Nonequilibrium flows with smooth particle applied mechanics
Energy Technology Data Exchange (ETDEWEB)
Kum, O.
1995-07-01
Smooth particle methods are relatively new methods for simulating solid and fluid flows through they have a 20-year history of solving complex hydrodynamic problems in astrophysics, such as colliding planets and stars, for which correct answers are unknown. The results presented in this thesis evaluate the adaptability or fitness of the method for typical hydrocode production problems. For finite hydrodynamic systems, boundary conditions are important. A reflective boundary condition with image particles is a good way to prevent a density anomaly at the boundary and to keep the fluxes continuous there. Boundary values of temperature and velocity can be separately controlled. The gradient algorithm, based on differentiating the smooth particle expression for (u{rho}) and (T{rho}), does not show numerical instabilities for the stress tensor and heat flux vector quantities which require second derivatives in space when Fourier`s heat-flow law and Newton`s viscous force law are used. Smooth particle methods show an interesting parallel linking to them to molecular dynamics. For the inviscid Euler equation, with an isentropic ideal gas equation of state, the smooth particle algorithm generates trajectories isomorphic to those generated by molecular dynamics. The shear moduli were evaluated based on molecular dynamics calculations for the three weighting functions, B spline, Lucy, and Cusp functions. The accuracy and applicability of the methods were estimated by comparing a set of smooth particle Rayleigh-Benard problems, all in the laminar regime, to corresponding highly-accurate grid-based numerical solutions of continuum equations. Both transient and stationary smooth particle solutions reproduce the grid-based data with velocity errors on the order of 5%. The smooth particle method still provides robust solutions at high Rayleigh number where grid-based methods fails.
Particle Filtering Applied to Musical Tempo Tracking
Directory of Open Access Journals (Sweden)
Macleod Malcolm D
2004-01-01
Full Text Available This paper explores the use of particle filters for beat tracking in musical audio examples. The aim is to estimate the time-varying tempo process and to find the time locations of beats, as defined by human perception. Two alternative algorithms are presented, one which performs Rao-Blackwellisation to produce an almost deterministic formulation while the second is a formulation which models tempo as a Brownian motion process. The algorithms have been tested on a large and varied database of examples and results are comparable with the current state of the art. The deterministic algorithm gives the better performance of the two algorithms.
Heavy-ion radiography applied to charged particle radiotherapy
International Nuclear Information System (INIS)
The objectives of the heavy-ion radiography research program applied to the clinical cancer research program of charged particle radiotherapy have a twofold purpose: (1) to explore the manner in which heavy-ion radiography and CT reconstruction can provide improved tumor localization, treatment planning, and beam delivery for radiotherapy with accelerated heavy charged particles; and (2) to explore the usefulness of heavy-ion radiography in detecting, localizing, and sizing soft tissue cancers in the human body. The techniques and procedures developed for heavy-ion radiography should prove successful in support of charged particle radiotherapy
Particle swarm optimization applied to impulsive orbital transfers
Pontani, Mauro; Conway, Bruce A.
2012-05-01
The particle swarm optimization (PSO) technique is a population-based stochastic method developed in recent years and successfully applied in several fields of research. It mimics the unpredictable motion of bird flocks while searching for food, with the intent of determining the optimal values of the unknown parameters of the problem under consideration. At the end of the process, the best particle (i.e. the best solution with reference to the objective function) is expected to contain the globally optimal values of the unknown parameters. The central idea underlying the method is contained in the formula for velocity updating. This formula includes three terms with stochastic weights. This research applies the particle swarm optimization algorithm to the problem of optimizing impulsive orbital transfers. More specifically, the following problems are considered and solved with the PSO algorithm: (i) determination of the globally optimal two- and three-impulse transfer trajectories between two coplanar circular orbits; (ii) determination of the optimal transfer between two coplanar, elliptic orbits with arbitrary orientation; (iii) determination of the optimal two-impulse transfer between two circular, non-coplanar orbits; (iv) determination of the globally optimal two-impulse transfer between two non-coplanar elliptic orbits. Despite its intuitiveness and simplicity, the particle swarm optimization method proves to be capable of effectively solving the orbital transfer problems of interest with great numerical accuracy.
Reaction to fire of ETICS applied on wood particle board
Directory of Open Access Journals (Sweden)
Bonati Antonio
2016-01-01
Full Text Available As well known the ETICS are diffusely used both for energy saving and thermal insulation reasons. They have been applied recently in wood buildings and in regions of southern Europe too due to green building and sustainability reasons. ITC-CNR has tested a lot of building materials and developed good knowledge about reaction to fire since the 1980 and currently, ETICS fixed directly to particle wood panels have been investigated with several SBI tests. In the case study are presented the main factors that can influence the fire reaction results when applied on wood structure are highlighted: the thickness of the insulating material, the presence of accidental damage, the flame attack from the inside. From the results obtained by tests on samples prepared with simulated accidental damages and fire from inside, some considerations are made about the hazard due to this specific construction technology and others on limits of the type of actually used standards product classification.
APPLYING PARTICLE SWARM OPTIMIZATION TO JOB-SHOP SCHEDULING PROBLEM
Institute of Scientific and Technical Information of China (English)
Xia Weijun; Wu Zhiming; Zhang Wei; Yang Genke
2004-01-01
A new heuristic algorithm is proposed for the problem of finding the minimum makespan in the job-shop scheduling problem. The new algorithm is based on the principles of particle swarm optimization (PSO). PSO employs a collaborative population-based search, which is inspired by the social behavior of bird flocking. It combines local search (by self experience) and global search (by neighboring experience), possessing high search efficiency. Simulated annealing (SA) employs certain probability to avoid becoming trapped in a local optimum and the search process can be controlled by the cooling schedule. By reasonably combining these two different search algorithms, a general, fast and easily implemented hybrid optimization algorithm, named HPSO, is developed. The effectiveness and efficiency of the proposed PSO-based algorithm are demonstrated by applying it to some benchmark job-shop scheduling problems and comparing results with other algorithms in literature. Comparing results indicate that PSO-based algorithm is a viable and effective approach for the job-shop scheduling problem.
3D GEOMETRIC CHARACTERIZATION OF PARTICLES APPLIED TO TECHNICAL CLEANLINESS
Directory of Open Access Journals (Sweden)
Irene Vecchio
2012-11-01
Full Text Available During production of mechanical components, residual dirt collects on the surfaces, thus creating a contamination that affects the durability of the assembled products. Residual particles are currently analyzed based on microscopic 2d images. However, the particle's shape is decisive for the damage it can cause, yet can not be judged reliably from 2d data. Micro-computed tomography allows to capture the complex spatial structures of thousands of particles simultaneously. Now new methods to characterize three dimensional shapes are needed to establish 3d cleanliness analysis. In this work, unambiguously indicative geometric features are defined and it is investigated how they can yield a reliable classification in three typical classes: fibers, chips and granules. Finally, the efficiency of the proposed method is proved by analyzing samples of real dirt particles.
Energy Technology Data Exchange (ETDEWEB)
Kulkarni, Sandip, E-mail: sandip.d.kulkarni@gmail.com [Fischell Department of Bioengineering, University of Maryland at College Park, MD 20742 (United States); Ramaswamy, Bharath; Horton, Emily; Gangapuram, Sruthi [Fischell Department of Bioengineering, University of Maryland at College Park, MD 20742 (United States); Nacev, Alek [Weinberg Medical Physics, LLC (United States); Depireux, Didier [The Institute for Systems Research, University of Maryland at College Park, MD 20742 (United States); Otomagnetics, LLC (United States); Shimoji, Mika [Fischell Department of Bioengineering, University of Maryland at College Park, MD 20742 (United States); Otomagnetics, LLC (United States); Shapiro, Benjamin [Fischell Department of Bioengineering, University of Maryland at College Park, MD 20742 (United States); The Institute for Systems Research, University of Maryland at College Park, MD 20742 (United States); Otomagnetics, LLC (United States)
2015-11-01
This article presents a method to investigate how magnetic particle characteristics affect their motion inside tissues under the influence of an applied magnetic field. Particles are placed on top of freshly excised tissue samples, a calibrated magnetic field is applied by a magnet underneath each tissue sample, and we image and quantify particle penetration depth by quantitative metrics to assess how particle sizes, their surface coatings, and tissue resistance affect particle motion. Using this method, we tested available fluorescent particles from Chemicell of four sizes (100 nm, 300 nm, 500 nm, and 1 μm diameter) with four different coatings (starch, chitosan, lipid, and PEG/P) and quantified their motion through freshly excised rat liver, kidney, and brain tissues. In broad terms, we found that the applied magnetic field moved chitosan particles most effectively through all three tissue types (as compared to starch, lipid, and PEG/P coated particles). However, the relationship between particle properties and their resulting motion was found to be complex. Hence, it will likely require substantial further study to elucidate the nuances of transport mechanisms and to select and engineer optimal particle properties to enable the most effective transport through various tissue types under applied magnetic fields.
Scanning tomographic particle image velocimetry applied to a turbulent jet
Casey, T. A.
2013-02-21
We introduce a modified tomographic PIV technique using four high-speed video cameras and a scanning pulsed laser-volume. By rapidly illuminating adjacent subvolumes onto separate video frames, we can resolve a larger total volume of velocity vectors, while retaining good spatial resolution. We demonstrate this technique by performing time-resolved measurements of the turbulent structure of a round jet, using up to 9 adjacent volume slices. In essence this technique resolves more velocity planes in the depth direction by maintaining optimal particle image density and limiting the number of ghost particles. The total measurement volumes contain between 1 ×106 and 3 ×106 velocity vectors calculated from up to 1500 reconstructed depthwise image planes, showing time-resolved evolution of the large-scale vortical structures for a turbulent jet of Re up to 10 000.
Particle Swarm Optimization Applied to the Economic Dispatch Problem
Directory of Open Access Journals (Sweden)
Rafik Labdani
2006-06-01
Full Text Available This paper presents solution of optimal power flow (OPF problem of a power system via a simple particle swarm optimization (PSO algorithm. The objective is to minimize the fuel cost and keep the power outputs of generators, bus voltages, shunt capacitors/reactors and transformers tap-setting in their secure limits.The effectiveness of PSO was compared to that of OPF by MATPOWER. The potential and superiority of PSO have been demonstrated through the results of IEEE 30-bus system
Stereo particle image velocimetry applied to a vortex pipe flow
Zhang, Zherui; Hugo, Ronald J.
2006-03-01
Stereo particle image velocimetry (PIV) has been employed to study a vortex generated via tangential injection of water in a 2.25 inch (57 mm) diameter pipe for Reynolds numbers ranging from 1,118 to 63,367. Methods of decreasing pipe-induced optical distortion and the PIV calibration technique are addressed. The mean velocity field analyses have shown spatial similarity and revealed four distinct flow regions starting from the central axis of rotation to the pipe wall in the vortex flows. Turbulence statistical data and vortex core location data suggest that velocity fluctuations are due to the axis of the in-line vortex distorting in the shape of a spiral.
CAS CERN Accelerator School: Applied geodesy for particle accelerators
International Nuclear Information System (INIS)
This specialized course addresses the many topics involved in the application of geodesy to large particle accelerators, though many of the techniques described are equally applicable to large construction projects and surveillance systems where the highest possible surveying accuracies are required. The course reflects the considerable experience gained over many years, not only at CERN but in projects all over the world. The methods described range from the latest approach using satellites to recent developments in conventional techniques. They include the global positioning system (GPS), its development, deployment and precision, the use of the Terrameter and the combination or comparison of its results with those of the GPS, the automation of instruments, the management of measurements and data, and the highly evolved treatment of the observations. (orig.)
Use of magnetic particles to apply mechanical forces for bone tissue engineering purposes
Energy Technology Data Exchange (ETDEWEB)
Cartmell, S H; Keramane, A; Kirkham, G R; Verschueren, S B; Magnay, J L; El Haj, A J; Dobson, J [Institute of Science and Technology in Medicine, University of Keele, Thornburrow Drive, Hartshill, Stoke-on-Trent, Staffordshire ST4 7QB (United Kingdom)
2005-01-01
It is possible to influence osteoblast activity by the application of mechanical forces. There is potential in using these forces for tissue engineering applications in that cell matrix production may be upregulated, resulting in a functional tissue engineered construct created in a shorter culture time. We have been developing a novel technique for applying mechanical forces directly to the cell with the use of magnetic particles. Particles attached to the cell membrane can be manipulated using an external magnetic field thus applying forces in the piconewton range. We have previously demonstrated that primary human osteoblasts respond to this type of stimulus by upregulating bone related gene expression and producing mineralized matrix at early time points. In this paper we discuss the optimization of this technique by presenting data on the effects of this type of force on osteoblast proliferation, phagocytosis and also the potential use of this technique in developing 3D tissue engineered constructs.
Otto, S.; Trautmann, T.; M. Wendisch
2011-01-01
Realistic size equivalence and shape of Saharan mineral dust particles are derived from in-situ particle, lidar and sun photometer measurements during SAMUM-1 in Morocco (19 May 2006), dealing with measured size- and altitude-resolved axis ratio distributions of assumed spheroidal model particles. The data were applied in optical property, radiative effect, forcing and heating effect simulations to quantify the realistic impact of particle non-sphericity. It turned out that volume-to-surface ...
Otto, S.; Trautmann, T.; M. Wendisch
2010-01-01
Realistic size equivalence and shape of Saharan mineral dust particles are derived from on in-situ particle, lidar and sun photometer measurements during SAMUM-1 in Morocco (19 May 2006), dealing with measured size- and altitude-resolved axis ratio distributions of assumed spheroidal model particles. The data were applied in optical property, radiative effect, forcing and heating effect simulations to quantify the realistic impact of particle non-sphericity. It turned out that volume-to-surfa...
DEFF Research Database (Denmark)
Ingvorsen, Kristian Mark; Buchmann, Nicolas A.; Soria, Julio
2012-01-01
× 10mm calibration grid and 120 μm particles on a glass plate. In the case with the calibration grid it is found that accurate determination of the depthwise position is possible. However, when applying the same technique to the particle target, significant problems are encountered. © 2012...
Directory of Open Access Journals (Sweden)
Ičević Ivana Đ.
2011-01-01
Full Text Available Polyhydroxylated, water soluble, fullerenol C60(OH24 nano particles (FNP in vitro and in vivo models, showed an expressive biological activity. The goal of this work was to investigate the potential protective effects of orally applied FNP on rats after a single dose of doxorubicin (DOX (8 mg/kg (i.p. 6 h after the last application of FNP. After the last drug administration, the rats were sacrificed, and the blood and tissues were taken for the analysis. Biochemical and pathological results obtained in this study indicate that fullerenol (FNP, in H2O:DMSO (80:20, w/w solution given orally in final doses of 10, 14.4, and 21.2 mg/kg three days successively, has the protective (hepatoprotective and nephroprotective effect against doxorubicin-induced cytotoxicity via its antioxidant properties.
Particle tracking velocimetry applied to estimate the pressure field around a Savonius turbine
Murai, Yuichi; Nakada, Taishi; Suzuki, Takao; Yamamoto, Fujio
2007-08-01
Particle tracking velocimetry (PTV) is applied to flows around a Savonius turbine. The velocity vector field measured with PTV is utilized to estimate the pressure field around the turbine, as well as to evaluate the torque performance. The main objective of the work is the establishment of the pressure estimation scheme required to discuss the turbine performance. First, the PTV data are interpolated on a regular grid with a fourth-order ellipsoidal differential equation to generate velocity vectors satisfying the third-order spatio-temporal continuity both in time and space. Second, the phase-averaged velocity vector information with respect to the turbine angle is substituted into three different types of pressure-estimating equations, i.e. the Poisson equation, the Navier-Stokes equation and the sub-grid scale model of turbulence. The results obtained based on the Navier-Stokes equation are compared with those based on the Poisson equation, and have shown several merits in employing the Navier-Stokes-based method for the PTV measurement. The method is applied to a rotating turbine with the tip-speed ratio of 0.5 to find the relationship between torque behaviour and flow structure in a phase-averaged sense. We have found that a flow attached to the convex surface of the blades induces low-pressure regions to drive the turbine, namely, the lift force helps the turbine blades to rotate even when the drag force is insufficient. Secondary mechanisms of torque generation are also discussed.
International Nuclear Information System (INIS)
In aerosol research aerosols of known size, shape, and density are highly desirable because most aerosols properties depend strongly on particle size. However, such constant and reproducible generation of those aerosol particles whose size and concentration can be easily controlled, can be achieved only in laboratory-scale tests. In large scale experiments, different generation methods for various elements and compounds have been applied. This work presents, in a brief from, a review of applications of these methods used in large scale experiments on aerosol behaviour and source term. Description of generation method and generated aerosol transport conditions is followed by properties of obtained aerosol, aerosol instrumentation used, and the scheme of aerosol generation system-wherever it was available. An information concerning aerosol generation particular purposes and reference number(s) is given at the end of a particular case. These methods reviewed are: evaporation-condensation, using a furnace heating and using a plasma torch; atomization of liquid, using compressed air nebulizers, ultrasonic nebulizers and atomization of liquid suspension; and dispersion of powders. Among the projects included in this worked are: ACE, LACE, GE Experiments, EPRI Experiments, LACE-Spain. UKAEA Experiments, BNWL Experiments, ORNL Experiments, MARVIKEN, SPARTA and DEMONA. The aim chemical compounds studied are: Ba, Cs, CsOH, CsI, Ni, Cr, NaI, TeO2, UO2Al2O3, Al2SiO5, B2O3, Cd, CdO, Fe2O3, MnO, SiO2, AgO, SnO2, Te, U3O8, BaO, CsCl, CsNO3, Urania, RuO2, TiO2, Al(OH)3, BaSO4, Eu2O3 and Sn. (Author)
Groot, S.; Harmanny, R.; Driessen, H.; Yarovoy, A.
2013-01-01
In this article, a novel motion model-based particle filter implementation is proposed to classify human motion and to estimate key state variables, such as motion type, i.e. running or walking, and the subject’s height. Micro-Doppler spectrum is used as the observable information. The system and me
Walter, Johannes; Thajudeen, Thaseem; Süß, Sebastian; Segets, Doris; Peukert, Wolfgang
2015-04-01
Analytical centrifugation (AC) is a powerful technique for the characterisation of nanoparticles in colloidal systems. As a direct and absolute technique it requires no calibration or measurements of standards. Moreover, it offers simple experimental design and handling, high sample throughput as well as moderate investment costs. However, the full potential of AC for nanoparticle size analysis requires the development of powerful data analysis techniques. In this study we show how the application of direct boundary models to AC data opens up new possibilities in particle characterisation. An accurate analysis method, successfully applied to sedimentation data obtained by analytical ultracentrifugation (AUC) in the past, was used for the first time in analysing AC data. Unlike traditional data evaluation routines for AC using a designated number of radial positions or scans, direct boundary models consider the complete sedimentation boundary, which results in significantly better statistics. We demonstrate that meniscus fitting, as well as the correction of radius and time invariant noise significantly improves the signal-to-noise ratio and prevents the occurrence of false positives due to optical artefacts. Moreover, hydrodynamic non-ideality can be assessed by the residuals obtained from the analysis. The sedimentation coefficient distributions obtained by AC are in excellent agreement with the results from AUC. Brownian dynamics simulations were used to generate numerical sedimentation data to study the influence of diffusion on the obtained distributions. Our approach is further validated using polystyrene and silica nanoparticles. In particular, we demonstrate the strength of AC for analysing multimodal distributions by means of gold nanoparticles.
Two-particle quantum walks applied to the graph isomorphism problem
Gamble, John King; Zhou, Dong; Joynt, Robert; Coppersmith, S N
2010-01-01
We show that the quantum dynamics of interacting and noninteracting quantum particles are fundamentally different in the context of solving a particular computational problem. Specifically, we consider the graph isomorphism problem, in which one wishes to determine whether two graphs are isomorphic (related to each other by a relabeling of the graph vertices), and focus on a class of graphs with particularly high symmetry called strongly regular graphs (SRG's). We study the Green's functions that characterize the dynamical evolution single-particle and two-particle quantum walks on pairs of non-isomorphic SRG's and show that interacting particles can distinguish non-isomorphic graphs that noninteracting particles cannot. We obtain the following specific results: (1) We prove that quantum walks of two noninteracting particles, Fermions or Bosons, cannot distinguish certain pairs of non-isomorphic SRG's. (2) We demonstrate numerically that two interacting Bosons are more powerful than single particles and two n...
A computational framework for particle and whole cell tracking applied to a real biological dataset.
Yang, Feng Wei; Venkataraman, Chandrasekhar; Styles, Vanessa; Kuttenberger, Verena; Horn, Elias; von Guttenberg, Zeno; Madzvamuse, Anotida
2016-05-24
Cell tracking is becoming increasingly important in cell biology as it provides a valuable tool for analysing experimental data and hence furthering our understanding of dynamic cellular phenomena. The advent of high-throughput, high-resolution microscopy and imaging techniques means that a wealth of large data is routinely generated in many laboratories. Due to the sheer magnitude of the data involved manual tracking is often cumbersome and the development of computer algorithms for automated cell tracking is thus highly desirable. In this work, we describe two approaches for automated cell tracking. Firstly, we consider particle tracking. We propose a few segmentation techniques for the detection of cells migrating in a non-uniform background, centroids of the segmented cells are then calculated and linked from frame to frame via a nearest-neighbour approach. Secondly, we consider the problem of whole cell tracking in which one wishes to reconstruct in time whole cell morphologies. Our approach is based on fitting a mathematical model to the experimental imaging data with the goal being that the physics encoded in the model is reflected in the reconstructed data. The resulting mathematical problem involves the optimal control of a phase-field formulation of a geometric evolution law. Efficient approximation of this challenging optimal control problem is achieved via advanced numerical methods for the solution of semilinear parabolic partial differential equations (PDEs) coupled with parallelisation and adaptive resolution techniques. Along with a detailed description of our algorithms, a number of simulation results are reported on. We focus on illustrating the effectivity of our approaches by applying the algorithms to the tracking of migrating cells in a dataset which reflects many of the challenges typically encountered in microscopy data. PMID:26948574
Applying the relativistic quantization condition to a three-particle bound state in a periodic box
Hansen, Maxwell T
2016-01-01
Using our recently developed relativistic three-particle quantization condition, we study the finite-volume energy shift of a three-particle bound state. We reproduce the result obtained using non-relativistic quantum mechanics by Mei{\\ss}ner, R{\\'i}os and Rusetsky, and generalize the result to a moving frame.
Corrosion Resistance of a Sand Particle-Modified Enamel Coating Applied to Smooth Steel Bars
Directory of Open Access Journals (Sweden)
Fujian Tang
2014-09-01
Full Text Available The protective performance of a sand particle-modified enamel coating on reinforcing steel bars was evaluated in 3.5 wt% NaCl solution by electrochemical impedance spectroscopy (EIS. Seven percentages of sand particles by weight were investigated: 0%, 5%, 10%, 20%, 30%, 50% and 70%. The phase composition of the enamel coating and sand particles were determined with the X-ray diffraction (XRD technique. The surface and cross-sectional morphologies of the sand particle-modified enamel coating were characterized using scanning electron microscopy (SEM. XRD tests revealed three phases of sand particles: SiO2, CaCO3 and MgCO3. SEM images demonstrated that the enamel coating wetted well with the sand particles. However, a weak enamel coating zone was formed around the sand particles due to concentrated air bubbles, leading to micro-cracks as hydrogen gas pressure builds up and exceeds the tensile strength of the weak zone. As a result, the addition of sand particles into the enamel coating reduced both the coating and corrosion resistances.
Directory of Open Access Journals (Sweden)
S. J. Noh
2011-04-01
Full Text Available Applications of data assimilation techniques have been widely used to improve hydrologic prediction. Among various data assimilation techniques, sequential Monte Carlo (SMC methods, known as "particle filters", provide the capability to handle non-linear and non-Gaussian state-space models. In this paper, we propose an improved particle filtering approach to consider different response time of internal state variables in a hydrologic model. The proposed method adopts a lagged filtering approach to aggregate model response until uncertainty of each hydrologic process is propagated. The regularization with an additional move step based on Markov chain Monte Carlo (MCMC is also implemented to preserve sample diversity under the lagged filtering approach. A distributed hydrologic model, WEP is implemented for the sequential data assimilation through the updating of state variables. Particle filtering is parallelized and implemented in the multi-core computing environment via open message passing interface (MPI. We compare performance results of particle filters in terms of model efficiency, predictive QQ plots and particle diversity. The improvement of model efficiency and the preservation of particle diversity are found in the lagged regularized particle filter.
Particle tower technology applied to metallurgic plants and peak-time boosting of steam power plants
Amsbeck, Lars; Buck, Reiner; Prosin, Tobias
2016-05-01
Using solar tower technology with ceramic particles as heat transfer and storage medium to preheat scrap for induction furnaces in foundries provides solar generated heat to save electricity. With such a system an unsubsidized payback time of only 4 years is achieved for a 70000t/a foundry in Brazil. The same system can be also used for heat treatment of metals. If electricity is used to heat inert atmospheres a favorable economic performance is also achievable for the particle system. The storage in a particle system enables solar boosting to be restricted to only peak times, enabling an interesting business case opportunity.
Directory of Open Access Journals (Sweden)
Ying-Yi Hong
2014-01-01
Full Text Available Particle swarm optimization (PSO has been successfully applied to solve many practical engineering problems. However, more efficient strategies are needed to coordinate global and local searches in the solution space when the studied problem is extremely nonlinear and highly dimensional. This work proposes a novel adaptive elite-based PSO approach. The adaptive elite strategies involve the following two tasks: (1 appending the mean search to the original approach and (2 pruning/cloning particles. The mean search, leading to stable convergence, helps the iterative process coordinate between the global and local searches. The mean of the particles and standard deviation of the distances between pairs of particles are utilized to prune distant particles. The best particle is cloned and it replaces the pruned distant particles in the elite strategy. To evaluate the performance and generality of the proposed method, four benchmark functions were tested by traditional PSO, chaotic PSO, differential evolution, and genetic algorithm. Finally, a realistic loss minimization problem in an electric power system is studied to show the robustness of the proposed method.
Directory of Open Access Journals (Sweden)
S. Otto
2010-11-01
Full Text Available Realistic size equivalence and shape of Saharan mineral dust particles are derived from on in-situ particle, lidar and sun photometer measurements during SAMUM-1 in Morocco (19 May 2006, dealing with measured size- and altitude-resolved axis ratio distributions of assumed spheroidal model particles. The data were applied in optical property, radiative effect, forcing and heating effect simulations to quantify the realistic impact of particle non-sphericity. It turned out that volume-to-surface equivalent spheroids with prolate shape are most realistic: particle non-sphericity only slightly affects single scattering albedo and asymmetry parameter but may enhance extinction coefficient by up to 10%. At the bottom of the atmosphere (BOA the Saharan mineral dust always leads to a loss of solar radiation, while the sign of the forcing at the top of the atmosphere (TOA depends on surface albedo: solar cooling/warming over a mean ocean/land surface. In the thermal spectral range the dust inhibits the emission of radiation to space and warms the BOA. The most realistic case of particle non-sphericity causes changes of total (solar plus thermal forcing by 55/5% at the TOA over ocean/land and 15% at the BOA over both land and ocean and enhances total radiative heating within the dust plume by up to 20%. Large dust particles significantly contribute to all the radiative effects reported.
Advances in Uncertainty Representation and Management for Particle Filtering Applied to Prognostics
National Aeronautics and Space Administration — Particle filters (PF) have been established as the de facto state of the art in failure prognosis. They combine advantages of the rigors of Bayesian estimation to...
Two-particle quantum walks applied to the graph isomorphism problem
Gamble, John King; Friesen, Mark; Zhou, Dong; Joynt, Robert; Coppersmith, S. N.
2011-03-01
We show that an algorithm based on the dynamics of interacting quantum particles is more powerful than the corresponding algorithm for non-interacting particles. Specifically, our algorithm attempts to determine whether two graphs are isomorphic. We focus on strongly regular graphs (SRGs), a class of graphs with particularly high symmetry. By studying the dynamical evolution of two-particle quantum walks on pairs of non-isomorphic SRG's, we show that interacting particles can distinguish non-isomorphic graphs that noninteracting particles cannot. First, we prove that quantum walks of two noninteracting particles cannot distinguish pairs of non-isomorphic SRG's. Next, we demonstrate numerically that two interacting bosons are more powerful, in that their quantum walks distinguish all non-isomorphic pairs of SRGs we tried, including those with up to 64 vertices. Finally, we find a set of operators that determine these evolutions. This work was supported in part by ARO and DOD (W911NF-09-1-0439). J.K.G. acknowledges support from the NSF.
Directory of Open Access Journals (Sweden)
S. J. Noh
2011-10-01
Full Text Available Data assimilation techniques have received growing attention due to their capability to improve prediction. Among various data assimilation techniques, sequential Monte Carlo (SMC methods, known as "particle filters", are a Bayesian learning process that has the capability to handle non-linear and non-Gaussian state-space models. In this paper, we propose an improved particle filtering approach to consider different response times of internal state variables in a hydrologic model. The proposed method adopts a lagged filtering approach to aggregate model response until the uncertainty of each hydrologic process is propagated. The regularization with an additional move step based on the Markov chain Monte Carlo (MCMC methods is also implemented to preserve sample diversity under the lagged filtering approach. A distributed hydrologic model, water and energy transfer processes (WEP, is implemented for the sequential data assimilation through the updating of state variables. The lagged regularized particle filter (LRPF and the sequential importance resampling (SIR particle filter are implemented for hindcasting of streamflow at the Katsura catchment, Japan. Control state variables for filtering are soil moisture content and overland flow. Streamflow measurements are used for data assimilation. LRPF shows consistent forecasts regardless of the process noise assumption, while SIR has different values of optimal process noise and shows sensitive variation of confidential intervals, depending on the process noise. Improvement of LRPF forecasts compared to SIR is particularly found for rapidly varied high flows due to preservation of sample diversity from the kernel, even if particle impoverishment takes place.
International Nuclear Information System (INIS)
An investigation on the application of alpha particles in the induction of a bias ionized background plasma before, during and after the discharge of the N2 TE UV laser (337.1 nm), built in the LEL-IF/UFF is presented. The alpha particles are provided by Americium (241-Am) stripes placed inside the discharge channel of the laser device. The stimulated radiation output characteristics, in terms of gas pressure, charging voltage and pulse width, of a N2 TE UV laser (337.1 nm) circuit are presented. The increased laser yield is interpreted qualitatively through plasma impedance in the discharge circuit. (author)
Energy Technology Data Exchange (ETDEWEB)
Fellows, C.E.; Rodegheri, C.C.; Tauber, U. [Universidade Federal Fluminense (UFF), Niteroi, RJ (Brazil). Inst. de Fisica. Lab. de Espectroscopia e Laser (LEL); Guterres, R.F. [Comissao Nacional de Energia Nuclear (CNEN), Rio de Janeiro, RJ (Brazil). Coordenacao de Instalacoes Radiativas]. E-mail: rgutterr@cnen.gov.br
2005-11-15
An investigation on the application of alpha particles in the induction of a bias ionized background plasma before, during and after the discharge of the N2 TE UV laser (337.1 nm), built in the LEL-IF/UFF is presented. The alpha particles are provided by Americium (241-Am) stripes placed inside the discharge channel of the laser device. The stimulated radiation output characteristics, in terms of gas pressure, charging voltage and pulse width, of a N2 TE UV laser (337.1 nm) circuit are presented. The increased laser yield is interpreted qualitatively through plasma impedance in the discharge circuit. (author)
Künzli, Pierre; Tsunematsu, Kae; Albuquerque, Paul; Falcone, Jean-Luc; Chopard, Bastien; Bonadonna, Costanza
2016-04-01
Volcanic ash transport and dispersal models typically describe particle motion via a turbulent velocity field. Particles are advected inside this field from the moment they leave the vent of the volcano until they deposit on the ground. Several techniques exist to simulate particles in an advection field such as finite difference Eulerian, Lagrangian-puff or pure Lagrangian techniques. In this paper, we present a new flexible simulation tool called TETRAS (TEphra TRAnsport Simulator) based on a hybrid Eulerian-Lagrangian model. This scheme offers the advantages of being numerically stable with no numerical diffusion and easily parallelizable. It also allows us to output particle atmospheric concentration or ground mass load at any given time. The model is validated using the advection-diffusion analytical equation. We also obtained a good agreement with field observations of the tephra deposit associated with the 2450 BP Pululagua (Ecuador) and the 1996 Ruapehu (New Zealand) eruptions. As this kind of model can lead to computationally intensive simulations, a parallelization on a distributed memory architecture was developed. A related performance model, taking into account load imbalance, is proposed and its accuracy tested.
International Nuclear Information System (INIS)
The studies on aerosol transfer carried out in the field of staff protection and nuclear plants safety become more and more important. So techniques of pollutants simulation by specific tracers with the same aeraulic behaviour are an interesting tool in order to characterize their transfers. Resorting to aerosols tagged by a fluorescent dye allows to realize different studies in ventilation and filtration field. The feasibility of detection in real time for a particulate tracer is the main aim of this work. The need of such a technique is obvious because it can provide the specific aerosol behaviour. Furthermore, direct measurements in real time are required for model validation in calculation codes: they give the most realistic informations on interaction between contaminant and ventilation air flows. Up to now, the principle of fluorescent aerosol concentration measurement allows only an integral response in a delayed time, by means of sampling on filters and a fluorimetric analysis after a specific conditioning of these filters. In order to have the opportunity to detect in real time specific tracer, we have developed a new monitor able to count these particles on the following basis: fluorescent particles pass through a sampling nozzle up to a measurement chamber specially designed; sheath flow rate is defined to confine the test aerosol in the test aerosol in the sample flow rate at nozzle outlet; the interception of this stream by a highly focused laser beam allows aerosol detection and characterization particle by particle; the signature of a passing aerosol is the burst of photons that occurs when the fluoro-phore contained in the glycerol particle is excited by a light of adapted wavelength; these signals are transmitted to a photodetector by a patented optical arrangement. Then, an acquisition interfaced board connected to a computer, converts them into frequencies histograms. In the end, two kind of results could be provided simultaneously : the
Berlinger, B; Bugge, M D; Ulvestad, B; Kjuus, H; Kandler, K; Ellingsen, D G
2015-12-01
Air samples were collected by personal sampling with five stage Sioutas cascade impactors and respirable cyclones in parallel among tappers and crane operators in two manganese (Mn) alloy smelters in Norway to investigate PM fractions. The mass concentrations of PM collected by using the impactors and the respirable cyclones were critically evaluated by comparing the results of the parallel measurements. The geometric mean (GM) mass concentrations of the respirable fraction and the <10 μm PM fraction were 0.18 and 0.39 mg m(-3), respectively. Particle size distributions were determined using the impactor data in the range from 0 to 10 μm and by stationary measurements by using a scanning mobility particle sizer in the range from 10 to 487 nm. On average 50% of the particulate mass in the Mn alloy smelters was in the range from 2.5 to 10 μm, while the rest was distributed between the lower stages of the impactors. On average 15% of the particulate mass was found in the <0.25 μm PM fraction. The comparisons of the different PM fraction mass concentrations related to different work tasks or different workplaces, showed in many cases statistically significant differences, however, the particle size distribution of PM in the fraction <10 μm d(ae) was independent of the plant, furnace or work task. PMID:26498986
Applying Particle Swarm Optimization for Solving Team Orienteering Problem with Time Windows
Directory of Open Access Journals (Sweden)
The Jin Ai
2014-01-01
Full Text Available The Team Orienteering Problem With Time Windows (TOPTW is a transportation problem case that have a set of vertices with a score, service time, and the time windows, start and final at a depot location. A number of paths are constructed to maximize the total collected score by the vertices which is visited. Each vertice can be visited only once and the visit can only start during the time window of vertices. This paper proposes a Particle Swarm Optimization algorithm for solving the TOPTW, by defining a specific particle for representing the solution of TOPTW within the PSO algorithm and two alternatives, called PSO_TOPTW1 and PSO_TOPTW2, for translating the particle position to form the routes of the path. The performance of the proposed PSO algorithm is evaluated through some benchmark data problem available in the literature. The computational results show that the proposed PSO is able to produce sufficiently good TOPTW solutions that are comparable with corresponding solutions from other existing methods for solving the TOPTW.
Directory of Open Access Journals (Sweden)
S. Otto
2011-05-01
Full Text Available Realistic size equivalence and shape of Saharan mineral dust particles are derived from in-situ particle, lidar and sun photometer measurements during SAMUM-1 in Morocco (19 May 2006, dealing with measured size- and altitude-resolved axis ratio distributions of assumed spheroidal model particles. The data were applied in optical property, radiative effect, forcing and heating effect simulations to quantify the realistic impact of particle non-sphericity. It turned out that volume-to-surface equivalent spheroids with prolate shape are most realistic: particle non-sphericity only slightly affects single scattering albedo and asymmetry parameter but may enhance extinction coefficient by up to 10 %. At the bottom of the atmosphere (BOA the Saharan mineral dust always leads to a loss of solar radiation, while the sign of the forcing at the top of the atmosphere (TOA depends on surface albedo: solar cooling/warming over a mean ocean/land surface. In the thermal spectral range the dust inhibits the emission of radiation to space and warms the BOA. The most realistic case of particle non-sphericity causes changes of total (solar plus thermal forcing by 55/5 % at the TOA over ocean/land and 15 % at the BOA over both land and ocean and enhances total radiative heating within the dust plume by up to 20 %. Large dust particles significantly contribute to all the radiative effects reported. They strongly enhance the absorbing properties and forward scattering in the solar and increase predominantly, e.g., the total TOA forcing of the dust over land.
Efficiency of particle swarm optimization applied on fuzzy logic DC motor speed control
Directory of Open Access Journals (Sweden)
Allaoua Boumediene
2008-01-01
Full Text Available This paper presents the application of Fuzzy Logic for DC motor speed control using Particle Swarm Optimization (PSO. Firstly, the controller designed according to Fuzzy Logic rules is such that the systems are fundamentally robust. Secondly, the Fuzzy Logic controller (FLC used earlier was optimized with PSO so as to obtain optimal adjustment of the membership functions only. Finally, the FLC is completely optimized by Swarm Intelligence Algorithms. Digital simulation results demonstrate that in comparison with the FLC the designed FLC-PSO speed controller obtains better dynamic behavior and superior performance of the DC motor, as well as perfect speed tracking with no overshoot.
Theoretical Models of Light Scattering Applied in Sizing Particles in Coal Water Slurry
Institute of Scientific and Technical Information of China (English)
王仁哲; 张荣曾; 徐志强
2004-01-01
Advantges and disadvantage of Mie scattering model and Fraunhofer diffraction model are discussed. The result shows that 1) the Fraunhofer diffraction model is simple in design and fast in operation, which is quite suitable for on-line control and 2) the intensity and energy distribution of diffracted light of both the Mie scattering model and the Fraunhofer theoretical model are compared and researched. Feasibility of using the Fraunhofer diffraction model to replace the Mie scattering model in measuring particles in coal water slurry is demonstrated.
Asenovski, S.; Velinov, P.; Mateev, L.
2016-02-01
Based on the electromagnetic interaction between the cosmic ray (CR) and the atmospheric neutral constituents, CORIMIA (COsmic Ray Ionization Model) gives an estimation of the dynamical ionization condition of the lower ionosphere and middle atmosphere (about 30-120 km). Galactic Cosmic Rays (GCR), modified by solar wind and later by geomagnetic and atmospheric cut offs, produce ionization in the entire atmosphere. In this paper we show the GCR ionization in periods of solar minimum and maximum. Despite the considerably lower energies than GCR, Anomalous Cosmic Rays (ACR) contribute to the ionization state mostly over the polar regions and as we present here this contribution is comparable with those of GCR. Solar energetic particles (SEP), which differ vastly from one another for different solar events, can be responsible for significant ionization over the high latitude regions. Here we compare flows of SEP caused by two of the most powerful solar proton events at February 23, 1956 and January 20, 2005.
Applying Contact Angle to a 2D Multiphase Smoothed Particle Hydrodynamics Model
Farrokhpanah, Amirsaman; Mostaghimi, Javad
2016-01-01
Equilibrium contact angle of liquid drops over horizontal surfaces has been modeled using Smoothed Particle Hydrodynamics (SPH). The model is capable of accurate implementation of contact angles to stationary and moving contact lines. In this scheme, the desired value for stationary or dynamic contact angle is used to correct the profile near the triple point. This is achieved by correcting the surface normals near the contact line and also interpolating the drop profile into the boundaries. Simulations show that a close match to the chosen contact angle values can be achieved for both stationary and moving contact lines. This technique has proven to reduce the amount of nonphysical shear stresses near the triple point and to enhance the convergence characteristics of the solver.
Applying Sequential Particle Swarm Optimization Algorithm to Improve Power Generation Quality
Directory of Open Access Journals (Sweden)
Abdulhafid Sallama
2014-10-01
Full Text Available Swarm Optimization approach is a heuristic search method whose mechanics are inspired by the swarming or collaborative behaviour of biological populations. It is used to solve constrained, unconstrained, continuous and discrete problems. Swarm intelligence systems are widely used and very effective in solving standard and large-scale optimization, provided that the problem does not require multi solutions. In this paper, particle swarm optimisation technique is used to optimise fuzzy logic controller (FLC for stabilising a power generation and distribution network that consists of four generators. The system is subject to different types of faults (single and multi-phase. Simulation studies show that the optimised FLC performs well in stabilising the network after it recovers from a fault. The controller is compared to multi-band and standard controllers.
Duque-Gomez, Federico
2012-01-01
We study the behaviour of the expectation value of the acceleration of a particle in a one-dimensional periodic potential when an external homogeneous force is suddenly applied. The theory is formulated in terms of modified Bloch states that include the interband mixing induced by the force. This approach allows us to understand the behaviour of the wavepacket, which responds with a mass that is initially the bare mass, and subsequently oscillates around the value predicted by the effective mass. If Zener tunneling can be neglected, the expression obtained for the acceleration of the particle is valid over timescales of the order of a Bloch oscillation, which are of interest for experiments with cold atoms in optical lattices. We discuss how these oscillations can be tuned in an optical lattice for experimental detection.
International Nuclear Information System (INIS)
Highlights: • A variable order spherical harmonics scheme is presented. • An adaptive process is proposed to automatically refine the angular resolution. • A regular error estimator and a goal-based error estimator are presented. • The adaptive methods are applied to fixed source and eigenvalue problems. • Adaptive methods give more accurate solutions than uniform angular resolution. - Abstract: A variable order spherical harmonics scheme has been described and employed for the solution of the neutral particle transport equation. The scheme is specifically described with application within the inner-element sub-grid scale finite element spatial discretisation. The angular resolution is variable across both the spatial and energy dimensions. That is, the order of the spherical harmonic expansion may differ at each node of the mesh for each energy group. The variable order scheme has been used to develop adaptive methods for the angular resolution of the particle transport phase-space. Two types of adaptive method have been developed and applied to examples. The first is regular adaptivity, in which the error in the solution over the entire domain is minimised. The second is goal-based adaptivity, in which the error in a specified functional is minimised. The methods were applied to fixed source and eigenvalue examples. Both methods demonstrate an improved accuracy for a given number of degrees of freedom in the angular discretisation
Goudard, R; Ribeiro, R; Klumb, F
1999-01-01
The Compact Muon Solenoid experiment, CMS, is one of the two general purpose experiments foreseen to operate at the Large Hadron Collider, LHC, at CERN, the European Laboratory for Particle Physics. The experiment aims to study very high energy collisions of proton beams. Investigation of the most fundamental properties of matter, in particular the study of the nature of the electroweak symmetry breaking and the origin of mass, is the experiment scope. The central Tracking System, a six meter long cylinder with 2.4 m diameter, will play a major role in all physics searches of the CMS experiment. Its performance depends upon the intrinsic detector performance, on the stability of the supporting structure and on the overall survey, alignment and position monitoring system. The proposed position monitoring system is based on a novel lens-less laser straightness measurement method able to detect deviations from a nominal position of all structural elements of the Central Tracking system. It is based on the recipr...
Recent advances in particle-induced X-ray emission analysis applied to biological samples
International Nuclear Information System (INIS)
Papers reporting the application of particle induced X-ray emission (PIXE) analysis to biological samples continue to appear regularly in the literature. The majority of these papers deal with blood, hair, and other common body organs while a few deal with biological samples from the environnment. A variety of sample preparation methods have been demonstrated, a number of which are improvements, refinements and extensions of the thick- and thin-sample preparation methods reported in the early development of PIXE. While many papers describe the development of PIXE techniques some papers are now describing applications of the methods to serious biological problems. The following two factors may help to stimulate more consistant use of the PIXE method. First, each PIXE facility should be organized to give rapid sample processing and should have available several sample preparation and handling methods. Second, those with the skill to use PIXE methods need to become closely associated with researches knowledge able in medical and biological sciences and they also need to become more involved in project planning and sample handling. (orig.)
International Nuclear Information System (INIS)
Highlights: ► A new method called QPSO-DM is applied to BNPP in-core fuel management optimization. ► It is found that QPSO-DM performs better than PSO and QPSO. ► This method provides a permissible arrangement for optimum loading pattern. - Abstract: This paper presents a new method using Quantum Particle Swarm Optimization with Differential Mutation operator (QPSO-DM) for optimizing WWER-1000 core fuel management. Genetic Algorithm (GA) and Particle Swarm Optimization (PSO) have shown good performance on in-core fuel management optimization (ICFMO). The objective of this paper is to show that QPSO-DM performs very well and is comparable to PSO and Quantum Particle Swarm Optimization (QPSO). Most of the strategies for ICFMO are based on maximizing multiplication factor (keff) to increase cycle length and minimizing power peaking factor (Pq) in order to improve fuel integrity. PSO, QPSO and QPSO-DM have been implemented to fulfill these requirements for the first operating cycle of WWER-1000 Bushehr Nuclear Power Plant (BNPP). The results show that QPSO-DM performs better than the others. A program has been written in MATLAB to map PSO, QPSO and QPSO-DM for loading pattern optimization. WIMS and CITATION have been used to simulate reactor core for neutronic calculations
Large surface proteins of hepatitis B virus containing the pre-s sequence.
Heermann, K H; Goldmann, U; Schwartz, W; Seyffarth, T; Baumgarten, H; Gerlich, W H
1984-11-01
The sequence of hepatitis B virus DNA contains an open reading frame which codes for a not-yet-identified protein of at least 389 amino acids. Only the products starting at the third (GP33/GP36) or the fourth (P24/GP27) initiation signal have been characterized as components of the viral surface antigen. We found a larger protein, P39, and its glycosylated form, GP42, in hepatitis B virus particles and viral surface antigen filaments. Immunological cross-reactions showed that P39/GP42 is partially homologous to P24/GP27 and GP33/GP36. The unique portion of its sequence bound monoclonal antibodies which had been induced by immunization with hepatitis B virus particles. Proteolytic cleavage patterns and subtype-specific size differences suggested that the sequence of P39 starts with the first initiation signal of the open reading frame. Its amino-terminal part (pre-s coded) is exposed at the viral surface and, probably, is highly immunogenic. A model is presented of how the open reading frame for the viral envelope leads to defined amounts of three different proteins. PMID:6492255
Energy Technology Data Exchange (ETDEWEB)
Goffin, Mark A., E-mail: mark.a.goffin@gmail.com [Applied Modelling and Computation Group, Department of Earth Science and Engineering, Imperial College London, London, SW7 2AZ (United Kingdom); Buchan, Andrew G.; Dargaville, Steven; Pain, Christopher C. [Applied Modelling and Computation Group, Department of Earth Science and Engineering, Imperial College London, London, SW7 2AZ (United Kingdom); Smith, Paul N. [ANSWERS Software Service, AMEC, Kimmeridge House, Dorset Green Technology Park, Winfrith Newburgh, Dorchester, Dorset, DT2 8ZB (United Kingdom); Smedley-Stevenson, Richard P. [AWE, Aldermaston, Reading, RG7 4PR (United Kingdom)
2015-01-15
A method for applying goal-based adaptive methods to the angular resolution of the neutral particle transport equation is presented. The methods are applied to an octahedral wavelet discretisation of the spherical angular domain which allows for anisotropic resolution. The angular resolution is adapted across both the spatial and energy dimensions. The spatial domain is discretised using an inner-element sub-grid scale finite element method. The goal-based adaptive methods optimise the angular discretisation to minimise the error in a specific functional of the solution. The goal-based error estimators require the solution of an adjoint system to determine the importance to the specified functional. The error estimators and the novel methods to calculate them are described. Several examples are presented to demonstrate the effectiveness of the methods. It is shown that the methods can significantly reduce the number of unknowns and computational time required to obtain a given error. The novelty of the work is the use of goal-based adaptive methods to obtain anisotropic resolution in the angular domain for solving the transport equation. -- Highlights: •Wavelet angular discretisation used to solve transport equation. •Adaptive method developed for the wavelet discretisation. •Anisotropic angular resolution demonstrated through the adaptive method. •Adaptive method provides improvements in computational efficiency.
Riipinen, I; Manninen, H. E.; Yli-Juuti, T.; M. Boy; Sipilä, M.; M. Ehn; Junninen, H.; T. Petäjä; M. Kulmala
2009-01-01
Measurements on the composition of nanometer-sized atmospheric particles are the key to understand which vapors participate in the secondary aerosol formation processes. Knowledge on these processes is crucial in assessing the climatic effects of secondary aerosol formation. We present data of >2 nm particle concentrations and their water-affinity measured with the Condensation Particle Counter Battery (CPCB) at a boreal forest site in Hyytiälä, Finland, during spring 2006. The data re...
International Nuclear Information System (INIS)
PIV (particle image velocimetry) is a measurement technique with growing application to the study of complex flows with relevance to industry. This work is focused on the assessment of some significant PIV measurement errors. In particular, procedures are proposed for estimating, and sometimes correcting, errors coming from the sensor geometry and performance, namely peak-locking and contemporary CCD camera read-out errors. Although the procedures are of general application to PIV, they are applied to a particular real case, giving an example of the methodology steps and the improvement in results that can be obtained. This real case corresponds to an ensemble of hot high-speed coaxial jets, representative of the civil transport aircraft propulsion system using turbofan engines. Errors of ∼0.1 pixels displacements have been assessed. This means 10% of the measured magnitude at many points. These results allow the uncertainty interval associated with the measurement to be provided and, under some circumstances, the correction of some of the bias components of the errors. The detection of conditions where the peak-locking error has a period of 2 pixels instead of the classical 1 pixel has been made possible using these procedures. In addition to the increased worth of the measurement, the uncertainty assessment is of interest for the validation of CFD codes
International Nuclear Information System (INIS)
Burnup calculations have been performed on a standard HTR fuel pebble with a radius of 3 cm containing 9 g of 8% enriched uranium and burnable poison particles (BPP) made of B4C highly enriched in 10B. The radius of the BPP and the number of particles per fuel pebble have been varied to find the flattest reactivity-to-time curve. It was found that for a k∞ of 1.1, a reactivity swing as low as 2% can be obtained when each fuel pebble contains about 1070 BPP with a radius of 75 μm. For coated BPP that consist of a graphite kernel with a radius of 300 μm covered with a B4C burnable poison layer, a similar value for the reactivity swing can be obtained. Cylindrical particles seem to perform worse. In general, the modification of the geometry of BPP is an effective means to tailor the reactivity curve of HTRs
Energy Technology Data Exchange (ETDEWEB)
Costa, Evaldo L.C., E-mail: evaldo@cnen.gov.br [Comissao Nacional de Energia Nuclear (CNEN), Rio de Janeiro, RJ (Brazil); Melo, Paulo F.F., E-mail: frutuoso@nuclear.ufrj.br [Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ (Brazil)
2013-07-01
This work aims to bring to discussion the proposal of a new classification model toward to generating ionizing radiation, specifically particle accelerators, considering two parameters: the size of these facilities and the level of energy they operate, emphasizing large accelerators, which typically operate at higher levels of energy. Also motivated by the fact that the Brazilian rules do not provide an adequate standard of licensing for this size of installation, this work will seek to revise the existing classification, where generators of ionizing radiation (including particle accelerators) are considered up to the level of energy of 50 MeV.
Kang, Kwan Hyoung; Li, Dongqing
2005-06-15
There is a concentration-polarization (CP) force acting on a particle submerged in an electrolyte solution with a concentration (conductivity) gradient under an externally applied DC electric field. This force originates from the two mechanisms: (i) gradient of electrohydrodynamic pressure around the particle developed by the Coulombic force acting on induced free charges by the concentration polarization, and (ii) dielectric force due to nonuniform electric field induced by the conductivity gradient. A perturbation analysis is performed for the electric field, the concentration field, and the hydrodynamic field, under the assumptions of creeping flow and small concentration gradient. The leading order component of this force acting on a dielectric spherical particle is obtained by integrating the Maxwell and the hydrodynamic stress tensors. The analytical results are validated by comparing the surface pressure and the skin friction to those of a numerical analysis. The CP force is proportional to square of the applied electric field, effective for electrically neutral particles, and always directs towards the region of higher ionic concentration. The magnitude of the CP force is compared to that of the electrophoretic and the conventional dielectrophoretic forces. PMID:15897097
International Nuclear Information System (INIS)
The present Note concerns the dynamics of organic matter in soils under forest (C3-type vegetation) and 12 and 50 years old sugar-cane (C4-type vegetation) cultivation. The decomposition rate of ‘forest organic matter” and the accumulation rate of “sugar-cane organic matter” are estimated through 13C measurements of total soil and different organic fractions (particle-size, fractionation)
Fisher-Hoch, S P; McCormick, J. B.; Auperin, D; Brown, B G; Castor, M; Perez, G; Ruo, S; Conaty, A; Brammer, L.; S. Bauer
1989-01-01
Lassa fever is an acute febrile disease of West Africa, where there are as many as 300,000 infections a year and an estimated 3000 deaths. As control of the rodent host is impracticable at present, the best immediate prospect is vaccination. We tested as potential vaccines in rhesus monkeys a closely related virus, Mopeia virus (two monkeys), and a recombinant vaccinia virus containing the Lassa virus glycoprotein gene, V-LSGPC (four monkeys). Two monkeys vaccinated with the New York Board of...
Polok, G
1999-01-01
The Cherenkov radiation is fully described by two variables Theta and phi , polar and azimuthal angles, respectively. In all published methods the azimuthal angle phi is completely neglected. We want to suggest that one can profit using the phi angle as additional aid in the particle identification procedure. For the first time, two- dimensional analysis results, taking into account not only both angles but also their errors, are presented. The two-dimensional method based on the Lagrange technique couples together the constraint equation and the minimization function and leads to the correct probability estimation. The principles and advantages of the proposed method are presented. (10 refs).
Energy Technology Data Exchange (ETDEWEB)
Lara, J.L. [Ocean and Coastal Research Group, Universidad de Cantabria, E.T.S.I.C.C. y P., Av. Los Castros s/n, 39005 Santander (Spain); Cowen, E.A.; Sou, I.M. [DeFrees Hydraulics Laboratory, School of Civil and Environmental Engineering, Hollister Hall, Cornell University, Ithaca, NY 14853-3501 (United States)
2002-07-01
Boundary layer flows are ubiquitous in the environment, but their study is often complicated by their thinness, geometric irregularity and boundary porosity. In this paper, we present an approach to making laboratory-based particle image velocimetry (PIV) measurements in these complex flow environments. Clear polycarbonate spheres were used to model a porous and rough bed. The strong curvature of the spheres results in a diffuse volume illuminated region instead of the more traditional finite and thin light sheet illuminated region, resulting in the imaging of both in-focus and significantly out-of-focus particles. Results of a traditional cross-correlation-based PIV-type analysis of these images demonstrate that the mean and turbulent features of an oscillatory boundary layer driven by a free-surface wave over an irregular-shaped porous bed can be robustly measured. Measurements of the mean flow, turbulent intensities, viscous and turbulent stresses are presented and discussed. Velocity spectra have been calculated showing an inertial subrange confirming that the PIV analysis is sufficiently robust to extract turbulence. The presented technique is particularly well suited for the study of highly dynamic free-surface flows that prevent the delivery of the light sheet from above the bed, such as swash flows. (orig.)
Evaluation of resistive-plate-chamber-based TOF-PET applied to in-beam particle therapy monitoring
Torres-Espallardo, I.; Diblen, F.; Rohling, H.; Solevi, P.; Gillam, J.; Watts, D.; España, S.; Vandenberghe, S.; Fiedler, F.; Rafecas, M.
2015-05-01
Particle therapy is a highly conformal radiotherapy technique which reduces the dose deposited to the surrounding normal tissues. In order to fully exploit its advantages, treatment monitoring is necessary to minimize uncertainties related to the dose delivery. Up to now, the only clinically feasible technique for the monitoring of therapeutic irradiation with particle beams is Positron Emission Tomography (PET). In this work we have compared a Resistive Plate Chamber (RPC)-based PET scanner with a scintillation-crystal-based PET scanner for this application. In general, the main advantages of the RPC-PET system are its excellent timing resolution, low cost, and the possibility of building large area systems. We simulated a partial-ring scanner based on an RPC prototype under construction within the Fondazione per Adroterapia Oncologica (TERA). For comparison with the crystal-based PET scanner we have chosen the geometry of a commercially available PET scanner, the Philips Gemini TF. The coincidence time resolution used in the simulations takes into account the current achievable values as well as expected improvements of both technologies. Several scenarios (including patient data) have been simulated to evaluate the performance of different scanners. Initial results have shown that the low sensitivity of the RPC hampers its application to hadron-beam monitoring, which has an intrinsically low positron yield compared to diagnostic PET. In addition, for in-beam PET there is a further data loss due to the partial ring configuration. In order to improve the performance of the RPC-based scanner, an improved version of the RPC detector (modifying the thickness of the gas and glass layers), providing a larger sensitivity, has been simulated and compared with an axially extended version of the crystal-based device. The improved version of the RPC shows better performance than the prototype, but the extended version of the crystal-based PET outperforms all other options.
Zhang, Wenjing; Sano, Natsuha; Kataoka, Michiyo; Ami, Yasushi; Suzaki, Yuriko; Wakita, Takaji; Ikeda, Hidetoshi; Li, Tian-Cheng
2016-06-01
Porcine bocaviruses (PBoVs), new members of the Bocavirus genus, have been identified in swine worldwide. However, the antigenicity and epidemiology of PBoVs are still unclear. Here we used a recombinant baculovirus expression system to express the main capsid protein VP2 of Japan strain JY31b in insect Tn5 cells, and successfully produced the virus-like particles of PBoV (PBoV-LPs). The diameter and densities of the PBoV-LPs were estimated to be 30nm and 1.300g/cm(3), respectively, which were similar to the values for the native virion of PBoV. Antigenic analysis demonstrated that the PBoV-LPs were not cross-reactive with porcine circovirus 2, but were cross-reactive with human bocavirus 1, 2, 3 and 4. An ELISA for detection of anti-PBoV IgG antibodies was established using PBoV-LPs as antigen, which proved to be useful for monitoring PBoV infection in both swine and wild boars. The preliminary epidemiology research showed that 90.7% of pigs and 59.5% of wild boars were positive for the anti-PBoV-IgG, suggesting that both species were also widely infected with PBoV. The seven PBoV strains detected in wild boars separated into four subgroups, demonstrating the genetic diversity of PBoV. PMID:26959654
Anchishkin, D
2014-01-01
Generalized mean-field approach for thermodynamic description of relativistic single- and multi-component gas in the grand canonical ensemble is formulated. In the framework of the proposed approach different phenomenological excluded-volume procedures are presented and compared to the existing ones. The mean-field approach is then used to effectively include hard-core repulsion in hadron-resonance gas model for description of chemical freeze-out in heavy-ion collisions. We calculate the collision energy dependence of several quantities for different values of hard-core hadron radius and for different excluded-volume procedures such as van der Waals and Carnahan-Starling models. It is shown that a choice of the excluded-volume model becomes important for large particle densities, and for large enough values of hadron radii ($r\\gtrsim0.9$ fm) there can be a sizable difference between different excluded-volume procedures used to describe the chemical freeze-out in heavy-ion collisions.
Anchishkin, D.; Vovchenko, V.
2015-10-01
A generalized mean-field approach for the thermodynamic description of relativistic single- and multi-component gas in the grand canonical ensemble is formulated. In the framework of the proposed approach, different phenomenological excluded-volume procedures are presented and compared to the existing ones. The mean-field approach is then used to effectively include hard-core repulsion in hadron-resonance gas model for description of chemical freeze-out in heavy-ion collisions. We calculate the collision energy dependence of several quantities for different values of hard-core hadron radius and for different excluded-volume procedures such as the van der Waals and Carnahan-Starling models. It is shown that a choice of the excluded-volume model becomes important for large particle densities. For large enough values of hadron radii (r≳ 0.9 fm) there can be a sizable difference between different excluded-volume procedures used to describe the chemical freeze-out in heavy-ion collisions. At the same time, for the smaller and more commonly used values of hard-core hadron radii (r≲ 0.5 fm), the precision of the van der Waals excluded-volume procedure is shown to be sufficient.
Directory of Open Access Journals (Sweden)
Nelson C Di Paolo
2014-03-01
Full Text Available Inflammation is a highly coordinated host response to infection, injury, or cell stress. In most instances, the inflammatory response is pro-survival and is aimed at restoring physiological tissue homeostasis and eliminating invading pathogens, although exuberant inflammation can lead to tissue damage and death. Intravascular injection of adenovirus (Ad results in virus accumulation in resident tissue macrophages that trigger activation of CXCL1 and CXCL2 chemokines via the IL-1α-IL-1RI signaling pathway. However, the mechanistic role and functional significance of this pathway in orchestrating cellular inflammatory responses to the virus in vivo remain unclear. Resident metallophilic macrophages expressing macrophage receptor with collagenous structure (MARCO+ in the splenic marginal zone (MZ play the principal role in trapping Ad from the blood. Here we show that intravascular Ad administration leads to the rapid recruitment of Ly-6G+7/4+ polymorphonuclear leukocytes (PMNs in the splenic MZ, the anatomical compartment that remains free of PMNs when these cells are purged from the bone marrow via a non-inflammatory stimulus. Furthermore, PMN recruitment in the splenic MZ resulted in elimination of virus-containing cells. IL-1α-IL-1RI signaling is only partially responsible for PMN recruitment in the MZ and requires CXCR2, but not CXCR1 signaling. We further found reduced recruitment of PMNs in the splenic MZ in complement C3-deficient mice, and that pre-treatment of IL-1α-deficient, but not wild-type mice, with complement inhibitor CR2-Crry (inhibits all complement pathways at C3 activation or CR2-fH (inhibits only the alternative complement activation pathway prior to Ad infection, abrogates PMN recruitment to the MZ and prevents elimination of MARCO+ macrophages from the spleen. Collectively, our study reveals a non-redundant role of the molecular factors of innate immunity--the chemokine-activating IL-1α-IL-1RI-CXCR2 axis and complement
Fisher-Hoch, S P; McCormick, J B; Auperin, D; Brown, B G; Castor, M; Perez, G; Ruo, S; Conaty, A; Brammer, L; Bauer, S
1989-01-01
Lassa fever is an acute febrile disease of West Africa, where there are as many as 300,000 infections a year and an estimated 3000 deaths. As control of the rodent host is impracticable at present, the best immediate prospect is vaccination. We tested as potential vaccines in rhesus monkeys a closely related virus, Mopeia virus (two monkeys), and a recombinant vaccinia virus containing the Lassa virus glycoprotein gene, V-LSGPC (four monkeys). Two monkeys vaccinated with the New York Board of Health strain of vaccinia virus as controls died after challenge with Lassa virus. The two monkeys vaccinated with Mopeia virus developed antibodies measurable by radioimmunoprecipitation prior to challenge, and they survived challenge by Lassa virus with minimal physical or physiologic disturbances. However, both showed a transient, low-titer Lassa viremia. Two of the four animals vaccinated with V-LSGPC had antibodies to both Lassa glycoproteins, as determined by radioimmunoprecipitation. All four animals survived a challenge of Lassa virus but experienced a transient febrile illness and moderate physiologic changes following challenge. Virus was recoverable from each of these animals, but at low titer and only during a brief period, as observed for the Mopeia-protected animals. We conclude that V-LSGPC can protect rhesus monkeys against death from Lassa fever. PMID:2911575
Melody, Kevin; McBeth, Sarah; Kline, Christopher; Kashuba, Angela D M; Mellors, John W; Ambrose, Zandrea
2015-12-01
Preexposure prophylaxis (PrEP) using antiretroviral drugs is effective in reducing the risk of human immunodeficiency virus type 1 (HIV-1) infection, but adherence to the PrEP regimen is needed. To improve adherence, a long-acting injectable formulation of the nonnucleoside reverse transcriptase (RT) inhibitor rilpivirine (RPV LA) has been developed. However, there are concerns that PrEP may select for drug-resistant mutations during preexisting or breakthrough infections, which could promote the spread of drug resistance and limit options for antiretroviral therapy. To address this concern, we administered RPV LA to macaques infected with simian immunodeficiency virus containing HIV-1 RT (RT-SHIV). Peak plasma RPV levels were equivalent to those reported in human trials and waned over time after dosing. RPV LA resulted in a 2-log decrease in plasma viremia, and the therapeutic effect was maintained for 15 weeks, until plasma drug concentrations dropped below 25 ng/ml. RT mutations E138G and E138Q were detected in single clones from plasma virus in separate animals only at one time point, and no resistance mutations were detected in viral RNA isolated from tissues. Wild-type and E138Q RT-SHIV displayed similar RPV susceptibilities in vitro, whereas E138G conferred 2-fold resistance to RPV. Overall, selection of RPV-resistant variants was rare in an RT-SHIV macaque model despite prolonged exposure to slowly decreasing RPV concentrations following injection of RPV LA. PMID:26438501
DEFF Research Database (Denmark)
Ingvorsen, Kristian Mark; Buchmann, Nicolas A.; Soria, Julio
2012-01-01
Particle-fluid interactions in supersonic flows are relevant in many different applications e.g. the cold gas-dynamic spray process. The optimal application of the process is hindered by a lack of understanding of the particle-fluid interactions. To obtain detailed information on the particle-flu...
Neri, Margherita; Turillazzi, Emanuela; Riezzo, Irene; Fineschi, Vittorio
2007-07-01
In this study, we applied a microscopic quantitative method based on the use of sodium rhodizonate to verify the presence of residues and their distribution on the cutis of gunshot wounds. A total of 250 skin samples were selected from cases in which the manner of death (accidental, suicide, and homicide) and the shooting distance could be reliably determined. The samples were examined under a light microscope, in transmitted bright field illumination and phase contrast mode, and with confocal laser scanning microscopy. In all skin specimens the area of each histological section was directly measured by an image analysis system. Both the number and the size of powder particles were measured. The distribution of gunshot residues (GSR) in the epidermal and subepidermal layers was also analyzed. The evaluation of the microscopic entrance wounds demonstrated different findings related to the range of fire. The data derived from the evaluation of both macroscopic and microscopic features demonstrated that the amount and the spatial distribution of GSR deposits in the skin surrounding entrance wounds strictly correlate with shooting distance. PMID:16862444
Riipinen, I; Manninen, H. E.; Yli-Juuti, T.; M. Boy; Sipilä, M.; M. Ehn; Junninen, H.; T. Petäjä; M. Kulmala
2008-01-01
Measurements on the composition of nanometer-sized atmospheric particles are the key to understand which vapors participate in the secondary aerosol formation processes. Knowledge on these processes is crucial in assessing the climatic effects of secondary aerosol formation. We present data of >2 nm particle concentrations and their hygroscopicity measured with the Condensation Particle Counter Battery (CPCB) at a boreal forest site in Hyytiälä, Finland, during spring 2006. This is the...
Stamhuis, EJ; Videler, JJ; van Duren, LA; Muller, UK
2002-01-01
Digital particle image velocimetry (DPIV) has been applied to animal-generated flows since 1993 to map the flow patterns and vortex wakes produced by a range of feeding and swimming aquatic animals, covering a Re range of 10(-2)-10(5). In this paper, the special circumstances, problems and some solu
DEFF Research Database (Denmark)
Soares, João; Valle, Zita; Morais, Hugo
2013-01-01
of a new hybrid method combing a particle swarm approach and a deterministic technique based on mixedinteger linear programming (MILP) to solve the day-ahead scheduling minimizing total operation costs from the aggregator point of view. A realistic mathematical formulation, considering the electric network...
K. Kalyani; T. Chakravarthi
2015-01-01
The perceived applicability of honey bee mating optimization HBMO and Particle Swarm Optimization PSO among the research scholars in Tamil Nadu are understudied. The purpose of the present study is to address this dearth in the literature in three ways: (i) providing descriptive data related to the applicability of these algorithm in their area of study. (ii) Applying Three Factor theory to assess the perceived range of applicability of the two said theories and to develop, a theoretically-ba...
International Nuclear Information System (INIS)
This volume is based on the proceedings of the CERN Accelerator School's course on Applied Geodesy for Particle Accelerators held in April 1986. The purpose was to record and disseminate the knowledge gained in recent years on the geodesy of accelerators and other large systems. The latest methods for positioning equipment to sub-millimetric accuracy in deep underground tunnels several tens of kilometers long are described, as well as such sophisticated techniques as the Navstar Global Positioning System and the Terrameter. Automation of better known instruments such as the gyroscope and Distinvar is also treated along with the highly evolved treatment of components in a modern accelerator. Use of the methods described can be of great benefit in many areas of research and industrial geodesy such as surveying, nautical and aeronautical engineering, astronomical radio-interferometry, metrology of large components, deformation studies, etc
International Nuclear Information System (INIS)
Characteristics necessary to specify an ISO 6980 Series 1 reference radiation field were determined for a commercially available 85Kr beta-particle source, using a BEAM EGS4 Monte Carlo code. The characteristics include residual maximum beta energy, Eres, and the uniformity of the dose rate over the calibration area. The Eres and the uniformity were also determined experimentally, using an extrapolation ionization chamber (EC) and a 0.2 cm3 parallel plate ionization chamber, respectively. The depth-dose curve measured with the EC gave a value 0.62 MeV for the Eres. Series 2 90Sr + 90Y and Series 1 85Kr beta-particle sources calibrated for Hp(0.07) at the secondary standard dosimetry laboratory (SSDL) of STUK were used to determine the energy and angular responses of TMDIS-1 direct ion storage dosemeters. The averaged zero angle Hp(0.07) responses to the 90Sr + 90Y and 85Kr reference radiations were 135 and 80%, respectively. The responses were normalized to 100%, Hp (0.07) response to 137Cs photon radiation. (authors)
Göpfert, A; Bax, H
2000-01-01
The setup and operating conditions of a gridded twin ionization chamber with sample change facility to study light charged particle properties in the 1 MeV region is described. Detailed studies of different grid geometries in connection with the choice of an eligible counting gas mixture and the applied high voltage have been performed. Due to the high overall amplification of the small electrical chamber signals obtained from such low-energy particles, special filters have been developed in order to increase the signal-to-noise ratio. Timing properties of the chamber signals are discussed in detail. Information available from chamber signals and encoding methods are elucidated by spectra of alpha particles created by sup 2 sup 3 sup 4 sup , sup 2 sup 3 sup 5 U spontaneous alpha decay. The detector permits the independent and simultaneous measurement of energy and angular distribution of particles in both sides of the chamber. Finally, preliminary results and related analysis methods will be presented for the...
Watts, R R; Wallingford, K M; Williams, R W; House, D E; Lewtas, J
1998-01-01
Personal exposure monitoring was conducted for road paving workers in three states. A research objective was to characterize and compare occupational exposures to fine respirable particles (asphalt and asphalt containing crumb rubber from shredded tires. Workers not exposed to asphalt fume were also included for comparison (to support the biomarker component of this study). The rubber content of the crumb rubber modified (CRM) asphalt at the three study sites was 12, 15, and 20%. A comparison of some specific job categories from two sites indicates greater potential carcinogenic PAH exposures during CRM asphalt work, however, the site with the greatest overall exposures did not indicate any differences for specific jobs. A statistical analysis of means for fine particle, pyrene and total carcinogenic PAH personal exposure shows, with two exceptions, there were no differences in exposures for these three measurement variables. One site shows significantly elevated pyrene exposure for CRM asphalt workers and another site similarly shows greater carcinogenic PAH exposure for CRM asphalt workers. Conventional and CRM asphalt worker airborne exposures to the PAH carcinogen marker, BaP, were very low with concentrations comparable to ambient air in many cities. However, this study demonstrates that asphalt road paving workers are exposed to elevated airborne concentrations of a group of unknown compounds that likely consist of the carcinogenic PAHs benz(a)anthracene, chrysene and methylated derivatives of both. The research described in this article has been reviewed in accordance with U.S. Environmental Protection Agency policy and approved for publication. Mention of trade names or commercial products does not constitute endorsement or recommendation for use. PMID:9577752
利用微粒群优化算法求解非线性规划问题%Applying Particle Swarm Optimization to Solve Nonlinear Programming Problem
Institute of Scientific and Technical Information of China (English)
毕荣山; 杨霞; 项曙光
2004-01-01
针对过程系统优化中的非线性规划(NLP)问题,应用微粒群优化算法(Particle Swarm Optimization,PSO)对其进行求解.系统介绍了PSO算法的基本思想和解题步骤,通过引入罚函数把PSO算法应用到NLP问题的求解中,可以对一般的NLP问题和非凸的NLP问题进行有效地求解.利用两个测试函数和一个过程系统优化的实例对其进行了测试并与其它算法所得的结果进行了比较.结果表明,PSO算法在使用的普遍性、求解的准确性方面都优于一般的算法,是一种有效的求解NLP问题的方法.
Mittal, K L
2015-01-01
The book provides a comprehensive and easily accessible reference source covering all important aspects of particle adhesion and removal. The core objective is to cover both fundamental and applied aspects of particle adhesion and removal with emphasis on recent developments. Among the topics to be covered include: 1. Fundamentals of surface forces in particle adhesion and removal.2. Mechanisms of particle adhesion and removal.3. Experimental methods (e.g. AFM, SFA,SFM,IFM, etc.) to understand particle-particle and particle-substrate interactions.4. Mechanics of adhesion of micro- and n
... Your Health Particle Pollution Public Health Issues Particle Pollution Recommend on Facebook Tweet Share Compartir Particle pollution ... see them in the air. Where does particle pollution come from? Particle pollution can come from two ...
International Nuclear Information System (INIS)
These proceedings contain papers relating to the 3rd Japanese-Bulgarian-Macedonian Joint Seminar on Applied Electromagnetics. Included are the following groups: Numerical Methods I; Electrical and Mechanical System Analysis and Simulations; Inverse Problems and Optimizations; Software Methodology; Numerical Methods II; Applied Electromagnetics
Newhouse, Vernon L
1975-01-01
Applied Superconductivity, Volume II, is part of a two-volume series on applied superconductivity. The first volume dealt with electronic applications and radiation detection, and contains a chapter on liquid helium refrigeration. The present volume discusses magnets, electromechanical applications, accelerators, and microwave and rf devices. The book opens with a chapter on high-field superconducting magnets, covering applications and magnet design. Subsequent chapters discuss superconductive machinery such as superconductive bearings and motors; rf superconducting devices; and future prospec
Logan, J David
2013-01-01
Praise for the Third Edition"Future mathematicians, scientists, and engineers should find the book to be an excellent introductory text for coursework or self-study as well as worth its shelf space for reference." -MAA Reviews Applied Mathematics, Fourth Edition is a thoroughly updated and revised edition on the applications of modeling and analyzing natural, social, and technological processes. The book covers a wide range of key topics in mathematical methods and modeling and highlights the connections between mathematics and the applied and nat
Applications of particle accelerators
International Nuclear Information System (INIS)
Particle accelerators are now widely used in a variety of applications for scientific research, applied physics, medicine, industrial processing, while possible utilisation in power engineering is envisaged. Earlier presentations of this subject, given at previous CERN Accelerator School sessions have been updated with papers contributed to the first European Conference on Accelerators in Applied Research and Technology (ECAART) held in September 1989 in Frankfurt and to the Second European Particle Accelerator Conference in Nice in June 1990. (orig.)
Schiehlen, Werner
2014-01-01
Applied Dynamics is an important branch of engineering mechanics widely applied to mechanical and automotive engineering, aerospace and biomechanics as well as control engineering and mechatronics. The computational methods presented are based on common fundamentals. For this purpose analytical mechanics turns out to be very useful where D’Alembert’s principle in the Lagrangian formulation proves to be most efficient. The method of multibody systems, finite element systems and continuous systems are treated consistently. Thus, students get a much better understanding of dynamical phenomena, and engineers in design and development departments using computer codes may check the results more easily by choosing models of different complexity for vibration and stress analysis.
International Nuclear Information System (INIS)
The 1988 progress report, of the Applied Optics laboratory, of the (Polytechnic School, France), is presented. The optical fiber activities are focused on the development of an optical gyrometer, containing a resonance cavity. The following domains are included, in the research program: the infrared laser physics, the laser sources, the semiconductor physics, the multiple-photon ionization and the nonlinear optics. Investigations on the biomedical, the biological and biophysical domains are carried out. The published papers and the congress communications are listed
Venter, Gerhard; Sobieszczanski-Sobieski Jaroslaw
2002-01-01
The purpose of this paper is to show how the search algorithm known as particle swarm optimization performs. Here, particle swarm optimization is applied to structural design problems, but the method has a much wider range of possible applications. The paper's new contributions are improvements to the particle swarm optimization algorithm and conclusions and recommendations as to the utility of the algorithm, Results of numerical experiments for both continuous and discrete applications are presented in the paper. The results indicate that the particle swarm optimization algorithm does locate the constrained minimum design in continuous applications with very good precision, albeit at a much higher computational cost than that of a typical gradient based optimizer. However, the true potential of particle swarm optimization is primarily in applications with discrete and/or discontinuous functions and variables. Additionally, particle swarm optimization has the potential of efficient computation with very large numbers of concurrently operating processors.
International Nuclear Information System (INIS)
The 1988 progress report of the Applied Mathematics center (Polytechnic School, France), is presented. The research fields of the Center are the scientific calculus, the probabilities and statistics and the video image synthesis. The research topics developed are: the analysis of numerical methods, the mathematical analysis of the physics and mechanics fundamental models, the numerical solution of complex models related to the industrial problems, the stochastic calculus and the brownian movement, the stochastic partial differential equations, the identification of the adaptive filtering parameters, the discrete element systems, statistics, the stochastic control and the development, the image synthesis techniques for education and research programs. The published papers, the congress communications and the thesis are listed
Particle-Particle-String Vertex
Ishibashi, Nobuyuki
1996-01-01
We study a theory of particles interacting with strings. Considering such a theory for Type IIA superstring will give some clue about M-theory. As a first step toward such a theory, we construct the particle-particle-string interaction vertex generalizing the D-particle boundary state.
Research on Magnetic Fe3O4 Nano-Particles Applied in Water Treatment%用于水处理的磁性Fe3O4纳米微粒研究
Institute of Scientific and Technical Information of China (English)
苏洁; 程文; 魏红; 何泽楠; 刘东; 左芬
2012-01-01
采用化学共沉淀法和水热法制备Fe3O4纳米磁性粒子及油酸包覆Fe3O4磁流体.通过实验确定最佳反应条件；用XRD分析Fe3O4粒子的晶体结构；用TEM观察磁流体样品的微观结构；用HPLC研究纳米粒子对左旋氧氟沙星溶液模拟废水超声降解的影响.结果表明产物为反尖晶石结构立方晶系的AB2O4型化合物,平均粒径小于15 nm;磁流体基本上为规则的球形,颗粒均匀,无团聚情况；制得的磁流体样品具有较好的流动性和超顺磁性；Fe3O4纳米粒子对左旋氧氟沙星具有一定的降解性能.%The Fe3O4 nano-particles and oil up on the Fe3O4 fluid are prepared by a chemical co-precipitation method and hydrothermal method. The optimum reaction conditions are determined through experiments. The crystal structure of Fe3O4 particles is analyzed via X-ray diffraction (XRD); the microstruc-ture of magnetic fluid sample is observed via transmission electron microscope (TEM); the effects of nano-particles on the degradation of levofloxacin solution imitating wastewater is investigated by high performance liquid chromatography( HPLC). The results show that the product is inverse spinel structure of the cubic crystal system-type compounds of AB204. The average particle size is less than 15 nm; magnetic fluid is regular spherical shape basically, particles uniformly and without agglomeration. Magnetic fluid samples are of good mobility and superparamagneticity; nano-size Fe3O4 can degrada levofloxacin to a certain extent.
Institute of Scientific and Technical Information of China (English)
张宽地; 王光谦; 吕宏兴; 陈俊英; 洪成
2011-01-01
为了解决马蹄形断面正常水深无显函数计算方法的现状,通过对明渠恒定均匀流方程进行数学变换,得到了标准Ⅰ,Ⅱ型马蹄形过水断面正常水深求解的分段非线性约束优化问题.将粒子群算法中的权重函数随着迭代次数和不同粒子与最优粒子之间的距离大小进行调整,用以加速算法的收敛速度和提高粒子的搜索能力,并将调整惯性权重模型的粒子群优化算法运用到马蹄形断面正常水深的求解中.通过实例计算及误差分析表明:分段优化模型在水深特征点连续,且该法能100%收敛到全局最优解,故该方法求解马蹄形断面正常水深适用性强、计算精度高、算法实现简单,为马蹄形过水断面水力计算提供了一条新途径.%Owing to the fact that the calculation formulas of normal depth for free flow in horseshoe section of tunnel and drainage culvert are not expressed by explicit function in hydraulics. By mathematicaltransformation of normal depth equation of horse-shoe section tunnel, a model of nonlinear constrained optimization for calculating the normal depths of standard Ⅰ - type and Ⅱ - type horse-shoe section tunnel was established. In order to accelerate the convergence rate of the algorithm and improve the searching ability of particle, an improved Particle Swarm Optimization algorithm was presented. The dynamic inertia weight was changed in every loop according to the particle's positions and the distance between the optimization particle. Error analysis and a computed illustration using the new method indicate that it is much more applicable, precise and simple than traditional methods for calculation of normal water depth. At the same time, the correctness and validity of the new method was demonstrated. So it provided a new tool for obtaining normal depth of open channel with horse-shoe section problem.
Energy Technology Data Exchange (ETDEWEB)
Raju, M.R.
1993-09-01
Particle therapy has a long history. The experimentation with particles for their therapeutic application got started soon after they were produced in the laboratory. Physicists played a major role in proposing the potential applications in radiotherapy as well as in the development of particle therapy. A brief review of the current status of particle radiotherapy with some historical perspective is presented and specific contributions made by physicists will be pointed out wherever appropriate. The rationale of using particles in cancer treatment is to reduce the treatment volume to the target volume by using precise dose distributions in three dimensions by using particles such as protons and to improve the differential effects on tumors compared to normal tissues by using high-LET radiations such as neutrons. Pions and heavy ions combine the above two characteristics.
Integral equation study of particle confinement effects in a polymer/particle mixture
Energy Technology Data Exchange (ETDEWEB)
Henderson, D; Trokhymchuk, A; Kalyuzhnyi, Y; Gee, R; Lacevic, N
2007-05-09
Integral equation theory techniques are applied to evaluate the structuring of the polymer when large solid particles are embedded into a bulk polymer melt. The formalism presented here is applied to obtain an insight into the filler particle aggregation tendency. We find that with the employed polymer-particle interaction model it is very unlikely that the particles will aggregate. We believe that in such a system aggregation and clustering can occur when the filler particles are dressed by tightly bound polymer layers.
Energy Technology Data Exchange (ETDEWEB)
Kamal, Anwar
2014-09-01
Provides step-by-step derivations. Contains numerous tables and diagrams. Supports learning and teaching with numerous worked examples, questions and problems with answers. Sketches also the historical development of the subject. This textbook teaches particle physics very didactically. It supports learning and teaching with numerous worked examples, questions and problems with answers. Numerous tables and diagrams lead to a better understanding of the explanations. The content of the book covers all important topics of particle physics: Elementary particles are classified from the point of view of the four fundamental interactions. The nomenclature used in particle physics is explained. The discoveries and properties of known elementary particles and resonances are given. The particles considered are positrons, muon, pions, anti-protons, strange particles, neutrino and hadrons. The conservation laws governing the interactions of elementary particles are given. The concepts of parity, spin, charge conjugation, time reversal and gauge invariance are explained. The quark theory is introduced to explain the hadron structure and strong interactions. The solar neutrino problem is considered. Weak interactions are classified into various types, and the selection rules are stated. Non-conservation of parity and the universality of the weak interactions are discussed. Neutral and charged currents, discovery of W and Z bosons and the early universe form important topics of the electroweak interactions. The principles of high energy accelerators including colliders are elaborately explained. Additionally, in the book detectors used in nuclear and particle physics are described. This book is on the upper undergraduate level.
International Nuclear Information System (INIS)
Provides step-by-step derivations. Contains numerous tables and diagrams. Supports learning and teaching with numerous worked examples, questions and problems with answers. Sketches also the historical development of the subject. This textbook teaches particle physics very didactically. It supports learning and teaching with numerous worked examples, questions and problems with answers. Numerous tables and diagrams lead to a better understanding of the explanations. The content of the book covers all important topics of particle physics: Elementary particles are classified from the point of view of the four fundamental interactions. The nomenclature used in particle physics is explained. The discoveries and properties of known elementary particles and resonances are given. The particles considered are positrons, muon, pions, anti-protons, strange particles, neutrino and hadrons. The conservation laws governing the interactions of elementary particles are given. The concepts of parity, spin, charge conjugation, time reversal and gauge invariance are explained. The quark theory is introduced to explain the hadron structure and strong interactions. The solar neutrino problem is considered. Weak interactions are classified into various types, and the selection rules are stated. Non-conservation of parity and the universality of the weak interactions are discussed. Neutral and charged currents, discovery of W and Z bosons and the early universe form important topics of the electroweak interactions. The principles of high energy accelerators including colliders are elaborately explained. Additionally, in the book detectors used in nuclear and particle physics are described. This book is on the upper undergraduate level.
Martin, B R
2008-01-01
An essential introduction to particle physics, with coverage ranging from the basics through to the very latest developments, in an accessible and carefully structured text. Particle Physics: Third Edition is a revision of a highly regarded introduction to particle physics. In its two previous editions this book has proved to be an accessible and balanced introduction to modern particle physics, suitable for those students needed a more comprehensive introduction to the subject than provided by the 'compendium' style physics books. In the Third Edition the standard mod
Particle motion in fluidised beds
International Nuclear Information System (INIS)
Gas fluidised beds are important components in many process industries, e.g. coal combustors and granulators, but not much is known about the movement of the solids. Positron Emission Particle Tracking (PEPT) enables the movement of a single, radioactive tracer particle to be followed rapidly and faithfully. Experiments were carried out in columns sized between 70 and 240mm. diameter, operating in the bubbling regime at ambient process conditions using particles of group B and D (Geldart Classification). Particle motion was tracked and the data applied to models for particle movement at the gas distributor as well as close to other surfaces and to models for particle circulation in beds of cohesive particles. In the light of these data, models for particle and bubble interaction, particle circulation, segregation, attrition, erosion, heat transfer and fluidised bed scale-up rules were reassessed. Particle motion is directly caused by bubble motion, and their velocities were found to be equal for particles travelling in a bubble. PEPT enables particle circulation to be measured, giving a more accurate correlation for future predictions. Particle motion follows the scale-up rules based on similarities of the bubble motion in the bed. A new group of parameters was identified controlling the amount of attrition in fluidised beds and a new model to predict attrition is proposed. (author)
Particle decay in inflationary cosmology
Boyanovsky, D.; de Vega, H. J.
2004-01-01
We investigate the relaxation and decay of a particle during inflation by implementing the dynamical renormalization group. This investigation allows us to give a meaningful definition for the decay rate in an expanding universe. As a prelude to a more general scenario, the method is applied here to study the decay of a particle in de Sitter inflation via a trilinear coupling to massless conformally coupled particles, both for wavelengths much larger and much smaller than the Hubble radius. F...
ANALYSIS OF PARTICLE-PARTICLE FORCES IN ELECTRORHEOLOGICAL FLUIDS
Institute of Scientific and Technical Information of China (English)
ZHAO HE-PING; LIU ZHENG-YOU; LIU YOU-YAN
2001-01-01
The Rayleigh identity, based on a multipole expansion theory, is extended to analyse the forces between particles in an electrorheological system. The shear modulus for chains of particles arrayed on a square lattice is calculated. It is found that the modulus increases linearly with the ratio of dielectric constants of the dispersed particles to that of the continuous phase; as the ratio becomes larger, contrary to the expectations from a simple dipole approximation, the modulus would saturate. In the case of conducting particles, the modulus varies with the frequency of the applied field. In a limiting case of perfectly conducting particles, the conductivity is also considered. It is found that the particle-particle forces are extremely sensitive to their separations from each other.
Particle splitting in smoothed particle hydrodynamics based on Voronoi diagram
Chiaki, Gen
2015-01-01
We present a novel method for particle splitting in smoothed particle hydrodynamics simulations. Our method utilizes the Voronoi diagram for a given particle set to determine the position of fine daughter particles. We perform several test simulations to compare our method with a conventional splitting method in which the daughter particles are placed isotropically over the local smoothing length. We show that, with our method, the density deviation after splitting is reduced by a factor of about two compared with the conventional method. Splitting would smooth out the anisotropic density structure if the daughters are distributed isotropically, but our scheme allows the daughter particles to trace the original density distribution with length scales of the mean separation of their parent. We apply the particle splitting to simulations of the primordial gas cloud collapse. The thermal evolution is accurately followed to the hydrogen number density of 10^12 /cc. With the effective mass resolution of ~10^-4 Msu...
Institute of Scientific and Technical Information of China (English)
傅学金; 强洪夫; 杨月诚
2007-01-01
光滑粒子流体动力学法(smoothed particle hydrodynamics,SPH)是一种基于核估计的无网格Lagrange 数值方法.它用粒子方程离散流体动力学的连续方程,既可以处理有限元难于处理的大变形和严重扭曲问题,又可以处理有限差分法不易处理的自由边界和材料界面的问题,在固体力学中的冲击、爆炸和裂纹模拟中具有广阔的发展前最.但是,该算法的拉伸不稳定性(tensile instability)问题是它在固体力学领域中应用的最大障碍.对SPH稳定性分析表明,算法不稳定性的条件仅与应力状态和核函数的2阶导数有关.目前,应力点法(stress points)、Lagrange核函数法、人工应力法(artificial stress)、修正光滑粒子法(corrective smoothed particle method,CSPM)和守恒光滑法(conservative smoothing)以及其他一些方法成功地改善了SPH的拉伸不稳定性,但是每一种方法都不能彻底解决SPH的拉伸不稳定性问题.本文介绍了SPH法的方程和Von Neumann稳定性分析的思想,以及国内外在这几个方面的研究成果及其最新进展,同时指出目前研究中存在的问题和研究的方向.
Directory of Open Access Journals (Sweden)
C. A. Kumar
2011-01-01
Full Text Available Problem statement: Most of the control engineering problems are characterized by several, contradicting, conflicting objectives, which have to be satisfied simultaneously. Two widely used methods for finding the optimal solution to such problems are aggregating to a single criterion and using Pareto-optimal solutions. Approach: Non-Dominated Sorting Particle Swarm Optimization algorithm (NSPSO based approach is used in the design of multiobjective PID controller to find the constant proportional-integral-derivative gains for a chemical neutralization plant. The plant considered in this study is highly non-linear and with varying time delay, provides a challenging test bed for nonlinear control problems. Results: Experimental results confirm that a multi-objective, Paretobased GA search gives a better performance than a single objective GA. Conclusion: Finally, the results for single objective and multiobjective optimization using NSPSO for the neutralization plant are compared. Gain scheduled PID controllers are designed from Pareto front obtained with NSPSO which exhibit good disturbance rejection capability.
Parham, R.
1974-01-01
Presents the text of a speech given to a conference of physics teachers in which the full spectrum of elementary particles is given, along with their classification. Also includes some teaching materials available on this topic. (PEB)
International Nuclear Information System (INIS)
The theoretical work on models of the electroweak interaction and simple grand unified models with a nonstandard set of Higgs particles is reviewed. Emphasis is placed on light and even strictly massless Higgs particles: Goldstone and pseudo-Goldstone bosons. It is shown that such bosons arise in a natural way in the theory if the Higgs particles are in fact composite. The low-energy effective Lagrangian of these particles is studied. A detailed study is made of the problem of CP breaking in a strong interaction and of a natural solution of this problem through the introduction of a pseudo-Goldstone particle: an axion. The theory of the ''standard'' axion and its experimental status are reviewed. Possible ''invisible'' and ''visualized'' axions are discussed, as are certain astrophysical aspects of the existence of an axion. By analogy with the axion, an analysis is made of another hypothetical particle: the strictly massless Goldstone boson or arion. Model-independent properties of the arion are determined. The similarity between the arion fields and magnetic fields and the differences between these fields are shown. Possible methods for detecting an arion field are discussed. An experiment which has set a limit on the strength of the arion interaction is described. Neutral Goldstone bosons whose emission is accompanied by changes in fermion flavors (''familons'') are discussed. Two versions of the theory with a Goldstone boson (a majoron) which arises upon a spontaneous breaking of lepton number are described
Institute of Scientific and Technical Information of China (English)
李欣然; 靳雁霞
2012-01-01
WTA problem is vital in modern warfare. The WTA model is built aiming at minimum failure probability in allocating weapons for shooting all the targets. This paper puts forward a quantum behaviour particle swarm optimisation algorithm with inertia weight adaptive adjustment to overcome the deficiencies of premature convergence and low optimisation efficiency the existing algorithm has in solving such kind of problems. First, the concept of focusing distance changing rate is introduced, the inertial weight factor is formulated as the function of focusing distance rate so as to provide the algorithm with dynamic adaptability. Meanwhile, an effective method of judging and preventing premature and stagnation is embedded into the algorithm. The optimisation example shows that this algorithm can effectively solve the WTA problems.%武器一目标分配(WTA)问题是现代战争中一个十分重要的问题.以分配武器迎击全部目标的失败概率最小为目标,构建武器一目标分配问题模型；针对已有算法求解这类问题存在的早熟收敛、优化效率较低的缺点,提出一种惯性权重自适应调整的量子行为粒子群优化算法.首先引入聚焦距离变化率的概念,将惯性权重因子表示为关于聚焦距离变化率的函数,从而使算法具有动态自适应性；同时在算法中嵌入一种判断和避免搜索早熟和停滞的有效方法.优化实例的结果分析表明,该算法能有效地解决武器-目标分配问题.
International Nuclear Information System (INIS)
Gas-cooled reactors, using packed beds of small diameter coated fuel particles have been proposed for compact, high-power systems. The particulate fuel used in the tests was 800 microns in diameter, consisting of a thoria kernel coated with 200 microns of pyrocarbon. Typically, the bed of fuel particles was contained in a ceramic cylinder with porous metallic frits at each end. A dc voltage was applied to the metallic frits and the resulting electric current heated the bed. Heat was removed by passing coolant (helium or hydrogen) through the bed. Candidate frit materials, rhenium, nickel, zirconium carbide, and zirconium oxide were unaffected, while tungsten and tungsten-rhenium lost weight and strength. Zirconium-carbide particles were tested at 2000 K in H2 for 12 hours with no visible reaction or weight loss
DEFF Research Database (Denmark)
Ziegel, Johanna; Nyengaard, Jens Randel; Jensen, Eva B. Vedel
In the present paper, statistical procedures for estimating shape and orientation of arbitrary three-dimensional particles are developed. The focus of this work is on the case where the particles cannot be observed directly, but only via sections. Volume tensors are used for describing particle...
Fuzzy logic particle tracking velocimetry
Wernet, Mark P.
1993-01-01
Fuzzy logic has proven to be a simple and robust method for process control. Instead of requiring a complex model of the system, a user defined rule base is used to control the process. In this paper the principles of fuzzy logic control are applied to Particle Tracking Velocimetry (PTV). Two frames of digitally recorded, single exposure particle imagery are used as input. The fuzzy processor uses the local particle displacement information to determine the correct particle tracks. Fuzzy PTV is an improvement over traditional PTV techniques which typically require a sequence (greater than 2) of image frames for accurately tracking particles. The fuzzy processor executes in software on a PC without the use of specialized array or fuzzy logic processors. A pair of sample input images with roughly 300 particle images each, results in more than 200 velocity vectors in under 8 seconds of processing time.
Analysis of particle kinematics in spheronization via particle image velocimetry.
Koester, Martin; Thommes, Markus
2013-02-01
Spheronization is a wide spread technique in pellet production for many pharmaceutical applications. Pellets produced by spheronization are characterized by a particularly spherical shape and narrow size distribution. The particle kinematic during spheronization is currently not well-understood. Therefore, particle image velocimetry (PIV) was implemented in the spheronization process to visualize the particle movement and to identify flow patterns, in order to explain the influence of various process parameters. The spheronization process of a common formulation was recorded with a high-speed camera, and the images were processed using particle image velocimetry software. A crosscorrelation approach was chosen to determine the particle velocity at the surface of the pellet bulk. Formulation and process parameters were varied systematically, and their influence on the particle velocity was investigated. The particle stream shows a torus-like shape with a twisted rope-like motion. It is remarkable that the overall particle velocity is approximately 10-fold lower than the tip speed of the friction plate. The velocity of the particle stream can be correlated to the water content of the pellets and the load of the spheronizer, while the rotation speed was not relevant. In conclusion, PIV was successfully applied to the spheronization process, and new insights into the particle velocity were obtained.
Ergodicity of particle systems
Dzhin Ven Chen
2002-01-01
The ergodicity relative to shifts, the mixing and related problems on the invariant measures for the interacting particles systems, such as the Ising ferromagnetic stochastic models, the contact processes, the systems with exception, the selector systems with three possible stochastically preconceived opinions or with many possible opinions, etc. are studied. The obtained results provide for the answers to certain questions, related to these models. The applied methods are based on duality
PARTICLE BEAM TRACKING CIRCUIT
Anderson, O.A.
1959-05-01
>A particle-beam tracking and correcting circuit is described. Beam induction electrodes are placed on either side of the beam, and potentials induced by the beam are compared in a voltage comparator or discriminator. This comparison produces an error signal which modifies the fm curve at the voltage applied to the drift tube, thereby returning the orbit to the preferred position. The arrangement serves also to synchronize accelerating frequency and magnetic field growth. (T.R.H.)
Martin, Brian R
2017-01-01
An accessible and carefully structured introduction to Particle Physics, including important coverage of the Higgs Boson and recent progress in neutrino physics. Fourth edition of this successful title in the Manchester Physics series. Includes information on recent key discoveries including : An account of the discovery of exotic hadrons, beyond the simple quark model; Expanded treatments of neutrino physics and CP violation in B-decays; An updated account of ‘physics beyond the standard model’, including the interaction of particle physics with cosmology; Additional problems in all chapters, with solutions to selected problems available on the book’s website; Advanced material appears in optional starred sections.
Core-shell particles at fluid interfaces
Buchcic, C.
2016-01-01
There is a growing interest in the use of particles as stabilizers for foams and emulsions. Applying hard particles for stabilization of fluid interface is referred to as Pickering stabilization. By using hard particles instead of surfactants and polymers, fluid interfaces can be effectively stabili
2005-01-01
While biomedicine and geoscience use grids to bring together many different sub-disciplines, particle physicists use grid computing to increase computing power and storage resources, and to access and analyze vast amounts of data collected from detectors at the world's most powerful accelerators (1 page)
Graeser, M.; Bente, K.; Neumann, A.; Buzug, T. M.
2016-02-01
In magnetic particle imaging, scanners use different spatial sampling techniques to cover the field of view (FOV). As spatial encoding is realized by a selective low field region (a field-free-point, or field-free-line), this region has to be moved through the FOV on specific sampling trajectories. To achieve these trajectories complex time dependent magnetic fields are necessary. Due to the superposition of the selection field and the homogeneous time dependent fields, particles at different spatial positions experience different field sequences. As a result, the dynamic behaviour of those particles can be strongly spatially dependent. So far, simulation studies that determined the trajectory quality have used the Langevin function to model the particle response. This however, neglects the dynamic relaxation of the particles, which is highly affected by magnetic anisotropy. More sophisticated models based on stochastic differential equations that include these effects were only used for one dimensional excitation. In this work, a model based on stochastic differential equations is applied to two-dimensional trajectory field sequences, and the effects of these field sequences on the particle response are investigated. The results show that the signal of anisotropic particles is not based on particle parameters such as size and shape alone, but is also determined by the field sequence that a particle ensemble experiences at its spatial position. It is concluded, that the particle parameters can be optimized in terms of the used trajectory.
OMEC LS800 Laser Particle Sizer
Institute of Scientific and Technical Information of China (English)
Fugen Zhang
2003-01-01
@@ Laser particle sizers (LPS's) measure the size of small particles from the phenomenon of light scattering, while scattering by large particles is considered to consists of diffraction. Mie's Theory applies to small particles down to submicron dimensions. OMEC recognizes that the scattering theory should be used for both large and small particles in order to have a precise description of the scattering phenomena. Therefore, although numerical calculation based on the scattering theory is much more complicated than for the theory of diffraction, especially for particles much larger than 1 micron, OMEC has persisted in using the strict theory of scattering for all her products.
Microplastic particles in sediments from Danish waters
Strand, Jakob; Lassen, Pia; Shashoua, Yvonne; Andersen, Jesper
2013-01-01
Sediment contents of microplastic particles were studied at several areas in Danish coastal and open waters in the North Sea, Skagerrak, Kattegat, Belt Sea and Baltic Sea from 2012. Isolation of microplastic particles were performed after basic digestion of natural organic matter, before applying a concentrated saline solution for extraction and finally dividing the particles into three size fractions using sieves of 38 µm, 1 mm and 5 mm. The collected particles were examined and counted usin...
Kennedy, Eugene
2012-01-01
Stimulated by the Large Hadron Collider and the search for the elusive Higgs Boson, interest in particle physics continues at a high level among scientists and the general public. This book includes theoretical aspects, with chapters outlining the generation model and a charged Higgs boson model as alternative scenarios to the Standard Model. An introduction is provided to postulated axion photon interactions and associated photon dispersion in magnetized media. The complexity of particle physics research requiring the synergistic combination of theory, hardware and computation is described in terms of the e-science paradigm. The book concludes with a chapter tackling potential radiation hazards associated with extremely weakly interacting neutrinos if produced in copious amounts with future high-energy muon-collider facilities.
Collinson, Chris
1995-01-01
* Assumes no prior knowledge* Adopts a modelling approach* Numerous tutorial problems, worked examples and exercises included* Elementary topics augmented by planetary motion and rotating framesThis text provides an invaluable introduction to mechanicsm confining attention to the motion of a particle. It begins with a full discussion of the foundations of the subject within the context of mathematical modelling before covering more advanced topics including the theory of planetary orbits and the use of rotating frames of reference. Truly introductory , the style adoped is perfect for those u
International Nuclear Information System (INIS)
The two main themes of this volume are the standard model of the fundamental interactions (and beyond) and astrophysics. The remarkable advances in the theoretical understanding and experimental confirmation of the standard model were reviewed in several lectures where the reader will find a thorough analysis of recent experiments as well as a detailed comparison of the standard model with experiment. On a more theoretical side, supersymmetry, supergravity and strings were discussed as well. The second theme concerns astrophysics where the school was quite successful in bridging the gap between this fascinating subject and more conventional particle physics
Particle Swarm Optimization Toolbox
Grant, Michael J.
2010-01-01
The Particle Swarm Optimization Toolbox is a library of evolutionary optimization tools developed in the MATLAB environment. The algorithms contained in the library include a genetic algorithm (GA), a single-objective particle swarm optimizer (SOPSO), and a multi-objective particle swarm optimizer (MOPSO). Development focused on both the SOPSO and MOPSO. A GA was included mainly for comparison purposes, and the particle swarm optimizers appeared to perform better for a wide variety of optimization problems. All algorithms are capable of performing unconstrained and constrained optimization. The particle swarm optimizers are capable of performing single and multi-objective optimization. The SOPSO and MOPSO algorithms are based on swarming theory and bird-flocking patterns to search the trade space for the optimal solution or optimal trade in competing objectives. The MOPSO generates Pareto fronts for objectives that are in competition. A GA, based on Darwin evolutionary theory, is also included in the library. The GA consists of individuals that form a population in the design space. The population mates to form offspring at new locations in the design space. These offspring contain traits from both of the parents. The algorithm is based on this combination of traits from parents to hopefully provide an improved solution than either of the original parents. As the algorithm progresses, individuals that hold these optimal traits will emerge as the optimal solutions. Due to the generic design of all optimization algorithms, each algorithm interfaces with a user-supplied objective function. This function serves as a "black-box" to the optimizers in which the only purpose of this function is to evaluate solutions provided by the optimizers. Hence, the user-supplied function can be numerical simulations, analytical functions, etc., since the specific detail of this function is of no concern to the optimizer. These algorithms were originally developed to support entry
Mercury-DPM: Fast particle simulations in complex geometries
Thornton, A.R.; Krijgsman, D.; Fransen, R.H.A.; Gonzalez, S.; Tunuguntla, D.; Voortwis, te A.; Luding, S.; Bokhove, O.; Weinhart, T.
2013-01-01
Mercury-DPM is a code for performing discrete particle simulations. That is to say, it simulates the motion of particles, or atoms, by applying forces and torques that stem either from external body forces, (e.g. gravity, magnetic fields, etc…) or from particle interactions. For granular particles,
DEFF Research Database (Denmark)
Bekö, Gabriel; Weschler, Charles J.; Wierzbicka, Aneta;
2013-01-01
Particle number (PN) concentrations (10-300 nm in size) were continuously measured over a period of ∼45 h in 56 residences of nonsmokers in Copenhagen, Denmark. The highest concentrations were measured when occupants were present and awake (geometric mean, GM: 22.3 × 103 cm-3), the lowest when th......). Candle burning occurred in half of the homes where, on average, it was responsible for almost 60% of the integrated exposure. © 2013 American Chemical Society........3 × 105 cm-3·h/day). On average, ∼90% of this exposure occurred outside of the period from midnight to 6 a.m. Source events, especially candle burning, cooking, toasting, and unknown activities, were responsible on average for ∼65% of the residential integrated exposure (51% without the unknown activities...
Rotational diffusion of particles in turbulence
Meyer, Colin R
2013-01-01
Through laboratory measurements, we compare the rotation of spherical and ellipsoidal particles in homogeneous, isotropic turbulence. We find that the particles' angular velocity statistics are well described by an Ornstein-Uhlenbeck (OU) process. This theoretical model predicts that the Lagrangian autocovariance of particles' angular velocity will decay exponentially. We measure the autocovariance using stereoscopic particle image velocimetry (SPIV) applied to particles whose size is within the inertial subrange of the ambient turbulence. The SPIV resolves the motion of points interior to the particles, from which we calculate the solid body rotation of the particles. This provides us with the angular velocity time series for individual particles. Through ensemble statistics, we determine the autocovariance of angular velocity and confirm that it matches the form predicted by an OU process. We can further use the autocovariance curve to quantify the turbulent rotational diffusivity.
Burnout of pulverized biomass particles in large scale boiler – Single particle model approach
DEFF Research Database (Denmark)
Saastamoinen, Jaakko; Aho, Martti; Moilanen, Antero;
2010-01-01
the particle combustion model is coupled with one-dimensional equation of motion of the particle, is applied for the calculation of the burnout in the boiler. The particle size of biomass can be much larger than that of coal to reach complete burnout due to lower density and greater reactivity. The burner...... location and the trajectories of the particles might be optimised to maximise the residence time and burnout....
Particle deposition in ventilation ducts
Energy Technology Data Exchange (ETDEWEB)
Sippola, Mark R.
2002-09-01
the experimental measurements was applied to evaluate particle losses in supply and return duct runs. Model results suggest that duct losses are negligible for particle sizes less than 1 {micro}m and complete for particle sizes greater than 50 {micro}m. Deposition to insulated ducts, horizontal duct floors and bends are predicted to control losses in duct systems. When combined with models for HVAC filtration and deposition to indoor surfaces to predict the ultimate fates of particles within buildings, these results suggest that ventilation ducts play only a small role in determining indoor particle concentrations, especially when HVAC filtration is present. However, the measured and modeled particle deposition rates are expected to be important for ventilation system contamination.
Microfabricated particle focusing device
Energy Technology Data Exchange (ETDEWEB)
Ravula, Surendra K.; Arrington, Christian L.; Sigman, Jennifer K.; Branch, Darren W.; Brener, Igal; Clem, Paul G.; James, Conrad D.; Hill, Martyn; Boltryk, Rosemary June
2013-04-23
A microfabricated particle focusing device comprises an acoustic portion to preconcentrate particles over large spatial dimensions into particle streams and a dielectrophoretic portion for finer particle focusing into single-file columns. The device can be used for high throughput assays for which it is necessary to isolate and investigate small bundles of particles and single particles.
Development of Particle Flow Calorimetry
Repond, Jose
2011-01-01
This talk reviews the development of imaging calorimeters for the purpose of applying Particle Flow Algorithms (PFAs) to the measurement of hadronic jets at a future lepton collider. After a short introduction, the current status of PFA developments is presented, followed by a review of the major developments in electromagnetic and hadronic calorimetry.
Particle identification by silicon detectors
International Nuclear Information System (INIS)
A method is developed for the evaluation of the energy loss, dE/dx, of a charged particle traversing a silicon strip detector. The method is applied to the DELPHI microvertex detector leading to diagrams of dE/dx versus momentum for different particles. The specific case of pions and protons is treated and the most probable value of dE/dx and the width of the dE/dx distribution for those particles in the momentum range of 0.2 GeV/c to 1.5 GeV/c, are obtained. The resolution found is 13.4 % for particles with momentum higher than 2 GeV/c and the separation power is 2.9 for 1.0 GeV/c pions and protons. (author)
Antonella Del Rosso
2014-01-01
These devices are designed to provide a current pulse of 5000 Amps which will in turn generate a fast magnetic pulse that steers the incoming beam into the LHC. Today, the comprehensive upgrade of the LHC injection kicker system is entering its final stages. The upgraded system will ensure the LHC can be refilled without needing to wait for the kicker magnets to cool, thus enhancing the performance of the whole accelerator. An upgraded kicker magnet in its vacuum tank, with an upgraded beam screen. The LHC is equipped with two kicker systems installed at the injection points (near points 2 and 8, see schematic diagram) where the particle beams coming from the SPS are injected into the accelerator’s orbit. Each system comprises four magnets and four pulse generators in which the field rises to 0.12 Tesla in less than 900 nanoseconds and for a duration of approximately 8 microseconds. Although the injection kickers only pulse 12 times to fill the LHC up with beam, the LHC beam circ...
Radiation in Particle Simulations
Energy Technology Data Exchange (ETDEWEB)
More, R; Graziani, F; Glosli, J; Surh, M
2010-11-19
Hot dense radiative (HDR) plasmas common to Inertial Confinement Fusion (ICF) and stellar interiors have high temperature (a few hundred eV to tens of keV), high density (tens to hundreds of g/cc) and high pressure (hundreds of megabars to thousands of gigabars). Typically, such plasmas undergo collisional, radiative, atomic and possibly thermonuclear processes. In order to describe HDR plasmas, computational physicists in ICF and astrophysics use atomic-scale microphysical models implemented in various simulation codes. Experimental validation of the models used to describe HDR plasmas are difficult to perform. Direct Numerical Simulation (DNS) of the many-body interactions of plasmas is a promising approach to model validation but, previous work either relies on the collisionless approximation or ignores radiation. We present four methods that attempt a new numerical simulation technique to address a currently unsolved problem: the extension of molecular dynamics to collisional plasmas including emission and absorption of radiation. The first method applies the Lienard-Weichert solution of Maxwell's equations for a classical particle whose motion is assumed to be known. The second method expands the electromagnetic field in normal modes (planewaves in a box with periodic boundary-conditions) and solves the equation for wave amplitudes coupled to the particle motion. The third method is a hybrid molecular dynamics/Monte Carlo (MD/MC) method which calculates radiation emitted or absorbed by electron-ion pairs during close collisions. The fourth method is a generalization of the third method to include small clusters of particles emitting radiation during close encounters: one electron simultaneously hitting two ions, two electrons simultaneously hitting one ion, etc. This approach is inspired by the virial expansion method of equilibrium statistical mechanics. Using a combination of these methods we believe it is possible to do atomic-scale particle
Bayesian target tracking based on particle filter
Institute of Scientific and Technical Information of China (English)
无
2005-01-01
For being able to deal with the nonlinear or non-Gaussian problems, particle filters have been studied by many researchers. Based on particle filter, the extended Kalman filter (EKF) proposal function is applied to Bayesian target tracking. Markov chain Monte Carlo (MCMC) method, the resampling step, etc novel techniques are also introduced into Bayesian target tracking. And the simulation results confirm the improved particle filter with these techniques outperforms the basic one.
Composites applied for pistons
Directory of Open Access Journals (Sweden)
Wieczorek J.
2007-01-01
Full Text Available In the article the possibility of application the composite materials in casts into metal mould to form the pistons for compressors have been presented. In cooperation with “Zlotecki” company was undertaken the test of casting in productive conditions the aluminium alloy matrix composites reinforced with silicon carbide particles and composites reinforced with the mixture of the silicon carbide (SiC and amorphous glass carbon particles. On the basis microstructural investigations were affirmed the uniformly distribution of reinforcing particles on the cross section of studied pistons. Realized technological tests confirmed the possibility of formation composite pistons with one kind of reinforcing phase and heterophase reinforcement from utilization the technology of mould casting.
Vector particles tunneling from BTZ black holes
Chen, Ge-Rui; Huang, Yong-Chang
2014-01-01
In this paper we investigate vector particles' Hawking radiation from a BTZ black hole. By applying the WKB approximation and the Hamilton-Jacobi Ansatz to the Proca equation, we obtain the tunneling spectrum of vector particles. The expected Hawking temperature is recovered.
Vector particles tunneling from BTZ black holes
Chen, Ge-Rui; Zhou, Shiwei; Huang, Yong-Chang
2015-11-01
In this paper we investigate vector particles' Hawking radiation from a Banados-Teitelboim-Zanelli (BTZ) black hole. By applying the Wentzel-Kramers-Brillouin (WKB) approximation and the Hamilton-Jacobi ansatz to the Proca equation, we obtain the tunneling spectrum of vector particles. The expected Hawking temperature is recovered.
Microplastic particles in sediments from Danish waters
DEFF Research Database (Denmark)
Strand, Jakob; Lassen, Pia; Shashoua, Yvonne;
Sediment contents of microplastic particles were studied at several areas in Danish coastal and open waters in the North Sea, Skagerrak, Kattegat, Belt Sea and Baltic Sea from 2012. Isolation of microplastic particles were performed after basic digestion of natural organic matter, before applying...
2014-01-01
Advances in Applied Mechanics draws together recent significant advances in various topics in applied mechanics. Published since 1948, Advances in Applied Mechanics aims to provide authoritative review articles on topics in the mechanical sciences, primarily of interest to scientists and engineers working in the various branches of mechanics, but also of interest to the many who use the results of investigations in mechanics in various application areas, such as aerospace, chemical, civil, en...
Perspectives on Applied Ethics
2007-01-01
Applied ethics is a growing, interdisciplinary field dealing with ethical problems in different areas of society. It includes for instance social and political ethics, computer ethics, medical ethics, bioethics, envi-ronmental ethics, business ethics, and it also relates to different forms of professional ethics. From the perspective of ethics, applied ethics is a specialisation in one area of ethics. From the perspective of social practice applying eth-ics is to focus on ethical aspects and ...
Applied Neuroscience Laboratory Complex
Federal Laboratory Consortium — Located at WPAFB, Ohio, the Applied Neuroscience lab researches and develops technologies to optimize Airmen individual and team performance across all AF domains....
Giant Negative Mobility of Janus Particles in a Corrugated Channel
Ghosh, Pulak K.; Hanggi, Peter; Marchesoni, Fabio; Nori, Franco
2014-01-01
We numerically simulate the transport of elliptic Janus particles along narrow two-dimensional channels with reflecting walls. The self-propulsion velocity of the particle is oriented along either their major (prolate) or minor axis (oblate). In smooth channels, we observe long diffusion transients: ballistic for prolate particles and zero-diffusion for oblate particles. Placed in a rough channel, prolate particles tend to drift against an applied drive by tumbling over the wall protrusions; ...
Allhoff, Fritz
2011-03-01
This paper explores the relationships that various applied ethics bear to each other, both in particular disciplines and more generally. The introductory section lays out the challenge of coming up with such an account and, drawing a parallel with the philosophy of science, offers that applied ethics may either be unified or disunified. The second section develops one simple account through which applied ethics are unified, vis-à-vis ethical theory. However, this is not taken to be a satisfying answer, for reasons explained. In the third section, specific applied ethics are explored: biomedical ethics; business ethics; environmental ethics; and neuroethics. These are chosen not to be comprehensive, but rather for their traditions or other illustrative purposes. The final section draws together the results of the preceding analysis and defends a disunity conception of applied ethics.
Mapping chaos in particle revolutions
International Nuclear Information System (INIS)
The relatively new technique of frequency map analysis has over the last 10 years turned out to be very effective for the analysis of numerical simulations in physical systems ranging even beyond the solar system to galaxies and back again to particle accelerators, particularly for systems with three or more degrees of freedom. More recently, with an eye towards revealing the dynamics of an actual particle beam, it has been applied for the first time to measured rather than simulated electron trajectories in a storage ring, in this case at the Advanced Light Source (ALS) at the Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab)
Surgical smoke and ultrafine particles
Directory of Open Access Journals (Sweden)
Nowak Dennis
2008-12-01
Full Text Available Abstract Background Electrocautery, laser tissue ablation, and ultrasonic scalpel tissue dissection all generate a 'surgical smoke' containing ultrafine ( Methods To measure the amount of generated particulates in 'surgical smoke' during different surgical procedures and to quantify the particle number concentration for operation room personnel a condensation particle counter (CPC, model 3007, TSI Inc. was applied. Results Electro-cauterization and argon plasma tissue coagulation induced the production of very high number concentration (> 100000 cm-3 of particles in the diameter range of 10 nm to 1 μm. The peak concentration was confined to the immediate local surrounding of the production side. In the presence of a very efficient air conditioning system the increment and decrement of ultrafine particle occurrence was a matter of seconds, with accumulation of lower particle number concentrations in the operation room for only a few minutes. Conclusion Our investigation showed a short term very high exposure to ultrafine particles for surgeons and close assisting operating personnel – alternating with longer periods of low exposure.
Plasma physics via particle simulation
International Nuclear Information System (INIS)
Plasmas are studied by following the motion of many particles in applied and self fields, analytically, experimentally and computationally. Plasmas for magnetic fusion energy devices are very hot, nearly collisionless and magnetized, with scale lengths of many ion gyroradii and Debye lengths. The analytic studies of such plasmas are very difficult as the plasma is nonuniform, anisotropic and nonlinear. The experimental studies have become very expensive in time and money, as the size, density and temperature approach fusion reactor values. Computational studies using many particles and/or fluids have complemented both theories and experiments for many years and have progressed to fully three dimensional electromagnetic models, albeit with hours of running times on the fastest largest computers. Particle simulation methods are presented in some detail, showing particle advance from acceleration to velocity to position, followed by calculation of the fields from charge and current densities and then further particle advance, and so on. Limitations due to the time stepping and use of a spatial grid are given, to avoid inaccuracies and instabilities. Examples are given for an electrostatic program in one dimension of an orbit averaging program, and for a three dimensional electromagnetic program. Applications of particle simulations of plasmas in magnetic and inertial fusion devices continue to grow, as well as to plasmas and beams in peripheral devices, such as sources, accelerators, and converters. (orig.)
Conical Intersections from Particle-Particle Random Phase and Tamm-Dancoff Approximations.
Yang, Yang; Shen, Lin; Zhang, Du; Yang, Weitao
2016-07-01
The particle-particle random phase approximation (pp-RPA) and the particle-particle Tamm-Dancoff approximation (pp-TDA) are applied to the challenging conical intersection problem. Because they describe the ground and excited states on the same footing and naturally take into account the interstate interaction, these particle-particle methods, especially the pp-TDA, can correctly predict the dimensionality of the conical intersection seam as well as describe the potential energy surface in the vicinity of conical intersections. Though the bond length of conical intersections is slightly underestimated compared with the complete-active-space self-consistent field (CASSCF) theory, the efficient particle-particle methods are promising for conical intersections and nonadiabatic dynamics. PMID:27293013
Particle methods: An introduction with applications
Directory of Open Access Journals (Sweden)
Moral Piere Del
2014-01-01
Full Text Available Interacting particle methods are increasingly used to sample from complex high-dimensional distributions. They have found a wide range of applications in applied probability, Bayesian statistics and information engineering. Understanding rigorously these new Monte Carlo simulation tools leads to fascinating mathematics related to Feynman-Kac path integral theory and their interacting particle interpretations. In these lecture notes, we provide a pedagogical introduction to the stochastic modeling and the theoretical analysis of these particle algorithms. We also illustrate these methods through several applications including random walk confinements, particle absorption models, nonlinear filtering, stochastic optimization, combinatorial counting and directed polymer models.
Cox, D R
2007-01-01
The main phases of applied statistical work are discussed in general terms. The account starts with the clarification of objectives and proceeds through study design, measurement and analysis to interpretation. An attempt is made to extract some general notions.
Jarodzka, Halszka
2011-01-01
Jarodzka, H. (2010, 12 November). Applied eye tracking research. Presentation and Labtour for Vereniging Gewone Leden in oprichting (VGL i.o.), Heerlen, The Netherlands: Open University of the Netherlands.
Applied Mathematics Seminar 1982
International Nuclear Information System (INIS)
This report contains the abstracts of the lectures delivered at 1982 Applied Mathematics Seminar of the DPD/LCC/CNPq and Colloquy on Applied Mathematics of LCC/CNPq. The Seminar comprised 36 conferences. Among these, 30 were presented by researchers associated to brazilian institutions, 9 of them to the LCC/CNPq, and the other 6 were given by visiting lecturers according to the following distribution: 4 from the USA, 1 from England and 1 from Venezuela. The 1981 Applied Mathematics Seminar was organized by Leon R. Sinay and Nelson do Valle Silva. The Colloquy on Applied Mathematics was held from october 1982 on, being organized by Ricardo S. Kubrusly and Leon R. Sinay. (Author)
Mesothelioma Applied Research Foundation
... Percentage Donations Tribute Wall Other Giving/Fundraising Opportunities Bitcoin Donation Form FAQs Help us raise awareness and ... Percentage Donations Tribute Wall Other Giving/Fundraising Opportunities Bitcoin Donation Form FAQs © 2013 Mesothelioma Applied Research Foundation, ...
Papageorgiou, Nikolaos S
2009-01-01
Offers an examination of important theoretical methods and procedures in applied analysis. This book details the important theoretical trends in nonlinear analysis and applications to different fields. It is suitable for those working on nonlinear analysis.
Applying contemporary statistical techniques
Wilcox, Rand R
2003-01-01
Applying Contemporary Statistical Techniques explains why traditional statistical methods are often inadequate or outdated when applied to modern problems. Wilcox demonstrates how new and more powerful techniques address these problems far more effectively, making these modern robust methods understandable, practical, and easily accessible.* Assumes no previous training in statistics * Explains how and why modern statistical methods provide more accurate results than conventional methods* Covers the latest developments on multiple comparisons * Includes recent advanc
DEFF Research Database (Denmark)
Yuan, Hao
injection, and deep bed filtration during waste water treatment. The current thesis aims at better understanding the transport and fate of colloids in porous media. A number of methodologies have been applied in this study, such as developing new mathematical models for colloid filtration, comparing...... of detachment exceeding those of attachment. Bearing such a criterion in mind, the erosion of external cake, the migration of surface-associated colloids during one phase flow, and the migration of reservoir fines during two-phase flow are studied in similar fashions (Chapters 4, 5, 6). The erosion of external...... by increasing the sweep efficiency (Chapter 6). 5. Another important mechanism for particle capture is straining or size exclusion of colloids. Such phenomena are closely tied to the migration of colloids under unfavorable attachment conditions: surface-associated colloids rolling to straining sites (grain...
Monique Duval
2004-01-01
Please note that Paul Kunz will be giving his very popular and highly recommended C++ course again on 15 ï¿½- 19 November. The course costs 200 CHF, and advance registration is required. People with CERN EDH accounts can apply electronically directly from the Web course description page: Team Visitors should ask their Group Leader to send an e-mail to the DTO of PH Department, M. Burri, referring to the 'C++ for Particle Physicists' course and giving their name, CERN ID number, the Team account number to which the course fee should be charged, and VERY IMPORTANTLY an email address to which an invitation to the course can be sent. ENSEIGNEMENT TECHNIQUE TECHNICAL TRAINING Monique Duval 74924 technical.training@cern.ch
Monique Duval
2004-01-01
Please note that Paul Kunz will be giving his very popular and highly recommended C++ course again on 15 - 19 November. The course costs 200 CHF, and advance registration is required. People with CERN EDH accounts can apply electronically directly from the Web course description page: Team Visitors should ask their Group Leader to send an e-mail to the DTO of PH Department, M. Burri, referring to the 'C++ for Particle Physicists' course and giving their name, CERN ID number, the Team account number to which the course fee should be charged, and VERY IMPORTANTLY an email address to which an invitation to the course can be sent. ENSEIGNEMENT TECHNIQUE TECHNICAL TRAINING Monique Duval 74924 technical.training@cern.ch
Holographic interferometry for aerosol particle characterization
Berg, Matthew J.; Subedi, Nava R.
2015-01-01
Using simulations based on Mie theory, this work shows how double-exposure digital holography can be used to measure the change in size of an expanding, or contracting, spherical particle. Here, a single particle is illuminated by a plane wave twice during its expansion: once when the particle is 27 λ in radius, and again when it is 47 λ. A hologram is formed from each illumination stage from the interference of the scattered and unscattered, i.e., incident, light. The two holograms are then superposed to form a double exposure. By applying the Fresnel-Kirchhoff diffraction theory to the double-exposed hologram, a silhouette-like image of the particle is computationally reconstructed that is superposed with interference fringes. These fringes are a direct result of the change in particle size occurring between the two illumination stages. The study finds that expansion on the scale of ~ 6 λ is readily discerned from the reconstructed particle image. This work could be important for improved characterization of single and multiple aerosol particles in situ. For example, by illuminating an aerosol particle with infrared light, it may be possible to measure photothermally induced particle expansion, thus providing insight into a particle's material properties simultaneous with an image of the particle.
Burnout of pulverized biomass particles in large scale boiler - Single particle model approach
Energy Technology Data Exchange (ETDEWEB)
Saastamoinen, Jaakko; Aho, Martti; Moilanen, Antero [VTT Technical Research Centre of Finland, Box 1603, 40101 Jyvaeskylae (Finland); Soerensen, Lasse Holst [ReaTech/ReAddit, Frederiksborgsveij 399, Niels Bohr, DK-4000 Roskilde (Denmark); Clausen, Soennik [Risoe National Laboratory, DK-4000 Roskilde (Denmark); Berg, Mogens [ENERGI E2 A/S, A.C. Meyers Vaenge 9, DK-2450 Copenhagen SV (Denmark)
2010-05-15
Burning of coal and biomass particles are studied and compared by measurements in an entrained flow reactor and by modelling. The results are applied to study the burning of pulverized biomass in a large scale utility boiler originally planned for coal. A simplified single particle approach, where the particle combustion model is coupled with one-dimensional equation of motion of the particle, is applied for the calculation of the burnout in the boiler. The particle size of biomass can be much larger than that of coal to reach complete burnout due to lower density and greater reactivity. The burner location and the trajectories of the particles might be optimised to maximise the residence time and burnout. (author)
Burnout of pulverized biomass particles in large scale boiler - Single particle model approach
International Nuclear Information System (INIS)
Burning of coal and biomass particles are studied and compared by measurements in an entrained flow reactor and by modelling. The results are applied to study the burning of pulverized biomass in a large scale utility boiler originally planned for coal. A simplified single particle approach, where the particle combustion model is coupled with one-dimensional equation of motion of the particle, is applied for the calculation of the burnout in the boiler. The particle size of biomass can be much larger than that of coal to reach complete burnout due to lower density and greater reactivity. The burner location and the trajectories of the particles might be optimised to maximise the residence time and burnout.
Applied chemical engineering thermodynamics
Tassios, Dimitrios P
1993-01-01
Applied Chemical Engineering Thermodynamics provides the undergraduate and graduate student of chemical engineering with the basic knowledge, the methodology and the references he needs to apply it in industrial practice. Thus, in addition to the classical topics of the laws of thermodynamics,pure component and mixture thermodynamic properties as well as phase and chemical equilibria the reader will find: - history of thermodynamics - energy conservation - internmolecular forces and molecular thermodynamics - cubic equations of state - statistical mechanics. A great number of calculated problems with solutions and an appendix with numerous tables of numbers of practical importance are extremely helpful for applied calculations. The computer programs on the included disk help the student to become familiar with the typical methods used in industry for volumetric and vapor-liquid equilibria calculations.
PSYCHOANALYSIS AS APPLIED AESTHETICS.
Richmond, Stephen H
2016-07-01
The question of how to place psychoanalysis in relation to science has been debated since the beginning of psychoanalysis and continues to this day. The author argues that psychoanalysis is best viewed as a form of applied art (also termed applied aesthetics) in parallel to medicine as applied science. This postulate draws on a functional definition of modernity as involving the differentiation of the value spheres of science, art, and religion. The validity criteria for each of the value spheres are discussed. Freud is examined, drawing on Habermas, and seen to have erred by claiming that the psychoanalytic method is a form of science. Implications for clinical and metapsychological issues in psychoanalysis are discussed. PMID:27428582
Retransmission Steganography Applied
Mazurczyk, Wojciech; Szczypiorski, Krzysztof
2010-01-01
This paper presents experimental results of the implementation of network steganography method called RSTEG (Retransmission Steganography). The main idea of RSTEG is to not acknowledge a successfully received packet to intentionally invoke retransmission. The retransmitted packet carries a steganogram instead of user data in the payload field. RSTEG can be applied to many network protocols that utilize retransmissions. We present experimental results for RSTEG applied to TCP (Transmission Control Protocol) as TCP is the most popular network protocol which ensures reliable data transfer. The main aim of the performed experiments was to estimate RSTEG steganographic bandwidth and detectability by observing its influence on the network retransmission level.
Applied mathematics made simple
Murphy, Patrick
1982-01-01
Applied Mathematics: Made Simple provides an elementary study of the three main branches of classical applied mathematics: statics, hydrostatics, and dynamics. The book begins with discussion of the concepts of mechanics, parallel forces and rigid bodies, kinematics, motion with uniform acceleration in a straight line, and Newton's law of motion. Separate chapters cover vector algebra and coplanar motion, relative motion, projectiles, friction, and rigid bodies in equilibrium under the action of coplanar forces. The final chapters deal with machines and hydrostatics. The standard and conte
Huizingh, Eelko K R E
2007-01-01
Accessibly written and easy to use, Applied Statistics Using SPSS is an all-in-one self-study guide to SPSS and do-it-yourself guide to statistics. Based around the needs of undergraduate students embarking on their own research project, the text's self-help style is designed to boost the skills and confidence of those that will need to use SPSS in the course of doing their research project. The book is pedagogically well developed and contains many screen dumps and exercises, glossary terms and worked examples. Divided into two parts, Applied Statistics Using SPSS covers :
Applied Electromagnetism and Materials
Moliton, André
2007-01-01
Applied Electromagnetism and Materials picks up where the author's Basic Electromagnetism and Materials left off by presenting practical and relevant technological information about electromagnetic material properties and their applications. This book is aimed at senior undergraduate and graduate students as well as researchers in materials science and is the product of many years of teaching basic and applied electromagnetism. Topics range from the spectroscopy and characterization of dielectrics and semiconductors, to non-linear effects and electromagnetic cavities, to ion-beam applications in materials science.
On applying cognitive psychology.
Baddeley, Alan
2013-11-01
Recent attempts to assess the practical impact of scientific research prompted my own reflections on over 40 years worth of combining basic and applied cognitive psychology. Examples are drawn principally from the study of memory disorders, but also include applications to the assessment of attention, reading, and intelligence. The most striking conclusion concerns the many years it typically takes to go from an initial study, to the final practical outcome. Although the complexity and sheer timescale involved make external evaluation problematic, the combination of practical satisfaction and theoretical stimulation make the attempt to combine basic and applied research very rewarding.
Introduction to applied thermodynamics
Helsdon, R M; Walker, G E
1965-01-01
Introduction to Applied Thermodynamics is an introductory text on applied thermodynamics and covers topics ranging from energy and temperature to reversibility and entropy, the first and second laws of thermodynamics, and the properties of ideal gases. Standard air cycles and the thermodynamic properties of pure substances are also discussed, together with gas compressors, combustion, and psychrometry. This volume is comprised of 16 chapters and begins with an overview of the concept of energy as well as the macroscopic and molecular approaches to thermodynamics. The following chapters focus o
Holographic interferometry for aerosol particle characterization
International Nuclear Information System (INIS)
Using simulations based on Mie theory, this work shows how double-exposure digital holography can be used to measure the change in size of an expanding, or contracting, spherical particle. Here, a single particle is illuminated by a plane wave twice during its expansion: once when the particle is 27λ in radius, and again when it is 47λ. A hologram is formed from each illumination stage from the interference of the scattered and unscattered, i.e., incident, light. The two holograms are then superposed to form a double exposure. By applying the Fresnel–Kirchhoff diffraction theory to the double-exposed hologram, a silhouette-like image of the particle is computationally reconstructed that is superposed with interference fringes. These fringes are a direct result of the change in particle size occurring between the two illumination stages. The study finds that expansion on the scale of ∼6λ is readily discerned from the reconstructed particle image. This work could be important for improved characterization of single and multiple aerosol particles in situ. For example, by illuminating an aerosol particle with infrared light, it may be possible to measure photothermally induced particle expansion, thus providing insight into a particle's material properties simultaneous with an image of the particle. - Highlights: • A computational model to simulate digital holography is developed. • The model is used to image a multi-wavelength sized, expanding spherical particle. • An interferometry technique is described that can measure the particle expansion. • Implications for laboratory-based aerosol particle characterization are described
Extracting entanglement from identical particles.
Killoran, N; Cramer, M; Plenio, M B
2014-04-18
Identical particles and entanglement are both fundamental components of quantum mechanics. However, when identical particles are condensed in a single spatial mode, the standard notions of entanglement, based on clearly identifiable subsystems, break down. This has led many to conclude that such systems have limited value for quantum information tasks, compared to distinguishable particle systems. To the contrary, we show that any entanglement formally appearing amongst the identical particles, including entanglement due purely to symmetrization, can be extracted into an entangled state of independent modes, which can then be applied to any task. In fact, the entanglement of the mode system is in one-to-one correspondence with the entanglement between the inaccessible identical particles. This settles the long-standing debate about the resource capabilities of such states, in particular spin-squeezed states of Bose-Einstein condensates, while also revealing a new perspective on how and when entanglement is generated in passive optical networks. Our results thus reveal new fundamental connections between entanglement, squeezing, and indistinguishability.
Extending the Modelling Framework for Gas-Particle Systems
DEFF Research Database (Denmark)
Rosendahl, Lasse Aistrup
, with very good results. Single particle combustion has been tested using a number of different particle combustion models applied to coal and straw particles. Comparing the results of these calculations to measurements on straw burnout, the results indicate that for straw, existing heterogeneous combustion...... models perform well, and may be used in high temperature ranges. Finally, the particle tracking and combustion model is applied to an existing coal and straw co- fuelled burner. The results indicate that again, the straw follows very different trajectories than the coal particles, and also that burnout...
Review of particle properties. Particle Data Group
International Nuclear Information System (INIS)
This review of the properties of leptons, mesons, and baryons is an updating of Review of Particle Properties, Particle Data Group [Rev. Mod. Phys. 48 (1976) No. 2, Part II; and Supplement, Phys. Lett. 68B (1977) 1]. Data are evaluated, listed, averaged, and summarized in tables. Numerous tables, figures, and formulae of interest to particle physicists are also included. A data booklet is available
Buurmans, I.L.C.
2011-01-01
In this PhD research the investigation of the reactivity and acidity of Fluid Catalytic Cracking (FCC) catalysts at the level of an individual catalyst particles is described. A range of micro-spectroscopic techniques has been applied to visualize both the active zeolite component within the catalyst particles as well as the matrix components. The most important techniques applied were UV-Vis micro-spectroscopy, confocal fluorescence microscopy, integrated laser and electron microscopy (a com...
Particle trajectory entanglement in microfluidic channels
Marin, Alvaro; Rossi, Massimiliano; Kähler, Christian
2015-11-01
Suspensions in motion can show very complex and counterintuitive behavior, particularly at high concentrations. In this talk we show an overlooked phenomenon occurring when a dilute particle solution is forced to travel in a narrow channel (only a few times the particle size). At critical interparticle distances, particles tend to interlace their trajectories forming a sort of hydroclusters only bonded by hydrodynamic interactions. While classical studies on non-Brownian self-diffusivity report average particle displacements of fractions of the particle diameter, the trajectories observed in our system show displacements of several particle diameters. Indeed, such a behavior resemble the deterministic trajectories found by Uspal et al. (Nat. Comm. 4, 2013) with engineered particle doublets. Trajectory statistics are obtained for different shear rates and particle sizes. The results are compared with particle dynamics simulations and analyzed under the light of recent studies on the irreversibility of non-Brownian suspensions (Metzger et al., Phys. Rev. E, 2013) to elucidate the nature of the hydrodynamic interactions entering into play. The reported phenomenon could be applied to promote advective mixing in micro-channels or particle/droplet self-assembly.
Magnetic particles in medical research - a review
International Nuclear Information System (INIS)
Magnetic (or magnetizable) particles have assumed increasing importance in medical and biological research since 1966 when the effect of a magnetic field on the movement of suspended particles was initially studied. In fields like haematology, cell biology, microbiology, biochemistry and immunoassays, they currently provide the basis for separation techniques, which previously relied on gravitational forces. The body cells (e.g., blood cells) can be made magnetic by incubating them in a medium containing several Fe/sub 3/O/sub 4/ particles, which are adsorbed to the membrane surfaces. Some bacteria (also called magnetostatic bacteria) respond to externally applied magnetic lines of force due to their intracellular magnetic particles. These properties are useful in the isolation of these cells/bacteria. In biochemistry magnetic particles are used to immobilize enzymes without any loss of enzyme activity. The immobilized enzymes can facilitate the separation of end products without extensive instrumentation. In immunoassays the antibodies are covalently linked to polymer coated iron oxide particles. An electromagnet is used to sediment these particles after reaction. This excludes the use of centrifuge to separate antigen-antibody complexes. In pharmacy and pharmacology the magnetic particles are important in drug transport. In techniques like ferrography, nuclear magnetic resonance imaging (NMRI), spectroscopic studies and magnetic resonance imaging (MRI) the magnetic particles serve as contrast agents and give clinically important spatial resolution. Magnetic particles also find extensive applications in cancer therapy, genetic engineering, pneumology, nuclear medicine, radiology and many other fields. This article reviews these applications. (author)
Huizingh, Eelko K. R. E.
2007-01-01
Accessibly written and easy to use, "Applied Statistics Using SPSS" is an all-in-one self-study guide to SPSS and do-it-yourself guide to statistics. What is unique about Eelko Huizingh's approach is that this book is based around the needs of undergraduate students embarking on their own research project, and its self-help style is designed to…
Essays on Applied Microeconomics
Mejia Mantilla, Carolina
2013-01-01
Each chapter of this dissertation studies a different question within the field of Applied Microeconomics. The first chapter examines the mid- and long-term effects of the 1998 Asian Crisis on the educational attainment of Indonesian children ages 6 to 18, at the time of the crisis. The effects are identified as deviations from a linear trend for…
Español, Pep
1997-01-01
We present a mechanistic model for a Newtonian fluid called fluid particle dynamics. By analyzing the concept of ``fluid particle'' from the point of view of a Voronoi tessellation of a molecular fluid, we propose an heuristic derivation of a dissipative particle dynamics algorithm that incorporates shear forces between dissipative particles. The inclusion of these non-central shear forces requires the consideration of angular velocities of the dissipative particles in order to comply with th...
Effects of aerodynamic particle interaction in turbulent non-dilute particle-laden flow
DEFF Research Database (Denmark)
Salewski, Mirko; Fuchs, Laszlo
2008-01-01
decreases by more than 40% in the dense particle region in the near-field of the jet due to the introduction of aerodynamic four-way coupling. The jet of monodisperse particles therefore penetrates further into the crossflow in this case. The strength of the counterrotating vortex pair (CVP) and turbulence...... is applied to simulate monodisperse, rigid, and spherical particles injected into crossflow as an idealization of a spray jet in crossflow. A domain decomposition technique reduces the computational cost of the aerodynamic particle interaction model. It is shown that the average drag on such particles...... particles under such conditions is suggested. In this idealized atomizing mixture, the effect of aerodynamic four-way coupling reverses: The aerodynamic particle interaction results in a stronger CVP and enhances turbulence levels....
A novel method for size uniform 200nm particles: multimetallic particles and in vitro gene delivery
Mair, Lamar; Ford, Kris; Superfine, Richard
2008-10-01
We report on the fabrication of arrays of mono- and multimetallic particles via metal evaporation onto lithographically patterned posts. Metal particles evaporated on cylindrical structures 0.20μm in diameter and 0.33μm tall are released via photoresist dissolution, resulting in freely suspended, shape defined particles. These Post-Particles have highly tunable composition, as demonstrated by our deposition of five different multimetallic particle blends. We calculate the susceptibility and magnetization of 200nm Fe particles in an applied 0.081T magnetic field. In order to evaluate their usefulness as magnetofection agents an antisense oligonucleotide designed to correct the aberrant splicing of enhanced green fluorescent protein mRNA was successfully attached to Fe Post-Particles via a polyethyleneimine linker and transfected into a modified HeLa cell line.
Siboni, Morteza H.; Ponte Castañeda, Pedro
2016-06-01
Particle-reinforced rubbers are composite materials consisting of randomly distributed, stiff fibers/particles in a soft elastomeric material. Since the particles are stiff compared to the embedding rubber, their deformation can be ignored for all practical purposes. However, due to the softness of the rubber, they can undergo rigid body translations and rotations. Constitutive models accounting for the effect of such particle motions on the macroscopic response under prescribed deformations on the boundary have been developed recently. But, in some applications (e.g., magneto-active elastomers), the particles may experience additional torques as a consequence of an externally applied (magnetic) field, which, in turn, can affect the overall rotation of the particles in the rubber, and therefore also the macroscopic response of the composite. This paper is concerned with the development of constitutive models for particle-reinforced elastomers, which are designed to account for externally applied torques on the internally distributed particles, in addition to the externally applied deformation on the boundary of the composite. For this purpose, we propose a new variational framework involving suitably prescribed eigenstresses on the particles. For simplicity, the framework is applied to an elastomer reinforced by aligned, rigid, cylindrical fibers of elliptical cross section, which can undergo finite rotations in the context of a finite-deformation, plane strain problem for the composite. In particular, expressions are derived for the average in-plane rotation of the fibers as a function of the torques that are applied on them, both under vanishing and prescribed strain on the boundary. The results of this work will make possible the development of improved constitutive models for magneto-active elastomers, and other types of smart composite materials that are susceptible to externally applied torques.
Applied heterogeneous catalysis
International Nuclear Information System (INIS)
This reference book explains the scientific principles of heterogeneous catalysis while also providing details on the methods used to develop commercially viable catalyst products. A section of the book presents reactor design engineering theory and practices for the profitable application of these catalysts in large-scale industrial processes. A description of the mechanisms and commercial applications of catalysis is followed by a review of catalytic reaction kinetics. There are five chapters on selecting catalyst agents, developing and preparing industrial catalysts, measuring catalyst properties, and analyzing the physico-chemical characteristics of solid catalyst particles. The final chapter reviews the elements of catalytic reactor design, with emphasis on flow regimes vs. reactor types, heat and mass transfer in reactor beds, single- and multi-phase flows, and the effects of thermodynamics and other catalyst properties on the process flow scheme
Applied Control Systems Design
Mahmoud, Magdi S
2012-01-01
Applied Control System Design examines several methods for building up systems models based on real experimental data from typical industrial processes and incorporating system identification techniques. The text takes a comparative approach to the models derived in this way judging their suitability for use in different systems and under different operational circumstances. A broad spectrum of control methods including various forms of filtering, feedback and feedforward control is applied to the models and the guidelines derived from the closed-loop responses are then composed into a concrete self-tested recipe to serve as a check-list for industrial engineers or control designers. System identification and control design are given equal weight in model derivation and testing to reflect their equality of importance in the proper design and optimization of high-performance control systems. Readers’ assimilation of the material discussed is assisted by the provision of problems and examples. Most of these e...
Energy Technology Data Exchange (ETDEWEB)
Jayne, John T.; Worsnop, Douglas R.
2016-02-23
In example embodiments, particle collection efficiency in aerosol analyzers and other particle measuring instruments is improved by a particle capture device that employs multiple collisions to decrease momentum of particles until the particles are collected (e.g., vaporized or come to rest). The particle collection device includes an aperture through which a focused particle beam enters. A collection enclosure is coupled to the aperture and has one or more internal surfaces against which particles of the focused beam collide. One or more features are employed in the collection enclosure to promote particles to collide multiple times within the enclosure, and thereby be vaporized or come to rest, rather than escape through the aperture.
Fitzmaurice, Garrett M; Ware, James H
2012-01-01
Praise for the First Edition "". . . [this book] should be on the shelf of everyone interested in . . . longitudinal data analysis.""-Journal of the American Statistical Association Features newly developed topics and applications of the analysis of longitudinal data Applied Longitudinal Analysis, Second Edition presents modern methods for analyzing data from longitudinal studies and now features the latest state-of-the-art techniques. The book emphasizes practical, rather than theoretical, aspects of methods for the analysis of diverse types of lo
Institute of Scientific and Technical Information of China (English)
朱红萍
2009-01-01
This paper explains some plain phenomena in teaching and class management with an economic view. Some basic economic principles mentioned therein are: everything has its opportunity cost; the marginal utility of consumption of any kind is diminishing; Game theory is everywhere. By applying the economic theories to teaching, it is of great help for teachers to understand the students' behavior and thus improve the teaching effectiveness and efficiency.
Essays in Applied Microeconomics
Buehler, Benno
2010-01-01
This thesis consists of 4 chapters in the field of applied microeconomics. Chapter 1 develops a model of international roaming. International alliances emerge endogenously and serve as a commitment device to soften competition on the retail market. Chapter 2 provides an explanation for why political leaders may want to adopt ideological positions. Because voters expect the perceived ideology of office holders to determine their future political actions, politicians are tempted to act ac...
Applied statistics for economists
Lewis, Margaret
2012-01-01
This book is an undergraduate text that introduces students to commonly-used statistical methods in economics. Using examples based on contemporary economic issues and readily-available data, it not only explains the mechanics of the various methods, it also guides students to connect statistical results to detailed economic interpretations. Because the goal is for students to be able to apply the statistical methods presented, online sources for economic data and directions for performing each task in Excel are also included.
Methods of applied mathematics
Hildebrand, Francis B
1992-01-01
This invaluable book offers engineers and physicists working knowledge of a number of mathematical facts and techniques not commonly treated in courses in advanced calculus, but nevertheless extremely useful when applied to typical problems in many different fields. It deals principally with linear algebraic equations, quadratic and Hermitian forms, operations with vectors and matrices, the calculus of variations, and the formulations and theory of linear integral equations. Annotated problems and exercises accompany each chapter.
Essays on Applied Microeconomics
Lee, Hoan Soo
2013-01-01
Empirical and theoretical topics in applied microeconomics are discussed in this dissertation. The first essay identifies and measures managerial advantages from access to high-quality deals in venture capital investments. The underlying social network of Harvard Business School MBA venture capitalists and entrepreneurs is used to proxy availability of deal access. Random section assignment of HBS MBA graduates provides a key exogenous variation for identification. Being socially connected to...
A study of particle number fluctuation under BCS theory
Institute of Scientific and Technical Information of China (English)
2007-01-01
Particle number fluctuations in BCS theory are studied with the relativistic mean-field theory and the shell effects of particle number fluctuations are first discovered. By analyzing the relative errors of the particle number fluctuations, we find that the particle number fluctuations are relevant with the odd-even character. We later apply this method to the examination of the new shell structure, showing that N = 184 for the neutron is indeed a new closed shell.
Application of the Gillespie algorithm to a granular intruder particle
Talbot, J.; Viot, P.
2006-01-01
We show how the Gillespie algorithm, originally developed to describe coupled chemical reactions, can be used to perform numerical simulations of a granular intruder particle colliding with thermalized bath particles. The algorithm generates a sequence of collision ``events'' separated by variable time intervals. As input, it requires the position-dependent flux of bath particles at each point on the surface of the intruder particle. We validate the method by applying it to a one-dimensional ...
Particle-Interaction Effects in Turbulent Channel Flow
M Afkhami; A. Hassanpour; Fairweather, M.; Njobuenwu, DO
2013-01-01
Large eddy simulation and a discrete element method are applied to study the flow, particle dispersion and agglomeration in a horizontal channel. The particle-particle interaction model is based on the Hertz-Mindlin approach with Johnson-Kendall-Roberts cohesion to allow the simulation of Van der Waals forces in a dry air flow. The influence of different particle surface energies on agglomeration, and the impact of fluid turbulence, are investigated. The agglomeration rate is found to be stro...
Echo particle image velocimetry.
DeMarchi, Nicholas; White, Christopher
2012-12-27
, depending on flow conditions, and 100-1000 B-mode images of the spatial distribution of the tracer particles in the flow are acquired. Once acquired, the B-mode ultrasound images are transmitted via an ethernet connection to the PC running the PIV commercial software. Using the PIV software, tracer particle displacement fields, D(x,y)[pixels], (where x and y denote horizontal and vertical spatial position in the ultrasound image, respectively) are acquired by applying cross correlation algorithms to successive ultrasound B-mode images.(10) The velocity fields, u(x,y)[m/s], are determined from the displacements fields, knowing the time step between image pairs, ΔT[s], and the image magnification, M[meter/pixel], i.e., u(x,y) = MD(x,y)/ΔT. The time step between images ΔT = 1/fps + D(x,y)/B, where B[pixels/s] is the time it takes for the ultrasound probe to sweep across the image width. In the present study, M = 77[μm/pixel], fps = 49.5[1/s], and B = 25,047[pixels/s]. Once acquired, the velocity fields can be analyzed to compute flow quantities of interest.
Lyu, Ke; Wang, Guang-Chuan; He, Ya-Ling; Han, Jian-Feng; Ye, Qing; Qin, Cheng-Feng; Chen, Rong
2015-02-01
Hand-foot-and-mouth disease (HFMD) remains a major health concern in the Asia-Pacific regions, and its major causative agents include human enterovirus 71 (EV71) and coxsackievirus A16. A desirable vaccine against HFMD would be multivalent and able to elicit protective responses against multiple HFMD causative agents. Previously, we have demonstrated that a thermostable recombinant EV71 vaccine candidate can be produced by the insertion of a foreign peptide into the BC loop of VP1 without affecting viral replication. Here we present crystal structures of two different naturally occurring empty particles, one from a clinical C4 strain EV71 and the other from its recombinant virus containing an insertion in the VP1 BC loop. Crystal structure analysis demonstrated that the inserted foreign peptide is well exposed on the particle surface without significant structural changes in the capsid. Importantly, such insertions do not seem to affect the virus uncoating process as illustrated by the conformational similarity between an uncoating intermediate of another recombinant virus and that of EV71. Especially, at least 18 residues from the N terminus of VP1 are transiently externalized. Altogether, our study provides insights into vaccine development against HFMD.
Dynamics of neutral and charged aerosol particles
Energy Technology Data Exchange (ETDEWEB)
Leppae, J.
2012-07-01
Atmospheric aerosol particles have various climate effects and adverse health effects, which both depend on the size and number concentration of the particles. Freshly-formed particles are not large enough to impact neither health nor climate and they are most susceptible to removal by collisions with larger pre-existing particles. Consequently, the knowledge of both the formation and the growth rate of particles are crucially important when assessing the health and climate effects of atmospheric new particle formation. The purpose of this thesis is to increase our knowledge of the dynamics of neutral and charged aerosol particles with a specific interest towards the particle growth rate and processes affecting the aerosol charging state. A new model, Ion-UHMA, which simulates the dynamics of neutral and charged particles, was developed for this purpose. Simple analytical formulae that can be used to estimate the growth rate due to various processes were derived and used to study the effects of charged particles on the growth rate. It was found that the growth rate of a freshly-formed particle population due to condensation and coagulation could be significantly increased when a considerable fraction of the particles are charged. Finally, recent data-analysis methods that have been applied to the aerosol charging states obtained from the measurements were modified for a charge asymmetric framework. The methods were then tested on data obtained from aerosol dynamics simulations. The methods were found to be able to provide reasonable estimates on the growth rate and proportion of particles formed via ion-induced nucleation, provided that the growth rate is high enough and that the charged particles do not grow much more rapidly than the neutral ones. A simple procedure for estimating whether the methods are suitable for analysing data obtained in specific conditions was provided. In this thesis, the dynamics of neutral and charged aerosol particles were studied in
Signal processing in cryogenic particle detection
Energy Technology Data Exchange (ETDEWEB)
Yuryev, Y.N. [Department of Physics and Astronomy, Seoul National University, Seoul (Korea, Republic of); Korea Research Institute of Standards and Science (KRISS), Daejeon (Korea, Republic of); Jang, Y.S. [Korea Research Institute of Standards and Science (KRISS), Daejeon (Korea, Republic of); Kim, S.K. [Department of Physics and Astronomy, Seoul National University, Seoul (Korea, Republic of); Lee, K.B.; Lee, M.K. [Korea Research Institute of Standards and Science (KRISS), Daejeon (Korea, Republic of); Lee, S.J. [Department of Physics and Astronomy, Seoul National University, Seoul (Korea, Republic of); Korea Research Institute of Standards and Science (KRISS), Daejeon (Korea, Republic of); Yoon, W.S. [Korea Research Institute of Standards and Science (KRISS), Daejeon (Korea, Republic of); Kim, Y.H., E-mail: yhkim@kriss.re.k [Korea Research Institute of Standards and Science (KRISS), Daejeon (Korea, Republic of)
2011-04-11
We describe a signal-processing program for a data acquisition system for cryogenic particle detectors. The program is based on an optimal-filtering method for high-resolution measurement of calorimetric signals with a significant amount of noise of unknown origin and non-stationary behavior. The program was applied to improve the energy resolution of the alpha particle spectrum of an {sup 241}Am source.
Soft deformable self-propelled particles
Menzel, Andreas M.; Ohta, Takao
2012-01-01
In this work we investigate the collective behavior of self-propelled particles that deform due to local pairwise interactions. We demonstrate that this deformation alone can induce alignment of the velocity vectors. The onset of collective motion is analyzed. Applying a Gaussian-core repulsion between the particles, we find a transition to disordered non-collective motion under compression. We here explain that this reflects the reentrant fluid behavior of the general Gaussian-core model now...
Alpha particles energy straggling in noble gases
International Nuclear Information System (INIS)
The comparison of the calculated spectra by the Monte-Carlo simulation with the experimental alpha-particles spectra after their passage through noble gases target has good agreement for Ar, Kr, and Xe and significant deviation for He and Ne. These agreement or disagreement of the calculated and experimental spectra were ascribed to adequacy or inadequacy of the applied Bohr's charged particles energy loss formula for the specific medium. (author)
Energy Technology Data Exchange (ETDEWEB)
Waggoner, L.O.
1998-02-05
The presentation focuses on some of the time-proven and new technologies being used to accomplish radiological work. These techniques can be applied at nuclear facilities to reduce radiation doses and protect the environment. The last reactor plants and processing facilities were shutdown and Hanford was given a new mission to put the facilities in a safe condition, decontaminate, and prepare them for decommissioning. The skills that were necessary to operate these facilities were different than the skills needed today to clean up Hanford. Workers were not familiar with many of the tools, equipment, and materials needed to accomplish:the new mission, which includes clean up of contaminated areas in and around all the facilities, recovery of reactor fuel from spent fuel pools, and the removal of millions of gallons of highly radioactive waste from 177 underground tanks. In addition, this work has to be done with a reduced number of workers and a smaller budget. At Hanford, facilities contain a myriad of radioactive isotopes that are 2048 located inside plant systems, underground tanks, and the soil. As cleanup work at Hanford began, it became obvious early that in order to get workers to apply ALARA and use hew tools and equipment to accomplish the radiological work it was necessary to plan the work in advance and get radiological control and/or ALARA committee personnel involved early in the planning process. Emphasis was placed on applying,ALARA techniques to reduce dose, limit contamination spread and minimize the amount of radioactive waste generated. Progress on the cleanup has,b6en steady and Hanford workers have learned to use different types of engineered controls and ALARA techniques to perform radiological work. The purpose of this presentation is to share the lessons learned on how Hanford is accomplishing radiological work.
Hosmer, David W; Sturdivant, Rodney X
2013-01-01
A new edition of the definitive guide to logistic regression modeling for health science and other applications This thoroughly expanded Third Edition provides an easily accessible introduction to the logistic regression (LR) model and highlights the power of this model by examining the relationship between a dichotomous outcome and a set of covariables. Applied Logistic Regression, Third Edition emphasizes applications in the health sciences and handpicks topics that best suit the use of modern statistical software. The book provides readers with state-of-
Applied Semantic Web Technologies
Sugumaran, Vijayan
2011-01-01
The rapid advancement of semantic web technologies, along with the fact that they are at various levels of maturity, has left many practitioners confused about the current state of these technologies. Focusing on the most mature technologies, Applied Semantic Web Technologies integrates theory with case studies to illustrate the history, current state, and future direction of the semantic web. It maintains an emphasis on real-world applications and examines the technical and practical issues related to the use of semantic technologies in intelligent information management. The book starts with
Weisberg, Sanford
2005-01-01
Master linear regression techniques with a new edition of a classic text Reviews of the Second Edition: ""I found it enjoyable reading and so full of interesting material that even the well-informed reader will probably find something new . . . a necessity for all of those who do linear regression."" -Technometrics, February 1987 ""Overall, I feel that the book is a valuable addition to the now considerable list of texts on applied linear regression. It should be a strong contender as the leading text for a first serious course in regression analysis."" -American Scientist, May-June 1987
Weisberg, Sanford
2013-01-01
Praise for the Third Edition ""...this is an excellent book which could easily be used as a course text...""-International Statistical Institute The Fourth Edition of Applied Linear Regression provides a thorough update of the basic theory and methodology of linear regression modeling. Demonstrating the practical applications of linear regression analysis techniques, the Fourth Edition uses interesting, real-world exercises and examples. Stressing central concepts such as model building, understanding parameters, assessing fit and reliability, and drawing conclusions, the new edition illus
Applied energy an introduction
Abdullah, Mohammad Omar
2012-01-01
Introduction to Applied EnergyGeneral IntroductionEnergy and Power BasicsEnergy EquationEnergy Generation SystemsEnergy Storage and MethodsEnergy Efficiencies and LossesEnergy industry and Energy Applications in Small -Medium Enterprises (SME) industriesEnergy IndustryEnergy-Intensive industryEnergy Applications in SME Energy industriesEnergy Sources and SupplyEnergy SourcesEnergy Supply and Energy DemandEnergy Flow Visualization and Sankey DiagramEnergy Management and AnalysisEnergy AuditsEnergy Use and Fuel Consumption StudyEnergy Life-Cycle AnalysisEnergy and EnvironmentEnergy Pollutants, S
Applied impulsive mathematical models
Stamova, Ivanka
2016-01-01
Using the theory of impulsive differential equations, this book focuses on mathematical models which reflect current research in biology, population dynamics, neural networks and economics. The authors provide the basic background from the fundamental theory and give a systematic exposition of recent results related to the qualitative analysis of impulsive mathematical models. Consisting of six chapters, the book presents many applicable techniques, making them available in a single source easily accessible to researchers interested in mathematical models and their applications. Serving as a valuable reference, this text is addressed to a wide audience of professionals, including mathematicians, applied researchers and practitioners.
Whiting, Alan B
2014-01-01
Professor Sir Karl Popper (1902-1994) was one of the most influential philosophers of science of the twentieth century, best known for his doctrine of falsifiability. His axiomatic formulation of probability, however, is unknown to current scientists, though it is championed by several current philosophers of science as superior to the familiar version. Applying his system to problems identified by himself and his supporters, it is shown that it does not have some features he intended and does not solve the problems they have identified.
Directory of Open Access Journals (Sweden)
ALMEIDA, J.
2009-12-01
Full Text Available Content-Based Image Retrieval (CBIR is a challenging task. Common approaches use only low-level features. Notwithstanding, such CBIR solutions fail on capturing some local features representing the details and nuances of scenes. Many techniques in image processing and computer vision can capture these scene semantics. Among them, the Scale Invariant Features Transform~(SIFT has been widely used in a lot of applications. This approach relies on the choice of several parameters which directly impact its effectiveness when applied to retrieve images. In this paper, we discuss the results obtained in several experiments proposed to evaluate the application of the SIFT in CBIR tasks.
Dettman, John W
1965-01-01
Analytic function theory is a traditional subject going back to Cauchy and Riemann in the 19th century. Once the exclusive province of advanced mathematics students, its applications have proven vital to today's physicists and engineers. In this highly regarded work, Professor John W. Dettman offers a clear, well-organized overview of the subject and various applications - making the often-perplexing study of analytic functions of complex variables more accessible to a wider audience. The first half of Applied Complex Variables, designed for sequential study, is a step-by-step treatment of fun
Controlling seepage in discrete particle simulations of biological systems.
Gardiner, Bruce S; Joldes, Grand R; Wong, Kelvin K L; Tan, Chin Wee; Smith, David W
2016-08-01
It is now commonplace to represent materials in a simulation using assemblies of discrete particles. Sometimes, one wishes to maintain the integrity of boundaries between particle types, for example, when modelling multiple tissue layers. However, as the particle assembly evolves during a simulation, particles may pass across interfaces. This behaviour is referred to as 'seepage'. The aims of this study were (i) to examine the conditions for seepage through a confining particle membrane and (ii) to define some simple rules that can be employed to control seepage. Based on the force-deformation response of spheres with various sizes and stiffness, we develop analytic expressions for the force required to move a 'probe particle' between confining 'membrane particles'. We analyse the influence that particle's size and stiffness have on the maximum force that can act on the probe particle before the onset of seepage. The theoretical results are applied in the simulation of a biological cell under unconfined compression. PMID:26629728
Spinning Particle Motion in a Kerr Geometry
Jones, A.; Baker, W. M.; Staton, R.
1999-12-01
The physics of particle motion in a Kerr geometry has been extensively studied. The case of motion of particles with spin is not as well investigated. We have studied the case of the motion of a spinning particle by applying the Papapetrou equation, which includes a spin-curvature coupling term, and an equation that describes the evolution of the spin of the particle. The motion is considered for a Kerr geometry in the weak field limit. We have obtained numerical solutions to this system of equations. Our results suggest that spin orientation is important for particle trajectories in a manner that is similar to the Stern-Gerlach effect. This could be important for the study of the motion of very low mass neutrinos. Project funded by a grant from the South Carolina Independent Colleges and Universities, and the Furman Advantage Program.
Particle swarm genetic algorithm and its application
International Nuclear Information System (INIS)
To solve the problems of slow convergence speed and tendency to fall into the local optimum of the standard particle swarm optimization while dealing with nonlinear constraint optimization problem, a particle swarm genetic algorithm is designed. The proposed algorithm adopts feasibility principle handles constraint conditions and avoids the difficulty of penalty function method in selecting punishment factor, generates initial feasible group randomly, which accelerates particle swarm convergence speed, and introduces genetic algorithm crossover and mutation strategy to avoid particle swarm falls into the local optimum Through the optimization calculation of the typical test functions, the results show that particle swarm genetic algorithm has better optimized performance. The algorithm is applied in nuclear power plant optimization, and the optimization results are significantly. (authors)
Academic Training: Particle Detectors - Principles and Techniques
Françoise Benz
2005-01-01
2004-2005 ACADEMIC TRAINING PROGRAMME LECTURE SERIES FOR POSTGRADUATE STUDENTS 11, 12, 13, 14 & 15 April from 11.00 to 12.00 hrs - Main Auditorium, bldg. 500 Particle Detectors - Principles and Techniques C. JORAM, L. ROPELEWSKI, M. MOLL, C. D'AMBROSIO, T. GYS / CERN-PH The lecture series presents an overview of the physical principles and basic techniques of particle detection, applied to current and future high energy physics experiments. Illustrating examples, chosen mainly from the field of collider experiments, demonstrate the performance and limitations of the various techniques. Main topics of the series are: interaction of particles and photons with matter; particle tracking with gaseous and solid state devices, including a discussion of radiation damage and strategies for improved radiation hardness; scintillation and photon detection; electromagnetic and hadronic calorimetry; particle identification using specific energy loss dE/dx, time of flight, Cherenkov light and transition radi...
Magnetic interaction of Janus magnetic particles suspended in a viscous fluid
Seong, Yujin; Kang, Tae Gon; Hulsen, Martien A.; den Toonder, Jaap M. J.; Anderson, Patrick D.
2016-02-01
We studied the magnetic interaction between circular Janus magnetic particles suspended in a Newtonian fluid under the influence of an externally applied uniform magnetic field. The particles are equally compartmentalized into paramagnetic and nonmagnetic sides. A direct numerical scheme is employed to solve the magnetic particulate flow in the Stokes flow regime. Upon applying the magnetic field, contrary to isotropic paramagnetic particles, a single Janus particle can rotate due to the magnetic torque created by the magnetic anisotropy of the particle. In a two-particle problem, the orientation of each particle is found to be an additional factor that affects the critical angle separating the nature of magnetic interaction. Using multiparticle problems, we show that the orientation of the particles has a significant influence on the dynamics of the particles, the fluid flow induced by the actuated particles, and the final conformation of the particles. Straight and staggered chain structures observed experimentally can be reproduced numerically in a multiple particle problem.
Magnetic interaction of Janus magnetic particles suspended in a viscous fluid.
Seong, Yujin; Kang, Tae Gon; Hulsen, Martien A; den Toonder, Jaap M J; Anderson, Patrick D
2016-02-01
We studied the magnetic interaction between circular Janus magnetic particles suspended in a Newtonian fluid under the influence of an externally applied uniform magnetic field. The particles are equally compartmentalized into paramagnetic and nonmagnetic sides. A direct numerical scheme is employed to solve the magnetic particulate flow in the Stokes flow regime. Upon applying the magnetic field, contrary to isotropic paramagnetic particles, a single Janus particle can rotate due to the magnetic torque created by the magnetic anisotropy of the particle. In a two-particle problem, the orientation of each particle is found to be an additional factor that affects the critical angle separating the nature of magnetic interaction. Using multiparticle problems, we show that the orientation of the particles has a significant influence on the dynamics of the particles, the fluid flow induced by the actuated particles, and the final conformation of the particles. Straight and staggered chain structures observed experimentally can be reproduced numerically in a multiple particle problem.
Multiscale Simulations Using Particles
DEFF Research Database (Denmark)
Walther, Jens Honore
We are developing particle methods as a general framework for large scale simulations of discrete and continuous systems in science and engineering. The specific application and research areas include: discrete element simulations of granular flow, smoothed particle hydrodynamics and particle...... vortex methods for problems in continuum fluid dynamics, dissipative particle dynamics for flow at the meso scale, and atomistic molecular dynamics simulations of nanofluidic systems. We employ multiscale techniques to breach the atomistic and continuum scales to study fundamental problems in fluid...
Lederman, Leon M
2013-01-01
On July 4, 2012, the long-sought Higgs Boson--aka "the God Particle"--was discovered at the world's largest particle accelerator, the LHC, in Geneva, Switzerland. On March 14, 2013, physicists at CERN confirmed it. This elusive subatomic particle forms a field that permeates the entire universe, creating the masses of the elementary particles that are the basic building blocks of everything in the known world--from viruses to elephants, from atoms to quasars.
1982-01-01
These tracks are produced by high energy particles that have been created in the collision of a proton and an antiproton in the SPS collider at CERN. Particle detectors use electronics and complicated devices to recreate the tracks left by real particles. Such detectors are usually embedded in a strong magnetic field, causing the charged particles to follow a curved path so that they can be identified and measurements can be made of their momentum.
Optical momentum transfer to absorbing mie particles.
Kemp, Brandon A; Grzegorczyk, Tomasz M; Kong, Jin Au
2006-09-29
The momentum transfer to absorbing particles is derived from the Lorentz force density without prior assumption of the momentum of light in media. We develop a view of momentum conservation rooted in the stress tensor formalism that is based on the separation of momentum contributions to bound and free currents and charges consistent with the Lorentz force density. This is in contrast with the usual separation of material and field contributions. The theory is applied to predict a decrease in optical momentum transfer to Mie particles due to absorption, which contrasts the common intuition based on the scattering and absorption by Rayleigh particles. PMID:17026034
Beam Line: 100 years of elementary particles
Pais, A.; Weinberg, S.; Quigg, C.; Riordan, M.; Panofsky, W. K. H.
1997-04-01
This issue of Beam Line commemorates the 100th anniversary of the April 30, 1897 report of the discovery of the electron by J.J. Thomson and the ensuing discovery of other subatomic particles. In the first three articles, theorists Abraham Pais, Steven Weinberg, and Chris Quigg provide their perspectives on the discoveries of elementary particles as well as the implications and future directions resulting from these discoveries. In the following three articles, Michael Riordan, Wolfgang Panofsky, and Virginia Trimble apply our knowledge about elementary particles to high-energy research, electronics technology, and understanding the origin and evolution of our Universe.
Expression of Superparamagnetic Particles on FORC Diagrams
Hirt, A. M.; Kumari, M.; Crippa, F.; Petri-Fink, A.
2015-12-01
Identification of superparamagnetic (SP) particles in natural materials provides information on processes that lead to the new formation or dissolution of iron oxides. SP particles express themselves on first-order reversal curve (FORC) diagrams as a distribution centered near the origin of the diagram. Pike et al. (2001, GJI, 145, 721) demonstrated that thermal relaxation produces an upward shift in the FORC distribution, and attributed this to a pause encountered at each reversal field. In this study we examine the relationship between this upward shift and particles size on two sets of synthetic iron oxide nanoparticles. One set of coated magnetite particles have well-constrained particles size with 9, 16 and 20 nm as their diameter. A second set from the FeraSpin™ Series, consisting of FeraSpinXS, M and XL, were evaluated. Rock magnetic experiments indicate that the first set of samples is exclusively magnetite, whereas the FeraSpin samples contain predominantly magnetite with some degree of oxidation. Samples from both sets show that the upward shift of the FORC distribution at the origin increases with decreasing particle size. The amount of shift in the FeraSpin series is less when compared to the samples from the first set. This is attributed to the effect of interaction that counteracts the effect of thermal relaxation behavior of the SP particles. The FeraSpin series also shows a broader FORC distribution on the vertical axis that appears to be related to non-saturation of the hysteresis curve at maximum applied field. This non-saturation behavior can be due to spins of very fine particles or oxidation to hematite. AC susceptibility at low temperature indicates that particle interaction may affect the effective magnetic particle size. Our results suggest that the FORC distribution in pure SP particle systems provides information on the particle size distribution or oxidation, which can be further evaluated with low temperature techniques.
Energy Technology Data Exchange (ETDEWEB)
Hellman, Hal
1970-01-01
This booklet tells how scientists observe the particles and electromagnetic radiation that emerges from an atomic nucleus. The equipment used falls into two general categories: counters which count each particle as it passes by, and track detectors, which make a photographic record of the particle's track.
Drell, Sidney D.
1978-01-01
Gives a new definition for the concept of the elementary particle in nuclear physics. Explains why the existance of the quark as an elementary particle could be an accepted fact even though it lacks what traditionally identifies a particle. Compares this with the development which took place during the discovery of the neutrino in the early…
Macro-scale pseudo-particle modeling for particle-fluid systems
Institute of Scientific and Technical Information of China (English)
无
2001-01-01
Pseudo-particle modeling (PPM) is a particle method (PM) proposed in 1996. Though it is effective for the simulation of microscopic particle-fluid systems, its application to practical systems is still limited by computational cost.In this note, we speed up the computation by using a combination of weighted averaging with finite difference techniques to upgrade the particle interactions to a fluid element level, which conforms to the Navier-Stokes equation. The approach, abbreviated to MaPPM, is then applied to the problem of one-dimensional Poiseuille flow with a quantitative comparison to the results of another related PM smoothed particle hydrodynamics (SPH), where the accuracy and efficiency of MaPPM is found to be much better than that of SPH. Flows around a cylinder and multiple freely moving particles are also simulated with the new model, resulting in reasonable flow pattern and drag coefficient. The convergence and robustness of the algorithm prove promising.``
Computer Models Simulate Fine Particle Dispersion
2010-01-01
Through a NASA Seed Fund partnership with DEM Solutions Inc., of Lebanon, New Hampshire, scientists at Kennedy Space Center refined existing software to study the electrostatic phenomena of granular and bulk materials as they apply to planetary surfaces. The software, EDEM, allows users to import particles and obtain accurate representations of their shapes for modeling purposes, such as simulating bulk solids behavior, and was enhanced to be able to more accurately model fine, abrasive, cohesive particles. These new EDEM capabilities can be applied in many industries unrelated to space exploration and have been adopted by several prominent U.S. companies, including John Deere, Pfizer, and Procter & Gamble.
Applied multivariate statistical analysis
Härdle, Wolfgang Karl
2015-01-01
Focusing on high-dimensional applications, this 4th edition presents the tools and concepts used in multivariate data analysis in a style that is also accessible for non-mathematicians and practitioners. It surveys the basic principles and emphasizes both exploratory and inferential statistics; a new chapter on Variable Selection (Lasso, SCAD and Elastic Net) has also been added. All chapters include practical exercises that highlight applications in different multivariate data analysis fields: in quantitative financial studies, where the joint dynamics of assets are observed; in medicine, where recorded observations of subjects in different locations form the basis for reliable diagnoses and medication; and in quantitative marketing, where consumers’ preferences are collected in order to construct models of consumer behavior. All of these examples involve high to ultra-high dimensions and represent a number of major fields in big data analysis. The fourth edition of this book on Applied Multivariate ...
International Nuclear Information System (INIS)
Applied Plasma Physics is a major sub-organizational unit of the MFE Program. It includes Fusion Plasma Theory and Experimental Plasma Research. The Fusion Plasma Theory group has the responsibility for developing theoretical-computational models in the general areas of plasma properties, equilibrium, stability, transport, and atomic physics. This group has responsibility for giving guidance to the mirror experimental program. There is a formal division of the group into theory and computational; however, in this report the efforts of the two areas are not separated since many projects have contributions from members of both. Under the Experimental Plasma Research Program, we are developing the intense, pulsed neutral-beam source (IPINS) for the generation of a reversed-field configuration on 2XIIB. We are also studying the feasibility of utilizing certain neutron-detection techniques as plasma diagnostics in the next generation of thermonuclear experiments
Applied partial differential equations
Logan, J David
2015-01-01
This text presents the standard material usually covered in a one-semester, undergraduate course on boundary value problems and PDEs. Emphasis is placed on motivation, concepts, methods, and interpretation, rather than on formal theory. The concise treatment of the subject is maintained in this third edition covering all the major ideas: the wave equation, the diffusion equation, the Laplace equation, and the advection equation on bounded and unbounded domains. Methods include eigenfunction expansions, integral transforms, and characteristics. In this third edition, text remains intimately tied to applications in heat transfer, wave motion, biological systems, and a variety other topics in pure and applied science. The text offers flexibility to instructors who, for example, may wish to insert topics from biology or numerical methods at any time in the course. The exposition is presented in a friendly, easy-to-read, style, with mathematical ideas motivated from physical problems. Many exercises and worked e...
Niederreiter, Harald
2015-01-01
This textbook effectively builds a bridge from basic number theory to recent advances in applied number theory. It presents the first unified account of the four major areas of application where number theory plays a fundamental role, namely cryptography, coding theory, quasi-Monte Carlo methods, and pseudorandom number generation, allowing the authors to delineate the manifold links and interrelations between these areas. Number theory, which Carl-Friedrich Gauss famously dubbed the queen of mathematics, has always been considered a very beautiful field of mathematics, producing lovely results and elegant proofs. While only very few real-life applications were known in the past, today number theory can be found in everyday life: in supermarket bar code scanners, in our cars’ GPS systems, in online banking, etc. Starting with a brief introductory course on number theory in Chapter 1, which makes the book more accessible for undergraduates, the authors describe the four main application areas in Chapters...
International Nuclear Information System (INIS)
Applied Plasma Physics is a major sub-organizational unit of the MFE Porgram. It includes Fusion Plasma Theory and Experimental Plasma Research. Fusion Plasma Theory has the responsibility for developing theoretical-computational models in the general areas of plasma properties, equilibrium, stability, transport, and atomic physics. This group has responsibility for giving guidance to the mirror experimental program. There is a formal division of the group into theory and computational; however, in this report the efforts of the two areas are not separated since many projects have contributions from members of both. Under Experimental Plasma Research, we are developing the intense, pulsed ion-neutral source (IPINS) for the generation of a reversed-field configuration on 2XIIB. We are also studying the feasibility of utilizing certain neutron-detection techniques as plasma diagnostics in the next generation of thermonuclear experiments
Applied statistical thermodynamics
Lucas, Klaus
1991-01-01
The book guides the reader from the foundations of statisti- cal thermodynamics including the theory of intermolecular forces to modern computer-aided applications in chemical en- gineering and physical chemistry. The approach is new. The foundations of quantum and statistical mechanics are presen- ted in a simple way and their applications to the prediction of fluid phase behavior of real systems are demonstrated. A particular effort is made to introduce the reader to expli- cit formulations of intermolecular interaction models and to show how these models influence the properties of fluid sy- stems. The established methods of statistical mechanics - computer simulation, perturbation theory, and numerical in- tegration - are discussed in a style appropriate for newcom- ers and are extensively applied. Numerous worked examples illustrate how practical calculations should be carried out.
Bower, Allan F
2009-01-01
Modern computer simulations make stress analysis easy. As they continue to replace classical mathematical methods of analysis, these software programs require users to have a solid understanding of the fundamental principles on which they are based. Develop Intuitive Ability to Identify and Avoid Physically Meaningless Predictions Applied Mechanics of Solids is a powerful tool for understanding how to take advantage of these revolutionary computer advances in the field of solid mechanics. Beginning with a description of the physical and mathematical laws that govern deformation in solids, the text presents modern constitutive equations, as well as analytical and computational methods of stress analysis and fracture mechanics. It also addresses the nonlinear theory of deformable rods, membranes, plates, and shells, and solutions to important boundary and initial value problems in solid mechanics. The author uses the step-by-step manner of a blackboard lecture to explain problem solving methods, often providing...
International Nuclear Information System (INIS)
Applied Plasma Physics is a major sub-organizational unit of the Magnetic Fusion Energy (MFE) Program. It includes Fusion Plasma Theory and Experimental Plasma Research. The Fusion Plasma Theory group has the responsibility for developing theoretical-computational models in the general areas of plasma properties, equilibrium, stability, transport, and atomic physics. This group has responsibility for giving guidance to the mirror experimental program. There is a formal division of the group into theory and computational; however, in this report the efforts of the two areas are not separated since many projects have contributions from members of both. Under the Experimental Plasma Research Program we are developing a neutral-beam source, the intense, pulsed ion-neutral source (IPINS), for the generation of a reversed-field configuration on 2XIIB. We are also studying the feasibility of using certain neutron-detection techniques as plasma diagnostics in the next generation of thermonuclear experiments
Astrophysical Smooth Particle Hydrodynamics
Rosswog, Stephan
2009-01-01
In this review the basic principles of smooth particle hydrodynamics (SPH) are outlined in a pedagogical fashion. To start, a basic set of SPH equations that is used in many codes throughout the astrophysics community is derived explicitly. Much of SPH's success relies on its excellent conservation properties and therefore the numerical conservation of physical invariants receives much attention throughout this review. The self-consistent derivation of the SPH equations from the Lagrangian of an ideal fluid is the common theme of the remainder of the text. Such a variational approach is applied to derive a modern SPH version of Newtonian hydrodynamics. It accounts for gradients in the local resolution lengths which result in corrective, so-called "grad-h-terms". This strategy naturally carries over to the special-relativistic case for which we derive the corresponding grad-h set of equations. This approach is further generalized to the case of a fluid that evolves on a curved, but fixed background space-time.
Marsh, Gerald E
2016-01-01
The idea that particles are the basic constituents of all matter dates back to ancient times and formed the basis of physical thought well into modern times. The debate about whether light was a wave or a stream of particles also lasted until relatively recently. It was the advent of de Broglie's work and its implications that revolutionized the concept of an elementary particle -- but unfortunately did not banish the idea of a point particle despite its difficulties in both classical and quantum physics. Some of these problems are discussed in this essay, which covers chiral oscillations, Penrose's "zigzag" picture of particles satisfying the Dirac equation, and some ideas derived from string theory.
Particle separator scroll vanes
Energy Technology Data Exchange (ETDEWEB)
Lastrina, F. A.; Mayer, J. C.; Pommer, L. M.
1985-07-09
An inlet particle separator for a gas turbine engine is provided with unique vanes distributed around an entrance to a particle collection chamber. The vanes are uniquely constructed to direct extraneous particles that enter the engine into the collection chamber and prevent the particles from rebounding back into the engine's air flow stream. The vanes are provided with several features to accomplish this function, including upstream faces that are sharply angled towards air flow stream direction to cause particles to bounce towards the collection chamber. In addition, throat regions between the vanes cause a localized air flow acceleration and a focusing of the particles that aid in directing the particles in a proper direction.
International Nuclear Information System (INIS)
Theoretical developments related to gravitational interaction have questioned the notion of particle in quantum field theory (QFT). For instance, uniquely defined particle states do not exist in general, in QFT on a curved spacetime. More generally, particle states are difficult to define in a background-independent quantum theory of gravity. These difficulties have led some to suggest that in general QFT should not be interpreted in terms of particle states, but rather in terms of eigenstates of local operators. Still, it is not obvious how to reconcile this view with the empirically-observed ubiquitous particle-like behavior of quantum fields, apparent for instance in experimental high-energy physics, or 'particle' physics. Here we offer an element of clarification by observing that already in flat space there exist-strictly speaking-two distinct notions of particles: globally defined n-particle Fock-states and local particle states. The last describes the physical objects detected by finite-size particle detectors and are eigenstates of local field operators. In the limit in which the particle detectors are appropriately large, global and local particle states converge in a weak topology (but not in norm). This observation has little relevance for flat-space theories-it amounts to a reminder that there are boundary effects in realistic detectors-but is relevant for gravity. It reconciles the two points of view mentioned above. More importantly, it provides a definition of the local particle state that remains well defined even when the conventional global particle states are not defined. This definition plays an important role in quantum gravity.
Applied research with cyclotrons
International Nuclear Information System (INIS)
During the past three decades the Flerov laboratory carried out research and development of a number of applications that have found or may find use in modern technologies. One of the applications is the so-called ion track technology enabling us to create micro- and nano-structured materials. Accelerated heavy ion beams are the unique tools for structuring insulating solids in a controllable manner. At FLNR JINR the U-400 cyclotron and the IC-100 cyclotron are employed for irradiation of materials to be modified by the track-etch technique. For practical applications, U-400 delivers the 86Kr ion beams with total energies of 250, 350, 430 and 750 MeV, and the 136Xe ion beams with the energy of 430 MeV. The cyclotron is equipped with a specialized channel for irradiation of polymer foils. IC-100 is a compact accelerator specially designed for the technological uses. High-intensity krypton ion beams with the energy of ∼ 1 MeV/u are available now at IC-100. Production of track-etch membranes is an example of mature technology based on irradiation with accelerated ions. The track-etch membranes offer distinct advantages over other types of membranes due to their precisely determined structure. One-pore, oligo-pore and multi-pore samples can serve as models for studying the transport of liquids, gases, particles, solutes, and electrolytes in narrow channels. Track-etch pores are also used as templates for making nano wires, nano tubes or array of nano rods. The microstructures obtained this way may find use in miniaturized devices such as sensors for biologically important molecules. Bulk and surface modification for the production of new composites and materials with special optical properties can be performed with ion beams. Flexible printed circuits, high-performance heat transfer modules, X-ray filters, and protective signs are examples of products developed in collaboration with research and industrial partners. Some recent achievements and promising ideas that
Effects of Particles Collision on Separating Gas–Particle Two-Phase Turbulent Flows
Sihao, L. V.
2013-10-10
A second-order moment two-phase turbulence model incorporating a particle temperature model based on the kinetic theory of granular flow is applied to investigate the effects of particles collision on separating gas–particle two-phase turbulent flows. In this model, the anisotropy of gas and solid phase two-phase Reynolds stresses and their correlation of velocity fluctuation are fully considered using a presented Reynolds stress model and the transport equation of two-phase stress correlation. Experimental measurements (Xu and Zhou in ASME-FED Summer Meeting, San Francisco, Paper FEDSM99-7909, 1999) are used to validate this model, source codes and prediction results. It showed that the particles collision leads to decrease in the intensity of gas and particle vortices and takes a larger effect on particle turbulent fluctuations. The time-averaged velocity, the fluctuation velocity of gas and particle phase considering particles colli-sion are in good agreement with experimental measurements. Particle kinetic energy is always smaller than gas phase due to energy dissipation from particle collision. Moreover, axial– axial and radial–radial fluctuation velocity correlations have stronger anisotropic behaviors. © King Fahd University of Petroleum and Minerals 2013
Applied Linguistics and the "Annual Review of Applied Linguistics."
Kaplan, Robert B.; Grabe, William
2000-01-01
Examines the complexities and differences involved in granting disciplinary status to the role of applied linguistics, discusses the role of the "Annual Review of Applied Linguistics" as a contributor to the development of applied linguistics, and highlights a set of publications for the future of applied linguistics. (Author/VWL)
Academic training: Applied superconductivity
2007-01-01
LECTURE SERIES 17, 18, 19 January from 11.00 to 12.00 hrs Council Room, Bldg 503 Applied Superconductivity : Theory, superconducting Materials and applications E. PALMIERI/INFN, Padova, Italy When hearing about persistent currents recirculating for several years in a superconducting loop without any appreciable decay, one realizes that we are dealing with a phenomenon which in nature is the closest known to the perpetual motion. Zero resistivity and perfect diamagnetism in Mercury at 4.2Â K, the breakthrough during 75 years of several hundreds of superconducting materials, the revolution of the "liquid Nitrogen superconductivity"; the discovery of still a binary compound becoming superconducting at 40 K and the subsequent re-exploration of the alreadyÂ known superconducting materials: Nature discloses drop by drop its intimate secrets and nobody can exclude that the last final surprise must still come. After an overview ofÂ phenomenology and basic theory of superconductivity, the lectures for this a...
Chaudhry, M Hanif
2014-01-01
This book covers hydraulic transients in a comprehensive and systematic manner from introduction to advanced level and presents various methods of analysis for computer solution. The field of application of the book is very broad and diverse and covers areas such as hydroelectric projects, pumped storage schemes, water-supply systems, cooling-water systems, oil pipelines and industrial piping systems. Strong emphasis is given to practical applications, including several case studies, problems of applied nature, and design criteria. This will help design engineers and introduce students to real-life projects. This book also: · Presents modern methods of analysis suitable for computer analysis, such as the method of characteristics, explicit and implicit finite-difference methods and matrix methods · Includes case studies of actual projects · Provides extensive and complete treatment of governed hydraulic turbines · Presents design charts, desi...
Applying evolutionary anthropology.
Gibson, Mhairi A; Lawson, David W
2015-01-01
Evolutionary anthropology provides a powerful theoretical framework for understanding how both current environments and legacies of past selection shape human behavioral diversity. This integrative and pluralistic field, combining ethnographic, demographic, and sociological methods, has provided new insights into the ultimate forces and proximate pathways that guide human adaptation and variation. Here, we present the argument that evolutionary anthropological studies of human behavior also hold great, largely untapped, potential to guide the design, implementation, and evaluation of social and public health policy. Focusing on the key anthropological themes of reproduction, production, and distribution we highlight classic and recent research demonstrating the value of an evolutionary perspective to improving human well-being. The challenge now comes in transforming relevance into action and, for that, evolutionary behavioral anthropologists will need to forge deeper connections with other applied social scientists and policy-makers. We are hopeful that these developments are underway and that, with the current tide of enthusiasm for evidence-based approaches to policy, evolutionary anthropology is well positioned to make a strong contribution.
2005-01-01
A new all-electronic Particle Image Velocimetry technique that can efficiently map high speed gas flows has been developed in-house at the NASA Lewis Research Center. Particle Image Velocimetry is an optical technique for measuring the instantaneous two component velocity field across a planar region of a seeded flow field. A pulsed laser light sheet is used to illuminate the seed particles entrained in the flow field at two instances in time. One or more charged coupled device (CCD) cameras can be used to record the instantaneous positions of particles. Using the time between light sheet pulses and determining either the individual particle displacements or the average displacement of particles over a small subregion of the recorded image enables the calculation of the fluid velocity. Fuzzy logic minimizes the required operator intervention in identifying particles and computing velocity. Using two cameras that have the same view of the illumination plane yields two single exposure image frames. Two competing techniques that yield unambiguous velocity vector direction information have been widely used for reducing the single-exposure, multiple image frame data: (1) cross-correlation and (2) particle tracking. Correlation techniques yield averaged velocity estimates over subregions of the flow, whereas particle tracking techniques give individual particle velocity estimates. For the correlation technique, the correlation peak corresponding to the average displacement of particles across the subregion must be identified. Noise on the images and particle dropout result in misidentification of the true correlation peak. The subsequent velocity vector maps contain spurious vectors where the displacement peaks have been improperly identified. Typically these spurious vectors are replaced by a weighted average of the neighboring vectors, thereby decreasing the independence of the measurements. In this work, fuzzy logic techniques are used to determine the true
Plasmas applied atomic collision physics, v.2
Barnett, C F
1984-01-01
Applied Atomic Collision Physics, Volume 2: Plasmas covers topics on magnetically confined plasmas. The book starts by providing the history of fusion research and describing the various approaches in both magnetically and inertially confined plasmas. The text then gives a general discussion of the basic concepts and properties in confinement and heating of a plasma. The theory of atomic collisions that result in excited quantum states, particularly highly ionized impurity atoms; and diverse diagnostic topics such as emission spectra, laser scattering, electron cyclotron emission, particle bea
Applied atomic and collision physics special topics
Massey, H S W; Bederson, Benjamin
1982-01-01
Applied Atomic Collision Physics, Volume 5: Special Topics deals with topics on applications of atomic collisions that were not covered in the first four volumes of the treatise. The book opens with a chapter on ultrasensitive chemical detectors. This is followed by separate chapters on lighting, magnetohydrodynamic electrical power generation, gas breakdown and high voltage insulating gases, thermionic energy converters, and charged particle detectors. Subsequent chapters deal with the operation of multiwire drift and proportional chambers and streamer chambers and their use in high energy p
Experiments with particle damping
Hollkamp, Joseph J.; Gordon, Robert W.
1998-06-01
High cycle fatigue in jet engines is a current military concern. The vibratory stresses that cause fatigue can be reduced by adding damping. However, the high temperatures that occur in the gas turbine greatly hinder the application of mature damping technologies. One technology which may perform in the harsh environment is particle damping. Particle damping involves placing metallic or ceramic particles inside structural cavities. As the cavity vibrates, energy is dissipated through particle collisions. Performance is influenced by many parameters including the type, shape, and size of the particles; the amount of free volume for the particles to move in; density of the particles; and the level of vibration. This paper presents results from a series of experiments designed to gain an appreciation of the important parameters. The experimental setup consists of a cantilever beam with drilled holes. These holes are partially filled with particles. The types of particles, location of the particles, fill level, and other parameters are varied. Damping is estimated for each configuration. Trends in the results are studied to determine the influence of the varied parameter.
Applied large eddy simulation.
Tucker, Paul G; Lardeau, Sylvain
2009-07-28
Large eddy simulation (LES) is now seen more and more as a viable alternative to current industrial practice, usually based on problem-specific Reynolds-averaged Navier-Stokes (RANS) methods. Access to detailed flow physics is attractive to industry, especially in an environment in which computer modelling is bound to play an ever increasing role. However, the improvement in accuracy and flow detail has substantial cost. This has so far prevented wider industrial use of LES. The purpose of the applied LES discussion meeting was to address questions regarding what is achievable and what is not, given the current technology and knowledge, for an industrial practitioner who is interested in using LES. The use of LES was explored in an application-centred context between diverse fields. The general flow-governing equation form was explored along with various LES models. The errors occurring in LES were analysed. Also, the hybridization of RANS and LES was considered. The importance of modelling relative to boundary conditions, problem definition and other more mundane aspects were examined. It was to an extent concluded that for LES to make most rapid industrial impact, pragmatic hybrid use of LES, implicit LES and RANS elements will probably be needed. Added to this further, highly industrial sector model parametrizations will be required with clear thought on the key target design parameter(s). The combination of good numerical modelling expertise, a sound understanding of turbulence, along with artistry, pragmatism and the use of recent developments in computer science should dramatically add impetus to the industrial uptake of LES. In the light of the numerous technical challenges that remain it appears that for some time to come LES will have echoes of the high levels of technical knowledge required for safe use of RANS but with much greater fidelity. PMID:19531503
Essays in applied microeconomics
Wang, Xiaoting
In this dissertation I use Microeconomic theory to study firms' behavior. Chapter One introduces the motivations and main findings of this dissertation. Chapter Two studies the issue of information provision through advertisement when markets are segmented and consumers' price information is incomplete. Firms compete in prices and advertising strategies for consumers with transportation costs. High advertising costs contribute to market segmentation. Low advertising costs promote price competition among firms and improves consumer welfare. Chapter Three also investigates market power as a result of consumers' switching costs. A potential entrant can offer a new product bundled with an existing product to compensate consumers for their switching cost. If the primary market is competitive, bundling simply plays the role of price discrimination, and it does not dominate unbundled sales in the process of entry. If the entrant has market power in the primary market, then bundling also plays the role of leveraging market power and it dominates unbundled sales. The market for electric power generation has been opened to competition in recent years. Chapter Four looks at issues involved in the deregulated electricity market. By comparing the performance of the competitive market with the social optimum, we identify the conditions under which market equilibrium generates socially efficient levels of electric power. Chapter Two to Four investigate the strategic behavior among firms. Chapter Five studies the interaction between firms and unemployed workers in a frictional labor market. We set up an asymmetric job auction model, where two types of workers apply for two types of job openings by bidding in auctions and firms hire the applicant offering them the most profits. The job auction model internalizes the determination of the share of surplus from a match, therefore endogenously generates incentives for an efficient division of the matching surplus. Microeconomic
Stephenson, F. Richard
2014-01-01
F. Richard Stephenson has spent most of his research career -- spanning more than 45 years -- studying various aspects of Applied Historical Astronomy. The aim of this interdisciplinary subject is the application of historical astronomical records to the investigation of problems in modern astronomy and geophysics. Stephenson has almost exclusively concentrated on pre-telescopic records, especially those preserved from ancient and medieval times -- the earliest reliable observations dating from around 700 BC. The records which have mainly interested him are of eclipses (both solar and lunar), supernovae, sunspots and aurorae, and Halley's Comet. The main sources of early astronomical data are fourfold: records from ancient and medieval East Asia (China, together with Korea and Japan); ancient Babylon; ancient and medieval Europe; and the medieval Arab world. A feature of Stephenson's research is the direct consultation of early astronomical texts in their original language -- either working unaided or with the help of colleagues. He has also developed a variety of techniques to help interpret the various observations. Most pre-telescopic observations are very crude by present-day standards. In addition, early motives for skywatching were more often astrological rather than scientific. Despite these drawbacks, ancient and medieval astronomical records have two remarkable advantages over modern data. Firstly, they can enable the investigation of long-term trends (e.g. in the terrestrial rate of rotation), which in the relatively short period covered by telescopic observations are obscured by short-term fluctuations. Secondly, over the lengthy time-scale which they cover, significant numbers of very rare events (such as Galactic supernovae) were reported, which have few -- if any-- counterparts in the telescopic record. In his various researches, Stephenson has mainly focused his attention on two specific topics. These are: (i) long-term changes in the Earth's rate of
Controlling particle orientation during forming
Nycz, Shawn Michael
Particle orientation is a microstructural feature that can significantly impact the properties of a fired ceramic. For example, Patwardhan and Cannon showed that particle orientation occurring during tape casting affects dimensional control due to the influence that particle shape has on sintering kinetics. The particle orientation was caused by the complex shear state that occurs during tape casting. This dissertation examined the relationship between shear state and the resulting particle orientation and its influence on selected properties of the body. The first step towards this was the determination of the shear state during tape casting. Based on measured geometries and rheologies, computational fluid dynamics (CFD) simulations were performed which predicted shear rates throughout the geometry. The simulations predicted that for slurries exhibiting power-law shear thinning behavior, shear rate is higher near the doctor blade and the slurry is not only sheared between the doctor blade and substrate but also into the slurry reservoir and behind the doctor blade. Tape casting was performed on the compositions that were characterized for the determination of shear state. Casting parameters such as doctor blade gap and casting velocity were varied to alter the shear profile in the system. These samples were then analyzed to determine the particle orientation and texture in various regions throughout the tapes. An optical texture measurement technique based on the birefringence of green bodies was developed to address the need for highly sensitive measurements capable of detecting small variations in green texture. Results given by this technique were found to be consistent with measurements performed by XRD. Experimental samples were analyzed and localized texture measurements were found to follow shear profiles predicted by the CFD simulations. Elastic moduli of fired samples exhibiting a range of textures were measured to reveal effects of particle orientation
Acoustic interaction forces between small particles in an ideal fluid
Silva, Glauber T
2014-01-01
We present a theoretical expression for the acoustic interaction force between small spherical particles suspended in an ideal fluid exposed to an external acoustic wave. The acoustic interaction force is the part of the acoustic radiation force on one given particle involving the scattered waves from the other particles. The particles, either compressible liquid droplets or elastic microspheres, are considered to be much smaller than the acoustic wavelength. In this so-called Rayleigh limit, the acoustic interaction forces between the particles are well approximated by gradients of pair-interaction potentials with no restriction on the inter-particle distance. The theory is applied to studies of the acoustic interaction force on a particle suspension in either standing or traveling plane waves. The results show aggregation regions along the wave propagation direction, while particles may attract or repel each other in the transverse direction. In addition, a mean-field approximation is developed to describe ...
Characterization of individual particles in gaseous media by mass spectrometry
Sinha, M. P.
1990-01-01
An introduction is given to a system for particle analysis by mass spectrometry (PAMS) which employs particle-beam techniques to measure mass spectra on a continuous real-time basis. The system is applied to particles of both organic and inorganic compounds, and the measurements give the chemical characteristics of particles in mixtures and indicate source apportionment. The PAMS system can be used for process control and studying heterogeneous/catalytic reactions in particles, and can be fitted to study the real-time attributes of PAMS.
PREDICTION OF PARTICLE TRANSPORT IN ENCLOSED ENVIRONMENT
Institute of Scientific and Technical Information of China (English)
Qingyan Chen; Zhao Zhang
2005-01-01
Prediction of particle transport in enclosed environment is crucial to the welfare of its occupants. The prediction requires not only a reliable particle model but also an accurate flow model. This paper introduces two categories of flow models - Reynolds Averaged Navier-Stokes equation modeling (RANS modeling) and Large Eddy Simulation (LES); as well as two popular particle models - Lagrangian and Eulerian methods. The computed distributions of air velocity, air temperature, and tracer-gas concentration in a ventilated room by the RANS modeling and LES agreed reasonably with the experimental data from the literature. The two flow models gave similar prediction accuracy. Both the Lagrangian and Eulerian methods were applied to predict particle transport in a room. Again, the computed results were in reasonable agreement with the experimental data obtained in an environmental chamber. The performance of the two methods was nearly identical. Finally the flow and particle models were applied to study particle dispersion in a Boeing 767 cabin and in a small building with six rooms. The computed results look plausible.
Stefania Pandolfi
2016-01-01
The LHCb collaboration announces the observation of four “exotic” particles from its analysis of the LHC data. The LHCb experimental cavern. On 28 June, the LHCb collaboration reported the observation of three new "exotic" particles and confirmation of the existence of a fourth one in data from the LHC. These particles each appear to be formed by four quarks (the fundamental constituents of the matter inside all the atoms of the universe): two quarks and two antiquarks (that is, a tetraquark). Due to their non-standard quark content, the newly observed particles have been included in the broad category of so-called exotic particles, although their exact theoretical interpretation is still under study. The quark model, proposed by Murray Gell-Mann and George Zweig in 1964, is considered to be the most valid scheme for the classification of hadrons (all the composite particles) that has been fou...
Energy Technology Data Exchange (ETDEWEB)
Fox, Robert V.; Zhang, Fengyan; Rodriguez, Rene G.; Pak, Joshua J.; Sun, Chivin
2016-06-21
Single source precursors or pre-copolymers of single source precursors are subjected to microwave radiation to form particles of a I-III-VI.sub.2 material. Such particles may be formed in a wurtzite phase and may be converted to a chalcopyrite phase by, for example, exposure to heat. The particles in the wurtzite phase may have a substantially hexagonal shape that enables stacking into ordered layers. The particles in the wurtzite phase may be mixed with particles in the chalcopyrite phase (i.e., chalcopyrite nanoparticles) that may fill voids within the ordered layers of the particles in the wurtzite phase thus produce films with good coverage. In some embodiments, the methods are used to form layers of semiconductor materials comprising a I-III-VI.sub.2 material. Devices such as, for example, thin-film solar cells may be fabricated using such methods.
Essays in Applied Microeconomics
Ge, Qi
This dissertation consists of three self-contained applied microeconomics essays on topics related to behavioral economics and industrial organization. Chapter 1 studies how sentiment as a result of sports event outcomes affects consumers' tipping behavior in the presence of social norms. I formulate a model of tipping behavior that captures consumer sentiment following a reference-dependent preference framework and empirically test its relevance using the game outcomes of the NBA and the trip and tipping data on New York City taxicabs. While I find that consumers' tipping behavior responds to unexpected wins and losses of their home team, particularly in close game outcomes, I do not find evidence for loss aversion. Coupled with the findings on default tipping, my empirical results on the asymmetric tipping responses suggest that while social norms may dominate loss aversion, affect and surprises can result in freedom on the upside of tipping. Chapter 2 utilizes a novel data source of airline entry and exit announcements and examines how the incumbent airlines adjust quality provisions as a response to their competitors' announcements and the role of timing in such responses. I find no evidence that the incumbents engage in preemptive actions when facing probable entry and exit threats as signaled by the competitors' announcements in either short term or long term. There is, however, evidence supporting their responses to the competitors' realized entry or exit. My empirical findings underscore the role of timing in determining preemptive actions and suggest that previous studies may have overestimated how the incumbent airlines respond to entry threats. Chapter 3, which is collaborated with Benjamin Ho, investigates the habit formation of consumers' thermostat setting behavior, an often implicitly made decision and yet a key determinant of home energy consumption and expenditures. We utilize a high frequency dataset on household thermostat usage and find that
Arano, Kathleen
Three independent studies in applied economics are presented. The first essay looks at the US natural gas industrial sector and estimates welfare effects associated with the changes in natural gas regulatory policy over the past three decades. Using a disequilibrium model suited to the natural gas industry, welfare transfers and deadweight losses are calculated. Results indicate that deregulation policies, beginning with the NGPA of 1978, have caused the industry to become more responsive to market conditions. Over time, regulated prices converge toward the estimated equilibrium prices. As a result of this convergence, deadweight losses associated with regulation are also diminished. The second essay examines the discounted utility model (DU), the standard model used for intertemporal decision-making. Prior empirical studies challenge the descriptive validity of the model. This essay addresses the four main inconsistencies that have been raised: domain dependence, magnitude effects, time effects, and gain/loss asymmetries. These inconsistencies, however, may be the result of the implicit assumption of linear utility and not a failure of the DU model itself. In order to test this hypothesis, data was collected from in-class surveys of economics classes at Mississippi State University. A random effects model for panel data estimation which accounts for individual specific effects was then used to impute discount rates measured in terms of dollars and utility. All four inconsistencies were found to be present when the dollar measures were used. Using utility measures of the discount rate resolved the inconsistencies in some cases. The third essay brings together two perspectives in the study of religion and economics: modeling religious behavior using economic tools and variables, and modeling economic behavior using religious variables. A system of ordered probit equations is developed to simultaneously model religious activities and economic outcomes. Using data
Yang, Tao; Mehta, Prashant G.; Meyn, Sean P.
2013-01-01
A new formulation of the particle filter for nonlinear filtering is presented, based on concepts from optimal control, and from the mean-field game theory. The optimal control is chosen so that the posterior distribution of a particle matches as closely as possible the posterior distribution of the true state given the observations. This is achieved by introducing a cost function, defined by the Kullback-Leibler (K-L) divergence between the actual posterior, and the posterior of any particle....
Trapping of photophoretic particles
Magiera, Martin P
2014-01-01
A trapping mechanism for self-propelled particles based on an inhomogeneous drive is presented and studied analytically as well as by computer simulations. In experiments this method can be realized using photophoretic Janus particles driven by a light source, which shines through a shading mask and leads to an accumulation of the swimmers in the shaded part. The mechanism can be traced back to a finite penetration depth of particles impinging from the illuminated part of the system into the shaded part.
International Nuclear Information System (INIS)
This Note offers a new point of view on particle masses. It is shown that they are distributed following a musical scale, the chromatic tempered scale -for stable particles- subdivided into microintervals including unstable particles. A theoretical explanation, based on causality, allows one also to calculate their global distribution along the mass scale, in agreement with experiment, and indicating the existence of ''musical'' laws in the vibratory organisation of matter
Energy Technology Data Exchange (ETDEWEB)
Sternheimer, J.
1983-12-12
This note offers a new point of view on particle masses. It is shown that they are distributed following a musical scale, the chromatic tempered scale -for stable particles- subdivided into microintervals including unstable particles. A theoretical explanation, based on causality, allows one also to calculate their global distribution along the mass scale, in agreement with experiment, and indicating the existence of ''musical'' laws in the vibratory organisation of matter.
Institute of Scientific and Technical Information of China (English)
无
2006-01-01
Particle-laden water flows past a circular cylinder were numerically investigated. The discrete vortex method (DVM) was employed to evaluate the unsteady water flow fields and a Lagrangian approach was applied for tracking individual solid particles. A dispersion function was defined to represent the dispersion scale of the particle.The wake vortex patterns, the distributions and the time series of dispersion functions of particles with different Stokes numbers were obtained. Numerical results show that the particle distribution in the wake of the circular cylinder is closely related to the particle's Stokes number and the structure of wake vortices: (1) the intermediate sized particles with Stokes numbers, St, of 0.25, 1.0 and 4.0 can not enter the vortex cores and concentrate near the peripheries of the vortex structures, (2) in the circular cylinder wake, the dispersion intensity of particles decreases as St is increased from 0.25 to 4.0.
Particle physics experiments 1983
International Nuclear Information System (INIS)
The report describes work carried out in 1983 on experiments approved by the Particle Physics Experiments Selection Panel. The contents consist of unedited contributions from each experiment. (author)
Unstable Particles near Threshold
Chway, Dongjin; Kim, Hyung Do
2015-01-01
We explore physics of unstable particles when mother particle mass is around the sum of its daughter particle masses. In this case, the conventional wave function renormalization factor is ill-defined. We propose a simple resolution of the threshold singularity problem which still allows the use of narrow width approximation by defining branching ratio in terms of spectral density. The resonance peak and shape is different for different decay channels and no single decay width can be assigned to the unstable particles. Non-exponential decay happens in all time scales.
Transition radiation of ultrarelativistic neutral particles
International Nuclear Information System (INIS)
We perform a quantum theoretical calculation of transition radiation by neutral particles with spin 1/2 equipped with magnetic moments and/or electric dipole moments. The limit of vanishing masses is treated exactly for arbitrary refraction index. Finally we apply our result to the solar neutrino flux. (author)
Control microprocessor system for charge particle channeling
International Nuclear Information System (INIS)
Control microprocessor systems are widely applied not only in designing industrial robots but in providing functioning of different experimental plants. The experiment control system for charge particle channeling has been considered in the paper. Flexibility, relatively low cost and high reliability are advantages of these systems
Particle Physics challenges to the Bohm Picture of Relativistic Quantum Field Theory
Miranda, Abel
2011-01-01
I discuss topics in Particle Physics applying the novel ontological formulation of Relativistic Quantum Field Theory due to David Bohm. I argument that particle physicists might too benefit from this truly novel way of thinking Physics.
Deformation behaviour of soft particles: a review
Energy Technology Data Exchange (ETDEWEB)
Liu, K.-K. [Institute of Science and Technology in Medicine, School of Medicine (Hartshill Campus), Keele University, Stoke-on-Trent, ST4 7QB (United Kingdom)
2006-06-07
The study of soft particle deformation is of paramount importance for the advancement of fundamental colloidal science as well as its biomedical applications, particularly in drug delivery and cell mechanics/adhesion. Recent developments of both theoretical modelling and experimental techniques have made it possible to measure the deformation behaviour of a single micro-/nano-particle under both adhesive and non-adhesive deformation and, therefore, to facilitate the determination of its mechanical and interfacial properties. This review aims to introduce several modern experimental techniques, such as atomic force microscopy, the micro-compression method and reflectance interference contrast microscopy, and a number of theoretical models, which have been applied to characterize the mechanical and interfacial properties of the soft particles in a quantitative manner. More specifically, their recent applications to biomimetic/biological particles or vesicles, which normally inherit non-linear elasticity and inhomogeneous structure, will also be reviewed. (topical review)
Suspensions of colloidal particles and aggregates
Babick, Frank
2016-01-01
This book addresses the properties of particles in colloidal suspensions. It has a focus on particle aggregates and the dependency of their physical behaviour on morphological parameters. For this purpose, relevant theories and methodological tools are reviewed and applied to selected examples. The book is divided into four main chapters. The first of them introduces important measurement techniques for the determination of particle size and interfacial properties in colloidal suspensions. A further chapter is devoted to the physico-chemical properties of colloidal particles—highlighting the interfacial phenomena and the corresponding interactions between particles. The book’s central chapter examines the structure-property relations of colloidal aggregates. This comprises concepts to quantify size and structure of aggregates, models and numerical tools for calculating the (light) scattering and hydrodynamic properties of aggregates, and a discussion on van-der-Waals and double layer interactions between ...
Particle Swarm Optimisation with Spatial Particle Extension
DEFF Research Database (Denmark)
Krink, Thiemo; Vesterstrøm, Jakob Svaneborg; Riget, Jacques
2002-01-01
In this paper, we introduce spatial extension to particles in the PSO model in order to overcome premature convergence in iterative optimisation. The standard PSO and the new model (SEPSO) are compared w.r.t. performance on well-studied benchmark problems. We show that the SEPSO indeed managed to...
Hawking Radiation from Elko Particles Tunnelling across Black Strings Horizon
da Rocha, Roldao
2014-01-01
We apply the tunnelling method for the emission and absorption of Elko particles in the event horizon of a black string solution. We show that Elko particles are emitted at the expected Hawking temperature from black strings, but with a quite different signature with respect to the Dirac particles. We employ the Hamilton-Jacobi technique to black hole tunnelling, by applying the WKB approximation to the coupled system of Dirac-like equations governing the Elko particle dynamics. As a typical signature, different Elko particles are shown to produce the same standard Hawking temperature for black strings. However we prove that they present the same probability irrespective of outgoing or ingoing the black hole horizon. It provides a typical signature for mass dimension one fermions, that is different from the mass dimension three halves fermions inherent to Dirac particles, as different Dirac spinor fields have distinct inward and outward probability of tunnelling.
rpSPH: a much improved Smoothed Particle Hydrodynamics Algorithm
Abel, Tom
2010-01-01
We suggest a novel discretisation of the momentum equation for Smoothed Particle Hydrodynamics (SPH) and show that it dramatically improves the accuracy of the obtained solutions. Our new formulation which we refer to as relative pressure SPH, rpSPH, evaluates the pressure force in respect to the local pressure. It respects Newtons first law of motion and applies forces to particles only when there is a net force acting upon them. This is in contrast to standard SPH which explicitly uses Newtons third law of motion continuously applying equal but opposite forces between particles. rpSPH does not show the unphysical particle noise, the clumping or banding instability, unphysical surface tension, non-Newtonian numerical viscosity and unphysical scattering of different mass particles found for standard SPH. At the same time it is just as robust, uses fewer computational operations, and extends the applicability of particle based codes to the study of mildly compressible flows. Furthermore, it only changes a sing...
DROPLETS AND PARTICLES IN SPRAYS: TAILORING PARTICLE PROPERTIES WITHIN SPRAY PROCESSES
Institute of Scientific and Technical Information of China (English)
Udo Fritsching
2005-01-01
Particle generation via atomization and spray processes is a widely applied method for powder production.By means of atomization processes, the relevant particle properties may be tailored to the powder user's need in a wide range. Understanding and control of the main subprocesses of atomization is a key feature for choosing a suitable type of spray process and operation conditions. Tailoring particle properties and extending the applications of particle production beyond the current limits is also possible in this way. This contribution highlights some features of spray processes for powder production, namely the gas- and fluid-dynamic processes involved, the materials-related subprocesses, and the formation of the multiphase flow in the spray. As an example, the production of fibre- or sphere-shaped particles from melt atomization is discussed.
Hanley, P
2000-01-01
Particle physics attracts many students who hear of news from CERN or elsewhere in the media. This article examines which current A-level syllabuses include which bits of particle physics and surveys the many different types of resource available to teachers and students. (0 refs).
Energy Technology Data Exchange (ETDEWEB)
Aggarwal, M.M.; Ahammed, Z.; Angelis, A.L.S.; Antonenko, V.; Arefiev, V.; Astakhov, V.; Avdeitchikov, V.; Awes, T.C.; Baba, P.V.K.S.; Badyal, S.K.; Bathe, S.; Batiounia, B.; Bernier, T.; Bhalla, K.B.; Bhatia, V.S.; Blume, C.; Bucher, D.; Buesching, H.; Carlen, L.; Chattopadhyay, S.; Das, A.C.; Decowski, M.P.; Donni, P.; Dubey, A.K.; Dutta Majumdar, M.R.; Enosawa, K.; Fokin, S.; Frolov, V.; Ganti, M.S.; Garpman, S.; Gavrishcuk, O.; Geurts, F.J.M.; Glasow, R.; Guskov, B.; Gustafsson, H.A.; Gutbrod, H.H.; Hrivnacova, I.; Ippolitov, M.; Kalechofsky, H.; Kamermans, R.; Karadjev, K.; Karpio, K.; Kolb, B.W.; Kosarev, I.; Koutcheryaev, I.; Kugler, A.; Kulinich, P.; Kurata, M.; Lebedev, A.; Loehner, H.; Mahapatra, D.P.; Manko, V.; Martin, M.; Miake, Y.; Mishra, G.C.; Mohanty, B.; Morrison, D.; Mukhopadhayay, D.S.; Naef, H.; Nandi, B.K.; Nayak, S.K.; Nayak, T.K.; Nianine, A.; Nikitine, V.; Nikolaev, S.; Nishimura, S.; Nomokov, P.; Petracek, V.; Plasil, F.; Purschke, M.L.; Rak, J.; Raniwala, R.; Raniwala, S.; Rao, N.K.; Retiere, F.; Reygers, K.; Roland, G.; Rosselet, L.; Roufanov, I.; Rubio, J.M.; Sambyal, S.S.; Santo, R.; Sato, S.; Schlagheck, H.; Schmidt, H.-R.; Schutz, Y.; Shabratova, G.; Sibiriak, I.; Siemiarczuk, T.; Sinha, B.C.; Slavine, N.; Soederstroem, K.; Sood, G.; Soerensen, S.P.; Stankus, P.; Steinberg, P.; Stenlund, E.; Sumbera, M.; Svensson, T.; Trivedi, M.D.; Tsvetkov, A.; Tykarski, L.; Urbahn, J.; Eijinhoven, N. van; Niewenhuizen, G.J. van; Vinogradov, A.; Viyogi, Y.P.; Vodopianov, A.; Voeroes, S.; Wyslouch, B.; Young, G.R
2003-03-10
Event-by-event fluctuations in the multiplicities of charged particles and photons at SPS energies are discussed. Fluctuations are studied by controlling the centrality of the reaction and rapidity acceptance of the detectors. Results are also presented on the event-by-event study of correlations between the multiplicity of charged particles and photons to search for DCC-like signals.
Can, M. Ali; Klyachko, Alexander; SHUMOVSKY, Alexander
2004-01-01
Using the approach to quantum entanglement based on the quantum fluctuations of observables, we show the existence of perfect entangled states of a single "spin-1" particle. We give physical examples related to the photons, condensed matter physics, and particle physics.
Energy Technology Data Exchange (ETDEWEB)
Kearns, Edward [Boston Universiy
2013-07-12
This is the final report for the Department of Energy Grant to Principal Investigators in Experimental and Theoretical Particle Physics at Boston University. The research performed was in the Energy Frontier at the LHC, the Intensity Frontier at Super-Kamiokande and T2K, the Cosmic Frontier and detector R&D in dark matter detector development, and in particle theory.
International Nuclear Information System (INIS)
The concept of elementary constituents or ultimate building blocks of nature in recent years is reviewed. The quark hypothesis, neutrinos, color, hard collisions, psi and other recent resonances, flavor, quantum chromodynamics, the tau particle, and particle structure are among the ideas considered. 22 references
International Nuclear Information System (INIS)
Overexpression of the HER2/neu gene in breast cancer is associated with an increased incidence of metastatic disease and with a poor prognosis. Although passive immunotherapy with the humanized monoclonal antibody trastuzumab (Herceptin) has shown some effect, a vaccine capable of inducing T-cell and humoral immunity could be more effective. Virus-like replicon particles (VRP) of Venezuelan equine encephalitis virus containing the gene for HER2/neu (VRP-neu) were tested by an active immunotherapeutic approach in tumor prevention models and in a metastasis prevention model. VRP-neu prevented or significantly inhibited the growth of HER2/neu-expressing murine breast cancer cells injected either into mammary tissue or intravenously. Vaccination with VRP-neu completely prevented tumor formation in and death of MMTV-c-neu transgenic mice, and resulted in high levels of neu-specific CD8+ T lymphocytes and serum IgG. On the basis of these findings, clinical testing of this vaccine in patients with HER2/neu+ breast cancer is warranted
Imaging alpha particle detector
Anderson, D.F.
1980-10-29
A method and apparatus for detecting and imaging alpha particles sources is described. A dielectric coated high voltage electrode and a tungsten wire grid constitute a diode configuration discharge generator for electrons dislodged from atoms or molecules located in between these electrodes when struck by alpha particles from a source to be quantitatively or qualitatively analyzed. A thin polyester film window allows the alpha particles to pass into the gas enclosure and the combination of the glass electrode, grid and window is light transparent such that the details of the source which is imaged with high resolution and sensitivity by the sparks produced can be observed visually as well. The source can be viewed directly, electronically counted or integrated over time using photographic methods. A significant increase in sensitivity over other alpha particle detectors is observed, and the device has very low sensitivity to gamma or beta emissions which might otherwise appear as noise on the alpha particle signal.
Energy Technology Data Exchange (ETDEWEB)
Zhang, Boning [Univ. of Colorado, Boulder, CO (United States); Herbold, Eric B. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Homel, Michael A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Regueiro, Richard A. [Univ. of Colorado, Boulder, CO (United States)
2015-12-01
An adaptive particle fracture model in poly-ellipsoidal Discrete Element Method is developed. The poly-ellipsoidal particle will break into several sub-poly-ellipsoids by Hoek-Brown fracture criterion based on continuum stress and the maximum tensile stress in contacts. Also Weibull theory is introduced to consider the statistics and size effects on particle strength. Finally, high strain-rate split Hopkinson pressure bar experiment of silica sand is simulated using this newly developed model. Comparisons with experiments show that our particle fracture model can capture the mechanical behavior of this experiment very well, both in stress-strain response and particle size redistribution. The effects of density and packings o the samples are also studied in numerical examples.
Goldstein, S; Tumulka, R; Zanghì, N; Goldstein, Sheldon; Taylor, James; Tumulka, Roderich; Zanghi, Nino
2005-01-01
We consider the possibility that all particles in the world are fundamentally identical, i.e., belong to the same species. Different masses, charges, spins, flavors, or colors then merely correspond to different quantum states of the same particle, just as spin-up and spin-down do. The implications of this viewpoint can be best appreciated within Bohmian mechanics, a precise formulation of quantum mechanics with particle trajectories. The implementation of this viewpoint in such a theory leads to trajectories different from those of the usual formulation, and thus to a version of Bohmian mechanics that is inequivalent to, though arguably empirically indistinguishable from, the usual one. The mathematical core of this viewpoint is however rather independent of the detailed dynamical scheme Bohmian mechanics provides, and it amounts to the assertion that the configuration space for N particles, even N ``distinguishable particles,'' is the set of all N-point subsets of physical 3-space.
Tunneling of massive particles from noncommutative inspired Schwarzschild black hole
Miao, Yan-Gang; Xue, Zhao; Zhang, Shao-Jun
2010-01-01
We apply the generalization of the Parikh-Wilczek method to the tunneling of massive particles from noncommutative inspired Schwarzschild black holes. By deriving the equation of radial motion of the tunneling particle directly, we calculate the emission rate which is shown to be dependent on the noncommutative parameter besides the energy and mass of the tunneling particle. After equating the emission rate to the Boltzmann factor, we obtain the modified Hawking temperature which relates to t...
Evidence of weak ferromagnetism in chromium(III) oxide particles
Energy Technology Data Exchange (ETDEWEB)
Vazquez-Vazquez, Carlos E-mail: qfmatcvv@usc.es; Banobre-Lopez, Manuel; Lopez-Quintela, M.A.; Hueso, L.E.; Rivas, J
2004-05-01
The low temperature (4
Applied Ethics in Nowadays Society
Tomita CIULEI
2013-01-01
This special issue is dedicated to Nowadays Applied Ethics in Society, and falls in the field of social sciences and humanities, being hosted both theoretical approaches and empirical research in various areas of applied ethics. Applied ethics analyzes of a series of morally concrete situations of social or professional practice in order to make / adopt decisions. In the field of applied ethics are integrated medical ethics, legal ethics, media ethics, professional ethics, environmental ethic...
Vector particles tunneling from four-dimensional Schwarzschild black holes
Chen, Ge-Rui; Zhou, Shiwei; Huang, Yong-Chang
2015-05-01
Vector particles' Hawking radiation from a four-dimensional Schwarzschild black hole is investigated. By applying the WKB approximation and the Hamilton-Jacobi ansatz to the Proca equation, we obtain the tunneling spectrum of vector particles and the expected Hawking temperature.
Torsion stiffness of a protein pair determined by magnetic particles
Janssen, X.J.A.; Van Noorloos, J.M.; Jacob, A.; Van IJzendoorn, L.J.; De Jong, A.M.; Prins, M.W.J.
2012-01-01
We demonstrate the ability to measure torsion stiffness of a proteincomplex by applying a controlled torque on a magnetic particle. Asa model system we use protein G bound to an IgG antibody. The protein pair is held between a magnetic particle and a polystyrene substrate. The angular orientation of
Morphology, composition, and atmospheric processing of soot particles
Slowik, Jay G.
Combustion-generated soot aerosols play an important role in climate forcing due to their strong light-absorbing properties. Quantitative measurement of BC is challenging because BC often occurs in highly non-spherical soot particles of complex morphology. The task is further complicated because of the lack of an unambiguous chemical definition of the material. Here we present the development and application of a new technique for determining particle morphology and composition. Simultaneous measurements of mobility diameter, vacuum aerodynamic diameter, and non-refractory composition were used to determine the particle mass, volume, density, composition, dynamic shape factor, and fractal dimension. Under certain conditions, particle surface area and the number and size of the primary spherules composing the soot fractal aggregates were also determined. The particle characterization technique described above was applied to the following four studies: (1) Characterization of flame-generated soot particles. Depending on flame conditions, either fractal or near-spherical particles were generated and their properties interpreted in terms of the mechanism for soot formation. (2) Coating and denuding experiments were performed on soot particles. The results yielded information about morphology changes to the entire soot particle and to the internal black carbon structure due to atmospheric processing. The denuding experiments also provided particle surface area, which was used to determine the atmospheric lifetime of fractal soot particles relative to spheres. (3) An inter-comparison study of instruments measuring the black carbon content of soot particles was conducted. The detailed characterization of soot particles enabled a number of assumptions about the operation of the selected instruments to be tested. (4) Ambient particles were sampled in Mexico City. In the early morning, ambient particles were detected with a fractal morphology similar to that of diesel
Ataeefard, Maryam; Shadman, Alireza; Saeb, Mohammad Reza; Mohammadi, Yousef
2016-08-01
A mathematical modeling approach was proposed combining the capabilities of response surface methodology (RSM) and desirability function (DF) and implemented successfully in production of printing toner particles. Toner powders were systematically synthesized through suspension copolymerization process. Applying RSM, a series of experiments were designed and toner particles were prepared and the effects of monomer ratio, colorant and surfactant content on the particle size (PS), particle size distribution (PSD), thermal and colorimetric properties (∆ E) of the resulting toner were monitored and discussed. The second-order models corresponding to each target characteristic, i.e., PS, PSD, and ∆ E of different types of toner powders, were obtained by individual optimization to express variation of each property in terms of polymerization parameters. Applying statistical calculations, the best reduced models were identified to be fed in the second step of optimization. Since toners with appropriate PS, PSD, and CP were needed, we applied multi-objective optimization based on DF approach. The results show that exact tuning of toner properties is closely possible with the aid of hybrid mathematical model developed in this work. Noticeably, desirabilities are very close to 100 %.
The Routledge Applied Linguistics Reader
Wei, Li, Ed.
2011-01-01
"The Routledge Applied Linguistics Reader" is an essential collection of readings for students of Applied Linguistics. Divided into five sections: Language Teaching and Learning, Second Language Acquisition, Applied Linguistics, Identity and Power and Language Use in Professional Contexts, the "Reader" takes a broad interpretation of the subject…
Trieschmann, Jan; Schmidt, Frederik; Mussenbrock, Thomas
2016-01-01
The paper provides a tutorial to the conceptual layout of a self-consistently coupled Particle-In-Cell/Test-Particle model for the kinetic simulation of sputtering transport in capacitively coupled plasmas at low gas pressures. It explains when a kinetic approach is actually needed and which numerical concepts allow for the inherent nonequilibrium behavior of the charged and neutral particles. At the example of a generic sputtering discharge both the fundamentals of the applied Monte Carlo me...
Validity of Fluctuation Theorem on Self-Propelling Particles
Suzuki, R.; Jiang, H.R.; Sano, M.
2011-01-01
The experimental application of fluctuation theorem (FT) on nanometer to submicrometer sized systems has received thorough attention in the past several years. Nonetheless, the employment of FT on self-propelling objects has seldom been performed due to experimental difficulties. In this paper, we applied FT on a doublet that is comprised of asymmetrically coated self-propelling colloidal particles (Janus particles), which experiences a continuous rotation by applying AC electric field. We fo...
Macroscopic Quantum State Analyzed Particle by Particle
Beduini, Federica A.; Zielińska, Joanna A.; Lucivero, Vito G.; de Icaza Astiz, Yannick A.; Mitchell, Morgan W.
2015-01-01
Explaining how microscopic entities collectively produce macroscopic phenomena is a fundamental goal of many-body physics. Theory predicts that large-scale entanglement is responsible for exotic macroscopic phenomena, but observation of entangled particles in naturally occurring systems is extremely challenging. Synthetic quantum systems made of atoms in optical lattices have been con- structed with the goal of observing macroscopic quantum phenomena with single-atom resolution. Serious chall...
A Coulomb collision algorithm for weighted particle simulations
Miller, Ronald H.; Combi, Michael R.
1994-01-01
A binary Coulomb collision algorithm is developed for weighted particle simulations employing Monte Carlo techniques. Charged particles within a given spatial grid cell are pair-wise scattered, explicitly conserving momentum and implicitly conserving energy. A similar algorithm developed by Takizuka and Abe (1977) conserves momentum and energy provided the particles are unweighted (each particle representing equal fractions of the total particle density). If applied as is to simulations incorporating weighted particles, the plasma temperatures equilibrate to an incorrect temperature, as compared to theory. Using the appropriate pairing statistics, a Coulomb collision algorithm is developed for weighted particles. The algorithm conserves energy and momentum and produces the appropriate relaxation time scales as compared to theoretical predictions. Such an algorithm is necessary for future work studying self-consistent multi-species kinetic transport.
Implementing and comparing sink particles in AMR and SPH
Federrath, Christoph; Seifried, Daniel; Clark, Paul C; Klessen, Ralf S
2010-01-01
We implemented sink particles in the Adaptive Mesh Refinement (AMR) code FLASH to model the gravitational collapse and accretion in turbulent molecular clouds and cores. Sink particles are frequently used to measure properties of star formation in numerical simulations, such as the star formation rate and efficiency, and the mass distribution of stars. We show that a sole density threshold for sink particle creation is insufficient in case of supersonic flows, because the density can exceed the threshold in strong shocks that do not necessarily lead to local collapse. Additional physical collapse indicators have to be considered. We apply our AMR sink particle module to the formation of a star cluster, and compare it to a Smoothed Particle Hydrodynamics (SPH) code with sink particles. Our comparison shows encouraging agreement of gas and sink particle properties.
Optimization-based particle filter for state and parameter estimation
Institute of Scientific and Technical Information of China (English)
Li Fu; Qi Fei; Shi Guangming; Zhang Li
2009-01-01
In recent years, the theory of particle filter has been developed and widely used for state and parameter estimation in nonlinear/non-Gaussian systems. Choosing good importance density is a critical issue in particle filter design. In order to improve the approximation of posterior distribution, this paper provides an optimization-based algorithm (the steepest descent method) to generate the proposal distribution and then sample particles from the distribution. This algorithm is applied in 1-D case, and the simulation results show that the proposed particle filter performs better than the extended Kalman filter (EKF), the standard particle filter (PF), the extended Kalman particle filter (PF-EKF) and the unscented particle filter (UPF) both in efficiency and in estimation precision.
Settling of almost neutrally buoyant particles in homogeneous isotropic turbulence
van Hinsberg, Michel; Clercx, Herman; Toschi, Federico
2015-11-01
Settling of particles in a turbulent flow occurs in various industrial and natural phenomena, examples are clouds and waste water treatment. It is well known that turbulence can enhance the settling velocity of particles. Many studies have been done, numerically and experimentally to investigate this behavior for the case of ``heavy'' particles, with particle to fluid density ratios above 100. Here we investigate the case of almost neutrally buoyant particles, i.e. density ratios between 1 and 100. In the case of light particles the Maxey-Riley equations cannot be simplified to only the Stokes drag and gravity force as pressure gradient, added mass and Basset history force are important as well. We investigate the influence of these forces on the settling velocity of particles and show that the extra forces can both increase or decrease the settling velocity, depending on the combination of the Stokes number and gravity applied.
General continuum approach for dissipative systems of repulsive particles
Vieira, César M.; Carmona, Humberto A.; Andrade, José S.; Moreira, André A.
2016-06-01
We propose a general coarse-graining method to derive a continuity equation that describes any dissipative system of repulsive particles interacting through short-ranged potentials. In our approach, the effect of particle-particle correlations is incorporated to the overall balance of energy, and a nonlinear diffusion equation is obtained to represent the overdamped dynamics. In particular, when the repulsive interaction potential is a short-ranged power law, our approach reveals a distinctive correspondence between particle-particle energy and the generalized thermostatistics of Tsallis for any nonpositive value of the entropic index q . Our methodology can also be applied to microscopic models of superconducting vortices and complex plasma, where particle-particle correlations are pronounced at low concentrations. The resulting continuum descriptions provide elucidating and useful insights on the microdynamical behavior of these physical systems. The consistency of our approach is demonstrated by comparison with molecular dynamics simulations.
Dynamic Simulation of Electro-Hydrodynamically Interacting and Sedimenting Particles
Majumder, Sagardip; Chakraborty, Suman
2016-01-01
Particle-particle interactions in sedimenting systems have been investigated in the present study considering the many-body hydrodynamic and electrodynamic interactions. These interactions primarily occur in two modes: near-field and far-field interactions. The hydrodynamic interactions are modeled employing the Stokesian Dynamics while the electrodynamic interactions are accounted using the grand Capacitance matrix formulation capable of tackling externally applied arbitrary electric field effects. It is seen that the presence of an external electric field and asymmetry in particle positioning greatly modifies the dynamics of the rigid dielectric spherical particles when compared with the sedimenting system without the electric field effects. This is attributed to the induced dipole moment interactions among the particles. A consequence of the alterations in the particle arrangements also changes the net drag force experienced by these sedimenting particles, which is also reported in the present study. Furth...
Fine particle emissions from residential wood combustion
Energy Technology Data Exchange (ETDEWEB)
Tissari, J.
2008-07-01
Residential wood combustion (RWC) appliances have the high probability of incomplete combustion, producing e.g. fine particles and hazardous organic compounds. In this thesis, the fine particle number and mass emissions, particle composition and morphology, and gas emissions were investigated from the modern (MMH) and conventional masonry heaters (CMH), sauna stoves (SS) and pellet burner. The investigation was based on laboratory and field experiments applying extensive and unique particle sampling methods. The appliance type, fuel and operational practices were found to affect clearly the fine particle emissions. In good combustion conditions (e.g. in pellet combustion), the fine particle mass (PM{sub 1}) emission factors were low, typically below 0.3 g kg-1, and over 90% of the PM{sub 1} consisted of inorganic compounds (i.e fine ash). From the CMH the typical PM{sub 1} values were 1.6-1.8 g kg-1, and from the SS 2.7-5.0 g kg-1, but were strongly dependent on operational practices. The smouldering combustion in CMH increased PM{sub 1} emission up to 10 g kg-1. The good secondary combustion in the MMH reduced the particle organic matter (POM) and gaseous emissions, but not substantially the elemental carbon (EC, i.e. soot) emission, and the typical PM{sub 1} values were 0.7-0.8 g kg-1. The particle number emissions were high, and did not correspond with the completition of combustion. The particle number distributions were mainly dominated by ultrafine (<100 nm) particles, but varied dependent on combustion conditions. The electronmicroscopy analyses showed that ultrafine particles were composed mainly of K, S and Zn. From the smouldering combustion, particles were composed mainly of carbon compounds and they had a closed sinteredlike structure, due to organic matter on the particles. Controlling the gasification rate via the primary air supply, log and batch size, as well as fuel moisture content, is important for the reduction of emissions in batch combustion
Electric birefringence spectroscopy of montmorillonite particles.
Arenas-Guerrero, Paloma; Iglesias, Guillermo R; Delgado, Ángel V; Jiménez, María L
2016-06-14
Electric birefringence (EB) of suspensions of anisotropic particles can be considered an electrokinetic phenomenon in a wide sense, as both liquid motions and polarization of the electrical double layer (EDL) of the particles participate in the process of particle orientation under the applied field. The EB spectrum can be exploited for obtaining information on the dimensions, average value and anisotropy of the surface conductivity of the particles, and the concentration and Maxwell-Wagner polarization of the EDLs. It is thus a highly informative technique, applicable to non-spherical particles. In this paper, we investigate the birefringent response of plate-like montmorillonite particles as a function of the frequency and amplitude of the applied AC electric field, for different compositions (pH, ionic strength, particle concentration) of the suspensions. The transient electric birefringence (i.e., the decay of the refractive index anisotropy with time when the field is switched off) is used for estimating the average dimensions of the particle axes, by modeling it as an oblate spheroid. The obtained values are very similar to those deduced from electron microscopy determinations. The frequency spectra show a very distinct behaviour at low (on the order of a few Hz) and high (up to several MHz) frequencies: the α and Maxwell-Wagner-O'Konski relaxations, characteristic of EDLs, are detected at frequencies above 10 kHz, and they can be well explained using electrokinetic models for the polarization of EDLs. At low frequencies, in contrast, the birefringence changes to negative, an anomalous response meaning that the particles tend to orient with their symmetry axis parallel to the field. This anomaly is weaker at basic pH values, high ionic strengths and low concentrations. The results can be explained by considering the polydispersity of real samples: the fastest particles redistribute around the slowest ones, inducing a hydrodynamic torque opposite to that of
Structural characterization of particle systems using spherical harmonics
Energy Technology Data Exchange (ETDEWEB)
Feinauer, Julian, E-mail: julian.feinauer@uni-ulm.de [Deutsche ACCUmotive GmbH & Co. KG, Neue Straße 95, 73230 Kirchheim unter Teck (Germany); Institute of Stochastics, Ulm University, Helmholtzstraße 18, 89069 Ulm (Germany); Spettl, Aaron, E-mail: aaron.spettl@uni-ulm.de [Institute of Stochastics, Ulm University, Helmholtzstraße 18, 89069 Ulm (Germany); Manke, Ingo, E-mail: manke@helmholtz-berlin.de [Institute of Applied Materials, Helmholtz-Centre Berlin, Hahn-Meitner-Platz 1, 14109 Berlin (Germany); Strege, Stefan, E-mail: stefan.strege@basf.com [Institute for Particle Technology, TU Braunschweig, Volkmaroder Str. 5, 38104 Braunschweig (Germany); Kwade, Arno, E-mail: a.kwade@tu-bs.de [Institute for Particle Technology, TU Braunschweig, Volkmaroder Str. 5, 38104 Braunschweig (Germany); Pott, Andres, E-mail: andres.pott@daimler.com [Deutsche ACCUmotive GmbH & Co. KG, Neue Straße 95, 73230 Kirchheim unter Teck (Germany); Schmidt, Volker, E-mail: volker.schmidt@uni-ulm.de [Institute of Stochastics, Ulm University, Helmholtzstraße 18, 89069 Ulm (Germany)
2015-08-15
Many important properties of particulate materials are heavily influenced by the size and shape of the constituent particles. Thus, in order to control and improve product quality, it is important to develop a good understanding of the shape and size of the particles that make up a given particulate material. In this paper, we show how the spherical harmonics expansion can be used to approximate particles obtained from tomographic 3D images. This yields an analytic representation of the particles which can be used to calculate structural characteristics. We present an estimation method for the optimal length of expansion depending on individual particle shapes, based on statistical hypothesis testing. A suitable choice of this parameter leads to a smooth approximation that preserves the main shape features of the original particle. To show the wide applicability of this procedure, we use it to approximate particles obtained from two different tomographic 3D datasets of particulate materials. The first one describes an anode material from lithium-ion cells that consists of sphere-like particles with different sizes. The second dataset describes a powder of highly non-spherical titanium dioxide particles. - Highlights: • Complex particle shapes are described analytically by spherical harmonics expansion. • The optimal length of the expansion is estimated for each particle individually. • Characteristics like, e.g., particle surface areas can be calculated efficiently. • The method is applied to two tomographic datasets of particulate materials.
Apparatus for measuring particle properties
Rader, D.J.; Castaneda, J.N.; Grasser, T.W.; Brockmann, J.E.
1998-08-11
An apparatus is described for determining particle properties from detected light scattered by the particles. The apparatus uses a light beam with novel intensity characteristics to discriminate between particles that pass through the beam and those that pass through an edge of the beam. The apparatus can also discriminate between light scattered by one particle and light scattered by multiple particles. The particle`s size can be determined from the intensity of the light scattered. The particle`s velocity can be determined from the elapsed time between various intensities of the light scattered. 11 figs.
International Nuclear Information System (INIS)
This document is a basic course on charged particle sources for post-graduate students and thematic schools on large facilities and accelerator physics. A simple but precise description of the creation and the emission of charged particles is presented. This course relies on every year upgraded reference documents. Following relevant topics are considered: electronic emission processes, technological and practical considerations on electron guns, positron sources, production of neutral atoms, ionization, plasma and discharge, different types of positive and negative ion sources, polarized particle sources, materials for the construction of ion sources, low energy beam production and transport. (N.T.)
CERN Video Productions
2010-01-01
The entire Universe is made up of particles. But where do they come from? What is the origin of the laws of nature? The permanent exhibition "Universe of Particles", installed on the ground floor of the Globe of Science and Innovation, invites you to discover CERN by taking you on a journey all the way back to the Big Bang. It will help you answer questions such as: What's the purpose of this research? How do you accelerate particles? How do you detect them? What are today's theories on matter and the Universe? How does this affect our daily life?
Particle physics builds potential
Camporesi, Tiziano
2004-01-01
Surveys of the career prospects of particle physicists in Europe, such as that one carried out in 2000 at DELPHI, reveal that particle phycisists are much in demand. The findings are fairly independent of a student's nationality, despite the big differences in the education systems of different countries across the continent. According to the DELPHI survey, half of all physics students remain in an academic environment after graduation. For those particle physicists who leave academia, the DELPHI survey showed that about half find jobs in hi- tech industry. The bottom line is that a degree in physics offers very good job prospects and career opportunities. (Edited abstract).
Adeniji-Fashola, A. A.
1988-07-01
A multiple-realization particle trajectory scheme has been developed and applied to the numerical prediction of confined turbulent fluid-particle flows. The example flows investigated include the vertical pipe upflow experimental data of Tsuji et al. and the experimental data of Leavitt for a coaxial jet flow, comprising a particle-laden central jet and a clean annular jet, into a large recirculation chamber. The results obtained from the numerical scheme agree well with the experimental data, lending confidence to the modeling approach. The multiple-realization particle trajectory turbulent flow modeling scheme is believed to be a more elegant and accurate approach to the extension of single-particle hydrodynamics to dilute multi-particle systems than the more commonly employed two-fluid modeling approach. It is also better able to incorporate additional force items such as lift, virtual mass and Bassett history terms directly into the particle equation of motion as appropriate. This makes it a suitable candidate for particle migration studies and an extension to situations involving liquid particulate phases with possible propulsion applications, such as in spray combustion, follows naturally.
Murray, S.; Lightstone, M. F.; Tullis, S.
2016-03-01
Kinematic simulation (KS) is a means of generating a turbulent-like velocity field, in a manner that enforces a desired input Eulerian energy spectrum. Such models have also been applied in particle-laden flows, due to their ability to enforce spatial organization of the fluid velocity field when simulating the trajectories of individual Lagrangian particles. A critical evaluation of KS is presented; in particular, we examine its ability to reproduce single-particle Lagrangian statistics. Also the ability of KS to reproduce the preferential concentration of inertial particles is examined. Some computational results are presented, in which particles are transported alternatively by (1) turbulence generated by direct numerical simulation (DNS) of the incompressible Navier-Stokes equations, and (2) KS. The effect of unsteadiness formulation in particular is examined. We find that even steady KS qualitatively reproduces the continuity effect, clustering of inertial particles, the elevated dispersion of inertial particles over fluid particles, and the intermittency of Lagrangian velocity signals, but generally not to the same extent as is seen in the DNS.
Particle Identification between Kaon and Pion
Nakamura, Kazuhiro
2016-01-01
Particle identification (PID) is important in LHCb as it enables to distinguish among several par- ticles. Hadronic particle identification is achieved using the information coming from the two Ring Imaging Cherenkov Detectors (RICH) and the tracking system. In this project, to tune the Monte Carlo (MC) to the real data, comparing between the real data and MC was conducted. And also as the first step for the tuning, three part of cut was applied for the number of tracks and then other quantities were compared between real data and MC.
On spin-canting in maghemite particles
DEFF Research Database (Denmark)
Linderoth, Søren; Hendriksen, Peter Vang; Bødker, F.;
1994-01-01
The degree of alignment of the magnetic moments of Fe3+ ions in ultrafine maghemite particles has been studied in samples with induced magnetic texture. The textured samples were prepared by freezing ferrofluids, containing 7.5 nm maghemite particles, in a magnetic field. Mössbauer spectroscopy...... studies of the textured samples in large magnetic fields demonstrate that the lack of full alignment is not an effect of large magnetic anisotropy, as suggested recently, but that the effect is rather due to canting of individual spins. Journal of Applied Physics is copyrighted by The American Institute...
Novelty-driven Particle Swarm Optimization
DEFF Research Database (Denmark)
Galvao, Diana; Lehman, Joel Anthony; Urbano, Paulo
2015-01-01
Particle Swarm Optimization (PSO) is a well-known population-based optimization algorithm. Most often it is applied to optimize objective-based fitness functions that reward progress towards a desired objective or behavior. As a result, search increasingly focuses on higher-fitness areas. However......, in problems with many local optima, such focus often leads to premature convergence that precludes reaching the intended objective. To remedy this problem in certain types of domains, this paper introduces Novelty-driven Particle Swarm Optimization (NdPSO), which is motivated by the novelty search algorithm...
Hidden invariance of the free classical particle
García, S
1993-01-01
A formalism describing the dynamics of classical and quantum systems from a group theoretical point of view is presented. We apply it to the simple example of the classical free particle. The Galileo group $G$ is the symmetry group of the free equations of motion. Consideration of the free particle Lagrangian semi-invariance under $G$ leads to a larger symmetry group, which is a central extension of the Galileo group by the real numbers. We study the dynamics associated with this group, and characterize quantities like Noether invariants and evolution equations in terms of group geometric objects. An extension of the Galileo group by $U(1)$ leads to quantum mechanics.
Pyrometric fuel particle measurements in pressurised reactors
Energy Technology Data Exchange (ETDEWEB)
Hernberg, R.; Joutsenoja, T. [Tampere Univ. of Technology (Finland)
1996-12-01
A fiberoptic two-colour pyrometric technique for fuel particle temperature and size measurement is modified and applied to three pressurized reactors of different type in Finland, Germany and France. A modification of the pyrometric method for simultaneous in situ measurement of the temperature and size of individual pulverized coal particles at the pressurized entrained flow reactor in Jyvaeskylae was developed and several series of measurements were made. In Orleans a fiberoptic pyrometric device was installed to a pressurised thermogravimetric reactor and the two-colour temperatures of fuel samples were measured. Some results of these measurements are presented. The project belongs to EU`s Joule 2 extension research programme. (author)
Hidden invariance of the free classical particle
International Nuclear Information System (INIS)
A formalism describing the dynamics of classical and quantum systems from a group theoretical point of view is presented. We apply it to the simple example of the classical free particle. The Galileo group G is the symmetry group of the free equations of motion. Consideration of the free particle Lagrangian semi-invariance under G leads to a larger symmetry group, which is a central extension of the Galileo group by the real numbers. We study the dynamics associated with this group, and characterize quantities like Noether invariants and evolution equations in terms of group geometric objects. An extension of the Galileo group by U(1) leads to quantum mechanics
Energy Technology Data Exchange (ETDEWEB)
Young, K.M.
1991-01-01
This paper will focus on the state of development of diagnostics which are expected to provide the information needed for {alpha}- physics studies in the future. Conventional measurement of detailed temporal and spatial profiles of background plasma properties in DT will be essential for such aspects as determining heating effectiveness, shaping of the plasma profiles and effects of MHD, but will not be addressed here. This paper will address (1) the measurement of the neutron source, and hence {alpha}-particle birth profile, (2) measurement of the escaping {alpha}-particles and (3) measurement of the confined {alpha}-particles over their full energy range. There will also be a brief discussion of (4) the concerns about instabilities being generated by {alpha}-particles and the methods necessary for measuring these effects. 51 refs., 10 figs.
Particle physics experiments 1989
International Nuclear Information System (INIS)
This report describes work carried out in 1989 on experiments approved by the Particle Physics Experiments Selection Panel of Rutherford Appleton Laboratory. The contents consist of unedited contributions from each experiment. (author)
Particle physics experiments 1987
International Nuclear Information System (INIS)
This report describes work carried out in 1987 on experiments approved by the Particle Physics Experiments Selection Panel (United Kingdom). The contents consist of unedited contributions from each experiment. (author)
Perkins, D. H.
1986-01-01
Elementary particle physics is discussed. Status of the Standard Model of electroweak and strong interactions; phenomena beyond the Standard Model; new accelerator projects; and possible contributions from non-accelerator experiments are examined.
The SHiP Experiment is a new general-purpose fixed target facility at the SPS to search for hidden particles as predicted by a very large number of recently elaborated models of Hidden Sectors which are capable of accommodating dark matter, neutrino oscillations, and the origin of the full baryon asymmetry in the Universe. Specifically, the experiment is aimed at searching for very weakly interacting long lived particles including Heavy Neutral Leptons - right-handed partners of the active neutrinos; light supersymmetric particles - sgoldstinos, etc.; scalar, axion and vector portals to the hidden sector. The high intensity of the SPS and in particular the large production of charm mesons with the 400 GeV beam allow accessing a wide variety of light long-lived exotic particles of such models and of SUSY. Moreover, the facility is ideally suited to study the interactions of tau neutrinos.
Elementary particle interactions
International Nuclear Information System (INIS)
Work continues on strange particle production in weak interactions using data from a high-energy neutrino exposure in a freon bubble chamber. Meson photoproduction has also consumed considerable effort. Detector research and development activities have been carried out
Barth, Howard G.; Sun, Shao-Tang
1989-01-01
Presents a review of research focusing on scattering, elution techniques, electrozone sensing, filtration, centrifugation, comparison of techniques, data analysis, and particle size standards. The review covers the period 1986-1988. (MVL)
2007-01-01
"Dateline video journalist Aaron Lewis this week reprots on the search to find the elusive "God particle", which, if found, could explain to scientists how everything in the world got its mass."(1/2 page)
Momentum particle swarm optimizer
Institute of Scientific and Technical Information of China (English)
Liu Yu; Qin Zheng; Wang Xianghua; He Xingshi
2005-01-01
The previous particle swarm optimizers lack direct mechanism to prevent particles beyond predefined search space, which results in invalid solutions in some special cases. A momentum factor is introduced into the original particle swarm optimizer to resolve this problem. Furthermore, in order to accelerate convergence, a new strategy about updating velocities is given. The resulting approach is mromentum-PSO which guarantees that particles are never beyond predefined search space without checking boundary in every iteration. In addition, linearly decreasing wight PSO (LDW-PSO) equipped with a boundary checking strategy is also discussed, which is denoted as LDWBC-PSO. LDW-PSO, LDWBC-PSO and momentum-PSO are compared in optimization on five test functions. The experimental results show that in some special cases LDW-PSO finds invalid solutions and LDWBC-PSO has poor performance, while momentum-PSO not only exhibits good performance but also reduces computational cost for updating velocities.
Virtual particle therapy centre
2015-01-01
Particle therapy is an advanced technique of cancer radiation therapy, using protons or other ions to target the cancerous mass. This advanced technique requires a multi-disciplinary team working in a specialised centre. 3D animation: Nymus3D
Wiedemann, Helmut
2007-01-01
Particle Accelerator Physics is an in-depth and comprehensive introduction to the field of high-energy particle acceleration and beam dynamics. Part I gathers the basic tools, recalling the essentials of electrostatics and electrodynamics as well as of particle dynamics in electromagnetic fields. Part II is an extensive primer in beam dynamics, followed in Part III by the introduction and description of the main beam parameters. Part IV is devoted to the treatment of perturbations in beam dynamics. Part V discusses the details of charged particle accleration. Part VI and Part VII introduce the more advanced topics of coupled beam dynamics and the description of very intense beams. Part VIII is an exhaustive treatment of radiation from accelerated charges and introduces important sources of coherent radiation such as synchrotrons and free-electron lasers. Part IX collects the appendices gathering useful mathematical and physical formulae, parameters and units. Solutions to many end-of-chapter problems are give...
International Nuclear Information System (INIS)
Particle physics, like poetry, no longer hews to its former rigid rules, hence the standard for accepting quarks as elementary consituents is less severe than the neutrino's was in the 1930's: in fact, we may never see a quark
Particle physics experiments 1984
International Nuclear Information System (INIS)
The Rutherford Appleton laboratory report describes work carried out in 1984 on experiments approved by the Particle Physics selection panel. The contents consist of unedited contributions from each experiment. (author)
The twistor particle programme
International Nuclear Information System (INIS)
Classification schemes for elementary particles are discussed using methods of twistor theory, with particular emphasis on the relationship of twistor theory to the Weinberg-Salam model and the Georgi-Glashow SU(5) model. (author)
Applied Physics Division 1998 Progress Report
International Nuclear Information System (INIS)
This report outlines the 1998 research activities carried out by the Applied Physics Division of the Innovation Department of ENEA (Italian Agency for New Technologies, Energy and Environment). The fields addressed and discussed include: optical and electro-optical technologies (chaps. 1 and 2); accelerator technologies (chap. 3); diagnostic systems for science and engineering (chaps. 4 and 5); theory, modelling and computational methods (chaps. 6 and 7). The aim of the Applied Physics Division is to develop technologies and systems that can be directly applied by internal (ENEA) and external users in research (high-resolution spectroscopy, laser-generated soft-x-ray sources), production processes (laser material photoproduction, structural analysis), social, cultural and environmental sciences (laser remote sensing, modelling of ecosystems and population dynamics) and medicine (particle accelerator for radiotherapy). Most of the work in 1998 was performed by the division's laboratories at the Frascati, Casaccia and Bologna Research Centres of ENEA; some was done elsewhere in collaboration with other ENEA units, external laboratories and industries. A good share of the activities was carried out for international projects; in particular, the IV European Union Framework Program
Applied Physics Division 1998 Progress Report
Energy Technology Data Exchange (ETDEWEB)
Cecchini, M.; Crescentini, L; Ghezzi, L.; Kent, C.; Bottomei, M. [ENEA, Centro Ricerche Frascati, Frascati, RM (Italy). Applied physics Division
1999-07-01
This report outlines the 1998 research activities carried out by the Applied Physics Division of the Innovation Department of ENEA (Italian Agency for New Technologies, Energy and Environment). The fields addressed and discussed include: optical and electro-optical technologies (chaps. 1 and 2); accelerator technologies (chap. 3); diagnostic systems for science and engineering (chaps. 4 and 5); theory, modelling and computational methods (chaps. 6 and 7). The aim of the Applied Physics Division is to develop technologies and systems that can be directly applied by internal (ENEA) and external users in research (high-resolution spectroscopy, laser-generated soft-x-ray sources), production processes (laser material photoproduction, structural analysis), social, cultural and environmental sciences (laser remote sensing, modelling of ecosystems and population dynamics) and medicine (particle accelerator for radiotherapy). Most of the work in 1998 was performed by the division's laboratories at the Frascati, Casaccia and Bologna Research Centres of ENEA; some was done elsewhere in collaboration with other ENEA units, external laboratories and industries. A good share of the activities was carried out for international projects; in particular, the IV European Union Framework Program.
Symmetry boundary condition in dissipative particle dynamics
Pal, Souvik; Lan, Chuanjin; Li, Zhen; Hirleman, E. Daniel; Ma, Yanbao
2015-07-01
Dissipative particle dynamics (DPD) is a coarse-grained particle method for modeling mesoscopic hydrodynamics. Most of the DPD simulations are carried out in 3D requiring remarkable computation time. For symmetric systems, this time can be reduced significantly by simulating only one half or one quarter of the systems. However, such simulations are not yet possible due to a lack of schemes to treat symmetric boundaries in DPD. In this study, we propose a numerical scheme for the implementation of the symmetric boundary condition (SBC) in both dissipative particle dynamics (DPD) and multibody dissipative particle dynamics (MDPD) using a combined ghost particles and specular reflection (CGPSR) method. We validate our scheme in four different configurations. The results demonstrate that our scheme can accurately reproduce the system properties, such as velocity, density and meniscus shapes of a full system with numerical simulations of a subsystem. Using a symmetric boundary condition for one half of the system, we demonstrate about 50% computation time saving in both DPD and MDPD. This approach for symmetric boundary treatment can be also applied to other coarse-grained particle methods such as Brownian and Langevin Dynamics to significantly reduce computation time.
Big Bang Day: 5 Particles - 5. The Next Particle
Franck Close
2008-01-01
Simon Singh looks at the stories behind the discovery of 5 of the universe's most significant subatomic particles: the Electron, the Quark, the Anti-particle, the Neutrino and the "next particle". 5. The Next Particle The "sparticle" - a super symmetric partner to all the known particles could be the answer to uniting all the known particles and their interactions under one grand theoretical pattern of activity. But how do researchers know where to look for such phenomena and how do they know if they find them? Simon Singh reviews the next particle that physicists would like to find if the current particle theories are to ring true.
Hartsock, Robert
2011-10-01
The Least Particle Theory states that the universe was cast as a great sea of energy. MaX Planck declared a quantum of energy to be the least value in the universe. We declare the quantum of energy to be the least particle in the universe. Stephen Hawking declared quantum mechanics to be of no value in todays gross mechanics. That's like saying the number 1 has no place in mathematics.
Particle physics and cosmology
International Nuclear Information System (INIS)
During the past year, the research of the members of our group has spanned virtually all the topics at the interface of cosmology and particle physics: inflationary Universe scenarios, astrophysical and cosmological constraints on particle properties, ultra-high energy cosmic ray physics, quantum field theory in curved space-time, cosmology with extra dimensions, superstring cosmology, neutrino astronomy with large, underground detectors, and the formation of structure in the Universe
ELEMENTARY PARTICLE INTERACTIONS
Energy Technology Data Exchange (ETDEWEB)
EFREMENKO, YURI; HANDLER, THOMAS; KAMYSHKOV, YURI; SIOPSIS, GEORGE; SPANIER, STEFAN
2013-07-30
The High-Energy Elementary Particle Interactions group at UT during the last three years worked on the following directions and projects: Collider-based Particle Physics; Neutrino Physics, particularly participation in “NOνA”, “Double Chooz”, and “KamLAND” neutrino experiments; and Theory, including Scattering amplitudes, Quark-gluon plasma; Holographic cosmology; Holographic superconductors; Charge density waves; Striped superconductors; and Holographic FFLO states.
Gradient Particle Magnetohydrodynamics
Maron, Jason L.; Howes, Gregory G.
2001-01-01
We introduce Gradient Particle Magnetohydrodynamics (GPM), a new Lagrangian method for magnetohydrodynamics based on gradients corrected for the locally disordered particle distribution. The development of a numerical code for MHD simulation using the GPM algorithm is outlined. Validation tests simulating linear and nonlinear sound waves, linear MHD waves, advection of magnetic fields in a magnetized vortex, hydrodynamical shocks, and three-dimensional collapse are presented, demonstrating th...
Particles causing lung disease.
Kilburn, K H
1984-01-01
The lung has a limited number of patterns of reaction to inhaled particles. The disease observed depends upon the location: conducting airways, terminal bronchioles and alveoli, and upon the nature of inflammation induced: acute, subacute or chronic. Many different agents cause narrowing of conducting airways (asthma) and some of these cause permanent distortion or obliteration of airways as well. Terminal bronchioles appear to be particularly susceptible to particles which cause goblet cell ...
Miller, David E
2016-01-01
We carry out numerical evaluations of the motion of classical particles in Minkowski Space $\\mathbb{M}^{4}$ which are confined to the inside of a bag. In particular, we analyze the structure of the paths evolving from the breaking of the dilatation symmetry, the conformal symmetry and the combination of both together. The confining forces arise directly from the corresponding nonconserved currents. We demonstrate in our evaluations that these particles under certain initial conditions move toward the interior of the bag.
Glüge, Juliane; Bogdal, Christian; Scheringer, Martin; Hungerbühler, Konrad
2015-08-01
Semi-volatile organic compounds (SVOCs) can be particle-bound or in the gas phase in the atmosphere, depending on the (temperature dependent) gas-particle partitioning of the chemicals and the fraction of particles in air. Several studies linked gas-particle partitioning of SVOCs in the atmosphere directly to the gaseous/particle-bound deposition of these chemicals, i.e. in cases of compounds occurring mainly in the gas phase, the deposition was also assumed to be mainly in gaseous form. In this study, we apply a multi-media fate model to point out that gas-particle partitioning of SVOCs in air and gaseous/particle-bound deposition of SVOCs are driven by different mechanism and, thus, cannot be deduced from each other. We apply our calculations to polychlorinated biphenyls (PCBs), as model SVOCs. We show that the fraction of particle-bound deposition to deciduous forest is 1.5-190 times higher in winter and between 5 and 1000 times higher in summer than the particle-bound fraction of these chemicals in air. The fraction of particle-bound deposition to coniferous forest is 1.5-172 times higher in winter and between 5 and 1000 times higher in summer than the particle-bound fraction of PCBs in air. In addition to the fractions of particle-bound SVOCs in air and particle-bound deposition, we recalculated particle-bound and gaseous deposition velocities to coniferous and deciduous forest for PCBs. The deposition velocities obtained for dry gaseous deposition (PCBs occurring predominantly in the gas phase, interception was also completely due to dry gaseous deposition.
Photonics applied to nuclear physics
International Nuclear Information System (INIS)
This was the second workshop held at the Council of Europe in the Nucleophot series. Its purpose was to bring together specialists from the fields of photonics and nuclear physics to discuss the application of modern optical techniques to current problems in experimental nuclear or particle physics research. Two techniques are particularly relevant and offer the possibility of major progress in the detection of extremely short-lived particles: holographic imaging of particle tracks and the development of scintillating-optical-fibre detectors. The discussions were mainly concerned with (a) the applications of holography to the large bubble chambers operating at Fermilab and (b) the development of high-resolution fibre-optic systems into high-rate microvertex detectors using scintillating core glass for both fixed-target and collider experiments in Europe and the USA. See hints under the relevant topics. (orig./HSI)
On Characterizing Particle Shape
Ennis, Bryan J.; Rickman, Douglas; Rollins, A. Brent; Ennis, Brandon
2014-01-01
It is well known that particle shape affects flow characteristics of granular materials, as well as a variety of other solids processing issues such as compaction, rheology, filtration and other two-phase flow problems. The impact of shape crosses many diverse and commercially important applications, including pharmaceuticals, civil engineering, metallurgy, health, and food processing. Two applications studied here include the dry solids flow of lunar simulants (e.g. JSC-1, NU-LHT-2M, OB-1), and the flow properties of wet concrete, including final compressive strength. A multi-dimensional generalized, engineering method to quantitatively characterize particle shapes has been developed, applicable to both single particle orientation and multi-particle assemblies. The two-dimension, three dimension inversion problem is also treated, and the application of these methods to DEM model particles will be discussed. In the case of lunar simulants, flow properties of six lunar simulants have been measured, and the impact of particle shape on flowability - as characterized by the shape method developed here -- is discussed, especially in the context of three simulants of similar size range. In the context of concrete processing, concrete construction is a major contributor to greenhouse gas production, of which the major contributor is cement binding loading. Any optimization in concrete rheology and packing that can reduce cement loading and improve strength loading can also reduce currently required construction safety factors. The characterization approach here is also demonstrated for the impact of rock aggregate shape on concrete slump rheology and dry compressive strength.
Statistics of indistinguishable particles.
Wittig, Curt
2009-07-01
The wave function of a system containing identical particles takes into account the relationship between a particle's intrinsic spin and its statistical property. Specifically, the exchange of two identical particles having odd-half-integer spin results in the wave function changing sign, whereas the exchange of two identical particles having integer spin is accompanied by no such sign change. This is embodied in a term (-1)(2s), which has the value +1 for integer s (bosons), and -1 for odd-half-integer s (fermions), where s is the particle spin. All of this is well-known. In the nonrelativistic limit, a detailed consideration of the exchange of two identical particles shows that exchange is accompanied by a 2pi reorientation that yields the (-1)(2s) term. The same bookkeeping is applicable to the relativistic case described by the proper orthochronous Lorentz group, because any proper orthochronous Lorentz transformation can be expressed as the product of spatial rotations and a boost along the direction of motion. PMID:19552474
Mutagenicity of airborne particles.
Chrisp, C E; Fisher, G L
1980-09-01
The physical and chemical properties of airborne particles are important for the interpretation of their potential biologic significance as genotoxic hazards. For polydisperse particle size distributions, the smallest, most respirable particles are generally the most mutagenic. Particulate collection for testing purposes should be designed to reduce artifact formation and allow condensation of mutagenic compounds. Other critical factors such as UV irradiation, wind direction, chemical reactivity, humidity, sample storage, and temperature of combustion are important. Application of chemical extraction methods and subsequent class fractionation techniques influence the observed mutagenic activity. Particles from urban air, coal fly ash, automobile and diesel exhaust, agricultural burning and welding fumes contain primarily direct-acting mutagens. Cigarette smoke condensate, smoke from charred meat and protein pyrolysates, kerosene soot and cigarette smoke condensates contain primarily mutagens which require metabolic activation. Fractionation coupled with mutagenicity testing indicates that the most potent mutagens are found in the acidic fractions of urban air, coal fly ash, and automobile diesel exhaust, whereas mutagens in rice straw smoke and cigarette smoke condensate are found primarily in the basic fractions. The interaction of the many chemical compounds in complex mixtures from airborne particles is likely to be important in determining mutagenic or comutagenic potentials. Because the mode of exposure is generally frequent and prolonged, the presence of tumor-promoting agents in complex mixtures may be a major factor in evaluation of the carcinogenic potential of airborne particles.
A Review of Applied Mathematics
Ó Náraigh, Lennon; Ní Shúilleabháin, Aoibhinn
2015-01-01
Applied Mahtematics is a subject which deals with problmes arising inthe physical, life, and social sciences as well as in engineering and provides a broad body of knowledge for use in a wide spectrum of research and insdustry. Applied Mathematics is an important school subject which builds students' mathematical and problem solving skills. The subject has remained on the periphery of school time-tables and, without the commitment and enthusiasm of Applied Maths teachers, would likely be omit...
Applied Ethics in Nowadays Society
Directory of Open Access Journals (Sweden)
Tomita CIULEI
2013-12-01
Full Text Available This special issue is dedicated to Nowadays Applied Ethics in Society, and falls in the field of social sciences and humanities, being hosted both theoretical approaches and empirical research in various areas of applied ethics. Applied ethics analyzes of a series of morally concrete situations of social or professional practice in order to make / adopt decisions. In the field of applied ethics are integrated medical ethics, legal ethics, media ethics, professional ethics, environmental ethics, business ethics etc. Classification-JEL: A23
Tunneling of massive particles from noncommutative Schwarzschild black hole
Miao, Yan-Gang; Zhang, Shao-Jun
2010-01-01
We apply the generalization of the Parikh-Wilczek method to the tunneling of massive particles from noncommutative Schwarzschild black holes. By deriving the equation of radial motion of the tunneling particle directly, we calculate the emission rate which is shown to be dependent on the noncommutative parameter besides the energy and mass of the tunneling particle. After equating the emission rate to the Boltzmann factor, we obtain the modified Hawking temperature which relates to the noncommutativity and recovers the standard Hawking temperature in the commutative limit. We also discuss the entropy of the noncommutative Schwarzchild black hole and its difference after and before a massive particle's emission.
Microstripes for transport and separation of magnetic particles
DEFF Research Database (Denmark)
Donolato, Marco; Dalslet, Bjarke Thomas; Hansen, Mikkel Fougt
2012-01-01
We present a simple technique for creating an on-chip magnetic particle conveyor based on exchange-biased permalloy microstripes. The particle transportation relies on an array of stripes with a spacing smaller than their width in conjunction with a periodic sequence of four different externally...... applied magnetic fields. We demonstrate the controlled transportation of a large population of particles over several millimeters of distance as well as the spatial separation of two populations of magnetic particles with different magnetophoretic mobilities. The technique can be used for the controlled...... selective manipulation and separation of magnetically labelled species. (C) 2012 American Institute of Physics....
Spin-Curvature Interaction for Particles of Rest Mass Zero
Cordwell, William Robert
Using a W.K.B. approximation, equations of motion are derived for integral spin particles of zero rest mass. The equations are similar to Papapetrou's equations. A modified, extended W.K.B. approximation is used to derive the equations for half-integral spin particles. The equations are applied to particles travelling down the axis of a spinning black hole, and to particles in a stationary, weak field spacetime. The results agree with frequency cut-offs and linear polarization rotation results found by various other methods. Some previously known polarization results for electromagnetic waves are extended to other spins.
Spin-curvature interaction for particles of rest mass zero
Energy Technology Data Exchange (ETDEWEB)
Cordwell, W.R.
1984-01-01
Using a WKB approximation, equations of motion are derived for integral spin particles of zero rest mass. The equations are similar to Papapetrou's equations. A modified, extended WKB approximation is used to derive the equations for half-integral spin particles. The equations are applied to particles travelling down the axis of a spinning black hole, and to particles in a stationary, weak-field spacetime. The results agree with frequency cut-offs and linear polarization rotation results found by various other methods. Some previously known polarization results for electromagnetic waves are extended to other spins.
Tunneling of massive particles from noncommutative inspired Schwarzschild black hole
Miao, Yan-Gang; Xue, Zhao; Zhang, Shao-Jun
2012-02-01
We apply the generalization of the Parikh-Wilczek method to the tunneling of massive particles from noncommutative inspired Schwarzschild black holes. By deriving the equation of radial motion of the tunneling particle directly, we calculate the emission rate which is shown to be dependent on the noncommutative parameter besides the energy and mass of the tunneling particle. After equating the emission rate to the Boltzmann factor, we obtain the modified Hawking temperature which relates to the noncommutativity and recovers the standard Hawking temperature in the commutative limit. We also discuss the entropy of the noncommutative inspired Schwarzschild black hole and its difference after and before a massive particle's emission.
Inclusive particle spectra in the quark recombination model
International Nuclear Information System (INIS)
The present status of the simple and valon versions of the quark recombination model is reviewed. The model has previously been applied primarily to hadron-hadron collisions in which the fragmenting and produced particles share a single common valence quark. The application of the model is extended to two additional classes of hadron-hadron collisions. (1) Collisions in which no valence quarks are common to the fragmenting and produced particles. (2) Collisions in which all valence quarks of the fragmenting particle are also valence quarks of the produced particle
Analysis of the dynamic interaction between SVOCs and airborne particles
DEFF Research Database (Denmark)
Liu, Cong; Shi, Shanshan; Weschler, Charles J.;
2013-01-01
A proper quantitative understanding of the dynamic interaction between gas-phase semivolatile organic compounds (SVOCs) and airborne particles is important for human exposure assessment and risk evaluation. Questions regarding how to properly address gas/particle interactions have introduced...... be reasonably neglected for particles with diameters between 0.01 and 10 μm if the particulate organic matter is in the liquid phase. A lumped description therefore can be applied to determine, with greater accuracy than in previous studies, the timescale required to attain gas/particle equilibrium...
Particle resuspension due to human walking
International Nuclear Information System (INIS)
In nuclear facilities, during normal operations in controlled areas, workers could be exposed to radioactive aerosols (1 μm ≤ dp ≤ 10 μm). One of the airborne contamination sources is particles that are initially seeded on the floor and could be removed by workers while they are walking. During the outage of EDF nuclear facilities, there is a resuspension of some radionuclides in aerosol form (1 μm ≤ dp ≤ 10 μm). Since the number of co-activity will increase in reactors buildings of EDF, it becomes important to understand particle resuspension due to the activity of the operators to reduce their radiation exposure. The purpose of this Ph.D thesis is to quantify the resuspension of particles due to the progress of operators on a contaminated soil. Thus, the approach is to combine an aerodynamic resuspension model with numerical calculations of flow under a shoe, and then to characterize experimentally some input parameters of the model (particle diameter, adhesion forces, shoes motion). The resuspension model Rock'n'Roll proposed by Reeks and Hall (2001) was chosen because it describes physically the resuspension mechanism and because it is based on the moment of forces applied to a particle. This model requires two input parameters such as friction velocity and adhesion forces distribution applied on each particle. Regarding the first argument, numerical simulations were carried on using the ANSYS CFX software applied to a safety shoe in motion (digitized by 3D CAO); the mapping of friction velocity shows values of about 1 m.s-1 for an angular average velocity of 200 degrees.s-1. As regards the second parameter, AFM (Atomic Force Microscopy) measurements were carried out with alumina and cobalt oxide particles in contact with epoxy surfaces representative of those encountered in EDF power plants. AFM provides the distribution of adhesion forces and reveals a much lower value than what can be calculated theoretically using JKR model (Johnson et
Particle theorists scoop Nobel prize
2008-11-01
Every year the award of the Nobel Prize for Physics goes through a familiar pattern - a few days' heightened speculation, a warm congratulation and, more often than not, a trailing dispute. This year has been no exception. The three new laureates, whose predictions and concepts on symmetry breaking have become cornerstones of the Standard Model, had long been tipped to win at some point. Makoto Kobayashi, 64, of the KEK lab, and Toshihide Maskawa, 68, of the University of Kyoto, both in Japan, share one half of the SwKr 10m (about £800 000) prize for their work in 1972 on the mechanism of broken symmetry, which led to the prediction of a new family of quarks. Yoichiro Nambu, 87, of the University of Chicago in the US, wins the other half of the prize for realizing in 1960 how to apply spontaneous symmetry breaking to particle physics.
Applied superconductivity handbook on devices and applications
2015-01-01
This wide-ranging presentation of applied superconductivity, from fundamentals and materials right up to the latest applications, is an essential reference for physicists and engineers in academic research as well as in the field. Readers looking for a systematic overview on superconducting materials will expand their knowledge and understanding of both low and high Tc superconductors, including organic and magnetic materials. Technology, preparation and characterization are covered for several geometries, but the main benefit of this work lies in its broad coverage of significant applications in power engineering or passive devices, such as filter and antenna or magnetic shields. The reader will also find information on superconducting magnets for diverse applications in mechanical engineering, particle physics, fusion research, medicine and biomagnetism, as well as materials processing. SQUIDS and their usage in medicine or geophysics are thoroughly covered as are applications in quantum metrology, and, las...
An agreement for applied research in Italy
2002-01-01
On 26 February, two of CERN's Directors-General had a very official handshake. Luciano Maiani, CERN's current Director-General, and Carlo Rubbia, one of his predecessors and current "commissario straordinario" of ENEA (Ente per le Nuove tecnologie, l'Energia e l'Ambiante, Institute for new technologies, energy and the environment) signed a collaboration agreement between their two organisations. ENEA carries out applied research in various fields such as renewable energies, new materials and medical applications. The organisation, which employs 3400 people in 10 laboratories in Italy, has a clear interest, therefore, in the technologies developed at CERN, which, in turn, seeks to promote them. Their collaboration will shortly lead to common research projects. CERN now has two Italian partners : INFN, its historical partner for particle physics research and ENEA for technological applications.
Distributed SLAM Using Improved Particle Filter for Mobile Robot Localization
Directory of Open Access Journals (Sweden)
Fujun Pei
2014-01-01
Full Text Available The distributed SLAM system has a similar estimation performance and requires only one-fifth of the computation time compared with centralized particle filter. However, particle impoverishment is inevitably because of the random particles prediction and resampling applied in generic particle filter, especially in SLAM problem that involves a large number of dimensions. In this paper, particle filter use in distributed SLAM was improved in two aspects. First, we improved the important function of the local filters in particle filter. The adaptive values were used to replace a set of constants in the computational process of importance function, which improved the robustness of the particle filter. Second, an information fusion method was proposed by mixing the innovation method and the number of effective particles method, which combined the advantages of these two methods. And this paper extends the previously known convergence results for particle filter to prove that improved particle filter converges to the optimal filter in mean square as the number of particles goes to infinity. The experiment results show that the proposed algorithm improved the virtue of the DPF-SLAM system in isolate faults and enabled the system to have a better tolerance and robustness.
A nested sampling particle filter for nonlinear data assimilation
Elsheikh, Ahmed H.
2014-04-15
We present an efficient nonlinear data assimilation filter that combines particle filtering with the nested sampling algorithm. Particle filters (PF) utilize a set of weighted particles as a discrete representation of probability distribution functions (PDF). These particles are propagated through the system dynamics and their weights are sequentially updated based on the likelihood of the observed data. Nested sampling (NS) is an efficient sampling algorithm that iteratively builds a discrete representation of the posterior distributions by focusing a set of particles to high-likelihood regions. This would allow the representation of the posterior PDF with a smaller number of particles and reduce the effects of the curse of dimensionality. The proposed nested sampling particle filter (NSPF) iteratively builds the posterior distribution by applying a constrained sampling from the prior distribution to obtain particles in high-likelihood regions of the search space, resulting in a reduction of the number of particles required for an efficient behaviour of particle filters. Numerical experiments with the 3-dimensional Lorenz63 and the 40-dimensional Lorenz96 models show that NSPF outperforms PF in accuracy with a relatively smaller number of particles. © 2013 Royal Meteorological Society.
Chou, Yi-Ju; Shao, Yun-Chuan
2016-04-01
In this study, we investigate Rayleigh-Taylor instability in which the density stratification is caused by the suspension of particles in liquid flows using the conventional single-phase model and Euler-Lagrange (EL) two-phase model. The single-phase model is valid only when the particles are small and number densities are large, such that the continuum approximation applies. The present single-phase results show that the constant settling of the particle concentration restricts the lateral development of the vortex ring, which results in a decrease of the rising speed of the Rayleigh-Taylor bubbles. The EL model enables the investigation of particle-flow interaction and the influence of particle entrainment, resulting from local non-uniformity in the particle distribution. We compare bubble dynamics in the single-phase and EL cases, and our results show that the deviation between the two cases becomes more pronounced when the particle size increases. The main mechanism responsible for the deviation is particle entrainment, which can only be resolved in the EL model. We provide a theoretical argument for the small-scale local entrainment resulting from the local velocity shear and non-uniformity of the particle concentration. The theoretical argument is supported by numerical evidence. Energy budget analysis is also performed and shows that potential energy is released due to the interphase drag and buoyant effect. The buoyant effect, which results in the transformation of potential energy into kinetic energy and shear dissipation, plays a key role in settling enhancement. We also find that particle entrainment increases the shear dissipation, which in turn enhances the release of potential energy.
Institute of Scientific and Technical Information of China (English)
HE Gui-chun; NI Wen
2006-01-01
Based on various ultrasonic loss mechanisms, the formula of the cumulative mass percentage of minerals with different particle sizes was given, with which the particle size distribution was integrated into an ultrasonic attenuation model. And then the correlations between the ultrasonic attenuation and the pulp density, and the particle size were obtained. The derived model was combined with the experiment and the analysis of experimental data to determine the inverse model relating ultrasonic attenuation coefficient with size distribution. Finally, an optimization method of inverse parameter, genetic algorithm was applied for particle size distribution. The results of inverse calculation show that the precision of measurement was high.
Writing, Literacy, and Applied Linguistics.
Leki, Ilona
2000-01-01
Discusses writing and literacy in the domain of applied linguistics. Focus is on needs analysis for literacy acquisition; second language learner identity; longitudinal studies as extensions of identity work; and applied linguistics contributions to second language literacy research. (Author/VWL)
Conversation Analysis and Applied Linguistics.
Schegloff, Emanuel A.; Koshik, Irene; Jacoby, Sally; Olsher, David
2002-01-01
Offers biographical guidance on several major areas of conversation-analytic work--turn-taking, repair, and word selection--and indicates past or potential points of contact with applied linguistics. Also discusses areas of applied linguistic work. (Author/VWL)
Particle Lifting Processes in Dust Devils
Neakrase, L. D. V.; Balme, M. R.; Esposito, F.; Kelling, T.; Klose, M.; Kok, J. F.; Marticorena, B.; Merrison, J.; Patel, M.; Wurm, G.
2016-10-01
Particle lifting in dust devils on both Earth and Mars has been studied from many different perspectives, including how dust devils could influence the dust cycles of both planets. Here we review our current understanding of particle entrainment by dust devils by examining results from field observations on Earth and Mars, laboratory experiments (at terrestrial ambient and Mars-analog conditions), and analytical modeling. By combining insights obtained from these three methodologies, we provide a detailed overview on interactions between particle lifting processes due to mechanical, thermal, electrodynamical and pressure effects, and how these processes apply to dust devils on Earth and Mars. Experiments and observations have shown dust devils to be effective lifters of dust given the proper conditions on Earth and Mars. However, dust devil studies have yet to determine the individual roles of each of the component processes acting at any given time in dust devils.
Assignment of fields from particles to mesh
Duque, Daniel
2016-01-01
In Computational Fluid Dynamics there have been many attempts to combine the power of a fixed mesh on which to carry out spatial calculations with that of a set of particles that moves following the velocity field. These ideas indeed go back to Particle-in-Cell methods, proposed about 60 years ago. Of course, some procedure is needed to transfer field information between particles and mesh. There are many possible choices for this "assignment", or "projection". Several requirements may guide this choice. Two well-known ones are conservativity and stability, which apply to volume integrals of the fields. An additional one is here considered: preservation of information. This means that mesh interpolation, followed by mesh assignment, should leave the field values invariant. The resulting methods are termed "mass" assignments due to their strong similarities with the Finite Element Method. We test several procedures, including the well-known FLIP, on three scenarios: simple 1D convection, 2D convection of Zales...
Do elementary particles survive composite systems?
Nagahiro, Hideko
2014-01-01
The "compositeness" or "elementarity" is investigated for s-wave composite states dynamically generated by energy-dependent and independent interactions. The bare mass of the corresponding fictitious elementary particle in an equivalent Yukawa model is shown to be infinite, indicating that the wave function renormalization constant Z is equal to zero. The idea can be equally applied to both resonant and bound states. In a special case of zero-energy bound states, the condition Z = 0 does not necessarily mean that the elementary particle has the infinite bare mass. We also emphasize arbitrariness in the "elementarity" leading to multiple interpretations of a physical state, which can be either a pure composite state with Z = 0 or an elementary particle with Z \
Fast particle tracking with wake fields
Energy Technology Data Exchange (ETDEWEB)
Dohlus, M.; Floettmann, K.; Henning, C.
2012-01-15
Tracking calculations of charged particles in electromagnetic fields require in principle the simultaneous solution of the equation of motion and of Maxwell's equations. In many tracking codes a simpler and more efficient approach is used: external fields like that of the accelerating structures are provided as field maps, generated in separate computations and for the calculation of self fields the model of a particle bunch in uniform motion is used. We describe how an externally computed wake function can be approximated by a table of Taylor coefficients and how the wake field kick can be calculated for the particle distribution in a tracking calculation. The integrated kick, representing the effect of a distributed structure, is applied at a discrete time. As an example, we use our approach to calculate the emittance growth of a bunch in an undulator beam pipe due to resistive wall wake field effects. (orig.)
Light emission during impact stressing of a particle layer
International Nuclear Information System (INIS)
The mechanical stress detection technique was developed based on light emission properties of ZnS:Mn particles. The light emission properties of ZnS:Mn particles were characterized by the use of the impact tester that includes a stressing tool, photomultiplier and a contact time measurement system. The mechanical stressing of particles was caused by the impact of a metallic ball, dropped from different heights. At impact, the metallic ball achieves direct contact with the upper surface of the metallic anvil. This allows the measurement of the contact time by means of the electrical current that flows between the anvil and the metallic ball during contact time. The stress, caused at the collision, is transmitted through a metallic anvil to the layer of particles and produces the deformation of particles. The applied stress was detected using a piezoelectric sensor. It was shown that the ZnS:Mn particles generate the light during the action of the loading force. After removal of the loading force the light emission from the particle layer disappears in a few microseconds. The measurement was carried out using different ranges of applied forces. In this way, it was shown that the particle layer exhibits a high damping factor and failure resistance. One of the possible applications of these sensor systems based on light emission properties of ZnS:Mn particles is structural health monitoring. (paper)
Particle size distribution in ferrofluid macro-clusters
Energy Technology Data Exchange (ETDEWEB)
Lee, Wah-Keat, E-mail: wklee@bnl.gov [X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, 9700S. Cass Avenue, Argonne, IL 60439 (United States); Ilavsky, Jan [X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, 9700S. Cass Avenue, Argonne, IL 60439 (United States)
2013-03-15
Under an applied magnetic field, many commercial and concentrated ferrofluids agglomerate and form large micron-sized structures. Although large diameter particles have been implicated in the formation of these macro-clusters, the question of whether the particle size distribution of the macro-clusters are the same as the original fluid remains open. Some studies suggest that these macro-clusters consist of larger particles, while others have shown that there is no difference in the particle size distribution between the macro-clusters and the original fluid. In this study, we use X-ray imaging to aid in a sample (diluted EFH-1 from Ferrotec) separation process and conclusively show that the average particle size in the macro-clusters is significantly larger than those in the original sample. The average particle size in the macro-clusters is 19.6 nm while the average particle size of the original fluid is 11.6 nm. - Highlights: Black-Right-Pointing-Pointer X-ray imaging was used to isolate ferrofluid macro-clusters under an applied field. Black-Right-Pointing-Pointer Small angle X-ray scattering was used to determine particle size distributions. Black-Right-Pointing-Pointer Results show that macro-clusters consist of particles that are larger than average.
Applied probability and stochastic processes
Sumita, Ushio
1999-01-01
Applied Probability and Stochastic Processes is an edited work written in honor of Julien Keilson. This volume has attracted a host of scholars in applied probability, who have made major contributions to the field, and have written survey and state-of-the-art papers on a variety of applied probability topics, including, but not limited to: perturbation method, time reversible Markov chains, Poisson processes, Brownian techniques, Bayesian probability, optimal quality control, Markov decision processes, random matrices, queueing theory and a variety of applications of stochastic processes. The book has a mixture of theoretical, algorithmic, and application chapters providing examples of the cutting-edge work that Professor Keilson has done or influenced over the course of his highly-productive and energetic career in applied probability and stochastic processes. The book will be of interest to academic researchers, students, and industrial practitioners who seek to use the mathematics of applied probability i...
Patrignani, C.; Particle Data Group; et al.
2016-10-01
The Review summarizes much of particle physics and cosmology. Using data from previous editions, plus 3,062 new measurements from 721 papers, we list, evaluate, and average measured properties of gauge bosons and the recently discovered Higgs boson, leptons, quarks, mesons, and baryons. We summarize searches for hypothetical particles such as supersymmetric particles, heavy bosons, axions, dark photons, etc. All the particle properties and search limits are listed in Summary Tables. We also give numerous tables, figures, formulae, and reviews of topics such as Higgs Boson Physics, Supersymmetry, Grand Unified Theories, Neutrino Mixing, Dark Energy, Dark Matter, Cosmology, Particle Detectors, Colliders, Probability and Statistics. Among the 117 reviews are many that are new or heavily revised, including those on Pentaquarks and Inflation. The complete Review is published online in a journal and on the website of the Particle Data Group (http://pdg.lbl.gov). The printed PDG Book contains the Summary Tables and all review articles but no longer includes the detailed tables from the Particle Listings. A Booklet with the Summary Tables and abbreviated versions of some of the review articles is also available. Contents Abstract, Contributors, Highlights and Table of ContentsAcrobat PDF (150 KB) IntroductionAcrobat PDF (456 KB) Particle Physics Summary Tables Gauge and Higgs bosonsAcrobat PDF (155 KB) LeptonsAcrobat PDF (134 KB) QuarksAcrobat PDF (84 KB) MesonsAcrobat PDF (871 KB) BaryonsAcrobat PDF (300 KB) Searches (Supersymmetry, Compositeness, etc.)Acrobat PDF (91 KB) Tests of conservation lawsAcrobat PDF (330 KB) Reviews, Tables, and Plots Detailed contents for this sectionAcrobat PDF (37 KB) Constants, Units, Atomic and Nuclear PropertiesAcrobat PDF (278 KB) Standard Model and Related TopicsAcrobat PDF (7.3 MB) Astrophysics and CosmologyAcrobat PDF (2.7 MB) Experimental Methods and CollidersAcrobat PDF (3.8 MB) Mathematical Tools or Statistics, Monte Carlo, Group
Bär, Séverine; Rommelaere, Jean; Nüesch, Jürg P F
2013-09-01
Progeny particles of non-enveloped lytic parvoviruses were previously shown to be actively transported to the cell periphery through vesicles in a gelsolin-dependent manner. This process involves rearrangement and destruction of actin filaments, while microtubules become protected throughout the infection. Here the focus is on the intracellular egress pathway, as well as its impact on the properties and release of progeny virions. By colocalization with cellular marker proteins and specific modulation of the pathways through over-expression of variant effector genes transduced by recombinant adeno-associated virus vectors, we show that progeny PV particles become engulfed into COPII-vesicles in the endoplasmic reticulum (ER) and are transported through the Golgi to the plasma membrane. Besides known factors like sar1, sec24, rab1, the ERM family proteins, radixin and moesin play (an) essential role(s) in the formation/loading and targeting of virus-containing COPII-vesicles. These proteins also contribute to the transport through ER and Golgi of the well described analogue of cellular proteins, the secreted Gaussia luciferase in absence of virus infection. It is therefore likely that radixin and moesin also serve for a more general function in cellular exocytosis. Finally, parvovirus egress via ER and Golgi appears to be necessary for virions to gain full infectivity through post-assembly modifications (e.g. phosphorylation). While not being absolutely required for cytolysis and progeny virus release, vesicular transport of parvoviruses through ER and Golgi significantly accelerates these processes pointing to a regulatory role of this transport pathway.
The Effect of Particle Properties on Hot Particle Spot Fire Ignition
Zak, Casey David
data. Model simulations identify the important physics controlling ignition for different sized particles and clarify many of the experimental trends. The results show a hyperbolic relationship between particle size and temperature, with the larger particles requiring lower temperatures to ignite the cellulose than the smaller particles. For very small spheres, the temperature required for ignition is very sensitive to particle size, while for very large spheres, ignition temperature shows only a weak dependence on that variable. Flaming ignition of powdered cellulose by particles ≤ 11 mm in size requires particle temperatures of at least 600°C. Ignition has not been observed for 2 mm particles at temperatures up to 1100°C, but the statistical analysis indicates that ignition by particles 2 mm and smaller may be possible at temperatures above 950°C. No clear trend is observed with particle metal type, but copper particles require slightly higher ignition temperatures and seem more sensitive to experimental variation, likely due to their relatively high thermal conductivity. High-speed Schlieren images taken during the ignition experiments show that once particles land, they volatilize the powdered cellulose and the fuel vapor diffuses out into the surrounding air. Ignition occurs in the mixing layer between the vapor and the air, either during the initial expansion of the pyrolyzate away from the particle, or after a stable plume of volatiles has formed. Modeling results indicate that in the large-particle, high-conductivity limit, the particle's surface temperature remains close to its impact temperature over the timescales of ignition. As a result, particle thermal properties are unimportant and ignition occurs when heat generation in the mixing layer overcomes losses to the surrounding air. When the large-particle limit does not apply, the particle cools upon impact with the fuel bed. In addition to the losses to the surrounding air, the reaction zone
International Nuclear Information System (INIS)
The Standard Model is a remarkable result of decades of work in particle physics, but it is clearly an incomplete representation of the world. Exploring possibilities beyond the Standard Model is a major preoccupation of both theorists and experimentalists. Despite the many suggestions that are extant about the missing links within the Standard Model as well as extensions beyond it, no hard experimental evidence exists. In particular, in more than five years of experimentation both at PETRA and PEP no new particles have been found that would indicate new physics. Several reasons are possible for these negative results: the particles may be too heavy; the experiments may not be looking in the proper way; the cross sections may be too small or finally the particles may not exist. A continuing PEP program, at high luminosity will ensure that the second and third reason continue to be addressed. The higher energy e+e- storage rings such as TRISTAN and LEP will extend the mass limits. High mass particles can also be produced at the CERN collider and soon with the Tevatron collider. A concise summary of the mass limits from the PETRA experiments has been given in a recent Mark J publication. The results shown provide a convenient yardstick against which to measure future search experiments
Particle physics and cosmology
Energy Technology Data Exchange (ETDEWEB)
Kolb, E.W.
1986-10-01
This series of lectures is about the role of particle physics in physical processes that occurred in the very early stages of the bug gang. Of particular interest is the role of particle physics in determining the evolution of the early Universe, and the effect of particle physics on the present structure of the Universe. The use of the big bang as a laboratory for placing limits on new particle physics theories will also be discussed. Section 1 reviews the standard cosmology, including primordial nucleosynthesis. Section 2 reviews the decoupling of weakly interacting particles in the early Universe, and discusses neutrino cosmology and the resulting limits that may be placed on the mass and lifetime of massive neutrinos. Section 3 discusses the evolution of the vacuum through phase transitions in the early Universe and the formation of topological defects in the transitions. Section 4 covers recent work on the generation of the baryon asymmetry by baryon-number violating reactions in Grand Unified Theories, and mentions some recent work on baryon number violation effects at the electroweak transition. Section 5 is devoted to theories of cosmic inflation. Finally, Section 6 is a discussion of the role of extra spatial dimensions in the evolution of the early Universe. 78 refs., 32 figs., 6 tabs.
Palazzi, P
2003-01-01
The current understanding of particle masses in terms of quarks and their binding energy is not satisfactory. Both in atoms and in nuclei the organizing principle of stability is the shell structure, while this does not seem to play any role for particles. In order to explore the possibility that shells might also be relevant at this inner level of aggregation, atomic and nuclear stability are expressed by "stablines", alignments of the 1/3 power of the total number of constituents of the most stable configurations. Could similar patterns be found in the particle spectrum? By analyzing the distribution of particle lifetimes as a function of mass, stability peaks are recognized for mesons and for baryons and indeed the cube roots of their masses follow two distinct stablines. Such alignments would be a strong indication that the particles themselves are shell structured assuming only that each constituent contributes a constant amount to the total mass. This is incompatible with the prevalent view that the par...
Large Particle Titanate Sorbents
Energy Technology Data Exchange (ETDEWEB)
Taylor-Pashow, K. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)
2015-10-08
This research project was aimed at developing a synthesis technique for producing large particle size monosodium titanate (MST) to benefit high level waste (HLW) processing at the Savannah River Site (SRS). Two applications were targeted, first increasing the size of the powdered MST used in batch contact processing to improve the filtration performance of the material, and second preparing a form of MST suitable for deployment in a column configuration. Increasing the particle size should lead to improvements in filtration flux, and decreased frequency of filter cleaning leading to improved throughput. Deployment of MST in a column configuration would allow for movement from a batch process to a more continuous process. Modifications to the typical MST synthesis led to an increase in the average particle size. Filtration testing on dead-end filters showed improved filtration rates with the larger particle material; however, no improvement in filtration rate was realized on a crossflow filter. In order to produce materials suitable for column deployment several approaches were examined. First, attempts were made to coat zirconium oxide microspheres (196 µm) with a layer of MST. This proved largely unsuccessful. An alternate approach was then taken synthesizing a porous monolith of MST which could be used as a column. Several parameters were tested, and conditions were found that were able to produce a continuous structure versus an agglomeration of particles. This monolith material showed Sr uptake comparable to that of previously evaluated samples of engineered MST in batch contact testing.
Entanglement between particle partitions in itinerant many-particle states
M. Haque; O.S. Zozulya; K. Schoutens
2009-01-01
We review 'particle-partitioning entanglement' for itinerant many-particle systems. This is defined as the entanglement between two subsets of particles making up the system. We identify generic features and mechanisms of particle entanglement that are valid over whole classes of itinerant quantum s
A relationship between maximum packing of particles and particle size
Fedors, R. F.
1979-01-01
Experimental data indicate that the volume fraction of particles in a packed bed (i.e. maximum packing) depends on particle size. One explanation for this is based on the idea that particle adhesion is the primary factor. In this paper, however, it is shown that entrainment and immobilization of liquid by the particles can also account for the facts.
Dielectrophoresis of sub-micrometre particles
International Nuclear Information System (INIS)
A polarisable particle in a non-uniform electric field experiences a force arising from the interaction of the field and the dipole induced in the particle; the movement resulting from this force is termed Dielectrophoresis (DEP). The magnitude and direction of the dielectrophoretic force depends on the dielectric properties of the particle and the medium it is suspended in, as well as the frequency and amplitude of the applied field. Under suitable conditions, the particle experiences a force towards either high field regions or low field regions, referred to as positive or negative DEP respectively. This technique can be used to study or move biological particles, such as cells and bacteria and as a non-invasive method to characterise the dielectric properties of the particles. Knowledge of these properties can then be used to develop DEP for use in practical applications. The aim of this PhD project was to develop the technology of dielectrophoresis on the sub-micrometre scale and to use DEP to manipulate sub-micrometre particles and measure their dielectric properties. Of particular interest was the application of DEP to viruses, the largest of which is approximately 250nm in diameter. A system for virus characterisation, identification and, separation based on DEP would be a major milestone in this field of research, as well as having beneficial medical and biotechnological uses. Particles with a diameter between 1 nm and 1 μm are referred to as colloidal particles and the dynamics of their movement are complicated by the effects of thermal energy and Brownian motion. High electric fields are required to dominate these effects but signals with high potentials and high frequencies are difficult to generate. Semiconductor manufacturing techniques can be used to fabricate micro-electrode structures which can produce high electric fields from relatively low potentials. Lithography based manufacturing techniques were developed to produce suitable electrodes for
Pyrometric fuel particle measurements in pressurised reactors
Energy Technology Data Exchange (ETDEWEB)
Hernberg, R.; Joutsenoja, T. [Tampere Univ. of Technology (Finland)
1997-10-01
A fibre-optic two-colour pyrometric technique for fuel particle temperature and size measurement is modified and applied to three pressurised reactors of different type in Finland, Germany and France. A modification of the pyrometric method for simultaneous in situ measurement of the temperature and size of individual pulverised coal particles at the pressurised entrained flow reactor of VTT Energy in Jyvaeskylae was developed and several series of measurements were made in order to study the effects of oxygen concentration (3-30 vol%) and pressure (0.2-1.0 MPa) on the particle temperature. The fuels used in the experiments were Westerholt, Polish and Goettelborn hvb coals, Gardanne lignite and Niederberg anthracite. The initial nominal fuel particle size varied in the experiments from 70 to 250 ,{mu}m and the gas temperature was typically 1173 K. For the anthracite also the effects of gas temperature (1073-1423K) and CO{sub 2} concentration (6-80 vol%) were studied. In Orleans a fibreoptic pyrometric device was installed to a pressurised thermogravimetric reactor of CNRS and the two-colour temperatures of fuel samples were measured. The fuel in the experiments was pulverised Goettelborn char. The reliability of optical temperature measurement in this particular application was analysed. In Essen a fibre-optic pyrometric technique that is capable to measure bed and fuel particle temperatures was applied to an atmospheric fluidised bed reactor of DMT. The effects of oxygen concentration (3-8 vol%) and bed temperature (1123-1193 K) on the fuel particle temperature were studied. The fuels in these were Westerholt coal and char and EBV-coal. Some results of these measurements are presented. The project belonged to EU`s Joule 2 extension research programme (contract JOU2-CT93-0331). (orig.)
Distributed computing applied applied to the identification of new drugs
Isea, Raul; Mayo, Rafael
2010-01-01
This work emphasizes the assets of implementing the distributed computing for the intensive use in computational science devoted to the search of new medicines that could be applied in public healthy problems.
Ma, Li; Li, Mei; Huang, Zhengxu; Li, Lei; Gao, Wei; Nian, Huiqing; Zou, Lilin; Fu, Zhong; Gao, Jian; Chai, Fahe; Zhou, Zhen
2016-07-01
Using a single particle aerosol mass spectrometer (SPAMS), the chemical composition and size distributions of lead (Pb)-containing particles with diameter from 0.1 μm to 2.0 μm in Beijing were analyzed in the spring of 2011 during clear, hazy, and dusty days. Based on mass spectral features of particles, cluster analysis was applied to Pb-containing particles, and six major classes were acquired consisting of K-rich, carboneous, Fe-rich, dust, Pb-rich, and Cl-rich particles. Pb-containing particles accounted for 4.2-5.3%, 21.8-22.7%, and 3.2% of total particle number during clear, hazy and dusty days, respectively. K-rich particles are a major contribution to Pb-containing particles, varying from 30.8% to 82.1% of total number of Pb-containing particles, lowest during dusty days and highest during hazy days. The results reflect that the chemical composition and amount of Pb-containing particles has been affected by meteorological conditions as well as the emissions of natural and anthropogenic sources. K-rich particles and carbonaceous particles could be mainly assigned to the emissions of coal combustion. Other classes of Pb-containing particles may be associated with metallurgical processes, coal combustion, dust, and waste incineration etc. In addition, Pb-containing particles during dusty days were first time studied by SPAMS. This method could provide a powerful tool for monitoring and controlling of Pb pollution in real time.
Ma, Li; Li, Mei; Huang, Zhengxu; Li, Lei; Gao, Wei; Nian, Huiqing; Zou, Lilin; Fu, Zhong; Gao, Jian; Chai, Fahe; Zhou, Zhen
2016-07-01
Using a single particle aerosol mass spectrometer (SPAMS), the chemical composition and size distributions of lead (Pb)-containing particles with diameter from 0.1 μm to 2.0 μm in Beijing were analyzed in the spring of 2011 during clear, hazy, and dusty days. Based on mass spectral features of particles, cluster analysis was applied to Pb-containing particles, and six major classes were acquired consisting of K-rich, carboneous, Fe-rich, dust, Pb-rich, and Cl-rich particles. Pb-containing particles accounted for 4.2-5.3%, 21.8-22.7%, and 3.2% of total particle number during clear, hazy and dusty days, respectively. K-rich particles are a major contribution to Pb-containing particles, varying from 30.8% to 82.1% of total number of Pb-containing particles, lowest during dusty days and highest during hazy days. The results reflect that the chemical composition and amount of Pb-containing particles has been affected by meteorological conditions as well as the emissions of natural and anthropogenic sources. K-rich particles and carbonaceous particles could be mainly assigned to the emissions of coal combustion. Other classes of Pb-containing particles may be associated with metallurgical processes, coal combustion, dust, and waste incineration etc. In addition, Pb-containing particles during dusty days were first time studied by SPAMS. This method could provide a powerful tool for monitoring and controlling of Pb pollution in real time. PMID:27085059
Big Bang Day: 5 Particles - 3. The Anti-particle
Franck Close
2008-01-01
Simon Singh looks at the stories behind the discovery of 5 of the universe's most significant subatomic particles: the Electron, the Quark, the Anti-particle, the Neutrino and the "next particle". 3. The Anti-particle. It appears to be the stuff of science fiction. Associated with every elementary particle is an antiparticle which has the same mass and opposite charge. Should the two meet and combine, the result is annihilation - and a flash of light. Thanks to mysterious processes that occurred after the Big Bang there are a vastly greater number of particles than anti-particles. So how could their elusive existence be proved? At CERN particle physicists are crashing together subatomic particles at incredibly high speeds to create antimatter, which they hope will finally reveal what happened at the precise moment of the Big Bang to create the repertoire of elementary particles and antiparticles in existence today.
AUTHOR|(CDS)2079223
2016-01-01
What is everything really made of? If we split matter down into smaller and infinitesimally smaller pieces, where do we arrive? At the Particle Zoo - the extraordinary subatomic world of antimatter, neutrinos, strange-flavoured quarks and yetis, gravitons, ghosts and glueballs, mindboggling eleven-dimensional strings and the elusive Higgs boson itself. Be guided around this strangest of zoos by Gavin Hesketh, experimental particle physicist at humanity's greatest experiment, the Large Hadron Collider. Concisely and with a rare clarity, he demystifies how we are uncovering the inner workings of the universe and heading towards the next scientific revolution. Why are atoms so small? How did the Higgs boson save the universe? And is there a theory of everything? The Particle Zoo answers these and many other profound questions, and explains the big ideas of Quantum Physics, String Theory, The Big Bang and Dark Matter...and, ultimately, what we know about the true, fundamental nature of reality.
2002-01-01
The 2002 edition of the Review of Particle Physics has been published. It appears in the July 1st edition of Physical Review D with the reference: K. Hagiwara et al., Physical Review D66, 010001 (2002). The printing of the Particle Physics Booklets is planned to be finished at the end of August, so copies are expected to arrive at CERN for distribution by mid-September. The full data are available at the Berkeley site, as well as at various other mirrors around the world. As for copies of the full Review, for which CERN is responsible for the distribution outside the Americas, the Far East and Australasia, the quantity has been reduced by 60% compared to the 2000 edition. It will thus no longer be possible for all individuals to have their personal copy. Priority will be given to ensure that copies are sent to all groups and institutes engaged in particle physics research.
Astrophysical Weighted Particle Magnetohydrodynamics
Gaburov, Evghenii
2010-01-01
This paper presents applications of weighted meshless scheme for conservation laws to the Euler equations and the equations of ideal magnetohydrodynamics. The divergence constraint of the latter is maintained to the truncation error by a new meshless divergence cleaning procedure. The physics of the interaction between the particles is described by an one-dimensional Riemann problem in a moving frame. As a result, necessary diffusion which is required to treat dissipative processes is added automatically. As a result, our scheme has no free parameters that controls the physics of inter-particle interaction, with the exception of the number of the interacting neighbours which control the resolution and accuracy. The resulting equations have the form similar to SPH equations, and therefore existing SPH codes can be used to implement the weighed particle scheme. The scheme is validated in several hydrodynamic and MHD test cases. In particular, we demonstrate for the first time the ability of a meshless MHD schem...
Wiedemann, Helmut
2015-01-01
This book by Helmut Wiedemann is a well-established, classic text, providing an in-depth and comprehensive introduction to the field of high-energy particle acceleration and beam dynamics. The present 4th edition has been significantly revised, updated and expanded. The newly conceived Part I is an elementary introduction to the subject matter for undergraduate students. Part II gathers the basic tools in preparation of a more advanced treatment, summarizing the essentials of electrostatics and electrodynamics as well as of particle dynamics in electromagnetic fields. Part III is an extensive primer in beam dynamics, followed, in Part IV, by an introduction and description of the main beam parameters and including a new chapter on beam emittance and lattice design. Part V is devoted to the treatment of perturbations in beam dynamics. Part VI then discusses the details of charged particle acceleration. Parts VII and VIII introduce the more advanced topics of coupled beam dynamics and describe very intense bea...
High Energy Particle Accelerators
Audio Productions, Inc, New York
1960-01-01
Film about the different particle accelerators in the US. Nuclear research in the US has developed into a broad and well-balanced program.Tour of accelerator installations, accelerator development work now in progress and a number of typical experiments with high energy particles. Brookhaven, Cosmotron. Univ. Calif. Berkeley, Bevatron. Anti-proton experiment. Negative k meson experiment. Bubble chambers. A section on an electron accelerator. Projection of new accelerators. Princeton/Penn. build proton synchrotron. Argonne National Lab. Brookhaven, PS construction. Cambridge Electron Accelerator; Harvard/MIT. SLAC studying a linear accelerator. Other research at Madison, Wisconsin, Fixed Field Alternate Gradient Focusing. (FFAG) Oakridge, Tenn., cyclotron. Two-beam machine. Comments : Interesting overview of high energy particle accelerators installations in the US in these early years. .
Chemical characterization of aerosol particles by laser Raman spectroscopy. Revision
Energy Technology Data Exchange (ETDEWEB)
Fung, K.H.
1999-12-01
The importance of aerosol particles in many branches of science, such as atmospheric chemistry, combustion, interfacial science, and material processing, has been steadily growing during the past decades. One of the unique properties of these particles is the very high surface-to-volume ratios, thus making them readily serve as centers for gas-phase condensation and heterogeneous reactions. These particles must be characterized by size, shape, physical state, and chemical composition. Traditionally, optical elastic scattering has been applied to obtain the physical properties of these particle (e.g., particle size, size distribution, and particle density). These physical properties are particularly important in atmospheric science as they govern the distribution and transport of atmospheric aerosols.
A magnetic particle micro-trap for large trapping surfaces
Gooneratne, Chinthaka P.
2012-01-08
Manipulation of micron-size magnetic particles of the superparamagnetic type contributes significantly in many applications like controlling the antibody/antigen binding process in immunoassays. Specifically, more target biomolecules can be attached/tagged and analyzed since the three dimensional structure of the magnetic particles increases the surface to volume ratio. Additionally, such biomolecular-tagged magnetic particles can be easily manipulated by an external magnetic field due to their superparamagnetic behavior. Therefore, magnetic particle- based immunoassays are extensively applied in micro-flow cytometry. The design of a square-loop micro-trap as a magnetic particle manipulator as well as numerical and experimental analysis is presented. Experimental results showed that the micro-trap could successfully trap and concentrate magnetic particles from a large to a small area with a high spatial range.
Switching Behaviour of Magnetic Particles with Dipolar Interaction
Institute of Scientific and Technical Information of China (English)
XU Chen; HUI Pak-Ming; CHOW Chow-Wang; LI Zhen-Ya
2005-01-01
We study the switching in the magnetic moments of interacting magnetic particles. The dynamics of the magneticmoments is governed by a coupled set of Landau-Lifshitz-Gilbert equations. The magnetic particles are assumed to be spherical in shape, single domain, and have uniaxial anisotropy. Effects of dipolar interaction between the particles, anisotropy energy, an applied switching field with finite spatial extent and a small bias field are considered. When the separation between the particles is small, the dipolar field is significant and it affects the reversal of the magnetic moments. The final configuration attained depends sensitively on the decaying length of the switching field, the inter-particle separation, and the initial configuration. A bias field tends to suppress the effects of a spatially decaying switching field and dipolar interaction between neighbouring particles.
Selective follicular targeting by modification of the particle sizes.
Patzelt, Alexa; Richter, Heike; Knorr, Fanny; Schäfer, Ulrich; Lehr, Claus-Michael; Dähne, Lars; Sterry, Wolfram; Lademann, Juergen
2011-02-28
Hair follicles represent interesting target sites for topically applied substances such as topical vaccinations or agents used in the field of regenerative medicine. In recent years, it could be shown that particles penetrate very effectively into the hair follicles. In the present study, the influence of particle size on the follicular penetration depths was examined. The penetration depths of two different types of particles sized 122 to 1000 nm were determined in vitro on porcine skin. The results revealed that the particles of medium size (643 and 646 nm, respectively) penetrated deeper into the porcine hair follicles than smaller or larger particles. It was concluded that by varying the particle size, different sites within the porcine hair follicle can be targeted selectively. For the human terminal hair follicle, the situation can be expected to be similar due to a similar size ratio of the hair follicles.
Selective follicular targeting by modification of the particle sizes.
Patzelt, Alexa; Richter, Heike; Knorr, Fanny; Schäfer, Ulrich; Lehr, Claus-Michael; Dähne, Lars; Sterry, Wolfram; Lademann, Juergen
2011-02-28
Hair follicles represent interesting target sites for topically applied substances such as topical vaccinations or agents used in the field of regenerative medicine. In recent years, it could be shown that particles penetrate very effectively into the hair follicles. In the present study, the influence of particle size on the follicular penetration depths was examined. The penetration depths of two different types of particles sized 122 to 1000 nm were determined in vitro on porcine skin. The results revealed that the particles of medium size (643 and 646 nm, respectively) penetrated deeper into the porcine hair follicles than smaller or larger particles. It was concluded that by varying the particle size, different sites within the porcine hair follicle can be targeted selectively. For the human terminal hair follicle, the situation can be expected to be similar due to a similar size ratio of the hair follicles. PMID:21087645
Parameterization of ionization induced in the atmosphere by precipitating particles
Artamonov, Anton; Usoskin, Ilya; Kovaltsov, Gennady
We present a physical model to calculate ionization induced in the atmosphere by precipitating particles. This model is based on the Bethe-Bloch equation applied for precipitating particles such as: electrons, alpha-particles and protons. The energy range of precipitating particles is up to 5MeV and 80MeV/nuc respectively. This model provides an easy implementation with a robust realization of model calculations for a wide range of incident energies of precipitating particles. This method is limited to the upper-middle atmosphere. An ionization yield function [see, Usoskin and Kovaltsov, 2006; Usoskin, Kovaltsov, Mironova, 2010] can be also used in this model, making it possible to calculate the atmospheric ionization effect of precipitating particles for the entire atmosphere, dawn to the ground.
Particle-based simulations of self-motile suspensions
Hinz, Denis F; Kim, Tae-Yeon; Fried, Eliot
2013-01-01
A simple model for simulating flows of active suspensions is investigated. The approach is based on dissipative particle dynamics. While the model is potentially applicable to a wide range of self-propelled particle systems, the specific class of self-motile bacterial suspensions is considered as a modeling scenario. To mimic the rod-like geometry of a bacterium, two dissipative particle dynamics particles are connected by a stiff harmonic spring to form an aggregate dissipative particle dynamics molecule. Bacterial motility is modeled through a constant self-propulsion force applied along the axis of each such aggregate molecule. The model accounts for hydrodynamic interactions between self-propelled agents through the pairwise dissipative interactions conventional to dissipative particle dynamics. Numerical simulations are performed using a customized version of the open-source LAMMPS (Large-scale Atomic/Molecular Massively Parallel Simulator) software package. Detailed studies of the influence of agent con...
Simulating Deposition of Aerosol Particles on Single Fiber Surface
Institute of Scientific and Technical Information of China (English)
FU Hai-ming; ZHU Hui
2009-01-01
The stochastic simulation method, based on the concept of control window and the numerical solution of the Langevin equation, is applied to solve the deposition problem of particles from the flowing suspensions onto a fiber collector. Using the Kuwabara model to characterize the flow field, the effects of Stokes number, interception parameter, packing density, particle size distribution on the collection efficiency, and the deposition morphology of particles onto a collector areexamined. The morphology of deposit obtained in the simulated results agrees well with experimental observations. The estimation of the initial collection efficiency through the simulations considers that the deposited particles are in good agreement with published experimental data. In addition, the collection efficiency of particles increases in a wider particle size distribution region.
Design of Low Noise Microwave Amplifiers Using Particle Swarm Optimization
Directory of Open Access Journals (Sweden)
Sadık Ülker
2012-07-01
Full Text Available This short paper presents a work on the design of low noise microwave amplifiers using particle swarm optimization (PSO technique. Particle Swarm Optimization is used as a method that is applied to a single stage amplifier circuit to meet two criteria: desired gain and desired low noise. The aim is to get the best optimized design using the predefined constraints for gain and low noise values. The code is written to apply the algorithm to meet the desired goals and the obtained results are verified using different simulators. The results obtained show that PSO can be applied very efficiently for this kind of design problems with multiple constraints.
WORKSHOP: Stable particle motion
International Nuclear Information System (INIS)
Full text: Particle beam stability is crucial to any accelerator or collider, particularly big ones, such as Brookhaven's RHIC heavy ion collider and the larger SSC and LHC proton collider schemes. A workshop on the Stability of Particle Motion in Storage Rings held at Brookhaven in October dealt with the important issue of determining the short- and long-term stability of single particle motion in hadron storage rings and colliders, and explored new methods for ensuring it. In the quest for realistic environments, the imperfections of superconducting magnets and the effects of field modulation and noise were taken into account. The workshop was divided into three study groups: Short-Term Stability in storage rings, including chromatic and geometric effects and correction strategies; Long-Term Stability, including modulation and random noise effects and slow varying effects; and Methods for determining the stability of particle motion. The first two were run in parallel, but the third was attended by everyone. Each group considered analytical, computational and experimental methods, reviewing work done so far, comparing results and approaches and underlining outstanding issues. By resolving conflicts, it was possible to identify problems of common interest. The workshop reaffirmed the validity of methods proposed several years ago. Major breakthroughs have been in the rapid improvement of computer capacity and speed, in the development of more sophisticated mathematical packages, and in the introduction of more powerful analytic approaches. In a typical storage ring, a particle may be required to circulate for about a billion revolutions. While ten years ago it was only possible to predict accurately stability over about a thousand revolutions, it is now possible to predict over as many as one million turns. If this trend continues, in ten years it could become feasible to predict particle stability over the entire storage period. About ninety participants
Helicity formalism for spin-2 particles
Energy Technology Data Exchange (ETDEWEB)
Gleisberg, Tanju [Institut fuer Theoretische Physik, TU Dresden, D-01062 Dresden (Germany); Physics Department, University of Florida, Gainesville, FL 32611 (United States); Krauss, Frank [Theory Division, CERN, CH-1211 Geneva 23 (Switzerland); Matchev, Konstantin T. [Physics Department, University of Florida, Gainesville, FL 32611 (United States) and LEPP, Cornell University, Ithaca, NY 14853 (United States)]. E-mail: matchev@mail.lns.cornell.edu; Schaelicke, Andreas [Institut fuer Theoretische Physik, TU Dresden, D-01062 Dresden (Germany); Schumann, Steffen [Institut fuer Theoretische Physik, TU Dresden, D-01062 Dresden (Germany); Soff, Gerhard [Institut fuer theoretische Physik, TU Dresden, D-01062 Dresden (Germany)
2003-09-01
We develop the helicity formalism for spin-2 particles and apply it to the case of gravity in flat extra dimensions. We then implement the large extra dimensions scenario of Arkani-Hamed, Dimopoulos and Dvali in the program AMEGIC++, allowing for an easy calculation of arbitrary processes involving the emission or exchange of gravitons. We complete the set of Feynman rules derived by Han, Lykken and Zhang, and perform several consistency checks of our implementation. (author)
Distributed Parallel Particle Advection using Work Requesting
Energy Technology Data Exchange (ETDEWEB)
Muller, Cornelius; Camp, David; Hentschel, Bernd; Garth, Christoph
2013-09-30
Particle advection is an important vector field visualization technique that is difficult to apply to very large data sets in a distributed setting due to scalability limitations in existing algorithms. In this paper, we report on several experiments using work requesting dynamic scheduling which achieves balanced work distribution on arbitrary problems with minimal communication overhead. We present a corresponding prototype implementation, provide and analyze benchmark results, and compare our results to an existing algorithm.
Recent trends in particle accelerator radiation safety
International Nuclear Information System (INIS)
The use of particle accelerators in applied and research activities continues to expand, bringing new machines with higher energy and current capabilities which create radiation safety problems not commonly encountered before. An overview is given of these increased ionizing radiation hazards, along with a discussion of some of the new techniques required in evaluating and controlling them. A computer search of the literature provided a relatively comprehensive list of publications describing accelerator radiation safety problems and related subjects
Controlling Charged Particles with Inhomogeneous Electrostatic Fields
Herrero, Federico A. (Inventor)
2016-01-01
An energy analyzer for a charged-particle spectrometer may include a top deflection plate and a bottom deflection plate. The top and bottom deflection plates may be non-symmetric and configured to generate an inhomogeneous electrostatic field when a voltage is applied to one of the top or bottom deflection plates. In some instances, the top and bottom deflection plates may be L-shaped deflection plates.
Incompressible smoothed particle hydrodynamics
International Nuclear Information System (INIS)
We present a smoothed particle hydrodynamic model for incompressible fluids. As opposed to solving a pressure Poisson equation in order to get a divergence-free velocity field, here incompressibility is achieved by requiring as a kinematic constraint that the volume of the fluid particles is constant. We use Lagrangian multipliers to enforce this restriction. These Lagrange multipliers play the role of non-thermodynamic pressures whose actual values are fixed through the kinematic restriction. We use the SHAKE methodology familiar in constrained molecular dynamics as an efficient method for finding the non-thermodynamic pressure satisfying the constraints. The model is tested for several flow configurations
International Nuclear Information System (INIS)
Apparatus and a method for collecting particles formed by vaporisation during a high temperature treatment of steel (eg cutting or welding) are described in which gas is drawn from the area in which the treatment is taking place through a collector in which the particles are separated magnetically. The air may be drawn by an air ejector from a hood around the treatment area. The invention has particular application where the high temperature treatment is the laser cutting of the stainless steel wrapper around a nuclear fuel sub-assembly. (author)
Faessler, Amand
1971-01-01
Progress in Particle and Nuclear Physics, Volume 26 covers the significant advances in understanding the fundamentals of particle and nuclear physics. This volume is divided into four chapters, and begins with a brief overview of the various possible ideas beyond the standard model, the problem they address and their experimental tests. The next chapter deals with the basic physics of neutrino mass based on from a gauge theoretic point of view. This chapter considers the various extensions of the standard electroweak theory, along with their implications for neutrino physics. The discussio
International Nuclear Information System (INIS)
This patent claim on behalf of I.C.I. Ltd., relates to the preparation and use of composite magnetic particles, comprising a low density core, and having a magnetic coating over at least a proportion of the surface. The density of such particles can be chosen to suit a range of applications, e.g. in affinity chromatography, in radioimmunoassay, in the transport of the associated component, such as a drug or enzyme, to a specific site in a living organism. (U.K.)
Institute of Scientific and Technical Information of China (English)
F. Zonca; G.Y. Fu; S.J. Wang
2007-01-01
@@ The confinement properties of energetic (EsslMeV) ions are a crucial aspect of burning plasmas since they are present both as fast particles generated via additional heating and current drive systems as well as charged fusion products. In the first case, successful plasma operations rely on the possibility of controlling plasma current and flow profiles via neutral beam injection (NBI) and plasma temperature profiles by both NBI and ion cyclotron resonant heating (ICRH). In the second case, fusion alpha particles must provide a significant fraction of the local power density, which is ultimately necessary for the sustainment of the plasma burning.
Olive, K. A.; Particle Data Group
2014-08-01
The Review summarizes much of particle physics and cosmology. Using data from previous editions, plus 3,283 new measurements from 899 papers, we list, evaluate, and average measured properties of gauge bosons and the recently discovered Higgs boson, leptons, quarks, mesons, and baryons. We summarize searches for hypothetical particles such as heavy neutrinos, supersymmetric and technicolor particles, axions, dark photons, etc. All the particle properties and search limits are listed in Summary Tables. We also give numerous tables, figures, formulae, and reviews of topics such as Supersymmetry, Extra Dimensions, Particle Detectors, Probability, and Statistics. Among the 112 reviews are many that are new or heavily revised including those on: Dark Energy, Higgs Boson Physics, Electroweak Model, Neutrino Cross Section Measurements, Monte Carlo Neutrino Generators, Top Quark, Dark Matter, Dynamical Electroweak Symmetry Breaking, Accelerator Physics of Colliders, High-Energy Collider Parameters, Big Bang Nucleosynthesis, Astrophysical Constants and Cosmological Parameters. All tables, listings, and reviews (and errata) are also available on the Particle Data Group website: http://pdg.lbl.gov. Contents Abstract, Contributors, Highlights and Table of ContentsAcrobat PDF (4.4 MB) IntroductionAcrobat PDF (595 KB) Particle Physics Summary Tables Gauge and Higgs bosonsAcrobat PDF (204 KB) LeptonsAcrobat PDF (167 KB) QuarksAcrobat PDF (115 KB) MesonsAcrobat PDF (976 KB) BaryonsAcrobat PDF (384 KB) Searches (Supersymmetry, Compositeness, etc.)Acrobat PDF (120 KB) Tests of conservation lawsAcrobat PDF (383 KB) Reviews, Tables, and Plots Detailed contents for this sectionAcrobat PDF (73 KB) Constants, Units, Atomic and Nuclear PropertiesAcrobat PDF (395 KB) Standard Model and Related TopicsAcrobat PDF (8.37 MB) Astrophysics and CosmologyAcrobat PDF (3.79 MB) Experimental Methods and CollidersAcrobat PDF (3.82 MB) Mathematical Tools of Statistics, Monte Carlo, Group Theory Acrobat
International Nuclear Information System (INIS)
As the Palais de la Decouverte (in Paris) is the sole scientific vulgarization establishment in the world to operate an actual particle accelerator able to provoke different types of nuclear reactions, the author recalls some historical aspects of the concerned department since the creation of the 'Radioactivity - Atom synthesis' department in 1937. He recalls the experiments which were then performed, the installation of the particle accelerator in 1964 and its renewal. He describes what's going on in this accelerator. He gives an overview of the difficulties faced after it has been decided to move it, of the works which had to be performed, and of radiation protection measures
Alpha particles in fusion research
International Nuclear Information System (INIS)
This collection of 39 (mostly view graph) presentations addresses various aspects of alpha particle physics in thermonuclear fusion research, including energy balance and alpha particle losses, transport, the influence of alpha particles on plasma stability, helium ash, the transition to and sustainment of a burning fusion plasma, as well as alpha particle diagnostics. Refs, figs and tabs
Fabrication and Modification of Nanoporous Silicon Particles
Ferrari, Mauro; Liu, Xuewu
2010-01-01
etching (RIE), may be applied to make the surface rough. This helps remove the nucleation layer. A protective layer is then deposited on the wafer. The protective layer, such as silicon nitride film or photoresist film, protects the wafer from electrochemical etching in an HF-based solution. A lithography technique is applied to pattern the particles onto the protective film. The undesired area of the protective film is removed, and the protective film on the back side of the wafer is also removed. Then the pattern is exposed to HF/surfactant solution, and a larger DC electrical current is applied to the wafers for a selected time. This step removes the nucleation layer. Then a DC current is applied to generate the nanopores. Next, a large electrical current is applied to generate a release layer. The particles are mechanically suspended in the solvent and collected by filtration or centrifuge.
Homogeneous Biosensing Based on Magnetic Particle Labels
Schrittwieser, Stefan
2016-06-06
The growing availability of biomarker panels for molecular diagnostics is leading to an increasing need for fast and sensitive biosensing technologies that are applicable to point-of-care testing. In that regard, homogeneous measurement principles are especially relevant as they usually do not require extensive sample preparation procedures, thus reducing the total analysis time and maximizing ease-of-use. In this review, we focus on homogeneous biosensors for the in vitro detection of biomarkers. Within this broad range of biosensors, we concentrate on methods that apply magnetic particle labels. The advantage of such methods lies in the added possibility to manipulate the particle labels by applied magnetic fields, which can be exploited, for example, to decrease incubation times or to enhance the signal-to-noise-ratio of the measurement signal by applying frequency-selective detection. In our review, we discriminate the corresponding methods based on the nature of the acquired measurement signal, which can either be based on magnetic or optical detection. The underlying measurement principles of the different techniques are discussed, and biosensing examples for all techniques are reported, thereby demonstrating the broad applicability of homogeneous in vitro biosensing based on magnetic particle label actuation.
Homogeneous Biosensing Based on Magnetic Particle Labels
Schrittwieser, Stefan; Pelaz, Beatriz; Parak, Wolfgang J.; Lentijo-Mozo, Sergio; Soulantica, Katerina; Dieckhoff, Jan; Ludwig, Frank; Guenther, Annegret; Tschöpe, Andreas; Schotter, Joerg
2016-01-01
The growing availability of biomarker panels for molecular diagnostics is leading to an increasing need for fast and sensitive biosensing technologies that are applicable to point-of-care testing. In that regard, homogeneous measurement principles are especially relevant as they usually do not require extensive sample preparation procedures, thus reducing the total analysis time and maximizing ease-of-use. In this review, we focus on homogeneous biosensors for the in vitro detection of biomarkers. Within this broad range of biosensors, we concentrate on methods that apply magnetic particle labels. The advantage of such methods lies in the added possibility to manipulate the particle labels by applied magnetic fields, which can be exploited, for example, to decrease incubation times or to enhance the signal-to-noise-ratio of the measurement signal by applying frequency-selective detection. In our review, we discriminate the corresponding methods based on the nature of the acquired measurement signal, which can either be based on magnetic or optical detection. The underlying measurement principles of the different techniques are discussed, and biosensing examples for all techniques are reported, thereby demonstrating the broad applicability of homogeneous in vitro biosensing based on magnetic particle label actuation. PMID:27275824
Homogeneous Biosensing Based on Magnetic Particle Labels
Directory of Open Access Journals (Sweden)
Stefan Schrittwieser
2016-06-01
Full Text Available The growing availability of biomarker panels for molecular diagnostics is leading to an increasing need for fast and sensitive biosensing technologies that are applicable to point-of-care testing. In that regard, homogeneous measurement principles are especially relevant as they usually do not require extensive sample preparation procedures, thus reducing the total analysis time and maximizing ease-of-use. In this review, we focus on homogeneous biosensors for the in vitro detection of biomarkers. Within this broad range of biosensors, we concentrate on methods that apply magnetic particle labels. The advantage of such methods lies in the added possibility to manipulate the particle labels by applied magnetic fields, which can be exploited, for example, to decrease incubation times or to enhance the signal-to-noise-ratio of the measurement signal by applying frequency-selective detection. In our review, we discriminate the corresponding methods based on the nature of the acquired measurement signal, which can either be based on magnetic or optical detection. The underlying measurement principles of the different techniques are discussed, and biosensing examples for all techniques are reported, thereby demonstrating the broad applicability of homogeneous in vitro biosensing based on magnetic particle label actuation.
Inventions Utilizing Microfluidics and Colloidal Particles
Marr, David W.; Gong, Tieying; Oakey, John; Terray, Alexander V.; Wu, David T.
2009-01-01
Several related inventions pertain to families of devices that utilize microfluidics and/or colloidal particles to obtain useful physical effects. The families of devices can be summarized as follows: (1) Microfluidic pumps and/or valves wherein colloidal-size particles driven by electrical, magnetic, or optical fields serve as the principal moving parts that propel and/or direct the affected flows. (2) Devices that are similar to the aforementioned pumps and/or valves except that they are used to manipulate light instead of fluids. The colloidal particles in these devices are substantially constrained to move in a plane and are driven to spatially order them into arrays that function, variously, as waveguides, filters, or switches for optical signals. (3) Devices wherein the ultra-laminar nature of microfluidic flows is exploited to effect separation, sorting, or filtering of colloidal particles or biological cells in suspension. (4) Devices wherein a combination of confinement and applied electrical and/or optical fields forces the colloidal particles to become arranged into three-dimensional crystal lattices. Control of the colloidal crystalline structures could be exploited to control diffraction of light. (5) Microfluidic devices, incorporating fluid waveguides, wherein switching of flows among different paths would be accompanied by switching of optical signals.
Testing Transport Theories with Solar Energetic Particles
Dröge, W.; Kartavykh, Y. Y.
2009-03-01
The detailed modeling of solar particle events offers the possibility of deriving coefficients describing the propagation of energetic particles in the inner heliosphere such as scattering mean free paths and thus to test the validity of different theories for the interaction of the particles with magnetic field fluctuations. In addition, information about the three-dimensional structure and the dynamical properties of the fluctuations can be obtained and compared with results from direct magnetic field observations. We apply different methods to numerically solve the focused transport equation for pitch angle diffusion coefficients calculated from standard and dynamical quasi-linear theory, and investigate the resulting pitch angle distributions for 100 keV electrons and for MeV protons. We find that pitch angle distributions predicted for electrons from a model comprising dynamical quasi-linear theory and the assumption that the fluctuations are composed of a 20% slab and an 80% two-dimensional component differ significantly from those predicted for protons. A comparison with particle observations from the solar event of 2000 February 18 reveals that these predictions are also in strong disagreement with the observed electron pitch angle distributions. Our findings indicate that the above model, inspite of its recent success in making quantitatively correct predictions for the particle's scattering mean free path parallel to the average magnetic field from observations of solar wind turbulence, is still not complete.
Alpha particle effects on MHD ballooning
International Nuclear Information System (INIS)
During the period, as the first step towards the goal of detail understanding of the effects of alpha particle on MHD Ballooning Modes, a new numerical approach to investigate the stability of low-frequency fluctuations in high temperature tokamaks was developed by solving the gyrokinetic equations for the ion and electron directly as an initial value problem. The advantage of this approach is the inclusion of many important kinetic features of the problem without approximations and computationally more economical than particle-pushing simulation. The ion-temperature-gradient-mode was investigated to benchmark this new simulation technique. Previous results in literature were recovered. Both the adiabatic electron model and the full drift-kinetic electron model are studied. Numerical result shows that the full drift-kinetic electron model is more unstable. The development of subcycling technique to handle the fast electron bounce time is particularly significant to apply this new approach to the alpha particle problem since alpha particle bounce frequency is also significantly higher than the mode frequency. This new numerical technique will be the basis of future study of the microstability in high temperature tokamaks with alpha particles (or any energetic species). 15 refs., 13 figs
Conversation Analysis in Applied Linguistics
DEFF Research Database (Denmark)
Kasper, Gabriele; Wagner, Johannes
2014-01-01
For the last decade, conversation analysis (CA) has increasingly contributed to several established fields in applied linguistics. In this article, we will discuss its methodological contributions. The article distinguishes between basic and applied CA. Basic CA is a sociological endeavor concerned...... been driven by applied work. After laying out CA's standard practices of data treatment and analysis, this article takes up the role of comparison as a fundamental analytical strategy and reviews recent developments into cross-linguistic and cross-cultural directions. The remaining article focuses...... on learning and development. In conclusion, we address some emerging themes in the relationship of CA and applied linguistics, including the role of multilingualism, standard social science methods as research objects, CA's potential for direct social intervention, and increasing efforts to complement CA...
Graduation Credit for Applied Academics.
Rose, Dennis M.
1988-01-01
Describes a pilot project in applied academics that involved hiring certified mathemathics and science instructors so that students could obtain academic rather than vocational credit for material that vocational instructors had previously taught. (JOW)
Shock Thermodynamic Applied Research Facility
Federal Laboratory Consortium — The Shock Thermodynamic Applied Research Facility (STAR) facility, within Sandia’s Solid Dynamic Physics Department, is one of a few institutions in the world with...
Applied statistical inference with MINITAB
Lesik, Sally
2009-01-01
Through clear, step-by-step mathematical calculations, Applied Statistical Inference with MINITAB enables students to gain a solid understanding of how to apply statistical techniques using a statistical software program. It focuses on the concepts of confidence intervals, hypothesis testing, validating model assumptions, and power analysis.Illustrates the techniques and methods using MINITABAfter introducing some common terminology, the author explains how to create simple graphs using MINITAB and how to calculate descriptive statistics using both traditional hand computations and MINITAB. Sh
A Model for Predicting Magnetic Targeting of Multifunctional Particles in the Microvasculature
Furlani, E J
2006-01-01
A mathematical model is presented for predicting magnetic targeting of multifunctional carrier particles that are designed to deliver therapeutic agents to malignant tissue in vivo. These particles consist of a nonmagnetic core material that contains embedded magnetic nanoparticles and therapeutic agents such as photodynamic sensitizers. For in vivo therapy, the particles are injected into the vascular system upstream from malignant tissue, and captured at the tumor using an applied magnetic field. The applied field couples to the magnetic nanoparticles inside the carrier particle and produces a force that attracts the particle to the tumor. In noninvasive therapy the applied field is produced by a permanent magnet positioned outside the body. In this paper a mathematical model is developed for predicting noninvasive magnetic targeting of therapeutic carrier particles in the microvasculature. The model takes into account the dominant magnetic and fluidic forces on the particles and leads to an analytical expr...
Exact simulation of polarized light reflectance by particle deposits
Ramezan Pour, B.; Mackowski, D. W.
2015-12-01
The use of polarimetric light reflection measurements as a means of identifying the physical and chemical characteristics of particulate materials obviously relies on an accurate model of predicting the effects of particle size, shape, concentration, and refractive index on polarized reflection. The research examines two methods for prediction of reflection from plane parallel layers of wavelength—sized particles. The first method is based on an exact superposition solution to Maxwell's time harmonic wave equations for a deposit of spherical particles that are exposed to a plane incident wave. We use a FORTRAN-90 implementation of this solution (the Multiple Sphere T Matrix (MSTM) code), coupled with parallel computational platforms, to directly simulate the reflection from particle layers. The second method examined is based upon the vector radiative transport equation (RTE). Mie theory is used in our RTE model to predict the extinction coefficient, albedo, and scattering phase function of the particles, and the solution of the RTE is obtained from adding—doubling method applied to a plane—parallel configuration. Our results show that the MSTM and RTE predictions of the Mueller matrix elements converge when particle volume fraction in the particle layer decreases below around five percent. At higher volume fractions the RTE can yield results that, depending on the particle size and refractive index, significantly depart from the exact predictions. The particle regimes which lead to dependent scattering effects, and the application of methods to correct the vector RTE for particle interaction, will be discussed.
Particle Physics and Cosmology
Pralavorio, P
2015-01-01
Today, both particle physics and cosmology are described by few parameter Standard Models, i.e. it is possible to deduce consequence of particle physics in cosmology and vice verse. The former is examined in this lecture, in light of the recent systematic exploration of the electroweak scale by the LHC experiments. The two main results of the first phase of the LHC, the discovery of a Higgs-like particle and the absence so far of new particles predicted by "natural" theories beyond the Standard Model (supersymmetry, extra-dimension and composite Higgs) are put in a historical context to enlighten their importance and then presented extensively. To be complete, a short review from the neutrino physics, which can not be probed at LHC, is also given. The ability of all these results to resolve the 3 fundamental questions of cosmology about the nature of dark energy and dark matter as well as the origin of matter-antimatter asymmetry is discussed in each case.
Raffelt, G. G.
1997-01-01
Recent developments of those areas of astro-particle physics are discussed that were represented at the HEP97 conference. In particular, the current status of direct and indirect dark-matter searches and of TeV neutrino and gamma-ray astronomy will be reviewed.
Supertwistors and massive particles
Energy Technology Data Exchange (ETDEWEB)
Mezincescu, Luca, E-mail: mezincescu@server.physics.miami.edu [Department of Physics, University of Miami, Coral Gables, FL 33124 (United States); Routh, Alasdair J., E-mail: a.j.routh@damtp.cam.ac.uk [DAMTP, CMS, Wilberforce Road, Cambridge CB3 0WA (United Kingdom); Townsend, Paul K., E-mail: p.k.townsend@damtp.cam.ac.uk [DAMTP, CMS, Wilberforce Road, Cambridge CB3 0WA (United Kingdom)
2014-07-15
In the (super)twistor formulation of massless (super)particle mechanics, the mass-shell constraint is replaced by a “spin-shell” constraint from which the spin content can be read off. We extend this formalism to massive (super)particles (with N-extended space–time supersymmetry) in three and four space–time dimensions, explaining how the spin-shell constraints are related to spin, and we use it to prove equivalence of the massive N=1 and BPS-saturated N=2 superparticle actions. We also find the supertwistor form of the action for “spinning particles” with N-extended worldline supersymmetry, massless in four dimensions and massive in three dimensions, and we show how this simplifies special features of the N=2 case. -- Highlights: •Spin-shell constraints are related to Poincaré Casimirs. •Twistor form of 4D spinning particle for spin N/2. •Twistor proof of scalar/antisymmetric tensor equivalence for 4D spin 0. •Twistor form of 3D particle with arbitrary spin. •Proof of equivalence of N=1 and N=2 BPS massive 4D superparticles.
Matter: the fundamental particles
Landua, Rolf
2007-01-01
"The largest particle physics centre in the world is located in Europe. It straddles the Franco-Swiss border, near Geneva. At CERN - the European Organisation for Nuclear Research , which is focused on the science of nuclear matter rather than on the exploitation of atomic energy - there are over 6 500 scientists." (1 page)
Smoothed Particle Hydrodynamic Simulator
Energy Technology Data Exchange (ETDEWEB)
2016-10-05
This code is a highly modular framework for developing smoothed particle hydrodynamic (SPH) simulations running on parallel platforms. The compartmentalization of the code allows for rapid development of new SPH applications and modifications of existing algorithms. The compartmentalization also allows changes in one part of the code used by many applications to instantly be made available to all applications.
Georgi, Howard; Wilczek, Frank; Tinyakov, Peter; Tytgat, Michel
2013-03-01
2011 marked the hundredth anniversary both of the famous Solvay conferences, and of the Geiger-Marsden experiment that launched the modern understanding of subatomic structure. I was asked to survey the status and prospects of particle physics for the anniversary Solvay conference, with appropriate perspective. This is my attempt.
Elementary Particles and Forces.
Quigg, Chris
1985-01-01
Discusses subatomic particles (quarks, leptons, and others) revealed by higher accelerator energies. A connection between forces at this subatomic level has been established, and prospects are good for a description of forces that encompass binding atomic nuclei. Colors, fundamental interactions, screening, camouflage, electroweak symmetry, and…
Particle physics experiments 1992
International Nuclear Information System (INIS)
The research programs described here were carried out in 1992 at Rutherford Appleton Laboratory and funded by the United Kingdom Science and Engineering Research Council. The area covered in these experiments is particle physics. Unedited contributions from over forty experimental programs are included. Experiments are listed according to their current status, the accelerator used and its years of operation. (UK)
Radford, T
2001-01-01
For more than a decade, scientists at CERN have been hoping that a key theoretical particle called the Higgs boson, would turn up in a subatomic collision. Some of them are now though beginning to wonder if it has ever existed.
Berggren, Mark
2010-01-01
The Lunar Soil Particle Separator (LSPS) beneficiates soil prior to in situ resource utilization (ISRU). It can improve ISRU oxygen yield by boosting the concentration of ilmenite, or other iron-oxide-bearing materials found in lunar soils, which can substantially reduce hydrogen reduction reactor size, as well as drastically decreasing the power input required for soil heating
Particle physics experiments 1988
International Nuclear Information System (INIS)
This report describes work carried out in 1988 on experiments approved by the Particle Physics Experiments Selection Panel. The contents consist of unedited contributions from each experiment. More than forty projects at different accelerators (SPS, ISIS, PETRA, LAMPF, LEP, HERA, BNL, ILL, LEAR) are listed. Different organisations collaborate on different projects. A brief progress report is given. References to published articles are given. (author)
International Nuclear Information System (INIS)
In this review, some of the important aspects of energetic solar particles and their relation to solar physics are discussed. The major aspects of solar cosmic ray studies currently under investigation are identified and attention is focussed on the problems of the physical processes in the sun which may be responsible for these phenomena. The studies of the composition and energy spectra of solar cosmic ray nuclei are related to the basic problem of particle acceleration process in sun and to the composition of elements in solar atmosphere. The composition of higher energy (>20 MeV/amu) multiply charged nuclei of He, C, N, O, Ne, Mg, Si and Fe give information on the abundance of elements in the solar atmosphere. At lower energies (approximately 1-10 MeV/amu), the abundances of these elements show enhancements relative to solar abundances and these enhancements are believed to be due to particle acceleration mechanisms operative in the sun which are not fully understood at present. Studies of the relative abundances of H2, H3 and He3 isotopes and Li, Be, B nuclei in the solar cosmic rays can also be studied. The question of the relationship of the accelerated particles in the sun to the optical flare phenomena is discussed. Further studies of different aspects of these phenomena may give important clues to a wide ranging phenomena in the active sun. The observational methods employed for these studies are mentioned. (A.K.)
Humphries, Stanley
2013-01-01
Detailed enough for a text and sufficiently comprehensive for a reference, this volume addresses topics vital to understanding high-power accelerators and high-brightness-charged particle beams. Subjects include stochastic cooling, high-brightness injectors, and the free electron laser. Humphries provides students with the critical skills necessary for the problem-solving insights unique to collective physics problems. 1990 edition.
Antonella Del Rosso
2012-01-01
In beautiful agreement with the Standard Model, two new excited states (see below) of the Λb beauty particle have just been observed by the LHCb Collaboration. Similarly to protons and neutrons, Λb is composed of three quarks. In the Λb’s case, these are up, down and… beauty. Although discovering new particles is increasingly looking like a routine exercise for the LHC experiments (see previous features), it is far from being an obvious performance, particularly when the mass of the particles is high. Created in the high-energy proton-proton collisions produced by the LHC, these new excited states of the Λb particle have been found to have a mass of, respectively, 5912 MeV/c2 and 5920 MeV/c2. In other words, they are over five times heavier than the proton or the neutron. Physicists only declare a discovery when data significantly show the relevant signal. In order to do that, they often have to analyse large samples of data. To ...
Particle physics experiments 1982
International Nuclear Information System (INIS)
Work carried out in 1982 on 52 experiments approved by the Particle Physics Experiments Selection Panel is described. Each experiment is listed under title, collaboration, technique, accelerator, year of running, status and spokesman. Unedited contributions are given from each experiment. (U.K.)
Turner, Michael Stanley
2005-01-01
Particle physics was, until recently, the flagship of U.S. physics. if not U.S. science. With ever larger "atom smasher" and such charismatic figures as J.R. Oppenheimer and Richard Feynamn, the field attracted the best and the brightest (1 page)
Determination of reactivity rates of silicate particle-size fractions
Directory of Open Access Journals (Sweden)
Angélica Cristina Fernandes Deus
2014-04-01
Full Text Available The efficiency of sources used for soil acidity correction depends on reactivity rate (RR and neutralization power (NP, indicated by effective calcium carbonate (ECC. Few studies establish relative efficiency of reactivity (RER for silicate particle-size fractions, therefore, the RER applied for lime are used. This study aimed to evaluate the reactivity of silicate materials affected by particle size throughout incubation periods in comparison to lime, and to calculate the RER for silicate particle-size fractions. Six correction sources were evaluated: three slags from distinct origins, dolomitic and calcitic lime separated into four particle-size fractions (2, 0.84, 0.30 and <0.30-mm sieves, and wollastonite, as an additional treatment. The treatments were applied to three soils with different texture classes. The dose of neutralizing material (calcium and magnesium oxides was applied at equal quantities, and the only variation was the particle-size material. After a 90-day incubation period, the RER was calculated for each particle-size fraction, as well as the RR and ECC of each source. The neutralization of soil acidity of the same particle-size fraction for different sources showed distinct solubility and a distinct reaction between silicates and lime. The RER for slag were higher than the limits established by Brazilian legislation, indicating that the method used for limes should not be used for the slags studied here.
Magnetic particle characterization-magnetophoretic mobility and particle size.
Zhou, Chen; Boland, Eugene D; Todd, Paul W; Hanley, Thomas R
2016-06-01
Quantitative characterization of magnetic particles is useful for analysis and separation of labeled cells and magnetic particles. A particle velocimeter is used to directly measure the magnetophoretic mobility, size, and other parameters of magnetic particle suspensions. The instrument provides quantitative video analysis of particles and their motion. The trajectories of magnetic particles in an isodynamic magnetic field are recorded using a high-definition camera/microscope system for image collection. Image analysis software then converts the image data to the parameters of interest. The distribution of magnetophoretic mobility is determined by combining fast image analysis with velocimetry measurements. Particle size distributions have been characterized to provide a better understanding of sample quality. The results have been used in the development and operation of analyzer protocols for counting particle concentrations accurately and measuring magnetic susceptibility and size for simultaneous display for routine application to particle suspensions and magnetically labeled biological cells. © 2016 International Society for Advancement of Cytometry.
Institute of Scientific and Technical Information of China (English)
沈辉; 徐雪青; 王伟
2003-01-01
The surface morphology of quasi-periodic stripe-shaped patterns of magnetite fluids was observed in applied perpendicular magnetic fields by means of scanning electron microscopy. The nanoparticles of the magnetite fluids are arranged in oriental quasilinear chains in applied perpendicular magnetic fields as observed using transmission electron microscopy. This arrangement results from particle-particle interactions and particle-carrier liquids interactions, which are eventually controlled by the magnetic fields distribution.
Technology Assessment of Dust Suppression Techniques applied During Structural Demolition
Energy Technology Data Exchange (ETDEWEB)
Boudreaux, J.F.; Ebadian, M.A.; Dua, S.K.
1997-08-06
Hanford, Fernald, Savannah River, and other sites are currently reviewing technologies that can be implemented to demolish buildings in a cost-effective manner. In order to demolish a structure and, at the same time, minimize the amount of dust generated by a given technology, an evaluation must be conducted to choose the most appropriate dust suppression technology. Thus, the purpose of this research, which was conducted by the Hemispheric Center for Environmental Technology (HCET) at Florida International University (FIU), was to perform an experimental study of dust aerosol abatement (dust suppression) methods as applied to nuclear D and D. This experimental study specifically targeted the problem of dust suppression during demolition. The resulting data were used in the development of mathematical correlations that can be applied to structural demolition. In the Fiscal Year 1996 (FY96), the effectiveness of different dust suppressing agents was investigated for different types of concrete blocks. Initial tests were conducted in a broad particle size range. In Fiscal Year 1997 (FY97), additional tests were performed in the size range in which most of the particles were detected. Since particle distribution is an important parameter for predicting deposition in various compartments of the human respiratory tract, various tests were aimed at determining the particle size distribution of the airborne dust particles. The effectiveness of dust suppressing agents for particles of various size was studied. Instead of conducting experiments on various types of blocks, it was thought prudent to carry out additional tests on blocks of the same type. Several refinements were also incorporated in the test procedures and data acquisition system used in FY96.
Zhao, Xiaofei; Wang, Xiaoling; Dong, Kai; Zhang, Yongliang; Hu, Yue; Zhang, Xin; Chen, Yanmei; Wang, Xianbing; Han, Chenggui; Yu, Jialin; Li, Dawei
2015-01-01
Plant virus coat proteins (CPs) play a fundamental role in protection of genomic RNAs, virion assembly, and viral movement. Although phosphorylation of several CPs during virus infection have been reported, little information is available about CP phosphorylation of the spherical RNA plant viruses. Here, we demonstrate that the CP of Beet black scorch virus (BBSV), a member of the genus Necrovirus, can be phosphorylated at threonine-41 (T41) by cAMP-dependent protein kinase (PKA)-like kinase in vivo and in vitro. Mutant viruses containing a T41A non-phosphorylatable alanine substitution, and a T41E glutamic acid substitution to mimic threonine phosphorylation were able to replicate but were unable to move systemically in Nicotiana benthamiana. Interestingly, the T41A and T41E mutants generated unstable 17 nm virus-like particles that failed to package viral genomic (g) RNA, compared with wild-type BBSV with 30 nm virions during viral infection in N. benthamiana. Further analyses showed that the T41 mutations had little effect on the gRNA-binding activity of the CP. Therefore, we propose a model whereby CP phosphorylation plays an essential role in long-distance movement of BBSV that involves formation of stable virions.
Zhao, Xiaofei; Wang, Xiaoling; Dong, Kai; Zhang, Yongliang; Hu, Yue; Zhang, Xin; Chen, Yanmei; Wang, Xianbing; Han, Chenggui; Yu, Jialin; Li, Dawei
2015-01-01
Plant virus coat proteins (CPs) play a fundamental role in protection of genomic RNAs, virion assembly, and viral movement. Although phosphorylation of several CPs during virus infection have been reported, little information is available about CP phosphorylation of the spherical RNA plant viruses. Here, we demonstrate that the CP of Beet black scorch virus (BBSV), a member of the genus Necrovirus, can be phosphorylated at threonine-41 (T41) by cAMP-dependent protein kinase (PKA)-like kinase in vivo and in vitro. Mutant viruses containing a T41A non-phosphorylatable alanine substitution, and a T41E glutamic acid substitution to mimic threonine phosphorylation were able to replicate but were unable to move systemically in Nicotiana benthamiana. Interestingly, the T41A and T41E mutants generated unstable 17 nm virus-like particles that failed to package viral genomic (g) RNA, compared with wild-type BBSV with 30 nm virions during viral infection in N. benthamiana. Further analyses showed that the T41 mutations had little effect on the gRNA-binding activity of the CP. Therefore, we propose a model whereby CP phosphorylation plays an essential role in long-distance movement of BBSV that involves formation of stable virions. PMID:26108567
Particle physics in your pocket!
Anaïs Schaeffer
2012-01-01
CERN physicists, take out your smartphones! Two new particle physics applications for Android phones have been developed by a physicist from the University of Bern: “Particle Properties” and “Particle Physics Booklet 2010”. “When I'm on shift, I enjoy looking at the online event displays,” says Igor Kreslo from the Laboratory for High Energy Physics at the University of Bern, the physicist who has developed the two particle physics applications for Android. “Sometimes very beautiful events appear, with many different particles. I like to discuss these displays with my students, just to develop their ability to identify particles. We try to find out which particle is which and how it might decay… I think that's the best way to teach students the phenomenology of particle physics.” When scientists study particle physics, they require some vital information, such as the decay branching ...
Energy Technology Data Exchange (ETDEWEB)
Rosenfeld, Carl [Univ of South Carolina; Mishra, Sanjib R. [Univ of South Carolina; Petti, Roberto [Univ of South Carolina; Purohit, Milind V. [Univ of South Carolina
2014-08-31
The high energy physics group at the University of South Carolina, under the leadership of Profs. S.R. Mishra, R. Petti, M.V. Purohit, J.R. Wilson (co-PI's), and C. Rosenfeld (PI), engaged in studies in "Experimental Particle Physics." The group collaborated with similar groups at other universities and at national laboratories to conduct experimental studies of elementary particle properties. We utilized the particle accelerators at the Fermi National Accelerator Laboratory (Fermilab) in Illinois, the Stanford Linear Accelerator Center (SLAC) in California, and the European Center for Nuclear Research (CERN) in Switzerland. Mishra, Rosenfeld, and Petti worked predominantly on neutrino experiments. Experiments conducted in the last fifteen years that used cosmic rays and the core of the sun as a source of neutrinos showed conclusively that, contrary to the former conventional wisdom, the "flavor" of a neutrino is not immutable. A neutrino of flavor "e," "mu," or "tau," as determined from its provenance, may swap its identity with one of the other flavors -- in our jargon, they "oscillate." The oscillation phenomenon is extraordinarily difficult to study because neutrino interactions with our instruments are exceedingly rare -- they travel through the earth mostly unimpeded -- and because they must travel great distances before a substantial proportion have made the identity swap. Three of the experiments that we worked on, MINOS, NOvA, and LBNE utilize a beam of neutrinos from an accelerator at Fermilab to determine the parameters governing the oscillation. Two other experiments that we worked on, NOMAD and MIPP, provide measurements supportive of the oscillation experiments. Good measurements of the neutrino oscillation parameters may constitute a "low energy window" on related phenomena that are otherwise unobservable because they would occur only at energies way above the reach of conceivable accelerators. Purohit and Wilson participated in the Ba
A Dissipative-Particle-Dynamics Model for Simulating Dynamics of Charged Colloid
Zhou, Jiajia; Schmid, Friederike
2013-01-01
A mesoscopic colloid model is developed in which a spherical colloid is represented by many interacting sites on its surface. The hydrodynamic interactions with thermal fluctuations are taken accounts in full using Dissipative Particle Dynamics, and the electrostatic interactions are simulated using Particle-Particle-Particle Mesh method. This new model is applied to investigate the electrophoretic mobility of a charged colloid under an external electric field, and the influence of salt conce...
Institute of Scientific and Technical Information of China (English)
ZHANG Zhi-Dong; ZHANG Yan-Jun; SUN Zong-Li
2006-01-01
@@ Two-particle cluster theory is applied to study the biaxial nematic phase formed by biaxial molecules interacting with a simplified model proposed by Sonnet et al. [Phys. Rev. E 67 (2003) 061701]. For the temperature dependences of the internal energy per particle and of the order parameters, the two-particle theory yields an improved result compared with mean field theory. Concerning the phase diagram, the two-particle theory gives the numerical result in qualitative agreement with the mean field theory.
Study on Multi-Target Tracking Based on Particle Filter Algorithm
Junying Meng; Jiaomin Liu; Yongzheng Li; Juan Wang
2013-01-01
Particle filter is a probability estimation method based on Bayesian framework and it has unique advantage to describe the target tracking non-linear and non-Gaussian. In this study, firstly, analyses the particle degeneracy and sample impoverishment in particle filter multi-target tracking algorithm and secondly, it applies Markov Chain Monte Carlo (MCMC) method to improve re-sampling process and enhance performance of particle filter algorithm.
Relaxation of Magnetic Nanoparticle Chain without Applied Field*
Institute of Scientific and Technical Information of China (English)
HE Liang-Ming
2011-01-01
The relaxation ofa one-dimensional magnetic nanoparticle linear chain with lattice constant a is investigated in absence of applied field. There is an equilibrium state (or steady state) where all magnetic moments of particles lie along the chain (x-axis), back to which the magnetic nanoparticle chain at other state will relax. It is found that the relaxation time Tx is determined by Tx = 10β × a3. This relaxation is compared with that of single magnetic nanoparticle system.
Uncoupled thermoelasticity solutions applied on beam dumps
Ouzia, A.; Antonakakis, T.
2016-06-01
In particle accelerators the process of beam absorption is vital. At CERN particle beams are accelerated at energies of the order of TeV. In the event of a system failure or following collisions, the beam needs to be safely absorbed by dedicated protecting blocks. The thermal shock caused by the rapid energy deposition within the absorbing block causes thermal stresses that may rise above critical levels. The present paper provides a convenient expression of such stresses under hypotheses described hereafter. The temperature field caused by the beam energy deposition is assumed to be Gaussian. Such a field models a non-diffusive heat deposition. These effects are described as thermoelastic as long as the stresses remain below the proportional limit and can be analytically modeled by the coupled equations of thermoelasticity. The analytical solution to the uncoupled thermoelastic problem in an infinite domain is presented herein and matched with a finite unit radius sphere. The assumption of zero diffusion as well as the validity of the match with a finite geometry is quantified such that the obtained solutions can be rigorously applied to real problems. Furthermore, truncated series solutions, which are not novel, are used for comparison purposes. All quantities are nondimensional and the problem reduces to a dependence of five dimensionless parameters. The equations of elasticity are presented in the potential formulation where the shear potential is assumed to be nil due to the source being a gradient and the absence of boundaries. Nevertheless equivalent three-dimensional stresses are computed using the compressive potential and optimized using standard analytical optimization methods. An alternative algorithm for finding the critical points of the three-dimensional stress function is presented. Finally, a case study concerning the proton synchrotron booster dump is presented where the aforementioned analytical solutions are used and the preceding assumptions
Applied analysis and differential equations
Cârj, Ovidiu
2007-01-01
This volume contains refereed research articles written by experts in the field of applied analysis, differential equations and related topics. Well-known leading mathematicians worldwide and prominent young scientists cover a diverse range of topics, including the most exciting recent developments. A broad range of topics of recent interest are treated: existence, uniqueness, viability, asymptotic stability, viscosity solutions, controllability and numerical analysis for ODE, PDE and stochastic equations. The scope of the book is wide, ranging from pure mathematics to various applied fields such as classical mechanics, biomedicine, and population dynamics.
Applied medical statistics using SAS
Der, Geoff
2012-01-01
""Each chapter in the book is well laid out, contains examples with SAS code, and ends with a concise summary. The chapters in the book contain the right level of information to use SAS to apply different statistical methods. … a good overview of how to apply in SAS 9.3 the many possible statistical analysis methods.""-Caroline Kennedy, Takeda Development Centre Europe Ltd., Statistical Methods for Medical Research, 2015""… a well-organized and thorough exploration of broad coverage in medical statistics. The book is an excellent reference of statistical methods
Fundamentals of gas particle flow
Rudinger, G
1980-01-01
Fundamentals of Gas-Particle Flow is an edited, updated, and expanded version of a number of lectures presented on the "Gas-Solid Suspensions course organized by the von Karman Institute for Fluid Dynamics. Materials presented in this book are mostly analytical in nature, but some experimental techniques are included. The book focuses on relaxation processes, including the viscous drag of single particles, drag in gas-particles flow, gas-particle heat transfer, equilibrium, and frozen flow. It also discusses the dynamics of single particles, such as particles in an arbitrary flow, in a r
Effective particle magnetic moment of multi-core particles
Energy Technology Data Exchange (ETDEWEB)
Ahrentorp, Fredrik; Astalan, Andrea; Blomgren, Jakob; Jonasson, Christian [Acreo Swedish ICT AB, Arvid Hedvalls backe 4, SE-411 33 Göteborg (Sweden); Wetterskog, Erik; Svedlindh, Peter [Department of Engineering Sciences, Uppsala University, Box 534, SE-751 21 Uppsala (Sweden); Lak, Aidin; Ludwig, Frank [Institute of Electrical Measurement and Fundamental Electrical Engineering, TU Braunschweig, D‐38106 Braunschweig Germany (Germany); IJzendoorn, Leo J. van [Department of Applied Physics, Eindhoven University of Technology, 5600 MB Eindhoven (Netherlands); Westphal, Fritz; Grüttner, Cordula [Micromod Partikeltechnologie GmbH, D ‐18119 Rostock (Germany); Gehrke, Nicole [nanoPET Pharma GmbH, D ‐10115 Berlin Germany (Germany); Gustafsson, Stefan; Olsson, Eva [Department of Applied Physics, Chalmers University of Technology, SE-412 96 Göteborg (Sweden); Johansson, Christer, E-mail: christer.johansson@acreo.se [Acreo Swedish ICT AB, Arvid Hedvalls backe 4, SE-411 33 Göteborg (Sweden)
2015-04-15
In this study we investigate the magnetic behavior of magnetic multi-core particles and the differences in the magnetic properties of multi-core and single-core nanoparticles and correlate the results with the nanostructure of the different particles as determined from transmission electron microscopy (TEM). We also investigate how the effective particle magnetic moment is coupled to the individual moments of the single-domain nanocrystals by using different measurement techniques: DC magnetometry, AC susceptometry, dynamic light scattering and TEM. We have studied two magnetic multi-core particle systems – BNF Starch from Micromod with a median particle diameter of 100 nm and FeraSpin R from nanoPET with a median particle diameter of 70 nm – and one single-core particle system – SHP25 from Ocean NanoTech with a median particle core diameter of 25 nm.
Effective particle magnetic moment of multi-core particles
Ahrentorp, Fredrik; Astalan, Andrea; Blomgren, Jakob; Jonasson, Christian; Wetterskog, Erik; Svedlindh, Peter; Lak, Aidin; Ludwig, Frank; van IJzendoorn, Leo J.; Westphal, Fritz; Grüttner, Cordula; Gehrke, Nicole; Gustafsson, Stefan; Olsson, Eva; Johansson, Christer
2015-04-01
In this study we investigate the magnetic behavior of magnetic multi-core particles and the differences in the magnetic properties of multi-core and single-core nanoparticles and correlate the results with the nanostructure of the different particles as determined from transmission electron microscopy (TEM). We also investigate how the effective particle magnetic moment is coupled to the individual moments of the single-domain nanocrystals by using different measurement techniques: DC magnetometry, AC susceptometry, dynamic light scattering and TEM. We have studied two magnetic multi-core particle systems - BNF Starch from Micromod with a median particle diameter of 100 nm and FeraSpin R from nanoPET with a median particle diameter of 70 nm - and one single-core particle system - SHP25 from Ocean NanoTech with a median particle core diameter of 25 nm.
Cosmology and particle physics
Turner, Michael S.
1988-01-01
The interplay between cosmology and elementary particle physics is discussed. The standard cosmology is reviewed, concentrating on primordial nucleosynthesis and discussing how the standard cosmology has been used to place constraints on the properties of various particles. Baryogenesis is discussed, showing how a scenario in which the B-, C-, and CP-violating interactions in GUTs provide a dynamical explanation for the predominance of matter over antimatter and for the present baryon-to-photon ratio. It is shown how the very early dynamical evolution of a very weakly coupled scalar field which is initially displaced from the minimum of its potential may explain a handful of very fundamental cosmological facts which are not explained by the standard cosmology.
Optics of Biological Particles
Hoekstra, Alfons; Videen, Gorden
2007-01-01
This book covers the optics of single biological particles, both theory and experiment, with emphasis on Elastic Light Scattering and Fluorescence. It deals with the optics of bacteria (bio-aerosols), marine particles (selected phytoplankton communities) and red and white blood cells. Moreover, there are dedicated chapters on a general theory for scattering by a cell, and modelling and simulation of scattering by inhomogeneous biological cells. Finally, one chapter is dedicated to astro-biological signatures, discussing the possibilities for detecting non-terrestrial biological material. The volume has up-to-date discussions on new experimental and numerical techniques, and many examples of applications of these techniques in real-life systems, as used to detect and characterize e.g. biological warfare agents or human blood cells.
Energy Technology Data Exchange (ETDEWEB)
1993-08-01
This proposal presents the research accomplishments and ongoing activities of Boston University researchers in high energy physics. Some changes have been made in the structure of the program from the previous arrangement of tasks. Task B, Accelerator Design Physics, is being submitted as a separate proposal for an independent grant; this will be consistent with the nature of the research and the source of funding. We are active in seven principal areas which will be discussed in this report: Colliding Beams - physics of e{sup +}e{sup {minus}} and {bar p}p collisions; MACRO Experiment - search for magnetic monopoles and study of cosmic rays; Proton Decay - search for nucleon instability and study of neutrino interactions; Particle Theory - theoretical high energy particle physics, including two Outstanding Junior Investigator awards; Muon G-2 - measurement of the anomalous magnetic moment of the muon; SSCintcal - calorimetry for the GEM Experiment; and Muon detectors for the GEM Experiment.
International Nuclear Information System (INIS)
This proposal presents the research accomplishments and ongoing activities of Boston University researchers in high energy physics. Some changes have been made in the structure of the program from the previous arrangement of tasks. Task B, Accelerator Design Physics, is being submitted as a separate proposal for an independent grant; this will be consistent with the nature of the research and the source of funding. We are active in seven principal areas which will be discussed in this report: Colliding Beams - physics of e+e- and bar pp collisions; MACRO Experiment - search for magnetic monopoles and study of cosmic rays; Proton Decay - search for nucleon instability and study of neutrino interactions; Particle Theory - theoretical high energy particle physics, including two Outstanding Junior Investigator awards; Muon G-2 - measurement of the anomalous magnetic moment of the muon; SSCintcal - calorimetry for the GEM Experiment; and Muon detectors for the GEM Experiment
Ultralight particle dark matter
Energy Technology Data Exchange (ETDEWEB)
Ringwald, A.
2013-10-15
We review the physics case for very weakly coupled ultralight particles beyond the Standard Model, in particular for axions and axion-like particles (ALPs): (i) the axionic solution of the strong CP problem and its embedding in well motivated extensions of the Standard Model; (ii) the possibility that the cold dark matter in the Universe is comprised of axions and ALPs; (iii) the ALP explanation of the anomalous transparency of the Universe for TeV photons; and (iv) the axion or ALP explanation of the anomalous energy loss of white dwarfs. Moreover, we present an overview of ongoing and near-future laboratory experiments searching for axions and ALPs: haloscopes, helioscopes, and light-shining-through-a-wall experiments.
Particle Accelerators and Detectors for medical Diagnostics and Therapy
Braccini, Saverio
2016-01-01
This Habilitationsschrift (Habilitation thesis) is focused on my research activities on medical applications of particle physics and was written in 2013 to obtain the Venia Docendi (Habilitation) in experimental physics at the University of Bern. It is based on selected publications, which represented at that time my major scientific contributions as an experimental physicist to the field of particle accelerators and detectors applied to medical diagnostics and therapy. The thesis is structured in two parts. In Part I, Chapter 1 presents an introduction to accelerators and detectors applied to medicine, with particular focus on cancer hadrontherapy and on the production of radioactive isotopes. In Chapter 2, my publications on medical particle accelerators are introduced and put into their perspective. In particular, high frequency linear accelerators for hadrontherapy are discussed together with the new Bern cyclotron laboratory. Chapter 3 is dedicated to particle detectors with particular emphasis on three ...
A novel particle tracking algorithm using polar coordinate system similarity
Institute of Scientific and Technical Information of China (English)
Xiaodong Ruan; Wenfeng Zhao; Yunming Chen
2005-01-01
A new algorithm using polar coordinate system similarity (PCSS) for tracking particle in particle tracking velocimetry (PTV) is proposed. The essence of the algorithm is to consider simultaneously the changes of the distance and angle of surrounding particles relative to the object particle.Monte Carlo simulations of a solid body rotational flow and a parallel shearing flow are used to investigate flows measurable by PCSS and the influences of experimental parameters on the implementation of the new algorithm. The results indicate that the PCSS algorithm can be applied to flows subjected to strong rotation and is not sensitive to experimental parameters in comparison with the conventional binary image cross-correlation (BICC) algorithm. Finally, PCSS is applied to images of a real experiment.
Tailoring particle translocation via dielectrophoresis in pore channels.
Tanaka, Shoji; Tsutsui, Makusu; Theodore, Hu; Yuhui, He; Arima, Akihide; Tsuji, Tetsuro; Doi, Kentaro; Kawano, Satoyuki; Taniguchi, Masateru; Kawai, Tomoji
2016-01-01
Understanding and controlling electrophoretic motions of nanoscopic objects in fluidic channels are a central challenge in developing nanopore technology for molecular analyses. Although progress has been made in slowing the translocation velocity to meet the requirement for electrical detections of analytes via picoampere current measurements, there exists no method useful for regulating particle flows in the transverse directions. Here, we report the use of dielectrophoresis to manipulate the single-particle passage through a solid-state pore. We created a trap field by applying AC voltage between electrodes embedded in a low-aspect-ratio micropore. We demonstrated a traffic control of particles to go through center or near side surface via the voltage frequency. We also found enhanced capture efficiency along with faster escaping speed of particles by virtue of the AC-mediated electroosmosis. This method is compatible with nanopore sensing and would be widely applied for reducing off-axis effects to achieve single-molecule identification. PMID:27527126
Relaxation from particle production
Hook, Anson
2016-01-01
We consider using particle production as a friction force by which to implement a "Relaxion" solution to the electroweak hierarchy problem. Using this approach, we are able to avoid superplanckian field excursions and avoid any conflict with the strong CP problem. The relaxation mechanism can work before, during or after inflation allowing for inflationary dynamics to play an important role or to be completely decoupled.
Supersymmetry in particle physics
International Nuclear Information System (INIS)
This paper discusses explicit models of the standard matter interactions with broken supersymmetry, the common feature of which is the appearance of the full spectrum of superpartners of all known particles in the 100 Gev-1 Tev region. The author states that although the details of this spectrum are in general model dependent, ways to search for these superparticles exist and can be considered according to the various options presented
Cosmology and particle physics
International Nuclear Information System (INIS)
This paper comprises the contents of four lectures in which the author illustrates the two-way nature of the interplay between the fields of cosmology and particle physics by focusing on several specifics: a review of the standard cosmology, concentrating on primordial nucleosynthesis; baryogenesis; monopoles; and the case in which a very early first-order phase transition associated with spontaneous symmetry breaking has the potential to explain some very fundamental cosmological facts
Unusual Subatomic Particle Discovered
Trulove, Susan
2003-01-01
Sookyung Choi of Gyeongsang University, Korea, and Stephen Olsen, professor of physics at the University of Hawaii, members of an international team of researchers at the High Energy Accelerator Organization (KEK) in Tsukuba, Japan, have announced the discovery of a new and unusual sub-atomic particle. One member of that team is Leo Piilonen of Blacksburg, professor of physics in the College of Science at Virginia Tech.
A Characteristic Particle Length
Roberts, Mark D
2015-01-01
It is argued that there are characteristic intervals associated with any particle that can be derived without reference to the speed of light $c$. Such intervals are inferred from zeros of wavefunctions which are solutions to the Schr\\"odinger equation. The characteristic length is $\\ell=\\beta^2\\hbar^2/(8Gm^3)$, where $\\beta=3.8\\dots$; this length might lead to observational effects on objects the size of a virus.
Particle transfer in multiregion
International Nuclear Information System (INIS)
Asymptotic calculations for reflection and transmission coefficients for particle incident on an inhomogeneous plane parallel medium are performed. The medium is assumed to consist of several different optically thick homogeneous layers. Functional relations between the reflection and transmission coefficients for the sub-layers are obtained. The invariant embedding concepts are used to calculate the albedo for sub-layers. Numerical calculations and comparisons are performed. (author)
Dynamic radioactive particle source
Energy Technology Data Exchange (ETDEWEB)
Moore, Murray E.; Gauss, Adam Benjamin; Justus, Alan Lawrence
2012-06-26
A method and apparatus for providing a timed, synchronized dynamic alpha or beta particle source for testing the response of continuous air monitors (CAMs) for airborne alpha or beta emitters is provided. The method includes providing a radioactive source; placing the radioactive source inside the detection volume of a CAM; and introducing an alpha or beta-emitting isotope while the CAM is in a normal functioning mode.
Southworth, Brian
1991-01-01
What is our Universe made of? Where does it come from? Why does it behave as it does? We do not have all the answers to these questions but in recent years we have uncovered a lot of information about the Universe which surrounds us. This search has revealed that, beyond the evidence of our eyes, there is a seething world of tiny particles and messengers which pass between them...
1996-01-01
This track is an example of real data collected from the DELPHI detector on the Large Electron-Positron (LEP) collider at CERN, which ran between 1989 and 2000. These are the first pair of W particles produced at LEP2, the high energy upgrade of LEP that took place in 1996. Both Ws decay into a quark-antiquark pair, which are each seen as one of the four jets of hadrons in the detector.
Supersymmetric particles at LEP
International Nuclear Information System (INIS)
The authors examine whether the supersymmetrization of nature at a mass scale up to 100 GeV can be confirmed or excluded by experiments with LEP. They review the qualitative features of the spectroscopy suggested by supersymmetric theories. Then they discuss possible production rates and means of detection of these particles at LEP. In this framework they make some remarks about other projects for future high energy physics machines which can be used for the study of supersymmetric phenomena. (HSI)
Advanced coated particle fuels
International Nuclear Information System (INIS)
The coated particle fuel (cpf) has been developed for use in high-temperature gas-cooled reactors, but it may find applications in other types of reactors. In JAERI, besides the development of cpf for High Temperature Engineering Test Reactor, conceptual studies of the cpf applications in actinide burner reactors and space reactors have been made. The conceptual design studies as well as the research and development of advanced coatings, ZrC and TiN, are reviewed. (author)
Particle Velocity Measuring System
Arndt, G. Dickey (Inventor); Carl, James R. (Inventor)
1998-01-01
Method and apparatus are provided for determining the velocity of individual food particles within a liquid/solid food mixture that is cooked by an aseptic cooking method whereby the food mixture is heated as it flows through a flowline. At least one upstream and at least one downstream microwave transducer are provided to determine the minimum possible travel time of the fastest food particle through the flowline. In one embodiment, the upstream detector is not required. In another embodiment, a plurality of small dipole antenna markers are secured to a plurality of food particles to provide a plurality of signals as the markers pass the upstream and downstream transducers. The dipole antenna markers may also include a non-linear element to reradiate a harmonic frequency of a transmitter frequency. Upstream and downstream transducers include dipole antennas that are matched to the impedance of the food slurry and a signal transmission cable by various impedance matching means including unbalanced feed to the antennas.
International Nuclear Information System (INIS)
Particle identification (PID) is a fundamental requirement for LHCb and is provided by CALO, MUON and RICH sub-detectors. The Calorimeters provide identification of electrons, photons and hadrons in addition to the measurement of their energies and positions. As well as being part of the LHCb trigger, the MUON system provides identification of muons to a very high level of purity, essential for many CP-sensitive measurements that have J/ψ's in their final states. Hadron identification, in particular the ability to distinguish kaons and pions, is crucial to many LHCB analyses, particularly where the final states of interest are purely hadronic. The LHCb RICH system provides this, covering a momentum range between 1 and 100 GeV/c. To maintain the integrity of the LHCb physics performance, it is essential to measure and monitor the particle identification efficiency and mis-identification fraction over time. This can be done by using specific decays, such as K-shorts, φ's, Λ's, J/ψ's and D*'s, for which pure samples can be isolated using only kinematic quantities, due to their unique decay topologies. This allows for clean samples of known particle types to be selected, which can then be used to calibrate and monitor the PID performance from data. The procedures for performing this will be presented, together with preliminary results from the 2009 and 2010 LHC runs. (author)
CERN Bulletin
2010-01-01
Particles are supplied to the LHC by six accelerators inter-connected by several kilometres of transfer lines. This represents yet another complex chain of processes whereby particles are produced, bunched, synchronised and injected into the LHC at the precise moment it's ready to receive them. In other words, for collisions to be produced at the end of the chain, all the injectors must be in perfect working order. Among all the questions asked by the many visitors to CERN, one in particular comes up time and time again: "Why don't you just connect the LHC directly to the proton source?" In other words, why do you need this whole chain of accelerators acting as an "injector" for the LHC? Before colliding inside the LHC, particles first have to pass through no fewer than six different accelerators: the 90 keV duoplasmatron source, the 750 keV RFQ, the 50 MeV Linac 2, the 1.4 GeV synchrotron injector ("PS Booster" or PSB), the 25 GeV Proton Sy...
Directory of Open Access Journals (Sweden)
Musso Claudia
2007-09-01
Full Text Available Abstract Background Experimental studies provide evidence that inhaled nanoparticles may translocate over the airspace epithelium and cause increased cellular inflammation. Little is known, however, about the dependence of particle size or material on translocation characteristics, inflammatory response and intracellular localization. Results Using a triple cell co-culture model of the human airway wall composed of epithelial cells, macrophages and dendritic cells we quantified the entering of fine (1 μm and nano-sized (0.078 μm polystyrene particles by laser scanning microscopy. The number distribution of particles within the cell types was significantly different between fine and nano-sized particles suggesting different translocation characteristics. Analysis of the intracellular localization of gold (0.025 μm and titanium dioxide (0.02–0.03 μm nanoparticles by energy filtering transmission electron microscopy showed differences in intracellular localization depending on particle composition. Titanium dioxide nanoparticles were detected as single particles without membranes as well as in membrane-bound agglomerations. Gold nanoparticles were found inside the cells as free particles only. The potential of the different particle types (different sizes and different materials to induce a cellular response was determined by measurements of the tumour necrosis factor-α in the supernatants. We measured a 2–3 fold increase of tumour necrosis factor-α in the supernatants after applying 1 μm polystyrene particles, gold nanoparticles, but not with polystyrene and titanium dioxide nanoparticles. Conclusion Quantitative laser scanning microscopy provided evidence that the translocation and entering characteristics of particles are size-dependent. Energy filtering transmission electron microscopy showed that the intracellular localization of nanoparticles depends on the particle material. Both particle size and material affect the cellular
Hwang, HeeJin; Ro, Chul-Un
Environmentally benign treatment of municipal solid waste (MSW) ashes has been a worldwide issue since more countries are implementing incineration to reduce waste volume. A single-particle analytical technique, named low- Z particle electron probe X-ray microanalysis (low- Z particle EPMA) was applied to characterize MSW fly- and bottom-ash particle samples collected from two municipal incinerators in Korea. According to their chemical composition, many distinctive particle types were identified. For fly ash sample collected in one incinerator (sample S1), where lime slurry injection is used for acid-gas treatment, CaCO 3-containing particles (28.4%) are the most abundantly encountered, followed by carbonaceous (23.6%), SiO 2-containing (13.8%), NaCl-containing (13.1%), and iron-containing (10.5%) particles. For fly ash sample collected at the other incinerator (sample S2), NaCl-containing particles (40.4%) are the most abundantly encountered, followed by iron-containing (29.1%), carbonaceous (11.8%), CaCO 3-containing (2.2%), and SiO 2-containing (7.0%) particles. For bottom ash sample collected at one incinerator (sample S3), iron-containing particles (46.6%) are the most abundantly encountered, followed by CaCO 3-containing (17.3%), carbonaceous (16.6%), and Si and/or Al oxide-containing (15.8%) particles. For bottom ash sample collected in the other incinerator (sample S4), iron-containing particles (63.4%) are also the most abundantly encountered, followed by carbonaceous (14.0%), CaCO 3-containing (10.0%), and Si and/or Al oxide-containing (6.1%) particles. Chemical compositions of the two bottom ash samples are not much different compared to those of the two fly ash samples. It was demonstrated that the single-particle characterization using this low- Z particle EPMA technique provided detailed information on various types of chemical species in the MSW ash samples. In addition, the technique has advantage over conventional analytical techniques in the
'Heating' of dust particle motion in plasma of gas discharge
International Nuclear Information System (INIS)
particles is considered. Some subsystems of plasma-dust systems are in partial equilibrium, which allows us to use the term 'kinetic temperature' for these subsystems. For various system parameters several modes are implemented. It is necessary to apply different types of kinetic temperatures for different modes. Consideration of dust particles horizontal and vertical oscillations separately reveals the possibility of two different average kinetic temperatures of dust particles motion. Molecular dynamics method was used to verify the theoretical calculations.
SEM in applied marketing research
DEFF Research Database (Denmark)
Sørensen, Bjarne Taulo; Tudoran, Ana Alina
In this paper we discuss two SEM approaches: an exploratory structural equation modelling based on a more liberalised and inductive philosophy versus the classical SEM based on the traditional hypothetical-deductive approach. We apply these two modelling techniques to data from a consumer survey...
Toward an Applied Administrative Science.
Dunbar, Roger L. M.
1983-01-01
A study of 65 articles from the 1981 volumes of "Administrative Science Quarterly" and "Harvard Business Review," using smallest space analysis, found that the few studies adopting subjective (instead of objective) approaches to analyzing organizational change were most likely to provide a basis for an applied administrative science. (Author/RW)
Applying and extending Oracle Spatial
Simon Gerard Greener, Siva Ravada
2013-01-01
This book is an advanced practical guide to applying and extending Oracle Spatial.This book is for existing users of Oracle and Oracle Spatial who have, at a minimum, basic operational experience of using Oracle or an equivalent database. Advanced skills are not required.
Applied Linguistics Research on Asianness
Kobayashi, Yoko
2011-01-01
As China is increasingly occupying the world's attention, its explosively expanding economical and political clout has also been felt in the applied linguistics domain, with the discussion on China's/Chinese language issues growing by leaps and bounds (e.g. China's English education policies, Chinese language classes in the West). Amid the world's…
Oxidation states of uranium in DU particles from Kosovo
Energy Technology Data Exchange (ETDEWEB)
Salbu, B. E-mail: brit.salbu@ijvf.nlh.no; Janssens, K.; Lind, O.C.; Proost, K.; Danesi, P.R
2003-07-01
The oxidation states of uranium contained in depleted uranium (DU) particles were determined by synchrotron radiation based {mu}-XANES, applied to individual particles in soil samples collected at Ceja Mountain, Kosovo. Based on scanning electron microscopy (SEM) with XRMA prior to {mu}-XANES, DU particles ranging from submicrons to about 30 {mu}m (average size: 2 {mu}m or less) were identified. Compared to well-defined standards, all investigated DU particles were oxidized. About 50% of the DU particles were characterized as UO{sub 2}, the remaining DU particles present were U{sub 3}O{sub 8} or a mixture of oxidized forms (ca. 2/3 UO{sub 2}, 1/3 U{sub 3}O{sub 8}). Since the particle weathering rate is expected to be higher for U{sub 3}O{sub 8} than for UO{sub 2}, the presence of respiratory U{sub 3}O{sub 8} and UO{sub 2} particles, their corresponding weathering rates and subsequent remobilisation of U from DU particles should be included in the environmental or health impact assessments.
Particle Size: A sediment tracing challenge or opportunity?
Laceby, J. Patrick; Evrard, Olivier
2016-04-01
Tracing sediment back to their sources with biogeochemical fingerprints involves multiple assumptions. One of the most fundamental assumptions is the conservative behavior of tracer properties during sediment generation, transportation, and deposition processes. Essentially, the biogeochemical fingerprints used to trace sediment must remain constant, or conservative, during these erosion processes, or they must vary in a predictable way. At the core of this assumption of conservative behavior are potential particle size impacts. Owing to the significance of particle size for sediment tracing research, we believe it is important to present an overview of past and present techniques used to address particle size, along with possibilities for future research. The two primary approaches utilized to address particle size impacts are fractionation (e.g., testing fundamental assumptions central to the applicability of sediment tracing and fingerprinting. Alternative approaches to addressing particle size have also been presented. For example, researchers applying the tributary tracing approach or sampling sediment generated directly on hillslopes may potentially address particle size impacts in their sampling design. Although these approaches have been presented in the literature, their effectiveness has yet to be determined. For the future, we boldly suggest that there are likely situations where particle size may be potentially used as a fingerprint in and of itself. Indeed, potential particle size impacts are directly related to the biogeochemical fingerprints used to trace sediments and we believe that there is a fantastic opportunity to obtain further sediment source information through comprehensively investigating and unravelling inherent particle size complexities.
Boron Particle Ignition in Secondary Chamber of Ducted Rocket
Directory of Open Access Journals (Sweden)
J. X. Hu
2012-01-01
Full Text Available In the secondary chamber of ducted rocket, there exists a relative speed between boron particles and air stream. Hence, the ignition laws under static conditions cannot be simply applied to represent the actual ignition process of boron particles, and it is required to study the effect of forced convective on the ignition of boron particles. Preheating of boron particles in gas generator makes it possible to utilize the velocity difference between gas and particles in secondary chamber for removal of the liquid oxide layer with the aid of Stoke's forces. An ignition model of boron particles is formulated for the oxide layer removal by considering that it results from a boundary layer stripping mechanism. The shearing action exerted by the high-speed flow causes a boundary layer to be formed in the surface of the liquid oxide layer, and the stripping away of this layer accounts for the accelerated ignition of boron particles. Compared with the King model, as the ignition model of boron particles is formulated for the oxide layer removal by considering that it results from a boundary layer stripping mechanism, the oxide layer thickness thins at all times during the particle ignition and lower the ignition time.
DEM simulation of particle percolation in a packed bed
Institute of Scientific and Technical Information of China (English)
无
2008-01-01
The phenomenon of spontaneous particle percolation under gravity is investigated by means of the discrete element method. Percolation behaviors such as percolation velocity,residence time distribution and radial dispersion are examined under various conditions. It is shown that the vertical velocity of a percolating particle moving down through a packing of larger particles decreases with increasing the restitution coefficient between particles and diameter ratio of the percolating to packing particles. With the increase of the restitution coefficient,the residence time and radial dispersion of the percolating particles increase. The packing height affects the residence time and radial dispersion. But,the effect can be eliminated in the analysis of the residence time and radial dispersion when they are normalized by the average residence time and the product of the packing height and packing particle diameter,respectively.In addition,the percolation velocity is shown to be related to the vertical acceleration of the percolating particle when an extra constant vertical force is applied. Increasing the feeding rate of percolating particles decreases the dispersion coefficient.
Large scale particle image velocimetry with helium filled soap bubbles
Energy Technology Data Exchange (ETDEWEB)
Bosbach, Johannes; Kuehn, Matthias; Wagner, Claus [German Aerospace Center (DLR), Institute of Aerodynamics and Flow Technology, Goettingen (Germany)
2009-03-15
The application of particle image velocimetry (PIV) to measurement of flows on large scales is a challenging necessity especially for the investigation of convective air flows. Combining helium filled soap bubbles as tracer particles with high power quality switched solid state lasers as light sources allows conducting PIV on scales of the order of several square meters. The technique was applied to mixed convection in a full scale double aisle aircraft cabin mock-up for validation of computational fluid dynamics simulations. (orig.)
Ultrasmall iron particles prepared by use of sodium amalgam
DEFF Research Database (Denmark)
Linderoth, Søren; Mørup, Steen
1990-01-01
Ultrasmall magnetic particles containing iron have been prepared by reduction of iron ions by the use of sodium in mercury. Mössbauer studies at 12 K show that the magnetic hyperfine field is significantly larger than in bulk alpha-Fe, suggesting that an iron mercury alloy rather than alpha-Fe has...... been formed. The particles exhibit superparamagnetic relaxation above 120 K. Journal of Applied Physics is copyrighted by The American Institute of Physics....
An Improved Particle Swarm Optimization Algorithm for Seismic Wavelet Estimation
Directory of Open Access Journals (Sweden)
Zhang Haiyan
2012-03-01
Full Text Available An improved particle swarm optimization algorithm is presented in this study. The new method proposes a linear time-varying acceleration co-efficient and brings in two mutations including differential mutation and random mutation. Also, some betterment is made over the bound constraints which keep the escaped particles diversity. At last, this new method is applied to seismic wavelet estimation. Numerical data tests demonstrate that the method is capable of extracting wavelets with relatively higher accuracy.
Hydrodynamic attraction of immobile particles due to interfacial forces
Morthomas, Julien; Würger, Alois
2010-01-01
International audience Applying the method of reflections, we derive the flow pattern around a confined colloidal particle with quasislip conditions at its surface, in powers of the ratio a/h of particle radius and wall distance. The lowest order corresponds to a single reflection at the confining wall. Significant corrections occur at higher order: the linear term in a/h modifies the amplitudes of the well-known one-reflection approximation, whereas new features arise in quadratic order. ...
A Statistical Model for Soliton Particle Interaction in Plasmas
DEFF Research Database (Denmark)
Dysthe, K. B.; Pécseli, Hans; Truelsen, J.
1986-01-01
A statistical model for soliton-particle interaction is presented. A master equation is derived for the time evolution of the particle velocity distribution as induced by resonant interaction with Korteweg-de Vries solitons. The detailed energy balance during the interaction subsequently determines...... the evolution of the soliton amplitude distribution. The analysis applies equally well for weakly nonlinear plasma waves in a strongly magnetized waveguide, or for ion acoustic waves propagating in one-dimensional systems....
Target tracking in glint noise using a MCMC particle filter
Institute of Scientific and Technical Information of China (English)
Hu Hongtao; Jing Zhongliang; Li Anping; Hu Shiqiang; Tian Hongwei
2005-01-01
In radar target tracking application, the observation noise is usually non-Gaussian, which is also referred as glint noise. The performances of conventional trackers degra de severely in the presence of glint noise. An improved particle filter, Markov chain Monte Carlo particle filter (MCMC-PF), is applied to cope with radar target tracking when the measurements are perturbed by glint noise. Tracking performance of the filter is demonstrated in the present of glint noise by computer simulation.
Finsler-like structures from Lorentz-breaking classical particles
Russell, Neil
2015-01-01
A method is presented for deducing classical point-particle Lagrange functions corresponding to a class of quartic dispersion relations. Applying this to particles violating Lorentz symmetry in the minimal Standard-Model Extension leads to a variety of novel lagrangians in flat spacetime. Morphisms in these classical systems are studied that echo invariance under field redefinitions in the quantized theory. The Lagrange functions found offer new possibilities for understanding Lorentz-breaking effects by exploring parallels with Finsler-like geometries.
Testing particle exchange in p-p scattering
Goldstein, Gary R.; Moravcsik, Michael J.; Arash, Firooz; Ghahramany, Nader
1985-03-01
A recently proposed polarization test for one-particle exchange mechanisms of a given parity is applied to elastic proton-proton scattering at 300, 579, 800 MeV and at 6 GeV/ c. At the three lower energies, as one would expect, no such dominance is found, but at 6 GeV/ c a marked dominance by one-particle exchanges of natural parity appears in the data.
Testing particle exchange in p-p scattering
International Nuclear Information System (INIS)
A recently proposed polarization test for one-particle exchange mechanisms of a given parity is applied to elastic proton-proton scattering at 300, 579, 800 MeV and at 6 GeV/c. At the three lower energies, as one would expect, no such dominance is found, but at 6 GeV/c a marked dominance by one-particle exchanges of natural parity appears in the data. (orig.)
Beam optics and lattice design for particle accelerators
Holzer, Bernhard J.
2013-01-01
The goal of this manuscript is to give an introduction into the design of the magnet lattice and as a consequence into the transverse dynamics of the particles in a synchrotron or storage ring. Starting from the basic principles of how to design the geometry of the ring we will briefly review the transverse motion of the particles and apply this knowledge to study the layout and optimization of the principal elements, namely the lattice cells. The detailed arrangement of the accelerator magne...