5. Research in Applied Mathematics, Fluid Mechanics and Computer Science

    Science.gov (United States)

    1999-01-01

    This report summarizes research conducted at the Institute for Computer Applications in Science and Engineering in applied mathematics, fluid mechanics, and computer science during the period October 1, 1998 through March 31, 1999.

  6. [Research activities in applied mathematics, fluid mechanics, and computer science

    Science.gov (United States)

    1995-01-01

    This report summarizes research conducted at the Institute for Computer Applications in Science and Engineering in applied mathematics, fluid mechanics, and computer science during the period April 1, 1995 through September 30, 1995.

  7. A mathematical model applied for assisting the estimation of PMI in a case of forensic importance. First record of Conicera similis (Diptera: Phoridae) in a corpse

    OpenAIRE

    García-Rojo Gambín, Ana María; Martínez Sánchez, Ana Isabel; López Fernández, Rafael; García de la Vega, José Manuel; Rica Matea, Mario; González, Mariano; Disney, R.H.L.

    2013-01-01

    We present a forensic case associated with skeletonized human remains found inside a cistern in a coastal town located in the eastern Iberian Peninsula (Valencian Regional Government, Spain). In order to analyse the particular environmental conditions that occurred during oviposition and development of the collected insects, estimated temperatures at the crime scene were calculated by a predictive mathematical model. This model analyses the correlation between the variability of the internal ...

  8. Mathematical Modelling of Unmanned Aerial Vehicles with Four Rotors

    OpenAIRE

    Zoran Benić; Petar Piljek; Denis Kotarski

    2016-01-01

    Mathematical model of an unmanned aerial vehicle with four propulsors (quadcopter) is indispensable in quadcopter movement simulation and later modelling of the control algorithm. Mathematical model is, at the same time, the first step in comprehending the mathematical principles and physical laws which are applied to the quadcopter system. The objective is to define the mathematical model which will describe the quadcopter behavior with satisfactory accuracy and which can be, with certain mo...

  9. Development of the applied mathematics originating from the group theory of physical and mathematical problems

    Energy Technology Data Exchange (ETDEWEB)

    Hyman, J.; Beyer, W.; Louck, J.; Metropolis, N.

    1996-07-01

    This is the final report of a three-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). Group theoretical methods are a powerful tool both in their applications to mathematics and to physics. The broad goal of this project was to use such methods to develop the implications of group (symmetry) structures underlying models of physical systems, as well as to broaden the understanding of simple models of chaotic systems. The main thrust was to develop further the complex mathematics that enters into many-particle quantum systems with special emphasis on the new directions in applied mathematics that have emerged and continue to surface in these studies. In this area, significant advances in understanding the role of SU(2) 3nj-coefficients in SU(3) theory have been made and in using combinatoric techniques in the study of generalized Schur functions, discovered during this project. In the context of chaos, the study of maps of the interval and the associated theory of words has led to significant discoveries in Galois group theory, to the classification of fixed points, and to the solution of a problem in the classification of DNA sequences.

  10. The use of mathematical models in teaching wastewater treatment engineering

    DEFF Research Database (Denmark)

    Morgenroth, Eberhard Friedrich; Arvin, Erik; Vanrolleghem, P.

    2002-01-01

    Mathematical modeling of wastewater treatment processes has become increasingly popular in recent years. To prepare students for their future careers, environmental engineering education should provide students with sufficient background and experiences to understand and apply mathematical models...... efficiently and responsibly. Approaches for introducing mathematical modeling into courses on wastewater treatment engineering are discussed depending on the learning objectives, level of the course and the time available.......Mathematical modeling of wastewater treatment processes has become increasingly popular in recent years. To prepare students for their future careers, environmental engineering education should provide students with sufficient background and experiences to understand and apply mathematical models...

  11. Activities report 1977--78. Applied mathematics department 5640

    International Nuclear Information System (INIS)

    This report is a compilation of independent articles highlighting some of the work done in the Applied Mathematics Department during the years 1977 and 1978. It is neither an exhaustive report on all activities in the department during this period nor a list of the most substantial mathematical contributions. Instead, it is a selection of topics which are thought to be of greatest interest because of their importance to Sandia. The report is divided into four principal sections which reflect the department's major areas of interest: Mathematical Physics, Computational Mathematics, Probability and Statistics, and Discrete Mathematics. To provide a smoother narrative, references are omitted from the text. However, a complete department bibliography of corporate and open publications as well as technical presentations for the period October 1977 through December 1978 is appended. 4 figures, 3 tables

  12. Mathematical modelling of magnetically targeted drug delivery

    Energy Technology Data Exchange (ETDEWEB)

    Grief, Andrew D. [Theoretical Mechanics, School of Mathematical Sciences, University of Nottingham, University Park, Nottingham NG7 2RD (United Kingdom)]. E-mail: andrew.grief@nottingham.ac.uk; Richardson, Giles [Theoretical Mechanics, School of Mathematical Sciences, University of Nottingham, University Park, Nottingham NG7 2RD (United Kingdom)]. E-mail: giles.richardson@nottingham.ac.uk

    2005-05-15

    A mathematical model for targeted drug delivery using magnetic particles is developed. This includes a diffusive flux of particles arising from interactions between erythrocytes in the microcirculation. The model is used to track particles in a vessel network. Magnetic field design is discussed and we show that it is impossible to specifically target internal regions using an externally applied field.

  13. Quantifying the effect of tissue deformation on diffusion-weighted MRI: a mathematical model and an efficient simulation framework applied to cardiac diffusion imaging

    Science.gov (United States)

    Mekkaoui, Imen; Moulin, Kevin; Croisille, Pierre; Pousin, Jerome; Viallon, Magalie

    2016-08-01

    Cardiac motion presents a major challenge in diffusion weighted MRI, often leading to large signal losses that necessitate repeated measurements. The diffusion process in the myocardium is difficult to investigate because of the unqualified sensitivity of diffusion measurements to cardiac motion. A rigorous mathematical formalism is introduced to quantify the effect of tissue motion in diffusion imaging. The presented mathematical model, based on the Bloch–Torrey equations, takes into account deformations according to the laws of continuum mechanics. Approximating this mathematical model by using finite elements method, numerical simulations can predict the sensitivity of the diffusion signal to cardiac motion. Different diffusion encoding schemes are considered and the diffusion weighted MR signals, computed numerically, are compared to available results in literature. Our numerical model can identify the existence of two time points in the cardiac cycle, at which the diffusion is unaffected by myocardial strain and cardiac motion. Of course, these time points depend on the type of diffusion encoding scheme. Our numerical results also show that the motion sensitivity of the diffusion sequence can be reduced by using either spin echo technique with acceleration motion compensation diffusion gradients or stimulated echo acquisition mode with unipolar and bipolar diffusion gradients.

  14. Editorial: Special Issue on Computational Problems in Applied Mathematics

    OpenAIRE

    Walailak Journal of Science and Technology

    2014-01-01

    Computational Fluid Dynamics (CFD) is a highly interdisciplinary research area which lies at the interface of physics, applied mathematics, and computer science. CFD is the science of predicting fluid flow, heat transfer, mass transfer, chemical reactions, and related phenomena by solving the mathematical equations which govern these processes using a numerical process. Theoretical and Computational Fluid Dynamics provides a forum for the cross-fertilization of notions, tools and techniques a...

  15. A mathematical model of symmetry based on mathematical definition

    Institute of Scientific and Technical Information of China (English)

    刘玉生; 杨将新; 吴昭同; 高曙明

    2002-01-01

    Tolerance is imperative for seamless integration of CAD/CAM(Computer Aided Disignd/Computer Aided Manufacture) which is just a text attribute and has no semantics in present CAD systems. There are many tolerance types, the relations between which are very complicated. In addition, the different principles of tolerance make study of tolerance difficult; and there may be various meanings or interpretation for the same type of tolerance beeanse of the literal definition. In this work, latest unambiguous mathematical definition was applied to study, explain and clarify: ( 1 ) the formation and representation of tolerance zone, and (2) the formation and representation of variational elements ; after which, the mathematical models of syrmmetry of different tolerance principles and different interpretations were derived. An example is given to illustrate the application of these models in tolerance analysis.

  16. Biodistribution of radiopharmaceuticals - mathematic models

    International Nuclear Information System (INIS)

    Characteristic biodistributions of radiopharmaceuticals were investigated by means of mathematical pharmacokinetics. Beside linear concentration dependent transport processes the existence of chemical equilibria in corresponding compartments producing chemically different transport and permeating species were included. The derived relations have been demonstrated by mathematical organ models comprising the renal excretion, the distribution of an osteotropic radiopharmaceutical between the skelet and the tumour compartment as well as a kidney model. (author)

  17. Mathematical modelling of fracture hydrology

    International Nuclear Information System (INIS)

    This report summarises the work performed between January 1983 and December 1984 for the CEC/DOE contract 'Mathematical Modelling of Fracture Hydrology', under the following headings: 1) Statistical fracture network modelling, 2) Continuum models of flow and transport, 3) Simplified models, 4) Analysis of laboratory experiments and 5) Analysis of field experiments. (author)

  18. 3rd International Conference on Applied Mathematics and Approximation Theory

    CERN Document Server

    Duman, Oktay

    2016-01-01

    This special volume is a collection of outstanding theoretical articles presented at the conference AMAT 2015, held in Ankara, Turkey from May 28-31, 2015, at TOBB University of Economics and Technology. The collection is suitable for a range of applications: from researchers and practitioners of applied and computational mathematics, to students in graduate-level seminars. Furthermore it will be a useful resource for all science libraries. This book includes 27 self-contained and expertly-refereed chapters that provide numerous insights into the latest developments at the intersection of applied and computational mathematics, engineering, and statistics.

  19. Mathematical modelling of membrane separation

    DEFF Research Database (Denmark)

    Vinther, Frank

    This thesis concerns mathematical modelling of membrane separation. The thesis consists of introductory theory on membrane separation, equations of motion, and properties of dextran, which will be the solute species throughout the thesis. Furthermore, the thesis consist of three separate...... mathematical models, each with a different approach to membrane separation. The first model is a statistical model investigating the interplay between solute shape and the probability of entering the membrane. More specific the transition of solute particles from being spherical to becoming more elongated as...

  20. Mathematical modeling in biomedical imaging

    CERN Document Server

    2009-01-01

    This volume gives an introduction to a fascinating research area to applied mathematicians. It is devoted to providing the exposition of promising analytical and numerical techniques for solving challenging biomedical imaging problems, which trigger the investigation of interesting issues in various branches of mathematics.

  1. Mathematical Model for Photovoltaic Cells

    Directory of Open Access Journals (Sweden)

    Wafaa ABD EL-BASIT

    2013-11-01

    Full Text Available The study of photovoltaic systems in an efficient manner requires a precise knowledge of the (I-V and (P-V characteristic curves of photovoltaic modules. So, the aim of the present paper is to estimate such characteristics based on different operating conditions. In this concern, a simple one diode mathematical model was implemented using MATLAB script. The output characteristics of PV cell depend on the environmental conditions. For any solar cell, the model parameters are function of the irradiance and the temperature values of the site where the panel is placed. In this paper, the numerical values of the equivalent circuit parameters are generated by the program. As well, the dependence of the cells electrical parameters are analyzed under the influence of different irradiance and temperature levels. The variation of slopes of the (I–V curves of a cell at short-circuit and open-circuit conditions with intensity of illumination in small span of intensity and different temperature levels have been applied to determine the cell parameters, shunt resistance, series resistance. The results show that the efficiency of solar cells has an inverse relationship with temperature, irradiance levels are affected by the change of the photo-generation current and the series resistance in the single diode model.

  2. Mathematical modeling and optimization of complex structures

    CERN Document Server

    Repin, Sergey; Tuovinen, Tero

    2016-01-01

    This volume contains selected papers in three closely related areas: mathematical modeling in mechanics, numerical analysis, and optimization methods. The papers are based upon talks presented  on the International Conference for Mathematical Modeling and Optimization in Mechanics, held in Jyväskylä, Finland, March 6-7, 2014 dedicated to Prof. N. Banichuk on the occasion of his 70th birthday. The articles are written by well-known scientists working in computational mechanics and in optimization of complicated technical models. Also, the volume contains papers discussing the historical development, the state of the art, new ideas, and open problems arising in  modern continuum mechanics and applied optimization problems. Several papers are concerned with mathematical problems in numerical analysis, which are also closely related to important mechanical models. The main topics treated include:  * Computer simulation methods in mechanics, physics, and biology;  * Variational problems and methods; minimiz...

  3. Mathematical modeling and applications in nonlinear dynamics

    CERN Document Server

    Merdan, Hüseyin

    2016-01-01

    The book covers nonlinear physical problems and mathematical modeling, including molecular biology, genetics, neurosciences, artificial intelligence with classical problems in mechanics and astronomy and physics. The chapters present nonlinear mathematical modeling in life science and physics through nonlinear differential equations, nonlinear discrete equations and hybrid equations. Such modeling can be effectively applied to the wide spectrum of nonlinear physical problems, including the KAM (Kolmogorov-Arnold-Moser (KAM)) theory, singular differential equations, impulsive dichotomous linear systems, analytical bifurcation trees of periodic motions, and almost or pseudo- almost periodic solutions in nonlinear dynamical systems. Provides methods for mathematical models with switching, thresholds, and impulses, each of particular importance for discontinuous processes Includes qualitative analysis of behaviors on Tumor-Immune Systems and methods of analysis for DNA, neural networks and epidemiology Introduces...

  4. Mathematical Optimization Applied to Thermal and Electrical Energy Systems

    OpenAIRE

    Bordin, Chiara

    2015-01-01

    This Thesis aims at building and discussing mathematical models applications focused on Energy problems, both on the thermal and electrical side. The objective is to show how mathematical programming techniques developed within Operational Research can give useful answers in the Energy Sector, how they can provide tools to support decision making processes of Companies operating in the Energy production and distribution and how they can be successfully used to make simulations and sensiti...

  5. Elements of applied probability for engineering, mathematics and systems science

    CERN Document Server

    McDonald, David

    2004-01-01

    This book has been designed for senior engineering, mathematics andsystems science students. In addition, the author has used theoptional, advanced sections as the basis for graduate courses inquality control and queueing. It is assumed that the students havetaken a first course in probability but that some need areview. Discrete models are emphasized and examples have been chosenfrom the areas of quality control and telecommunications. The bookprovides correct, modern mathematical methods and at the same timeconveys the excitement of real applications.

  6. Mathematical applications and modelling yearbook 2010, Association of Mathematics Educators

    CERN Document Server

    Scientific, World

    2010-01-01

    Mathematical Applications and Modelling is the second in the series of the yearbooks of the Association of Mathematics Educators in Singapore. The book is unique as it addresses a focused theme on mathematics education. The objective is to illustrate the diversity within the theme and present research that translates into classroom pedagogies.The book, comprising of 17 chapters, illuminates how application and modelling tasks may help develop the capacity of students to use mathematics in their present and future lives. Several renowned international researchers in the field of mathematical mo

  7. Mathematical Models of Gene Regulation

    Science.gov (United States)

    Mackey, Michael C.

    2004-03-01

    This talk will focus on examples of mathematical models for the regulation of repressible operons (e.g. the tryptophan operon), inducible operons (e.g. the lactose operon), and the lysis/lysogeny switch in phage λ. These ``simple" gene regulatory elements can display characteristics experimentally of rapid response to perturbations and bistability, and biologically accurate mathematical models capture these aspects of the dynamics. The models, if realistic, are always nonlinear and contain significant time delays due to transcriptional and translational delays that pose substantial problems for the analysis of the possible ranges of dynamics.

  8. Representations used by mathematics student teachers in mathematical modeling process

    Directory of Open Access Journals (Sweden)

    Aytuğ Özaltun

    2014-02-01

    Full Text Available The purpose of this study is to determine representations used by mathematics student teachers in steps of mathematical modeling process based on their solutions of problems formed in the context of different classification of modeling. The study was conducted with fifteen secondary mathematics student teachers given a Mathematical Modeling course. The participants were separated into five collaboration groups of three students. Data were collected with the detailed written papers given by the groups for the problems and GeoGebra solution files. The groups benefited from verbal, algebraic, figural, tabular and dynamic representations while they were solving the problems. Considering all steps of the process, groups at most used verbal and algebraic representations. While they used only verbal representation in analyzing the problem, they benefited from at most verbal representation and then figural representation in establishing the systematic structure. The most used is algebraic and then verbal representations in the steps of mathematization, meta-mathematization, and mathematical analysis. In the steps of interpretation/evaluation and the model verification, the groups mainly benefited from verbal and then algebraic representations. Further researches towards why representations are preferred in the specific steps of the mathematical modeling process are suggested.Key Words: Mathematical modeling, modeling problems, mathematics student teachers, representations.

  9. Mathematical circulatory system model

    Science.gov (United States)

    Lakin, William D. (Inventor); Stevens, Scott A. (Inventor)

    2010-01-01

    A system and method of modeling a circulatory system including a regulatory mechanism parameter. In one embodiment, a regulatory mechanism parameter in a lumped parameter model is represented as a logistic function. In another embodiment, the circulatory system model includes a compliant vessel, the model having a parameter representing a change in pressure due to contraction of smooth muscles of a wall of the vessel.

  10. Mathematical Modeling: A Bridge to STEM Education

    Science.gov (United States)

    Kertil, Mahmut; Gurel, Cem

    2016-01-01

    The purpose of this study is making a theoretical discussion on the relationship between mathematical modeling and integrated STEM education. First of all, STEM education perspective and the construct of mathematical modeling in mathematics education is introduced. A review of literature is provided on how mathematical modeling literature may…

  11. Applying mathematical finance tools to the competitive Nordic electricity market

    OpenAIRE

    Vehviläinen, Iivo

    2004-01-01

    This thesis models competitive electricity markets using the methods of mathematical finance. Fundamental problems of finance are market price modelling, derivative pricing, and optimal portfolio selection. The same questions arise in competitive electricity markets. The thesis presents an electricity spot price model based on the fundamental stochastic factors that affect electricity prices. The resulting price model has sound economic foundations, is able to explain spot market price mo...

  12. Mathematics teachers’ ideas about mathematical models: a diverse landscape

    OpenAIRE

    Alfredo Bautista; Wilkerson-Jerde, Michelle H.; Tobin, Roger G.; Brizuela, Bárbara M.

    2014-01-01

    This paper describes the ideas that mathematics teachers (grades 5-9) have regarding mathematical models of real-world phenomena, and explores how teachers??? ideas differ depending on their educational background. Participants were 56 United States in-service mathematics teachers. We analyzed teachers??? written responses to three open-ended questions through content analysis. A varied landscape of ideas was identified. Teachers referred to different entities as constituting models, expresse...

  13. 12th International School of Mathematics "G Stampacchia" : Applied Mathematics in the Aerospace Field "Ettore Majorana"

    CERN Document Server

    Salvetti, Attilio; Applied Mathematics in Aerospace Science and Engineering

    1994-01-01

    This book contains the proceedings ofthe meeting on "Applied Mathematics in the Aerospace Field," held in Erice, Sicily, Italy from September 3 to September 10, 1991. The occasion of the meeting was the 12th Course of the School of Mathematics "Guido Stampacchia," directed by Professor Franco Giannessi of the University of Pisa. The school is affiliated with the International Center for Scientific Culture "Ettore Majorana," which is directed by Professor Antonino Zichichi of the University of Bologna. The objective of the course was to give a perspective on the state-of­ the-art and research trends concerning the application of mathematics to aerospace science and engineering. The course was structured with invited lectures and seminars concerning fundamental aspects of differential equa­ tions, mathematical programming, optimal control, numerical methods, per­ turbation methods, and variational methods occurring in flight mechanics, astrodynamics, guidance, control, aircraft design, fluid mechanic...

  14. Mathematical modelling of fracture hydrology

    International Nuclear Information System (INIS)

    This report reviews work carried out between January 1983 and December 1984 for the CEC/DOE contract 'Mathematical Modelling of Fracture Hydrology' which forms part of the CEC Mirage project (CEC 1984. Come 1985. Bourke et. al. 1983). It describes the development and use of a variety of mathematical models for the flow of water and transport of radionuclides in flowing groundwater. These models have an important role to play in assessing the long-term safety of radioactive waste burial, and in the planning and interpretation of associated experiments. The work is reported under five headings, namely 1) Statistical fracture network modelling, 2) Continuum models of flow and transport, 3) Simplified models, 4) Analysis of laboratory experiments, 5) Analysis of field experiments

  15. A mathematical model applied for assisting the estimation of PMI in a case of forensic importance. First record of Conicera similis (Diptera: Phoridae) in a corpse.

    Science.gov (United States)

    García-Rojo, A M; Martínez-Sánchez, A; López, R; García de la Vega, J M; Rica, M; González, M; Disney, R H L

    2013-09-10

    We present a forensic case associated with skeletonized human remains found inside a cistern in a coastal town located in the eastern Iberian Peninsula (Valencian Regional Government, Spain). In order to analyse the particular environmental conditions that occurred during oviposition and development of the collected insects, estimated temperatures at the crime scene were calculated by a predictive mathematical model. This model analyses the correlation between the variability of the internal temperature depending on the variability of the external ones. The amplitude of the temperature oscillations inside the tank and the containment of the enclosure is reduced by the presence of water. Such variation occurred within about 2h due to the time required for heat exchange. The differential equations employed to model differences between outdoor and indoor temperatures were an essential tool which let us estimate the post-mortem interval (PMI) that was carried out by the study of the insect succession and the development time of the collected Diptera specimens under the adjusted temperatures. The presence of live larvae and pupae of Sarcophagidae and empty pupae of Calliphoridae, Sarcophagidae, Fanniidae, Muscidae, Phoridae and Piophilidae and the decomposition stage suggested the possibility that the remains were in the tank at least a year. We highlight the absence of Calliphora and Lucilia spp., and the first occurrence of the phorid Conicera similis in a human cadaver among the entomological evidence. PMID:23845917

  16. Mathematical modelling of reservoir ecosystems

    Czech Academy of Sciences Publication Activity Database

    Růžička, Martin; Hejzlar, Josef; Kafková, Dagmar; Balejová, Marcela; Thébault, J. M.

    2001-01-01

    Roč. 49, č. 2 (2001), s. 109-124. ISSN 0042-790X R&D Projects: GA ČR GA103/98/0281; GA AV ČR IAA3042903 Keywords : mathematical model ling * ecosystems * reservoir Rimov Subject RIV: BK - Fluid Dynamics

  17. The use of mathematical models in teaching wastewater treatment engineering

    DEFF Research Database (Denmark)

    Morgenroth, Eberhard Friedrich; Arvin, Erik; Vanrolleghem, P.

    2002-01-01

    Mathematical modeling of wastewater treatment processes has become increasingly popular in recent years. To prepare students for their future careers, environmental engineering education should provide students with sufficient background and experiences to understand and apply mathematical models...... efficiently and responsibly. Approaches for introducing mathematical modeling into courses on wastewater treatment engineering are discussed depending on the learning objectives, level of the course and the time available....

  18. Applied Mathematics for agronomical engineers in Spain at UPM

    Science.gov (United States)

    Anton, J. M.; Grau, J. B.; Tarquis, A. M.; Fabregat, J.; Sanchez, M. E.

    2009-04-01

    Mathematics, created or discovered, are a global human conceptual endowment, containing large systems of knowledge, and varied skills to use definite parts of them, in creation or discovery, or for applications, e.g. in Physics, or notably in engineering behaviour. When getting upper intellectual levels in the 19th century, the agronomical science and praxis was noticeably or mainly organised in Spain in agronomical engineering schools and also in institutes, together with technician schools, also with different lower lever centres, and they have evolved with progress and they are much changing at present to a EEES schema (Bolonia process). They work in different lines that need some basis or skills from mathematics. The vocation to start such careers, that have varied curriculums, contains only some mathematics, and the number of credits for mathematics is restrained because time is necessary for other initial sciences such as applied chemistry, biology, ecology and soil sciences, but some basis and skill of maths are needed, also with Physics, at least for electricity, machines, construction, economics at initial ground levels, and also for Statistics that are here considered part of Applied Mathematics. The ways of teaching mathematical basis and skills are especial, and are different from the practical ways needed e. g. for Soil Sciences, and they involve especial efforts from students, and especial controls or exams that guide much learning. The mathematics have a very large accepted content that uses mostly a standard logic, and that is remarkably stable and international, rather similar notation and expressions being used with different main languages. For engineering the logical basis is really often not taught, but the use of it is transferred, especially for calculus that requires both adapted somehow simplified schemas and the learning of a specific skill to use it, and also for linear algebra. The basic forms of differential calculus in several

  19. Mathematical modeling of biological processes

    CERN Document Server

    Friedman, Avner

    2014-01-01

    This book on mathematical modeling of biological processes includes a wide selection of biological topics that demonstrate the power of mathematics and computational codes in setting up biological processes with a rigorous and predictive framework. Topics include: enzyme dynamics, spread of disease, harvesting bacteria, competition among live species, neuronal oscillations, transport of neurofilaments in axon, cancer and cancer therapy, and granulomas. Complete with a description of the biological background and biological question that requires the use of mathematics, this book is developed for graduate students and advanced undergraduate students with only basic knowledge of ordinary differential equations and partial differential equations; background in biology is not required. Students will gain knowledge on how to program with MATLAB without previous programming experience and how to use codes in order to test biological hypothesis.

  20. TriBITS lifecycle model. Version 1.0, a lean/agile software lifecycle model for research-based computational science and engineering and applied mathematical software.

    Energy Technology Data Exchange (ETDEWEB)

    Willenbring, James M.; Bartlett, Roscoe Ainsworth (Oak Ridge National Laboratory, Oak Ridge, TN); Heroux, Michael Allen

    2012-01-01

    Software lifecycles are becoming an increasingly important issue for computational science and engineering (CSE) software. The process by which a piece of CSE software begins life as a set of research requirements and then matures into a trusted high-quality capability is both commonplace and extremely challenging. Although an implicit lifecycle is obviously being used in any effort, the challenges of this process - respecting the competing needs of research vs. production - cannot be overstated. Here we describe a proposal for a well-defined software lifecycle process based on modern Lean/Agile software engineering principles. What we propose is appropriate for many CSE software projects that are initially heavily focused on research but also are expected to eventually produce usable high-quality capabilities. The model is related to TriBITS, a build, integration and testing system, which serves as a strong foundation for this lifecycle model, and aspects of this lifecycle model are ingrained in the TriBITS system. Here, we advocate three to four phases or maturity levels that address the appropriate handling of many issues associated with the transition from research to production software. The goals of this lifecycle model are to better communicate maturity levels with customers and to help to identify and promote Software Engineering (SE) practices that will help to improve productivity and produce better software. An important collection of software in this domain is Trilinos, which is used as the motivation and the initial target for this lifecycle model. However, many other related and similar CSE (and non-CSE) software projects can also make good use of this lifecycle model, especially those that use the TriBITS system. Indeed this lifecycle process, if followed, will enable large-scale sustainable integration of many complex CSE software efforts across several institutions.

  1. Modelos matemáticos utilizados para descrever curvas de crescimento em aves aplicados ao melhoramento genético animal Mathematic models applied to describe growth curves in poultry applied to animal breeding

    Directory of Open Access Journals (Sweden)

    Patricia Tholon

    2009-10-01

    biological interpretation of parameters. Studies involving modeling and description of growth curve and their components are described in literature, but, there is no selection programs applied to the growth curve shape. The importance of determinating the parameters of growth curve models is more relevant when considering that most of the genetic gains for growth traits are related to selection, on weights near to the inflexion point. Often, selection to fast growth is important in all breeding programs, and could be based on genetic parameters of the growth curve parameters. These parameters are related to important productive and reproductive traits, and present different values, according to specie, sex and models used in evaluation. Alternatively, other methodology used is random regression models, allowing graduation changes in (co variances between ages during the time and predicting (covariances during the studied trajectory. The use of random regression models has the advantage to allow the partition of phenotypic growth curve (covariance in its different genetic additive and the permanent environment effects, using random regression coefficients for each different effect. This review aimed at summarizing the main frequentists mathematical models used in the studies of growth curves in birds, emphasizing those applied to estimate genetic and phenotypic parameters.

  2. Mathematization Competencies of Pre-Service Elementary Mathematics Teachers in the Mathematical Modelling Process

    Science.gov (United States)

    Yilmaz, Suha; Tekin-Dede, Ayse

    2016-01-01

    Mathematization competency is considered in the field as the focus of modelling process. Considering the various definitions, the components of the mathematization competency are determined as identifying assumptions, identifying variables based on the assumptions and constructing mathematical model/s based on the relations among identified…

  3. Mathematical models of bipolar disorder

    OpenAIRE

    Daugherty, D; Roque-Urrea, T; Urrea-Roque, J; DE TROYER, J; Wirkus, S; Porter, M. A.

    2009-01-01

    We use limit cycle oscillators to model bipolar II disorder, which is characterized by alternating hypomanic and depressive episodes and afflicts about 1% of the United States adult population. We consider two non-linear oscillator models of a single bipolar patient. In both frameworks, we begin with an untreated individual and examine the mathematical effects and resulting biological consequences of treatment. We also briefly consider the dynamics of interacting bipolar II individuals using ...

  4. Mathematical Models of Bipolar Disorder

    OpenAIRE

    Daugherty, Darryl; Roque-Urrea, Tairi; Urrea-Roque, John; Snyder, Jessica; Wirkus, Stephen; Mason A. Porter

    2003-01-01

    We use limit cycle oscillators to model Bipolar II disorder, which is characterized by alternating hypomanic and depressive episodes and afflicts about one percent of the United States adult population. We consider two nonlinear oscillator models of a single bipolar patient. In both frameworks, we begin with an untreated individual and examine the mathematical effects and resulting biological consequences of treatment. We also briefly consider the dynamics of interacting bipolar II individual...

  5. Mathematical Model for Photovoltaic Cells

    OpenAIRE

    Wafaa ABD EL-BASIT; Ashraf Mosleh ABD El–MAKSOOD; Fouad Abd El-Moniem Saad SOLIMAN

    2013-01-01

    The study of photovoltaic systems in an efficient manner requires a precise knowledge of the (I-V) and (P-V) characteristic curves of photovoltaic modules. So, the aim of the present paper is to estimate such characteristics based on different operating conditions. In this concern, a simple one diode mathematical model was implemented using MATLAB script. The output characteristics of PV cell depend on the environmental conditions. For any solar cell, the model parameters are function of the ...

  6. Editorial: Special Issue on Computational Problems in Applied Mathematics

    Directory of Open Access Journals (Sweden)

    Walailak Journal of Science and Technology

    2014-07-01

    real time experiments is expensive, slow, sequential and single-purpose but in case of simulation, cheaper, faster, parallel and multi-purpose. It is to be noted that, the results of a CFD simulation are never 100 % reliable because of the input data may involve too much guessing or imprecision, the mathematical model of the problem at hand may be inadequate and the accuracy of the results is limited by the available computing power. The limitations of computational fluid dynamics includes that their solutions rely upon physical models of real world processes (e.g. turbulence, compressibility, chemistry, multiphase flow, etc. and in addition CFD solutions can only be as accurate as the physical models on which they are based. Research is still being carried out in CFD on wide varieties of areas such as two-phase flows, heat transfer, acoustics, fluid-solid interaction, Navier-Strokes solution techniques for incompressible and compressible flows, convergence acceleration procedures, grid generation and adaptation techniques, distributed computing, turbulence, mesh-free methods, free-surfaces, chemical reactions and combustion, discretisation methods and schemes, unsteady flows etc. Flow simulation offers a wide range of physical models and fluid flow capabilities by covering wide range of applications in incompressible and compressible liquid, water vapor (steam,  real gases, heat transfer in solids, non-Newtonian liquids (to simulate blood, honey, molten plastics, compressible gas, conjugate heat transfer, subsonic, transonic, and supersonic regimes, external and internal fluid flows, laminar, turbulent, and transitional flows, liquid and gas flow with heat transfer, time-dependent flow, gas mixture, liquid mixture, etc. It is well known fact that CFD is a highly interdisciplinary research area which lies at the interface of physics, applied mathematics, and computer science. There are some basic requirements needed to carry out computational fluid dynamics analysis

  7. Logical Tree of Mathematical Modeling

    Directory of Open Access Journals (Sweden)

    László Pokorádi

    2015-04-01

    Full Text Available During setting up a mathematical model, it can be very important and dicult task to choose input parametersthat should be known for solution of this problem. A similar problem might come up when someone wants to carryout an engineering calculation task. A very essential aim technical education is developing of good logical engineeringthinking. One main part of this thinking is to determine the potential sets of required input parameters of anengineering calculation. This paper proposes a logical tree based method to determine the required parameters of amathematical model. The method gives a lively description about needed data base, and computational sequence forus to get to determine the set of required output parameter. The shown method is named LogTreeMM - Logical Treeof Mathematical Modeling.

  8. Mathematical methods and models in composites

    CERN Document Server

    Mantic, Vladislav

    2014-01-01

    This book provides a representative selection of the most relevant, innovative, and useful mathematical methods and models applied to the analysis and characterization of composites and their behaviour on micro-, meso-, and macroscale. It establishes the fundamentals for meaningful and accurate theoretical and computer modelling of these materials in the future. Although the book is primarily concerned with fibre-reinforced composites, which have ever-increasing applications in fields such as aerospace, many of the results presented can be applied to other kinds of composites. The topics cover

  9. Mathematical modeling of microbial growth in milk

    Directory of Open Access Journals (Sweden)

    Jhony Tiago Teleken

    2011-12-01

    Full Text Available A mathematical model to predict microbial growth in milk was developed and analyzed. The model consists of a system of two differential equations of first order. The equations are based on physical hypotheses of population growth. The model was applied to five different sets of data of microbial growth in dairy products selected from Combase, which is the most important database in the area with thousands of datasets from around the world, and the results showed a good fit. In addition, the model provides equations for the evaluation of the maximum specific growth rate and the duration of the lag phase which may provide useful information about microbial growth.

  10. Mathematical Model of Age Aggression

    OpenAIRE

    Golovinski, P. A.

    2013-01-01

    We formulate a mathematical model of competition for resources between representatives of different age groups. A nonlinear kinetic integral-differential equation of the age aggression describes the process of redistribution of resources. It is shown that the equation of the age aggression has a stationary solution, in the absence of age-dependency in the interaction of different age groups. A numerical simulation of the evolution of resources for different initial distributions has done. It ...

  11. Mathematical models of granular matter

    CERN Document Server

    Mariano, Paolo; Giovine, Pasquale

    2008-01-01

    Granular matter displays a variety of peculiarities that distinguish it from other appearances studied in condensed matter physics and renders its overall mathematical modelling somewhat arduous. Prominent directions in the modelling granular flows are analyzed from various points of view. Foundational issues, numerical schemes and experimental results are discussed. The volume furnishes a rather complete overview of the current research trends in the mechanics of granular matter. Various chapters introduce the reader to different points of view and related techniques. New models describing granular bodies as complex bodies are presented. Results on the analysis of the inelastic Boltzmann equations are collected in different chapters. Gallavotti-Cohen symmetry is also discussed.

  12. Mathematical modeling models, analysis and applications

    CERN Document Server

    Banerjee, Sandip

    2014-01-01

    ""…the reader may find quite a few interesting examples illustrating several important methods used in applied mathematics. … it may be well used as a valuable source of interesting examples as well as complementary reading in a number of courses.""-Svitlana P. Rogovchenko, Zentralblatt MATH 1298

  13. Research in applied mathematics, numerical analysis, and computer science

    Science.gov (United States)

    1984-01-01

    Research conducted at the Institute for Computer Applications in Science and Engineering (ICASE) in applied mathematics, numerical analysis, and computer science is summarized and abstracts of published reports are presented. The major categories of the ICASE research program are: (1) numerical methods, with particular emphasis on the development and analysis of basic numerical algorithms; (2) control and parameter identification; (3) computational problems in engineering and the physical sciences, particularly fluid dynamics, acoustics, and structural analysis; and (4) computer systems and software, especially vector and parallel computers.

  14. Mathematical modeling and computational intelligence in engineering applications

    CERN Document Server

    Silva Neto, Antônio José da; Silva, Geraldo Nunes

    2016-01-01

    This book brings together a rich selection of studies in mathematical modeling and computational intelligence, with application in several fields of engineering, like automation, biomedical, chemical, civil, electrical, electronic, geophysical and mechanical engineering, on a multidisciplinary approach. Authors from five countries and 16 different research centers contribute with their expertise in both the fundamentals and real problems applications based upon their strong background on modeling and computational intelligence. The reader will find a wide variety of applications, mathematical and computational tools and original results, all presented with rigorous mathematical procedures. This work is intended for use in graduate courses of engineering, applied mathematics and applied computation where tools as mathematical and computational modeling, numerical methods and computational intelligence are applied to the solution of real problems.

  15. 4th International Conference on Computer Science, Applied Mathematics and Applications

    CERN Document Server

    Do, Tien; Thi, Hoai; Nguyen, Ngoc

    2016-01-01

    This proceedings consists of 20 papers which have been selected and invited from the submissions to the 4th International Conference on Computer Science, Applied Mathematics and Applications (ICCSAMA 2016) held on 2-3 May, 2016 in Laxenburg, Austria. The conference is organized into 5 sessions: Advanced Optimization Methods and Their Applications, Models for ICT applications, Topics on discrete mathematics, Data Analytic Methods and Applications and Feature Extractio, respectively. All chapters in the book discuss theoretical and practical issues connected with computational methods and optimization methods for knowledge engineering. The editors hope that this volume can be useful for graduate and Ph.D. students and researchers in Applied Sciences, Computer Science and Applied Mathematics. .

  16. Mathematical Modeling: A Bridge to STEM Education

    OpenAIRE

    Kertil, Mahmut; Gurel, Cem

    2016-01-01

    The purpose of this study is making a theoretical discussion on the relationship between mathematical modeling and integrated STEM education. First of all, STEM education perspective and the construct of mathematical modeling in mathematics education is introduced. A review of literature is provided on how mathematical modeling literature may contribute to theoretical conceptualization of STEM education by specifically addressing the professional competencies that teachers need. The discussio...

  17. Mathematical Modeling in Combustion Science

    CERN Document Server

    Takeno, Tadao

    1988-01-01

    An important new area of current research in combustion science is reviewed in the contributions to this volume. The complicated phenomena of combustion, such as chemical reactions, heat and mass transfer, and gaseous flows, have so far been studied predominantly by experiment and by phenomenological approaches. But asymptotic analysis and other recent developments are rapidly changing this situation. The contributions in this volume are devoted to mathematical modeling in three areas: high Mach number combustion, complex chemistry and physics, and flame modeling in small scale turbulent flow combustion.

  18. Applying Lakatos' Theory to the Theory of Mathematical Problem Solving.

    Science.gov (United States)

    Nunokawa, Kazuhiko

    1996-01-01

    The relation between Lakatos' theory and issues in mathematics education, especially mathematical problem solving, is investigated by examining Lakatos' methodology of a scientific research program. (AIM)

  19. Mathematical models in marketing a collection of abstracts

    CERN Document Server

    Funke, Ursula H

    1976-01-01

    Mathematical models can be classified in a number of ways, e.g., static and dynamic; deterministic and stochastic; linear and nonlinear; individual and aggregate; descriptive, predictive, and normative; according to the mathematical technique applied or according to the problem area in which they are used. In marketing, the level of sophistication of the mathe­ matical models varies considerably, so that a nurnber of models will be meaningful to a marketing specialist without an extensive mathematical background. To make it easier for the nontechnical user we have chosen to classify the models included in this collection according to the major marketing problem areas in which they are applied. Since the emphasis lies on mathematical models, we shall not as a rule present statistical models, flow chart models, computer models, or the empirical testing aspects of these theories. We have also excluded competitive bidding, inventory and transportation models since these areas do not form the core of ·the market...

  20. Mathematical models of bipolar disorder

    Science.gov (United States)

    Daugherty, Darryl; Roque-Urrea, Tairi; Urrea-Roque, John; Troyer, Jessica; Wirkus, Stephen; Porter, Mason A.

    2009-07-01

    We use limit cycle oscillators to model bipolar II disorder, which is characterized by alternating hypomanic and depressive episodes and afflicts about 1% of the United States adult population. We consider two non-linear oscillator models of a single bipolar patient. In both frameworks, we begin with an untreated individual and examine the mathematical effects and resulting biological consequences of treatment. We also briefly consider the dynamics of interacting bipolar II individuals using weakly-coupled, weakly-damped harmonic oscillators. We discuss how the proposed models can be used as a framework for refined models that incorporate additional biological data. We conclude with a discussion of possible generalizations of our work, as there are several biologically-motivated extensions that can be readily incorporated into the series of models presented here.

  1. Explorations in Elementary Mathematical Modeling

    Directory of Open Access Journals (Sweden)

    Mazen Shahin

    2010-06-01

    Full Text Available In this paper we will present the methodology and pedagogy of Elementary Mathematical Modeling as a one-semester course in the liberal arts core. We will focus on the elementary models in finance and business. The main mathematical tools in this course are the difference equations and matrix algebra. We also integrate computer technology and cooperative learning into this inquiry-based learning course where students work in small groups on carefully designed activities and utilize available software to support problem solving and understanding of real life situations. We emphasize the use of graphical and numerical techniques, rather than theoretical techniques, to investigate and analyze the behavior of the solutions of the difference equations.As an illustration of our approach, we will show a nontraditional and efficient way of introducing models from finance and economics. We will also present an interesting model of supply and demand with a lag time, which is called the cobweb theorem in economics. We introduce a sample of a research project on a technique of removing chaotic behavior from a chaotic system.

  2. Mathematical Modelling Plant Signalling Networks

    KAUST Repository

    Muraro, D.

    2013-01-01

    During the last two decades, molecular genetic studies and the completion of the sequencing of the Arabidopsis thaliana genome have increased knowledge of hormonal regulation in plants. These signal transduction pathways act in concert through gene regulatory and signalling networks whose main components have begun to be elucidated. Our understanding of the resulting cellular processes is hindered by the complex, and sometimes counter-intuitive, dynamics of the networks, which may be interconnected through feedback controls and cross-regulation. Mathematical modelling provides a valuable tool to investigate such dynamics and to perform in silico experiments that may not be easily carried out in a laboratory. In this article, we firstly review general methods for modelling gene and signalling networks and their application in plants. We then describe specific models of hormonal perception and cross-talk in plants. This mathematical analysis of sub-cellular molecular mechanisms paves the way for more comprehensive modelling studies of hormonal transport and signalling in a multi-scale setting. © EDP Sciences, 2013.

  3. Application of Mathematical Modeling Activities in Costarican High School Education

    Directory of Open Access Journals (Sweden)

    Karen Porras-Lizano

    2015-01-01

    Full Text Available This paper describes the experience gained in implementing mathematical modeling activities as a methodological strategy in teaching issues such as proportions, with a group of eighth year of an academic-day-school, located in the province of San Jose, Costa Rica in 2012. Different techniques for gathering information were applied, such as participant observation and questionnaires. Among the relevant results are the cyclical development of mathematical thinking of students in the stages of mathematical modeling (description, manipulation, prediction and validation for solving the problem; developing of teamwork skills; and appreciation of mathematics as a useful and effective discipline. To resolve the activities proposed in this study, social interactions such as sharing information, thoughts and ideas, were generated, stimulating the zone of proximal development of the participating students. Likewise, the mathematical modeling activities allowed students to have a positive role in mathematics classes, stimulating, in turn, a different attitude compared to regular classes.

  4. Mathematical modelling of leprosy and its control.

    Science.gov (United States)

    Blok, David J; de Vlas, Sake J; Fischer, Egil A J; Richardus, Jan Hendrik

    2015-03-01

    Leprosy or Hansen's disease is an infectious disease caused by the bacterium Mycobacterium leprae. The annual number of new leprosy cases registered worldwide has remained stable over the past years at over 200,000. Early case finding and multidrug therapy have not been able interrupt transmission completely. Elimination requires innovation in control and sustained commitment. Mathematical models can be used to predict the course of leprosy incidence and the effect of intervention strategies. Two compartmental models and one individual-based model have been described in the literature. Both compartmental models investigate the course of leprosy in populations and the long-term impact of control strategies. The individual-based model focusses on transmission within households and the impact of case finding among contacts of new leprosy patients. Major improvement of these models should result from a better understanding of individual differences in exposure to infection and developing leprosy after exposure. Most relevant are contact heterogeneity, heterogeneity in susceptibility and spatial heterogeneity. Furthermore, the existing models have only been applied to a limited number of countries. Parameterization of the models for other areas, in particular those with high incidence, is essential to support current initiatives for the global elimination of leprosy. Many challenges remain in understanding and dealing with leprosy. The support of mathematical models for understanding leprosy epidemiology and supporting policy decision making remains vital. PMID:25765193

  5. Mathematical models of viscous friction

    CERN Document Server

    Buttà, Paolo; Marchioro, Carlo

    2015-01-01

    In this monograph we present a review of a number of recent results on the motion of a classical body immersed in an infinitely extended medium and subjected to the action of an external force. We investigate this topic in the framework of mathematical physics by focusing mainly on the class of purely Hamiltonian systems, for which very few results are available. We discuss two cases: when the medium is a gas and when it is a fluid. In the first case, the aim is to obtain microscopic models of viscous friction. In the second, we seek to underline some non-trivial features of the motion. Far from giving a general survey on the subject, which is very rich and complex from both a phenomenological and theoretical point of view, we focus on some fairly simple models that can be studied rigorously, thus providing a first step towards a mathematical description of viscous friction. In some cases, we restrict ourselves to studying the problem at a heuristic level, or we present the main ideas, discussing only some as...

  6. Mathematical models in biological discovery

    CERN Document Server

    Walter, Charles

    1977-01-01

    When I was asked to help organize an American Association for the Advancement of Science symposium about how mathematical models have con­ tributed to biology, I agreed immediately. The subject is of immense importance and wide-spread interest. However, too often it is discussed in biologically sterile environments by "mutual admiration society" groups of "theoreticians", many of whom have never seen, and most of whom have never done, an original scientific experiment with the biolog­ ical materials they attempt to describe in abstract (and often prejudiced) terms. The opportunity to address the topic during an annual meeting of the AAAS was irresistable. In order to try to maintain the integrity ;,f the original intent of the symposium, it was entitled, "Contributions of Mathematical Models to Biological Discovery". This symposium was organized by Daniel Solomon and myself, held during the 141st annual meeting of the AAAS in New York during January, 1975, sponsored by sections G and N (Biological and Medic...

  7. Applying mathematical finance tools to the competitive Nordic electricity market

    International Nuclear Information System (INIS)

    This thesis models competitive electricity markets using the methods of mathematical finance. Fundamental problems of finance are market price modelling, derivative pricing, and optimal portfolio selection. The same questions arise in competitive electricity markets. The thesis presents an electricity spot price model based on the fundamental stochastic factors that affect electricity prices. The resulting price model has sound economic foundations, is able to explain spot market price movements, and offers a computationally efficient way of simulating spot prices. The thesis shows that the connection between spot prices and electricity forward prices is nontrivial because electricity is a commodity that must be consumed immediately. Consequently, forward prices of different times are based on the supply-demand conditions at those times. This thesis introduces a statistical model that captures the main characteristics of observed forward price movements. The thesis presents the pricing problems relating to the common Nordic electricity derivatives, as well as the pricing relations between electricity derivatives. The special characteristics of electricity make spot electricity market incomplete. The thesis assumes the existence of a risk-neutral martingale measure so that formal pricing results can be obtained. Some concepts introduced in financial markets are directly usable in the electricity markets. The risk management application in this thesis uses a static optimal portfolio selection framework where Monte Carlo simulation provides quantitative results. The application of mathematical finance requires careful consideration of the special characteristics of the electricity markets. Economic theory and reasoning have to be taken into account when constructing financial models in competitive electricity markets. (orig.)

  8. Discussing Perception, Determining Provision: Teachers' Perspectives on the Applied Options of A-Level Mathematics

    Science.gov (United States)

    Ward-Penny, Robert; Johnston-Wilder, Sue; Johnston-Wilder, Peter

    2013-01-01

    One-third of the current A-level mathematics curriculum is determined by choice, constructed out of "applied mathematics" modules in mechanics, statistics and decision mathematics. Although this choice arguably involves the most sizeable instance of choice in the current English school mathematics curriculum, and it has a significant impact on…

  9. Mathematical model for classification of EEG signals

    Science.gov (United States)

    Ortiz, Victor H.; Tapia, Juan J.

    2015-09-01

    A mathematical model to filter and classify brain signals from a brain machine interface is developed. The mathematical model classifies the signals from the different lobes of the brain to differentiate the signals: alpha, beta, gamma and theta, besides the signals from vision, speech, and orientation. The model to develop further eliminates noise signals that occur in the process of signal acquisition. This mathematical model can be used on different platforms interfaces for rehabilitation of physically handicapped persons.

  10. Particles in thickening: mathematical model

    International Nuclear Information System (INIS)

    A mathematical model to describe the changes in the particle size distribution immediately below the solid/liquid interface in gravity thickening was formulated and tested against experimental results. The distribution is predicted to change by coagulation and differential sedimentation. Modifications to the collision efficiency functions for Brownian motion, fluid shear, and differential sedimentation were necessary to account for the high concentrations in thickening. The model correctly predicted the observed trends for both the coagulation and differential sedimentation aspects of the experimental results for changes with time, solids concentration, particle stability, and the subsidence velocity of the interface. The model is limited by the fact that the subsidence velocity cannot be predicted and by the simplified approach to the hydrodynamics of differential sedimentation which is incorporated. The substantial agreement between the model and experimental results indicates that the conceptual approach of the model is well-founded. The lack of agreement in some cases also has led to further insight into the mechanisms of particle transport in a concentrated heterodisperse suspension

  11. Nechako Reservoir mathematical modelling studies

    International Nuclear Information System (INIS)

    The addition of 540 MW of hydroelectric generating capacity to the Nechako Reservoir involves the increased diversion of water from the headwaters of the Nechako River in the Fraser River drainage to the Kemano River on the Pacific coast. Approval of the project requires a two level release structure at Kenney Dam at the head of the Nechako Canyon to manage downstream flows and water temperatures to conserve and protect chinook and sockeye populations. Two- and three-dimensional mathematical models were used to evaluate the hydrothermal characteristics of the Nechako Reservoir and to assess the capability of the proposed structure to provide releases necessary to meet downstream objectives. Results of the modelling show that deep water intake temperatures are sensitive to reservoir surface elevation and the deep water intake elevation. Modelling results for maximum release of 200 m3/s show that the deep water intake invert should be located at an elevation of 795 m to ensure water temperature criteria are met. The three dimensional modelling showed that little, if any additional bottom water mixing beyond that indicated by the two dimensional results for a nearby lake is likely to occur as a result of the Kenamo completion project. Extreme condition analysis shows that there exists sufficient volumes of cold water in the Nechako reservoir to ensure that the 10 degree C water release criteria can be met for the required period. 4 refs., 1 fig

  12. An exploration of the utility of mathematical modeling predicting fatigue from sleep/wake history and circadian phase applied in accident analysis and prevention: the crash of Comair Flight 5191.

    Science.gov (United States)

    Pruchnicki, Shawn A; Wu, Lora J; Belenky, Gregory

    2011-05-01

    On 27 August 2006 at 0606 eastern daylight time (EDT) at Bluegrass Airport in Lexington, KY (LEX), the flight crew of Comair Flight 5191 inadvertently attempted to take off from a general aviation runway too short for their aircraft. The aircraft crashed killing 49 of the 50 people on board. To better understand this accident and to aid in preventing similar accidents, we applied mathematical modeling predicting fatigue-related degradation in performance for the Air Traffic Controller on-duty at the time of the crash. To provide the necessary input to the model, we attempted to estimate circadian phase and sleep/wake histories for the Captain, First Officer, and Air Traffic Controller. We were able to estimate with confidence the circadian phase for each. We were able to estimate with confidence the sleep/wake history for the Air Traffic Controller, but unable to do this for the Captain and First Officer. Using the sleep/wake history estimates for the Air Traffic Controller as input, the mathematical modeling predicted moderate fatigue-related performance degradation at the time of the crash. This prediction was supported by the presence of what appeared to be fatigue-related behaviors in the Air Traffic Controller during the 30 min prior to and in the minutes after the crash. Our modeling results do not definitively establish fatigue in the Air Traffic Controller as a cause of the accident, rather they suggest that had he been less fatigued he might have detected Comair Flight 5191's lining up on the wrong runway. We were not able to perform a similar analysis for the Captain and First Officer because we were not able to estimate with confidence their sleep/wake histories. Our estimates of sleep/wake history and circadian rhythm phase for the Air Traffic Controller might generalize to other air traffic controllers and to flight crew operating in the early morning hours at LEX. Relative to other times of day, the modeling results suggest an elevated risk of fatigue

  13. Mathematical Model of Moving Heat-Transfer Agents

    Directory of Open Access Journals (Sweden)

    R. I. Yesman

    2014-07-01

    Full Text Available A mathematical model of moving heat-transfer agents which is applied in power systems and plants has been developed in the paper. A paper presents the mathematical model as a closed system of differential convective heat-transfer equations that includes a continuity equation, a motion equation, an energy equation.Various variants of boundary conditions on the surfaces of calculation flow and heat exchange zone are considered in the paper.

  14. Literature Review of Applying Visual Method to Understand Mathematics

    OpenAIRE

    Yu Xiaojuan

    2015-01-01

    As a new method to understand mathematics, visualization offers a new way of understanding mathematical principles and phenomena via image thinking and geometric explanation. It aims to deepen the understanding of the nature of concepts or phenomena and enhance the cognitive ability of learners. This paper collates and summarizes the application of this visual method in the understanding of mathematics. It also makes a literature review of the existing research, especially with a visual demon...

  15. Applying realistic mathematics education in Vietnam : teaching middle school geometry

    OpenAIRE

    Le, Tuan Anh

    2007-01-01

    Since 1971, the Freudenthal Institute has developed an approach to mathematics education named Realistic Mathematics Education (RME). The philosophy of RME is based on Hans Freudenthal’s concept of ‘mathematics as a human activity’. Prof. Hans Freudenthal (1905-1990), a mathematician and educator, believes that ‘ready-made mathematics’ should not be taught in school. By contrast, he urges that students should be offered ‘realistic situations’ so that they can rediscover from informal to forma...

  16. Mathematics Underground

    Science.gov (United States)

    Luther, Kenneth H.

    2012-01-01

    Mathematical modeling of groundwater flow is a topic at the intersection of mathematics and geohydrology and is rarely encountered in undergraduate mathematics. However, this subject is full of interesting and meaningful examples of truly "applied" mathematics accessible to undergraduates, from the pre-calculus to advanced mathematics levels. This…

  17. A mathematical approach to research problems of science and technology theoretical basis and developments in mathematical modeling

    CERN Document Server

    Ei, Shin-ichiro; Koiso, Miyuki; Ochiai, Hiroyuki; Okada, Kanzo; Saito, Shingo; Shirai, Tomoyuki

    2014-01-01

    This book deals with one of the most novel advances in mathematical modeling for applied scientific technology, including computer graphics, public-key encryption, data visualization, statistical data analysis, symbolic calculation, encryption, error correcting codes, and risk management. It also shows that mathematics can be used to solve problems from nature, e.g., slime mold algorithms. One of the unique features of this book is that it shows readers how to use pure and applied mathematics, especially those mathematical theory/techniques developed in the twentieth century, and developing now, to solve applied problems in several fields of industry. Each chapter includes clues on how to use "mathematics" to solve concrete problems faced in industry as well as practical applications. The target audience is not limited to researchers working in applied mathematics and includes those in engineering, material sciences, economics, and life sciences.

  18. Modelling and Optimizing Mathematics Learning in Children

    Science.gov (United States)

    Käser, Tanja; Busetto, Alberto Giovanni; Solenthaler, Barbara; Baschera, Gian-Marco; Kohn, Juliane; Kucian, Karin; von Aster, Michael; Gross, Markus

    2013-01-01

    This study introduces a student model and control algorithm, optimizing mathematics learning in children. The adaptive system is integrated into a computer-based training system for enhancing numerical cognition aimed at children with developmental dyscalculia or difficulties in learning mathematics. The student model consists of a dynamic…

  19. Mathematical Modelling as a Professional Task

    Science.gov (United States)

    Frejd, Peter; Bergsten, Christer

    2016-01-01

    Educational research literature on mathematical modelling is extensive. However, not much attention has been paid to empirical investigations of its scholarly knowledge from the perspective of didactic transposition processes. This paper reports from an interview study of mathematical modelling activities involving nine professional model…

  20. Mathematical modelling of scour: A review

    DEFF Research Database (Denmark)

    Sumer, B. Mutlu

    2007-01-01

    A review is presented of mathematical modelling of scour around hydraulic and marine structures. Principal ideas, general features and procedures are given. The paper is organized in three sections: the first two sections deal with the mathematical modelling of scour around piers/piles and pipeli...

  1. Mathematical Model of Gravitational and Electrostatic Forces

    CERN Document Server

    Krouglov, A

    2006-01-01

    Author presents mathematical model for acting-on-a-distance attractive and repulsive forces based on propagation of energy waves that produces Newton expression for gravitational and Coulomb expression for electrostatic forces. Model uses mathematical observation that difference between two inverse exponential functions of the distance asymptotically converges to function proportional to reciprocal of distance squared.

  2. Mineral potential mapping with mathematical geological models

    NARCIS (Netherlands)

    Porwal, A.K.

    2006-01-01

    Mathematical geological models are being increasingly used by natural resources delineation and planning agencies for mapping areas of mineral potential in order to optimize land use in accordance with socio-economic needs of the society. However, a key problem in spatial-mathematical-model-based mi

  3. Towards the mathematical modelling of human behavior

    OpenAIRE

    Jódar Sánchez, Lucas Antonio; Cortés López, Juan Carlos; Acedo Rodríguez, Luis

    2011-01-01

    Jódar Sánchez, LA.; Cortés López, JC.; Acedo Rodríguez, L. (2011). Towards the mathematical modelling of human behavior. Mathematical and Computer Modelling. 54(7):1625-1625. doi:10.1016/j.mcm.2010.10.009. Senia 1625 1625 54 7

  4. Mathematical Modeling of the Agriculture Crop Technology

    Directory of Open Access Journals (Sweden)

    D. Drucioc

    1999-02-01

    Full Text Available The organized structure of computer system for economic and ecological estimation of agriculture crop technologies is described. The system is composed of six interconnected blocks. The linear, non-linear and stochastic mathematical models for machinery sizing and selection in farm-level cropping system is presented in the mathematical model block of computer system.

  5. Teachers of Mathematics as Problem-Solving Applied Mathematicians

    Science.gov (United States)

    Chick, Helen; Stacey, Kaye

    2013-01-01

    Some of mathematics teaching is routine, like an exercise from a textbook for which you have received instruction and already know what to do. On other occasions, however, teaching mathematics is challenging, involving problems of teaching for which the solutions may not be readily apparent. These situations require the application of mathematical…

  6. Rival approaches to mathematical modelling in immunology

    Science.gov (United States)

    Andrew, Sarah M.; Baker, Christopher T. H.; Bocharov, Gennady A.

    2007-08-01

    In order to formulate quantitatively correct mathematical models of the immune system, one requires an understanding of immune processes and familiarity with a range of mathematical techniques. Selection of an appropriate model requires a number of decisions to be made, including a choice of the modelling objectives, strategies and techniques and the types of model considered as candidate models. The authors adopt a multidisciplinary perspective.

  7. Applied Bayesian modelling

    CERN Document Server

    Congdon, Peter

    2014-01-01

    This book provides an accessible approach to Bayesian computing and data analysis, with an emphasis on the interpretation of real data sets. Following in the tradition of the successful first edition, this book aims to make a wide range of statistical modeling applications accessible using tested code that can be readily adapted to the reader's own applications. The second edition has been thoroughly reworked and updated to take account of advances in the field. A new set of worked examples is included. The novel aspect of the first edition was the coverage of statistical modeling using WinBU

  8. Linear models in the mathematics of uncertainty

    CERN Document Server

    Mordeson, John N; Clark, Terry D; Pham, Alex; Redmond, Michael A

    2013-01-01

    The purpose of this book is to present new mathematical techniques for modeling global issues. These mathematical techniques are used to determine linear equations between a dependent variable and one or more independent variables in cases where standard techniques such as linear regression are not suitable. In this book, we examine cases where the number of data points is small (effects of nuclear warfare), where the experiment is not repeatable (the breakup of the former Soviet Union), and where the data is derived from expert opinion (how conservative is a political party). In all these cases the data  is difficult to measure and an assumption of randomness and/or statistical validity is questionable.  We apply our methods to real world issues in international relations such as  nuclear deterrence, smart power, and cooperative threat reduction. We next apply our methods to issues in comparative politics such as successful democratization, quality of life, economic freedom, political stability, and fail...

  9. Studies in Mathematics, Volume X. Applied Mathematics in the High School.

    Science.gov (United States)

    Schiffer, Max M.

    This publication contains a sequence of lectures given to high school mathematics teachers by the author. Applications of mathematics emphasized are elementary algebra, geometry, and matrix algebra. Included are: (1) an introduction concerning teaching applications of mathematics; (2) Chapter 1: Mechanics for the High School Student; (3) Chapter…

  10. A mathematical model for iodine kinetics

    International Nuclear Information System (INIS)

    A mathematical model for the iodine kinetics in thyroid is presented followed by its analytical solution. An eletroanalogical model is also developed for a simplified stage and another is proposed for the main case

  11. 2nd International Conference on Computer Science, Applied Mathematics and Applications

    CERN Document Server

    Thi, Hoai; Nguyen, Ngoc

    2014-01-01

    The proceedings consists of 30 papers which have been selected and invited from the submissions to the 2nd International Conference on Computer Science, Applied Mathematics and Applications (ICCSAMA 2014) held on 8-9 May, 2014 in Budapest, Hungary. The conference is organized into 7 sessions: Advanced Optimization Methods and Their Applications, Queueing Models and Performance Evaluation, Software Development and Testing, Computational Methods for Mobile and Wireless Networks, Computational Methods for Knowledge Engineering, Logic Based Methods for Decision Making and Data Mining, and Nonlinear Systems and Applications, respectively. All chapters in the book discuss theoretical and practical issues connected with computational methods and optimization methods for knowledge engineering. The editors hope that this volume can be useful for graduate and Ph.D. students and researchers in Computer Science and Applied Mathematics. It is the hope of the editors that readers of this volume can find many inspiring idea...

  12. A Genre Analysis of English and Iranian Research Articles Abstracts in Applied Linguistics and Mathematics

    Directory of Open Access Journals (Sweden)

    Biook Behnam

    2014-09-01

    Full Text Available In recent years, genre studies have attracted the attention of many researchers. The aim of the present study was to observe the differences in generic structure of abstract written by English native and non-native (Iranian students in two disciplines of mathematics and applied linguistics. To this end, twenty native English students’ abstract texts from each discipline and the same number of non-native (Iranian ones were selected. In this study, Hyland’s (2000 five‐move model was used to identify the rhetorical structure of the four sets of texts. After analyzing each text, the main moves were extracted and the frequencies of each one were calculated and compared. The cross-disciplinary and cross‐linguistic analyses reveal that linguistics abstracts follow a conventional scheme, but mathematics abstracts in these two languages do not exhibit the usual norms in terms of moves. Besides, greater difference in move structure is seen across languages in mathematics. The findings of the study have some pedagogical implications for academic writing courses for graduate students, especially students from non-English backgrounds in order to facilitate their successful acculturation into these disciplinary communities.Keywords: Genre Analysis, mathematics, applied linguistics

  13. Annual report of the Center for Applied Mathematics, 1986

    International Nuclear Information System (INIS)

    Research on the mathematical aspects of wave propagation; particulate methods in fluid physics and mechanics; nonlinear problems; stochastic equations; martingales, and interacting particle systems; and computer programming and algorithms is presented

  14. Annual report of the Center for Applied Mathematics, 1985

    International Nuclear Information System (INIS)

    Research on the mathematical aspects of wave propagation; particulate methods in fluid physics and mechanics; nonlinear problems; stochastic equations; martingales, and interacting particle systems; and computer programming and algorithms is presented

  15. Literature Review of Applying Visual Method to Understand Mathematics

    Directory of Open Access Journals (Sweden)

    Yu Xiaojuan

    2015-01-01

    Full Text Available As a new method to understand mathematics, visualization offers a new way of understanding mathematical principles and phenomena via image thinking and geometric explanation. It aims to deepen the understanding of the nature of concepts or phenomena and enhance the cognitive ability of learners. This paper collates and summarizes the application of this visual method in the understanding of mathematics. It also makes a literature review of the existing research, especially with a visual demonstration of Euler’s formula, introduces the application of this method in solving relevant mathematical problems, and points out the differences and similarities between the visualization method and the numerical-graphic combination method, as well as matters needing attention for its application.

  16. ECONOMIC-MATHEMATICAL CLUSTER’S MODELS

    Directory of Open Access Journals (Sweden)

    Nikolay Dmitriyevich Naydenov

    2015-11-01

    Full Text Available The article describes the economic and mathematical models of cluster formations: a model city on the line, the model of network competition consumers one-agent cluster model, the multi-agent playing model of cluster growth, the model comprehensive income cluster members, the artificial neural networks, the balance cluster model, the stability of the cluster model. The article shows that the economic-mathematical modeling processes, clustering as the method allows to improve forecasting, planning and evaluation of the level of clustering in the region.Purpose. Show the level of development of economic and mathematical models as a tool for the analysis of clusters of integration associations in the regions.Methodology. Economic-mathematical modeling, analysis, synthesis, comparison, statistical surveys.Results. The high activity of research in the field of economic and mathematical modeling of cluster formations revealed. The essential characteristics of cluster formations using economic and mathematical models investigated.Practical implications. The economic policy of the regions, countries and municipalities.

  17. Applied Integer Programming Modeling and Solution

    CERN Document Server

    Chen, Der-San; Dang, Yu

    2011-01-01

    An accessible treatment of the modeling and solution of integer programming problems, featuring modern applications and software In order to fully comprehend the algorithms associated with integer programming, it is important to understand not only how algorithms work, but also why they work. Applied Integer Programming features a unique emphasis on this point, focusing on problem modeling and solution using commercial software. Taking an application-oriented approach, this book addresses the art and science of mathematical modeling related to the mixed integer programming (MIP) framework and

  18. Mathematical Models in Danube Water Quality

    Directory of Open Access Journals (Sweden)

    Valerian Antohe

    2009-01-01

    Full Text Available The mathematical shaping in the study of water quality has become a branch of environmental engineering. The comprehension and effective application of mathematical models in studying environmental phenomena keep up with the results in the domain of mathematics and the development of specialized software as well. Integrated software programs simulate and predict extreme events, propose solutions, analyzing and processing data in due time. This paper presents a browsing through some mathematical categories of processing the statistical data, examples and their analysis concerning the degree of water pollution downstream the river Danube.

  19. Mathematical models in biology bringing mathematics to life

    CERN Document Server

    Ferraro, Maria; Guarracino, Mario

    2015-01-01

    This book presents an exciting collection of contributions based on the workshop “Bringing Maths to Life” held October 27-29, 2014 in Naples, Italy.  The state-of-the art research in biology and the statistical and analytical challenges facing huge masses of data collection are treated in this Work. Specific topics explored in depth surround the sessions and special invited sessions of the workshop and include genetic variability via differential expression, molecular dynamics and modeling, complex biological systems viewed from quantitative models, and microscopy images processing, to name several. In depth discussions of the mathematical analysis required to extract insights from complex bodies of biological datasets, to aid development in the field novel algorithms, methods and software tools for genetic variability, molecular dynamics, and complex biological systems are presented in this book. Researchers and graduate students in biology, life science, and mathematics/statistics will find the content...

  20. Mathematical and numerical foundations of turbulence models and applications

    CERN Document Server

    Chacón Rebollo, Tomás

    2014-01-01

    With applications to climate, technology, and industry, the modeling and numerical simulation of turbulent flows are rich with history and modern relevance. The complexity of the problems that arise in the study of turbulence requires tools from various scientific disciplines, including mathematics, physics, engineering, and computer science. Authored by two experts in the area with a long history of collaboration, this monograph provides a current, detailed look at several turbulence models from both the theoretical and numerical perspectives. The k-epsilon, large-eddy simulation, and other models are rigorously derived and their performance is analyzed using benchmark simulations for real-world turbulent flows. Mathematical and Numerical Foundations of Turbulence Models and Applications is an ideal reference for students in applied mathematics and engineering, as well as researchers in mathematical and numerical fluid dynamics. It is also a valuable resource for advanced graduate students in fluid dynamics,...

  1. Mathematical modeling plasma transport in tokamaks

    International Nuclear Information System (INIS)

    In this work, the author applied a systematic calibration, validation and application procedure based on the methodology of mathematical modeling to international thermonuclear experimental reactor (ITER) ignition studies. The multi-mode plasma transport model used here includes a linear combination of drift wave branch and ballooning branch instabilities with two a priori uncertain constants to account for anomalous plasma transport in tokamaks. A Bayesian parameter estimation method is used including experimental calibration error/model offsets and error bar rescaling factors to determine the two uncertain constants in the transport model with quantitative confidence level estimates for the calibrated parameters, which gives two saturation levels of instabilities. This method is first tested using a gyroBohm multi-mode transport model with a pair of DIII-D discharge experimental data, and then applied to calibrating a nominal multi-mode transport model against a broad database using twelve discharges from seven different tokamaks. The calibrated transport model is then validated on five discharges from JT-60 with no adjustable constants. The results are in a good agreement with experimental data. Finally, the resulting class of multi-mode tokamak plasma transport models is applied to the transport analysis of the ignition probability in a next generation machine, ITER. A reference simulation of basic ITER engineering design activity (EDA) parameters shows that a self-sustained thermonuclear burn with 1.5 GW output power can be achieved provided that impurity control makes radiative losses sufficiently small at an average plasma density of 1.2 X 1020/m3 with 50 MW auxiliary heating. The ignition probability of ITER for the EDA parameters, can be formally as high as 99.9% in the present context. The same probability for concept design activity (CDA) parameters of ITER, which has smaller size and lower current, is only 62.6%

  2. Mathematical modelling and numerical simulation of oil pollution problems

    CERN Document Server

    2015-01-01

    Written by outstanding experts in the fields of marine engineering, atmospheric physics and chemistry, fluid dynamics and applied mathematics, the contributions in this book cover a wide range of subjects, from pure mathematics to real-world applications in the oil spill engineering business. Offering a truly interdisciplinary approach, the authors present both mathematical models and state-of-the-art numerical methods for adequately solving the partial differential equations involved, as well as highly practical experiments involving actual cases of ocean oil pollution. It is indispensable that different disciplines of mathematics, like analysis and numerics,  together with physics, biology, fluid dynamics, environmental engineering and marine science, join forces to solve today’s oil pollution problems.   The book will be of great interest to researchers and graduate students in the environmental sciences, mathematics and physics, showing the broad range of techniques needed in order to solve these poll...

  3. Applying Mathematical Models to Surgical Patient Planning

    OpenAIRE

    Oostrum, Jeroen

    2009-01-01

    textabstractOn a daily basis surgeons, nurses, and managers face cancellation of surgery, peak demands on wards, and overtime in operating rooms. Moreover, the lack of an integral planning approach for operating rooms, wards, and intensive care units causes low resource utilization and makes patient flows unpredictable. An ageing population and advances in medicine are putting the available healthcare budget under great pressure. Under these circumstances, hospitals are seeking innovative way...

  4. Mathematical modeling a chemical engineer's perspective

    CERN Document Server

    Rutherford, Aris

    1999-01-01

    Mathematical modeling is the art and craft of building a system of equations that is both sufficiently complex to do justice to physical reality and sufficiently simple to give real insight into the situation. Mathematical Modeling: A Chemical Engineer's Perspective provides an elementary introduction to the craft by one of the century's most distinguished practitioners.Though the book is written from a chemical engineering viewpoint, the principles and pitfalls are common to all mathematical modeling of physical systems. Seventeen of the author's frequently cited papers are reprinted to illus

  5. Mathematical modelling of flow over periodic structures

    Czech Academy of Sciences Publication Activity Database

    Bauer, Petr

    Fukuoka: Kyushu University, 2012 - (Beneš, M.; Kimura, M.; Yazaki, S.), s. 3-10. (36). ISSN 1881-4042. [Czech- Japanese Seminar in Applied Mathematics 2010. Praha (CZ), 30.08.2010-04.09.2010] Institutional research plan: CEZ:AV0Z20760514 Keywords : incompressible flow * finite element method * Crouzeix-Raviart elements * multigrid * Vanka type smoothers Subject RIV: BA - General Mathematics

  6. Mathematical Modelling of Unmanned Aerial Vehicles with Four Rotors

    Directory of Open Access Journals (Sweden)

    Zoran Benić

    2016-01-01

    Full Text Available Mathematical model of an unmanned aerial vehicle with four propulsors (quadcopter is indispensable in quadcopter movement simulation and later modelling of the control algorithm. Mathematical model is, at the same time, the first step in comprehending the mathematical principles and physical laws which are applied to the quadcopter system. The objective is to define the mathematical model which will describe the quadcopter behavior with satisfactory accuracy and which can be, with certain modifications, applicable for the similar configurations of multirotor aerial vehicles. At the beginning of mathematical model derivation, coordinate systems are defined and explained. By using those coordinate systems, relations between parameters defined in the earth coordinate system and in the body coordinate system are defined. Further, the quadcopter kinematic is described which enables setting those relations. Also, quadcopter dynamics is used to introduce forces and torques to the model through usage of Newton-Euler method. Final derived equation is Newton’s second law in the matrix notation. For the sake of model simplification, hybrid coordinate system is defined, and quadcopter dynamic equations derived with the respect to it. Those equations are implemented in the simulation. Results of behavior of quadcopter mathematical model are graphically shown for four cases. For each of the cases the propellers revolutions per minute (RPM are set in a way that results in the occurrence of the controllable variables which causes one of four basic quadcopter movements in space.

  7. Models and structures: mathematical physics

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-07-01

    This document gathers research activities along 5 main directions. 1) Quantum chaos and dynamical systems. Recent results concern the extension of the exact WKB method that has led to a host of new results on the spectrum and wave functions. Progress have also been made in the description of the wave functions of chaotic quantum systems. Renormalization has been applied to the analysis of dynamical systems. 2) Combinatorial statistical physics. We see the emergence of new techniques applied to various such combinatorial problems, from random walks to random lattices. 3) Integrability: from structures to applications. Techniques of conformal field theory and integrable model systems have been developed. Progress is still made in particular for open systems with boundary conditions, in connection to strings and branes physics. Noticeable links between integrability and exact WKB quantization to 2-dimensional disordered systems have been highlighted. New correlations of eigenvalues and better connections to integrability have been formulated for random matrices. 4) Gravities and string theories. We have developed aspects of 2-dimensional string theory with a particular emphasis on its connection to matrix models as well as non-perturbative properties of M-theory. We have also followed an alternative path known as loop quantum gravity. 5) Quantum field theory. The results obtained lately concern its foundations, in flat or curved spaces, but also applications to second-order phase transitions in statistical systems.

  8. Models and structures: mathematical physics

    International Nuclear Information System (INIS)

    This document gathers research activities along 5 main directions. 1) Quantum chaos and dynamical systems. Recent results concern the extension of the exact WKB method that has led to a host of new results on the spectrum and wave functions. Progress have also been made in the description of the wave functions of chaotic quantum systems. Renormalization has been applied to the analysis of dynamical systems. 2) Combinatorial statistical physics. We see the emergence of new techniques applied to various such combinatorial problems, from random walks to random lattices. 3) Integrability: from structures to applications. Techniques of conformal field theory and integrable model systems have been developed. Progress is still made in particular for open systems with boundary conditions, in connection to strings and branes physics. Noticeable links between integrability and exact WKB quantization to 2-dimensional disordered systems have been highlighted. New correlations of eigenvalues and better connections to integrability have been formulated for random matrices. 4) Gravities and string theories. We have developed aspects of 2-dimensional string theory with a particular emphasis on its connection to matrix models as well as non-perturbative properties of M-theory. We have also followed an alternative path known as loop quantum gravity. 5) Quantum field theory. The results obtained lately concern its foundations, in flat or curved spaces, but also applications to second-order phase transitions in statistical systems

  9. Methods of mathematical modelling continuous systems and differential equations

    CERN Document Server

    Witelski, Thomas

    2015-01-01

    This book presents mathematical modelling and the integrated process of formulating sets of equations to describe real-world problems. It describes methods for obtaining solutions of challenging differential equations stemming from problems in areas such as chemical reactions, population dynamics, mechanical systems, and fluid mechanics. Chapters 1 to 4 cover essential topics in ordinary differential equations, transport equations and the calculus of variations that are important for formulating models. Chapters 5 to 11 then develop more advanced techniques including similarity solutions, matched asymptotic expansions, multiple scale analysis, long-wave models, and fast/slow dynamical systems. Methods of Mathematical Modelling will be useful for advanced undergraduate or beginning graduate students in applied mathematics, engineering and other applied sciences.

  10. Mathematical Model for the Continuous Vacuum Drying

    Institute of Scientific and Technical Information of China (English)

    DAI Hui-liang

    2002-01-01

    An improved mathematical model for the continuous vacuum drying of highly viscous and heatsensitive foodstuffs was proposed, The process of continuous vacuum drying was presented as a moving boundary problem of moisture evaporation in cylindrical coordinates. Boundary condition of the first kind for the known functional dependence of the drying body surface temperature on time was considered. Finally, the appropriate system of differential equations was solved numerically and the values of drying rate, integral moisture content of the material, moving boundary position as well as temperature in any point of the material and at any moment time were obtained. This procedure was applied to continuous vacuum drying of foods such as natural cheese and fresh meat paste.

  11. Mathematical Modeling of Chemical Stoichiometry

    Science.gov (United States)

    Croteau, Joshua; Fox, William P.; Varazo, Kristofoland

    2007-01-01

    In beginning chemistry classes, students are taught a variety of techniques for balancing chemical equations. The most common method is inspection. This paper addresses using a system of linear mathematical equations to solve for the stoichiometric coefficients. Many linear algebra books carry the standard balancing of chemical equations as an…

  12. Mathematical and numerical models for eddy currents and magnetostatics with selected applications

    CERN Document Server

    Rappaz, Jacques

    2013-01-01

    This monograph addresses fundamental aspects of mathematical modeling and numerical solution methods of electromagnetic problems involving low frequencies, i.e. magnetostatic and eddy current problems which are rarely presented in the applied mathematics literature. In the first part, the authors introduce the mathematical models in a realistic context in view of their use for industrial applications. Several geometric configurations of electric conductors leading to different mathematical models are carefully derived and analyzed, and numerical methods for the solution of the obtained problem

  13. Applied mathematical sciences research at Argonne, April 1, 1981-March 31, 1982

    International Nuclear Information System (INIS)

    This report reviews the research activities in Applied Mathematical Sciences at Argonne National Laboratory for the period April 1, 1981, through March 31, 1982. The body of the report discusses various projects carried out in three major areas of research: applied analysis, computational mathematics, and software engineering. Information on section staff, visitors, workshops, and seminars is found in the appendices

  14. Research in progress in applied mathematics, numerical analysis, and computer science

    Science.gov (United States)

    1990-01-01

    Research conducted at the Institute in Science and Engineering in applied mathematics, numerical analysis, and computer science is summarized. The Institute conducts unclassified basic research in applied mathematics in order to extend and improve problem solving capabilities in science and engineering, particularly in aeronautics and space.

  15. Mathematical modelling of cucumber (cucumis sativus) drying

    Science.gov (United States)

    Shahari, N.; Hussein, S. M.; Nursabrina, M.; Hibberd, S.

    2014-07-01

    This paper investigates the applicability of using an experiment based mathematical model (empirical model) and a single phase mathematical model with shrinkage to describe the drying curve of cucumis sativus (cucumber). Drying experiments were conducted using conventional air drying and data obtained from these experiments were fitted to seven empirical models using non-linear least square regression based on the Levenberg Marquardt algorithm. The empirical models were compared according to their root mean square error (RMSE), sum of square error (SSE) and coefficient of determination (R2). A logarithmic model was found to be the best empirical model to describe the drying curve of cucumber. The numerical result of a single phase mathematical model with shrinkage was also compared with experiment data for cucumber drying. A good agreement was obtained between the model predictions and the experimental data.

  16. Mathematical modelling of the cardiovascular system

    OpenAIRE

    Quarteroni, Alfio

    2003-01-01

    In this paper we will address the problem of developing mathematical models for the numerical simulation of the human circulatory system. In particular, we will focus our attention on the problem of haemodynamics in large human arteries.

  17. Teaching mathematical modelling through project work

    DEFF Research Database (Denmark)

    Blomhøj, Morten; Kjeldsen, Tinne Hoff

    2006-01-01

    The paper presents and analyses experiences from developing and running an in-service course in project work and mathematical modelling for mathematics teachers in the Danish gymnasium, e.g. upper secondary level, grade 10-12. The course objective is to support the teachers to develop, try out in...... their own classes, evaluate and report a project based problem oriented course in mathematical modelling. The in-service course runs over one semester and includes three seminars of 3, 1 and 2 days. Experiences show that the course objectives in general are fulfilled and that the course projects are...

  18. Students’ mathematical learning in modelling activities

    DEFF Research Database (Denmark)

    Kjeldsen, Tinne Hoff; Blomhøj, Morten

    2013-01-01

    involved. We argue that progress in students’ conceptual learning needs to be conceptualised separately from that of progress in their modelling competency. Findings are that modelling activities open a window to the students’ images of the mathematical concepts involved; that modelling activities can......Ten years of experience with analyses of students’ learning in a modelling course for first year university students, led us to see modelling as a didactical activity with the dual goal of developing students’ modelling competency and enhancing their conceptual learning of mathematical concepts...... create and help overcome hidden cognitive conflicts in students’ understanding; that reflections within modelling can play an important role for the students’ learning of mathematics. These findings are illustrated with a modelling project concerning the world population....

  19. Mathematical model of cylindrical form tolerance

    Institute of Scientific and Technical Information of China (English)

    蔡敏; 杨将新; 吴昭同

    2004-01-01

    Tolerance is essential for integration of CAD and CAM. Unfortunately, the meaning of tolerances in the national standard is expressed in graphical and language forms and is not adaptable for expression, processing and data transferring with computers. How to interpret its semantics is becoming a focus of relevant studies. This work based on the mathematical definition of form tolerance in ANSI Y 14.5.1 M-1994, established the mathematical model of form tolerance for cylindrical feature. First, each tolerance in the national standard was established by vector equation. Then on the foundation of toler-ance's mathematical definition theory, each tolerance zone's mathematical model was established by inequality based on degrees of feature. At last the variance area of each tolerance zone is derived. This model can interpret the semantics of form tolerance exactly and completely.

  20. Mathematical model of cylindrical form tolerance

    Institute of Scientific and Technical Information of China (English)

    蔡敏; 杨将新; 吴昭同

    2004-01-01

    Tolerance is essential for integration of CAD and CAM.Unfortunately,the meaning of tolerances in the national standard is expressed in graphical and language forms and is not adaptable for expression,processing and data transferring with computers.How to interpret its semantics is becoming a focus of relevant studies.This work based on the mathematical definition of form tolerance in ANSI Y 14.5.1 M-1994,established the mathematical model of form tolerance for cylindrical feature.First,each tolerance in the national standard was established by vector equation.Then on the foundation of tolerance's mathematical definition theory,each tolerance zone's mathematical model was established by inequality based on degrees of feature.At last the variance area of each tolerance zone is derived.This model can interpret the semantics of form tolerance exactly and completely.

  1. A mathematical model of forgetting and amnesia

    Directory of Open Access Journals (Sweden)

    JaapM. J.Murre

    2013-02-01

    Full Text Available We describe a mathematical model of learning and memory and apply it to the dynamics of forgetting and amnesia. The model is based on the hypothesis that the neural systems involved in memory at different time-scales share two fundamental properties: (1 representations in a store decline in strength (2 while trying to induce new representations in higher-level more permanent stores. This paper addresses several types of experimental and clinical phenomena: (i the temporal gradient of retrograde amnesia (Ribot's Law, (ii forgetting curves with and without anterograde amnesia, and (iii learning and forgetting curves with impaired cortical plasticity. Results are in the form of closed-form expressions that are applied to studies with mice, rats, and monkeys. In order to analyze human data in a quantitative manner, we also derive a relative measure of retrograde amnesia that removes the effects of non-equal item difficulty for different time periods commonly found with clinical retrograde amnesia tests. Using these analytical tools, we review studies of temporal gradients in the memory of patients with Korsakoff's Disease, Alzheimer's Dementia, Huntington's Disease, and other disorders.

  2. Introduction to mathematical modeling and chaotic dynamics

    CERN Document Server

    Upadhyay, Ranjit Kumar

    2013-01-01

    ""The presentation is so clear that anyone with even a basic mathematical background can study it and get a clear picture. … Unlike many other similar textbooks, a rich reference section is given at the end of each chapter. The cautious selection of worked out examples and exercises throughout the book is superb. For anyone with previous experience of having run into books in mathematical modeling and chaotic dynamics that rapidly move into advanced mathematical content, the book offers a pleasant recourse at an introductory level and therefore can be very inspirational.""-MAA Reviews, Decembe

  3. The Relationship between Students' Performance on Conventional Standardized Mathematics Assessments and Complex Mathematical Modeling Problems

    Science.gov (United States)

    Kartal, Ozgul; Dunya, Beyza Aksu; Diefes-Dux, Heidi A.; Zawojewski, Judith S.

    2016-01-01

    Critical to many science, technology, engineering, and mathematics (STEM) career paths is mathematical modeling--specifically, the creation and adaptation of mathematical models to solve problems in complex settings. Conventional standardized measures of mathematics achievement are not structured to directly assess this type of mathematical…

  4. Introducing Modeling Transition Diagrams as a Tool to Connect Mathematical Modeling to Mathematical Thinking

    Science.gov (United States)

    Czocher, Jennifer A.

    2016-01-01

    This study contributes a methodological tool to reconstruct the cognitive processes and mathematical activities carried out by mathematical modelers. Represented as Modeling Transition Diagrams (MTDs), individual modeling routes were constructed for four engineering undergraduate students. Findings stress the importance and limitations of using…

  5. Evolution des modèles mathématiques directs appliqués aux moteurs à combustion interne Evolution of Direct Mathematical Models Applied to Internal-Combustion Engines

    Directory of Open Access Journals (Sweden)

    Rumiano N.

    2006-11-01

    Full Text Available Cet article rend compte de l'évolution présente et future des modèles mathématiques directs de simulation dans les moteurs. Ceux-ci sont basés sur la résolution des équations de Navier-Stokes, et deviennent peu à peu une nécessité surtout en ce qui concerne la combustion hétérogène. Après un aperçu sur l'état actuel des algorithmes de calcul et des sous-modèles physiques utilisés, on présente une revue des principaux codes de calcul appliqués au moteur, avec quelques-uns de leurs résultats. Après avoir évoqué les obstacles rencontrés lors de leur mise en oeuvre, on aborde l'évolution prévisible lors des prochaines années, tant pour les techniques de calcul que pour les codes eux-mêmes. This article describes the present and future evolution of direct mathematical models used for engine simulation. These models are based on the solving of Navier-Stokes equations and are gradually becoming an absolute necessity, especially with regard to heterogeneous combustion. Alter briefly describing the present state of the computing algorithms and physical submodels used, the leading computing codes applied to engines are reviewed, with some of their results. Then the stumbling blocks encountered during the implementation of these codes are described, followed by the foresable evolution in the next few years, for both computing techniques and the codes themselves.

  6. Mathematical Models of Hydraulic Systems, Examples, Analysis

    Czech Academy of Sciences Publication Activity Database

    Straškraba, Ivan

    Praha : ÚT AV ČR, 2006 - (Příhoda, J.; Kozel, K.), s. 159-162 ISBN 80-85918-98-6. [Conference Topical Problems of Fluid Mechanics 2006. Praha (CZ), 22.02.2006-24.02.2006] R&D Projects: GA ČR(CZ) GA201/05/0005 Institutional research plan: CEZ:AV0Z10190503 Keywords : hydraulic systems * fluid flow * mathematical models Subject RIV: BA - General Mathematics

  7. Mathematical Modelling of Running Crown Forest Fires

    OpenAIRE

    Taranchuk, V. B.; Barovik, D. V.

    2010-01-01

    Adapted mathematical model of running crown forest fire propagation is considered. Simplifying assumptions, equations of the model, initial and boundary conditions, finite diference approximations are introduced. The results of computer modelling and the peculiarities of forest fire behavior in heterogeneous forests are discussed

  8. On the mathematical modeling of aeolian saltation

    DEFF Research Database (Denmark)

    Jensen, Jens Ledet; Sørensen, Michael

    1983-01-01

    The development of a mathematical model for aeolian saltation is a promising way of obtaining further progress in the field of wind-blown sand. Interesting quantities can be calculated from a model defined in general terms, and a specific model is defined and compared to previously published data...

  9. On the mathematical modelling of measurement

    OpenAIRE

    Barzilai, Jonathan

    2006-01-01

    The operations of linear algebra, calculus, and statistics are routinely applied to measurement scales but certain mathematical conditions must be satisfied in order for these operations to be applicable. We call attention to the conditions that lead to construction of measurement scales that enable these operations.

  10. Interfacial Fluid Mechanics A Mathematical Modeling Approach

    CERN Document Server

    Ajaev, Vladimir S

    2012-01-01

    Interfacial Fluid Mechanics: A Mathematical Modeling Approach provides an introduction to mathematical models of viscous flow used in rapidly developing fields of microfluidics and microscale heat transfer. The basic physical effects are first introduced in the context of simple configurations and their relative importance in typical microscale applications is discussed. Then,several configurations of importance to microfluidics, most notably thin films/droplets on substrates and confined bubbles, are discussed in detail.  Topics from current research on electrokinetic phenomena, liquid flow near structured solid surfaces, evaporation/condensation, and surfactant phenomena are discussed in the later chapters. This book also:  Discusses mathematical models in the context of actual applications such as electrowetting Includes unique material on fluid flow near structured surfaces and phase change phenomena Shows readers how to solve modeling problems related to microscale multiphase flows Interfacial Fluid Me...

  11. Mathematical Models of Tuberculosis Reactivation and Relapse

    Science.gov (United States)

    Wallis, Robert S.

    2016-01-01

    The natural history of human infection with Mycobacterium tuberculosis (Mtb) is highly variable, as is the response to treatment of active tuberculosis. There is presently no direct means to identify individuals in whom Mtb infection has been eradicated, whether by a bactericidal immune response or sterilizing antimicrobial chemotherapy. Mathematical models can assist in such circumstances by measuring or predicting events that cannot be directly observed. The 3 models discussed in this review illustrate instances in which mathematical models were used to identify individuals with innate resistance to Mtb infection, determine the etiologic mechanism of tuberculosis in patients treated with tumor necrosis factor blockers, and predict the risk of relapse in persons undergoing tuberculosis treatment. These examples illustrate the power of various types of mathematic models to increase knowledge and thereby inform interventions in the present global tuberculosis epidemic. PMID:27242697

  12. MATHEMATICAL MODELS FOR MICROSTRUCTURE EVOLUTION IN THE SEAMLESS TUBE ROLLING

    OpenAIRE

    Ricardo Nolasco de Carvalho; Marcelo Almeida Cunha Ferreira; Dagoberto Brandão Santos; Ronaldo Antônio Neves Marques Barbosa

    2013-01-01

    The goal of this work is to present recent developments on mathematical modeling for microstructure evolution in different steel types, applied to a continuous rolling of seamless tubes. The development of these models depends on careful characterization of the thermomechanical cycle and/on correct selection and adjustment of equations which describes the several metallurgical phenomena involved on this process. The adjustments of these models are done using the results obtained i...

  13. Mathematical models and methods for planet Earth

    CERN Document Server

    Locatelli, Ugo; Ruggeri, Tommaso; Strickland, Elisabetta

    2014-01-01

    In 2013 several scientific activities have been devoted to mathematical researches for the study of planet Earth. The current volume presents a selection of the highly topical issues presented at the workshop “Mathematical Models and Methods for Planet Earth”, held in Roma (Italy), in May 2013. The fields of interest span from impacts of dangerous asteroids to the safeguard from space debris, from climatic changes to monitoring geological events, from the study of tumor growth to sociological problems. In all these fields the mathematical studies play a relevant role as a tool for the analysis of specific topics and as an ingredient of multidisciplinary problems. To investigate these problems we will see many different mathematical tools at work: just to mention some, stochastic processes, PDE, normal forms, chaos theory.

  14. Applied Wave Mathematics Selected Topics in Solids, Fluids, and Mathematical Methods

    CERN Document Server

    Quak, Ewald

    2009-01-01

    This edited volume addresses the importance of mathematics in wave-related research, and its tutorial style contributions provide educational material for courses or seminars. It presents highlights from research carried out at the Centre for Nonlinear Studies in Tallinn, Estonia, the Centre of Mathematics for Applications in Oslo, Norway, and by visitors from the EU project CENS-CMA. The example applications discussed include wave propagation in inhomogeneous solids, liquid crystals in mesoscopic physics, and long ship waves in shallow water bodies. Other contributions focus on specific mathe

  15. Mathematical model in economic environmental problems

    Energy Technology Data Exchange (ETDEWEB)

    Nahorski, Z. [Polish Academy of Sciences, Systems Research Inst. (Poland); Ravn, H.F. [Risoe National Lab. (Denmark)

    1996-12-31

    The report contains a review of basic models and mathematical tools used in economic regulation problems. It starts with presentation of basic models of capital accumulation, resource depletion, pollution accumulation, and population growth, as well as construction of utility functions. Then the one-state variable model is discussed in details. The basic mathematical methods used consist of application of the maximum principle and phase plane analysis of the differential equations obtained as the necessary conditions of optimality. A summary of basic results connected with these methods is given in appendices. (au) 13 ills.; 17 refs.

  16. Applying science and mathematics to big data for smarter buildings.

    Science.gov (United States)

    Lee, Young M; An, Lianjun; Liu, Fei; Horesh, Raya; Chae, Young Tae; Zhang, Rui

    2013-08-01

    Many buildings are now collecting a large amount of data on operations, energy consumption, and activities through systems such as a building management system (BMS), sensors, and meters (e.g., submeters and smart meters). However, the majority of data are not utilized and are thrown away. Science and mathematics can play an important role in utilizing these big data and accurately assessing how energy is consumed in buildings and what can be done to save energy, make buildings energy efficient, and reduce greenhouse gas (GHG) emissions. This paper discusses an analytical tool that has been developed to assist building owners, facility managers, operators, and tenants of buildings in assessing, benchmarking, diagnosing, tracking, forecasting, and simulating energy consumption in building portfolios. PMID:23819911

  17. 65 nm CMOS Sensors Applied to Mathematically Exact Colorimetric Reconstruction

    CERN Document Server

    Mayr, C; Krause, A; Schlüßler, J -U; Schüffny, R

    2014-01-01

    Extracting colorimetric image information from the spectral characteristics of image sensors is a key issue in accurate image acquisition. Technically feasible filter/sensor combinations usually do not replicate colorimetric responses with sufficient accuracy to be directly applicable to color representation. A variety of transformations have been proposed in the literature to compensate for this. However, most of those rely on heuristics and/or introduce a reconstruction dependent on the composition of the incoming illumination. In this work, we present a spectral reconstruction method that is independent of illumination and is derived in a mathematically strict way. It provides a deterministic method to arrive at a least mean squared error approximation of a target spectral characteristic from arbitrary sensor response curves. Further, we present a new CMOS sensor design in a standard digital 65nm CMOS technology. Novel circuit techniques are used to achieve performance comparable with much larger-sized spe...

  18. Examination of Primary Mathematics Student Teachers’ Modelling Competencies

    Directory of Open Access Journals (Sweden)

    Ayşe Tekin Dede

    2013-12-01

    Full Text Available Modelling competencies are the competencies to understand the real problem and to set up a model based on reality, to set up a mathematical model from the real model, to solve mathematical questions within this mathematical model, to interpret mathematical results in a real situation, and to validate the solution (Blum & Kaiser, 1997, cited in Maaß, 2006. The purpose of this study is to examine modelling competencies of primary mathematics student teachers in the solution process of a modelling problem. The approaches primary mathematics student teachers were videotaped and analyzed using thematic coding. In accordance with the data obtained from the study, it was identified that the participants showed approaches in the context of all competencies except the competencies to interpret mathematical results in a real situation. The participants showed inadequate approaches on interpreting the obtained mathematical results.Key Words:    Mathematical modelling, modelling problem, modelling competencies, primary mathematics student teachers

  19. Mathematical model for predicting human vertebral fracture

    Science.gov (United States)

    Benedict, J. V.

    1973-01-01

    Mathematical model has been constructed to predict dynamic response of tapered, curved beam columns in as much as human spine closely resembles this form. Model takes into consideration effects of impact force, mass distribution, and material properties. Solutions were verified by dynamic tests on curved, tapered, elastic polyethylene beam.

  20. Mathematical human body modelling for impact loading

    NARCIS (Netherlands)

    Happee, R.; Morsink, P.L.J.; Wismans, J.S.H.M.

    1999-01-01

    Mathematical modelling of the human body is widely used for automotive crash safety research and design. Simulations have contributed to a reduction of injury numbers by optimisation of vehicle structures and restraint systems. Currently such simulations are largely performed using occupant models b

  1. Mathematical modeling to predict residential solid waste generation

    International Nuclear Information System (INIS)

    One of the challenges faced by waste management authorities is determining the amount of waste generated by households in order to establish waste management systems, as well as trying to charge rates compatible with the principle applied worldwide, and design a fair payment system for households according to the amount of residential solid waste (RSW) they generate. The goal of this research work was to establish mathematical models that correlate the generation of RSW per capita to the following variables: education, income per household, and number of residents. This work was based on data from a study on generation, quantification and composition of residential waste in a Mexican city in three stages. In order to define prediction models, five variables were identified and included in the model. For each waste sampling stage a different mathematical model was developed, in order to find the model that showed the best linear relation to predict residential solid waste generation. Later on, models to explore the combination of included variables and select those which showed a higher R2 were established. The tests applied were normality, multicolinearity and heteroskedasticity. Another model, formulated with four variables, was generated and the Durban-Watson test was applied to it. Finally, a general mathematical model is proposed to predict residential waste generation, which accounts for 51% of the total

  2. Parallel Processing and Applied Mathematics. 10th International Conference, PPAM 2013. Revised Selected Papers

    DEFF Research Database (Denmark)

    The following topics are dealt with: parallel scientific computing; numerical algorithms; parallel nonnumerical algorithms; cloud computing; evolutionary computing; metaheuristics; applied mathematics; GPU computing; multicore systems; hybrid architectures; hierarchical parallelism; HPC systems...

  3. Mathematical modelling of fracture hydrology

    International Nuclear Information System (INIS)

    This progress report contains notes on four aspects of hydrological modelling. The first three describe the development of transport models for solute moving with groundwater in fractured rock and the application of the models to field experiments in Cornwall, UK and Chalk River, Canada. The fourth section describes network models which have been used to estimate hydrodynamic dispersion and are in process of being extended to three dimensional systems. (author)

  4. Mathematical modelling of membrane separation

    OpenAIRE

    Vinther, Frank; Brøns, Morten; Meyer, Anne S.

    2015-01-01

    Denne afhandling omhandler matematisk modellering af membranseparation. Afhandlingen består af indledende teori omhandlende membranseparation, ligninger fra fluiddynamik og egenskaber for dextran, som er det stof der ønskes separeret. Ydermere består den af tre separate matematiske modeller, med hver deres tilgang til membranseparation.Den første model er en statistisk model, som undersøger sammenhængen mellem molekyleform og sandsynligheden for at det givne molekyle penetrerer ind i membrane...

  5. Mathematical finance theory review and exercises from binomial model to risk measures

    CERN Document Server

    Gianin, Emanuela Rosazza

    2013-01-01

    The book collects over 120 exercises on different subjects of Mathematical Finance, including Option Pricing, Risk Theory, and Interest Rate Models. Many of the exercises are solved, while others are only proposed. Every chapter contains an introductory section illustrating the main theoretical results necessary to solve the exercises. The book is intended as an exercise textbook to accompany graduate courses in mathematical finance offered at many universities as part of degree programs in Applied and Industrial Mathematics, Mathematical Engineering, and Quantitative Finance.

  6. THE INSTRUCTIONAL DESIGN MODEL FOR MATHEMATICS EDUCATION

    OpenAIRE

    Özdemir, Emine; UYANGÖR, Sevinç MERT

    2011-01-01

    In this study, to present an instructional model by considering the existing models of instructional design (Addie, ARCS Motivation, Dick and Carey, ASSURE, Seels and Glasgow, Smith and Ragan, Universal, with the elaboration theory of Gerlach and Ely design models) with the nature of mathematics education and to reveal analysis, design, development, implementation, evaluation, and to revise levels with lower levels of the instructional design model were aimed. In this study, the qualitative c...

  7. Mathematical models of information and stochastic systems

    CERN Document Server

    Kornreich, Philipp

    2008-01-01

    From ancient soothsayers and astrologists to today's pollsters and economists, probability theory has long been used to predict the future on the basis of past and present knowledge. Mathematical Models of Information and Stochastic Systems shows that the amount of knowledge about a system plays an important role in the mathematical models used to foretell the future of the system. It explains how this known quantity of information is used to derive a system's probabilistic properties. After an introduction, the book presents several basic principles that are employed in the remainder of the t

  8. A mathematical model for Neanderthal extinction

    CERN Document Server

    Flores, J C

    1997-01-01

    A simple mathematical homogeneous model of competition is used to describe Neanderthal extinction in Europe. It considers two interacting species, Neanderthals and Early Modern Men, in the same ecological niche. Using paleontological data we claim that the parameter of similarity, between both species, fluctuates between 0.992 and 0.997. An extension of the model including migration (diffusion) is also discussed nevertheless, extinction of Neanderthal seems unavoidable. Numerical analysis of travelling wave solution (fronts) comfirms the extinction. The wave-front-velocity is estimated from linear analysis and numerical simulations confirm this estimation. We conjecture a mathematical formulation for the principle of exclusion between competitive interacting species (Gause).

  9. On the mathematical modeling of memristors

    KAUST Repository

    Radwan, Ahmed Gomaa

    2012-10-06

    Since the fourth fundamental element (Memristor) became a reality by HP labs, and due to its huge potential, its mathematical models became a necessity. In this paper, we provide a simple mathematical model of Memristors characterized by linear dopant drift for sinusoidal input voltage, showing a high matching with the nonlinear SPICE simulations. The frequency response of the Memristor\\'s resistance and its bounding conditions are derived. The fundamentals of the pinched i-v hysteresis, such as the critical resistances, the hysteresis power and the maximum operating current, are derived for the first time.

  10. Mathematical Modelling of Unmanned Aerial Vehicles

    Directory of Open Access Journals (Sweden)

    Saeed Sarwar

    2013-04-01

    Full Text Available UAVs (Unmanned Arial Vehicleis UAVs are emerging as requirement of time and it is expected that in next five to ten years, complete air space will be flooded with UAVs, committed in varied assignments ranging from military, scientific and commercial usage. Non availability of human pilot inside UAV necessitates the requirement of an onboard autopilot in order to maintain desired flight profile against any unexpected disturbance and/or parameter variations. Design of such an autopilot requires an accurate mathematical model of UAV. The aim of this paper is to present a consolidated picture of UAV model. This paper first consolidates complete 6 DOF Degree of Freedom equations of motion into a nonlinear mathematical model and its simulation using model parameters of a real UAV. Model is then linearized into longitudinal and lateral modes. State space models of linearized modes are simulated and analyzed for stability parameters. The developed model can be used to design autopilot for UAV

  11. Mathematical modelling of unmanned aerial vehicles

    International Nuclear Information System (INIS)

    UAVs (Unmanned Aerial Vehicles) UAVs are emerging as requirement of time and it is expected that in next five to ten years, complete air space will be flooded with UAVs, committed in varied assignments ranging from military, scientific and commercial usage. Non availability of human pilot inside UAV necessitates the requirement of an onboard auto pilot in order to maintain desired flight profile against any unexpected disturbance and/or parameter variations. Design of such an auto pilot requires an accurate mathematical model of UAV. The aim of this paper is to present a consolidated picture of UAV model. This paper first consolidates complete 6 DOF Degree of Freedom) equations of motion into a nonlinear mathematical model and its simulation using model parameters of a real UAV. Model is then linearized into longitudinal and lateral modes. State space models of linearized modes are simulated and analyzed for stability parameters. The developed model can be used to design auto pilot for UAV. (author)

  12. Grip Forces During Object Manipulation: Experiment, Mathematical Model & Validation

    OpenAIRE

    Slota, Gregory P.; Latash, Mark L.; Zatsiorsky, Vladimir M.

    2011-01-01

    When people transport handheld objects, they change the grip force with the object movement. Circular movement patterns were tested within three planes at two different rates (1.0, 1.5 Hz), and two diameters (20, 40 cm). Subjects performed the task reasonably well, matching frequencies and dynamic ranges of accelerations within expectations. A mathematical model was designed to predict the applied normal forces from kinematic data. The model is based on two hypotheses: (a) the grip force chan...

  13. Mathematical Modeling of lndustrial Robots Based on Hamiltonian Mechanics

    Czech Academy of Sciences Publication Activity Database

    Záda, V.; Belda, Květoslav

    Košice: Slovak Society for Applied Cybernetics and Informatics (SSAKI), 2016, s. 813-818. ISBN 978-1-4673-8606-7. [17th International Carpathian Control Conference (ICCC). Tatranská Lomnica (SK), 29.05.2016-01.06.2016] Institutional support: RVO:67985556 Keywords : Robot -manipulator * Hamiltonian formalism * mathematical modeling * PD control * model-oreinted motion control Subject RIV: BC - Control Systems Theory http://library.utia.cas.cz/separaty/2016/AS/belda-0459855.pdf

  14. International Workshop on Mathematical Modeling of Tumor-Immune Dynamics

    CERN Document Server

    Kim, Peter; Mallet, Dann

    2014-01-01

    This collection of papers offers a broad synopsis of state-of-the-art mathematical methods used in modeling the interaction between tumors and the immune system. These papers were presented at the four-day workshop on Mathematical Models of Tumor-Immune System Dynamics held in Sydney, Australia from January 7th to January 10th, 2013. The workshop brought together applied mathematicians, biologists, and clinicians actively working in the field of cancer immunology to share their current research and to increase awareness of the innovative mathematical tools that are applicable to the growing field of cancer immunology. Recent progress in cancer immunology and advances in immunotherapy suggest that the immune system plays a fundamental role in host defense against tumors and could be utilized to prevent or cure cancer. Although theoretical and experimental studies of tumor-immune system dynamics have a long history, there are still many unanswered questions about the mechanisms that govern the interaction betwe...

  15. Mathematical Modelling of Network Traffic

    OpenAIRE

    Li, Yu

    2015-01-01

    ncreasing access to the Internet is producing profound influence around the World. More and more people are taking advantage of the Internet to obtain information, communicate with each other far away and enjoy various recreations. This largely increased demand for the Internet requires better and more effective models. During the 1990s, a number of studies show that due to a different nature from telephonic traffic, in particular a bursty nature, traditional queuing models are not applicable...

  16. A mathematical model of leptin resistance

    OpenAIRE

    Jacquier, Marine; Hédi A Soula; Crauste, Fabien

    2015-01-01

    Obesity is often associated with leptin resistance, which leads to a physiological system with high leptin concentration but unable to respond to leptin signals and to regulate food intake. We propose a mathematical model of the leptin-leptin receptors system, based on the assumption that leptin is a regulator of its own receptor activity, and investigate its qualitative behavior. Based on current knowledge and previous models developed for body weight dynamics in rodents, the model includes ...

  17. Mathematical efficiency modeling of static power converters

    OpenAIRE

    Hoff Dupont, Fabrício; Zaragoza Bertomeu, Jordi; Rech, Cassiano; Pinheiro, José Renes

    2015-01-01

    This paper presents a review and a comparative analysis between mathematical models for the efficiency of power converters. Two different types of models are considered, being one for converters subject solely for output power variations, and a second one also considering input voltage variations. Both cases are particularly important for systems fed by renewable sources as photovoltaic panels or wind turbines. Knowledge of the appropriate models is of interest in the dev...

  18. Adding effect of current displacement and magnetic circuit saturation in an asynchronous motor mathematical model

    Directory of Open Access Journals (Sweden)

    I.A. Tsodik

    2014-04-01

    Full Text Available A methodology of an asynchronous motor mathematical model synthesis is described. Experiments are suggested to be conducted in the following sequence. Geometrical models are first built in AutoCAD, then imported to Comsol Multiphysics, and further processed in Matlab with computation of coefficients and dependences applied in the asynchronous motor mathematical model.

  19. A Computational and Mathematical Model for Device Induced Thrombosis

    Science.gov (United States)

    Wu, Wei-Tao; Aubry, Nadine; Massoudi, Mehrdad; Antaki, James

    2015-11-01

    Based on the Sorenson's model of thrombus formation, a new mathematical model describing the process of thrombus growth is developed. In this model the blood is treated as a Newtonian fluid, and the transport and reactions of the chemical and biological species are modeled using CRD (convection-reaction-diffusion) equations. A computational fluid dynamic (CFD) solver for the mathematical model is developed using the libraries of OpenFOAM. Applying the CFD solver, several representative benchmark problems are studied: rapid thrombus growth in vivo by injecting Adenosine diphosphate (ADP) using iontophoretic method and thrombus growth in rectangular microchannel with a crevice which usually appears as a joint between components of devices and often becomes nidus of thrombosis. Very good agreements between the numerical and the experimental results validate the model and indicate its potential to study a host of complex and practical problems in the future, such as thrombosis in blood pumps and artificial lungs.

  20. Optimization and mathematical modeling in computer architecture

    CERN Document Server

    Sankaralingam, Karu; Nowatzki, Tony

    2013-01-01

    In this book we give an overview of modeling techniques used to describe computer systems to mathematical optimization tools. We give a brief introduction to various classes of mathematical optimization frameworks with special focus on mixed integer linear programming which provides a good balance between solver time and expressiveness. We present four detailed case studies -- instruction set customization, data center resource management, spatial architecture scheduling, and resource allocation in tiled architectures -- showing how MILP can be used and quantifying by how much it outperforms t

  1. Mathematical Models Issues of Environmental Management

    Directory of Open Access Journals (Sweden)

    Pop Viorel

    2015-05-01

    Full Text Available Today the world is facing, more and more, different sources of pollution, the most affected areas being the proximity of big industrial centers (e.g.: chemistry, mining and metallurgy, machinery building etc.. Baia Mare industrial area is a typical one for such a situation. To maintain a clean and healthy environment in Baia Mare city and in the surrounding areas, important costs are needed. The usefulness of the mathematical models consists in the possibility of mathematical processing of industrial parameters evolutions, with relevant interpretations on various influences and their correction for achieving the set goals (maximizing financial efficiency, environmental protection with the compliance of legal requirements etc.

  2. Mathematical models in cell biology and cancer chemotherapy

    CERN Document Server

    Eisen, Martin

    1979-01-01

    The purpose of this book is to show how mathematics can be applied to improve cancer chemotherapy. Unfortunately, most drugs used in treating cancer kill both normal and abnormal cells. However, more cancer cells than normal cells can be destroyed by the drug because tumor cells usually exhibit different growth kinetics than normal cells. To capitalize on this last fact, cell kinetics must be studied by formulating mathematical models of normal and abnormal cell growth. These models allow the therapeutic and harmful effects of cancer drugs to be simulated quantitatively. The combined cell and drug models can be used to study the effects of different methods of administering drugs. The least harmful method of drug administration, according to a given criterion, can be found by applying optimal control theory. The prerequisites for reading this book are an elementary knowledge of ordinary differential equations, probability, statistics, and linear algebra. In order to make this book self-contained, a chapter on...

  3. Mathematical modelling of fracture hydrology

    International Nuclear Information System (INIS)

    This progress report contains notes on three aspects of hydrological modelling. Work on hydrodynamic dispersion in fractured media has been extended to transverse dispersion. Further work has been done on diffusion into the rock matrix and its effect on solute transport. The program NAMSOL has been used for the MIRAGE code comparison exercise being organised by Atkins R and D. (author)

  4. Proceedings of the tenth international conference Models in developing mathematics education

    OpenAIRE

    2012-01-01

    This volume contains the papers presented at the International Conference on “Models in Developing Mathematics Education” held from September 11-17, 2009 at The University of Applied Sciences, Dresden, Germany. The Conference was organized jointly by The University of Applied Sciences and The Mathematics Education into the 21st Century Project - a non-commercial international educational project founded in 1986. The Mathematics Education into the 21st Century Project is dedicated to the impro...

  5. Analysis of mathematical models of radioisotope gauges

    International Nuclear Information System (INIS)

    Radioisotope gauges as industrial sensors were briefly reviewed. Regression models of instruments based on various principles developed in Institute of Nuclear Research and Institute of Nuclear Chemistry and Technology were analysed and their mathematical models assessed. It was found that for one - dimensional models the lowest value of standard error of estimate was achieved when calibration procedure was modelled by logarithmic function. Mathematical expressions for variance and mean value of intrinsic error for linear and non - linear one - as well as for multi - dimensional models of radioisotope gauges were derived. A conclusion was drawn that optimal model of calibration procedure determined by regression analysis method not always corresponds to the minimum value of the intrinsic error variance. Influence of cutting off of probability distribution function of measured quantity and its error at the lower upper limit of measurement range on variance and mean value of intrinsic error was evaluated. Feasibility study for application of some aspects of Shannon's information theory for evaluation of mathematical models of radioisotope gauges was accomplished. Its usefulness for complex evaluation of multidimensional models was confirmed. 105 refs. (author)

  6. Mathematical modeling of the flash converting process

    Energy Technology Data Exchange (ETDEWEB)

    Sohn, H.Y.; Perez-Tello, M.; Riihilahti, K.M. [Utah Univ., Salt Lake City, UT (United States)

    1996-12-31

    An axisymmetric mathematical model for the Kennecott-Outokumpu flash converting process for converting solid copper matte to copper is presented. The model is an adaptation of the comprehensive mathematical model formerly developed at the University of Utah for the flash smelting of copper concentrates. The model incorporates the transport of momentum, heat, mass, and reaction kinetics between gas and particles in a particle-laden turbulent gas jet. The standard k-{epsilon} model is used to describe gas-phase turbulence in an Eulerian framework. The particle-phase is treated from a Lagrangian viewpoint which is coupled to the gas-phase via the source terms in the Eulerian gas-phase governing equations. Matte particles were represented as Cu{sub 2}S yFeS, and assumed to undergo homogeneous oxidation to Cu{sub 2}O, Fe{sub 3}O{sub 4}, and SO{sub 2}. A reaction kinetics mechanism involving both external mass transfer of oxygen gas to the particle surface and diffusion of oxygen through the porous oxide layer is proposed to estimate the particle oxidation rate Predictions of the mathematical model were compared with the experimental data collected in a bench-scale flash converting facility. Good agreement between the model predictions and the measurements was obtained. The model was used to study the effect of different gas-injection configurations on the overall fluid dynamics in a commercial size flash converting shaft. (author)

  7. River basin soil-vegetation condition assessment applying mathematic simulation methods

    Science.gov (United States)

    Mishchenko, Natalia; Trifonova, Tatiana; Shirkin, Leonid

    2013-04-01

    Meticulous attention paid nowadays to the problem of vegetation cover productivity changes is connected also to climate global transformation. At the same time ecosystems anthropogenic transformation, basically connected to the changes of land use structure and human impact on soil fertility, is developing to a great extent independently from climatic processes and can seriously influence vegetation cover productivity not only at the local and regional levels but also globally. Analysis results of land use structure and soil cover condition influence on river basin ecosystems productive potential is presented in the research. The analysis is carried out applying integrated characteristics of ecosystems functioning, space images processing results and mathematic simulation methods. The possibility of making permanent functional simulator defining connection between macroparameters of "phytocenosis-soil" system condition on the basis of basin approach is shown. Ecosystems of river catchment basins of various degrees located in European part of Russia were chosen as research objects. For the integrated assessment of ecosystems soil and vegetation conditions the following characteristics have been applied: 1. Soil-productional potential, characterizing the ability of natural and natural-anthropogenic ecosystem in certain soil-bioclimatic conditions for long term reproduction. This indicator allows for specific phytomass characteristics and ecosystem produce, humus content in soil and bioclimatic parameters. 2. Normalized difference vegetation index (NDVI) has been applied as an efficient, remotely defined, monitoring indicator characterizing spatio-temporal unsteadiness of soil-productional potential. To design mathematic simulator functional simulation methods and principles on the basis of regression, correlation and factor analysis have been applied in the research. Coefficients values defining in the designed static model of phytoproductivity distribution has been

  8. CURRENT APPLIED INVESTIGATIONS OF THE DEPARTMENT OF HIGHER MATHEMATICS OF MGSU

    Directory of Open Access Journals (Sweden)

    Bobyleva Tat’yana Nikolaevna

    2015-12-01

    Full Text Available The article presents an overview of some research works done by the academic staff of the Department in the field of differential equations, solid mechanics, probability theory and mathematical statistics, theory of functions of real and complex variable, functional analysis, topology, the theory of polymer composites having theoretical and practical interest, which leads to wide possibilities of application of these researches for formulation and solution of model problems of construction, technology and economics. In particular, we considered the problem of planar non-rotational fluid flow with a free boundary, discrete kinetic model of rarefied gas, the Burgers-Huxley equation of advection-diffusion fractional order. We studied the stress concentrators due to the geometry of the boundary and coupling elements made of materials with different physical properties, stress relaxation in concrete, free vibrations of isotropic hollow balls. The issues of loaded systems’ research arise frequently in practice in the problems with lumped loads. Extremum problems were considered, in particular, in the loaded space of Jacobi, extremum problems for analytic functions of some classes, the use of the duality of linear spaces applied to extremum problems of complex analysis. The researches on methods of teaching mathematics in technical universities were performed.

  9. Mathematical modeling of mechanical vibration assisted conductivity imaging

    CERN Document Server

    Ammari, Habib; Kwon, Hyeuknam; Seo, Jin Keun; Woo, Eung Je

    2014-01-01

    This paper aims at mathematically modeling a new multi-physics conductivity imaging system incorporating mechanical vibrations simultaneously applied to an imaging object together with current injections. We perturb the internal conductivity distribution by applying time-harmonic mechanical vibrations on the boundary. This enhances the effects of any conductivity discontinuity on the induced internal current density distribution. Unlike other conductivity contrast enhancing frameworks, it does not require a prior knowledge of a reference data. In this paper, we provide a mathematical framework for this novel imaging modality. As an application of the vibration-assisted impedance imaging framework, we propose a new breast image reconstruction method in electrical impedance tomography (EIT). As its another application, we investigate a conductivity anomaly detection problem and provide an efficient location search algorithm. We show both analytically and numerically that the applied mechanical vibration increas...

  10. Mathematical modelling of thermal storage systems for the food industry

    Energy Technology Data Exchange (ETDEWEB)

    Lopez, A.; Lacarra, G. [Universidad Publica de Navarra Campus Arrosadia, Pamplona (Spain). Area de Tecnologia de Alimentos

    1999-07-01

    Dynamic mathematical models of two thermal storage systems used in the food industry to produce chilled water are presented; an ice-bank system and a holding tank system. The variability of the refrigeration demand with time was taken into account in the model. A zoned approach using mass and energy balances was applied. Heat transfer phenomena in the evaporator were modelled using empirical correlations. The experimental validation of the mathematical models on an ice-bank system at pilot plant scale, and a centralized refrigeration system with a holding tank in a winery, showed accurate prediction. Simple models are adequate to predict the dynamic behaviour of these refrigeration systems under variable heat loads. (Author)

  11. A mathematical model of leptin resistance

    OpenAIRE

    Jacquier, Marine; Soula, Hédi A; Crauste, Fabien

    2015-01-01

    International audience Obesity is often associated with leptin resistance, which leads to a physiological system with high leptin concentration but unable to respond to leptin signals and to regulate food intake. We propose a mathematical model of the leptin-leptin receptors system, based on the assumption that leptin is a regulator of its own receptor activity, and investigate its qualitative behavior. Based on current knowledge and previous models developed for body weight dynamics in ro...

  12. Mathematical Modeling of Magnetic Regenerator Refrigeration Systems

    OpenAIRE

    Salarvand, Navid

    2009-01-01

    ABSTRACT: Active magnetic regenerative refrigeration (AMRR) systems are designed based on magnetocaloric effect of some special solid materials, such as Gadolinium-Silicon-Germanium, Ferrum-Rhodium, etc. During the last three decades, a variety of cooling systems have been proposed using magnetic materials at room temperature. In this thesis, an AMRR system using FeRh as refrigerant is studied. For the simulation, a one-dimensional, time-varying mathematical model is developed. This model co...

  13. Mathematical Modelling of Immune Response in Tissues

    OpenAIRE

    Su, B; Zhou, W; K. S. Dorman; Jones, D. E.

    2009-01-01

    We have developed a spatial–temporal mathematical model (PDE) to capture fundamental aspects of the immune response to antigen. We have considered terms that broadly describe intercellular communication, cell movement, and effector function (activation or inhibition). The PDE model is robust to variation in antigen load and it can account for (1) antigen recognition, (2) an innate immune response, (3) an adaptive immune response, (4) the elimination of antigen and subsequent resolution of the...

  14. Mathematical Modeling of Multienzyme Biosensor System

    OpenAIRE

    SP. Ganesan; K Saravanakumar; Rajendran, L.

    2014-01-01

    A mathematical model of hybrid inhibitor biosensor system is discussed. This model consists of five nonlinear partial differential equations for bisubstrate sensitive amperometric system. Simple and closed form of analytical expressions for concentration of glucose-6-phosphate (substrate), potassium dihydrogen phosphate (inhibitor), oxygen (co-substrate), glucose (product 1), and hydrogen peroxide (product 3) is obtained in terms of rate constant using modified Adomian decomposition method (M...

  15. Optimization of mathematical models for thematic maps

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    The thematic map is a major class of maps designed to demonstrate particular features or concepts,functioning as an indispensable tool in geographical research.The process of thematic mapping is one into which geographical research goes deeply and broadly.The key activity and course of thematic map production is the use of mathematical models to create thematic data layers.Therefore,the selection and optimization of mathematical models is in the forefront of thematic map research.The theoretical foundations,mechanisms and methods of mathematical model optimization are expounded in this paper,including two approaches,the phase by phase mode and the multi-aim scheme balance mode.Case studies in eco-environment mapping and emergency mapping are described and analyzed,with a hierarchical analysis method being used in the model optimization for eco-environment fragility and sensitivity assessment mapping in Beibuwan (Guangxi) District,the dynamic system (DS) method being used in the model optimization for ecological security adjustment mapping in Xishuang Banna,Yunnan province,and the multi-phase mode being used in the models for forest fire and infectious diseases mapping.

  16. Mathematical Properties Relevant to Geomagnetic Field Modeling

    DEFF Research Database (Denmark)

    Sabaka, Terence J.; Hulot, Gauthier; Olsen, Nils

    2014-01-01

    Geomagnetic field modeling consists in converting large numbers of magnetic observations into a linear combination of elementary mathematical functions that best describes those observations. The set of numerical coefficients defining this linear combination is then what one refers to as a geomag......Geomagnetic field modeling consists in converting large numbers of magnetic observations into a linear combination of elementary mathematical functions that best describes those observations. The set of numerical coefficients defining this linear combination is then what one refers...... to as a geomagnetic field model. Such models can be used to produce maps. More importantly, they form the basis for the geophysical interpretation of the geomagnetic field, by providing the possibility of separating fields produced by various sources and extrapolating those fields to places where they cannot...... be directly measured. In this chapter, the mathematical foundation of global (as opposed to regional) geomagnetic field modeling is reviewed, and the spatial modeling of the field in spherical coordinates is focused. Time can be dealt with as an independent variable and is not explicitly considered...

  17. From mathematical modelling to computational simulation: mathematical experimentation on teaching

    OpenAIRE

    Oliveira, Margarida Cristina Pereira da Silva

    2015-01-01

    With recent technological developments and ease of access to knowledge and information, the teaching paradigm must be in permanent update and change, especially, the teaching paradigm of Mathematics. The current teaching system must prepare students, both from high schools and universities, to their entrance in the global labor market, that, more than ever before, demands for more innovation capacity, concerning the integrated usage of scientific knowledge, Mathematics and new technologies. ...

  18. Models of Non-Life Insurance Mathematics

    Directory of Open Access Journals (Sweden)

    Constanta Nicoleta BODEA

    2008-01-01

    Full Text Available In this communication we will discuss two regression credibility models from Non – Life Insurance Mathematics that can be solved by means of matrix theory. In the first regression credibility model, starting from a well-known representation formula of the inverse for a special class of matrices a risk premium will be calculated for a contract with risk parameter q. In the next regression credibility model, we will obtain a credibility solution in the form of a linear combination of the individual estimate (based on the data of a particular state and the collective estimate (based on aggregate USA data. Mathematics Subject Classification: 62P05.

  19. Dedication on the Occasion of the Thirtieth Anniversary of the Founding of Institute of Applied Mathematics

    Institute of Scientific and Technical Information of China (English)

    Fu-zhou Gong; Xiao-dong Hu

    2009-01-01

    @@ In March of 1979, Chinese Academy of Sciences (CAS) established, with the approval of the State Council of China, an office for promoting the application of mathematics and Interdisciplinary studies in practice. Later in October of 1979, based on this office CAS established the Institute of Applied Mathematics (IAM). The first director of IAM was the world-wide famous mathematician, Professor HUA Loo-Keng, and most faculty members of IAM came from Institute of Mathematics within CAS, which was founded in July of 1952 and was also directed by Prof. HUA.

  20. A Marking Scheme Rubric: To Assess Students' Mathematical Knowledge for Applied Algebra Test

    Directory of Open Access Journals (Sweden)

    Betsy Lee Guat Poh

    2015-08-01

    Full Text Available Students' ability in mathematics mainly relies on their performance in the assessment task such as tests, quizzes, assignments and final examinations. However, the grading process depends on the respective mathematics teacher who sets a marking scheme in assessing students' learning. How do these teachers assign grades to their students' problem solving work? What does it mean by five marks or ten marks for a mathematics problem? How does a teacher evaluate a student's mathematical knowledge and skills based on the grades? These questions address the vagueness of the grading process that gives no concrete evidence about a student's mathematical thinking. Hence, this paper aims to discover the effectiveness of using a marking scheme rubric to assess students' mathematical knowledge. The paper begins by reviewing different types of scoring rubrics in assessing mathematical problem solving tasks. A marking scheme rubric was proposed to assess samples of actual students' problem solving work in an applied algebra test. The rubric serves as an assessment instrument to gather information about students' achievement level in demonstrating both knowledge and skills in the test. Based on the findings, the score reflected the quality of the students’ work rather than just a numerical representation. It showed the students’ comprehension of adapting the mathematical concepts and problem solving strategies. In a nutshell, the implementation of rubric marking scheme has improved the consistency in grading and made the scoring points as a "meaningful figure" that describes the quality of a students' performance.  

  1. Mathematical modeling and simulation of nanopore blocking by precipitation

    KAUST Repository

    Wolfram, M-T

    2010-10-29

    High surface charges of polymer pore walls and applied electric fields can lead to the formation and subsequent dissolution of precipitates in nanopores. These precipitates block the pore, leading to current fluctuations. We present an extended Poisson-Nernst-Planck system which includes chemical reactions of precipitation and dissolution. We discuss the mathematical modeling and present 2D numerical simulations. © 2010 IOP Publishing Ltd.

  2. Mathematical model of delay lines based on magnetostatic waves

    Directory of Open Access Journals (Sweden)

    E. V. Kudinov

    2010-12-01

    Full Text Available On the example of the delay line have demonstrated the possibility of applying the principle of decomposition  to  construct  mathematical  models  of  microwave  devices  using  magnetostatic waves (MSW in a magnetized epitaxial ferrite films, which allows for a unified methodological basis and the lowest cost to the experimental optimization design of MSW devices for various applications

  3. Mathematical model of processes of reactor with gasified fluidized bed

    International Nuclear Information System (INIS)

    An original scheme of steam generator with gasifying fluidized bed has been presented as a possible solution for reconstruction of furnace with pulverized burning of coal. The method is effective when applied in combination with desulfurization for the purpose of reducing the CO2 emissions level. A mathematical model has been developed, which determines the correlation primary (fluidizing) and (burning out) secondary air with sufficient for the practice accuracy

  4. Mathematical model of delay lines based on magnetostatic waves

    OpenAIRE

    E. V. Kudinov

    2010-01-01

    On the example of the delay line have demonstrated the possibility of applying the principle of decomposition  to  construct  mathematical  models  of  microwave  devices  using  magnetostatic waves (MSW) in a magnetized epitaxial ferrite films, which allows for a unified methodological basis and the lowest cost to the experimental optimization design of MSW devices for various applications

  5. Mathematical Modelling of Surfactant Self-assembly at Interfaces

    KAUST Repository

    Morgan, C. E.

    2015-01-01

    © 2015 Society for Industrial and Applied Mathematics. We present a mathematical model to describe the distribution of surfactant pairs in a multilayer structure beneath an adsorbed monolayer. A mesoscopic model comprising a set of ordinary differential equations that couple the rearrangement of surfactant within the multilayer to the surface adsorption kinetics is first derived. This model is then extended to the macroscopic scale by taking the continuum limit that exploits the typically large number of surfactant layers, which results in a novel third-order partial differential equation. The model is generalized to allow for the presence of two adsorbing boundaries, which results in an implicit free-boundary problem. The system predicts physically observed features in multilayer systems such as the initial formation of smaller lamellar structures and the typical number of layers that form in equilibrium.

  6. Editorial: Mathematical modelling of infectious diseases.

    Science.gov (United States)

    Fenton, Andy

    2016-06-01

    The field of disease ecology - the study of the spread and impact of parasites and pathogens within their host populations and communities - has a long history of using mathematical models. Dating back over 100 years, researchers have used mathematics to describe the spread of disease-causing agents, understand the relationship between host density and transmission and plan control strategies. The use of mathematical modelling in disease ecology exploded in the late 1970s and early 1980s through the work of Anderson and May (Anderson and May, 1978, 1981, 1992; May and Anderson, 1978), who developed the fundamental frameworks for studying microparasite (e.g. viruses, bacteria and protozoa) and macroparasite (e.g. helminth) dynamics, emphasizing the importance of understanding features such as the parasite's basic reproduction number (R 0) and critical community size that form the basis of disease ecology research to this day. Since the initial models of disease population dynamics, which primarily focused on human diseases, theoretical disease research has expanded hugely to encompass livestock and wildlife disease systems, and also to explore evolutionary questions such as the evolution of parasite virulence or drug resistance. More recently there have been efforts to broaden the field still further, to move beyond the standard 'one-host-one-parasite' paradigm of the original models, to incorporate many aspects of complexity of natural systems, including multiple potential host species and interactions among multiple parasite species. PMID:27027318

  7. Building Mathematical Models of Simple Harmonic and Damped Motion.

    Science.gov (United States)

    Edwards, Thomas

    1995-01-01

    By developing a sequence of mathematical models of harmonic motion, shows that mathematical models are not right or wrong, but instead are better or poorer representations of the problem situation. (MKR)

  8. Mathematical Modeling of an Automobile Damper

    Directory of Open Access Journals (Sweden)

    N. B. Kate, T. A. Jadhav

    2013-10-01

    Full Text Available - In an automotive industry, to reduce product development time and increase quality of product, it is essential to reduce the number of physical prototypes and rely more on precise & reliable design for the final design of vehicles. This paper presents a mathematical model for the damping force of the hydraulic shock absorber which is implemented to analyse the shock absorbers mounting brackets attached to the vehicle structure. Physical testing results indicate that the considered shock absorber’s mathematical model is reliable and can be used to calculate the durability target life of mounting brackets. Thus this presented methodology can be utilized as an effective way to reduce time and cost in design and development of automotive components.

  9. A mathematical model of the Mafia game

    OpenAIRE

    Migdał, Piotr

    2010-01-01

    Mafia (also called Werewolf) is a party game. The participants are divided into two competing groups: citizens and a mafia. The objective is to eliminate the opponent group. The game consists of two consecutive phases (day and night) and a certain set of actions (e.g. lynching during day). The mafia members have additional powers (knowing each other, killing during night) whereas the citizens are more numerous. We propose a simple mathematical model of the game, which is essentially a pure de...

  10. Mathematical modelling of Regional Fuel Cycle Centres

    International Nuclear Information System (INIS)

    The concept of Regional Fuel Cycle Centres (RFCC) has attracted wide interest as a possible approach towards meeting the nuclear fuel cycle needs of many countries. As part of its study of the RFCC concept, the International Atomic Energy Agency is developing mathematical models and associated computer codes to analyse the economics and logistics of various strategies for management of spent nuclear fuel and waste materials. (author)

  11. Topics in the mathematical modelling of nanotoxicology

    OpenAIRE

    Jones, Zofia

    2012-01-01

    Over the last ten years questions related to the safety of nanoparticles and their possible toxic effects have become well-established. The government's Health and Safety Laboratories (HSL) at Buxton are currently attempting to determine their possible toxicity in the workplace. It is their responsibility to establish what levels are exposure can be considered safe in the workplace. This project is a CASE studentship with HSL and aims to start developing mathematical models relating to nan...

  12. The Harmony of Physics, Mathematics, and Music: A discovery in mathematical music theory is found to apply in physics

    Science.gov (United States)

    Krantz, Richard; Douthett, Jack

    2009-10-01

    Although it is common practice to borrow tools from mathematics to apply to physics or music, it is unusual to use tools developed in music theory to mathematically describe physical phenomena. So called ``Maximally Even Set'' theory fits this unusual case. In this poster, we summarize, by example, the theory of Maximally Even (ME) sets and show how this formalism leads to the distribution of black and white keys on the piano keyboard. We then show how ME sets lead to a generalization of the well-known ``Cycle-of-Fifths'' in music theory. Subsequently, we describe ordering in one-dimensional spin-1/2 anti-ferromagnets using ME sets showing that this description leads to a fractal ``Devil's Staircase'' magnetic phase diagram. Finally, we examine an extension of ME sets, ``Iterated Maximally Even'' sets that describes chord structure in music.

  13. Examining epistemological beliefs in explaining mathematics teachers’ approaches in mathematical modelling

    OpenAIRE

    Özkan Hıdıroğlu, Yeliz; Hıdıroğlu, Çağlar Naci

    2016-01-01

    The aim of the study is to examine epistemological beliefs in explaining the mathematical modelling approaches of mathematics teachers. In the study, basically dominated by a qualitative approach, quantitative and qualitative data were gathered concurrently from 35 mathematics teachers who work in Ġzmir and after analysis process while interpreting the findings they were combined and compared. Qualitative data were gathered from written answer sheets of mathematics teachers on mat...

  14. Mathematical modelling of wood and briquettes torrefaction

    Energy Technology Data Exchange (ETDEWEB)

    Felfli, Felix Fonseca; Luengo, Carlos Alberto [Universidade Estadual de Campinas (UNICAMP), SP (Brazil). Inst. de Fisica Gleb Wataghin. Grupo Combustiveis Alternativos; Soler, Pedro Beaton [Universidad de Oriente, Santiago de Cuba (Cuba). Fac. de Ingenieria Mecanica. Centro de Estudios de Eficiencia Energetica; Rocha, Jose Dilcio [Universidade Estadual de Campinas (UNICAMP), SP (Brazil). Nucleo Interdisciplinar de Planejamento Energetico (NIPE)

    2004-07-01

    A mathematical model valid for the torrefaction of wood logs and biomass briquettes is presented. The model described both chemical and physical processes, which take place in a moist piece of wood heated at temperatures between 503 and 573 K. Calibration measurements of the temperature profile and mass loss, were performed on dry cylinders of wood samples during torrefaction in an inert atmosphere at 503, 533, and 553 K. The calculated data shows a good agreement with experiments. The model can be a useful tool to estimate projecting and operating parameters for torrefaction furnaces such as minimum time of torrefaction, energy consumption and the mass yield. (author)

  15. Basic Perforator Flap Hemodynamic Mathematical Model

    Science.gov (United States)

    Tao, Youlun; Ding, Maochao; Wang, Aiguo; Zhuang, Yuehong; Chang, Shi-Min; Mei, Jin; Hallock, Geoffrey G.

    2016-01-01

    Background: A mathematical model to help explain the hemodynamic characteristics of perforator flaps based on blood flow resistance systems within the flap will serve as a theoretical guide for the future study and clinical applications of these flaps. Methods: There are 3 major blood flow resistance network systems of a perforator flap. These were defined as the blood flow resistance of an anastomosis between artery and artery of adjacent perforasomes, between artery and vein within a perforasome, and then between vein and vein corresponding to the outflow of that perforasome. From this, a calculation could be made of the number of such blood flow resistance network systems that must be crossed for all perforasomes within a perforator flap to predict whether that arrangement would be viable. Results: The summation of blood flow resistance networks from each perforasome in a given perforator flap could predict which portions would likely survive. This mathematical model shows how this is directly dependent on the location of the vascular pedicle to the flap and whether supercharging or superdrainage maneuvers have been added. These configurations will give an estimate of the hemodynamic characteristics for the given flap design. Conclusions: This basic mathematical model can (1) conveniently determine the degree of difficulty for each perforasome within a perforator flap to survive; (2) semiquantitatively allow the calculation of basic hemodynamic parameters; and (3) allow the assessment of the pros and cons expected for each pattern of perforasomes encountered clinically based on predictable hemodynamic observations.

  16. Classification of mathematical models to compute useful in the treatment of irrigation district mexico 03

    OpenAIRE

    Gaona Flores, Héctor Enrique

    2010-01-01

    In this paper offers a comparative analysis and classification of mathematical models and the Saint-Venant ARMAX model, and determine which is more useful for the computation applied to control systems in the first section of the main irrigation canal in the hydraulic operation Irrigation District 03 Tula Hidalgo, Mexico (DR03), The aim of this work is to obtain a mathematical model previously assessed and analyzed with respect to other, applied to the same hydrological phenome...

  17. 1st International Conference on Industrial and Applied Mathematics of the Indian Subcontinent

    CERN Document Server

    Kočvara, Michal

    2002-01-01

    An important objective of the study of mathematics is to analyze and visualize phenomena of nature and real world problems for its proper understanding. Gradually, it is also becoming the language of modem financial instruments. To project some of these developments, the conference was planned under the joint auspices of the Indian Society of Industrial and Applied mathematics (ISlAM) and Guru Nanak Dev University (G. N. D. U. ), Amritsar, India. Dr. Pammy Manchanda, chairperson of Mathematics Department, G. N. D. U. , was appointed the organizing secretary and an organizing committee was constituted. The Conference was scheduled in World Mathematics Year 2000 but, due one reason or the other, it could be held during 22. -25. January 2001. How­ ever, keeping in view the suggestion of the International Mathematics union, we organized two symposia, Role of Mathematics in industrial development and vice-versa and How image of Mathematics can be improved in public. These two symposia aroused great interest among...

  18. Research in progress in applied mathematics, numerical analysis, fluid mechanics, and computer science

    Science.gov (United States)

    1994-01-01

    This report summarizes research conducted at the Institute for Computer Applications in Science and Engineering in applied mathematics, fluid mechanics, and computer science during the period October 1, 1993 through March 31, 1994. The major categories of the current ICASE research program are: (1) applied and numerical mathematics, including numerical analysis and algorithm development; (2) theoretical and computational research in fluid mechanics in selected areas of interest to LaRC, including acoustics and combustion; (3) experimental research in transition and turbulence and aerodynamics involving LaRC facilities and scientists; and (4) computer science.

  19. Mathematical models of breast and ovarian cancers.

    Science.gov (United States)

    Botesteanu, Dana-Adriana; Lipkowitz, Stanley; Lee, Jung-Min; Levy, Doron

    2016-07-01

    Women constitute the majority of the aging United States (US) population, and this has substantial implications on cancer population patterns and management practices. Breast cancer is the most common women's malignancy, while ovarian cancer is the most fatal gynecological malignancy in the US. In this review, we focus on these subsets of women's cancers, seen more commonly in postmenopausal and elderly women. In order to systematically investigate the complexity of cancer progression and response to treatment in breast and ovarian malignancies, we assert that integrated mathematical modeling frameworks viewed from a systems biology perspective are needed. Such integrated frameworks could offer innovative contributions to the clinical women's cancers community, as answers to clinical questions cannot always be reached with contemporary clinical and experimental tools. Here, we recapitulate clinically known data regarding the progression and treatment of the breast and ovarian cancers. We compare and contrast the two malignancies whenever possible in order to emphasize areas where substantial contributions could be made by clinically inspired and validated mathematical modeling. We show how current paradigms in the mathematical oncology community focusing on the two malignancies do not make comprehensive use of, nor substantially reflect existing clinical data, and we highlight the modeling areas in most critical need of clinical data integration. We emphasize that the primary goal of any mathematical study of women's cancers should be to address clinically relevant questions. WIREs Syst Biol Med 2016, 8:337-362. doi: 10.1002/wsbm.1343 For further resources related to this article, please visit the WIREs website. PMID:27259061

  20. Mathematical Modeling of Contact Resistance in Silicon Photovoltaic Cells

    KAUST Repository

    Black, J. P.

    2013-10-22

    In screen-printed silicon-crystalline solar cells, the contact resistance of a thin interfacial glass layer between the silicon and the silver electrode plays a limiting role for electron transport. We analyze a simple model for electron transport across this layer, based on the driftdiffusion equations. We utilize the size of the current/Debye length to conduct asymptotic techniques to simplify the model; we solve the model numerically to find that the effective contact resistance may be a monotonic increasing, monotonic decreasing, or nonmonotonic function of the electron flux, depending on the values of the physical parameters. © 2013 Society for Industrial and Applied Mathematics.

  1. Laser filamentation mathematical methods and models

    CERN Document Server

    Lorin, Emmanuel; Moloney, Jerome

    2016-01-01

    This book is focused on the nonlinear theoretical and mathematical problems associated with ultrafast intense laser pulse propagation in gases and in particular, in air. With the aim of understanding the physics of filamentation in gases, solids, the atmosphere, and even biological tissue, specialists in nonlinear optics and filamentation from both physics and mathematics attempt to rigorously derive and analyze relevant non-perturbative models. Modern laser technology allows the generation of ultrafast (few cycle) laser pulses, with intensities exceeding the internal electric field in atoms and molecules (E=5x109 V/cm or intensity I = 3.5 x 1016 Watts/cm2 ). The interaction of such pulses with atoms and molecules leads to new, highly nonlinear nonperturbative regimes, where new physical phenomena, such as High Harmonic Generation (HHG), occur, and from which the shortest (attosecond - the natural time scale of the electron) pulses have been created. One of the major experimental discoveries in this nonlinear...

  2. Mathematical modelling of fractional order circuits

    CERN Document Server

    Moreles, Miguel Angel

    2016-01-01

    In this work a classical derivation of fractional order circuits models is presented. Generalized constitutive equations in terms of fractional Riemann-Liouville derivatives are introduced in the Maxwell's equations. Next the Kirchhoff voltage law is applied in a RCL circuit configuration. A fractional differential equation model is obtained with Caputo derivatives. Thus standard initial conditions apply.

  3. Mathematical modeling and visualization of functional neuroimages

    DEFF Research Database (Denmark)

    Rasmussen, Peter Mondrup

    This dissertation presents research results regarding mathematical modeling in the context of the analysis of functional neuroimages. Specifically, the research focuses on pattern-based analysis methods that recently have become popular analysis tools within the neuroimaging community. Such methods...... be carefully selected, so that the model and its visualization enhance our ability to interpret brain function. The second part concerns interpretation of nonlinear models and procedures for extraction of ‘brain maps’ from nonlinear kernel models. We assess the performance of the sensitivity map as...... means for extracting a global summary map from a trained model. Such summary maps provides the investigator with an overview of brain locations of importance to the model’s predictions. The sensitivity map proves as a versatile technique for model visualization. Furthermore, we perform a preliminary...

  4. Mathematical modeling and visualization of functional neuroimages

    DEFF Research Database (Denmark)

    Rasmussen, Peter Mondrup

    This dissertation presents research results regarding mathematical modeling in the context of the analysis of functional neuroimages. Specifically, the research focuses on pattern-based analysis methods that recently have become popular within the neuroimaging community. Such methods attempt to...... parameters must be carefully selected, so that the model and its visualization enhance our ability to interpret the brain. The second part concerns interpretation of nonlinear models and procedures for extraction of ‘brain maps’ from nonlinear kernel models. We assess the performance of the sensitivity map...... as means for extracting a global summary map from a trained model. Such summary maps provides the investigator with an overview of brain locations of importance to the model’s predictions. The sensitivity map proves as a versatile technique for model visualization. Furthermore, we perform a...

  5. Improved mathematical model for uranium metabolism

    International Nuclear Information System (INIS)

    An improved mathematical model for uranium metabolism in the primate was developed. Animal and human literature data were the basis for building the model consisting of six compartments: plasma, red cells, short-term bone component, long-term bone component, kidney, and urine. In this model, there is a feedback from the red cells and bone compartments to plasma, and the model is applicable to uranium only from the time it is absorbed into blood. An analytical mathematical solution is proposed that will permit estimation of the distribution of uranium among the various compartments. To verify the model and determine the required time constants, single non-toxic doses of uranium were administered to baboons and plasma, red cells, and urine samples subsequently analyzed. Samples of human skeleton were also measured for normal levels of uranium. These measurements will be used to test whether the model accurately predicts long-term bond concentration. Uranium exists in the mammalian body as the hexavalent uranyl ion which tends to complex with plasma proteins or bicarbonates. Animal experiments indicate that after an iv injection, uranium leaves the bloodstream very rapidly; at 40 min after injection, 50% has been excreted in the urine, with little uranium in tissue other than kidney and bone. The distribution of uranium in humans is similar to that in animals. There was no significant concentration of uranium in any of 21 human tissues and organs, apart from bone and kidney, examined at autopsy

  6. A mathematical model of 'Pride and Prejudice'.

    Science.gov (United States)

    Rinaldi, Sergio; Rossa, Fabio Della; Landi, Pietro

    2014-04-01

    A mathematical model is proposed for interpreting the love story between Elizabeth and Darcy portrayed by Jane Austen in the popular novel Pride and Prejudice. The analysis shows that the story is characterized by a sudden explosion of sentimental involvements, revealed by the existence of a saddle-node bifurcation in the model. The paper is interesting not only because it deals for the first time with catastrophic bifurcations in romantic relation-ships, but also because it enriches the list of examples in which love stories are described through ordinary differential equations. PMID:24560011

  7. Mathematical Model of the Processoof Pearlite Austenitization

    Directory of Open Access Journals (Sweden)

    Olejarczyk-Wożeńska I.

    2014-10-01

    Full Text Available The paper presents a mathematical model of the pearlite - austenite transformation. The description of this process uses the diffusion mechanism which takes place between the plates of ferrite and cementite (pearlite as well as austenite. The process of austenite growth was described by means of a system of differential equations solved with the use of the finite difference method. The developed model was implemented in the environment of Delphi 4. The proprietary program allows for the calculation of the rate and time of the transformation at an assumed temperature as well as to determine the TTT diagram for the assigned temperature range.

  8. Mathematical Modeling of Multienzyme Biosensor System

    Directory of Open Access Journals (Sweden)

    SP. Ganesan

    2014-01-01

    Full Text Available A mathematical model of hybrid inhibitor biosensor system is discussed. This model consists of five nonlinear partial differential equations for bisubstrate sensitive amperometric system. Simple and closed form of analytical expressions for concentration of glucose-6-phosphate (substrate, potassium dihydrogen phosphate (inhibitor, oxygen (co-substrate, glucose (product 1, and hydrogen peroxide (product 3 is obtained in terms of rate constant using modified Adomian decomposition method (MADM. In this study, behavior of biokinetic parameters is analyzed using this theoretical result. The obtained analytical results (concentrations are compared with the numerical results and are found to be in satisfactory agreement.

  9. Student School-Level Math Knowledge Influence on Applied Mathematics Study Courses

    Directory of Open Access Journals (Sweden)

    Rima Kriauzienė

    2013-08-01

    Full Text Available Purpose—to find out the influence of student school-level math knowledge on courses of applied mathematics studies: what is the importance of having a math maturity exam for students, an estimate of social science students’ motivation to learn math, and attendance of seminars. Students who did take the state exam attended more seminars than the students who did not take math exam, and vice versa. Design/methodology/approach—this work describes research which involved persistent MRU Public Administration degree program second-year students. Doing statistical analysis of the data will be a link between school-level mathematics knowledge and attendance activity in seminars and motivation to learn mathematics. Findings—the research is expected to establish a connection between school-level mathematics knowledge and student motivation to learn mathematics. It was found that there is no correlation between student opinions about school mathematics courses and result of their first test. Determine relationship between attendance of exercises and public examinations. Between the stored type of exam and test results are dependent. Determine relationship between exercise attendance and test results, as shown by the calculated correlation coefficient Based on the results, it’s recommended to increase the number of exercises. A more refined analysis of the data is subject to further investigation. Research limitations/implications—this method is just one of the possible ways of application. Practical implications—that kind of research and its methodology can be applied not only to the subject of applied mathematics studies, but also to other natural or social sciences. Originality/Value—empirical experiment data can be used in other studies of Educology nature analysis.

  10. Student School-Level Math Knowledge Influence on Applied Mathematics Study Courses

    Directory of Open Access Journals (Sweden)

    Tadas Laukevičius

    2011-12-01

    Full Text Available Purpose—to find out the influence of student school-level math knowledge on courses of applied mathematics studies: what is the importance of having a math maturity exam for students, an estimate of social science students’ motivation to learn math, and attendance of seminars. Students who did take the state exam attended more seminars than the students who did not take math exam, and vice versa.Design/methodology/approach—this work describes research which involved persistent MRU Public Administration degree program second-year students. Doing statistical analysis of the data will be a link between school-level mathematics knowledge and attendance activity in seminars and motivation to learn mathematics.Findings—the research is expected to establish a connection between school-level mathematics knowledge and student motivation to learn mathematics.It was found that there is no correlation between student opinions about school mathematics courses and result of their first test.Determine relationship between attendance of exercises and public examinations.Between the stored type of exam and test results are dependent.Determine relationship between exercise attendance and test results, as shown by the calculated correlation coefficientBased on the results, it’s recommended to increase the number of exercises. A more refined analysis of the data is subject to further investigation.Research limitations/implications—this method is just one of the possible ways of application.Practical implications—that kind of research and its methodology can be applied not only to the subject of applied mathematics studies, but also to other natural or social sciences.Originality/Value—empirical experiment data can be used in other studies of Educology nature analysis.

  11. A novel mathematical model for controllable near-field electrospinning

    International Nuclear Information System (INIS)

    Near-field electrospinning (NFES) had better controllability than conventional electrospinning. However, due to the lack of guidance of theoretical model, precise deposition of micro/nano fibers could only accomplished by experience. To analyze the behavior of charged jet in NFES using mathematical model, the momentum balance equation was simplified and a new expression between jet cross-sectional radius and axial position was derived. Using this new expression and mass conservation equation, expressions for jet cross-sectional radius and velocity were derived in terms of axial position and initial jet acceleration in the form of exponential functions. Based on Slender-body theory and Giesekus model, a quadratic equation for initial jet acceleration was acquired. With the proposed model, it was able to accurately predict the diameter and velocity of polymer fibers in NFES, and mathematical analysis rather than experimental methods could be applied to study the effects of the process parameters in NFES. Moreover, the movement velocity of the collector stage can be regulated by mathematical model rather than experience. Therefore, the model proposed in this paper had important guiding significance to precise deposition of polymer fibers

  12. Mathematically modeling the biological properties of gliomas: A review.

    Science.gov (United States)

    Martirosyan, Nikolay L; Rutter, Erica M; Ramey, Wyatt L; Kostelich, Eric J; Kuang, Yang; Preul, Mark C

    2015-08-01

    Although mathematical modeling is a mainstay for industrial and many scientific studies, such approaches have found little application in neurosurgery. However, the fusion of biological studies and applied mathematics is rapidly changing this environment, especially for cancer research. This review focuses on the exciting potential for mathematical models to provide new avenues for studying the growth of gliomas to practical use. In vitro studies are often used to simulate the effects of specific model parameters that would be difficult in a larger-scale model. With regard to glioma invasive properties, metabolic and vascular attributes can be modeled to gain insight into the infiltrative mechanisms that are attributable to the tumor's aggressive behavior. Morphologically, gliomas show different characteristics that may allow their growth stage and invasive properties to be predicted, and models continue to offer insight about how these attributes are manifested visually. Recent studies have attempted to predict the efficacy of certain treatment modalities and exactly how they should be administered relative to each other. Imaging is also a crucial component in simulating clinically relevant tumors and their influence on the surrounding anatomical structures in the brain. PMID:25974347

  13. Mathematics of tsunami: modelling and identification

    Science.gov (United States)

    Krivorotko, Olga; Kabanikhin, Sergey

    2015-04-01

    Tsunami (long waves in the deep water) motion caused by underwater earthquakes is described by shallow water equations ( { ηtt = div (gH (x,y)-gradη), (x,y) ∈ Ω, t ∈ (0,T ); η|t=0 = q(x,y), ηt|t=0 = 0, (x,y) ∈ Ω. ( (1) Bottom relief H(x,y) characteristics and the initial perturbation data (a tsunami source q(x,y)) are required for the direct simulation of tsunamis. The main difficulty problem of tsunami modelling is a very big size of the computational domain (Ω = 500 × 1000 kilometres in space and about one hour computational time T for one meter of initial perturbation amplitude max|q|). The calculation of the function η(x,y,t) of three variables in Ω × (0,T) requires large computing resources. We construct a new algorithm to solve numerically the problem of determining the moving tsunami wave height S(x,y) which is based on kinematic-type approach and analytical representation of fundamental solution. Proposed algorithm of determining the function of two variables S(x,y) reduces the number of operations in 1.5 times than solving problem (1). If all functions does not depend on the variable y (one dimensional case), then the moving tsunami wave height satisfies of the well-known Airy-Green formula: S(x) = S(0)° --- 4H (0)/H (x). The problem of identification parameters of a tsunami source using additional measurements of a passing wave is called inverse tsunami problem. We investigate two different inverse problems of determining a tsunami source q(x,y) using two different additional data: Deep-ocean Assessment and Reporting of Tsunamis (DART) measurements and satellite altimeters wave-form images. These problems are severely ill-posed. The main idea consists of combination of two measured data to reconstruct the source parameters. We apply regularization techniques to control the degree of ill-posedness such as Fourier expansion, truncated singular value decomposition, numerical regularization. The algorithm of selecting the truncated number of

  14. Mathematical Modeling and Dimension Reduction in Dynamical Systems

    DEFF Research Database (Denmark)

    Elmegård, Michael

    Processes that change in time are in mathematics typically described by differential equations. These may be applied to model everything from weather forecasting, brain patterns, reaction kinetics, water waves, finance, social dynamics, structural dynamics and electrodynamics to name only a few....... These systems are generically nonlinear and the studies of them often become enormously complex. The framework in which such systems are best understood is via the theory of dynamical systems, where the critical behavior is systematically analyzed by performing bifurcation theory. In that context the current...... thesis is attacking two problems. The first is concerned with the mathematical modelling and analysis of an experiment of a vibro-impacting beam. This type of dynamical system has received much attention in the recent years and they occur frequently in mechanical applications, where they induce noise...

  15. Assessment of Primary 5 Students' Mathematical Modelling Competencies

    Science.gov (United States)

    Chan, Chun Ming Eric; Ng, Kit Ee Dawn; Widjaja, Wanty; Seto, Cynthia

    2012-01-01

    Mathematical modelling is increasingly becoming part of an instructional approach deemed to develop students with competencies to function as 21st century learners and problem solvers. As mathematical modelling is a relatively new domain in the Singapore primary school mathematics curriculum, many teachers may not be aware of the learning outcomes…

  16. Fundamentalization of knowledge system on applied mathematics in teaching students of inverse problems for differential equations

    Science.gov (United States)

    Bidaibekov, Yessen Y.; Kornilov, Viktor S.; Kamalova, Guldina B.; Akimzhan, Nagima Sh.

    2015-09-01

    Methodical aspects of teaching students of higher educational institutions of natural science orientations of training of inverse problems for differential equations are considered in the article. A fact that an academic knowledge and competence in the field of applied mathematics is formed during such training is taken into consideration.

  17. Applying Mathematics to Physics and Engineering: Symbolic Forms of the Integral

    Science.gov (United States)

    Jones, Steven Robert

    2010-01-01

    A perception exists that physics and engineering students experience difficulty in applying mathematics to physics and engineering coursework. While some curricular projects aim to improve calculus instruction for these students, it is important to specify where calculus curriculum and instructional practice could be enhanced by examining the…

  18. Advanced Mathematical Model to Describe the Production of Biodiesel Process

    Directory of Open Access Journals (Sweden)

    Hikmat S. Al-Salim

    2009-12-01

    Full Text Available Advanced mathematical model was used to capture the batch reactor characteristics of reacting compounds. The model was applied to batch reactor for the production of bio-diesel from palm and kapok oils. Results of the model were compared with experimental data in terms of conversion of transesterification reaction for the production of bio-diesel under unsteady state. A good agreement was obtained between our model predictions and the experimental data. Both experimental and modeling results showed that the conversion of triglycerides to methyl ester was affected by the process conditions. The transesterification process with temperature of about 70 oC, and methanol ratio to the triglyceride of about 5 times its stoichiometry, and the NAOH catalyst of wt 0.4%, appear to be acceptable process conditions for bio diesel process production from palm oil and kapok oil. The model can be applied for endothermic batch process. © 2009 BCREC UNDIP. All rights reserved[Received: 12 August 2009, Revised: 15 October 2009; Accepted: 18 October 2009][How to Cite: A.S. Ibrehem, H. S. Al-Salim. (2009. Advanced Mathematical Model to Describe the Production of Biodiesel Process. Bulletin of Chemical Reaction Engineering and Catalysis, 4(2: 37-42. doi:10.9767/bcrec.4.2.28.37-42][How to Link/DOI: http://dx.doi.org/10.9767/bcrec.4.2.28.37-42

  19. Mathematical Modeling of Extinction of Inhomogeneous Populations.

    Science.gov (United States)

    Karev, G P; Kareva, I

    2016-04-01

    Mathematical models of population extinction have a variety of applications in such areas as ecology, paleontology and conservation biology. Here we propose and investigate two types of sub-exponential models of population extinction. Unlike the more traditional exponential models, the life duration of sub-exponential models is finite. In the first model, the population is assumed to be composed of clones that are independent from each other. In the second model, we assume that the size of the population as a whole decreases according to the sub-exponential equation. We then investigate the "unobserved heterogeneity," i.e., the underlying inhomogeneous population model, and calculate the distribution of frequencies of clones for both models. We show that the dynamics of frequencies in the first model is governed by the principle of minimum of Tsallis information loss. In the second model, the notion of "internal population time" is proposed; with respect to the internal time, the dynamics of frequencies is governed by the principle of minimum of Shannon information loss. The results of this analysis show that the principle of minimum of information loss is the underlying law for the evolution of a broad class of models of population extinction. Finally, we propose a possible application of this modeling framework to mechanisms underlying time perception. PMID:27090117

  20. Applied Mathematics at the U.S. Department of Energy: Past, Present and a View to the Future

    Energy Technology Data Exchange (ETDEWEB)

    Brown, D L; Bell, J; Estep, D; Gropp, W; Hendrickson, B; Keller-McNulty, S; Keyes, D; Oden, J T; Petzold, L; Wright, M

    2008-02-15

    Over the past half-century, the Applied Mathematics program in the U.S. Department of Energy's Office of Advanced Scientific Computing Research has made significant, enduring advances in applied mathematics that have been essential enablers of modern computational science. Motivated by the scientific needs of the Department of Energy and its predecessors, advances have been made in mathematical modeling, numerical analysis of differential equations, optimization theory, mesh generation for complex geometries, adaptive algorithms and other important mathematical areas. High-performance mathematical software libraries developed through this program have contributed as much or more to the performance of modern scientific computer codes as the high-performance computers on which these codes run. The combination of these mathematical advances and the resulting software has enabled high-performance computers to be used for scientific discovery in ways that could only be imagined at the program's inception. Our nation, and indeed our world, face great challenges that must be addressed in coming years, and many of these will be addressed through the development of scientific understanding and engineering advances yet to be discovered. The U.S. Department of Energy (DOE) will play an essential role in providing science-based solutions to many of these problems, particularly those that involve the energy, environmental and national security needs of the country. As the capability of high-performance computers continues to increase, the types of questions that can be answered by applying this huge computational power become more varied and more complex. It will be essential that we find new ways to develop and apply the mathematics necessary to enable the new scientific and engineering discoveries that are needed. In August 2007, a panel of experts in applied, computational and statistical mathematics met for a day and a half in Berkeley, California to understand

  1. Solar Panel Mathematical Modeling Using Simulink

    Directory of Open Access Journals (Sweden)

    Chandani Sharma

    2014-05-01

    Full Text Available For decades, electricity is a key driver of socio-economy development. Nowadays, in the context of competition there is a direct relationship between electricity generation and sustainable development of the country. This paper presents distinct use of a Photovoltaic array offering great potential as source of electricity. The simulation uses One-diode equivalent circuit in order to investigate I-V and P-V characteristics. The GUI model is designed with Simulink block libraries. The goals of proposed model are to perform a systematic analysis, modeling and evaluation of the key subsystems for obtaining Maximum Power Point of a solar cell. Effect of increasing number of cells is described at Standard Test Conditions by mathematical modeling of equations. It is desirable to achieve maximum power output at a minimum cost under various operating conditions. Index Terms—

  2. Mathematical model of the Amazon Stirling engine

    Energy Technology Data Exchange (ETDEWEB)

    Vidal Medina, Juan Ricardo [Universidad Autonoma de Occidente (Colombia)], e-mail: jrvidal@uao.edu.co; Cobasa, Vladimir Melian; Silva, Electo [Universidade Federal de Itajuba, MG (Brazil)], e-mail: vlad@unifei.edu.br

    2010-07-01

    The Excellency Group in Thermoelectric and Distributed Generation (NEST, for its acronym in Portuguese) at the Federal University of Itajuba, has designed a Stirling engine prototype to provide electricity to isolated regions of Brazil. The engine was designed to operate with residual biomass from timber process. This paper presents mathematical models of heat exchangers (hot, cold and regenerator) integrated into second order adiabatic models. The general model takes into account the pressure drop losses, hysteresis and internal losses. The results of power output, engine efficiency, optimal velocity of the exhaust gases and the influence of dead volume in engine efficiency are presented in this paper. The objective of this modeling is to propose improvements to the manufactured engine design. (author)

  3. A Mathematical Theory of the Gauged Linear Sigma Model

    CERN Document Server

    Fan, Huijun; Ruan, Yongbin

    2015-01-01

    We construct a rigorous mathematical theory of Witten's Gauged Linear Sigma Model (GLSM). Our theory applies to a wide range of examples, including many cases with non-Abelian gauge group. Both the Gromov-Witten theory of a Calabi-Yau complete intersection X and the Landau-Ginzburg dual (FJRW-theory) of X can be expressed as gauged linear sigma models. Furthermore, the Landau-Ginzburg/Calabi-Yau correspondence can be interpreted as a variation of the moment map or a deformation of GIT in the GLSM. This paper focuses primarily on the algebraic theory, while a companion article will treat the analytic theory.

  4. Mathematical Modeling of Diaphragm Pneumatic Motors

    Directory of Open Access Journals (Sweden)

    Fojtášek Kamil

    2014-03-01

    Full Text Available Pneumatic diaphragm motors belong to the group of motors with elastic working parts. This part is usually made of rubber with a textile insert and it is deformed under the pressure of a compressed air or from the external mass load. This is resulting in a final working effect. In this type of motors are in contact two different elastic environments – the compressed air and the esaltic part. These motors are mainly the low-stroke and working with relatively large forces. This paper presents mathematical modeling static properties of diaphragm motors.

  5. A mathematical model of aerosol holding chambers

    DEFF Research Database (Denmark)

    Zak, M; Madsen, J; Berg, E;

    1999-01-01

    A mathematical model of aerosol delivery from holding chambers (spacers) was developed incorporating tidal volume (VT), chamber volume (Vch), apparatus dead space (VD), effect of valve insufficiency and other leaks, loss of aerosol by immediate impact on the chamber wall, and fallout of aerosol......-mentioned factors, initial loss of aerosol by impact on the chamber wall is most important for the efficiency of a spacer. With a VT of 195 mL, the AeroChamber and Babyhaler were emptied in two breaths, the NebuChamber in four breaths, and the Nebuhaler in six breaths. Insufficiencies of the expiratory valves were...

  6. Mathematical and Numerical Analyses of Peridynamics for Multiscale Materials Modeling

    Energy Technology Data Exchange (ETDEWEB)

    Du, Qiang [Pennsylvania State Univ., State College, PA (United States)

    2014-11-12

    generation atomistic-to-continuum multiscale simulations. In addition, a rigorous studyof nite element discretizations of peridynamics will be considered. Using the fact that peridynamics is spatially derivative free, we will also characterize the space of admissible peridynamic solutions and carry out systematic analyses of the models, in particular rigorously showing how peridynamics encompasses fracture and other failure phenomena. Additional aspects of the project include the mathematical and numerical analysis of peridynamics applied to stochastic peridynamics models. In summary, the project will make feasible mathematically consistent multiscale models for the analysis and design of advanced materials.

  7. 3rd International Conference on Computer Science, Applied Mathematics and Applications

    CERN Document Server

    Nguyen, Ngoc; Do, Tien

    2015-01-01

    This volume contains the extended versions of papers presented at the 3rd International Conference on Computer Science, Applied Mathematics and Applications (ICCSAMA 2015) held on 11-13 May, 2015 in Metz, France. The book contains 5 parts: 1. Mathematical programming and optimization: theory, methods and software, Operational research and decision making, Machine learning, data security, and bioinformatics, Knowledge information system, Software engineering. All chapters in the book discuss theoretical and algorithmic as well as practical issues connected with computation methods & optimization methods for knowledge engineering and machine learning techniques.  

  8. A MATHEMATICAL MODEL OF RESERVOIR SEDIMENTATION

    Institute of Scientific and Technical Information of China (English)

    HUANG Jinchi

    2001-01-01

    Reliable quantitative estimation of bed aggradation or degradation is important for river-training and water management projects. With the development of water resources, sediment problems associated with a dam are becoming more severe. This paper describes some special problems in mathematical model for calculation of degradation and aggradation in a reservoir. The main efforts of this study are on the treatment of some physical processes of fine sediment transport (<0.05 mm). Problems in a reservoir are obviously different from a natural stream, such as the turbid current flow, orifice sediment flushing;and the initiation and consolidation of cohesive sediment deposition. The case of Liujiaxia Reservoir,which is located in the upper reaches of the Yellow River, is employed to verify the model. The results show that the model is applicable in the evaluation of an engineering planing with plenty of fine sediment movement.

  9. Mathematical modeling of the Phoenix Rising pathway.

    Directory of Open Access Journals (Sweden)

    Chad Liu

    2014-02-01

    Full Text Available Apoptosis is a tightly controlled process in mammalian cells. It is important for embryogenesis, tissue homoeostasis, and cancer treatment. Apoptosis not only induces cell death, but also leads to the release of signals that promote rapid proliferation of surrounding cells through the Phoenix Rising (PR pathway. To quantitatively understand the kinetics of interactions of different molecules in this pathway, we developed a mathematical model to simulate the effects of various changes in the PR pathway on the secretion of prostaglandin E2 (PGE2, a key factor for promoting cell proliferation. These changes include activation of caspase 3 (C3, caspase 7 (C7, and nuclear factor κB (NFκB. In addition, we simulated the effects of cyclooxygenase-2 (COX2 inhibition and C3 knockout on the level of secreted PGE2. The model predictions on PGE2 in MEF and 4T1 cells at 48 hours after 10-Gray radiation were quantitatively consistent with the experimental data in the literature. Compared to C7, the model predicted that C3 activation was more critical for PGE2 production. The model also predicted that PGE2 production could be significantly reduced when COX2 expression was blocked via either NFκB inactivation or treatment of cells with exogenous COX2 inhibitors, which led to a decrease in the rate of conversion from arachidonic acid to prostaglandin H2 in the PR pathway. In conclusion, the mathematical model developed in this study yielded new insights into the process of tissue regrowth stimulated by signals from apoptotic cells. In future studies, the model can be used for experimental data analysis and assisting development of novel strategies/drugs for improving cancer treatment or normal tissue regeneration.

  10. Mathematical Modeling of Hybrid Electrical Engineering Systems

    Directory of Open Access Journals (Sweden)

    A. A. Lobaty

    2016-01-01

    Full Text Available A large class of systems that have found application in various industries and households, electrified transportation facilities and energy sector has been classified as electrical engineering systems. Their characteristic feature is a combination of continuous and discontinuous modes of operation, which is reflected in the appearance of a relatively new term “hybrid systems”. A wide class of hybrid systems is pulsed DC converters operating in a pulse width modulation, which are non-linear systems with variable structure. Using various methods for linearization it is possible to obtain linear mathematical models that rather accurately simulate behavior of such systems. However, the presence in the mathematical models of exponential nonlinearities creates considerable difficulties in the implementation of digital hardware. The solution can be found while using an approximation of exponential functions by polynomials of the first order, that, however, violates the rigor accordance of the analytical model with characteristics of a real object. There are two practical approaches to synthesize algorithms for control of hybrid systems. The first approach is based on the representation of the whole system by a discrete model which is described by difference equations that makes it possible to synthesize discrete algorithms. The second approach is based on description of the system by differential equations. The equations describe synthesis of continuous algorithms and their further implementation in a digital computer included in the control loop system. The paper considers modeling of a hybrid electrical engineering system using differential equations. Neglecting the pulse duration, it has been proposed to describe behavior of vector components in phase coordinates of the hybrid system by stochastic differential equations containing generally non-linear differentiable random functions. A stochastic vector-matrix equation describing dynamics of the

  11. Asymptotic properties of mathematical models of excitability

    OpenAIRE

    Biktasheva, I. V.; Simitev, R. D.; Suckley, R.; Biktashev, V. N.

    2005-01-01

    We analyse small parameters in selected models of biological excitability, including Hodgkin-Huxley (1952) model of nerve axon, Noble (1962) model of heart Purkinje fibres, and Courtemanche et al. (1998) model of human atrial cells. Some of the small parameters are responsible for differences in the characteristic timescales of dynamic variables, as in the traditional singular perturbation approaches. Others appear in a way which makes the standard approaches inapplicable. We apply this analy...

  12. Mathematical model of seed germination process

    International Nuclear Information System (INIS)

    An analytical model of seed germination process was described. The model based on proposed working hypothesis leads - by analogy - to a law corresponding with Verhulst-Pearl's law, known from the theory of population kinetics. The model was applied to describe the germination kinetics of tomato seeds, Promyk field cultivar, biostimulated by laser treatment. Close agreement of experimental and model data was obtained

  13. Preparing Secondary Mathematics Teachers: A Focus on Modeling in Algebra

    Science.gov (United States)

    Jung, Hyunyi; Mintos, Alexia; Newton, Jill

    2015-01-01

    This study addressed the opportunities to learn (OTL) modeling in algebra provided to secondary mathematics pre-service teachers (PSTs). To investigate these OTL, we interviewed five instructors of required mathematics and mathematics education courses that had the potential to include opportunities for PSTs to learn algebra at three universities.…

  14. Mathematical Simulating Model of Phased-Array Antenna in Multifunction Array Radar

    Institute of Scientific and Technical Information of China (English)

    1999-01-01

    A mathematical simulating model of phased-array antenna in multifunction array radar has been approached in this paper, including the mathematical simulating model of plane phased-array pattern, the mathematical simulating model of directionality factor, the mathematical simulating model of array factor, the mathematical simulating model of array element factor and the mathematical simulating model of beam steering.

  15. Qualitative mathematics for the social sciences mathematical models for research on cultural dynamics

    CERN Document Server

    Rudolph, Lee

    2012-01-01

    In this book Lee Rudolph brings together international contributors who combine psychological and mathematical perspectives to analyse how qualitative mathematics can be used to create models of social and psychological processes. Bridging the gap between the fields with an imaginative and stimulating collection of contributed chapters, the volume updates the current research on the subject, which until now has been rather limited, focussing largely on the use of statistics. Qualitative Mathematics for the Social Sciences contains a variety of useful illustrative figures, in

  16. Distributed Mathematical Model Simulation on a Parallel Architecture

    OpenAIRE

    Kvasnica, Peter; Kvasnica, Igor

    2012-01-01

    The aim of this article is to discuss the design of distributed mathematical models and suitable parallel architecture of computers. The paper summarises the author’s experience with mathematical modelling of decomposed information systems of a simulator. Conclusions are based on the theory of the design of the computer control systems. The author describes computers that create a distributed computer system of a flight simulator. Modelling of a time precision of mathematical model of the spe...

  17. Computational physics and applied mathematics capability review June 8-10, 2010

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Stephen R [Los Alamos National Laboratory

    2010-01-01

    Los Alamos National Laboratory will review its Computational Physics and Applied Mathematics (CPAM) capabilities in 2010. The goals of capability reviews are to assess the quality of science, technology, and engineering (STE) performed by the capability, evaluate the integration of this capability across the Laboratory and within the scientific community, examine the relevance of this capability to the Laboratory's programs, and provide advice on the current and future directions of this capability. This is the first such review for CPAM, which has a long and unique history at the Laboratory, starting from the inception of the Laboratory in 1943. The CPAM capability covers an extremely broad technical area at Los Alamos, encompassing a wide array of disciplines, research topics, and organizations. A vast array of technical disciplines and activities are included in this capability, from general numerical modeling, to coupled multi-physics simulations, to detailed domain science activities in mathematics, methods, and algorithms. The CPAM capability involves over 12 different technical divisions and a majority of our programmatic and scientific activities. To make this large scope tractable, the CPAM capability is broken into the following six technical 'themes.' These themes represent technical slices through the CPAM capability and collect critical core competencies of the Laboratory, each of which contributes to the capability (and each of which is divided into multiple additional elements in the detailed descriptions of the themes in subsequent sections), as follows. Theme 1: Computational Fluid Dynamics - This theme speaks to the vast array of scientific capabilities for the simulation of fluids under shocks, low-speed flow, and turbulent conditions - which are key, historical, and fundamental strengths of the Laboratory. Theme 2: Partial Differential Equations - The technical scope of this theme is the applied mathematics and numerical solution

  18. Models for harnessing the Internet in mathematics education

    OpenAIRE

    Kissane, Barry

    2012-01-01

    In recent years, the Internet has increasingly been used to provide significant resources for student to learn mathematics and to learn about mathematics, as well as significant resources for teachers to support these. Effective access to and use of these has been hampered in practice by limited facilities in schools and the limited experience of many mathematics teachers with the Internet for mathematical purposes. This paper offers models for understanding the effective use of Internet reso...

  19. Laser interaction with biological material mathematical modeling

    CERN Document Server

    Kulikov, Kirill

    2014-01-01

    This book covers the principles of laser interaction with biological cells and tissues of varying degrees of organization. The problems of biomedical diagnostics are considered. Scattering of laser irradiation of blood cells is modeled for biological structures (dermis, epidermis, vascular plexus). An analytic theory is provided which is based on solving the wave equation for the electromagnetic field. It allows the accurate analysis of interference effects arising from the partial superposition of scattered waves. Treated topics of mathematical modeling are: optical characterization of biological tissue with large-scale and small-scale inhomogeneities in the layers, heating blood vessel under laser irradiation incident on the outer surface of the skin and thermo-chemical denaturation of biological structures at the example of human skin.

  20. Mathematical modeling of a thermovoltaic cell

    Science.gov (United States)

    White, Ralph E.; Kawanami, Makoto

    1992-01-01

    A new type of battery named 'Vaporvolt' cell is in the early stage of its development. A mathematical model of a CuO/Cu 'Vaporvolt' cell is presented that can be used to predict the potential and the transport behavior of the cell during discharge. A sensitivity analysis of the various transport and electrokinetic parameters indicates which parameters have the most influence on the predicted energy and power density of the 'Vaporvolt' cell. This information can be used to decide which parameters should be optimized or determined more accurately through further modeling or experimental studies. The optimal thicknesses of electrodes and separator, the concentration of the electrolyte, and the current density are determined by maximizing the power density. These parameter sensitivities and optimal design parameter values will help in the development of a better CuO/Cu 'Vaporvolt' cell.

  1. A mathematical model of aerosol holding chambers

    DEFF Research Database (Denmark)

    Zak, M; Madsen, J; Berg, E;

    1999-01-01

    A mathematical model of aerosol delivery from holding chambers (spacers) was developed incorporating tidal volume (VT), chamber volume (Vch), apparatus dead space (VD), effect of valve insufficiency and other leaks, loss of aerosol by immediate impact on the chamber wall, and fallout of aerosol...... in the chamber with time. Four different spacers were connected via filters to a mechanical lung model, and aerosol delivery during "breathing" was determined from drug recovery from the filters. The formula correctly predicted the delivery of budesonide aerosol from the AeroChamber (Trudell Medical, London......-mentioned factors, initial loss of aerosol by impact on the chamber wall is most important for the efficiency of a spacer. With a VT of 195 mL, the AeroChamber and Babyhaler were emptied in two breaths, the NebuChamber in four breaths, and the Nebuhaler in six breaths. Insufficiencies of the expiratory valves were...

  2. Mathematical models for therapeutic approaches to control HIV disease transmission

    CERN Document Server

    Roy, Priti Kumar

    2015-01-01

    The book discusses different therapeutic approaches based on different mathematical models to control the HIV/AIDS disease transmission. It uses clinical data, collected from different cited sources, to formulate the deterministic as well as stochastic mathematical models of HIV/AIDS. It provides complementary approaches, from deterministic and stochastic points of view, to optimal control strategy with perfect drug adherence and also tries to seek viewpoints of the same issue from different angles with various mathematical models to computer simulations. The book presents essential methods and techniques for students who are interested in designing epidemiological models on HIV/AIDS. It also guides research scientists, working in the periphery of mathematical modeling, and helps them to explore a hypothetical method by examining its consequences in the form of a mathematical modelling and making some scientific predictions. The model equations, mathematical analysis and several numerical simulations that are...

  3. A Mathematical Model for Cisplatin Cellular Pharmacodynamics

    Directory of Open Access Journals (Sweden)

    Ardith W. El-Kareh

    2003-03-01

    Full Text Available A simple theoretical model for the cellular pharmacodynamics of cisplatin is presented. The model, which takes into account the kinetics of cisplatin uptake by cells and the intracellular binding of the drug, can be used to predict the dependence of survival (relative to controls on the time course of extracellular exposure. Cellular pharmacokinetic parameters are derived from uptake data for human ovarian and head and neck cancer cell lines. Survival relative to controls is assumed to depend on the peak concentration of DNA-bound intracellular platinum. Model predictions agree well with published data on cisplatin cytotoxicity for three different cancer cell lines, over a wide range of exposure times. In comparison with previously published mathematical models for anticancer drug pharmacodynamics, the present model provides a better fit to experimental data sets including long exposure times (∼100 hours. The model provides a possible explanation for the fact that cell kill correlates well with area under the extracellular concentration-time curve in some data sets, but not in others. The model may be useful for optimizing delivery schedules and for the dosing of cisplatin for cancer therapy.

  4. Common Mathematical Model of Fatigue Characteristics

    Directory of Open Access Journals (Sweden)

    Z. Maléř

    2004-01-01

    Full Text Available This paper presents a new common mathematical model which is able to describe fatigue characteristics in the whole necessary range by one equation only:log N = A(R + B(R ∙ log Sawhere A(R = AR2 + BR + C and B(R = DR2 + AR + F.This model was verified by five sets of fatigue data taken from the literature and by our own three additional original fatigue sets. The fatigue data usually described the region of N 104 to 3 x 106 and stress ratio of R = -2 to 0.5. In all these cases the proposed model described fatigue results with small scatter. Studying this model, following knowledge was obtained:– the parameter ”stress ratio R” was a good physical characteristic– the proposed model provided a good description of the eight collections of fatigue test results by one equation only– the scatter of the results through the whole scope is only a little greater than that round the individual S/N curve– using this model while testing may reduce the number of test samples and shorten the test time– as the proposed model represents a common form of the S/N curve, it may be used for processing uniform objective fatigue life results, which may enable mutual comparison of fatigue characteristics.

  5. Mathematical Modeling of Heat Distribution for the Pan in a Baking Oven

    Directory of Open Access Journals (Sweden)

    Yuanhua Li

    2015-07-01

    Full Text Available In this study, we give mathematical models to give the heat distribution around the pan’s exterior edges. By applying Fourier's law, the mathematical models of heat distribution are designed. Models of instantaneous heat flux density on the pans in the baking oven are then constructed for pans with different shapes from rectangular to circular. Finally, simulation results are given to show the effectiveness of our methods.

  6. Teaching Mathematical Modelling for Earth Sciences via Case Studies

    Science.gov (United States)

    Yang, Xin-She

    2010-05-01

    Mathematical modelling is becoming crucially important for earth sciences because the modelling of complex systems such as geological, geophysical and environmental processes requires mathematical analysis, numerical methods and computer programming. However, a substantial fraction of earth science undergraduates and graduates may not have sufficient skills in mathematical modelling, which is due to either limited mathematical training or lack of appropriate mathematical textbooks for self-study. In this paper, we described a detailed case-study-based approach for teaching mathematical modelling. We illustrate how essential mathematical skills can be developed for students with limited training in secondary mathematics so that they are confident in dealing with real-world mathematical modelling at university level. We have chosen various topics such as Airy isostasy, greenhouse effect, sedimentation and Stokes' flow,free-air and Bouguer gravity, Brownian motion, rain-drop dynamics, impact cratering, heat conduction and cooling of the lithosphere as case studies; and we use these step-by-step case studies to teach exponentials, logarithms, spherical geometry, basic calculus, complex numbers, Fourier transforms, ordinary differential equations, vectors and matrix algebra, partial differential equations, geostatistics and basic numeric methods. Implications for teaching university mathematics for earth scientists for tomorrow's classroom will also be discussed. Refereces 1) D. L. Turcotte and G. Schubert, Geodynamics, 2nd Edition, Cambridge University Press, (2002). 2) X. S. Yang, Introductory Mathematics for Earth Scientists, Dunedin Academic Press, (2009).

  7. Modeling in school mathematics: generating active learning environments

    OpenAIRE

    Sakonidis, Haralambos

    2003-01-01

    Models and the modeling process are at the heart of mathematics. The paper discusses the importance of developing pupils’ modeling abilities and skills in the context of school mathematics and focuses in particular on the content, structure and the educational exploitation of a set of activities constructed to serve this purpose in a computational modeling environment.

  8. A mathematical model for facility location in banking industry

    Directory of Open Access Journals (Sweden)

    Amir Ehsani

    2014-09-01

    Full Text Available This paper presents an empirical investigation to determine the efficient locations of bank branch as well as automated banking machine. The study develops a mathematical model to minimize the cost of facility establishment subject to some constraints, which are associated with the population, accessibility of facilities, etc. All input parameters are considered in terms of triangular fuzzy numbers and using some methods, they numbers are converted into crisp values. The method has been applied for four cities in province of Seman, Iran and using WinQSB, the efficient locations of the facilities for a private bank named Samen have been determined.

  9. Tibia Fracture Healing Prediction Using First-Order Mathematical Model

    OpenAIRE

    M Sridevi; Prakasam, P.; Kumaravel, S.; P. Madhava Sarma

    2015-01-01

    The prediction of healing period of a tibia fracture in humans across limb using first-order mathematical model is demonstrated. At present, fracture healing is diagnosed using X-rays. Recent studies have demonstrated electric stimulation as a diagnostic tool in fracture healing. A DC electric voltage of 0.7 V was applied across the fracture and stabilized with Teflon coated carbon rings and the data was recorded at different time intervals until the fracture heals. The experimental data fitt...

  10. Mathematical model of tumor-immune surveillance.

    Science.gov (United States)

    Mahasa, Khaphetsi Joseph; Ouifki, Rachid; Eladdadi, Amina; Pillis, Lisette de

    2016-09-01

    We present a novel mathematical model involving various immune cell populations and tumor cell populations. The model describes how tumor cells evolve and survive the brief encounter with the immune system mediated by natural killer (NK) cells and the activated CD8(+) cytotoxic T lymphocytes (CTLs). The model is composed of ordinary differential equations describing the interactions between these important immune lymphocytes and various tumor cell populations. Based on up-to-date knowledge of immune evasion and rational considerations, the model is designed to illustrate how tumors evade both arms of host immunity (i.e. innate and adaptive immunity). The model predicts that (a) an influx of an external source of NK cells might play a crucial role in enhancing NK-cell immune surveillance; (b) the host immune system alone is not fully effective against progression of tumor cells; (c) the development of immunoresistance by tumor cells is inevitable in tumor immune surveillance. Our model also supports the importance of infiltrating NK cells in tumor immune surveillance, which can be enhanced by NK cell-based immunotherapeutic approaches. PMID:27317864

  11. (Misinterpreting Mathematical Models: Drift As A Physical Process

    Directory of Open Access Journals (Sweden)

    Roberta L. Millstein

    2009-12-01

    Full Text Available Recently, a number of philosophers of biology (e.g., Matthen and Ariew 2002; Walsh, Lewens, and Ariew 2002; Pigliucci and Kaplan 2006; Walsh 2007 have endorsed views about random drift that, we will argue, rest on an implicit assumption that the meaning of concepts such as drift can be understood through an examination of the mathematical models in which drift appears. They also seem to implicitly assume that ontological questions about the causality (or lack thereof of terms appearing in the models can be gleaned from the models alone. We will question these general assumptions by showing how the same equation — the simple (p + q2 = p2 + 2pq + q2 — can be given radically different interpretations, one of which is a physical, causal process and one of which is not. This shows that mathematical models on their own yield neither interpretations nor ontological conclusions. Instead, we argue that these issues can only be resolved by considering the phenomena that the models were originally designed to represent and the phenomena to which the models are currently applied. When one does take those factors into account, starting with the motivation for Sewall Wright’s and R.A. Fisher’s early drift models and ending with contemporary applications, a very different picture of the concept of drift emerges. On this view, drift is a term for a set of physical processes, namely, indiscriminate sampling processes (Beatty 1984; Hodge 1987; Millstein 2002, 2005.

  12. Mathematical problems in modeling artificial heart

    Directory of Open Access Journals (Sweden)

    Ahmed N. U.

    1995-01-01

    Full Text Available In this paper we discuss some problems arising in mathematical modeling of artificial hearts. The hydrodynamics of blood flow in an artificial heart chamber is governed by the Navier-Stokes equation, coupled with an equation of hyperbolic type subject to moving boundary conditions. The flow is induced by the motion of a diaphragm (membrane inside the heart chamber attached to a part of the boundary and driven by a compressor (pusher plate. On one side of the diaphragm is the blood and on the other side is the compressor fluid. For a complete mathematical model it is necessary to write the equation of motion of the diaphragm and all the dynamic couplings that exist between its position, velocity and the blood flow in the heart chamber. This gives rise to a system of coupled nonlinear partial differential equations; the Navier-Stokes equation being of parabolic type and the equation for the membrane being of hyperbolic type. The system is completed by introducing all the necessary static and dynamic boundary conditions. The ultimate objective is to control the flow pattern so as to minimize hemolysis (damage to red blood cells by optimal choice of geometry, and by optimal control of the membrane for a given geometry. The other clinical problems, such as compatibility of the material used in the construction of the heart chamber, and the membrane, are not considered in this paper. Also the dynamics of the valve is not considered here, though it is also an important element in the overall design of an artificial heart. We hope to model the valve dynamics in later paper.

  13. In Memory of Our Honorary Editor-in-Chief Editorial Board of Applied Mathematics and Mechanics

    Institute of Scientific and Technical Information of China (English)

    Editorial Board of Applied Mathematics and Mechani

    2010-01-01

    @@ Chien Wei-zang,one of the founders of modern mechanics in China,a world renowned scientist,educator,outstanding social leader,prominent leader of the Chinese Democratic League and a close friend of the Communist Party of China,the Vice Chairman of the 6th,7th,8th,and 9th National Committee of Chinese People's Political Consultative Conference, the Vice Chairman of the 5th, 6th, and 7th Central Committee of Chinese Democratic League, the Honorary Chairman of the 7th, 8th, and 9th Central Committee of Chinese Democratic League, a senior member of Chinese Academy of Science, the President of Shanghai University, the Director of Shanghai Institute of Applied Mathematics and Mechanics, and the Honorary Editor-in Chief of Applied Mathematics and Mechanics, Passed away at the age of 98 in Shanghai at 6:20 AM on July 30,2010.

  14. The Establishment of Mathematical Model about Stock Market Activity and the Applied Research%股票市场行为数学模型的建立及应用研究

    Institute of Scientific and Technical Information of China (English)

    韩晓丽; 张建江; 靖雅君; 王永昌

    2014-01-01

    The analysis and study of the stock market operating law has always been one of the important subjects in the field of economics .In this paper ,it analyzes the defects of the existing technical indicators ,puts forward ideas to solve these problems ,which start from the relationship between stock price and volume and then establish a mathematical model of the relation between price and volume .It quantifies the K-line diagrams represented by the 5 data by a figure ,makes the market behavior digitize really ,and then according to the change trend of strength in market behavior ,it can confirm the correspondence with the stock market and reduce the risk of investing in the stock market .%对股票市场运行规律的分析研究一直是经济学领域关注的重点课题之一,本文分析了现有技术指标的缺陷,提出了解决问题的思路,即从股票价量关系的分析入手,进而建立了价量关系的数学模型。将常用的由5个数据表示的K线图用一个数字量化,真正地将市场行为数字化,从而能够根据市场行为强弱的变化趋势,确定与市场走向的对应关系,降低投资股票的风险。

  15. The Establishment of Mathematical Model about Stock Market Activity and the Applied Research%股票市场行为数学模型的建立及应用研究

    Institute of Scientific and Technical Information of China (English)

    韩晓丽; 张建江; 靖雅君; 王永昌

    2014-01-01

    The analysis and study of the stock market operating law has always been one of the important subjects in the field of economics .In this paper ,it analyzes the defects of the existing technical indicators ,puts forward ideas to solve these problems ,which start from the relationship between stock price and volume and then establish a mathematical model of the relation between price and volume .It quantifies the K -line diagrams represented by the 5 data by a figure ,makes the market behavior digitize really ,and then according to the change trend of strength in market behavior ,it can confirm the correspondence with the stock market and reduce the risk of investing in the stock market .%对股票市场运行规律的分析研究一直是经济学领域关注的重点课题之一,本文分析了现有技术指标的缺陷,提出了解决问题的思路,即从股票价量关系的分析入手,进而建立了价量关系的数学模型。将常用的由5个数据表示的K线图用一个数字量化,真正地将市场行为数字化,从而能够根据市场行为强弱的变化趋势,确定与市场走向的对应关系,降低投资股票的风险。

  16. Mathematics Models in Chemistry--An Innovation for Non-Mathematics and Non-Science Majors

    Science.gov (United States)

    Rash, Agnes M.; Zurbach, E. Peter

    2004-01-01

    The intention of this article is to present a year-long interdisciplinary course, Mathematical Models in Chemistry. The course is comprised of eleven units, each of which has both a mathematical and a chemical component. A syllabus of the course is given and the format of the class is explained. The interaction of the professors and the content is…

  17. Mathematical Modelling of Some Consequences of Hurricanes: The Proposal of Research Project, Mathematical and Computational Methods

    Czech Academy of Sciences Publication Activity Database

    Nedoma, Jiří

    Hauppauge : Nova Science Publishers, 2012 - (Tarasov, A.; Demidov, M.), s. 107-196 ISBN 978-1-61942-235-3. - ( Oceanography and Ocean Engineering Natural Disaster Research, Prediction and Mitigation) Institutional support: RVO:67985807 Keywords : Hurricanes * consequences of hurricanes * mathematical modelling * computational methods * algorithms Subject RIV: BA - General Mathematics https://www.novapublishers.com/catalog/product_info.php?products_id=27159

  18. Mathematical Modeling of Spiral Heat Exchanger

    Directory of Open Access Journals (Sweden)

    Probal Guha , Vaishnavi Unde

    2014-04-01

    Full Text Available Compact Heat Exchangers (CHEs are increasingly being used on small and medium scale industries. Due to their compact size and efficient design, they facilitate more efficient heat transfer. Better heat transfer would imply lesser fuel consumption for the operations of the plant, giving improvement to overall efficiency. This reduction in consumption of fuel is a step towards sustainable development. This report exclusively deals with the study the spiral heat exchanger.The design considerations for spiral heat exchanger is that the flow within the spiral has been assumed as flow through a duct and by using Shah London empirical equation for Nusselt number design parameters are further optimized.This is accompanied by a detailed energy balance to generate a concise mathematical model

  19. Mathematical Modeling of the Origins of Life

    Science.gov (United States)

    Pohorille, Andrew

    2006-01-01

    The emergence of early metabolism - a network of catalyzed chemical reactions that supported self-maintenance, growth, reproduction and evolution of the ancestors of contemporary cells (protocells) was a critical, but still very poorly understood step on the path from inanimate to animate matter. Here, it is proposed and tested through mathematical modeling of biochemically plausible systems that the emergence of metabolism and its initial evolution towards higher complexity preceded the emergence of a genome. Even though the formation of protocellular metabolism was driven by non-genomic, highly stochastic processes the outcome was largely deterministic, strongly constrained by laws of chemistry. It is shown that such concepts as speciation and fitness to the environment, developed in the context of genomic evolution, also held in the absence of a genome.

  20. Mathematical analysis of epidemiological models with heterogeneity

    Energy Technology Data Exchange (ETDEWEB)

    Van Ark, J.W.

    1992-01-01

    For many diseases in human populations the disease shows dissimilar characteristics in separate subgroups of the population; for example, the probability of disease transmission for gonorrhea or AIDS is much higher from male to female than from female to male. There is reason to construct and analyze epidemiological models which allow this heterogeneity of population, and to use these models to run computer simulations of the disease to predict the incidence and prevalence of the disease. In the models considered here the heterogeneous population is separated into subpopulations whose internal and external interactions are homogeneous in the sense that each person in the population can be assumed to have all average actions for the people of that subpopulation. The first model considered is an SIRS models; i.e., the Susceptible can become Infected, and if so he eventually Recovers with temporary immunity, and after a period of time becomes Susceptible again. Special cases allow for permanent immunity or other variations. This model is analyzed and threshold conditions are given which determine whether the disease dies out or persists. A deterministic model is presented; this model is constructed using difference equations, and it has been used in computer simulations for the AIDS epidemic in the homosexual population in San Francisco. The homogeneous version and the heterogeneous version of the differential-equations and difference-equations versions of the deterministic model are analyzed mathematically. In the analysis, equilibria are identified and threshold conditions are set forth for the disease to die out if the disease is below the threshold so that the disease-free equilibrium is globally asymptotically stable. Above the threshold the disease persists so that the disease-free equilibrium is unstable and there is a unique endemic equilibrium.

  1. Noise in restaurants: Levels and mathematical model

    Directory of Open Access Journals (Sweden)

    Wai Ming To

    2014-01-01

    Full Text Available Noise affects the dining atmosphere and is an occupational hazard to restaurant service employees worldwide. This paper examines the levels of noise in dining areas during peak hours in different types of restaurants in Hong Kong SAR, China. A mathematical model that describes the noise level in a restaurant is presented. The 1-h equivalent continuous noise level (Leq,1-h was measured using a Type-1 precision integral sound level meter while the occupancy density, the floor area of the dining area, and the ceiling height of each of the surveyed restaurants were recorded. It was found that the measured noise levels using Leq,1-h ranged from 67.6 to 79.3 dBA in Chinese restaurants, from 69.1 to 79.1 dBA in fast food restaurants, and from 66.7 to 82.6 dBA in Western restaurants. Results of the analysis of variance show that there were no significant differences between means of the measured noise levels among different types of restaurants. A stepwise multiple regression analysis was employed to determine the relationships between geometrical and operational parameters and the measured noise levels. Results of the regression analysis show that the measured noise levels depended on the levels of occupancy density only. By reconciling the measured noise levels and the mathematical model, it was found that people in restaurants increased their voice levels when the occupancy density increased. Nevertheless, the maximum measured hourly noise level indicated that the noise exposure experienced by restaurant service employees was below the regulated daily noise exposure value level of 85 dBA.

  2. Mathematical modeling of endovenous laser treatment (ELT

    Directory of Open Access Journals (Sweden)

    Wassmer Benjamin

    2006-04-01

    Full Text Available Abstract Background and objectives Endovenous laser treatment (ELT has been recently proposed as an alternative in the treatment of reflux of the Great Saphenous Vein (GSV and Small Saphenous Vein (SSV. Successful ELT depends on the selection of optimal parameters required to achieve an optimal vein damage while avoiding side effects. Mathematical modeling of ELT could provide a better understanding of the ELT process and could determine the optimal dosage as a function of vein diameter. Study design/materials and methods The model is based on calculations describing the light distribution using the diffusion approximation of the transport theory, the temperature rise using the bioheat equation and the laser-induced injury using the Arrhenius damage model. The geometry to simulate ELT was based on a 2D model consisting of a cylindrically symmetric blood vessel including a vessel wall and surrounded by an infinite homogenous tissue. The mathematical model was implemented using the Macsyma-Pdease2D software (Macsyma Inc., Arlington, MA, USA. Damage to the vein wall for CW and single shot energy was calculated for 3 and 5 mm vein diameters. In pulsed mode, the pullback distance (3, 5 and 7 mm was considered. For CW mode simulation, the pullback speed (1, 2, 3 mm/s was the variable. The total dose was expressed as joules per centimeter in order to perform comparison to results already reported in clinical studies. Results In pulsed mode, for a 3 mm vein diameter, irrespective of the pullback distance (2, 5 or 7 mm, a minimum fluence of 15 J/cm is required to obtain a permanent damage of the intima. For a 5 mm vein diameter, 50 J/cm (15W-2s is required. In continuous mode, for a 3 mm and 5 mm vein diameter, respectively 65 J/cm and 100 J/cm are required to obtain a permanent damage of the vessel wall. Finally, the use of different wavelengths (810 nm or 980 nm played only a minor influence on these results. Discussion and conclusion The parameters

  3. Mathematical Modeling Social Responsibility for Dynamic Organizations

    Directory of Open Access Journals (Sweden)

    Farzaneh Chavoshbashi

    2012-03-01

    Full Text Available Dynamic organizations as accountable organizations, for transparency and accountability to its stakeholders to stakeholders for their toward performance there should express their commitment to social responsibility are through their values and ensure that this commitment throughout the organization are now and thus will have a social responsibility for their mutual benefit, so there is more and more coherent in their ethical approach takes advantage and the community and stakeholders and the organization will have better performance and strengths. Because of interest in social responsibility, in this paper dynamic model is presented for Corporate Social Responsibility of Bionic organization. Model presented a new model is inspired by chaos theory and natural systems theory based on bifurcation in creation to be all natural systems, realizing the value of responsibility as one of the fundamental values of social and institutional development that the relationship between business and work environment in the global market economy and range will be specified. First Social Responsibility factors identified, then experts and scholars determine the weight of the components and technical coefficient for modeling and paired comparison has been done using MATLAB mathematical Software.

  4. Mathematical modeling of hybrid CO2 laser

    International Nuclear Information System (INIS)

    A Teller-landau six-temperature model describing the dynamic emission of single mode TEA CO2 laser has been adapted. This model has been also used to describe the mechanism of obtaining relatively high-power output pulses from hybrid TE-TEA or CW-TEA CO2 laser consisting of high and low-pressure sections. The suggested mathematical model allows to investigate the mechanism which limits the TEA oscillation to single longitudinal mode (SLM) due to the narrow gain bandwidth of low-pressure section, and also to study the effect of the laser input parameters on the smooth output laser pulse parameters. In addition, numerical solutions, of non-linear rate equation system of suggested model are quantitatively discussed. The solutions describe the radiation field intensity, the population inversion, and the energy transfer processes. The calculated values of maximum peak power, total energy in pulse, pulse width, etc. are in a very good agreement with the observed experimental values. (author)

  5. Cocaine addiction and personality: a mathematical model.

    Science.gov (United States)

    Caselles, Antonio; Micó, Joan C; Amigó, Salvador

    2010-05-01

    The existence of a close relation between personality and drug consumption is recognized, but the corresponding causal connection is not well known. Neither is it well known whether personality exercises an influence predominantly at the beginning and development of addiction, nor whether drug consumption produces changes in personality. This paper presents a dynamic mathematical model of personality and addiction based on the unique personality trait theory (UPTT) and the general modelling methodology. This model attempts to integrate personality, the acute effect of drugs, and addiction. The UPTT states the existence of a unique trait of personality called extraversion, understood as a dimension that ranges from impulsive behaviour and sensation-seeking (extravert pole) to fearful and anxious behaviour (introvert pole). As a consequence of drug consumption, the model provides the main patterns of extraversion dynamics through a system of five coupled differential equations. It combines genetic extraversion, as a steady state, and dynamic extraversion in a unique variable measured on the hedonic scale. The dynamics of this variable describes the effects of stimulant drugs on a short-term time scale (typical of the acute effect); while its mean time value describes the effects of stimulant drugs on a long-term time scale (typical of the addiction effect). This understanding may help to develop programmes of prevention and intervention in drug misuse. PMID:20030966

  6. MATHEMATICAL MODELS FOR MICROSTRUCTURE EVOLUTION IN THE SEAMLESS TUBE ROLLING

    Directory of Open Access Journals (Sweden)

    Ricardo Nolasco de Carvalho

    2013-10-01

    Full Text Available The goal of this work is to present recent developments on mathematical modeling for microstructure evolution in different steel types, applied to a continuous rolling of seamless tubes. The development of these models depends on careful characterization of the thermomechanical cycle and/on correct selection and adjustment of equations which describes the several metallurgical phenomena involved on this process. The adjustments of these models are done using the results obtained in hot torsion simulations. For this, the thermomechanical cycles are simplified considering the equipment limitations in reproduce some strain, strain rates and cooling rates developed industrially. Samples for optical microscopy were obtained by interruption of simulations after selected steps of process. After adjustment of each model with results from simulation, the final microstructures are compared with those obtained in industrial scale. In general, good correlations are observed.

  7. Mathematical modeling of the lambda switch: a fuzzy logic approach.

    Science.gov (United States)

    Laschov, Dmitriy; Margaliot, Michael

    2009-10-21

    Gene regulation plays a central role in the development and functioning of living organisms. Gaining a deeper qualitative and quantitative understanding of gene regulation is an important scientific challenge. The Lambda switch is commonly used as a paradigm of gene regulation. Verbal descriptions of the structure and functioning of the switch have appeared in biological textbooks. We apply fuzzy modeling to transform one such verbal description into a well-defined mathematical model. The resulting model is a piecewise-quadratic second-order differential equation. It demonstrates functional fidelity with known results while being simple enough to allow a rather detailed analysis. Properties such as the number, location, and domain of attraction of equilibrium points can be studied analytically. Furthermore, the model provides a rigorous explanation for the so-called stability puzzle of the Lambda switch. PMID:19589343

  8. Selection of productivity improvement techniques via mathematical modeling

    Directory of Open Access Journals (Sweden)

    Mahassan M. Khater

    2011-07-01

    Full Text Available This paper presents a new mathematical model to select an optimal combination of productivity improvement techniques. The proposed model of this paper considers four-stage cycle productivity and the productivity is assumed to be a linear function of fifty four improvement techniques. The proposed model of this paper is implemented for a real-world case study of manufacturing plant. The resulted problem is formulated as a mixed integer programming which can be solved for optimality using traditional methods. The preliminary results of the implementation of the proposed model of this paper indicate that the productivity can be improved through a change on equipments and it can be easily applied for both manufacturing and service industries.

  9. Mathematics in Nature Modeling Patterns in the Natural World

    CERN Document Server

    Adam, John A

    2011-01-01

    From rainbows, river meanders, and shadows to spider webs, honeycombs, and the markings on animal coats, the visible world is full of patterns that can be described mathematically. Examining such readily observable phenomena, this book introduces readers to the beauty of nature as revealed by mathematics and the beauty of mathematics as revealed in nature.Generously illustrated, written in an informal style, and replete with examples from everyday life, Mathematics in Nature is an excellent and undaunting introduction to the ideas and methods of mathematical modeling. It illustrates how mathem

  10. A mathematical model of glutathione metabolism

    Directory of Open Access Journals (Sweden)

    James S Jill

    2008-04-01

    Full Text Available Abstract Background Glutathione (GSH plays an important role in anti-oxidant defense and detoxification reactions. It is primarily synthesized in the liver by the transsulfuration pathway and exported to provide precursors for in situ GSH synthesis by other tissues. Deficits in glutathione have been implicated in aging and a host of diseases including Alzheimer's disease, Parkinson's disease, cardiovascular disease, cancer, Down syndrome and autism. Approach We explore the properties of glutathione metabolism in the liver by experimenting with a mathematical model of one-carbon metabolism, the transsulfuration pathway, and glutathione synthesis, transport, and breakdown. The model is based on known properties of the enzymes and the regulation of those enzymes by oxidative stress. We explore the half-life of glutathione, the regulation of glutathione synthesis, and its sensitivity to fluctuations in amino acid input. We use the model to simulate the metabolic profiles previously observed in Down syndrome and autism and compare the model results to clinical data. Conclusion We show that the glutathione pools in hepatic cells and in the blood are quite insensitive to fluctuations in amino acid input and offer an explanation based on model predictions. In contrast, we show that hepatic glutathione pools are highly sensitive to the level of oxidative stress. The model shows that overexpression of genes on chromosome 21 and an increase in oxidative stress can explain the metabolic profile of Down syndrome. The model also correctly simulates the metabolic profile of autism when oxidative stress is substantially increased and the adenosine concentration is raised. Finally, we discuss how individual variation arises and its consequences for one-carbon and glutathione metabolism.

  11. Applied data analysis and modeling for energy engineers and scientists

    CERN Document Server

    Reddy, T Agami

    2011-01-01

    ""Applied Data Analysis and Modeling for Energy Engineers and Scientists"" discusses mathematical models, data analysis, and decision analysis in modeling. The approach taken in this volume focuses on the modeling and analysis of thermal systems in an engineering environment, while also covering a number of other critical areas. Other material covered includes the tools that researchers and engineering professionals will need in order to explore different analysis methods, use critical assessment skills and reach sound engineering conclusions. The book also covers process and system design and

  12. An introduction to mathematical modeling a course in mechanics

    CERN Document Server

    Oden, Tinsley J

    2011-01-01

    A modern approach to mathematical modeling, featuring unique applications from the field of mechanics An Introduction to Mathematical Modeling: A Course in Mechanics is designed to survey the mathematical models that form the foundations of modern science and incorporates examples that illustrate how the most successful models arise from basic principles in modern and classical mathematical physics. Written by a world authority on mathematical theory and computational mechanics, the book presents an account of continuum mechanics, electromagnetic field theory, quantum mechanics, and statistical mechanics for readers with varied backgrounds in engineering, computer science, mathematics, and physics. The author streamlines a comprehensive understanding of the topic in three clearly organized sections: Nonlinear Continuum Mechanics introduces kinematics as well as force and stress in deformable bodies; mass and momentum; balance of linear and angular momentum; conservation of energy; and constitutive equation...

  13. Mathematical model insights into arsenic detoxification

    Directory of Open Access Journals (Sweden)

    Nijhout H Frederik

    2011-08-01

    Full Text Available Abstract Background Arsenic in drinking water, a major health hazard to millions of people in South and East Asia and in other parts of the world, is ingested primarily as trivalent inorganic arsenic (iAs, which then undergoes hepatic methylation to methylarsonic acid (MMAs and a second methylation to dimethylarsinic acid (DMAs. Although MMAs and DMAs are also known to be toxic, DMAs is more easily excreted in the urine and therefore methylation has generally been considered a detoxification pathway. A collaborative modeling project between epidemiologists, biologists, and mathematicians has the purpose of explaining existing data on methylation in human studies in Bangladesh and also testing, by mathematical modeling, effects of nutritional supplements that could increase As methylation. Methods We develop a whole body mathematical model of arsenic metabolism including arsenic absorption, storage, methylation, and excretion. The parameters for arsenic methylation in the liver were taken from the biochemical literature. The transport parameters between compartments are largely unknown, so we adjust them so that the model accurately predicts the urine excretion rates of time for the iAs, MMAs, and DMAs in single dose experiments on human subjects. Results We test the model by showing that, with no changes in parameters, it predicts accurately the time courses of urinary excretion in mutiple dose experiments conducted on human subjects. Our main purpose is to use the model to study and interpret the data on the effects of folate supplementation on arsenic methylation and excretion in clinical trials in Bangladesh. Folate supplementation of folate-deficient individuals resulted in a 14% decrease in arsenicals in the blood. This is confirmed by the model and the model predicts that arsenicals in the liver will decrease by 19% and arsenicals in other body stores by 26% in these same individuals. In addition, the model predicts that arsenic

  14. Strong Inference in Mathematical Modeling: A Method for Robust Science in the Twenty-First Century

    Science.gov (United States)

    Ganusov, Vitaly V.

    2016-01-01

    While there are many opinions on what mathematical modeling in biology is, in essence, modeling is a mathematical tool, like a microscope, which allows consequences to logically follow from a set of assumptions. Only when this tool is applied appropriately, as microscope is used to look at small items, it may allow to understand importance of specific mechanisms/assumptions in biological processes. Mathematical modeling can be less useful or even misleading if used inappropriately, for example, when a microscope is used to study stars. According to some philosophers (Oreskes et al., 1994), the best use of mathematical models is not when a model is used to confirm a hypothesis but rather when a model shows inconsistency of the model (defined by a specific set of assumptions) and data. Following the principle of strong inference for experimental sciences proposed by Platt (1964), I suggest “strong inference in mathematical modeling” as an effective and robust way of using mathematical modeling to understand mechanisms driving dynamics of biological systems. The major steps of strong inference in mathematical modeling are (1) to develop multiple alternative models for the phenomenon in question; (2) to compare the models with available experimental data and to determine which of the models are not consistent with the data; (3) to determine reasons why rejected models failed to explain the data, and (4) to suggest experiments which would allow to discriminate between remaining alternative models. The use of strong inference is likely to provide better robustness of predictions of mathematical models and it should be strongly encouraged in mathematical modeling-based publications in the Twenty-First century. PMID:27499750

  15. Manual on mathematical models in isotope hydrogeology

    International Nuclear Information System (INIS)

    Methodologies based on the use of naturally occurring isotopes are, at present, an integral part of studies being undertaken for water resources assessment and management. Quantitative evaluations based on the temporal and/or spatial distribution of different isotopic species in hydrological systems require conceptual mathematical formulations. Different types of model can be employed depending on the nature of the hydrological system under investigation, the amount and type of data available, and the required accuracy of the parameter to be estimated. This manual provides an overview of the basic concepts of existing modelling approaches, procedures for their application to different hydrological systems, their limitations and data requirements. Guidance in their practical applications, illustrative case studies and information on existing PC software are also included. While the subject matter of isotope transport modelling and improved quantitative evaluations through natural isotopes in water sciences is still at the development stage, this manual summarizes the methodologies available at present, to assist the practitioner in the proper use within the framework of ongoing isotope hydrological field studies. In view of the widespread use of isotope methods in groundwater hydrology, the methodologies covered in the manual are directed towards hydrogeological applications, although most of the conceptual formulations presented would generally be valid. Refs, figs, tabs

  16. Mathematical model “The electric line - wind farm”

    OpenAIRE

    Merenco V.

    2008-01-01

    It is considered the problem of finding of the mathematical model of a circuit “electric line – wind farm” with the purpose of analysis of operating modes by a method of mathematical simulation. The mathematical model is based on a method of characteristics, takes into account heterogeneity of a circuit and allows realizing various modes and changes in structure of a circuit simple change of values of sizes set as the concentrated parameters.

  17. PREFACE: Physics-Based Mathematical Models for Nanotechnology

    Science.gov (United States)

    Voon, Lok C. Lew Yan; Melnik, Roderick; Willatzen, Morten

    2008-03-01

    In November 2007, some of the world's best nanoscientists and nanoengineers met at the Banff Centre, where the Banff International Research Station hosted a workshop on recent developments in the mathematical study of the physics of nanomaterials and nanostructures. The Banff International Research Station for Mathematical Innovation and Discovery (BIRS) is a collaborative Canada-US-Mexico venture that provides an environment for creative interaction as well as the exchange of ideas, knowledge, and methods within the Mathematical Sciences, with related disciplines and with industry. The research station is located in a scenic part of Alberta, Canada and is supported by Canada's Natural Science and Engineering Research Council (NSERC), the US National Science Foundation (NSF), Alberta's Advanced Education and Technology, and Mexico's Consejo Nacional de Ciencia y Tecnología (CONACYT). We would like to thank the BIRS and its sponsors for the given opportunity and the BIRS staff for their excellent support during the workshop. Nanotechnology is the study and application of phenomena at or below the dimensions of 100 nm and has received a lot of public attention following popular accounts such as in the bestselling book by Michael Crichton, Prey. It is an area where fundamental questions of applied mathematics and mathematical physics, design of computational methodologies, physical insight, engineering and experimental techniques are meeting together in a quest for an adequate description of nanomaterials and nanostructures for applications in optoelectronics, medicine, energy-saving, bio- and other key technologies which will profoundly influence our life in the 21st century and beyond. There are already hundreds of applications in daily life such as in cosmetics and the hard drives in MP3 players (the 2007 Nobel prize in physics was recently awarded for the science that allowed the miniaturization of the drives), delivering drugs, high-definition DVD players and

  18. ANALYSIS OF EXAM RESULTS OF THE SUBJECT ’APPLIED MATHEMATICS FOR IT’

    Directory of Open Access Journals (Sweden)

    BROŽOVÁ, Helena

    2014-12-01

    Full Text Available In this paper the exam results of the subject “Applied Mathematics for Informatics” from the last 10 years have been analysed. The exam has two parts: written test and oral exam. The grades of the students of the subject Applied Mathematics for Informatics formerly Methods of Operation Research have been low for a long time. We want to know if this is due to the quality of the tests or due to reducing the number of hours of contact teaching or due to the mathematical character of the subject and to the unpopularity of such kind of subjects or some other factors, for instance. Based on the bad results, students have also initiated a change in the scoring system. This article builds on our paper at the conference ERIE 2013. The main goals of this paper are to find out if the grades have had the tendency to decline during the years and to evaluate the validity, reliability, difficulty, and discrimination power of the tests.

  19. The Mathematical Modelling of Heat Transfer in Electrical Cables

    Directory of Open Access Journals (Sweden)

    Bugajev Andrej

    2014-05-01

    Full Text Available This paper describes a mathematical modelling approach for heat transfer calculations in underground high voltage and middle voltage electrical power cables. First of the all typical layout of the cable in the sand or soil is described. Then numerical algorithms are targeted to the two-dimensional mathematical models of transient heat transfer. Finite Volume Method is suggested for calculations. Different strategies of nonorthogonality error elimination are considered. Acute triangles meshes were applied in two-dimensional domain to eliminate this error. Adaptive mesh is also tried. For calculations OpenFOAM open source software which uses Finite Volume Method is applied. To generate acute triangles meshes aCute library is used. The efficiency of the proposed approach is analyzed. The results show that the second order of convergence or close to that is achieved (in terms of sizes of finite volumes. Also it is shown that standard strategy, used by OpenFOAM is less efficient than the proposed approach. Finally it is concluded that for solving real problem a spatial adaptive mesh is essential and adaptive time steps also may be needed.

  20. Financial modelling applied to long-horizon savings and pension products.

    OpenAIRE

    Stanghelle, Håkon

    2007-01-01

    his thesis studies financial models applied to valuation and risk measurement applicable to products in the life and pension area. Stock market theory and option pricing are described as a theoretical background. Mathematical models for simulation and pricing of financial instruments shows the history of financial mathematics and is the backbone of interest rate models and derivatives. Popular one-factor interest rate models and more complex models such as the Heath Jarrow Morton and LIBO...

  1. Mathematics Instructional Model Based on Realistic Mathematics Education to Promote Problem Solving Ability at Junior High School Padang

    Directory of Open Access Journals (Sweden)

    Edwin Musdi

    2016-02-01

    Full Text Available This research aims to develop a mathematics instructional model based realistic mathematics education (RME to promote students' problem-solving abilities. The design research used Plomp models, which consists of preliminary phase, development or proto-typing phase and assessment phase.  At this study, only the first two phases conducted. The first phase, a preliminary investigation, carried out with a literature study to examine the theory-based instructional learning RME model, characteristics of learners, learning management descriptions by junior high school mathematics teacher and relevant research. The development phase is done by developing a draft model (an early prototype model that consists of the syntax, the social system, the principle of reaction, support systems, and the impact and effects of instructional support. Early prototype model contain a draft model, lesson plans, worksheets, and assessments. Tesssmer formative evaluation model used to revise the model. In this study only phase of one to one evaluation conducted. In the ppreliminary phase has produced a theory-based learning RME model, a description of the characteristics of learners in grade VIII Junior High School Padang and the description of teacher teaching in the classroom. The result showed that most students were still not be able to solve the non-routine problem. Teachers did not optimally facilitate students to develop problem-solving skills of students. It was recommended that the model can be applied in the classroom.

  2. Advanced Mathematical Model to Describe the Production of Biodiesel Process

    Directory of Open Access Journals (Sweden)

    Ahmmed S. Ibrehem

    2009-12-01

    Full Text Available Advanced mathematical model was used to capture the batch reactor characteristics of reacting compounds. The model was applied to batch reactor for the production of bio-diesel from palm and kapok oils. Results of the model were compared with experimental data in terms of conversion of transesterification reaction for the production of bio-diesel under unsteady state. A good agreement was obtained between our model predictions and the experimental data. Both experimental and modeling results showed that the conversion of triglycerides to methyl ester was affected by the process conditions. The transesterification process with temperature of about 70 oC, and methanol ratio to the triglyceride of about 5 times its stoichiometry, and the NAOH catalyst of wt 0.4%, appear to be acceptable process conditions for bio diesel process production from palm oil and kapok oil. The model can be applied for endothermic batch process. © 2009 BCREC UNDIP. All rights reserved[Received: 12 August 2009, Revised: 15 October 2009; Accepted: 18 October 2009][How to Cite: A.S. Ibrehem, H. S. Al-Salim. (2009. Advanced Mathematical Model to Describe the Production of Biodiesel Process. Bulletin of Chemical Reaction Engineering and Catalysis, 4(2: 37-42.  doi:10.9767/bcrec.4.2.7109.37-42][How to Link/DOI: http://dx.doi.org/10.9767/bcrec.4.2.7109.37-42 || or local:  http://ejournal.undip.ac.id/index.php/bcrec/article/view/7109 ] 

  3. Mathematical modelling: From school to university

    Directory of Open Access Journals (Sweden)

    Ansie Harding

    2009-09-01

    Full Text Available The outcomes based education (OBE system is characterised by controversy and the 2008 matric results that rendered admission to an unusually large number of students did nothing to silence critics. The first students who completed their full cycle of school education in the OBE system entered universities in 2009 and their preparedness for university mathematics as well as their performance at university level are important as indicaters for estimating the success or otherwise of the OBE system. In a previous study student performance in mathematics admission tests for 2005-2007 was investigated and it was found that students who had had partial exposure to OBE performed worse than had been the case with their predecessors in the categories of modelling and ratio problems. As a result, this study was conducted to investigate how the 2009 intake of students performed in a modelling course at university level. A report is presented which deals with student performance in the course, problems experienced, the effect of remedial intervention on performance and whether students of the OBE system are adequately prepared for mathematical modelling at university level. This study focuses on performance in a first year course in mathematical modelling at the University of Pretoria. The course is problem based and is technology intensive, requiring use of the software package Matlab. For investigative purposes the papers of semester tests 1 and 2 of 2005 were used unchanged for tests in 2009. Students of 2009 did not have access to the 2005 papers and the same lecturer taught students of both groups. The lecturer also noted personal experiences in respect of students and was able to draw reasonable comparisons between the 2009 students and previous groups because of her years of involvement with the course. The entrance requirement of 60% for matric mathematics in 2005 was increased to 70% in 2009. Results indicate that the pass percentage decreased in

  4. Emerging Trends in Applied Mathematics: Dedicated to the Memory of Sir Asutosh Mookerjee and Contributions of S.N. Bose, M.N. Saha and N.R. Sen

    CERN Document Server

    Basu, Uma; De, Soumen

    2015-01-01

    The book is based on research presentations at the international conference, “Emerging Trends in Applied Mathematics: In the Memory of Sir Asutosh Mookerjee, S.N. Bose, M.N. Saha, and N.R. Sen”, held at the Department of Applied Mathematics, University of Calcutta, during 12–14 February 2014. It focuses on various emerging and challenging topics in the field of applied mathematics and theoretical physics. The book will be a valuable resource for postgraduate students at higher levels and researchers in applied mathematics and theoretical physics. Researchers presented a wide variety of themes in applied mathematics and theoretical physics—such as emergent periodicity in a field of chaos; Ricci flow equation and Poincare conjecture; Bose–Einstein condensation; geometry of local scale invariance and turbulence; statistical mechanics of human resource allocation: mathematical modelling of job-matching in labour markets; contact problem in elasticity; the Saha equation; computational fluid dynamics with...

  5. Modeling anaphora in informal mathematical dialogue

    OpenAIRE

    Wolska, Magdalena; Ivana Kruijff-Korbayová

    2006-01-01

    We analyze anaphoric phenomena in the context of building an input understanding component for a conversational system for tutoring mathematics. In this paper, we report the results of data analysis of two sets of corpora of dialogs on mathematical theorem proving. We exemplify anaphoric phenomena, identify factors relevant to anaphora resolution in our domain and extensions to the input interpretation component to support it.

  6. Modelling Mathematical Reasoning in Physics Education

    Science.gov (United States)

    Uhden, Olaf; Karam, Ricardo; Pietrocola, Mauricio; Pospiech, Gesche

    2012-01-01

    Many findings from research as well as reports from teachers describe students' problem solving strategies as manipulation of formulas by rote. The resulting dissatisfaction with quantitative physical textbook problems seems to influence the attitude towards the role of mathematics in physics education in general. Mathematics is often seen as a…

  7. Computational mathematics models, methods, and analysis with Matlab and MPI

    CERN Document Server

    White, Robert E

    2004-01-01

    Computational Mathematics: Models, Methods, and Analysis with MATLAB and MPI explores and illustrates this process. Each section of the first six chapters is motivated by a specific application. The author applies a model, selects a numerical method, implements computer simulations, and assesses the ensuing results. These chapters include an abundance of MATLAB code. By studying the code instead of using it as a "black box, " you take the first step toward more sophisticated numerical modeling. The last four chapters focus on multiprocessing algorithms implemented using message passing interface (MPI). These chapters include Fortran 9x codes that illustrate the basic MPI subroutines and revisit the applications of the previous chapters from a parallel implementation perspective. All of the codes are available for download from www4.ncsu.edu./~white.This book is not just about math, not just about computing, and not just about applications, but about all three--in other words, computational science. Whether us...

  8. Mathematical modeling of Chikungunya fever control

    Science.gov (United States)

    Hincapié-Palacio, Doracelly; Ospina, Juan

    2015-05-01

    Chikungunya fever is a global concern due to the occurrence of large outbreaks, the presence of persistent arthropathy and its rapid expansion throughout various continents. Globalization and climate change have contributed to the expansion of the geographical areas where mosquitoes Aedes aegypti and Aedes albopictus (Stegomyia) remain. It is necessary to improve the techniques of vector control in the presence of large outbreaks in The American Region. We derive measures of disease control, using a mathematical model of mosquito-human interaction, by means of three scenarios: a) a single vector b) two vectors, c) two vectors and human and non-human reservoirs. The basic reproductive number and critical control measures were deduced by using computer algebra with Maple (Maplesoft Inc, Ontario Canada). Control measures were simulated with parameter values obtained from published data. According to the number of households in high risk areas, the goals of effective vector control to reduce the likelihood of mosquito-human transmission would be established. Besides the two vectors, if presence of other non-human reservoirs were reported, the monthly target of effective elimination of the vector would be approximately double compared to the presence of a single vector. The model shows the need to periodically evaluate the effectiveness of vector control measures.

  9. Mathematical Models and Economic Forecasting: Some Uses and Mis-Uses of Mathematics in Economics

    OpenAIRE

    David Hendry

    2011-01-01

    We consider three 'cases studies' of the uses and mis-uses of mathematics in economics and econometrics. The first concerns economic forecasting, where a mathematical analysis is essential, and is independent of the specific forecasting model and how the process being forecast behaves. The second concerns model selection with more candidate variables than the number of observations. Again, an understanding of the properties of extended general-to-specific procedures is impossible without adva...

  10. Numerical Treatment of the Mathematical Models for Water Pollution

    Directory of Open Access Journals (Sweden)

    F. B. Agusto

    2007-01-01

    Full Text Available To evaluate the environmental impact of pollution, mathematical models play a major role in predicting the pollution level in the regions under consideration. This paper examines the various mathematical models involving water pollutant. We also give the implicit central difference scheme in space, and a forward difference method in time for the evaluation of the generalized transport equation.

  11. Numerical Treatment of the Mathematical Models for Water Pollution

    OpenAIRE

    Agusto, F. B.; O. M. Bamigbola

    2007-01-01

    To evaluate the environmental impact of pollution, mathematical models play a major role in predicting the pollution level in the regions under consideration. This paper examines the various mathematical models involving water pollutant. We also give the implicit central difference scheme in space, and a forward difference method in time for the evaluation of the generalized transport equation.

  12. The Expansion Method, Mathematical Modeling, and Spatial Econometrics

    OpenAIRE

    Emilio Casetti

    1997-01-01

    Consider the mode of enquiry that involves thinking about thinking. The expansion methodology originates within it, from an analysis of the thought processes presiding upon the construction of any mathematical models of any realities. The focal point of this paper is a discussion of the relations between the expansion methodology, mathematical modeling, and spatial econometrics.

  13. Students' Approaches to Learning a New Mathematical Model

    Science.gov (United States)

    Flegg, Jennifer A.; Mallet, Daniel G.; Lupton, Mandy

    2013-01-01

    In this article, we report on the findings of an exploratory study into the experience of undergraduate students as they learn new mathematical models. Qualitative and quantitative data based around the students' approaches to learning new mathematical models were collected. The data revealed that students actively adopt three approaches to…

  14. Models for Decision Making: From Applications to Mathematics... and Back

    OpenAIRE

    Crama, Yves

    2010-01-01

    In this inaugural lecture, I describe some facets of the interplay between mathematics and management science, economics, or engineering, as they come together in operations research models. I intend to illustrate, in particular, the complex and fruitful process through which fundamental combinatorial models find applications in management science, which in turn foster the development of new and challenging mathematical questions.

  15. Mathematical modeling of moving boundary problems in thermal energy storage

    Science.gov (United States)

    Solomon, A. D.

    1980-01-01

    The capability for predicting the performance of thermal energy storage (RES) subsystems and components using PCM's based on mathematical and physical models is developed. Mathematical models of the dynamic thermal behavior of (TES) subsystems using PCM's based on solutions of the moving boundary thermal conduction problem and on heat and mass transfer engineering correlations are also discussed.

  16. Mathematical Formulation Requirements and Specifications for the Process Models

    International Nuclear Information System (INIS)

    The Advanced Simulation Capability for Environmental Management (ASCEM) is intended to be a state-of-the-art scientific tool and approach for understanding and predicting contaminant fate and transport in natural and engineered systems. The ASCEM program is aimed at addressing critical EM program needs to better understand and quantify flow and contaminant transport behavior in complex geological systems. It will also address the long-term performance of engineered components including cementitious materials in nuclear waste disposal facilities, in order to reduce uncertainties and risks associated with DOE EM's environmental cleanup and closure activities. Building upon national capabilities developed from decades of Research and Development in subsurface geosciences, computational and computer science, modeling and applied mathematics, and environmental remediation, the ASCEM initiative will develop an integrated, open-source, high-performance computer modeling system for multiphase, multicomponent, multiscale subsurface flow and contaminant transport. This integrated modeling system will incorporate capabilities for predicting releases from various waste forms, identifying exposure pathways and performing dose calculations, and conducting systematic uncertainty quantification. The ASCEM approach will be demonstrated on selected sites, and then applied to support the next generation of performance assessments of nuclear waste disposal and facility decommissioning across the EM complex. The Multi-Process High Performance Computing (HPC) Simulator is one of three thrust areas in ASCEM. The other two are the Platform and Integrated Toolsets (dubbed the Platform) and Site Applications. The primary objective of the HPC Simulator is to provide a flexible and extensible computational engine to simulate the coupled processes and flow scenarios described by the conceptual models developed using the ASCEM Platform. The graded and iterative approach to assessments naturally

  17. Realistic Mathematics Learning Using Cooperative Strategy Model in Junior High School

    Science.gov (United States)

    Dwiyana

    2015-01-01

    This study aims to develop a realistic mathematics learning model using cooperative strategy. This study applies research and development approach conducted at Junior High School "Laboratorium," State University of Malang. The implementation of this model is conducted through five stages: 1) previous study phase; 2) model planning phase;…

  18. Mathematical model of radon activity measurements

    Energy Technology Data Exchange (ETDEWEB)

    Paschuk, Sergei A.; Correa, Janine N.; Kappke, Jaqueline; Zambianchi, Pedro, E-mail: sergei@utfpr.edu.br, E-mail: janine_nicolosi@hotmail.com [Universidade Tecnologica Federal do Parana (UTFPR), Curitiba, PR (Brazil); Denyak, Valeriy, E-mail: denyak@gmail.com [Instituto de Pesquisa Pele Pequeno Principe, Curitiba, PR (Brazil)

    2015-07-01

    Present work describes a mathematical model that quantifies the time dependent amount of {sup 222}Rn and {sup 220}Rn altogether and their activities within an ionization chamber as, for example, AlphaGUARD, which is used to measure activity concentration of Rn in soil gas. The differential equations take into account tree main processes, namely: the injection of Rn into the cavity of detector by the air pump including the effect of the traveling time Rn takes to reach the chamber; Rn release by the air exiting the chamber; and radioactive decay of Rn within the chamber. Developed code quantifies the activity of {sup 222}Rn and {sup 220}Rn isotopes separately. Following the standard methodology to measure Rn activity in soil gas, the air pump usually is turned off over a period of time in order to avoid the influx of Rn into the chamber. Since {sup 220}Rn has a short half-life time, approximately 56s, the model shows that after 7 minutes the activity concentration of this isotope is null. Consequently, the measured activity refers to {sup 222}Rn, only. Furthermore, the model also addresses the activity of {sup 220}Rn and {sup 222}Rn progeny, which being metals represent potential risk of ionization chamber contamination that could increase the background of further measurements. Some preliminary comparison of experimental data and theoretical calculations is presented. Obtained transient and steady-state solutions could be used for planning of Rn in soil gas measurements as well as for accuracy assessment of obtained results together with efficiency evaluation of chosen measurements procedure. (author)

  19. Mathematical model of radon activity measurements

    International Nuclear Information System (INIS)

    Present work describes a mathematical model that quantifies the time dependent amount of 222Rn and 220Rn altogether and their activities within an ionization chamber as, for example, AlphaGUARD, which is used to measure activity concentration of Rn in soil gas. The differential equations take into account tree main processes, namely: the injection of Rn into the cavity of detector by the air pump including the effect of the traveling time Rn takes to reach the chamber; Rn release by the air exiting the chamber; and radioactive decay of Rn within the chamber. Developed code quantifies the activity of 222Rn and 220Rn isotopes separately. Following the standard methodology to measure Rn activity in soil gas, the air pump usually is turned off over a period of time in order to avoid the influx of Rn into the chamber. Since 220Rn has a short half-life time, approximately 56s, the model shows that after 7 minutes the activity concentration of this isotope is null. Consequently, the measured activity refers to 222Rn, only. Furthermore, the model also addresses the activity of 220Rn and 222Rn progeny, which being metals represent potential risk of ionization chamber contamination that could increase the background of further measurements. Some preliminary comparison of experimental data and theoretical calculations is presented. Obtained transient and steady-state solutions could be used for planning of Rn in soil gas measurements as well as for accuracy assessment of obtained results together with efficiency evaluation of chosen measurements procedure. (author)

  20. The development of a mathematical model of a hybrid airship

    Science.gov (United States)

    Abdul Ghaffar, Alia Farhana

    The mathematical model of a winged hybrid airship is developed for the analysis of its dynamic stability characteristics. A full nonlinear equation of motion that describes the dynamics of the hybrid airship is determined and for completeness, some of the components in the equations are estimated using the appropriate methods that has been established and used in the past. Adequate assumptions are made in order to apply any relevant computation and estimation methods. While this hybrid airship design is unique, its modeling and stability analysis were done according to the typical procedure of conventional airships and aircrafts. All computations pertaining to the hybrid airship's equation of motion are carried out and any issues related to the integration of the wing to the conventional airship design are discussed in this thesis. The design of the hybrid airship is also slightly modified to suit the demanding requirement of a complete and feasible mathematical model. Then, linearization is performed under a chosen trim condition, and eigenvalue analysis is carried out to determine the general dynamic stability characteristics of the winged hybrid airship. The result shows that the winged hybrid airship possesses dynamic instability in longitudinal pitch motion and lateral-directional slow roll motion. This is due to the strong coupling between the aerostatic lift from the buoyant gas and aerodynamic lift from the wing.

  1. Mathematical modelling of digit specification by a sonic hedgehog gradient

    KAUST Repository

    Woolley, Thomas E.

    2013-11-26

    Background: The three chick wing digits represent a classical example of a pattern specified by a morphogen gradient. Here we have investigated whether a mathematical model of a Shh gradient can describe the specification of the identities of the three chick wing digits and if it can be applied to limbs with more digits. Results: We have produced a mathematical model for specification of chick wing digit identities by a Shh gradient that can be extended to the four digits of the chick leg with Shh-producing cells forming a digit. This model cannot be extended to specify the five digits of the mouse limb. Conclusions: Our data suggest that the parameters of a classical-type morphogen gradient are sufficient to specify the identities of three different digits. However, to specify more digit identities, this core mechanism has to be coupled to alternative processes, one being that in the chick leg and mouse limb, Shh-producing cells give rise to digits; another that in the mouse limb, the cellular response to the Shh gradient adapts over time so that digit specification does not depend simply on Shh concentration. Developmental Dynamics 243:290-298, 2014. © 2013 Wiley Periodicals, Inc.

  2. CURRENT APPLIED INVESTIGATIONS OF THE DEPARTMENT OF HIGHER MATHEMATICS OF MGSU

    OpenAIRE

    Bobyleva Tat’yana Nikolaevna

    2015-01-01

    The article presents an overview of some research works done by the academic staff of the Department in the field of differential equations, solid mechanics, probability theory and mathematical statistics, theory of functions of real and complex variable, functional analysis, topology, the theory of polymer composites having theoretical and practical interest, which leads to wide possibilities of application of these researches for formulation and solution of model problems of construction, t...

  3. A mathematical model of the Mafia game

    CERN Document Server

    Migdal, Piotr

    2010-01-01

    Mafia (also called Werewolf) is a party game. The participants are divided into two competing groups: citizens and a mafia. The objective is to eliminate the opponent group. The game consists of two consecutive phases (day and night) and a certain set of actions (e.g. lynching during day). The mafia members have additional powers (knowing each other, killing during night) whereas the citizens are more numerous. We propose a simple mathematical model of the game, which is essentially a pure death process with discrete time. We find closed-form formulas for mafia winning chances $w(n,m)$ as well as for evolution of the game. Moreover, we investigate discrete properties of results, as well as its continuous-time approximation. I turns out that a relatively small number of the mafia members $m$ (among $n$ players) give $50:50$ winning chances, i.e. $m\\approx\\sqrt{n}$. Furthermore, the game strongly depends on the parity of the total number of players.

  4. Personal Learning Environments (PLE) in a distance learning course on mathematics applied to business

    OpenAIRE

    Bidarra, José; Araújo, João

    2013-01-01

    This paper argues that the dominant form of distance learning that is common in most e-learning systems rests on a set of learning devices and environments that may be outdated from the student’s perspective, namely because it is not supportive of learner empowerment and does not facilitate the efforts of self-directed learners. For this study we gathered and examined data on student’s use of Personal Learning Environments (PLEs) within a course on Mathematics Applied to Business offered by t...

  5. Quantum Gravity Mathematical Models and Experimental Bounds

    CERN Document Server

    Fauser, Bertfried; Zeidler, Eberhard

    2007-01-01

    The construction of a quantum theory of gravity is the most fundamental challenge confronting contemporary theoretical physics. The different physical ideas which evolved while developing a theory of quantum gravity require highly advanced mathematical methods. This book presents different mathematical approaches to formulate a theory of quantum gravity. It represents a carefully selected cross-section of lively discussions about the issue of quantum gravity which took place at the second workshop "Mathematical and Physical Aspects of Quantum Gravity" in Blaubeuren, Germany. This collection covers in a unique way aspects of various competing approaches. A unique feature of the book is the presentation of different approaches to quantum gravity making comparison feasible. This feature is supported by an extensive index. The book is mainly addressed to mathematicians and physicists who are interested in questions related to mathematical physics. It allows the reader to obtain a broad and up-to-date overview on ...

  6. Mathematical models of tumor heterogeneity and drug resistance

    Science.gov (United States)

    Greene, James

    In this dissertation we develop mathematical models of tumor heterogeneity and drug resistance in cancer chemotherapy. Resistance to chemotherapy is one of the major causes of the failure of cancer treatment. Furthermore, recent experimental evidence suggests that drug resistance is a complex biological phenomena, with many influences that interact nonlinearly. Here we study the influence of such heterogeneity on treatment outcomes, both in general frameworks and under specific mechanisms. We begin by developing a mathematical framework for describing multi-drug resistance to cancer. Heterogeneity is reflected by a continuous parameter, which can either describe a single resistance mechanism (such as the expression of P-gp in the cellular membrane) or can account for the cumulative effect of several mechanisms and factors. The model is written as a system of integro-differential equations, structured by the continuous "trait," and includes density effects as well as mutations. We study the limiting behavior of the model, both analytically and numerically, and apply it to study treatment protocols. We next study a specific mechanism of tumor heterogeneity and its influence on cell growth: the cell-cycle. We derive two novel mathematical models, a stochastic agent-based model and an integro-differential equation model, each of which describes the growth of cancer cells as a dynamic transition between proliferative and quiescent states. By examining the role all parameters play in the evolution of intrinsic tumor heterogeneity, and the sensitivity of the population growth to parameter values, we show that the cell-cycle length has the most significant effect on the growth dynamics. In addition, we demonstrate that the agent-based model can be approximated well by the more computationally efficient integro-differential equations, when the number of cells is large. The model is closely tied to experimental data of cell growth, and includes a novel implementation of

  7. Applied Mathematics at the U.S. Department of Energy: Past, Present and a View to the Future

    International Nuclear Information System (INIS)

    Over the past half-century, the Applied Mathematics program in the U.S. Department of Energy's Office of Advanced Scientific Computing Research has made significant, enduring advances in applied mathematics that have been essential enablers of modern computational science. Motivated by the scientific needs of the Department of Energy and its predecessors, advances have been made in mathematical modeling, numerical analysis of differential equations, optimization theory, mesh generation for complex geometries, adaptive algorithms and other important mathematical areas. High-performance mathematical software libraries developed through this program have contributed as much or more to the performance of modern scientific computer codes as the high-performance computers on which these codes run. The combination of these mathematical advances and the resulting software has enabled high-performance computers to be used for scientific discovery in ways that could only be imagined at the program's inception. Our nation, and indeed our world, face great challenges that must be addressed in coming years, and many of these will be addressed through the development of scientific understanding and engineering advances yet to be discovered. The U.S. Department of Energy (DOE) will play an essential role in providing science-based solutions to many of these problems, particularly those that involve the energy, environmental and national security needs of the country. As the capability of high-performance computers continues to increase, the types of questions that can be answered by applying this huge computational power become more varied and more complex. It will be essential that we find new ways to develop and apply the mathematics necessary to enable the new scientific and engineering discoveries that are needed. In August 2007, a panel of experts in applied, computational and statistical mathematics met for a day and a half in Berkeley, California to understand the

  8. Wear process mathematical modelling of sleeve assembly details of ice

    OpenAIRE

    С. А. Загайко

    2013-01-01

    Features of mathematical modeling of wear process of a cylinder sleeve, piston rings and a piston skirt of an internal combustion engine are considered. Model approbation on the basis of resource tests of an internal combustion engine is carried out.

  9. Symmetrization of mathematical model of charge transport in semiconductors

    Directory of Open Access Journals (Sweden)

    Alexander M. Blokhin

    2002-11-01

    Full Text Available A mathematical model of charge transport in semiconductors is considered. The model is a quasilinear system of differential equations. A problem of finding an additional entropy conservation law and system symmetrization are solved.

  10. The academic merits of modelling in higher mathematics education: A case study

    Science.gov (United States)

    Perrenet, Jacob; Adan, Ivo

    2010-09-01

    Modelling is an important subject in the Bachelor curriculum of Applied Mathematics at Eindhoven University of Technology in the Netherlands. Students not only learn how to apply their knowledge to solve mathematical problems posed in non-mathematical language, but also they learn to look actively for, or even construct, mathematical knowledge useful for the problem at hand. A detailed analysis of the academic profile of the curriculum is presented, using a framework of competencies and dimensions, developed at this university by the project, Academic Competencies and Quality Assurance (ACQA). The profile is constructed from the perspective of teachers' ambitions. The research question for the present study is: Are there certain academic characteristics typical for the Modelling Track compared to the characteristics of the other courses in the Eindhoven Bachelor curriculum of Applied Mathematics? The analysis shows that the modelling projects are essential for the development of the designing competencies in the curriculum. Other courses in the curriculum are more intended to develop abstraction capabilities. These results provide supporting arguments for the realistic approach chosen for mathematical modelling education.

  11. SARS epidemical forecast research in mathematical model

    Institute of Scientific and Technical Information of China (English)

    DING Guanghong; LIU Chang; GONG Jianqiu; WANG Ling; CHENG Ke; ZHANG Di

    2004-01-01

    The SIJR model, simplified from the SEIJR model, is adopted to analyze the important parameters of the model of SARS epidemic such as the transmission rate, basic reproductive number. And some important parameters are obtained such as the transmission rate by applying this model to analyzing the situation in Hong Kong, Singapore and Canada at the outbreak of SARS. Then forecast of the transmission of SARS is drawn out here by the adjustment of parameters (such as quarantined rate) in the model. It is obvious that inflexion lies on the crunode of the graph, which indicates the big difference in transmission characteristics between the epidemic under control and not under control. This model can also be used in the comparison of the control effectiveness among different regions. The results from this model match well with the actual data in Hong Kong, Singapore and Canada and as a by-product, the index of the effectiveness of control in the later period can be acquired. It offers some quantitative indexes, which may help the further research in epidemic diseases.

  12. Methods and models in mathematical biology deterministic and stochastic approaches

    CERN Document Server

    Müller, Johannes

    2015-01-01

    This book developed from classes in mathematical biology taught by the authors over several years at the Technische Universität München. The main themes are modeling principles, mathematical principles for the analysis of these models, and model-based analysis of data. The key topics of modern biomathematics are covered: ecology, epidemiology, biochemistry, regulatory networks, neuronal networks, and population genetics. A variety of mathematical methods are introduced, ranging from ordinary and partial differential equations to stochastic graph theory and  branching processes. A special emphasis is placed on the interplay between stochastic and deterministic models.

  13. The object-oriented approach to construction of mathematical model of the hybrid antenna

    OpenAIRE

    Smorodin, G. N.

    1997-01-01

    The object-oriented design, as the new approach to formation of mathematical models of real and virtual devices, is directed to construction in program environment of specialized objects, adequately reflecting specificity of a soluble problem. However the given approach universally recognized when creating mass professional program products, is extremely insignificantly applied by the science workers at the mathematical simulation, oriented to laboratory or institute "internal" usage. The rea...

  14. Typhoid transmission: a historical perspective on mathematical model development.

    Science.gov (United States)

    Bakach, Iurii; Just, Matthew R; Gambhir, Manoj; Fung, Isaac Chun-Hai

    2015-11-01

    Mathematical models of typhoid transmission were first developed nearly half a century ago. To facilitate a better understanding of the historical development of this field, we reviewed mathematical models of typhoid and summarized their structures and limitations. Eleven models, published in 1971 to 2014, were reviewed. While models of typhoid vaccination are well developed, we highlight the need to better incorporate water, sanitation and hygiene interventions into models of typhoid and other foodborne and waterborne diseases. Mathematical modeling is a powerful tool to test and compare different intervention strategies which is important in the world of limited resources. By working collaboratively, epidemiologists and mathematicians should build better mathematical models of typhoid transmission, including pharmaceutical and non-pharmaceutical interventions, which will be useful in epidemiological and public health practice. PMID:26396161

  15. Current research activities: Applied and numerical mathematics, fluid mechanics, experiments in transition and turbulence and aerodynamics, and computer science

    Science.gov (United States)

    1992-01-01

    Research conducted at the Institute for Computer Applications in Science and Engineering in applied mathematics, numerical analysis, fluid mechanics including fluid dynamics, acoustics, and combustion, aerodynamics, and computer science during the period 1 Apr. 1992 - 30 Sep. 1992 is summarized.

  16. Mathematical modelling of a continuous biomass torrefaction reactor: TORSPYDTM column

    International Nuclear Information System (INIS)

    Torrefaction is a soft thermal process usually applied to cocoa or coffee beans to obtain the Maillard reaction to produce aromatics and enhance the flavour. In the case of biomass the main interest of torrefaction it is to break the fibers. To do so, Thermya company has developed and patented a biomass torrefaction/depolymerisation process called TORSPYDTM. It is a homogeneous 'soft' thermal process that takes place in an inert atmosphere. The process progressively eliminates the biomass water content transforms a portion of the biomass organic matter and breaks the biomass structure by depolymerisation of the fibers. This produces a high performance solid fuel, called Biocoal, which offers a range of benefits over and above that of normal biomass fuel. To develop such a process, this company has developed two main tools: - a continuous torrefaction laboratory pilot with a capacity to produce 3 - 8 kg/h of torrefied biomass; - a mathematical model dedicated to the design and optimisation of the TORSPYD reactor. The mathematical model is able to describe the chemical and physical processes that take place in the torrefaction column at two different scales, namely: the particle, and the surrounding gas. The model enables the gas temperature profiles inside the column to be predicted, and the results of the model are then validated through experiment in the laboratory pilot. The model also allows us to estimate the thermal power necessary to torrefy any type of biomass for a given moisture content. -- Highlights: → We model a patented torrefaction/depolymerisation biomass process: TORPSPYD. → We compare simulated results to experimental data obtained from our torrefaction pilot plant. → We describe phenomenon that occurs in our torrefaction reactor and discuss about the influence of moisture of the input biomass.

  17. Remarks on orthotropic elastic models applied to wood

    Directory of Open Access Journals (Sweden)

    Nilson Tadeu Mascia

    2006-09-01

    Full Text Available Wood is generally considered an anisotropic material. In terms of engineering elastic models, wood is usually treated as an orthotropic material. This paper presents an analysis of two principal anisotropic elastic models that are usually applied to wood. The first one, the linear orthotropic model, where the material axes L (Longitudinal, R( radial and T(tangential are coincident with the Cartesian axes (x, y, z, is more accepted as wood elastic model. The other one, the cylindrical orthotropic model is more adequate of the growth caracteristics of wood but more mathematically complex to be adopted in practical terms. Specifically due to its importance in wood elastic parameters, this paper deals with the fiber orientation influence in these models through adequate transformation of coordinates. As a final result, some examples of the linear model, which show the variation of elastic moduli, i.e., Young´s modulus and shear modulus, with fiber orientation are presented.

  18. The Motivational Construct in Mathematics Learning Using Structural Equation Modeling: The Korean Elementary School Math Class.

    Science.gov (United States)

    Seo, Daeryong

    This study was undertaken to understand a motivation model in the context of the Korean elementary school mathematics class. The sample consisted of 178 fourth graders (boys=95; girls=83) from 2 Korean elementary schools. This study showed that a goal mediational model could be modified and successfully applied to the context of the Korean…

  19. Economic-mathematical methods and models under uncertainty

    CERN Document Server

    Aliyev, A G

    2013-01-01

    Brief Information on Finite-Dimensional Vector Space and its Application in EconomicsBases of Piecewise-Linear Economic-Mathematical Models with Regard to Influence of Unaccounted Factors in Finite-Dimensional Vector SpacePiecewise Linear Economic-Mathematical Models with Regard to Unaccounted Factors Influence in Three-Dimensional Vector SpacePiecewise-Linear Economic-Mathematical Models with Regard to Unaccounted Factors Influence on a PlaneBases of Software for Computer Simulation and Multivariant Prediction of Economic Even at Uncertainty Conditions on the Base of N-Comp

  20. A New Activity-Based Cost (ABC) Mathematical Model

    Institute of Scientific and Technical Information of China (English)

    JIANG Shuo; SONG Lei

    2003-01-01

    Along with the product price competition growing intensely, it is apparently important for reasonably distributing and counting cost. But, in sharing indirect cost, traditional cost accounting unveils the limitations increasingly, especially in authenticity of cost information. And the accounting theory circles and industry circles begin seeking one kind of new accurate cost calculation method, and the activity-based cost (ABC) method emerges as the times require. In this paper, we will build its mathematical model by the basic principle of ABC, and will improve its mathematical model further. We will establish its comparison mathematical model and make the ABC method go a step further to its practical application.

  1. CHOOSING A MATHEMATICAL MODEL OF HEAT SUPPLY NETWORK ROUTE

    OpenAIRE

    V.N.Melkumov; Kuznetsov, I. S.; V. N. Kobelev

    2012-01-01

    Problem statement. Modern computational technologies allow to develop mathematical modelsfor choosing optimal topology and construction routes of heat supply networks taking into accounta large amount of influencing factors. Important pivots when developing a mathematical model arethe choice of source data representation, of the model of choosing the optimal topology and routeand the computational algorithms for model implementation at computing facilities. The difficultyof choosing a computa...

  2. Mathematical Model of Extrinsic Blood Coagulation Cascade Dynamic System

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The blood coagulation system is very important to life. This paper presents a mathematical blood coagulation model for the extrinsic pathway. This model simulates clotting factor VIII, which plays an important role in the coagulation mechanism. The mathematical model is used to study the equilibrium stability, orbit structure, attractors and global stability behavior, with conclusions in accordance with the physiological phenomena. Moreover, the results provide information about blood related illnesses, which can be used for further study of the coagulation mechanism.

  3. Mathematical modeling of a convective textile drying process

    OpenAIRE

    Johann, G; E. A. Silva; O.C. Motta Lima; N.C. Pereira

    2014-01-01

    This study aims to develop a model that accurately represents the convective drying process of textile materials. The mathematical modeling was developed from energy and mass balances and, for the solution of the mathematical model, the technique of finite differences, in Cartesian coordinates, was used. It transforms the system of partial differential equations into a system of ordinary equations, with the unknowns, the temperature and humidity of both the air and the textile material. The s...

  4. Applying Software Engineering Principles to Process Modeling

    OpenAIRE

    Henry, Joel

    1992-01-01

    Process models are constructed using specific modeling methods or techniques. These techniques impart certain characteristics to the models they produce. Application of the software engineering principles of information hiding, top-down functional decomposition and stepwise refinement to process modeling imparts many desirable characteristics to the process models produced. This paper describes an approach to process modeling which applies these software engineering principles to control flow...

  5. THE CASE STUDY TASKS AS A BASIS FOR THE FUND OF THE ASSESSMENT TOOLS AT THE MATHEMATICAL ANALYSIS FOR THE DIRECTION 01.03.02 APPLIED MATHEMATICS AND COMPUTER SCIENCE

    Directory of Open Access Journals (Sweden)

    Dina Aleksandrovna Kirillova

    2015-12-01

    Full Text Available The modern reform of the Russian higher education involves the implementation of competence-based approach, the main idea of which is the practical orientation of education. Mathematics is a universal language of description, modeling and studies of phenomena and processes of different nature. Therefore creating the fund of assessment tools for mathematical disciplines based on the applied problems is actual. The case method is the most appropriate mean of monitoring the learning outcomes, it is aimed at bridging the gap between theory and practice.The aim of the research is the development of methodical materials for the creating the fund of assessment tools that are based on the case-study for the mathematical analisis for direction «Applied Mathematics and Computer Science». The aim follows from the contradiction between the need for the introduction of case-method in the educational process in high school and the lack of study of the theoretical foundations of using of this method as applied to mathematical disciplines, insufficient theoretical basis and the description of the process of creating case-problems for use their in the monitoring of the learning outcomes.

  6. MATHEMATICAL MODELING OF OIL SPILL ON THE SEA AND APPLICATION OF THE MODELING IN DAYA BAY

    Institute of Scientific and Technical Information of China (English)

    CHEN Hai-zhou; LI Da-ming; LI Xiao

    2007-01-01

    Through the study of the theory of oil spill model, a mathematical modeling of oil spill on the sea is developed which with the consideration of spread, diffusion, drifting and attenuation of oil slick is influenced by evaporation and emulsification factors. A model that under the effect of ocean dynamic condition of tide, wind and wave, using Monte Carlo method to simulate the movement of oil slick is established. The modeling is applied to calculate and predict pollution range of oil spill at oil quay and oil ship in Daya Bay. The prediction results have basically shown the pollution situation by emergency of oil spill on the sea.

  7. The possibilities of a modelling perspective for school mathematics

    Directory of Open Access Journals (Sweden)

    Dirk Wessels

    2009-09-01

    complex teaching methodology requires in-depth thinking about the role of the teacher, the role of the learner, the nature of the classroom culture, the nature of the negotiation of meaning between the teacher and individuals or groups, the nature of selected problems and material, as well as the kind of integrative assessment used in the mathematics classroom. Modelling is closely related to the problem-centred teaching approach, but it also smoothly relates to bigger and longer mathematical tasks. This article gives a theoretical exposition of the scope and depth of mathematical modelling. It is possible to introduce modelling at every school phase in our educational sytem. Modelling in school mathematics seems to make the learning of mathematics more effective. The mastering of problem solving and modelling strategies has definitely changed the orientation, the competencies and performances of learners at each school level. It would appear from research that learners like the application side of mathematics and that they want to see it in action. Genuine real life problems should be selected, which is why a modelling perspective is so important for the teaching and mastering of mathematics. Modelling should be integrated into the present curriculum because learners will then get full access to involvement in the classroom, to mathematisation, to doing problems, to criticising arguments, to finding proofs, to recognising concepts and to obtaining the ability to abstract these from the realistic situation. Modelling should be given a full opportunity in mathematics teacher education so that our learners can get the full benefit of it. This will put the mathematical performances of learners in our country on a more solid base, which will make our learners more competitive at all levels in the future. 

  8. Mathematical Model for Post-Irradiation Haemopoiesis

    International Nuclear Information System (INIS)

    A model for haemopoiesis has been constructed based on the following hypothesis: (a) Haemopoietic stem cells have the capability of either reproducing as stem cells or differentiating into specialized blood cells of at least two different types; (b) The size of the stem-cell compartment is in part regulated by the rate of increase due to stem-cell reproduction and in part by the rate of loss of stem cells through differentiation; (c) In addition, the size of the stem-cell compartment is in part regulated by a competitive cell-to-cell interaction between the stem-cells themselves and between the differentiating cells and the stem-cells, such that the presence of an exceptionally large number of either cell type would have a repressive effect on the rate of increase of the stem-cell population. This model has been applied to the post-irradiation erythropoietic behaviour of the rat. In the computer studies with the model, an X-ray dose sufficient to inhibit reproduction in 50% of the erythroid stem cells was assumed. It was also assumed that reproduction and differentiation are genetically separately controlled processes and that, therefore, some part of the reproductively injured cells were still capable of differentiation. Under these conditions the model predicted an abortive rise in reticulocyte number, peaking at about 6 days. True recovery was predicted to occur at about 16 days. Both the abortive rise and the true recovery were also present in those segments of the model representing earlier erythroid cells, occurring at progressively earlier times in progressively more primitive cells. Comparison of the model's predictions with experimentally obtained data for post-irradiation erythroid recovery showed a good agreement both with respect to the time of the abortive peak and the time of true recovery. (author)

  9. Parameters Investigation of Mathematical Model of Productivity for Automated Line with Availability by DMAIC Methodology

    Directory of Open Access Journals (Sweden)

    Tan Chan Sin

    2014-01-01

    Full Text Available Automated line is widely applied in industry especially for mass production with less variety product. Productivity is one of the important criteria in automated line as well as industry which directly present the outputs and profits. Forecast of productivity in industry accurately in order to achieve the customer demand and the forecast result is calculated by using mathematical model. Mathematical model of productivity with availability for automated line has been introduced to express the productivity in terms of single level of reliability for stations and mechanisms. Since this mathematical model of productivity with availability cannot achieve close enough productivity compared to actual one due to lack of parameters consideration, the enhancement of mathematical model is required to consider and add the loss parameters that is not considered in current model. This paper presents the investigation parameters of productivity losses investigated by using DMAIC (Define, Measure, Analyze, Improve, and Control concept and PACE Prioritization Matrix (Priority, Action, Consider, and Eliminate. The investigated parameters are important for further improvement of mathematical model of productivity with availability to develop robust mathematical model of productivity in automated line.

  10. Mechanical-mathematical modeling for landslide process

    Science.gov (United States)

    Svalova, V.

    2009-04-01

    500 m and displacement of a landslide in the plan over 1 m. Last serious activization of a landslide has taken place in 2002 with a motion on 53 cm. Catastrophic activization of the deep blockglide landslide in the area of Khoroshevo in Moscow took place in 2006-2007. A crack of 330 m long appeared in the old sliding circus, along which a new 220 m long creeping block was separated from the plateau and began sinking with a displaced surface of the plateau reaching to 12 m. Such activization of the landslide process was not observed in Moscow since mid XIX century. The sliding area of Khoroshevo was stable during long time without manifestations of activity. Revealing of the reasons of deformation and development of ways of protection from deep landslide motions is extremely actual and difficult problem which decision is necessary for preservation of valuable historical monuments and modern city constructions. The reasons of activization and protective measures are discussed. Structure of monitoring system for urban territories is elaborated. Mechanical-mathematical model of high viscous fluid was used for modeling of matter behavior on landslide slopes. Equation of continuity and an approximated equation of the Navier-Stockes for slow motions in a thin layer were used. The results of modelling give possibility to define the place of highest velocity on landslide surface, which could be the best place for monitoring post position. Model can be used for calibration of monitoring equipment and gives possibility to investigate some fundamental aspects of matter movement on landslide slope.

  11. Mathematical modelling with case studies using Maple and Matlab

    CERN Document Server

    Barnes, B

    2014-01-01

    Introduction to Mathematical ModelingMathematical models An overview of the book Some modeling approaches Modeling for decision makingCompartmental Models Introduction Exponential decay and radioactivity Case study: detecting art forgeries Case study: Pacific rats colonize New Zealand Lake pollution models Case study: Lake Burley Griffin Drug assimilation into the blood Case study: dull, dizzy, or dead? Cascades of compartments First-order linear DEs Equilibrium points and stability Case study: money, money, money makes the world go aroundModels of Single PopulationsExponential growth Density-

  12. Assessment of toxicity using dehydrogenases activity and mathematical modeling.

    Science.gov (United States)

    Matyja, Konrad; Małachowska-Jutsz, Anna; Mazur, Anna K; Grabas, Kazimierz

    2016-07-01

    Dehydrogenase activity is frequently used to assess the general condition of microorganisms in soil and activated sludge. Many studies have investigated the inhibition of dehydrogenase activity by various compounds, including heavy metal ions. However, the time after which the measurements are carried out is often chosen arbitrarily. Thus, it can be difficult to estimate how the toxic effects of compounds vary during the reaction and when the maximum of the effect would be reached. Hence, the aim of this study was to create simple and useful mathematical model describing changes in dehydrogenase activity during exposure to substances that inactivate enzymes. Our model is based on the Lagergrens pseudo-first-order equation, the rate of chemical reactions, enzyme activity, and inactivation and was created to describe short-term changes in dehydrogenase activity. The main assumption of our model is that toxic substances cause irreversible inactivation of enzyme units. The model is able to predict the maximum direct toxic effect (MDTE) and the time to reach this maximum (TMDTE). In order to validate our model, we present two examples: inactivation of dehydrogenase in microorganisms in soil and activated sludge. The model was applied successfully for cadmium and copper ions. Our results indicate that the predicted MDTE and TMDTE are more appropriate than EC50 and IC50 for toxicity assessments, except for long exposure times. PMID:27021434

  13. Mathematical model for the prediction of recession curves

    Directory of Open Access Journals (Sweden)

    Juan M Stella

    2013-06-01

    Full Text Available Prediction of recession curves remains an important task for management of diversions or reservoirs that affect flow in streams during low-flow periods. There have been many approaches to baseflow recession applying either power or exponential equations, but there has not been any successful approach to link the parameters of these exponential and power equations such as the turnover time of the groundwater storage with hydrological parameters, and the initial peak discharge before the recession and the recession time. The Fenton and Mount Hope Rivers basin are neighbors, located in Northeast of the State of Connecticut. This research developed and tested a mathematical model in exponential form to simulate discharges during recession with coefficients related with the initial peak discharge before recession and time of recession. The recession model was applied and calibrated in the Mount Hope and Fenton Rivers. The results found that the recession model showed good approximation for the representation of the recession phenomenon, to predict the recession discharge for low flows in the Mount Hope and Fenton Rivers.

  14. MAPCLUS: A Mathematical Programming Approach to Fitting the ADCLUS Model.

    Science.gov (United States)

    Arabie, Phipps

    1980-01-01

    A new computing algorithm, MAPCLUS (Mathematical Programming Clustering), for fitting the Shephard-Arabie ADCLUS (Additive Clustering) model is presented. Details and benefits of the algorithm are discussed. (Author/JKS)

  15. Mathematical modeling of electromechanical processes in a brushless DC motor

    OpenAIRE

    Tkachuk, V. I.; V.I. Zhuk

    2014-01-01

    On the basis of initial assumptions, a mathematical model that describes electromechanical processes in a brushless DC electric motor with a salient-pole stator and permanent-magnet excitation is created.

  16. Mathematical modelling of water radiolysis kinetics under reactor conditions

    International Nuclear Information System (INIS)

    Experimental data on coolant radiolysis (RBMK-1000 reactor) were used to construct mathematical model of water radiolysis kinetics under reactor conditions. Good agreement of calculation results with the experiment is noted

  17. Mathematical modeling of electromechanical processes in a brushless DC motor

    Directory of Open Access Journals (Sweden)

    V.I. Tkachuk

    2014-03-01

    Full Text Available On the basis of initial assumptions, a mathematical model that describes electromechanical processes in a brushless DC electric motor with a salient-pole stator and permanent-magnet excitation is created.

  18. RECENT MATHEMATICAL STUDIES IN THE MODELING OF OPTICS AND ELECTROMAGNETICS

    Institute of Scientific and Technical Information of China (English)

    Gang Bao

    2004-01-01

    This work is concerned with mathematical modeling, analysis, and computation of optics and electromagnetics, motivated particularly by optical and microwave applications.The main technical focus is on Maxwell's equations in complex linear and nonlinear media.

  19. The relationship between Big Data and Mathematical Modeling: A discussion in a mathematical education scenario

    Directory of Open Access Journals (Sweden)

    Rodrigo Dalla Vecchia

    2016-02-01

    Full Text Available This study discusses aspects of the association between Mathematical Modeling (MM and Big Data in the scope of mathematical education. We present an example of an activity to discuss two ontological factors that involve MM. The first is linked to the modeling stages. The second involves the idea of pedagogical objectives. The main findings indicate that Big Data may contribute new ways of working with MM in the classroom, helping develop pedagogical objectives associated with the ability to deal with and interpret di

  20. Mathematical Modeling of Neuro-Vascular Coupling in Rat Cerebellum

    DEFF Research Database (Denmark)

    Rasmussen, Tina

    Activity in the neurons called climbing fibers causes blood flow changes. But the physiological mechanisms which mediate the coupling are not well understood. This PhD thesis investigates the mechanisms of neuro-vascular coupling by means of mathematical methods. In experiments, the extracellularly....... Mathematical arguments as well as hypotheses about the physiological system have been used to construct the models....... measured field potential is used as an indicator of neuronal activity, and the cortical blood flow is measured by means of laser-Doppler flowmetry. Using system identification methods, these measurements have been used to construct and validate parametric mathematical models of the neuro-vascular system...

  1. A mathematical look at a physical power prediction model

    DEFF Research Database (Denmark)

    Landberg, L.

    1998-01-01

    This article takes a mathematical look at a physical model used to predict the power produced from wind farms. The reason is to see whether simple mathematical expressions can replace the original equations and to give guidelines as to where simplifications can be made and where they cannot. The...... article shows that there is a linear dependence between the geostrophic wind and the local wind at the surface, but also that great care must be taken in the selection of the simple mathematical models, since physical dependences play a very important role, e.g. through the dependence of the turning of...

  2. A mathematical model for a copolymer in an emulsion

    OpenAIRE

    2007-01-01

    In this paper we review some recent results, obtained jointly with Stu Whittington, for a mathematical model describing a copolymer in an emulsion. The copolymer consists of hydrophobic and hydrophilic monomers, concatenated randomly with equal density. The emulsion consists of large blocks of oil and water, arranged in a percolation-type fashion. To make the model mathematically tractable, the copolymer is allowed to enter and exit a neighboring pair of blocks only at diagonally opposite cor...

  3. Partial sum approaches to mathematical parameters of some growth models

    Science.gov (United States)

    Korkmaz, Mehmet

    2016-04-01

    Growth model is fitted by evaluating the mathematical parameters, a, b and c. In this study, the method of partial sums were used. For finding the mathematical parameters, firstly three partial sums were used, secondly four partial sums were used, thirdly five partial sums were used and finally N partial sums were used. The purpose of increasing the partial decomposition is to produce a better phase model which gives a better expected value by minimizing error sum of squares in the interval used.

  4. A mathematical model of pulmonary gas exchange under inflammatory stress

    OpenAIRE

    Reynolds, Angela; Ermentrout, G. Bard; Clermont, Gilles

    2010-01-01

    During a severe local or systemic inflammatory response, immune mediators target lung tissue. This process may lead to acute lung injury and impaired diffusion of gas molecules. Although several mathematical models of gas exchange have been described, none simulate acute lung injury following inflammatory stress. In view of recent laboratory and clinical progress in the understanding of the pathophysiology of acute lung injury, such a mathematical model would be useful. We first derived a par...

  5. The Mathematical Modelling of Heat Transfer in Electrical Cables

    OpenAIRE

    Bugajev Andrej; Jankevičiūtė Gerda; Tumanova Natalija

    2014-01-01

    This paper describes a mathematical modelling approach for heat transfer calculations in underground high voltage and middle voltage electrical power cables. First of the all typical layout of the cable in the sand or soil is described. Then numerical algorithms are targeted to the two-dimensional mathematical models of transient heat transfer. Finite Volume Method is suggested for calculations. Different strategies of nonorthogonality error elimination are considered. Acute triangles meshes ...

  6. Innovative mathematical modeling in environmental remediation

    Energy Technology Data Exchange (ETDEWEB)

    Yeh, Gour T. [Taiwan Typhoon and Flood Research Institute (Taiwan); National Central Univ. (Taiwan); Univ. of Central Florida (United States); Gwo, Jin Ping [Nuclear Regulatory Commission (NRC), Rockville, MD (United States); Siegel, Malcolm D. [Sandia National Laboratories, Albuquerque, NM (United States); Li, Ming-Hsu [National Central Univ. (Taiwan); ; Fang, Yilin [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States); Zhang, Fan [Inst. of Tibetan Plateau Research, Chinese Academy of Sciences (China); Luo, Wensui [Inst. of Tibetan Plateau Research, Chinese Academy of Sciences (China); Yabusaki, Steven B. [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States)

    2013-05-01

    There are two different ways to model reactive transport: ad hoc and innovative reaction-based approaches. The former, such as the Kd simplification of adsorption, has been widely employed by practitioners, while the latter has been mainly used in scientific communities for elucidating mechanisms of biogeochemical transport processes. It is believed that innovative mechanistic-based models could serve as protocols for environmental remediation as well. This paper reviews the development of a mechanistically coupled fluid flow, thermal transport, hydrologic transport, and reactive biogeochemical model and example-applications to environmental remediation problems. Theoretical bases are sufficiently described. Four example problems previously carried out are used to demonstrate how numerical experimentation can be used to evaluate the feasibility of different remediation approaches. The first one involved the application of a 56-species uranium tailing problem to the Melton Branch Subwatershed at Oak Ridge National Laboratory (ORNL) using the parallel version of the model. Simulations were made to demonstrate the potential mobilization of uranium and other chelating agents in the proposed waste disposal site. The second problem simulated laboratory-scale system to investigate the role of natural attenuation in potential off-site migration of uranium from uranium mill tailings after restoration. It showed inadequacy of using a single Kd even for a homogeneous medium. The third example simulated laboratory experiments involving extremely high concentrations of uranium, technetium, aluminum, nitrate, and toxic metals (e.g.,Ni, Cr, Co).The fourth example modeled microbially-mediated immobilization of uranium in an unconfined aquifer using acetate amendment in a field-scale experiment. The purposes of these modeling studies were to simulate various mechanisms of mobilization and immobilization of radioactive wastes and to illustrate how to apply reactive transport models

  7. A mathematical model of cancer cells with phenotypic plasticity

    Directory of Open Access Journals (Sweden)

    Da Zhou

    2015-08-01

    Full Text Available Purpose: The phenotypic plasticity of cancer cells is recently becoming a cutting-edge research area in cancer, which challenges the cellular hierarchy proposed by the conventional cancer stem cell theory. In this study, we establish a mathematical model for describing the phenotypic plasticity of cancer cells, based on which we try to find some salient features that can characterize the dynamic behavior of the phenotypic plasticity especially in comparison to the hierarchical model of cancer cells. Methods: We model cancer as population dynamics composed of different phenotypes of cancer cells. In this model, not only can cancer cells divide (symmetrically and asymmetrically and die, but they can also convert into other cellular phenotypes. According to the Law of Mass Action, the cellular processes can be captured by a system of ordinary differential equations (ODEs. On one hand, we can analyze the long-term stability of the model by applying qualitative method of ODEs. On the other hand, we are also concerned about the short-term behavior of the model by studying its transient dynamics. Meanwhile, we validate our model to the cell-state dynamics in published experimental data.Results: Our results show that the phenotypic plasticity plays important roles in both stabilizing the distribution of different phenotypic mixture and maintaining the cancer stem cells proportion. In particular, the phenotypic plasticity model shows decided advantages over the hierarchical model in predicting the phenotypic equilibrium and cancer stem cells’ overshoot reported in previous biological experiments in cancer cell lines.Conclusion: Since the validity of the phenotypic plasticity paradigm and the conventional cancer stem cell theory is still debated in experimental biology, it is worthy of theoretically searching for good indicators to distinguish the two models through quantitative methods. According to our study, the phenotypic equilibrium and overshoot

  8. Mathematical modelling: From school to university

    OpenAIRE

    Ansie Harding

    2009-01-01

    The outcomes based education (OBE) system is characterised by controversy and the 2008 matric results that rendered admission to an unusually large number of students did nothing to silence critics. The first students who completed their full cycle of school education in the OBE system entered universities in 2009 and their preparedness for university mathematics as well as their performance at university level are important as indicaters for estimating the success or otherwise of the OBE syst...

  9. Do Mathematics Textbooks Cultivate Shallow Teaching? Applying the TIMSS Video Study Criteria to Australian Eighth-Grade Mathematics Textbooks

    Science.gov (United States)

    Vincent, Jill; Stacey, Kaye

    2008-01-01

    Australian eighth-grade mathematics lessons were shown by the 1999 TIMSS Video Study to use a high proportion of problems of low procedural complexity, with considerable repetition, and an absence of deductive reasoning. Using definitions from the Video Study, this study re-investigated this "shallow teaching syndrome" by examining the problems on…

  10. A mathematical model of tumor–immune interactions

    KAUST Repository

    Robertson-Tessi, Mark

    2012-02-01

    A mathematical model of the interactions between a growing tumor and the immune system is presented. The equations and parameters of the model are based on experimental and clinical results from published studies. The model includes the primary cell populations involved in effector T-cell mediated tumor killing: regulatory T cells, helper T cells, and dendritic cells. A key feature is the inclusion of multiple mechanisms of immunosuppression through the main cytokines and growth factors mediating the interactions between the cell populations. Decreased access of effector cells to the tumor interior with increasing tumor size is accounted for. The model is applied to tumors with different growth rates and antigenicities to gauge the relative importance of various immunosuppressive mechanisms. The most important factors leading to tumor escape are TGF-Β-induced immunosuppression, conversion of helper T cells into regulatory T cells, and the limitation of immune cell access to the full tumor at large tumor sizes. The results suggest that for a given tumor growth rate, there is an optimal antigenicity maximizing the response of the immune system. Further increases in antigenicity result in increased immunosuppression, and therefore a decrease in tumor killing rate. This result may have implications for immunotherapies which modulate the effective antigenicity. Simulation of dendritic cell therapy with the model suggests that for some tumors, there is an optimal dose of transfused dendritic cells. © 2011 Elsevier Ltd.

  11. Applied systems ecology: models, data, and statistical methods

    Energy Technology Data Exchange (ETDEWEB)

    Eberhardt, L L

    1976-01-01

    In this report, systems ecology is largely equated to mathematical or computer simulation modelling. The need for models in ecology stems from the necessity to have an integrative device for the diversity of ecological data, much of which is observational, rather than experimental, as well as from the present lack of a theoretical structure for ecology. Different objectives in applied studies require specialized methods. The best predictive devices may be regression equations, often non-linear in form, extracted from much more detailed models. A variety of statistical aspects of modelling, including sampling, are discussed. Several aspects of population dynamics and food-chain kinetics are described, and it is suggested that the two presently separated approaches should be combined into a single theoretical framework. It is concluded that future efforts in systems ecology should emphasize actual data and statistical methods, as well as modelling.

  12. Applied Modeling of Air Pollution (AMAP)

    International Nuclear Information System (INIS)

    This report summarizes the activities in the first year of the project Applied Modeling of Air Pollution (AMAP). This project which has a duration of three years aims at concentrating and improve the available air quality modeling expertise in the Austrian Research Centre Seibersdorf. The overall project consists of the subprojects Dispersion Modeling, Receptor Modeling and Urban Airshed Modeling. During the first year appropriate models (such as ISCST3, CMB, UAM-IV and CALGRID) were installed and tested with data from real and fictive examples as well as with synthetic data. High emphasis was given to the visualization of the model outputs. (author)

  13. Mathematical Formulation Requirements and Specifications for the Process Models

    Energy Technology Data Exchange (ETDEWEB)

    Steefel, C.; Moulton, D.; Pau, G.; Lipnikov, K.; Meza, J.; Lichtner, P.; Wolery, T.; Bacon, D.; Spycher, N.; Bell, J.; Moridis, G.; Yabusaki, S.; Sonnenthal, E.; Zyvoloski, G.; Andre, B.; Zheng, L.; Davis, J.

    2010-11-01

    The Advanced Simulation Capability for Environmental Management (ASCEM) is intended to be a state-of-the-art scientific tool and approach for understanding and predicting contaminant fate and transport in natural and engineered systems. The ASCEM program is aimed at addressing critical EM program needs to better understand and quantify flow and contaminant transport behavior in complex geological systems. It will also address the long-term performance of engineered components including cementitious materials in nuclear waste disposal facilities, in order to reduce uncertainties and risks associated with DOE EM's environmental cleanup and closure activities. Building upon national capabilities developed from decades of Research and Development in subsurface geosciences, computational and computer science, modeling and applied mathematics, and environmental remediation, the ASCEM initiative will develop an integrated, open-source, high-performance computer modeling system for multiphase, multicomponent, multiscale subsurface flow and contaminant transport. This integrated modeling system will incorporate capabilities for predicting releases from various waste forms, identifying exposure pathways and performing dose calculations, and conducting systematic uncertainty quantification. The ASCEM approach will be demonstrated on selected sites, and then applied to support the next generation of performance assessments of nuclear waste disposal and facility decommissioning across the EM complex. The Multi-Process High Performance Computing (HPC) Simulator is one of three thrust areas in ASCEM. The other two are the Platform and Integrated Toolsets (dubbed the Platform) and Site Applications. The primary objective of the HPC Simulator is to provide a flexible and extensible computational engine to simulate the coupled processes and flow scenarios described by the conceptual models developed using the ASCEM Platform. The graded and iterative approach to assessments

  14. Educational software design: applying models of learning

    OpenAIRE

    Richards, Stephen

    2011-01-01

    The model of learning adopted within this paper is the 'spreading ripples' (SR) model proposed by Race (1994). This model was chosen for two important reasons. First, it makes use of accessible ideas and language, .and is therefore simple. Second, .Race suggests that the model can be used in the design, of educational and training programmes (and can thereby be applied to the design of computer-based learning materials).DOI:10.1080/0968776960040303

  15. Features of teaching mathematics students bachelor of «Applied informatics in economy»

    OpenAIRE

    Zulfina Sh. Aglaymova

    2011-01-01

    In this article the peculiarities of mathematics learning process for Bachelors of the specification "Information Technology in Economics" are discussed. In the article the great attention is paid to the ways of improving the quality of mathematics learning process.

  16. A Marking Scheme Rubric: To Assess Students' Mathematical Knowledge for Applied Algebra Test

    OpenAIRE

    Betsy Lee Guat Poh; Kasturi Muthoosamy; Chiang Choon Lai; Goh Boon Hoe

    2015-01-01

    Students' ability in mathematics mainly relies on their performance in the assessment task such as tests, quizzes, assignments and final examinations. However, the grading process depends on the respective mathematics teacher who sets a marking scheme in assessing students' learning. How do these teachers assign grades to their students' problem solving work? What does it mean by five marks or ten marks for a mathematics problem? How does a teacher evaluate a student's mathematical knowledge ...

  17. Mathematical Modeling And Simulation of Photo-Voltaic Converter Operation when Varying Different Parameters

    OpenAIRE

    Miholca CONSTANTIN; Cristian MUNTEANU; Viorel NICOLAU

    2008-01-01

    The paper presents a method of mathematical modelling of a solar converter using the results of full-scale testing. The advantages of analytical modelling method applied to photovoltaic systems are also presented; this is because the model parameters are directly measurable by data acquisition from the photovoltaic field consisting of photovoltaic cells type Z - (mono-crystalline photovoltaic). The model parameter also includes both the photovoltaic cell characteristics as a device (forming t...

  18. Applying a Universal Design for Learning Framework to Mediate the Language Demands of Mathematics

    Science.gov (United States)

    Thomas, Cathy Newman; Van Garderen, Delinda; Scheuermann, Amy; Lee, Eun Ju

    2015-01-01

    This article provides information about the relationship between mathematics, language, and literacy and describes the difficulties faced by students with disabilities with math content based on the language demands of mathematics. We conceptualize mathematics language as a mode of discourse for math learning that can be thought of as receptive…

  19. Mathematical Modeling of the Numerical Control Cam Grinder Wheel Center Displacement and Its Application

    Institute of Scientific and Technical Information of China (English)

    WANG Xiaojun; LIU Zhaohui

    2006-01-01

    Considering grinding a cam with numerical control (NC) cam grinder, a mathematical model should be established with the unified parameter based on the original cam-lobe lift data to describe the movement of wheel and establish the relation between the wheel center coordinate, the measuring angle and workpiece's spindle rotation angle. By analyzing, the grinding wheel can be regarded as different followers. To the planar and roller followers, different mathematical models are established, but they can be unified in Eqs.(17) of this paper with the different value of the roller radius r1. And also the model is suit for the edged follower when assuming the roller radius r1=0. Experimental verification was done with TKM120 CNC/CBN grinder with NC sets' interpolation according to the model, which shows that high precision parts can be manufactured and this mathematical model can be practically applied for NC cam grinder.

  20. BUILDING MATHEMATICAL MODELS IN DYNAMIC PROGRAMMING

    Directory of Open Access Journals (Sweden)

    LIANA RODICA PATER

    2012-05-01

    Full Text Available In short, we can say that dynamic programming is a method of optimization of systems, using their mathematical representation in phases or sequences or as we say, periods. Such systems are common in economic studies at the implementation of programs on the most advanced techniques, such as for example that involving cosmic navigation. Another concept that is involved in the study of dynamic programs is the economic horizon (number of periods or phases that a dynamic program needs. This concept often leads to the examination of the convergence of certain variables on infinite horizon. In many cases from the real economy by introducing updating, dynamic programs can be made convergent.

  1. Mathematics

    CERN Document Server

    Stein, Sherman K

    2010-01-01

    Anyone can appreciate the beauty, depth, and vitality of mathematics with the help of this highly readable text, specially developed from a college course designed to appeal to students in a variety of fields. Readers with little mathematical background are exposed to a broad range of subjects chosen from number theory, topology, set theory, geometry, algebra, and analysis. Starting with a survey of questions on weight, the text discusses the primes, the fundamental theorem of arithmetic, rationals and irrationals, tiling, tiling and electricity, probability, infinite sets, and many other topi

  2. Mathematical modelling, problem solving, project and ethnomathematics: Confluent points

    OpenAIRE

    Salett Biembengut, Maria

    2015-01-01

    This paper presents a documental study about the con-fluent points among mathematical modelling, problem solving, project and ethnomathematics as methods of research and mathematics teaching. As a result, the study has shown that there are elements that bind these methods structurally together as research methods. Starting from the fact that education should promote knowledge this study provides evidence for these methods. Thus in each one of them, it is required knowledge from the student ab...

  3. Identification of Chemical Reactor Plant’s Mathematical Model

    Directory of Open Access Journals (Sweden)

    Pyakillya Boris

    2015-01-01

    Full Text Available This work presents a solution of the identification problem of chemical reactor plant’s mathematical model. The main goal is to obtain a mathematical description of a chemical reactor plant from experimental data, which based on plant’s time response measurements. This data consists sequence of measurements for water jacket temperature and information about control input signal, which is used to govern plant’s behavior.

  4. Postcorrection and mathematical model of life in Extended Everett's Concept

    OpenAIRE

    Mensky, Michael B.

    2007-01-01

    Extended Everett's Concept (EEC) recently developed by the author to explain the phenomenon of consciousness is considered. A mathematical model is proposed for the principal feature of consciousness assumed in EEC, namely its ability (in the state of sleep, trance or meditation, when the explicit consciousness is disabled) to obtain information from all alternative classical realities (Everett's worlds) and select the favorable realities. To represent this ability, a mathematical operation c...

  5. Mathematical Modelling and Experimental Analysis of Early Age Concrete

    DEFF Research Database (Denmark)

    Hauggaard-Nielsen, Anders Boe

    1997-01-01

    lead to cracks in the later cooling phase. The matrial model has intrigate couplings between the involved mechanics, and in the thesis special emphasize is put on the creep behaviour. The mathematical models are based on experimental analysis and numerical implementation of the models in a finite...

  6. A mathematical model on germinal center kinetics andtermination

    DEFF Research Database (Denmark)

    Kesmir, Can; De Boer, R.J.

    1999-01-01

    We devise a mathematical model to study germinal center (GC) kinetics. Earlier models for GC kinetics areextended by explicitly modeling 1) the cell division history of centroblasts, 2) the Ag uptake by centrocytes,and 3) T cell dynamics. Allowing for T cell kinetics and T-B cell interactions, we...

  7. Learning and Teaching Mathematics through Real Life Models

    Science.gov (United States)

    Takaci, Djurdjica; Budinski, Natalija

    2011-01-01

    This paper proposes modelling based learning as a tool for learning and teaching mathematics in high school. We report on an example of modelling real world problems in two high schools in Serbia where students were introduced for the first time to the basic concepts of modelling. Student use of computers and educational software, GeoGebra, was…

  8. Mathematical modelling of dextran filtration through hollow fibre membranes

    DEFF Research Database (Denmark)

    Vinther, Frank; Pinelo, Manuel; Brøns, Morten; Jonsson, Gunnar Eigil; Meyer, Anne S.

    2014-01-01

    In this paper we present a mathematical model of an ultrafiltration process. The results of the model are produced using standard numerical techniques with Comsol Multiphysics. The model describes the fluid flow and separation in hollow fibre membranes. The flow of solute and solvent within the h...

  9. Mathematical models for correction of images, obtained at radioisotope scan

    International Nuclear Information System (INIS)

    The images, which obtained at radioisotope scintigraphy, contain distortions. Distortions appear as a result of absorption of radiation by patient's body's tissues. Two mathematical models for reducing of such distortions are proposed. Image obtained by only one gamma camera is used in the first mathematical model. Unfortunately, this model allows processing of the images only in case, when it can be assumed, that the investigated organ has a symmetric form. The images obtained by two gamma cameras are used in the second model. It gives possibility to assume that the investigated organ has non-symmetric form and to acquire more precise results. (authors)

  10. A Review on Mathematical Modeling for Textile Processes

    Science.gov (United States)

    Chattopadhyay, R.

    2015-10-01

    Mathematical model is a powerful tool in engineering for studying variety of problems related to design and development of products and processes, optimization of manufacturing process, understanding a phenomenon and predicting product's behaviour in actual use. An insight of the process and use of appropriate mathematical tools are necessary for developing models. In the present paper, a review of types of model, procedure followed in developing them and their limitations have been discussed. Modeling techniques being used in few textile processes available in the literature have been cited as examples.

  11. Mathematics

    International Nuclear Information System (INIS)

    The 1988 progress report of the Mathematics center (Polytechnic School, France), is presented. The Center is composed of different research teams: analysis, Riemann geometry, group theory, formal calculus and algorithm geometry, dynamical systems, topology and singularity. For each team, the members, the research topics, the national and international cooperations, are given. The papers concerning the investigations carried out in 1988, are listed

  12. Mathematical model for Dengue with three states of infection

    Science.gov (United States)

    Hincapie, Doracelly; Ospina, Juan

    2012-06-01

    A mathematical model for dengue with three states of infection is proposed and analyzed. The model consists in a system of differential equations. The three states of infection are respectively asymptomatic, partially asymptomatic and fully asymptomatic. The model is analyzed using computer algebra software, specifically Maple, and the corresponding basic reproductive number and the epidemic threshold are computed. The resulting basic reproductive number is an algebraic synthesis of all epidemic parameters and it makes clear the possible control measures. The microscopic structure of the epidemic parameters is established using the quantum theory of the interactions between the atoms and radiation. In such approximation, the human individual is represented by an atom and the mosquitoes are represented by radiation. The force of infection from the mosquitoes to the humans is considered as the transition probability from the fundamental state of atom to excited states. The combination of computer algebra software and quantum theory provides a very complete formula for the basic reproductive number and the possible control measures tending to stop the propagation of the disease. It is claimed that such result may be important in military medicine and the proposed method can be applied to other vector-borne diseases.

  13. Authentic Integration: a model for integrating mathematics and science in the classroom

    Science.gov (United States)

    Treacy, Páraic; O'Donoghue, John

    2014-07-01

    Attempts at integrating mathematics and science have been made previously but no definitive, widely adopted teaching model has been developed to date. Research suggests that hands-on, practical, student-centred tasks should form a central element when designing an effective model for the integration of mathematics and science. Aided by this research, the author created a new model entitled 'Authentic Integration' which caters for the specific needs of integration of mathematics and science. This model requires that each lesson be based around a rich task which relates to the real world and ensures that hands-on group work, inquiry, and discussion are central to the lesson. It was found that Authentic Integration, when applied in four Irish post-primary schools, positively affected pupil understanding. The teachers who completed the intervention displayed a very positive attitude towards the approach, intimating that they would continue to implement the practice in their classrooms.

  14. Mathematical Models of the Sinusoidal Screen Family

    Directory of Open Access Journals (Sweden)

    Tajana Koren

    2011-06-01

    Full Text Available In this paper we will define a family of sinusoidal screening elements and explore the possibilities of their application in graphic arts, securities printing and design solutions in photography and typography editing. For this purpose mathematical expressions of sinusoidal families were converted into a Postscript language. The introduction of a random variable results in a countless number of various mutations which cannot be repeated without knowing the programming code itself. The use of the family of screens in protection of securities is thus of great importance. Other possible application of modulated sinusoidal screens is related to the large format color printing. This paper will test the application of sinusoidal screens in vector graphics, pixel graphics and typography. The development of parameters in the sinusoidal screen element algorithms gives new forms defined within screening cells with strict requirements of coverage implementation. Individual solutions include stochastic algorithms, as well as the autonomy of screening forms in regard to multicolor printing channels.

  15. Mathematics of uncertainty modeling in the analysis of engineering and science problems

    CERN Document Server

    Chakraverty, S

    2014-01-01

    For various scientific and engineering problems, how to deal with variables and parameters of uncertain value is an important issue. Full analysis of the specific errors in measurement, observations, experiments, and applications are vital in dealing with the parameters taken to simplify the problem. Mathematics of Uncertainty Modeling in the Analysis of Engineering and Science Problems aims to provide the reader with basic concepts for soft computing and other methods for various means of uncertainty in handling solutions, analysis, and applications. This book is an essential reference work for students, scholars, practitioners and researchers in the assorted fields of engineering and applied mathematics interested in a model for uncertain physical problems.

  16. Surface-bounded growth modeling applied to human mandibles

    DEFF Research Database (Denmark)

    Andresen, Per Rønsholt

    1999-01-01

    pointing more upward. The full dataset consists of 31 mandibles from six patients. Each patient is longitudinally CT scanned between three and seven times. Age range is 1 month to 12 years old for the scans. Growth modeling consists of three overall steps: 1.extraction of features. 2.registration of the...... old mandible based on the 3 month old scan. When using successively more recent scans as basis for the model the error drops to 2.0 mm for the 11 years old scan. Thus, it seems reasonable to assume that the mandibular growth is linear.......This thesis presents mathematical and computational techniques for three dimensional growth modeling applied to human mandibles. The longitudinal shape changes make the mandible a complex bone. The teeth erupt and the condylar processes change direction, from pointing predominantly backward to...

  17. Remote sensing applied to numerical modelling. [water resources pollution

    Science.gov (United States)

    Sengupta, S.; Lee, S. S.; Veziroglu, T. N.; Bland, R.

    1975-01-01

    Progress and remaining difficulties in the construction of predictive mathematical models of large bodies of water as ecosystems are reviewed. Surface temperature is at present the only variable than can be measured accurately and reliably by remote sensing techniques, but satellite infrared data are of sufficient resolution for macro-scale modeling of oceans and large lakes, and airborne radiometers are useful in meso-scale analysis (of lakes, bays, and thermal plumes). Finite-element and finite-difference techniques applied to the solution of relevant coupled time-dependent nonlinear partial differential equations are compared, and the specific problem of the Biscayne Bay and environs ecosystem is tackled in a finite-differences treatment using the rigid-lid model and a rigid-line grid system.

  18. MATHEMATICAL MODELING FOR DURABILITY CHARACTERISTICS OF FLY ASH CONCRETE

    Directory of Open Access Journals (Sweden)

    JINO JOHN

    2012-01-01

    Full Text Available This paper presents the results obtained from the mathematical modeling for the durability characteristics of fly ash concrete. A mathematical model is employed to predict the saturated water absorption, permeability, sorpitivity and acid resistance of the concrete containing fly ash as a replacement of cement at a range of 0%, 10%, 20%, 30%, 40% and 50 %. This model is valid for mixes with cement quantity 208 to 416 kg/m3, water cement ratio 0.38 to 0.76, flyash 0 to 208 kg/m3 and cement/ total aggregate ratio varying from 0.11 to 0.22. Fly ash content and water cement ratio are the main parameters which influence the durability characteristics. The predicted mathematical model for saturated water absorption, permeability, sorpitivity and acid resistance produced accurate results for the respective ages when compared with the experimental results.

  19. Solutions manual to accompany finite mathematics models and applications

    CERN Document Server

    Morris, Carla C

    2015-01-01

    A solutions manual to accompany Finite Mathematics: Models and Applications In order to emphasize the main concepts of each chapter, Finite Mathematics: Models and Applications features plentiful pedagogical elements throughout such as special exercises, end notes, hints, select solutions, biographies of key mathematicians, boxed key principles, a glossary of important terms and topics, and an overview of use of technology. The book encourages the modeling of linear programs and their solutions and uses common computer software programs such as LINDO. In addition to extensive chapters on pr

  20. Mathematical modeling of a rotary hearth coke calciner

    Directory of Open Access Journals (Sweden)

    Hilde C. Meisingset

    1995-10-01

    Full Text Available A mathematical model of a rotary hearth coke calciner is developed. The model is based on first principles including the most important dynamic phenomena. The model is a thermodynamic model involving heat and mass transfer and chemical reactions. Fundamental mass and energy balance equations for the coke phase, the gas phase and the lining are formulated. For the gas phase, a stationary model is used. The equations are solved numerically, and simulated temperature profiles are shown in this paper.

  1. Mathematical modeling of a rotary hearth coke calciner

    OpenAIRE

    Hilde C. Meisingset; Jens G. Balchen

    1995-01-01

    A mathematical model of a rotary hearth coke calciner is developed. The model is based on first principles including the most important dynamic phenomena. The model is a thermodynamic model involving heat and mass transfer and chemical reactions. Fundamental mass and energy balance equations for the coke phase, the gas phase and the lining are formulated. For the gas phase, a stationary model is used. The equations are solved numerically, and simulated temperature profiles are shown in this p...

  2. Mathematical Modeling of Vascular Tumor Growth and Development

    OpenAIRE

    Cooper, Michele

    2010-01-01

    Mathematical modeling of cancer is of significant interest due to its potential to aid in our understanding of the disease, including investigation into which factors are most important in the progression of cancer. With this knowledge and model different paths of treatment can be examined; (e.g. simulation of different treatment techniques followed by the more costly venture of testing on animal models). Significant work has been done in the field of cancer modeling with models ranging from ...

  3. Mathematical Modeling of Food Freezing in Air-Blast Freezer

    OpenAIRE

    Guiqiang Wang; Pinghua Zou

    2014-01-01

    A mathematical model for simulating the heat transfer during food freezing was presented. The model consists of three steps. First, the flow field inside the freezing chamber was modeled using the CFD method, based on which the freezing condition, including the temperature and velocity around the food, was calculated. Second, the heat transfer coefficient between food and air was calculated in the CFD model. Third, a finite-difference model was employed to simulate the heat transfer inside th...

  4. Mathematical modelling of slow drug release from collagen matrices

    OpenAIRE

    Erichsen, Birgitte Riisøen

    2014-01-01

    This master's thesis is about controlled drug release, which is a relatively new area of mathematical modelling. In this thesis there have been two major focuses. The first is to further understand the model for drug release from collagen matrices developed earlier by solving it with a different numerical scheme, and the second to develop a new model based on a different geometry. Both models are based on mass conservation and Fick's law, and are therefore possible to compare. The two models ...

  5. Applying the WEAP Model to Water Resource

    DEFF Research Database (Denmark)

    Gao, Jingjing; Christensen, Per; Li, Wei

    Water resources assessment is a tool to provide decision makers with an appropriate basis to make informed judgments regarding the objectives and targets to be addressed during the Strategic Environmental Assessment (SEA) process. The study shows how water resources assessment can be applied in SEA...... in assessing the effects on water resources using a case study on a Coal Industry Development Plan in an arid region in North Western China. In the case the WEAP model (Water Evaluation And Planning System) were used to simulate various scenarios using a diversity of technological instruments like...... irrigation efficiency, treatment and reuse of water. The WEAP model was applied to the Ordos catchment where it was used for the first time in China. The changes in water resource utilization in Ordos basin were assessed with the model. It was found that the WEAP model is a useful tool for water resource...

  6. MODELLING AND SIMULATING RISKS IN THE TRAINING OF THE HUMAN RESOURCES BY APPLYING THE CHAOS THEORY

    OpenAIRE

    Eugen ROTARESCU

    2012-01-01

    The article approaches the modelling and simulation of risks in the training of the human resources, as well as the forecast of the degree of human resources training impacted by risks by applying the mathematical tools offered by the Chaos Theory and mathematical statistics. We will highlight that the level of knowledge, skills and abilities of the human resources from an organization are autocorrelated in time and they depend on the level of a previous moment of the training, as well as on ...

  7. Applied probability models with optimization applications

    CERN Document Server

    Ross, Sheldon M

    1992-01-01

    Concise advanced-level introduction to stochastic processes that frequently arise in applied probability. Largely self-contained text covers Poisson process, renewal theory, Markov chains, inventory theory, Brownian motion and continuous time optimization models, much more. Problems and references at chapter ends. ""Excellent introduction."" - Journal of the American Statistical Association. Bibliography. 1970 edition.

  8. Mathematical Model for an Effective Management of HIV Infection.

    Science.gov (United States)

    Ogunlaran, Oladotun Matthew; Oukouomi Noutchie, Suares Clovis

    2016-01-01

    Human immunodeficiency virus infection destroys the body immune system, increases the risk of certain pathologies, damages body organs such as the brain, kidney, and heart, and causes death. Unfortunately, this infectious disease currently has no cure; however, there are effective retroviral drugs for improving the patients' health conditions but excessive use of these drugs is not without harmful side effects. This study presents a mathematical model with two control variables, where the uninfected CD4(+)T cells follow the logistic growth function and the incidence term is saturated with free virions. We use the efficacy of drug therapies to block the infection of new cells and prevent the production of new free virions. Our aim is to apply optimal control approach to maximize the concentration of uninfected CD4(+)T cells in the body by using minimum drug therapies. We establish the existence of an optimal control pair and use Pontryagin's principle to characterize the optimal levels of the two controls. The resulting optimality system is solved numerically to obtain the optimal control pair. Finally, we discuss the numerical simulation results which confirm the effectiveness of the model. PMID:27057541

  9. Mathematical modeling in economics, ecology and the environment

    CERN Document Server

    Hritonenko, Natali

    2013-01-01

    Updated to textbook form by popular demand, this second edition discusses diverse mathematical models used in economics, ecology, and the environmental sciences with emphasis on control and optimization. It is intended for graduate and upper-undergraduate course use, however, applied mathematicians, industry practitioners, and a vast number of interdisciplinary academics will find the presentation highly useful. Core topics of this text are: ·         Economic growth and technological development ·         Population dynamics and human impact on the environment ·         Resource extraction and scarcity ·         Air and water contamination ·         Rational management of the economy and environment ·         Climate change and global dynamics The step-by-step approach taken is problem-based and easy to follow. The authors aptly demonstrate that the same models may be used to describe different economic and environmental processes and that similar invest...

  10. The Singing Wineglass: An Exercise in Mathematical Modelling

    Science.gov (United States)

    Voges, E. L.; Joubert, S. V.

    2008-01-01

    Lecturers in mathematical modelling courses are always on the lookout for new examples to illustrate the modelling process. A physical phenomenon, documented as early as the nineteenth century, was recalled: when a wineglass "sings", waves are visible on the surface of the wine. These surface waves are used as an exercise in mathematical…

  11. Safety analyses of the LVR-15 reactor (mathematical model)

    International Nuclear Information System (INIS)

    A mathematical model is described of the LVR-15 experimental reactor core and primary circuit. Described are the thermal hydraulics of main primary circuit components, a model of point kinetics for reactor output calculations, and equations for residual heat. An approach to numerical solution is presented and computer programs briefly described. (author). 6 figs., 4 tabs., 28 refs

  12. Mathematical model of bisubject qualimetric arbitrary objects evaluation

    Science.gov (United States)

    Morozova, A.

    2016-04-01

    An analytical basis and the process of formalization of arbitrary objects bisubject qualimetric evaluation mathematical model information spaces are developed. The model is applicable in solving problems of control over both technical and socio-economic systems for objects evaluation using systems of parameters generated by different subjects taking into account their performance and priorities of decision-making.

  13. Use of mathematical modeling in nuclear measurements projects

    International Nuclear Information System (INIS)

    Mathematical modeling of nuclear measurement systems is not a new concept. The response of the measurement system is described using a pre-defined mathematical model that depends on a set of parameters. These parameters are determined using a limited set of experimental measurement points e.g. efficiency curve, dose rates... etc. The model that agrees with the few experimental points is called an experimentally validated model. Once these models have been validated, we use mathematical interpolation to find the parameters of interest. Sometimes, when measurements are not practical or are impossible extrapolation is implemented but with care. CANBERRA has been extensively using mathematical modeling for the design and calibration of large and sophisticated systems to create and optimize designs that would be prohibitively expensive with only experimental tools. The case studies that will be presented here are primarily performed with MCNP, CANBERRA's MERCURAD/PASCALYS and ISOCS (In Situ Object Counting Software). For benchmarking purposes, both Monte Carlo and ray-tracing based codes are inter-compared to show models consistency and add a degree of reliability to modeling results. (authors)

  14. Preparation of mathematical model of electronic regulator to calculation researches

    OpenAIRE

    Лисовал, А. А.

    2008-01-01

    The stage of design of microprocessor regulator for a diesel with supercharger is presented: the development of a dynamic mathematical model of an electronic regulator. Adequacy of the created model is confirmed during realization of her in the software environment of MATLAB/Simulink. Il. 6. Bibliogr. 7 names.

  15. Mathematical Model Analysis of Intra-organisational Collaboration

    OpenAIRE

    Anliang Ning; Xiaojing Li; Chunxian Wang

    2013-01-01

    Collaboration means working together to achieve a common goal or to solve a problem. Grounded on complex network theory and collaborative design research, a mathematical model for analysing collaboration level in organisations is proposed. The concepts for characterising organisational structures for collaboration and indicators for assessing organisational behaviour were defined. The article concludes by discussing the limitations of the proposed model.

  16. MATHEMATICAL MODEL OF ELECTROSTATIC PRECIPITATION (REVISION 3): SOURCE CODE

    Science.gov (United States)

    This tape contains the source code (FORTRAN) for Revision 3 of the Mathematical Model of Electrostatic Precipitation. Improvements found in Revision 3 of the model include a new method of calculating the solutions to the electric field equations, a dynamic method for calculating ...

  17. Mathematical model of desublimation process of volatile metal fluorides

    OpenAIRE

    Smolkin, P. А.; Buynovskiy, А. S.; Lazarchuk, V. V.; Matveev, А. А.; Sofronov, V. L.

    2007-01-01

    Mathematical model for calculation of optimal temperature desublimation in metal fluorides and the number of desublimation stages has been developed; it permits achieving the degree of base product recovery from gas-vapour mixture nearly to 100 %. Experimental checking of modeling results at uranium hexafluoride desublimation shows a good correlation with the theoretical data.

  18. Mathematical modelling in engineering: A proposal to introduce linear algebra concepts

    Directory of Open Access Journals (Sweden)

    Andrea Dorila Cárcamo

    2016-03-01

    Full Text Available The modern dynamic world requires that basic science courses for engineering, including linear algebra, emphasize the development of mathematical abilities primarily associated with modelling and interpreting, which aren´t limited only to calculus abilities. Considering this, an instructional design was elaborated based on mathematic modelling and emerging heuristic models for the construction of specific linear algebra concepts:  span and spanning set. This was applied to first year engineering students. Results suggest that this type of instructional design contributes to the construction of these mathematical concepts and can also favour first year engineering students understanding of key linear algebra concepts and potentiate the development of higher order skills.

  19. Mathematical models of a diffusion-convection in porous media

    Directory of Open Access Journals (Sweden)

    Anvarbek M. Meirmanov

    2012-06-01

    Full Text Available Mathematical models of a diffusion-convection in porous media are derived from the homogenization theory. We start with the mathematical model on the microscopic level, which consist of the Stokes system for a weakly compressible viscous liquid occupying a pore space, coupled with a diffusion-convection equation for the admixture. We suppose that the viscosity of the liquid depends on a concentration of the admixture and for this nonlinear system we prove the global in time existence of a weak solution. Next we rigorously fulfil the homogenization procedure as the dimensionless size of pores tends to zero, while the porous body is geometrically periodic. As a result, we derive new mathematical models of a diffusion-convection in absolutely rigid porous media.

  20. Mathematical model of two-phase flow in accelerator channel

    Directory of Open Access Journals (Sweden)

    О.Ф. Нікулін

    2010-01-01

    Full Text Available  The problem of  two-phase flow composed of energy-carrier phase (Newtonian liquid and solid fine-dispersed phase (particles in counter jet mill accelerator channel is considered. The mathematical model bases goes on the supposition that the phases interact with each other like independent substances by means of aerodynamics’ forces in conditions of adiabatic flow. The mathematical model in the form of system of differential equations of order 11 is represented. Derivations of equations by base physical principles for cross-section-averaged quantity are produced. The mathematical model can be used for estimation of any kinematic and thermodynamic flow characteristics for purposely parameters optimization problem solving and transfer functions determination, that take place in  counter jet mill accelerator channel design.

  1. Methods for model selection in applied science and engineering.

    Energy Technology Data Exchange (ETDEWEB)

    Field, Richard V., Jr.

    2004-10-01

    Mathematical models are developed and used to study the properties of complex systems and/or modify these systems to satisfy some performance requirements in just about every area of applied science and engineering. A particular reason for developing a model, e.g., performance assessment or design, is referred to as the model use. Our objective is the development of a methodology for selecting a model that is sufficiently accurate for an intended use. Information on the system being modeled is, in general, incomplete, so that there may be two or more models consistent with the available information. The collection of these models is called the class of candidate models. Methods are developed for selecting the optimal member from a class of candidate models for the system. The optimal model depends on the available information, the selected class of candidate models, and the model use. Classical methods for model selection, including the method of maximum likelihood and Bayesian methods, as well as a method employing a decision-theoretic approach, are formulated to select the optimal model for numerous applications. There is no requirement that the candidate models be random. Classical methods for model selection ignore model use and require data to be available. Examples are used to show that these methods can be unreliable when data is limited. The decision-theoretic approach to model selection does not have these limitations, and model use is included through an appropriate utility function. This is especially important when modeling high risk systems, where the consequences of using an inappropriate model for the system can be disastrous. The decision-theoretic method for model selection is developed and applied for a series of complex and diverse applications. These include the selection of the: (1) optimal order of the polynomial chaos approximation for non-Gaussian random variables and stationary stochastic processes, (2) optimal pressure load model to be

  2. CHOOSING A MATHEMATICAL MODEL OF HEAT SUPPLY NETWORK ROUTE

    Directory of Open Access Journals (Sweden)

    V. N. Melkumov

    2012-02-01

    Full Text Available Problem statement. Modern computational technologies allow to develop mathematical modelsfor choosing optimal topology and construction routes of heat supply networks taking into accounta large amount of influencing factors. Important pivots when developing a mathematical model arethe choice of source data representation, of the model of choosing the optimal topology and routeand the computational algorithms for model implementation at computing facilities. The difficultyof choosing a computational method, aside from the nature of topological models, is complicatedby a large amount of limiting factors. This is the reason why the choice of forms of representationof mathematical models and the efficiency of computational methods of their solution is actualwhen used in practical applications.Results. A mathematical model of the cost of construction of heat supply networks has been developedwhich, as opposed to traditional models, leaves the necessary degrees of freedom for determiningacceptable and optimal topology and construction route for account of using multicriterionoptimization. A method of weighted summation has been proposed for usage for combiningraster maps corresponding to different routing criteria.Conclusions. The considered method allows to take account of the whole system of factors influencingthe construction route of heat supply network and to conduct route optimization basedon several criteria, which allows to choose the optimal topology and construction route under theinfluence of multiple external and internal factors.

  3. Applying Mathematical Concepts with Hands-On, Food-Based Science Curriculum

    Science.gov (United States)

    Roseno, Ashley T.; Carraway-Stage, Virginia G.; Hoerdeman, Callan; Díaz, Sebastián R.; Geist, Eugene; Duffrin, Melani W.

    2015-01-01

    This article addresses the current state of the mathematics education system in the United States and provides a possible solution to the contributing issues. As a result of lower performance in primary mathematics, American students are not acquiring the necessary quantitative literacy skills to become successful adults. This study analyzed the…

  4. Blooms' separation of the final exam of Engineering Mathematics II: Item reliability using Rasch measurement model

    Science.gov (United States)

    Fuaad, Norain Farhana Ahmad; Nopiah, Zulkifli Mohd; Tawil, Norgainy Mohd; Othman, Haliza; Asshaari, Izamarlina; Osman, Mohd Hanif; Ismail, Nur Arzilah

    2014-06-01

    In engineering studies and researches, Mathematics is one of the main elements which express physical, chemical and engineering laws. Therefore, it is essential for engineering students to have a strong knowledge in the fundamental of mathematics in order to apply the knowledge to real life issues. However, based on the previous results of Mathematics Pre-Test, it shows that the engineering students lack the fundamental knowledge in certain topics in mathematics. Due to this, apart from making improvements in the methods of teaching and learning, studies on the construction of questions (items) should also be emphasized. The purpose of this study is to assist lecturers in the process of item development and to monitor the separation of items based on Blooms' Taxonomy and to measure the reliability of the items itself usingRasch Measurement Model as a tool. By using Rasch Measurement Model, the final exam questions of Engineering Mathematics II (Linear Algebra) for semester 2 sessions 2012/2013 were analysed and the results will provide the details onthe extent to which the content of the item providesuseful information about students' ability. This study reveals that the items used in Engineering Mathematics II (Linear Algebra) final exam are well constructed but the separation of the items raises concern as it is argued that it needs further attention, as there is abig gap between items at several levels of Blooms' cognitive skill.

  5. Modeling eBook acceptance: A study on mathematics teachers

    Science.gov (United States)

    Jalal, Azlin Abd; Ayub, Ahmad Fauzi Mohd; Tarmizi, Rohani Ahmad

    2014-12-01

    The integration and effectiveness of eBook utilization in Mathematics teaching and learning greatly relied upon the teachers, hence the need to understand their perceptions and beliefs. The eBook, an individual laptop completed with digitized textbook sofwares, were provided for each students in line with the concept of 1 student:1 laptop. This study focuses on predicting a model on the acceptance of the eBook among Mathematics teachers. Data was collected from 304 mathematics teachers in selected schools using a survey questionnaire. The selection were based on the proportionate stratified sampling. Structural Equation Modeling (SEM) were employed where the model was tested and evaluated and was found to have a good fit. The variance explained for the teachers' attitude towards eBook is approximately 69.1% where perceived usefulness appeared to be a stronger determinant compared to perceived ease of use. This study concluded that the attitude of mathematics teachers towards eBook depends largely on the perception of how useful the eBook is on improving their teaching performance, implying that teachers should be kept updated with the latest mathematical application and sofwares to use with the eBook to ensure positive attitude towards using it in class.

  6. A full body mathematical model of an oil palm harvester

    Science.gov (United States)

    Tumit, NP; Rambely, A. S.; BMT, Shamsul; Shahriman A., B.; Ng Y., G.; Deros, B. M.; Zailina, H.; Goh Y., M.; Arumugam, Manohar; Ismail I., A.; Abdul Hafiz A., R.

    2015-09-01

    The main purpose of this article is to develop a mathematical model of human body during harvesting via Kane's method. This paper is an extension model of previous biomechanical model representing a harvester movement during harvesting a Fresh Fruit Bunch (FFB) from a palm oil tree. The ten segment model consists of foot, leg, trunk, the head and the arms segment. Finally, the inverse dynamic equations are represented in a matrix form.

  7. Mathematical model in controlling dengue transmission with sterile mosquito strategies

    Science.gov (United States)

    Aldila, D.; Nuraini, N.; Soewono, E.

    2015-09-01

    In this article, we propose a mathematical model for controlling dengue disease transmission with sterile mosquito techniques (SIT). Sterile male introduced from lab in to habitat to compete with wild male mosquito for mating with female mosquito. Our aim is to displace gradually the natural mosquito from the habitat. Mathematical model analysis for steady states and the basic reproductive ratio are performed analytically. Numerical simulation are shown in some different scenarios. We find that SIT intervention is potential to controlling dengue spread among humans population

  8. A mathematical look at a physical power prediction model

    Energy Technology Data Exchange (ETDEWEB)

    Landberg, L. [Riso National Lab., Roskilde (Denmark)

    1997-12-31

    This paper takes a mathematical look at a physical model used to predict the power produced from wind farms. The reason is to see whether simple mathematical expressions can replace the original equations, and to give guidelines as to where the simplifications can be made and where they can not. This paper shows that there is a linear dependence between the geostrophic wind and the wind at the surface, but also that great care must be taken in the selection of the models since physical dependencies play a very important role, e.g. through the dependence of the turning of the wind on the wind speed.

  9. Mathematical modelling in the computer-aided process planning

    Science.gov (United States)

    Mitin, S.; Bochkarev, P.

    2016-04-01

    This paper presents new approaches to organization of manufacturing preparation and mathematical models related to development of the computer-aided multi product process planning (CAMPP) system. CAMPP system has some peculiarities compared to the existing computer-aided process planning (CAPP) systems: fully formalized developing of the machining operations; a capacity to create and to formalize the interrelationships among design, process planning and process implementation; procedures for consideration of the real manufacturing conditions. The paper describes the structure of the CAMPP system and shows the mathematical models and methods to formalize the design procedures.

  10. Rock Burst Mechanics: Insight from Physical and Mathematical Modelling

    OpenAIRE

    Vacek, J.; J. Chocholoušová

    2008-01-01

    Rock burst processes in mines are studied by many groups active in the field of geomechanics. Physical and mathematical modelling can be used to better understand the phenomena and mechanisms involved in the bursts. In the present paper we describe both physical and mathematical models of a rock burst occurring in a gallery of a coal mine.For rock bursts (also called bumps) to occur, the rock has to possess certain particular rock burst properties leading to accumulation of energy and the pot...

  11. Mathematical model for spreading dynamics of social network worms

    International Nuclear Information System (INIS)

    In this paper, a mathematical model for social network worm spreading is presented from the viewpoint of social engineering. This model consists of two submodels. Firstly, a human behavior model based on game theory is suggested for modeling and predicting the expected behaviors of a network user encountering malicious messages. The game situation models the actions of a user under the condition that the system may be infected at the time of opening a malicious message. Secondly, a social network accessing model is proposed to characterize the dynamics of network users, by which the number of online susceptible users can be determined at each time step. Several simulation experiments are carried out on artificial social networks. The results show that (1) the proposed mathematical model can well describe the spreading dynamics of social network worms; (2) weighted network topology greatly affects the spread of worms; (3) worms spread even faster on hybrid social networks

  12. Characteristics of Computational Thinking about the Estimation of the Students in Mathematics Classroom Applying Lesson Study and Open Approach

    Science.gov (United States)

    Promraksa, Siwarak; Sangaroon, Kiat; Inprasitha, Maitree

    2014-01-01

    The objectives of this research were to study and analyze the characteristics of computational thinking about the estimation of the students in mathematics classroom applying lesson study and open approach. Members of target group included 4th grade students of 2011 academic year of Choomchon Banchonnabot School. The Lesson plan used for data…

  13. Comment on "A mathematical theorem as a basis for the second law: Thomson's formulation applied to equilibruim"

    OpenAIRE

    Solomon, Dan

    2004-01-01

    A.E. Allahverdyan and Th. M. Nieuwenhuizen [1] in their paper "A mathematical theorem as a basis for the second law: Thomson's formulation applied to equilibriium" present a proof of the second law of thermodynamics based on quantum mechanics. In this comment on their paper I offer a counterexample to their proof.

  14. MATHEMATICAL MODELING OF ORANGE SEED DRYING KINETICS

    Directory of Open Access Journals (Sweden)

    Daniele Penteado Rosa

    2015-06-01

    Full Text Available Drying of orange seeds representing waste products from juice processing was studied in the temperatures of 40, 50, 60 and 70 °C and drying velocities of 0.6, 1.0 and 1.4 m/s. Experimental drying kinetics of orange seeds were obtained using a convective air forced dryer. Three thin-layer models: Page model, Lewis model, and the Henderson-Pabis model and the diffusive model were used to predict the drying curves. The Henderson-Pabis and the diffusive models show the best fitting performance and statistical evaluations. Moreover, the temperature dependence on the effective diffusivity followed an Arrhenius relationship, and the activation energies ranging from 16.174 to 16.842 kJ/mol

  15. Mathematical model of the dynamics of psychotherapy

    OpenAIRE

    Larry S. Liebovitch; Peluso, Paul R.; Norman, Michael D.; Su, Jessica; Gottman, John M.

    2011-01-01

    The success of psychotherapy depends on the nature of the therapeutic relationship between a therapist and a client. We use dynamical systems theory to model the dynamics of the emotional interaction between a therapist and client. We determine how the therapeutic endpoint and the dynamics of getting there depend on the parameters of the model. Previously Gottman et al. used a very similar approach (physical-sciences paradigm) for modeling and making predictions about husband–wife relationshi...

  16. Mathematical modelling and optimal control of anthracnose

    OpenAIRE

    Fotsa, David; Houpa, Elvis; Békollé, David; Thron, Christopher; Ndoumbé, Michel

    2013-01-01

    In this paper we propose two nonlinear models for the control of anthracnose disease. The first is an ordinary differential equation (ODE) model which represents the within-host evolution of the disease. The second includes spatial diffusion of the disease in a bounded domain. We demonstrate the well-posedness of those models by verifying the existence of solutions for given initial conditions and positive invariance of the positive cone. By considering a quadratic cost functional and applyin...

  17. Geostatistical methods applied to field model residuals

    DEFF Research Database (Denmark)

    Maule, Fox; Mosegaard, K.; Olsen, Nils

    The geomagnetic field varies on a variety of time- and length scales, which are only rudimentary considered in most present field models. The part of the observed field that can not be explained by a given model, the model residuals, is often considered as an estimate of the data uncertainty (which...... consists of measurement errors and unmodelled signal), and is typically assumed to be uncorrelated and Gaussian distributed. We have applied geostatistical methods to analyse the residuals of the Oersted(09d/04) field model [http://www.dsri.dk/Oersted/Field_models/IGRF_2005_candidates/], which is based...... on 5 years of Ørsted and CHAMP data, and includes secular variation and acceleration, as well as low-degree external (magnetospheric) and induced fields. The analysis is done in order to find the statistical behaviour of the space-time structure of the residuals, as a proxy for the data covariances...

  18. Applied research in uncertainty modeling and analysis

    CERN Document Server

    Ayyub, Bilal

    2005-01-01

    Uncertainty has been a concern to engineers, managers, and scientists for many years. For a long time uncertainty has been considered synonymous with random, stochastic, statistic, or probabilistic. Since the early sixties views on uncertainty have become more heterogeneous. In the past forty years numerous tools that model uncertainty, above and beyond statistics, have been proposed by several engineers and scientists. The tool/method to model uncertainty in a specific context should really be chosen by considering the features of the phenomenon under consideration, not independent of what is known about the system and what causes uncertainty. In this fascinating overview of the field, the authors provide broad coverage of uncertainty analysis/modeling and its application. Applied Research in Uncertainty Modeling and Analysis presents the perspectives of various researchers and practitioners on uncertainty analysis and modeling outside their own fields and domain expertise. Rather than focusing explicitly on...

  19. Mathematical Models for Room Air Distribution - Addendum

    DEFF Research Database (Denmark)

    Nielsen, Peter V.

    1982-01-01

    removed from the room at constant penetration length is proportional to the cube of the velocities in the occupied zone. It is also shown that a large number of diffusers increases the amount of heat which may be removed without affecting the thermal conditions. Control strategies for dual duct and single......A number of different models on the air distribution in rooms are introduced. This includes the throw model, a model on penetration length of a cold wall jet and a model for maximum velocity in the dimensioning of an air distribution system in highly loaded rooms and shows that the amount of heat...

  20. Mathematical Models for Room Air Distribution

    DEFF Research Database (Denmark)

    Nielsen, Peter V.

    1982-01-01

    removed from the room at constant penetration length is proportional to the cube of the velocities in the occupied zone. It is also shown that a large number of diffusers increases the amount of heat which may be removed without affecting the thermal conditions. Control strategies for dual duct and single......A number of different models on the air distribution in rooms are introduced. This includes the throw model, a model on penetration length of a cold wall jet and a model for maximum velocity in the dimensioning of an air distribution system in highly loaded rooms and shows that the amount of heat...