WorldWideScience

Sample records for applied nuclear physics

  1. Photonics applied to nuclear physics

    International Nuclear Information System (INIS)

    This was the second workshop held at the Council of Europe in the Nucleophot series. Its purpose was to bring together specialists from the fields of photonics and nuclear physics to discuss the application of modern optical techniques to current problems in experimental nuclear or particle physics research. Two techniques are particularly relevant and offer the possibility of major progress in the detection of extremely short-lived particles: holographic imaging of particle tracks and the development of scintillating-optical-fibre detectors. The discussions were mainly concerned with (a) the applications of holography to the large bubble chambers operating at Fermilab and (b) the development of high-resolution fibre-optic systems into high-rate microvertex detectors using scintillating core glass for both fixed-target and collider experiments in Europe and the USA. See hints under the relevant topics. (orig./HSI)

  2. Applied nuclear physics group - activities report. 1977-1997

    International Nuclear Information System (INIS)

    This report presents the activities conducted by the Applied Nuclear Physics group of the Londrina State University - Applied Nuclear Physics Laboratory - Brazil, from the activities beginning (1977) up to the end of the year 1997

  3. Applied nuclear physics in support of SBSS

    Energy Technology Data Exchange (ETDEWEB)

    Strottman, D.

    1995-10-01

    Since the advent of the 800-MeV proton linear accelerator over 3 decades ago, the facilities on the Clinton P. Anderson Meson Physics Facility (LAMPF) mesa have pioneered many developments that provide unique capabilities within the Department of Energy (DOE) complex and in the world. New technologies based on the use of the world`s most intense, medium-energy linac, LAMPF, are being developed. They include destruction of long-lived components of nuclear waste, plutonium burning, energy production, production of tritium, and experiments for the science-based stockpile stewardship (SBSS) program. The design, assessment, and safety analysis of potential facilities involve the understanding of complex combinations of nuclear processes, which in turn establish new requirements on nuclear data that transcend the traditional needs of the fission and fusion reactor communities. Other areas of technology such as neutron and proton therapy applications are also placing new requirements on nuclear data. The proposed Los Alamos Neutron Science Center (LANSCE) now under discussion combined with the appropriate instrumentation will have unique features and capabilities of which there were previously only aspirations.

  4. Proceedings of the 9. Workshop on Nuclear Physics - Communications of applied nuclear physics and instrumentation

    International Nuclear Information System (INIS)

    The communications of applied nuclear physics and intrumentation of 9. Workshop on Nuclear Physics in Brazil are presented. Several intruments for radiation measurements, such as detectors, dosemeters and spectrometers were developed. Techniques of environmental monitoring and instrument monitoring for nuclear medicine are evaluated. (M.C.K.)

  5. 2nd Symposium on applied nuclear physics and innovative technologies

    CERN Document Server

    2014-01-01

    Symposium on Applied Nuclear Physics and Innovative Technologies will be held for the second time at Collegium Maius, the oldest building of the Jagiellonian University in Cracow, the same building where Nicolaus Copernicus has studied astronomy. Symposium is organized in the framework of the MPD programme carried out by the Foundation for Polish science based on the European Structural Funds. The aim of this conference is to gather together young scientists and experts in the field of applied and fundamental nuclear as well as particle physics. Aiming at interplay of fundamental and applied science the conference will be devoted to the following topics: * Medical imaging and radiotherapy * New materials and technologies in radiation detection * Fission, fusion and spallation processes * High-performance signal processing and data analysis * Tests of foundations of physics and search for a new kind of sub-atomic matter

  6. Applied nuclear physics group - activities report. 1977-1997; Grupo de fisica nuclear aplicada - relatorio de atividades. 1977-1997

    Energy Technology Data Exchange (ETDEWEB)

    Appoloni, Carlos Roberto

    1998-06-01

    This report presents the activities conducted by the Applied Nuclear Physics group of the Londrina State University - Applied Nuclear Physics Laboratory - Brazil, from the activities beginning (1977) up to the end of the year 1997.

  7. Nuclear physics detector technology applied to plant biology research

    Energy Technology Data Exchange (ETDEWEB)

    Weisenberger, A.G., E-mail: drew@jlab.org [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Kross, B.; Lee, S.J.; McKisson, J.; McKisson, J.E.; Xi, W.; Zorn, C. [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Howell, C.R.; Crowell, A.S. [Duke University, Durham, NC (United States); Triangle Universities Nuclear Laboratory, Durham, NC (United States); Reid, C.D. [Duke University, Durham, NC (United States); Smith, M. [University of Maryland, Baltimore, MD (United States)

    2013-08-01

    The ability to detect the emissions of radioactive isotopes through radioactive decay (e.g. beta particles, x-rays and gamma-rays) has been used for over 80 years as a tracer method for studying natural phenomena. More recently a positron emitting radioisotope of carbon: {sup 11}C has been utilized as a {sup 11}CO{sub 2} tracer for plant ecophysiology research. Because of its ease of incorporation into the plant via photosynthesis, the {sup 11}CO{sub 2} radiotracer is a powerful tool for use in plant biology research. Positron emission tomography (PET) imaging has been used to study carbon transport in live plants using {sup 11}CO{sub 2}. Presently there are several groups developing and using new PET instrumentation for plant based studies. Thomas Jefferson National Accelerator Facility (Jefferson Lab) in collaboration with the Duke University Phytotron and the Triangle Universities Nuclear Laboratory (TUNL) is involved in PET detector development for plant imaging utilizing technologies developed for nuclear physics research. The latest developments of the use of a LYSO scintillator based PET detector system for {sup 11}CO{sub 2} tracer studies in plants will be briefly outlined.

  8. Nuclear Physics Department annual report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-07-01

    This annual report presents articles and abstracts published in foreign journals, covering the following subjects: nuclear structure, nuclear reactions, applied physics, instrumentation, nonlinear phenomena and high energy physics

  9. Nuclear Physics Department annual report

    International Nuclear Information System (INIS)

    This annual report presents articles and abstracts published in foreign journals, covering the following subjects: nuclear structure, nuclear reactions, applied physics, instrumentation, nonlinear phenomena and high energy physics

  10. Activities report in nuclear physics

    NARCIS (Netherlands)

    Jansen, J. F. W.; Scholten, O.

    1987-01-01

    Experimental studies of giant resonances, nuclear structure, light mass systems, and heavy mass systems are summarized. Theoretical studies of nuclear structure, and dynamics are described. Electroweak interactions; atomic and surface physics; applied nuclear physics; and nuclear medicine are discus

  11. Nuclear physics

    Energy Technology Data Exchange (ETDEWEB)

    Kamal, Anwar

    2014-09-01

    Explains the concepts in detail and in depth. Provides step-by-step derivations. Contains numerous tables and diagrams. Supports learning and teaching with numerous worked examples, questions and problems with answers. Sketches also the historical development of the subject. This textbook explains the experimental basics, effects and theory of nuclear physics. It supports learning and teaching with numerous worked examples, questions and problems with answers. Numerous tables and diagrams help to better understand the explanations. A better feeling to the subject of the book is given with sketches about the historical development of nuclear physics. The main topics of this book include the phenomena associated with passage of charged particles and radiation through matter which are related to nuclear resonance fluorescence and the Moessbauer effect., Gamov's theory of alpha decay, Fermi theory of beta decay, electron capture and gamma decay. The discussion of general properties of nuclei covers nuclear sizes and nuclear force, nuclear spin, magnetic dipole moment and electric quadrupole moment. Nuclear instability against various modes of decay and Yukawa theory are explained. Nuclear models such as Fermi Gas Model, Shell Model, Liquid Drop Model, Collective Model and Optical Model are outlined to explain various experimental facts related to nuclear structure. Heavy ion reactions, including nuclear fusion, are explained. Nuclear fission and fusion power production is treated elaborately.

  12. Nuclear physics

    International Nuclear Information System (INIS)

    Explains the concepts in detail and in depth. Provides step-by-step derivations. Contains numerous tables and diagrams. Supports learning and teaching with numerous worked examples, questions and problems with answers. Sketches also the historical development of the subject. This textbook explains the experimental basics, effects and theory of nuclear physics. It supports learning and teaching with numerous worked examples, questions and problems with answers. Numerous tables and diagrams help to better understand the explanations. A better feeling to the subject of the book is given with sketches about the historical development of nuclear physics. The main topics of this book include the phenomena associated with passage of charged particles and radiation through matter which are related to nuclear resonance fluorescence and the Moessbauer effect., Gamov's theory of alpha decay, Fermi theory of beta decay, electron capture and gamma decay. The discussion of general properties of nuclei covers nuclear sizes and nuclear force, nuclear spin, magnetic dipole moment and electric quadrupole moment. Nuclear instability against various modes of decay and Yukawa theory are explained. Nuclear models such as Fermi Gas Model, Shell Model, Liquid Drop Model, Collective Model and Optical Model are outlined to explain various experimental facts related to nuclear structure. Heavy ion reactions, including nuclear fusion, are explained. Nuclear fission and fusion power production is treated elaborately.

  13. Polish Nuclear Physics Network

    International Nuclear Information System (INIS)

    In June 2002 the representatives of thirteen Polish nuclear physics units decided to create Polish Nuclear Physics Network (PNPN) and to contact Czech Republic, Hungary and Slovakia with a suggestion to establish a larger network of nuclear physics laboratories in these countries and in Poland. In spring 2003 North-East European Network (NEEN) was established. Its planned networking activities, their objectives and expected outcomes were submitted to EURONS Coordinator. During the same period the nuclear physics laboratories from Bulgaria, Croatia, Greece, Romania, Serbia and Turkey formed South-East European Network (SEEN) and also applied for EURONS support. Eventually, following the EURONS advice, the merge of NEEN and SEEN was decided by representatives of both networks and, in 2004, a common network EWON (East - West Outreach) was included in the EURONS initiative. The indicated EU financial contribution to EWON includes only the support of NEEN, whereas SEEN, for practical reasons, is financed separately. The nuclear physics activity in Poland can be conveniently divided into a few subgroups: - experimental nuclear physics using local facilities; - experimental nuclear physics using external facilities; - theoretical nuclear physics; - applications of nuclear physics to other domains of science; - medical applications. Most of these activities are presented in this report, at least partly, in the form of review articles and short communications. The special place in the Polish nuclear physics landscape occupies the theoretical physics. Not limited by severe financial restrictions which affects local experimental facilities, the flourishing of this domain is especially evident in the nuclear structure theory

  14. Activities on archaeology, art and cultural heritage conservation at the Applied Nuclear Physics Laboratory (LFNA), State University of Londrina (UEL)

    Energy Technology Data Exchange (ETDEWEB)

    Appoloni, Carlos R.; Parreira, Paulo S.; Lopes, Fabio [Universidade Estadual de Londrina (UEL), PR (Brazil). Dept. de Fisica. Lab. de Fisica Nuclear Aplicada]. E-mails: appoloni@uel.br; parreira@uel.br; bonn@uel.br

    2007-07-01

    The Laboratory of Applied Nuclear Physics from the State University of Londrina (LFNA/UEL) introduced Archaeometry and related issues pioneeringly among its main research lines in 1994. The current work aims at presenting an overview of the evolution of such activities and the development of human resources up to the present time. The activities related to Archaeology, Art and Cultural Heritage Conservation at the LFNA can be divided into five levels, as follows. (1) Study and implementation of experimental methodologies. (2) Related Basic Research - Physics issues involved in archaeometric applications have led to the need to conduct interesting specific basic research. (3) Works with specific materials - Among the several analysis conducted, the following should be mentioned: ceramics from the archaeological site Tupi Guarani Fazenda Sta. Dalmacia, PR; two archaeological sites in the Amazon Forest; objects from the MAE/USP collection; wall paintings in Imaculada Conceicao Church, SP; coins and other objects from the MHN/RJ; obsidians from Ecuador; etc. (4) Development of Human Resources. In this item there are two components: tutoring of scientific initiation students, Master's and Doctorate in atomic-nuclear methodologies applied to Archaeometry and a course of non-destructive nuclear techniques for the characterization of archaeological and art materials aimed at archaeologists and conservators, given since 1997. (5) Scientific collaborations - the construction of a common language between physicists and archeologists, conservators and other professionals involved in this area is an endeavor of mutual continuous learning and necessary conditions for the success of the projects. (author)

  15. Activities on archaeology, art and cultural heritage conservation at the Applied Nuclear Physics Laboratory (LFNA), State University of Londrina (UEL)

    International Nuclear Information System (INIS)

    The Laboratory of Applied Nuclear Physics from the State University of Londrina (LFNA/UEL) introduced Archaeometry and related issues pioneeringly among its main research lines in 1994. The current work aims at presenting an overview of the evolution of such activities and the development of human resources up to the present time. The activities related to Archaeology, Art and Cultural Heritage Conservation at the LFNA can be divided into five levels, as follows. (1) Study and implementation of experimental methodologies. (2) Related Basic Research - Physics issues involved in archaeometric applications have led to the need to conduct interesting specific basic research. (3) Works with specific materials - Among the several analysis conducted, the following should be mentioned: ceramics from the archaeological site Tupi Guarani Fazenda Sta. Dalmacia, PR; two archaeological sites in the Amazon Forest; objects from the MAE/USP collection; wall paintings in Imaculada Conceicao Church, SP; coins and other objects from the MHN/RJ; obsidians from Ecuador; etc. (4) Development of Human Resources. In this item there are two components: tutoring of scientific initiation students, Master's and Doctorate in atomic-nuclear methodologies applied to Archaeometry and a course of non-destructive nuclear techniques for the characterization of archaeological and art materials aimed at archaeologists and conservators, given since 1997. (5) Scientific collaborations - the construction of a common language between physicists and archeologists, conservators and other professionals involved in this area is an endeavor of mutual continuous learning and necessary conditions for the success of the projects. (author)

  16. Nuclear physics mathematical methods

    International Nuclear Information System (INIS)

    The nuclear physics mathematical methods, applied to the collective motion theory, to the reduction of the degrees of freedom and to the order and disorder phenomena; are investigated. In the scope of the study, the following aspects are discussed: the entropy of an ensemble of collective variables; the interpretation of the dissipation, applying the information theory; the chaos and the universality; the Monte-Carlo method applied to the classical statistical mechanics and quantum mechanics; the finite elements method, and the classical ergodicity

  17. Nuclear physics

    International Nuclear Information System (INIS)

    The first volume of the Annual Report for 1989/90 gives an overview of the Nuclear Structure Facility at Daresbury, its development and a selection of highlights of the year's programme. This volume is complementary, presenting brief specialist reports, submitted by the users, describing the progress and results of each individual proposal. The contents reflect the extremely successful year due in good measure to the performance of the tandem accelerator which provided a record number of hours with ''beam on target''. Reports are grouped in four sections: research into nuclear structure with contributions ordered in increasing Z numbers of the nuclei studied; investigations of nuclear reaction mechanisms; nuclear theory; accelerator operations and development plus experimental instrumentation and techniques. The appendix forms a concise summary of the work at the facility for the year. (author)

  18. Epidemiology applied to health physics

    International Nuclear Information System (INIS)

    The technical program of the mid-year meeting of the Health Physics Society, entitled Epidemiology Applied to Health physics, was developed to meet three objectives: (1) give health physicists a deeper understanding of the basics of epidemiological methods and their use in developing standards, regulations, and criteria and in risk assessment; (2) present current reports on recently completed or on-going epidemiology studies; and (3) encourage greater interaction between the health physics and epidemiology disciplines. Included are studies relating methods in epidemiology to radiation protection standards, risk assessment from exposure to bone-seekers, from occupational exposures in mines, mills and nuclear facilities, and from radioactivity in building materials

  19. Workshop applied antineutrino physics 2007

    International Nuclear Information System (INIS)

    The 'Applied Antineutrino Physics 2007' workshop is the fourth international meeting devoted to the opening of the neutrino physics to more applied fields, such as geophysics and geochemistry, nuclear industry, as well as the nonproliferation. This meeting highlights the world efforts already engaged to exploit the single characteristics of the neutrinos for the control of the production of plutonium in the civil nuclear power reactor. The potential industrial application of the measurement of the thermal power of the nuclear plants by the neutrinos is also approached. earth neutrinos were for the first time highlighted in 2002 by the KamLAND experiment. Several international efforts are currently underway to use earth neutrinos to reveal the interior of the Earth. This meeting is an opportunity to adapt the efforts of detection to the real needs of geophysicists and geochemists (sources of radiogenic heat, potassium in the court, feathers.) Finally more futuristic topics such as the detection of nuclear explosions, of low powers, are also discussed. This document gathers only the slides of the presentations

  20. Workshop applied antineutrino physics 2007

    Energy Technology Data Exchange (ETDEWEB)

    Akiri, T.; Andrieu, B.; Anjos, J.; Argyriades, J.; Barouch, G.; Bernstein, A.; Bersillon, O.; Besida, O.; Bowden, N.; Cabrera, A.; Calmet, D.; Collar, J.; Cribier, M.; Kerret, H. de; Meijer, R. de; Dudziak, F.; Enomoto, S.; Fallot, M.; Fioni, G.; Fiorentini, G.; Gale, Ph.; Georgadze, A.; Giot, L.; Gonin, M.; Guillon, B.; Henson, C.; Jonkmans, G.; Kanamaru, S.; Kawasaki, T.; Kornoukhov, V.; Lasserre, Th.; Learned, J.G.; Lefebvre, J.; Letourneau, A.; Lhillier, D.; Lindner, M.; Lund, J.; Mantovani, F.; Mcdonough, B.; Mention, G.; Monteith, A.; Motta, D.; Mueller, Th.; Oberauer, L.; Obolensky, M.; Odrzywolek, A.; Petcov, S.; Porta, A.; Queval, R.; Reinhold, B.; Reyna, D.; Ridikas, D.; Sadler, L.; Schoenert, St.; Sida, J.L.; Sinev, V.; Suekane, F.; Suvorov, Y.; Svoboda, R.; Tang, A.; Tolich, N.; Tolich, K.; Vanka, S.; Vignaud, D.; Volpe, Ch.; Wong, H

    2007-07-01

    The 'Applied Antineutrino Physics 2007' workshop is the fourth international meeting devoted to the opening of the neutrino physics to more applied fields, such as geophysics and geochemistry, nuclear industry, as well as the nonproliferation. This meeting highlights the world efforts already engaged to exploit the single characteristics of the neutrinos for the control of the production of plutonium in the civil nuclear power reactor. The potential industrial application of the measurement of the thermal power of the nuclear plants by the neutrinos is also approached. earth neutrinos were for the first time highlighted in 2002 by the KamLAND experiment. Several international efforts are currently underway to use earth neutrinos to reveal the interior of the Earth. This meeting is an opportunity to adapt the efforts of detection to the real needs of geophysicists and geochemists (sources of radiogenic heat, potassium in the court, feathers.) Finally more futuristic topics such as the detection of nuclear explosions, of low powers, are also discussed. This document gathers only the slides of the presentations.

  1. Applied plasma physics

    International Nuclear Information System (INIS)

    Applied Plasma Physics is a major sub-organizational unit of the MFE Program. It includes Fusion Plasma Theory and Experimental Plasma Research. The Fusion Plasma Theory group has the responsibility for developing theoretical-computational models in the general areas of plasma properties, equilibrium, stability, transport, and atomic physics. This group has responsibility for giving guidance to the mirror experimental program. There is a formal division of the group into theory and computational; however, in this report the efforts of the two areas are not separated since many projects have contributions from members of both. Under the Experimental Plasma Research Program, we are developing the intense, pulsed neutral-beam source (IPINS) for the generation of a reversed-field configuration on 2XIIB. We are also studying the feasibility of utilizing certain neutron-detection techniques as plasma diagnostics in the next generation of thermonuclear experiments

  2. Applied plasma physics

    International Nuclear Information System (INIS)

    Applied Plasma Physics is a major sub-organizational unit of the MFE Porgram. It includes Fusion Plasma Theory and Experimental Plasma Research. Fusion Plasma Theory has the responsibility for developing theoretical-computational models in the general areas of plasma properties, equilibrium, stability, transport, and atomic physics. This group has responsibility for giving guidance to the mirror experimental program. There is a formal division of the group into theory and computational; however, in this report the efforts of the two areas are not separated since many projects have contributions from members of both. Under Experimental Plasma Research, we are developing the intense, pulsed ion-neutral source (IPINS) for the generation of a reversed-field configuration on 2XIIB. We are also studying the feasibility of utilizing certain neutron-detection techniques as plasma diagnostics in the next generation of thermonuclear experiments

  3. Applied plasma physics

    International Nuclear Information System (INIS)

    Applied Plasma Physics is a major sub-organizational unit of the Magnetic Fusion Energy (MFE) Program. It includes Fusion Plasma Theory and Experimental Plasma Research. The Fusion Plasma Theory group has the responsibility for developing theoretical-computational models in the general areas of plasma properties, equilibrium, stability, transport, and atomic physics. This group has responsibility for giving guidance to the mirror experimental program. There is a formal division of the group into theory and computational; however, in this report the efforts of the two areas are not separated since many projects have contributions from members of both. Under the Experimental Plasma Research Program we are developing a neutral-beam source, the intense, pulsed ion-neutral source (IPINS), for the generation of a reversed-field configuration on 2XIIB. We are also studying the feasibility of using certain neutron-detection techniques as plasma diagnostics in the next generation of thermonuclear experiments

  4. Nuclear Physics Laboratory. Annual report no.21

    International Nuclear Information System (INIS)

    The annual report of the Nuclear Physics Laboratory covers the following subjects: 1) the accelerators; 2) work in experimental nuclear physics; 3) research in particle physics: experiments at TRIUMF and CERN; 4) work in applied nuclear physics; and 5) work in theoretical physics

  5. Vol. 2: Nuclear Physics

    International Nuclear Information System (INIS)

    Problems of modern physics and the situation with physical research in Ukraine are considered. Programme of the conference includes scientific and general problems. Its proceedings are published in 6 volumes. The papers presented in this volume refer to nuclear physics

  6. Nuclear medicine physics

    CERN Document Server

    De Lima, Joao Jose

    2011-01-01

    Edited by a renowned international expert in the field, Nuclear Medicine Physics offers an up-to-date, state-of-the-art account of the physics behind the theoretical foundation and applications of nuclear medicine. It covers important physical aspects of the methods and instruments involved in modern nuclear medicine, along with related biological topics. The book first discusses the physics of and machines for producing radioisotopes suitable for use in conventional nuclear medicine and PET. After focusing on positron physics and the applications of positrons in medicine and biology, it descr

  7. Panel report: nuclear physics

    Energy Technology Data Exchange (ETDEWEB)

    Carlson, Joseph A [Los Alamos National Laboratory; Hartouni, Edward P [LLNL

    2010-01-01

    Nuclear science is at the very heart of the NNSA program. The energy produced by nuclear processes is central to the NNSA mission, and nuclear reactions are critical in many applications, including National Ignition Facility (NIF) capsules, energy production, weapons, and in global threat reduction. Nuclear reactions are the source of energy in all these applications, and they can also be crucial in understanding and diagnosing the complex high-energy environments integral to the work of the NNSA. Nuclear processes are complex quantum many-body problems. Modeling and simulation of nuclear reactions and their role in applications, coupled tightly with experiments, have played a key role in NNSA's mission. The science input to NNSA program applications has been heavily reliant on experiment combined with extrapolations and physical models 'just good enough' to provide a starting point to extensive engineering that generated a body of empirical information. This body of information lacks the basic science underpinnings necessary to provide reliable extrapolations beyond the domain in which it was produced and for providing quantifiable error bars. Further, the ability to perform additional engineering tests is no longer possible, especially those tests that produce data in the extreme environments that uniquely characterize these applications. The end of testing has required improvements to the predictive capabilities of codes simulating the reactions and associated applications for both well known and well characterized cases as well as incompletely known cases. Developments in high performance computing, computational physics, applied mathematics and nuclear theory have combined to make spectacular advances in the theory of fission, fusion and nuclear reactions. Current research exploits these developments in a number of Office of Science and NNSA programs, and in joint programs such as the SciDAC (Science Discovery through Advanced Computing) that

  8. Whither Nuclear Physics ?

    OpenAIRE

    Abbas, Syed Afsar

    2008-01-01

    Nuclear Physics has had its ups and downs. However in recent years, bucked up by some new and often puzzling data, it has become a potentially very rich field. We review some of these exciting developments in a few important sectors of nuclear physics. Emphasis shall be on the study of exotic nuclei and the new physics that these nuclei are teaching us.

  9. Nuclear physics group report

    International Nuclear Information System (INIS)

    A brief description is given of the operation and maintenance of the cyclotron. The computors and data collection system are also briefly described, as is the nuclear instrumentation at the cyclotron laboratory. A number of experiments in nuclear reactions and nuclear structure which are in progress or soon to be reported are presented. Projects in theoretical nuclear physics and radiation physics are also described. Lists of seminars, lectures, visitors, conferences and publications are given. (RF)

  10. Stratagems of applied physics

    Science.gov (United States)

    Grebenyuk, Konstantin A.

    2006-07-01

    The paper concerns Chinese stratagems which demonstrate practically proved original approach to solving of extraordinary problems. Such questions as what stratagem is, how stratagems may concern physics and how physicists could benefit from stratagem thinking are discussed. Present paper is opening the topic of stratagem thinking application in physics and its main purpose is to attract attention to opportunities of such an application.

  11. Nuclear reactor physics

    CERN Document Server

    Stacey, Weston M

    2010-01-01

    Nuclear reactor physics is the core discipline of nuclear engineering. Nuclear reactors now account for a significant portion of the electrical power generated worldwide, and new power reactors with improved fuel cycles are being developed. At the same time, the past few decades have seen an ever-increasing number of industrial, medical, military, and research applications for nuclear reactors. The second edition of this successful comprehensive textbook and reference on basic and advanced nuclear reactor physics has been completely updated, revised and enlarged to include the latest developme

  12. Applied building physics

    CERN Document Server

    Hens, Hugo S L C

    2012-01-01

    The energy crises of the 1970s, persisting moisture problems, complaints about sick buildings, thermal, visual and olfactory discomfort, and the move towards more sustainability in building construction have pushed Building Physics to the forefront of building innovation. The societal pressure to diminish energy consumption in buildings without impairing usability acted as a trigger to activate the whole notion of performance based design and construction. As with all engineering sciences, Building Physics is oriented towards application, which is why, after a first book on fundamentals this s

  13. Nuclear physics workshop

    International Nuclear Information System (INIS)

    This Workshop in Nuclear Physics related to the TANDAR, took place in Buenos Aires in April from 23 to 26, 1987, with attendance of foreign scientists. There were presented four seminars and a lot of studies which deal with the following fields: Nuclear Physics at medium energies, Nuclear Structure, Nuclear Reactions, Nuclear Matter, Instrumentation and Methodology for Nuclear Spectroscopy, Classical Physics, Quantum Mechanics and Field Theory. It must be emphasized that the Electrostatic Accelerator TANDAR allows to work with heavy ions of high energy, that opens a new field of work in PIXE (particle induced X-ray emission). This powerful analytic technique makes it possiblethe analysis of nearly all the elements of the periodic table with the same accuracy. (M.E.L.)

  14. Particle and nuclear physics

    CERN Document Server

    Faessler, Amand

    1971-01-01

    Progress in Particle and Nuclear Physics, Volume 26 covers the significant advances in understanding the fundamentals of particle and nuclear physics. This volume is divided into four chapters, and begins with a brief overview of the various possible ideas beyond the standard model, the problem they address and their experimental tests. The next chapter deals with the basic physics of neutrino mass based on from a gauge theoretic point of view. This chapter considers the various extensions of the standard electroweak theory, along with their implications for neutrino physics. The discussio

  15. Nuclear physics program plan

    International Nuclear Information System (INIS)

    The nuclear physics program objectives, resources, applications and implications of scientific opportunities are presented. The scope of projected research is discussed in conjunction with accelerator facilities and manpower. 25 figs., 2 tabs

  16. Theoretical nuclear physics

    CERN Document Server

    Blatt, John M

    2010-01-01

    A classic work by two leading physicists and scientific educators endures as an uncommonly clear and cogent investigation and correlation of key aspects of theoretical nuclear physics. It is probably the most widely adopted book on the subject. The authors approach the subject as ""the theoretical concepts, methods, and considerations which have been devised in order to interpret the experimental material and to advance our ability to predict and control nuclear phenomena.""The present volume does not pretend to cover all aspects of theoretical nuclear physics. Its coverage is restricted to

  17. Perspectives of Nuclear Physics

    CERN Document Server

    Faessler, A

    2002-01-01

    The organizers of this meeting have asked me to present perspectives of nuclear physics. This means to identify the areas where nuclear physics will be expanding in the next future. In six chapters a short overview of these areas will be given, where I expect that nuclear physics willdevelop quite fast: A. Quantum Chromodynamics and effective field theories in the confinement region; B. Nuclear structure at the limits; C. High energy heavy ion collisions; D. Nuclear astrophysics; E. Neutrino physics; F. Test of physics beyond the standard model by rare processes. After a survey over these six points I will pick out a few topics where I will go more in details. There is no time to give for all six points detailed examples. I shall discuss the following examples of the six topics mentionned above: 1. The perturbative chiral quark model and the nucleon $\\Sigma$-term, 2. VAMPIR (Variation After Mean field Projection In Realistic model spaces and with realistic forces) as an example of the nuclear structure renais...

  18. Nuclear physics group report

    International Nuclear Information System (INIS)

    A brief description is given of the new cyclotron tested and inaugurated during the period under review, and its main specifications are presented. Preliminary beam measurements are reported. The computers and data collection system are also briefly described, as is the nuclear instrumentation at the cyclotron laboratory. A number of experiments in nuclear structure and nuclear reactions which are in progress, or soon to be reported are presented. Projects in theoretical nuclear physics are also described. Lists of seminars and lectures and of publications are given. (JIW)

  19. International Nuclear Physics Conference

    CERN Document Server

    2016-01-01

    We are pleased to announce that the 26th International Nuclear Physics Conference (INPC2016) will take place in Adelaide (Australia) from September 11-16, 2016. The 25th INPC was held in Firenze in 2013 and the 24th INPC in Vancouver, Canada, in 2010. The Conference is organized by the Centre for the Subatomic Structure of Matter at the University of Adelaide, together with the Australian National University and ANSTO. It is also sponsored by the International Union of Pure and Applied Physics (IUPAP) and by a number of organisations, including AUSHEP, BNL, CoEPP, GSI and JLab. INPC 2016 will be held in the heart of Adelaide at the Convention Centre on the banks of the River Torrens. It will consist of 5 days of conference presentations, with plenary sessions in the mornings, up to ten parallel sessions in the afternoons, poster sessions and a public lecture. The Conference will officially start in the evening of Sunday 11th September with Registration and a Reception and will end late on the afternoon of ...

  20. Nuclear physics. Fourth edition

    International Nuclear Information System (INIS)

    This book is designed to be an extension of the introductory college physics course into the realm of atomic physics: It should give students a proficiency in this field comparable to their proficiency in mechanics, heat, sound, light and electricity. Topics included: the atomic view of matter; the atomic view of electricity; the atomic view of radiation; the atomic models of Rutherford and Bohr; relativity; x-rays; waves and particles; quantum mechanics; the atomic view of solids; natural radioactivity; nuclear reactions and artificial radioactivity; nuclear energy; and high-energy physics

  1. Nuclear physics accelerator facilities

    International Nuclear Information System (INIS)

    The Department of Energy's Nuclear Physics program is a comprehensive program of interdependent experimental and theoretical investigation of atomic nuclei. Long range goals are an understanding of the interactions, properties, and structures of atomic nuclei and nuclear matter at the most elementary level possible and an understanding of the fundamental forces of nature by using nuclei as a proving ground. Basic ingredients of the program are talented and imaginative scientists and a diversity of facilities to provide the variety of probes, instruments, and computational equipment needed for modern nuclear research. Approximately 80% of the total Federal support of basic nuclear research is provided through the Nuclear Physics program; almost all of the remaining 20% is provided by the National Science Foundation. Thus, the Department of Energy (DOE) has a unique responsibility for this important area of basic science and its role in high technology. Experimental and theoretical investigations are leading us to conclude that a new level of understanding of atomic nuclei is achievable. This optimism arises from evidence that: (1) the mesons, protons, and neutrons which are inside nuclei are themselves composed of quarks and gluons and (2) quantum chromodynamics can be developed into a theory which both describes correctly the interaction among quarks and gluons and is also an exact theory of the strong nuclear force. These concepts are important drivers of the Nuclear Physics program

  2. Nuclear Physics accelerator facilities

    International Nuclear Information System (INIS)

    The Nuclear Physics program requires the existence and effective operation of large and complex accelerator facilities. These facilities provide the variety of projectile beams upon which virtually all experimental nuclear research depends. Their capability determine which experiments can be performed and which cannot. Seven existing accelerator facilities are operated by the Nuclear Physics program as national facilities. These are made available to all the Nation's scientists on the basis of scientific merit and technical feasibility of proposals. The national facilities are the Clinton P. Anderson Meson Physics Facility (LAMPF) at Los Alamos National Laboratory; the Bates Linear Accelerator Center at Massachusetts Institute of Technology; the Bevalac at Lawrence Berkeley Laboratory; the Tandem/AGS Heavy Ion Facility at Brookhaven National Laboratory; the ATLAS facility at Argonne National Laboratory; the 88-Inch Cyclotron at Lawrence Berkeley Laboratory; the Holifield Heavy Ion Research Facility at Oak Ridge National Laboratory. The Nuclear Physics Injector at the Stanford Linear Accelerator Center (SLAC) enables the SLAC facility to provide a limited amount of beam time for nuclear physics research on the same basis as the other national facilities. To complement the national facilities, the Nuclear Physics program supports on-campus accelerators at Duke University, Texas A and M University, the University of Washington, and Yale University. The facility at Duke University, called the Triangle Universities Nuclear Laboratory (TUNL), is jointly staffed by Duke University, North Carolina State University, and the University of North Carolina. These accelerators are operated primarily for the research use of the local university faculty, junior scientists, and graduate students

  3. Research in theoretical nuclear physics

    International Nuclear Information System (INIS)

    This report contains abstracts of ongoing projects in the following areas: strong interaction physics; relativistic heavy ion physics; nuclear structure and nuclear many-body theory; and nuclear astrophysics

  4. Nuclear physics accelerator facilities

    International Nuclear Information System (INIS)

    This paper describes many of the nuclear physics heavy-ion accelerator facilities in the US and the research programs being conducted. The accelerators described are: Argonne National Laboratory--ATLAS; Brookhaven National Laboratory--Tandem/AGS Heavy Ion Facility; Brookhaven National Laboratory--Relativistic Heavy Ion Collider (RHIC) (Proposed); Continuous Electron Beam Accelerator Facility; Lawrence Berkeley Laboratory--Bevalac; Lawrence Berkeley Laboratory--88-Inch Cyclotron; Los Alamos National Laboratory--Clinton P. Anderson Meson Physics Facility (LAMPF); Massachusetts Institute of Technology--Bates Linear Accelerator Center; Oak Ridge National Laboratory--Holifield Heavy Ion Research Facility; Oak Ridge National Laboratory--Oak Ridge Electron Linear Accelerator; Stanford Linear Accelerator Center--Nuclear Physics Injector; Texas AandM University--Texas AandM Cyclotron; Triangle Universities Nuclear Laboratory (TUNL); University of Washington--Tandem/Superconducting Booster; and Yale University--Tandem Van de Graaff

  5. Physics in nuclear medicine

    CERN Document Server

    Cherry, Simon R; Phelps, Michael E

    2012-01-01

    Physics in Nuclear Medicine - by Drs. Simon R. Cherry, James A. Sorenson, and Michael E. Phelps - provides current, comprehensive guidance on the physics underlying modern nuclear medicine and imaging using radioactively labeled tracers. This revised and updated fourth edition features a new full-color layout, as well as the latest information on instrumentation and technology. Stay current on crucial developments in hybrid imaging (PET/CT and SPECT/CT), and small animal imaging, and benefit from the new section on tracer kinetic modeling in neuroreceptor imaging.

  6. Strangeness in nuclear physics

    CERN Document Server

    Gal, A; Millener, D J

    2016-01-01

    Extensions of nuclear physics to the strange sector are reviewed, covering data and models of Lambda and other hypernuclei, multi-strange matter, and anti-kaon bound states and condensation. Past achievements are highlighted, present unresolved problems discussed, and future directions outlined.

  7. Physics and nuclear power

    Science.gov (United States)

    Buttery, N. E.

    2008-03-01

    Nuclear power owes its origin to physicists. Fission was demonstrated by physicists and chemists and the first nuclear reactor project was led by physicists. However as nuclear power was harnessed to produce electricity the role of the engineer became stronger. Modern nuclear power reactors bring together the skills of physicists, chemists, chemical engineers, electrical engineers, mechanical engineers and civil engineers. The paper illustrates this by considering the Sizewell B project and the role played by physicists in this. This covers not only the roles in design and analysis but in problem solving during the commissioning of first of a kind plant. Looking forward to the challenges to provide sustainable and environmentally acceptable energy sources for the future illustrates the need for a continuing synergy between physics and engineering. This will be discussed in the context of the challenges posed by Generation IV reactors.

  8. Advances in nuclear physics

    CERN Document Server

    Vogt, Erich

    1975-01-01

    Review articles on three topics of considerable current interest make up the present volume. The first, on A-hypernuclei, was solicited by the editors in order to provide nuclear physicists with a general description of the most recent developments in a field which this audience has largely neglected or, perhaps, viewed as a novelty in which a bizarre nuclear system gave some information about the lambda-nuclear intersection. That view was never valid. The very recent developments reviewed here-particularly those pertaining to hypernuclear excitations and the strangeness exchange reactions-emphasize that this field provides important information about the models and central ideas of nuclear physics. The off-shell behavior of the nucleon-nucleon interaction is a topic which was at first received with some embarrassment, abuse, and neglect, but it has recently gained proper attention in many nuclear problems. Interest was first focused on it in nuclear many-body theory, but it threatened nuclear physicists'comf...

  9. Nuclear physics accelerator facilities

    International Nuclear Information System (INIS)

    Brief descriptions are given of DOE and Nuclear Physics program operated and sponsored accelerator facilities. Specific facilities covered are the Argonne Tandem/Linac Accelerator System, the Tandem/AGS Heavy Ion Facility at Brookhaven National Laboratory, the proposed Continuous Beam Accelerator at Newport News, Virginia, the Triangle Universities Nuclear Laboratory at Duke University, the Bevalac and the SuperHILAC at Lawrence Berkeley Laboratory, the 88-Inch Cyclotron at Lawrence Berkeley Laboratory, the Clinton P. Anderson Meson Physics Facility at Los Alamos National Laboratory, the Bates Linear Accelerator Center at Massachusetts Institute of Technology, the Holifield Heavy Ion Research Facility at Oak Ridge National Laboratory, the Nuclear Physics Injector at Stanford Linear Accelerator Center, the Texas A and M Cyclotrons, the Tandem/Superconducting Booster Accelerator at the University of Washington and the Tandem Van de Graaff at the A.W. Wright Nuclear Structure Laboratory of Yale University. Included are acquisition cost, research programs, program accomplishments, future directions, and operating parameters of each facility

  10. Physics through the 1990s: Nuclear physics

    International Nuclear Information System (INIS)

    This volume is the report of the Panel on Nuclear Physics of the Physics Survey Committee, established by the National Research Council in 1983. The report presents many of the major advances in nuclear physics during the past decade, sketches the impacts of nuclear physics on other sciences and on society, and describes the current frontiers of the field. It concludes with a chapter on the recommended priorities for this discipline

  11. Applied Anti-neutrino Physics 2013

    CERN Document Server

    2013-01-01

    This year, the 9th annual Applied Antineutrino Physics Workshop will be hosted by Sejong University, at the COEX conference center in Seoul South Korea. The workshop will be held on November 1(Friday) - 2(Saturday), 2013. Conveniently for many travelers, it takes place directly after and at the same venue as the 2013 IEEE Nuclear Science Symposium (http://www.nss-mic.org/2013/NSSMain.asp) Applied Antineutrino Physics describes an ensemble of experimental and theoretical efforts which aim to use the antineutrino signal from nuclear reactors, and from the Earth itself, in order to address practical problems in nonproliferation and geology respectively. Since the 2004 inception of these workshops, groups worldwide have made considerable advances in defining and expanding the field, garnering interest from the International Atomic Energy Agency (IAEA), which administers the worlds most important nonproliferation regime, and from the geology/geophysics community. This meeting will focus on the current activi...

  12. Nuclear power reactor physics

    International Nuclear Information System (INIS)

    The purpose of this book is to explain the physical working conditions of nuclear reactors for the benefit of non-specialized engineers and engineering students. One of the leading ideas of this course is to distinguish between two fundamentally different concepts: - a science which could be called neutrodynamics (as distinct from neutron physics which covers the knowledge of the neutron considered as an elementary particle and the study of its interactions with nuclei); the aim of this science is to study the interaction of the neutron gas with real material media; the introduction will however be restricted to its simplified expression, the theory and equation of diffusion; - a special application: reactor physics, which is introduced when the diffusing and absorbing material medium is also multiplying. For this reason the chapter on fission is used to introduce this section. In practice the section on reactor physics is much longer than that devoted to neutrodynamics and it is developed in what seemed to be the most relevant direction: nuclear power reactors. Every effort was made to meet the following three requirements: to define the physical bases of neutron interaction with different materials, to give a correct mathematical treatment within the limit of necessary simplifying hypotheses clearly explained; to propose, whenever possible, numerical applications in order to fix orders of magnitude

  13. Nuclear Physics Review

    Energy Technology Data Exchange (ETDEWEB)

    Walker-Loud, Andre

    2014-11-01

    Anchoring low-energy nuclear physics to the fundamental theory of strong interactions remains an outstanding challenge. I review the current progress and challenges of the endeavor to use lattice QCD to bridge this connection. This is a particularly exciting time for this line of research as demonstrated by the spike in the number of different collaborative efforts focussed on this problem and presented at this conference. I first digress and discuss the 2013 Ken Wilson Award.

  14. Nuclear Physics in Poland

    International Nuclear Information System (INIS)

    Full text: This will be a short presentation of low and high energy nuclear physics in Poland, its history, essential results, and the present status. Nuclear physics in Poland has a tradition of hundred years. Research started just after the discovery of radium and polonium by Polish-born Maria Sklodowska-Curie and her husband Pierre Curie. Maria Sklodowska-Curie employed numerous Polish assistants in her Paris laboratory and supported radioactivity studies in Warsaw, her birth place, then under the occupation of tsarist Russia. In the first decades of the XXth century Poland was one of the leading countries in radioactivity studies. In the late 1930-ies a cyclotron was constructed in Warsaw and an ambitious 'Star of Poland' project was launched to study the cosmic rays. Unfortunately, the Second World War stopped all scientific activity in Poland. A large fraction of Polish physicists perished in the period 1939-1945. After the World War nuclear physics of low and high energy was rebuilt in Warsaw and Krakow. Already in 1952 Marian Danysz and Jerzy Pniewski discovered the first hypernucleus. This important discovery was essential to understand the properties of numerous new particles found in cosmic rays. Polish physicists entered intensive collaboration with both CERN and Dubna and took part also in research at other centers in Europe (DESY, GSI, GANIL, Julich, SACLAY) and the United States (Fermilab). At present the research is concentrated in Warsaw and Krakow (the two largest centers), and smaller teams, mostly theorists, are also in Bialystok, Katowice, Kielce, Lublin, Lodz and Wroclaw. Several years ago a heavy ion cyclotron was built in Warsaw. Among the important discoveries made by Polish nuclear physicists one may mention the theoretical works on superheavy elements and the recent discovery of the two-proton radioactivity

  15. Nuclear Physics Division progress report

    International Nuclear Information System (INIS)

    The 1983 progress report of the Nuclear Physics Division, UKAEA Harwell, is divided into four main topics. These are a) nuclear data and technology for nuclear power; b) nuclear studies; c) applications of nuclear and associated techniques, including ion beam techniques and moessbauer spectroscopy; and d) accelerator operation, maintenance and development. (U.K.)

  16. Nuclear Physics division progress report

    International Nuclear Information System (INIS)

    Work undertaken by the Nuclear Physics Division of AERE, Harwell during 1980 is presented under the headings: (1) Nuclear Data and Technology for Nuclear Power. (2) Nuclear Studies. (3) Applications of Nuclear and Associated Techniques. (4) Accelerator Operation, Maintenance and Development. Reports, publications and conference papers presented during the period are given and members of staff listed. (U.K.)

  17. Physics through the 1990s: Nuclear physics

    Science.gov (United States)

    1986-01-01

    The volume begins with a non-mathematical introduction to nuclear physics. A description of the major advances in the field follows, with chapters on nuclear structure and dynamics, fundamental forces in the nucleus, and nuclei under extreme conditions of temperature, density, and spin. Impacts of nuclear physics on astrophysics and the scientific and societal benefits of nuclear physics are then discussed. Another section deals with scientific frontiers, describing research into the realm of the quark-gluon plasma; the changing description of nuclear matter, specifically the use of the quark model; and the implications of the standard model and grand unified theories of elementary-particle physics; and finishes with recommendations and priorities for nuclear physics research facilities, instrumentation, accelerators, theory, education, and data bases. Appended are a list of national accelerator facilities, a list of reviewers, a bibliography, and a glossary.

  18. Research in theoretical nuclear physics

    International Nuclear Information System (INIS)

    The introductory section describes the goals, main thrusts, and interrelationships between the various activities in the program and principal achievements of the Stony Brook Nuclear Theory Group during 1992--93. Details and specific accomplishments are related in abstract form. Current research is taking place in the following areas: strong interaction physics (the physics of hadrons, QCD and the nucleus, QCD at finite temperature and high density), relativistic heavy-ion physics, nuclear structure and nuclear many- body theory, and nuclear astrophysics

  19. High energy nuclear physics

    International Nuclear Information System (INIS)

    The 1988 progress report of the High Energy Nuclear Physics laboratory (Polytechnic School, France), is presented. The Laboratory research program is focused on the fundamental physics of interactions, on the new techniques for the acceleration of charged particles and on the nuclei double beta decay. The experiments are performed on the following topics: the measurement of the π0 inclusive production and the photons production in very high energy nuclei-nuclei interactions and the nucleon stability. Concerning the experiments under construction, a new detector for LEP, the study and simulation of the hadronic showers in a calorimeter and the H1 experiment (HERA), are described. The future research programs and the published papers are listed

  20. Physical protection of nuclear material

    International Nuclear Information System (INIS)

    The Agency's role in relation to physical protection. The Safeguards applied by the Agency pursuant to the agreements to which it is a party have as their objective the detection of diversion of nuclear material to purposes prohibited by the State's undertaking. Also of importance is the question of theft of nuclear material or sabotage of installations by individuals or non-governmental groups, for purposes ranging from personal economic gain to political blackmail. The protection of nuclear material and facilities against illegal acts is an essential supplement to any safeguards system based on accountancy. There is a general recognition of the need for any State to have a system for the physical protection of nuclear material but the obligation to establish such a system does not arise from the safeguards agreement; the Agency cannot oblige a State to do so. It is, however, in a unique position to render advice on the subject, serve as a clearing house of information and co-ordinate the various approaches towards concerted action in this field. From 1971 onward the IAEA has been preparing itself to provide, upon request, technical advice to States setting up systems for the physical protection of nuclear material. In June 1971 it convened a Working Group Meeting on the subject; in November of that year consultants met in Vienna and in March 1972 a Panel meeting was held. These three meetings resulted in the publication, in June 1972, of 'Recommendations for the Physical Protection of Nuclear Material'. From 3-7 February 1975 the IAEA arranged a Consultants Meeting to consider the up-dating and extension of these recommendations. The consultants made a thorough study of the developments since the previous recommendations were drawn up and prepared a working paper for consideration by an Advisory Group meeting planned for 14-18 April 1975. ft is widely recognized that since the previous meetings took place the need for the adequate physical protection of nuclear

  1. Research in theoretical nuclear physics

    International Nuclear Information System (INIS)

    This report discusses the following areas of investigation of the Stony Brook Nuclear Theory Group: the physics of hadrons; QCD and the nucleus; QCD at finite temperature and high density; nuclear astrophysics; nuclear structure and many-body theory; and heavy ion physics

  2. Research in theoretical nuclear physics

    International Nuclear Information System (INIS)

    We shall organize the description of our many activities under following broad headings: Strong Interaction Physics: the physics of hadrons; QCD and the nucleus; and QCD at finite temperature and high density. Relativistic Heavy Ion Physics. Nuclear Structure and Many-body Theory. Nuclear Astrophysics. While these are the main areas of activity of the Stony Brood group, they do not cover all activities

  3. Overview and Perspectives in Nuclear Physics

    OpenAIRE

    Weise, Wolfram

    2008-01-01

    This presentation reviews recent guiding themes in the broad context of nuclear physics, from developments in chiral effective field theory applied to nuclear systems, via the phases and structures of QCD, to matter under extreme conditions in heavy-ion collisions and neutron stars.

  4. Nuclear physics principles and applications

    CERN Document Server

    Lilley, J S

    2001-01-01

    This title provides the latest information on nuclear physics. Based on a course entitled Applications of Nuclear Physics. Written from an experimental point of view this text is broadly divided into two parts, firstly a general introduction to Nuclear Physics and secondly its applications.* Includes chapters on practical examples and problems* Contains hints to solving problems which are included in the appendix* Avoids complex and extensive mathematical treatments* A modern approach to nuclear physics, covering the basic theory, but emphasising the many and important applicat

  5. Nuclear physics, neutron physics and nuclear energy. Proceedings

    International Nuclear Information System (INIS)

    The book contains of proceedings of XI International School on Nuclear Physics, Neutron Physics and Nuclear Energy organized traditionally every two years by Bulgarian Academy of Sciences and the Physics Department of Sofia University held near the city of Varna. It provides a good insight to the large range of theoretical and experimental results, prospects, problems, difficulties and challenges which are at the core of nuclear physics today. The efforts and achievements of scientists to search for new phenomena in nuclei at extreme circumstances as superdeformation and band crossing in nuclear structure understanding are widely covered. From this point of view the achievements and future in the field of high-precision γ-spectroscopy are included. Nuclear structure models and methods, models for strong interaction, particle production and properties, resonance theory and its application in reactor physics are comprised also. (V.T.)

  6. New perspectives from nuclear physics

    International Nuclear Information System (INIS)

    Connections between nuclear physics and neighbouring disciplines of elementary particle physics, astrophysics and cosmology were emphasized at the International Symposium on Weak and Electromagnetic Interactions in Nuclei held in Heidelberg this summer in conjunction with the 600th anniversary of the University of Heidelberg. The meeting reflected the new trend in nuclear physics towards fundamental physics questions. Important subjects included the roles of the neutrino and of proton decay and their deep implications

  7. Nuclear Physics Laboratory annual report

    International Nuclear Information System (INIS)

    Progress is reported in these areas: nuclear physics relevant to astrophysics and cosmology; nuclear structure of 14N; the Cabibbo angle in Fermi matrix elements of high j states; giant resonances; heavy ion reactions; 0+ - 0- isoscalar parity mixing in 14N; parity mixing in hydrogen and deuterium; medium energy physics; and accelerator mass spectrometry. Accelerators and ion sources, nuclear instrumentation, and computer systems at the university are discussed, including the booster linac project

  8. Nuclear physics and particle therapy

    Science.gov (United States)

    Battistoni, G.

    2016-05-01

    The use of charged particles and nuclei in cancer therapy is one of the most successful cases of application of nuclear physics to medicine. The physical advantages in terms of precision and selectivity, combined with the biological properties of densely ionizing radiation, make charged particle approach an elective choice in a number of cases. Hadron therapy is in continuous development and nuclear physicists can give important contributions to this discipline. In this work some of the relevant aspects in nuclear physics will be reviewed, summarizing the most important directions of research and development.

  9. An introduction to nuclear physics

    CERN Document Server

    Jana, Yatramohan

    2015-01-01

    AN INTRODUCTION TO NUCLEAR PHYSICS explores the nucleus - its size, shape and structure, its static and dynamic properties, its interaction with external system (particles and radiation), and above all the nuclear interaction in the two-nucleon and many-nucleon systems. It covers all aspects of the nucleus, divided into five Parts and nineteen Chapters. Part-1 introduces nuclear binding energy, separation energy and nuclear stability. Part-2 explores the two-nucleon potential through the study of the deuteron problem, nucleon-nucleon scattering, and also presents a meson theoretical description of the nuclear potential. Part-3 deals with the nuclear structure through different models, e.g., liquid-drop model, Fermi gas model, nuclear shell model, collective model. Part-4 develops different theoretical models for nuclear reactions, e.g., compound nucleus, statistical model, continuum model, optical model, direct reaction mechanism.

  10. Nuclear physics of stars

    CERN Document Server

    Iliadis, Christian

    2015-01-01

    Most elements are synthesized, or ""cooked"", by thermonuclear reactions in stars. The newly formed elements are released into the interstellar medium during a star's lifetime, and are subsequently incorporated into a new generation of stars, into the planets that form around the stars, and into the life forms that originate on the planets. Moreover, the energy we depend on for life originates from nuclear reactions that occur at the center of the Sun. Synthesis of the elements and nuclear energy production in stars are the topics of nuclear astrophysics, which is the subject of this book

  11. [Experimental nuclear physics

    International Nuclear Information System (INIS)

    This report contains brief discussion on the following tapes: giant resonances; nucleus-nucleus reactions; nuclear astrophysics; polarization; fundamental symmetries and interactions; accelerator mass spectrometry; instrumentation; accelerators and in sources; and computer systems

  12. Serber says: About nuclear physics

    International Nuclear Information System (INIS)

    This book is a distillation of a set of lecture notes used by the author at Columbia. Written with a pedagogical aim it emphasizes topics of current interest not only in nuclear physics but also in other branches of physics such as atomic physics and solid state physics. Contents: Some Arguments Concerning Nuclear Forces; The Neutron-Proton Force; Low Energy Neutron-Proton Scattering Experiments; Photo-Effect of the Deuteron; The Slowing Down and Diffusion of Neutrons; Nucleon Magnetic Moments and Quadrupole Moment of the Deuteron; Proton-Proton and Neutron-Neutron Interactions; Isotopic Spin Invariance; High Energy Reactions; Resonance Levels

  13. Nuclear Physics Group progress report

    International Nuclear Information System (INIS)

    This report summarises the work of the Nuclear Physics Group of the Institute of Nuclear Sciences during the period January-December 1983. Commissioning of the EN-tandem electrostatic accelerator continued, with the first proton beam produced in June. Many improvements were made to the vacuum pumping and control systems. Applications of the nuclear microprobe on the 3MV accelerator continued at a good pace, with applications in archaeometry, dental research, studies of glass and metallurgy

  14. Nuclear safeguards and physical protection

    International Nuclear Information System (INIS)

    In the present lecture two topics are covered: 1) the steps or the infrastructure which the operators of a nuclear facility have to foresee for the implementation of safeguards according to the NPT. 2) General features of a national physical protection system for nuclear materials in use, storage and transport. (orig./RW)

  15. Nuclear Physics and Lattice QCD

    OpenAIRE

    Savage, Martin J.

    2005-01-01

    Lattice QCD is progressing toward being able to impact our understanding of nuclei and nuclear processes. I discuss areas of nuclear physics that are becoming possible to explore with lattice QCD, the techniques that are currently available and the status of numerical explorations.

  16. Nuclear physics with radioactive beams

    International Nuclear Information System (INIS)

    Radioactive beam production through two different mechanisms: acceleration of radioactive nuclei, and production of secondary beams from projectile fragmentation is overviewed. Some topics of the applications of radioactive beams in nuclear physics, such as identification and study of exotic nuclei, neutron halos, nuclear astrophysics and medical applications are discussed. (K.A.). 24 refs., 8 figs

  17. Neutrinos in Nuclear Physics

    Energy Technology Data Exchange (ETDEWEB)

    McKeown, Bob [bmck@jlab.org

    2015-06-01

    Since the discovery of nuclear beta decay, nuclear physicists have studied the weak interaction and the nature of neutrinos. Many recent and current experiments have been focused on the elucidation of neutrino oscillations and neutrino mass. The quest for the absolute value of neutrino mass continues with higher precision studies of the tritium beta decay spectrum near the endpoint. Neutrino oscillations are studied through measurements of reactor neutrinos as a function of baseline and energy. And experiments searching for neutrinoless double beta decay seek to discover violation of lepton number and establish the Majorana nature of neutrino masses.

  18. Fundamentals of Nuclear Reactor Physics

    CERN Document Server

    Lewis, E E

    2008-01-01

    This new streamlined text offers a one-semester treatment of the essentials of how the fission nuclear reactor works, the various approaches to the design of reactors, and their safe and efficient operation. The book includes numerous worked-out examples and end-of-chapter questions to help reinforce the knowledge presented. This textbook offers an engineering-oriented introduction to nuclear physics, with a particular focus on how those physics are put to work in the service of generating nuclear-based power, particularly the importance of neutron reactions and neutron behavior. Engin

  19. Nuclear physics and biology

    International Nuclear Information System (INIS)

    This paper is about nuclear instrumentation and biological concepts, based on images from appropriate Β detectors. First, three detectors are described: the SOFI detector, for gene mapping, the SOFAS detector, for DNA sequencing and the RIHR detector, for in situ hybridization. Then, the paper presents quantitative imaging in molecular genetic and functional imaging. (TEC)

  20. Perspectives in nuclear physics

    Science.gov (United States)

    Thomas, A. W.

    2011-09-01

    We discuss some of the many important questions in modern subatomic physics that have been addressed over the past two decades at Mainz. These achievements range from precision studies of nucleon form factors, to nucleon spectroscopy, novel probes of nucleon structure such as virtual Compton scattering and fundamental tests of quantum chromodynamics. In the future one may expect to see this effort expanded to precision tests of physics beyond the Standard Model.

  1. Nuclear medicine physics the basics

    CERN Document Server

    Chandra, Ramesh

    2012-01-01

    For decades this classic reference has been the book to review to master the complexities of nuclear-medicine physics. Part of the renowned The Basics series of medical physics books, Nuclear Medicine Physics has become an essential resource for radiology residents and practitioners, nuclear cardiologists, medical physicists, and radiologic technologists. This thoroughly revised Seventh Edition retains all the features that have made The Basics series a reliable and trusted partner for board review and reference. This handy manual contains key points at the end of each chapter that help to underscore principal concepts. You'll also find review questions at the end of each chapter—with detailed answers at the end of the book—to help you master the material. This edition includes useful appendices that elaborate on specific topics, such as physical characteristics of radionuclides and CGS and SI Units.

  2. New researchers for applied physics

    CERN Multimedia

    Rita Giuffredi, PicoSEC project

    2012-01-01

    On 12 September, thirteen PicoSEC researchers met in Lyon for the first time, at the project’s kick-off meeting. The meeting was the opportunity for them to get to know each other and start building a fruitful working and human relationship. A hard task awaits them: reaching the 200-picosecond-limit on time resolution in photon detectors.    The 13 researchers recruited for the PicoSEC project and the organizers of the project, September 2012. Photon detectors are used in many different fields ranging from high-energy physics calorimetry for the future generation of colliders to the photon time-of-flight technique for the next generation of PET scanners. Within the PicoSEC EU-funded Marie Curie Initial Training Network, 18 Early Stage Researchers and 4 Experienced Researchers are being trained to develop new detection techniques based on very fast scintillating crystals and photo detectors. In a multi-site project like PicoSEC, in which 11 institutes and companies from 6 ...

  3. 36th Brazilian Workshop on Nuclear Physics

    CERN Document Server

    Brandão de Oliveira, José Roberto; Barbosa Shorto, Julian Marco; Higa, Renato

    2014-01-01

    The Brazilian Workshop on Nuclear Physics (RTFNB, acronym in Portuguese) is organized annually by the Brazilian Physics Society since 1978, in order to: promote Nuclear Physics research in the country; stimulate and reinforce collaborations among nuclear physicists from around the country; disseminate advances in nuclear physics research and its applications; disseminate, disclose and evaluate the scientific production in this field.

  4. Nuclear Physics of neutron stars

    Science.gov (United States)

    Piekarewicz, Jorge

    2015-04-01

    One of the overarching questions posed by the recent community report entitled ``Nuclear Physics: Exploring the Heart of Matter'' asks How Does Subatomic Matter Organize Itself and What Phenomena Emerge? With their enormous dynamic range in both density and neutron-proton asymmetry, neutron stars provide ideal laboratories to answer this critical challenge. Indeed, a neutron star is a gold mine for the study of physical phenomena that cut across a variety of disciplines, from particle physics to general relativity. In this presentation--targeted at non-experts--I will focus on the essential role that nuclear physics plays in constraining the dynamics, structure, and composition of neutron stars. In particular, I will discuss some of the many exotic states of matter that are speculated to exist in a neutron star and the impact of nuclear-physics experiments on elucidating their fascinating nature. This material is based upon work supported by the U.S. Department of Energy Office of Science, Office of Nuclear Physics under Award Number DE-FD05-92ER40750.

  5. The Renormalization Group in Nuclear Physics

    International Nuclear Information System (INIS)

    Modern techniques of the renormalization group combined with effective field theory methods are revolutionizing nuclear many-body physics. In these lectures we will examine the motivation for RG in low-energy nuclear systems (which include astrophysical systems such as neutron stars) and the implementation of RG technology both formally and in practice. Of particular use will be flow equation approaches applied to Hamiltonians both in free space and in the medium, which are an accessible but powerful method to make nuclear physics more like quantum chemistry. We will see how interactions are evolved to increasingly universal form and become more amenable to perturbative methods. A key element in nuclear systems is the role of many-body forces and operators; dealing with their evolution is an important new challenge. The lectures will include practical details of RG calculations, which can be cast into basic matrix manipulations easily handled by MATLAB, Mathematica, or Python (as well as compiled languages). (author)

  6. Abstracts of the fourth international conference on modern problems of nuclear physics

    International Nuclear Information System (INIS)

    The Fourth International Conference on modern problems of nuclear physics was held on 25-29 September, 2001 in Tashkent, Uzbekistan. The specialists discussed various aspects of modern problems of both fundamental and applied nuclear physics. More than 300 talks were presented in the meeting on the following subjects: particle physics, relativistic nuclear physics and physics of atomic nuclei; applied nuclear physics; radiation solid state physics, condensed matter physics; activation analysis, radiochemistry, isotopes. (M.K.)

  7. Fractional Authorship in Nuclear Physics

    CERN Document Server

    Pritychenko, B

    2015-01-01

    Large, multi-institutional groups or collaborations of scientists are engaged in nuclear physics research projects, and the number of research facilities is dwindling. These collaborations have their own authorship rules, and they produce a large number of highly-cited papers. Multiple authorship of nuclear physics publications creates a problem with the assessment of an individual author's productivity relative to his/her colleagues and renders ineffective a performance metrics solely based on annual publication and citation counts. Many institutions are increasingly relying on the total number of first-author papers; however, this approach becomes counterproductive for large research collaborations with an alphabetical order of authors. A concept of fractional authorship (the claiming of credit for authorship by more than one individual) helps to clarify this issue by providing a more complete picture of research activities. In the present work, nuclear physics fractional and total authorships have been inv...

  8. Nuclear Physics Laboratory annual report

    International Nuclear Information System (INIS)

    Progress is described in the following areas: astrophysics and cosmology, nuclear structure and light ion reactions, giant resonances in radiative capture, heavy ion reations, nuclear tests of fundamental symmetries, parity violation in hydrogen, medium energy physics, accelerator mass spectrometry (C-14 and Be-10 radiochronology programs), accelerators and ion sources, magnetic spectrograph/momentum filter, instrumentation and experimental techniques, computers and computing, and the superconducting booster for the University of Washington tandem accelerator. Publications are listed

  9. Processing multidimensional nuclear physics data

    Energy Technology Data Exchange (ETDEWEB)

    Becker, J. [Lawrence Livermore National Lab., CA (United States)

    1994-11-15

    Modern Ge detector arrays for gamma-ray spectroscopy are producing data sets unprecedented in size and event multiplicity. Gammasphere, the DOE sponsored array, has the following characteristics: (1) High granularity (110 detectors); (2) High efficiency (10%); and (3) Precision energy measurements (Delta EE = 0.2%). Characteristics of detector line shape, the data set, and the standard practice in the nuclear physics community to the nuclear gamma-ray cascades from the 4096 times 4096 times 4096 data cube will be discussed.

  10. [John Huizenga's nuclear physics research

    International Nuclear Information System (INIS)

    A background of John Huizenga's origins and a brief historical overview of his career are given. A short list of Huizenga's contributions to the field of nuclear physics is presented. These contributions include research concerning spontaneous fission, fission-neutron competition, nuclear level densities, structure of actinide elements by transfer reactions, fission fragment angular distributions, and heavy ion rections. 7 refs., 1 fig., 1 tab

  11. Nuclear Physics from Lattice QCD

    Energy Technology Data Exchange (ETDEWEB)

    William Detmold, Silas Beane, Konstantinos Orginos, Martin Savage

    2011-01-01

    We review recent progress toward establishing lattice Quantum Chromodynamics as a predictive calculational framework for nuclear physics. A survey of the current techniques that are used to extract low-energy hadronic scattering amplitudes and interactions is followed by a review of recent two-body and few-body calculations by the NPLQCD collaboration and others. An outline of the nuclear physics that is expected to be accomplished with Lattice QCD in the next decade, along with estimates of the required computational resources, is presented.

  12. Proceedings of the Second Conference on Nuclear and Particle Physics (NUPPAC-99)

    International Nuclear Information System (INIS)

    The publication's has been set up as a book of the conference of nuclear and particle physics, it consists of the following chapters (1) high energy physics; (2) nuclear scattering and reaction; (3) nuclear models and spectroscopy; (3) neutron and reactor physics; (4) plasma and fusion physics; (5) applied nuclear physics; (6) related topics

  13. Current status and improvement of the nuclear physics experiment course for speciality of nuclear physics and nuclear technology

    International Nuclear Information System (INIS)

    The author reviews the current status of the nuclear physics experiment course for speciality of nuclear physics and nuclear technology in higher education and expresses author's views on the future improvement of the nuclear physics experiment course

  14. APDAS : Applied Physics Division analytical services

    International Nuclear Information System (INIS)

    Applied Physics Division Analytical Services (APDAS) is a new initiative within the Australian Nuclear Science and Technology Organization. Because of its background and achievements in high-tech research, APDAS can provide solutions to many of the problems that arise in Australian industries. One of the facilities available to APDAS is a positive ion particle accelerator. This enables any positive ion in a gaseous medium to be accelerated to energies ranging from a few hundred thousand to three million electron volts for single charge states. Ion beams can be stead-state or pulsed with pulse durations as low as three nanoseconds. Target preparation and fully automated data recording are also available. Accelerator-based services, presently available are outlined in 7 separate leaflets, briefly describing the techniques, particular applications, typical costs and availability. These include : surface analysis and depth profiling using ion beams; standard neutron irradiation facility (SNIF); soil-moisture determination; hydrogen analysis neutron radiography; adsorbed dose calibration standards; gas phase enrichment monitor; 18O analysis. 26 figs

  15. [Experimental nuclear physics

    Energy Technology Data Exchange (ETDEWEB)

    1992-12-01

    An earlier study of unusual electromagnetic decays in {sup 86}Zr was extended in order to make comparisons with its isotone {sup 84}Sr and with {sup 84}Zr. The K=14 (t {sub {1/2}} = 70 ns) high-spin isomer in {sup 176}W was found to have a 13% branch directly to the K=O ground-state band, one of the strongest violations of K-selection rules known. A new program to search for a predicted region of oblate deformation involving neutron deficient isotopes in the Rn/Fr/Ra region was begun. In the area of nuclear astrophysics, as part of a study of the onset of the rp-Process, a set of measurements searching for possible new resonances for {sup 14}O+{alpha} and {sup 17}F+p reactions was completed and a coincidence experiment measuring the {sup 19}F({sup 3}He,t){sup 19}Ne({alpha}){sup 15}O and {sup 19}F({sup 3}He,t){sup 19}Ne(p){sup 18}F reactions in order to determine the rates of the {sup 18}F(p,{alpha}){sup 15}O and {sup 18}F(p,{gamma}){sup 19}Ne reactions was begun. Experimental measurements of {beta}n{alpha} coincidences from the {sup 15}N(d,p){sup 16}N({beta}{sup {minus}}{nu}){sup 16}O({alpha}){sup 12}C reaction have also been completed and are currently being analyzed to determine the rate of the {sup 12}C({alpha},{gamma}) reaction. In the APEX collaboration, we have completed the assembly and testing of two position-sensitive Na barrels which surround the axial silicon detector arrays and serve as the e{sup +} triggers by detecting their back-to-back annihilation quanta were completed. The HI@AGS and RHIC collaborations, construction and implementation activities associated with the space-time-tracker detector and in the design of the central detector for the PHENIX experiment were carried out. Operation of the ESTU tandem accelerator has been reliable, delivering beam on target at terminal voltages as high as 19.3 MV and running for as long as 143 days between tank openings. Fabrication and bench testing of a new negative ion source system have been completed.

  16. [Experimental nuclear physics

    International Nuclear Information System (INIS)

    An earlier study of unusual electromagnetic decays in 86Zr was extended in order to make comparisons with its isotone 84Sr and with 84Zr. The K=14 (t 1/2 = 70 ns) high-spin isomer in 176W was found to have a 13% branch directly to the K=O ground-state band, one of the strongest violations of K-selection rules known. A new program to search for a predicted region of oblate deformation involving neutron deficient isotopes in the Rn/Fr/Ra region was begun. In the area of nuclear astrophysics, as part of a study of the onset of the rp-Process, a set of measurements searching for possible new resonances for 14O+α and 17F+p reactions was completed and a coincidence experiment measuring the 19F(3He,t)19Ne(α)15O and 19F(3He,t)19Ne(p)18F reactions in order to determine the rates of the 18F(p,α)15O and 18F(p,γ)19Ne reactions was begun. Experimental measurements of βnα coincidences from the 15N(d,p)16N(β-ν)16O(α)12C reaction have also been completed and are currently being analyzed to determine the rate of the 12C(α,γ) reaction. In the APEX collaboration, we have completed the assembly and testing of two position-sensitive Na barrels which surround the axial silicon detector arrays and serve as the e+ triggers by detecting their back-to-back annihilation quanta were completed. The HI at sign AGS and RHIC collaborations, construction and implementation activities associated with the space-time-tracker detector and in the design of the central detector for the PHENIX experiment were carried out. Operation of the ESTU tandem accelerator has been reliable, delivering beam on target at terminal voltages as high as 19.3 MV and running for as long as 143 days between tank openings. Fabrication and bench testing of a new negative ion source system have been completed

  17. Particle physics using nuclear targets

    International Nuclear Information System (INIS)

    The use of nuclear targets in particle physics is discussed and some recent results obtained in studies of hadronic interactions on nuclei summarized. In particular experimental findings on inclusive production and on coherent dissociation of mesons and baryons at high energies are presented. 41 references

  18. Particle physics using nuclear targets

    Energy Technology Data Exchange (ETDEWEB)

    Ferbel, T.

    1978-01-01

    The use of nuclear targets in particle physics is discussed and some recent results obtained in studies of hadronic interactions on nuclei summarized. In particular experimental findings on inclusive production and on coherent dissociation of mesons and baryons at high energies are presented. 41 references.

  19. Radiation physics for nuclear medicine

    CERN Document Server

    Hoeschen, Christoph

    2011-01-01

    The field of nuclear medicine is expanding rapidly, with the development of exciting new diagnostic methods and treatments. This growth is closely associated with significant advances in radiation physics. In this book, acknowledged experts explain the basic principles of radiation physics in relation to nuclear medicine and examine important novel approaches in the field. The first section is devoted to what might be termed the "building blocks" of nuclear medicine, including the mechanisms of interaction between radiation and matter and Monte Carlo codes. In subsequent sections, radiation sources for medical applications, radiopharmaceutical development and production, and radiation detectors are discussed in detail. New frontiers are then explored, including improved algorithms for image reconstruction, biokinetic models, and voxel phantoms for internal dosimetry. Both trainees and experienced practitioners and researchers will find this book to be an invaluable source of up-to-date information.

  20. Abstracts of the fifth international conference on modern problems of nuclear physics

    International Nuclear Information System (INIS)

    The Fifth Uzbekistan Conference on modern problems of nuclear physics was held on 12-15 August, 2003 in Samarkand, Uzbekistan. The specialists discussed various aspects of modern problems of both fundamental and applied nuclear physics. More than 300 talks were presented in the meeting on the following subjects: particle physics, relativistic nuclear physics and physics of atomic nuclei; activation analysis, radiochemistry, isotopes, applied nuclear physics; radiation solid state physics

  1. Abstracts of the third international conference on modern problems of nuclear physics

    International Nuclear Information System (INIS)

    The Third Uzbekistan Conference on modern problems of nuclear physics was held on 23-27 August, 1999 in Bukhara, Uzbekistan. The specialists discussed various aspects of modern problems of both fundamental and applied nuclear physics. More than 300 talks were presented in the meeting on the following subjects: particle physics, relativistic nuclear physics and physics of atomic nuclei; activation analysis, radiochemistry, isotopes, applied nuclear physics; radiation solid state physics. (A.A.D.)

  2. Nuclear physics in astrophysics. Part 2. Abstracts

    International Nuclear Information System (INIS)

    The proceedings of the 20. International Nuclear Physics Divisional Conference of the European Physical Society covers a wide range of topics in nuclear astrophysics. The topics addressed are big bang nucleosynthesis, stellar nucleosynthesis, measurements and nuclear data for astrophysics, nuclear structure far from stability, neutrino physics, and rare-ion-beam facilities and experiments. The perspectives of nuclear physics and astrophysics are also overviewed. 77 items are indexed separately for the INIS database. (K.A.)

  3. Nuclear physics in particle therapy: a review

    Science.gov (United States)

    Durante, Marco; Paganetti, Harald

    2016-09-01

    Charged particle therapy has been largely driven and influenced by nuclear physics. The increase in energy deposition density along the ion path in the body allows reducing the dose to normal tissues during radiotherapy compared to photons. Clinical results of particle therapy support the physical rationale for this treatment, but the method remains controversial because of the high cost and of the lack of comparative clinical trials proving the benefit compared to x-rays. Research in applied nuclear physics, including nuclear interactions, dosimetry, image guidance, range verification, novel accelerators and beam delivery technologies, can significantly improve the clinical outcome in particle therapy. Measurements of fragmentation cross-sections, including those for the production of positron-emitting fragments, and attenuation curves are needed for tuning Monte Carlo codes, whose use in clinical environments is rapidly increasing thanks to fast calculation methods. Existing cross sections and codes are indeed not very accurate in the energy and target regions of interest for particle therapy. These measurements are especially urgent for new ions to be used in therapy, such as helium. Furthermore, nuclear physics hardware developments are frequently finding applications in ion therapy due to similar requirements concerning sensors and real-time data processing. In this review we will briefly describe the physics bases, and concentrate on the open issues.

  4. Nuclear physics in particle therapy: a review.

    Science.gov (United States)

    Durante, Marco; Paganetti, Harald

    2016-09-01

    Charged particle therapy has been largely driven and influenced by nuclear physics. The increase in energy deposition density along the ion path in the body allows reducing the dose to normal tissues during radiotherapy compared to photons. Clinical results of particle therapy support the physical rationale for this treatment, but the method remains controversial because of the high cost and of the lack of comparative clinical trials proving the benefit compared to x-rays. Research in applied nuclear physics, including nuclear interactions, dosimetry, image guidance, range verification, novel accelerators and beam delivery technologies, can significantly improve the clinical outcome in particle therapy. Measurements of fragmentation cross-sections, including those for the production of positron-emitting fragments, and attenuation curves are needed for tuning Monte Carlo codes, whose use in clinical environments is rapidly increasing thanks to fast calculation methods. Existing cross sections and codes are indeed not very accurate in the energy and target regions of interest for particle therapy. These measurements are especially urgent for new ions to be used in therapy, such as helium. Furthermore, nuclear physics hardware developments are frequently finding applications in ion therapy due to similar requirements concerning sensors and real-time data processing. In this review we will briefly describe the physics bases, and concentrate on the open issues. PMID:27540827

  5. Nuclear Physics computer networking: Report of the Nuclear Physics Panel on Computer Networking

    International Nuclear Information System (INIS)

    This paper discusses: the state of computer networking within nuclear physics program; network requirements for nuclear physics; management structure; and issues of special interest to the nuclear physics program office

  6. Annual report on nuclear physics activities

    International Nuclear Information System (INIS)

    This report surveys the activities in basic research from July 1, 1986 to June 30, 1987 at the Institute for Nuclear Physics (IK) of the Nuclear Research Center Karlsruhe. The research program of this institute comprises laser spectroscopy, nuclear reactions with light ions, neutron physics, neutrino physics and high energy physics, as well as detector technology. (orig.)

  7. [Experimental nuclear physics]. Final report

    International Nuclear Information System (INIS)

    This is the final report of the Nuclear Physics Laboratory of the University of Washington on work supported in part by US Department of Energy contract DE-AC06-81ER40048. It contains chapters on giant dipole resonances in excited nuclei, nucleus-nucleus reactions, astrophysics, polarization in nuclear reactions, fundamental symmetries and interactions, accelerator mass spectrometry (AMS), ultra-relativistic heavy ions, medium energy reactions, work by external users, instrumentation, accelerators and ion sources, and computer systems. An appendix lists Laboratory personnel, a Ph. D. degree granted in the 1990-1991 academic year, and publications. Refs., 41 figs., 7 tabs

  8. Nuclear physics annual report 1987

    International Nuclear Information System (INIS)

    The paper presents the annual report of the Schuster Laboratory, Manchester University Nuclear Physics Group, United Kingdom, 1986-7. Much of the work has been carried out at the Daresbury Nuclear Structure Facility, often in collaboration with other U.K. groups and with foreign participation. The report contains the work on: studies of light nuclei, spectroscopy of medium mass nuclei, low and high spin spectroscopy of nuclei with A ≥ 100, and the fission process. Technical developments carried out at the Laboratory are also described. (U.K.)

  9. [Experimental nuclear physics]. Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1991-04-01

    This is the final report of the Nuclear Physics Laboratory of the University of Washington on work supported in part by US Department of Energy contract DE-AC06-81ER40048. It contains chapters on giant dipole resonances in excited nuclei, nucleus-nucleus reactions, astrophysics, polarization in nuclear reactions, fundamental symmetries and interactions, accelerator mass spectrometry (AMS), ultra-relativistic heavy ions, medium energy reactions, work by external users, instrumentation, accelerators and ion sources, and computer systems. An appendix lists Laboratory personnel, a Ph. D. degree granted in the 1990-1991 academic year, and publications. Refs., 41 figs., 7 tabs.

  10. Nuclear Physics from Lattice Quantum Chromodynamics

    CERN Document Server

    Savage, Martin J

    2015-01-01

    Quantum Chromodynamics and Quantum Electrodynamics, both renormalizable quantum field theories with a small number of precisely constrained input parameters, dominate the dynamics of the quarks and gluons - the underlying building blocks of protons, neutrons, and nuclei. While the analytic techniques of quantum field theory have played a key role in understanding the dynamics of matter in high energy processes, they encounter difficulties when applied to low-energy nuclear structure and reactions, and dense systems. Expected increases in computational resources into the exascale during the next decade will provide the ability to determine a range of important strong interaction processes directly from QCD using the numerical technique of Lattice QCD. This will complement the nuclear physics experimental program, and in partnership with new thrusts in nuclear many-body theory, will enable unprecedented understanding and refinement of nuclear forces and, more generally, the visible matter in our universe. In th...

  11. Nuclear physics methods in materials research

    International Nuclear Information System (INIS)

    The brochure contains the abstracts of the papers presented at the 7th EPS meeting 1980 in Darmstadt. The main subjects were: a) Neutron scattering and Moessbauer effect in materials research, b) ion implantation in micrometallurgy, c) applications of nuclear reactions and radioisotopes in research on solids, d) recent developments in activation analysis and e) pions, positrons, and heavy ions applied in solid state physics. (RW)

  12. The Brazilian status on ADS R and D: Preliminary road map to a program on accelerator utilization on basic and applied nuclear physics, products and services and to drive an experimental neutron source sub critical facility

    International Nuclear Information System (INIS)

    the activities already underway in Nuclear Physics and Engineering, and preserves the identities and focus of the various institutions involved. ADS related research and development is being pursued by IPEN (design calculation, development of an Alternative Concept for a Fast Energy Amplifier). Moreover, IPEN operates a small cyclotrons, CV-28. The IPEN CV-28 cyclotron is presently not operational, but suitable for R and D: it is a compact, isochronous, multi-particle radiation source where protons, deuterons, 3He++, and alpha particles can be accelerated with variable energies up to 24, 14, 36, and 28 MeV respectively. Finally, IPEN is also operating the Cyclone-30 from IBA which is dedicated to radioisotope production (201-Tl, 123-I, 67-Ga), an electron accelerator used in high social and economic impact projects (e.g., food irradiation), and a Van de Graaff capable to provide a 14 MeV neutron source. The Physics Institute of Sao Paulo University-IFUSP is implementing various R and D activities/projects, in areas such as nuclear reactions with heavy ions, nuclear structure, photo nuclear reactions, ion implantation, non destructive techniques using accelerators beams. These programs are centered on IFUSP facilities, i.e., a heavy ion electrostatic accelerator (PELLETRON), a linear accelerator (LINAC), and an electron accelerator (MICROTRON), as well as associated experimental facilities. The institute is also performing theoretical research on nuclear reactions of interest to ADS (spallation-cascade evaporation model). Given the outlined scenario, IPEN-IFUSP have identified the possibility to launch a program on the utilization of accelerators. This programs would have three main pillars: R and D in basic and applied nuclear physics and engineering (e.g., low energy cross sections nuclear reactions, charged particle activation analysis, hydrogen implantation for angular correlation studies, excitation function determination, helium embrittlement in structural

  13. Novel nuclear diagnostics as applied pathophysiology

    International Nuclear Information System (INIS)

    Novel Diagnostic Procedures in Nuclear Medicine reflect applied Pathophysiology: Basics and future aspects. In their capacity as 'image - assisted functional diagnostics', methods of nuclear medicine link morphological patterns of radiology with clinical presentation. Based on pathophysiology they supply an insight into both global and regional parameters, present as basal values or as reserves. Both, single photon emission computed tomography (SPECT) or highly defined positron ECT (PET), enable computerassisted topographical overlay and thus an exact comparative evaluation of regional function versus morphology. In addition, PET gives accress to a true physiological, absolute quantification employing process specific, carrierfree substrates. (orig./GDG)

  14. Economic Criteria Applied to Nuclear Materials Management

    International Nuclear Information System (INIS)

    The management of nuclear materials must always be subsidiary to the primary purpose of nuclear material processing, i.e. the generation of power or the production and fabrication of end products. Therefore, those responsible for management of nuclear materials must be constantly responsive to the needs of the primary production purpose and fit the required systems to the process so as to secure the needs of nuclear materials management at optimum costs. The nuclear materials management system must concern itself with careful examination of several factors that influence its costs. The control system evolved must complement the process, providing the lowest costs of personnel, analysis and minimum interruption of the operating process. The control system should be integrated with the process needs so that quantitative information derived is available promptly to those responsible for operating supervision. The recording and reporting system should generate maximum subsidiary data. It should be compatible with the systems employed by suppliers and consumers and carry wherever possible additional information connected with the batches of nuclear material. Data generated for the control of nuclear materials should only be that needed to ensure that no significant losses, theft, misappropriation or diversion occurs. Complementary data should be subject to the same rigid test of need as that applied to the nuclear material management data. Procedures, practices, personnel and techniques have been continuously reviewed and revised to ensure the highest quality of nuclear material management performance. To ensure optimum costs balanced with adequate nuclear material control needs, some general rules have been evolved. It is all-important to determine the real needs for the recording and reporting of data. Real economies are attained by the assignment of nuclear materials management, production control and cost responsibilities to a single group. Reliance must then be

  15. Nuclear Physics with Electroweak Probes

    OpenAIRE

    Giampaolo Co'Lecce University and INFN

    2006-01-01

    The research activitities carried out in Italy during the last two years in the field of theoretical nuclear physics with electroweak probes are reviewed. Different models for electron-nucleus and neutrino-nucleus scattering are compared. The results obtained for electromagnetic reactions on few-nucleon systems and on complex nuclei are discussed. The recent developments in the study of electron- and photon-induced reactions with one and two-nucleon emission are presented.

  16. Exchange currents in nuclear physics

    International Nuclear Information System (INIS)

    Starting from Adler's low-energy theorem for the soft pion production amplitudes the predictions of the meson exchange currents theory for the nuclear physics are discussed. The results are reformulated in terms of phenomenological lagrangians. This method allows one to pass naturally to the more realistic case of hard mesons. The predictions are critically compared with the existing experimental data. The main processes in which vector isovector exchange currents, vector isoscalar exchange currents and axial exchange currents take place are pointed out

  17. Section for nuclear physics and energy physics - Annual report

    International Nuclear Information System (INIS)

    This annual report summarizes the research and development activities of the Section for Nuclear Physics and Energy Physics at the University of Oslo in 1993. It includes experimental and theoretical nuclear physics, as well as other fields of physics in which members of the section have participated. The report describes completed projects nd work currently in progress. As in previous years, the experimental activities in nuclear physics have mainly been centered around the Cyclotron Laboratory with the SCANDITRONIX MC-35 Cyclotron. Using the CACTUS multidetector system, several experiments have been completed. Some results have been published while more data remains to be analyzed. In experimental nuclear physics the section staff members are engaged within three main fields: nuclei at high temperature, high spin nuclear structure and high and intermediate energy nuclear physics. In theoretical physics the group is concerned with the many-body description of nuclear properties as well as with the foundation of quantum physics

  18. Proceedings of the Fourth Conference on Nuclear and Particle Physics (NUPPAC-2003)

    International Nuclear Information System (INIS)

    The publication's has been set up as a book of the conference of nuclear and particle physics, it consists of the following chapters (1) high energy physics; (2) nuclear scattering and reaction; (3) nuclear models and spectroscopy; (3) neutron and reactor physics; (4) applied nuclear physics; (5) Detectors and Instrumentations; (6) computer codes and stimulation; (7) radiation measurement and dosimetry; (8) selected topics

  19. Proceedings of the Third Nuclear and Particle Physics Conference (NUPPAC-2001)

    International Nuclear Information System (INIS)

    The publication's has been set up as a book of the conference of nuclear and particle physics, it consists of the following chapters (1) high energy physics; (2) nuclear scattering and reaction; (3) nuclear models and spectroscopy; (3) neutron and reactor physics; (4) applied nuclear physics; (5) computer codes; (6) selected topics; (7) radiation sciences

  20. Essentials of nuclear medicine physics and instrumentation

    CERN Document Server

    Powsner, Rachel A; Powsner, Edward R

    2013-01-01

    An excellent introduction to the basic concepts of nuclear medicine physics This Third Edition of Essentials of Nuclear Medicine Physics and Instrumentation expands the finely developed illustrated review and introductory guide to nuclear medicine physics and instrumentation. Along with simple, progressive, highly illustrated topics, the authors present nuclear medicine-related physics and engineering concepts clearly and concisely. Included in the text are introductory chapters on relevant atomic structure, methods of radionuclide production, and the interaction of radiation with matter. Fu

  1. Physics of nuclear radiations concepts, techniques and applications

    CERN Document Server

    Rangacharyulu, Chary

    2013-01-01

    Physics of Nuclear Radiations: Concepts, Techniques and Applications makes the physics of nuclear radiations accessible to students with a basic background in physics and mathematics. Rather than convince students one way or the other about the hazards of nuclear radiations, the text empowers them with tools to calculate and assess nuclear radiations and their impact. It discusses the meaning behind mathematical formulae as well as the areas in which the equations can be applied. After reviewing the physics preliminaries, the author addresses the growth and decay of nuclear radiations, the stability of nuclei or particles against radioactive transformations, and the behavior of heavy charged particles, electrons, photons, and neutrons. He then presents the nomenclature and physics reasoning of dosimetry, covers typical nuclear facilities (such as medical x-ray machines and particle accelerators), and describes the physics principles of diverse detectors. The book also discusses methods for measuring energy a...

  2. Abstracts of the sixth international conference on modern problems of nuclear physics

    International Nuclear Information System (INIS)

    The Sixth International Conference on modern problems of nuclear physics was held on 19-22 September, 2006 in Tashkent, Uzbekistan. The specialists discussed various aspects of modern problems of both fundamental and applied nuclear physics. About 275 talks were presented in the meetingof on the following subjects: particle physics, relativistic nuclear physics and physics of atomic nuclei; radiation physics of condenced matter; nuclear applications in industry, medicine, biology and agriculture; nuclear and radiation safety, non prolifaration issues. (K.M.)

  3. Symmetry and Supersymmetry in Nuclear Physics

    OpenAIRE

    Balantekin, A. B.

    2007-01-01

    A survey of algebraic approaches to various problems in nuclear physics is given. Examples are chosen from pairing of many-nucleon systems, nuclear structure, fusion reactions below the Coulomb barrier, and supernova neutrino physics to illustrate the utility of group-theoretical and related algebraic methods in nuclear physics.

  4. Quantum mechanics for applied physics and engineering

    CERN Document Server

    Fromhold, Albert T

    2011-01-01

    This excellent text, directed to upper-level undergraduates and graduate students in engineering and applied physics, introduces the fundamentals of quantum mechanics, emphasizing those aspects of quantum mechanics and quantum statistics essential to an understanding of solid-state theory. A heavy background in mathematics and physics is not required beyond basic courses in calculus, differential equations, and calculus-based elementary physics.The first three chapters introduce quantum mechanics (using the Schrödinger equations), quantum statistics, and the free-electron theory of metals. Ch

  5. XLIX International Winter Meeting on Nuclear Physics

    Science.gov (United States)

    Unlike many workshops, the Bormio meeting does not focus on a single topic. Instead, the aim is to bring together researchers and students from related fields in subatomic physics. Addressed topics include hadron physics, heavy ion physics, nuclear astrophysics and nuclear structure, particle physics, detectors and future projects as well as applications of these fields. Review talks by more senior speakers as well as talks and posters presented by junior researchers are encouraged. Hadron Physics Heavy Ion Physics Nuclear Astrophysics and Nuclear Structure Particle Physics Detectors and new facilities Applications

  6. PREFACE: EPS Euroconference XIX Nuclear Physics Divisional Conference: New Trends in Nuclear Physics Applications and Technology

    Science.gov (United States)

    2006-06-01

    It was with great pleasure that the Department of Nuclear and Theoretical Physics of the University of Pavia and the INFN (Istituto Nazionale di Fisica Nucleare) Structure of Pavia organised the XIX Nuclear Physics Divisional Conference of the European Physical Society, which was held in the historical buildings of the University of Pavia from 5-9 September 2005. The Conference was devoted to the discussion of the most recent experimental and theoretical achievements in the field of Nuclear Physics applications, as well as of the latest developments in technological tools related to Nuclear Physics research. The University of Pavia has a long tradition in Physics and in Applied Physics, being the site where Alessandro Volta developed his "pila", the precursor of the modern battery. This is the place where the first experiments with electricity were conducted and where the term "capacitance" used for capacitors was invented. Today the University hosts a Triga Mark II nuclear reactor, which is used by the Departments of the University of Pavia and by other Universities and private companies as well. Moreover, Pavia is the site selected for the construction of the CNAO complex "Centro Nazionale di Adroterapia Oncologica" (National Centre for Oncological Hadrontherapy), planned for 2005-2008 which represents a unique facility in Italy and will be among the first complexes of this type in Europe. The Conference has gathered together experts in various fields from different countries and has been the occasion to review the present status and to discuss the new emerging trends in Nuclear Physics and its applications to multidisciplinary researches and the development of new technologies. The following topics were treated: Nuclear Techniques in Medicine and Life Sciences (Cancer Therapy, new Imaging and Diagnostics Tools, Radioisotope production, Radiation Protection and Dosimetry). Applications of Nuclear Techniques in Art, Archaeometry and other Interdisciplinary fields

  7. Nuclear physics for protection of the environment. NPPE-95. Abstracts

    International Nuclear Information System (INIS)

    Nuclear-physics methods used for environmental monitoring are discussed. Great attention is paid to the neutron activation and X-ray fluorescence methods of analysis of environmental objects contaminated with heavy metals and radioisotopes. Equipment applied was also considered

  8. IBA-Europhysics Prize in Applied Nuclear Science and Nuclear Methods in Medicine

    Science.gov (United States)

    MacGregor, I. J. Douglas

    2014-03-01

    The Nuclear Physics Board of the European Physical Society is pleased to announce that the 2013 IBA-Europhysics Prize in Applied Nuclear Science and Nuclear Methods in Medicine is awarded to Prof. Marco Durante, Director of the Biophysics Department at GSI Helmholtz Center (Darmstadt, Germany); Professor at the Technical University of Darmstadt (Germany) and Adjunct Professor at the Temple University, Philadelphia, USA. The prize was presented in the closing Session of the INPC 2013 conference by Mr. Thomas Servais, R&D Manager for Accelerator Development at the IBA group, who sponsor the IBA Europhysics Prize. The Prize Diploma was presented by Dr. I J Douglas MacGregor, Chair-elect of the EPS Nuclear Physics Division and Chair of the IBA Prize committee.

  9. Anthropic considerations in nuclear physics

    CERN Document Server

    Meißner, Ulf-G

    2014-01-01

    In this short review, I discuss the sensitivity of the generation of the light and the life-relevant elements like carbon and oxygen under changes of the parameters of the Standard Model pertinent to nuclear physics. Chiral effective field theory allows for a systematic and precise description of the forces between two, three, and four nucleons. In this framework, variations under the light quark masses and the electromagnetic fine structure constant can also be consistently calculated. Combining chiral nuclear effective field theory with Monte Carlo simulations allows to further calculate the properties of nuclei, in particular of the Hoyle state in carbon, that plays a crucial role in the generation of the life-relevant elements in hot, old stars. The dependence of the triple-alpha process on the fundamental constants of Nature is calculated and some implications for our anthropic view of the Universe are discussed.

  10. Lattice QCD for nuclear physics

    CERN Document Server

    Meyer, Harvey

    2015-01-01

    With ever increasing computational resources and improvements in algorithms, new opportunities are emerging for lattice gauge theory to address key questions in strongly interacting systems, such as nuclear matter. Calculations today use dynamical gauge-field ensembles with degenerate light up/down quarks and the strange quark and it is possible now to consider including charm-quark degrees of freedom in the QCD vacuum. Pion masses and other sources of systematic error, such as finite-volume and discretization effects, are beginning to be quantified systematically. Altogether, an era of precision calculation has begun, and many new observables will be calculated at the new computational facilities.  The aim of this set of lectures is to provide graduate students with a grounding in the application of lattice gauge theory methods to strongly interacting systems, and in particular to nuclear physics.  A wide variety of topics are covered, including continuum field theory, lattice discretizations, hadron spect...

  11. Annual report on nuclear physics activities

    International Nuclear Information System (INIS)

    This report surveys the activities in fundamental research from July 1, 1981 to June 30, 1982 at the three institutes of the KfK which are concerned with nuclear physics. The research program comprises laser spectroscopy, nuclear reactions with light ions, neutron physics, neutrino physics and physics at medium and higher energies. (orig.)

  12. Nuclear physics with polarized particles

    Energy Technology Data Exchange (ETDEWEB)

    Paetz gen. Schieck, Hans [Koeln Univ. (Germany). Inst. fuer Kernphysik

    2012-07-01

    The measurement of spin-polarization observables in reactions of nuclei and particles is of great utility and advantage when the effects of single-spin sub-states are to be investigated. Indeed, the unpolarized differential cross-section encompasses the averaging over the spin states of the particles, and thus loses details of the interaction process. This introductory text combines, in a single volume, course-based lecture notes on spin physics and on polarized-ion sources with the aim of providing a concise yet self-contained starting point for newcomers to the field, as well as for lecturers in search of suitable material for their courses and seminars. A significant part of the book is devoted to introducing the formal theory - a description of polarization and of nuclear reactions with polarized particles. The remainder of the text describes the physical basis of methods and devices necessary to perform experiments with polarized particles and to measure polarization and polarization effects in nuclear reactions. The book concludes with a brief review of modern applications in medicine and fusion energy research. For reasons of conciseness and of the pedagogical aims of this volume, examples are mainly taken from low-energy installations such as tandem Van de Graaff laboratories, although the emphasis of present research is shifting to medium- and high-energy nuclear physics. Consequently, this volume is restricted to describing non-relativistic processes and focuses on the energy range from astrophysical energies (a few keV) to tens of MeV. It is further restricted to polarimetry of hadronic particles. (orig.)

  13. Physics and technology of nuclear materials

    CERN Document Server

    Ursu, Ioan

    2015-01-01

    Physics and Technology of Nuclear Materials presents basic information regarding the structure, properties, processing methods, and response to irradiation of the key materials that fission and fusion nuclear reactors have to rely upon. Organized into 12 chapters, this book begins with selectively several fundamentals of nuclear physics. Subsequent chapters focus on the nuclear materials science; nuclear fuel; structural materials; moderator materials employed to """"slow down"""" fission neutrons; and neutron highly absorbent materials that serve in reactor's power control. Other chapters exp

  14. Global Conference on Applied Physics and Mathematics

    CERN Document Server

    2016-01-01

    The Global Conference on Applied Physics and Mathematics is organized by academics and researchers belonging to different scientific areas of the C3i/Polytechnic Institute of Portalegre (Portugal) and the University of Extremadura (Spain) with the technical support of ScienceKnow Conferences. The event has the objective of creating an international forum for academics, researchers and scientists from worldwide to discuss worldwide results and proposals regarding to the soundest issues related to Applied Physics and Mathematics. This event will include the participation of renowned keynote speakers, oral presentations, posters sessions and technical conferences related to the topics dealt with in the Scientific Program as well as an attractive social and cultural program. The papers will be published in the Proceedings e-books. The proceedings of the conference will be sent to possible indexing on Thomson Reuters (selective by Thomson Reuters, not all-inclusive) and Google Scholar. Those communications con...

  15. Experimental techniques in nuclear and particle physics

    International Nuclear Information System (INIS)

    The book is based on a course in nuclear and particle physics that the author has taught over many years to physics students, students in nuclear engineering and students in biomedical engineering. It provides the basic understanding that any student or researcher using such instruments and techniques should have about the subject. After an introduction to the structure of matter at the subatomic scale, it covers the experimental aspects of nuclear and particle physics. Ideally complementing a theoretically-oriented textbook on nuclear physics and/or particle physics, it introduces the reader to the different techniques used in nuclear and particle physics to accelerate particles and to measurement techniques (detectors) in nuclear and particle physics. The main subjects treated are: interactions of subatomic particles in matter; particle accelerators; basics of different types of detectors; and nuclear electronics. The book will be of interest to undergraduates, graduates and researchers in both particle and nuclear physics. For the physicists it is a good introduction to all experimental aspects of nuclear and particle physics. Nuclear engineers will appreciate the nuclear measurement techniques, while biomedical engineers can learn about measuring ionising radiation, the use of accelerators for radiotherapy. What's more, worked examples, end-of-chapter exercises, and appendices with key constants, properties and relationships supplement the textual material. (orig.)

  16. Second Mexican School of Nuclear Physics: Notes

    International Nuclear Information System (INIS)

    The II Mexican School of Nuclear Physics which is directed to those last semesters students of the Physics career or post-graduate was organized by the Nuclear Physics Division of the Mexican Physics Society, carrying out at April 16-27, 2001 in the installations of the Institute of Physics and the Institute of Nuclear Sciences, both in the UNAM, and the National Institute of Nuclear Research (ININ). A first school of a similar level in Nuclear Physics, was carried out in Mexico at 1977 as Latin american School of Physics. This book treats about the following themes: Interactions of radiation with matter, Evaluation of uncertainty in experimental data, Particle accelerators, Notions of radiological protection and dosimetry, Cosmic rays, Basis radiation (environmental), Measurement of excitation functions with thick targets and inverse kinematics, Gamma ray technique for to measure the nuclear fusion, Neutron detection with Bonner spectrometer, Energy losses of alpha particles in nickel. It was held the practice Radiation detectors. (Author)

  17. Pathways through applied and computational physics

    CERN Document Server

    Barbero, Nicolò; Palmisano, Carlo; Zosi, Gianfranco

    2014-01-01

    This book is intended for undergraduates and young researchers who wish to understand the role that different branches of physics and mathematics play in the execution of actual experiments. The unique feature of the book is that all the subjects addressed are strictly interconnected within the context of the execution of a single experiment with very high accuracy, namely the redetermination of the Avogadro constant NA, one of the fundamental physical constants. The authors illustrate how the basic laws of physics are applied to describe the behavior of the quantities involved in the measurement of NA and explain the mathematical reasoning and computational tools that have been exploited. It is emphasized that all these quantities, although pertaining to a specific experiment, are of wide and general interest. The book is organized into chapters covering the interaction of electromagnetic radiation with single crystals, linear elasticity and anisotropy, propagation of thermal energy, anti-vibration mounting ...

  18. Intriguing Trends in Nuclear Physics Articles Authorship

    CERN Document Server

    Pritychenko, B

    2014-01-01

    The increase in authorship of nuclear physics publications has been investigated using the large statistical samples. This has been accomplished with nuclear data mining of nuclear science references (NSR) and experimental nuclear reaction (EXFOR) databases. The results of this study will be discussed and conclusions will be given.

  19. Intriguing Trends in Nuclear Physics Articles Authorship

    Energy Technology Data Exchange (ETDEWEB)

    Pritychenko, B. [Brookhaven National Lab. (BNL), Upton, NY (United States). NNDC

    2014-11-06

    A look at how authorship of physics publications (particularly nuclear publications) have changed throughout the decades by comparing data mined from the National Nuclear Data Center (NNDC) with observations.

  20. Effective field theory in nuclear physics

    Energy Technology Data Exchange (ETDEWEB)

    Martin J. Savage

    2000-12-12

    I review recent developments in the application of effective field theory to nuclear physics. Emphasis is placed on precision two-body calculations and efforts to formulate the nuclear shell model in terms of an effective field theory.

  1. Effective Field Theory in Nuclear Physics

    OpenAIRE

    Savage, Martin J.

    2000-01-01

    I review recent developments in the application of effective field theory to nuclear physics. Emphasis is placed on precision two-body calculations and efforts to formulate the nuclear shell model in terms of an effective field theory.

  2. Nuclear Physics Division progress report

    International Nuclear Information System (INIS)

    Summaries are given of work on nuclear data and technology for nuclear power; nuclear reactions and nuclear properties; applications of nuclear and associated techniques in a variety of fields, particularly with the use of ion beams; accelerator operation and development. (U.K.)

  3. The 1989 annual report: Nuclear Physics Institute

    International Nuclear Information System (INIS)

    The 1988 annual report of the Nuclear Physics Institute (Orsay, France) is presented. The results concerning exotic nuclei and structure studies by means of nuclear reactions are summarized. Research works involving the inertial fusion and the actinides are discussed. Theoretical and experimental work on the following fields is also included: high excitation energy nuclear states, heavy ion collision, intermediate energy nuclear physics, transfer reactions, dibaryonic resonances, thermodiffusion, management of radioactive wastes

  4. Medium energy nuclear physics research

    International Nuclear Information System (INIS)

    The topics briefly discussed in this paper are: 117Sn magnetic scattering; 41Ca elastic magnetic scattering; 13C(e,e') high Q M1; deuteron threshold electrodisintegration; 10B(e,e') M3; 27Al elastic longitudinal and transverse scattering; transverse electron scattering from 14C; elastic magnetic scattering from 89Y; transverse and longitudinal electron scattering from 7Li; out-of-plane measurements of the d(e,e'p) coincidence cross out sections near threshold; 116Sn(e,e'n) coincidence study; results from background studies; 10B(e,e'p) coincidence study; 15N(e,e') longitudinal inelastic scattering; experimental work planned at CEBAF; electron scattering from the deuteron; nucleon form factors; measurement of R for hydrogen and deuterium; electroproduction of hadrons at LEP; weak interaction: parity violation in electron and proton scattering; large-basis shell model calculations; electromagnetic interactions; and relativistic nuclear physics

  5. Modern topics in theoretical nuclear physics

    OpenAIRE

    Jennings, B. K.; Schwenk, A

    2005-01-01

    Over the past five years there have been profound advances in nuclear physics based on effective field theory and the renormalization group. In this brief, we summarize these advances and discuss how they impact our understanding of nuclear systems and experiments that seek to unravel their unknowns. We discuss future opportunities and focus on modern topics in low-energy nuclear physics, with special attention to the strong connections to many-body atomic and condensed matter physics, as wel...

  6. Applied Physics Division 1998 Progress Report

    International Nuclear Information System (INIS)

    This report outlines the 1998 research activities carried out by the Applied Physics Division of the Innovation Department of ENEA (Italian Agency for New Technologies, Energy and Environment). The fields addressed and discussed include: optical and electro-optical technologies (chaps. 1 and 2); accelerator technologies (chap. 3); diagnostic systems for science and engineering (chaps. 4 and 5); theory, modelling and computational methods (chaps. 6 and 7). The aim of the Applied Physics Division is to develop technologies and systems that can be directly applied by internal (ENEA) and external users in research (high-resolution spectroscopy, laser-generated soft-x-ray sources), production processes (laser material photoproduction, structural analysis), social, cultural and environmental sciences (laser remote sensing, modelling of ecosystems and population dynamics) and medicine (particle accelerator for radiotherapy). Most of the work in 1998 was performed by the division's laboratories at the Frascati, Casaccia and Bologna Research Centres of ENEA; some was done elsewhere in collaboration with other ENEA units, external laboratories and industries. A good share of the activities was carried out for international projects; in particular, the IV European Union Framework Program

  7. Applied Physics Division 1998 Progress Report

    Energy Technology Data Exchange (ETDEWEB)

    Cecchini, M.; Crescentini, L; Ghezzi, L.; Kent, C.; Bottomei, M. [ENEA, Centro Ricerche Frascati, Frascati, RM (Italy). Applied physics Division

    1999-07-01

    This report outlines the 1998 research activities carried out by the Applied Physics Division of the Innovation Department of ENEA (Italian Agency for New Technologies, Energy and Environment). The fields addressed and discussed include: optical and electro-optical technologies (chaps. 1 and 2); accelerator technologies (chap. 3); diagnostic systems for science and engineering (chaps. 4 and 5); theory, modelling and computational methods (chaps. 6 and 7). The aim of the Applied Physics Division is to develop technologies and systems that can be directly applied by internal (ENEA) and external users in research (high-resolution spectroscopy, laser-generated soft-x-ray sources), production processes (laser material photoproduction, structural analysis), social, cultural and environmental sciences (laser remote sensing, modelling of ecosystems and population dynamics) and medicine (particle accelerator for radiotherapy). Most of the work in 1998 was performed by the division's laboratories at the Frascati, Casaccia and Bologna Research Centres of ENEA; some was done elsewhere in collaboration with other ENEA units, external laboratories and industries. A good share of the activities was carried out for international projects; in particular, the IV European Union Framework Program.

  8. International Conference 'Current Problems in Nuclear Physics and Atomic Energy'. May 29 - Jun 03 2006. Book of Abstracts

    International Nuclear Information System (INIS)

    The collective processes in atomic nuclei, nuclear reactions and processes with exotic nuclei, rare nuclear processes, relativistic nuclear physics, neutron physics, physics of nuclear reactors, problems of atomic energy and reactors of the future, applied nuclear physics and technique of experiments was discussed in this conference

  9. Summaries of FY 1978 research in nuclear physics

    International Nuclear Information System (INIS)

    Programs funded in Fiscal Year 1978 by the Division of Nuclear Physics Office of High Energy and Nuclear Physics, U.S. Department of Energy are briefly summarized. Long-range goals and major objectives of nuclear physics are stated. Research projects are listed alphabetically by institution under the following headings: medium-energy nuclear physics--research; medium-energy nuclear physics--operations; heavy-ion nuclear physics--research; heavy-ion nuclear physics--operations; and nuclear theory

  10. Summaries of FY 1978 research in nuclear physics

    Energy Technology Data Exchange (ETDEWEB)

    1978-12-01

    Programs funded in Fiscal Year 1978 by the Division of Nuclear Physics Office of High Energy and Nuclear Physics, U.S. Department of Energy are briefly summarized. Long-range goals and major objectives of nuclear physics are stated. Research projects are listed alphabetically by institution under the following headings: medium-energy nuclear physics--research; medium-energy nuclear physics--operations; heavy-ion nuclear physics--research; heavy-ion nuclear physics--operations; and nuclear theory. (RWR)

  11. Theoretical nuclear physics. Final report

    International Nuclear Information System (INIS)

    As the three-year period FY93-FY96 ended, there were six senior investigators on the grant full-time: Bulgac, Henley, Miller, Savage, van Kolck and Wilets. This represents an increase of two members from the previous three-year period, achieved with only a two percent increase over the budget for FY90-FY93. In addition, the permanent staff of the Institute for Nuclear Theory (George Bertsch, Wick Haxton, and David Kaplan) continued to be intimately associated with our physics research efforts. Aurel Bulgac joined the Group in September, 1993 as an assistant professor, with promotion requested by the Department and College of Arts and Sciences by September, 1997. Martin Savage, who was at Carnegie-Mellon University, jointed the Physics Department in September, 1996. U. van Kolck continued as research assistant professor, and we were supporting one postdoctoral research associate, Vesteinn Thorssen, who joined us in September, 1995. Seven graduate students were being supported by the Grant (Chuan-Tsung Chan, Michael Fosmire, William Hazelton, Jon Karakowski, Jeffrey Thompson, James Walden and Mitchell Watrous)

  12. Theoretical nuclear physics. Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-05-01

    As the three-year period FY93-FY96 ended, there were six senior investigators on the grant full-time: Bulgac, Henley, Miller, Savage, van Kolck and Wilets. This represents an increase of two members from the previous three-year period, achieved with only a two percent increase over the budget for FY90-FY93. In addition, the permanent staff of the Institute for Nuclear Theory (George Bertsch, Wick Haxton, and David Kaplan) continued to be intimately associated with our physics research efforts. Aurel Bulgac joined the Group in September, 1993 as an assistant professor, with promotion requested by the Department and College of Arts and Sciences by September, 1997. Martin Savage, who was at Carnegie-Mellon University, jointed the Physics Department in September, 1996. U. van Kolck continued as research assistant professor, and we were supporting one postdoctoral research associate, Vesteinn Thorssen, who joined us in September, 1995. Seven graduate students were being supported by the Grant (Chuan-Tsung Chan, Michael Fosmire, William Hazelton, Jon Karakowski, Jeffrey Thompson, James Walden and Mitchell Watrous).

  13. Section for nuclear physics and energy physics - Annual report

    International Nuclear Information System (INIS)

    This annual report summarizes the research and development activities of the Section for Nuclear Physics and Energy Physics at the University of Oslo in 1992. It includes experimental and theoretical nuclear physics, as well as other fields of physics in which members of the section have participated. The report describes completed projects and work currently in progress. As in previous years, the experimental activities in nuclear physics have mainly been centered around the Cyclotron Laboratory with the SCANDITRONIX MC-35 Cyclotron. Using the CACTUS multidetector system, several experiments have been completed. Some results have been published while more data remains to be analyzed

  14. Section for nuclear physics and energy physics - Annual Report

    International Nuclear Information System (INIS)

    This annual report summarizes the research and development activities of the Section for Nuclear Physics and Energy Physics at the University of Oslo in 1991. It includes experimental and theoretical nuclear physics, as well as other fields of physics in which members of the section have participated. The report describes completed projects and work currently in progress. As in previous years, the experimental activities in nuclear physics have mainly been centered around the Cyclotron Laboratory with the SCANDITRONIX MC-35 Cyclotron. Using the CACTUS multidetector system, several experiments have been completed. Some results have been published while more data remains to be analyzed

  15. Comprehensive text book of applied physics

    CERN Document Server

    Kumar, Manoj

    2009-01-01

    ""This book is a comprehensive package for knowledge sharing on Applied Physics. The language of the book is simple and self explanatory, this will help the students to grasp the fundamentals of the subject easily. The book follows a to the point approach and lays stress on the understanding of the core concepts and sharpening the analytical ability of the students on the subject. The book covers wide range of multiple choice questions related to all the topics that is of a great help to the students appearing for competitive as well as state board examinations."

  16. Plasmas applied atomic collision physics, v.2

    CERN Document Server

    Barnett, C F

    1984-01-01

    Applied Atomic Collision Physics, Volume 2: Plasmas covers topics on magnetically confined plasmas. The book starts by providing the history of fusion research and describing the various approaches in both magnetically and inertially confined plasmas. The text then gives a general discussion of the basic concepts and properties in confinement and heating of a plasma. The theory of atomic collisions that result in excited quantum states, particularly highly ionized impurity atoms; and diverse diagnostic topics such as emission spectra, laser scattering, electron cyclotron emission, particle bea

  17. Applied atomic and collision physics special topics

    CERN Document Server

    Massey, H S W; Bederson, Benjamin

    1982-01-01

    Applied Atomic Collision Physics, Volume 5: Special Topics deals with topics on applications of atomic collisions that were not covered in the first four volumes of the treatise. The book opens with a chapter on ultrasensitive chemical detectors. This is followed by separate chapters on lighting, magnetohydrodynamic electrical power generation, gas breakdown and high voltage insulating gases, thermionic energy converters, and charged particle detectors. Subsequent chapters deal with the operation of multiwire drift and proportional chambers and streamer chambers and their use in high energy p

  18. Physics and radiobiology of nuclear medicine

    CERN Document Server

    Saha, Gopal B

    2013-01-01

    The Fourth Edition of Dr. Gopal B. Saha’s Physics and Radiobiology of Nuclear Medicine was prompted by the need to provide up-to-date information to keep pace with the perpetual growth and improvement in the instrumentation and techniques employed in nuclear medicine since the last edition published in 2006. Like previous editions, the book is intended for radiology and nuclear medicine residents to prepare for the American Board of Nuclear Medicine, American Board of Radiology, and American Board of Science in Nuclear Medicine examinations, all of which require a strong physics background. Additionally, the book will serve as a textbook on nuclear medicine physics for nuclear medicine technologists taking the Nuclear Medicine Technology Certification Board examination.

  19. 3. Mexican school of nuclear physics

    International Nuclear Information System (INIS)

    The III Mexican School of Nuclear Physics which is directed to those post graduate in Sciences and those of last semesters students of the Physics career or some adjacent career was organized by the Nuclear Physics Division of the Mexican Physics Society, carrying out at November 18-29, 2002 in the installations of the Institute of Physics and the Institute of Nuclear Sciences both in the UNAM, and the National Institute of Nuclear Research (ININ). In this as well as the last version its were offered 17 courses, 9 of them including laboratory practices and the rest were of theoretical character only. This book treats about the following themes: Nuclear physics, Electrostatic accelerators, Cyclotrons, Thermonuclear reactions, Surface barrier detectors, Radiation detection, Neutron detection, Bonner sphere spectrometers, Radiation protection, Biological radiation effects, Particle kinematics, Nucleosynthesis, Plastics, Muons, Quadrupoles, Harmonic oscillators, Quantum mechanics among many other matters. (Author)

  20. Proceedings of the 9. Workshop on Nuclear Physics - Communications of basic nuclear physics

    International Nuclear Information System (INIS)

    The abstracts of researches on basic nuclear physics of 9. Workshop on Nuclear Physics in Brazil are presented. Mathematical models and experimental methods for nuclear phenomenon description, such as nuclear excitation and disintegration of several nuclei were discussed. (M.C.K.)

  1. 9. Biennial session of nuclear physics

    International Nuclear Information System (INIS)

    As every two years the 9th biennial session of nuclear physics shall try to make a survey of the recent experimental developments as well as the evolution of the theoretical ideas in Nuclear Physics. Communications are indexed and analysed separately

  2. Annual report on nuclear physics activities

    International Nuclear Information System (INIS)

    This report surveys the activities in fundamental research from July 1, 1980 to June 30, 1981 at the three institutes of the KfK which are concerned with nuclear physics. The research program comprises laser spectroscopy, nuclear reactions with light ions and physics at medium and higher energies. (orig.)

  3. Section for nuclear physics and energy physics - Annual report

    International Nuclear Information System (INIS)

    The report summarizes the research and development activities of the Section for nuclear physics and energy physics at the University of Oslo in 1990. It includes experimental and theoretical nuclear physics, as well as other fields of physics in which members of the section have participated. The report describes completed projects and work currently in progress. The experimental activities in nuclear physics have, as in the previous years, mainly been centered around the cyclotron laboratory with the SCANDITRONIX MC-35 cyclotron. Using the CACTUS multidetector system, several experiments in collaboration with the nuclear physics group at the University of Bergen have been completed. Some results have been published and were also presented at the international conference in Oak Ridge, USA, while more data remains to be analyzed

  4. Mesonic effects in nuclear physics

    International Nuclear Information System (INIS)

    The relation between mesons and nucleons and the properties of nuclear matter, as presently understood, is considered in these lectures. Feynman diagrams, meson theoretical nucleon-nucleon interactions, mesonic components in nuclear wave functions, direct observation of mesonic components in NN scattering above the pion production threshold, nuclear matter theory, and pion condensation are treated. 120 references

  5. Tours Symposium on Nuclear Physics III. Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Arnould, M. [Universite Libre de Bruxelles (Belgium); Lewitowicz, M. [GANIL (France); Oganessian, Y.T. [FLNR-JINR (Russia); Ohta, M.; Utsunomiya, H.; Wada, T. [Konan University (Japan)

    1998-03-01

    These proceedings represent papers presented at the Tours symposium on Nuclear Physics held in Tours, France in September, 1997. The symposium was devoted to three fields of nuclear physics: (1) synthesis of superheavy elements including studies of fusion{minus}fission dynamics and sub{minus}barrier fusion; (2) physics of exotic nuclei; and (3) astronuclear physics. Some of the specific topics discussed include, nuclear models, gamma spectroscopy with radioactive beams, double giant resonance states, inelastic proton scattering of unstable nuclei, thermonuclear reactions and neutrino astrophysics. There were 63 papers presented at the Symposium and out of these, 5 have been abstracted for the Energy Science and Technology database.(AIP)

  6. Digital Signal Processing applied to Physical Signals

    CERN Document Server

    Alberto, Diego; Musa, L

    2011-01-01

    It is well known that many of the scientific and technological discoveries of the XXI century will depend on the capability of processing and understanding a huge quantity of data. With the advent of the digital era, a fully digital and automated treatment can be designed and performed. From data mining to data compression, from signal elaboration to noise reduction, a processing is essential to manage and enhance features of interest after every data acquisition (DAQ) session. In the near future, science will go towards interdisciplinary research. In this work there will be given an example of the application of signal processing to different fields of Physics from nuclear particle detectors to biomedical examinations. In Chapter 1 a brief description of the collaborations that allowed this thesis is given, together with a list of the publications co-produced by the author in these three years. The most important notations, definitions and acronyms used in the work are also provided. In Chapter 2, the last r...

  7. Gauge concepts in theoretical applied physics

    Science.gov (United States)

    Tan, Seng Ghee; Jalil, Mansoor B. A.

    2016-01-01

    Gauge concept evolves in the course of nearly one century from Faraday’s rather obscure electrotonic state of matter to the physically significant Yang-Mills that underpin today’s standard model. As gauge theories improve, links are established with modern observations, e.g. in the Aharonov-Bohm effect, the Pancharatnam-Berry’s phase, superconductivity, and quantum Hall effects. In this century, emergent gauge theory is formulated in numerous fields of applied physics like topological insulators, spintronics, and graphene. We will show in this paper the application of gauge theory in two particularly useful spin-based phenomena, namely the spin orbit spin torque and the spin Hall effect. These are important fields of study in the engineering community due to great commercial interest in the technology of magnetic memory (MRAM), and magnetic field sensors. Both spin orbit torque and spin Hall perform magnetic switching at low power and high speed. Furthermore, spin Hall is also a promising source of pure spin current, as well as a reliable form of detection mechanism for the magnetic state of a material.

  8. Fusion programs in applied plasma physics

    International Nuclear Information System (INIS)

    The objectives of the theoretical science program are: To support the interpretation of present experiments and predict the outcome of future planned experiments; to improve on existing models and codes and validate against experimental results; and to conduct theoretical physics development of advanced concepts with applications for DIII-D and future devices. Major accomplishments in FY91 include the corroboration between theory and experiment on MHD behavior in the second stable regime of operation on DIII-D, and the frequency and mode structure of toroidal Alfven eigenmodes in high beta, shaped plasmas. We have made significant advances in the development of the gyro-Landau fluid approach to turbulence simulation which more accurately models kinetic drive and damping mechanisms. Several theoretical models to explain the bifurcation phenomenon in L- to H-mode transition were proposed providing the theoretical basis for future experimental verification. The capabilities of new rf codes have been upgraded in response to the expanding needs of the rf experiments. Codes are being employed to plan for a fully non-inductive current drive experiment in a high beta, enhanced confinement regime. GA's experimental effort in Applied Physics encompasses two advanced diagnostics essential for the operation of future fusion experiments: Alpha particle diagnostic, and current and density profile diagnostics. This paper discusses research in all these topics

  9. The Physical Protection of Nuclear Material and Nuclear Facilities

    International Nuclear Information System (INIS)

    Physical protection against the theft or unauthorized diversion of nuclear materials and against the sabotage of nuclear facilities by individuals or groups has long been a matter of national and international concern. Although responsibility for establishing and operating a comprehensive physical protection system for nuclear materials and facilities within a State rests entirely with the Government of that State, it is not a matter of indifference to other States whether and to what extent that responsibility is fulfilled. Physical protection has therefore become a matter of international concern and co-operation. The need for international co-operation becomes evident in situations where the effectiveness of physical protection in one State depends on the taking by other States also of adequate measures to deter or defeat hostile actions against nuclear facilities and nuclear materials, particularly when such materials are transported across national frontiers

  10. Nuclear physics at the frontiers of knowledge

    CERN Document Server

    Feshbach, Hermann

    1995-01-01

    (transcript of a talk given by Prof.~Feshbach:) Nuclear physics has been and will be a major factor in science and technology. It makes unique and important contributions to medicine, to industry and to other sciences. Interaction with other physics has been strong. Astrophysics and mesoscopic physics are notable examples. But what I shall talk about today are labeled {\\bf``universals"}. This refers to results which transcend the limits of a given subject providing fundamental principles which inform not only nuclear physics but all of science. It is the universals which take nuclear physics research from the parochial albeit fascinating studies of nuclear reactions and structure to the development and formulation of concepts of significance for all of the physical sciences.

  11. Center of Nuclear Physical Data (CNPD)

    International Nuclear Information System (INIS)

    This it the progress report of the Center of Nuclear Physical Data (CNPD) of the Russian Federal Nuclear Center-VNIIEF, Sarov, Russia. There have been compiled data on alpha-induced reactions for the nuclei with 8≤Z≤32 (24Mg, 28Si, 32S, 36Ar, 40Ca) and Ecm≤20 MeV. Processing of compiled data allowed obtaining parameters of Woods-Saxon potential with volume absorption in the α-particle energy range lower and higher than the Coulomb barrier for the 36Ar+α and 40Ca+α systems. They were obtained as a result of existing optical potentials modification and are intended to be used in a statistical Houser-Feshbach model widely applied in astrophysical calculations of nuclear reaction cross-sections. This year there has been completed the creation of a new 'SaBa' database version' library of evaluated and experimental data on charged particles interaction with light nuclei. The data on more than 120 reaction channels are available in it today. The library is oriented to solve astrophysics problems and contains information useful for the developers of astrophysics applications

  12. 4. Mexican School of Nuclear Physics. Papers

    International Nuclear Information System (INIS)

    The IV Mexican School of Nuclear Physics, organized by the Nuclear Physics Division of the Mexican Physics Society, takes place from June 27 to July 8, 2005 in the Nuclear Sciences and of Physics Institutes of the UNAM and in the National Institute of Nuclear Research (ININ). This school, as the previous ones, it was guided the students of the last semesters of the career of Physics, of the Post grade of the same specialty, and of other adjacent careers. To give the students a current vision of some of the topics more important of the nuclear physics and their relationship with other near areas of the physics it was the objective of this School. The School covered a wide range of theoretical and experimental courses, imparted in its majority by Mexican expert professor-investigators in the matter to who we thank them the one effort and the quality of their presentations, reflected in the content of this document. The answer of the students to the convocation was excellent, 31 students presented application for admission coming from the following institutions: Meritorious Autonomous University de Puebla, National Institute of Nuclear Research, Technological Institute of Orizaba, National Polytechnic Institute, The University of Texas at Brownsville, Autonomous University of the State de Mexico, Autonomous University of the State of Morelos, Autonomous University of Baja California, Autonomous University of San Luis Potosi, University of Guadalajara, University of Guanajuato, National Autonomous University of Mexico, University of Texas, at El Paso and University Veracruzana. They were admitted to the 22 students with the higher averages qualifications of the list of applicants. The organizers of this school thank the financial support granted by the following sponsor institutions: Nuclear Sciences Institute, UNAM, Physics Institute of UNAM, Coordination of the Scientific Research UNAM, National Institute of Nuclear Research, Nuclear Physics Division of the Mexican

  13. Research in theoretical nuclear physics: Progress report

    International Nuclear Information System (INIS)

    In April 1988 we, along with the nuclear theory groups of Brookhaven and MIT, submitted a proposal to the Department of Energy for a national Institute of Theoretical Nuclear Physics. The primary areas of investigation proposed for this Institute are: Strong Interaction Physics--including (1) The physics of hadrons, (2) QCD and the nucleus, (3) QCD at finite temperatures and high density; nuclear astrophysics; nuclear structure and nuclear many-body theory; and nuclear tests of fundamental interactions. It is, of course, no coincidence that these are the main areas of activity of the three groups involved in this proposal and of our group in particular. Here, we will organize an outline of the progress made at Stony Brook during the past year along these lines. These four areas do not cover all of the activities of our group

  14. A new tool in nuclear physics: Nuclear lattice simulations

    CERN Document Server

    Meißner, Ulf-G

    2015-01-01

    In the last years, chiral effective field theory has been successfully developed for and applied to systems with few nucleons. Here, I present a new approach for ab initio calculations of nuclei that combines these precise and systematic forces with Monte Carlo simulation techniques that allow for exact solutions of the nuclear A-body problem. A short introduction of this method is given and a few assorted results concerning the spectrum and structure of 12C and 16O are presented. The framework further allows one to study the properties of nuclei in worlds that have fundamental parameters different from the ones in Nature. This allows for a physics test of the anthropic principle by addressing the question how strongly the generation of the life-relevant elements depends on the light quark masses and the electromagnetic fine structure constant.

  15. Virtual nuclear reactor for education of nuclear reactor physics

    International Nuclear Information System (INIS)

    As one of projects that were programmed in the cultivation program for human resources in nuclear engineering sponsored by the Ministry of Economy, Trade and Industry, the development of a virtual reactor for education of nuclear reactor physics started in 2007. The purpose of the virtual nuclear reactor is to make nuclear reactor physics easily understood with aid of visualization. In the first year of this project, the neutron slowing down process was visualized. The data needed for visualization are provided by Monte Carlo calculations; The flights of the respective neutrons generated by nuclear fissions are traced through a reactor core until they disappear by neutron absorption or slow down to a thermal energy. With this visualization and an attached supplement textbook, it is expected that the learners can learn more clearly the physical implication of neutron slowing process that is mathematically described by the Boltzmann neutron transport equation. (author)

  16. Applying high-energy physics instrumentation to environmental restoration

    International Nuclear Information System (INIS)

    Solving problems in High Energy and Nuclear Physics is only exciting to physicists. The average citizen couldn't care less, as long as it only requires a very small portion of the tax dollar. However, media have convinced the average citizen that catastrophic proportions of the environment are being destroyed and that no expenditure of funds to ameliorate these problems should ever be questioned. This communication will deal with the application of instruments originally designed for executing physics experiments to the characterization, monitoring, and restoration of contaminated environments. Detectors developed to track particles in supercollider experiments are being used to clean up uranium contaminated soils at a processing facility, detectors used to analyze the soil on Mars are being used to characterize effluents from chemical waste landfills, and detectors developed to measure lepton nonconserving double-beta decay processes are being used to measure fallout from nuclear weapons-testing. In nearly all cases where physics experiments are being applied to environmental problems, the major virtue of the original detectors was their ability or design to measure the open-quote needle in a haystack.close-quote These unique measurement capabilities have proven to be invaluable in performing unique, cost effective measurements in difficult environmental circumstances. Discussions will include applications of alpha, beta, gamma, neutron, and charged particle detectors to environments ranging from macadamia nuts contaminated with Chernobyl fallout to management of high-level liquid radioactive waste tanks. Perhaps physicists should begin to capitalize on positive public relations for their contribution to solving these high visibility problems, or perhaps they should learn to design equipment for these well-funded programs which can alternatively be used to make measurements in the mundane regions nuclear physics, astrophysics, and cosmology

  17. PREFACE: XXXVII Brazilian Meeting on Nuclear Physics

    Science.gov (United States)

    2015-07-01

    fifty years of scientific activities at the University of Sao Paulo (USP). He dedicated most of his life to the development of experimental nuclear physics in the country. We had a special session where his life and achievements were remembered. The organization of the XXXVII RTFNB 2014 was one more step in a big effort to build in our part of the world a community of physicists engaged in the difficult problems of fundamental and applied nuclear physics. The international contacts bring new knowledge, provide reference framework and stimulate collaborations that are essential for a true participation in the scientific frontier. The Editors, the Organizing Committee and the whole Brazilian community of nuclear physicists were pleased and very grateful to the visitors that were together with us during the five days in Maresias. The Editors

  18. PREFACE: XXXIV Symposium on Nuclear Physics

    Science.gov (United States)

    Barrón-Palos, Libertad; Bijker, Roelof

    2011-10-01

    In the present volume of the Journal of Physics: Conference Series we publish the proceedings of the 'XXXIV Symposium on Nuclear Physics', which was held from 4-7 January 2011 at the Hacienda Cocoyoc, Morelos, Mexico. The proceedings consist of 19 contributions that were presented as invited talks at the meeting. The abstracts of all contributions, plenary talks and posters were published in the Conference Handbook. The Symposium on Nuclear Physics has a long and distinguished history. From the beginning it was intended to be a relatively small meeting designed to bring together some of the leading nuclear scientists in the field. Its most distinctive feature is to provide a forum for specialists in different areas of nuclear physics, both theorists and experimentalists, students, postdocs and senior scientists, in a relaxed and informal environment providing them with a unique opportunity to exchange ideas. From the first meeting in Oaxtepec in 1978, the Symposium has been organized every year without interruption, which makes the present Symposium the 34th in a row. The scientific program consisted of 27 invited talks and 17 posters on a wide variety of hot topics in contemporary nuclear physics, ranging from the traditional fields of nuclear structure (Draayer, Pittel, Van Isacker, Fraser, Lerma, Cejnar, Hirsch, Stránský and Rath) and nuclear reactions (Aguilera, Gómez-Camacho, Scheid, Navrátil and Yennello) to radioactive beams (Padilla-Rodal and Galindo-Uribarri), nuclear astrophysics (Aprahamian, Civitarese and Escher), hadronic physics (Bijker, Valcarce and Hess), fundamental symmetries (Liu, Barrón-Palos and Baessler) and LHC physics (Menchaca-Rocha and Paic). The high quality of the talks, the prestige of the speakers and the broad spectrum of subjects covered in the meeting, shows that nuclear physics is a very active area at the frontier of scientific research which establishes bridges between many different disciplines. Libertad Barr

  19. Nuclear reactor physics course for reactor operators

    International Nuclear Information System (INIS)

    The education and training of nuclear reactor operators is important to guarantee the safe operation of present and future nuclear reactors. Therefore, a course on basic 'Nuclear reactor physics' in the initial and continuous training of reactor operators has proven to be indispensable. In most countries, such training also results from the direct request from the safety authorities to assure the high level of competence of the staff in nuclear reactors. The aim of the basic course on 'Nuclear Reactor Physics for reactor operators' is to provide the reactor operators with a basic understanding of the main concepts relevant to nuclear reactors. Seen the education level of the participants, mathematical derivations are simplified and reduced to a minimum, but not completely eliminated

  20. The Physical Protection of Nuclear Material

    International Nuclear Information System (INIS)

    Physical protection against the theft or unauthorized diversion of nuclear materials and against the sabotage of nuclear facilities by individuals or groups has long been a matter of national and international concern. Although responsibility for establishing and operating a comprehensive physical protection system for nuclear materials and facilities within a State rests entirely with the Government of that State, it is not a matter of indifference to other States whether and to what extent that responsibility is fulfilled. Physical protection has therefore become a matter of international concern and co-operation. The need for international cooperation becomes evident in situations where the effectiveness of physical protection in one State depends on the taking by other States also of adequate measures to deter or defeat hostile actions against nuclear facilities and materials, particularly when such materials are transported across national frontiers

  1. Education in nuclear physics, medical physics and radiation protection in medicine and veterinary medicine

    International Nuclear Information System (INIS)

    Education in Nuclear Physics, Medical Physics and Radiation Protection in medicine and veterinary medicine studies on Belgrade University is an integral part of the curriculum, incorporated in different courses of graduate and post-graduate studies. During graduate studies students get basic elements of Nuclear Physics through Physics and/or Biophysics courses in the 1st year, while basic knowledge in Medical Physics and Radiation Protection is implemented in the courses of Radiology, Physical Therapy, Radiation Hygiene, Diagnostic Radiology and Radiation Therapy in the 4th or 5th year. Postgraduate studies offer MSc degree in Radiology, Physical Therapy, while courses in Nuclear Physics, Nuclear Instrumentation, Radiation Protection and Radiology are core or optional. On the Faculty of Veterinary Medicine graduated students may continue their professional education and obtain specialization degree in Radiology, Physical Therapy or Radiation Protection. On the Faculty of Medicine there are specialization degrees in Medical Nuclear Physics. Still, a closer analysis reveals a number of problems both from methodological and cognitive point of view. They are related mostly to graduate students ability to apply their knowledge in practise and with the qualifications of the educators, as those engaged in graduate studies lack basic knowledge in biological and medical sciences, while those engaged in post graduate studies mostly lack basic education in physics. Therefore, a reformed curricula resulting from much closer collaboration among educators, universities and professional societies at the national level should be considered. (author)

  2. On modern needs in nuclear physics and nuclear safety education

    International Nuclear Information System (INIS)

    The teaching of nuclear physics has a long history, particularly after the second world war, and the present author has 20 years of experience of teaching in that field. The research in nuclear physics has made major advances over the years, and the experiments become increasingly sophisticated. However, very often the university literature lags the development, as is, indeed, the case in all physics education. As a remedy of to-day, the didactic aspects are emphasized, especially at a basic level, while the curriculum content is. still left without upgrade. A standard textbook in basic nuclear physics is, while represent more modern theoretical treatises. The latter two, as their headings indicate, do not treat experimental methods, whereas has a presentation that illustrates methods and results with figures and references. However, they are from the 60 s and 70 s, they are old, and therefore cannot attract modern students of today. Consequently, one has the inevitable feeling that modern university teaching in nuclear physics, and the related area of nuclear safety, must be upgraded. A recent report in Finland, concluded that there is not sufficient nuclear safety education, but that on the other hand, it does not necessarily have to be connected with nuclear physics education, although this is recommendable. Further, the present Finnish university law states that 'The mission of the university shall be to promote free research and scientific and artistic education, to provide higher education based on research, and. to educate students to serve their country and humanity. In carrying out their mission, the universities shall interact with the surrounding society and promote the societal impact o research finding and artistic activities'. This mismatch between the curricula and the required 'societal impact' will be discussed, and examples of implications, usually not implemented, will be given. For nuclear physics specifically, the (lack of) connection between

  3. Progress report of Applied Physics Division. July 1984 - June 1985

    International Nuclear Information System (INIS)

    The activities of the Division during 1984/85 were again directed towards the general program objectives of the past two years. A shift in emphasis resulted in some organization changes. The increased importance of nuclear safeguards research in the Government's support for the International Atomic Energy Agency program has prompted a re-arrangement of the nuclear physics and science activities. Dr JR. Bird holds the responsibility for the Nuclear Science Section comprising the Nuclear Applications Group, Biomedical and Reactor Applications Group and the Neutron Scattering Group. The newly formed Safeguards and Nuclear Physics Section is headed by Dr J.W. Boldeman and includes the Safeguards Group and Nuclear Physics Group. The organization of the remainder of the Division is unchanged. The work on the electronic properties of hydrogen in silicon has been particularly rewarding and the plasma physics studies received recognition with an IAEA sponsored workshop on Compact Torus Research held in Sydney in March 1985 (author)

  4. Overview of Nuclear Physics at Jefferson Lab

    Energy Technology Data Exchange (ETDEWEB)

    McKeown, Robert D. [JLAB

    2013-08-01

    The Continuous Electron Beam Accelerator Facility (CEBAF) and associated experimental equipment at Jefferson Lab comprise a unique facility for experimental nuclear physics. This facility is presently being upgraded, which will enable a new experimental program with substantial discovery potential to address important topics in nuclear, hadronic, and electroweak physics. Further in the future, it is envisioned that the Laboratory will evolve into an electron-ion colliding beam facility.

  5. Neutrino Interactions Importance for Nuclear Physics

    OpenAIRE

    Amaro, J. E.; Maieron, C.; Valverde, M.; Nieves, J.; Barbaro, M. B.; Caballero, J. A.; Donnelly, T. W.; Udias, J. M.

    2009-01-01

    We review the general interplay between Nuclear Physics and neutrino-nucleus cross sections at intermediate and high energies. The effects of different reaction mechanisms over the neutrino observables are illustrated with examples in calculations using several nuclear models and ingredients.

  6. Nuclear Physics Laboratory 1981 annual report

    International Nuclear Information System (INIS)

    Research progress is reported in the following areas: astrophysics and cosmology, nuclear tests of fundamental symmetries, parity mixing in the hydrogen atom, nuclear structure and reactions, radiative capture, medium energy physics, heavy ion reactions, research by outside users, accelerators and ion sources, final design and construction of the magnetic momentum filter, instrumentation and experimental techniques, and computers and computing. Publications are listed

  7. Research in experimental nuclear physics

    International Nuclear Information System (INIS)

    Our program concentrates on pion physics experimental results obtained using the Energetic Pion Channel and Spectrometer (EPICS), Pion and Particle Physics channel (P3), and the Low Energy Pion physics channel (LEP). These facilities are unique in the world in their intensity and resolution. Two classes of experiments can be done best with this equipment: scattering (elastic and inelastic) and double charge exchange (DCX). Several coincidence experiments are in progress and are discussed in this paper

  8. Nuclear Physics Laboratory annual report

    International Nuclear Information System (INIS)

    In the field of nuclear astrophysics, possible sources for nucleosynthesis of 180Ta/sup m/ were examined. Giant dipole resonances (GDR) built on excited nuclear states were investigated. In particular, (p,γ) reactions for one-step semidirect GDR excitations were studied. Quadrupole and higher multipolarity giant resonances were examined with the (γ,n) reaction. Using the mass asymmetry of sequential fission fragments, the division of excitation energy in partially damped heavy ion collisions were determined. A new mode of dissociation for the heavy-ion projectile was identified. Departures from free pion-nucleon scattering were examined. Individual reports in these areas were cataloged separately

  9. Review: radioprotection applied in Nuclear Medicine

    International Nuclear Information System (INIS)

    The aim of this paper is to evaluate the potential causes of exposure to ionizing radiation in a nuclear medicine facility, identifying the causes of common errors in the clinical routine, how to avoid these errors and study good radioprotection practices based on the national law and international documents. (author)

  10. Progress report of the nuclear physics department

    International Nuclear Information System (INIS)

    This progress report presents the research programs and the technical developments carried out at the Nuclear Physics Department of Saclay from October 1, 1986 to September 30, 1987. The research programs concern the structure of nuclei and the general study of nuclear reaction mechanisms. Experiments use electromagnetic probes of the 700 Mev Saclay linear electron accelerator and hadronic probes, light polarised particles and heavy ions of the National Laboratories SATURNE and GANIL. The Nuclear Physics Department is also involved in development of accelerator technologies, especially in the field of superconducting cavities

  11. Recent Experimental Results on Nuclear Cluster Physics

    CERN Document Server

    Beck, C

    2016-01-01

    Knowledge on nuclear cluster physics has increased considerably since the pioneering discovery of 12C+12C resonances half a century ago and nuclear clustering remains one of the most fruitful domains of nuclear physics, facing some of the greatest challenges and opportunities in the years ahead. The occurrence of "exotic" shapes and/or Bose-Einstein alpha condensates in light N-Z alpha-conjugate nuclei is investigated. Evolution of clustering from stability to the drip-lines examined with clustering aspects persisting in light neutron-rich nuclei is consistent with the extension of the "Ikeda-diagram" to non alpha-conjugate nuclei.

  12. Physical aspects of nuclear ventriculography

    International Nuclear Information System (INIS)

    The use of edge enhancement and computer motion display improves the detection of regional wall motion abnormalities in the LV. Improved gating and processing techniques should improve the accuracy of ventricular volume vs time measurements. It is hoped that the simulations described will aid in the development of new instrumentation for the collection and analysis of nuclear ventriculographie data

  13. Research in theoretical nuclear physics

    International Nuclear Information System (INIS)

    This paper discusses: the role of nuclear binding in EMC effect; skyrmion quantization and phenomenology; lattice gauge Monte Carlo calculations; identification of tensor glueball; evidence of mesoniums in bar pm annihilation and γγ reactions; Skyrme-Landau parameterization of effective NN interactions; and quark-gluon plamsa

  14. Hands-On Nuclear Physics

    Science.gov (United States)

    Whittaker, Jeff

    2013-01-01

    Nuclear science is an important topic in terms of its application to power generation, medical diagnostics and treatment, and national defense. Unfortunately, the subatomic domain is far removed from daily experience, and few learning aids are available to teachers. What follows describes a low-tech, hands-on method to teach important concepts in…

  15. Effective Field Theory in Nuclear Physics

    OpenAIRE

    Savage, Martin J.; Holstein, Barry R.

    2000-01-01

    The Electromagnetic and Hadronic Physics sub-community of nuclear physics held a town hall meeting at Jefferson Lab during November 30 to December 4 of 2000. This is is our combined contribution to the white paper that will result from this meeting.

  16. A long range plan for nuclear physics

    International Nuclear Information System (INIS)

    The report is in two parts. The first part reviews the current understanding of nuclear physics and indicates areas of significant interest for future work. It briefly discusses the special contributions of nuclear physics in other sciences. The second part considers new facilities which would be particularly relevant to the future development of nuclear physics in the UK. The present position of UK nuclear physics with respect to the wider nuclear community is considered. In conclusion the report establishes priorities for UK nuclear physics and makes recommendations for future action for the provision of facilities and also for future funding and manpower levels. The working party seeks to build on the valuable base provided by the NSF and Oxford accelerators. The principal recommendation of the Working Party is that a new 600MeV continuous beam electron accelerator should be built at the Daresbury Laboratory. For higher energy heavy ion beams the Working Party suggests these should be sought at overseas laboratories. (author)

  17. Tradition and prospects in nuclear physics

    International Nuclear Information System (INIS)

    In my talk concerning the commemoration of Professor Horia Hulubei, I would like to recall first of all, that at the beginning of the thirties, being a young visiting scientist in France, Horia Hulubei was among the first pioneers of transmutation reactions by using accelerated beams. Afterwards, I would like to recall, that another link of Horia Hulubei's activities with the Nuclear Physics in the thirties, is his effort directed to the search for transuranium elements in nature. Further I will remind the direct involvement of Professor Horia Hulubei as a chief of school in the Nuclear Physics research, that were initiated in Romania in the late fifties, after the installing of the WWR-S Reactor and of the Cyclotron in Bucharest. Finally, I would like to add some considerations related to present trends in Nuclear Physics at the international level. The paper contains the following sections: 1 Introduction; 2. Horia Hulubei - A pioneer in transmutation reactions with accelerated beams at the beginning of the thirties; 3. Horia Hulubei's researches concerning the identification of transuranic elements in nature; 4. Horia Hulubei - A leader of the Nuclear Physics School at the Institute of Atomic Physics in Romania; 5. Prospects of Nuclear Physics research; 6. Some recent results in the fusion induced by halo nuclei

  18. Plasma physics and nuclear fusion research

    CERN Document Server

    Gill, Richard D

    1981-01-01

    Plasma Physics and Nuclear Fusion Research covers the theoretical and experimental aspects of plasma physics and nuclear fusion. The book starts by providing an overview and survey of plasma physics; the theory of the electrodynamics of deformable media and magnetohydrodynamics; and the particle orbit theory. The text also describes the plasma waves; the kinetic theory; the transport theory; and the MHD stability theory. Advanced theories such as microinstabilities, plasma turbulence, anomalous transport theory, and nonlinear laser plasma interaction theory are also considered. The book furthe

  19. [Intermediate energy nuclear physics]: Technical progress report

    International Nuclear Information System (INIS)

    This report summarizes work carried out between October 1, 1987 and August 1, 1988 at the Nuclear Physics Laboratory of the University of Colorado, Boulder, under Contract DE-FG02-86ER40269 with the United States Department of Energy. The contract supports experimental work in intermediate energy nuclear physics. The experimental program is very broadly based, ranging from pion-nucleon studies at TRIUMF, to inelastic pion scattering and charge exchange reactions at LAMPF, to nucleon charge exchange at LAMPF/WNR and to electron scattering at NIKHEF. In addition, a number of other topics related to accelerator physics are described in this report

  20. The Nuclear Physics of Solar and Supernova Neutrino Detection

    OpenAIRE

    Haxton, W. C.

    1999-01-01

    This talk provides a basic introduction for students interested in the responses of detectors to solar, supernova, and other low-energy neutrino sources. Some of the nuclear physics is then applied in a discussion of nucleosynthesis within a Type II supernova, including the r-process and the neutrino process.

  1. Basic principles of applied nuclear techniques

    International Nuclear Information System (INIS)

    The technological applications of radioactive isotopes and radiation in South Africa have grown steadily since the first consignment of man-made radioisotopes reached this country in 1948. By the end of 1975 there were 412 authorised non-medical organisations (327 industries) using hundreds of sealed sources as well as their fair share of the thousands of radioisotope consignments, annually either imported or produced locally (mainly for medical purposes). Consequently, it is necessary for South African technologists to understand the principles of radioactivity in order to appreciate the industrial applications of nuclear techniques

  2. Nuclear physics accelerator facilities of the world

    International Nuclear Information System (INIS)

    this report is intended to provide a convenient summary of the world's major nuclear physics accelerator facility with emphasis on those facilities supported by the US Department of Energy (DOE). Previous editions of this report have contained only DOE facilities. However, as the extent of global collaborations in nuclear physics grows, gathering summary information on the world's nuclear physics accelerator facilities in one place is useful. Therefore, the present report adds facilities operated by the National Science Foundation (NSF) as well as the leading foreign facilities, with emphasis on foreign facilities that have significant outside user programs. The principal motivation for building and operating these facilities is, of course, basic research in nuclear physics. The scientific objectives for this research were recently reviewed by the DOE/NSF Nuclear Science Advisory Committee, who developed a long range plan, Nuclei, Nucleons, and Quarks -- Nuclear Science in the 1990's. Their report begins as follows: The central thrust of nuclear science is the study of strongly interacting matter and of the forces that govern its structure and dynamics; this agenda ranges from large- scale collective nuclear behavior through the motions of individual nucleons and mesons, atomic nuclei, to the underlying distribution of quarks and gluons. It extends to conditions at the extremes of temperature and density which are of significance to astrophysics and cosmology and are conducive to the creation of new forms of strongly interacting matter; and another important focus is on the study of the electroweak force, which plays an important role in nuclear stability, and on precision tests of fundamental interactions. The present report provides brief descriptions of the accelerator facilities available for carrying out this agenda and their research programs

  3. Towards a Conceptual Diagnostic Survey in Nuclear Physics

    Science.gov (United States)

    Kohnle, Antje; Mclean, Stewart; Aliotta, Marialuisa

    2011-01-01

    Understanding students' prior beliefs in nuclear physics is a first step towards improving nuclear physics instruction. This paper describes the development of a diagnostic survey in nuclear physics covering the areas of radioactive decay, binding energy, properties of the nuclear force and nuclear reactions, that was administered to students at…

  4. Research in theoretical nuclear physics

    International Nuclear Information System (INIS)

    Research progress on the following subjects is summarized: (1) first and second order contributions to two-neutron transfer, (2) proximity potential in coupled-channel calculations, (3) spin-dependent interactions in heavy ion reactions, (4) nuclear field theory and standard Goldstone perturbation theory, (5) effective operators with potential from meson theory, (6) microscopic study of the 3He(α,γ)7Be electric-dipole capture reaction, and (7) influence of target clustering on internuclear antisymmetrization. Project proposals are reviewed and publications are listed

  5. Nuclear physics at small distances

    Indian Academy of Sciences (India)

    B K Jain

    2003-11-01

    We report on the study of meson and resonance production in nuclear collisions near the threshold. Because of the large momentum transfer, these reactions occur at length scales less than the size of the hadrons. We explore whether they are best described in terms of the quark–gluon picture or the meson-exchange picture. Comparing our results with the available experimental data we conclude that the spin-averaged cross-sections are best described in meson-exchange picture. The description of the observed nucleon–nucleus and hyperon–nucleus spin-orbit potentials are found to be consistent with the quark–gluon exchange picture.

  6. Methodology of students' professionally-applied physical training in universities

    Directory of Open Access Journals (Sweden)

    Pylypey L.P.

    2012-11-01

    Full Text Available Real system of physical education that exists in Ukraine is considered; the ineffectiveness of physical training of students for future life and production activities is shown. In modern conditions the structure of physiological requirements and working conditions is changing and, accordingly, there are additional requirements for professionally-applied physical training. The model of the educational process for credit-module system in high school is given. Theoretical and methodological reasoning of professionally-applied physical training methodology in university of economic profile is carried out. Management options for physical training of students are proposed. The systems of computer technology of professionally-applied physical training are considered.

  7. Materials of the International conference devoted to 40-years anniversary of the Inst. of Nuclear Physics of the National Nuclear Center of the Republic of Kazakhstan

    International Nuclear Information System (INIS)

    Collection of articles is devoted to experimental and theoretical investigations in the field of radiation physics of solids, nuclear and applied physics. Aspects associated with defects evolution formation and its structural-phase and size stabilization under irradiation, interaction of radiation with surface; nuclear reaction physics, nuclear spectroscopy, fission physics and acceleration processes; development and implementation of nuclear-physical processes are discussed. There are 26 articles in collection. It is intended for physicists, material testers, technologists and radio-ecologists

  8. The physical protection of nuclear material and nuclear facilities

    International Nuclear Information System (INIS)

    The latest review (1993) of this document was of limited scope and resulted in changes to the text of INFCIRC/225/Rev.2 designed to make the categorization table in that document consistent with the categorization table contained in the Convention on Physical Protection of Nuclear Materials. Consequently, a comprehensive review of INFCIRC/225 has not been conducted since 1989. Consequently, a meeting of national experts was convened from 2-5 June 1998 and from 27-29 October 1998 for a thorough review of INFCIRC/225/Rev.3. The revised document reflects the recommendations of the national experts to improve the structure and clarity of the document and to take account of improved technology and current international and national practices. In particular, a chapter has been added which provides specific recommendations related to sabotage of nuclear facilities and nuclear material. As a result of this addition, the title has been changed to 'The Physical Protection of Nuclear Material and Nuclear Facilities'. The recommendations presented in this IAEA document reflect a broad consensus among Member States on the requirements which should be met by systems for the physical protection of nuclear materials and facilities. It is hoped that they will provide helpful guidance for Member States

  9. Learning to Embrace Nuclear Physics through Education

    International Nuclear Information System (INIS)

    Due to its achievements, nuclear physics is more and more present in life of every member of the society. Its applications in the medical field and in nuclear energy, as well as the advanced research, always pushing the limits of science towards micro cosmos and macro cosmos, are subjects frequently presented in the media. In addition to their invaluable benefits, these achievements involve also particular rules to prevent potential risks. These risks are also underlined by the media, often being presented in an unfriendly manner. Specialists in nuclear physics are familiar with these problems complying with the specific rules in order to reduce risks at insignificant levels. The development of a specific field ('Radiation protection') defining norms and requirements for 'assuring the radiological safety of the workers, population and environment', and its dynamics represent a proof of a responsible attitude regarding nuclear safety. Dedicated international bodies and experts analyze and rigorously evaluate risks in order to draw the right ways of managing activity in the field. The improvement of the formal and informal education of public regarding the real risks of nuclear applications is very important in order to understand and better assimilate some general rules concerning the use of these techniques, as well as for their correct perception, leading to an increase of interest towards nuclear physics. This educational update can be started even from elementary school and continued in each stage of formal education in adapted forms. The task of informing general public is to be carried out mainly by specialists who, unlike 30-40 years ago, can rely on a much more efficient generation of communications' mean. Taking into account the lack of interest for nuclear, an attractive way of presenting the achievements and future possibilities of nuclear physics would contribute to youth orientation towards specific universities in order to become next generation of

  10. Learning to Embrace Nuclear Physics through Education

    Science.gov (United States)

    Avadanei, Camelia

    2010-01-01

    Due to its achievements, nuclear physics is more and more present in life of every member of the society. Its applications in the medical field and in nuclear energy, as well as the advanced research, always pushing the limits of science towards micro cosmos and macro cosmos, are subjects frequently presented in the media. In addition to their invaluable benefits, these achievements involve also particular rules to prevent potential risks. These risks are also underlined by the media, often being presented in an unfriendly manner. Specialists in nuclear physics are familiar with these problems complying with the specific rules in order to reduce risks at insignificant levels. The development of a specific field ("Radiation protection") defining norms and requirements for "assuring the radiological safety of the workers, population and environment," and its dynamics represent a proof of a responsible attitude regarding nuclear safety. Dedicated international bodies and experts analyze and rigorously evaluate risks in order to draw the right ways of managing activity in the field. The improvement of the formal and informal education of public regarding the real risks of nuclear applications is very important in order to understand and better assimilate some general rules concerning the use of these techniques, as well as for their correct perception, leading to an increase of interest towards nuclear physics. This educational update can be started even from elementary school and continued in each stage of formal education in adapted forms. The task of informing general public is to be carried out mainly by specialists who, unlike 30-40 years ago, can rely on a much more efficient generation of communications' mean. Taking into account the lack of interest for nuclear, an attractive way of presenting the achievements and future possibilities of nuclear physics would contribute to youth orientation towards specific universities in order to become next generation of

  11. PREFACE: XXXIII Symposium on Nuclear Physics

    Science.gov (United States)

    Barrón-Palos, Libertad; Bijker, Roelof; Fossion, Ruben; Lizcano, David

    2010-04-01

    The attached PDF gives a full listing of contributors and organisation members. In the present volume of Journal of Physics: Conference Series we publish the proceedings of the "XXXIII Symposium on Nuclear Physics", that was held from January 5-8, 2010 at the Hacienda Cocoyoc, Morelos, Mexico. The proceedings contain the plenary talks that were presented during the conference. The abstracts of all contributions, plenary talks and posters, were published in the Conference Handbook. The Symposium on Nuclear Physics has a long and distinguished history. From the beginning it was intended to be a relatively small meeting designed to bring together some of the leading nuclear scientists in the field. Its most distinctive feature is to provide a forum for specialists in different areas of nuclear physics, both theorists and experimentalists, students, postdocs and senior scientists, in a relaxed and informal environment providing them with a unique opportunity to exchange ideas. After the first meeting in Oaxtepec in 1978, the Symposium was organized every year without interruption which makes the present one the 33rd in a row. This year's meeting was dedicated to the memory of Marcos Moshinsky, who passed away on April 1, 2009. Dr. Moshinsky was the most distinguished pioneer and promoter of nuclear physics in Mexico and Latin America and holds the record of 31 (out of 32) participations at the Symposium. In the inaugural session, Alejandro Frank (ICN-UNAM), Peter Hess (ICN-UNAM) and Jorge Flores (IF-UNAM) spoke in his honor and recalled the virtues that characterized him as a teacher, scientist, founder of schools and academic institutions, colleague and friend. His generosity, excellence and honesty were emphasized as the personal qualities that characterized both his personal and academic life. moshinksky_photo "Marcos Moshinsky (1921-2009)" The scientific program consisted of 26 invited talks and 20 posters on a wide variety of hot topics in contemporary nuclear

  12. Nuclear analytical techniques applied to forensic chemistry

    International Nuclear Information System (INIS)

    Gun shot residues produced by firing guns are mainly composed by visible particles. The individual characterization of these particles allows distinguishing those ones containing heavy metals, from gun shot residues, from those having a different origin or history. In this work, the results obtained from the study of gun shot residues particles collected from hands are presented. The aim of the analysis is to establish whether a person has shot a firing gun has been in contact with one after the shot has been produced. As reference samples, particles collected hands of persons affected to different activities were studied to make comparisons. The complete study was based on the application of nuclear analytical techniques such as Scanning Electron Microscopy, Energy Dispersive X Ray Electron Probe Microanalysis and Graphite Furnace Atomic Absorption Spectrometry. The essays allow to be completed within time compatible with the forensic requirements. (author)

  13. Applications of Hubble Volume in Atomic Physics, Nuclear Physics, Particle Physics, Quantum Physics and Cosmic Physics

    Directory of Open Access Journals (Sweden)

    U. V. S. Seshavatharam

    2013-08-01

    Full Text Available In this paper an attempt is made to emphasize the major shortcomings of standard cosmology. It can be suggested that, the current cosmological changes can be understood by studying the atom and the atomic nucleus through ground based experiments. If light is coming from the atoms of the gigantic galaxy, then redshift can be interpreted as an index of the galactic atomic ‘light emission mechanism’. In no way it seems to be connected with ‘galaxy receding’. With ‘cosmological increasing (emitted photon energy’, observed cosmic redshift can be considered as a measure of the age difference between our galaxy and any observed galaxy. If it is possible to show that, (from the observer older galaxy’s distance increases with its ‘age’, then ‘galaxy receding’ and ‘accelerating universe’ concepts can be put for a revision at fundamental level. At any given cosmic time, the product of ‘critical density’ and ‘Hubble volume’ gives a characteristic cosmic mass and it can be called as the ‘Hubble mass’. Interesting thing is that, Schwarzschild radius of the ‘Hubble mass’ again matches with the ‘Hubble length’. Most of the cosmologists believe that this is merely a coincidence. At any given cosmic time,’Hubble length’ can be considered as the gravitational or electromagnetic interaction range. If one is willing to think in this direction, by increasing the number of applications of Hubble mass and Hubble volume in other areas of fundamental physics like quantum physics, nuclear physics, atomic physics and particle physics - slowly and gradually - in a progressive way, concepts of ‘Black hole Cosmology’ can be strengthened and can also be confirmed.

  14. Progress report of the nuclear physics department

    International Nuclear Information System (INIS)

    This progress report presents the experiments and the technological studies carried out at the Nuclear Physics Department of Saclay from October 1, 1985 to September 30, 1986. These studies concern the structure of nuclei, the nuclear reaction mechanisms and, more and more, mesic processes in nuclear dynamics. The experiments have been carried at the 700 MeV electron linac, the synchrotron SATURNE, the heavy ion accelerator GANIL, the SARA facility at Grenoble. An important technical activity has been devoted to the construction of the supraconducting booster of the 9 MV tandem

  15. Physics and radiobiology of nuclear medicine

    CERN Document Server

    Saha, Gopal B

    2010-01-01

    From a distinguished author comes this new edition for technologists, practitioners, residents, and students in radiology and nuclear medicine. Encompassing major topics in nuclear medicine from the basic physics of radioactive decay to instrumentation and radiobiology, it is an ideal review for Board and Registry examinations. The material is well organized and written with clarity. The book is supplemented with tables and illustrations throughout. It provides a quick reference book that is concise but comprehensive, and offers a complete discussion of topics for the nuclear medicine and radi

  16. Preface: International workshop on nuclear structure physics

    International Nuclear Information System (INIS)

    An International Workshop on Nuclear Structure Physics was held in June 1-7, 2008, in Shanghai. The purpose of this Workshop is to review the achievements of a few selected topics, to exchange ideas, and look to the future along these lines. The topics included the properties of low-lying states of medium and heavy nuclei, approximations of the nuclear shell model and applications, structures of atomic nuclei under random interactions, and algebraic approaches in nuclear structure theory. There are 33 talks and 43 participants in this workshop.

  17. Progress report of the nuclear physics department

    International Nuclear Information System (INIS)

    This progress report presents the experiments and the technological studies carried out at the Nuclear Physics Department of Saclay from October 1, 1984 to September 30, 1985. These studies concern the structure of nuclei, the nuclear reaction mechanisms and, more and more, mesic processes in nuclear dynamics. The experiments have been carried at the 700 MeV electron linac, the synchrotron SATURNE, the heavy ion accelerator GANIL, the SARA facility at Grenoble, and the antiproton beams at CERN. An important technical activity has been devoted to the construction of the supraconducting booster of the 9 MV tandem

  18. WELCOME SPEECH: EPS Euroconference XIX Nuclear Physics Divisional Conference: New Trends in Nuclear Physics Applications and Technology

    Science.gov (United States)

    Johnson, R. C.

    2006-06-01

    spinning nuclei, in particular the discovery of super-deformed bands. The IBA-Europhysics Prize for Applied Nuclear Science and Nuclear Methods in Medicine. The 2004 prize was awarded to Guy Demortier. The 2005 recipients are Werner Heil and Pierre Jean Nacher for the development of spin polarized 3He targets and their application to nuclear science and medicine. This prize will be presented later this morning by the Chair of the Awards Committee, Professor Christiane Leclerq-Willain. 3. Other Board activities include: To maintain a watching brief on Nuclear Energy developments through the preparation of a regularly up-dated position paper. Public Awareness of Nuclear Science (PANS) activities in collaboration with NuPECC. To encourage new initiatives for Nuclear Theory cooperation in Europe. To keep informed of major developments in Europe, e.g., the creation of a European Research Council. To foster the maintenance of nuclear physics expertise and education in Europe. More details of most of these activities can be found on our web site, which includes information about all the meetings we sponsor, our prizes and minutes of Board Meetings. If you are interested in contributing in any way to the Board's work, I urge you to join the European Physical Society as an Individual Member and give the Nuclear Physics Division as your special interest. The International Programme Committee under Professor Viesti's Chairmanship are to be congratulated for putting together what looks like a very wide ranging and exciting programme. I wish you all a scientifically rewarding and enjoyable five days!

  19. Nuclear Physics Laboratory annual report 1982

    International Nuclear Information System (INIS)

    This Annual Report describes the activities of the Nuclear Physics Laboratory of the University of Washington for the year ending approximately April 30, 1982. As in previous years we report here on a strong nuclear physics research program based upon use of the Laboratory's principal facility, an FN tandem and injector accelerator system. Other major elements of the Laboratory's current program include the hydrogen parity mixing experiment, intermediate-energy experiments conducted at Los Alamos and elsewhere, an accelerator mass spectrometry program emphasizing 10Be and 14C measurements on environmental materials, and a number of researches carried out by Laboratory members working collaboratively at other institutions both in this country and abroad

  20. Role of accelerator mass spectrometry in nuclear physics

    International Nuclear Information System (INIS)

    Accelerator Mass Spectrometry (AMS) was developed in nuclear physics laboratories and up to now all experiments were performed at these places. However, AMS is being applied to a variety of fields which have very little to do with nuclear physics. The implications are for its original field can be divided in two domains. First, there are clearly instrumental implications. The overall demand of AMS for high efficiency ion sources, great stability, flexibility, and control of the entire accelerator system is certainly beneficial for the performance of any nuclear physics program. Second, AMS can be conveniently used to determine nuclear quantities of interest when the measurements involves very low radioisotope concentrations. Examples are the half-life measurement of 32Si and the cross section measurement of the 26Mg(p,n)26Al reaction. As the overall detection efficiency will improve there are some interesting problems in nuclear physics and elementary particle physics which are tempting to try. Although most of these experiments are beyond the present capability of AMS, some general aspects are discussed in section 5

  1. Specific filters applied in nuclear medicine services

    Energy Technology Data Exchange (ETDEWEB)

    Ramos, Vitor S.; Crispim, Verginia R., E-mail: verginia@con.ufrj.b [Coordenacao dos Programas de Pos-Graduacao de Engenharia (PEN/COPPE/UFRJ), RJ (Brazil). Programa de Engenharia Nuclear; Brandao, Luis E.B. [Instituto de Engenharia Nuclear (IEN/CNEN-RJ) Rio de Janeiro, RJ (Brazil)

    2011-07-01

    In Nuclear Medicine, radioiodine, in various chemical forms, is a key tracer used in diagnostic practices and/or therapy. Due to its high volatility, medical professionals may incorporate radioactive iodine during the preparation of the dose to be administered to the patient. In radioactive iodine therapy doses ranging from 3.7 to 7.4 GBq per patient are employed. Thus, aiming at reducing the risk of occupational contamination, we developed a low cost filter to be installed at the exit of the exhaust system where doses of radioactive iodine are fractionated, using domestic technology. The effectiveness of radioactive iodine retention by silver impregnated silica [10%] crystals and natural activated carbon was verified using radiotracer techniques. The results showed that natural activated carbon is effective for I{sub 2} capture for a large or small amount of substrate but its use is restricted due to its low flash point (150 deg C). Besides, when poisoned by organic solvents, this flash point may become lower, causing explosions if absorbing large amounts of nitrates. To hold the CH{sub 3}I gas, it was necessary to increase the volume of natural activated carbon since it was not absorbed by SiO{sub 2} + Ag crystals. We concluded that, for an exhaust flow range of (306 {+-} 4) m{sup 3}/h, a double stage filter using SiO{sub 2} + Ag in the first stage and natural activated carbon in the second is sufficient to meet radiological safety requirements. (author)

  2. Nuclear physics experiments with low cost instrumentation

    Science.gov (United States)

    Oliveira Bastos, Rodrigo; Adelar Boff, Cleber; Melquiades, Fábio Luiz

    2016-11-01

    One of the difficulties in modern physics teaching is the limited availability of experimental activities. This is particularly true for teaching nuclear physics in high school or college. The activities suggested in the literature generally symbolise real phenomenon, using simulations. It happens because the experimental practices mostly include some kind of expensive radiation detector and an ionising radiation source that requires special care for handling and storage, being subject to a highly bureaucratic regulation in some countries. This study overcomes these difficulties and proposes three nuclear physics experiments using a low-cost ion chamber which construction is explained: the measurement of 222Rn progeny collected from the indoor air; the measurement of the range of alpha particles emitted by the 232Th progeny, present in lantern mantles and in thoriated welding rods, and by the air filter containing 222Rn progeny; and the measurement of 220Rn half-life collected from the emanation of the lantern mantles. This paper presents the experimental procedures and the expected results, indicating that the experiments may provide support for nuclear physics classes. These practices may outreach wide access to either college or high-school didactic laboratories, and the apparatus has the potential for the development of new teaching activities for nuclear physics.

  3. Impact of Precision Mass Measurements on Nuclear Physics and Astrophysics

    CERN Document Server

    Kreim, Susanne; Dilling, Jens; Litvinov, Yuri A

    2013-01-01

    Among all nuclear ground-state properties, atomic masses are highly specific for each particular combination of neutron and proton number, N and Z, respectively. The data obtained through mass measurements provide details of the nuclear interaction and thus apply to a variety of physics topics. Some of the most crucial questions to be addressed by mass spectrometry of unstable radionuclides are, on the one hand, nuclear forces and structure, describing phenomena such as the so-called neutron-halos or the evolution of magic numbers when moving towards the borders of nuclear existence. On the other hand, the understanding of the processes of element formation in the Universe poses a challenge and requires an accurate knowledge of nuclear astrophysics. Here, precision atomic mass values of a large number of exotic nuclei participating in nucleosynthesis processes are among the key input data in large-scale reaction network calculations.

  4. Web design Techniche applied in physics homework

    Science.gov (United States)

    Liang, Jie; Mzouzhi, Taha

    2000-03-01

    This talk will discuss the pedagogic implications and effectiveness of small scriptable Java applets, i.e., Physlets, developed at Davidson College. Interactive problems will be shown as examples and Physlets will distributed to conference participants. This talk will discuss the limited choice decided by student and show them what their choice results and guide them give their conclusions by themselves. Step by step, they will be given a series of programs and do so. They will be guided to use their idea to discover the rule of the physics object. Projectile Motion's Conceptual example will be shown as examples.

  5. The Nuclear Physics of Neutron Stars

    CERN Document Server

    Piekarewicz, J

    2013-01-01

    We explore the unique and fascinating structure of neutron stars. Although neutron stars are of interest in many areas of Physics, our aim is to provide an intellectual bridge between Nuclear Physics and Astrophysics. We argue against the naive perception of a neutron star as a uniform assembly of neutrons packed to enormous densities. Rather, by focusing on the many exotic phases that are speculated to exist in a neutron star, we show how the reality is different and far more interesting.

  6. Research in atomic and applied physics using a 6-GeV synchrotron source

    International Nuclear Information System (INIS)

    The Division of Atomic and Applied Physics in the Department of Applied Science at Brookhaven National Laboratory conducts a broad program of research using ion beams and synchrotron radiation for experiments in atomic physics and nuclear analytical techniques and applications. Many of the experiments would benefit greatly from the use of high energy, high intensity photon beams from a 6-GeV synchrotron source. A survey of some of the specific scientific possibilities is presented

  7. Applying Physics to the Student's World

    Science.gov (United States)

    Blanton, Patricia

    2003-03-01

    It has been a challenging day. The electricity is off because snow and extreme winds have toppled trees into power lines all across my county. As I've been trying to devise a way to cook dinner, I've been thinking about how equipped we are to handle such emergencies. My husband, who has worked most of the day getting the portable generator going and figuring out how to hook up things to keep us warm and safe, made the comment, "You have to be a MacGyver if you are going to be a homeowner." I began wondering how well we are equipping our students with the ability to figure out how to make things work. We teach the physics principles so they can solve the "book problems," but are we helping them to understand the principles well enough to become real problem solvers? Are they prepared to handle situations when the "usual things" aren't working?

  8. Nuclear and particle physics, astrophysics and cosmology (NPAC) capability review

    Energy Technology Data Exchange (ETDEWEB)

    Redondo, Antonio [Los Alamos National Laboratory

    2010-01-01

    The present document represents a summary self-assessment of the status of the Nuclear and Particle Physics, Astrophysics and Cosmology (NPAC) capability across Los Alamos National Laboratory (LANL). For the purpose of this review, we have divided the capability into four theme areas: Nuclear Physics, Particle Physics, Astrophysics and Cosmology, and Applied Physics. For each theme area we have given a general but brief description of the activities under the area, a list of the Laboratory divisions involved in the work, connections to the goals and mission of the Laboratory, a brief description of progress over the last three years, our opinion of the overall status of the theme area, and challenges and issues.

  9. Medium energy nuclear physics research

    Energy Technology Data Exchange (ETDEWEB)

    Peterson, G.A.; Dubach, J.F.; Hicks, R.S.; Miskimen, R.A.

    1992-06-01

    This paper covers the following topics: Experiment 87-02: Threshold Electrodisintegration of the Deuteron at High Q{sup 2}; Measurement of the 5th Structure Function in Deuterium and {sup 12}C; Single-Particle Densities of sd-Shell Nuclei; Experiment 84-28: Transverse Form Factors of {sup 117}Sn; Experiment 82-11: Elastic Magnetic Electron Scattering from {sup 13}C; Experiment 89-09: Measurement of the Elastic Magnetic Form Factor of {sup 3}He at High Momentum Transfer; Experiment 89-15: Coincidence Measurement of the D(e,e{prime}p) Cross-Section at Low Excitation Energy and High Momentum Transfer; Experiment 87-09: Measurement of the Quadrupole Contribution to the N {yields} {Delta} Excitation; Experiment E-140: Measurement of the x-, Q{sup 2} and A-Dependence of R = {sigma}{sub L}/{sigma}{sub T}; PEP Beam-Gas Event Analysis: Physics with the SLAC TPC/2{gamma} Detector; Drift Chamber Tests at Brookhaven National Laboratory; Experiment PR-89-031: Multi-nucleon Knockout Using the CLAS Detector; Electronics Design for the CLAS Region 1 Drift Chamber; Color Transparencies in the Electroproduction of Nucleon Resonances; and Experiment PR-89-015: Study of Coincidence Reactions in the Dip and Delta-Resonance Regions.

  10. Medium energy nuclear physics research

    International Nuclear Information System (INIS)

    The UMass group has concentrated on using electromagnetic probes, particularly the electron in high-energy scattering experiments at the Stanford Liner Accelerator Center (SLAC). Plans are also being made for high energy work at the Continuous Beam Accelerator Facility (CEBAF). The properties of this accelerator should permit a whole new class of coincidence experiments to be carried out. At SLAC UMass has made major contributions toward the plans for a cluster-jet gas target and detector system at the 16 GeV PEP storage ring. For the future CEBAF accelerator, tests were made of the feasibility of operating wire drift chambers in the vicinity of a continuous electron beam at the University Illinois microtron. At the same time a program of studies of the nuclear structure of more complex nuclei has been continued at the MIT-Bates Linear Accelerator Center and in Amsterdam at the NIKHEF-K laboratory. At the MIT-Bates Accelerator, because of an unforeseen change in beam scheduling as a result of problems with the T20 experiment, the UMass group was able to complete data acquisition on experiments involving 180 degrees elastic magnetic scattering on 117Sn and 41Ca. A considerable effort has been given to preparations for a future experiment at Bates involving the high-resolution threshold electrodisintegration of the deuteron. The use of these chambers should permit a high degree of discrimination against background events in the measurement of the almost neutrino-like small cross sections that are expected. In Amsterdam at the NIKHEF-K facility, single arm (e,e') measurements were made in November of 1987 on 10B in order to better determine the p3/2 wave function from the transition from the Jpi = 3+ ground state to the O+ excited state at 1.74 MeV. In 1988, (e,e'p) coincidence measurements on 10B were completed. The objective was to obtain information on the p3/2 wave function by another means

  11. Nuclear Physics Laboratory 1980 annual report

    International Nuclear Information System (INIS)

    Research progress is reported in the following areas: astrophysics and cosmology, fundamental symmetries, nuclear structure and reactions, radiative capture, medium energy physics, heavy ion reactions, research by outside users, accelerators and ion sources, instrumentation and experimental techniques, and computers and computing. Publications are listed

  12. PSI nuclear and particle physics newsletter 1990

    International Nuclear Information System (INIS)

    This newsletter contains reports on nuclear and particle physics supported by the F1 division of PSI. Groups were invited to present new preliminary or final results obtained in 1990. As ususal, the contributions were not referred. They should be quoted after consultation with the authors only. (author) figs., tabs., refs

  13. Nuclear Physics Laboratory 1979 annual report

    Energy Technology Data Exchange (ETDEWEB)

    Adelberger, E.G. (ed.)

    1979-07-01

    Research progress is reported in the following areas: astrophysics and cosmology, fundamental symmetries, nuclear structure, radiative capture, medium energy physics, heavy ion reactions, research by users and visitors, accelerator and ion source development, instrumentation and experimental techniques, and computers and computing. Publications are listed. (WHK)

  14. Nuclear Physics Laboratory 1979 annual report

    International Nuclear Information System (INIS)

    Research progress is reported in the following areas: astrophysics and cosmology, fundamental symmetries, nuclear structure, radiative capture, medium energy physics, heavy ion reactions, research by users and visitors, accelerator and ion source development, instrumentation and experimental techniques, and computers and computing. Publications are listed

  15. Nuclear Physics Laboratory 1980 annual report

    Energy Technology Data Exchange (ETDEWEB)

    Adelberger, E.G. (ed.)

    1980-09-01

    Research progress is reported in the following areas: astrophysics and cosmology, fundamental symmetries, nuclear structure and reactions, radiative capture, medium energy physics, heavy ion reactions, research by outside users, accelerators and ion sources, instrumentation and experimental techniques, and computers and computing. Publications are listed. (WHK)

  16. Basic Physics for Nuclear Medicine. Chapter 1

    International Nuclear Information System (INIS)

    The technologies used in nuclear medicine for diagnostic imaging have evolved over the last century, starting with Röntgen’s discovery of X rays and Becquerel’s discovery of natural radioactivity. Each decade has brought innovation in the form of new equipment, techniques, radiopharmaceuticals, advances in radionuclide production and, ultimately, better patient care. All such technologies have been developed and can only be practised safely with a clear understanding of the behaviour and principles of radiation sources and radiation detection. These central concepts of basic radiation physics and nuclear physics are described in this chapter and should provide the requisite knowledge for a more in depth understanding of the modern nuclear medicine technology discussed in subsequent chapters

  17. The harmonic oscillator and nuclear physics

    Science.gov (United States)

    Rowe, D. J.

    1993-01-01

    The three-dimensional harmonic oscillator plays a central role in nuclear physics. It provides the underlying structure of the independent-particle shell model and gives rise to the dynamical group structures on which models of nuclear collective motion are based. It is shown that the three-dimensional harmonic oscillator features a rich variety of coherent states, including vibrations of the monopole, dipole, and quadrupole types, and rotations of the rigid flow, vortex flow, and irrotational flow types. Nuclear collective states exhibit all of these flows. It is also shown that the coherent state representations, which have their origins in applications to the dynamical groups of the simple harmonic oscillator, can be extended to vector coherent state representations with a much wider range of applicability. As a result, coherent state theory and vector coherent state theory become powerful tools in the application of algebraic methods in physics.

  18. PREFACE: XXXV Symposium on Nuclear Physics

    Science.gov (United States)

    Padilla-Rodal, E.; Bijker, R.

    2012-09-01

    Conference logo The XXXV Symposium on Nuclear Physics was held at Hotel Hacienda Cocoyoc, Morelos, Mexico from January 3-6 2012. Conceived in 1978 as a small meeting, over the years and thanks to the efforts of various organizing committees, the symposium has become a well known international conference on nuclear physics. To the best of our knowledge, the Mexican Symposium on Nuclear Physics represents the conference series with longest tradition in Latin America and one of the longest-running annual nuclear physics conferences in the world. The Symposium brings together leading scientists from all around the world, working in the fields of nuclear structure, nuclear reactions, physics with radioactive ion beams, hadronic physics, nuclear astrophysics, neutron physics and relativistic heavy-ion physics. Its main goal is to provide a relaxed environment where the exchange of ideas, discussion of new results and consolidation of scientific collaboration are encouraged. To celebrate the 35th edition of the symposium 53 colleagues attended from diverse countries including: Argentina, Australia, Canada, Japan, Saudi Arabia and USA. We were happy to have the active participation of Eli F Aguilera, Eduardo Andrade, Octavio Castaños, Alfonso Mondragón, Stuart Pittel and Andrés Sandoval who also participated in the first edition of the Symposium back in 1978. We were joined by old friends of Cocoyoc (Stuart Pittel, Osvaldo Civitarese, Piet Van Isacker, Jerry Draayer and Alfredo Galindo-Uribarri) as well as several first time visitors that we hope will come back to this scientific meeting in the forthcoming years. The scientific program consisted of 33 invited talks, proposed by the international advisory committee, which nicely covered the topics of the Symposium giving a balanced perspective between the experimental and the theoretical work that is currently underway in each line of research. Fifteen posters complemented the scientific sessions giving the opportunity

  19. Current Status of Nuclear Physics Research

    OpenAIRE

    Bertulani, C.A.; Hussein, M. S.

    2015-01-01

    In this review we discuss the current status of research in nuclear physics which is being carried out in different centers in the World. For this purpose we supply a short account of the development in the area which evolved over the last 9 decades, since the discovery of the neutron. The evolution of the physics of the atomic nucleus went through many stages as more data become available. We briefly discuss models introduced to discern the physics behind the experimental discoveries, such a...

  20. Is Nuclear Physics Interesting? Nuclear Physics for Undergraduates -- Strategies and Topics for Teaching the Underprepared

    Science.gov (United States)

    Holbrow, Charles H.

    2004-05-01

    Admit it or not, you face hard questions when you teach nuclear physics to undergraduates. How can you engage the interest of novice students? Of non-science students? Of physics students with limited preparation? Will you teach them the physics of the nucleus or will it be taxonomy and poetry? How much time will you spend on pre-quantum nuclear physics, e.g., radioactivity and α, β, and γ radiations? On crucial experiments? On atomic beams, detectors, particle spectrographs, reactors and accelerators? On nuclear levels, angular momentum, and parity? On models of the nucleus? On muons, pions or kaons? Will you teach new nuclear physics from RHIC and Jefferson Lab? What can you teach when your best prepared students have only rudimentary quantum mechanics and no idea of quantum field theory? What text will you use? How will you know if your course succeeds? I will give several different, sometimes inconsistent answers to these questions. I will present some syllabi, assess some texts, and describe strategies for organizing the intellectual content of the course and for engaging students in it. I will also describe ways to embed nuclear physics in the undergraduate curriculum in places other than those explicitly labeled nuclear physics.'

  1. Scattering processes in atomic physics, nuclear physics, and cosmology

    Science.gov (United States)

    Shchedrin, Gavriil

    The universal way to probe a physical system is to scatter a particle or radiation off the system. The results of the scattering are governed by the interaction Hamiltonian of the physical system and scattered probe. An object of the investigation can be a hydrogen atom immersed in a laser field, heavy nucleus exposed to a flux of neutrons, or space-time metric perturbed by the stress-energy tensor of neutrino flux in the early Universe. This universality of scattering process designates the Scattering Matrix, defined as the unitary matrix of the overlapping in and out collision states, as the central tool in theoretical physics. In this Thesis we present our results in atomic physics, nuclear physics, and cosmology. In these branches of theoretical physics the key element that unifies all of them is the scattering matrix. Additionally, within the scope of Thesis we present underlying ideas responsible for the unification of various physical systems. Within atomic physics problems, namely the axial anomaly contribution to parity nonconservation in atoms, and two-photon resonant transition in a hydrogen atom, it was the scattering matrix which led to the Landau-Yang theorem, playing the central role in these problems. In scattering problems of cosmology and quantum optics we developed and implemented mathematical tools that allowed us to get a new point of view on the subject. Finally, in nuclear physics we were able to take advantage of the target complexity in the process of neutron scattering which led to the formulation of a new resonance width distribution for an open quantum system.

  2. AGH University of Science and Technology, Faculty of Physics and Applied Computer Science, Annual Report 2008

    International Nuclear Information System (INIS)

    The most important research activities of the Faculty are condensed matter physics and physics of elementary particles. Advanced fundamental as well as applied studies are also carried out in the fields of nuclear physics and technology, electronics, environmental physics and medicinal physics. Report presents short descriptions of the results obtained in 2009. It contains also list of 198 papers published in the national and international scientific journals and of 6 book chapters published in 2009. Report contains full list of grants (national and international) realized in 2009

  3. [Experimental nuclear physics]. Annual report 1988

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1988-05-01

    This is the May 1988 annual report of the Nuclear Physics Laboratory of the University of Washington. It contains chapters on astrophysics, giant resonances, heavy ion induced reactions, fundamental symmetries, polarization in nuclear reactions, medium energy reactions, accelerator mass spectrometry (AMS), research by outside users, Van de Graaff and ion sources, the Laboratory`s booster linac project work, instrumentation, and computer systems. An appendix lists Laboratory personnel, Ph.D. degrees granted in the 1987-88 academic year, and publications. Refs., 27 figs., 4 tabs.

  4. Section for nuclear physics annual report

    International Nuclear Information System (INIS)

    The experimental activities have in 1986 as in the previous years mainly been centered around the cyclotron laboratory with the SCANDITRONIX MC-35 cyclotron. Most of the nuclear physics experiments have been related to the study of nuclear structure at high temperature. Experiments with the 3He-beam up to a particle energy of 45 MeV have continued, and valuable information regarding the cooling process in highly excited nuclei has been obtained. Theoretical studies of highly excited nuclei have continued, and there has been a fruitful cooperation between experimental and theoretical physicists

  5. Some Applications of Nuclear Physics in Medicine and Dentistry

    International Nuclear Information System (INIS)

    Some applications of nuclear physics, to solve problems in dentistry and medicine are presented. The following two topics are going to be discussed: A. Nuclear Analytical Methods For Trace Element Studies In Teeth Various nuclear analytical methods have been developed and applied to determine the elemental composition of teeth. Fluorine was determined by prompt gamma activation analysis through the 19F (p, a v)16O reaction. Carbon was measured by activation analysis with He-3 ions, and the technique of Proton-Induced X-ray Emission (PIXE) was applied to simultaneously determine Ca, P, and trace elements in well-documented teeth. Dental hard tissues: enamel, dentine, cement, and their junctions, as well as different parts of the same tissue, were examined separately.

  6. Resource Letter FNP-1: Frontiers of nuclear physics

    Science.gov (United States)

    Bertsch, G. F.

    2004-08-01

    This Resource Letter provides a bibliography of the current research activities in nuclear physics and also a guide for finding useful nuclear data. The major areas included are nuclear structure and reactions, symmetry tests, nuclear astrophysics, nuclear theory, high-density matter, and nuclear instrumentation.

  7. Theoretical studies in hadronic and nuclear physics

    International Nuclear Information System (INIS)

    Research in the Maryland Nuclear Theory Group focusses on problems in four basic areas of current relevance. The section on Hadrons in Nuclei reports research into the ways in which the properties of nucleons and the mesons which play a role in the nuclear force are modified in the nuclear medium. QCD sum rules supply a new insight into the decrease of the nucleon's mass in the nuclear medium. The quark condensate decreases in nuclear matter, and this is responsible for the decrease of the nucleon's mass. The section on the Structure of Hadrons reports progress in understanding the structure of the nucleon. These results cover widely different approaches -- lattice gauge calculations, QCD sum rules, quark-meson models with confinement and other hedgehog models. Progress in Relativistic Nuclear Physics is reported on electromagnetic interactions in a relativistic bound state formalism, with applications to elastic electron scattering by deuterium, and on application of a two-body quasipotential equation to calculate the spectrum of mesons formed as bound states of a quark and antiquark. A Lorentz-invariant description of the nuclear force suggests a decrease of the nucleon's mass in the nuclear medium similar to that found from QCD sum rules. Calculations of three-body bound states with simple forms of relativistic dynamics are also discussed. The section on Heavy Ion Dynamics and Related Processes describes progress on the (e+e-) problem and heavy-on dynamics. In particular, the sharp electrons observed in β+ irradiation of heavy atoms have recently been subsumed into the ''Composite Particle Scenario,'' generalizing the ''(e+e--Puzzle'' of the pairs from heavy ion collisions to the ''Sharp Lepton Problem.''

  8. Nuclear Physics Laboratory technical progress report

    International Nuclear Information System (INIS)

    This contract supports broadly based experimental work in intermediate energy nuclear physics. The program includes pion- nucleon studies at TRIUMF and LAMPF, inelastic pion scattering and charge exchange reactions at LAMPF, and nucleon charge exchange at LAMPF/NTOF. The first results of spin-transfer observables in the isovector (rvec p,rvec n) reaction are included in this report. Our data confirm the tentative result from (rvec p,rvec p) reactions that the nuclear isovector spin response shows neither longitudinal enhancement nor transverse quenching. Our program in quasifree scattering of high energy pions shows solid evidence of isoscalar enhancement of the nuclear nonspin response. We include several comparisons of the quasifree scattering of different probes. Results from our efforts in the design of accelerator RF cavities are also included in this report

  9. Evaluating physical protection systems of licensed nuclear facilities using systems engineered inspection guidance

    International Nuclear Information System (INIS)

    The Lawrence Livermore National Laboratory (LLNL) and the US Nuclear Regulatory Commission (NRC) Office of Nuclear Regulatory Research (RES) have applied a systems engineering approach to provide the NRC Office of Inspection and Enforcement (IE) with improved methods and guidance for evaluating the physical protection systems of licensed nuclear facilities

  10. The physical protection of nuclear material

    International Nuclear Information System (INIS)

    Technical Committee met 21-25 June 1993 to consider changes to INFCIRC/225/Rev.2. The revised document, INFCIRC/225/Rev.3, reflects the Technical Committee recommendations for changes to the text as well as other modifications determined necessary to advance the consistency of the Categorization Table in INFCIRC/225/Rev.2 with the categorization table contained in The Convention of the Physical Protection of Nuclear Material and to reflect additional improvements presented by the experts. The recommendations presented in this IAEA document reflect a broad consensus among Member States on the requirements which should be met by systems for the physical protection of nuclear materials and facilities. It is hoped that they will provide helpful guidance for Member States

  11. IPEN's Nuclear Physics and Chemistry Department - Progress report - 1995-1996

    International Nuclear Information System (INIS)

    The biannual progress report of 1995-1996 of IPEN's Nuclear Physics and Chemistry Department - Brazilian organization - introduces the next main topics: neutron activation and radiochemical analysis; nuclear structure and reactions; neutron diffraction; hyperfine interactions; applied physics and instrumentation; publications; academic activities; services; and personnel

  12. IPEN's Nuclear Physics and Chemistry Department - Progress report - 1995-1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-07-01

    The biannual progress report of 1995-1996 of IPEN's Nuclear Physics and Chemistry Department - Brazilian organization - introduces the next main topics: neutron activation and radiochemical analysis; nuclear structure and reactions; neutron diffraction; hyperfine interactions; applied physics and instrumentation; publications; academic activities; services; and personnel.

  13. Nuclear Physics Division annual report 1992

    International Nuclear Information System (INIS)

    The report covers the research and development activities of the Nuclear Physics Division for the period January to December 1992. These research and development activities are reported under the headings: 1) Experiments, 2) Theory, 3) Applications, 4) Instrumentation, and 5) The Pelletron Accelerator. At the end a list of publications by the staff scientists of the Division is given. Colloquia and seminars held during the year are also listed. (author). refs., tabs., figs

  14. Progress report of the Nuclear Physics Department

    International Nuclear Information System (INIS)

    This progress report presents the experiments and the technological studies carried out at the Nuclear Physics Department of Saclay from October 1, 1979 to September 30, 1980. These studies concern the structure of nuclei and hypernuclei and various reaction mechanisms. They have been performed with the 8.5 MV tandem Van de Graaff, with the 600 MeV electron linac, at the synchrotron SATURNE and with different accelerators belonging to other laboratories

  15. An advanced course in modern nuclear physics

    International Nuclear Information System (INIS)

    The field of nuclear physics is entering the 21st century while experiencing a strong revival. On the one hand it is changing qualitatively through new experimental developments that allow us to direct radioactive and other exotic probes to target nuclei, and spark off extremely energetic nuclear collisions. Also, the impressive sophistication of new detector systems leads us to expect a number of new discoveries in the near future. On the other hand, many new applications have appeared in fields as diverse as medicine, industry, art, archaeology and the environmental sciences. This book is a set of extended lectures on basic and new topics, that gives a tutorial introduction to the field of modern nuclear physics. It is ideally suited to bridging the gap between the standard textbook material and the research literature, and provides the necessary foundation for acting as those who intend to work in any of the many disciplines where nuclear science and technology is going to play an important role in the future. (orig.)

  16. FOREWORD: Nuclear Physics in Astrophysics V

    Science.gov (United States)

    Auerbach, Naftali; Hass, Michael; Paul, Michael

    2012-02-01

    The fifth edition of the bi-annual 'Nuclear Physics in Astrophysics (NPA)' conference series was held in Eilat, Israel on April 3-8, 2011. This Conference is also designated as the 24th Nuclear Physics Divisional Conference of the EPS. The main purpose of this conference, as that of the four previous ones in this series, is to deal with those aspects of nuclear physics that are directly related to astrophysics. The concept of such a meeting was conceived by the Nuclear Physics Board of the European Physical Society in 1998. At that time, the idea of such a conference was quite new and it was decided that this meeting would be sponsored by the EPS. The first meeting, in January 2001, was planned and organized in Eilat, Israel. Due to international circumstances the conference was moved to Debrecen, Hungary. Subsequent conferences were held in Debrecen again, in Dresden, Germany, and in Frascati, Italy (moved from Gran Sasso due to the tragic earthquake that hit the L'Aquila region). After 10 years the conference finally returned to Eilat, the originally envisioned site. Eilat is a resort town located on the shore of the Gulf of Eilat, which connects Israel to the Red Sea and further south to the Indian Ocean. It commands spectacular views of the desert and mountains, offering unique touristic attractions. The local scientific backdrop of the conference is the fact that the Israeli scientific scene exhibits a wide variety of research activities in many areas of nuclear physics and astrophysics. A new accelerator, SARAF at Soreq Nuclear Research Center is presently undergoing final acceptance tests. SARAF will serve as a platform for production of radioactive ion beams and nuclear-astrophysics research in Israel. The meeting in Eilat was organized by four Israeli scientific institutions, Hebrew University, Soreq Nuclear Research Center, Tel Aviv University and the Weizmann Institute of Science. The welcome reception and lectures were held at the King Solomon hotel and

  17. Tools for the Future of Nuclear Physics

    Science.gov (United States)

    Geesaman, Donald

    2014-03-01

    The challenges of Nuclear Physics, especially in understanding strongly interacting matter in all its forms in the history of the universe, place ever higher demands on the tools of the field, including the workhorse, accelerators. These demands are not just higher energy and higher luminosity. To recreate the matter that fleetingly was formed in the origin of the heavy elements, we need higher power heavy-ion accelerators and creative techniques to harvest the isotopes. We also need high-current low-energy accelerators deep underground to detect the very slow rate reactions in stellar burning. To explore the three dimensional distributions of high-momentum quarks in hadrons and to search for gluonic excitations we need high-current CW electron accelerators. Understanding the gluonic structure of nuclei and the three dimensional distributions of partons at lower x, we need high-luminosity electron-ion colliders that also have the capabilities to prepare, preserve and manipulate the polarization of both beams. A search for the critical point in the QCD phase diagram demands high luminosity beams over a broad range of species and energy. With advances in cavity design and construction, beam manipulation and cooling, and ion sources and targets, the Nuclear Physics community, in the U.S. and internationally has a coordinated vision to deliver this exciting science. This work is supported by DOE, Office of Nuclear Physics, under contract DE-AC02-06CH11357.

  18. White Paper on Nuclear Astrophysics and Low Energy Nuclear Physics - Part 1. Nuclear Astrophysics

    Energy Technology Data Exchange (ETDEWEB)

    Arcones, Almudena [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Escher, Jutta E. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Others, M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-04-04

    This white paper informs the nuclear astrophysics community and funding agencies about the scientific directions and priorities of the field and provides input from this community for the 2015 Nuclear Science Long Range Plan. It summarizes the outcome of the nuclear astrophysics town meeting that was held on August 21 - 23, 2014 in College Station at the campus of Texas A&M University in preparation of the NSAC Nuclear Science Long Range Plan. It also reflects the outcome of an earlier town meeting of the nuclear astrophysics community organized by the Joint Institute for Nuclear Astrophysics (JINA) on October 9 - 10, 2012 Detroit, Michigan, with the purpose of developing a vision for nuclear astrophysics in light of the recent NRC decadal surveys in nuclear physics (NP2010) and astronomy (ASTRO2010). The white paper is furthermore informed by the town meeting of the Association of Research at University Nuclear Accelerators (ARUNA) that took place at the University of Notre Dame on June 12 - 13, 2014. In summary we find that nuclear astrophysics is a modern and vibrant field addressing fundamental science questions at the intersection of nuclear physics and astrophysics. These questions relate to the origin of the elements, the nuclear engines that drive life and death of stars, and the properties of dense matter. A broad range of nuclear accelerator facilities, astronomical observatories, theory efforts, and computational capabilities are needed. With the developments outlined in this white paper, answers to long-standing key questions are well within reach in the coming decade.

  19. PREFACE: International Nuclear Physics Conference 2010 (INPC2010)

    Science.gov (United States)

    Dilling, Jens

    2011-09-01

    The International Nuclear Physics Conference 2010 (INPC 2010) was held from 4-9 July in Vancouver, Canada, hosted by TRIUMF, the Canadian National Laboratory for Particle and Nuclear Physics. The INPC is the main conference in the field of nuclear physics, endorsed and supported by IUPAP (International Union for Pure and Applied Physics) and held every three years. This year's conference was the 25th in the series and attracted over 750 delegates (150 graduate students) from 43 countries. The conference's hallmark is its breadth in nuclear physics; topics included structure, reactions, astrophysics, hadronic structure, hadrons in nuclei, hot and dense QCD, new accelerators and underground nuclear physics facilities, neutrinos and nuclei, and applications and interdisciplinary research. The conference started with a public lecture 'An Atom from Vancouver' by L Krauss (Arizona), who gave a broad perspective on how nuclear physics is key to a deeper understanding of how the Universe was formed and the birth, life, and death of stars. The conference opened its scientific plenary program with a talk by P Braun-Munzinger (GSI/EMMI Darmstadt) who highlighted the progress that has been made since the last conference in Tokyo 2007. The presentation showcased theoretical and experimental examples from around the world. All topics were well represented by plenary sessions and well attended afternoon parallel sessions where over 250 invited and contributed talks were presented, in addition to over 380 poster presentations. The poster sessions were among the liveliest, with high participation and animated discussions from graduate students and post-doctoral fellows. Many opportunities were found to connect to fellow nuclear physicists across the globe and, particularly for conferences like the INPC which span an entire field, many unexpected links exist, often leading to new discussions or collaborations. Among the scientific highlights were the presentations in the fields of

  20. Department of Nuclear Physical Chemistry - Overview

    International Nuclear Information System (INIS)

    taking part in the proficiency test on the determination of 239Pu, 241Pu and 241Am in mineral matrix, organised by the IAEA. Ten dust samples, delivered by the University of Bremen (Germany) were analysed for the presence of 238Pu, 239+240Pu, 241Pu, 241Am and 244Cm. In 1999, the equipment of the Environmental Radioactivity Laboratory was enriched with a low- background liquid scintillator spectrometer (Wallac 1414-003 Guardian), which opened a whole new branch of possible work connected with determination of pure beta-emitters. First isotopes of interest were 90Sr and 241Pu accumulated in animal bones. For 90Sr measurements, an extensive library of scintillation quenching corrections was prepared. The spectrometer was also applied for tests of the purity of 32P for the Laboratory of Physical Chemistry. A new project on transfer of plutonium from forest soil and litter to fungi and plants has been started. It is a pilot study for a planned in-Lab experiment to be performed during the incoming year at the University of Extremadura, Caceres, Spain. Other projects conducted during 1999 in the Environmental Radioactivity Laboratory are described in short abstracts below. In the Laboratory of Physical Chemistry, the project on construction of the internal target assembly for isotope production was continued, in cooperation with the Institute's Division of Mechanical Construction and with the Cyclotron Section. At the same time, much investment was made into necessary renovations in the radiochemical laboratory. Research in the Laboratory was concentrated on preparation and evaluation of 32P sources for intravascular brachytherapy. With the help of the Institute's Health Physics Laboratory, liquid Na2H32PO4 sources were calibrated by TL dosimetry, and in cooperation with the Department of Nuclear Spectroscopy, some solid state sources containing 32P were prepared. Liquid 32P sources calibrated in the Institute were first applied in pre-clinical intravascular brachytherapy

  1. Optimal Physical Protection against Nuclear Terrorism

    International Nuclear Information System (INIS)

    There is no attempt with nuclear weapons to attack any places for terror or military victory since the atomic bombs dropped in Hiroshima and Nagasaki. People have obviously experienced horrible destructive power of nuclear weapons and continuously remembered a terrible tragedy, lots of organizations and experts express their concerns about the nuclear terrorism and try to interchange opinions for prevention of deadly weapons. The purpose of this paper is to provide the information of nuclear terrorism and what the potential risk of Republic of Korea is and how to do the efficient physical protection. Terror is from the old French terreur, which is derived from Latin verb terror meaning 'great fear'. This is a policy to suppress political opponents through using violence and repression. Many scholars have been proposed, there is no consensus definition of the term 'terrorism.' In 1988, a proposed academic consensus definition: 'Terrorism is an anxiety-inspiring method of repeated violent action, employed by (semi-) clandestine individual, group or state actors, for idiosyncratic, criminal or political reasons, whereby - in contrast to assassination - the direct targets of violence are not the main targets. The immediate human victims of violence are generally chosen randomly (targets of opportunity) or selectively (representative or symbolic targets) from a target population, and serve as message generators. These attacks showed that particular terrorists groups sought to cause heavy casualties and extreme terrorists were spontaneously prepared to make sacrifices for completion of that ultimate goal. Creation of nuclear weapons was like opening Pandora's box. Barack Obama has called nuclear terrorism 'the greatest danger we face'. Nuclear terror is one of the lethal risks. Using nuclear weapons or materials from terrorist groups is a fatal catastrophe to a targeting state though there is no accident similar like that. South

  2. Optimal Physical Protection against Nuclear Terrorism

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Doyoung; Kim, ChangLak [KEPCO International Nuclear Graduate School, Ulsan (Korea, Republic of)

    2014-10-15

    There is no attempt with nuclear weapons to attack any places for terror or military victory since the atomic bombs dropped in Hiroshima and Nagasaki. People have obviously experienced horrible destructive power of nuclear weapons and continuously remembered a terrible tragedy, lots of organizations and experts express their concerns about the nuclear terrorism and try to interchange opinions for prevention of deadly weapons. The purpose of this paper is to provide the information of nuclear terrorism and what the potential risk of Republic of Korea is and how to do the efficient physical protection. Terror is from the old French terreur, which is derived from Latin verb terror meaning 'great fear'. This is a policy to suppress political opponents through using violence and repression. Many scholars have been proposed, there is no consensus definition of the term 'terrorism.' In 1988, a proposed academic consensus definition: 'Terrorism is an anxiety-inspiring method of repeated violent action, employed by (semi-) clandestine individual, group or state actors, for idiosyncratic, criminal or political reasons, whereby - in contrast to assassination - the direct targets of violence are not the main targets. The immediate human victims of violence are generally chosen randomly (targets of opportunity) or selectively (representative or symbolic targets) from a target population, and serve as message generators. These attacks showed that particular terrorists groups sought to cause heavy casualties and extreme terrorists were spontaneously prepared to make sacrifices for completion of that ultimate goal. Creation of nuclear weapons was like opening Pandora's box. Barack Obama has called nuclear terrorism 'the greatest danger we face'. Nuclear terror is one of the lethal risks. Using nuclear weapons or materials from terrorist groups is a fatal catastrophe to a targeting state though there is no accident similar like that. South

  3. The ELI–NP facility for nuclear physics

    International Nuclear Information System (INIS)

    Extreme Light Infrastructure–Nuclear Physics (ELI–NP) is aiming to use extreme electromagnetic fields for nuclear physics research. The facility, currently under construction at Magurele–Bucharest, will comprise a high power laser system and a very brilliant gamma beam system. The technology involved in the construction of both systems is at the limits of the present-day’s technological capabilities. The high power laser system will consist of two 10 PW lasers and it will produce intensities of up to 1023–1024 W/cm2. The gamma beam, produced via Compton backscattering of a laser beam on a relativistic electron beam, will be characterized by a narrow bandwidth (<0.5%) and tunable energy of up to almost 20 MeV. The research program of the facility covers a broad range of key topics in frontier fundamental physics and new nuclear physics. A particular attention is given to the development of innovative applications. In the present paper an overview of the project status and the overall performance characteristics of the main research equipment will be given. The main fundamental physics and applied research topics proposed to be studied at ELI–NP will also be briefly reviewed

  4. The ELI-NP facility for nuclear physics

    Science.gov (United States)

    Ur, C. A.; Balabanski, D.; Cata-Danil, G.; Gales, S.; Morjan, I.; Tesileanu, O.; Ursescu, D.; Ursu, I.; Zamfir, N. V.

    2015-07-01

    Extreme Light Infrastructure-Nuclear Physics (ELI-NP) is aiming to use extreme electromagnetic fields for nuclear physics research. The facility, currently under construction at Magurele-Bucharest, will comprise a high power laser system and a very brilliant gamma beam system. The technology involved in the construction of both systems is at the limits of the present-day's technological capabilities. The high power laser system will consist of two 10 PW lasers and it will produce intensities of up to 1023-1024 W/cm2. The gamma beam, produced via Compton backscattering of a laser beam on a relativistic electron beam, will be characterized by a narrow bandwidth (<0.5%) and tunable energy of up to almost 20 MeV. The research program of the facility covers a broad range of key topics in frontier fundamental physics and new nuclear physics. A particular attention is given to the development of innovative applications. In the present paper an overview of the project status and the overall performance characteristics of the main research equipment will be given. The main fundamental physics and applied research topics proposed to be studied at ELI-NP will also be briefly reviewed.

  5. The ELI–NP facility for nuclear physics

    Energy Technology Data Exchange (ETDEWEB)

    Ur, C.A., E-mail: calin.ur@eli-np.ro; Balabanski, D.; Cata-Danil, G.; Gales, S.; Morjan, I.; Tesileanu, O.; Ursescu, D.; Ursu, I.; Zamfir, N.V.

    2015-07-15

    Extreme Light Infrastructure–Nuclear Physics (ELI–NP) is aiming to use extreme electromagnetic fields for nuclear physics research. The facility, currently under construction at Magurele–Bucharest, will comprise a high power laser system and a very brilliant gamma beam system. The technology involved in the construction of both systems is at the limits of the present-day’s technological capabilities. The high power laser system will consist of two 10 PW lasers and it will produce intensities of up to 10{sup 23}–10{sup 24} W/cm{sup 2}. The gamma beam, produced via Compton backscattering of a laser beam on a relativistic electron beam, will be characterized by a narrow bandwidth (<0.5%) and tunable energy of up to almost 20 MeV. The research program of the facility covers a broad range of key topics in frontier fundamental physics and new nuclear physics. A particular attention is given to the development of innovative applications. In the present paper an overview of the project status and the overall performance characteristics of the main research equipment will be given. The main fundamental physics and applied research topics proposed to be studied at ELI–NP will also be briefly reviewed.

  6. Current status of nuclear physics research

    Energy Technology Data Exchange (ETDEWEB)

    Bertulani, Carlos A. [Department of Physics and Astronomy, Texas A and M University-Commerce (United States); Hussein, Mahir S., E-mail: hussein@if.usp.br [Instituto Tecnologico de Aeronautica (ITA), Sao Jose dos Campos, SP (Brazil). Dept. de Fisica

    2015-12-15

    In this review, we discuss the current status of research in nuclear physics which is being carried out in different centers in the world. For this purpose, we supply a short account of the development in the area which evolved over the last nine decades, since the discovery of the neutron. The evolution of the physics of the atomic nucleus went through many stages as more data became available. We briefly discuss models introduced to discern the physics behind the experimental discoveries, such as the shell model, the collective model, the statistical model, the interacting boson model, etc., some of these models may be seemingly in conflict with each other, but this was shown to be only apparent. The richness of the ideas and abundance of theoretical models attests to the important fact that the nucleus is a really singular system in the sense that it evolves from two-body bound states such as the deuteron, to few-body bound states, such as {sup 4}He, {sup 7}Li, {sup 9}Be, etc. and up the ladder to heavier bound nuclei containing up to more than 200 nucleons. Clearly, statistical mechanics, usually employed in systems with very large number of particles, would seemingly not work for such finite systems as the nuclei, neither do other theories which are applicable to condensed matter. The richness of nuclear physics stems from these restrictions. New theories and models are presently being developed. Theories of the structure and reactions of neutron-rich and proton-rich nuclei, called exotic nuclei, halo nuclei, or Borromean nuclei, deal with the wealth of experimental data that became available in the last 35 years. Furthermore, nuclear astrophysics and stellar and Big Bang nucleosynthesis have become a more mature subject. Due to limited space, this review only covers a few selected topics, mainly those with which the authors have worked on. Our aimed potential readers of this review are nuclear physicists and physicists in other areas, as well as graduate

  7. Current status of nuclear physics research

    International Nuclear Information System (INIS)

    In this review, we discuss the current status of research in nuclear physics which is being carried out in different centers in the world. For this purpose, we supply a short account of the development in the area which evolved over the last nine decades, since the discovery of the neutron. The evolution of the physics of the atomic nucleus went through many stages as more data became available. We briefly discuss models introduced to discern the physics behind the experimental discoveries, such as the shell model, the collective model, the statistical model, the interacting boson model, etc., some of these models may be seemingly in conflict with each other, but this was shown to be only apparent. The richness of the ideas and abundance of theoretical models attests to the important fact that the nucleus is a really singular system in the sense that it evolves from two-body bound states such as the deuteron, to few-body bound states, such as 4He, 7Li, 9Be, etc. and up the ladder to heavier bound nuclei containing up to more than 200 nucleons. Clearly, statistical mechanics, usually employed in systems with very large number of particles, would seemingly not work for such finite systems as the nuclei, neither do other theories which are applicable to condensed matter. The richness of nuclear physics stems from these restrictions. New theories and models are presently being developed. Theories of the structure and reactions of neutron-rich and proton-rich nuclei, called exotic nuclei, halo nuclei, or Borromean nuclei, deal with the wealth of experimental data that became available in the last 35 years. Furthermore, nuclear astrophysics and stellar and Big Bang nucleosynthesis have become a more mature subject. Due to limited space, this review only covers a few selected topics, mainly those with which the authors have worked on. Our aimed potential readers of this review are nuclear physicists and physicists in other areas, as well as graduate students interested in

  8. Current Status of Nuclear Physics Research

    Science.gov (United States)

    Bertulani, Carlos A.; Hussein, Mahir S.

    2015-12-01

    In this review, we discuss the current status of research in nuclear physics which is being carried out in different centers in the world. For this purpose, we supply a short account of the development in the area which evolved over the last nine decades, since the discovery of the neutron. The evolution of the physics of the atomic nucleus went through many stages as more data became available. We briefly discuss models introduced to discern the physics behind the experimental discoveries, such as the shell model, the collective model, the statistical model, the interacting boson model, etc., some of these models may be seemingly in conflict with each other, but this was shown to be only apparent. The richness of the ideas and abundance of theoretical models attests to the important fact that the nucleus is a really singular system in the sense that it evolves from two-body bound states such as the deuteron, to few-body bound states, such as 4He, 7Li, 9Be, etc. and up the ladder to heavier bound nuclei containing up to more than 200 nucleons. Clearly, statistical mechanics, usually employed in systems with very large number of particles, would seemingly not work for such finite systems as the nuclei, neither do other theories which are applicable to condensed matter. The richness of nuclear physics stems from these restrictions. New theories and models are presently being developed. Theories of the structure and reactions of neutron-rich and proton-rich nuclei, called exotic nuclei, halo nuclei, or Borromean nuclei, deal with the wealth of experimental data that became available in the last 35 years. Furthermore, nuclear astrophysics and stellar and Big Bang nucleosynthesis have become a more mature subject. Due to limited space, this review only covers a few selected topics, mainly those with which the authors have worked on. Our aimed potential readers of this review are nuclear physicists and physicists in other areas, as well as graduate students interested in

  9. Nuclear physics a very short introduction

    CERN Document Server

    Close, Frank

    2015-01-01

    Nuclear physics began long before the identification of fundamental particles, with J. J. Thomson's discovery of the electron at the end of the 19th century, which implied the existence of a positive charge in the atom to make it neutral. In this Very Short Introduction Frank Close gives an account of how this area of physics has progressed, including the recognition of how heavy nuclei are built up in the cores of stars and in supernovae, the identification of quarks and gluons, and the development of quantum chromodynamics (QCD). Exploring key concepts such as the stability of different configurations of protons and neutrons in nuclei, Frank Close shows how nuclear physics brings the physics of the stars to Earth and provides us with important applications, particularly in medicine. ABOUT THE SERIES: The Very Short Introductions series from Oxford University Press contains hundreds of titles in almost every subject area. These pocket-sized books are the perfect way to get ahead in a new subject quickly. Our...

  10. Nuclear Physics in a biological context

    Science.gov (United States)

    Discher, Dennis

    2012-02-01

    A solid tissue can be soft like fat or brain, stiff like striated muscle and heart, or rigid like bone -- and of course every cell has a nucleus that contributes in some way small or large to tissue mechanics. Indeed, nuclei generally exhibit rheology and plasticity that reflects both the chromatin and the nuclear envelope proteins called lamins, all of which change in differentiation. Profiling of tissue nuclei shows that the nuclear intermediate filament protein Lamin-A/C varies over 30-fold between adult tissues and scales strongly with micro-elasticity of tissue, while other nuclear envelope components such as Lamin-B exhibit small variations. Lamin-A/C has been implicated in aging syndromes that affect muscle and fat but not brain, and we find nuclei in brain-derived cells are indeed dominated by Lamin-B and are much softer than nuclei derived from muscle cells with predominantly Lamin-A/C. In vitro, matrix elasticity can affect expression of nuclear envelope components in adult stem cells, and major changes in Lamin-A/C are indeed shown to direct lineage with lower levels favoring soft tissue and higher levels promoting rigid tissue lineage. Further molecular studies provide evidence that the nucleus transduces physical stress. References: (1) J.D. Pajerowski, K.N. Dahl, F.L. Zhong, P.J. Sammak, and D.E. Discher. Physical plasticity of the nucleus in stem cell differentiation. PNAS 104: 15619-15624 (2007). (2) A. Buxboim, I. Ivanova, and D.E. Discher. Matrix Elasticity, Cytoskeletal Forces, and Physics of the Nucleus: how deeply do cells `feel' outside and in? Journal of Cell Science 123: 297-308 (2010).

  11. Nuclear physics and fundamental physics explored with neutrons

    International Nuclear Information System (INIS)

    This Japan Hadron Project workshop was held on May 19 and 20, 1995, at Institute for Nuclear Study, University of Tokyo. The Neutron Arena planned in JHP is the facility that uses the spallation neutrons generated by high energy protons, and its utilization is planned in wide research fields. On the other hand, in the neutron scattering facility in the booster utilization facility of National Laboratory for High Energy Physics, the researches of verifying parity nonconservation and time reversal break have been carried out so far. It is necessary to accurately measure the reaction cross section of neutrons in low energy region. This workshop was planned for examining the Neutron Arena by the researchers related to elementary particles and atomic nuclei. In the workshop, lectures were given on the break of the reversal symmetry of time and space in neutron-atomic nucleus reaction, neutrino physics, neutron capture and celestial nuclear physics, neutron-induced nucleosynthesis, development and utilization of very cold neutron interferometer using multi-layer film mirror, research on gravity using neutron interferometer, electric polarizability of neutrons, β decay of neutrons, possibility of research on basic symmetry problem at E-arena, β decay in storage ring, neutron electric dipole moment using ultracold neutrons, magnetic confinement and control of ultracold neutrons, and outline of JHP neutron source. (K.I.)

  12. Organization of professional and applied physical training and applied specifically oriented undergraduate students of forestry professions

    Directory of Open Access Journals (Sweden)

    Martirosova T.A.

    2012-11-01

    Full Text Available The questions of the use of facilities are examined professionally-applied physical preparation of students. The necessity of more rapid and high-quality mastering of certain labour abilities and skills, increase of the labour productivity, prophylaxis of professional diseases is marked. It is marked that forms and facilities of physical education of students of forestry specialities are determined features professionally-labour to activity of this industry. Employments of the special applied orientation are plugged in itself: theoretical employments, practical employments, sports and fitness measures, individual independent professionally-applied physical exercises, special applied types of sport. The features of forming professionally of important qualities of future specialist are certain in the process of physical education in the institute of higher.

  13. Research in theoretical nuclear physics, Nuclear Theory Group. Progress report

    International Nuclear Information System (INIS)

    Primary emphasis is placed on understanding the nature of nucleon-nucleon and meson-nucleon interactions and on determining the consequences of such microscopic interactions in nuclear systems. We have constructed models of baryons which smoothly interpolate between currently popular bag and Skyrme models of hadrons and provide a vehicle for introducing the notions of quantum chromodynamics to low energy nuclear physics without violating the constraints of chiral invariance. Such models have been used to study the nucleon-nucleon interaction, the spectrum of baryons, and the important question of the radius of the quark bag. We have used many-body techniques to consider a variety of problems in finite nuclei and infinite many-body systems. New light has been shed on the nuclear coexistence of spherical and deformed states in the A = 18 region as well as the role of genuine three-body forces in this region. Phenomenological studies of infinite systems have led to a number of predictions particularly regarding the spin-polarized quantum liquids of current experimental interest. Microscopic many-body theories, based on the parquet diagrams, have been improved to a fully quantitative level for the ground state properties of infinite many-body systems. Finite temperature theories of nuclear matter, important in the study of heavy ion reactions, have been constructed. An expanded program in heavy ion theory has led to major advances in the multi-dimensional barrier penetration problem. Activities in nuclear astrophysics have provided a far more reliable description of the role of electron capture processes in stellar collapse. As a consequence, we have been able to perform legitimate calculations of the unshocked mass in Type II supernovae

  14. The physical protection of nuclear material and nuclear facilities including activities to combat nuclear terrorism

    International Nuclear Information System (INIS)

    The paper describes present of physical protection of nuclear facilities and materials in the Czech Republic; the basic concept and regulation in physical protection and the effort made to strengthen the national regulatory programmes; the role of the police as a response force and the role of the new private security companies; the upgrading of the physical protection systems at the different types of the nuclear installations to fulfill the more strict requirements of the new Atomic Law No. 18/1997 Coll. and Regulation No. 144/1997 Coll., on physical protection of nuclear materials and nuclear facilities; activities carried out in connection with governmental decision No. 479 dated 19 May 2004 on National action plan to combat terrorism. (author)

  15. Experiments in atomic and applied physics using synchrotron radiation

    International Nuclear Information System (INIS)

    A diverse program in atomic and applied physics using x rays produced at the X-26 beam line at the Brookhaven National Synchrotron Light Source is in progress. The atomic physics program studies the properties of multiply-ionized atoms using the x rays for photo-excitation and ionization of neutral atoms and ion beams. The applied physics program builds on the techniques and results of the atomic physics work to develop new analytical techniques for elemental and chemical characterization of materials. The results are then used for a general experimental program in biomedical sciences, geo- and cosmochemistry, and materials sciences. The present status of the program is illustrated by describing selected experiments. Prospects for development of new experimental capabilities are discussed in terms of a heavy ion storage ring for atomic physics experiments and the feasibility of photoelectron microscopy for high spatial resolution analytical work. 21 refs., 11 figs., 2 tabs

  16. Food physics as an important part of food science and applied physics

    OpenAIRE

    Szabó A.S.

    1999-01-01

    The paper deals with the following topics: main fields of food science and applied physics, food physics as a new interdisciplinary field of science, important parts of food physics,some special questions (e.g. nondestructive testing, radiation methods) of food physics.

  17. EPJ Web of Conferences, Proceedings of the International Nuclear Physics Conference - INPC 2013

    International Nuclear Information System (INIS)

    The International Nuclear Physics Conference (INPC) is the main conference in the field of nuclear physics, endorsed and supported by IUPAP (International Union of Pure and Applied Physics). It is held every 3 years and the present edition INPC 2013 was the 25. of the series. INPC-2013 addressed the most compelling questions of modern nuclear physics, including nuclear structure and reactions, hot and dense nuclear matter, astrophysics, hadron structure and hadrons in nuclei, fundamental symmetries and interactions, neutrinos and nuclei, nuclear physics based applications as well as new facilities and instrumentation. The Conference was attended by more than 700 participants from 43 countries. This issue of EPJ Web of Conferences contains most part of the plenary, invited, oral and poster contributions given at INPC-2013

  18. Proceedings of the X. international school on nuclear physics, neutron physics and nuclear energy

    International Nuclear Information System (INIS)

    The history of the International School on Nuclear Physics, Neutron physics and nuclear Energy ('Varna School') goes back to the year 1973. Since that time it has been carried out in the fall of every other year in the Conference Center of the Bulgarian Academy of Sciences at the Black Sea coast near Varna. This volume contains the full texts of the lectures delivered by distinguished scientists from different countries on the Tenth Varna School, 1991. 14 of them are included in INIS separately

  19. Nuclear Physics Division: annual report 1991

    International Nuclear Information System (INIS)

    A brief account of the research and development activities carried out by the Nuclear Physics Division, Bhabha Atomic Research Centre, Bombay during the period January 1991 to December 1991 is presented. These R and D activities are reported under the headings : 1) Accelerator Facilities, 2) Research Activities, and 3) Instrumentation. At the end, a list of publications by the staff scientists of the Division is given. The list includes papers published in journals, papers presented at conferences, symposia etc., and technical reports. (author). figs., tabs

  20. Progress report of the Nuclear Physics Department

    International Nuclear Information System (INIS)

    The experiments and the technological studies carried out at the Nuclear Physics Department of Saclay from October 1, 1981 to September 30, 1982 are presented. These studies concern the structure of nuclei and hypernuclei and various reaction mechanisms. They have been performed with the 8.5 MV tandem Van de Graaff, with the 600 MeV electron linac, at the synchrotron SATURNE and with different accelerators belonging to other laboratories, in particular the SARA facility at Grenoble, the boosted tandem at Heidelberg and the secondary beams at CERN

  1. Nuclear, particle and many body physics

    CERN Document Server

    Morse, Philip M; Feshbach, Herman

    2013-01-01

    Nuclear, Particle and Many Body Physics, Volume II, is the second of two volumes dedicated to the memory of physicist Amos de-Shalit. The contributions in this volume are a testament to the respect he earned as a physicist and of the warm and rich affection he commanded as a personal friend. The book contains 41 chapters and begins with a study on the renormalization of rational Lagrangians. Separate chapters cover the scattering of high energy protons by light nuclei; approximation of the dynamics of proton-neutron systems; the scattering amplitude for the Gaussian potential; Coulomb excitati

  2. Nuclear physics and heavy element research at LLNL

    Energy Technology Data Exchange (ETDEWEB)

    Stoyer, M A; Ahle, L E; Becker, J A; Bernstein, L A; Bleuel, D L; Burke, J T; Dashdorj, D; Henderson, R A; Hurst, A M; Kenneally, J M; Lesher, S R; Moody, K J; Nelson, S L; Norman, E B; Pedretti, M; Scielzo, N D; Shaughnessy, D A; Sheets, S A; Stoeffl, W; Stoyer, N J; Wiedeking, M; Wilk, P A; Wu, C Y

    2009-05-11

    This paper highlights some of the current basic nuclear physics research at Lawrence Livermore National Laboratory (LLNL). The work at LLNL concentrates on investigating nuclei at the extremes. The Experimental Nuclear Physics Group performs research to improve our understanding of nuclei, nuclear reactions, nuclear decay processes and nuclear astrophysics; an expertise utilized for important laboratory national security programs and for world-class peer-reviewed basic research.

  3. What's next in nuclear physics with RIB's

    Science.gov (United States)

    Jonson, Björn

    2016-02-01

    The physics with energetic radioactive beams has had a tremendous development over the 30 years that have passed since Isao Tanihata's famous experiments at Berkeley. The experiments and the subsequent understanding that halo structure occur for some very exotic nuclei have attracted so much interest and given so many novel ideas that one may speak about a paradigm shift. I shall here give some, personal, ideas about "What's next". This is an interesting task and I shall not say that it is difficult but rather challenging. I shall, however, start by giving a few milestones, preceding the 1985 break-through, that were of key importance for creating our sub-field of modern nuclear physics.

  4. Semiconductor detectors in nuclear and particle physics

    International Nuclear Information System (INIS)

    Semiconductor detectors for elementary particle physics and nuclear physics in the energy range above 1 GeV are briefly reviewed. In these two fields semiconductor detectors are used mainly for the precise position sensing. In a typical experiment, the position of a fast charged particle crossing a relatively thin semiconductor detector is measured. The position resolution achievable by semiconductor detectors is compared with the resolution achievable by gas filled position sensing detectors. Semiconductor detectors are divided into two groups: Classical semiconductor diode detectors and semiconductor memory detectors. Principles of the signal formation and the signal read-out for both groups of detectors are described. New developments of silicon detectors of both groups are reported

  5. Professional applied physical training of future specialists of agricultural production

    Directory of Open Access Journals (Sweden)

    Karabanov Y.A.

    2015-01-01

    Full Text Available Purpose : develop and experimentally prove the contents, methods and forms of physical training of future specialists of agricultural production. This takes into account advanced course of professional applied physical preparation means kettlebell sport. Material : The study involved 141 students. Duration of study is 5 years. Results : It was found that a significant increase in indicators of flexibility, strength, coordination abilities of students promoted the use of exercises using weights of different weights. Confirmed the legitimacy of the use of such means of physical education for the development of muscle strength of the upper body, back, legs, abdominals. These muscles are the most loaded in the performance of professional activities of mechanical engineers. Conclusions : The program meets the basic criteria for the formation of curriculum for physical education. The program promotes the development of professional applications of physical qualities, motor skills and improve physical performance of students.

  6. PREFACE: First International Meeting on Applied Physics (APHYS-2003)

    Science.gov (United States)

    Méndez-Vilas, A.; Chacón, R.

    2005-01-01

    This special issue of Physica Scripta contains papers presented at the 1st International Meeting on Applied Physics (APHYS-2003), held in Badajoz (Spain), from 13th to 18th October 2003, and more specifically, selected papers presented during the conference sessions mainly on Applied Optics, Laser Physics, Ultrafast Phenomena, Optical Materials, Semiconductor Materials and Devices, Optoelectronics, Quantum Electronics and Applied Solid State Physics-Chemistry. APHYS-2003 was born as an attempt to create a new international forum on Applied Physics in Europe. Since Applied Physics is not really a branch of Physics, but the application of all the branches of Physics to the broad realms of practical problems in Science, Engineering and Industry, this conference was a truly multi and inter-disciplinary event. The organizers called for papers relating Physics with other sciences such as Biology, Chemistry, Information Science, Medicine, etc, or relating different Physics areas, and aimed at solving practical problems. In other words, the Conference was specifically interested in reports applying the techniques, the training, and the culture of Physics to research areas usually associated with other scientific and engineering disciplines. It was extremely rewarding that over 800 researchers, from over 65 countries, attended the conference, where more than 1000 research papers were presented. We feel really proud of this excellent response obtained (in number and quality), for this first edition of the conference. We are very grateful to all the members of the Organizing Committee, for the hard work done for the preparation of the Conference (which began one year before the conference start), and to the members of the International Advisory Committee, for the valuable contribution to the evaluation of submitted works. Also thank to the referees for the excellent work done in the revision of submitted papers. Finally, we would like to thank the Department of Physics of the

  7. Human factor engineering applied to nuclear power plant design

    Energy Technology Data Exchange (ETDEWEB)

    Manrique, A. [TECNATOM SA, BWR General Electric Business Manager, Madrid (Spain); Valdivia, J.C. [TECNATOM SA, Operation Engineering Project Manager, Madrid (Spain); Jimenez, A. [TECNATOM SA, Operation Engineering Div. Manager, Madrid (Spain)

    2001-07-01

    For the design and construction of new nuclear power plants as well as for maintenance and operation of the existing ones new man-machine interface designs and modifications are been produced. For these new designs Human Factor Engineering must be applied the same as for any other traditional engineering discipline. Advantages of implementing adequate Human Factor Engineering techniques in the design of nuclear reactors have become not only a fact recognized by the majority of engineers and operators but also an explicit requirement regulated and mandatory for the new designs of the so called advanced reactors. Additionally, the big saving achieved by a nuclear power plant having an operating methodology which significantly decreases the risk of operating errors makes it necessary and almost vital its implementation. The first step for this is preparing a plan to incorporate all the Human Factor Engineering principles and developing an integral design of the Instrumentation and Control and Man-machine interface systems. (author)

  8. Atomic and nuclear physics an introduction

    CERN Document Server

    Littlefield, T A

    1979-01-01

    After the death of Dr. Littlefield it was decided that I should undertake the revision ofthe whole of Atomic and Nuclear Physics: an Introduction for the third edition, and it was soon apparent that major changes were necessary. I am confident that these changes would have had Dr. Littlefield's approval. The prime consideration for the present edition has been to modernize at a minimum cost. As much as possible of the second edition has therefore been retained, but where changes have been made they have been fairly drastic. Thus the chapters on fine structure, wave mechanics, the vector model of the atom, Pauli's principle and the Zeeman effect have been completely restructured. The chapters on nuclear models, cosmic rays, fusion systems and fundamental particles have been brought up to date while a new chapter on charm and the latest ideas on quarks has been included. It is hoped that the presentation of the last named will give readers a feeling that physics research can be full of adventure and surprises.

  9. Applications of the maximum entropy principle in nuclear physics

    International Nuclear Information System (INIS)

    Soon after the advent of information theory the principle of maximum entropy was recognized as furnishing the missing rationale for the familiar rules of classical thermodynamics. More recently it has also been applied successfully in nuclear physics. As an elementary example we derive a physically meaningful macroscopic description of the spectrum of neutrons emitted in nuclear fission, and compare the well known result with accurate data on 252Cf. A second example, derivation of an expression for resonance-averaged cross sections for nuclear reactions like scattering or fission, is less trivial. Entropy maximization, constrained by given transmission coefficients, yields probability distributions for the R- and S-matrix elements, from which average cross sections can be calculated. If constrained only by the range of the spectrum of compound-nuclear levels it produces the Gaussian Orthogonal Ensemble (GOE) of Hamiltonian matrices that again yields expressions for average cross sections. Both avenues give practically the same numbers in spite of the quite different cross section formulae. These results were employed in a new model-aided evaluation of the 238U neutron cross sections in the unresolved resonance region. (orig.)

  10. White Paper on Nuclear Astrophysics and Low Energy Nuclear Physics - Part 1. Nuclear Astrophysics

    International Nuclear Information System (INIS)

    This white paper informs the nuclear astrophysics community and funding agencies about the scientific directions and priorities of the field and provides input from this community for the 2015 Nuclear Science Long Range Plan. It summarizes the outcome of the nuclear astrophysics town meeting that was held on August 21-23, 2014 in College Station at the campus of Texas A&M University in preparation of the NSAC Nuclear Science Long Range Plan. It also reflects the outcome of an earlier town meeting of the nuclear astrophysics community organized by the Joint Institute for Nuclear Astrophysics (JINA) on October 9-10, 2012 Detroit, Michigan, with the purpose of developing a vision for nuclear astrophysics in light of the recent NRC decadal surveys in nuclear physics (NP2010) and astronomy (ASTRO2010). The white paper is furthermore informed by the town meeting of the Association of Research at University Nuclear Accelerators (ARUNA) that took place at the University of Notre Dame on June 12-13, 2014. In summary we find that nuclear astrophysics is a modern and vibrant field addressing fundamental science questions at the intersection of nuclear physics and astrophysics. These questions relate to the origin of the elements, the nuclear engines that drive life and death of stars, and the properties of dense matter. A broad range of nuclear accelerator facilities, astronomical observatories, theory efforts, and computational capabilities are needed. With the developments outlined in this white paper, answers to long-standing key questions are well within reach in the coming decade.

  11. Applied problems of physical education students of economic specialties

    Directory of Open Access Journals (Sweden)

    Dubinskaya O.Y.

    2014-03-01

    Full Text Available Purpose : to analyze the problems of physical education students of economics in the context of professionally applied physical training. Material : analysis of Ukrainian and foreign publications on species means of improving professional-applied physical training of students in higher education. Results : It was found that the state system of physical education students is ineffective. It does not provide psychophysical and professional readiness of graduates for productive activities and later life. The system also needs constant improvement. A new approach to solving the problem of training to learn the adoption of practical importance of physical education. Also the formation of motivation by demonstrating a real need and usefulness of the proposed exercise. Such exercises should be differentiated, taking into account the health status and subsequent career expectations. Conclusion: it is proved that for an efficient system of training is necessary to use popular among students sports. It is also necessary to take into account the interests of students when choosing tools professionally applied physical training.

  12. Genetic algorithms applied to nuclear reactor design optimization

    International Nuclear Information System (INIS)

    A genetic algorithm is a powerful search technique that simulates natural evolution in order to fit a population of computational structures to the solution of an optimization problem. This technique presents several advantages over classical ones such as linear programming based techniques, often used in nuclear engineering optimization problems. However, genetic algorithms demand some extra computational cost. Nowadays, due to the fast computers available, the use of genetic algorithms has increased and its practical application has become a reality. In nuclear engineering there are many difficult optimization problems related to nuclear reactor design. Genetic algorithm is a suitable technique to face such kind of problems. This chapter presents applications of genetic algorithms for nuclear reactor core design optimization. A genetic algorithm has been designed to optimize the nuclear reactor cell parameters, such as array pitch, isotopic enrichment, dimensions and cells materials. Some advantages of this genetic algorithm implementation over a classical method based on linear programming are revealed through the application of both techniques to a simple optimization problem. In order to emphasize the suitability of genetic algorithms for design optimization, the technique was successfully applied to a more complex problem, where the classical method is not suitable. Results and comments about the applications are also presented. (orig.)

  13. Proceedings of the symposium on frontier nuclear physics (FRONP99)

    Energy Technology Data Exchange (ETDEWEB)

    Chiba, Satoshi [ed.

    2000-01-01

    The symposium on Frontier Nuclear Physics (FRONP99), organized by the Research Group for Hadron Science, Advanced Science Research Center, under close cooperation with the Research Center for Nuclear Physics, Osaka University and High Energy Accelerator Research Organization, was held at Tokai Research Establishment of JAERI on August 2 to 4, 1999. The symposium was devoted for discussions and presentations of research results in wide variety of fields such as hyper nuclear physics, lepton nuclear physics, quark nuclear physics, unstable nuclear physics, superheavy elements and heavy-ion physics. Three talks on the joint project between JAERI (Neutron Science Research Center) and KEK (JHF) were presented in a public session. Thirty three talks on these topics presented at the symposium aroused lively discussions among approximately 70 participants. This report contains 26 papers submitted from the lecturers. (author)

  14. A Reconfigurable Instrument System for Nuclear and Particle Physics Experiments

    International Nuclear Information System (INIS)

    We developed a reconfigurable nuclear instrument system (RNIS) that could satisfy the requirements of diverse nuclear and particle physics experiments, and the inertial confinement fusion diagnostic. Benefiting from the reconfigurable hardware structure and digital pulse processing technology, RNIS shakes off the restrictions of cumbersome crates and miscellaneous modules. It retains all the advantages of conventional nuclear instruments and is more flexible and portable. RNIS is primarily composed of a field programmable hardware board and relevant PC software. Separate analog channels are designed to provide different functions, such as amplifiers, ADC, fast discriminators and Schmitt discriminators for diverse experimental purposes. The high-performance field programmable gate array could complete high-precision time interval measurement, histogram accumulation, counting, and coincidence anticoincidence measurement. To illustrate the prospects of RNIS, a series of applications to the experiments are described in this paper. The first, for which RNIS was originally developed, involves nuclear energy spectrum measurement with a scintillation detector and photomultiplier. The second experiment applies RNIS to a G-M tube counting experiment, and in the third, it is applied to a quantum communication experiment through reconfiguration. (fusion engineering)

  15. A Reconfigurable Instrument System for Nuclear and Particle Physics Experiments

    Science.gov (United States)

    Sang, Ziru; Li, Feng; Jiang, Xiao; Jin, Ge

    2014-04-01

    We developed a reconfigurable nuclear instrument system (RNIS) that could satisfy the requirements of diverse nuclear and particle physics experiments, and the inertial confinement fusion diagnostic. Benefiting from the reconfigurable hardware structure and digital pulse processing technology, RNIS shakes off the restrictions of cumbersome crates and miscellaneous modules. It retains all the advantages of conventional nuclear instruments and is more flexible and portable. RNIS is primarily composed of a field programmable hardware board and relevant PC software. Separate analog channels are designed to provide different functions, such as amplifiers, ADC, fast discriminators and Schmitt discriminators for diverse experimental purposes. The high-performance field programmable gate array could complete high-precision time interval measurement, histogram accumulation, counting, and coincidence anticoincidence measurement. To illustrate the prospects of RNIS, a series of applications to the experiments are described in this paper. The first, for which RNIS was originally developed, involves nuclear energy spectrum measurement with a scintillation detector and photomultiplier. The second experiment applies RNIS to a G-M tube counting experiment, and in the third, it is applied to a quantum communication experiment through reconfiguration.

  16. Current Status of Nuclear Physics Research

    CERN Document Server

    Bertulani, C A

    2015-01-01

    In this review we discuss the current status of research in nuclear physics which is being carried out in different centers in the World. For this purpose we supply a short account of the development in the area which evolved over the last 9 decades, since the discovery of the neutron. The evolution of the physics of the atomic nucleus went through many stages as more data become available. We briefly discuss models introduced to discern the physics behind the experimental discoveries, such as the shell model, the collective model, the statistical model, the interacting boson model, etc., some of these models may be seemingly in conflict with each other, but this was shown to be only apparent. The richness of the ideas and abundance of theoretical models attests to the important fact that the nucleus is a really singular system in the sense that it evolves from two-body bound states such as the deuteron, to few-body bound states, such as $^4$He, $^7$Li, $^9$Be etc. and up the ladder to heavier bound nuclei co...

  17. Smoothing problems in nuclear and particle physics

    International Nuclear Information System (INIS)

    Complete text of publication follows. Mathematics is the universal language of all natural sciences, in particular, of theoretical physics. Thus, the same mathematical problem, e.g. the smoothing can appear in various fields, namely in Nuclear and Particle physics. A new type of smoothing of the nuclear level density was introduced in Ref. [1]. The weight function of the new smoothing function was also used in a new phenomenological nuclear potential the so called Salamon-Vertse (SV) potential, which becomes zero smoothly at finite distance. The use of the same weight function of the smoothing of the level density seems to be a good idea in particle physics too. At the heart of every quantum field theory there is the need for renormalization. This procedure is required to obtain measurable physical quantities. Renormalization is usually performed perturbatively, however, in some cases a non-perturbative treatment is a necessity which can be realized by e.g. the functional renormalization group (RG) method by using approximations. The approximated RG flow depends on the choice of the so called regulator function, i.e. on the renormalization scheme and physical results could become scheme-dependent. Therefore, a general issue is the comparison of results obtained by various RG schemes (i.e. various types of regulator functions). In order to optimize the scheme dependence an optimization procedure has already been worked out and in the leading order of the derivative expansion, an explicit form for the optimized regulator was provided, ropt(y) = a (1/yb - 1) θ(1 - y) (4) where θ(y) is the Heaviside step function. It was also shown that this simple form of the optimized regulator does not support a derivative expansion beyond second order because it is a function of class C0 with compact support thus it is a continuous function and it has a finite range but it is not differentiable. It was argued the general criterion for optimization has to meet the necessary

  18. Applications of of statistical nuclear physics to nuclear spectroscopy

    International Nuclear Information System (INIS)

    A number of new results pertaining to properties of complex nuclear spectra are given and illustrated with data from many experiments. We are concerned with the situation in which a group of closely spaced-through, in principle, still resolvable-nuclear levels is observed, and use the statistical model to interpret the properties of the corresponding particle and photon spectra. According to this model, the physics information contained locally in such a spectrum may be expressed in terms of a small number of average quantities: Level spacings and reduced partial widths. The local fine structure, on the other hand, remains unpredictable ('chaotic') but is governed by universal statistical laws. Experimental examples are taken from charged-particle and gamma-ray spectra following the beta decay of far-unstable nuclei and from (e, e') reactions studied by high-resolution methods. We discuss (i) the determination of level densities, (ii) the role of fluctuation corrections in the intepretation of branching ratios and resonance lifetimes, and finally (iii) how Monte Carlo simulations of complex spectra may serve to test sensitivity and experimental bias. (orig.)

  19. 51st International Winter Meeting on Nuclear Physics

    Science.gov (United States)

    Long-standing conference bringing together researchers and students from various fields of subatomic physics. The conference location is Bormio, a beautiful mountain resort in the Italian Alps. Unlike many workshops, the Bormio meeting does not focus on a single topic. Instead, the aim is to bring together researchers and students from related fields in subatomic physics. Addressed topics include hadron physics, heavy ion physics, nuclear astrophysics and nuclear structure, particle physics, detectors and future projects as well as applications of these fields.

  20. 52th International Winter Meeting on Nuclear Physics

    Science.gov (United States)

    Long-standing conference bringing together researchers and students from various fields of subatomic physics. The conference location is Bormio, a beautiful mountain resort in the Italian Alps. Unlike many workshops, the Bormio meeting does not focus on a single topic. Instead, the aim is to bring together researchers and students from related fields in subatomic physics. Addressed topics include hadron physics, heavy ion physics, nuclear astrophysics and nuclear structure, particle physics, detectors and future projects as well as applications of these fields.

  1. Methodical Instructions For Solutions of Problems in Nuclear Physics

    OpenAIRE

    Troitskaya, Natalia I.

    2005-01-01

    This is a set of methodical instructions for solutions of problems in Nuclear Physics. It is written on the basis of seminars to the course of lectures on``Nuclear Physics'' delivered at the Physical and Mechanical Faculty of the St. Petersburg State Polytechnic University for the students of the 4th Course in ``Technical Physics'' and ``Medical Physics''. The main aim of these methodical instructions is to develop the experience of students in scientific approaches to solutions of practical ...

  2. Proceedings of the 10. Workshop on Nuclear Physics in Brazil

    International Nuclear Information System (INIS)

    Theoretical and experimental studies on Nuclear Physics are presented. Nuclei structures, nuclear reaction cross sections, collision phenomena between particles at several energy ranges and radiation effects on solids and liquids are analysed. (M.C.K.)

  3. Time factor in physical protection systems defending nuclear facilities and nuclear materials

    International Nuclear Information System (INIS)

    Full text: Various international and national standards and/or recommendations require 'an effective level of physical protection of nuclear materials and nuclear facilities'. This general stipulation will soon be confirmed as obligatory at state level by the revision of the convention of physical protection of nuclear materials now under preparation. The revision would require application of physical protection to domestic nuclear facilities and nuclear materials when in use, in storage and transport, extending legal arrangements (like penalization, extradition, etc.) of the existing convention in this new context. The 'effective level' denotes a wide area of practice and some quantification would be useful in the area which is tantamount to security and depends on technology. In order to discharge the responsibility for implementation of the physical protection measures a license holder will have to assess features of the system and to apply some material grounds for decisions, sometimes leading to expensive consequences. While computer algorithms with probabilistic approach are being used for the purpose, especially for more complicated situation, it seems that use of some single yardstick for the assessment is desirable, especially if it could provide immediate advises for system improvement. Simplicity of approach leads to gains when implementation of analysis results is discussed with financing bodies. One of the features of the physical protection systems that could be used for assessment is certainly timeliness of the operation. The recommendation INFCIRC/225 rev.4 provides some hints like 'promptly', 'timely response' etc. which are inviting to some further work. 'The Handbook of physical protection of nuclear materials and facilities' published recently by the IAEA (IAEA - TECDOC - 1267) summarizes time requirements for the PP system as follows: cumulative time delays caused by obstacles which a perpetrator of an attack has to overcome should be larger

  4. Methodical Instructions For Solutions of Problems in Nuclear Physics

    CERN Document Server

    Troitskaya, N I

    2005-01-01

    This is a set of methodical instructions for solutions of problems in Nuclear Physics. It is written on the basis of seminars to the course of lectures on``Nuclear Physics'' delivered at the Physical and Mechanical Faculty of the St. Petersburg State Polytechnic University for the students of the 4th Course in ``Technical Physics'' and ``Medical Physics''. The main aim of these methodical instructions is to develop the experience of students in scientific approaches to solutions of practical problems in Nuclear Physics.

  5. PREFACE: Rutherford Centennial Conference on Nuclear Physics

    Science.gov (United States)

    Freeman, Sean

    2012-09-01

    Just over one hundred years ago, Ernest Rutherford presented an interpretation of alpha-particle scattering experiments, performed a couple of years earlier by Geiger and Marsden, to the Manchester Literary and Philosophical Society. The work was summarised shortly afterwards in a paper in the Philosophical Magazine. He postulated that a dense speck of matter must exist at the centre of an atom (later to become known as the nucleus) if the details of the experiments, particularly the yield of alpha particles scattered through large angles, were to be explained. The nuclear hypothesis, combined with the experimental work by Moseley on X-rays and Bohr's theoretical ideas, both also initiated at the Victoria University of Manchester, established our view of atomic structure and gave birth to the field of nuclear physics. The Rutherford Centennial Conference on Nuclear Physics was held at The University of Manchester in August 2011 to celebrate this anniversary by addressing the wide range of contemporary topics that characterise modern nuclear physics. This set of proceedings covers areas including nuclear structure and astrophysics, hadron structure and spectroscopy, fundamental interactions studied within the nucleus and results of relativistic heavy-ion collisions. We would like to thank all those who presented their recent research results at the conference; the proceedings stand as a testament to the excitement and interest that still pervades the pursuit of this field of physics. We would also like to thank those who contributed in other ways to the conference. To colleagues at the Manchester Museum of Science and Industry for putting together an exhibition to coincide with the conference that included the manuscript of the 1911 paper, letters, notebooks and equipment used by Rutherford. These items were kindly loaned by Cambridge and Manchester Universities. Winton Capital generously supported this exhibition. We would also like to thank Professor Mary Fowler

  6. Nuclear Few-Body Physics at FAIR

    Science.gov (United States)

    Nilsson, Thomas

    2011-05-01

    The FAIR facility, to be constructed at the GSI site in Darmstadt, will be addressing a wealth of outstanding questions within the realm of subatomic, atomic and plasma physics through a combination of novel accelerators, storage rings and innovative experimental set-ups. One of the key installations is the fragment separator Super-FRS that will be able to deliver an unprecedented range of radioactive ion beams (RIBs) in the energy range of 0-1.5 GeV/u to the envisaged experiments collected within the NuSTAR collaboration. This will in particular permit new experimental investigations of nuclear few-body systems at extreme isospins, also reaching beyond the drip-lines, using the NuSTAR-R3B set-up. The outcome of pilot experiments on unbound systems are reported, as well as crucial detector upgrades.

  7. Physics of Ultra-Peripheral Nuclear Collisions

    Energy Technology Data Exchange (ETDEWEB)

    Bertulani, Carlos A.; Klein, Spencer R.; Nystrand, Joakim

    2005-02-02

    Moving highly-charged ions carry strong electromagnetic fields which act as a field of photons. In collisions at large impact parameters, hadronic interactions are not possible, and the ions interact through photon-ion and photon-photon collisions known as ultra-peripheral collisions (UPC). Hadron colliders like the Relativistic Heavy Ion Collider (RHIC), the Tevatron and the Large Hadron Collider (LHC) produce photonuclear and two-photon interactions at luminosities and energies beyond that accessible elsewhere; the LHC will reach a {gamma}p energy ten times that of the Hadron-Electron Ring Accelerator (HERA). Reactions as diverse as the production of anti-hydrogen, photoproduction of the {rho}{sup 0}, transmutation of lead into bismuth and excitation of collective nuclear resonances have already been studied. At the LHC, UPCs can study many types of ''new physics''.

  8. Summaries of FY 1986 research in nuclear physics

    International Nuclear Information System (INIS)

    This report summarizes the research projects supported by the Division of Nuclear Physics in the Office of High Energy and Nuclear Physics, during FY 1986. This Division is a component of the Office of Energy Research, the basic research branch of the US Department of Energy, and provides about 80% of the funding for nuclear physics research in the United States. The objective of the Nuclear Physics program is to understand the interactions, properties, and structures of nuclei and nuclear matter and to understand the fundamental forces of nature as manifested in atomic nuclei. These summaries are intended to provide a convenient guide for those interested in the research supported by the Division of Nuclear Physics

  9. Gas lasers applied atomic collision physics, v.3

    CERN Document Server

    McDaniel, E W

    1982-01-01

    Applied Atomic Collision Physics, Volume 3: Gas Lasers describes the applications of atomic collision physics in the development of many types of gas lasers. Topics covered range from negative ion formation in gas lasers to high-pressure ion kinetics and relaxation of molecules exchanging vibrational energy. Ion-ion recombination in high-pressure plasmas is also discussed, along with electron-ion recombination in gas lasers and collision processes in chemical lasers.Comprised of 14 chapters, this volume begins with a historical summary of gas laser developments and an overview of the basic ope

  10. Condensed matter applied atomic collision physics, v.4

    CERN Document Server

    Datz, Sheldon

    1983-01-01

    Applied Atomic Collision Physics, Volume 4: Condensed Matter deals with the fundamental knowledge of collision processes in condensed media.The book focuses on the range of applications of atomic collisions in condensed matter, extending from effects on biological systems to the characterization and modification of solids. This volume begins with the description of some aspects of the physics involved in the production of ion beams. The radiation effects in biological and chemical systems, ion scattering and atomic diffraction, x-ray fluorescence analysis, and photoelectron and Auger spectrosc

  11. Nuclear Technology Series. Course l: Radiation Physics.

    Science.gov (United States)

    Technical Education Research Center, Waco, TX.

    This technical specialty course is one of thirty-five courses designed for use by two-year postsecondary institutions in five nuclear technician curriculum areas: (1) radiation protection technician, (2) nuclear instrumentation and control technician, (3) nuclear materials processing technician, (4) nuclear quality-assurance/quality-control…

  12. Summaries of FY 1992 research in nuclear physics

    International Nuclear Information System (INIS)

    This report summarizes the research projects supported by the Division of Nuclear Physics in the Office of High Energy and Nuclear Physics during FY 1992. This Division is a component of the Office of Energy Research and provides about 85% of the funding for nuclear physics research in the United States. The objectives of the Nuclear Physics Program are two-fold: (1) to understand the interactions and structures of atomic nuclei and nuclear matter and the fundamental forces of nature as manifested in nuclear matter and (2) to foster application of this knowledge to other sciences and technical disciplines. These summaries are intended to provide a convenient guide for those interested in the research supported by the Division of Nuclear Physics. We remind the readers that this compilation is just an overview of the Nuclear Physics Program. What we attempt to portray correctly is the breadth of the program and level of activity in the field of nuclear physics research as well as the new capabilities and directions that continually alter the public face of the nuclear sciences. We hope that the limitations of space, constraints of fon-nat, and rigors of editing have not extinguished the excitement of the science as it was originally portrayed

  13. Summaries of FY 1992 research in nuclear physics

    Energy Technology Data Exchange (ETDEWEB)

    1993-07-01

    This report summarizes the research projects supported by the Division of Nuclear Physics in the Office of High Energy and Nuclear Physics during FY 1992. This Division is a component of the Office of Energy Research and provides about 85% of the funding for nuclear physics research in the United States. The objectives of the Nuclear Physics Program are two-fold: (1) to understand the interactions and structures of atomic nuclei and nuclear matter and the fundamental forces of nature as manifested in nuclear matter and (2) to foster application of this knowledge to other sciences and technical disciplines. These summaries are intended to provide a convenient guide for those interested in the research supported by the Division of Nuclear Physics. We remind the readers that this compilation is just an overview of the Nuclear Physics Program. What we attempt to portray correctly is the breadth of the program and level of activity in the field of nuclear physics research as well as the new capabilities and directions that continually alter the public face of the nuclear sciences. We hope that the limitations of space, constraints of fon-nat, and rigors of editing have not extinguished the excitement of the science as it was originally portrayed.

  14. 50th International Winter Meeting on Nuclear Physics

    Science.gov (United States)

    Unlike many workshops, the Bormio meeting does not focus on a single topic. Instead, the aim is to bring together researchers and students from related fields in subatomic physics. Addressed topics include hadron physics, heavy ion physics, nuclear astrophysics and nuclear structure, particle physics, detectors and future projects as well as applications of these fields. Review talks by more senior speakers as well as talks and posters presented by junior researchers are encouraged.

  15. 1984 Review of the Applied Plasma Physics Program

    International Nuclear Information System (INIS)

    This report describes the present and planned programs of the Division of Applied Plasma Physics (APP), Office of Fusion Energy. The major activities of the division include fusion theory, experimental plasma research, advanced fusion concepts, and the magnetic fusion energy computer network. The planned APP program is consistent with the recently issued Comprehensive Program Management Plan for Magnetic Fusion Energy, which describes the overall objectives and strategy for the development of fusion energy

  16. Some results of applied spallation physics research at Los Alamos

    International Nuclear Information System (INIS)

    At the Los Alamos National Laboratory, we have an active effort in the general area of Applied Spallation Physics Research. The main emphasis of this activity has been on obtaining basic data relevant to spallation neutron source development, accelerator breeder technology, and validation of computer codes used in these applications. We present here an overview of our research effort and show some measured and calculated results of differential and clean integral experiments

  17. Precise nuclear physics for the sun

    International Nuclear Information System (INIS)

    , mainly near the ocean shore and in arid regions. Thus, great effort is expended on the study of greenhouse gases in the Earth's atmosphere. Also the Sun, via the solar irradiance and via the effects of the so-called solar wind of magnetic particles on the Earth's atmosphere, may affect the climate. There is no proof linking solar effects to short-term changes in the Earth's climate. However, such effects cannot be excluded, either, making it necessary to study the Sun. The experiments summarized in the present work contribute to the present-day study of our Sun by repeating, in the laboratory, some of the nuclear processes that take place in the core of the Sun. They aim to improve the precision of the nuclear cross section data that lay the foundation of the model of the nuclear reactions generating energy and producing neutrinos in the Sun. In order to reach this goal, low-energy nuclear physics experiments are performed. Wherever possible, the data are taken in a low-background, underground environment. There is only one underground accelerator facility in the world, the Laboratory Underground for Nuclear Astrophysics (LUNA) 0.4MV accelerator in the Gran Sasso laboratory in Italy. Much of the research described here is based on experiments at LUNA. Background and feasibility studies shown here lay the base for future, higher-energy underground accelerators. Finally, it is shown that such a device can even be placed in a shallow-underground facility such as the Dresden Felsenkeller without great loss of sensitivity.

  18. Precise nuclear physics for the sun

    Energy Technology Data Exchange (ETDEWEB)

    Bemmerer, Daniel

    2012-07-01

    populated areas, mainly near the ocean shore and in arid regions. Thus, great effort is expended on the study of greenhouse gases in the Earth's atmosphere. Also the Sun, via the solar irradiance and via the effects of the so-called solar wind of magnetic particles on the Earth's atmosphere, may affect the climate. There is no proof linking solar effects to short-term changes in the Earth's climate. However, such effects cannot be excluded, either, making it necessary to study the Sun. The experiments summarized in the present work contribute to the present-day study of our Sun by repeating, in the laboratory, some of the nuclear processes that take place in the core of the Sun. They aim to improve the precision of the nuclear cross section data that lay the foundation of the model of the nuclear reactions generating energy and producing neutrinos in the Sun. In order to reach this goal, low-energy nuclear physics experiments are performed. Wherever possible, the data are taken in a low-background, underground environment. There is only one underground accelerator facility in the world, the Laboratory Underground for Nuclear Astrophysics (LUNA) 0.4MV accelerator in the Gran Sasso laboratory in Italy. Much of the research described here is based on experiments at LUNA. Background and feasibility studies shown here lay the base for future, higher-energy underground accelerators. Finally, it is shown that such a device can even be placed in a shallow-underground facility such as the Dresden Felsenkeller without great loss of sensitivity.

  19. Second Mexican School of Nuclear Physics: Notes; Segunda Escuela Mexicana de Fisica Nuclear: Notas

    Energy Technology Data Exchange (ETDEWEB)

    Aguilera, E.F. [Instituto Nacional de Investigaciones Nucleares, A.P. 18-1027, 11801 Mexico D.F. (Mexico); Chavez L, E.R. [Instituto de Fisica, UNAM, 04510 Mexico D.F. (Mexico); Hess, P.O. [Instituto de Ciencias Nucleares, UNAM, 04510 Mexico D.F. (Mexico)

    2001-07-01

    The II Mexican School of Nuclear Physics which is directed to those last semesters students of the Physics career or post-graduate was organized by the Nuclear Physics Division of the Mexican Physics Society, carrying out at April 16-27, 2001 in the installations of the Institute of Physics and the Institute of Nuclear Sciences, both in the UNAM, and the National Institute of Nuclear Research (ININ). A first school of a similar level in Nuclear Physics, was carried out in Mexico at 1977 as Latin american School of Physics. This book treats about the following themes: Interactions of radiation with matter, Evaluation of uncertainty in experimental data, Particle accelerators, Notions of radiological protection and dosimetry, Cosmic rays, Basis radiation (environmental), Measurement of excitation functions with thick targets and inverse kinematics, Gamma ray technique for to measure the nuclear fusion, Neutron detection with Bonner spectrometer, Energy losses of alpha particles in nickel. It was held the practice Radiation detectors. (Author)

  20. Section for nuclear physics and energy physics - Annual report January 1 to December 31, 1997

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-08-01

    This annual report summarizes the research and development activities of the Section for Nuclear Physics and Energy Physics at the University of Oslo in 1997. It includes experimental and theoretical nuclear physics, as well as other fields of physics in which members of the section have participated. The report describes completed projects and work currently in progress. As in previous years, the experimental activities in nuclear physics have mainly been centered around the Cyclotron Laboratory with the SCANDITRONIX MC-35 Cyclotron. The main auxiliary equipment consists of a multi-detector system CACTUS, and presently with a unique locally designed silicon strip detector array SIRI. In experimental nuclear physics the section staff members are engaged within three main fields: nuclei at high temperature, high spin nuclear structure and high and intermediate energy nuclear physics.

  1. Section for nuclear physics and energy physics - Annual report January 1 to December 31, 1997

    International Nuclear Information System (INIS)

    This annual report summarizes the research and development activities of the Section for Nuclear Physics and Energy Physics at the University of Oslo in 1997. It includes experimental and theoretical nuclear physics, as well as other fields of physics in which members of the section have participated. The report describes completed projects and work currently in progress. As in previous years, the experimental activities in nuclear physics have mainly been centered around the Cyclotron Laboratory with the SCANDITRONIX MC-35 Cyclotron. The main auxiliary equipment consists of a multi-detector system CACTUS, and presently with a unique locally designed silicon strip detector array SIRI. In experimental nuclear physics the section staff members are engaged within three main fields: nuclei at high temperature, high spin nuclear structure and high and intermediate energy nuclear physics

  2. Section for nuclear physics and energy physics - Annual report January 1 to December 31, 1996

    International Nuclear Information System (INIS)

    This annual report summarizes the research and development activities of the Section for Nuclear Physics and Energy Physics at the University of Oslo in 1996. It includes experimental and theoretical nuclear physics, as well as other fields of physics in which members of the section have participated. The report describes completed projects and work currently in progress. As in previous years, the experimental activities in nuclear physics have mainly been centered around the Cyclotron Laboratory with the SCANDITRONIX MC-35 Cyclotron. Using CACTUS multidetector system, several experiments have been completed. Some results have been published while more data remains to be analyzed. In experimental nuclear physics the section staff members are engaged within three main fields: nuclei at high temperature, high spin nuclear structure and high and intermediate energy nuclear physics

  3. Section for nuclear physics and energy physics - Annual report January 1 to December 31, 1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-05-01

    This annual report summarizes the research and development activities of the Section for Nuclear Physics and Energy Physics at the University of Oslo in 1996. It includes experimental and theoretical nuclear physics, as well as other fields of physics in which members of the section have participated. The report describes completed projects and work currently in progress. As in previous years, the experimental activities in nuclear physics have mainly been centered around the Cyclotron Laboratory with the SCANDITRONIX MC-35 Cyclotron. Using CACTUS multidetector system, several experiments have been completed. Some results have been published while more data remains to be analyzed. In experimental nuclear physics the section staff members are engaged within three main fields: nuclei at high temperature, high spin nuclear structure and high and intermediate energy nuclear physics.

  4. HMI Section of Nuclear and Radiation Physics - annual report 1987

    International Nuclear Information System (INIS)

    This annual report contains extended abstracts of the scientific work performed at the named institute together with a list of publications and talks. The scientific work is concerned with the theory of nuclear and atomic processes with heavy ions, the experimental study of heavy ion reactions, nuclear structure studies, nuclear solid-state physics, atomic collisions, and the operation of VICKSI. (HSI)

  5. Nuclear Physics Group progress report January - December 1982

    International Nuclear Information System (INIS)

    The work of the Nuclear Physics Group of the Institute of Nuclear Sciences during the period July-December 1981 is described. Installation of the EN-tandem electrostatic accelerator proceeded to the voltage test stage. Highlights of the research programme included nuclear microprobe studies of bone and teeth, and depth profiling of sodium in hydrated obsidian

  6. KfA Institute of Nuclear Physics. Annual report 1987

    International Nuclear Information System (INIS)

    This annual report contains extended abstracts about the work performed at the named institute together with a list of publications and speeches. The work concerns nuclear reactions, nuclear spectroscopy, intermediate-energy physics, nuclear structure, developments of the isochronous cyclotron and the ISIS ion source, construction of spectrometers, detectors, and targets, computer development, counting electronics, and radiation protection. (HSI)

  7. Nuclear Security Recommendations on Physical Protection of Nuclear Material and Nuclear Facilities (INFCIRC/225/Revision 5). Recommendations (Spanish Edition)

    International Nuclear Information System (INIS)

    This publication, Revision 5 of Physical Protection of Nuclear Material and Nuclear Facilities (INFCIRC/225), is intended to provide guidance to States and their competent authorities on how to develop or enhance, implement and maintain a physical protection regime for nuclear material and nuclear facilities, through the establishment or improvement of their capabilities to implement legislative and regulatory programmes. The recommendations presented in this publication reflect a broad consensus among IAEA Member States on the requirements which should be met for the physical protection of nuclear materials and nuclear facilities.

  8. Nuclear Security Recommendations on Physical Protection of Nuclear Material and Nuclear Facilities (INFCIRC/225/Revision 5): Recommendations

    International Nuclear Information System (INIS)

    This publication, Revision 5 of Physical Protection of Nuclear Material and Nuclear Facilities (INFCIRC/225), is intended to provide guidance to States and their competent authorities on how to develop or enhance, implement and maintain a physical protection regime for nuclear material and nuclear facilities, through the establishment or improvement of their capabilities to implement legislative and regulatory programmes. The recommendations presented in this publication reflect a broad consensus among IAEA Member States on the requirements which should be met for the physical protection of nuclear materials and nuclear facilities.

  9. Nuclear Security Recommendations on Physical Protection of Nuclear Material and Nuclear Facilities (INFCIRC/225/Revision 5). Recommendations (Arabic Edition)

    International Nuclear Information System (INIS)

    This publication, Revision 5 of Physical Protection of Nuclear Material and Nuclear Facilities (INFCIRC/225), is intended to provide guidance to States and their competent authorities on how to develop or enhance, implement and maintain a physical protection regime for nuclear material and nuclear facilities, through the establishment or improvement of their capabilities to implement legislative and regulatory programmes. The recommendations presented in this publication reflect a broad consensus among IAEA Member States on the requirements which should be met for the physical protection of nuclear materials and nuclear facilities.

  10. Nuclear security recommendations on physical protection of nuclear material and nuclear facilities (INFCIRC/225/Revision 5). Recommendations (Chinese Edition)

    International Nuclear Information System (INIS)

    This publication, Revision 5 of Physical Protection of Nuclear Material and Nuclear Facilities (INFCIRC/225), is intended to provide guidance to States and their competent authorities on how to develop or enhance, implement and maintain a physical protection regime for nuclear material and nuclear facilities, through the establishment or improvement of their capabilities to implement legislative and regulatory programmes. The recommendations presented in this publication reflect a broad consensus among IAEA Member States on the requirements which should be met for the physical protection of nuclear materials and nuclear facilities.

  11. Annual technical report - 1987 - Nuclear Engineering Institute - Dept. of Physics

    International Nuclear Information System (INIS)

    The research reports carried out in the Physics Department of Nuclear Engineering Institute/Brazilian CNEN, in nuclear physics, isotope production and hazards by irradiation using the CV-28 cyclotron capable to accelerate protons, deuterons, helium and alpha particles with maximum energies of 24, 14, 36 and 28 MeV, respectively, are presented. (M.C.K.)

  12. Max-Planck-Institute for Nuclear Physics. Annual report 1987

    International Nuclear Information System (INIS)

    This annual report contains short communications and extended abstracts about the work performed at the named institute together with a list of publications and talks. The work concerns technical developments on accelerators and ion sources, developments of detectors and experimental setups, electronics, data processing, target developments, giant resonances, nuclear spectroscopy, nuclear reaction mechanisms, atomic physics, medium- and high-energy physics, statistical models of nuclei and nuclear reactions, nuclear reactions at high energies, many-particle theory, quantum chromodynamics, meteorites, comets, interstellar dust, planetary atmospheres, cosmic radiation, molecular collisions in the earth atmosphere, nuclear geology and geochemistry, as well as archaeology. See hints under the relevant topics. (HSI)

  13. The Nuclear Physics Programme at CERN (1/3)

    CERN Document Server

    CERN. Geneva

    2013-01-01

    This lecture series will focus on the two major facilities at CERN for nuclear physics: ISOLDE and nToF. ISOLDE is one of the world's leading radioactive beam facilities which can produce intense beams of unstable nuclei. Some of these beams can also be re-acclerated to energies around the Coulomb barrier and undergo nuclear reactions in turn. ISOLDE can address a wide range of Physics from nuclear structure to nuclear astrophysics (the origin of the chemical elements) and fundamental physics. The second major facility is nToF which is a neutron time-of-flight facility. Intense neutron beams are used to study nuclear reactions important both for nuclear astrophysics and for present and future reactor cycles. An overview will be given of these two facilities including highlights of their Physics programmes and the perspectives for the future.

  14. Nuclear physics: Elusive transition spotted in thorium

    Science.gov (United States)

    Safronova, Marianna

    2016-05-01

    The highly precise atomic clocks used in science and technology are based on electronic transitions in atoms. The discovery of a nuclear transition in thorium-229 raises hopes of making nuclear clocks a reality. See Article p.47

  15. Nuclear reactions video (knowledge base on low energy nuclear physics)

    International Nuclear Information System (INIS)

    The NRV (nuclear reactions video) is an open and permanently extended global system of management and graphical representation of nuclear data and video-graphic computer simulation of low energy nuclear dynamics. It consists of a complete and renewed nuclear database and well known theoretical models of low energy nuclear reactions altogether forming the 'low energy nuclear knowledge base'. The NRV solves two main problems: 1) fast and visualized obtaining and processing experimental data on nuclear structure and nuclear reactions; 2) possibility for any inexperienced user to analyze experimental data within reliable commonly used models of nuclear dynamics. The system is based on the realization of the following principal things: the net and code compatibility with the main existing nuclear databases; maximal simplicity in handling: extended menu, friendly graphical interface, hypertext description of the models, and so on; maximal visualization of input data, dynamics of studied processes and final results by means of real three-dimensional images, plots, tables and formulas and a three-dimensional animation. All the codes are composed as the real Windows applications and work under Windows 95/NT

  16. Implementing Physical Protection Education for an Enhanced Nuclear Security Culture

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jeong Ho; Kim, Hyun Chul; Shin, Ick Hyun; Lee, Hyung Kyung; Choe, Kwan Kyoo [KINAC, Daejeon (Korea, Republic of)

    2013-10-15

    In this paper, we are going to outline our efforts and experiences at implementing physical protection education. KINAC (as the only designated educational institute) places great effort in delivering an effective and a high-quality education program for physical protection. We have also provided a way for nuclear operators to share the lessons they have gained through their own experiences. We made physical protection education an important communication channel, not only among nuclear operators but also between operators and a regulatory body. There is growing attention given to education and training on the subject of physical protection in order to enhance the nuclear security culture. The IAEA recommends that all personnel in organizations directly involved with the nuclear industry receive regularly education in physical protection according to the recently revised INFCIRC/225/Rev.5. The Korea Institute of Nuclear Nonproliferation and Control (KINAC) and the Nuclear Safety and Security Commission (NSSC), which are mainly responsible for the national nuclear security regime, have already recognized the importance of education and training in physical protection. The NSSC enacted its decree on physical protection education and training in 2010. KINAC was designated as the first educational institute in 2011 and implemented physical protection education as mandatory from 2012.

  17. Implementing Physical Protection Education for an Enhanced Nuclear Security Culture

    International Nuclear Information System (INIS)

    In this paper, we are going to outline our efforts and experiences at implementing physical protection education. KINAC (as the only designated educational institute) places great effort in delivering an effective and a high-quality education program for physical protection. We have also provided a way for nuclear operators to share the lessons they have gained through their own experiences. We made physical protection education an important communication channel, not only among nuclear operators but also between operators and a regulatory body. There is growing attention given to education and training on the subject of physical protection in order to enhance the nuclear security culture. The IAEA recommends that all personnel in organizations directly involved with the nuclear industry receive regularly education in physical protection according to the recently revised INFCIRC/225/Rev.5. The Korea Institute of Nuclear Nonproliferation and Control (KINAC) and the Nuclear Safety and Security Commission (NSSC), which are mainly responsible for the national nuclear security regime, have already recognized the importance of education and training in physical protection. The NSSC enacted its decree on physical protection education and training in 2010. KINAC was designated as the first educational institute in 2011 and implemented physical protection education as mandatory from 2012

  18. Nuclear Physics Division, Institute of Experimental Physics, Warsaw University annual report 1997

    Energy Technology Data Exchange (ETDEWEB)

    Szeflinski, Z.; Kirejczyk, M.; Popkiewicz, M. [eds.

    1998-08-01

    In the presented report the research activities of Nuclear Physics Division (NPD) of the Institute of Experimental Physics (Warsaw University) in year 1997 are described. The report is divided into three parts: Reaction Mechanisms and Nuclear Structure, Experimental Methods and Instrumentation and the third one contain the lists of personnel, seminars held at the Nuclear Physics Division and published papers. A summary of the (NPD) activities are briefly presented in ``Preface`` written by NDP director prof. K. Siwek-Wilczynska

  19. Nuclear Physics Division - Inst. of Experimental Physics - Warsaw University - Annual Report 1998

    Energy Technology Data Exchange (ETDEWEB)

    Kirejczyk, M.; Szeflinski, Z. [eds.

    1999-08-01

    In the presented report the research activities of Nuclear Physics Division (NPD) of the Warsaw University Institute of Experimental Physics in year of 1998 are described. The report is divided into three parts: Reaction Mechanisms and Nuclear Structure, Experimental Methods and Instrumentation and the third one contains the lists of personnel, seminars held at the Nuclear Physics Division and list of published papers. A summary of the (NPD) activities are briefly presented in ``Preface`` written by NDP director prof. K. Siwek-Wilczynska

  20. Nuclear Physics Division - Inst. of Experimental Physics - Warsaw University - Annual Report 1999

    International Nuclear Information System (INIS)

    In the presented report the research activities of Nuclear Physics Division (NPD) of the Warsaw University Institute of Experimental Physics in year of 1999 are described. The report is divided into three parts: Reaction Mechanisms and Nuclear Structure, Experimental Methods and Instrumentation and the third one contain the lists of personnel, seminars held at the Nuclear Physics Division and list of published papers. A summary of the (NPD) activities are briefly presented in ''Preface'' written by NDP director prof. K. Siwek-Wilczynska

  1. Nuclear Physics Division, Institute of Experimental Physics, Warsaw University Annual Report 1996

    Energy Technology Data Exchange (ETDEWEB)

    Szeflinski, Z.; Popkiewicz, M. [eds.

    1997-12-31

    In the presented report the research activities of Nuclear Physics Division (NPD) of the Institute of Experimental Physics (Warsaw University) in year 1996 are described. The report is divided into three parts: Reaction mechanisms and nuclear structure; Experimental methods and instrumentation and the third part contains the list of personnel, seminars held at the Nuclear Physics Division and published papers. A summary of the (NPD) activities are briefly presented in ``Preface`` by NPD director prof. Ch. Droste.

  2. Nuclear Physics Division, Institute of Experimental Physics, Warsaw University annual report 1997

    International Nuclear Information System (INIS)

    In the presented report the research activities of Nuclear Physics Division (NPD) of the Institute of Experimental Physics (Warsaw University) in year 1997 are described. The report is divided into three parts: Reaction Mechanisms and Nuclear Structure, Experimental Methods and Instrumentation and the third one contain the lists of personnel, seminars held at the Nuclear Physics Division and published papers. A summary of the (NPD) activities are briefly presented in ''Preface'' written by NDP director prof. K. Siwek-Wilczynska

  3. Applying fast calorimetry on a spent nuclear fuel calorimeter

    Energy Technology Data Exchange (ETDEWEB)

    Liljenfeldt, Henrik [Swedish Nuclear Fuel and Waste Management (Sweden); Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Uppsala Univ. (Sweden)

    2015-04-15

    Recently at Los Alamos National Laboratory, sophisticated prediction algorithms have been considered for the use of calorimetry for treaty verification. These algorithms aim to predict the equilibrium temperature based on early data and therefore be able to shorten the measurement time while maintaining good accuracy. The algorithms have been implemented in MATLAB and applied on existing equilibrium measurements from a spent nuclear fuel calorimeter located at the Swedish nuclear fuel interim storage facility. The results show significant improvements in measurement time in the order of 15 to 50 compared to equilibrium measurements, but cannot predict the heat accurately in less time than the currently used temperature increase method can. This Is both due to uncertainties in the calibration of the method as well as identified design features of the calorimeter that limits the usefulness of equilibrium type measurements. The conclusions of these findings are discussed, and suggestions of both improvements of the current calorimeter as well as what to keep in mind in a new design are given.

  4. Hygrothermal Numerical Simulation Tools Applied to Building Physics

    CERN Document Server

    Delgado, João M P Q; Ramos, Nuno M M; Freitas, Vasco Peixoto

    2013-01-01

    This book presents a critical review on the development and application of hygrothermal analysis methods to simulate the coupled transport processes of Heat, Air, and Moisture (HAM) transfer for one or multidimensional cases. During the past few decades there has been relevant development in this field of study and an increase in the professional use of tools that simulate some of the physical phenomena that are involved in Heat, Air and Moisture conditions in building components or elements. Although there is a significant amount of hygrothermal models referred in the literature, the vast majority of them are not easily available to the public outside the institutions where they were developed, which restricts the analysis of this book to only 14 hygrothermal modelling tools. The special features of this book are (a) a state-of-the-art of numerical simulation tools applied to building physics, (b) the boundary conditions importance, (c) the material properties, namely, experimental methods for the measuremen...

  5. Industrial metrology as applied to large physics experiments

    International Nuclear Information System (INIS)

    A physics experiment is a large complex 3-D object (typ. 1200 m3, 35000 tonnes), with sub-millimetric alignment requirements. Two generic survey alignment tasks can be identified; first, an iterative positioning of the apparatus subsystems in space and, second, a quantification of as-built parameters. The most convenient measurement technique is industrial triangulation but the complexity of the measured object and measurement environment constraints frequently requires a more sophisticated approach. To enlarge the ''survey alignment toolbox'' measurement techniques commonly associated with other disciplines such as geodesy, applied geodesy for accelerator alignment, and mechanical engineering are also used. Disparate observables require a heavy reliance on least squares programs for campaign pre-analysis and calculation. This paper will offer an introduction to the alignment of physics experiments and will identify trends for the next generation of SSC experiments

  6. 40 years to Inst. of Nuclear Physics. History, achievements, perspectives

    International Nuclear Information System (INIS)

    History of the Inst. of Nuclear Physics of National Nuclear Center of Republic of Kazakstan (INP NNC RK) created on the base of Physico-Technical Inst. in 1957 June is elucidated. It is noted, that the Inst. has unique research units: the U-180.2 isochronous cyclotron, the research Wwr-K-Almaty reactor, the UKP-2-1 cascade recharge accelerator of heavy ions. Main scientific and technical achievements and perspective trends of the Inst. works are revealed. Its are in following fields: nuclear physics, radiation physics of solids, nuclear-physical research by isotopes producing, working out and use of nuclear-physical methods for element and radionuclide analysis, physical electronics, nuclear energy transformation, radiochemistry. It is underlined that the Inst. is base organization of personnel training in physics in Kazakstan. During of the INP existing by its members 29 doctor and 229 candidate dissertations were defended. On the base of the INP was formatted numerous of new institutes: the Inst. of High Energy Physics, the Physical Technical Inst., Almaty Department of the Inst. of Atomic Energy

  7. High Energy Physics and Nuclear Physics Network Requirements

    Energy Technology Data Exchange (ETDEWEB)

    Dart, Eli; Bauerdick, Lothar; Bell, Greg; Ciuffo, Leandro; Dasu, Sridhara; Dattoria, Vince; De, Kaushik; Ernst, Michael; Finkelson, Dale; Gottleib, Steven; Gutsche, Oliver; Habib, Salman; Hoeche, Stefan; Hughes-Jones, Richard; Ibarra, Julio; Johnston, William; Kisner, Theodore; Kowalski, Andy; Lauret, Jerome; Luitz, Steffen; Mackenzie, Paul; Maguire, Chales; Metzger, Joe; Monga, Inder; Ng, Cho-Kuen; Nielsen, Jason; Price, Larry; Porter, Jeff; Purschke, Martin; Rai, Gulshan; Roser, Rob; Schram, Malachi; Tull, Craig; Watson, Chip; Zurawski, Jason

    2014-03-02

    The Energy Sciences Network (ESnet) is the primary provider of network connectivity for the U.S. Department of Energy (DOE) Office of Science (SC), the single largest supporter of basic research in the physical sciences in the United States. In support of SC programs, ESnet regularly updates and refreshes its understanding of the networking requirements needed by instruments, facilities, scientists, and science programs that it serves. This focus has helped ESnet to be a highly successful enabler of scientific discovery for over 25 years. In August 2013, ESnet and the DOE SC Offices of High Energy Physics (HEP) and Nuclear Physics (NP) organized a review to characterize the networking requirements of the programs funded by the HEP and NP program offices. Several key findings resulted from the review. Among them: 1. The Large Hadron Collider?s ATLAS (A Toroidal LHC Apparatus) and CMS (Compact Muon Solenoid) experiments are adopting remote input/output (I/O) as a core component of their data analysis infrastructure. This will significantly increase their demands on the network from both a reliability perspective and a performance perspective. 2. The Large Hadron Collider (LHC) experiments (particularly ATLAS and CMS) are working to integrate network awareness into the workflow systems that manage the large number of daily analysis jobs (1 million analysis jobs per day for ATLAS), which are an integral part of the experiments. Collaboration with networking organizations such as ESnet, and the consumption of performance data (e.g., from perfSONAR [PERformance Service Oriented Network monitoring Architecture]) are critical to the success of these efforts. 3. The international aspects of HEP and NP collaborations continue to expand. This includes the LHC experiments, the Relativistic Heavy Ion Collider (RHIC) experiments, the Belle II Collaboration, the Large Synoptic Survey Telescope (LSST), and others. The international nature of these collaborations makes them heavily

  8. Max-Planck-Institute for Nuclear Physics. Annual report 1986

    International Nuclear Information System (INIS)

    This annual report contains short descriptions of the research performed at the given institute together with an extensive list of publications. The research in nuclear physics is concerned with developments in accelerators and ion sources, radiation detectors, solid-state studies by nuclear methods, counting circuits, data processing, target preparation, fission, fusion, and nuclear friction, giant resonances, nuclear spectroscopy, nuclear reaction mechanisms, atomic physics and interaction of charged particles with matter, medium and high energy physics. The research in cosmophysics works on meteorites and lunar rocks, the gallium-solar-neutrino experiment (project GALLEX), problems of Halley's comet, interplanetary and interstellar dust, planetary atmospheres, interstellar medium and cosmic rays, molecular collision processes in the gas phase, nuclear geology and geochemistry, and archaeometry. (GG)

  9. Physics of Nuclear Collisions at High Energy

    Energy Technology Data Exchange (ETDEWEB)

    Hwa, Rudolph C. [Univ. of Oregon, Eugene, OR (United States)

    2012-05-01

    A wide range of problems has been investigated in the research program during the period of this grant. Although the major effort has been in the subject of heavy-ion collisions, we have also studied problems in biological and other physical systems. The method of analysis used in reducing complex data in multiparticle production to simple descriptions can also be applied to the study of complex systems of very different nature. Phase transition is an important phenomenon in many areas of physics, and for heavy-ion collisions we study the fluctuations of multiplicities at the critical point. Human brain activities as revealed in EEG also involve fluctuations in time series, and we have found that our experience enables us to find the appropriate quantification of the fluctuations in ways that can differentiate stroke and normal subjects. The main topic that characterizes the research at Oregon in heavy-ion collisions is the recombination model for the treatment of the hadronization process. We have avoided the hydrodynamical model partly because there is already a large community engaged in it, but more significantly we have found the assumption of rapid thermalization unconvincing. Recent results in studying LHC physics lead us to provide more evidence that shower partons are very important even at low p_T, but are ignored by hydro. It is not easy to work in an environment where the conventional wisdom regards our approach as being incorrect because it does not adhere to the standard paradigm. But that is just what a vibrant research community needs: unconventional approach may find evidences that can challenge the orthodoxy. An example is the usual belief that elliptic flow in fluid dynamics gives rise to azimuthal anisotropy. We claim that it is only sufficient but not necessary. With more data from LHC and more independent thinkers working on the subject what is sufficient as a theory may turn out to be incorrect in reality. Another area of investigation that

  10. Summaries of FY 1988 research in nuclear physics

    International Nuclear Information System (INIS)

    This report summarizes the research projects supported by the Division of Nuclear Physics in the Office of High Energy and Nuclear Physics, during FY 1986. This Division is a component of the Office of Energy Research, the basic research branch of the US Department of Energy, and provides about 80% of the funding for nuclear physics research in the United States. The objective of the Nuclear Physics program is to understand the interactions, properties, and structures of nuclei and nuclear matter and to understand the fundamental forces of nature as manifested in atomic nuclei. These summaries are intended to provide a convenient guide for those interested in the research supported by the Division of Nuclear Physics. The nuclear physics research summaries in this document were initially prepared by the investigators, then reviewed and edited by DOE staff. They describe the general character and goals of the research programs, current research efforts, especially significant recent results, and plans for the near future. The research summaries are organized into two groups: research programs at national laboratories and those at universities, with the material arranged alphabetically by institution. The names of all Ph.D.-level personnel who are primarily associated with the work are included. The FY 1988 funding levels are also provided. Included for the first time are activities of the nuclear data program, which was incorporated within nuclear physics in FY 1987. We remind the readers that this compilation is just an overview of the Nuclear Physics program. Primary publications should be used for reference to the work and for a more complete and accurate understanding

  11. Fundamentals of Atomic and Nuclear Physics. Chapter 1

    International Nuclear Information System (INIS)

    Knowledge of the structure of the atom, elementary nuclear physics, the nature of electromagnetic radiation and the production of X rays is fundamental to the understanding of the physics of medical imaging and radiation protection. This, the first chapter of the handbook, summarizes those aspects of these areas which, being part of the foundation of modern physics, underpin the remainder of the book

  12. Celebrating 40 years of research in Journal of Physics G: Nuclear and Particle Physics

    Science.gov (United States)

    Adcock, Colin D.; Martin, Alan D.; Schwenk, Achim

    2015-09-01

    2015 marks the 40th anniversary of Journal of Physics G: Nuclear and Particle Physics. This editorial provides a brief history of the journal, and introduces a unique collection of invited articles from leading authors to celebrate the occasion.

  13. KFA Institute of Nuclear Physics. Annual report 1989

    International Nuclear Information System (INIS)

    This annual report contains extended abstracts about the work performed in the named research center together with a list of talks and publications. The work concerns experimental studies on nuclear reactions and scattering processes, nuclear spectroscopy, and intermediate-energy physics, theoretical studies on nuclear structure, nuclear reactions, and intermediate- and high-energy physics, developments of the isochronous cyclotron, the ISIS ion source, the magnetic spectrometer BIG KARL, and the cooler synchrotron COSY, as well as technical developments on spectrometers and detectors, computer systems, and radiation protection. (HSI)

  14. KFA Institute of Nuclear Physics. Annual report 1990

    International Nuclear Information System (INIS)

    This annual report contains extended abstracts about the work performed in the named research center together with a list of talks and publications. The work concerns experimental studies on nuclear reactions and scattering processes, nuclear spectroscopy, and intermediate-energy physics, theoretical studies on nuclear structure, nuclear reactions, and intermediate- and high-energy physics, developments of the isochronous cyclotron, the ISIS ion source, the magnetic spectrometer BIG KARL, and the cooler synchrotron COSY, as well as technical developments on spectrometers and detectors, computer systems, and radiation protection. (orig.)

  15. 3. Mexican school of nuclear physics; 3. Escuela Mexicana de Fisica Nuclear

    Energy Technology Data Exchange (ETDEWEB)

    Chavez L, E.R. [Instituto de Fisica, UNAM, 04510 Mexico D.F. (Mexico); Hess, P.O. [Instituto de Ciencias Nucleares, UNAM, 04510 Mexico D.F. (Mexico); Martinez Q, E. [Instituto Nacional de Investigaciones Nucleares, A.P. 18-1027, 11801 Mexico D.F. (Mexico)

    2002-07-01

    The III Mexican School of Nuclear Physics which is directed to those post graduate in Sciences and those of last semesters students of the Physics career or some adjacent career was organized by the Nuclear Physics Division of the Mexican Physics Society, carrying out at November 18-29, 2002 in the installations of the Institute of Physics and the Institute of Nuclear Sciences both in the UNAM, and the National Institute of Nuclear Research (ININ). In this as well as the last version its were offered 17 courses, 9 of them including laboratory practices and the rest were of theoretical character only. This book treats about the following themes: Nuclear physics, Electrostatic accelerators, Cyclotrons, Thermonuclear reactions, Surface barrier detectors, Radiation detection, Neutron detection, Bonner sphere spectrometers, Radiation protection, Biological radiation effects, Particle kinematics, Nucleosynthesis, Plastics, Muons, Quadrupoles, Harmonic oscillators, Quantum mechanics among many other matters. (Author)

  16. PREFACE: XXXVI Symposium on Nuclear Physics (Cocoyoc 2013)

    Science.gov (United States)

    Barrón-Palos, Libertad; Morales-Agiss, Irving; Martínez-Quiroz, Enrique

    2014-03-01

    logo The XXXVI Symposium on Nuclear Physics, organized by the Division of Nuclear Physics of the Mexican Physical Society, took place from 7-10 January, 2013. As it is customary, the Symposium was held at the Hotel Hacienda Cocoyoc, in the state of Morelos, Mexico. Conference photograph This international venue with many years of tradition was attended by outstanding physicists, some of them already regulars to this meeting and others who joined us for the first time; a total of 45 attendees from different countries (Argentina, Brazil, Canada, China, Germany, Italy, Japan, Mexico and the United States). A variety of topics related to nuclear physics (nuclear reactions, radioactive beams, nuclear structure, fundamental neutron physics, sub-nuclear physics and nuclear astrophysics, among others) were presented in 26 invited talks and 10 contributed posters. Local Organizing Committee Libertad Barrón-Palos (IF-UNAM)) Enrique Martínez-Quíroz (ININ)) Irving Morales-Agiss (ICN-UNAM)) International Advisory Committee Osvaldo Civitarese (UNLP, Argentina) Jerry P Draayer (LSU, USA)) Alfredo Galindo-Uribarri (ORNL, USA)) Paulo Gomes (UFF, Brazil)) Piet Van Isacker (GANIL, France)) James J Kolata (UND, USA)) Reiner Krücken (TRIUMF, Canada)) Jorge López (UTEP, USA)) Stuart Pittel (UD, USA)) W Michael Snow (IU, USA)) Adam Szczepaniak (IU, USA)) Michael Wiescher (UND, USA)) A list of participants is available in the PDF

  17. Virtual Visit to the ATLAS Control Room by Institute of Nuclear Physics, Cracow, Poland

    CERN Multimedia

    ATLAS Experiment

    2012-01-01

    The 12 Festival of Science "Theory-knowledge-experience...". Fest will be located on the traditional Main Square, which is visited by thousands of citizens and tourists. Institute of Nuclear Physics as usual participates in this annual event. Our visitors will learn the secrets of the CERN experiments on the Large Hadron Collider - ATLAS, LHCb, ALICE, CMS, find out more about the Higgs particles, antimatter quark-gluon plasma (beeing guided by our scientists and PhD students). One of the attractions will be ATLAS Control Room Virtual Visit. Visiting people will have an opportunity to see how ATLAS is controlled and operated to collect its exciting data and ask questions to scientists and engineers involved in LHC program at CERN. Institute of Nuclear Physics has prepared also several interactive demonstrations of Atomic Force Microscopy, Magnetic Resonance, Hadron Therapy and Crystal Physics. The Institute of Nuclear Physics of the Polish Academy of Sciences carries out basic and applied research in physics, ...

  18. Nuclear physics at extreme energy density

    International Nuclear Information System (INIS)

    This report discusses topics in the following areas: QCD transport theory; minijets in hadronic and nuclear collisions; lattice gauge theory; hadronic matter and other studies; and strong electromagnetic fields

  19. Many-body approaches to nuclear physics

    Energy Technology Data Exchange (ETDEWEB)

    Hjorth-Jensen, M.

    1993-10-01

    This thesis deals with applications of perturbative many-body theories to selected nuclear systems at low and intermediate energies. Examples are the properties of neutron stars, the calculation of shell-model effective interactions and the microscopic derivation of the optical-model potential for finite nuclei. The line of research leans on the microscopic approach, i.e. an approach which aims at describing nuclear properties from the underlying free interaction between the various hadrons where parameters like meson coupling constants define the Lagrangians. The emphasis is on the behavior of the various components of the free interaction in different nuclear media in order to understand how these components are affected by the studied nuclear correlations. 159 refs.

  20. Instrumental nuclear physics: elements for a proper choice

    International Nuclear Information System (INIS)

    This report consists of 11 documents about instrumental nuclear physics. It describes several detectors and data analysis techniques. Separate abstracts were prepared for all the papers in this volume. (TEC)

  1. Orbach urges renewed commitment to nuclear physics work

    CERN Multimedia

    Jones, D

    2002-01-01

    According to US Office of Science director Raymond Orbach, the Energy Department plans to issue a background paper in the coming months that will make the case for supporting the department's accelerator program for nuclear physics research (1 page).

  2. Accelerating Innovation: How Nuclear Physics Benefits Us All

    Science.gov (United States)

    2011-01-01

    Innovation has been accelerated by nuclear physics in the areas of improving our health; making the world safer; electricity, environment, archaeology; better computers; contributions to industry; and training the next generation of innovators.

  3. PREFACE: XIV Conference on Theoretical Nuclear Physics in Italy

    Science.gov (United States)

    Bombaci, I.; Covello, A.; Marcucci, L. E.; Rosati, S.

    2014-07-01

    This volume contains the invited and contributed papers presented at the 14th Conference on Theoretical Nuclear Physics in Italy held in Cortona, Italy, from 29-31 October, 2013. The meeting was held at the Palazzone, an elegant Renaissance Villa, commissioned by the Cardinal Silvio Passerini (1469-1529), Bishop of Cortona, and presently owned by the Scuola Normale Superiore di Pisa. The aim of this biennial Conference is to bring together Italian theorists working in various fields of nuclear physics to discuss their latest results and confront their points of view in a lively and informal way. This offers the opportunity to stimulate new ideas and promote collaborations between different research groups. The Conference was attended by 46 participants, coming from 13 Italian Universities and 11 Laboratories and Sezioni of the Istituto Nazionale di Fisica Nucleare - INFN. The program of the conference, prepared by the Organizing Committee (Ignazio Bombaci, Aldo Covello, Laura Elisa Marcucci and Sergio Rosati) focused on the following main topics: Few-Nucleon Systems Nuclear Structure Nuclear Matter and Nuclear Dynamics Relativistic Heavy Ion Collisions and Quark-Gluon Plasma Nuclear Astrophysics Nuclear Physics with Electroweak Probes Structure of Hadrons and Hadronic Matter. In the last session of the Conference there were two invited review talks related to experimental activities of great current interest. Giacomo De Angelis from the Laboratori Nazionali di Legnaro spoke about the INFN SPES radioactive ion beam project. Sara Pirrone, INFN Sezione di Catania, gave a talk on the symmetry energy and isospin physics with the CHIMERA detector. Finally, Mauro Taiuti (Università di Genova), National Coordinator of the INFN-CSN3 (Nuclear Physics Experiments), reported on the present status and future challenges of experimental nuclear physics in Italy. We gratefully acknowledge the financial support of INFN who helped make the conference possible. I Bombaci, A Covello

  4. The effective action approach applied to nuclear chiral sigma model

    International Nuclear Information System (INIS)

    The nuclear chiral sigma model of nuclear matter is considered by means of the Cornwall-Jackiw-tomboulis (CTJ) effective action. The method provides a very general framework for investigating many important problems: chiral symmetry in nuclear medium, energy density of nuclear ground state, nuclear Schwinger-Dyson (SD) equations, etc. It is shown that the SD equations for sigma-omega mixing are actually not present in this formalism. For numerical computation purposes the Hartree-Fock (HF) approximation for ground state energy density is also presented. (author). 26 refs

  5. Pragmatic approach to the physics of the nuclear system

    International Nuclear Information System (INIS)

    The ideas of dynamical symmetry vis-a-vis the SU(3) → SO(3) algebra are discussed. This group lattice is of great importance in nuclear physics, it is used in fermionic as well as bosonic descriptions of the nuclear many-body problem. It is shown that physics of quantum mechanical rotor can be presented in terms of the SU(3) → SO(3) algebra. 28 refs., 8 figs., 2 tabs. (author)

  6. Nuclear physics with superconducting cyclotron at Kolkata: Scopes and possibilities

    Indian Academy of Sciences (India)

    Sailajananda Bhattacharya

    2010-08-01

    The K500 superconducting cyclotron at the Variable Energy Cyclotron Centre, Kolkata, India is getting ready to deliver its first accelerated ion beam for experiment. At the same time, the nuclear physics programme and related experimental facility development activities are taking shape. A general review of the nuclear physics research opportunities with the superconducting cyclotron and the present status of the development of different detector arrays and other experimental facilities will be presented.

  7. Charged-Particle Thermonuclear Reaction Rates: III. Nuclear Physics Input

    OpenAIRE

    Iliadis, Christian; Longland, Richard; Champagne, Art; Coc, Alain

    2010-01-01

    The nuclear physics input used to compute the Monte Carlo reaction rates and probability density functions that are tabulated in the second paper of this series (Paper II) is presented. Specifically, we publish the input files to the Monte Carlo reaction rate code RatesMC, which is based on the formalism presented in the first paper of this series (Paper I). This data base contains overwhelmingly experimental nuclear physics information. The survey of literature for this review was concluded ...

  8. [Experimental and theoretical nuclear physics]: 1988 Annual report

    International Nuclear Information System (INIS)

    This paper describes the highlights of the past year of the Nuclear Physics Laboratory at the University of Washington. Particular topics discussed are: astrophysics, giant resonance, heavy ion induced reactions, fundamental symmetries, nuclear reactions, medium energy reactions, accelerator mass spectrometry, Van de Graaf and ion sources, the booster linac project, instrumentation and computer systems

  9. Strangeness nuclear physics: a critical review on selected topics

    CERN Document Server

    Botta, Elena; Garbarino, Gianni

    2012-01-01

    Selected topics in strangeness nuclear physics are critically reviewed. This includes production, structure and weak decay of $\\Lambda$--Hypernuclei, the $\\bar K$ nuclear interaction and the possible existence of $\\bar K$ bound states in nuclei. Perspectives for future studies on these issues are also outlined.

  10. Importance of Nuclear Physics to NASA's Space Missions

    Science.gov (United States)

    Tripathi, R. K.; Wilson, J. W.; Cucinotta, F. A.

    2001-01-01

    We show that nuclear physics is extremely important for accurate risk assessments for space missions. Due to paucity of experimental input radiation interaction information it is imperative to develop reliable accurate models for the interaction of radiation with matter. State-of-the-art nuclear cross sections models have been developed at the NASA Langley Research center and are discussed.

  11. Framework for applying probabilistic safety analysis in nuclear regulation

    International Nuclear Information System (INIS)

    The traditional regulatory framework has served well to assure the protection of public health and safety. It has been recognized, however, that in a few circumstances, this deterministic framework has lead to an extensive expenditure on matters hat have little to do with the safe and reliable operation of the plant. Developments of plant-specific PSA have offered a new and powerful analytical tool in the evaluation of the safety of the plant. Using PSA insights as an aid to decision making in the regulatory process is now known as 'risk-based' or 'risk-informed' regulation. Numerous activities in the U.S. nuclear industry are focusing on applying this new approach to modify regulatory requirements. In addition, other approaches to regulations are in the developmental phase and are being evaluated. One is based on the performance monitoring and results and it is known as performance-based regulation. The other, called the blended approach, combines traditional deterministic principles with PSA insights and performance results. (author)

  12. Applying physical layer network coding in wireless networks

    CERN Document Server

    Shengli, Zhang

    2009-01-01

    A main distinguishing feature of a wireless network compared with a wired network is its broadcast nature, in which the signal transmitted by a node may reach several other nodes, and a node may receive signals from several other nodes, simultaneously. Rather than a blessing, this feature is treated more as an interference-inducing nuisance in most wireless networks today (e.g., IEEE 802.11). This paper shows that the concept of network coding can be applied at the physical layer to turn the broadcast property into a capacity-boosting advantage in wireless ad hoc networks. Specifically, we propose a physical-layer network coding (PNC) scheme to coordinate transmissions among nodes. In contrast to "straightforward" network coding which performs coding arithmetic on digital bit streams after they have been received, PNC makes use of the additive nature of simultaneously arriving electromagnetic (EM) waves for equivalent coding operation. And in doing so, PNC can potentially achieve 100% and 50% throughput incre...

  13. Evolution of nuclear spectroscopy at Saha Institute of Nuclear Physics

    Indian Academy of Sciences (India)

    P Mukherjee

    2001-07-01

    Experimental studies of nuclear excitations have been an important subject from the earliest days when the institute was established. The construction of 4 MeV proton cyclotron was mainly aimed to achieve this goal. Early experiments in nuclear spectroscopy were done with radioactive nuclei with the help of beta and gamma ray spectrometers. Small NaI(Tl) detectors were used for gamma–gamma coincidence, angular correlation and life time measurements. The excited states nuclear magnetic moments were measured in perturbed gamma–gamma angular correlation experiments. A high transmission magnetic beta ray spectrometer was used to measure internal conversion coefficients and beta–gamma coincidence studies. A large number of significant contributions were made during 1950–59 using these facilities. Proton beam in the cyclotron was made available in the late 1950’s and together with 14 MeV neutrons obtained from a C-W generator a large number of short-lived nuclei were investigated during 1960’s and 1970’s. The introduction of high resolution Ge gamma detectors and the improved electronics helped to extend the spectroscopic work which include on-line (,') and (,) reaction studies. Nuclear spectroscopic studies entered a new phase in the 1980’s with the availability of 40–80 MeV alpha beam from the variable energy cyclotron at VECC, Calcutta. A number of experimental groups were formed in the institute to study nuclear level schemes with (,) reactions. Initially only two unsuppressed Ge detectors were used for coincidence studies. Later in 1989 five Ge detectors with a large six segmented NaI(Tl) multiplicitysum detector system were successfully used to select various channels in (,) reactions. From 1990 to date a variety of medium energy heavy ions were made available from the BARC-TIFR Pelletron and the Nuclear Science Centre Pelletron. The state of the art gamma detector arrays in these centres enabled the Saha Institute groups to undertake more

  14. Physics and agriculture: applied optics to plant fertilization and breeding

    Science.gov (United States)

    Diomandé, K.; Soro, P. A.; Zoro, G. H.; Krou, V. A.

    2011-08-01

    The economy of Côte d'Ivoire rests on the agriculture. In order to contribute to the development of this agriculture, we have oriented our research field on applied optics to agriculture. Then, our research concerns mainly the Laser Induced chlorophyll fluorescence in plants. A simple laser-induced fluorescence set up has been designed and built at the Laboratory of Crystallography and Molecular Physics (LaCPM) at the University of Cocody (Abidjan, COTE D'IVOIRE). With this home set up we first have studied the fluorescence spectra of the "chlorophyll" to characterize the potassium deficiency in oil palm (Elaeis guineensis Jacq,). However, we found that the results differed for samples along terraced plots. The study of this phenomenon called "border effect", has enabled us to realize that sampling should be done after two rows of safety in each plot. We also applied the Laser Induced chlorophyll fluorescence technique to improve the plant breeding. For this, we have characterized the rubber tree seedlings in nurseries. And so we have highlighted those sensible to drought and resistant ones.

  15. Physical cryptographic verification of nuclear warheads

    Science.gov (United States)

    Kemp, R. Scott; Danagoulian, Areg; Macdonald, Ruaridh R.; Vavrek, Jayson R.

    2016-08-01

    How does one prove a claim about a highly sensitive object such as a nuclear weapon without revealing information about the object? This paradox has challenged nuclear arms control for more than five decades. We present a mechanism in the form of an interactive proof system that can validate the structure and composition of an object, such as a nuclear warhead, to arbitrary precision without revealing either its structure or composition. We introduce a tomographic method that simultaneously resolves both the geometric and isotopic makeup of an object. We also introduce a method of protecting information using a provably secure cryptographic hash that does not rely on electronics or software. These techniques, when combined with a suitable protocol, constitute an interactive proof system that could reject hoax items and clear authentic warheads with excellent sensitivity in reasonably short measurement times.

  16. Physical cryptographic verification of nuclear warheads

    Science.gov (United States)

    Kemp, R. Scott; Danagoulian, Areg; Macdonald, Ruaridh R.; Vavrek, Jayson R.

    2016-01-01

    How does one prove a claim about a highly sensitive object such as a nuclear weapon without revealing information about the object? This paradox has challenged nuclear arms control for more than five decades. We present a mechanism in the form of an interactive proof system that can validate the structure and composition of an object, such as a nuclear warhead, to arbitrary precision without revealing either its structure or composition. We introduce a tomographic method that simultaneously resolves both the geometric and isotopic makeup of an object. We also introduce a method of protecting information using a provably secure cryptographic hash that does not rely on electronics or software. These techniques, when combined with a suitable protocol, constitute an interactive proof system that could reject hoax items and clear authentic warheads with excellent sensitivity in reasonably short measurement times. PMID:27432959

  17. Joliot-Curie nuclear physics school 1983

    International Nuclear Information System (INIS)

    The 1983 Joliot-Curie school was aimed at reviewing some outstanding aspects of current research in nuclear spectroscopy. The recent developments of high and very high spin states study are presented. The most important experimental methods and explaining concepts concerning the ground states and the first excited levels of nuclei far from beta stability are reviewed. Spin-isospin excitations are dealt with from a theoretical point of view and also for the most outstanding experimental results. At last, basic concepts and limits of the shell model nuclear description are outlined and illustrated

  18. The percolation approach in nuclear physics

    International Nuclear Information System (INIS)

    Nuclear collisions at intermediate energies show up two different regimes: spallation and multifragmentation. We have developed a simple model of nuclear reactions that is based on percolation. This model exhibits the transition between the two possible regimes. Parameters appearing in percolation are related to the reactions conditions. With the help of simulations and also analytically, we can calculate various quantities such as mass yields, linear momentum transfers and fragments multiplicities. The agreement with experimental data is, generally, rather good. Thus, we can say that percolation, though schematic, appears as a useful framework to discuss heavy ions collisions at various incident energies

  19. Summary of the proceedings of the workshop on future directions in nuclear physics research

    International Nuclear Information System (INIS)

    The workshop was intended to gather active researchers in nuclear physics to discuss the directions for research during the next 10 to 15 years. Topics discussed included: fundamental interactions; nuclear spectroscopy; electromagnetic nuclear physics; intermediate energy physics; heavy ion physics; and interrelationships among subfields of nuclear physics

  20. HIE-ISOLDE: NUCLEAR PHYSICS NOW AT HIGHER ENERGIES

    CERN Multimedia

    2015-01-01

    From biomedical applications to nuclear astrophysics, physicists at CERN’s nuclear physics facility, ISOLDE, are probing the structure of matter. To stay at the cutting edge of technology and science, further development was needed. Now, 8 years since the start of the HIE-ISOLDE project, a new accelerator is in place taking nuclear physics at CERN to higher energies. With physicists setting their sights on even higher energies of 10 MeV in the future, with four times the intensity, they will continue to commission more HIE-ISOLDE accelerating cavities and beamlines in the years to come.

  1. 4. Mexican School of Nuclear Physics. Papers; 4. Escuela Mexicana de Fisica Nuclear. Notas

    Energy Technology Data Exchange (ETDEWEB)

    Aguilera, E.F.; Hernandez, E.; Hirsch, J. (eds.)

    2005-07-01

    The IV Mexican School of Nuclear Physics, organized by the Nuclear Physics Division of the Mexican Physics Society, takes place from June 27 to July 8, 2005 in the Nuclear Sciences and of Physics Institutes of the UNAM and in the National Institute of Nuclear Research (ININ). This school, as the previous ones, it was guided the students of the last semesters of the career of Physics, of the Post grade of the same specialty, and of other adjacent careers. To give the students a current vision of some of the topics more important of the nuclear physics and their relationship with other near areas of the physics it was the objective of this School. The School covered a wide range of theoretical and experimental courses, imparted in its majority by Mexican expert professor-investigators in the matter to who we thank them the one effort and the quality of their presentations, reflected in the content of this document. The answer of the students to the convocation was excellent, 31 students presented application for admission coming from the following institutions: Meritorious Autonomous University de Puebla, National Institute of Nuclear Research, Technological Institute of Orizaba, National Polytechnic Institute, The University of Texas at Brownsville, Autonomous University of the State de Mexico, Autonomous University of the State of Morelos, Autonomous University of Baja California, Autonomous University of San Luis Potosi, University of Guadalajara, University of Guanajuato, National Autonomous University of Mexico, University of Texas, at El Paso and University Veracruzana. They were admitted to the 22 students with the higher averages qualifications of the list of applicants. The organizers of this school thank the financial support granted by the following sponsor institutions: Nuclear Sciences Institute, UNAM, Physics Institute of UNAM, Coordination of the Scientific Research UNAM, National Institute of Nuclear Research, Nuclear Physics Division of the Mexican

  2. Role of Chiral symmetry in nuclear physics

    International Nuclear Information System (INIS)

    Spurred by some recent experiments in electron scattering, we reassess the role that chiral symmetry plays in nuclear structure. Though difficult to formulate precisely, some of the ideas put forward many years ago, combined with the recent revival of the Skyrmion picture of the nucleon, are seen to be move relevant now than ever

  3. Nuclear Physics Laboratory: Annual report, 1986

    International Nuclear Information System (INIS)

    Individual research projects are summarized under the following broad headings: astrophysics and cosmology, giant resonances in excited nuclei, heavy ion reactions, fundamental symmetries in nuclei, the search for an intermediate range force coupled to baryon number, other tests of fundamental symmetries, nuclear instrumentation, computer systems, and the booster linac project. A list of publications is included

  4. Nuclear Physics on the Light Front

    OpenAIRE

    Miller, Gerald A.

    1999-01-01

    High energy scattering experiments involving nuclei are typically analyzed in terms of light front variables. The desire to provide realistic, relativistic wave functions expressed in terms of these variables led me to try to use light front dynamics to compute nuclear wave functions. The progress is summarized here.

  5. Future directions in particle and nuclear physics at multi-GeV hadron beam facilities

    Energy Technology Data Exchange (ETDEWEB)

    Geesaman, D.F. [Argonne National Lab., IL (United States)] [ed.

    1993-11-01

    This report contains papers on the following topics in particle and nuclear physics: hadron dynamics; lepton physics; spin physics; hadron and nuclear spectroscopy; hadronic weak interactions; and Eta physics. These papers have been indexed separately elsewhere.

  6. Future directions in particle and nuclear physics at multi-GeV hadron beam facilities

    International Nuclear Information System (INIS)

    This report contains papers on the following topics in particle and nuclear physics: hadron dynamics; lepton physics; spin physics; hadron and nuclear spectroscopy; hadronic weak interactions; and Eta physics. These papers have been indexed separately elsewhere

  7. 2nd International Conference on Nuclear Physics in Astrophysics

    CERN Document Server

    Fülöp, Zsolt; Somorjai, Endre; The European Physical Journal A : Volume 27, Supplement 1, 2006

    2006-01-01

    Launched in 2004, "Nuclear Physics in Astrophysics" has established itself in a successful topical conference series addressing the forefront of research in the field. This volume contains the selected and refereed papers of the 2nd conference, held in Debrecen in 2005 and reprinted from "The European Physical Journal A - Hadrons and Nuclei".

  8. AGS experiments in nuclear/QCD physics at medium energies

    International Nuclear Information System (INIS)

    This report contains a diagram of the experimental setup for each experiment as well as giving a brief discussion of its purpose and list of collaborators for the experiment. Thirty-one experiments in the areas of nuclear physics and particle physics are covered. It concludes with a list of publications of the AGS experiments

  9. Max-Planck Institute for Nuclear Physics. Annual report 1993

    International Nuclear Information System (INIS)

    Research in the fields of nuclear physics and particle physics focusses on experimental investigations into the structure of hadrons, hadron interactions, and the relation between the hadronic properties and nuclearphysics phenomena. The experimental and theoretical cosmophysics studies investigate solar neutrinos, cosmic radiation, the interstellar and extragalactic media, C60, the atmosphere of the planetary system, extraterrestric solid matter, and archaeometry. (DG)

  10. AGS experiments in nuclear/QCD physics at medium energies

    Energy Technology Data Exchange (ETDEWEB)

    Lo Presti, P.

    1998-07-01

    This report contains a diagram of the experimental setup for each experiment as well as giving a brief discussion of its purpose and list of collaborators for the experiment. Thirty-one experiments in the areas of nuclear physics and particle physics are covered. It concludes with a list of publications of the AGS experiments.

  11. Novel scintillators and silicon photomultipliers for nuclear physics and applications

    Science.gov (United States)

    Jenkins, David

    2015-06-01

    Until comparatively recently, scintillator detectors were seen as an old-fashioned tool of nuclear physics with more attention being given to areas such as gamma-ray tracking using high-purity germanium detectors. Next-generation scintillator detectors, such as lanthanum bromide, which were developed for the demands of space science and gamma- ray telescopes, are found to have strong applicability to low energy nuclear physics. Their excellent timing resolution makes them very suitable for fast timing measurements and their much improved energy resolution compared to conventional scintillators promises to open up new avenues in nuclear physics research which were presently hard to access. Such "medium-resolution" spectroscopy has broad interest across several areas of contemporary interest such as the study of nuclear giant resonances. In addition to the connections to space science, it is striking that the demands of contemporary medical imaging have strong overlap with those of experimental nuclear physics. An example is the interest in PET-MRI combined imaging which requires putting scintillator detectors in a high magnetic field environment. This has led to strong advances in the area of silicon photomultipliers, a solid-state replacement for photomultiplier tubes, which are insensitive to magnetic fields. Broad application to nuclear physics of this technology may be foreseen.

  12. Nuclear Physics Division biennial report 1993-1994

    International Nuclear Information System (INIS)

    The activities of the Nuclear Physics Division of Bhabha Atomic Research Centre for the two year period January 1993 to December 1994 are summarised. The experimental nuclear physics research activities are centred around the 14 UD Pelletron accelerator. Instrumentation development for the research utilization of the accelerator as well as accelerator development activities connected with the superconducting LINAC booster are included. During the period the conversion of the 5.5 MV single stage Van de Graaff Accelerator into a 7 MV folded tandem accelerator for light and heavy ions, for use not only in low energy nuclear physics but also in various inter-disciplinary areas was carried out. The research activity in the field of study of heavy ion reactions involving elastic scattering, transfer reactions, fusion-fission phenomena, heavy ion resonances, high energy photons in nuclear reactions and level density determination from charged particle spectra emitted in heavy ion reactions are given. (author). refs., figs., tabs

  13. Lasers as a Bridge between Atomic and Nuclear Physics

    OpenAIRE

    Matinyan, Sergei G.

    1997-01-01

    This paper reviews the application of optical and UV laser radiation to several topics in low-energy nuclear physics. We consider the laser-induced nuclear anti-Stokes transitions, the laser-assisted and the laser-induced internal conversion, and the Electron Bridge and Inverse Electron Bridge mechanisms as tools for deexciting and exciting of low-lying nuclear isomeric states. A study of the anomalous, by low-lying, nuclear isomeric states (on an example of the $^{229}$Th nucleus) is present...

  14. Superallowed nuclear beta decay: Precision measurements for basic physics

    Energy Technology Data Exchange (ETDEWEB)

    Hardy, J. C. [Cylotron Institute, Texas A and M University, College station, TX, 77843-3366 (United States)

    2012-11-20

    For 60 years, superallowed 0{sup +}{yields}0{sup +} nuclear beta decay has been used to probe the weak interaction, currently verifying the conservation of the vector current (CVC) to high precision ({+-}0.01%) and anchoring the most demanding available test of the unitarity of the Cabibbo-Kobayashi-Maskawa (CKM) matrix ({+-}0.06%), a fundamental pillar of the electroweak standard model. Each superallowed transition is characterized by its ft-value, a result obtained from three measured quantities: the total decay energy of the transition, its branching ratio, and the half-life of the parent state. Today's data set is composed of some 150 independent measurements of 13 separate superallowed transitions covering a wide range of parent nuclei from {sup 10}C to {sup 74}Rb. Excellent consistency among the average results for all 13 transitions - a prediction of CVC - also confirms the validity of the small transition-dependent theoretical corrections that have been applied to account for isospin symmetry breaking. With CVC consistency established, the value of the vector coupling constant, G{sub V}, has been extracted from the data and used to determine the top left element of the CKM matrix, V{sub ud}. With this result the top-row unitarity test of the CKM matrix yields the value 0.99995(61), a result that sets a tight limit on possible new physics beyond the standard model. To have any impact on these fundamental weak-interaction tests, any measurement must be made with a precision of 0.1% or better - a substantial experimental challenge well beyond the requirements of most nuclear physics measurements. I overview the current state of the field and outline some of the requirements that need to be met by experimentalists if they aim to make measurements with this high level of precision.

  15. Applying laser technology to decommissioning for nuclear power plant

    Science.gov (United States)

    Saishu, Sadanori; Abe, Seiji; Inoue, T.

    2000-01-01

    Laser technology has much possibility to accomplish nuclear facility decommissioning effective and the laser application to cutting technique and decontamination technique is considered in Japan. Nuclear Power Engineering Corporation had developed CO laser for cutting technique, and had developed YAG laser for decontamination.

  16. Neutron physics for nuclear reactors unpublished writings by Enrico Fermi

    CERN Document Server

    Fermi, Enrico; Pisanti, O

    2010-01-01

    This unique volume gives an accurate and very detailed description of the functioning and operation of basic nuclear reactors, as emerging from yet unpublished papers by Nobel Laureate Enrico Fermi. In the first part, the entire course of lectures on Neutron Physics delivered by Fermi at Los Alamos is reported, according to the version made by Anthony P French. Here, the fundamental physical phenomena are described very clearly and comprehensively, giving the appropriate physics grounds for the functioning of nuclear piles. In the second part, all the patents issued by Fermi (and coworkers) on

  17. Parity- and Time-Reversal Tests in Nuclear Physics

    CERN Document Server

    Hertzog, David

    2013-01-01

    Nuclear physics tests of parity- and time-reversal invariance have both shaped the development of the Standard Model and provided key tests of its predictions. These studies now provide vital input in the search for physics beyond the Standard Model. We give a brief review of a few key experimental and theoretical developments in the history of this sub-field of nuclear physics as well as a short outlook, focusing on weak decays, parity-violation in electron scattering, and searches for permanent electric dipole moments of the neutron and neutral atoms.

  18. Parity- and Time-Reversal Tests in Nuclear Physics

    OpenAIRE

    Hertzog, David; Ramsey-Musolf, Michael J.

    2012-01-01

    Nuclear physics tests of parity- and time-reversal invariance have both shaped the development of the Standard Model and provided key tests of its predictions. These studies now provide vital input in the search for physics beyond the Standard Model. We give a brief review of a few key experimental and theoretical developments in the history of this sub-field of nuclear physics as well as a short outlook, focusing on weak decays, parity-violation in electron scattering, and searches for perma...

  19. Physics teachers' nuclear in-service training in Hungary

    International Nuclear Information System (INIS)

    Teaching of science subjects, specifically physics among others, is important in Hungarian schools. The paper starts with some historical aspects on how the modern physics reached Hungarian schools, what kinds of methods the physics teachers use for their in-service training and what is their success. In 1985 Hungarian Government introduced the system of physics teacher's in-service training for a year. The courses end with a thesis and examination. Teachers have a possibility to join the nuclear physics intensive course of Nuclear Physics Department at Eottvos University. Curriculum and topics of laboratory practice are given together with some dissertations of the course. Moreover, several competition (Leo Szilard competition) is mentioned with starting that in each year the 5 best students get free entrance to the Hungarian universities. (S. Ohno)

  20. Nuclear Physics Laboratory, University of Washington annual report

    International Nuclear Information System (INIS)

    The Nuclear Physics Laboratory at the University of Washington in Seattle pursues a broad program of nuclear physics. These activities are conducted locally and at remote sites. The current programs include in-house research using the local tandem Van de Graaff and superconducting linac accelerators and non-accelerator research in solar neutrino physics at the Sudbury Neutrino Observatory in Canada and at SAGE in Russia, and gravitation as well as user-mode research at large accelerators and reactor facilities around the world. Summaries of the individual research projects are included. Areas of research covered are: fundamental symmetries, weak interactions and nuclear astrophysics; neutrino physics; nucleus-nucleus reactions; ultra-relativistic heavy ions; and atomic and molecular clusters

  1. University of Washington, Nuclear Physics Laboratory annual report, 1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-04-01

    The Nuclear Physics Laboratory of the University of Washington supports a broad program of experimental physics research. The current program includes in-house research using the local tandem Van de Graff and superconducting linac accelerators and non-accelerator research in double beta decay and gravitation as well as user-mode research at large accelerator and reactor facilities around the world. This book is divided into the following areas: nuclear astrophysics; neutrino physics; nucleus-nucleus reactions; fundamental symmetries and weak interactions; accelerator mass spectrometry; atomic and molecular clusters; ultra-relativistic heavy ion collisions; external users; electronics, computing, and detector infrastructure; Van de Graff, superconducting booster and ion sources; nuclear physics laboratory personnel; degrees granted for 1994--1995; and list of publications from 1994--1995.

  2. Nuclear Physics Laboratory, University of Washington annual report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-04-01

    The Nuclear Physics Laboratory at the University of Washington in Seattle pursues a broad program of nuclear physics. These activities are conducted locally and at remote sites. The current programs include in-house research using the local tandem Van de Graaff and superconducting linac accelerators and non-accelerator research in solar neutrino physics at the Sudbury Neutrino Observatory in Canada and at SAGE in Russia, and gravitation as well as user-mode research at large accelerators and reactor facilities around the world. Summaries of the individual research projects are included. Areas of research covered are: fundamental symmetries, weak interactions and nuclear astrophysics; neutrino physics; nucleus-nucleus reactions; ultra-relativistic heavy ions; and atomic and molecular clusters.

  3. University of Washington, Nuclear Physics Laboratory annual report, 1995

    International Nuclear Information System (INIS)

    The Nuclear Physics Laboratory of the University of Washington supports a broad program of experimental physics research. The current program includes in-house research using the local tandem Van de Graff and superconducting linac accelerators and non-accelerator research in double beta decay and gravitation as well as user-mode research at large accelerator and reactor facilities around the world. This book is divided into the following areas: nuclear astrophysics; neutrino physics; nucleus-nucleus reactions; fundamental symmetries and weak interactions; accelerator mass spectrometry; atomic and molecular clusters; ultra-relativistic heavy ion collisions; external users; electronics, computing, and detector infrastructure; Van de Graff, superconducting booster and ion sources; nuclear physics laboratory personnel; degrees granted for 1994--1995; and list of publications from 1994--1995

  4. Mathematical and computational methods in nuclear physics

    International Nuclear Information System (INIS)

    The lectures, covering various aspects of the many-body problem in nuclei, review present knowledge and include some unpublished material as well. Bohigas and Giannoni discuss the fluctuation properties of spectra of many-body systems by means of random matrix theories, and the attempts to search for quantum mechanical manifestations of classical chaotic motion. The role of spectral distributions (expressed as explicit functions of the microscopic matrix elements of the Hamiltonian) in the statistical spectroscopy of nuclear systems is analyzed by French. Zucker, after a brief review of the theoretical basis of the shell model, discusses a reformulation of the theory of effective interactions and gives a survey of the linked cluster theory. Goeke's lectures center on the mean-field methods, particularly TDHF, used in the investigation of the large-amplitude nuclear collective motion, pointing out both the successes and failures of the theory

  5. Health physics training at V.C. Summer Nuclear Station

    International Nuclear Information System (INIS)

    Health Physics training for radiation workers and Health Physics Specialists continues to receive full attention by regulatory agencies such as the NRC and ANI. Guidance for such training continues to develop in a direction which forces utilities to continuously increase the quality and quantity of their Health Physics Training Program. This occurs at a time when our rapidly growing industry is placing greatly increased demands on the available work force of highly trained nuclear workers

  6. 8. Biennial session on nuclear physics

    International Nuclear Information System (INIS)

    In this biennial, some importance have been accorded deliberately to heavy ion experiment planning at very high energy and on results than can be waited for. Besides these collisions, different subjects are dealt with such as kaon scattering, hot nuclei, electron channeling photon and pion reactions in light nuclei, new forms of radioactivity, exotic nuclei, theoretical processing of nuclear dynamics, bag models, and pionic atoms

  7. Towards Nuclear Physics of OHe Dark Matter

    CERN Document Server

    Khlopov, Maxim Yu; Soldatov, Evgeny Yu

    2011-01-01

    The nonbaryonic dark matter of the Universe can consist of new stable charged particles, bound in heavy "atoms" by ordinary Coulomb interaction. If stable particles $O^{--}$ with charge -2 are in excess over their antiparticles (with charge +2), the primordial helium, formed in Big Bang Nucleosynthesis, captures all $O^{--}$ in neutral "atoms" of O-helium (OHe). Interaction with nuclei plays crucial role in the cosmological evolution of OHe and in the effects of these dark atoms as nuclear interacting dark matter. Slowed down in terrestrial matter OHe atoms cause negligible effects of nuclear recoil in underground detectors, but can experience radiative capture by nuclei. Local concentration of OHe in the matter of detectors is rapidly adjusted to the incoming flux of cosmic OHe and possess annual modulation due to Earth's orbital motion around the Sun. The potential of OHe-nucleus interaction is determined by polarization of OHe by the Coulomb and nuclear force of the approaching nucleus. Stark-like effect b...

  8. An approach using quantum ant colony optimization applied to the problem of nuclear reactors reload

    International Nuclear Information System (INIS)

    The basic concept behind the nuclear reactor fuel reloading problem is to find a configuration of new and used fuel elements, to keep the plant working at full power by the largest possible duration, within the safety restrictions. The main restriction is the power peaking factor, which is the limit value for the preservation of the fuel assembly. The QACOAlfa algorithm is a modified version of Quantum Ant Colony Optimization (QACO) proposed by Wang et al, which uses a new actualization method and a pseudo evaporation step. We examined the QACOAlfa behavior associated to physics of reactors code RECNOD when applied to this problem. Although the QACO have been developed for continuous functions, the binary model used in this work allows applying it to discrete problems, such as the mentioned above. (author)

  9. An approach using quantum ant colony optimization applied to the problem of nuclear reactors reload

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Marcio H.; Lima, Alan M.M. de; Schirru, Roberto; Medeiros, J.A.C.C., E-mail: marciohenrique@lmp.ufrj.b, E-mail: schirru@lmp.ufrj.b, E-mail: canedo@lmp.ufrj.b [Coordenacao dos Programas de Pos-Graduacao de Engenharia (COPPE/UFRJ), RJ (Brazil). Programa de Engenharia Nuclear. Lab. de Monitoramento de Processos

    2009-07-01

    The basic concept behind the nuclear reactor fuel reloading problem is to find a configuration of new and used fuel elements, to keep the plant working at full power by the largest possible duration, within the safety restrictions. The main restriction is the power peaking factor, which is the limit value for the preservation of the fuel assembly. The QACO{sub A}lfa algorithm is a modified version of Quantum Ant Colony Optimization (QACO) proposed by Wang et al, which uses a new actualization method and a pseudo evaporation step. We examined the QACO{sub A}lfa behavior associated to physics of reactors code RECNOD when applied to this problem. Although the QACO have been developed for continuous functions, the binary model used in this work allows applying it to discrete problems, such as the mentioned above. (author)

  10. IAEA support to medical physics in nuclear medicine.

    Science.gov (United States)

    Meghzifene, Ahmed; Sgouros, George

    2013-05-01

    Through its programmatic efforts and its publications, the International Atomic Energy Agency (IAEA) has helped define the role and responsibilities of the nuclear medicine physicist in the practice of nuclear medicine. This paper describes the initiatives that the IAEA has undertaken to support medical physics in nuclear medicine. In 1984, the IAEA provided guidance on how to ensure that the equipment used for detecting, imaging, and quantifying radioactivity is functioning properly (Technical Document [TECDOC]-137, "Quality Control of Nuclear Medicine Instruments"). An updated version of IAEA-TECDOC-137 was issued in 1991 as IAEA-TECDOC-602, and this included new chapters on scanner-computer systems and single-photon emission computed tomography systems. Nuclear medicine physics was introduced as a part of a project on radiation imaging and radioactivity measurements in the 2002-2003 IAEA biennium program in Dosimetry and Medical Radiation Physics. Ten years later, IAEA activities in this field have expanded to cover quality assurance (QA) and quality control (QC) of nuclear medicine equipment, education and clinical training, professional recognition of the role of medical physicists in nuclear medicine physics, and finally, the coordination of research and development activities in internal dosimetry. As a result of these activities, the IAEA has received numerous requests to support the development and implementation of QA or QC programs for radioactivity measurements in nuclear medicine in many Member States. During the last 5 years, support was provided to 20 Member States through the IAEA's technical cooperation programme. The IAEA has also supported education and clinical training of medical physicists. This type of support has been essential for the development and expansion of the Medical Physics profession, especially in low- and middle-income countries. The need for basic as well as specialized clinical training in medical physics was identified as a

  11. Proceedings of the workshop on hyper nuclear physics

    International Nuclear Information System (INIS)

    A workshop on hyper nuclear physics was held on November 25-27, 1982, at the National Laboratory for High Energy Physics of Japan (KEK). The proton synchroton at KEK will be devoted for the hyper nuclear physics in near future, and the prospective experimental projects in this field were discussed at the workshop. The problems discussed were the production of hyper nuclei, the structure of hyper nuclei, hyperon interaction, and the decay of hyperon. For this study, high quality K-beam is required. The proceedings include the reports on the Kaon beam line, an experimental proposal on the hyper nuclear spectroscopy, discussion on hyper nuclear spectroscopy, the structure of light p-shell lambda hypernuclei, the experiment on hyper nuclear reaction, the magnetic moment of hyper nuclei, search for strange dibaryons, polarized targets with a cryogenic system, a spectrometer for hyper nuclear spectroscopy, YN and YY interactions, lambda-N soft core potential and hypertriton, lambda-sigma conversion and Pauli principle, the sigma-hyper nuclear states in finite nuclei, the microscopic three-body cluster of hyper nuclei, and K--nucleus elastic scattering. (Kato, T.)

  12. Theoretical studies in medium-energy nuclear and hadronic physics

    International Nuclear Information System (INIS)

    A proposal for theoretical nuclear physics research is made for the period April 1, 1993 through March 31, 1996. Research is proposed in the following areas: relativistic many-body theory of nuclei and nuclear matter, quasifree electroweak scattering and strange quarks in nuclei, dynamical effects in (e,e'p) scattering at large momentum transfer, investigating the nucleon's parton sea with polarized leptoproduction, physics of ultrarelativistic nucleus endash nucleus collisions, QCD sum rules and hadronic properties, non-relativistic models of nuclear reactions, and spin and color correlations in a quark-exchange model of nuclear matter. Highlights of recent research, vitae of principal investigators, and lists of publications and invited talks are also given. Recent research dealt primarily with medium-energy nuclear physics, relativistic theories of nuclei and the nuclear response, the nuclear equation of state under extreme conditions, the dynamics of the quark endash gluon plasma in relativistic heavy-ion collisions, and theories of the nucleon endash nucleon force

  13. Plasma physics and controlled nuclear fusion

    International Nuclear Information System (INIS)

    The report contains the proceedings of a conference on plasma physics. A fraction of topics included MHD instabilities, magnetic confinement and plasma heating in the field of fusion plasmas, in 8 papers falling in the INIS scope have been abstracted and indexed for the INIS database. (K.A.)

  14. Applying Functional Modeling for Accident Management of Nuclear Power Plant

    DEFF Research Database (Denmark)

    Lind, Morten; Zhang, Xinxin

    2014-01-01

    The paper investigate applications of functional modeling for accident management in complex industrial plant with special reference to nuclear power production. Main applications for information sharing among decision makers and decision support are identified. An overview of Multilevel Flow...

  15. Nuclear-physical data editing and analysis

    International Nuclear Information System (INIS)

    Full text: At the modern stage of high energy physics development, investigation of multiple production processes of particles and nucleus-fragments and their automatical editing becomes one of the central problems of high energy physics (elementary-particles). Enormous experimental information accumulated from various registering installation put global physical problems before physicists-experimenters. One of these problems -automatic editing and receiving of correct physical data and thereby to make scientific conclusions [1]. In the article, some questions of automatic editing of experimental data are presented. Modern automatic systems of mathematical editing of data are complex programme, consisting of various components, which are called in definite sequence [2]. The editing of experimental results on ECM is a complex process, connected with using of tens thousands of information storage devices (discs and cartridges) and other external memory equipment. For processing of experimental data the programme system complexes are prepared and created. This system is used for study of hypernuclear and multiparticle processes in different scientific research institutions of Commonwealth of Independent Countries and other countries abroad [3]. At the present in Andijan State University some of processors and methodic systems are used by students of Physics Department in preparing graduation papers. In particular, the dependence of average number of fragments from energy of particles bombarding nucleus-target was investigated. The investigations made in the framework of different models of nuclei, show slow increase of the number of nuclei-fragments, depending of the energy of bombarding particle [4]. In the further the similar systems for investigation and automation of rapid and superrapid reactions, as well as processes in solid and fluid crystals will be created [5]. (author)

  16. Recent measurements for hadrontherapy and space radiation: nuclear physics.

    Science.gov (United States)

    Miller, J

    2001-01-01

    The particles and energies commonly used for hadron therapy overlap the low end of the charge and energy range of greatest interest for space radiation applications, Z=1-26 and approximately 100-1000 MeV/nucleon. It has been known for some time that the nuclear interactions of the incident ions must be taken into account both in treatment planning and in understanding and addressing the effects of galactic cosmic ray ions on humans in space. Until relatively recently, most of the studies of nuclear fragmentation and transport in matter were driven by the interests of the nuclear physics and later, the hadron therapy communities. However, the experimental and theoretical methods and the accelerator facilities developed for use in heavy ion nuclear physics are directly applicable to radiotherapy and space radiation studies. I will briefly review relevant data taken recently at various accelerators, and discuss the implications of the measurements for radiotherapy, radiobiology and space radiation research.

  17. Recent measurements for hadrontherapy and space radiation: nuclear physics

    Science.gov (United States)

    Miller, J.

    2001-01-01

    The particles and energies commonly used for hadron therapy overlap the low end of the charge and energy range of greatest interest for space radiation applications, Z=1-26 and approximately 100-1000 MeV/nucleon. It has been known for some time that the nuclear interactions of the incident ions must be taken into account both in treatment planning and in understanding and addressing the effects of galactic cosmic ray ions on humans in space. Until relatively recently, most of the studies of nuclear fragmentation and transport in matter were driven by the interests of the nuclear physics and later, the hadron therapy communities. However, the experimental and theoretical methods and the accelerator facilities developed for use in heavy ion nuclear physics are directly applicable to radiotherapy and space radiation studies. I will briefly review relevant data taken recently at various accelerators, and discuss the implications of the measurements for radiotherapy, radiobiology and space radiation research.

  18. Networking for High Energy and Nuclear Physics

    OpenAIRE

    Newman, Harvey B.

    2007-01-01

    This report gives an overview of the status and outlook for the world's research networks and major international links used by the high energy physics and other scientific communities, network technology advances on which our community depends and in which we have an increasingly important role, and the problem of the Digital Divide, which is a primary focus of ICFA's Standing Committee on Inter-regional Connectivity (SCIC). Wide area networks of sufficient, and rapidly increasing end-to...

  19. The standpoint of the Slovak Nuclear Society to the education in nuclear physics, technology and energetics

    International Nuclear Information System (INIS)

    The Slovak Nuclear Society and its consultative body Academic Council of the SNUS warns on: (a) necessity of preservation of knowledge and skills in nuclear physics, technology and energetics; (b) necessity and significance of development projects and research in given areas; (c) necessity of qualitative, expertly certificated lifelong education on competent domestics place of works. (authors)

  20. Accelerating Innovation: How Nuclear Physics Benefits Us All

    Energy Technology Data Exchange (ETDEWEB)

    2011-01-01

    From fighting cancer to assuring food is safe to protecting our borders, nuclear physics impacts the lives of people around the globe every day. In learning about the nucleus of the atom and the forces that govern it, scientists develop a depth of knowledge, techniques and remarkable research tools that can be used to develop a variety of often unexpected, practical applications. These applications include devices and technologies for medical diagnostics and therapy, energy production and exploration, safety and national security, and for the analysis of materials and environmental contaminants. This brochure by the Office of Nuclear Physics of the USDOE Office of Science discusses nuclear physics and ways in which its applications fuel our economic vitality, and make the world and our lives safer and healthier.

  1. 1988 activity report of the Nuclear Physics Institute

    International Nuclear Information System (INIS)

    The 1988 activity report of the Nuclear Physics Institute (France) is presented. The report covers the scientific activities from the 1st October 1987 to the 30th September 1988 and the technical developments form the 1st October 1986 to the 30th September 1988. The main research fields include works on exotic nuclei, hot nuclei characteristics, physics of strangeness, nuclear structure studies by means of nuclear reactions, high spin states and radiochemistry. The project of an electron accelerator, delivering a 4 GeV beam (in a first step), is one of the Institute's priorities. The research works carried out in the Experimental Research and Theoretical Physics Divisions as well as technological projects are included

  2. Nuclear physics and stable isotopes; Physique nucleaire et isotopes stables

    Energy Technology Data Exchange (ETDEWEB)

    Goutte, D. [CEA Centre d`Etudes de Saclay, 91 - Gif-sur-Yvette (France). Dept. d`Astrophysique, de la Physique des Particules, de la Physique Nucleaire et de l`Instrumentation Associee

    1994-12-31

    The aim of this paper is to show that fundamental research in nuclear physics requires utilization of stable isotopes; stable isotopes are essential as target material since a large quantity of nucleus have to be studied in order to appreciate all the complexity of the nuclear structure, but also as a tool, such as beams, for the same purpose. Examples are given with samarium, tin and germanium isotopes. 7 figs.

  3. Max-Planck-Institute for Nuclear Physics. Annual report 1988

    International Nuclear Information System (INIS)

    This annual report contains short notes and abstracts about the work performed at the named institute together with a list of publications and talks. The work concerns technical developments of accelerators and ion sources, experimental and theoretical studies on nuclear structure and reactions, high-energy physics, studies on meteorites and lunar rocks, comets, interplanetary and interstellar dust, interstellar dynamics, nuclear geology, and archaeometry. See hints under the relevant topics. (HSI)

  4. Theoretical studies in medium-energy nuclear and hadronic physics. [Indiana Univ. Nuclear Theory Center and Department of Physics

    Energy Technology Data Exchange (ETDEWEB)

    Horowitz, C J; Macfarlane, M H; Matsui, T; Serot, B D

    1993-01-01

    A proposal for theoretical nuclear physics research is made for the period April 1, 1993 through March 31, 1996. Research is proposed in the following areas: relativistic many-body theory of nuclei and nuclear matter, quasifree electroweak scattering and strange quarks in nuclei, dynamical effects in (e,e[prime]p) scattering at large momentum transfer, investigating the nucleon's parton sea with polarized leptoproduction, physics of ultrarelativistic nucleus[endash]nucleus collisions, QCD sum rules and hadronic properties, non-relativistic models of nuclear reactions, and spin and color correlations in a quark-exchange model of nuclear matter. Highlights of recent research, vitae of principal investigators, and lists of publications and invited talks are also given. Recent research dealt primarily with medium-energy nuclear physics, relativistic theories of nuclei and the nuclear response, the nuclear equation of state under extreme conditions, the dynamics of the quark[endash]gluon plasma in relativistic heavy-ion collisions, and theories of the nucleon[endash]nucleon force.

  5. Nuclear elasticity applied to giant resonances of fast rotating nuclei

    International Nuclear Information System (INIS)

    Isoscalar giant resonances in fast rotating nuclei are investigated within the framework of nuclear elasticity by solving the equation of motion of elastic nuclear medium in a rotating frame of reference. Both Coriolis and centrifugal forces are taken into account. The nuclear rotation removes completely the azimuthal degeneracy of the giant resonance energies. Realistic large values of the angular velocity, which are still small as compared to the giant resonance frequencies, are briefly reviewed in relation to allowed high angular momenta. It is shown that for the A=150 region, the Coriolis force is dominating for small values (< ∼ 0.05) of the ratio of angular velocity to resonance frequency, whereas the centrifugal force plays a prominent part in the shift of the split resonance energies for larger values of the ratio. Typical examples of the resonance energies and their fragmentation due to both rotation and deformation are given

  6. Superconducting solenoids for nuclear physics at Orsay

    International Nuclear Information System (INIS)

    Two systems using large superconducting solenoids are described. The first, SOLENO, is composed of two magnets (3T, 600 KJ each) and will replace a standard triplet of magnetic lenses; for the moment only the first magnet has gone into operation. The second system, a 5T solenoid, CRYEBIS II, is built in duplicate and will be used on heavy ion sources: one for our laboratory and the other one for the Research Institute of Physics/STOCKHOLM (Sweden). This system employs a superconducting switch to short-circuit the current on the magnet

  7. Preparation of Boric-10 Acid Applied in Nuclear Industry

    Institute of Scientific and Technical Information of China (English)

    张雷; 张卫江; 徐姣; 李波

    2015-01-01

    Because of the superior features of boron-10 isotope in absorbing hot neutrons, boric-10 acid (H310BO3) has been used widely in nuclear industry. Boric-10 acid is obtained from boron-10 trifluoride (10BF3) by esterification and hydrolyzation. In this study, trimethyl borate-10 [(CH3O)310B] was prepared from boron-10 trifluoride (10BF3) through chemical exchange rectification. In addition, the hydrolyzation of trimethyl borate-10 was investigated with different pH values, temperatures and molar ratios of water to trimethyl borate-10. Under the optimum process condi-tions, high yield of boric-10 acid with nuclear industrial purity grade was realized.

  8. PREFACE: XX International School on Nuclear Physics, Neutron Physics and Applications (Varna2013)

    Science.gov (United States)

    Stoyanov, Chavdar; Dimitrova, Sevdalina

    2014-09-01

    The present volume contains the lectures and short talks given at the XX International School on Nuclear Physics, Neutron Physics and Applications. The School was held from 16-22 September 2013 in 'Club Hotel Bolero' located in 'Golden Sands' (Zlatni Pyasaci) Resort Complex on the Black Sea coast, near Varna, Bulgaria. The School was organized by the Institute for Nuclear Research and Nuclear Energy of Bulgarian Academy of Sciences. Co-organizer of the School was the Bulgarian Nuclear Regulatory Agency and the Bogoliubov Laboratory of Theoretical Physics of Joint Institute for Nuclear Research - Dubna. Financial support was also provided by the Bulgarian Ministry of Education and Science. According to the long-standing tradition the School has been held every second year since 1973. The School's program has been restructured according to our enlarged new international links and today it is more similar to an international conference than to a classical nuclear physics school. This new image attracts many young scientists and students from around the world. This year, 2013, we had the pleasure to welcome more than sixty distinguished scientists as lecturers. Additionally, twenty young colleagues received the opportunity to present a short contribution. Ninety-four participants altogether enjoyed the scientific presentations and discussions as well as the relaxing atmosphere at the beach and during the pleasant evenings. The program of the School ranged from latest results in fundamental areas such as nuclear structure and reactions to the hot issues of application of nuclear methods, reactor physics and nuclear safety. The main topics have been the following: Nuclear excitations at various energies. Nuclei at high angular moments and temperature. Structure and reactions far from stability. Symmetries and collective phenomena. Methods for lifetime measurements. Astrophysical aspects of nuclear structure. Neutron nuclear physics. Nuclear data. Advanced methods in

  9. PREFACE: XIX International School on Nuclear Physics, Neutron Physics and Applications (VARNA 2011)

    Science.gov (United States)

    Stoyanov, Chavdar; Dimitrova, Sevdalina; Voronov, Victor

    2012-05-01

    This volume contains the lectures and short talks given at the XIX International School on Nuclear Physics, Neutron Physics and Applications. The School was held from 19-25 September 2011 in 'Club Hotel Bolero' located in the 'Golden Sands' (Zlatni Pyasaci) Resort Complex on the Black Sea coast, near Varna, Bulgaria. The School was organized by the Institute for Nuclear Research and Nuclear Energy of the Bulgarian Academy of Sciences. The co-organizer of the School was the Bulgarian Nuclear Regulatory Agency and the Bogoliubov Laboratory of Theoretical Physics of the Joint Institute for Nuclear Research - Dubna. According to long-standing tradition the School has been held every second year since 1973. The School's program has been restructured according to our enlarged new international links and today it is more similar to an international conference than to a classical nuclear physics school. This new image attracts many young scientists and students from around the world. This year - 2011, we had the pleasure of welcoming more than 50 distinguished scientists as lecturers. Additionally, 14 young colleagues received the opportunity to each present a short contribution. The program ranged from recent achievements in areas such as nuclear structure and reactions to the hot topics of the application of nuclear methods, reactor physics and nuclear safety. The 94 participants enjoyed the scientific presentations and discussions as well as the relaxing atmosphere at the beach and during the pleasant evenings. The main topics were as follows: Nuclear excitations at various energies Nuclei at high angular moments and temperature Structure and reactions far from stability Symmetries and collective phenomena Methods for lifetime measurements Astrophysical aspects of nuclear structure Neutron nuclear physics Nuclear data Advanced methods in nuclear waste treatment Nuclear methods for applications Several colleagues helped with the organization of the School. We would like

  10. Proceedings of the 7. Workshop on Nuclear Physics

    International Nuclear Information System (INIS)

    The courses, seminaries and contributions of the 7.Work Meeting on Nuclear Physics are presented. In the courses and seminaries parts, a method to solve nuclear systems, the present stage of development of heavy ions reactions at high energies, the project and experiences for accelerators, in addition to, some important topics on tokamaks are presented. In the part of contributions, the theoretical and experimental results of reactions with light and heavy ions involving high energies, the studies of nuclear phenomena and techniques for improving instruments of radiation detection are presented. (M.C.K.)

  11. 14. International workshop on nuclear fission physics. Proceedings

    International Nuclear Information System (INIS)

    The meetings on nuclear fission took place 12-15 October 1998 and was organized by Institute of Physics and Power Engineering. The aim of the workshop was to present and discuss main new both theoretical and experimental results obtained in the area of nuclear fission, dynamical feature, properties of fission fragments and complementary radiation. As usual the program of the workshop was designed to cover a wide range of physical phenomena - from low energy and spontaneous fission to fission of hot rotating nuclei and multifragmentation at intermediate and high energies. Reaction induced by slow and fast neutron, light and heavy ions were discussed

  12. Aspects of medium-energy nuclear physics in South Africa

    Directory of Open Access Journals (Sweden)

    A. A. Cowley

    1994-07-01

    Full Text Available South Africa has participated in basic research on medium-energy nuclear physics for the past eight years since the completion of the cyclotron facility of the National Accelerator Centre. The research projects that have been conducted during this period have had a major influence on the development of the discipline of nuclear physics. This review of a selection of projects that have been completed to date illustrates the advance of knowledge and how this work has contributed towards a further understanding of the atomic nucleus. The possible impact of these studies on future application is alluded to by means of two important illustrative examples.

  13. PREFACE: XXXVIII Symposium on Nuclear Physics (Cocoyoc 2015)

    Science.gov (United States)

    Padilla-Rodal, E.

    2015-09-01

    The 38th edition of the Symposium on Nuclear Physics was held at Hotel Hacienda Cocoyoc, Morelos, Mexico from January 6-9, 2015. As in previous years, the Symposium brought together leading scientists from all around the world, working on: nuclear structure, nuclear reactions, physics with radioactive ion beams, hadronic physics, nuclear astrophysics, neutron physics and relativistic heavy-ion physics. The scientific program consisted of 27 invited talks, proposed by the international advisory committee that covered, in a balanced way, the experimental and theoretical work that currently is undergoing in the research fields of the Symposium. Ten posters complemented the program, providing students with an opportunity to bring their work to the attention of visiting scientists. This year, the conference activities also included a special talk presented by Archaeologist Omar Espinosa Severino about the ancient ruins found in Chalcatzingo, a village located approximately a 40 minute drive from the conference venue. The talk was followed by a visit to the archaeological site, guided by the group led by Archaeologist Mario Cordova Tello. The present volume contains 14 research articles based on invited talks presented at the Symposium. I would like to thank all the authors for their enthusiastic contribution. Special thanks to the anonymous referees for the time devoted to the review process, their input helped to maintain a high standard of the Conference Proceedings. Finally I would also like to thank the Symposiums' International Advisory Committee and the Sponsoring Organizations that made this event possible.

  14. NEPTUNIX, a general program of simulation applied to nuclear reactors

    International Nuclear Information System (INIS)

    Most simulation languages admit an incremental description and involve explicit integration algorithms. NEPTUNIX is a simulation language directly admitting algebraic differential equations under an implicit form, and it involves a very efficient implicit integration method with variable step and order. NEPTUNIX is a tool used for building large systems models in the field of nuclear reactors

  15. Supernovae, compact stars and nuclear physics

    Energy Technology Data Exchange (ETDEWEB)

    Glendenning, N.K.

    1989-08-25

    We briefly review the current understanding of supernova. We investigate the implications of rapid rotation corresponding to the frequency of the new pulsar reported in the supernovae remnant SN1987A. It places very stringent conditions on the equation of state if the star is assumed to be bound by gravity alone. We find that the central energy density of the star must be greater than 12 times that of nuclear density to be stable against the most optimistic estimate of general relativistic instabilities. This is too high for the matter to plausibly consist of individual hadrons. We conclude that the newly discovered pulsar, if its half-millisecond signals are attributable to rotation, cannot be a neutron star. We show that it can be a strange quark star, and that the entire family of strange stars can sustain high rotation under appropriate conditions. We discuss the conversion of a neutron star to strange star, the possible existence of a crust of heavy ions held in suspension by centrifugal and electric forces, the cooling and other features. 39 refs., 8 figs., 2 tabs.

  16. Supernovae, compact stars and nuclear physics

    International Nuclear Information System (INIS)

    We briefly review the current understanding of supernova. We investigate the implications of rapid rotation corresponding to the frequency of the new pulsar reported in the supernovae remnant SN1987A. It places very stringent conditions on the equation of state if the star is assumed to be bound by gravity alone. We find that the central energy density of the star must be greater than 12 times that of nuclear density to be stable against the most optimistic estimate of general relativistic instabilities. This is too high for the matter to plausibly consist of individual hadrons. We conclude that the newly discovered pulsar, if its half-millisecond signals are attributable to rotation, cannot be a neutron star. We show that it can be a strange quark star, and that the entire family of strange stars can sustain high rotation under appropriate conditions. We discuss the conversion of a neutron star to strange star, the possible existence of a crust of heavy ions held in suspension by centrifugal and electric forces, the cooling and other features. 39 refs., 8 figs., 2 tabs

  17. Nuclear-physics applications of MYRRHA

    Directory of Open Access Journals (Sweden)

    Popescu Lucia

    2014-03-01

    Full Text Available The Belgian Nuclear Research Centre SCK·CEN is currently working on the design of the MYRRHA research reactor, able to operate in both critical and sub-critical mode as an Accelerator-Driven System (ADS. When operated as an ADS, the MYRRHA reactor core will be coupled to an external neutron source, which is generated by a 600-MeV, 2- to 4-mA proton beam impinging on a lead-bismuth spallation target. By using a small fraction (up to 5% of the MYRRHA proton beam, intensities of 100-200 μA can be sent to a separate facility called ISOL@MYRRHA. Given the high proton energy, most isotopes known on the chart of nuclides can be produced. The production in the hot-target is followed by selective ionization and extraction of atoms in a Radioactive Ion Beam (RIB. Following mass-purification, high-intensity RIBs will be delivered for a large variety of experimental programmes requiring long measurement times. By its experimental programme, the ISOL@MYRRHA facility will be complementary to running and planned Isotope Separator On-Line (ISOL facilities in Europe and abroad.

  18. Nuclear-physics applications of MYRRHA

    Science.gov (United States)

    Popescu, Lucia

    2014-03-01

    The Belgian Nuclear Research Centre SCK·CEN is currently working on the design of the MYRRHA research reactor, able to operate in both critical and sub-critical mode as an Accelerator-Driven System (ADS). When operated as an ADS, the MYRRHA reactor core will be coupled to an external neutron source, which is generated by a 600-MeV, 2- to 4-mA proton beam impinging on a lead-bismuth spallation target. By using a small fraction (up to 5%) of the MYRRHA proton beam, intensities of 100-200 μA can be sent to a separate facility called ISOL@MYRRHA. Given the high proton energy, most isotopes known on the chart of nuclides can be produced. The production in the hot-target is followed by selective ionization and extraction of atoms in a Radioactive Ion Beam (RIB). Following mass-purification, high-intensity RIBs will be delivered for a large variety of experimental programmes requiring long measurement times. By its experimental programme, the ISOL@MYRRHA facility will be complementary to running and planned Isotope Separator On-Line (ISOL) facilities in Europe and abroad.

  19. AINSE's role in tertiary sector applied nuclear research

    International Nuclear Information System (INIS)

    The Australian Institute of Nuclear Science and Engineering (AINSE) is a collaboration between the Universities and the Australian Nuclear Science and Technology Organisation (ANSTO). Its aim is to foster research and training in areas associated with the applications of Nuclear Science and allied techniques. AINSE is now into the fifth decade of this unique association and in 2001 can claim the active membership of thirty-six of the publicly funded Universities in Australia plus the University of Auckland and its NZ government partner the Institute for Geological and Nuclear Sciences (IGNS). The widespread membership has brought with it a breadth of research areas and the traditional domains of fundamental nuclear science and allied engineering have found that they are now the stable platforms from which are launched environmental, archaeological, biomedical and novel-materials science. ANSTO's fifth decade will see the replacement of HIFAR with a state of the art research reactor that will bring biological applications to a sharper focus. A new accelerator-mass spectrometer will be commissioned during 2002 and is funded, in part, by a $1 M RIEF grant which itself recognises the quality and track record of all AINSE members' research. It will significantly assist a wide range of dating applications and also provide support to ion beam analysis (IBA) experiments. AINSE will continue to aid community collaboration with its conferences, workshops and participation in national conferences such as the AIP Congress, Vacuum Society, etc. On the international scene it is actively participating in major conferences to be held in Australia. The winter school is a venture into the undergraduate sphere

  20. Fuzzy uncertainty modeling applied to AP1000 nuclear power plant LOCA

    International Nuclear Information System (INIS)

    Research highlights: → This article presents an uncertainty modelling study using a fuzzy approach. → The AP1000 Westinghouse NPP was used and it is provided of passive safety systems. → The use of advanced passive safety systems in NPP has limited operational experience. → Failure rates and basic events probabilities used on the fault tree analysis. → Fuzzy uncertainty approach was employed to reliability of the AP1000 large LOCA. - Abstract: This article presents an uncertainty modeling study using a fuzzy approach applied to the Westinghouse advanced nuclear reactor. The AP1000 Westinghouse Nuclear Power Plant (NPP) is provided of passive safety systems, based on thermo physics phenomenon, that require no operating actions, soon after an incident has been detected. The use of advanced passive safety systems in NPP has limited operational experience. As it occurs in any reliability study, statistically non-significant events report introduces a significant uncertainty level about the failure rates and basic events probabilities used on the fault tree analysis (FTA). In order to model this uncertainty, a fuzzy approach was employed to reliability analysis of the AP1000 large break Loss of Coolant Accident (LOCA). The final results have revealed that the proposed approach may be successfully applied to modeling of uncertainties in safety studies.

  1. Applying some methods to process the data coming from the nuclear reactions

    International Nuclear Information System (INIS)

    Full text : The methods of a posterior increasing the resolution of the spectral lines are offered to process the data coming from the nuclear reactions. The methods have applied to process the data coming from the nuclear reactions at high energies. They give possibilities to get more detail information on a structure of the spectra of particles emitted in the nuclear reactions. The nuclear reactions are main source of the information on the structure and physics of the atomic nuclei. Usually the spectrums of the fragments of the reactions are complex ones. Apparently it is not simple to extract the necessary for investigation information. In the talk we discuss the methods of a posterior increasing the resolution of the spectral lines. The methods could be useful to process the complex data coming from the nuclear reactions. We consider the Fourier transformation method and maximum entropy one. The complex structures were identified by the method. One can see that at lest two selected points are indicated by the method. Recent we presented a talk where we shown that the results of the analyzing the structure of the pseudorapidity spectra of charged relativistic particles with ≥ 0.7 measured in Au+Em and Pb+Em at AGS and SPS energies using the Fourier transformation method and maximum entropy one. The dependences of these spectra on the number of fast target protons were studied. These distribution shown visually some plateau and shoulder that was at least three selected points on the distributions. The plateaus become wider in PbEm reactions. The existing of plateau is necessary for the parton models. The maximum entropy method could confirm the existing of the plateau and the shoulder on the distributions. The figure shows the results of applying the maximum entropy method. One can see that the method indicates several clean selected points. Some of them same with observed visually ones. We would like to note that the Fourier transformation method could not

  2. [Intermediate/high energy nuclear physics

    International Nuclear Information System (INIS)

    We have continued to develop a theoretical framework for the quark and gluon structure of nuclei. Our approach features a successful phenomenological model, the quark cluster model (QCM), and an ambitious program in the non-perturbative solution of quantum field theories. The effort in quantum field theory provides theoretical results to test or replace assumed ingredients of the QCM. By the explicit example of a scalar field theory in 2D we have solved the long-standing problem of how to treat the dynamics of the vacuum in light-front quantization. We now propose to solve the same problem for simple Fermion field theories in 2D such as the Gross-Neveu model. We propose in subsequent years to address QCD in low dimensionality with the purpose of extracting non-perturbative predictions for quark and gluon amplitudes in few baryon systems. Simultaneously with this new effort we will continue to develop extensions and applications of the QCM. We propose to continue predicting phenomena to be observed in high energy particle-nucleus collisions that reflect the rearrangement of quarks and gluons in nuclei. We have completed our analysis of the SLAC E101 and E133 experiments on Deuterium to elucidate the degree to which a six-quark cluster contribution is admissable in the Bjorken x > 1 data. We have completed our development of a parameterized thermal liquid drop model for light nuclei. In addition we have completed a set of predictions for the formation of a ''nuclear stratosphere'' in nuclei created by intermediate energy heavy ion interactions. These results motivate a new investigation of the temperature dependence of the ion-ion potential with particular emphasis on the thermal dependence of the barrier height and radius. We have also shown that a consistent treatment of relativistic effects is important for a theoretical description of the elastic magnetic form factor of 17O. 85 refs

  3. Networking for High Energy and Nuclear Physics

    Science.gov (United States)

    Newman, Harvey B.

    2007-07-01

    This report gives an overview of the status and outlook for the world's research networks and major international links used by the high energy physics and other scientific communities, network technology advances on which our community depends and in which we have an increasingly important role, and the problem of the Digital Divide, which is a primary focus of ICFA's Standing Committee on Inter-regional Connectivity (SCIC). Wide area networks of sufficient, and rapidly increasing end-to-end capability are vital for every phase of high energy physicists' work. Our bandwidth usage, and the typical capacity of the major national backbones and intercontinental links used by our field have progressed by a factor of more than 1000 over the past decade, and the outlook is for a similar increase over the next decade. This striking exponential growth trend, outstripping the growth rates in other areas of information technology, has continued in the past year, with many of the major national, continental and transoceanic networks supporting research and education progressing from a 10 Gigabits/sec (Gbps) backbone to multiple 10 Gbps links in their core. This is complemented by the use of point-to-point "light paths" to support the most demanding applications, including high energy physics, in a growing list of cases. As we approach the era of LHC physics, the growing need to access and transport Terabyte-scale and later 10 to 100 Terabyte datasets among more than 100 "Tier1" and "Tier2" centers at universities and laboratories spread throughout the world has brought the key role of networks, and the ongoing need for their development, sharply into focus. Bandwidth itself on an increasing scale is not enough. Realizing the scientific wealth of the LHC and our other major scientific programs depends crucially on our ability to use the bandwidth efficiently and reliably, with reliable high rates of data throughput, and effectively, where many parallel large-scale data

  4. Nuclear Physics Department. Progress Report of the Nuclear Physics Department (1.10.1969 - 30.9.1970)

    International Nuclear Information System (INIS)

    This progress report covers the whole set of experiments and technological studies undertaken at the Nuclear Physics Department during the past year. The first experiments are now under way at the electron linear accelerator (A.L.S.). Nuclear reactions using polarized proton beams are going on at the variable energy cyclotrons, both at Saclay and Grenoble. Heavy ion beams now available at the Van de Graaff Tandem have been used to perform many-nucleon transfer reactions on medium-weight nuclei. The achievement of the high resolution spectrometer for nuclear spectroscopy at 1 GeV proton energy (Saturne Synchrotron) is under progress. (author)

  5. Nuclear data and reactor physics activities in Indonesia

    Energy Technology Data Exchange (ETDEWEB)

    Liem, P.H. [National Atomic Energy Agency, Tangerang (Indonesia). Center for Multipurpose Reactor

    1998-03-01

    The nuclear data and reactor physics activities in Indonesia, especially, in the National Atomic Energy Agency are presented. In the nuclear data field, the Agency is now taking the position of a user of the main nuclear data libraries such as JENDL and ENDF/B. These nuclear data libraries become the main sources for producing problem dependent cross section sets that are needed by cell calculation codes or transport codes for design, analysis and safety evaluation of research reactors. In the reactor physics field, besides utilising the existing core analysis codes obtained from bilateral and international co-operation, the Agency is putting much effort to self-develop Batan`s codes for reactor physics calculations, in particular, for research reactor and high temperature reactor design, analysis and fuel management. Under the collaboration with JAERI, Monte Carlo criticality calculations on the first criticality of RSG GAS (MPR-30) first core were done using JAERI continuous energy, vectorized Monte Carlo code, MVP, with JENDL-3.1 and JENDL-3.2 nuclear data libraries. The results were then compared with the experiment data collected during the commissioning phase. Monte Carlo calculations with both JENDL-3.1 and -3.2 libraries produced k{sub eff} values with excellent agreement with experiment data, however, systematically, JENDL-3.2 library showed slightly higher k{sub eff} values than JENDL-3.1 library. (author)

  6. Proceedings of the 2013 International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering - M and C 2013

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-07-01

    The Mathematics and Computation Division of the American Nuclear (ANS) and the Idaho Section of the ANS hosted the 2013 International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M and C 2013). This proceedings contains over 250 full papers with topics ranging from reactor physics; radiation transport; materials science; nuclear fuels; core performance and optimization; reactor systems and safety; fluid dynamics; medical applications; analytical and numerical methods; algorithms for advanced architectures; and validation verification, and uncertainty quantification.

  7. Physical Activity and Wellness: Applied Learning through Collaboration

    Science.gov (United States)

    Long, Lynn Hunt; Franzidis, Alexia

    2015-01-01

    This article describes how two university professors teamed up to initiate a university-sponsored physical activity and wellness expo in an effort to promote an authentic and transformative learning experience for preservice students.

  8. Applied health physics and safety annual report for 1976

    Energy Technology Data Exchange (ETDEWEB)

    Auxier, J.A.; Davis, D.M.

    1977-08-01

    Progress is reported in the following areas of research: personnel monitoring; health physics instrumentation; atmospheric monitoring; water monitoring; radiation background measurements; soil samples; laboratory operations monitoring; radiation incidents; laundry monitoring; accident analysis; and industrial safety. (HLW)

  9. Plasma physics and controlled nuclear fusion research 1988. V.3

    International Nuclear Information System (INIS)

    Volume 3 of the proceedings of the twelfth international conference on plasma physics and controlled nuclear fusion, held in Nice, France, 12-19 October, 1988, contains papers presented on inertial fusion. Direct and indirect laser implosion experiments, programs of laser construction, computer modelling of implosions and resulting plasmas, and light ion beam fusion experiments are discussed. Refs, figs and tabs

  10. Audit program for physical security systems at nuclear power plants

    International Nuclear Information System (INIS)

    Licensees of nuclear power plants conduct audits of their physical security systems to meet the requirements of 10 CFR 73, Physical Protection of Plants and Materials. Section 73.55, Requirements for physical Protection of Licensed Activities in Nuclear Power Reactors Against Radiological Sabotage, requires that the security programs be reviewed at least every 12 months, that the audit be conducted by individuals independent of both security management and security supervision, and that the audit program review all aspects of the physical security system: hardware, personnel, and operational and maintenance procedures. This report contains information for the Nuclear Regulatory Commission (NRC) and for the licensees of nuclear power reactors who carry out these comprehensive audits. Guidance on the overall management of the audit function includes organizational structure and issues concerning the auditors who perform the review: qualifications, independence, due professional care, and standards. Guidance in the audit program includes purpose and scope of the audit, planning, techniques, post-audit procedures, reporting, and follow-up

  11. A brief history of the Nuclear Physics Board

    International Nuclear Information System (INIS)

    This year the Nuclear Physics Board of the Science and Engineering Research Council ceases to exist. To mark its passing, a brief retrospective is presented of the organization that for nearly 30 years has supported fundamental research into the nature of matter, in the United Kingdom. (author)

  12. Nuclear Physics Laboratory annual report, University of Washington April 1992

    International Nuclear Information System (INIS)

    This report contains short discusses on topics in the following areas: astrophysics; giant resonances and photonuclear reactions; nucleus-nucleus reactions; fundamental symmetries; accelerator mass spectrometry; medium energy nuclear physics; ultra-relativistic heavy ion collisions; cluster fusion; instrumentation; van de graaff accelerators and ion sources; and computer data acquisition systems

  13. How to Stimulate Students' Interest in Nuclear Physics?

    Science.gov (United States)

    Elbanowska-Ciemuchowska, Stefania; Giembicka, Magdalena Anna

    2011-01-01

    Teaching nuclear physics in secondary schools offers us a unique possibility to increase our students' awareness of the influence that modern science and its achievements have on the everyday life of contemporary people. Students gain an opportunity to learn in what ways the outcome of laboratory research is put to use in such fields as medicine,…

  14. Nuclear Physics Laboratory annual report, University of Washington April 1992

    Energy Technology Data Exchange (ETDEWEB)

    Cramer, John G.; Ramirez, Maria G.

    1992-01-01

    This report contains short discusses on topics in the following areas: astrophysics; giant resonances and photonuclear reactions; nucleus-nucleus reactions; fundamental symmetries; accelerator mass spectrometry; medium energy nuclear physics; ultra-relativistic heavy ion collisions; cluster fusion; instrumentation; van de graaff accelerators and ion sources; and computer data acquisition systems. (LSP)

  15. Nuclear Physics Laboratory annual report, University of Washington April 1992

    Energy Technology Data Exchange (ETDEWEB)

    1992-07-01

    This report contains short discusses on topics in the following areas: astrophysics; giant resonances and photonuclear reactions; nucleus-nucleus reactions; fundamental symmetries; accelerator mass spectrometry; medium energy nuclear physics; ultra-relativistic heavy ion collisions; cluster fusion; instrumentation; van de graaff accelerators and ion sources; and computer data acquisition systems. (LSP)

  16. PREFACE: XVIII International School on Nuclear Physics, Neutron Physics and Applications

    Science.gov (United States)

    Stoyanov, Chavdar; Janeva, Natalia

    2010-11-01

    This volume contains the lectures and short talks given at the XVIII International School on Nuclear Physics, Neutron Physics and Applications. The School was held from 21 to 27 September 2009 in Hotel 'Lilia' located on 'Golden Sands' (Zlatni Pyasaci) Resort Complex on the Black Sea coast, near Varna, Bulgaria. The School was organized by Institute for Nuclear Research and Nuclear Energy of Bulgarian Academy of Sciences. Co-organizer of the School was Bulgarian Nuclear Regulatory Agency. The event was sponsored by National Science Fund of Bulgaria. According to the long-standing tradition the School has taken place every second year since 1973. The School content has been restructured according to our new enlarged international links and today it is more similar to an international conference than to a classical nuclear physics school. This new image attracts a lot of young scientists and students from many countries. This year - 2009, we had the pleasure to welcome more than 50 distinguished scientists as lecturers. Additionally, 14 young colleagues received the opportunity to present a short contribution. The program ranges from recent achievements in nuclear structure and reactions to the hot problems of the application of nuclear methods, reactor physics and nuclear safety. The 94 participants enjoyed the scientific presentations and discussions as well as the relaxing atmosphere at the beach and the pleasant evenings. The main topics were the following: Nuclear excitations at various energies. Nuclei at high angular moments and temperature. Structure and reactions far from stability Symmetries and collective phenomena Methods for lifetime measurements Astrophysical aspects of nuclear structure Neutron nuclear physics Nuclear data Advanced methods in nuclear waste treatment Nuclear methods for applications Several colleagues contributed to the organization of the School. We would like to thank to them and especially to the Scientific Secretary of the School Dr

  17. Annual report of the Institute of Nuclear Physics of the Universite de Paris-Sud (Orsay)

    International Nuclear Information System (INIS)

    Experimental and theoretical research in nuclear physics is described. Experimental work includes ground states and low energy excited states; high excitation energy nuclear states; heavy ion collision phenomena; intermediate energy nuclear physics; radiochemistry; and interdisciplinary studies of atomic physics and ion interactions. Theoretical studies include few-nucleon systems; properties of nuclear matter; nuclear collisions; nuclear physics at intermediate energies; effective Lagrangians and quark models; high energy hadronic physics; superstrings; high spins, and gravity; astrophysics; statistical physics and chaotic systems; relativistic quantum mechanics; and mathematical physics

  18. Physical Mechanism of Nuclear Reactions at Low Energies

    CERN Document Server

    Oleinik, V P; Arepjev, Yu.D

    2002-01-01

    The physical mechanism of nuclear reactions at low energies caused by spatial extension of electron is considered. Nuclear reactions of this type represent intra-electronic processes, more precisely, the processes occurring inside the area of basic localization of electron. Distinctive characteristics of these processes are defined by interaction of the own field produced by electrically charged matter of electron with free nuclei. Heavy nucleus, appearing inside the area of basic localization of electron, is inevitably deformed because of interaction of protons with the adjoining layers of electronic cloud, which may cause nuclear fission. If there occur "inside" electron two or greater number of light nuclei, an attractive force appears between the nuclei which may result in the fusion of nuclei. The intra-electronic mechanism of nuclear reactions is of a universal character. For its realization it is necessary to have merely a sufficiently intensive stream of free electrons, i.e. heavy electric current, an...

  19. Nuclear probes in physical and geochemical studies of natural diamonds

    International Nuclear Information System (INIS)

    In this review the emphasis is directed to the use of nuclear particles for the analysis of impurities in diamond from an interest in both the observed physical properties and genesis of diamond and the inter-relation between these two aspects. However (nuclear) radiation can be used more specifically: from the inter-relation of elemental impurities chemical and geochemical information can be deduced, from energy variation depth distributions of selected impurities can be determined, the prospect of lattice location of impurities exists from the use of extremely finely collimated beams of nuclear particles, which are used also for probing the inter-atomic fields, and finally all nuclear probes excite luminescence in diamonds

  20. Joliot-Curie School of Nuclear Physics, 1997

    International Nuclear Information System (INIS)

    This document contains the lectures of the Joliot-Curie International School of Nuclear Physics held at Maubuisson, France on 8-13 September 1997. The following lectures of nuclear interest were given: The N-body problem (relativistic and non-relativistic approaches); The shell model (towards a unified of the nuclear structure); Pairing correlations in extreme conditions; Collective excitations in nuclei; Exotic nuclei (production, properties and specificities); Exotic nuclei (halos); Super and hyper deformation (from discrete to continuum, from EUROGAM to EUROBALL); and The spectroscopy of fission fragments. Important new facts are reported and discussed theoretically, concerning the nuclei in high excitation and high states and of the nuclei far off stability. Important technical achievements are reported among which the production of radioactive beams, sophisticated multi-detectors as well as significant advances in the nuclear theoretical methods. The double goal of training of young researchers and of permanent formation and information of the older ones seems to have been reached

  1. NP2010: An Assessment and Outlook for Nuclear Physics

    Energy Technology Data Exchange (ETDEWEB)

    Lancaster, James [National Academy of Sciences, Washington, DC (United States). Div. of Engineering and Physical Sciences

    2014-05-22

    This grant provided partial support for the National Research Council’s (NRC) decadal survey of nuclear physics. This is part of NRC’s larger effort to assess and discuss the outlook for different fields in physics and astronomy, Physics 2010, which takes place approximately every ten years. A report has been prepared as a result of the study that is intended to inform those who are interested about the current status of research in this area and to help guide future developments of the field. A pdf version of the report is available for download, for free, at http://www.nap.edu/catalog.php?record_id=13438. Among the principal conclusions reached in the report are that the nuclear physics program in the United States has been especially well managed, principally through a recurring long-range planning process conducted by the community, and that current opportunities developed pursuant to that planning process should be exploited. In the section entitled “Building the Foundation for the Future,” the report notes that attention needs to be paid to certain elements that are essential to the continued vitality of the field. These include ensuring that education and research at universities remain a focus for funding and that a plan be developed to ensure that forefront-computing resources, including exascale capabilities when developed, be made available to nuclear science researchers. The report also notes that nimbleness is essential for the United States to remain competitive in a rapidly expanding international nuclear physics arena and that streamlined and flexible procedures should be developed for initiating and managing smaller-scale nuclear science projects.

  2. Physical protection of nuclear material in the nuclear powered icebreaker fleet in Murmansk

    International Nuclear Information System (INIS)

    A total of eight nuclear powered ships, owned by the Russian Ministry of Transportation (MINTRAN) and operated by the Murmansk Shipping Company (MSCo), constitute the Russian nuclear icebreaker fleet, supporting the northern Arctic shipping routes. The ships are five seagoing icebreakers, two river icebreakers and one freighter. The reactors in the vessels are based on the same design as reactors in submarines, using highly enriched uranium fuel. The present security standards for the fuel are not satisfactory. Given the lack of permanent on-shore storage facilities, fresh and spent fuel is stored on two ships lying at the dockside together with the icebreaker fleet at the 'RTP Atomflot', a harbour approximately two kilometers north of the centre of Murmansk. While the fresh highly enriched uranium fuel poses a serious proliferation risk, the spent fuel mainly represents a potential pollution risk. Upgrading of the physical protection at the MSCo will bring all nuclear material under high level security in the next few years. Key targets for physical protection are the port area, the storage ships 'Imandra' and 'Lotta' because of the nuclear material contained on these ships, and the improved physical protection of the reactor sections on the icebreakers. The Norwegian Radiation Protection Authority and the Swedish Nuclear Power Inspectorate have agreed with Gosatomnadzor of Russia and the MSCo to support the Company to further improve the physical protection system on the ships in the Atomic Fleet, as well as the system of accountancy and control of their nuclear fuel. (author)

  3. Some problems of numerical and functional analysis in nuclear physics

    International Nuclear Information System (INIS)

    An essential feature of nuclear physics is that the number of degrees of freedom to be described is at the same time too large to give rise to problems exactly soluble in practice and too small to warrant entire recourse to statistical mechanics. Nuclear physics experiments show clearly in fact that the behaviour of nuclei is sometimes reduced to the variation of one (or several) degree(s) of freedom known as collective, whereas in other cases no order parameter seems to be identifiable. Since all situations between these two extremes are possible, and actually arise, an essential problem in this branch of physics is the construction of a mathematical method to reduce systematically the number of degrees of freedom. This problem is illustrated here by an analysis of Schroedinger equation, then of the Hartree-Fock equation and finally of the generator-coordinate method for the collision theory

  4. Application of effectiveness criteria in regulation of physical security of nuclear facilities

    International Nuclear Information System (INIS)

    This paper covers issues of effectiveness criteria application in the course of physical security regulation for nuclear facilities. Basic provisions of effectiveness assessment for physical protection system available at nuclear facility site and specifics of such assessments are considered. Possible directions for improvement of physical security regulation, approaches to establish effectiveness criteria and special details of application of effectiveness assessments of physical security of nuclear materials and nuclear installations at nuclear sites are discussed

  5. Industrial safety and applied health physics. Annual report for 1977

    International Nuclear Information System (INIS)

    Progress is reported on the following: radiation monitoring with regard to personnel monitoring and health physics instrumentation; environs surveillance with regard to atmospheric monitoring, water monitoring, radiation background measurements, and soil and grass samples; radiation and safety surveys with regard to laboratory operations monitoring, radiation incidents, and laundry monitoring; industrial safety and special projects with regard to accident analysis, disabling injuries, and safety awards

  6. Annual report on nuclear physics activities. July 1, 1987 - June 30, 1988

    International Nuclear Information System (INIS)

    This report surveys the activities in basic research from July 1, 1987 to June 30, 1988 at the Institute for Nuclear Physics (IK) of the Kernforschungszentrum Karlsruhe. The research program of this institute comprises nuclear astropysics, laser spectroscopy, nuclear reactions with light ions, neutron physics, neutrino physics and high energy physics, as well as detector technology. (orig.)

  7. Progress report. [Research in theoretical nuclear and subnuclear physics

    International Nuclear Information System (INIS)

    Sergei Ananyan has completed one nice piece of nuclear physics on 'Electroweak Processes Involving (0+0) Excitations in Nuclei' and has written this work up for publication. He is well into his main thesis problem on weak axial vector exchange currents and already has some very interesting new results. Bryan Barmore is now finishing numerical calculations on the problem of radiating meson fields in relativistic heavy ion collisions. Gary Prezeau has just started on the problem of chiral QHD with vector mesons. Gary should finish his Ph.D. in 1998. A PC has been purchased for the group through CEBAF and they are now tied into the CEBAF computer system., They have organized a Nuclear Theory Study Group in the Department and last year they worked through the books on 'Computational Nuclear Physics.' Next year they will run a series on effective field theories and chiral perturbation theory. Tod Bachman just completed a senior thesis on relativistic Hartree calculations of the newly-found doubly magic nuclei 100Sn and 132Sn. The book on 'Theoretical Nuclear and Subnuclear Physics' has now been published by Oxford Press. Also included here is the proposal for renewal of the contract

  8. Applying Functional Modeling for Accident Management of Nuclear Power Plant

    Energy Technology Data Exchange (ETDEWEB)

    Lind, Morten; Zhang Xinxin [Harbin Engineering University, Harbin (China)

    2014-08-15

    The paper investigate applications of functional modeling for accident management in complex industrial plant with special reference to nuclear power production. Main applications for information sharing among decision makers and decision support are identified. An overview of Multilevel Flow Modeling is given and a detailed presentation of the foundational means-end concepts is presented and the conditions for proper use in modelling accidents are identified. It is shown that Multilevel Flow Modeling can be used for modelling and reasoning about design basis accidents. Its possible role for information sharing and decision support in accidents beyond design basis is also indicated. A modelling example demonstrating the application of Multilevel Flow Modelling and reasoning for a PWR LOCA is presented.

  9. Applying Twisted Boundary Conditions for Few-body Nuclear Systems

    CERN Document Server

    Körber, Christopher

    2015-01-01

    We describe and implement twisted boundary conditions for the deuteron and triton systems within finite-volumes using the nuclear lattice EFT formalism. We investigate the finite-volume dependence of these systems with different twists angles. We demonstrate how various finite-volume information can be used to improve calculations of binding energies in such a framework. Our results suggests that with appropriate twisting of boundaries, infinite-volume binding energies can be reliably extracted from calculations using modest volume sizes with cubic length $L\\approx8-14$ fm. Of particular importance is our derivation and numerical verification of three-body analogue of `i-periodic' twist angles that eliminate the leading order finite-volume effects to the three-body binding energy.

  10. Applying twisted boundary conditions for few-body nuclear systems

    Science.gov (United States)

    Körber, Christopher; Luu, Thomas

    2016-05-01

    We describe and implement twisted boundary conditions for the deuteron and triton systems within finite volumes using the nuclear lattice EFT formalism. We investigate the finite-volume dependence of these systems with different twist angles. We demonstrate how various finite-volume information can be used to improve calculations of binding energies in such a framework. Our results suggests that with appropriate twisting of boundaries, infinite-volume binding energies can be reliably extracted from calculations using modest volume sizes with cubic length L ≈8 -14 fm. Of particular importance is our derivation and numerical verification of three-body analogs of "i-periodic" twist angles that eliminate the leading-order finite-volume effects to the three-body binding energy.

  11. KfK, Institute for Nuclear Physics. Report of results on research and development work 1985

    International Nuclear Information System (INIS)

    The Institute for Nuclear Physics consists of three partial institutes. The partial institutes IK I and IK II and the Institute for Technical Physics (ITP) were jointly operated with the Institute for Experimental Nuclear Physics of the Karlsruhe University. The Institute for Nuclear Physics comprehends following directions of work: nuclear and elementary-particle physics in the range of low, intermediate, and high energies; contributions to the heating techniques of fusion plasmas and to the production of high energy densities. (orig./HSI)

  12. Space plasma physics at the Applied Physics Laboratory over the past half-century

    Science.gov (United States)

    Potemra, Thomas A.

    1992-01-01

    An overview is given of space-plasma experiments conducted at the Applied Physics Laboratory (APL) at Johns Hopkins University including observational campaigns and the instrumentation developed. Specific space-plasma experiments discussed include the study of the radiation environment in the Van Allen radiation belt with solid-state proton detectors. Also described are the 5E-1 satellites which acquired particle and magnetic-field data from earth orbit. The Triad satellite and its magnetometer system were developed for high-resolution studies of the earth's magnetic field, and APL contributions to NASA's Interplanetary Monitoring Platforms are listed. The review mentions the International Ultraviolet Explorer, the Atmosphere Explorer mission, and the Active Magnetic Particle Tracer Explorers mission. Other recent programs reviewed include a high-latitude satellite, contributions to the Voyager mission, and radar studies of space plasmas.

  13. Uncertainty quantification in lattice QCD calculations for nuclear physics

    Energy Technology Data Exchange (ETDEWEB)

    Beane, Silas R. [Univ. of Washington, Seattle, WA (United States); Detmold, William [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Orginos, Kostas [College of William and Mary, Williamsburg, VA (United States); Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Savage, Martin J. [Institute for Nuclear Theory, Seattle, WA (United States)

    2015-02-05

    The numerical technique of Lattice QCD holds the promise of connecting the nuclear forces, nuclei, the spectrum and structure of hadrons, and the properties of matter under extreme conditions with the underlying theory of the strong interactions, quantum chromodynamics. A distinguishing, and thus far unique, feature of this formulation is that all of the associated uncertainties, both statistical and systematic can, in principle, be systematically reduced to any desired precision with sufficient computational and human resources. As a result, we review the sources of uncertainty inherent in Lattice QCD calculations for nuclear physics, and discuss how each is quantified in current efforts.

  14. Romanian knowledge transfer network in nuclear physics and engineering - REFIN

    International Nuclear Information System (INIS)

    According to the requirements of the Romanian Nuclear Programme regarding the education and training of the skilled personnel for the nuclear facilities, a knowledge transfer network named REFIN (in Romanian: Retea Educationala in Fizica si Ingineria Nucleara) was developed since 2005. The knowledge target field is nuclear physics and engineering. The Polytechnic University of Bucharest is the coordinator of this programme and other involved partners are University of Bucharest, University of Pitesti, University Babes Bolyai of Cluj-Napoca, University of Constanta, Institute for Nuclear Research Pitesti, Institute for Physics and Nuclear Engineering from Bucharest and the Training Center for Nuclear Units of Cernavoda NPP. The main objective of this network is to develop an effective, flexible and modern educational system in the nuclear physics and engineering area that could meet the requirements of all the known types of nuclear facility and therewith be redundant with the perspectives of the European Research Area (FP7, EURATOM). The first stage in this work was to gather information about the present status in the mentioned nuclear area in Romania, to assimilate and put this information in a data base on the program web-site (www.refin.pub.ro). Based on this data base a global strategy was proposed in order to harmonize the curricula between the network faculties, to implement pilot modern teaching programs (courses/ modules), to introduce advanced learning methods (as Systematic Approach to Training, e-learning and distance-learning), to strengthen and better use of existing research infrastructure of the research institutes in network. The second stage is the investigation of the training stage in other European countries related to the present status and the development trends of education in nuclear field. In the next future the English version will also be available and so REFIN will be easily accessed and used by the interested users. These facilities

  15. Blended Learning Applied to an Introductory Course on Conceptual Physics

    Directory of Open Access Journals (Sweden)

    Plinio del Carmen Teherán Sermeño

    2010-08-01

    Full Text Available In this paper, we show aspects of the commencement of a novel introductory Physics course with conceptual emphasis. An instructional flexible design in the format of blending learning is presented that combines master classes via teleconference with additional activities in a virtual environment of learning orchestrated by LMS Blackboard. In the forums, workshops and virtual laboratories the impact is evaluated as a grading system based on Continuous Personalized Evaluation

  16. Teaching students to apply multiple physical modeling methods

    NARCIS (Netherlands)

    Wiegers, T.; Verlinden, J.C.; Vergeest, J.S.M.

    2014-01-01

    Design students should be able to explore a variety of shapes before elaborating one particular shape. Current modelling courses don’t address this issue. We developed the course Rapid Modelling, which teaches students to explore multiple shape models in a short time, applying different methods and

  17. Progress report for Applied Physics Division 1 July 1981 - 30 June 1982

    International Nuclear Information System (INIS)

    The Division is organised as four sections: nuclear applications and energy studies; semiconductor and radiation physics; electronics systems; and fusion physics. Research activities include studies in neutron fission, neutron capture and neutron scattering; use of nuclear techniques of analysis such as PIXE; development of semiconductor detectors; rotamak experiments, and further fusion studies on MHD surface waves and alfven resonance heating of plasmas. A list of publications is included

  18. Romanian knowledge transfer network in nuclear physics and engineering - REFIN

    International Nuclear Information System (INIS)

    According to the requirements of the Romanian Nuclear Programme regarding the education and training of the skilled personnel for the nuclear facilities, a knowledge transfer network named REFIN (in Romanian: Retea Educationala in Fizica si Ingineria Nucleara) was developed since 2005. The knowledge target field is nuclear physics and engineering. The main objective of this network is to develop an effective, flexible and modern educational system in the nuclear physics and engineering area which could meet the requirements of all known types of nuclear facilities and therewith be redundant with the perspectives of the European Research Area (FP7, EURATOM). A global strategy was proposed in order to harmonize the curricula between the network facilities to implement pilot modern teaching programs (courses/modules), to introduce advanced learning methods (as Systematic Approach to Training, e-learning and distance-learning), to strengthen and better use the existing research infrastructures of the research institutes in network. The education and training strategy is divided into several topics: university engineering , master, post-graduate, Ph.D. degree, post-doctoral activity, training for industry, improvement. For the first time in our country, a modular scheme is used allowing staff with different technical background to participate at different levels. In this respect, the European system with transferable credits (ECTS) is used. Based on this strategy, courses in 'Radioactive Waste Management' and 'Numerical and Experimental Methods in Reactor Physics' for both MS students and for industry. This way the training activity which a student attends will allow him or her to be involved, depending on specific professional needs, into a flexible educational scheme. This scheme will ensure competence and enhancement and also the possibility of qualification development and a better mobility on labour market. This kind of activity is already in progress in the

  19. Applying activity-based costing to the nuclear medicine unit.

    Science.gov (United States)

    Suthummanon, Sakesun; Omachonu, Vincent K; Akcin, Mehmet

    2005-08-01

    Previous studies have shown the feasibility of using activity-based costing (ABC) in hospital environments. However, many of these studies discuss the general applications of ABC in health-care organizations. This research explores the potential application of ABC to the nuclear medicine unit (NMU) at a teaching hospital. The finding indicates that the current cost averages 236.11 US dollars for all procedures, which is quite different from the costs computed by using ABC. The difference is most significant with positron emission tomography scan, 463 US dollars (an increase of 96%), as well as bone scan and thyroid scan, 114 US dollars (a decrease of 52%). The result of ABC analysis demonstrates that the operational time (machine time and direct labour time) and the cost of drugs have the most influence on cost per procedure. Clearly, to reduce the cost per procedure for the NMU, the reduction in operational time and cost of drugs should be analysed. The result also indicates that ABC can be used to improve resource allocation and management. It can be an important aid in making management decisions, particularly for improving pricing practices by making costing more accurate. It also facilitates the identification of underutilized resources and related costs, leading to cost reduction. The ABC system will also help hospitals control costs, improve the quality and efficiency of the care they provide, and manage their resources better. PMID:16102243

  20. Small Punch Tests applied to the nuclear industry

    International Nuclear Information System (INIS)

    The interest on miniaturized specimen techniques for the characterization of the mechanical behavior of materials was strongly motivated in the early eighties by the different programs associated with the development of fusion reactor technology. The importance of such developments is obvious in the case of the nuclear industry where the limited space available, the presence of fluence gradients in large specimens, the concern about gamma heating and dose to personnel in post-irradiation testing have all been motivations for reducing specimen size. Testing of miniature specimen includes a wide spectrum of techniques such as tensile, instrumented micro-hardness, small punch, bend, fracture, impact and fatigue. Small Punch Testing (SPT) techniques use a spherical penetrator which deforms to failure a miniature disc shaped flat specimen (typically, 3-10 mm in diameter and 0.25-0.50 mm in thickness) supported on its outer rim. Analysis of load-displacement data recorded along the test is performed for the determination of the property of interest. The present work focuses on the characterization of the elastoplastic response of pure Al, ADN 420 structural steel and AISI 304L using SPT and its correlation with the associated standard uniaxial testing behavior. In addition, the sensitivity of the technique to the specific material under study and to different experimental parameters, i.e. specimen diameter and thickness, clearance or clamping force and friction between disc and dies have been assessed both experimentally and by performing simulations using the finite element method (author)

  1. Applying activity-based costing to the nuclear medicine unit.

    Science.gov (United States)

    Suthummanon, Sakesun; Omachonu, Vincent K; Akcin, Mehmet

    2005-08-01

    Previous studies have shown the feasibility of using activity-based costing (ABC) in hospital environments. However, many of these studies discuss the general applications of ABC in health-care organizations. This research explores the potential application of ABC to the nuclear medicine unit (NMU) at a teaching hospital. The finding indicates that the current cost averages 236.11 US dollars for all procedures, which is quite different from the costs computed by using ABC. The difference is most significant with positron emission tomography scan, 463 US dollars (an increase of 96%), as well as bone scan and thyroid scan, 114 US dollars (a decrease of 52%). The result of ABC analysis demonstrates that the operational time (machine time and direct labour time) and the cost of drugs have the most influence on cost per procedure. Clearly, to reduce the cost per procedure for the NMU, the reduction in operational time and cost of drugs should be analysed. The result also indicates that ABC can be used to improve resource allocation and management. It can be an important aid in making management decisions, particularly for improving pricing practices by making costing more accurate. It also facilitates the identification of underutilized resources and related costs, leading to cost reduction. The ABC system will also help hospitals control costs, improve the quality and efficiency of the care they provide, and manage their resources better.

  2. Fuzzy control applied to nuclear power plant pressurizer system

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Mauro V.; Almeida, Jose C.S., E-mail: mvitor@ien.gov.b, E-mail: jcsa@ien.gov.b [Instituto de Engenharia Nuclear (IEN/CNEN-RJ), Rio de Janeiro, RJ (Brazil)

    2011-07-01

    In a pressurized water reactor (PWR) nuclear power plants (NPPs) the pressure control in the primary loop is very important for keeping the reactor in a safety condition and improve the generation process efficiency. The main component responsible for this task is the pressurizer. The pressurizer pressure control system (PPCS) utilizes heaters and spray valves to maintain the pressure within an operating band during steady state conditions, and limits the pressure changes, during transient conditions. Relief and safety valves provide overpressure protection for the reactor coolant system (RCS) to ensure system integrity. Various protective reactor trips are generated if the system parameters exceed safe bounds. Historically, a proportional-integral derivative (PID) controller is used in PWRs to keep the pressure in the set point, during those operation conditions. The purpose of this study has two main goals: first is to develop a pressurizer model based on artificial neural networks (ANNs); second is to develop a fuzzy controller for the PWR pressurizer pressure, and compare its performance with the P controller. Data from a simulator PWR plant was used to test the ANN and the controllers as well. The reference simulator is a Westinghouse 3-loop PWR plant with a total thermal output of 2785 MWth. The simulation results show that the pressurizer ANN model response are in reasonable agreement with the simulated power plant, and the fuzzy controller built in this study has better performance compared to the P controller. (author)

  3. The Ministry of the Russian Federation for Atomic Energy, the State Scientific Center of Russian Federation, A.I.Leipunsky Institute for Physics and Power Engineering, Nuclear Physics Department annual report 1998

    International Nuclear Information System (INIS)

    The report contains 69 abstracts or short communications on the research activities in 1998 of the Nuclear Physics Department of the Institute for Physics and Power Engineering, Obninsk, Russian Federation. The papers are grouped in nine chapters: Nuclear fission (5), Nuclear structure and nuclear reactions (6), Nuclear data (14), Transmutation (4), Condensed matter physics (10), Mathematical modelling (14), Applied research (7), High-voltage accelerators (6), and Instruments and methods (4). A separate indexing was provided for each paper. The report also includes a presentation of the department structure, and accelerator complex, list of publications, participation in international and national conferences and meetings, cooperation

  4. Nuclear Physics Division Institute of Experimental Physics Warsaw University annual report 1994

    Energy Technology Data Exchange (ETDEWEB)

    Osuch, S. [ed.

    1995-12-31

    In the presented Annual Report the activities of the Nuclear Physics Division of the Institute of Experimental Physics of the Warsaw University in 1994 are described. The report consist of three sections: (i) Reaction Mechanism and Nuclear Structure (12 articles); (ii) Experimental Methods and Instrumentation (2 articles); (iii) Other Research (1 article). Additionally the list of seminars held at the NPD, personnel list and list of published papers is also given. In the first, leading article of the report written by head of NPD prof. Ch. Droste the general description of the Department activity is presented.

  5. The Stirling Engine-Refrigerator Rich Pedagogy from Applied Physics

    CERN Document Server

    Peters, R D

    2001-01-01

    A Stirling engine of the type used for demonstration purposes has been outfitted with a pair of sensors that measure pressure and piston displacement when the engine is operating with a small temperature difference between the hot and cold reservoirs. Measured variables are compared against computer generated output based on a simple theory that involves nonlinear equations of motion. Theory and experiment are found to be in reasonable agreement. Temperature dependence of the graph of pressure versus piston displacement, for different directions of flywheel rotation, permits a better understanding of the physics of heat engines and refrigerators in general.

  6. Applied Nuclear Science Research and Development progress report, June 1, 1984-May 31, 1985

    Energy Technology Data Exchange (ETDEWEB)

    Arthur, E.D.; Mutschlecner, A.D. (comps.)

    1985-09-01

    This progress report describes the activities of the Los Alamos Applied Nuclear Science Group for June 1, 1984 through May 31, 1985. The topical content includes the theory and evaluation of nuclear cross sections; neutron cross section processing and testing; neutron activation, fission products and actinides; and core neutronics code development and application. 70 refs., 31 figs., 15 tabs. (WRF)

  7. New filter for iodine applied in nuclear medicine services.

    Science.gov (United States)

    Ramos, V S; Crispim, V R; Brandão, L E B

    2013-12-01

    In Nuclear Medicine, radioiodine, in various chemical forms, is a key tracer used in diagnostic practices and/or therapy. Medical professionals may incorporate radioactive iodine during the preparation of the dose to be administered to the patient. In radioactive iodine therapy doses ranging from 3.7 to 7.4 GBq per patient are employed. Thus, aiming at reducing the risk of occupational contamination, we developed a low cost filter to be installed at the exit of the exhaust system (where doses of radioiodine are handled within fume hoods, and new filters will be installed at their exit), using domestic technology. The effectiveness of radioactive iodine retention by silver impregnated silica [10%] crystals and natural activated carbon was verified using radiotracer techniques. The results showed that natural activated carbon and silver impregnated silica are effective for I2 capture with large or small amounts of substrate but the use of activated carbon is restricted due to its low flash point (423 K). Besides, when poisoned by organic solvents, this flash point may become lower, causing explosions if absorbing large amounts of nitrates. To hold the CH3I gas, it was necessary to use natural activated carbon since it was not absorbed by SiO2+Ag crystals. We concluded that, for an exhaust flow range of (145 ± 2)m(3)/h, a double stage filter using SiO2+Ag in the first stage and natural activated carbon in the second stage is sufficient to meet radiological safety requirements. PMID:23974306

  8. Research on applying physical chaos generator to spacecraft information security

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    The effectiveness of a short-length message extension method based on physical chaos generator was analyzed and the entropy of the extended message was calculated in this paper.The analysis demon-strated that with the mentioned method the entropy of short-length messages,which are repeatedly used in spacecraft data systems,is obviously increased,and the security of transmission is enhanced as well.This paper also presented an improvement of the protocol for secret key agreement presented by M.J.Gander and U.M.Maurer.Instead of depending on characteristics of communication channel,this method takes advantage of the random data produced by physical chaos generator to preset the initial parameters of the procedure on both sides of communication,so that the procedure and quantity of cipher key can be precisely controlled.This method can be used to cipher key management of se-cure communication between long life-span spacecraft and ground system.

  9. Research on applying physical chaos generator to spacecraft information security

    Institute of Scientific and Technical Information of China (English)

    ZHAO HePing

    2009-01-01

    Academy of Space Technology, Beijing 100094, China (small: zhpcast@ hotmail.com) The effectiveness of a short-length message extension method based on physical chaos generator was analyzed and the entropy of the extended message was calculated in this paper. The analysis demon-strated that with the mentioned method the entropy of short-length messages, which are repeatedly used in spacecraft data systems, is obviously increased, and the security of transmission is enhanced as well. This paper also presented an improvement of the protocol for secret key agreement presented by M. J. Gander and U. M. Maurer. Instead of depending on characteristics of communication channel,this method takes advantage of the random data produced by physical chaos generator to preset the initial parameters of the procedure on both sides of communication, so that the procedure and quantity of cipher key can be precisely controlled. This method can be used to cipher key management of se-cure communication between long life-span spacecraft and ground system.

  10. Role of near threshold resonances in intermediate energy nuclear physics

    Indian Academy of Sciences (India)

    B K Jain; N J Upadhyay

    2014-11-01

    The presence of a resonance close to the threshold strongly effects the dynamics of the interacting particles at low energies. Production of 12C, the element for life, in 4He burning in Sun is a classic example of such a situation. In intermediate energy nuclear physics, this situation arises in the interactions of an -meson with a nucleon and that of a −-meson with a proton at low energies, where both these systems have a resonance or a bound state near their thresholds, resulting in a strong attractive interaction. If putting these mesons in nuclear environment produces a strong attraction, it is possible that, in nature there may exist - and −-nuclear bound states. Such a tantalizing possibility has led to experimental and theoretical programmes to search for them. These efforts have produced positive results. This paper gives a brief critical overview of these studies, emphasizing especially the efforts led by Bhabha Atomic Research Centre (BARC).

  11. Safeguards Strategy in Physical Protection System for Nuclear Installation

    International Nuclear Information System (INIS)

    Safeguards strategy is directed at efforts of eliminating theft of nuclear materials and sabotage of nuclear installation. For achieving the above objective, it is necessary to set up safeguards strategy in physical protection of nuclear materials and installation. The safeguards strategy starts from anticipated security condition, list of thefts, planning referred to as safeguards planning. Safeguards planning are implemented in safeguards implementation, followed up then by evaluation. Results of evaluation are equipped with results of safeguards survey already developed. Safeguards' planning is made from these results and serve as guidelines for next safeguards implementation and is repeated to form a safeguard cycle. One safeguard cycle is made on a periodical basis, at least annually. (author)

  12. Nuclear physics constants for thermonuclear fusion. A reference handbook

    International Nuclear Information System (INIS)

    Light nuclei reactions are required for a number of practical applications: they are used extensively in nuclear physics research as neutron sources, and as standards for the normalization of absolute reaction cross-sections. Nuclear reactions with light nuclei are useful in non-destructive testing and in the determination of isotopic compositions when other analytical methods are not adequate for obtaining the required information. The information presented in this handbook consists of nuclear reaction cross-sections and scattering cross-sections for the interaction of hydrogen and helium isotopes with nuclei of Z ≤ 5. The evaluated integral and partial differential cross-sections presented here have been derived from a large body of compiled information, and encompass data for both exo-energetic and endo-energetic reaction channels. The evaluated data are presented in the form of sets of coefficients for fitted polynomials which ensures reliable interpolation of the data using contemporary computer methods. Refs, figs and tabs

  13. Laboratory for Nuclear Science. High Energy Physics Program

    Energy Technology Data Exchange (ETDEWEB)

    Milner, Richard [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)

    2014-07-30

    High energy and nuclear physics research at MIT is conducted within the Laboratory for Nuclear Science (LNS). Almost half of the faculty in the MIT Physics Department carry out research in LNS at the theoretical and experimental frontiers of subatomic physics. Since 2004, the U.S. Department of Energy has funded the high energy physics research program through grant DE-FG02-05ER41360 (other grants and cooperative agreements provided decades of support prior to 2004). The Director of LNS serves as PI. The grant supports the research of four groups within LNS as “tasks” within the umbrella grant. Brief descriptions of each group are given here. A more detailed report from each task follows in later sections. Although grant DE-FG02-05ER41360 has ended, DOE continues to fund LNS high energy physics research through five separate grants (a research grant for each of the four groups, as well as a grant for AMS Operations). We are pleased to continue this longstanding partnership.

  14. Applying system engineering methods to site characterization research for nuclear waste repositories

    International Nuclear Information System (INIS)

    Nuclear research and engineering projects can benefit from the use of system engineering methods. This paper is brief overview illustrating how system engineering methods could be applied in structuring a site characterization effort for a candidate nuclear waste repository. System engineering is simply an orderly process that has been widely used to transform a recognized need into a fully defined system. Such a system may be physical or abstract, natural or man-made, hardware or procedural, as is appropriate to the system's need or objective. It is a way of mentally visualizing all the constituent elements and their relationships necessary to fulfill a need, and doing so compliant with all constraining requirements attendant to that need. Such a system approach provides completeness, order, clarity, and direction. Admittedly, system engineering can be burdensome and inappropriate for those project objectives having simple and familiar solutions that are easily held and controlled mentally. However, some type of documented and structured approach is needed for those objectives that dictate extensive, unique, or complex programs, and/or creation of state-of-the-art machines and facilities. System engineering methods have been used extensively and successfully in these cases. The scientific methods has served well in ordering countless technical undertakings that address a specific question. Similarly, conventional construction and engineering job methods will continue to be quite adequate to organize routine building projects. Nuclear waste repository site characterization projects involve multiple complex research questions and regulatory requirements that interface with each other and with advanced engineering and subsurface construction techniques. There is little doubt that system engineering is an appropriate orchestrating process to structure such diverse elements into a cohesive, well defied project

  15. Group theory in particle, nuclear, and hadron physics

    CERN Document Server

    Abbas, Syed Afsar

    2016-01-01

    This user-friendly book on group theory introduces topics in as simple a manner as possible and then gradually develops those topics into more advanced ones, eventually building up to the current state-of-the-art. By using simple examples from physics and mathematics, the advanced topics become logical extensions of ideas already introduced. In addition to being used as a textbook, this book would also be useful as a reference guide for graduates and researchers in particle, nuclear and hadron physics.

  16. Lattice computations for high energy and nuclear physics

    Science.gov (United States)

    Jansen, K.

    2013-08-01

    An overview is given on present lattice field theory computations. We demonstrate the progress obtained in the field due to algorithmic, conceptual and supercomputer advances. We discuss as particular examples Higgs boson mass bounds in lattice Higgs-Yukawa models and the baryon spectrum, the anomalous magnetic moment of the muon and nuclear physics for lattice QCD. We emphasize a number of major challenges lattice field theory is still facing and estimate the computational cost for simulations at physical values of the pion mass.

  17. The s Process: Nuclear Physics, Stellar Models, Observations

    CERN Document Server

    Kaeppeler, Franz; Bisterzo, Sara; Aoki, Wako

    2010-01-01

    Nucleosynthesis in the s process takes place in the He burning layers of low mass AGB stars and during the He and C burning phases of massive stars. The s process contributes about half of the element abundances between Cu and Bi in solar system material. Depending on stellar mass and metallicity the resulting s-abundance patterns exhibit characteristic features, which provide comprehensive information for our understanding of the stellar life cycle and for the chemical evolution of galaxies. The rapidly growing body of detailed abundance observations, in particular for AGB and post-AGB stars, for objects in binary systems, and for the very faint metal-poor population represents exciting challenges and constraints for stellar model calculations. Based on updated and improved nuclear physics data for the s-process reaction network, current models are aiming at ab initio solution for the stellar physics related to convection and mixing processes. Progress in the intimately related areas of observations, nuclear...

  18. Materials for Active Engagement in Nuclear and Particle Physics Courses

    Science.gov (United States)

    Loats, Jeff; Schwarz, Cindy; Krane, Ken

    2013-04-01

    Physics education researchers have developed a rich variety of research-based instructional strategies that now permeate many introductory courses. Carrying these active-engagement techniques to upper-division courses requires effort and is bolstered by experience. Instructors interested in these methods thus face a large investment of time to start from scratch. This NSF-TUES grant, aims to develop, test and disseminate active-engagement materials for nuclear and particle physics topics. We will present examples of these materials, including: a) Conceptual discussion questions for use with Peer Instruction; b) warm-up questions for use with Just in Time Teaching, c) ``Back of the Envelope'' estimation questions and small-group case studies that will incorporate use of nuclear and particle databases, as well as d) conceptual exam questions.

  19. PREFACE: NUBA Conference Series 1: Nuclear Physics and Astrophysics

    Science.gov (United States)

    Boztosun, I.; Balantekin, A. B.; Kucuk, Y.

    2015-04-01

    The international conference series ''NUBA Conference Series 1: Nuclear Physics and Astrophysics'' was held on September 14-21 2014 in Antalya-Turkey. Akdeniz University hosted the conference and the Adrasan Training and Application Centre was chosen as a suitable venue to bring together scientists from all over the world as well as from different parts of Turkey. The conference was supported by the Scientific and Technological Research Council of Turkey (TÜBìTAK) and Akdeniz University Nuclear Sciences Application and Research Center (NUBA). Based on the highly positive remarks received from the participants both during and after the conference, we believe that the event has proven to be a fulfilling experience for all those who took part. The conference provided an opportunity for the participants to share their ideas and experiences in addition to exploring possibilities for future collaborations. Participants of the conference focused on: • Nuclear Structure and Interactions • Nuclear Reactions, • Photonuclear Reactions and Spectroscopy • Nuclear and Particle Astrophysics • Nuclear Processes in Early Universe • Nuclear Applications • New Facilities and Instrumentation Participants included a number of distinguished invited speakers. There was significant interest from the international nuclear physics community and numerous abstracts and papers were submitted. The scientific committee conducted a careful and rigorous selection process, as a result of which 75 contributions were accepted. Of those, 65 of them were given as oral and 10 as poster presentations. The superb quality of the papers ensured fruitful discussion sessions. We thank all the participants for their efforts and also for promptly sending in their papers for publication. This issue of the Journal of Physics: Conference Series was peer-reviewed by expert referees and we also thank them for peer-reviewing the papers. The national and international advisory committee also deserve

  20. PREFACE: 12th Conference on ''Theoretical Nuclear Physics in Italy''

    Science.gov (United States)

    Bombaci, I.; Covello, A.; Marcucci, L. E.; Rosati, S.

    2009-07-01

    These Proceedings contain the invited and contributed papers presented at the 12th Conference on Theoretical Nuclear Physics in Italy held in Cortona, Italy, from 8-10 October 2008. As usual, the meeting was held at il Palazzone, a 16th century castle owned by the Scuola Normale Superiore di Pisa. The aim of this biennal conference is to bring together Italian theorists working in various fields of Nuclear Physics to discuss their latest results and confront their points of view in a lively and informal way. This offers the opportunity to promote collaborations between different groups. There were about 50 participants at the conference, coming from 14 Italian Universities (Cagliari, Catania, Ferrara, Firenze, Genova, Lecce, Milano, Napoli, Padova, Pavia, Pisa, Roma, Trento, Trieste). The program of the conference, prepared by the Organizing Committee (Ignazio Bombaci, Aldo Covello, Laura Elisa Marcucci and Sergio Rosati) focused on six main topics: Few-Nucleon Systems, Nuclear Matter and Nuclear Dynamics, Nuclear Astrophysics, Structure of Hadrons and Hadronic Matter, Nuclear Structure, Nuclear Physics with Electroweak Probes. Winfried Leidemann, Maria Colonna, Marcello Lissia, Elena Santopinto, Silvia Lenzi and Omar Benhar took the burden of giving general talks on these topics and reviewing the research activities of the various Italian groups. In addition, 19 contributed papers were presented, most of them by young participants. In the last session of the Conference there were two invited talks related to experimental activities of great current interest. Gianfranco Prete from the Laboratori Nazionali di Legnaro spoke about the Italian radioactive ion beam facility SPES and the status of the European project EURISOL, while Nicola Colonna from the INFN, Bari, gave an overview of the perspectives of development of fourth-generation nuclear reactors. We would like to thank the authors of the general reports for their hard work in reviewing the main achievements in