Sample records for applied geoscience research

  1. Summaries of physical research in the geosciences

    Energy Technology Data Exchange (ETDEWEB)


    The Department of Energy supports research in the geosciences in order to provide a sound foundation of fundamental knowledge in those areas of the geosciences which are germane to the Department of Energy's many missions. The Division of Engineering and Geosciences, part of the Office of Basic Energy Sciences of the Office of Energy Research, supports the Geosciences Research Program. The participants in this program include Department of Energy laboratories, industry, universities, and other governmental agencies. The summaries in this document, prepared by the investigators, briefly describe the scope of the individual programs. The Geosciences Research Program includes research in geology, petrology, geophysics, geochemistry, solar physics, solar-terrestrial relationships, aeronomy, seismology, and natural resource modeling and analysis, including their various subdivisions and interdisciplinary areas. All such research is related either directly or indirectly to the Department of Energy's long-range technological needs.

  2. Summary outline of DOE geoscience and geoscience - related research

    Energy Technology Data Exchange (ETDEWEB)


    The Office of Basic Energy Sciences (OBES) supports long-range, basic research in those areas of the geosciences which are relevant to the nation's energy needs. The objective of the Geoscience program is to develop a quantitative and predictive understanding of geological, geophysical and geochemical structures and processes in the solid earth and in solar-terrestrial relationships. This understanding is to assure an effective knowledge base for energy resource recognition, evaluation and utilization in an environmentally acceptable manner. The work is carried out primarily in DOE laboratories and in universities, although some is conducted by other federal agencies and by the National Academy of Sciences. Principal areas of interest include: Geology, Geophysics, and Earth Dynamics; Geochemistry; Energy Resource Recognition, Evaluation and Utilization; Hydrologic and Marine Sciences; and Solar-Terrestrial/Atmospheric Interactions.

  3. Summaries of FY 1993 geosciences research

    Energy Technology Data Exchange (ETDEWEB)


    The Department of Energy supports research in the geosciences in order to provide a sound foundation of fundamental knowledge in those areas of the geosciences that are germane to the DOE`s many missions. The Geosciences Research Program is supported by the Office of Energy Research. The participants in this program include DOE laboratories, academic institutions, and other governmental agencies. These activities are formalized by a contract or grant between the DOE and the organization performing the work, providing funds for salaries, equipment, research materials, and overhead. The summaries in this document, prepared by the investigators, describe the scope of the individual programs. The Geosciences Research Program includes research in geophysics, geochemistry, resource evaluation, solar-terrestrial interactions, and their subdivisions including earth dynamics, properties of earth materials, rock mechanics, underground imaging, rock-fluid interactions, continental scientific drilling, geochemical transport, solar-atmospheric physics, and modeling, with emphasis on the interdisciplinary areas.

  4. Summaries of physical research in the geosciences

    Energy Technology Data Exchange (ETDEWEB)


    The Department of Energy supports research in the geosciences in order to provide a sound underlay of fundamental knowledge in those areas of the earth, atmospheric, and solar/terrestrial sciences that relate to the Department of Energy's many missions. The Division of Engineering, Mathematical and Geosciences, which is a part of the Office of Basic Energy Sciences and comes under the Director of Energy Research, supports under its Geosciences program major Department of Energy laboratories, industry, universities and other governmental agencies. The summaries in this document, prepared by the investigators, describe the overall scope of the individual programs and details of the research performed during 1979-1980. The Geoscience program includes research in geology, petrology, geophysics, geochemistry, hydrology, solar-terrestrial relationships, aeronomy, seismology and natural resource analysis, including the various subdivisions and interdisciplinary areas. All such research is related to the Department's technological needs, either directly or indirectly.

  5. Summaries of FY 91 geosciences research

    Energy Technology Data Exchange (ETDEWEB)


    The Department of Energy supports research in the geosciences in order to provide a sound foundation of fundamental knowledge in those areas of the geosciences which are germane to the Department of Energy's many missions. The Division of Engineering and Geosciences, part of the Office of Basic Energy Sciences of the Office of Energy Research supports the Geosciences Research Program. The participants in this program include Department of Energy laboratories, academic institutions, and other governmental agencies. Theses activities are formalized by a contract or grant between the Department of Energy and the organization performing the work, providing funds for salaries, equipment, research materials, and overhead. The summaries in this document, prepared by the investigators, describe the scope of the individual programs. The Geosciences Research Program includes research in geology, petrology, geophysics, geochemistry, solar physics, solar-terrestrial relationships, aeronomy, seismology, and natural resource modeling and analysis, including their various subdivisions and interdisciplinary areas. All such research is related either directly or indirectly to the Department of Energy's long-range technological needs. 2 tabs.

  6. Summaries of FY 92 geosciences research

    Energy Technology Data Exchange (ETDEWEB)


    The Department of Energy supports research in the geosciences in order to provide a sound foundation of fundamental knowledge in those areas of the geosciences that are germane to the Department of Energy's many missions. The Division of Engineering and Geosciences, part of the Office of Basic Energy Sciences of the Office of Energy Research, supports the Geosciences Research Program. The participants in this program include Department of Energy laboratories, academic institutions, and other governmental agencies. These activities are formalized by a contract or grant between the Department of Energy and the organization performing the work, providing funds for salaries, equipment, research materials, and overhead. The summaries in this document, prepared by the investigators, describe the scope of the individual programs. The Geosciences Research Program includes research in geophysics, geochemistry, resource evaluation, solar-terrestrial interactions and their subdivisions including Earth dynamics, properties of Earth materials, rock mechanics, underground imaging, rock-fluid interactions, continental scientific drilling, geochemical transport, solar/atmospheric physics, and modeling, with emphasis on the interdisciplinary areas. All such research is related either directly or indirectly to the Department of Energy's long-range technological needs.

  7. Summaries of physical research in the geosciences

    Energy Technology Data Exchange (ETDEWEB)


    The Department of Energy supports research in the geosciences in order to provide a sound foundation of fundamental knowledge in those areas of earth, atmospheric, and solar-terrestrial sciences that are germane to the Department of Energy's many missions. The summaries in the document describe the scope of the individual programs and detail the research performed during 1982 to 1983. The Geoscience Research Program includes research in geology, petrology, geophysics, geochemistry, hydrology, solar-terrestrial relationships, aeronomy, seismology, and natural resource analysis, including the various subdivisions and interdisciplinary areas. All such research is related either directly or indirectly to the Department of Energy's technological needs.

  8. Summaries of physical research in the geosciences

    Energy Technology Data Exchange (ETDEWEB)


    The Department of Energy supports research in the geosciences in order to provide a sound foundation of fundamental knowledge in those areas of earth, atmospheric, and solar-terrestrial sciences that are germane to the Department of Energy's many missions. The summaries describe the scope of the individual programs and detail the research performed during 1980 to 1981. The Geosciences Research Program includes research in geology, petrology, geophysics, geochemistry, hydrology, solar-terrestrial relationships, aeronomy, seismology, and natural resource analysis, including the various subdivisions and interdisciplinary areas.

  9. Summaries of physical research in the geosciences

    Energy Technology Data Exchange (ETDEWEB)


    The Department of Energy supports research in the geosciences in order to provide a sound foundation of fundamental knowledge in those areas that are germane to the Department of Energy's many missions. The summaries in this document, prepared by the investigators, describe the scope of the individual programs. The Geoscience Research Program includes research in geology, petrology, geophysics, geochemistry, solar-terrestrial relationships, aeronomy, seismology, and natural resource analysis, including their various subdivisions and interdisciplinary areas. All such research is related either directly or indirectly to the Department of Energy's technological needs.

  10. Summaries of physical research in the geosciences

    Energy Technology Data Exchange (ETDEWEB)


    The summaries in this document describe the scope of the individual programs and detail the research performed during 1984-1985. The Geosciences Research Program includes research in geology, petrology, geophysics, geochemistry, hydrology, solar-terrestrial relationships, aeronomy, seismology, and natural resource analysis, including their various subdivisions and interdisciplinary areas.

  11. Muons tomography applied to geosciences and volcanology

    Energy Technology Data Exchange (ETDEWEB)

    Marteau, J., E-mail: [Institut de Physique Nucleaire de Lyon (UMR CNRS-IN2P3 5822), Universite Lyon 1, Lyon (France); Gibert, D.; Lesparre, N. [Institut de Physique du Globe de Paris (UMR CNRS 7154), Sorbonne Paris Cite, Paris (France); Nicollin, F. [Geosciences Rennes (CNRS UMR 6118), Universite Rennes 1, Bat. 15 Campus de Beaulieu, 35042 Rennes cedex (France); Noli, P. [Universita degli studi di Napoli Federico II and INFN sez. Napoli (Italy); Giacoppo, F. [Laboratory for High Energy Physics, University of Bern, SidlerStrasse 5, CH-3012 Bern (Switzerland)


    Imaging the inner part of large geological targets is an important issue in geosciences with various applications. Different approaches already exist (e.g. gravimetry, electrical tomography) that give access to a wide range of information but with identified limitations or drawbacks (e.g. intrinsic ambiguity of the inverse problem, time consuming deployment of sensors over large distances). Here we present an alternative and complementary tomography method based on the measurement of the cosmic muons flux attenuation through the geological structures. We detail the basics of this muon tomography with a special emphasis on the photo-active detectors.

  12. Muons tomography applied to geosciences and volcanology

    CERN Document Server

    Marteau, J; Lesparre, N; Nicollin, F; Noli, P; Giacoppo, F


    Imaging the inner part of large geological targets is an important issue in geosciences with various applications. Dif- ferent approaches already exist (e.g. gravimetry, electrical tomography) that give access to a wide range of informations but with identified limitations or drawbacks (e.g. intrinsic ambiguity of the inverse problem, time consuming deployment of sensors over large distances). Here we present an alternative and complementary tomography method based on the measurement of the cosmic muons flux attenuation through the geological structures. We detail the basics of this muon tomography with a special emphasis on the photo-active detectors.

  13. Summaries of FY 1994 geosciences research

    Energy Technology Data Exchange (ETDEWEB)


    The Geosciences Research Program is directed by the Department of Energy`s (DOE`s) Office of Energy Research (OER) through its Office of Basic Energy Sciences (OBES). Activities in the Geosciences Research Program are directed toward the long-term fundamental knowledge of the processes that transport, modify, concentrate, and emplace (1) the energy and mineral resources of the earth and (2) the energy byproducts of man. The Program is divided into five broad categories: Geophysics and earth dynamics; Geochemistry; Energy resource recognition, evaluation, and utilization; Hydrogeology and exogeochemistry; and Solar-terrestrial interactions. The summaries in this document, prepared by the investigators, describe the scope of the individual programs in these main areas and their subdivisions including earth dynamics, properties of earth materials, rock mechanics, underground imaging, rock-fluid interactions, continental scientific drilling, geochemical transport, solar/atmospheric physics, and modeling, with emphasis on the interdisciplinary areas.

  14. Summaries of FY 1996 geosciences research

    Energy Technology Data Exchange (ETDEWEB)



    The Geosciences Research Program is directed by the Department of Energy`s (DOE`s) Office of Energy Research (OER) through its Office of Basic Energy Sciences (OBES). Activities in the Geosciences Research Program are directed toward building the long-term fundamental knowledge base necessary to provide for energy technologies of the future. Future energy technologies and their individual roles in satisfying the nations energy needs cannot be easily predicted. It is clear, however, that these future energy technologies will involve consumption of energy and mineral resources and generation of technological wastes. The earth is a source for energy and mineral resources and is also the host for wastes generated by technological enterprise. Viable energy technologies for the future must contribute to a national energy enterprise that is efficient, economical, and environmentally sound. The Geosciences Research Program emphasizes research leading to fundamental knowledge of the processes that transport, modify, concentrate, and emplace (1) the energy and mineral resources of the earth and (2) the energy by-products of man.

  15. Attracting Urban Minority Students to Geosciences through Exposure to Careers and Applied Aspects in Newark, NJ (United States)

    Gates, A. E.; Kalczynski, M. J.


    A solid pipeline of URM students into the Geosciences has been established in Newark, NJ by introducing them to applied opportunities. Prior to an OEDG program designed to engage URM students, there were no students from or near Newark interested in pursuing geosciences at Rutgers-Newark or Essex Community College, the two local urban campuses. By infusing activities that showed the applied aspects of geoscience and opportunities for careers into regular high school lesson plans, a significant number of students became interested. These students were recruited into a 4-week modular summer institute that focused on energy, mining resources, environment and surface processes. About 90 students per year attended the institute which included 2 local field trips per week, presentations by industry professionals, activities that placed academic subjects into career perspective and a research project that directly affected the well-being of the students and their families. The most interested dozen of the 90 students were invited to participate in a high profile applied project that received significant media coverage, further enhancing their impression of the importance of geosciences. Previous graduates of the program were employed as assistants in subsequent programs to recycle the experience and enthusiasm. This had a positive effect on the persistence of the assistants who viewed themselves as role models to the younger students. The results are burgeoning numbers of URM geoscience majors at Rutgers, offering of geoscience for the first time in 30 years at Essex Community College as well as a new 2+2 geoscience track and several dual-credit courses at local high schools. An important aspect of this pathway or pipeline is that students must be able to clearly see the next step and their role in it. They are very tentative in this essentially pioneering pursuit. If they don't get a sense of a welcoming community and an ultimate career outcome, they quickly lose

  16. Geoscience Education Research: A Brief History, Context and Opportunities (United States)

    Mogk, D. W.; Manduca, C. A.; Kastens, K. A.


    DBER combines knowledge of teaching and learning with deep knowledge of discipline-specific science content. It describes the discipline-specific difficulties learners face and the specialized intellectual and instructional resources that can facilitate student understanding (NRC, 2011). In the geosciences, content knowledge derives from all the "spheres, the complex interactions of components of the Earth system, applications of first principles from allied sciences, an understanding of "deep time", and approaches that emphasize the interpretive and historical nature of geoscience. Insights gained from the theory and practice of the cognitive and learning sciences that demonstrate how people learn, as well as research on learning from other STEM disciplines, have helped inform the development of geoscience curricular initiatives. The Earth Science Curriculum Project (1963) was strongly influenced by Piaget and emphasized hands-on, experiential learning. Recognizing that education research was thriving in related STEM disciplines a NSF report (NSF 97-171) recommended "... that GEO and EHR both support research in geoscience education, helping geoscientists to work with colleagues in fields such as educational and cognitive psychology, in order to facilitate development of a new generation of geoscience educators." An NSF sponsored workshop, Bringing Research on Learning to the Geosciences (2002) brought together geoscience educators and cognitive scientists to explore areas of mutual interest, and identified a research agenda that included study of spatial learning, temporal learning, learning about complex systems, use of visualizations in geoscience learning, characterization of expert learning, and learning environments. Subsequent events have focused on building new communities of scholars, such as the On the Cutting Edge faculty professional development workshops, extensive collections of online resources, and networks of scholars that have addressed teaching

  17. Community Efforts Bringing Research on Learning to the Geosciences (United States)

    Manduca, C. A.; Mogk, D. W.; Kastens, K. A.


    Individual, departmental and community efforts have all played a major role in developing a thriving research effort addressing thinking and learning in the geosciences. Community efforts have been effective in elevating the importance of the field, defining a research agenda, fostering collaborations with cognitive science and education communities, building capacity within the geosciences, and developing reviewer awareness of the importance and opportunities within geoscience education research. Important community efforts include a call for geoscience education research in the 1997 NSF report Geoscience Education: A Recommended Strategy and in the subsequent 2000 NSF report ‘Bridges: Connecting Research and Education in the Earth System Sciences’. A research agenda and supporting recommendations for collaboration and capacity building were jointly developed by geoscience educators, cognitive scientists and education researchers at the 2002 NSF/Johnson Foundation funded workshop Bringing Research on Learning to the Geosciences. This research agenda emphasized studies of geoscience expertise, learning pathways (and their challenges) that are critical to the development of that expertise, and materials and environments that support this learning, with a focus on learning in the field and from large data sets, complex systems and deep time, spatial skills, and the synthesis of understanding from multiple sources of incomplete data. Collaboration and capacity building have been further supported by the NAGT sponsored professional development program “On the Cutting Edge” with workshops bringing together cognitive scientists, educators and geoscientists on topics including developing on-line learning resources, teaching with visualizations, the role of the affective domain in geoscience learning, teaching metacognition, and teaching with data. 40 successful educational research proposals are attributed to participation in On the Cutting Edge. An NSF funded

  18. The research on HRM model of geosciences engineering perambulation enterprise

    Institute of Scientific and Technical Information of China (English)


    Firstly,this paper defines the definition of geosciences engineering perambulation enterprise,which belongs to the knowledgeable enterprise;then,it summarizes the general HRM model presented by other researchers,based on those models,this paper builds a new HRM model of geosciences engineering perambulation enterprise.

  19. Developing Geosciences Research Partnerships With Colleagues from SOPAC (United States)

    Edsall, D. W.


    Members of the AGU have an opportunity to become involved in cooperative research with scientists from the Cook Islands, Fiji, Guam, Federated States of Micronesia, Kiribati, Marshall Islands, Papua New Guinea, Solomon Islands, Tonga, Tuvalu, Vanuatu, Western Samoa as well as Australia and New Zealand. Governmental officials and scientists from the member countries of the South Pacific Applied Geoscience Commission (SOPAC) and its Science Technology and Resources Network (STAR) are looking for individuals, academic and research organizations, foundations, private industry, governmental agencies and professional societies to assist with important research efforts. Involvement would include: promoting; training; funding; equipping, facilitating; coordinating; advising; monitoring; collaborating; interpreting; evaluating and reporting. Studies in all onshore, coastal and offshore environments are needed. Topics include: development of natural resources; reduction of environmental vulnerability; support of sustainable development; development of potable water supplies; protecting coral reef environments; and basic investigations of local weather, climatology, biology, geology, geophysics and oceanography. This paper addresses ways to create such research partnerships.

  20. Alliances for Undergraduate Research in the Geosciences Through Collaborative Recruitment (United States)

    Pandya, R.; Eriksson, S.; Haacker-Santos, R.; Calhoun, A.


    Undergraduate research is a key strategy for encouraging students to pursue graduate school and careers in science end engineering. In the geosciences, where participation by members of underrepresented groups is among the lowest of any science field, these programs must continue and strengthen their efforts to engage students from historically underrepresented groups. A significant limitation on our ability to engage students from historically underrepresented groups comes from the expense, in terms of time and resources, of promoting these career options to talented undergraduates considering a host of STEM careers. Another hurdle is our ability to match students with research projects tailored to their interests. Further complicating this is the challenge of matching students who have culturally motivated geographic constraints—for example, Native students who seek to serve their local community—to relevant opportunities. As a result, we believe that a number of highly qualified students never fully consider careers in the geosciences. To address these obstacles, we propose an alliance of undergraduate research programs in the geosciences. In this model, all members of the alliance would share recruiting, and students would submit a single application forwarded to all alliance members. The Alliance could offer applicants multiple research opportunities, from across the alliance, tailored to fit the applicant's needs and interests. This strategy has proven very effective in other fields; for example, the Leadership Alliance allows 32 member institutions to offer internships and fellowships through one central application process. SOARS and RESESS, programs in atmospheric science and geophysics, respectively, have done this co-recruiting for two years. There are many benefits to this type of alliance. First, it would allow programs to leverage and coordinate their recruiting investments. From our experience with SOARS and RESESS, much of the effort in

  1. EarthCube Activities: Community Engagement Advancing Geoscience Research (United States)

    Kinkade, D.


    Our ability to advance scientific research in order to better understand complex Earth systems, address emerging geoscience problems, and meet societal challenges is increasingly dependent upon the concept of Open Science and Data. Although these terms are relatively new to the world of research, Open Science and Data in this context may be described as transparency in the scientific process. This includes the discoverability, public accessibility and reusability of scientific data, as well as accessibility and transparency of scientific communication ( Scientists and the US government alike are realizing the critical need for easy discovery and access to multidisciplinary data to advance research in the geosciences. The NSF-supported EarthCube project was created to meet this need. EarthCube is developing a community-driven common cyberinfrastructure for the purpose of accessing, integrating, analyzing, sharing and visualizing all forms of data and related resources through advanced technological and computational capabilities. Engaging the geoscience community in EarthCube's development is crucial to its success, and EarthCube is providing several opportunities for geoscience involvement. This presentation will provide an overview of the activities EarthCube is employing to entrain the community in the development process, from governance development and strategic planning, to technical needs gathering. Particular focus will be given to the collection of science-driven use cases as a means of capturing scientific and technical requirements. Such activities inform the development of key technical and computational components that collectively will form a cyberinfrastructure to meet the research needs of the geoscience community.

  2. Geoscience Education Research: The Role of Collaborations with Education Researchers and Cognitive Scientists (United States)

    Manduca, C. A.; Mogk, D. W.; Kastens, K. A.; Tikoff, B.; Shipley, T. F.; Ormand, C. J.; Mcconnell, D. A.


    Geoscience Education Research aims to improve geoscience teaching and learning by understanding clearly the characteristics of geoscience expertise, the path from novice to expert, and the educational practices that can speed students along this path. In addition to expertise in geoscience and education, this research requires an understanding of learning -the domain of cognitive scientists. Beginning in 2002, a series of workshops and events focused on bringing together geoscientists, education researchers, and cognitive scientists to facilitate productive geoscience education research collaborations. These activities produced reports, papers, books, websites and a blog developing a research agenda for geoscience education research at a variety of scales: articulating the nature of geoscience expertise, and the overall importance of observation and a systems approach; focusing attention on geologic time, spatial skills, field work, and complex systems; and identifying key research questions in areas where new technology is changing methods in geoscience research and education. Cognitive scientists and education researchers played critical roles in developing this agenda. Where geoscientists ask questions that spring from their rich understanding of the discipline, cognitive scientists and education researchers ask questions from their experience with teaching and learning in a wide variety of disciplines and settings. These interactions tend to crystallize the questions of highest importance in addressing challenges of geoscience learning and to identify productive targets for collaborative research. Further, they serve as effective mechanisms for bringing research techniques and results from other fields into geoscience education. Working productively at the intersection of these fields requires teams of cognitive scientists, geoscientists, and education reserachers who share enough knowledge of all three domains to have a common articulation of the research

  3. NAGT-GER: A Community of Practice to Support the Emerging Field of Geoscience Education Research (United States)

    Lukes, L.; LaDue, N.; Cheek, K.; Ryker, K.


    As the National Research Council noted in its 2012 report on discipline-based education research (DBER) in undergraduate science and engineering, in order to advance DBER as a field of inquiry, "a robust infrastructure is required to recognize and support [DBER] within professional societies." One way to develop such an infrastructure around geoscience education research is to create a community of practice within the broader geoscience education community. In recent years, the members of the National Association of Geoscience Teachers (NAGT) have created two divisions to support the geoscience education needs of specific subpopulations of the geoscience community: the 2YC division, focusing on community college issues, and TED, focusing on teacher education. This year marks the first year of a new division within the National Association of Geoscience Teachers (NAGT) focused on geoscience education research. The Geoscience Education Research division (GER) is committed to the promotion of high quality, scholarly research in geoscience education that improves teaching and learning in K-12, higher education, and informal learning environments. High quality DBER in geoscience requires the ability to connect current theories of teaching and learning with deep content-specific conceptual understanding. A community of practice like NAGT GER, has the potential to improve the quality of scholarly efforts in geoscience education by providing a forum for improving the collective knowledge and expertise of the geoscience education research community. Current division initiatives and efforts will be highlighted and time for dialogue on future directions will be included.

  4. The IUGS Task Group on Global Geoscience Professionalism - promoting professional skills professionalism in the teaching, research and application of geoscience for the protection and education of the public (United States)

    Allington, Ruth; Fernandez-Fuentes, Isabel


    A new IUGS Task Group entitled the Task Group on Global Geoscience Professionalism was formed in 2012 and launched at a symposium at the 341GC in Brisbane on strengthening communication between fundamental and applied geosciences and between geoscientists and public. The Task Group aims to ensure that the international geoscience community is engaged in a transformation of its profession so as to embed the need for a professional skills base alongside technical and scientific skills and expertise, within a sound ethical framework in all arenas of geoscience practice. This needs to be established during training and education and reinforced as CPD throughout a career in geoscience as part of ensuring public safety and effective communication of geoscience concepts to the public. The specific objective of the Task Group on Global Geoscience Professionalism that is relevant to this poster session is: • To facilitate a more 'joined up' geoscience community fostering better appreciation by academics and teachers of the professional skills that geoscientists need in the workplace, and facilitate better communication between academic and applied communities leading to more effective application of research findings and technology to applied practitioners and development of research programmes that truly address urgent issues. Other Task Group objectives are: • To provide a specific international forum for discussion of matters of common concern and interest among geoscientists and geoscientific organizations involved in professional affairs, at the local, national and international level; • To act as a resource to IUGS on professional affairs in the geosciences as they may influence and impact "Earth Science for the Global Community" in general - both now and in the future; • To offer and provide leadership and knowledge transfer services to countries and geoscientist communities around the world seeking to introduce systems of professional governance and self

  5. The Geosciences Institute for Research and Education: Bringing awareness of the geosciences to minorities in Detroit MI (United States)

    Nalepa, N. A.; Murray, K. S.; Napieralski, J. A.


    According to recent studies, more than 40% of students within the Detroit Public Schools (DPS) drop out and only 21% graduate within 4 years. In an attempt to improve these statistics, The Geosciences Institute for Research and Education was developed by the University of Michigan-Dearborn (UM-D) and funded by two grants from the National Science Foundation’s (NSF) OEDG Program. The Geosciences Institute, a collaboration between the UM-D, DPS, and local corporations, aims to generate awareness of the geosciences to middle school students, facilitate an enthusiastic learning environment, encourage underrepresented minorities to stay in school, and consider the geosciences as a viable career option. This is accomplished by involving their teachers, UM-D faculty and students, and local geoscience professionals in community-based research problems relevant to SE Michigan. Students use the geosciences as a tool in which they are actively participating in research that is in their backyards. Through a mixture of field trips, participation, and demonstrational activities the students become aware of local environmental and social problems and how a background in the geosciences can prepare them. As part of the Geosciences Institute, students participate in three ongoing research projects with UM-D faculty: (1) build, install, and monitor groundwater wells along the Lower Rouge River, (2) collect soil samples from and mapping brownfields in SW Detroit, and (3) learn basic GPS and GIS skills to map local natural resources. The students also work with faculty on creating video diaries that record ideas, experiences, and impressions throughout the Institute, including during fieldtrips, modules, research, and editing. Finally, small teams of students collaborate to design and print a poster that summarizes their experience in the Institute. The Geosciences Institute concludes with a ceremony that celebrates student efforts (posters and videos) and involves school

  6. Geoscience Education and Cognition Research at George Mason University (United States)

    Mattietti, G. K.; Peters, E. E.; Verardo, S.


    Cognition research in Geoscience is the focus of a small group of faculty from the College of Science and the College of Education and Human Development at George Mason University. We approached this research when we were involved in an Institution-wide effort to assess critical thinking, one of the competencies mandated for evaluation by the State Council of Higher Education of Virginia. Our group started spontaneously and informally from personal interests and enthusiasm for what and how our students are learning about Geology and in general about science. We want to understand what our students bring to the course, their attitude towards science, their knowledge of the scientific enterprise and preconceived ideas—and what our students take away from the course, beyond the course content. We believe that, with the support of cognitive science, we can improve the learning experience and therefore enhance the learning outcomes for science and non-science majors alike. Our Institution offers introductory Physical and Historical Geology classes populated primarily by non-science-major undergraduates. Geology lectures range in size from 90 to over 220 students per session per semester, with laboratory sessions averaging 27 students per session. With this large student population, it is necessary to use research tools that give us valuable information about student cognition, while being efficient in terms of time use and logistics. Some examples of our work include critical readings on Geoscience topics, surveys on students’ understanding of science as a way of knowing, exercises with built-in self-efficacy assessments, and concept mapping. The common denominator among these tools is that they are calibrated to address one or more of the higher levels in the revised Bloom’s Taxonomy of the Cognitive Domain, which form a complex assessment of student learning processes. These tools, once refined, can provide us with a better view of how our students learn in

  7. (Geosciences research and development). [Annotated bibliography

    Energy Technology Data Exchange (ETDEWEB)


    This report represents the final report of the University of Utah Research Institute under US Department of Energy Contract No. DE-AC07-85ID12489. It consists of the abstracts and references of all technical reports generated by UURI under this contract. This report lists the abstracts in DOE report number sequence. The author index of this report will be useful in locating specific references. These reports are all related to earth science and geothermal energy.

  8. NASA Applied Sciences' DEVELOP National Program: a unique model cultivating capacity in the geosciences (United States)

    Ross, K. W.; Favors, J. E.; Childs-Gleason, L. M.; Ruiz, M. L.; Rogers, L.; Allsbrook, K. N.


    The NASA DEVELOP National Program takes a unique approach to cultivating the next generation of geoscientists through interdisciplinary research projects that address environmental and public policy issues through the application of NASA Earth observations. Competitively selected teams of students, recent graduates, and early career professionals take ownership of project proposals outlining basic application concepts and have ten weeks to research core scientific challenges, engage partners and end-users, demonstrate prototypical solutions, and finalize and document their results and outcomes. In this high pressure, results-driven environment emerging geoscience professionals build strong networks, hone effective communication skills, and learn how to call on the varied strengths of a multidisciplinary team to achieve difficult objectives. The DEVELOP approach to workforce development has a variety of advantages over classic apprenticeship-style internship systems. Foremost is the experiential learning of grappling with real-world applied science challenges as a primary actor instead of as an observer or minor player. DEVELOP participants gain experience that fosters personal strengths and service to others, promoting a balance of leadership and teamwork in order to successfully address community needs. The program also advances understanding of Earth science data and technology amongst participants and partner organizations to cultivate skills in managing schedules, risks and resources to best optimize outcomes. Individuals who come through the program gain experience and networking opportunities working within NASA and partner organizations that other internship and academic activities cannot replicate providing not only skill development but an introduction to future STEM-related career paths. With the competitive nature and growing societal role of science and technology in today's global community, DEVELOP fosters collaboration and advances environmental

  9. Georgia Teachers in Academic Laboratories: Research Experiences in the Geosciences (United States)

    Barrett, D.


    The Georgia Intern-Fellowships for Teachers (GIFT) is a collaborative effort designed to enhance mathematics and science experiences of Georgia teachers and their students through summer research internships for teachers. By offering business, industry, public science institute and research summer fellowships to teachers, GIFT provides educators with first-hand exposure to the skills and knowledge necessary for the preparation of our future workforce. Since 1991, GIFT has placed middle and high school mathematics, science and technology teachers in over 1000 positions throughout the state. In these fellowships, teachers are involved in cutting edge scientific and engineering research, data analysis, curriculum development and real-world inquiry and problem solving, and create Action Plans to assist them in translating the experience into changed classroom practice. Since 2004, an increasing number of high school students have worked with their teachers in research laboratories. The GIFT program places an average of 75 teachers per summer into internship positions. In the summer of 2005, 83 teachers worked in corporate and research environments throughout the state of Georgia and six of these positions involved authentic research in geoscience related departments at the Georgia Institute of Technology, including aerospace engineering and the earth and atmospheric sciences laboratories. This presentation will review the history and the structure of the program including the support system for teachers and mentors as well as the emphasis on inquiry based learning strategies. The focus of the presentation will be a comparison of two placement models of the teachers placed in geoscience research laboratories: middle school earth science teachers placed in a 6 week research experience and high school teachers placed in 7 week internships with teams of 3 high school students. The presentation will include interviews with faculty to determine the value of these experiences

  10. Minority Institutions Collaboration in Geoscience Education and Research (United States)

    Morris, P. A.; Austin, S. A.; Johnson, L. P.; Salgado, C.; Walter, D. K.


    The Minority University Consortium for Earth and Space Sciences (MUCESS) is a collaboration among four diverse minority institutions to increase the number of underrepresented students pursuing professional and research careers in Earth and Atmospheric Science and Space Science. The institutions that comprise MUCESS include the University of Houston-Downtown (Hispanic Serving Institution), Medgar Evers College (Other Minority University), Norfolk State University (Historically Black College/University) and South Carolina State University (Historically Black College/University). MUCESS collaborations span a range of projects in research, education and outreach in Earth and Space Science. This includes faculty research, undergraduate internships and student exchanges among our institutions as well as outreach to K-12 schools and the general public. MUCESS has recently received an award from the National Science Foundation under Solicitation NSF 04-590 "Opportunities for Enhancing Diversity in the Geosciences (OEDG)". Under this award faculty and students will be engaged in research (both undergraduate and graduate) in atmospheric science through ozonesonde launches to better understand the distribution and transport of ozone in the lower troposphere. Faculty and students will also participate in ozone observations for validation of instruments onboard the NASA Aura satellite. Additional balloon payloads will include instruments such as temperature and data logger sensors, carbon dioxide detectors, Geiger counters and digital and analog cameras. Launches will originate from Texas, New York, Vermont, South Carolina and elsewhere. This presentation describes the formation of MUCESS and the collaborative undergraduate research and outreach projects spanning six or more years. It also describes the evolution of the joint ozone investigation as well as planned activities supported by the NSF Geoscience Diversity award. Funding for the work described has been provided by

  11. The ENGAGE Workshop: Encouraging Networks between Geoscientists and Geoscience Education Researchers (United States)

    Hubenthal, M.; LaDue, N.; Taber, J.


    The geoscience education community has made great strides in the study of teaching and learning at the undergraduate level, particularly with respect to solid earth geology. Nevertheless, the 2012 National Research Council report, Discipline-based Education Research: Understanding and Improving Learning in Undergraduate Science and Engineering suggests that the geosciences lag behind other science disciplines in the integration of education research within the discipline and the establishment of a broad research base. In January 2015, early career researchers from earth, atmospheric, ocean, and polar sciences and geoscience education research (GER) gathered for the ENGAGE workshop. The primary goal of ENGAGE was to broaden awareness of discipline-based research in the geosciences and catalyze relationships and understanding between these groups of scientists. An organizing committee of geoscientists and GERs designed a two-day workshop with a variety of activities to engage participants in the establishment of a shared understanding of education research and the development of project ideas through collaborative teams. Thirty-three participants were selected from over 100 applicants, based on disciplinary diversity and demonstrated interest in geoscience education research. Invited speakers and panelists also provided examples of successful cross-disciplinary collaborations. As a result of this workshop, participants indicated that they gained new perspectives on geoscience education and research, networked outside of their discipline, and are likely to increase their involvement in geoscience education research. In fact, 26 of 28 participants indicated they are now better prepared to enter into cross-disciplinary collaborations within the next year. The workshop evaluation revealed that the physical scientists particularly valued opportunities for informal networking and collaborative work developing geoscience education research projects. Meanwhile, GERs valued

  12. The Geoscience Diversity Enhancement Program (GDEP): A Model for Faculty and Student Engagement in Urban Geoscience Research (United States)

    Ambos, E. L.; Lee, C.; Behl, R.; Francis, R. D.; Holk, G.; Larson, D.; Rodrigue, C.; Wechsler, S.; Whitney, D.


    For the past three years (2002-2004) faculty in the departments of geological sciences, geography, and anthropology at California State University, Long Beach have joined to offer an NSF-funded (GEO-0119891) eight-week summer research experience to faculty and students at Long Beach area high schools and community colleges. GDEP's goal is to increase the numbers of students from underrepresented groups (African-American, Hispanic, American Indian, Pacific Islander, and disabled) enrolling in baccalaureate degree programs in the geosciences. The major strategies to achieve this goal all tie to the concept of research-centered experiences, which might also be termed inquiry-based instruction. More than fifteen (15) separate and diverse geoscience research studies have been conducted. These include such disparate topics as geochemical studies of fault veins, GPS/GIS surveys of vegetation patterns for fire hazard assessment, and seismic studies of offshore fault systems. As the program has matured, research projects have become more interdisciplinary, and faculty research teams have expanded. Whereas the first year, each CSULB faculty member tended to lead her/his project as a separate endeavor, by the third summer, faculty were collaborating in research teams. Several projects have involved community-based research, at sites within an hour's drive from the urban Long Beach campus. For example, last summer, four faculty linked together to conduct a comprehensive geography and geology study of an Orange County wilderness area, resulting in creation of maps, brochures, and websites for use by the general public. Another faculty group conducted geophysical surveys at an historic archaeological site in downtown Los Angeles, producing maps of underground features that will be incorporated into a cultural center and museum. Over the past three summers, the program has grown to involve more than 25 high school and community college students, and more than 30 CSULB, high

  13. Enhancing Geoscience Research Discovery Through the Semantic Web (United States)

    Rowan, Linda R.; Gross, M. Benjamin; Mayernik, Matthew; Khan, Huda; Boler, Frances; Maull, Keith; Stott, Don; Williams, Steve; Corson-Rikert, Jon; Johns, Erica M.; Daniels, Michael; Krafft, Dean B.; Meertens, Charles


    UNAVCO, UCAR, and Cornell University are working together to leverage semantic web technologies to enable discovery of people, datasets, publications and other research products, as well as the connections between them. The EarthCollab project, a U.S. National Science Foundation EarthCube Building Block, is enhancing an existing open-source semantic web application, VIVO, to enhance connectivity across distributed networks of researchers and resources related to the following two geoscience-based communities: (1) the Bering Sea Project, an interdisciplinary field program whose data archive is hosted by NCAR's Earth Observing Laboratory (EOL), and (2) UNAVCO, a geodetic facility and consortium that supports diverse research projects informed by geodesy. People, publications, datasets and grant information have been mapped to an extended version of the VIVO-ISF ontology and ingested into VIVO's database. Much of the VIVO ontology was built for the life sciences, so we have added some components of existing geoscience-based ontologies and a few terms from a local ontology that we created. The UNAVCO VIVO instance,, utilizes persistent identifiers whenever possible; for example using ORCIDs for people, publication DOIs, data DOIs and unique NSF grant numbers. Data is ingested using a custom set of scripts that include the ability to perform basic automated and curated disambiguation. VIVO can display a page for every object ingested, including connections to other objects in the VIVO database. A dataset page, for example, includes the dataset type, time interval, DOI, related publications, and authors. The dataset type field provides a connection to all other datasets of the same type. The author's page shows, among other information, related datasets and co-authors. Information previously spread across several unconnected databases is now stored in a single location. In addition to VIVO's default display, the new database can be queried using SPARQL

  14. 3D visualization for research and teaching in geosciences (United States)

    Manea, Marina; Constantin Manea, Vlad


    Today, we are provided with an abundance of visual images from a variety of sources. In doing research, data visualization represents an important part, and sophisticated models require special tools that should enhance the comprehension of modeling results. Also, helping our students gain visualization skills is an important way to foster greater comprehension when studying geosciences. For these reasons we build a 3D stereo-visualization system, or a GeoWall, that permits to explore in depth 3D modeling results and provide for students an attractive way for data visualization. In this study, we present the architecture of such low cost system, and how is used. The system consists of three main parts: a DLP-3D capable display, a high performance workstation and several pairs of wireless liquid crystal shutter eyewear. The system is capable of 3D stereo visualization of Google Earth and/or 3D numeric modeling results. Also, any 2D image or movie can be instantly viewed in 3D stereo. Such flexible-easy-to-use visualization system proved to be an essential research and teaching tool.

  15. Emerging Geoscience Education Research at the University of British Columbia (United States)

    Jones, F. M.; Harris, S.; Wieman, C.; Gilley, B.; Lane, E.; Caulkins, J.


    Geoscience education research (GER) in UBC’s Department of Earth and Ocean Sciences (EOS) began due to a well funded 5-yr Faculty of Science project called the Carl Wieman Science Education Initiative (CWSEI). This initiative takes an evidence-based, scientific approach to improving education by 1) establishing what students should learn; 2) scientifically measuring what students are learning; 3) adapting instruction and curricula using effective technologies and pedagogical research; and 4) disseminating and adopting what works. The presentation will discuss how this initiative has fostered a growing GER presence within our Department. CWSEI funding has enabled the EOS Department to hire 4 full-time Science Teaching and Learning Fellows (STLFs) who work directly with faculty to optimize courses and curricula. Much of the effort goes into developing active learning opportunities and rigorous ways to measure student learning and attitudes. Results serve as feedback for both students and instructors. Over 10 research projects have so far been initiated as a result of course and curriculum transformation. Examples include studies about: student attitudes towards Earth and Ocean Sciences; the effects of multiple instructors in courses; links between student in-class engagement and pedagogy; how certain instructional interventions promote metacognition; and others. Also, many modified courses use pre- and post-testing to measure learning gains. One undergraduate honors thesis, about assessing conceptual understanding of geological time, has been completed. Keys to fostering GER in our setting include: (1) faculty commitment to change, based on funding from CWSEI, (2) full-time Earth scientists (STLFs) who catalyze and support change, and (3) support from CWSEI science education experts. Specifically: - STLFs are trained Earth scientists but were not initially science education experts. Continuous support from CWSEI has been crucial for building expertise about how

  16. Transforming Spatial Reasoning Skills in the Undergraduate Geoscience Classroom Through Interventions Based on Cognitive Science Research (United States)

    Ormand, C. J.; Shipley, T. F.; Tikoff, B.; Manduca, C. A.; Dutrow, B. L.; Goodwin, L. B.; Hickson, T.; Atit, K.; Gagnier, K. M.; Resnick, I.


    Spatial visualization is an essential skill in many, if not all, STEM disciplines. It is a prerequisite for understanding subjects as diverse as fluid flow through 3D fault systems, magnetic and gravitational fields, atmospheric and oceanic circulation patterns, cellular and molecular structures, engineering design, topology, and much, much more. Undergraduate geoscience students, in both introductory and upper-level courses, bring a wide range of spatial skill levels to the classroom. However, spatial thinking improves with practice, and can improve more rapidly with intentional training. As a group of geoscience faculty members and cognitive psychologists, we are collaborating to apply the results of cognitive science research to the development of teaching materials to improve undergraduate geology majors' spatial thinking skills. This approach has the potential to transform undergraduate STEM education by removing one significant barrier to success in the STEM disciplines. Two promising teaching strategies have emerged from recent cognitive science research into spatial thinking: gesturing and predictive sketching. Studies show that students who gesture about spatial relationships perform better on spatial tasks than students who don't gesture, perhaps because gesture provides a mechanism for cognitive offloading. Similarly, students who sketch their predictions about the interiors of geologic block diagrams perform better on penetrative thinking tasks than students who make predictions without sketching. We are developing new teaching materials for Mineralogy, Structural Geology, and Sedimentology & Stratigraphy courses using these two strategies. Our data suggest that the research-based teaching materials we are developing may boost students' spatial thinking skills beyond the baseline gains we have measured in the same courses without the new curricular materials.

  17. History of Physics Education Research as a Model for Geoscience Education Research Community Progress (United States)

    Slater, T. F.


    Discipline-based Education Research (DBER) is a research field richly combining a deep understanding of how to teach a particular discipline with an evolving understanding how people learn that discipline. At its center, DBER has an overarching goal of improving the teaching and learning of a discipline by focusing on understanding the underlying mental mechanisms learners use as they develop expertise. Geoscience Education Research, or GER, is a young but rapidly advancing field which is poised to make important contributions to the teaching and learning of earth and space science. Nascent geoscience education researchers could accelerate their community's progress by learning some of the lessons from the more mature field of Physics Education Research, PER. For the past three decades, the PER community has been on the cutting edge of DBER. PER started purely as an effort among traditionally trained physicists to overcome students' tenaciously held misconceptions about force, motion, and electricity. Over the years, PER has wrestled with the extent to which they included the faculty from the College of Education, the value placed on interpretive and qualitative research methods, the most appropriate involvement of professional societies, the nature of its PhD programs in the College of Science, and how to best disseminate the results of PER to the wider physics teaching community. Decades later, as a more fully mature field, PER still struggles with some of these aspects, but has learned important lessons in how its community progresses and evolves to be successful, valuable, and pertinent.

  18. Basic Research Needs for Geosciences: Facilitating 21st Century Energy Systems

    Energy Technology Data Exchange (ETDEWEB)

    DePaolo, D. J.; Orr, F. M.; Benson, S. M.; Celia, M.; Felmy, A.; Nagy, K. L.; Fogg, G. E.; Snieder, R.; Davis, J.; Pruess, K.; Friedmann, J.; Peters, M.; Woodward, N. B.; Dobson, P.; Talamini, K.; Saarni, M.


    To identify research areas in geosciences, such as behavior of multiphase fluid-solid systems on a variety of scales, chemical migration processes in geologic media, characterization of geologic systems, and modeling and simulation of geologic systems, needed for improved energy systems.

  19. An Analysis of NSF Geosciences 2009 Research Experience for Undergraduate Site Programs (United States)

    Sanchez, S. C.; Patino, L. C.; Rom, E. L.; Weiler, S. C.


    The Research Experience for Undergraduate (REU) Program at the U.S. National Science Foundation (NSF) provides undergraduate students the opportunity to conduct research at different institutions and in areas that may not be available in their home campuses. The Geosciences REU Sites foster research opportunities in areas closely aligned with undergraduate majors and facilitates discovery of the multidisciplinary nature of the Geosciences. The aim of this paper is to provide an overview of the Geosciences REU Site programs run in 2009. A survey requesting information on recruitment methods, student demographics, enrichment activities, and fields of research was sent to the Principal Investigators of each of the 50 active REU Sites; over 70% of the surveys were returned with the requested information. The internet is the most widely used mechanism to recruit participants, but the survey did not distinguish among different tools like websites, emails, social networks, etc. The admissions rate for REU Sites in Geosciences varies from less than 10% to 50%, with the majority of participants being rising seniors and juniors. A few Sites include rising sophomores. At least 40% of the participants come from non-PhD granting institutions. Among the participants, gender distribution is balanced, with a slightly larger number of female participants. Regarding ethnic diversity, the REU Sites reflect the difficulty of attracting diverse students into Geosciences as a discipline; more than 75% of the participants are Caucasian and Asian students. Furthermore, participants from minority-serving institutions constitute a small percentage of those taking part in these research experiences. The enrichment activities are very similar across the REU Sites, and mimic well activities common to the scientific community, including intellectual exchange of ideas (lab meetings, seminars, and professional meetings), networking and social activities. There are some clear similarities among

  20. Native Geosciences: Pathways to Traditional Knowledge in Modern Research and Education (United States)

    Bolman, J. R.


    Native people have lived for millennia in distinct and unique ways in our natural sacred homelands and environments. Tribal cultures are the expression of deep understandings of geosciences shared through oral histories, language, traditional practices and ceremonies. Today, Native people as all people are living in a definite time of change. The developing awareness of "change" brings forth an immense opportunity to expand, elevate and incorporate Traditional Native geosciences knowledge into modern research and education to expand understandings for all learners. At the center of "change" is the need to balance the needs of the people with the needs of the environment. Native traditions and our inherent understanding of what is "sacred above is sacred below" is the foundation for a multi-faceted approach for increasing the representation of Natives in geosciences. The approach is centered on the incorporation of traditional knowledge into modern research/education. The approach is also a pathway to assist in Tribal language revitalization, connection of oral histories and ceremonies to place and building an intergenerational teaching/learning community. Humboldt State University, Sinte Gleska University and Tribes in Northern California (Hoopa, Yurok, & Karuk) and Great Plains (Lakota) Tribes have nurtured Native geosciences learning and research communities connected to Tribal Sacred Sites and natural resources. Native geoscience learning is centered on the themes of earth, wind, fire and water and the Native application of remote sensing technologies. Tribal Elders and Native geoscientists work collaboratively providing Native families in-field experiential intergenerational learning opportunities which invite participants to immerse themselves spiritually, intellectually, physically and emotionally in the experiences. Through this immersion and experience Native students and families strengthen the circle of our future Tribal communities and a return to

  1. Mesothelioma Applied Research Foundation (United States)

    ... Percentage Donations Tribute Wall Other Giving/Fundraising Opportunities Bitcoin Donation Form FAQs Speak with Mary Hesdorffer, Nurse ... Percentage Donations Tribute Wall Other Giving/Fundraising Opportunities Bitcoin Donation Form FAQs © 2017 Mesothelioma Applied Research Foundation, ...

  2. Applied eye tracking research

    NARCIS (Netherlands)

    Jarodzka, Halszka


    Jarodzka, H. (2010, 12 November). Applied eye tracking research. Presentation and Labtour for Vereniging Gewone Leden in oprichting (VGL i.o.), Heerlen, The Netherlands: Open University of the Netherlands.

  3. Geoscience Education Research Project: Student Benefits and Effective Design of a Course-Based Undergraduate Research Experience (United States)

    Kortz, Karen M.; van der Hoeven Kraft, Katrien J.


    Undergraduate research has been shown to be an effective practice for learning science. While this is a popular discussion topic, there are few full examples in the literature for introductory-level students. This paper describes the Geoscience Education Research Project, an innovative course-based research experience designed for…

  4. Writing and Communicating in the Geosciences: A 1-credit required course to prepare undergraduates for independent research (United States)

    St John, K. K.; Courtier, A. M.; Pyle, E. J.


    With increasing numbers of majors (currently 130) and an independent research requirement of all undergraduates in our program, the Department of Geology and Environmental Science at James Madison University sought a means to streamline and formalize instruction of research practices we deem fundamental to all sub-disciplines in the geosciences. Therefore, in Fall 2010, we developed a research preparation course called 'Writing and Communicating in the Geosciences,' which is now required for all Geology BS and Earth Science BA undergraduate students. This 1-credit course must be completed prior to students' senior year, and is a pre-requisite to a minimum of 2-credits of independent research required of all majors. 'Writing and Communicating in the Geosciences' is designed to prepare students for independent research by providing them with opportunities to develop, practice, and gain feedback on a variety of writing and communication skills. It is our goal that after taking this course, students are able to identify primary literature using the library data-based systems, critically discuss peer-reviewed papers, write abstracts, use accepted referencing styles in bibliographies, and effectively make scientific posters and give oral presentations. The class is offered every semester and is always co-taught by two faculty members from the department. Curriculum and instruction is designed to balance student workload, faculty workload, and strategies toward meeting the course learning objectives. Students informally report at the time of enrollment that this is a perceived as a rigorous 'rite-of-passage' course. Informal feedback from past students has been positive, suggesting that the greatest benefits manifest later, as former students apply the course-developed skills to projects in their upper-level courses, their independent research projects, and their graduate research. Faculty feedback has been similarly positive, with department colleagues commenting that

  5. An Analysis of NSF Geosciences Research Experience for Undergraduate Site Programs from 2009 to 2012 (United States)

    Rom, E. L.; Patino, L. C.; Gonzales, J.; Weiler, C. S.; Antell, L.; Colon, Y.; Sanchez, S. C.


    The Research Experience for Undergraduate (REU) Program at the U.S. National Science Foundation (NSF) provides undergraduate students from across the nation the opportunity to conduct research at a different institution and in an area that may not be available at their home campus. REU Sites funded by the Directorate of Geosciences provide student research opportunities in earth, ocean, atmospheric and geospace research. This paper provides an overview of the Geosciences REU Site programs run from 2009 to 2012. Information was gathered from over 45 REU sites each year on recruitment methods, student demographics, enrichment activities, and fields of research. The internet is the most widely used mechanism to recruit participants. The admissions rate for REU Sites in Geosciences varies by discipline but averages between 6% to 18% each year, with the majority of participants being rising seniors and juniors. A few Sites include rising sophomores and freshmen. Most students attend PhD granting institutions. Among the participants, gender distribution depends on discipline, with atmospheric and geospace sciences having more male than female participants, but ocean and earth sciences having a majority of female participants. Regarding ethnic diversity, the REU Sites reflect the difficulty of attracting diverse students into Geosciences as a discipline; a large majority of the participants are Caucasian or Asian students. Furthermore, participants from minority-serving institutions or community colleges constitute a small percentage of those taking part in these research experiences. The enrichment activities are very similar across the REU Sites, and mimic well activities common to the scientific community, including intellectual exchange of ideas (lab meetings, seminars, and professional meetings), networking and social activities. Results from this study will be used to examine strengths in the REU Sites in the Geosciences and opportunities for improvement in the

  6. Geosciences projects FY 1985 listing

    Energy Technology Data Exchange (ETDEWEB)


    This report, which updates the previous working group publication issued in February 1982, contains independent sections: (A) Summary Outline of DOE Geoscience and Related Studies, and (B) Crosscut of DOE Geoscience and Geoscience Related Studies. The FY 1985 funding levels for geoscience and related activities in each of the 11 programs within DOE are presented. The 11 programs fall under six DOE organizations: Energy Research Conservation and Renewable Energy; Fossil Energy; Defense Programs; Environmental, Safety, and Health; and Civilian radioactive Waste. From time to time, there is particular need for special interprogrammatic coordination within certain topical areas. section B of the report is intended to fill this need for a topical categorization of the Department's geoscience and related activities. These topical areas in Solid Earth Geosciences, Atmospheric Geosciences, Ocean Geosciences, Space and Solar/Terrestrial Geosciences, and Hydrological Geosciences are presented in this report.

  7. Delivering and Incentivizing Data Management Education to Geoscience Researchers (United States)

    Knuth, S. L.; Johnson, A. M.; Hauser, T.


    Good data management practices are imperative for all researchers who want to ensure the usability of their research data. For geoscientists, this is particularly important due to the vast amount of data collected as part of field work, model studies, or other efforts. While many geoscientists want to ensure their data is appropriately maintained, they are generally not trained in good data management, which, realistically, has a much lower priority in the "publish or perish" cycle of research. Many scientists learn programming or advanced computational and data skills during the process of developing their research. With the amount of digital data being collected in the sciences increasing, and the interest federal funding agencies are taking in ensuring data collected is well maintained, there is pressure to quickly and properly educate and train geoscientists on its management. At the University of Colorado Boulder (CU-Boulder), Research Data Services (RDS) has developed several educational and outreach activities centered at training researchers and students in ways to properly manage their data, including "boot camps", workshops, individual consultations, and seminars with topics of interest to the CU-Boulder community. Part of this effort is centered at incentivizing the researcher to learn these tools and practices despite their busy schedule. Much of this incentive has come through small grant competitions at the university level. The two competitions most relevant are a new "Best Digital Data Management Plan" competition, awarding unrestricted funds to the best plan submitted in each of five categories, and an added data management plan requirement to an existing faculty competition. This presentation will focus on examples of user outreach and educational opportunities given to researchers at CU-Boulder, incentives given to the researchers to participate, and assessment of the impact of these activities.

  8. Undergraduate Research in Geoscience with Students from Two-year Colleges: SAGE 2YC Resources (United States)

    McDaris, J. R.; Hodder, J.; Macdonald, H.; Baer, E. M.; Blodgett, R. H.


    Undergraduate research experiences are important for the development of expertise in geoscience disciplines. These experiences have been shown to help students learn content and skills, promote students' cognitive and affective development, and develop students' sense of self. Early exposure to research experiences has shown to be effective in the recruitment of students, improved retention and persistence in degree programs, motivation for students to learn and increase self-efficacy, improved attitudes and values about science, and overall increased student success. Just as departments at four-year institutions (4YCs) are increasingly integrating research into their introductory courses, two-year college (2YC) geoscience faculty have a great opportunity to ground their students in authentic research. The Undergraduate Research with Two-year College Students website developed by SAGE 2YC: Supporting and Advancing Geoscience Education at Two-year Colleges provides ideas and advice for 2YC and 4YC faculty who want to get more 2YC students involved in research. The continuum of possibilities for faculty to explore includes things that can be done at 2YCs (eg. doing research as part of a regular course, developing a course specifically around research on a particular topic, or independent study), done in collaboration with other local institutions (eg. using their facilities, conducting joint class research, or using research to support transfer programs), and by involving students in the kind of organized Undergraduate Research programs run by a number of institutions and organizations. The website includes profiles illustrating how 2YC geoscience faculty have tackled these various models of research and addressed potential challenges such as lack of time, space, and funding as part of supporting the wide diversity of students that attend 2YCs, most of whom have less experience than that of rising seniors who are the traditional REU participant. The website also

  9. The IAPG: International Association for Promoting Geoethics: a scientific platform for widening the debate on problems of ethics applied to the geosciences (United States)

    Bobrowsky, Peter; Brocx, Margaret; Di Capua, Giuseppe; Errami, Ezzoura; Greco, Roberto; Kieffer, Susan W.; Daji Limaye, Shrikant; Peppoloni, Silvia; Silva, Elizabeth; Tinti, Stefano; Wang, Meng


    Geoethics consists of the research and reflection on those values upon which to base appropriate behaviours and practices regarding the Geosphere. Geoethics also deals with problems related to risk management and mitigation of geohazards. One of the most important goals of the Geoethics is to foster the proper and correct dissemination of results of scientific studies and other information on risks. Moreover, Geoethics aims to improve the relationships between the scientific community, mass media and public and aims to organize effective teaching tools to develop awareness, values and responsibility within the population. Geoethics should become part of the social knowledge and an essential point of reference for every action affecting land, water and atmosphere usage that is taken by stake-holders and decision-makers. Although Geoethics is a young discipline, it provides a forum for open discussion inside the Geosciences on the social and cultural role that Geoscientists can play in society. First, Geoethics represents an opportunity for Geoscientists to become more conscious of their responsibilities in conducting their activity, highlighting the ethical, cultural and economic repercussions that their behavioral choices may have on society. From this point of view Geoethics, at this stage of its development, is primarily an attitude of thinking: through consideration of geoethical questions, Geoscientists have the opportunity to ask questions about themselves, their skills, the quality of their work and the contribution they can provide to the healthy progress of humanity. The International Association for Promoting Geoethics (IAPG: is a new multidisciplinary, scientific platform for widening the debate on problems of Ethics applied to the Geosciences, through international cooperation and for encouraging the involvement of geoscientists on Geoethics themes. The IAPG was founded to increase the awareness inside the scientific

  10. Supplement to the technical assessment of geoscience-related research for geothermal energy technology. Final report

    Energy Technology Data Exchange (ETDEWEB)


    Detailed information (e.g., project title, sponsoring organization, research area, objective status, etc.) is presented for 338 geoscience/geothermal related projects. A summary of the projects conducted by sponsoring organization is presented and an easy reference to obtain detailed information on the number and type of efforts being sponsored is presented. The projects are summarized by research area (e.g., volcanology, fluid inclusions, etc.) and an additional project cross-reference mechanism is also provided. Subsequent to the collection of the project information, a geosciences classification system was developed to categorize each project by research area (e.g., isotope geochemistry, heat flow studies) and by type of research conducted (e.g., theoretical research, modeling/simulation). A series of matrices is included that summarize, on a project-by-project basis, the research area addressed and the type of R and D conducted. In addition, a summary of the total number of projects by research area and R and D type is given.

  11. Applied Impact Physics Research (United States)

    Wickert, Matthias


    Applied impact physics research is based on the capability to examine impact processes for a wide range of impact conditions with respect to velocity as well as mass and shape of the projectile. For this reason, Fraunhofer EMI operates a large variety of launchers that address velocities up to ordnance velocities as single stage powder gun but which can also be operated as two-stage light gas guns achieving the regime of low earth orbital velocity. Thereby for projectile masses of up to 100 g hypervelocity impact phenomena up to 7.8 km/s can be addressed. Advanced optical diagnostic techniques like microsecond video are used as commercial systems but - since impact phenomena are mostly related with debris or dust - specialized diagnostics are developed in-house like x-ray cinematography and x-ray tomography. Selected topics of the field of applied impact physics will be presented like the interesting behavior of long rods penetrating low-density materials or experimental findings at hypervelocity for this class of materials as well as new x-ray diagnositic techniques.

  12. The Role of Geoscience Departments in Preparing Future Geoscience Professionals (United States)

    Ormand, C. J.; MacDonald, H.; Manduca, C. A.


    The Building Strong Geoscience Departments program ran a workshop on the role of geoscience departments in preparing geoscience professionals. Workshop participants asserted that geoscience departments can help support the flow of geoscience graduates into the geoscience workforce by providing students with information about jobs and careers; providing experiences that develop career-oriented knowledge, attitudes and skills; encouraging exploration of options; and supporting students in their job searches. In conjunction with the workshop, we have developed a set of online resources designed to help geoscience departments support their students’ professional development in these ways. The first step toward sending geoscience graduates into related professions is making students aware of the wide variety of career options available in the geosciences and of geoscience employment trends. Successful means of achieving this include making presentations about careers (including job prospects and potential salaries) in geoscience classes, providing examples of practical applications of course content, talking to advisees about their career plans, inviting alumni to present at departmental seminars, participating in institutional career fairs, and publishing a departmental newsletter with information about alumni careers. Courses throughout the curriculum as well as co-curricular experiences can provide experiences that develop skills, knowledge, and attitudes that will be useful for a range of careers. Successful strategies include having an advisory board that offers suggestions about key knowledge and skills to incorporate into the curriculum, providing opportunities for students to do geoscience research, developing internship programs, incorporating professional skills training (such as HazMat training) into the curriculum, and teaching professionalism. Students may also benefit from involvement with the campus career center or from conducting informational

  13. The FY1997 meeting for information exchange of geoscience research. Collection of literature

    Energy Technology Data Exchange (ETDEWEB)



    The Tono Geoscience Center of PNC has been conducting research programs aiming at underground disposal of radioactive wastes. This document is the collection of summary papers presented to the meeting which was held at Toki, Gifu Prefecture on July 17 - 18, 1997. Total of 33 papers are given under two main themes: (1) research on long-term stability of geologic environment and (2) research on characteristics of geologic environment. The second theme is further divided into the four sub-themes: (a) investigation in the Tono Mine, (b) research of broad underground water flow, (c) in-situ test at Kamaishi and (d) development of survey techniques and equipment. Seven papers are contributed to the first theme and 21 papers to the second: five papers to (a), six to (b), seven to (c) and six to (d), including three of the poster session. (H. Yokoo)

  14. The National Science Digital Library: New Tools for Geoscience Education and Research (United States)

    van Gundy, S. E.; Pandya, R.


    Just as the Digital Library for Earth System Education (DLESE) serves at a catalyst for collaboration among its partner institutions and throughout the Geoscience community, DLESE is also a key partner in the broader collaborative efforts of the National Science Digital Library (NSDL). Established by the National Science Foundation to support continual improvement in science, technology, engineering, and mathematics education, NSDL provides an organized point of access to materials created by a broad range of collaborating partner institutions including universities, museums, professional organizations, government agencies, national research laboratories, and publishers of textbooks and journals. NSDL is a network of content and data-rich collections, educational resources, learning environments, and technology-based tools created to address the needs of educators and learners at all levels (K-12, higher education, and lifelong learning). This session will provide an overview of NSDL and explore the ways in which DLESE's active role in the NSDL community can facilitate collaborations with other Geoscience partners. Presenters will demonstrate online tools that can enhance cooperative learning and engagement with digital library resources. Funding opportunities for the development of future NSDL collections, services, and research will also be discussed.

  15. Academic Research Library as Broker in Addressing Interoperability Challenges for the Geosciences (United States)

    Smith, P., II


    Data capture is an important process in the research lifecycle. Complete descriptive and representative information of the data or database is necessary during data collection whether in the field or in the research lab. The National Science Foundation's (NSF) Public Access Plan (2015) mandates the need for federally funded projects to make their research data more openly available. Developing, implementing, and integrating metadata workflows into to the research process of the data lifecycle facilitates improved data access while also addressing interoperability challenges for the geosciences such as data description and representation. Lack of metadata or data curation can contribute to (1) semantic, (2) ontology, and (3) data integration issues within and across disciplinary domains and projects. Some researchers of EarthCube funded projects have identified these issues as gaps. These gaps can contribute to interoperability data access, discovery, and integration issues between domain-specific and general data repositories. Academic Research Libraries have expertise in providing long-term discovery and access through the use of metadata standards and provision of access to research data, datasets, and publications via institutional repositories. Metadata crosswalks, open archival information systems (OAIS), trusted-repositories, data seal of approval, persistent URL, linking data, objects, resources, and publications in institutional repositories and digital content management systems are common components in the library discipline. These components contribute to a library perspective on data access and discovery that can benefit the geosciences. The USGS Community for Data Integration (CDI) has developed the Science Support Framework (SSF) for data management and integration within its community of practice for contribution to improved understanding of the Earth's physical and biological systems. The USGS CDI SSF can be used as a reference model to map to Earth

  16. Leveraging Global Geo-Data and Information Technologies to Bring Authentic Research Experiences to Students in Introductory Geosciences Courses (United States)

    Ryan, J. G.


    The 2012 PCAST report identified the improvement of "gateway" science courses as critical to increasing the number of STEM graduates to levels commensurate with national needs. The urgent need to recruit/ retain more STEM graduates is particularly acute in the geosciences, where growth in employment opportunities, an aging workforce and flat graduation rates are leading to substantial unmet demand for geoscience-trained STEM graduates. The need to increase the number of Bachelors-level geoscience graduates was an identified priority at the Summit on the Future of Undergraduate Geoscience Education (, as was the necessity of focusing on 2-year colleges, where a growing number of students are being introduced to geosciences. Undergraduate research as an instructional tool can help engage and retain students, but has largely not been part of introductory geoscience courses because of the challenge of scaling such activities for large student numbers. However, burgeoning information technology resources, including publicly available earth and planetary data repositories and freely available, intuitive data visualization platforms makes structured, in-classroom investigations of geoscience questions tractable, and open-ended student inquiry possible. Examples include "MARGINS Mini-Lessons", instructional resources developed with the support of two NSF-DUE grant awards that involve investigations of marine geosciences data resources (overseen by the Integrated Earth Data Applications (IEDA) portal: and data visualization using GeoMapApp (; and the growing suite of Google-Earth based data visualization and exploration activities overseen by the Google Earth in Onsite and Distance Education project ( Sample-based investigations are also viable in introductory courses, thanks to remote instrument operations technologies that allow real student

  17. The Right Tools for the Job: The Challenges of Theory and Method in Geoscience Education Research (United States)

    Riggs, E. M.


    As geoscience education has matured as a research field over the last decade, workers in this area have been challenged to adapt methodologies and theoretical approaches to study design and data collection. These techniques are as diverse as the earth sciences themselves, and researchers have drawn on established methods and traditions from science education research, social science research, and the cognitive and learning sciences. While the diversity of methodological and theoretical approaches is powerful, the challenge is to ground geoscience education research in rigorous methodologies that are appropriate for the epistemological and functional realities of the content area and the environment in which the research is conducted. The issue of theory is the first hurdle. After techniques are proven, earth scientists typically need not worry much about the theoretical value or theory-laden nature of measurements they make in the field or laboratory. As an example, a field geologist does not question the validity of the gravitational field that levels the spirit level within a Brunton compass. However, in earth science education research, these issues are magnified because a theoretical approach to a study affects what is admitted as data and the weight that can be given to conclusions. Not only must one be concerned about the validity of measurements and observations, but also the value of this information from an epistemological standpoint. The assigning of meaning to student gestures, utterances, writing and actions all carries theoretical implications. For example, working with geologists learning or working in the field, purely experimental research designs are very difficult, and the majority of the work must be conducted in a naturalistic environment. In fact dealing with time pressure, distractions, and complexity of a field environment is part of intellectual backdrop for field geology that separates experts from novices and advanced students from

  18. A Mixed Methods Approach to Determining the Impact of a Geoscience Field Research Program upon Science Teachers' Knowledge, Beliefs, and Instructional Practices (United States)

    Luera, Gail; Murray, Kent


    A mixed methods research approach was used to investigate the impact of a geosciences research institute upon 62 science teachers' knowledge, beliefs, and teaching practices related to teaching the geosciences. Pre- and postinstitute quantitative and qualitative assessments revealed mixed results. Results of a quantitative measure found a…

  19. Geosciences Student Recruitment Strategies at California State University, Long Beach (CSULB): Earth System Science/Community-Research Based Education Partnerships (United States)

    Ambos, E. L.; Behl, R.; Whitney, D.; Rodrigue, C.; Wechsler, S.; Holk, G.; Lee, C.; Francis, R. D.; Larson, D.


    Collaborations among geoscience-oriented departments at California State University, Long Beach (Geological Sciences, as well as portions of the Geography and Anthropology departments and a new, fast-growing Environmental Sciences and Policy (ES&P) program) are characterized by attention to three important elements: (1) community-based partnerships and research, (2) outreach and continuity within educational pipeline transitions from high school, to community college, to university, and, (3) sharing of resources and expertise. Three specific collaborations, (1) creation of the ES&P, (2) the NSF-funded Geoscience Diversity Enhancement Program (GDEP), and, (3) the Institute for Interdisciplinary Research on Materials, Environment, and Societies (IIRMES), are powerful illustrations of how these collaborations can work to foster geoscience student recruitment and academic development, particularly at urban, highly diverse institutions with limited resources. Through a combination of student surveys, focus groups, and institutional research supported by the GDEP program, we know (e.g., Whitney et al., 2005) that non-Caucasian students often express less affinity for the geosciences as a focus of study than Caucasians. Early exposure to positive field and laboratory experiences, better understanding of geoscience career possibilities, and better advising at high school and college levels are all excellent strategies for heightening student interest and recruitment in the geosciences, yet appear to be lacking for many of the students in the greater Long Beach, California area. GDEP, ES&P, and IIRMES all challenge these lacunae by emphasizing hands-on learning, research on relevant community-based problems, and one-on-one or small group research, advising and mentoring. Our current challenge is to help our high-school and community-college colleagues adopt their own model of these active-learning strategies, thereby priming the pump and patching the pipe(line) for student

  20. Connecting GEON: Making sense of the myriad resources, researchers and concepts that comprise a geoscience cyberinfrastructure (United States)

    Gahegan, Mark; Luo, Junyan; Weaver, Stephen D.; Pike, William; Banchuen, Tawan


    Simply placing electronic geoscience resources such as datasets, methods, ontologies, workflows and articles in a digital library or cyberinfrastructure does not mean that they will be used successfully by other researchers or educators. It is also necessary to provide the means to locate potentially useful content, and to understand it. Without suitable provision for these needs, many useful resources will go undiscovered, or else will be found but used inappropriately. In this article, we describe an approach to discovering, describing and understanding e-resources based on the notion that meaning is carried in the interconnections between resources and the actors in the cyberinfrastructure (including individuals, groups, organizations), as well as by ontologies and conventional metadata. Navigation around this universe is achieved by implementing the idea of perspectives as dynamic, conceptual views (defined by SPARQL-like queries against an OWL schema) that not only act as filters, but also dynamically promote and demote concepts, relationships and properties according to their immediate relevance. We describe a means to represent a wide variety of interactions between resources using the notion of a knowledge nexus, and we illustrate its use with resources and actors from the Geosciences Network (GEON) cyberinfrastructure community. We also closely link browsing and visualizing strategies to our nexus, drawing on ideas from semiotics to move resources and connections not currently of interest from the foreground to the background, and vice versa, using a new form of adaptive perspective. We illustrate our ideas via ConceptVista, an open-source concept mapping application that provides rich, visual depictions of the resources, cyber-community and myriad connections between them. Examples are presented that show how geoscientific knowledge can be explored not only via ontological structure, but also by use cases, social networks, citation graphs and organization

  1. Undergraduate Research Training Program in Geosciences at NC A&T (United States)

    Tang, G.; Jackson, C. R.; Burbach, G. N.; Clemence, D.; Lin, Q.


    In this talk we present an ongoing effort to develop an undergraduate research training program in geosciences at North Carolina A&T State University. The National Science Foundation HBCU Undergraduate Program (HBCU-UP) funded in 1999 the University's Talent-21: Gateway for Advancing Science and Mathematics Talent. Defined in the Talent-21 Project is a research training component where a facility has been situated for undergraduate research training in the geophysical and environmental sciences. Planned for the undergraduate geophysical research training program is a three-pronged approach of generating (1) real-world seismic data by seismic field surveys, (2) physical modeled data through the Seismic Physical Modeling System, and (3) computer simulated data through mathematical modeling and numerical simulation to mutually refine understanding of site, the data, and the methods selected for testing. The results will be used to build models that simulate earth subsurface structures. This research training program aims to expose students to theory via topical seminars and workshops, and to practice via hands-on experience in field geophysical surveying, comparative field data analysis, physical modeling, computational modeling, and synthetic seismic data acquisition. It offers structured education and training activities that guide experiences in geophysical topics and techniques, and research for students to increase interest and participation in geophysical science with STEM career development. Students usually start the program with academic year research training to prepare themselves for research projects, and continue their pursuit through intensive summer REU program to undertake research projects and write project reports. Students are encouraged to present their research results at regional or national undergraduate research conferences. Four summer REU programs have been conducted since 2001, and some of the student research projects and results will be

  2. Selecting their Own Research Topic: An Effective Means of Engaging Undergraduates in Geoscience Careers (United States)

    Sloan, V.; Haacker-Santos, R.


    Research experiences have been shown to successfully help draw undergraduates into STEM fields. In the SOARS and RESESS summer internship programs, which focus on the atmospheric and Earth sciences respectively, we attempt to match each intern with a project that is of specific interest to them, and to place the student with a science mentor with that expertise. Initially interns are solicited before the summer on their preferred topics of interest by having applicants or reapplicants choose fields of study from a list of topics. Follow-up conversations help to better define their area of interest. We then match those with the projects that have been proposed by prospective mentors, or seek scientists in the community who do research in that subdiscipline. Mentors also evaluate the intern's course background to determine if they have the foundation necessary for that work. Interns report that the opportunity to work on a topic that they perceive as interesting is vital to their engagement in the research. One intern wrote, "One of the most important components of internships like this is definitely letting the students somewhat chose their project. I think that a really good way to turn students OFF from research is by having them spend a summer researching something they are not even close to interested in." Another commented, "I really appreciated being matched with a project in my interest area. I think that's really important, even if it just teaches you that you might want to work in a different field than you initially thought." Being immersed in such a research group or lab provides interns with a rich opportunity to learn relevant content and skills, and to start developing a professional support network. Interns continue to engage with experts in their field of interest when they present at at scientifically relevant meeting sessions during the following academic year. Many of our interns go on to study the same subdiscipline of atmospheric or Earth

  3. The Geospatial Data Cloud: An Implementation of Applying Cloud Computing in Geosciences

    Directory of Open Access Journals (Sweden)

    Xuezhi Wang


    Full Text Available The rapid growth in the volume of remote sensing data and its increasing computational requirements bring huge challenges for researchers as traditional systems cannot adequately satisfy the huge demand for service. Cloud computing has the advantage of high scalability and reliability, which can provide firm technical support. This paper proposes a highly scalable geospatial cloud platform named the Geospatial Data Cloud, which is constructed based on cloud computing. The architecture of the platform is first introduced, and then two subsystems, the cloud-based data management platform and the cloud-based data processing platform, are described.  ––– This paper was presented at the First Scientific Data Conference on Scientific Research, Big Data, and Data Science, organized by CODATA-China and held in Beijing on 24-25 February, 2014.

  4. Psychometric Principles in Measurement for Geoscience Education Research: A Climate Change Example (United States)

    Libarkin, J. C.; Gold, A. U.; Harris, S. E.; McNeal, K.; Bowles, R.


    Understanding learning in geoscience classrooms requires that we use valid and reliable instruments aligned with intended learning outcomes. Nearly one hundred instruments assessing conceptual understanding in undergraduate science and engineering classrooms (often called concept inventories) have been published and are actively being used to investigate learning. The techniques used to develop these instruments vary widely, often with little attention to psychometric principles of measurement. This paper will discuss the importance of using psychometric principles to design, evaluate, and revise research instruments, with particular attention to the validity and reliability steps that must be undertaken to ensure that research instruments are providing meaningful measurement. An example from a climate change inventory developed by the authors will be used to exemplify the importance of validity and reliability, including the value of item response theory for instrument development. A 24-item instrument was developed based on published items, conceptions research, and instructor experience. Rasch analysis of over 1000 responses provided evidence for the removal of 5 items for misfit and one item for potential bias as measured via differential item functioning. The resulting 18-item instrument can be considered a valid and reliable measure based on pre- and post-implementation metrics. Consideration of the relationship between respondent demographics and concept inventory scores provides unique insight into the relationship between gender, religiosity, values and climate change understanding.

  5. The Geosciences Division of the Council on Undergraduate Research (GeoCUR): Supporting Faculty that Mentor Undergraduate Researchers (United States)

    Fox, L. K.; Guertin, L. A.; Manley, P. L.; Fortner, S. K.


    Undergraduate research is a proven effective pedagogy that has a number of benefits including: enhancing student learning through mentoring relationships with faculty; increasing retention; increasing enrollment in graduate programs; developing critical thinking, creativity, problem solving and intellectual independence; and, developing an understanding of research methodology. Undergraduate research also has been demonstrated in preparing students for careers. In addition to developing disciplinary and technical expertise, participation in undergraduate research helps students improve communication skills (written, oral, and graphical) and time management. Early involvement in undergraduate research improves retention and, for those engaged at the 2YC level, helps students successfully transfers to 4YC. The Geosciences Division of the Council on Undergraduate Research (GeoCUR) supports faculty in their development of undergraduate research programs at all levels. GeoCUR leads workshops for new and future faculty covering all aspects of undergraduate research including incorporating research into coursework, project design, mentoring students, sustaining programs, and funding sources. GeoCUR members support new faculty by providing a range of services including: peer-review of grant proposals; advice on establishing an undergraduate research program; balancing teaching and research demands; and networking with other geoscientist. GeoCUR has also developed web resources that support faculty and departments in development of undergraduate research programs ( This presentation will describe the services provided by GeoCUR and highlight examples of programs and resources available to geoscientists in all career stages for effective undergraduate research mentoring and development.

  6. National uses and needs for separated stable isotopes in physics, chemistry, and geoscience research (United States)

    Zisman, M. S.

    Present uses of separated stable isotopes in the fields of physics, chemistry, and the geosciences were surveyed to identify current supply problems and to determine future needs. Demand for separated isotopes remains strong, with 220 different nuclides having been used in the past three years. The largest needs, in terms of both quantity and variety of isotopes, are found in nuclear physics research. Current problems include a lack of availability of many nuclides, unsatisfactory enrichment of rare species, and prohibitively high costs for certain important isotopes. Demand for separated isotopes is expected to remain roughly at present levels, although a shift toward more requests for highly enriched rare isotopes is predicted. Use of neutron rich nuclides below A = 100 for producing exotic ion beams at various accelerators and use of transition metal nuclei for nuclear magnetic resonance spectroscopy are expected to expand. An increase in the need for calibration standards for techniques of radiological dating, such as Sm/Nd and Lu/Hf is predicted, but in relatively small quantities. Most members of the research community would be willing to pay considerably more than they do now to maintain adequate supplies of stable isotopes.

  7. National uses and needs for separated stable isotopes in physics, chemistry, and geoscience research

    Energy Technology Data Exchange (ETDEWEB)

    Zisman, M.S.


    Present uses of separated stable isotopes in the fields of physics, chemistry, and the geosciences have been surveyed to identify current supply problems and to determine future needs. Demand for separated isotopes remains strong, with 220 different nuclides having been used in the past three years. The largest needs, in terms of both quantity and variety of isotopes, are found in nuclear physics research. Current problems include a lack of availability of many nuclides, unsatisfactory enrichment of rare species, and prohibitively high costs for certain important isotopes. It is expected that demands for separated isotopes will remain roughly at present levels, although there will be a shift toward more requests for highly enriched rare isotopes. Significantly greater use will be made of neutron-rich nuclides below A = 100 for producing exotic ion beams at various accelerators. Use of transition metal nuclei for nuclear magnetic resonance spectroscopy will expand. In addition, calibration standards will be required for the newer techniques of radiological dating, such as the Sm/Nd and Lu/Hf methods, but in relatively small quantities. Most members of the research community would be willing to pay considerably more than they do now to maintain adequate supplies of stable isotopes.

  8. Shock Thermodynamic Applied Research Facility (United States)

    Federal Laboratory Consortium — The Shock Thermodynamic Applied Research Facility (STAR) facility, within Sandia’s Solid Dynamic Physics Department, is one of a few institutions in the world with...

  9. Shock Thermodynamic Applied Research Facility (United States)

    Federal Laboratory Consortium — The Shock Thermodynamic Applied Research Facility (STAR) facility, within Sandia’s Solid Dynamic Physics Department, is one of a few institutions in the world with a...

  10. Writing fiction about geoscience (United States)

    Andrews, S.


    Employment in geology provides excellent preparation for writing mystery novels that teach geoscience. While doing pure research at the USGS under the mentorship of Edwin D. McKee, I learned that the rigors of the scientific method could be applied not only to scientific inquiry but to any search for what is true, including the art of storytelling (the oldest and still most potent form of communication), which in turn supports science. Geoscience constructs narratives of what has happened or what might happen; hence, to communicate my findings, I must present a story. Having developed my writing skills while preparing colleague-reviewed papers (which required that I learn to set my ego aside and survive brutal critiques), the many rounds of edits required to push a novel through a publishing house were a snap. My geoscience training for becoming a novelist continued through private industry, consultancy, and academia. Employment as a petroleum geologist added the pragmatism of bottom-line economics and working to deadlines to my skill set, and nothing could have prepared me for surviving publishers' rejections and mixed reviews better than having to pitch drilling projects to jaded oil patch managers, especially just before lunchtime, when I was all that stood between them and their first martinis of the day. Environmental consulting was an education in ignorant human tricks and the politics of resource consumption gone astray. When teaching at the college level and guest lecturing at primary and secondary schools, my students taught me that nothing was going to stick unless I related the story of geoscience to their lives. When choosing a story form for my novels, I found the mystery apropos because geoscientists are detectives. Like police detectives, we work with fragmentary and often hidden evidence using deductive logic, though our corpses tend to be much, much older or not dead yet. Throughout my career, I learned that negative stereotypes about scientists

  11. The Disproportionate and Potentially Negative Influence of Research Universities on the Quality of Geoscience Education (United States)

    Samson, P. J.


    There is a large and growing body of research indicating that post-secondary education in science, technology, engineering, and mathematics (STEM) fields is failing to prepare citizens for the 21st century economy. Introductory STEM courses are vital for preparing science majors for their fields of study and are the only exposure to science many college students will receive, but the quality of teaching in these courses is often not informed by research on teaching and learning. Research universities play an especially prominent role in the design of introductory courses. While research and doctoral universities account for only about 6% of all higher education institutions, they confer 32 per cent of the baccalaureate degrees, and 56 per cent of the baccalaureates earned by recent recipients of science and engineering doctorates. By assuming that larger introductory classes occur at research institutions one can estimate that a dominant number of students receiving introductory instruction in the geosciences are probably occurring at research institutions. Moreover, research universities produce the majority of tenure-track faculty who will later teach at four-year colleges, so the role of research institutions in the influence of introductory course design is expected to be disproportionately large. While introductory courses at research universities play a influential role in how such courses are designed, the teaching of introductory courses is too often viewed as an undesirable assignment for instructors at those institutions. The effort seems unrewarding with incentives for improving teaching at research institutions perceived as modest at best, if not negative. It is commonly perceived that teaching introductory courses will decrease opportunities for teaching higher-level courses to graduate students and/or to conduct research. Furthermore, even for those interested in improving their pedagogical methods, current approaches to professional development are

  12. Applying Creativity Research to Cooking (United States)

    Beghetto, Ronald A.; Kaufman, James C.; Hatcher, Ryan


    What, if any, benefit might there be to applying creativity research to cooking? The purpose of this paper was to address this question. Specifically, we draw on concepts and theories from creativity research to help clarify what is meant by creative cooking. This includes exploring creative cooking through the lens of the 4-C and Propulsion…

  13. Critical Components of a Successful Undergraduate Research Experience in the Geosciences for Minority Students (United States)

    Liou-Mark, J.; Blake, R.; Chukuigwe, C.


    For the past five years, the New York City College of Technology has administered a successful National Science Foundation (NSF) Research Experience for Undergraduates (REU) program. The program provides rich, substantive, academic and life-transformative STEM educational experiences for students who would otherwise not pursue STEM education altogether or would not pursue STEM education through to the graduate school level. The REU Scholars are provided with an opportunity to conduct intensive satellite and ground-based remote sensing research at the National Oceanic and Atmospheric Administration Cooperative Remote Sensing Science and Technology Center (NOAA-CREST). Candidates for the program are recruited from the City University of New York's twenty-three separate campuses. These students engage in a research experience that spans the summer and the fall and spring semesters. Eighty-four percent (84%) of the program participants are underrepresented minorities in STEM, and they are involved in a plethora of undergraduate research best practice activities that include: training courses in MATLAB programming, Geographic Information Systems, and Remote Sensing; workshops in Research Ethics, Scientific Writing, and Oral and Poster Research Presentations; national, regional, and local conference presentations; graduate school support; and geoscience exposure events at national laboratories, agencies, and research facilities. To enhance their success in the program, the REU Scholars are also provided with a comprehensive series of safety nets that include a multi-tiered mentoring design specifically to address critical issues faced by this diverse population. Since the inception of the REU program in 2008, a total of 61 undergraduate students have finished or are continuing with their research or are pursuing their STEM endeavors. All the REU Scholars conducted individual satellite and ground-based remote sensing research projects that ranged from the study of

  14. Partnering with a Community College and Research University to attract Underrepresented Students to the Geosciences: The Student Experience (United States)

    Wickham, J. S.; Saunders, D.; Smith, G.


    A NSF sponsored partnership between the University of Texas at Arlington and the Tarrant County College District aimed to attract underrepresented lower-division students interested in STEM to the geosciences. The program recruited 32 students over 3 years, developed an innovative field course, provided tutoring and mentoring programs, and offered research assistantships for students to work with the research university faculty on funded projects. Under-represented students were 66% of the group. The data was gathered via a web-based survey from April 2nd to April 17th, 2015, using both open ended and item-level responses. Out of 32 participants, the response rate was a significant 50%. Some of the survey results include: 1) Most students heard about the program from faulty who recruited them in introductory level classes; 2) Almost all agreed that the geosciences were interesting, fun, important and a good career path; 3) 92% of the community college respondents found transferring to a research university somewhat or not too difficult; 4) The most helpful parts of the program included faculty mentors, the field course, research assistant experiences and relationships with faculty. The least helpful parts included the tutoring services, relationships with other students, and the semester kickoff meetings; 5) over 60% of the students felt very confident in research skills, formulating research questions, lab skills, quantitative skills, time management, collaborating and working independently. They were less confident in planning research, graphing results, writing papers and making oral presentations; 6) most found the faculty very helpful in advising and mentoring, and 86% said they were comfortable asking at least one faculty member for a reference letter; 7) 93% said they were likely to pursue a geoscience career and 86% were confident or somewhat confident they would be successful.

  15. Applying statistics in behavioural research

    NARCIS (Netherlands)

    Ellis, J.L.


    Applying Statistics in Behavioural Research is written for undergraduate students in the behavioural sciences, such as Psychology, Pedagogy, Sociology and Ethology. The topics range from basic techniques, like correlation and t-tests, to moderately advanced analyses, like multiple regression and MAN

  16. Software Writing Skills for Your Research - Lessons Learned from Workshops in the Geosciences (United States)

    Hammitzsch, Martin


    reviews. This assumes that scientist learn to write and release code and software as they learn to write and publish papers. Having this in mind, software could be valued and assessed as a contribution to science. But this requires the relevant skills that can be passed to colleagues and followers. Therefore, the GFZ German Research Centre for Geosciences performed three workshops in 2015 to address the passing of software writing skills to young scientists, the next generation of researchers in the Earth, planetary and space sciences. Experiences in running these workshops and the lessons learned will be summarized in this presentation. The workshops have received support and funding by Software Carpentry, a volunteer organization whose goal is to make scientists more productive, and their work more reliable, by teaching them basic computing skills, and by FOSTER (Facilitate Open Science Training for European Research), a two-year, EU-Funded (FP7) project, whose goal to produce a European-wide training programme that will help to incorporate Open Access approaches into existing research methodologies and to integrate Open Science principles and practice in the current research workflow by targeting the young researchers and other stakeholders.

  17. Geosciences for sustainability (United States)

    Ferreira, A. J. D.


    The world is facing overwhelming challenges with implications on the socio-economic performance and the quality of life around the planet. New solutions are needed to prevent, overcome or mitigate the turmoil processes caused by global change, resources exhaustion, and the procession of induced socio-economic impacts. To this end, solutions to optimize natural resources management, find new ways of using geophysical processes and properties as resources, and to use geosciences knowledge to find new, more sustainable ways to use earth resources, has to be sought for. This work is based on a literature review and on the building of a sustainable development strategy currently being prepared at the Portuguese Centro Region by the author, as part of a Research Centre strategy towards the improvement of environmental performance, of organizations, products and infrastructures. The strategy is based on the optimal use of environmental services, to which the role of geosciences and is a key element. Harnessing the abiotic milieu and processes and mimicking the multiple scale interactions of ecosystem to improve the organization and the productivity and value of man ventures. Geosciences provide the matrix where activities occur; therefore, their judicious management will optimise resources use, providing the best solutions. In addition, geosciences and their relation with ecosystem research can be managed to improve yields, by optimizing the agriculture and forestry practices. One way to proceed, that is in the forefront of research towards sustainability is by developing ways to include geosciences and ecosystems factors in novel Environmental Management tools such as Life Cycle Assessments or Environmental Management Systems. Furthermore, the knowledge on geosciences cycles and processes is of paramount importance in any planning process and in the design of infrastructures, which has a key direct or indirect role in the optimization of energy management.

  18. Gigapixel imaging as a resource for geoscience teaching, research, and outreach (United States)

    Bentley, C.; Pitts, A.; Rohrback, R. C.; Dudek, M.


    The Mid-Atlantic Geo-Image Collection is a repository of gigapixel-resolution geologic imagery intended as a tool for geoscience professionals, educators, students, & researchers ( GigaPan provides a unique combination of context & detail, with images that maintain a high level of resolution through every level of magnification. Using geological GigaPans, physically disabled students can participate in virtual field trips, instructors can bring inaccessible outcrops into the classroom, & students can zoom in on hand samples without expensive microscopes. Because GigaPan images permit detailed visual examination of geologic, MAGIC is particularly suitable for use in online geology courses. The images are free to use and tag. Our 10 contributors (3 faculty, 2 graduate students, & 6 undergraduates) use 4 models of mobile robot cameras (outcrop/landscape), 2 laboratory-based GIGAmacro imaging systems (hand samples) & 2 experimental units: 1 for thin sections, 1 for GigaPans of scanning electron microscopy. Each of these has strengths & weaknesses. MAGIC has suites of images of Appalachian structure & stratigraphy, Rocky Mountains, Snowball Earth hypothesis, & doomed outcrops of Miocene strata on Chesapeake Bay. Virtual field trips with our imagery have been developed for: Billy Goat Trail, MD; Helen Lake, AB; Wind River Canyon, WY; the Canadian Rockies; El Paso, TX; glaciation around the world; and Corridor H, WV (a GSA field trip in Nov. 2015). Virtual sample sets have been developed for introductory minerals, igneous, sedimentary, & metamorphic rocks, the stratigraphy of VA's physiographic provinces, & the Snowball Earth hypothesis. The virtual field trips have been tested in both online & onsite courses. There are close to a thousand images in the collection, each averaging about 0.9 gigapixels in size, with close to 900,000 views total. A new viewer for GigaPans was released this year by GIGAmacro. This new viewer allows

  19. Building the Quality of Diversity in the Geoscience Workforce Through Peer-and Near-Peer Mentored Research Experiences: The CSUN Catalyst Program, a Model for Success in the Geosciences (United States)

    Marsaglia, K. M.; Pedone, V. A.; Simila, G. W.; Yule, J. D.


    One means of achieving diversity in the geoscience workforce is through the careful cultivation of individuals towards successful careers. Our critical components for student achievement, as reflected in student evaluations, included the development of positive mentoring relationships, honing of critical thinking, writing and oral presentation skills, academic success, and financial support. In the initial three-year phase of in the California State University Northridge (CSUN) Catalyst program, thirty-one students participated, with subequal proportions of high school, undergraduate (freshman to senior) and graduate students. This initial cohort was dominated by Latina(o) students (22) with fewer African American (5), American Indian (2), Pacific Islander (1) and hearing-impaired (1) students. Students were incrementally recruited into the program at a rate of ~10 per year. New students were united through a semester-long Catalyst Course where they worked in groups on various team-building exercises followed by activities in which students were introduced to four different research projects by faculty advisors. Students then continued working on a research project in the following semesters, either as undergraduate or graduate research assistants. The research groups constituted self-mentoring subsets of peers and near-peers, tiered by experience (graduate to high school students) and directed by one of the four Catalyst faculty members. Catalyst student office space promoted intragroup interaction and camaraderie. Most students attended at least one regional, national or international Geoscience meeting. The CSUN Catalyst program has fostered the individual success of its participants, with most progressing towards or achieving BS and MS degrees in the geosciences. Those that have entered the workforce, have done so with more opportunities for career advancement as a result of their Catalyst experiences. Catalyst students have also advanced academically into MS

  20. Mentoring Through Research as a Catalyst for the Success of Under-represented Minority Students in the Geosciences (United States)

    Marsaglia, K.; Simila, G.; Pedone, V.; Yule, D.


    The Catalyst Program of the Department of Geological Sciences at California State University Northridge has been developed by four faculty members who were the recipients of a three-year award (2002-2005) from the National Science Foundation. The goal of the program is to increase minority participation and success in the geosciences. The program seeks to enrich the educational experience by introducing students at all levels (individual and team) to research in the geosciences (such as data analysis for earthquake hazards for 1994 Northridge event, paleoseismology of San Andreas fault, Waipaoa, New Zealand sedimentary system and provenance studies, and the Barstow formation geochronology and geochemistry), and to decrease obstacles that affect academic success. Both these goals are largely achieved by the formation of integrated high school, undergraduate, and graduate research groups, which also provide fulfilling and successful peer mentorship. New participants first complete a specially designed course that introduces them to peer-mentoring, collaborative learning (think-pair share), and research on geological data sets. Students of all experience levels then become members of research teams and conduct four mini-projects and associated poster presentations, which deepens academic and research skills as well as peer-mentor relationships. This initial research experience has been very beneficial for the student's degree requirements of a senior research project and oral presentation. Evaluation strategies include the student research course presentations, summer field projects, and external review of student experiences. The Catalyst Program provides significant financial support to participants to allow them to focus their time on their education. A component of peer-tutoring has been implemented for promoting additional student success. The program has been highly successful in its two year development. To date, undergraduates and graduate students have

  1. Integrating skills, content, and the process of science in introductory geoscience courses using a group research project (United States)

    Hannula, K. A.


    Introductory geoscience courses serve many purposes. A good introductory course needs to teach students how scientists think, correct mistaken ideas about the age of the Earth or climate change, provide the background to allow students to judge energy and environmental policies, prepare students for future geoscience classes, and convince students to explore geoscience further. Teaching these courses effectively is a great challenge. My department's solution has been to use an extended group project in lab to advance many of these goals simultaneously. All sections of our Earth Systems Science courses (100 to 150 students per semester) participate in a project monitoring the Florida River, a small tributary of the Colorado River system which is locally used for drinking water and irrigation, which traverses units from Precambrian granite to Paleocene sediments, and which goes through land used for wilderness, mining, rapid ex-urban development, ranching, and natural gas production. Each lab section is responsible for measuring discharge, sediment load, and water chemistry on one or two reaches of the river. The lab groups compare data with other sites along the river and from past semesters in order to draw broader conclusions than possible from their own limited experience. In order to put the sampling and data interpretation into context, we have incorporated many of our other assignments into the project. The topographic maps lab uses the Florida River maps and sample sites, a field trip introducing rocks and minerals shows students the variety of bedrock across which the river flows, and a series of graphing exercises introduce students to previously collected data while giving them practice plotting and interpreting data. The exercises and labs are designed to build on one another, using skills and information from previous weeks to understand new aspects of the local geology. Not every place has the diverse geology of southwestern Colorado. However, this

  2. Toward the Geoscience Paper of the Future: Best practices for documenting and sharing research from data to software to provenance (United States)

    Gil, Yolanda; David, Cédric H.; Demir, Ibrahim; Essawy, Bakinam T.; Fulweiler, Robinson W.; Goodall, Jonathan L.; Karlstrom, Leif; Lee, Huikyo; Mills, Heath J.; Oh, Ji-Hyun; Pierce, Suzanne A.; Pope, Allen; Tzeng, Mimi W.; Villamizar, Sandra R.; Yu, Xuan


    Geoscientists now live in a world rich with digital data and methods, and their computational research cannot be fully captured in traditional publications. The Geoscience Paper of the Future (GPF) presents an approach to fully document, share, and cite all their research products including data, software, and computational provenance. This article proposes best practices for GPF authors to make data, software, and methods openly accessible, citable, and well documented. The publication of digital objects empowers scientists to manage their research products as valuable scientific assets in an open and transparent way that enables broader access by other scientists, students, decision makers, and the public. Improving documentation and dissemination of research will accelerate the pace of scientific discovery by improving the ability of others to build upon published work.

  3. Tracking the Health of the Geoscience Workforce (United States)

    Gonzales, L. M.; Keane, C. M.; Martinez, C. M.


    Increased demands for resources and environmental activities, relative declines in college students entering technical fields, and expectations of growth commensurate with society as a whole challenge the competitiveness of the U.S. geoscience workforce. Because of prior business cycles, more than 50% of the workforce needed in natural resource industries in 10 years is currently not in the workforce. This issue is even more acute in government at all levels and in academic institutions. Here, we present a snapshot of the current status of the geoscience profession that spans geoscientists in training to geoscience professionals in government, industry, and academia to understand the disparity between the supply of and demand for geoscientists. Since 1996, only 1% of high school SAT test takers plan to major in geosciences at college. Although the total number of geoscience degrees granted at community colleges have increased by 9% since 1996 , the number of geoscience undergraduate degrees has decreased by 7%. The number of geoscience master's and doctoral degrees have increased 4% and 14% respectively in the same time period. However, by 2005, 68 geoscience departments were consolidated or closed in U.S. universities. Students who graduate with geoscience degrees command competitive salaries. Recent bachelors geoscience graduates earned an average salary of 31,366, whereas recent master's recipients earned an average of 81,300. New geosciences doctorates commanded an average salary of 72,600. Also, fFederal funding for geoscience research has increase steadily from 485 million in 1970 to $3.5 billion in 2005. Economic indicators suggest continued growth in geoscience commodity output and in market capitalization of geoscience industries. Additionally, the Bureau of Labor Statistics projects a 19% increase in the number of geoscience jobs from 2006 to 2016. Despite the increased demand for geoscientists and increase in federal funding of geoscience research

  4. Effectiveness of basin morphometry, remote sensing, and applied geosciences on groundwater recharge potential mapping: a comparative study within a small watershed (United States)

    Roy, Suvendu; Sahu, Abhay Sankar


    A multidisciplinary approach using the integrated field of geosciences (e.g., geomorphology, geotectonics, geophysics, and hydrology) is established to conduct groundwater recharge potential mapping of the Kunur River Basin, India. The relative mean error (RME) calculation of the results of three applied techniques and water table data from twenty-four observation wells in the basin over the 2000-2010 period are presented. Nine subbasins were identified and ranked for the RME calculation, where the observation wells-based ranking was taken as standard order for comparison. A linear model has been developed using six factors (drainage density, surface slope, ruggedness index, lineament density, Bouguer gravity anomaly, and potential maximum water retention capacity) and a grid-wise weighted index. In a separate comparative approach, the sub-basin and grid-wise analyses have been conducted to identify the suitable spatial unit for watershed level hydrological modeling.

  5. Tribal and Indigenous Geoscience and Earth System Science: Ensuring the Evolution and Practice of Underrepresented Scientists and Researchers in the 21ST Century and Beyond (United States)

    Bolman, J.


    The time is critical for Tribal, Indigenous and Underrepresented K-12/university students and communities to accept the duty to provide representation in Earth System Sciences/Geosciences fields of study and professions. Tribal nations in the U.S have a unique legal status rooted in a complex relationship between the U.S. federal government, individual state/local governments and Tribal authorities. Although geosciences are often at the center of these relationships, especially as they pertain to the development of natural resources, tribal economics, and environmental stewardship, Tribal/Indigenous people remain severely underrepresented in advanced geoscience education. Our students and communities have responded to the invitation. To represent and most important develop and lead research initiatives. Leadership is a central focus of the invitation to participate, as Tribal people have immense responsibility for significant landscapes across North American Continent, critical natural resources and millennia of unpretentious natural evolution with the localized native geologies, species and environmental systems. INRSEP and Pacific Northwest Tribal Nations found sustaining relationships with the Geoscience Alliance, MS PHD's, Woods Hole PEP, Native American Pacific Islander Research Experience (NAPIRE) and LSAMP programs, in addition to state/federal agencies, has advanced culturally-relevant STEM research. Research foundationally grounded on traditional ecological knowledge, individual and Tribal self-determination. A key component is student research experiences within their ancestral homelands and traversing to REU's in multiple national and international Tribal/Indigenous ancestral territories. The relationships also serve an immense capacity in tracking student achievement, promoting best practices in research development and assessing outcomes. The model has significantly improved the success of students completing STEM graduate programs. The presentation

  6. Cascadia GeoSciences: Community-Based Earth Science Research Focused on Geologic Hazard Assessment and Environmental Restoration. (United States)

    Williams, T. B.; Patton, J. R.; Leroy, T. H.


    Cascadia GeoSciences (CG) is a new non-profit membership governed corporation whose main objectives are to conduct and promote interdisciplinary community based earth science research. The primary focus of CG is on geologic hazard assessment and environmental restoration in the Western U.S. The primary geographic region of interest is Humboldt Bay, NW California, within the southern Cascadia subduction zone (SCSZ). This region is the on-land portion of the accretionary prism to the SCSZ, a unique and exciting setting with numerous hazards in an active, dynamic geologic environment. Humboldt Bay is also a region rich in history. Timber harvesting has been occurring in California's coastal forestlands for approximately 150 years. Timber products transported with ships and railroads from Mendocino and Humboldt Counties helped rebuild San Francisco after the 1906 earthquake. Historic land-use of this type now commonly requires the services of geologists, engineers, and biologists to restore road networks as well as provide safe fish passage. While Humboldt Bay is a focus of some of our individual research goals, we welcome regional scientists to utilize CG to support its mission while achieving their goals. An important function of CG is to provide student opportunities in field research. One of the primary charitable contributions of the organization is a student grant competition. Funds for the student grant will come from member fees and contributions, as well as a percent of all grants awarded to CG. A panel will review and select the student research proposal annually. In addition to supporting student research financially, professional members of CG will donate their time as mentors to the student researchers, promoting a student mentor program. The Humboldt Bay region is well suited to support annual student research. Thorough research like this will help unravel some of the mysteries of regional earthquake-induced land-level changes, as well as possible fault

  7. Petroleum geoscience

    Institute of Scientific and Technical Information of China (English)

    Rasoul Sorkhabi


    @@ Successful textbooks educate generations,and in a way define generations of scientists. As science and technology advance,textbooks become old and outdated. Nevertheless, each textbook serves as a foundation for the next, and thus a series of textbooks on a particular subject reflects the evolution of concepts, methods and data on the subject. As I write this review, there are eight textbooks on petroleum geology on my bookshelf: D. Hager's Practical Oil Geology (1915) (the first textbook of its kind); W.H. Emmons' Geology of Petroleum (1921), Cecil Lalicker's Principles of Petroleum Geology (1949); William Russell's Principles of Petroleum Geology (1951); Kenneth Landes' Petroleum Geology (1951); A. I. Levorsen's Geology of Petroleum (2nd ed., 1967); F. K. North's Petroleum Geology (1985); and Richard Selley's Elements of Petroleum Geology (2nd ed., 1998). Petroleum Geoscience by Gluyas and Swarbrick is a welcome addition to this list although its authors do not mention their predecessors.

  8. Applied Linguistics Research on Asianness (United States)

    Kobayashi, Yoko


    As China is increasingly occupying the world's attention, its explosively expanding economical and political clout has also been felt in the applied linguistics domain, with the discussion on China's/Chinese language issues growing by leaps and bounds (e.g. China's English education policies, Chinese language classes in the West). Amid the world's…

  9. SEM in applied marketing research

    DEFF Research Database (Denmark)

    Sørensen, Bjarne Taulo; Tudoran, Ana Alina

    In this paper we discuss two SEM approaches: an exploratory structural equation modelling based on a more liberalised and inductive philosophy versus the classical SEM based on the traditional hypothetical-deductive approach. We apply these two modelling techniques to data from a consumer survey ...

  10. Applied Operations Research: Operator's Assistant (United States)

    Cole, Stuart K.


    NASA operates high value critical equipment (HVCE) that requires trouble shooting, periodic maintenance and continued monitoring by Operations staff. The complexity HVCE and information required to maintain and trouble shoot HVCE to assure continued mission success as paper is voluminous. Training on new HVCE is commensurate with the need for equipment maintenance. LaRC Research Directorate has undertaken a proactive research to support Operations staff by initiation of the development and prototyping an electronic computer based portable maintenance aid (Operator's Assistant). This research established a goal with multiple objectives and a working prototype was developed. The research identified affordable solutions; constraints; demonstrated use of commercial off the shelf software; use of the US Coast Guard maintenance solution; NASA Procedure Representation Language; and the identification of computer system strategies; where these demonstrations and capabilities support the Operator, and maintenance. The results revealed validation against measures of effectiveness and overall proved a substantial training and capability sustainment tool. The research indicated that the OA could be deployed operationally at the LaRC Compressor Station with an expectation of satisfactorily results and to obtain additional lessons learned prior to deployment at other LaRC Research Directorate Facilities. The research revealed projected cost and time savings.

  11. New researchers for applied physics

    CERN Multimedia

    Rita Giuffredi, PicoSEC project


    On 12 September, thirteen PicoSEC researchers met in Lyon for the first time, at the project’s kick-off meeting. The meeting was the opportunity for them to get to know each other and start building a fruitful working and human relationship. A hard task awaits them: reaching the 200-picosecond-limit on time resolution in photon detectors.    The 13 researchers recruited for the PicoSEC project and the organizers of the project, September 2012. Photon detectors are used in many different fields ranging from high-energy physics calorimetry for the future generation of colliders to the photon time-of-flight technique for the next generation of PET scanners. Within the PicoSEC EU-funded Marie Curie Initial Training Network, 18 Early Stage Researchers and 4 Experienced Researchers are being trained to develop new detection techniques based on very fast scintillating crystals and photo detectors. In a multi-site project like PicoSEC, in which 11 institutes and companies from 6 ...

  12. Designing a road map for geoscience workflows (United States)

    Duffy, Christopher; Gil, Yolanda; Deelman, Ewa; Marru, Suresh; Pierce, Marlon; Demir, Ibrahim; Wiener, Gerry


    Advances in geoscience research and discovery are fundamentally tied to data and computation, but formal strategies for managing the diversity of models and data resources in the Earth sciences have not yet been resolved or fully appreciated. The U.S. National Science Foundation (NSF) EarthCube initiative (, which aims to support community-guided cyberinfrastructure to integrate data and information across the geosciences, recently funded four community development activities: Geoscience Workflows; Semantics and Ontologies; Data Discovery, Mining, and Integration; and Governance. The Geoscience Workflows working group, with broad participation from the geosciences, cyberinfrastructure, and other relevant communities, is formulating a workflows road map ( The Geoscience Workflows team coordinates with each of the other community development groups given their direct relevance to workflows. Semantics and ontologies are mechanisms for describing workflows and the data they process.

  13. 32 CFR 37.1220 - Applied research. (United States)


    ... 32 National Defense 1 2010-07-01 2010-07-01 false Applied research. 37.1220 Section 37.1220... REGULATIONS TECHNOLOGY INVESTMENT AGREEMENTS Definitions of Terms Used in This Part § 37.1220 Applied research... technology such as new materials, devices, methods and processes. It typically is funded in...

  14. Child Participant Roles in Applied Linguistics Research (United States)

    Pinter, Annamaria


    Children's status as research participants in applied linguistics has been largely overlooked even though unique methodological and ethical concerns arise in projects where children, rather than adults, are involved. This article examines the role of children as research participants in applied linguistics and discusses the limitations of…

  15. Be Explicit: Geoscience Program Design to Prepare the Next Generation of Geoscientists (United States)

    Mogk, D. W.


    The work of geoscientists is to engage inquiry, discovery and exploration of Earth history and processes, and increasingly, to apply this knowledge to the "grand challenges" that face humanity. Geoscience as a discipline is confronted with an incomplete geologic record, observations or data that are often ambiguous or uncertain, and a need to grasp abstract concepts such as temporal reasoning ('deep time'), spatial reasoning over many orders of magnitude, and complex system behavior. These factors provide challenges, and also opportunities, for training future geoscientists. Beyond disciplinary knowledge, it is also important to provide opportunities for students to engage the community of practice and demonstrate how to "be" a geoscientist. Inculcation of geoscience "ways of knowing" is a collective responsibility for geoscientists (teaching faculty and other professionals), at all instructional levels, in all geoscience disciplines, and for all students. A whole-student approach is recommended. Geoscience programs can be designed to focus on student success by explictly: 1) defining programmatic student learning outcomes , 2) embedding assessments throughout the program to demonstrate mastery, 3) aligning course sequences to reinforce and anticipate essential concepts/skills, 4) preparing students to be life-long learners; 5) assigning responsibilities to courses/faculty to ensure these goals have been met; 6) providing opportunities for students to "do" geoscience (research experiences), and 7) modeling professional behaviors in class, field, labs, and informal settings. Extracurricular departmental activities also contribute to student development such as journal clubs, colloquia, field trips, and internships. Successful design of geoscience department programs is informed by: the AGI Workforce program and Summit on the Future of Geoscience Education that define pathways for becoming a successful geoscientist; training in Geoethics; Geoscience Education

  16. Geothermal Technologies Program Geoscience and Supporting Technologies 2001 University Research Summaries

    Energy Technology Data Exchange (ETDEWEB)

    Creed, Robert John; Laney, Patrick Thomas


    The U.S. Department of Energy Office of Wind and Geothermal Technologies (DOE) is funding advanced geothermal research through University Geothermal Research solicitations. These solicitations are intended to generate research proposals in the areas of fracture permeability location and characterization, reservoir management and geochemistry. The work funded through these solicitations should stimulate the development of new geothermal electrical generating capacity through increasing scientific knowledge of high-temperature geothermal systems. In order to meet this objective researchers are encouraged to collaborate with the geothermal industry. These objectives and strategies are consistent with DOE Geothermal Energy Program strategic objectives.

  17. Geothermal Technologies Program Geoscience and Supporting Technologies 2001 University Research Summaries

    Energy Technology Data Exchange (ETDEWEB)

    Creed, R.J.; Laney, P.T.


    The U.S. Department of Energy Office of Wind and Geothermal Technologies (DOE) is funding advanced geothermal research through University Geothermal Research solicitations. These solicitations are intended to generate research proposals in the areas of fracture permeability location and characterization, reservoir management and geochemistry. The work funded through these solicitations should stimulate the development of new geothermal electrical generating capacity through increasing scientific knowledge of high-temperature geothermal systems. In order to meet this objective researchers are encouraged to collaborate with the geothermal industry. These objectives and strategies are consistent with DOE Geothermal Energy Program strategic objectives.

  18. Long-term Academic and Career Impacts of Undergraduate Research: Diverse Pathways to Geoscience Careers Following a Summer Atmospheric Science Research Internship (United States)

    Trott, C. D.; Sample McMeeking, L. B.; Boyd, K.; Bowker, C.


    Research experiences for undergraduates (REU) have been shown to support the success of STEM undergraduates through improving their research skills, ability to synthesize knowledge, and personal and professional development, all while socializing them into the nature of science. REUs are further intended to support STEM career choice and professional advancement, and have thus played a key role in diversity efforts. Recruiting and retaining diverse students in STEM through REUs is of particular importance in the geosciences, where women and ethnic minorities continue to be significantly underrepresented. However, few studies have examined the long-term impacts of these REUs on students' academic and career trajectories. Further, those that do exist primarily study the experiences of current graduate students, scientists, and faculty members—that is, those who have already persisted—which overlooks the multiple academic and career paths REU students might follow and may preclude a thorough examination of REUs' diversity impacts. In this long-term retrospective study of the academic and career impacts of a REU program at a large Western U.S. research university, we interviewed 17 former REU participants on their expectations prior to their REU participation, their experiences during the REU, the immediate outcomes from the experience, and its long-term impacts on their academic and career choices. To address gaps in the existing literature on REU impacts, we purposively sampled students who have taken a variety of educational and career paths, including those not engaged in science research. Despite varied trajectories, the majority of the students we interviewed have persisted in the geosciences and attest to the REU's profound impact on their career-related opportunities and choices. This presentation describes students' diverse STEM pathways and discusses how students' REU expectations, experiences, and immediate outcomes continued to make an impact long-term.

  19. Facilitating Geoscience Education in Higher-Education Institutes Worldwide With GeoBrain -- An Online Learning and Research Environment for Classroom Innovations (United States)

    Deng, M.; di, L.


    Higher education in geosciences has imminent goals to prepare students with modern geoscience knowledge and skills to meet the increased demand on trained professionals for working on the big challenges faced by geoscience disciplines, such as the global environmental change, world energy supplies, sustainable development, etc. In order to reach the goal, the geoscience education in post-secondary institutes worldwide has to attract and retain enough students and to train students with knowledge and skills needed by the society. The classroom innovations that can encourage and support student investigations and research activities are key motivation mechanisms that help to reach the goal. This presentation describes the use of GeoBrain, an innovative geospatial knowledge system, as a powerful educating tool for motivating and facilitating innovative undergraduate and graduate teaching and research in geosciences. Developed in a NASA funded project, the GeoBrain system has adopted and implemented the latest Web services and knowledge management technologies for providing innovative methods in publishing, accessing, visualizing, and analyzing geospatial data and in building/sharing geoscience knowledge. It provides a data-rich online learning and research environment enabled by wealthy data and information available at NASA Earth Observing System (EOS) Data and Information System (EOSDIS). Students, faculty members, and researchers from institutes worldwide can easily access, analyze, and model with the huge amount of NASA EOS data just like they possess such vast resources locally at their desktops. The online environment provided by GeoBrain has brought significant positive changes to geosciences education in higher-education institutes because of its new concepts and technologies, motivation mechanisms, free exploration resources, and advanced geo- processing capabilities. With the system, the used-to-be very challenging or even impossible teaching tasks has

  20. Improving Geoscience Education through the PolarTREC Teacher Research Experience Model (Invited) (United States)

    Warburton, J.; Timm, K.; Larson, A. M.


    Teacher Research Experiences (TRE’s) are not new. For more than a decade, the National Science Foundation (NSF) as well as other federal agencies have been funding programs that place teachers with researchers in efforts to invigorate science education by bringing educators and researchers together through hands-on experiences. Many of the TRE’s are successful in providing a hands-on field experience for the teachers and researchers however many of the programs lack the resources to continue the collaborations and support the growing network of teachers that have had these field experiences. In 2007, NSF provided funding for PolarTREC—Teachers and Researchers Exploring and Collaborating, a program of the Arctic Research Consortium of the U.S. (ARCUS). PolarTREC is a TRE where K-12 teachers participate in polar field research, working closely with scientists as a pathway to improving science education. In just three years, it has become a successful TRE. What makes PolarTREC different than other the teacher research experience programs and how can others benefit from what we have learned? During this presentation, we will share data collected through the program evaluation and on how PolarTREC contributes to the discipline of Science, Technology, Engineering, and Mathematics (STEM) education and pedagogy through a model program conceived and organized according to current best practices, such as pre-research training, mentoring, support for classroom transfer, and long-term access to resources and support. Data shows that PolarTREC’s comprehensive program activities have many positive impacts on educators and their ability to teach science concepts and improve their teaching methods. Additionally, K-12 students polled in interest surveys showed significant changes in key areas including amount of time spent in school exploring research activities, importance of understanding science for future work, importance of understanding the polar regions as a person

  1. The Continuously Operating Caribbean Observational Network (COCONet): Supporting Regional Development of Geoscience Research Across the Circum-Caribbean (United States)

    Braun, J.; Miller, M. M.; Mattioli, G. S.; Wang, G.; Feaux, K.; Rowan, L.; La Femina, P. C.


    The Continuously Operating Caribbean Observational Network (COCONet) is a National Science Foundation (NSF) funded infrastructure project that stretches across the circum-Caribbean to include Central America and the northern portions of South America. Its objective is to develop a large-scale network of geodetic and atmospheric infrastructure to support a broad range of geoscience and atmospheric investigations and enable research on process-oriented science with direct relevance to geo-hazards. The network includes over 60 new and refurbished continuously operating Global Positioning System (GPS) and surface meterology stations. It will also include data from at least 60 existing stations that are being operated by one of our more than 40 regional partners. As COCONet approaches the completion of its build-out phase, it is appropriate to evaluate the activities associated with the project that facilitate capacity building. These activities include three workshops to solicit feedback from regional partners regarding science objectives, station location, and long-term network operation. COCONet graduate research fellowships have been used to support nine students, with seven from countries within the COCONet footprint. The establishment of three regional data and archive centers to foster access to data and promote free and open data standards. Lastly, two Pan American Advanced Studies Institute (PASI) workshops on topics that are central to the main goals of COCONet were also organized to engage early career scientists who are interested in working on topics that are directly relevant to the region. Perhaps the most significant effort on expanding capacity in the region is the recent deployment of a station in Camaguey, Cuba with full support from both the U.S. and Cuban governments. This presentation summarizes the activities of the COCONet project to enhance and support both the human resource development and technical capabilities within the region.

  2. Examining sexism in the geosciences (United States)

    Simarski, Lynn Teo

    Do women geoscientists face worse obstacles because of their gender than women in other sciences? A recent survey by the Committee on Professionals in Science and Technology showed that women with geoscience bachelor's degrees start off at only 68% of their male colleagues' salaries, much lower than women in biology (92%), engineering (102%), chemistry (103%), and physics (111%).Women still lag behind men in geoscience degrees as well. In 1990, women received about one-third of geoscience bachelor's degrees, one-quarter of masters, and about one-fifth of Ph.D.'s, reports the American Geological Institute. In the sciences overall, women received about half of bachelor's degrees, 42% of masters, and about a third of Ph.D.'s in 1989, according to the National Research Council.

  3. Geoscience meets the four horsemen?: Tracking the rise of neocatastrophism (United States)

    Marriner, Nick; Morhange, Christophe; Skrimshire, Stefan


    Although it is acknowledged that there has been an exponential growth in neocatastrophist geoscience inquiry, the extent, chronology and origin of this mode have not been precisely scrutinized. In this study, we use the bibliographic research tool Scopus to explore 'catastrophic' words replete in the earth and planetary science literature between 1950 and 2009, assessing when, where and why catastrophism has gained new currency amongst the geoscience community. First, we elucidate an exponential rise in neocatastrophist research from the 1980s onwards. We then argue that the neocatastrophist mode came to prominence in North America during the 1960s and 1970s before being more widely espoused in Europe, essentially after 1980. We compare these trends with the EM-DAT disaster database, a worldwide catalogue that compiles more than 11,000 natural disasters stretching back to 1900. The findings imply a clear link between anthropogenically forced global change and an increase in disaster research (r 2 = 0.73). Finally, we attempt to explain the rise of neocatastrophism by highlighting seven non-exhaustive factors: (1) the rise of applied geoscience; (2) inherited geological epistemology; (3) disciplinary interaction and the diffusion of ideas from the planetary to earth sciences; (4) the advent of radiometric dating techniques; (5) the communications revolution; (6) webometry and the quest for high-impact geoscience; and (7) popular cultural frameworks.

  4. Effectiveness of Investment in Applied Horticultural Research

    NARCIS (Netherlands)

    Wustman, R.; Putter, de H.; Achterbosch, T.J.; Adamicki, F.


    A study on the cost benefit analysis of applied horticultural research was carried out in two EU Member States: the Netherlands and Poland. Four crops were selected for the study; two fruit crops ¿ apple and pear and two vegetable crops ¿ carrot and onion. A developed spreadsheet model was applied t

  5. Colorado State University Center for Geosciences/Atmospheric Research (CG/AR) (United States)


    with Gary McWilliams (ARL) and Li Li (NRL) - Steven Fletcher with Carolyn Reynolds (NRL), Dale Barker (NCAR), Brian Ancell (Univ. Washington), Ron ...Sonia Kreidenweis with Ron Pinnick (ARL) - Steven Fletcher with Profs. Nancy Nichols and Alan O’Neil (Data Assimilation Research Centre, UK...Icing, Aerosols Effects/Urban BL Larson Vincent UW-Mil (sub) Cloud Modeling and Parameterization Clouds, Icing, and Aerosols

  6. Visualizer: 3D Gridded Data Visualization Software for Geoscience Education and Research (United States)

    Harwood, C.; Billen, M. I.; Kreylos, O.; Jadamec, M.; Sumner, D. Y.; Kellogg, L. H.; Hamann, B.


    In both research and education learning is an interactive and iterative process of exploring and analyzing data or model results. However, visualization software often presents challenges on the path to learning because it assumes the user already knows the locations and types of features of interest, instead of enabling flexible and intuitive examination of results. We present examples of research and teaching using the software, Visualizer, specifically designed to create an effective and intuitive environment for interactive, scientific analysis of 3D gridded data. Visualizer runs in a range of 3D virtual reality environments (e.g., GeoWall, ImmersaDesk, or CAVE), but also provides a similar level of real-time interactivity on a desktop computer. When using Visualizer in a 3D-enabled environment, the software allows the user to interact with the data images as real objects, grabbing, rotating or walking around the data to gain insight and perspective. On the desktop, simple features, such as a set of cross-bars marking the plane of the screen, provide extra 3D spatial cues that allow the user to more quickly understand geometric relationships within the data. This platform portability allows the user to more easily integrate research results into classroom demonstrations and exercises, while the interactivity provides an engaging environment for self-directed and inquiry-based learning by students. Visualizer software is freely available for download ( and runs on Mac OSX and Linux platforms.

  7. Enriching the Research Experiences for Undergraduates in Geoscience Through Student Feedback (United States)

    Sears, R. F.; Bank, C. G.


    Research Experiences for Undergraduates (REU) allow students to work alongside professionals while they conduct scientific research and offer excellent opportunities to expose students to the practical components of their university education. Indeed, anecdotal evidence shows that a well-planned REU builds teamwork skills, provides a deeper understanding of the science learned in the classroom, and allows students to experience the various stages of science and thus consider wider career options. However, such evidence is difficult to measure. In this presentation we will present preliminary results from a survey of 2nd and 3rd year students who have been engaged in separate interdisciplinary projects (a geophysical survey in South Africa to assist archaeologists, and a forensic study in collaboration with the provincial police). Our before and after surveys address criteria such as students' understanding of scientific methodology, familiarity with the topic and tools for the research, expectations of the study and of themselves, and logistics of doing science. It is our hope that the student voices we present will help REU program coordinators to address limitations and establish best practices to provide the richest possible learning experience.

  8. Geoscience Information Network (United States)

    Allison, M. L.; Gundersen, L. C.


    Geological surveys in the USA have an estimated 2,000-3,000 databases that represent one of the largest, long- term information resources on the geology of the United States and collectively constitute a national geoscience data "backbone" for research and applications. An NSF-supported workshop in February, 2007, among representatives of the Association of American State Geologists (AASG) and the USGS, recommended that "the nation's geological surveys develop a national geoscience information framework that is distributed, interoperable, uses open source standards and common protocols, respects and acknowledges data ownership, fosters communities of practice to grow, and develops new web services and clients." The AASG and USGS have formally endorsed the workshop recommendations and formed a joint Steering Committee to pursue design and implementation of the Geoscience Information Network (GIN). GIN is taking a modular approach in assembling the network: 1. Agreement on open-source standards and common protocols through the use of Open Geospatial Consortium (OGC) standards. 2. A data exchange model utilizing the geoscience mark-up language GeoSciML, an OGC GML-based application. 3. A prototype data discovery tool (National Digital Catalogue - NDC) developing under the National Geological and Geophysical Data Preservation Program run by the USGS. 4. Data integration tools developed or planned by a number of independent projects. A broader NSF-sponsored workshop in March 2007 examined what direction the geoinformatics community in the US should take towards developing a National Geoinformatics System. The final report stated that, "It was clear that developing such a system should involve a partnership between academia, government, and industry that should be closely connected to the efforts of the U. S. Geological Survey and the state geological surveys..." The GIN is collaborating with 1-G Europe, a coalition of 27 European geological surveys in the One

  9. Building persistent identifier systems for geoscience research - Technical solutions and community governance (United States)

    Klump, J. F.; Lehnert, K. A.; Huber, R.


    The emergence of the Internet gave rise to the expectation that the internet would lead to greater accessibility, transparency and reproducibility of research results. New communication technologies enabled far easier and faster collaboration in larger, geographically more distributed networks. However, the distributed and disorganised nature of the internet not only allowed new technologies to emerge, it also made it difficult to maintain a persistent record of science. Persistent identifiers were invented to allow unambiguous identification of resources on the net. At first, these resources referred to scholarly literature and related resources. The concept of using persistent identifiers has since been expanded to other, non-textual resources, like datasets and geological specimens, and more recently to authors and contributors of scholarly works, and to software and instruments.Setting up identifier systems is technically trivial. The real challenge lies in creating a governance system for the respective identifiers. While Digital Object Identifiers (DOI) were originally invented by the publishing industry, they quickly became an established way for the identification of research resources. Other identifier systems, some of them using DOI as an example, were developed as grass-roots efforts by the scientific community.Together with semantic technologies and linked data, unambiguous identification allows us to harness information at large scales beyond human comprehension. The technical possibilities offered by technology challenge some of the norms of scholarly cooperation, such as using and sharing resources beyond the emulation of paper-based publications.This presentation will discuss the development of persistent identification of research resources as a community effort, using the technical and governance patterns developed for DOI and for IGSN for data as an example.

  10. A Primer on Disseminating Applied Quantitative Research (United States)

    Bell, Bethany A.; DiStefano, Christine; Morgan, Grant B.


    Transparency and replication are essential features of scientific inquiry, yet scientific communications of applied quantitative research are often lacking in much-needed procedural information. In an effort to promote researchers dissemination of their quantitative studies in a cohesive, detailed, and informative manner, the authors delineate…

  11. Mentoring Through Research as a Catalyst for the Success of Under-represented Minority Students in the Geosciences at California State University Northridge (United States)

    Marsaglia, K. M.; Pedone, V.; Simila, G. W.; Yule, J. D.


    The Catalyst Program of the Department of Geological Sciences at California State University Northridge has been developed by four faculty members who were the recipients of a three-year award (2002-2005) from the National Science Foundation. The goal of the program is to increase minority participation and success in the geosciences. The program seeks to enrich the educational experience by introducing students at all levels to research in the geosciences and to decrease obstacles that affect academic success. Both these goals are largely achieved by the formation of integrated high school, undergraduate, and graduate research groups, which also provide fulfilling and successful peer mentorship. The Catalyst Program provides significant financial support to participants to allow them to focus their time on their education. New participants first complete a specially designed course that introduces them to peer-mentoring, collaborative learning, and geological research. Students of all experience levels then become members of research teams, which deepens academic and research skills as well as peer-mentor relationships. The program was highly successful in its inaugural year. To date, undergraduates and graduate students in the program coauthored six abstracts at professional meetings and one conference paper. High-school students gained first hand experience of a college course and geologic research. Perhaps the most important impacts of the program are the close camaraderie that has developed and the increased ability of the Catalyst students to plan and execute research with greater confidence and self-esteem.

  12. Impacts and Feedbacks in a Warming Arctic: Engaging Diverse Learners in Geoscience Education and Research (United States)

    Sparrow, Elena; Spellman, Katie; Fabbri, Cindy; Verbyla, David; Yoshikawa, Kenji; Fochesatto, Gilberto; Comiso, Josefino; Chase, Malinda; Jones, Debra; Bacsujlaky, Mara


    students, home-schooled students, pre-service teachers, undergraduate students, and community members as citizen scientists. Those served will include groups historically under-represented in STEM fields (e.g. Alaska Natives). Learners will be engaged using face-to-face, online, and mobile technologies. Formative and summative assessments as well as outcome-based metrics will be developed to evaluate the success of program efforts. To accomplish objectives and leverage efforts, this project brings together subject matter experts, educational professionals, and practitioners in a teaming arrangement as well as leveraged partnerships that include the GLOBE Program, NASA Langley Education Program, NASA Goddard Space Flight Center, International Arctic Research Institute, School of Education, School of Natural Resources and Extension, Geophysical Institute, Institute of Arctic Biology, University of Alaska Fairbanks, Association of Interior Native Educators, Kenaitze Tribe Environmental Education Program, Urban and Rural School Districts, 4-H Program, Goldstream Group, Inc., National Science Foundation (NSF) Alaska Experimental Program to Stimulate Competitive Research, NSF Bonanza Creek Long Term Ecological Research and the NSF Polar Learning and Responding Climate Change Education Partnership.

  13. The Non-traditional Student, a new Geoscience Resource (United States)

    Ferrell, R.; Anderson, L.; Bart, P.; Lorenzo, J. M.; Tomkin, J.


    The LSU GAEMP (Geoscience Alliance to Enhance Minority Participation) program targets non-traditional students, those without an undergraduate degree in geoscience, in its efforts to attract African American and Hispanic students from minority serving institutions (MSIs) to pursue careers in geology and geophysics. Faculty collaborators at nine MSIs (seven HBCUs and two HSIs) work closely with LSU faculty to advertise the program and to select student participants. The enthusiastic cooperation of the MSI Professors is crucial to success. The ideal student is a junior-level, high academic achiever with a major in one of the basic sciences, mathematics, engineering or computer science. A special summer course uses a focus on research to introduce basic geoscience concepts. Students are encouraged to design a cooperative research project to complete during their last year at their home institution and to apply for GAEMP graduate fellowships leading directly to an M.S. or Ph.D. in Geoscience. There are several reasons for the emphasis on these students 1. They have special knowledge and skills to use in graduate programs in geophysics, geochemistry, geobiology, etc. 2. Third-year students have demonstrated their ability to succeed in the academic world and are ready to select a graduate program that will enhance their employment prospects. 3. The MSIs, especially some of the physics programs at the collaborating HBCUs, provide well-trained, highly motivated graduates who have compiled excellent records in highly ranked graduate programs. This pool of talent is not available in the geosciences because most MSIs do not have geoscience degree programs. 4. This group provides a unique niche for focus as there are many programs concentrating on K-12 students and the recruitment of traditional majors. In the first year of GAEMP, 12 students participated in the summer program, six elected to pursue research projects and expressed interest in applying for the fellowships, and

  14. Geoscience Perspectives in Carbon Sequestration - Educational Training and Research Through Classroom, Field, and Laboratory Investigations

    Energy Technology Data Exchange (ETDEWEB)

    Wronkiewicz, David [Missouri Univ. of Science and Technology, Rolla, MO (United States); Paul, Varum [Missouri Univ. of Science and Technology, Rolla, MO (United States); Abousif, Alsedik [Missouri Univ. of Science and Technology, Rolla, MO (United States); Ryback, Kyle [Missouri Univ. of Science and Technology, Rolla, MO (United States)


    The most effective mechanism to limit CO2 release from underground Geologic Carbon Sequestration (GCS) sites over multi-century time scales will be to convert the CO2 into solid carbonate minerals. This report describes the results from four independent research investigations on carbonate mineralization: 1) Colloidal calcite particles forming in Maramec Spring, Missouri, provide a natural analog to evaluate reactions that may occur in a leaking GCS site. The calcite crystals form as a result of physiochemical changes that occur as the spring water rises from a depth of more than 190'. The resultant pressure decrease induces a loss of CO2 from the water, rise in pH, lowering of the solubility of Ca2+ and CO32-, and calcite precipitation. Equilibrium modelling of the spring water resulted in a calculated undersaturated state with respect to calcite. The discontinuity between the observed occurrence of calcite and the model result predicting undersaturated conditions can be explained if bicarbonate ions (HCO3-) are directly involved in precipitation process rather than just carbonate ions (CO32-). 2) Sedimentary rocks in the Oronto Group of the Midcontinent Rift (MCR) system contain an abundance of labile Ca-, Mg-, and Fe-silicate minerals that will neutralize carbonic acid and provide alkaline earth ions for carbonate mineralization. One of the challenges in using MCR rocks for GCS results from their low porosity and permeability. Oronto Group samples were reacted with both CO2-saturated deionized water at 90°C, and a mildly acidic leachant solution in flow-through core-flooding reactor vessels at room temperature. Resulting leachate solutions often exceeded the saturation limit for calcite. Carbonate crystals were also detected in as little as six days of reaction with Oronto Group rocks at 90oC, as well as experiments with forsterite

  15. Outer geosciences

    Energy Technology Data Exchange (ETDEWEB)

    Blake, R.L.


    This report presents an objective discussion of the importance of the atmospheric/solar-terrestrial system to national energy programs. A brief sketch is given of the solar-terrestrial environment, extending from the earth's surface to the sun. Processes in this natural system influence several energy activities directly or indirectly, and some present and potential energy activities can influence the natural system. It is not yet possible to assess the two-way interactions quantitatively or to evaluate the economic impact. An investment by the Department of Energy (DOE) in a long-range basic research program would be an important part of the department's mission. Existing programs by other agencies in this area of research are reviewed, and a compatible DOE program is outlined. 18 figures, 5 tables.

  16. Applied regression analysis a research tool

    CERN Document Server

    Pantula, Sastry; Dickey, David


    Least squares estimation, when used appropriately, is a powerful research tool. A deeper understanding of the regression concepts is essential for achieving optimal benefits from a least squares analysis. This book builds on the fundamentals of statistical methods and provides appropriate concepts that will allow a scientist to use least squares as an effective research tool. Applied Regression Analysis is aimed at the scientist who wishes to gain a working knowledge of regression analysis. The basic purpose of this book is to develop an understanding of least squares and related statistical methods without becoming excessively mathematical. It is the outgrowth of more than 30 years of consulting experience with scientists and many years of teaching an applied regression course to graduate students. Applied Regression Analysis serves as an excellent text for a service course on regression for non-statisticians and as a reference for researchers. It also provides a bridge between a two-semester introduction to...

  17. Teaching GeoEthics Across the Geoscience Curriculum (United States)

    Mogk, D. W.; Geissman, J. W.; Kieffer, S. W.; Reidy, M.; Taylor, S.; Vallero, D. A.; Bruckner, M. Z.


    Ethics education is an increasingly important component of the pre-professional training of geoscientists. Funding agencies (NSF) require training of graduate students in the responsible conduct of research, employers are increasingly expecting their workers to have basic training in ethics, and the public demands that scientists abide by the highest standards of ethical conduct. Yet, few faculty have the requisite training to effectively teach about ethics in their classes, or even informally in mentoring their research students. To address this need, an NSF-funded workshop was convened to explore how ethics education can be incorporated into the geoscience curriculum. Workshop goals included: examining where and how geoethics topics can be taught from introductory courses for non-majors to modules embedded in "core" geoscience majors courses or dedicated courses in geoethics; sharing best pedagogic practices for "what works" in ethics education; developing a geoethics curriculum framework; creating a collection of online instructional resources, case studies, and related materials; applying lessons learned about ethics education from sister disciplines (biology, engineering, philosophy); and considering ways that geoethics instruction can contribute to public scientific literacy. Four major themes were explored in detail: (1) GeoEthics and self: examining the internal attributes of a geoscientist that establish the ethical values required to successfully prepare for and contribute to a career in the geosciences; (2) GeoEthics and the geoscience profession: identifying ethical standards expected of geoscientists if they are to contribute responsibly to the community of practice; (3) GeoEthics and society: exploring geoscientists' responsibilities to effectively and responsibly communicate the results of geoscience research to inform society about issues ranging from geohazards to natural resource utilization in order to protect public health, safety, and economic

  18. Research in geosciences policy (United States)

    Byerly, Radford, Jr.; Mcvey, Sally


    Various topics related to cases of difficult adaptation to global change are discussed. Topics include patterns in the ratification of global environmental treaties, the effects of global climate change on Southeast Asia, and global change and biodiversity loss.

  19. Correspondence Analysis applied to psychological research


    Laura Doey; Jessica Kurta


    Correspondence analysis is an exploratory data technique used to analyze categorical data (Benzecri, 1992). It is used in many areas such as marketing and ecology. Correspondence analysis has been used less often in psychological research, although it can be suitably applied. This article discusses the benefits of using correspondence analysis in psychological research and provides a tutorial on how to perform correspondence analysis using the Statistical Package for the Social Sciences (SPSS).

  20. Correspondence Analysis applied to psychological research

    Directory of Open Access Journals (Sweden)

    Laura Doey


    Full Text Available Correspondence analysis is an exploratory data technique used to analyze categorical data (Benzecri, 1992. It is used in many areas such as marketing and ecology. Correspondence analysis has been used less often in psychological research, although it can be suitably applied. This article discusses the benefits of using correspondence analysis in psychological research and provides a tutorial on how to perform correspondence analysis using the Statistical Package for the Social Sciences (SPSS.

  1. Commentary: Narrative Ethnography as Applied Communication Research (United States)

    Goodall, H. L., Jr.


    The breadth and heuristic merits of Harold (Buddy) Goodall's scholarship exemplify the teachings and influence of Gerald Phillips. One nominator applauds Goodall's leadership and dedication to furthering the visibility and utility of applied communication. Goodall's research is also widely used in other fields such as sociology and anthropology,…

  2. Problems Portraying Migrants in Applied Linguistics Research (United States)

    Block, David


    This paper is a very personal attempt to explore the problematics of portraying migrants in Applied Linguistics research. I begin with a discussion of identity, in particular what we might mean when we use the term, and from there I go on to explore its fundamental imprecision through an analysis of a census question about ethnicity. I then…

  3. Political Economy in Applied Linguistics Research (United States)

    Block, David


    This state-of-the-art review is based on the fundamental idea that political economy should be adopted as a frame for research and discussion in applied linguistics as part of a general social turn which has taken hold in the field over the past three decades. It starts with Susan Gal's (1989) early call for such a move in sociolinguistics and…

  4. Geoscience on television: a review of science communication literature in the context of geosciences (United States)

    Hut, Rolf; Land-Zandstra, Anne M.; Smeets, Ionica; Stoof, Cathelijne R.


    Geoscience communication is becoming increasingly important as climate change increases the occurrence of natural hazards around the world. Few geoscientists are trained in effective science communication, and awareness of the formal science communication literature is also low. This can be challenging when interacting with journalists on a powerful medium like TV. To provide geoscience communicators with background knowledge on effective science communication on television, we reviewed relevant theory in the context of geosciences and discuss six major themes: scientist motivation, target audience, narratives and storytelling, jargon and information transfer, relationship between scientists and journalists, and stereotypes of scientists on TV. We illustrate each theme with a case study of geosciences on TV and discuss relevant science communication literature. We then highlight how this literature applies to the geosciences and identify knowledge gaps related to science communication in the geosciences. As TV offers a unique opportunity to reach many viewers, we hope this review can not only positively contribute to effective geoscience communication but also to the wider geoscience debate in society.

  5. Green Roof Research through EPA's Regional Applied Research Effort - slides (United States)

    The U.S. Environmental Protection Agency’s (EPA) Regional Applied Research Effort (RARE) allows the Regions of the EPA to choose research projects to be performed in partnership with EPA’s Office of Research and Development (ORD). Over the last decade, several green roof projects...

  6. Green Roof Research through EPA's Regional Applied Research Effort (United States)

    ABSTRACT The U.S. Environmental Protection Agency’s (EPA) Regional Applied Research Effort (RARE) allows the Regions of the EPA to choose research projects to be performed in partnership with EPA’s Office of Research and Development (ORD). Over the last decade, several green roo...

  7. Applied orienting response research: some examples. (United States)

    Tremayne, P; Barry, R J


    The development of orienting response (OR) theory has not been accompanied by many applications of the concept--most research still appears to be lab-based and "pure," rather than "applied." We present some examples from our own work in which the OR perspective has been applied in a wider context. These cover the exploration of processing deficits in autistic children, aspects of the "repression" of anxiety in elite athletes, and the locus of alcohol effects. Such applications of the OR concept in real-life situations seem a logical and, indeed, necessary step in the evolution of this area of psychophysiology.

  8. Striving to Diversify the Geosciences Workforce (United States)

    Velasco, Aaron A.; Jaurrieta de Velasco, Edith


    The geosciences continue to lag far behind other sciences in recruiting and retaining diverse populations [Czujko and Henley, 2003; Huntoon and Lane, 2007]. As a result, the U.S. capacity for preparedness in natural geohazards mitigation, natural resource management and development, national security, and geosciences education is being undermined and is losing its competitive edge in the global market. Two key populations must be considered as the United States looks to build the future geosciences workforce and optimize worker productivity: the nation's youth and its growing underrepresented minority (URM) community. By focusing on both of these demographics, the United States can address the identified shortage of high-quality candidates for knowledge-intensive jobs in the geosciences, helping to develop the innovative enterprises that lead to discovery and new technology [see National Research Council (NRCd), 2007].

  9. Spatiotemporal Thinking in the Geosciences (United States)

    Shipley, T. F.; Manduca, C. A.; Ormand, C. J.; Tikoff, B.


    Reasoning about spatial relations is a critical skill for geoscientists. Within the geosciences different disciplines may reason about different sorts of relationships. These relationships may span vastly different spatial and temporal scales (from the spatial alignment in atoms in crystals to the changes in the shape of plates). As part of work in a research center on spatial thinking in STEM education, we have been working to classify the spatial skills required in geology, develop tests for each spatial skill, and develop the cognitive science tools to promote the critical spatial reasoning skills. Research in psychology, neurology and linguistics supports a broad classification of spatial skills along two dimensions: one versus many objects (which roughly translates to object- focused and navigation focused skills) and static versus dynamic spatial relations. The talk will focus on the interaction of space and time in spatial cognition in the geosciences. We are working to develop measures of skill in visualizing spatiotemporal changes. A new test developed to measure visualization of brittle deformations will be presented. This is a skill that has not been clearly recognized in the cognitive science research domain and thus illustrates the value of interdisciplinary work that combines geosciences with cognitive sciences. Teaching spatiotemporal concepts can be challenging. Recent theoretical work suggests analogical reasoning can be a powerful tool to aid student learning to reason about temporal relations using spatial skills. Recent work in our lab has found that progressive alignment of spatial and temporal scales promotes accurate reasoning about temporal relations at geological time scales.

  10. An agreement for applied research in Italy

    CERN Multimedia


    On 26 February, two of CERN's Directors-General had a very official handshake. Luciano Maiani, CERN's current Director-General, and Carlo Rubbia, one of his predecessors and current "commissario straordinario" of ENEA (Ente per le Nuove tecnologie, l'Energia e l'Ambiante, Institute for new technologies, energy and the environment) signed a collaboration agreement between their two organisations. ENEA carries out applied research in various fields such as renewable energies, new materials and medical applications. The organisation, which employs 3400 people in 10 laboratories in Italy, has a clear interest, therefore, in the technologies developed at CERN, which, in turn, seeks to promote them. Their collaboration will shortly lead to common research projects. CERN now has two Italian partners : INFN, its historical partner for particle physics research and ENEA for technological applications.

  11. Basic and Applied Research on Environmental Decisions (United States)

    Krantz, D. H.


    Societal use of well-understood physical or biological science generally involves social processes, including dissemination of the knowledge across society and modification of public policy and of group and individual behavior. The social processes are often poorly understood, from the standpoint of social science; thus, questions in applied natural science often give rise to fundamental questions within social science. For example, problems concerning communication of uncertain scientific information give rise to basic research about how conceptual frameworks (of both the recipients and the providers of such information) change, over the course of repeated attempts at communication. Our Center has been exposed to such communication problems, in several field projects, and this exposure has suggested fruitful new directions for our laboratory research on decision making. For example, we noted (as others have) that communication is often more effective when presented to a group of peers gathered in a familiar setting than to individuals. Among other observations, Orlove and his collaborators noted that Ugandan villagers gather in groups to hear radio broadcasts of climate forecasts together. What behavioral processes lead to more effective communication to groups? Does the social setting enhance individual learning? Does the group frame decision problems differently from the average individual member? Are individual goals modified by the group setting? All three of these processes may be important; we have results concerning each from our current laboratory experiments. I argue that these ideas also require major modification of current theories of decision making, and so are particularly fruitful for basic research in the Decision Sciences. Our experience has led us to emphasize the very close relation between basic and applied social research. We also believe that social-science students need much stronger education in natural sciences and/or engineering, in order

  12. Promoting Original Scientific Research and Teacher Training Through a High School Science Research Program: A Five Year Retrospective and Analysis of the Impact on Mentored 8th Grade Geoscience Students and the Mentors Themselves (United States)

    Danch, J. M.


    In 2010 a group of 8th grade geoscience students participated in an extracurricular activity allowing them to conduct original scientific research while being mentored by students enrolled in a 3 - year high school Science Research program. Upon entering high school the mentored students themselves enrolled in the Science Research program and continued for 4 years, culminating with their participation in Science Research 4. This allowed them to continue conducting original scientific research, act as mentors to 8th grade geoscience students and to provide teacher training for both middle and high school teachers conducting inquiry-based science lessons. Of the 7 Science Research 4 students participating since 2010, 100% plan on majoring or minoring in a STEM - related field in college and their individual research projects have been been granted over 70 different awards and honors in science fair and symposia including a 3rd and 4th place category awards at two different international science fairs - the International Sustainable Energy Engineering and Environment Project (iSWEEP) and the International Science and Engineering Fair (ISEF). Science Research 4 students developed and conducted a Society for Science and the Public affiliated science fair for middle school students enrolled in an 8th grade honors geoscience program allowing over 100 students from 5 middle schools to present their research and be judged by STEM professionals. Students with research judged in the top 10% were nominated for participation in the National Broadcom MASTERS program which they successfully entered upon further mentoring from the Science Research 4 students. 8th grade enrollment in the Science Research program for 2015 increased by almost 50% with feedback from students, parents and teachers indicating that the mentorship and participation in the 8th grade science fair were factors in increasing interest in continuing authentic scientific research in high school.

  13. Applied statistical designs for the researcher

    CERN Document Server

    Paulson, Daryl S


    Showcasing a discussion of the experimental process and a review of basic statistics, this volume provides methodologies to identify general data distribution, skewness, and outliers. It features a unique classification of the nonparametric analogs of their parametric counterparts according to the strength of the collected data. Applied Statistical Designs for the Researcher discusses three varieties of the Student t test, including a comparison of two different groups with different variances; two groups with the same variance; and a matched, paired group. It introduces the analysis of variance and Latin Square designs and presents screening approaches to comparing two factors and their interactions.

  14. Applying the Scientific Method of Cybersecurity Research

    Energy Technology Data Exchange (ETDEWEB)

    Tardiff, Mark F.; Bonheyo, George T.; Cort, Katherine A.; Edgar, Thomas W.; Hess, Nancy J.; Hutton, William J.; Miller, Erin A.; Nowak, Kathleen E.; Oehmen, Christopher S.; Purvine, Emilie AH; Schenter, Gregory K.; Whitney, Paul D.


    The cyber environment has rapidly evolved from a curiosity to an essential component of the contemporary world. As the cyber environment has expanded and become more complex, so have the nature of adversaries and styles of attacks. Today, cyber incidents are an expected part of life. As a result, cybersecurity research emerged to address adversarial attacks interfering with or preventing normal cyber activities. Historical response to cybersecurity attacks is heavily skewed to tactical responses with an emphasis on rapid recovery. While threat mitigation is important and can be time critical, a knowledge gap exists with respect to developing the science of cybersecurity. Such a science will enable the development and testing of theories that lead to understanding the broad sweep of cyber threats and the ability to assess trade-offs in sustaining network missions while mitigating attacks. The Asymmetric Resilient Cybersecurity Initiative at Pacific Northwest National Laboratory is a multi-year, multi-million dollar investment to develop approaches for shifting the advantage to the defender and sustaining the operability of systems under attack. The initiative established a Science Council to focus attention on the research process for cybersecurity. The Council shares science practices, critiques research plans, and aids in documenting and reporting reproducible research results. The Council members represent ecology, economics, statistics, physics, computational chemistry, microbiology and genetics, and geochemistry. This paper reports the initial work of the Science Council to implement the scientific method in cybersecurity research. The second section describes the scientific method. The third section in this paper discusses scientific practices for cybersecurity research. Section four describes initial impacts of applying the science practices to cybersecurity research.

  15. Applied research in uncertainty modeling and analysis

    CERN Document Server

    Ayyub, Bilal


    Uncertainty has been a concern to engineers, managers, and scientists for many years. For a long time uncertainty has been considered synonymous with random, stochastic, statistic, or probabilistic. Since the early sixties views on uncertainty have become more heterogeneous. In the past forty years numerous tools that model uncertainty, above and beyond statistics, have been proposed by several engineers and scientists. The tool/method to model uncertainty in a specific context should really be chosen by considering the features of the phenomenon under consideration, not independent of what is known about the system and what causes uncertainty. In this fascinating overview of the field, the authors provide broad coverage of uncertainty analysis/modeling and its application. Applied Research in Uncertainty Modeling and Analysis presents the perspectives of various researchers and practitioners on uncertainty analysis and modeling outside their own fields and domain expertise. Rather than focusing explicitly on...

  16. Illuminate Knowledge Elements in Geoscience Literature (United States)

    Ma, X.; Zheng, J. G.; Wang, H.; Fox, P. A.


    There are numerous dark data hidden in geoscience literature. Efficient retrieval and reuse of those data will greatly benefit geoscience researches of nowadays. Among the works of data rescue, a topic of interest is illuminating the knowledge framework, i.e. entities and relationships, embedded in documents. Entity recognition and linking have received extensive attention in news and social media analysis, as well as in bioinformatics. In the domain of geoscience, however, such works are limited. We will present our work on how to use knowledge bases on the Web, such as ontologies and vocabularies, to facilitate entity recognition and linking in geoscience literature. The work deploys an un-supervised collective inference approach [1] to link entity mentions in unstructured texts to a knowledge base, which leverages the meaningful information and structures in ontologies and vocabularies for similarity computation and entity ranking. Our work is still in the initial stage towards the detection of knowledge frameworks in literature, and we have been collecting geoscience ontologies and vocabularies in order to build a comprehensive geoscience knowledge base [2]. We hope the work will initiate new ideas and collaborations on dark data rescue, as well as on the synthesis of data and knowledge from geoscience literature. References: 1. Zheng, J., Howsmon, D., Zhang, B., Hahn, J., McGuinness, D.L., Hendler, J., and Ji, H. 2014. Entity linking for biomedical literature. In Proceedings of ACM 8th International Workshop on Data and Text Mining in Bioinformatics, Shanghai, China. 2. Ma, X. Zheng, J., 2015. Linking geoscience entity mentions to the Web of Data. ESIP 2015 Summer Meeting, Pacific Grove, CA.

  17. Erratum: Google Earth as Geoscience Data Browser Project: Development of a Tool to Convert JAMSTEC Research Vessel Navigation Data to KML [Data Science Journal, Volume 8, 30 March 2009. S85-S91

    Directory of Open Access Journals (Sweden)

    Y Yamagishi


    Full Text Available The following PDF indicates errata for the original article entitled "Google Earth as Geoscience Data Browser Project: Development of a Tool to Convert JAMSTEC Research Vessel Navigation Data to KML" by Y Yamagishi, H Nagao, K Suzuki, H Tamura, T Hatakeyama, H Yanaka and S Tsuboi.

  18. The symbiosis between basic and applied research. (United States)

    Leibowitz, H W


    To illustrate the interdependence between the solution of practical problems and the search for fundamental mechanisms, their relationship within the contexts of the history of night myopia and the problem of nighttime traffic accidents is discussed. Night myopia, or nearsightedness at night, which has been a problem since the late 18th century, was shown to be the result of a recently discovered oculomotor mechanism, the intermediate resting position of accommodation. With this knowledge, the handicap of nearsightedness at night ( a major problem in nighttime viewing such as driving and military operations) is readily amenable to solution. Recent developments in our knowledge of the functional significance of the nervous system has led to an increased understanding of the cause and to amelioration of nighttime traffic accidents. These developments illustrate the symbiotic relationship between basic and applied research and the benefits to be gained by consideration of both objectives.

  19. An alternative path to improving university Earth science teaching and developing the geoscience workforce: Postdoctoral research faculty involvement in clinical teacher preparation (United States)

    Zirakparvar, N. A.; Sessa, J.; Ustunisik, G. K.; Nadeau, P. A.; Flores, K. E.; Ebel, D. S.


    It is estimated that by the year 2020 relative to 2009, there will be 28% more Earth Science jobs paying ≥ $75,000/year1 in the U.S.A. These jobs will require advanced degrees, but compared to all arts and science advanced degrees, the number of physical science M.S. and Ph.D. awarded per year decreased from 2.5% in 1980 to 1.5% in 20092. This decline is reflected on a smaller scale and at a younger age: in the New York City school system only 36% of all 8th graders have basic proficiency in science 3. These figures indicate that the lack achievement in science starts at a young age and then extends into higher education. Research has shown that students in grades 7 - 12 4,5 and in university level courses 6 both respond positively to high quality science teaching. However, much attention is focused on improving science teaching in grades 7- 12, whereas at many universities lower level science courses are taught by junior research and contingent faculty who typically lack formal training, and sometimes interest, in effective teaching. The danger here is that students might enter university intending to pursue geoscience degrees, but then encounter ineffective instructors, causing them to lose interest in geoscience and thus pursue other disciplines. The crux of the matter becomes how to improve the quality of university-level geoscience teaching, without losing sight of the major benchmark of success for research faculty - scholarly publications reporting innovative research results. In most cases, it would not be feasible to sidetrack the research goals of early career scientists by placing them into a formal teacher preparation program. But what happens when postdoctoral research scientists take an active role in clinical teacher preparation as part of their research appointments? The American Museum of Natural History's Masters of Arts in Teaching (AMNH-MAT) urban residency pilot program utilizes a unique approach to grade 7 - 12 Earth Science teacher

  20. Preparing for a Professional Career in the Geosciences with AEG (United States)

    Barry, T.; Troost, K. G.


    The Association of Environmental and Engineering Geologists offers multiple resources to students and faculty about careers in the geosciences, such as description of what employers are looking for, career options, mentoring, and building your professional network. Our website provides easy access to these and other resources. Most of AEG's 3000 members found their first job through association with another AEG member and more than 75% of our membership is working in applied geoscience jobs. We know that employers are looking for the following qualities: passion for your career and the geosciences, an enthusiastic personality, flexibility, responsibility, ability to communicate well in oral and written modes, and the ability to work well in teams or independently. Employers want candidates with a strong well-rounded geoscience education and the following skills/experience: attendance at field camp, working knowledge of field methodologies, strong oral and written communication skills, basic to advanced computer skills, and the ability to conduct research. In addition, skill with GIS applications, computer modeling, and 40-hour OSHA training are desired. The most successful technique for finding a job is to have and use a network. Students can start building their network by attending regular AEG or other professional society monthly meetings, volunteering with the society, attending annual meetings, going on fieldtrips and participating in other events. Students should research what kind of job they want and build a list of potential preferred employers, then market themselves to people within those companies using networking opportunities. Word-of-mouth sharing of job openings is the most powerful tool for getting hired, and if students have name recognition established within their group of preferred employers, job interviews will occur at a faster rate than otherwise.

  1. Establishing MICHCARB, a geological carbon sequestration research and education center for Michigan, implemented through the Michigan Geological Repository for Research and Education, part of the Department of Geosciences at Western Michigan University

    Energy Technology Data Exchange (ETDEWEB)

    Barnes, David A. [Western Michigan University; Harrison, William B. [Western Michigan University


    The Michigan Geological Repository for Research and Education (MGRRE), part of the Department of Geosciences at Western Michigan University (WMU) at Kalamazoo, Michigan, established MichCarb—a geological carbon sequestration resource center by: • Archiving and maintaining a current reference collection of carbon sequestration published literature • Developing statewide and site-specific digital research databases for Michigan’s deep geological formations relevant to CO2 storage, containment and potential for enhanced oil recovery • Producing maps and tables of physical properties as components of these databases • Compiling all information into a digital atlas • Conducting geologic and fluid flow modeling to address specific predictive uses of CO2 storage and enhanced oil recovery, including compiling data for geological and fluid flow models, formulating models, integrating data, and running the models; applying models to specific predictive uses of CO2 storage and enhanced oil recovery • Conducting technical research on CO2 sequestration and enhanced oil recovery through basic and applied research of characterizing Michigan oil and gas and saline reservoirs for CO2 storage potential volume, injectivity and containment. Based on our research, we have concluded that the Michigan Basin has excellent saline aquifer (residual entrapment) and CO2/Enhanced oil recovery related (CO2/EOR; buoyant entrapment) geological carbon sequestration potential with substantial, associated incremental oil production potential. These storage reservoirs possess at least satisfactory injectivity and reliable, permanent containment resulting from associated, thick, low permeability confining layers. Saline aquifer storage resource estimates in the two major residual entrapment, reservoir target zones (Lower Paleozoic Sandstone and Middle Paleozoic carbonate and sandstone reservoirs) are in excess of 70-80 Gmt (at an overall 10% storage efficiency factor; an approximately

  2. Healthcare, molecular tools and applied genome research. (United States)

    Groves, M


    Biotechnology 2000 offered a rare opportunity for scientists from academia and industry to present and discuss data in fields as diverse as environmental biotechnology and applied genome research. The healthcare section of the meeting encompassed a number of gene therapy delivery systems that are successfully treating genetic disorders. Beta-thalassemia is being corrected in mice by continous erythropoeitin delivery from engineered muscles cells, and from naked DNA electrotransfer into muscles, as described by Dr JM Heard (Institut Pasteur, Paris, France). Dr Reszka (Max-Delbrueck-Centrum fuer Molekulare Medizin, Berlin, Germany), meanwhile, described a treatment for liver metastasis in the form of a drug carrier emolization system, DCES (Max-Delbrueck-Centrum fuer Molekulare Medizin), composed of surface modified liposomes and a substance for chemo-occlusion, which drastically reduces the blood supply to the tumor and promotes apoptosis, necrosis and antiangiogenesis. In the molecular tools section, Willem Stemmer (Maxygen Inc, Redwood City, CA, USA) gave an insight into the importance that techniques, such as molecular breeding (DNA shuffling), have in the evolution of molecules with improved function, over a range of fields including pharmaceuticals, vaccines, agriculture and chemicals. Technologies, such as ribosome display, which can incorporate the evolution and the specific enrichment of proteins/peptides in cycles of selection, could play an enormous role in the production of novel therapeutics and diagnostics in future years, as explained by Andreas Plückthun (Institute of Biochemistry, University of Zurich, Switzerland). Applied genome research offered technologies, such as the 'in vitro expression cloning', described by Dr Zwick (Promega Corp, Madison, WI, USA), are providing a functional analysis for the overwhelming flow of data emerging from high-throughput sequencing of genomes and from high-density gene expression microarrays (DNA chips). The

  3. Career Paths for Geosciences Students (Invited) (United States)

    Bowers, T. S.; Flewelling, S. A.


    Current and future drivers of hiring in the geosciences include climate, environment, energy, georisk and litigation areas. Although climate is closely linked to the atmospheric sciences, hiring needs in the geosciences exist as well, in understanding potential impacts of climate change on coastal erosion and water resources. Where and how to consider carbon sequestration as a climate mitigation policy will also require geosciences expertise. The environmental sciences have long been a source of geosciences hiring, and have ongoing needs in the areas of investigation of contamination, and in fluid and chemical transport. The recent expansion of the energy sector in the U.S. is providing opportunities for the geosciences in oil and gas production, hydraulic fracturing, and in geothermal development. In georisk, expertise in earthquake and volcanic hazard prediction are increasingly important, particularly in population centers. Induced seismicity is a relatively new area of georisk that will also require geosciences skills. The skills needed in the future geosciences workforce are increasingly interdisciplinary, and include those that are both observational and quantitative. Field observations and their interpretation must be focused forward as well as backwards and include the ability to recognize change as it occurs. Areas of demand for quantitative skills include hydrological, geophysical, and geochemical modeling, math and statistics, with specialties such as rock mechanics becoming an increasingly important area. Characteristics that students should have to become successful employees in these sectors include strong communication skills, both oral and written, the ability to know when to stop "studying" and identify next steps, and the ability to turn research areas into solutions to problems.

  4. Satellite Applications for K-12 Geoscience Education (United States)

    Mooney, M.; Ackerman, S.; Lettvin, E.; Emerson, N.; Whittaker, T. M.


    This presentation will highlight interactive on-line curriculum developed at the Cooperative Institute for Meteorological Satellite Studies (CIMSS) at the University of Wisconsin in Madison. CIMSS has been on the forefront of educational software design for over two decades, routinely integrating on-line activities into courses on satellite remote sensing. In 2006, CIMSS began collaborating with education experts and researchers from the University of Washington to create an NSF-funded distance learning course for science teachers called Satellite Applications for Geoscience Education. This course includes numerous web-based learning activities, including a distance education tool called VISITview which allows instructors to connect with multiple students simultaneously to conduct a lesson. Developed at CIMSS to facilitate training of National Weather Service forecasters economically and remotely, VISITview is especially effective for groups of people discussing and analyzing maps or images interactively from many locations. Along with an on-line chat function, VISITview participants can use a speaker phone or a networked voice-enabled application to create a learning environment similar to a traditional classroom. VISITview will be used in two capacities: first, instructors will convey topics of current relevance in geoscience disciplines via VISITview. Second, the content experts will participate in "virtual visits" to the classrooms of the educators who take the course for full credit. This will enable scientists to interact with both teachers and students to answer questions and discuss exciting or inspiring examples that link satellite data to their areas of research. As long as a school has Internet access, an LCD projector and a speakerphone, VISITview sessions can be shared with an entire classroom. The geoscientists who developed material for the course and conducting VISITview lectures include a geologist from the University of Wisconsin-Richland, an

  5. International Convergence on Geoscience Cyberinfrastructure (United States)

    Allison, M. L.; Atkinson, R.; Arctur, D. K.; Cox, S.; Jackson, I.; Nativi, S.; Wyborn, L. A.


    interoperability across scientific domains, 4) support the promulgation and institutionalization of agreed-upon standards, protocols, and practice, and 5) enhance knowledge transfer not only across the community, but into the domain sciences, 6) lower existing entry barriers for users and data producers, 7) build on the existing disciplinary infrastructures leveraging their service buses. . All of these objectives are required for establishing a permanent and sustainable cyber(e)-infrastructure for the geosciences. The rationale for this approach is well articulated in the AuScope mission statement: "Many of these problems can only be solved on a national, if not global scale. No single researcher, research institution, discipline or jurisdiction can provide the solutions. We increasingly need to embrace e-Research techniques and use the internet not only to access nationally distributed datasets, instruments and compute infrastructure, but also to build online, 'virtual' communities of globally dispersed researchers." Multidisciplinary interoperability can be successfully pursued by adopting a "system of systems" or a "Network of Networks" philosophy. This approach aims to: (a) supplement but not supplant systems mandates and governance arrangements; (b) keep the existing capacities as autonomous as possible; (c) lower entry barriers; (d) Build incrementally on existing infrastructures (information systems); (e) incorporate heterogeneous resources by introducing distribution and mediation functionalities. This approach has been adopted by the European INSPIRE (Infrastructure for Spatial Information in the European Community) initiative and by the international GEOSS (Global Earth Observation System of Systems) programme.

  6. InTeGrate: Transforming the Teaching of Geoscience and Sustainability (United States)

    Blockstein, D.; Manduca, C. A.; Bralower, T. J.; Castendyk, D.; Egger, A. E.; Gosselin, D. C.; Iverson, E. A.; Matson, P. A.; MacGregor, J.; Mcconnell, D. A.; Mogk, D. W.; Nevle, R. J.; Oches, E. A.; Steer, D. N.; Wiese, K.


    InTeGrate is an NSF-funded community project to improve geoscience literacy and build a workforce that can apply geoscience principles to address societal issues. Three workshops offered this year by InTeGrate and its partner, On the Cutting Edge, addressed strategies for bringing together geoscience and sustainability within geoscience courses and programs, in interdisciplinary courses and programs, and in courses and programs in other disciplines or schools including arts and humanities, health science, and business. Participants in all workshops described the power of teaching geoscience in the context of sustainability and the utility of this approach in engaging students with geoscience, including student populations not traditionally represented in the sciences. Faculty involved in both courses and programs seek to teach important skills including the ability to think about systems and to make connections between local observations and challenges and global phenomena and issues. Better articulation of these skills, including learning outcomes and assessments, as well as documenting the relationship between these skills and employment opportunities were identified as important areas for further work. To support widespread integration of geoscience and sustainability concepts, these workshops initiated collections describing current teaching activities, courses, and programs. InTeGrate will continue to build these collections in collaboration with On the Cutting Edge and Building Strong Geoscience Departments, and through open contributions by individual faculty and programs. In addition, InTeGrate began developing new teaching modules and courses. Materials for use in introductory geoscience and environmental science/studies courses, distance learning courses, and courses for education majors are being developed and tested by teams of faculty drawn from at least three institutions, including several members from two-year colleges. An assessment team is

  7. Promoting the Geosciences for Minority Students in the Urban Coastal Environment of New York City (United States)

    Liou-Mark, J.; Blake, R.


    The 'Creating and Sustaining Diversity in the Geo-Sciences among Students and Teachers in the Urban Coastal Environment of New York City' project was awarded to New York City College of Technology (City Tech) by the National Science Foundation to promote the geosciences for students in middle and high schools and for undergraduates, especially for those who are underrepresented minorities in STEM. For the undergraduate students at City Tech, this project: 1) created and introduced geoscience knowledge and opportunities to its diverse undergraduate student population where geoscience is not currently taught at City Tech; and 2) created geoscience articulation agreements. For the middle and high schools, this project: 1) provided inquiry-oriented geoscience experiences (pedagogical and research) for students; 2) provided standards-based professional development (pedagogical and research) in Earth Science for teachers; 3) developed teachers' inquiry-oriented instructional techniques through the GLOBE program; 4) increased teacher content knowledge and confidence in the geosciences; 5) engaged and intrigued students in the application of geoscience activities in a virtual environment; 6) provided students and teachers exposure in the geosciences through trip visitations and seminars; and 7) created community-based geoscience outreach activities. Results from this program have shown significant increases in the students (grades 6-16) understanding, participation, appreciation, and awareness of the geosciences. Geoscience modules have been created and new geosciences courses have been offered. Additionally, students and teachers were engaged in state-of-the-art geoscience research projects, and they were involved in many geoscience events and initiatives. In summary, the activities combined geoscience research experiences with a robust learning community that have produced holistic and engaging stimuli for the scientific and academic growth and development of grades 6

  8. ``I Didn't Realize that Science Could Be So Useful'': Integrating Service Learning and Student Research on Water-Quality Issues within an Undergraduate Geoscience Curriculum (Invited) (United States)

    Lea, P. D.; Urquhart, J.


    The title quote, from a senior geoscience major, illustrates one of the important aspects of service learning. The associated authentic research experiences benefit not only learning of geoscience concepts, but also students’ perceptions of the role of science in society. For the past two years, a wide-ranging study of water-quality dynamics in the Androscoggin Lake watershed of Maine has engaged (1) introductory students and non-science majors in spring-semester courses, (2) upper-level geoscience majors in fall-semester courses, and (3) seniors undertaking independent summer research. The overall focus of the research is to understand nutrient loading to Androscoggin Lake, which receives back-flooded water from the industrialized Androscoggin River, as well as from agricultural lands in the connecting Dead River valley. Stakeholders include the local lake association, the state DEP, pulp-mill and wastewater-plant operators, and local farmers. A key element in the project is the role adopted by the student researchers vis-à-vis policy options. Following the taxonomy of Pielke (2007, The Honest Broker: Cambridge University Press), students doing service learning may serve as issue advocates, seeking to provide scientific support for the policy positions of community partners. In contrast, we have adopted explicitly the position of honest brokers who seek to understand and communicate the workings of this complex system without advocating specific policy solutions. This approach has facilitated buy-in from a larger range of stakeholders, and encouraged students to address choices in the roles and responsibilities of scientists in policy decisions—a valuable perspective for future scientists and non-scientists alike. In service-learning courses, groups of 3 to 5 students engage in a variety of sub-projects, such as lake-bottom sediment studies, nutrient sampling in streams and lakes, developing rating curves for streamflow, and calculating phosphorus fluxes

  9. Translational Geoscience: Converting Geoscience Innovation into Societal Impacts (United States)

    Schiffries, C. M.


    Translational geoscience — which involves the conversion of geoscience discovery into societal, economic, and environmental impacts — has significant potential to generate large benefits but has received little systematic attention or resources. In contrast, translational medicine — which focuses on the conversion of scientific discovery into health improvement — has grown enormously in the past decade and provides useful models for other fields. Elias Zerhouni [1] developed a "new vision" for translational science to "ensure that extraordinary scientific advances of the past decade will be rapidly captured, translated, and disseminated for the benefit of all Americans." According to Francis Collins, "Opportunities to advance the discipline of translational science have never been better. We must move forward now. Science and society cannot afford to do otherwise." On 9 July 2015, the White House issued a memorandum directing U.S. federal agencies to focus on translating research into broader impacts, including commercial products and decision-making frameworks [3]. Natural hazards mitigation is one of many geoscience topics that would benefit from advances in translational science. This paper demonstrates that natural hazards mitigation can benefit from advances in translational science that address such topics as improving emergency preparedness, communicating life-saving information to government officials and citizens, explaining false positives and false negatives, working with multiple stakeholders and organizations across all sectors of the economy and all levels of government, and collaborating across a broad range of disciplines. [1] Zerhouni, EA (2005) New England Journal of Medicine 353(15):1621-1623. [2] Collins, FS (2011) Science Translational Medicine 3(90):1-6. [3] Donovan, S and Holdren, JP (2015) Multi-agency science and technology priorities for the FY 2017 budget. Executive Office of the President of the United States, 5 pp.

  10. Geoscience on television

    NARCIS (Netherlands)

    Hut, Rolf; Land-Zandstra, Anne M.; Smeets, Ionica; Stoof, Cathelijne R.


    Geoscience communication is becoming increasingly important as climate change increases the occurrence of natural hazards around the world. Few geoscientists are trained in effective science communication, and awareness of the formal science communication literature is also low. This can be chall

  11. Applied and Environmental Microbiology Gordon Research Conference

    Energy Technology Data Exchange (ETDEWEB)

    Wall, Judy D.


    The main objective of the Gordon Research Conference on Applied and Environmental Microbiology was to present and discuss new, fundamental research findings on microorganisms, their activities in the environment, their ecosystem-level effects, and their environmental or commercial applications. To accomplish this goal, knowledge of microbial diversity, interactions and population dynamics was required. The genomic basis of microbial processes, the cycling of naturally occurring and hazardous substances, and methodologies to assess the functional relationships of microorganisms in their habitats were essential for understanding the ecological consequences of microbial activities and the formulation of generalizing principles. In the last decade, molecular technology has revealed that microbial diversity is far more extensive than the limited view obtained from culturing procedures. Great advances in environmental microbiology have resulted from the development and application of molecular approaches to ecology and molecular evolution. A further surprise resulting from the application of these new tools is the blurring of the distinction between pathogenic traits versus those considered non-pathogenic. This year's conference addressed the issues of biodiversity, its development, and the impact of stress on gene selection and expression. In addition microbial metabolic versatility with toxins such as heavy metals, antibiotics, and organic pollutants were discussed. The nine session topics were (1) biodiversity and the bacterial species, (2) mechanisms of biodiversification, (3) biofilms in health and environment, (4) a genomic view of microbial response to stress, (5) microbial use of toxic metals, (6) microbial mineral formation and dissolution, (7) power and limitations of antimicrobials, (8) biodegradation of organic pollutants, and (9) astrobiology. The Conference had an international profile: the Conference Vice-Chair, Dr. Gerard Muyzer, was from The Nether

  12. Current status of the AMS facility at the Tono Geoscience Center of the Japan Atomic Energy Agency

    Energy Technology Data Exchange (ETDEWEB)

    Saito-Kokubu, Y., E-mail: [Japan Atomic Energy Agency, Toki, Gifu 509-5102 (Japan); Nishizawa, A.; Suzuki, M.; Ohwaki, Y.; Nishio, T. [Pesco Corp., Ltd., Toki, Gifu 509-5123 (Japan); Matsubara, A.; Saito, T.; Ishimaru, T.; Umeda, K.; Hanaki, T. [Japan Atomic Energy Agency, Toki, Gifu 509-5102 (Japan)


    The JAEA-AMS-TONO system is routinely used for {sup 14}C measurements at Tono Geoscience Center, Japan Atomic Energy Agency (JAEA) and applied to neotectonics and hydrogeology, in support of research on geosphere stability applicable to the long-term isolation of high-level radioactive waste. {sup 10}Be AMS has been developed for geochronological studies to estimate sedimentation rates and exposure age of basement rocks, incorporating a gas ionization detector with a large-volume gas absorber cell. Test measurements on {sup 14}C and {sup 10}Be reference materials show the system's performance and suitability for application in the geosciences.

  13. Creating Geoscience Leaders (United States)

    Buskop, J.; Buskop, W.


    The United Nations Educational, Scientific, and Cultural Organization recognizes 21 World Heritage in the United States, ten of which have astounding geological features: Wrangell St. Elias National Park, Olympic National Park, Mesa Verde National Park, Chaco Canyon, Glacier National Park, Carlsbad National Park, Mammoth Cave, Great Smokey Mountains National Park, Hawaii Volcanoes National Park, and Everglades National Park. Created by a student frustrated with fellow students addicted to smart phones with an extreme lack of interest in the geosciences, one student visited each World Heritage site in the United States and created one e-book chapter per park. Each chapter was created with original photographs, and a geological discovery hunt to encourage teen involvement in preserving remarkable geological sites. Each chapter describes at least one way young adults can get involved with the geosciences, such a cave geology, glaciology, hydrology, and volcanology. The e-book describes one park per chapter, each chapter providing a geological discovery hunt, information on how to get involved with conservation of the parks, geological maps of the parks, parallels between archaeological and geological sites, and how to talk to a ranger. The young author is approaching UNESCO to publish the work as a free e-book to encourage involvement in UNESCO sites and to prove that the geosciences are fun.

  14. Research on Mobile Learning Activities Applying Tablets (United States)

    Kurilovas, Eugenijus; Juskeviciene, Anita; Bireniene, Virginija


    The paper aims to present current research on mobile learning activities in Lithuania while implementing flagship EU-funded CCL project on application of tablet computers in education. In the paper, the quality of modern mobile learning activities based on learning personalisation, problem solving, collaboration, and flipped class methods is…

  15. On Research Methodology in Applied Linguistics in 2002-2008 (United States)

    Martynychev, Andrey


    This dissertation examined the status of data-based research in applied linguistics through an analysis of published research studies in nine peer-reviewed applied linguistics journals ("Applied Language Learning, The Canadian Modern Language Review / La Revue canadienne des langues vivantes, Current Issues in Language Planning, Dialog on Language…

  16. Applying User Centered Design to Research Work

    Energy Technology Data Exchange (ETDEWEB)

    Scholtz, Jean; Love, Oriana J.; Pike, William A.; Bruce, Joseph R.; Kim, Dee DH; McBain, Arthur S.


    The SuperIdentity (SID) research project is a collaboration between six universities in the UK (Bath, Dundee, Kent, Leicester, Oxford, and Southampton) and the Pacific Northwest National Laboratory (PNNL). SID offers an innovative and exciting new approach to the concept of identity. The assumption underlying our hypothesis is that while there may be many dimensions to an identity - some more stable than others - all should ultimately reference back to a single core identity or a 'SuperIdentity.' The obvious consequence is that identification is improved by the combination of measures. Our work at PNNL has focused on the developing use cases to use in developing a model of identity and in developing visualizations for both researchers to explore the model and in the future for end users to use in determining various paths that may be possible to obtain various identity attributes from a set that is already known.


    Directory of Open Access Journals (Sweden)

    Mikhail V. Karmanov


    Full Text Available Modern society is not capable to get rid of such a serious problem as the kidnapping. Its solution at least in the future is difcult to imagine without a comprehensive quantitative characterization of kidnapping, which is impossible without reliable statistical information. In this context of great scientic and practical interest is the improvement of the methodology of practical research kidnapping as the negative socio-economic phenomena.

  18. Collaborative applied research programs at AITF

    Energy Technology Data Exchange (ETDEWEB)

    Chow, Ross [Alberta Innovates Technology Futures (Canada)


    Alberta Innovates Technology Futures (AITF) is a 600 employee company created in 2010 and owned by the Alberta government; offices are located in Edmonton, Devon, Vegreville and Calgary. The purpose of this document is to present the services provided by AITF. The company provides technical support and advisory services as well as commercialization support, they provide the link between the concept stage and the commercialization stage. AITF proposes collaborative programs which can be consortia made up of a series of projects on general industry issues or joint industry projects which focus on a specific issue. During this presentation, a joint industry project, the fuels and lubricants exchange program, was presented along with several consortia such as the carbonate research program, the materials and reliability in oil sands program, and the AACI program. This presentation highlighted the work carried out by AITF to meet the needs of their clients.

  19. Nuclear radioactive techniques applied to materials research

    CERN Document Server

    Correia, João Guilherme; Wahl, Ulrich


    In this paper we review materials characterization techniques using radioactive isotopes at the ISOLDE/CERN facility. At ISOLDE intense beams of chemically clean radioactive isotopes are provided by selective ion-sources and high-resolution isotope separators, which are coupled on-line with particle accelerators. There, new experiments are performed by an increasing number of materials researchers, which use nuclear spectroscopic techniques such as Mössbauer, Perturbed Angular Correlations (PAC), beta-NMR and Emission Channeling with short-lived isotopes not available elsewhere. Additionally, diffusion studies and traditionally non-radioactive techniques as Deep Level Transient Spectroscopy, Hall effect and Photoluminescence measurements are performed on radioactive doped samples, providing in this way the element signature upon correlation of the time dependence of the signal with the isotope transmutation half-life. Current developments, applications and perspectives of using radioactive ion beams and tech...

  20. Research on electrostatic precipitation and applied electrostatics

    Energy Technology Data Exchange (ETDEWEB)

    Masuda, S.


    This report contains a collection of papers of which Senichi Masuda was the author, or a co-author, and which were published between January 1983 and March 1987, while he was head of the Masuda Laboratory in the Department of Electrical Engineering at the University of Tokyo. The papers reflect the major research activities of the laboratory during this 4 year period, which focused on: understanding the physical background of electrostatic precipitation, in particular its pulse energization; investigating the factors affecting the effectiveness of pulse energization in a precipitator suffering from back corona induced performance degradation; the application of electrostatic forces for enhancing air cleaning devices for clean rooms and indoor pollution control; ozonizers and integrated ceramic elements; experimental studies on DeNO/sub x/, DeSO/sub x/ and removal of mercury vapour from combustion gases by plasma chemical reactions; electrostatic control of microbial cells for transport, separation and fusion; electrostatic orientation of ceramic fibres in insulating liquids and electrostatic separation of coal from ash using tribo-charging of both components with a cyclone tribo-charger.

  1. Geoscience international: the role of scientific unions (United States)

    Ismail-Zadeh, Alik


    International geoscientific unions (geounions) have been coordinating and promoting international efforts in Earth and space sciences since the beginning of the 20th century. Thousands of scientists from many nations and specific scientific disciplines have developed ways of cooperation through international unions and learned how to work together to promote basic geosciences. The unions have been initiating, developing, and implementing international cooperative programmes, setting scientific standards, developing research tools, educating and building capacity, and contributing to science for policy. This paper analyses the role of geounions in and their added value to the promotion of geoscience internationally in the arena of the existing and emerging professional societies of geoscientists. The history of the geounions and the development of international cooperation in geosciences are reviewed in the paper in the context of scientific and political changes over the last century. History is considered here to be a key element in understanding and shaping the future of geounions. Scientific and organisational aspects of their activities, including cooperation with international and intergovernmental institutions, are analysed using the example of the International Union of Geodesy and Geophysics (IUGG). The geounions' activities are compared to those of professional societies. Future development of scientific unions and their role in the changing global landscape of geosciences are discussed.

  2. Modern Process Studies in Kongsfjord, Svalbard: Arctic Geoscience Research Experience for U.S. Undergraduates (Svalbard REU) (United States)

    Powell, R. D.; Brigham-Grette, J.


    The Svalbard REU (Research Experience for Undergraduates) program focuses on understanding how high latitude glaciers, meltwater streams, and sedimentation in lakes and fjords respond to changing climate. Since summer of 2004, six under-graduate students have been selected to participate in the summer field program. Students work on individual projects and in close conjunction with faculty advisors and other student researchers. They formulate their own research questions, develop their project, and complete their field research during a five-week program on Svalbard, Norway. Following the summer program, students complete their projects at their home institution during the following academic year as a senior thesis. A spring symposium brings all participants back together again with their final results. The most recent field season was completed in Kongsfjord (79N) showing that the contemporary studies of tidewater glacier margins provide an unparalleled opportunity for introducing motivated third year undergraduate students to the challenges and rewards of polar geoscientific field research. Rates of rapid change in this high-latitude Arctic environment emphasize the complexity of the Earth System at the interface of the ocean, atmosphere and cryosphere. Given background information in glacial and marine geology, glaciology, hydrology, climatology and fjord oceanography not routinely offered in undergraduate curricula, students develop the science questions to be addressed and establish a field plan for instrumentation and sampling. Working together in small boats in one of the most challenging natural environments, the students expand their leadership skills, learn the value of teamwork and collaborative data sharing while maintaining a strong sense of ownership over their individual science projects. The rigors of studying an actively calving tidewater glacier also builds on their outdoor skills, especially when it is necessary to improvise and become

  3. Applying Mixed Methods Research at the Synthesis Level: An Overview (United States)

    Heyvaert, Mieke; Maes, Bea; Onghena, Patrick


    Historically, qualitative and quantitative approaches have been applied relatively separately in synthesizing qualitative and quantitative evidence, respectively, in several research domains. However, mixed methods approaches are becoming increasingly popular nowadays, and practices of combining qualitative and quantitative research components at…

  4. Enhancing the role of geodiversity and geoheritage in environmental management and policy in a changing world: challenges for geoscience research (United States)

    Gordon, John


    Geodiversity delivers or underpins many key ecosystem processes and services that deliver valuable benefits for society. With a growing recognition of the wider economic, social and environmental relevance of geodiversity, it is timely to consider the research requirements and priorities that are necessary to underpin a broader interdisciplinary approach to geodiversity that incorporates the links between natural and human systems in a changing world. A key challenge is to develop the scientific framework of geodiversity and at the same time to enhance the protection of geoheritage. Research that helps to support environmental policy and meet the wider needs of society for sustainable development and improved human wellbeing is fundamental both to improve the recognition of geodiversity and to demonstrate the wider relevance and value of geoheritage and geoconservation. Within this wider context, priorities for research include: 1) assessment of geoheritage and best-practice management of geosites for multiple uses including science, education and tourism; 2) evaluation of geodiversity and the ecosystem services it provides, both in economic and non-economic terms, to help build policy support and public awareness; 3) understanding the functional links between geodiversity and biodiversity across a range of spatial and temporal scales to help assess ecosystem sensitivity and inform management adaptations to climate change, particularly in dynamic environments such as the coast, river catchments and mountain areas; 4) providing a longer time perspective on ecosystem trends and services from palaeoenvironmental records; 5) applications of geodiversity in terrestrial and marine spatial planning.

  5. Animal Research in the "Journal of Applied Behavior Analysis" (United States)

    Edwards, Timothy L.; Poling, Alan


    This review summarizes the 6 studies with nonhuman animal subjects that have appeared in the "Journal of Applied Behavior Analysis" and offers suggestions for future research in this area. Two of the reviewed articles described translational research in which pigeons were used to illustrate and examine behavioral phenomena of applied significance…

  6. Reflections on Mixing Methods in Applied Linguistics Research (United States)

    Hashemi, Mohammad R.


    This commentary advocates the use of mixed methods research--that is the integration of qualitative and quantitative methods in a single study--in applied linguistics. Based on preliminary findings from a research project in progress, some reflections on the current practice of mixing methods as a new trend in applied linguistics are put forward.…

  7. Engaging Undergraduates in the New York City S-SAFE Internship Program: An Impetus to Raise Geoscience Awareness (United States)

    Blake, Reginald A.; Liou-Mark, Janet; Blackburn, Noel; Chan, Christopher; Yuen-Lau, Laura


    To engender and raise awareness to the geosciences, a geoscience research project and a corresponding geoscience internship program were designed around plume dispersion dynamics within and above the New York City subway system. Federal, regional, and local agencies partnered with undergraduate students from minority-serving institutions to…

  8. A Concept-Mapping Strategy for Assessing Conceptual Change in a Student-Directed, Research-Based Geoscience Course (United States)

    Rebich, S.


    The concept mapping technique has been proposed as a method for examining the evolving nature of students' conceptualizations of scientific concepts, and promises insight into a dimension of learning different from the one accessible through more conventional classroom testing techniques. The theory behind concept mapping is based on an assumption that knowledge acquisition is accomplished through "linking" of new information to an existing knowledge framework, and that meaningful (as opposed to arbitrary or verbatim) links allow for deeper understanding and conceptual change. Reflecting this theory, concept maps are constructed as a network of related concepts connected by labeled links that illustrate the relationship between the concepts. Two concepts connected by one such link make up a "proposition", the basic element of the concept map structure. In this paper, we examine the results of a pre- and post-test assessment program for an upper-division undergraduate geography course entitled "Mock Environmental Summit," which was part of a research project on assessment. Concept mapping was identified as a potentially powerful assessment tool for this course, as more conventional tools such as multiple-choice tests did not seem to provide a reliable indication of the learning students were experiencing as a result of the student-directed research, presentations, and discussions that make up a substantial portion of the course. The assessment program began at the beginning of the course with a one-hour training session during which students were introduced to the theory behind concept mapping, provided with instructions and guidance for constructing a concept map using the CMap software developed and maintained by the Institute for Human and Machine Cognition at the University of West Florida, and asked to collaboratively construct a concept map on a topic not related to the one to be assessed. This training session was followed by a 45-minute "pre-test" on the

  9. Geoscience salaries up by 10.8% (United States)

    Bell, Peter M.

    According to a recent salary survey of over 4000 scientists in all fields by Research and Development (March 1984) geoscientists ranked fourth place for 1984. Mathematics, aeronautical engineering, and metallurgy had higher median salaries, but the discipline of geoscience had a higher median salary than that of physics, chemical engineering, mechanical engineering, electrical engineering, ceramics, chemistry, industrial engineering, biology, and other fields of research and development. The 1984 median salary for geoscientists was $40,950, up from the median value by 10.8%. In 1983, geoscience was ranked in ninth place.The geoscientist profile for 1984 was not unusual. The median age was 47.5 years, and the median years of experience was 18. Geoscientists are the best educated. Eighty-two percent of the geoscientists polled had advanced degrees beyond the bachelor's degree. Fifty-six percent of the geoscientists had the Ph.D. degree.

  10. Preparing Future Geoscience Professionals: Needs, Strategies, Programs, and Online Resources (United States)

    Macdonald, H.; Manduca, C. A.; Ormand, C. J.; Dunbar, R. W.; Beane, R. J.; Bruckner, M.; Bralower, T. J.; Feiss, P. G.; Tewksbury, B. J.; Wiese, K.


    Geoscience faculty, departments, and programs play an important role in preparing future geoscience professionals. One challenge is supporting the diversity of student goals for future employment and the needs of a wide range of potential employers. Students in geoscience degree programs pursue careers in traditional geoscience industries; in geoscience education and research (including K-12 teaching); and opportunities at the intersection of geoscience and other fields (e.g., policy, law, business). The Building Strong Geoscience Departments project has documented a range of approaches that departments use to support the development of geoscience majors as professionals ( On the Cutting Edge, a professional development program, supports graduate students and post-doctoral fellows interested in pursuing an academic career through workshops, webinars, and online resources ( Geoscience departments work at the intersection of student interests and employer needs. Commonly cited program goals that align with employer needs include mastery of geoscience content; field experience; skill in problem solving, quantitative reasoning, communication, and collaboration; and the ability to learn independently and take a project from start to finish. Departments and faculty can address workforce issues by 1) implementing of degree programs that develop the knowledge, skills, and attitudes that students need, while recognizing that students have a diversity of career goals; 2) introducing career options to majors and potential majors and encouraging exploration of options; 3) advising students on how to prepare for specific career paths; 4) helping students develop into professionals, and 5) supporting students in the job search. It is valuable to build connections with geoscience employers, work with alumni and foster connections between students and alumni with similar career interests, collaborate with

  11. Teaching Geoethics Across the Geoscience Curriculum (United States)

    Mogk, David; Bruckner, Monica; Kieffer, Susan; Geissman, John; Reidy, Michael; Taylor, Shaun; Vallero, Daniel


    Training in geoethics is an important part of pre-professional development of geoscientists. Professional societies, governmental agencies, and employers of the geoscience workforce increasingly expect that students have had some training in ethics to guide their professional lives, and the public demands that scientists abide by the highest standards of ethical conduct. The nature of the geosciences exposes the profession to ethical issues that derive from our work in a complex, dynamic Earth system with an incomplete geologic record and a high degree of uncertainty and ambiguity in our findings. The geosciences also address topics such as geohazards and resource development that have ethical dimensions that impact on the health, security, public policies, and economic well-being of society. However, there is currently no formal course of study to integrate geoethics into the geoscience curriculum and few faculty have the requisite training to effectively teach about ethics in their classes, or even informally in mentoring their research students. To address this need, an NSF-funded workshop was convened to explore how ethics education can be incorporated into the geoscience curriculum. The workshop addressed topics such as where and how should geoethics be taught in a range of courses including introductory courses for non-majors, as embedded modules in existing geoscience courses, or as a dedicated course for majors on geoethics; what are the best pedagogic practices in teaching ethics, including lessons learned from cognate disciplines (philosophy, biology, engineering); what are the goals for teaching geoethics, and what assessments can be used to demonstrate mastery of ethical principles; what resources currently exist to support teaching geoethics, and what new resources are needed? The workshop also explored four distinct but related aspects of geoethics: 1) Geoethics and self: what are the internal attributes of a geoscientist that establish the ethical

  12. [Research activities in applied mathematics, fluid mechanics, and computer science (United States)


    This report summarizes research conducted at the Institute for Computer Applications in Science and Engineering in applied mathematics, fluid mechanics, and computer science during the period April 1, 1995 through September 30, 1995.

  13. Research in Applied Mathematics, Fluid Mechanics and Computer Science (United States)


    This report summarizes research conducted at the Institute for Computer Applications in Science and Engineering in applied mathematics, fluid mechanics, and computer science during the period October 1, 1998 through March 31, 1999.

  14. Thomas Grisso: Award for Distinguished Professional Contributions to Applied Research. (United States)


    The Award for Distinguished Professional Contributions to Applied Research is given to a psychologist whose research has led to important discoveries or developments in the field of applied psychology. To be eligible, this research should have led to innovative applications in an area of psychological practice, including but not limited to assessment, consultation, instruction, or intervention (either direct or indirect). The 2014 recipient is Thomas Grisso. Grisso "has made seminal contributions to the field of forensic psychology and psychiatry through his internationally renowned program of research, which has directly impacted juvenile justice reform worldwide." Grisso's award citation, biography, and a selected bibliography are presented here.

  15. Teaching Geosciences With Visualizations: Challenges for Spatial Thinking and Abilities (United States)

    Montello, D. R.


    It is widely recognized that the geosciences are very spatial disciplines. Their subject matter includes phenomena on, under, and above the Earth surface whose spatial properties are critical to understanding them. Important spatial properties of geoscience structures and processes include location (both absolute and relative), size, shape, and pattern; temporal changes in spatial properties are also of interest. Information visualizations that depict spatiality are thus critically important to teaching in the geosciences, at all levels from K-12 to Ph.D. work; verbal and mathematical descriptions are quite insufficient by themselves. Such visualizations range from traditional maps and diagrams to digital animations and virtual environments. These visualizations are typically rich and complex because they are attempts to communicate rich and complex realities. Thus, understanding geoscience visualizations accurately and efficiently involves complex spatial thinking. Over a century of psychometric and experimental research reveals some of the cognitive components of spatial thinking, and provides insight into differences among individuals and groups of people in their abilities to think spatially. Some research has specifically examined these issues within the context of geoscience education, and recent research is expanding these investigations into the realm of new digital visualizations that offer the hope of using visualizations to teach complex geoscience concepts with unprecedented effectiveness. In this talk, I will briefly highlight some of the spatial cognitive challenges to understanding geoscience visualizations, including the pervasive and profound individual and group differences in spatial abilities. I will also consider some visualization design issues that arise because of the cognitive and ability challenges. I illustrate some of these research issues with examples from research being conducted by my colleagues and me, research informed by

  16. ESA's Earth Observation in Support of Geoscience (United States)

    Liebig, Volker


    The intervention will present ESA's Earth Observation Programme and its contribution to Geoscience. ESA's Earth observation missions are mainly grouped into three categories: The Sentinel satellites in the context of the European Copernicus Programme, the scientific Earth Explorers and the meteorological missions. Developments, applications and scientific results for the different mission types will be addressed, along with overall trends and strategies. A special focus will be put on the Earth Explorers, who form the science and research element of ESA's Living Planet Programme and focus on the atmosphere, biosphere, hydrosphere, cryosphere and Earth's interior. In addition the operational Sentinel satellites have a huge potential for Geoscience. Earth Explorers' emphasis is also on learning more about the interactions between these components and the impact that human activity is having on natural Earth processes. The process of Earth Explorer mission selection has given the Earth science community an efficient tool for advancing the understanding of Earth as a system.

  17. Politics and Change in Research in Applied Linguistics. (United States)

    Rampton, Ben


    Examines the ways in which social process, sociology, anthropology, and media studies recently seem to have replaced pedagogy, linguistics, and psychology as the major preoccupations in British applied linguistics. The role that applied linguistics research can occupy in an emerging political order characterized by free-market economics and…

  18. Applied research of environmental monitoring using instrumental neutron activation analysis

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Young Sam; Moon, Jong Hwa; Chung, Young Ju


    This technical report is written as a guide book for applied research of environmental monitoring using Instrumental Neutron Activation Analysis. The contents are as followings; sampling and sample preparation as a airborne particulate matter, analytical methodologies, data evaluation and interpretation, basic statistical methods of data analysis applied in environmental pollution studies. (author). 23 refs., 7 tabs., 9 figs.

  19. Statistical Literacy among Applied Linguists and Second Language Acquisition Researchers (United States)

    Loewen, Shawn; Lavolette, Elizabeth; Spino, Le Anne; Papi, Mostafa; Schmidtke, Jens; Sterling, Scott; Wolff, Dominik


    The importance of statistical knowledge in applied linguistics and second language acquisition (SLA) research has been emphasized in recent publications. However, the last investigation of the statistical literacy of applied linguists occurred more than 25 years ago (Lazaraton, Riggenbach, & Ediger, 1987). The current study undertook a partial…

  20. Applying Critical Scandinavian ISD research principles in an African Context

    DEFF Research Database (Denmark)

    Mengiste, Shegaw Anagaw; Tjørnehøj, Gitte


    these countries have a vast need for the technology to develop their economies and living standards. We investigate opportunities of applying Scandinavian principles for ISD&I in the context of Africa, through analyzing and comparing two action research projects that have applied two classic approaches; The Trade...

  1. Interdisciplinary cooperation and studies in geoscience in the Carpathian Basin

    Directory of Open Access Journals (Sweden)

    Marcel MINDRESCU


    Full Text Available An interdisciplinary approach to geoscience is particularly important in this vast research field, as the more innovative studies are increasingly crossing discipline boundaries and thus benefitting from multiple research methods and viewpoints. Grasping this concept has led us to encourage interdisciplinary cooperation by supporting and promoting the creation of “meeting places” able to provide a framework for researchers and scholars involved in geoscience research to find common grounds for discussion and collaboration. Most recently, this was achieved by organizing the 1st Workshop on “Interdisciplinarity in Geosciences in the Carpathian Basin” (IGCB held in the Department of Geography at the University of Suceava (Romania, between the 18th and 22nd October 2012. This event brought together both an international group of scientists and local researchers which created opportunities for collaboration in research topics such as geography, environment, geology and botany, biology and ecology in the Carpathian Basin.

  2. Building a Community for Art and Geoscience (United States)

    Eriksson, S. C.; Ellins, K. K.


    Several new avenues are in place for building and supporting a community of people interested in the art and geoscience connections. Although sessions advocating for art in teaching geoscience have been scattered through geoscience professional meetings for several decades, there is now a sustained presence of artists and geoscientists with their research and projects at the annual meeting of the American Geophysical Union. In 2011, 13 abstracts were submitted and, in 2013, 20 talks and posters were presented at the annual meeting. Participants have requested more ways to connect with each other as well as advocate for this movement of art and science to others. Several words can describe new initiatives to do this: Social, Collaborative, Connected, Informed, Networked, and Included. Social activities of informal dinners, lunches, and happy hour for interested people in the past year have provided opportunity for presenters at AGU to spend time getting to know one another. This has resulted in at least two new collaborative projects. The nascent Bella Roca and more established Geology in Art websites and their associated blogs at and, respectively are dedicated to highlighting the work of artists inspired by the geosciences, connecting people and informing the community of exhibits and opportunities for collaboration. Bella Roca with its social media of Facebook (Bella Roca) and Twitter (@BellRocaGeo), is a direct outgrowth of the recent 2012 and 2013 AGU sessions and, hopefully, can be grown and sustained for this community. Articles in professional journals will also help inform the broader geoscience community of the benefit of engaging with artists and designers for both improved science knowledge and communication. Organizations such as Leonardo, the International Society for the Arts, Sciences and Technology, the Art Science Gallery in Austin, Texas also promote networking among artists and scientists with

  3. Geoscience for society. 125th Anniversary volume

    Energy Technology Data Exchange (ETDEWEB)

    Nenonen, K.; Nurmi, P.A. (eds.)


    Our knowledge of Finnish geology and natural resources has considerably increased during the last few decades. Geological Survey of Finland - GTK has mapped the bedrock and Quaternary deposits, as well as mineral resources in great detail using modern geological, geochemical and geophysical techniques, so that Finland today has one of the best geological databases in the world. We have recently compiled countrywide datasets of seamless bedrock information at the scale of 1:200,000, and completed low-altitude airborne geophysical (200 m line spacing and 40 m terrain clearance), regional geochemical (80 000 samples), and reflection seismic surveys at the crustal scale and at high resolution on the main orepotential formations. Isotopic age determinations have been performed at GTK since the 1960s, and we now have accurate ages for about thousand samples, which is a key to studying the complex evolution of the Finnish Precambrian. GTK currently plays a vital role in providing geological expertise to the government, the business sector and the wider community. Specific responsibilities include the promotion and implementation of sustainable approaches to the supply and management of minerals, energy and construction materials, and to ensure environmental compliance through monitoring, assessment and remediation programmes. GTK also contributes to a wide range of international geoscience, mapping, mineral resources and environmental monitoring projects, and is active in developing multidisciplinary research programmes with universities, government agencies and stakeholders across related sectors. This 125th Anniversary Publication aims at elucidating, through a number of short articles, the current focus of research and development at GTK. In reaching the milestone of 125 years, we can state that our anniversary slogan, 'forever young', is justified by the vitality and increasing societal impact of the organization and our research focusing on sustainable

  4. The pre-college teaching of geosciences in the USA (United States)

    Stewart, R.


    Most students in the USA learn about the earth in elementary and middle school, with most of the learning in middle schools (students who are 12 to 15 years old). A few students study geosciences in high school (ages 15 to 19). In some states, for example Texas, the high-school courses are being de-emphasized, and very few students take geoscience courses after they are 15 years old. As a result, most high-school graduates know little about such important issues as global warming, air pollution, or water quality. In the USA, the geoscience curriculum is guided by national and state standards for teaching mathematics and science. But the guidance is weak. Curricula are determined essentially by local school boards and teachers with some overview by state governments. For example, the State of Texas requires all students to pass standardized examinations in science at grades 5,10, and 11. The tests are based on the Texas Essential Knowledge and Skills, the state's version of the national standards. The teaching of the geosciences, especially oceanography, is hindered by the weak guidance provided by the national standards. Because of the lack of strong guidance, textbooks include far too much material with very weak ties between the geosciences. As a result, students learn many disconnected facts, not earth system science. Improvements in the teaching of the geosciences requires a clear statement of the important in the geosciences. Why must they be taught? What must be taught? What are the major themes of geoscience research? What is important for all to know?

  5. Applying DEA Technique to Library Evaluation in Academic Research Libraries. (United States)

    Shim, Wonsik


    This study applied an analytical technique called Data Envelopment Analysis (DEA) to calculate the relative technical efficiency of 95 academic research libraries, all members of the Association of Research Libraries. DEA, with the proper model of library inputs and outputs, can reveal best practices in the peer groups, as well as the technical…

  6. Ethical Perspectives on Qualitative Research in Applied Psychology (United States)

    Haverkamp, Beth E.


    The present article explores ethical issues that emerge in qualitative research conducted by applied psychologists. The utility and relevance of the Ethical Principles of Psychologists and Code of Conduct (American Psychological Association, 2002) for qualitative research are examined. The importance of psychology's fiduciary relationship with…

  7. Focus Groups: A Practical and Applied Research Approach for Counselors (United States)

    Kress, Victoria E.; Shoffner, Marie F.


    Focus groups are becoming a popular research approach that counselors can use as an efficient, practical, and applied method of gathering information to better serve clients. In this article, the authors describe focus groups and their potential usefulness to professional counselors and researchers. Practical implications related to the use of…

  8. How Accessible Are the Geosciences? a Study of Professionally Held Perceptions and What They Mean for the Future of Geoscience Workforce Development (United States)

    Atchison, C.; Libarkin, J. C.


    Individuals with disabilities are not entering pathways leading to the geoscience workforce; the reasons for which continue to elude access-focused geoscience educators. While research has focused on barriers individuals face entering into STEM disciplines, very little research has considered the role that practitioner perceptions play in limiting access and accommodation to scientific disciplines. The authors argue that changing the perceptions within the geoscience community is an important step to removing barriers to entry into the myriad fields that make up the geosciences. This paper reports on an investigation of the perceptions that geoscientist practitioners hold about opportunities for engagement in geoscience careers for people with disabilities. These perspectives were collected through three separate iterations of surveys at three professional geoscience meetings in the US and Australia between 2011 and 2012. Respondents were asked to indicate the extent to which individuals with specific types of disabilities would be able to perform various geoscientific tasks. The information obtained from these surveys provides an initial step in engaging the larger geoscience community in a necessary discussion of minimizing the barriers of access to include students and professionals with disabilities. The results imply that a majority of the geoscience community believes that accessible opportunities exist for inclusion regardless of disability. This and other findings suggest that people with disabilities are viewed as viable professionals once in the geosciences, but the pathways into the discipline are prohibitive. Perceptions of how individuals gain entry into the field are at odds with perceptions of accessibility. This presentation will discuss the common geoscientist perspectives of access and inclusion in the geoscience discipline and how these results might impact the future of the geoscience workforce pathway for individuals with disabilities.

  9. National Association of Geoscience Teachers (NAGT) support for the Next Generation Science Standards (United States)

    Buhr Sullivan, S. M.; Awad, A. A.; Manduca, C. A.


    The Next Generation Science Standards (NGSS) represents the best opportunity for geosciences education since 1996, describing a vision of teaching excellence and placing Earth and space science on a par with other disciplines. However, significant, sustained support and relationship-building between disciplinary communities must be forthcoming in order to realize the potential. To realize the vision, teacher education, curricula, assessments, administrative support and workforce/college readiness expectations must be developed. The National Association of Geoscience Teachers (NAGT), a geoscience education professional society founded in 1938, is comprised of members across all educational contexts, including undergraduate faculty, pre-college teachers, informal educators, geoscience education researchers and teacher educators. NAGT support for NGSS includes an upcoming workshop in collaboration with the American Geosciences Institute, deep collections of relevant digital learning resources, pertinent interest groups within the membership, professional development workshops, and more. This presentation will describe implications of NGSS for the geoscience education community and highlight some opportunities for the path forward.

  10. Open Geoscience Database (United States)

    Bashev, A.


    Currently there is an enormous amount of various geoscience databases. Unfortunately the only users of the majority of the databases are their elaborators. There are several reasons for that: incompaitability, specificity of tasks and objects and so on. However the main obstacles for wide usage of geoscience databases are complexity for elaborators and complication for users. The complexity of architecture leads to high costs that block the public access. The complication prevents users from understanding when and how to use the database. Only databases, associated with GoogleMaps don't have these drawbacks, but they could be hardly named "geoscience" Nevertheless, open and simple geoscience database is necessary at least for educational purposes (see our abstract for ESSI20/EOS12). We developed a database and web interface to work with them and now it is accessible at In this database a result is a value of a parameter (no matter which) in a station with a certain position, associated with metadata: the date when the result was obtained; the type of a station (lake, soil etc); the contributor that sent the result. Each contributor has its own profile, that allows to estimate the reliability of the data. The results can be represented on GoogleMaps space image as a point in a certain position, coloured according to the value of the parameter. There are default colour scales and each registered user can create the own scale. The results can be also extracted in *.csv file. For both types of representation one could select the data by date, object type, parameter type, area and contributor. The data are uploaded in *.csv format: Name of the station; Lattitude(dd.dddddd); Longitude(ddd.dddddd); Station type; Parameter type; Parameter value; Date(yyyy-mm-dd). The contributor is recognised while entering. This is the minimal set of features that is required to connect a value of a parameter with a position and see the results. All the complicated data

  11. Applied Science Division annual report, Environmental Research Program FY 1983

    Energy Technology Data Exchange (ETDEWEB)

    Cairns, E.J.; Novakov, T.


    The primary concern of the Environmental Research Program is the understanding of pollutant formation, transport, and transformation and the impacts of pollutants on the environment. These impacts include global, regional, and local effects on the atmosphere and hydrosphere, and on certain aspects of human health. This multidisciplinary research program includes fundamental and applied research in physics, chemistry, engineering, and biology, as well as research on the development of advanced methods of measurement and analysis. During FY 1983, research concentrated on atmospheric physics and chemistry, applied physics and laser spectroscopy, combustion theory and phenomena, environmental effects of oil shale processing, freshwater ecology and acid precipitation, trace element analysis for the investigation of present and historical environmental impacts, and a continuing survey of instrumentation for environmental monitoring.

  12. DNA technologies: what's next applied to microbiology research? (United States)

    Trevors, J T; Masson, L


    This perspective discusses current DNA technologies used in basic and applied microbiology research and speculates on possible new future technologies. DNA remains one of the most fascinating molecules known to humans and will continue to revolutionize many areas ranging from medicine, food and forensics to robotics and new industrial bioproducts/biofuel from waste materials. What's next with DNA is not always obvious, but history shows the international microbiology research community will readily adopt it.

  13. Native Geosciences: Strengthening the Future Through Tribal Traditions (United States)

    Bolman, J. R.; Quigley, I.; Douville, V.; Hollow Horn Bear, D.


    communities and a return to traditional ways of supporting the development of our "story" or purpose for being. The opportunities include residential summer field experiences, interdisciplinary curriculums and development of Tribally-driven Native research experiences. The National Science Foundation, University of North Dakota's Northern Great Plains Center for People and the Environment, Upper Midwest Aerospace Consortium (UMAC), and Tribes have provided funding to support the development of Native geosciences. The presentation will focus on current projects: NSF OEDG "He Sapa Bloketu Woecun; Geosciences at the Heart of Everything That Is", NSF S-STEM "Scientific Leadership Scholars" and the NSF BPC "Coalition of American Indians in Computing". The expressed goal of future initiatives is to connect Tribal communities across the Midwest and West in developing a Native Geosciences Pathway. This pathway supports the identification and support of Tribal students with an interest or "story" connected to geosciences ensuring a future Native geosciences workforce.

  14. [New concepts in molecular biology applied to traslational research]. (United States)

    Mengual, Lourdes


    This chapter intends to introduce the new concepts that have been established in molecular biology over the last years and are being applied in translational research. The chapter is divided in four big blocks, which treat the molecular biology concepts and techniques in relation to DNA, RNA, proteins and metabolites, respectively. Moreover, we give examples of translational application of these new methodologies described.

  15. Improving the Validity of Quantitative Measures in Applied Linguistics Research (United States)

    Purpura, James E.; Brown, James Dean; Schoonen, Rob


    In empirical applied linguistics research it is essential that the key variables are operationalized in a valid and reliable way, and that the scores are treated appropriately, allowing for a proper testing of the hypotheses under investigation. The current article addresses several theoretical and practical issues regarding the use of measurement…

  16. Improving the validity of quantitative measures in applied linguistics research

    NARCIS (Netherlands)

    Purpura, J.E.; Brown, J.D.; Schoonen, R.


    In empirical applied linguistics research it is essential that the key variables are operationalized in a valid and reliable way, and that the scores are treated appropriately, allowing for a proper testing of the hypotheses under investigation. The current article addresses several theoretical and

  17. Health Care Communication: A Problematic Site for Applied Linguistics Research. (United States)

    Candlin, Christopher N.; Candlin, Sally


    Addresses how applied linguists and those concerned with discourse analysis in particular have recently approached the study of health care communication, especially in intercultural contexts, and relates these approaches to studies undertaken by researchers in other academic disciplines, such as the sociology of medicine and by health care…

  18. Applying Organizational Commitment and Human Capital Theories to Emigration Research (United States)

    Verkhohlyad, Olga; McLean, Gary N.


    Purpose: This study aims to bring some additional insight into the issue of emigration by establishing a relationship between emigration and psychic return of citizens to their human capital investment in the country. Design/methodology/approach: The article adopts a quantitative research strategy. It applies organizational commitment and human…

  19. Measuring and Maximising Research Impact in Applied Social Science Research Settings. Good Practice Guide (United States)

    Stanwick, John; Hargreaves, Jo


    This guide describes the National Centre for Vocational Education Research (NCVER) approach to measuring impact using examples from its own case studies, as well as showing how to maximise the impact of applied social science research. Applied social science research needs to demonstrate that it is relevant and useful both to public policy and…

  20. GIS in geoscience education- geomorphometric study

    Digital Repository Service at National Institute of Oceanography (India)

    Mahender, K.; Yogita, K.; Kunte, P.D.

    The educational institutions around the world have realised the possibility of using GIS in geosciences teaching along with in many other subjects. GIS is been used in a large number of geoscience applications viz. mapping, mineral and petroleum...

  1. YES Africa: Geoscience Projects for Development (GPD) (Strategy and Process) (United States)

    Barich, A.; Nkhonjera, E.; Venus, J.; Gonzales, L. M.


    For various reasons, Earth Science in Africa has been acareer path that has not been promoted or a preferred option. In January 2011, the YES Network in Africa launched the Network in Africa through a symposium. This took place at the University of Johannesburg, in conjunction with the Colloquium of Africa Geology in January 2011. The Symposium brought together young geoscientists from all regions of Africa to talk about their geoscience research that focused on geohazards and professional development within the African continent. The YES Africa Symposium also aimed to improve the participation of students in African geosciences issues and to also discuss how geoscience education in Africa can be promoted to attract more students to choose a career in the profession. The YES Africa Symposium resulted in ambitious short/long term projects. Symposium participants agreed unanimously that spreading awareness throughout the society about geological hazards, climate change, water management strategies and sustainable development remains a priority. As a direct result local projects are being developed by the YES Network's African National Chapters to develop a long-term geoscience taskforce within the continent. These projects will be developed by implementing student chapters in universities and strengthening the ties with local geoscience organizations and governments. Many YES Network African National Chapters have already taken the lead in developing their local projects, and some have been very successful in their efforts. Collaboration with the various YES Network National Chapters will be critical in developing a geo-hazard portal which links regional organizations and institutions together. This will help to disseminate geo-information more efficiently, and also to develop the next generation of young African geoscience students and early-career professionals. This presentation will detail a variety of innovative outreach methods used to connect with the public

  2. Implementing the Next Generation Science Standards: Impacts on Geoscience Education (United States)

    Wysession, M. E.


    This is a critical time for the geoscience community. The Next Generation Science Standards (NGSS) have been released and are now being adopted by states (a dozen states and Washington, DC, at the time of writing this), with dramatic implications for national K-12 science education. Curriculum developers and textbook companies are working hard to construct educational materials that match the new standards, which emphasize a hands-on practice-based approach that focuses on working directly with primary data and other forms of evidence. While the set of 8 science and engineering practices of the NGSS lend themselves well to the observation-oriented approach of much of the geosciences, there is currently not a sufficient number of geoscience educational modules and activities geared toward the K-12 levels, and geoscience research organizations need to be mobilizing their education & outreach programs to meet this need. It is a rare opportunity that will not come again in this generation. There are other significant issues surrounding the implementation of the NGSS. The NGSS involves a year of Earth and space science at the high school level, but there does not exist a sufficient workforce is geoscience teachers to meet this need. The form and content of the geoscience standards are also very different from past standards, moving away from a memorization and categorization approach and toward a complex Earth Systems Science approach. Combined with the shift toward practice-based teaching, this means that significant professional development will therefore be required for the existing K-12 geoscience education workforce. How the NGSS are to be assessed is another significant question, with an NRC report providing some guidance but leaving many questions unanswered. There is also an uneasy relationship between the NGSS and the Common Core of math and English, and the recent push-back against the Common Core in many states may impact the implementation of the NGSS.

  3. Resources to Transform Undergraduate Geoscience Education: Activities in Support of Earth, Oceans and Atmospheric Sciences Faculty, and Future Plans (United States)

    Ryan, J. G.; Singer, J.


    The NSF offers funding programs that support geoscience education spanning atmospheric, oceans, and Earth sciences, as well as environmental science, climate change and sustainability, and research on learning. The 'Resources to Transform Undergraduate Geoscience Education' (RTUGeoEd) is an NSF Transforming Undergraduate Education in STEM (TUES) Type 2 special project aimed at supporting college-level geoscience faculty at all types of institutions. The project's goals are to carry out activities and create digital resources that encourage the geoscience community to submit proposals that impact their courses and classroom infrastructure through innovative changes in instructional practice, and contribute to making transformative changes that impact student learning outcomes and lead to other educational benefits. In the past year information sessions were held during several national and regional professional meetings, including the GSA Southeastern and South-Central Section meetings. A three-day proposal-writing workshop for faculty planning to apply to the TUES program was held at the University of South Florida - Tampa. During the workshop, faculty learned about the program and key elements of a proposal, including: the need to demonstrate awareness of prior efforts within and outside the geosciences and how the proposed project builds upon this knowledge base; need to fully justify budget and role of members of the project team; project evaluation and what matters in selecting a project evaluator; and effective dissemination practices. Participants also spent time developing their proposal benefitting from advice and feedback from workshop facilitators. Survey data gathered from workshop participants point to a consistent set of challenges in seeking grant support for a desired educational innovation, including poor understanding of the educational literature, of available funding programs, and of learning assessment and project evaluation. Many also noted

  4. 3D Immersive Visualization: An Educational Tool in Geosciences (United States)

    Pérez-Campos, N.; Cárdenas-Soto, M.; Juárez-Casas, M.; Castrejón-Pineda, R.


    3D immersive visualization is an innovative tool currently used in various disciplines, such as medicine, architecture, engineering, video games, etc. Recently, the Universidad Nacional Autónoma de México (UNAM) mounted a visualization theater (Ixtli) with leading edge technology, for academic and research purposes that require immersive 3D tools for a better understanding of the concepts involved. The Division of Engineering in Earth Sciences of the School of Engineering, UNAM, is running a project focused on visualization of geoscience data. Its objective is to incoporate educational material in geoscience courses in order to support and to improve the teaching-learning process, especially in well-known difficult topics for students. As part of the project, proffessors and students are trained in visualization techniques, then their data are adapted and visualized in Ixtli as part of a class or a seminar, where all the attendants can interact, not only among each other but also with the object under study. As part of our results, we present specific examples used in basic geophysics courses, such as interpreted seismic cubes, seismic-wave propagation models, and structural models from bathymetric, gravimetric and seismological data; as well as examples from ongoing applied projects, such as a modeled SH upward wave, the occurrence of an earthquake cluster in 1999 in the Popocatepetl volcano, and a risk atlas from Delegación Alvaro Obregón in Mexico City. All these examples, plus those to come, constitute a library for students and professors willing to explore another dimension of the teaching-learning process. Furthermore, this experience can be enhaced by rich discussions and interactions by videoconferences with other universities and researchers.

  5. Workshop on Women of Applied Mathematics: Research and Leadership

    Energy Technology Data Exchange (ETDEWEB)

    Dianne P. O' Leary; Tamara G. Kolda


    We held a two and a half day workshop on Women of Applied Mathematics: Research and Leadership at the University of Maryland in College Park, Maryland, October 8--10, 2003. The workshop provided a technical and professional forum for eleven senior women and twenty-four early-career women in applied mathematics. Each participant committed to an outreach activity and publication of a report on the workshop's web site. The final session of the workshop produced recommendations for future action.

  6. On the merits of conversion electron Mossbauer spectroscopy in geosciences

    DEFF Research Database (Denmark)

    Gunnlaugsson, H.P.; Bertelsen, P.; Budtz-Jørgensen, Carl;


    Described are some applications of conversion electron Mossbauer spectroscopy (CEMS) in geosciences. It is shown how easily this technique can be applied in existing Mossbauer laboratories to investigate natural samples. Some examples demonstrate the kind of information CEMS can give...... on the weathering history or mechanical properties of samples. The possible application of CEMS on Mars is discussed....

  7. Agent Based Modeling Applications for Geosciences (United States)

    Stein, J. S.


    Agent-based modeling techniques have successfully been applied to systems in which complex behaviors or outcomes arise from varied interactions between individuals in the system. Each individual interacts with its environment, as well as with other individuals, by following a set of relatively simple rules. Traditionally this "bottom-up" modeling approach has been applied to problems in the fields of economics and sociology, but more recently has been introduced to various disciplines in the geosciences. This technique can help explain the origin of complex processes from a relatively simple set of rules, incorporate large and detailed datasets when they exist, and simulate the effects of extreme events on system-wide behavior. Some of the challenges associated with this modeling method include: significant computational requirements in order to keep track of thousands to millions of agents, methods and strategies of model validation are lacking, as is a formal methodology for evaluating model uncertainty. Challenges specific to the geosciences, include how to define agents that control water, contaminant fluxes, climate forcing and other physical processes and how to link these "geo-agents" into larger agent-based simulations that include social systems such as demographics economics and regulations. Effective management of limited natural resources (such as water, hydrocarbons, or land) requires an understanding of what factors influence the demand for these resources on a regional and temporal scale. Agent-based models can be used to simulate this demand across a variety of sectors under a range of conditions and determine effective and robust management policies and monitoring strategies. The recent focus on the role of biological processes in the geosciences is another example of an area that could benefit from agent-based applications. A typical approach to modeling the effect of biological processes in geologic media has been to represent these processes in

  8. Research in applied mathematics, numerical analysis, and computer science (United States)


    Research conducted at the Institute for Computer Applications in Science and Engineering (ICASE) in applied mathematics, numerical analysis, and computer science is summarized and abstracts of published reports are presented. The major categories of the ICASE research program are: (1) numerical methods, with particular emphasis on the development and analysis of basic numerical algorithms; (2) control and parameter identification; (3) computational problems in engineering and the physical sciences, particularly fluid dynamics, acoustics, and structural analysis; and (4) computer systems and software, especially vector and parallel computers.

  9. Applied solid state science advances in materials and device research

    CERN Document Server

    Wolfe, Raymond


    Applied Solid State Science: Advances in Materials and Device Research, Volume 1 presents articles about junction electroluminescence; metal-insulator-semiconductor (MIS) physics; ion implantation in semiconductors; and electron transport through insulating thin films. The book describes the basic physics of carrier injection; energy transfer and recombination mechanisms; state of the art efficiencies; and future prospects for light emitting diodes. The text then discusses solid state spectroscopy, which is the pair spectra observed in gallium phosphide photoluminescence. The extensive studies

  10. Applied Research of Nanomaterials in Photo-thermal Therapy


    Sun Hang; Zuo Xuejun; Liang Gang


    In the applied research of nanomaterials in photo-thermal therapy and based on the understanding of the principle of photo-thermal therapy and its medical equipment, this paper analyzes nanomaterials used for photo-thermal therapy, establishes model by the use of comprehensive evaluation method and selects nano-materials that are suiTable for photo-thermal therapy, namely, carbon nanomaterials and precious metal nano-materials. In addition, this paper analyzes the importance of human surgical...

  11. Applied solid state science advances in materials and device research

    CERN Document Server

    Wolfe, Raymond


    Applied Solid State Science: Advances in Materials and Device Research, Volume 4 covers articles on single crystal compound semiconductors and complex polycrystalline materials. The book discusses narrow gap semiconductors and solid state batteries. The text then describes the advantages of hot-pressed microcrystalline compacts of oxygen-octahedra ferroelectrics over single crystal materials, as well as heterostructure junction lasers. Solid state physicists, materials scientists, electrical engineers, and graduate students studying the subjects being discussed will find the book invaluable.

  12. Applied research and development of neutron activation analysis

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Yong Sam; Moon, Jong Hwa; Kim, Sun Ha; Bak, Sung Ryel; Park, Yong Chul; Kim, Young Ki; Chung, Hwan Sung; Park, Kwang Won; Kang, Sang Hun


    This report is written for results of research and development as follows : improvement of neutron irradiation facilities, counting system and development of automation system and capsules for NAA in HANARO ; improvement of analytical procedures and establishment of analytical quality control and assurance system; applied research and development of environment, industry and human health and its standardization. For identification and standardization of analytical method, environmental biological samples and polymer are analyzed and uncertainity of measurement are estimated. Also data intercomparison and proficency test were performed. Using airborne particulate matter chosen as a environmental indicators, trace elemental concentrations of sample collected at urban and rural site are determined and then the calculation of statistics and the factor analysis are carried out for investigation of emission source. International cooperation research project was carried out for utilization of nuclear techniques.

  13. Agricultural Impacts on Water Resources: Recommendations for Successful Applied Research (United States)

    Harmel, D.


    We, as water resource professionals, are faced with a truly monumental challenge - that is feeding the world's growing population and ensuring it has an adequate supply of clean water. As researchers and educators it is good for us to regularly remember that our research and outreach efforts are critical to people around the world, many of whom are desperate for solutions to water quality and supply problems and their impacts on food supply, land management, and ecosystem protection. In this presentation, recommendations for successful applied research on agricultural impacts on water resources will be provided. The benefits of building multidisciplinary teams will be illustrated with examples related to the development and world-wide application of the ALMANAC, SWAT, and EPIC/APEX models. The value of non-traditional partnerships will be shown by the Soil Health Partnership, a coalition of agricultural producers, chemical and seed companies, and environmental advocacy groups. The results of empowering decision-makers with useful data will be illustrated with examples related to bacteria source and transport data and the MANAGE database, which contains runoff nitrogen and phosphorus data for cultivated, pasture, and forest land uses. The benefits of focusing on sustainable solutions will be shown through examples of soil testing, fertilizers application, on-farm profit analysis, and soil health assessment. And the value of welcoming criticism will be illustrated by the development of a framework to estimate and publish uncertainty in measured discharge and water quality data. The good news for researchers is that the agricultural industry is faced with profitability concerns and the need to wisely utilize soil and water resources, and simultaneously state and federal agencies crave sound-science to improve decision making, policy, and regulation. Thus, the audience for and beneficiaries of agricultural research are ready and hungry for applied research results.

  14. Preparing students in two-year colleges for geoscience degrees and careers: Workshop results (United States)

    Macdonald, H.; Baer, E. M.; Blodgett, R. H.; Hodder, J.


    Building a strong and diverse geoscience workforce is a critical national challenge. Two-year colleges (2YCs) play an important role in increasing both the number and diversity of geoscience graduates. A workshop on Preparing Students from Two-year Colleges for Geoscience Degrees and Careers was held in Tacoma, WA in July 2012 to discuss the successes and challenges of programs, strategies, and activities that support career preparation of 2YC students for geoscience careers, either as geotechnical graduates or as geoscience majors at four-year colleges and universities, and to make recommendations for future efforts. At the workshop several successful partnerships between employers and two-year colleges as well as between two-year colleges and four-year institutions were discussed as potential models that could be replicated with adaptations for local employment needs. Participants shared successful techniques for supporting 2YC students in their career path such as internships, early opportunities for participating in research, joint fieldtrips with transfer institutions, and supportive curriculum alignment between two and four-year institutions. Professional organizations have much to offer including information about career options, networking opportunities, and more. Participants discussed strategies for supporting geoscience workforce development at 2YCs such as making connections between 2YCs and local employers, identifying geoscience students at 2YCs who are planning to transfer and building relationships with 4YCs, establishing internship programs, supporting student geoscience clubs, and developing a repository of geoscience employment information targeted to 2YC students. Participants recognized significant barriers to incorporating career training and information into the geoscience curriculum at two-year colleges. These barriers include a predominance of non-geoscience students in classes, lack of support or rewards for improving or increasing the

  15. Ergonomics: A bridge between fundamentals and applied research

    Directory of Open Access Journals (Sweden)

    Subrata Ghosh


    Full Text Available Ergonomics is becoming a subject of applying fundamentals on anthropocentric dimensions for holistic welfare. The so-called conflict between Basic science and Applied research finds one of its edges in Ergonomics. Be it cutting-edge technology or frontiers of scientific innovation-all start from understanding basic scientific aptitude and skill, and the best way to get familiar with the situation is practicing basic science again and again at a regular basis. Ergonomics is diversified in such paradigms that truly set an example of such harmony between two apparently never-ending straight lines. If the spirit of Science is true human welfare, be it in the form of environmental development, machine development, technological advancement, human resource development, or development of consecutive interfaces between these components, Participatory Ergonomics is one of the vivid examples of such conglomeration. Although fundamental science may appear to be of very little practical significance, it turns out that eventually it has far greater impact on human society than much of the so-called "applied research."

  16. A framework for high-school teacher support in Geosciences (United States)

    Bookhagen, B.; Mair, A.; Schaller, G.; Koeberl, C.


    To attract future geoscientists in the classroom and share the passion for science, successful geoscience education needs to combine modern educational tools with applied science. Previous outreach efforts suggest that classroom-geoscience teaching tremendously benefits from structured, prepared lesson plans in combination with hands-on material. Building on our past experience, we have developed a classroom-teaching kit that implements interdisciplinary exercises and modern geoscientific application to attract high-school students. This "Mobile Phone Teaching Kit" analyzes the components of mobile phones, emphasizing the mineral compositions and geologic background of raw materials. Also, as geoscience is not an obligatory classroom topic in Austria, and university training for upcoming science teachers barely covers geoscience, teacher training is necessary to enhance understanding of the interdisciplinary geosciences in the classroom. During the past year, we have held teacher workshops to help implementing the topic in the classroom, and to provide professional training for non-geoscientists and demonstrate proper usage of the teaching kit. The material kit is designed for classroom teaching and comes with a lesson plan that covers background knowledge and provides worksheets and can easily be adapted to school curricula. The project was funded by kulturkontakt Austria; expenses covered 540 material kits, and we reached out to approximately 90 schools throughout Austria and held a workshop in each of the nine federal states in Austria. Teachers received the training, a set of the material kit, and the lesson plan free of charge. Feedback from teachers was highly appreciative. The request for further material kits is high and we plan to expand the project. Ultimately, we hope to enlighten teachers and students for the highly interdisciplinary variety of geosciences and a link to everyday life.

  17. Geosciences Information for Teachers (GIFT) in Catalonia (United States)

    Camerlenghi, Angelo; Cacho, Isabel; Calvo, Eva; Demol, Ben; Sureda, Catalina; Artigas, Carme; Vilaplana, Miquel; Porbellini, Danilo; Rubio, Eduard


    CATAGIFT is the acronym of the project supported by the Catalan Government (trough the AGAUR agency) to support the activities of the EGU Committee on Education in Catalonia. The objective of this project is two-fold: 1) To establish a coordinated action to support the participation of three Catalan science teachers of primary and secondary schools in the GIFT Symposium, held each year during the General Assembly of the European Geosciences Union (EGU). 2) To produce a video documentary each year on hot topics in geosciences. The documentary is produced in Catalan, Spanish and English and is distributed to the Catalan science teachers attending the annual meeting organized by the Institute of Education Sciences and the Faculty of Geology of the University together with the CosmoCaixa Museum of Barcelona, to the international teachers attending the EGU GIFT Workshop, and to other schools in the Spanish territory. In the present-day context of science dissemination through documentaries and television programs there is a dominance of products of high technical quality and very high costs sold and broadcasted world wide. The wide spread of such products tends to standardize scientific information, not only in its content, but also in the format used for communicating science to the general public. In the field of geosciences in particular, there is a scarcity of products that combine high scientific quality and accessible costs to illustrate aspects of the natural life of our planet Earth through the results of the work of individual researchers and / or research groups. The scientific documentaries produced by CATAGIFT pursue the objective to support primary and secondary school teachers to critically interpret scientific information coming from the different media (television, newspapers, magazines, audiovisual products), in a way that they can transmit to their students. CataGIFT has created a series of documentaries called MARENOSTRUM TERRANOSTRA designed and

  18. Supporting Geoscience Students at Two-Year Colleges: Career Preparation and Academic Success (United States)

    McDaris, J. R.; Kirk, K. B.; Layou, K.; Macdonald, H.; Baer, E. M.; Blodgett, R. H.; Hodder, J.


    and after transfer, research opportunities, and 2YC-4YC collaborations. Improving student success is an important priority at most 2YCs, and is especially challenging because students who enroll at a 2YC arrive with a wide range of abilities, preparation, and goals. Web resources that build on research from education, cognitive science, and psychology address topics such as stereotype threat, solo status, the affective domain, and effective teaching approaches. Other materials describe how to work with various student populations (e.g., English-language learners, students with disabilities, veterans), approaches to strengthening students' ability to monitor their own learning, and other strategies for supporting student success. Programs that support student success in general are important for the more specific goal of developing the geoscience workforce.

  19. Geoscience in Developing Countries of South Asia and International Cooperation (United States)

    Gupta, K.


    Earth Science community in developing countries of South Asia is actively engaged in interdisciplinary investigations of the Earth and its envelopes through geological, geophysical and geochemical processes, for these processes are interconnected. Interdisciplinary interaction will continue to grow since problems pertaining to the solid earth, with its core-mantle-crust, and fluid envelops can be solved only with contributions from different Science disciplines. The expanding population and revolution in data handling-and-computing have now become a necessity to tackle the geoscientific problems with modern techniques and methodologies to meet these new challenges. As a future strategy, geo-data generation and handling need to be speedier and easier and hence demands a well- knit coordiantion and understanding amongst Governments, Industries and Academic organizations. Such coordination will prove valuable for better understanding of the Earth's processes, especially mitigating natural hazards with more accurate and speedy prdictions, besides sustaining Earth's resources. South Asian geoscience must, therefore, seek new directions by way of strategies, policies, and actions to move forward in this century. Environmental and resource problems affecting the world population have become international issues, since global environmental changes demand international cooperation and planning. The Earth is continually modified by the interplay of internal and external processes. Hence we need to apply modern geophysical techniques and interpret the results with the help of available geological, geochronological and gechemical informations It is through such integrated approach that we could greatly refine our understanding of the deep structure and evolution of the Indian shield. However, the inputs into multi-disciplinary studies necessary to know the crustal structure and tectonics in the adjoining regions (Nepal, Bangladesh, Myanmar, Sri Lanka etc.) still remain

  20. Recent progress in submarine geosciences in China

    Institute of Scientific and Technical Information of China (English)

    JIN Xianglong


    In China submarine geosciences represents a newly established discipline of oceanography, focusing on the oceanic lithosphere, and its interface with the hydrosphere and biosphere. Recently, supported by the National High Technology Research and Development Program and other high-tech development projects, significant progress has been made in the development of advanced technologies and equipment. This en-ables the scientists in China to carry out explorations of the international seabed area in the Pacific Ocean and on the Southwest Indian Ridge. In addition, they have been active in the research activities associated the mid-ocean ridges and western Pacific marginal seas. It is anticipated that this research field will continue to be highly fruitful in the near future.

  1. Applying Open Researchers and Contributors ID in scholarly journals

    Directory of Open Access Journals (Sweden)

    Jeonghee Im


    Full Text Available Open Researchers and Contributors ID (ORCID launched its registry services in October 2012. Consequently, adding personal information to the ORCID registry became routine work for researchers. To add ORCID to an online article, the tag needs to be included in the Journal Article Tag Suite extensible markup language file, if such a file has been produced by the publisher. Subsequently, all co-authors’ ORCID can be easily and conveniently collected and then integrated into the manuscript management system. In the current age of information and the Internet, journals need to keep pace with the surge of new standards and technologies. Editors should be able to accept and apply these new systems rapidly.

  2. Academic provenance: Investigation of pathways that lead students into the geosciences (United States)

    Houlton, Heather R.

    Pathways that lead students into the geosciences as a college major have not been fully explored in the current literature, despite the recent studies on the "geoscience pipeline model." Anecdotal evidence suggests low quality geoscience curriculum in K-12 education, lack of visibility of the discipline and lack of knowledge about geoscience careers contribute to low geoscience enrollments at universities. This study investigated the reasons why college students decided to major in the geosciences. Students' interests, experiences, motivations and desired future careers were examined to develop a pathway model. In addition, self-efficacy was used to inform pathway analyses, as it is an influential factor in academic major and career choice. These results and interpretations have strong implications for recruitment and retention in academia and industry. A semi-structured interview protocol was developed, which was informed by John Flanagan's critical incident theory. The responses to this interview were used to identify common experiences that diverse students shared for reasons they became geoscience majors. Researchers used self-efficacy theory by Alfred Bandura to assess students' pathways. Seventeen undergraduate geoscience majors from two U.S. Midwest research universities were sampled for cross-comparison and analysis. Qualitative analyses led to the development of six categorical steps for the geoscience pathway. The six pathway steps are: innate attributes/interest sources, pre-college critical incidents, college critical incidents, current/near future goals, expected career attributes and desired future careers. Although, how students traversed through each step was unique for individuals, similar patterns were identified between different populations in our participants: Natives, Immigrants and Refugees. In addition, critical incidents were found to act on behavior in two different ways: to support and confirm decision-making behavior (supportive critical

  3. Developing A Large-Scale, Collaborative, Productive Geoscience Education Network (United States)

    Manduca, C. A.; Bralower, T. J.; Egger, A. E.; Fox, S.; Ledley, T. S.; Macdonald, H.; Mcconnell, D. A.; Mogk, D. W.; Tewksbury, B. J.


    Over the past 15 years, the geoscience education community has grown substantially and developed broad and deep capacity for collaboration and dissemination of ideas. While this community is best viewed as emergent from complex interactions among changing educational needs and opportunities, we highlight the role of several large projects in the development of a network within this community. In the 1990s, three NSF projects came together to build a robust web infrastructure to support the production and dissemination of on-line resources: On The Cutting Edge (OTCE), Earth Exploration Toolbook, and Starting Point: Teaching Introductory Geoscience. Along with the contemporaneous Digital Library for Earth System Education, these projects engaged geoscience educators nationwide in exploring professional development experiences that produced lasting on-line resources, collaborative authoring of resources, and models for web-based support for geoscience teaching. As a result, a culture developed in the 2000s in which geoscience educators anticipated that resources for geoscience teaching would be shared broadly and that collaborative authoring would be productive and engaging. By this time, a diverse set of examples demonstrated the power of the web infrastructure in supporting collaboration, dissemination and professional development . Building on this foundation, more recent work has expanded both the size of the network and the scope of its work. Many large research projects initiated collaborations to disseminate resources supporting educational use of their data. Research results from the rapidly expanding geoscience education research community were integrated into the Pedagogies in Action website and OTCE. Projects engaged faculty across the nation in large-scale data collection and educational research. The Climate Literacy and Energy Awareness Network and OTCE engaged community members in reviewing the expanding body of on-line resources. Building Strong

  4. Quantitative Literacy: Geosciences and Beyond (United States)

    Richardson, R. M.; McCallum, W. G.


    Quantitative literacy seems like such a natural for the geosciences, right? The field has gone from its origin as a largely descriptive discipline to one where it is hard to imagine failing to bring a full range of mathematical tools to the solution of geological problems. Although there are many definitions of quantitative literacy, we have proposed one that is analogous to the UNESCO definition of conventional literacy: "A quantitatively literate person is one who, with understanding, can both read and represent quantitative information arising in his or her everyday life." Central to this definition is the concept that a curriculum for quantitative literacy must go beyond the basic ability to "read and write" mathematics and develop conceptual understanding. It is also critical that a curriculum for quantitative literacy be engaged with a context, be it everyday life, humanities, geoscience or other sciences, business, engineering, or technology. Thus, our definition works both within and outside the sciences. What role do geoscience faculty have in helping students become quantitatively literate? Is it our role, or that of the mathematicians? How does quantitative literacy vary between different scientific and engineering fields? Or between science and nonscience fields? We will argue that successful quantitative literacy curricula must be an across-the-curriculum responsibility. We will share examples of how quantitative literacy can be developed within a geoscience curriculum, beginning with introductory classes for nonmajors (using the Mauna Loa CO2 data set) through graduate courses in inverse theory (using singular value decomposition). We will highlight six approaches to across-the curriculum efforts from national models: collaboration between mathematics and other faculty; gateway testing; intensive instructional support; workshops for nonmathematics faculty; quantitative reasoning requirement; and individual initiative by nonmathematics faculty.

  5. Geoconservation as an emerging geoscience


    Henriques, Maria Helena; Reis, R. Pena dos; Brilha, J. B.; Mota, Teresa


    The main purpose of geoconservation is theconservation of geosites as basic units of the geological heritage through the implementation of specific inventory,evaluation, conservation, valuation and monitoring proce-dures. In this paper, geoconservation is characterised as anemergent geoscience within the Earth and Space Sciences where its scope and methods, as well as production andvalidation of knowledge can be recognised–thus definingBasic Geoconservation–, interrelations with other earth s...

  6. Engaging Students in Applied Research: Experiences from Collaborative Research and Learning in Brazil and Paraguay (United States)

    Vasquez-Leon, Marcela; Burke, Brian; Radonic, Lucero


    A critical interest of applied anthropology is to educate students to be theoretically grounded and capable of assuming a level of social responsibility that extends beyond academia. In this paper, we reflect on the issue of student preparation for work in the policy arena by focusing on the experiences of a five-year applied research project that…

  7. Unidata: A cyberinfrastrucuture for the geosciences (United States)

    Ramamurthy, Mohan


    Data are the lifeblood of the geosciences. Rapid advances in computing, communications, and observational technologies - along with concomitant advances in high-resolution modeling, ensemble and coupled-systems predictions of the Earth system - are revolutionizing nearly every aspect of our field. The result is a dramatic proliferation of data from diverse sources; data that are consumed by an evolving and ever-broadening community of users and that are becoming the principal engine for driving scientific advances. Data-enabled research has emerged as a Fourth Paradigm of science, alongside experiments, theoretical studies, and computer simulations Unidata is a data facility, sponsored by the NSF, and our mission is to provide the data services, tools, and cyberinfrastructure leadership that advance Earth system science, enhance educational opportunities, and broaden participation in the geosciences. For more nearly thirty years, Unidata has worked in concert with the atmospheric science education and research community to develop and provide innovative data systems, tools, techniques, and resources to support data-enabled science to understand the Earth system. In doing so, Unidata has maintained a close, synergistic relationship with the universities, engaging them in collaborative efforts to exploit data and technologies, and removing roadblocks to data discovery, access, analysis, and effective use. As a community-governed program, Unidata depends on guidance and feedback from educators, researchers, and students in the atmospheric and related sciences. The Unidata Program helps researchers and educators acquire and use earth-related data. Most of the data are provided in "real time" or "near-real time" - that is, the data are sent to participants almost as soon as the observations are made. Unidata also develops, maintains, and supports a variety of software packages. Most of these packages are developed at the Unidata Program Center (UPC), while a few others

  8. Structure of Moves in Research Article Abstracts in Applied Linguistics

    Directory of Open Access Journals (Sweden)

    Seden Can


    Full Text Available An abstract summarizes the accompanying article in order to promote it. While many move-analysis studies of abstracts in applied linguistics (AL have used similar coding frameworks and demonstrated similar rhetorical organizations, their findings have not yet been aggregated to show the overall picture. The present study aimed to both examine move structures in AL abstracts and compare the results with previous studies both synchronically and diachronically. Fifty abstracts were collected from articles published in the journal English for Specific Purposes (ESP between 2011 and 2013. Sentences were coded using a five-move scheme adapted from previous studies. Combining the results from previous research and the present study showed that most AL abstracts give information on the purpose, methodology, and findings of the associated article, while about half of the articles omit introduction of the topic and discussion of the findings. It was also found that authors frequently violate the move sequence expected by current schemes. These findings consistent with previous research suggest that future researchers informed by move analyses should explore the connection between the findings of move analyses and teaching materials for academic writing.

  9. Recent Upgrades at the Safety and Tritium Applied Research Facility

    Energy Technology Data Exchange (ETDEWEB)

    Cadwallader, Lee Charles [Idaho National Laboratory; Merrill, Brad Johnson [Idaho National Laboratory; Stewart, Dean Andrew [Idaho National Laboratory; Loftus, Larry Shayne [Idaho National Laboratory


    This paper gives a brief overview of the Safety and Tritium Applied Research (STAR) facility operated by the Fusion Safety Program (FSP) at the Idaho National Laboratory (INL). FSP researchers use the STAR facility to carry out experiments in tritium permeation and retention in various fusion materials, including wall armor tile materials. FSP researchers also perform other experimentation as well to support safety assessment in fusion development. This lab, in its present two-building configuration, has been in operation for over ten years. The main experiments at STAR are briefly described. This paper discusses recent work to enhance personnel safety at the facility. The STAR facility is a Department of Energy less than hazard category 3 facility; the personnel safety approach calls for ventilation and tritium monitoring for radiation protection. The tritium areas of STAR have about 4 to 12 air changes per hour, with air flow being once through and then routed to the facility vent stack. Additional radiation monitoring has been installed to read the laboratory room air where experiments with tritium are conducted. These ion chambers and bubblers are used to verify that no significant tritium concentrations are present in the experiment rooms. Standby electrical power has been added to the facility exhaust blower so that proper ventilation will now operate during commercial power outages as well as the real-time tritium air monitors.

  10. Geoscience terminology for data interchange (United States)

    Richard, Stephen


    Workgroups formed by the Commission for the Management and Application of Geoscience Information (CGI), a Commission of the International Union of Geological Sciences (IUGS) have been developing vocabulary resources to promote geoscience information exchange. The Multilingual Thesaurus Working Group (MLT) was formed in 2003 to continue work of the Multhes working group of the 1990s. The Concept Definition Task Group was formed by the CGI Interoperability Working Group in 2007 to develop concept vocabularies for populating GeoSciML interchange documents. The CGI council has determined that it will be more efficient and effective to merge the efforts of these groups and has formed a new Geoscience Terminology Working Group (GTWG, Each GTWG member will be expected to shepherd one or more vocabularies. There are currently 31 vocabularies in the CGI portfolio, developed for GeoSciML interchange documents (e.g. see 201202/). Vocabulary development in both groups has been conducted first by gathering candidate terms in Excel spreadsheets because these are easy for text editing and review. When the vocabulary is mature, it is migrated into SKOS, an RDF application for encoding concepts with identifiers, definitions, source information, standard thesaurus type relationships, and language-localized labels. Currently there are 30 vocabularies still required for GeoSciML v3, and 38 proposed vocabularies for use with EarthResourceML ( In addition, a project to develop a lithogenetic map unit vocabulary to use for regional geologic map integration using OGC web map services is underway. Considerable work remains to be done to integrate multilingual geoscience terms developed by the MLT Working Group with existing CGI vocabularies to provide multilingual support, and to make the thesaurus compiled by the

  11. Symbolic Interaction and Applied Social Research: A FOCUS ON TRANSLATIONAL SCIENCE RESEARCH(1.) (United States)

    Kotarba, Joseph A


    In symbolic interaction, a traditional yet unfortunate and unnecessary distinction has been made between basic and applied research. The argument has been made that basic research is intended to generate new knowledge, whereas applied research is intended to apply knowledge to the solution of practical (social and organizational) problems. I will argue that the distinction between basic and applied research in symbolic interaction is outdated and dysfunctional. The masters of symbolic interactionist thought have left us a proud legacy of shaping their scholarly thinking and inquiry in response to and in light of practical issues of the day (e.g., Znaniecki, and Blumer). Current interactionist work continues this tradition in topical areas such as social justice studies. Applied research, especially in term of evaluation and needs assessment studies, can be designed to serve both basic and applied goals. Symbolic interaction provides three great resources to do this. The first is its orientation to dynamic sensitizing concepts that direct research and ask questions instead of supplying a priori and often impractical answers. The second is its orientation to qualitative methods, and appreciation for the logic of grounded theory. The third is interactionism's overall holistic approach to interfacing with the everyday life world. The primary illustrative case here is the qualitative component of the evaluation of an NIH-funded, translational medical research program. The qualitative component has provided interactionist-inspired insights into translational research, such as examining cultural change in medical research in terms of changes in the form and content of formal and informal discourse among scientists; delineating the impact of significant symbols such as "my lab" on the social organization of science; and appreciating the essence of the self-concept "scientist" on the increasingly bureaucratic and administrative identities of medical researchers. This

  12. Implementing Successful Geoscience Education and Outreach Efforts (United States)

    Braile, L. W.


    Successful geoscience Education and Outreach (E&O) efforts associated with a research program benefit from effective planning and a commitment by scientists/researchers to become more knowledgeable about and involved in education. Several suggested strategies have evolved based on experience in Earth science E&O with K-16 educators and students during the past 10 years. E&O programs and materials should be developed at appropriate levels ("start from where they're at") and utilize information, skills and topics that are most relevant to students and teachers. Hands-on and inquiry-based activities that teach or reinforce fundamental science understanding and skills, while introducing new topics, results and discoveries, are particularly effective. It is useful to design materials that can provide for a range of time commitment, level of technical skills, and effort, so that introductory to in-depth curriculum units can be implemented. Use of the Internet and working with teachers can be effective methods for dissemination and taking advantage of a "multiplying factor". Obtaining feedback and evaluation of the programs and developed materials, and connecting the materials to national or state education standards are also highly recommended. Most importantly, scientists should become more involved in the science education community. Attending and presenting papers at appropriate science education sessions or workshops, or state or national science teacher meetings (the annual National Science Teachers Association convention is an excellent place to start) can be a significant educational experience for the scientist/researcher. Effective geoscience E&O programs have significant potential for enhancing K-16 education and scientific literacy, and can help attract students to the sciences. Perhaps surprisingly, these efforts have substantial positive impact on the scientist/researcher as well.

  13. Broadening Awareness and Participation in the Geosciences Among Underrepresented Minorities in STEM (United States)

    Blake, R.; Liou-Mark, J.


    , effects, and prediction of natural disasters including earthquakes, volcanoes, tsunamis, landslides, subsidence, global climate change, severe weather, coastal erosion, floods, mass extinctions, wildfires, and meteoroid impacts. In addition to the brand new geoscience course offerings, City Tech students participate in geoscience - seminars, guest lectures, lecture series, and geoscience internship and fellowship workshops. The students also participate in geoscience exposure trips to NASA/GISS Columbia University, NOAA-CREST, and the Brookhaven National Laboratory. Moreover, the undergrads are provided opportunities for paid research internships via two NSF grants - NSF REU and NSF STEP. Geoscience projects are also integrated into course work, and students make geoscience group project presentations in class. Students also participate in geoscience career and graduate school workshops. The program also creates geoscience articulation agreements with the City College of New York so that students at City Tech may pursue Bachelor's and advanced degrees in the geosciences. This program is supported by NSF OEDG grant #1108281.

  14. NATO Advanced Research Workshop on Fundamental and Applied Electromagnetics

    CERN Document Server

    Maksimenko, Sergey


    This book presents the most relevant and recent results in the study of “Nanoelectromagnetics”, a recently born fascinating research discipline, whose popularity is fast arising with the intensive penetration of nanotechnology in the world of electronics applications. Studying nanoelectromagnetics means describing the interaction between electromagnetic radiation and quantum mechanical low-dimensional systems: this requires a full interdisciplinary approach, the reason why this book hosts contributions from the fields of fundamental and applied electromagnetics, of chemistry and technology of nanostructures and nanocomposites, of physics of nano-structures systems, etc. The book is aimed at providing the reader with the state of the art in Nanoelectromagnetics, from theoretical modelling to experimental characterization, from design to synthesis, from DC to microwave and terahertz applications, from the study of fundamental material properties to the analysis of complex systems and devices, from commercia...

  15. Sandia National Laboratories shock thermodynamics applied research (STAR) facility

    Energy Technology Data Exchange (ETDEWEB)

    Asay, J.R.


    The Sandia National Laboratories Shock Thermodynamics Applied Research (STAR) Facility has recently consolidated three different guns and a variety of instrumentation capabilities into a single location. The guns available at the facility consist of a single-stage light gas gun, a single-stage propellant gun and a two-stage light gas gun, which cover a velocity range from 15 m/s to 8 km/s. Instrumentation available at the facility includes optical and microwave interferometry, time-resolved holography, fast x-radiography, framing and streak photography, fast multi-wavelength pyrometry, piezoelectric and piezoresistive gauges and computer data reduction. This report discusses the guns and instrumentation available at the facility and selected recent applications.

  16. Applied Research of Nanomaterials in Photo-thermal Therapy

    Directory of Open Access Journals (Sweden)

    Sun Hang


    Full Text Available In the applied research of nanomaterials in photo-thermal therapy and based on the understanding of the principle of photo-thermal therapy and its medical equipment, this paper analyzes nanomaterials used for photo-thermal therapy, establishes model by the use of comprehensive evaluation method and selects nano-materials that are suiTable for photo-thermal therapy, namely, carbon nanomaterials and precious metal nano-materials. In addition, this paper analyzes the importance of human surgical health by the use of photo-thermal therapy and gives considerations from three aspects, that is, the surgical equipment health, the operating room hygiene and the medical health. This paper also establishes a mathematical model through correlation analysis and credibility analysis, thus emphasizing the necessity of surgical health.

  17. High-throughput synthesis equipment applied to polymer research (United States)

    Hoogenboom, Richard; Schubert, Ulrich S.


    To speed up synthetic polymer research, a workflow dedicated to automated polymer synthesis and characterization was developed. The workflow consists of several synthesis robots with online and offline analytical equipment. For screening of reaction parameters and for library synthesis, robots equipped with glass reactors and vortex agitation are applied that match very well the classical (small-scale) laboratory experiments. For the screening and library preparation also a microwave synthesizer can be used. For upscaling purposes and process development, a robot containing 100mL tank reactors with mechanical stirring is utilized. This robot also offers the possibility to continuously feed reagents to the reactor and to operate in batch, semibatch or continuous mode.

  18. Harnessing biodiversity: the Malagasy Institute of Applied Research (IMRA

    Directory of Open Access Journals (Sweden)

    Heys Jennifer


    Full Text Available Abstract Background Biopiracy – the use of a people’s long-established medical knowledge without acknowledgement or compensation – has been a disturbing historical reality and exacerbates the global rich-poor divide. Bioprospecting, however, describes the commercialization of indigenous medicines in a manner acceptable to the local populace. Challenges facing bioprospectors seeking to develop traditional medicines in a quality-controlled manner include a lack of skilled labor and high-tech infrastructure, adapting Northern R&D protocols to Southern settings, keeping products affordable for the local population, and managing the threat of biopiracy. The Malagasy Institute of Applied Research (IMRA has employed bioprospecting to develop new health treatments for conditions such as diabetes and burns. Because of its integration of Western science and Malagasy cultural traditions, IMRA may provide a useful example for African and other organizations interested in bioprospecting. Discussion IMRA’s approach to drug development and commercialization was adapted from the outset to Malagasy culture and Southern economic landscapes. It achieved a balance between employing Northern R&D practices and following local cultural norms through four guiding principles. First, IMRA’s researchers understood and respected local practices, and sought to use rather than resist them. Second, IMRA engaged the local community early in the drug development process, and ensured that local people had a stake in its success. Third, IMRA actively collaborated with local and international partners to increase its credibility and research capacity. Fourth, IMRA obtained foreign research funds targeting the “diseases of civilization” to cross-fund the development of drugs for conditions that affect the Malagasy population. These principles are illustrated in the development of IMRA products like Madeglucyl, a treatment for diabetes management that was developed

  19. Sustainable Agriculture as a Recruitment Tool for Geoscience Majors (United States)

    Enright, K. P.; Gilbert, L. A.; McGillis, A.


    Small-scale agriculture has exploded with popularity in recent years, as teenagers and college students gain interest in local food sources. Outdoor experiences, including gardening and farming, are often among the motivations for students to take their first geoscience courses in college. The methods and theories of small agriculture translate well into geologic research questions, especially in the unique setting of college campus farms and gardens. We propose an activity or assignment to engage student-farmers in thinking about geosciences, and connect them with geoscience departments as a gateway to the major and career field. Furthermore, the activity will encourage a new generation of passionate young farmers to integrate the principles of earth science into their design and implementation of more sustainable food systems. The activity includes mapping, soil sampling, and interviewing professionals in agriculture and geology, and results in the students writing a series of recommendations for their campus or other farm. The activity includes assessment tools for instructors and can be used to give credit for a summer farming internship or as part of a regular course. We believe reaching out to students interested in farming could be an important recruitment tool for geosciences and helps build interdisciplinary and community partnerships.

  20. Toward an automated parallel computing environment for geosciences (United States)

    Zhang, Huai; Liu, Mian; Shi, Yaolin; Yuen, David A.; Yan, Zhenzhen; Liang, Guoping


    Software for geodynamic modeling has not kept up with the fast growing computing hardware and network resources. In the past decade supercomputing power has become available to most researchers in the form of affordable Beowulf clusters and other parallel computer platforms. However, to take full advantage of such computing power requires developing parallel algorithms and associated software, a task that is often too daunting for geoscience modelers whose main expertise is in geosciences. We introduce here an automated parallel computing environment built on open-source algorithms and libraries. Users interact with this computing environment by specifying the partial differential equations, solvers, and model-specific properties using an English-like modeling language in the input files. The system then automatically generates the finite element codes that can be run on distributed or shared memory parallel machines. This system is dynamic and flexible, allowing users to address different problems in geosciences. It is capable of providing web-based services, enabling users to generate source codes online. This unique feature will facilitate high-performance computing to be integrated with distributed data grids in the emerging cyber-infrastructures for geosciences. In this paper we discuss the principles of this automated modeling environment and provide examples to demonstrate its versatility.

  1. Semantics, ontologies and eScience for the geosciences


    Reitsma, Femke; Laxton, John; Ballard, Stuart; Kuhn, Werner; Abdelmoty, Alia


    Semantics, ontologies and eScience are key areas of research that aim to deal with the growing volume, number of sources and heterogeneity of geoscience data, information and knowledge. Following a workshop held at the eScience Institute in Edinburgh on the 7–9th of March 2008, this paper discusses some of the significant research topics and challenges for enhancing geospatial computing using semantic and grid technologies.

  2. Semantics, ontologies and eScience for the geosciences (United States)

    Reitsma, Femke; Laxton, John; Ballard, Stuart; Kuhn, Werner; Abdelmoty, Alia


    Semantics, ontologies and eScience are key areas of research that aim to deal with the growing volume, number of sources and heterogeneity of geoscience data, information and knowledge. Following a workshop held at the eScience Institute in Edinburgh on the 7-9th of March 2008, this paper discusses some of the significant research topics and challenges for enhancing geospatial computing using semantic and grid technologies.

  3. Every Student Counts: Broadening Participation in the Geosciences through a Multiyear Internship Program (United States)

    Sloan, V.


    The number of Ph.D.s from underrepresented populations graduating each year in the geosciences lags behind all other sciences including physics. This results in a dearth of minorities acting as role models in higher education. Overall, African Americans, Native Americans, and Hispanics comprised a total of 6% of the Ph.D. graduates in 2005 compared to about 27% of the general population. African Americans were the most poorly represented relative to their proportion in the U.S. population, comprising only 1% of Ph.D.s in the geosciences compared to 12% of the population. Only one African American woman Ph.D. graduated in the geosciences in the U.S. in each of 2004 and 2005, while proportionally one would expect 28 to obtain a Ph.D. each year. Our multiyear internship program, RESESS helps to carry students from underrepresented minority populations through to graduate programs by preparing them for graduate school. Our interns experience an authentic summer research experience at a university, the USGS, or UNAVCO, while doing an intensive writing course and working closely with a science and writing mentor. We continue mentoring during the academic year, as students apply for graduate school and scholarships, and present their research results at professional conferences. RESESS focuses on the Earth sciences and partners with SOARS, which focuses on atmospheric and related sciences. Our future goals include developing more RESESS pods elsewhere in the country, making it possible for students to do community-driven research, and increasing the diversity of support for the program through new and stronger partnerships with organizations such as the U.S.G.S., the National Parks Service, and other universities. In this paper, we will present current statistics on diversity in higher education in the geoscience, details of our program, and conclusions about effective means of supporting minority students in the bridge to graduate school. When the numbers are this low

  4. Teaching Mineralogy, Petrology and Geochemistry in the 21st Century: Instructional Resources for Geoscience Faculty (United States)

    Mogk, D. W.; Beane, R. J.; Whitney, D. L.; Nicolaysen, K. E.; Panero, W. R.; Peck, W. H.


    Mineralogy, petrology and geochemistry (MPG) are pillars of the geoscience curriculum because of their relevance in interpreting Earth history and processes, application to geo-hazards, resources, and environmental issues, and contributions to emerging fields such as geology and human health. To keep faculty current in scientific advances in these fields, and in modern instructional methods, the On the Cutting Edge program convened a workshop at the University of Minnesota in August, 2011. This workshop builds on the previous 15 year's work that has been focused on identifying, aggregating, and developing high-quality collections of teaching activities and related resources, and in building a community of scholars in support of excellence in instruction in MPG courses. The goals of the workshop were to: a) develop an integrated, comprehensive and reviewed curriculum for MPG courses, and to seek ways to make connections with the larger geoscience curriculum; b) to explore emerging topics in MPG such as geobiology and climate change; c) demonstrate effective methods in teaching MPG in the context of Earth system science; d) share effective teaching activities and strategies for the classroom, laboratory and field including advances in pedagogy, assessments and research on learning; e) keep faculty current on recent advances in mineralogy, petrology and geochemistry research and to apply these findings to our teaching; f) explore and utilize current societal and global issues that intersect mineralogy, petrology and geochemistry to heighten the relevancy of course content for students; and h) meet colleagues and foster future teaching and research collaborations. A significant outcome of this workshop is a peer reviewed of collection of 300+ existing teaching activities, and a gap analysis to identify teaching activities needed to make these collections comprehensive and coherent. In addition, a series of thematic collections were developed to assist high priority

  5. Applied research with cyclotron beams at FLNR JINR

    Energy Technology Data Exchange (ETDEWEB)

    Oganessian, Yu.Ts.; Apel, P.Yu.; Didyk, A.Yu.; Dmitriev, S.N.; Gulbekian, G.G. [Joint Inst. for Nuclear Research, Dubna, Moscow (Russian Federation). Flerov Lab. of Nuclear Reactions


    The Center of Applied Physics at the Flerov Laboratory carries out an R and D program comprising development of track membrane technology, materials research with heavy ion beams and production of radioisotopes. Experiments are performed on three cyclotrons: U-400, U-200 and IC-100 providing a wide variety of ion beams with the energies of 1 to 10 MeV/u. The activity on track membranes (TMs) includes studies of track formation in polymers and latent track structure, track sensitization and etching, methods of membrane testing, development of track membranes on the basis of new materials, surface modification of TMs, design and construction of facilities for track membrane production. Recent experiments on heavy ion-induced radiation damage in non-polymeric substances have been devoted to defect creation in semiconductor and dielectric single crystals. TEM, SEM, STM and `in situ` luminescent spectroscopy are used to investigate heavy ion effects. Methods for producing several isotopes of high radiochemical and isotopic purity for medical, biomedical and environmental protection applications have been developed. (author)

  6. Educational measurement for applied researchers theory into practice

    CERN Document Server

    Wu, Margaret; Jen, Tsung-Hau


    This book is a valuable read for a diverse group of researchers and practitioners who analyze assessment data and construct test instruments. It focuses on the use of classical test theory (CTT) and item response theory (IRT), which are often required in the fields of psychology (e.g. for measuring psychological traits), health (e.g. for measuring the severity of disorders), and education (e.g. for measuring student performance), and makes these analytical tools accessible to a broader audience. Having taught assessment subjects to students from diverse backgrounds for a number of years, the three authors have a wealth of experience in presenting educational measurement topics, in-depth concepts and applications in an accessible format. As such, the book addresses the needs of readers who use CTT and IRT in their work but do not necessarily have an extensive mathematical background. The book also sheds light on common misconceptions in applying measurement models, and presents an integrated approach to differ...

  7. Research of the grid computing system applied in optical simulation (United States)

    Jin, Wei-wei; Wang, Yu-dong; Liu, Qiangsheng; Cen, Zhao-feng; Li, Xiao-tong; Lin, Yi-qun


    A grid computing in the field of optics is presented in this paper. Firstly, the basic principles and research background of grid computing are outlined in this paper, along with the overview of its applications and the development status quo. The paper also discusses several typical tasks scheduling algorithms. Secondly, it focuses on describing a task scheduling of grid computing applied in optical computation. The paper gives details about the task scheduling system, including the task partition, granularity selection and tasks allocation, especially the structure of the system. In addition, some details of communication on grid computing are also illustrated. In this system, the "makespan" and "load balancing" are comprehensively considered. Finally, we build a grid model to test the task scheduling strategy, and the results are analyzed in detail. Compared to one isolated computer, a grid comprised of one server and four processors can shorten the "makespan" to 1/4. At the same time, the experimental results of the simulation also illustrate that the proposed scheduling system is able to balance loads of all processors. In short, the system performs scheduling well in the grid environment.

  8. Towards a global data network for the geosciences (United States)

    Allison, M. L.; Gundersen, L. C.; Jackson, I.; Hubbard, J.; Richard, S. M.


    surveys and organizations are collaborating to build a continent-wide geoscience data network. Emerging practices from OneGeology, 1G-E, and GIN provide a foundation for the next step in creating a global digital data network of geoscience information. This next step will provide structured data for geoscience features using OGC Web Feature Services utilizing GeoSciML as the data transport schema. A prototype global data network is emerging as more users and providers adopt these growing common standards, protocols, and procedures. Growth of this community of practice is attracting the attention of leading software developers including Microsoft Research, ESRI (ArcGIS), Schlumberger-MetaCarta, and others, presenting opportunities to integrate geoscience network capabilities with widely used software.

  9. Introducing Undergraduates to Environmental Geoscience (United States)

    Stewart, R.


    We have developed an introductory course in environmental geoscience for undergraduates that draws on many years of experience in improving the teaching of geoscience. The course is recognized as an exemplary college course for Advanced Placement high-school courses in environmental science. To gain student's attention, we organized the course around local, regional, and global problems including global change, global warming, groundwater resources, land degradation, regional air quality, ozone depletion, and coastal issues. Homework assignments lead students to understand local problems, scientific data, and how personal actions influence the environment. Although science is the center of the course, we show students how science and public policy differ, and how they interact. All this was not easy. How can any one person learn the material? What to do when an extensive review of possible texts leads to a realization that none are very useful? Come watch over our shoulder as we show you how faculty from four departments developed a successful interdisciplinary course at a large public university.

  10. Applying functional genomics research to the study of pig reproduction. (United States)

    Pomp, D; Caetano, A R; Bertani, G R; Gladney, C D; Johnson, R K


    Functional genomics is an experimental approach that incorporates genome-wide or system-wide experimentation, expanding the scope of biological investigation from studying single genes to studying potentially all genes at once in a systematic manner. This technology is highly appealing because of its high throughput and relatively low cost. Furthermore, analysis of gene expression using microarrays is likely to be more biologically relevant than the conventional paradigm of reductionism, because it has the potential to uncover new biological connections between genes and biochemical pathways. However, functional genomics is still in its infancy, especially with regard to the study of pig reproduction. Currently, efforts are centred on developing the necessary resources to enable high throughput evaluation and comparison of gene expression. However, it is clear that in the near future functional genomics will be applied on a large scale to study the biology and physiology of reproduction in pigs, and to understand better the complex nature of genetic control over polygenic characteristics, such as ovulation rate and litter size. We can look forward to generating a significant amount of new data on differences in gene expression between genotypes, treatments, or at various temporal and spatial coordinates within a variety of reproductively relevant systems. Along with this capability will be the challenge of collating, analysing and interpreting datasets that are orders of magnitude more extensive and complex than those currently used. Furthermore, integration of functional genomics with traditional genetic approaches and with detailed analysis of the proteome and relevant whole animal phenotypes will be required to make full use of this powerful new experimental paradigm as a beneficial research tool.

  11. GeoSegmenter: A statistically learned Chinese word segmenter for the geoscience domain (United States)

    Huang, Lan; Du, Youfu; Chen, Gongyang


    Unlike English, the Chinese language has no space between words. Segmenting texts into words, known as the Chinese word segmentation (CWS) problem, thus becomes a fundamental issue for processing Chinese documents and the first step in many text mining applications, including information retrieval, machine translation and knowledge acquisition. However, for the geoscience subject domain, the CWS problem remains unsolved. Although a generic segmenter can be applied to process geoscience documents, they lack the domain specific knowledge and consequently their segmentation accuracy drops dramatically. This motivated us to develop a segmenter specifically for the geoscience subject domain: the GeoSegmenter. We first proposed a generic two-step framework for domain specific CWS. Following this framework, we built GeoSegmenter using conditional random fields, a principled statistical framework for sequence learning. Specifically, GeoSegmenter first identifies general terms by using a generic baseline segmenter. Then it recognises geoscience terms by learning and applying a model that can transform the initial segmentation into the goal segmentation. Empirical experimental results on geoscience documents and benchmark datasets showed that GeoSegmenter could effectively recognise both geoscience terms and general terms.

  12. An Integrative and Collaborative Approach to Creating a Diverse and Computationally Competent Geoscience Workforce (United States)

    Moore, S. L.; Kar, A.; Gomez, R.


    A partnership between Fort Valley State University (FVSU), the Jackson School of Geosciences at The University of Texas (UT) at Austin, and the Texas Advanced Computing Center (TACC) is engaging computational geoscience faculty and researchers with academically talented underrepresented minority (URM) students, training them to solve grand challenges . These next generation computational geoscientists are being trained to solve some of the world's most challenging geoscience grand challenges requiring data intensive large scale modeling and simulation on high performance computers . UT Austin's geoscience outreach program GeoFORCE, recently awarded the Presidential Award in Excellence in Science, Mathematics and Engineering Mentoring, contributes to the collaborative best practices in engaging researchers with URM students. Collaborative efforts over the past decade are providing data demonstrating that integrative pipeline programs with mentoring and paid internship opportunities, multi-year scholarships, computational training, and communication skills development are having an impact on URMs developing middle skills for geoscience careers. Since 1997, the Cooperative Developmental Energy Program at FVSU and its collaborating universities have graduated 87 engineers, 33 geoscientists, and eight health physicists. Recruited as early as high school, students enroll for three years at FVSU majoring in mathematics, chemistry or biology, and then transfer to UT Austin or other partner institutions to complete a second STEM degree, including geosciences. A partnership with the Integrative Computational Education and Research Traineeship (ICERT), a National Science Foundation (NSF) Research Experience for Undergraduates (REU) Site at TACC provides students with a 10-week summer research experience at UT Austin. Mentored by TACC researchers, students with no previous background in computational science learn to use some of the world's most powerful high performance

  13. Classroom Teachers and Classroom Research. JALT Applied Materials. (United States)

    Griffee, Dale T., Ed.; Nunan, David, Ed.

    This collection of papers leads classroom language teachers through the process of developing and completing a classroom research project. Arranged in four sections, they include: "Language Teaching and Research" (David Nunan); "Where Are We Now? Trends, Teachers, and Classroom Research" (Dale T. Griffee); "First Things First: Writing the Research…

  14. Bringing Research on Learning to the Earth Sciences: A Workshop Report (United States)

    Mogk, D. W.; Manduca, C. A.; Stillings, N.


    This summer, leaders in geoscience education research, education research in related science disciplines, and the cognitive sciences came together with funding from the NSF and the Johnson Foundation to initiate the development of a community engaged in applying learning science to the geosciences. Main topics addressed at the workshop included: articulation of geoscience learning goals; understanding vast and minute spatial and temporal scales; teaching and learning about complex systems; representation and visualization of multidimensional data; interaction of observation, theory, modeling, and experiment in geoscience methodology; ways of knowing; and learning environments. Workshop participants concluded that the geosciences play several key roles in education including developing students? understanding of the nature of science in general and geoscience in particular; providing opportunities to integrate skills and learning from other sciences and mathematics in context; and allowing students to apply scientific understanding to societal or personal decision making. Participants identified several priority research areas of high interest to both learning science and the geosciences: Visualization: how do people look at, interpret and describe geoscience images Representation: how do we understand and represent things abstract, unseen, and beyond everyday human experience Space: how do we effectively teach the spatial reasoning skills fundamental to studying the Earth (e.g. distance, shape) Learning in the field: how do people observe, interpret, and draw conclusions from natural systems Deep time: how do we effectively teach about deep time, rates, and the importance of history in the evolution of the earth Expert-novice relationships: what characterizes geoscience expertise; how do geoscientists learn things and draw conclusions Complex systems: How do we teach and learn about complex systems Models: How do we teach about models and use them to learn about

  15. Frontier geoscience program in action

    Energy Technology Data Exchange (ETDEWEB)

    Davies, G.R.; Nassichuk, W.W.

    The authors have recently discovered oil shales deposited in a Carboniferous lake during the earliest stages of formation of the Sverdrup rift basins in the Canadian Arctic Archipelago. The Geological Survey of Canada's Frontier Geoscience Program is designed to accelerate the study of sedimentary basins in Canada's frontier areas in anticipation of future exploration for oil and gas. Two specfic FGP objectives influenced the ISPG oil-shale project: to describe the tectonic and sedimentary evolution of oil- and gas-bearing basins, and to elucidate the processes governing generation, accumulation, and preservation of hydrocarbon resources. This article illustrates the significance of lacustrine sediments as petroleum source rocks and demonstrates that lacustrine sediments are commonly the oldest sequences deposited in evolving rift basins. 8 figs.

  16. Applying the community partnership approach to human biology research. (United States)

    Ravenscroft, Julia; Schell, Lawrence M; Cole, Tewentahawih'tha'


    Contemporary human biology research employs a unique skillset for biocultural analysis. This skillset is highly appropriate for the study of health disparities because disparities result from the interaction of social and biological factors over one or more generations. Health disparities research almost always involves disadvantaged communities owing to the relationship between social position and health in stratified societies. Successful research with disadvantaged communities involves a specific approach, the community partnership model, which creates a relationship beneficial for researcher and community. Paramount is the need for trust between partners. With trust established, partners share research goals, agree on research methods and produce results of interest and importance to all partners. Results are shared with the community as they are developed; community partners also provide input on analyses and interpretation of findings. This article describes a partnership-based, 20 year relationship between community members of the Akwesasne Mohawk Nation and researchers at the University at Albany. As with many communities facing health disparity issues, research with Native Americans and indigenous peoples generally is inherently politicized. For Akwesasne, the contamination of their lands and waters is an environmental justice issue in which the community has faced unequal exposure to, and harm by environmental toxicants. As human biologists engage in more partnership-type research, it is important to understand the long term goals of the community and what is at stake so the research circle can be closed and 'helicopter' style research avoided.

  17. The Public Acceptance of Biofuels and Bioethanol from Straw- how does this affect Geoscience (United States)

    Jäger, Alexander; Ortner, Tina; Kahr, Heike


    The Public Acceptance of Biofuels and Bioethanol from Straw- how does this affect Geoscience The successful use of bioethanol as a fuel requires its widespread acceptance by consumers. Due to the planned introduction of a 10 per cent proportion of bioethanol in petrol in Austria, the University of Applied Sciences Upper Austria carried out a representative opinion poll to collect information on the population's acceptance of biofuels. Based on this survey, interviews with important stakeholders were held to discuss the results and collect recommendations on how to increase the information level and acceptance. The results indicate that there is a lack of interest and information about biofuels, especially among young people and women. First generation bioethanol is strongly associated with the waste of food resources, but the acceptance of the second generation, produced from agricultural remnants like straw from wheat or corn, is considerably higher. The interviewees see more transparent, objective and less technical information about biofuels as an essential way to raise the information level and acceptance rate. As the production of bioethanol from straw is now economically feasible, there is one major scientific question to answer: In which way does the withdrawal of straw from the fields affect the formation of humus and, therefore, the quality of the soil? An interdisciplinary approach of researchers in the fields of bioethanol production, geoscience and agriculture in combination with political decision makers are required to make the technologies of renewable bioenergy acceptable to the population.

  18. Evidence and research designs in applied sociology and social work research

    DEFF Research Database (Denmark)

    Høgsbro, Kjeld


    Today, social work is confronted with a political demand for being evidence-based, and researchers investigating social work practice are discussing the premises of this demand. They are asking if this discussion was substantially different from the one taken more than 50 years ago, and whether...... it had to be repeated all over again. This article tries to answer this question by reviewing the considerations in the history of applied sociology and its relevance for recent social work research. The ambition of delivering a research that has an impact on social work practice is not unique, neither...... and Realistic Evaluation and Institutional Ethnography. Some of these approaches share common roots with Social Work Research in the Chicago milieu of social science in the 1920s and 1930s, and the ambitions and aims are almost identical. The article identifies the more important experiences from the history...

  19. D Geological Framework Models as a Teaching Aid for Geoscience (United States)

    Kessler, H.; Ward, E.; Geological ModelsTeaching Project Team


    3D geological models have great potential as a resource for universities when teaching foundation geological concepts as it allows the student to visualise and interrogate UK geology. They are especially useful when dealing with the conversion of 2D field, map and GIS outputs into three dimensional geological units, which is a common problem for all students of geology. Today’s earth science students use a variety of skills and processes during their learning experience including the application of schema’s, spatial thinking, image construction, detecting patterns, memorising figures, mental manipulation and interpretation, making predictions and deducing the orientation of themselves and the rocks. 3D geological models can reinforce spatial thinking strategies and encourage students to think about processes and properties, in turn helping the student to recognise pre-learnt geological principles in the field and to convert what they see at the surface into a picture of what is going on at depth. Learning issues faced by students may also be encountered by experts, policy managers, and stakeholders when dealing with environmental problems. Therefore educational research of student learning in earth science may also improve environmental decision making. 3D geological framework models enhance the learning of Geosciences because they: ● enable a student to observe, manipulate and interpret geology; in particular the models instantly convert two-dimensional geology (maps, boreholes and cross-sections) into three dimensions which is a notoriously difficult geospatial skill to acquire. ● can be orientated to whatever the user finds comfortable and most aids recognition and interpretation. ● can be used either to teach geosciences to complete beginners or add to experienced students body of knowledge (whatever point that may be at). Models could therefore be packaged as a complete educational journey or students and tutor can select certain areas of the model

  20. An applied methodology for stakeholder identification in transdisciplinary research

    NARCIS (Netherlands)

    Leventon, Julia; Fleskens, Luuk; Claringbould, Heleen; Schwilch, Gudrun; Hessel, Rudi


    In this paper we present a novel methodology for identifying stakeholders for the purpose of engaging with them in transdisciplinary, sustainability research projects. In transdisciplinary research, it is important to identify a range of stakeholders prior to the problem-focussed stages of resear

  1. Applying Equity Theory to Students' Perceptions of Research Participation Requirements (United States)

    Miles, Shannon R.; Cromer, Lisa DeMarni; Narayan, Anupama


    Human subject pools have been a valuable resource to universities conducting research with student participants. However, the costs and benefits to student participants must be carefully weighed by students, researchers, and institutional review board administrators in order to avoid coercion. Participant perceptions are pivotal in deciding…

  2. On Pure and Applied Research in Mathematics Education. (United States)

    Schoenfeld, Alan H.


    Provides a brief summary of current research in mathematics education at the college level. Explores the current needs of college-level faculty. Suggests ways of coping with the apparent perception that some of the best contemporary research is useless or irrelevant from the practitioner's point of view. (22 references) (JJK)

  3. Forschungsregister I: Angewandte Sprachwissenschaft (Directory of Research I: Applied Linguistics). (United States)

    Riebicke, Detlev, Ed.

    This document lists over 50 research projects on various topics related to linguistics and language. The topics covered are foreign- and native-language instruction, relevant bibliographies, research in contemporary language, communication, textbooks, lexicology, lexicography, linguistics, computational linguistics, machine analysis of language,…

  4. Forschungsregister II: Angewandte Sprachwissenschaft (Directory of Research II: Applied Linguistics). (United States)

    Riebicke, Detlev, Ed.

    This document lists over 100 research projects on various topics related to linguistics and language. The topics covered are foreign- and native-language instruction, relevant bibliographies, research in contemporary language, communication, textbooks, lexicology, lexicography, linguistics, computational linguistics, machine analysis of language,…

  5. Applied Research and the Transformation of College Education (United States)

    Doughty, Howard A.


    Like everything else today, there is a changing pattern in education. Some obvious elements are education's social function, demographics, and technology. A fourth dimension is being added to function, audience, and technique, and that is research. Research is also being reorganized, and now it is becoming an issue in the colleges. When, for…

  6. Applying EMSL Capabilities to Biogeochemistry and Environmental Research

    Energy Technology Data Exchange (ETDEWEB)

    Felmy, Andy


    The Environmental Molecular Sciences laboratory (EMSL) is a national scientific user facility operated by the Pacific Northwest National Laboratory (PNNL) for the U.S. Department of Energy's Office of Biological and Environmental Research. Located in Richland, Washington, EMSL offers researchers a comprehensive array of cutting-edge capabilities unmatched anywhere else in the world and access to the expertise of over 300 resident users--all at one location. EMSL's resources are available on a peer-reviewed proposal basis and are offered at no cost if research results are shared in the open literature. Researchers are encouraged to submit a proposal centered around one of EMSL's four Science Themes, which represent growing areas of research: (1) Geochemistry/Biogeochemistry and Subsurface Science; (2) Atmospheric Aerosol Chemistry; (3) Biological Interactions and Dynamics; and (4) Science of Interfacial Phenomena. To learn more about EMSL, visit

  7. APPA at FAIR: From fundamental to applied research (United States)

    Stöhlker, Th.; Bagnoud, V.; Blaum, K.; Blazevic, A.; Bräuning-Demian, A.; Durante, M.; Herfurth, F.; Lestinsky, M.; Litvinov, Y.; Neff, S.; Pleskac, R.; Schuch, R.; Schippers, S.; Severin, D.; Tauschwitz, A.; Trautmann, C.; Varentsov, D.; Widmann, E.


    FAIR with its intense beams of ions and antiprotons provides outstanding and worldwide unique experimental conditions for extreme matter research in atomic and plasma physics and for application oriented research in biophysics, medical physics and materials science. The associated research programs comprise interaction of matter with highest electromagnetic fields, properties of plasmas and of solid matter under extreme pressure, density, and temperature conditions, simulation of galactic cosmic radiation, research in nanoscience and charged particle radiotherapy. A broad variety of APPA-dedicated facilities including experimental stations, storage rings, and traps, equipped with most sophisticated instrumentation will allow the APPA community to tackle new challenges. The worldwide most intense source of slow antiprotons will expand the scope of APPA related research to the exciting field of antimatter.

  8. Teaching Research Skills to Student Pharmacists in One Semester: An Applied Research Elective (United States)

    Rabionet, Silvia; Bleidt, Barry


    Objectives. To implement and assess the effectiveness of a 15-week applied research elective that introduced students to secondary database analysis in clinical pharmacy. Design. In small groups, students learned, planned, developed and completed a secondary database study to answer an original research question. During one semester, they completed a basic research proposal and Institutional Review Board application, created and analyzed a National Health and Nutrition Examination Survey (NHANES) sample dataset, and reported the results in an abstract and poster presentation. Assessment. All deliverables resulted in high grades. Mean scores on a survey conducted following completion of the course revealed that students strongly agreed or agreed that they had high levels of confidence about performing research-related tasks. Eight student groups delivered poster presentations at professional conferences. Conclusions. Within one semester, student pharmacists with no or little research experience completed original research projects that contributed to pharmacy practice knowledge. They felt highly confident doing research-related tasks, and successfully disseminated their studies beyond the classroom. PMID:28289306

  9. Teaching Research Skills to Student Pharmacists in One Semester: An Applied Research Elective. (United States)

    Perez, Alexandra; Rabionet, Silvia; Bleidt, Barry


    Objectives. To implement and assess the effectiveness of a 15-week applied research elective that introduced students to secondary database analysis in clinical pharmacy. Design. In small groups, students learned, planned, developed and completed a secondary database study to answer an original research question. During one semester, they completed a basic research proposal and Institutional Review Board application, created and analyzed a National Health and Nutrition Examination Survey (NHANES) sample dataset, and reported the results in an abstract and poster presentation. Assessment. All deliverables resulted in high grades. Mean scores on a survey conducted following completion of the course revealed that students strongly agreed or agreed that they had high levels of confidence about performing research-related tasks. Eight student groups delivered poster presentations at professional conferences. Conclusions. Within one semester, student pharmacists with no or little research experience completed original research projects that contributed to pharmacy practice knowledge. They felt highly confident doing research-related tasks, and successfully disseminated their studies beyond the classroom.

  10. Physical chemistry research for engineering and applied sciences

    CERN Document Server

    Pearce, Eli M; Pethrick, Richard A; Zaikov, Gennady E


    PrefaceRegularity of Oxidation of Waste Fibrous and Film Materials of Polyethylene and Polypropylene: A Research Note; M. V. Bazunova, S. V. Kolesov, R. F. Tukhvatullin, E. I. Kulish, G. E. ZaikovA Research Note on Creation of ?arbon-Polymer Nanocomposites with Polyethylene as a Binder; Sergei V. Kolesov, Marina V. Bazunova, Elena I. Kulish, Denis R. Valiev, and Gennady E. ZaikovA Research Note on the Influence of Hybrid Antioxidants Ichphans on the Structure of Liposome Lipid Bilayer; E. Yu. Parshina, L. Ya. Gendel', and A. B. RubinDynamically Vulcanized Thermoelastoplastics Based on Butadien

  11. Internships and UNAVCO: Training the Future Geoscience Workforce Through the NSF GAGE Facility (United States)

    Morris, A. R.; MacPherson-Krutsky, C. C.; Charlevoix, D. J.; Bartel, B. A.


    Facilities are uniquely positioned to both serve a broad, national audience and provide unique workforce experience to students and recent graduates. Intentional efforts dedicated to broadening participation in the future geoscience workforce at the NSF GAGE (Geodesy Advancing Geosciences and EarthScope) Facility operated by UNAVCO, are designed to meet the needs of the next generation of students and professionals. As a university-governed consortium facilitating research and education in the geosciences, UNAVCO is well-situated to both prepare students for geoscience technical careers and advanced research positions. Since 1998, UNAVCO has offered over 165 student assistant or intern positions including engineering, data services, education and outreach, and business support. UNAVCO offers three formal programs: the UNAVCO Student Internship Program (USIP), Research Experiences in Solid Earth Science for Students (RESESS), and the Geo-Launchpad (GLP) internship program. Interns range from community college students up through graduate students and recent Masters graduates. USIP interns gain real-world work experience in a professional setting, collaborate with teams toward a common mission, and contribute their knowledge, skills, and abilities to the UNAVCO community. RESESS interns conduct authentic research with a scientist in the Front Range area as well as participate in a structured professional development series. GLP students are in their first 2 years of higher education and work alongside UNAVCO technical staff gaining valuable work experience and insight into the logistics of supporting scientific research. UNAVCO's efforts in preparing the next generation of scientists largely focuses on increasing diversity in the geosciences, whether continuing academic studies or moving into the workforce. To date, well over half of our interns and student assistants come from backgrounds historically underrepresented in the geosciences. Over 80% of former interns

  12. Applying Meta-Analysis to Library and Information Science Research. (United States)

    Trahan, Eric


    Describes and discusses metanalysis and criticisms of the methodology. Reports on a pilot study which tested the feasibility of metanalytic methods in library science research using the literature on paper- or computer-based information retrieval. (28 references) (EA)

  13. Impacting earthquake science and geoscience education: Educational programming to earthquake relocation (United States)

    Carrick, Tina Louise

    This dissertation is comprised of four studies: three related to research on geoscience education and another seismological study of the South Island of New Zealand. The geoscience education research is grounded in 10 years of data collection and its implications for best practices for recruitment and retention of underrepresented minority students into higher education in the geosciences. The seismological component contains results from the relocation of earthquakes from the 2009 Dusky Sound Mw 7.8 event, South Island, New Zealand. In recent years, many have cited a major concern that U.S. is not producing enough STEM graduates to fit the forecasted economic need. This situation is exacerbated by the fact that underrepresented minorities are becoming a growing portion of the population, and people in these groups enter STEM careers at rates much smaller than their proportion of the populations. Among the STEM disciplines the Geosciences are the worst at attracting young people from underrepresented minorities. This dissertation reports on results the Pathways program at the University of Texas at El Paso Pathways which sought to create a geoscience recruitment and training network in El Paso, Texas to increase the number of Hispanic Americans students to attain higher degrees and increase the awareness of the geosciences from 2002-2012. Two elements of the program were a summer program for high school students and an undergraduate research program conducted during the academic year, called PREP. Data collected from pre- and post-surveys from the summer program showed statistically significant positive changes in attitudes towards the geosciences. Longitudinal data shows a strong positive correlation of the program with retention of participants in the geoscience pipeline. Results from the undergraduate research program show that it produced far more women and minority geoscience professionals than national norms. Combination of the institutional data, focus

  14. Research on Applying Bluetooth to an Elevator Wireless Control System

    Institute of Scientific and Technical Information of China (English)

    MA Jian-cang; LUO Ya-jun; ZHAO Yu-ting


    Compared with other elevator control systems, the wireless control system has many advanta ges such as easy to install and maintain. Bluetooth is a new technology of short-range wireless communication, and the idea of applying Bluetooth to the elevator wireless control system is expected to get wide application. In this paper, a wireless control prototype system is introduced, and the experimentsof this system proved the feasibility of this idea.

  15. National Association of Geoscience Teachers (NAGT) support for the Next Generation Science Standards (Invited) (United States)

    Buhr Sullivan, S. M.; Awad, A. A.; Manduca, C. A.


    The Next Generation Science Standards (NGSS) represents the best opportunity for geosciences education since 1996, describing a vision of teaching excellence and placing Earth and space science on a par with other disciplines. However, significant, sustained support and relationship-building between disciplinary communities must be forthcoming in order to realize the potential. To realize the vision, teacher education, curricula, assessments, administrative support and workforce/college readiness expectations must be developed. The National Association of Geoscience Teachers (NAGT), a geoscience education professional society founded in 1938, is comprised of members across all educational contexts, including undergraduate faculty, pre-college teachers, informal educators, geoscience education researchers and teacher educators. NAGT support for NGSS includes deep collections of relevant digital learning resources, professional development workshops, models of cross-discipline sustainability education at the undergraduate and teacher preparation levels, member voices in support of geoscience education, and reach into introductory courses and teacher preparation programs. This presentation will describe implications of NGSS for the geoscience education community and highlight some opportunities for the path forward.

  16. Meeting the Challenges for Gender Diversity in the Geosciences (United States)

    Bell, R. E.; Cane, M. A.; Kastens, K. A.; Miller, R. B.; Mutter, J. C.; Pfirman, S. L.


    Women are now routinely chief scientists on major cruises, lead field parties to all continents, and have risen to leadership positions in professional organizations, academic departments and government agencies including major funding agencies. They teach at all levels, advise research students, make research discoveries and receive honors in recognition of their achievements. Despite these advances, women continue to be under-represented in the earth, ocean, and atmospheric sciences. As of 1997 women received only 29% of the doctorates in the earth, atmospheric, and oceanographic sciences and accounted for only 13% of employed Ph.D.s in these fields. Women's salaries also lag: the median annual salary for all Ph.D. geoscientists was \\60,000; for women the figure is \\47,000. Solving the problem of gender imbalance in the geosciences requires understanding of the particular obstacles women face in our field. The problem of under-representation of women requires that earth science departments, universities and research centers, funding agencies, and professional organizations like AGU take constructive action to recognize the root causes of the evident imbalance, and enact corrective policies. We have identified opportunities and challenges for each of these groups. A systematic study of the flux of women at Columbia University enabled a targeted strategy towards improving gender diversity based on the observed trends. The challenge for academic institutions is to document the flux of scientists and develop an appropriate strategy to balance the geoscience demographics. Based on the MIT study, an additional challenge faces universities and research centers. To enhance gender diversity these institutions need to develop transparency in promotion processes and open distribution of institutional resources. The challenge for granting agencies is to implement policies that ease the burden of extensive fieldwork on parents. Many fields of science require long work hours

  17. Geoscience in the news - sharing stories (United States)

    Redfern, Simon


    Schemes such as the British Science Association media fellowships and the AGU mass media fellowships offer an opportunity for active researchers to sit side by side with journalists at the news desk. Each can learn from the other, and the mutual benefits are often unexpected. Here, I reflect on my own experiences as a media fellow at the BBC, and consider how this opportunity has altered my own views on communicated my, and others', science. Geosciences have a particular advantage in such translation to a general audience. Interest in the natural environment, the origins of life, the planetary science of the Solar System as a whole, as well as topics in resource, energy, climate and geohazards is high among the public. There are advantages in being willing to act as a "translator" of discovery and an "interpreter" of natural events that, it could be argued, should be grasped to keep the relevance of our science high in the perceptions of tax payers and policy makers. By exercising these types of communications skills, new perspectives on one's own research may be attained.

  18. Recruiting Minority Students to the Geosciences (United States)

    Marchese, P.; Cotten, D. E.; Cheung, T. D.; Johnson, L. P.; Austin, S.; Tremberger, G.; Bluestone, C.


    Queensborough Community College (QCC) and Medgar Evers College (MEC) of the City University of New York have been actively involved in recruiting primarily minority students to the Geosciences by involving students in research and by incorporating innovative and proven pedagogical methods into the classroom. Students at both colleges have been actively involved in doing research in Space and Earth Science. Students work during the summer under the mentorship of CUNY faculty conducting experiments and analyzing data. At the end of the summer students present findings at various science meetings. In the lecture room, the method of instruction was modified to emphasize active learning. Educational materials and pedagogical methods developed at QCC and other 4 year colleges was introduced to the predominantly minority student body at QCC and MEC. Many of these students did poorly at pre-college schools where lecture based learning is the chief method of instruction. It is not unexpected that many of them are having difficulty if the method of instruction has not changed at the postsecondary level. The intent of introducing active learning was to have students develop an appreciation of science, and have an increased understanding of relevant scientific principles. As a result of these activities student scores increased as compared to student scores in a more affluent college. Students also demonstrated increased conceptual understanding of the material, had higher self- efficacy scores, and seemed to enjoy the class better. Lower scoring students demonstrated the greatest benefit, while the better students had little (or no) changes.

  19. Innovative Research Methodology Applied to the Study of Indigenous Peoples

    Directory of Open Access Journals (Sweden)

    Laurentino Lucas Campo


    Full Text Available Due to the questioning of the alleged ethical and epistemological neutrality in the exercise ofscientific research, processes of reflexivity have been generated regarding research that takes asits object of study the native peoples in Latin America. The critique of hegemonic mode of applyingmethodologies for knowledge of indigenous peoples has been immersed in review processes,critical and novel approaches proposed elsewhere in where the understanding of reflective andmethodological implications goal their approach to scientific research. In this paper start with allusionto the criticism of the hegemonic trend in the study of indigenous populations. Then I do a quickreview of some methodological proposals such as evocative or participatory, horizontal, the doublyreflexive ethnography, auto-ethnographic, that early XXI in Mexico have been proposed to relocate andproblematize both the place of the researcher and the objects of knowledge in the research process:the native peoples, especially in the educational environment. I conclude this work considering theimplications, challenges and future prospects generated by these innovative methodological proposals

  20. Group-effort applied research: expanding opportunities for undergraduate research through original, class-based research projects. (United States)

    Moore, Sean D; Teter, Ken


    Undergraduate research clearly enriches the educational development of participating students, but these experiences are limited by the inherent inefficiency of the standard one student-one mentor model for undergraduate research. Group-effort applied research (GEAR) was developed as a strategy to provide substantial numbers of undergraduates with meaningful research experiences. The GEAR curriculum delivers concept-driven lecture material and provides hands-on training in the context of an active research project from the instructor's laboratory. Because GEAR is structured as a class, participating students benefit from intensive, supervised research training that involves a built-in network of peer support and abundant contact with faculty mentors. The class format also ensures a relatively standardized and consistent research experience. Furthermore, meaningful progress toward a research objective can be achieved more readily with GEAR than with the traditional one student-one mentor model of undergraduate research because sporadic mistakes by individuals in the class are overshadowed by the successes of the group as a whole. Three separate GEAR classes involving three distinct research projects have been offered to date. In this article, we provide an overview of the GEAR format and review some of the recurring themes for GEAR instruction. We propose GEAR can serve as a template to expand student opportunities for life science research without sacrificing the quality of the mentored research experience.

  1. Silent Way in a University Setting: An Applied Research Report. (United States)

    Lantolf, James P.


    A study comparing the use of the Silent Way technique in an experimental setting with its use in a real classroom setting suggests that results of experimental research cannot necessarily be transferred directly to the classroom. Student compositions based on ten Silent Way worksheets and an editing task are appended. (MSE)

  2. An Applied Introduction to Qualitative Research Methods in Academic Advising (United States)

    Hurt, Robert L.; McLaughlin, Eric J.


    Academic advising research aids faculty members and advisors in detecting, explaining, and addressing macro-level trends beyond their local campus. It also helps legitimize the professional nature of academic advising, moving it beyond mere prescriptive models that focus on rules and course selection. Due to the erroneous belief that skills in…

  3. Teaching and Researching Motivation. Applied Linguistics in Action. (United States)

    Dornyei, Zoltan

    This book includes: a theoretical summary of the various facets of motivation, an examination of how the theoretical insights can help classroom practitioners in their everyday teaching practice and practical recommendations on how motivation can be researched and assessed. The following chapters are included: "Main Challenges of Motivation…

  4. Productivity of Management Information Systems Researchers: Does Lotka's Law Apply? (United States)

    Nath, Ravinder; Jackson, Wade M.


    Considers the problem of bibliometric prediction and the applicability of Lotka's law regarding the number of papers written by each author. Results of a study of 899 Management Information Systems (MIS) research articles published in 10 journals between 1975 and 1987 are described. (24 references) (LRW)

  5. Applied Biomechanics Research for the United States Ski Team. (United States)

    Dillman, Charles J.


    Assisted by a team of physicians and sports scientists, the United States Ski Team has developed its own sports medicine program, the purpose of which is to assist coaches and athletes in controlling and optimizing factors which influence skiing performance. A number of biomechanical research projects which have been undertaken as part of this…

  6. Applied research of landscape ecology in desertification monitoring and assessment

    Institute of Scientific and Technical Information of China (English)


    A preliminary research on landscape ecology in desertification monitoring and assessment was reported. Also, this paper laid stress on the study of landscape diversity, dominance, evenness and Markov Matrix model and their respective landscape ecological meanings in the desertification monitoring and assessment. Concurrently, it took Shazhuyu Experimental Area, Qinghai Province as a specific case study.

  7. Applying the salutogenic framework to nutrition research and practice

    NARCIS (Netherlands)

    E. Swan; L. Bouwman; G.J. Hiddink; N. Aarts; M. Koelen


    Much research has identified a sea of factors related to unhealthy diets to make sense of why people struggle to eat healthy diets. However, little is known of factors that empower healthy eating. Antonovsky's salutogenesis provides an innovative framework to study these factors and identify resourc

  8. Reaching Beyond the Geoscience Stigma: Strategies for Success (United States)

    Messina, P.; Metzger, E. P.


    The geosciences have traditionally been viewed with less "academic prestige" than other science curricula. Among the effects of this perception are depressed K-16 enrollments; state standards' relegation of Earth and space science concepts to earlier grades; Earth Science assignments to lower-performing students, and sometimes even to under-qualified teachers: all of which simply confirm the misconceptions. Restructuring pre-college science curricula so that Earth Science is placed as a capstone course is one way to enhance student understanding of the geosciences. Research demonstrates that reversing the traditional science course sequence (by offering Physics in the ninth grade) improves student success in subsequent science courses. The "Physics First" movement continues to gain momentum offering a possible niche for the Earth and space sciences beyond middle school. It is also critical to bridge the information gap for those with little or no prior exposure to the Earth sciences, particularly K-12 educators. An Earth systems course developed at San José State University is aligned to our state's standards; it is approved to satisfy geoscience subject matter competency by the California Commission on Teacher Credentialing, making it a popular offering for pre- and in-service teachers. Expanding our audience beyond the Bay Area, the Earth Systems Science Education Alliance courses infuse real-world and hands-on learning in a cohesive online curriculum. Through these courses teachers gain knowledge, share effective pedagogies, and build geography-independent communities.

  9. International Geoscience Workforce Trends: More Challenges for Federal Agencies (United States)

    Groat, C. G.


    Concern about the decreasing number of students entering undergraduate geoscience programs has been chronic and, at times, acute over the past three decades. Despite dwindling populations of undergraduate majors, graduate programs have remained relatively robust, bolstered by international students. With Increasing competition for graduate students by universities in Europe, Japan, Australia, and some developing countries, and with procedural challenges faced by international students seeking entry into the United States and its universities, this supply source is threatened. For corporations operating on a global scale, the opportunity to employ students from and trained in the regions in which they operate is generally a plus. For U.S. universities that have traditionally supplied this workforce, the changing situation poses challenges, but also opportunities for creative international partnerships. Federal government science agencies face more challenges than opportunities in meeting workforce needs under both present and changing education conditions. Restrictions on hiring non-U.S. citizens into the permanent workforce have been a long-standing issue for federal agencies. Exceptions are granted only where they can document the absence of eligible U.S.-citizen candidates. The U.S. Geological Survey has been successful in doing this in its Mendenhall Postdoctoral Research Fellowship Program, but there has been no solution to the broader limitation. Under current and forecast workforce recruitment conditions, creativity, such as that evidenced by the Mendenhall program,will be necessary if federal agencies are to draw from the increasingly international geoscience talent pool. With fewer U.S. citizens in U.S. geoscience graduate programs and a growing number of advanced-degreed scientists coming from universities outside the U.S., the need for changes in federal hiring policies is heightened. The near-term liklihood of this is low and combined with the decline in

  10. System Analysis Applying to Talent Resource Development Research

    Institute of Scientific and Technical Information of China (English)

    WANG Peng-tao; ZHENG Gang


    In the development research of talent resource, the most important of talent resource forecast and optimization is the structure of talent resource, requirement number and talent quality. The article establish factor reconstruction analysis forecast and talent quality model on the method: system reconstruction analysis and ensure most effective factor level in system, which is presented by G. J. Klirti, B.Jonesque. And performing dynamic analysis of example ration.

  11. Experimental and theoretical research in applied plasma physics

    Energy Technology Data Exchange (ETDEWEB)

    Porkolab, M.


    This report discusses research in the following areas: fusion theory and computations; theory of thermonuclear plasmas; user service center; high poloidal beta studies on PBX-M; fast ECE fluctuation diagnostic for balloning mode studies; x-ray imaging diagnostic; millimeter/submillimeter-wave fusion ion diagnostics; small scale turbulence and nonlinear dynamics in plasmas; plasma turbulence and transport; phase contrast interferometer diagnostic for long wavelength fluctuations in DIII-D; and charged and neutral fusion production for fusio plasmas.

  12. Research on Applying Pun in Translating English into Chinese

    Institute of Scientific and Technical Information of China (English)



    The interpretation of pun is a branch of applied linguistics,at the mean time; it is a rhetorical approach in our daily communication.Sometimes it is compared to an art and varies from one another.Meanwhile it brings the charming of language into full play,which can demonstrate the complicated meanings with the simple language.Pun is humorous and vivid; sometimes it looks like a puzzle and makes people feel confused with blurry color.My thesis mainly focuses on lexical pun,homograph homophony pun and imitation pun.In terms of literal translation and free translation by idea.I sincerely hope it can help people to better understand the pans translation to attain our expectations.

  13. Applied research and development private sector accomplishments. Final summary report

    Energy Technology Data Exchange (ETDEWEB)

    Beskid, N.J.; Devgun, J.S.; Zielke, M.M.; Erickson, M.D.


    Because of the nature of most US Department of Energy (DOE) operations, contamination at DOE sites presents complex problems. DOE sites may have radioactive, hazardous, or mixed contamination. The major contaminants include radionuclides, volatile organic compounds (VOCs), and heavy metals. The contamination exists in soils, groundwater, and buildings and materials. DOE`s special problems in site remediation have created a need for better and less costly technologies. Thus, DOE has implemented several initiatives for developing new technologies. This report describes the results of the first set of procurement contracts in this area. Similar research and development (R&D) activities are currently managed for DOE by the Morgantown Energy Technology Center.

  14. Eurotrac: a co-ordinated project for applied tropospheric research

    Energy Technology Data Exchange (ETDEWEB)

    Borrell, P. [EUROTRAC International Scientific Secretariat, Garmisch-Partenkirchen (Germany)


    It was with the realisation that the scientific problems associated with regional air pollution could only be solved within the framework of an international interdisciplinary approach that in 1985 EUROTRAC, the European co-ordinated research project, was formed. Such an approach provides the scientific consensus necessary for the acceptance of regional air-pollution abatement measures by the countries affected. EUROTRAC is a EUREKA environmental project, studying the transport and chemical transformation of trace substances and pollutants in the troposphere. Three goals were specified the outset: (1) to increase the basic knowledge in atmospheric science, (2) to promote the technological development of sensitive, specific and fast response instruments for environmental research and development, and (3) to improve the scientific basis for taking future political decisions on environmental management in the European countries. Thus EUROTRAC was founded as a scientific project but had the specific intention that its results should be utilised in the formulation of policy. This presentation reviews the progress made towards each of the three goals and also indicates the proposed direction which a follow-on project is likely to take when EUROTRAC finishes at the end of 1995. (author)

  15. Bispecific antibodies and their use in applied research

    Directory of Open Access Journals (Sweden)

    Harshit Verma

    Full Text Available Bispecific antibodies (BsAb can, by virtue of combining two binding specificities, improve the selectivity and efficacy of antibody-based treatment of human disease. Antibodies with two distinct binding specificities have great potential for a wide range of clinical applications as targeting agents for in vitro and in vivo immunodiagnosis, therapy and for improving immunoassays. They have shown great promise for targeting cytotoxic effector cells, delivering radionuclides, toxins or cytotoxic drugs to specific targets, particularly tumour cells. The development of BsAb research goes through three main stages: chemical cross linking of murine-derived monoclonal antibody, hybrid hybridomas and engineered BsAb. This article is providing the potential applications of bispecific antibodies. [Vet World 2012; 5(12.000: 775-780

  16. An Applied Research Program on Water Desalination with Renewable Energies

    Directory of Open Access Journals (Sweden)

    S. M. Alcocer


    Full Text Available The use of renewable energy for desalination might be quite different in many places of the world. In Mexico, specifically in Baja California, there is an abundance of “traditional” renewable resources like sun and wind but also some others like hot springs at the coast, tidal currents and tidal amplitudes of over six meters in the upper part of the Gulf of California associated with a severe scarcity of fresh water. The National University of Mexico (UNAM started two years ago a well organized research program to assess the amount of these resources and to find the way to use them for desalinating sea water. Very exiting results have being obtained: The abundance of hot springs at the shore, some of them over 84°C, lead to the design of thermal desalinating prototype plants with very little energy consumption. It was found by geochemistry that at a few meters deep, some 50 m, very high temperature can be obtained, easy to use in binary geothermal power plants to generate electricity for desalination. During the survey it was found that the amount of electrical power that can be generated with tidal storage and from deep sea hydrothermal vents is of the order of several thousands of MW. A special approach is also presented for the use of solar energy and the tidal currents of the Gulf. The IMPULSA research group at UNAM has been already consolidated with more than 30 students, dedicated to the design of appropriate equipment to make use of these resources and to characterize and quantify this huge amount of renewable energies that will permit to desalinate sea water.

  17. A review of supervised machine learning applied to ageing research. (United States)

    Fabris, Fabio; Magalhães, João Pedro de; Freitas, Alex A


    Broadly speaking, supervised machine learning is the computational task of learning correlations between variables in annotated data (the training set), and using this information to create a predictive model capable of inferring annotations for new data, whose annotations are not known. Ageing is a complex process that affects nearly all animal species. This process can be studied at several levels of abstraction, in different organisms and with different objectives in mind. Not surprisingly, the diversity of the supervised machine learning algorithms applied to answer biological questions reflects the complexities of the underlying ageing processes being studied. Many works using supervised machine learning to study the ageing process have been recently published, so it is timely to review these works, to discuss their main findings and weaknesses. In summary, the main findings of the reviewed papers are: the link between specific types of DNA repair and ageing; ageing-related proteins tend to be highly connected and seem to play a central role in molecular pathways; ageing/longevity is linked with autophagy and apoptosis, nutrient receptor genes, and copper and iron ion transport. Additionally, several biomarkers of ageing were found by machine learning. Despite some interesting machine learning results, we also identified a weakness of current works on this topic: only one of the reviewed papers has corroborated the computational results of machine learning algorithms through wet-lab experiments. In conclusion, supervised machine learning has contributed to advance our knowledge and has provided novel insights on ageing, yet future work should have a greater emphasis in validating the predictions.

  18. Applications of Multidimensional Wavelet Filtering in Geosciences (United States)

    Yuen, D. A.; Vincent, A. P.; Kido, M.


    Today we are facing a severe crisis of being flooded with huge amounts of data being generated by higher-resolution numerical simulations , laboratory instrumentions and satellite observations. Since there is no way one can visualize the full data set, we must extract essential features from the data-set. One way of addressing this problem is to use mathematical filters , such as multidimensional wavelets. We present imaging results in the geosciences based on using multidimensional Gaussian wavelets as a filter. This approach has been applied to a wide-range of problems, which span from the nanoscale in mineral surfaces imaged by atomic force microscopy to hundreds of kilometers in geoidal undulations determined from satellite orbits or small-scale plumes in high Rayleigh number convection. Besides decomposing the field under consideration into various scales , called a scalogram, we have also constructed two-dimensional maps, delineating the spatial distributions of the maximum of the wavelet transformed quantity E-max and the associated local wave-number. We have generalized the application of multidimensional wavelets to quantify in terms of a two-dimensional map the correlation C for two multidimensional fields A and B. We will show a simple 2D isotropic wavelet-like transform for a spherical surface. We have analyzed the transformed geoid data with a band-pass filter in the spherical harmonic domain and have shown the equivalency of the two representations. This spherical wavelet-like filter can be applied also to problems in planetary science, such as the surface topography and geoid of other planetary bodies, like Mars.

  19. NSF-Sponsored Summit on the Future of Undergraduate Geoscience Education: outcomes (United States)

    Mosher, S.


    The NSF-sponsored Summit on the Future of Undergraduate Geoscience Education made major progress toward developing a collective community vision for the geosciences. A broad spectrum of the geoscience education community, ~200 educators from research universities/four and two year colleges, focused on preparation of undergraduates for graduate school and future geoscience careers, pedagogy, use of technology, broadening participation/retention of underrepresented groups, and preparation of K-12 science teachers. Participants agreed that key concepts, competencies and skills learned throughout the curriculum were more important than specific courses. Concepts included understanding Earth as complex, dynamic system, deep time, evolution of life, natural resources, energy, hazards, hydrogeology, surface processes, Earth materials and structure, and climate change. Skills/competencies included ability to think spatially and temporally, reason inductively and deductively, make and use indirect observations, engage in complex open, coupled systems thinking, and work with uncertainty, non-uniqueness, and incompleteness, as well as critical thinking, problem solving, communication, and ability to think like a scientist and continue to learn. Successful ways of developing these include collaborative, integrative projects involving teams, interdisciplinary projects, fieldwork and research experiences, as well as flipped classrooms and integration and interactive use of technology, including visualization, simulation, modeling and analysis of real data. Wider adoption of proven, effective best practices is our communities' main pedagogical challenge, and we focused on identifying implementation barriers. Preparation of future teachers in introductory and general geoscience courses by incorporating Next Generation Science Standards and using other sciences/math to solve real world geoscience problems should help increase diversity and number of future geoscientists and

  20. Decision Making in Action: Applying Research to Practice (United States)

    Orasanu, Judith; Hart, Sandra G. (Technical Monitor)


    The importance of decision-making to safety in complex, dynamic environments like mission control centers, aviation, and offshore installations has been well established. NASA-ARC has a program of research dedicated to fostering safe and effective decision-making in the manned spaceflight environment: Because access to spaceflight is limited, environments with similar characteristics, including aviation and nuclear power plants, serve as analogs from which space-relevant data can be gathered and theories developed. Analyses of aviation accidents cite crew judgement and decision making as causes or contributing factors in over half of all accidents. Yet laboratory research on decision making has not proven especially helpful in improving the quality of decisions in these kinds of environments. One reason is that the traditional, analytic decision models are inappropriate to multi-dimensional, high-risk environments, and do not accurately describe what expert human decision makers do when they make decisions that have consequences. A new model of dynamic, naturalistic decision making is offered that may prove useful for improving decision making in complex, isolated, confined and high-risk environments. Based on analyses of crew performance in full-mission simulators and accident reports, features that define effective decision strategies in abnormal or emergency situations have been identified. These include accurate situation assessment (including time and risk assessment), appreciation of the complexity of the problem, sensitivity to constraints on the decision, timeliness of the response, and use of adequate information. More effective crews also manage their workload to provide themselves with time and resources to make good good decisions are appropriate to the demands of the situation. Effective crew decision making and overall performance are mediated by crew communication. Communication contributes to performance because it assures that all crew members have

  1. Applied research of quantum information based on linear optics

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Xiao-Ye


    This thesis reports on outstanding work in two main subfields of quantum information science: one involves the quantum measurement problem, and the other concerns quantum simulation. The thesis proposes using a polarization-based displaced Sagnac-type interferometer to achieve partial collapse measurement and its reversal, and presents the first experimental verification of the nonlocality of the partial collapse measurement and its reversal. All of the experiments are carried out in the linear optical system, one of the earliest experimental systems to employ quantum communication and quantum information processing. The thesis argues that quantum measurement can yield quantum entanglement recovery, which is demonstrated by using the frequency freedom to simulate the environment. Based on the weak measurement theory, the author proposes that white light can be used to precisely estimate phase, and effectively demonstrates that the imaginary part of the weak value can be introduced by means of weak measurement evolution. Lastly, a nine-order polarization-based displaced Sagnac-type interferometer employing bulk optics is constructed to perform quantum simulation of the Landau-Zener evolution, and by tuning the system Hamiltonian, the first experiment to research the Kibble-Zurek mechanism in non-equilibrium kinetics processes is carried out in the linear optical system.

  2. NASA Remote Sensing Research as Applied to Archaeology (United States)

    Giardino, Marco J.; Thomas, Michael R.


    The use of remotely sensed images is not new to archaeology. Ever since balloons and airplanes first flew cameras over archaeological sites, researchers have taken advantage of the elevated observation platforms to understand sites better. When viewed from above, crop marks, soil anomalies and buried features revealed new information that was not readily visible from ground level. Since 1974 and initially under the leadership of Dr. Tom Sever, NASA's Stennis Space Center, located on the Mississippi Gulf Coast, pioneered and expanded the application of remote sensing to archaeological topics, including cultural resource management. Building on remote sensing activities initiated by the National Park Service, archaeologists increasingly used this technology to study the past in greater depth. By the early 1980s, there were sufficient accomplishments in the application of remote sensing to anthropology and archaeology that a chapter on the subject was included in fundamental remote sensing references. Remote sensing technology and image analysis are currently undergoing a profound shift in emphasis from broad classification to detection, identification and condition of specific materials, both organic and inorganic. In the last few years, remote sensing platforms have grown increasingly capable and sophisticated. Sensors currently in use, or nearing deployment, offer significantly finer spatial and spectral resolutions than were previously available. Paired with new techniques of image analysis, this technology may make the direct detection of archaeological sites a realistic goal.

  3. Applying Organizational Learning Research to Accountable Care Organizations. (United States)

    Nembhard, Ingrid M; Tucker, Anita L


    To accomplish the goal of improving quality of care while simultaneously reducing cost, Accountable Care Organizations (ACOs) need to find new and better ways of providing health care to populations of patients. This requires implementing best practices and improving collaboration across the multiple entities involved in care delivery, including patients. In this article, we discuss seven lessons from the organizational learning literature that can help ACOs overcome the inherent challenges of learning how to work together in radically new ways. The lessons involve setting expectations, creating a supportive culture, and structuring the improvement efforts. For example, with regard to setting expectations, framing the changes as learning experiences rather than as implementation projects encourages the teams to utilize helpful activities, such as dry runs and pilot tests. It is also important to create an organizational culture where employees feel safe pointing out improvement opportunities and experimenting with new ways of working. With regard to structure, stable, cross-functional teams provide a powerful building block for effective improvement efforts. The article concludes by outlining opportunities for future research on organizational learning in ACOs.

  4. Geoscience and the 21st Century Workforce (United States)

    Manduca, C. A.; Bralower, T. J.; Blockstein, D.; Keane, C. M.; Kirk, K. B.; Schejbal, D.; Wilson, C. E.


    Geoscience knowledge and skills play new roles in the workforce as our society addresses the challenges of living safely and sustainably on Earth. As a result, we expect a wider range of future career opportunities for students with education in the geosciences and related fields. A workshop offered by the InTeGrate STEP Center on 'Geoscience and the 21st Century Workforce' brought together representatives from 24 programs with a substantial geoscience component, representatives from different employment sectors, and workforce scholars to explore the intersections between geoscience education and employment. As has been reported elsewhere, employment in energy, environmental and extractive sectors for geoscientists with core geology, quantitative and communication skills is expected to be robust over the next decade as demand for resources grow and a significant part of the current workforce retires. Relatively little is known about employment opportunities in emerging areas such as green energy or sustainability consulting. Employers at the workshop from all sectors are seeking the combination of strong technical, quantitative, communication, time management, and critical thinking skills. The specific technical skills are highly specific to the employer and employment needs. Thus there is not a single answer to the question 'What skills make a student employable?'. Employers at this workshop emphasized the value of data analysis, quantitative, and problem solving skills over broad awareness of policy issues. Employers value the ability to articulate an appropriate, effective, creative solution to problems. Employers are also very interested in enthusiasm and drive. Participants felt that the learning outcomes that their programs have in place were in line with the needs expressed by employers. Preparing students for the workforce requires attention to professional skills, as well as to the skills needed to identify career pathways and land a job. This critical

  5. Connecting Geoscience and Decision Makers Through a Common Interface (United States)

    Gonzales, L. M.; Wood, C.; Boland, M. A.


    Geoscientists and decision makers often use different words to describe the same thing. The American Geosciences Institute has developed a consistent definition for the geosciences (Wilson, 2014); however this definition often varies from how decision maker groups at the national, state, local, and regional levels often categorize geoscience topics. Where geoscientists may to refer to "geoscience," decision makers may use terms like "energy," "environment," and "natural resources." How may the geoscience community provide geoscience information to decision makers in a context they understand while at the same time providing a simple, yet consistent representation of all that the geosciences include? The American Geoscience Institute's (AGI's) Critical Issues program's main goal is to connect decision makers at all levels with decision-relevant, impartial, expert information from across the geosciences. The program uses a multi-faceted approach to reach different decision maker groups, including policy makers and government employees at the federal, state and local level. We discuss the challenges the Critical Issues program has overcome in representing the geosciences to decision makers in a cohesive fashion such that decision makers can access the information they need, while at the same time becoming aware of the breadth of information the geosciences has to offer, and the value of including geoscience in the decision-making process. References: Wilson, C.E. (2014) Status of the Geoscience Workforce 2014. American Geological Institute. Alexandria, VA.

  6. Final Report on Geoscience Center Research (United States)


    to such images for the purposes of parameter estimation taxis ratio, canting angle) of raindrops, and for classifying raindrops in a raindrop/ encoding and visualization of tumorous prostate glands. This application initially showed how biopsy sections relate spatially with tumors. There

  7. A project-centered undergraduate geoscience curriculum model (United States)

    Kelso, P.; Brown, L.


    Lake Superior State University, a comprehensive rural public university with approximately 10% Native-Americans enrolled, located in Michigan's eastern Upper Peninsula, U.S.A., has redesigned it's undergraduate geology major by developing an entire curriculum around a project-centered integration of geoscience sub-disciplines. Our model, adapted from modern educational theory, advocates sub-discipline integration by implementing problem-based learning through coursework that develops students' intellectual skills and engages them in using complex reasoning in real-world contexts. Students in this new curriculum will actively discover how to learn about a new geologic province, what questions to ask in approaching problems, where and how to find answers, and how to apply knowledge to solving problems. To accomplish our goals, we redesigned our pedagogy for all courses by creating active learning environments including cooperative learning, jigsaw methodologies, debates, investigation oriented laboratories, use of case studies, writing and communication intensive exercises, and research experiences. Fundamental sub-discipline concepts were identified by our national survey and are presented in the context of sequentially ordered problems that reflect increasing geological complexity. All courses above first year incorporate significant field experience. Our lower division courses include a two semester sequence of physical and historical geology in which physical processes are discussed in the context of their historical extension and one semester of structure/tectonics and mineralogy/petrology. The lower division culminates with a three week introductory field geology course. Our upper division courses include hydrologic systems, environmental systems, geochemical systems, tectonic systems, geophysical systems, clastic systems, carbonate systems, two seminar courses, and advanced field geology. The two field courses, offered in different geologic provinces, provide

  8. Examining the Professional Development Experiences and Non-Technical Skills Desired for Geoscience Employment (United States)

    Houlton, H. R.; Ricci, J.; Wilson, C. E.; Keane, C.


    Professional development experiences, such as internships, research presentations and professional network building, are becoming increasingly important to enhance students' employability post-graduation. The practical, non-technical skills that are important for succeeding during these professional development experiences, such as public speaking, project management, ethical practices and writing, transition well and are imperative to the workplace. Thereby, graduates who have honed these skills are more competitive candidates for geoscience employment. Fortunately, the geoscience community recognizes the importance of these professional development opportunities and the skills required to successfully complete them, and are giving students the chance to practice non-technical skills while they are still enrolled in academic programs. The American Geosciences Institute has collected data regarding students' professional development experiences, including the preparation they receive in the corresponding non-technical skills. This talk will discuss the findings of two of AGI's survey efforts - the Geoscience Student Exit Survey and the Geoscience Careers Master's Preparation Survey (NSF: 1202707). Specifically, data highlighting the role played by internships, career opportunities and the complimentary non-technical skills will be discussed. As a practical guide, events informed by this research, such as AGI's professional development opportunities, networking luncheons and internships, will also be included.

  9. Social Technologies to Jump Start Geoscience Careers (United States)

    Keane, Christopher; Martinez, Cynthia; Gonzales, Leila


    Collaborative and social technologies have been increasingly used to facilitate distributed data collection and observation in science. However, "Web 2.0" and basic social media are seeing limited coordinated use in building student and early-career geoscientists knowledge and understanding of the profession and career for which they have undertaken. The current generation of geology students and early career professionals are used to ready access to myriad of information and interaction opportunities, but they remain largely unaware about the geoscience profession, what the full scope of their opportunities are, and how to reach across institutional and subdisciplinary boundaries to build their own professional network. The American Geological Institute Workforce Program has tracked and supported the human resources of the geosciences since 1952. With the looming retirement of Baby Boomers, increasing demand for quality geoscientists, and a continued modest supply of students entering the geosciences, AGI is working to strengthen the human resource pipeline in the geosciences globally. One aspect of this effort is the GeoConnection Network, which is an integrated set of social networking, media sharing and communication Web 2.0 applications designed to engage students in thinking about careers in the geosciences and enabling them to build their own personal professional network. Developed by the American Geological Institute (AGI), GeoConnection links practicing and prospective geoscientists in an informal setting to share information about the geoscience profession, including student and career opportunities, current events, and future trends in the geosciences. The network includes a Facebook fan page, YouTube Channel, Twitter account and GeoSpectrum blog, with the goal of helping science organizations and departments recruit future talent to the geoscience workforce. On the social-networking platform, Facebook, the GeoConnection page is a forum for students and

  10. Abiding by codes of ethics and codes of conduct imposed on members of learned and professional geoscience institutions and - a tiresome formality or a win-win for scientific and professional integrity and protection of the public? (United States)

    Allington, Ruth; Fernandez, Isabel


    In 2012, the International Union of Geological Sciences (IUGS) formed the Task Group on Global Geoscience Professionalism ("TG-GGP") to bring together the expanding network of organizations around the world whose primary purpose is self-regulation of geoscience practice. An important part of TG-GGP's mission is to foster a shared understanding of aspects of professionalism relevant to individual scientists and applied practitioners working in one or more sectors of the wider geoscience profession (e.g. research, teaching, industry, geoscience communication and government service). These may be summarised as competence, ethical practice, and professional, technical and scientific accountability. Legal regimes for the oversight of registered or licensed professionals differ around the world and in many jurisdictions there is no registration or licensure with the force of law. However, principles of peer-based self-regulation universally apply. This makes professional geoscience organisations ideal settings within which geoscientists can debate and agree what society should expect of us in the range of roles we fulfil. They can provide the structures needed to best determine what expectations, in the public interest, are appropriate for us collectively to impose on each other. They can also provide the structures for the development of associated procedures necessary to identify and discipline those who do not live up to the expected standards of behaviour established by consensus between peers. Codes of Ethics (sometimes referred to as Codes of Conduct), to which all members of all major professional and/or scientific geoscience organizations are bound (whether or not they are registered or hold professional qualifications awarded by those organisations), incorporate such traditional tenets as: safeguarding the health and safety of the public, scientific integrity, and fairness. Codes also increasingly include obligations concerning welfare of the environment and

  11. Undergraduate Geoscience Education in the United States: Helping Faculty to Meet Changing Expectations (United States)

    Manduca, C.; Mogk, D.


    In the past two decades, undergraduate geoscience education in the United States has undergone substantial changes in its goals, methods, and content, reflecting changes in our societal needs, major improvements in our understanding of how students learn, and the advent of a systems approach to understanding the Earth. Looking in an integrated fashion at US undergraduate education across the spectrum of institutional settings shows that in aggregate, our goals have broadened from a focus primarily on training future scientists to include major efforts to improve preparation for future teachers and to strengthen the understanding of science and geoscience in the broader student population. Supporting a more diverse population of students and increasing the diversity of the geoscience workforce are also priorities. Recommendations for strengthening undergraduate geoscience education to meet these changing circumstances were put forward in Shaping the Future of Undergraduate Earth Science Education: An Earth System Approach published by the AGU in 1997 (Ireton, Manduca, and Mogk). The report recommended two major changes: 1) development of an Earth System approach as the backbone of geoscience education to tie instruction in the various disciplines into a cohesive study of the Earth and 2) implementation of effective teaching strategies based on research on learning. Since 1997 major strides have been made in supporting geoscience faculty in making these changes. Building on the work of individuals, three important community-wide efforts have been established. 1) Professional societies have increased their support for educational programs, expanded education sessions and fostered a variety of workshops in conjunction with national and regional meetings. 2) The Digital Library for Earth System Education is being developed to enable sharing of resources and to provide a virtual community center. 3) The On the Cutting Edge faculty professional development program

  12. IUGS Commission on Geoscience Education, Training and Technology Transfer (COGE)

    Institute of Scientific and Technical Information of China (English)

    Gary Lewis; Wesley Hill


    @@ Background and history on the Commission on Geoscience Education Our history In previous years, IUGS conducted a programme in the area of Geoscience Education and Training. The programme was organised under the status of a Working Group or a Commission.

  13. Exploratory Factor Analysis as a Construct Validation Tool: (Mis)applications in Applied Linguistics Research (United States)

    Karami, Hossein


    Factor analysis has been frequently exploited in applied research to provide evidence about the underlying factors in various measurement instruments. A close inspection of a large number of studies published in leading applied linguistic journals shows that there is a misconception among applied linguists as to the relative merits of exploratory…

  14. Applied mathematical sciences research at Argonne, April 1, 1981-March 31, 1982

    Energy Technology Data Exchange (ETDEWEB)

    Pieper, G.W. (ed.)


    This report reviews the research activities in Applied Mathematical Sciences at Argonne National Laboratory for the period April 1, 1981, through March 31, 1982. The body of the report discusses various projects carried out in three major areas of research: applied analysis, computational mathematics, and software engineering. Information on section staff, visitors, workshops, and seminars is found in the appendices.

  15. Making Life Easier with Effort: Basic Findings and Applied Research on Response Effort. (United States)

    Friman, Patrick C.; Poling, Alan


    This paper summarizes basic research on response effort in diverse applied areas including deceleration of aberrant behavior, attention deficit-hyperactivity disorder, oral habits, littering, and problem solving. The paper concludes that response effort as an independent variable has potent effects, and research exploring the applied benefits of…

  16. Research in progress in applied mathematics, numerical analysis, and computer science (United States)


    Research conducted at the Institute in Science and Engineering in applied mathematics, numerical analysis, and computer science is summarized. The Institute conducts unclassified basic research in applied mathematics in order to extend and improve problem solving capabilities in science and engineering, particularly in aeronautics and space.

  17. R as a Lingua Franca: Advantages of Using R for Quantitative Research in Applied Linguistics (United States)

    Mizumoto, Atsushi; Plonsky, Luke


    In this article, we suggest that using R, a statistical software environment, is advantageous for quantitative researchers in applied linguistics. We first provide a brief overview of the reasons why R is popular among researchers in other fields and why we recommend its use for analyses in applied linguistics. In order to illustrate these…

  18. Mobility of College-level Student Ideas as Revealed by the Geoscience Concept Inventory: Implications for Teaching Introductory Courses (United States)

    Anderson, S. W.; Libarkin, J.


    Through the administration of the Geoscience Concept Inventory (GCI) in over 50 introductory college-level geosciences courses nationwide, we identified little to no pre- to post-test gain on many of the GCI questions. Although it may seem reasonable to attribute these results to the entrenchment of ideas in this population of students, a closer look at individual matched pre- and post-tests shows that student ideas about the Earth are extremely mobile rather than entrenched. For those individual GCI questions that show low or no gain from pre- to post-test, individual students are typically switching between wrong answers, rather than holding on to one particular alternative conception. Of the 21 GCI questions that showed a normalized gain of college-level geosciences courses. We suggest that students may have difficulty settling on a correct geosciences conception because of the shaky supporting-science underpinnings upon which these geosciences concepts are built. An important question stemming from these results is "when does learning occur in college-level courses?". Given that students in most introductory geosciences courses show little or no overall gain over the course of a semester, when do our geology majors gain a firm conceptual understanding of our fundamental geosciences topics, what role does the introductory course play in their learning, and are there strategies that can be employed in introductory courses to enhance learning for those students who will only take one college-level geosciences course? In light of findings available from GCI and other research, we suggest that longitudinal studies of learning in the geosciences are needed for time periods longer than a semester, and that more attention be paid to when conceptual change occurs for our majors.

  19. Information needs and behaviors of geoscience educators: A grounded theory study (United States)

    Aber, Susan Ward


    Geoscience educators use a variety of resources and resource formats in their classroom teaching to facilitate student understanding of concepts and processes that define subject areas considered in the realm of geoscience. In this study of information needs and behaviors of geoscience educators, the researcher found that participants preferred visual media such as personal photographic and digital images, as well as published figures, animations, and cartoons, and that participants bypassed their academic libraries to meet these information needs. In order to investigate the role of information in developing introductory geoscience course and instruction, a grounded theory study was conducted through a qualitative paradigm with an interpretive approach and naturalistic inquiry. The theoretical and methodological framework was constructivism and sense-making. Research questions were posited on the nature of geoscience subject areas and the resources and resource formats used in conveying geoscience topics to science and non-science majors, as well as educators' preferences and concerns with curriculum and instruction. The underlying framework was to investigate the place of the academic library and librarian in the sense-making, constructivist approach of geoscience educators. A purposive sample of seven geoscience educators from four universities located in mid-western United States was identified as exemplary teachers by department chairpersons. A triangulation of data collection methods included semi-structured interviews, document reviews, and classroom observations. Data were analyzed using the constant comparative method, which included coding, categorizing, and interpreting for patterns and relationships. Contextual factors were identified and a simple model resulted showing the role of information in teaching for these participants. While participants developed lectures and demonstrations using intrapersonal knowledge and personal collections, one barrier

  20. Applied Health Technology – a New Research Discipline at Blekinge Institute of Technology


    Olander, Ewy; Nilsson, Lina


    Since spring 2008 is Applied Health Technology a new research discipline at Blekinge Institute of Technology. The discipline has been developed in collaboration between the School of Health Science and the School of Technology. In the general syllabus for third-cycle (doctoral research) studies in Applied Health Technology underlines the value of multidisciplinary as well as interdisciplinary research, focusing on how Caring and Nursing Sciences, Public Health Science and Clinical Medical Sci...

  1. Rethinking Research Ethics in Contemporary Applied Linguistics: The Tension between Macroethical and Microethical Perspectives in Situated Research (United States)

    Kubanyiova, Magdalena


    The prominent current tendency in applied linguistics to situate its theory and research has seen parallel shifts in the type of research methodologies being employed. Increasingly, decontextualized laboratory methodologies are giving way to more holistic approaches, and these, in turn, involve a significant shift in the researchers' roles,…

  2. International Geoscience Programme(IGCP) Guidelines

    Institute of Scientific and Technical Information of China (English)


    @@ 2006 Call for Project Proposals (31 July 2006) The International Geoscience Programme (IGCP) is launching its 2006 call/or project proposals. The proposal guidelines and application forms were updated in order to bring them in line with the requirements of the strategic plan of UNESCO and IUGS (International Union of Geological Sciences), the two co-sponsoring partners.

  3. Research in Applied Linguistics: Becoming a Discerning Consumer, 2nd Edition (United States)

    Perry, Fred L., Jr.


    Newly updated and revised, this popular text provides a solid introduction to the foundations of research methods, with the goal of enabling students and professionals in the field of applied linguistics to become not just casual consumers of research who passively read bits and pieces of a research article, but "discerning" consumers able to…

  4. Practice-Oriented Research: The Extended Function of Dutch Universities of Applied Sciences

    NARCIS (Netherlands)

    Weert, de Egbert; Leijnse, Frans; Kyvik, Svein; Lepori, Benedetto


    This chapter seeks to analyse the legitimate research claims of Dutch universities of applied sciences. It subsequently analyses how the research function has been conceived in national policies, the emerging funding schemes for research, strategies developed by these institutions regarding organisa

  5. Applying Effective Instruction Research Findings in Teacher Education: Six Influencing Factors. (United States)

    Gee, Elsie W.

    This preliminary report provides an overview of the Applying Research to Teacher Education (ARTE) Research Utilization in Elementary Teacher Education (RUETE) study which began in 1982 and will continue through 1985. ARTE: RUETE explores specific processes for incorporating recent research findings of effective instruction into preservice…

  6. Applying Research to Teacher Education: The University of Utah's Collaborative Approach. First Year Preliminary Report. (United States)

    Driscoll, Amy

    In 1983, the National Institute of Education funded the Far West Laboratory for Educational Research and Development to conduct a study, Applying Research to Teacher Education (ARTE) Research Utilization in Elementary Teacher Education (RUETE). The ARTE:RUETE study's purpose is to develop preservice instruction incorporating current research…

  7. Communicating Geosciences with Policy-makers: a Grand Challenge for Academia (United States)

    Harrison, W. J.; Walls, M. R.; Boland, M. A.


    Geoscientists interested in the broader societal impacts of their research can make a meaningful contribution to policy making in our changing world. Nevertheless, policy and public decision making are the least frequently cited Broader Impacts in proposals and funded projects within NSF's Geosciences Directorate. Academic institutions can play a lead role by introducing this societal dimension of our profession to beginning students, and by enabling interdisciplinary research and promoting communication pathways for experienced career geoscientists. Within the academic environment, the public interface of the geosciences can be presented through curriculum content and creative programs. These include undergraduate minors in economics or public policy designed for scientists and engineers, and internships with policy makers. Federal research institutions and other organizations provide valuable policy-relevant experiences for students. Academic institutions have the key freedom of mission to tackle interdisciplinary research challenges at the interface of geoscience and policy. They develop long-standing relationships with research partners, including national laboratories and state geological surveys, whose work may support policy development and analysis at local, state, regional, and national levels. CSM's Payne Institute for Earth Resources awards mini-grants for teams of researchers to develop collaborative research efforts between engineering/science and policy researchers. Current work in the areas of nuclear generation and the costs of climate policy and on policy alternatives for capturing fugitive methane emissions are examples of work at the interface between the geosciences and public policy. With academic engagement, geoscientists can steward their intellectual output when non-scientists translate geoscience information and concepts into action through public policies.

  8. Geo-Needs: Investigating Models for Improved Access to Geosciences at Two-Year and Minority-Serving Colleges (United States)

    Her, X.; Turner, S. P.; LaDue, N.; Bentley, A. P.; Petcovic, H. L.; Mogk, D. W.; Cartwright, T.


    Geosciences are an important field of study for the future of energy, water, climate resilience, and infrastructure in our country. Geoscience related job growth is expected to steeply climb in the United States, however many of these positions will be left unfilled. One untapped population of Americans is ethnic minorities, who have historically been underrepresented in the geosciences. In 2010, the Bureau of Labor Statistics (BLS) reported that black and Hispanics only make 8.1% of geoscience related jobs, while making up nearly 30% of Americans. This pattern of underrepresentation has been attributed to 1) minority serving institutions lacking geoscience programs, 2) low interest in the outdoors due to a lack of opportunity, and 3) negative and low prestigious perceptions of geoscientists. Our project focuses specifically on the first barrier. Preliminary research suggests that only 2.5% of institutions with geoscience programs (n= 609) are also minority serving. The goals of the Geo-Needs project are to identify obstacles to and opportunities for better use of existing educational resources in two-year and minority-serving institutions, and to explore "ideal" models of resources, partnerships, and other support for geoscience faculty and students in these institutions. Four focus group meetings were held in August 2015 bringing administrators, instructors, resource providers, and education researchers together to discuss and develop these models. Activities at the meetings included small and whole group prompted discussion, guest speakers, gallery walks, and individual reflection. Content from the focus group meetings is available at the project's website: Findings from the meetings can be used to inform future efforts aimed toward broadening access to the geosciences at two-year and minority-serving institutions.

  9. Applying Indigenist Research Methodologies in Health Research: Experiences in the Borderlands (United States)

    Saunders, Vicki; West, Roianne; Usher, Kim


    For Indigenous scholars in health sciences, finding "ways of doing" research that value Indigenist knowledge is an important consideration. Indigenist research methodology offers a useful alternative to mainstream research approaches that draw upon orthodox Western knowledge systems. However, as Indigenous research approaches have only recently…

  10. Applying Indigenist Research Methodologies in Health Research: Experiences in the Borderlands (United States)

    Saunders, Vicki; West, Roianne; Usher, Kim


    For Indigenous scholars in health sciences, finding "ways of doing" research that value Indigenist knowledge is an important consideration. Indigenist research methodology offers a useful alternative to mainstream research approaches that draw upon orthodox Western knowledge systems. However, as Indigenous research approaches have only…

  11. Integrated Design for Geoscience Education with Upward Bound Students (United States)

    Cartwright, T. J.; Hogsett, M.; Ensign, T. I.; Hemler, D.


    implications of the project. On-line learning modules continue to expand the number impacted by the program. Through collaboration with both GLOBE headquarters and the GLOBE Country Coordinator, an international teacher workshop in Costa Rica provided GLOBE training and equipment necessary for a true GLOBE student collaborative project. IDGE continues to expand the impacts beyond the limited participants involved in the program. Overall, the preliminary results show sufficient data that IDGE is successful in: exposing students to an inquiry-based hands-on science experience; providing a positive challenging yet enjoyable science experience for students; providing a science experience which was different than their formal science class; enhancing or maintaining positive attitudes and habits of mind about science; improving some student perceptions of science, science processes, and the nature of science; increasing the number of students considering science careers; enhanced student understanding of the importance of science knowledge and coursework for everyone. Through the practice of field research and inquiry-based learning, the quality of geoscience instruction is inspiring a new generation of geoscientists. This work was supported in part by the National Science Foundation under award #0735596. Any opinions, findings, conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect those of the National Science Foundation.

  12. Recruitment Strategies for Geoscience Majors: Conceptual Framework and Practical Suggestions (United States)

    Richardson, R. M.; Eyles, C.; Ormand, C. J.


    One characteristic of strong geoscience departments is that they recruit and retain quality students. In a survey to over 900 geoscience departments in the US and Canada several years ago nearly 90% of respondents indicated that recruiting and retaining students was important. Two years ago we offered a pre-GSA workshop on recruiting and retaining students that attracted over 30 participants from over 20 different institutions, from liberal arts colleges to state universities to research intensive universities. Since then we have sought additional feedback from a presentation to the AGU Heads & Chairs at a Fall AGU meeting, and most recently from a workshop on strengthening geoscience programs in June 2009. In all of these settings, a number of themes and concrete strategies have emerged. Key themes included strategies internal to the department/institution; strategies that reach beyond the department/institution; determining how scalable/transferable strategies that work in one setting are to your own setting; identifying measures of success; and developing or improving on an existing action plan specific to your departmental/institutional setting. The full results of all of these efforts to distill best practices in recruiting students will be shared at the Fall AGU meeting, but some of the best practices for strategies local to the department/institution include: 1) focusing on introductory classes (having the faculty who are most successful in that setting teach them, having one faculty member make a common presentation to all classes about what one can do with a geoscience major, offering topical seminars, etc.); 2) informing students of career opportunities (inviting alumni back to talk to students, using AGI resources, etc.,); 3) creating common space for students to work, study, and be a community; 4) inviting all students earning an ‘A’ (or ‘B’) in introductory classes to a departmental event just for them; and 5) creating a field trip for incoming

  13. Deep Vadose Zone–Applied Field Research Initiative Fiscal Year 2012 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    Wellman, Dawn M.; Truex, Michael J.; Johnson, Timothy C.; Bunn, Amoret L.; Golovich, Elizabeth C.


    This annual report describes the background of the Deep Vadose Zone-Applied Field Research Initiative, and some of the programmatic approaches and transformational technologies in groundwater and deep vadose zone remediation developed during fiscal year 2012.

  14. Research in progress in applied mathematics, numerical analysis, fluid mechanics, and computer science (United States)


    This report summarizes research conducted at the Institute for Computer Applications in Science and Engineering in applied mathematics, fluid mechanics, and computer science during the period October 1, 1993 through March 31, 1994. The major categories of the current ICASE research program are: (1) applied and numerical mathematics, including numerical analysis and algorithm development; (2) theoretical and computational research in fluid mechanics in selected areas of interest to LaRC, including acoustics and combustion; (3) experimental research in transition and turbulence and aerodynamics involving LaRC facilities and scientists; and (4) computer science.

  15. A Ten-Year Retrospective Look at the NSF/GEO Opportunities for Enhancing Diversity in the Geosciences (OEDG) Program (United States)

    Karsten, J. L.


    The Opportunities for Enhancing Diversity in the Geosciences (OEDG) program - established in 2002 by the National Science Foundation's Directorate for Geosciences (GEO) - has been a mainstay in GEO's efforts to broaden participation of traditionally underrepresented minorities in the geosciences. The primary goal of the OEDG program has been to engage a diverse population of students in learning about - and pursuing advanced degrees and careers in - the geosciences. Raising public awareness of the importance and relevance of the geosciences among diverse audiences has been a secondary goal. During the past decade, the OEDG program has supported a variety of planning grants, proof-of-concept projects, and larger full-scale implementation efforts across the U.S. These projects have contributed a rich array of culturally-tailored resources for learning about geoscience career pathways and opportunities to participate in geoscience research experiences. OEDG has also developed networking and mentoring programs tailored for diverse student audiences, as well as the educators who work with them, and has helped to build capacity in the geosciences at minority-serving institutions. Perhaps the most important legacy of the OEDG program has been the establishment of an enthusiastic and effective community of educators, administrators, students and organizations dedicated to increasing diversity in the geosciences. Evaluation data collected for individual OEDG projects has helped to improve the impact of specific projects and increase our understanding of which approaches are more successful in achieving OEDG program goals. In addition, GEO has supported a decade-long, program-wide evaluation of the OEDG portfolio through a contract to the American Institutes for Research (AIR). Synthesis of results from both the project- and program-level evaluation activities has identified evidence-based 'best practices' that are essential for achieving success in broadening participation

  16. Building on the Success of Increasing Diversity in the Geosciences: A Bridging Program From Middle School to College (United States)

    Kovacs, T.; Robinson, D.; Suleiman, A.; Maggi, B.


    A bridging program to increase the diversity in the geosciences was created at Hampton University (HU) to inspire underrepresented minorities to pursue an educational path that advances them towards careers in the geosciences. Three objectives were met to achieve this goal. First, we inspired a diverse population of middle and high school students outside of the classroom by providing an after school geoscience club, a middle school geoscience summer enrichment camp, and a research/mentorship program for high school students. Second, we helped fill the need for geoscience curriculum content requested of science teachers who work primarily with underrepresented middle school populations by providing a professional development workshop at HU led by geoscience professors, teachers, and science educators. Third, we built on the successful atmospheric sciences research and active Ph.D. program by developing our geoscience curriculum including the formation of a new space, earth, and atmospheric sciences minor. All workshops, camps, and clubs have been full or nearly full each year despite restrictions on participants repeating any of the programs. The new minor has 11 registered undergraduates and the total number of students in these classes has been increasing. Participants of all programs gave the quality of the program good ratings and participant perceptions and knowledge improved throughout the programs based on pre-, formative, and summative assessments. The ultimate goal is to increase the number of degrees granted to underrepresented minorities in the geosciences. We have built a solid foundation with our minor that prepares students for graduate degrees in the geosciences and offer a graduate degree in physics with a concentration in the atmospheric sciences. However, it's from the geoscience pipeline that students will come into our academic programs. We expect to continue to develop these formal and informal education programs to increase our reputation and

  17. Visualizing Geoscience Concepts Through Textbook Art (Invited) (United States)

    Marshak, S.


    Many, if not most, college students taking an introductory geoscience course purchase, borrow, download, or rent one of several commercial textbooks currently available. Art used in such books has evolved significantly over the past three decades. Concepts once conveyed only by black-and-white line drawings, drawn by hand in ink, have gradually been replaced by full-color images produced digitally. Multiple high-end graphics programs, when used in combination, can yield images with super-realistic textures and palettes so that, in effect, anything that a book author wants to be drawn can be drawn. Because of the time and skill level involved in producing the art, the process commonly involves professional artists. In order to produce high-quality geoscience art that can help students (who are, by definition, non-experts) understand concepts, develop geoscience intuition, and hone their spatial-visualization skills, an author must address two problems. First, design a figure which can convey complex concepts through visual elements that resonate with students. Second, communicate the concepts to a professional artist who does not necessarily have personal expertise in geoscience, so that the figure rendered is both technically correct and visually engaging. The ultimate goal of geoscience art in textbooks is to produce an image that avoids unnecessary complexity that could distract from the art's theme, includes sufficient realism for a non-expert to relate the image to the real world, provides a personal context in which to interpret the figure, and has a layout that conveys relationships among multiple components of the art so that the art tells a coherent story. To accomplish this goal, a chain of choices--about perspective, sizes, colors, texture, labeling, captioning, line widths, and fonts--must be made in collaboration between the author and artist. In the new world of computer-aided learning, figures must also be able to work both on the computer screen and

  18. The Evolution of Building a Diverse Geosciences in the United States (United States)

    Keane, Christopher; Houlton, Heather; Leahy, P. Patrick


    Since the 1960s, the United States has had numerous systematic efforts to support diversity in all parts of society. The American Geosciences Institute has had active ongoing research and diversity promotion programs in the geosciences since 1972. Over this time, the drivers and goals of promoting a diverse discipline have evolved, including in the scope and definition of diversity. The success of these efforts have been mixed, largely driven by wildly different responses by specific gender and racial subsets of the population. Some critical cultural barriers have been solidly identified and mitigation approaches promoted. For example, the use of field work in promotion of geoscience careers and education programs is viewed as a distinct negative by many African American and Hispanic communities as it equates geoscience as non-professional work. Similarly, efforts at improving gender diversity have had great success, especially in the private sector, as life-balance policies and mitigations of implicit biases have been addressed. Yet success in addressing some of these cultural and behavioral issues has also started to unveil other overarching factors, such as the role of socio-economic and geographic location. Recent critical changes in the definition of diversity that have been implemented will be discussed. These include dropping Asian races as underrepresented, the introduction of the multiracial definition, evolution of the nature of gender, and the increased awareness of persons with disabilities as a critical diverse population. This has been coupled with dramatic changes in the drivers for promoting diversity in the geosciences in the U.S. from a moral and ethical good to one of economic imperative and recognizing the way to access the best talent in the population as the U.S. rapidly approaches being a majority minority society. These changes are leading to new approaches and strategies, for which we will highlight specific programmatic efforts both by AGI

  19. Leslie S. Greenberg: Award for Distinguished Professional Contributions to Applied Research (United States)

    American Psychologist, 2012


    Presents a short biography of the 2012 winner of the American Psychological Association's Award for Distinguished Professional Contributions to Applied Research. Leslie S. Greenberg is an exemplary scientist-practitioner whose pioneering work has significantly altered the landscape of the field of psychotherapy research and practice. His seminal…

  20. French Immersion Research in Canada: Recent Contributions to SLA and Applied Linguistics. (United States)

    Swain, Merrill


    Discusses two questions: (1) What has the recent research conducted in French immersion programs in Canada contributed to understanding of second language acquisition?; and (2) What has it contributed to the broader field of applied linguistics? Considers research in the coming decade, and discusses obstacles that may be faced in Canada in…

  1. Understanding the Conceptual Development Phase of Applied Theory-Building Research: A Grounded Approach (United States)

    Storberg-Walker, Julia


    This article presents a provisional grounded theory of conceptual development for applied theory-building research. The theory described here extends the understanding of the components of conceptual development and provides generalized relations among the components. The conceptual development phase of theory-building research has been widely…

  2. A Research on the E-commerce Applied to the Construction of Marketing Model

    Institute of Scientific and Technical Information of China (English)


    The function of E-commerce is becoming more and more widely applied to many fields,which bring about some new challenges and opportunities for the construction of marketing model.It is proved that the more E-com- merce applied to the construction of marketing,the more precision of forecast for the enterprises can acquire,which is very helpful for the production and marketing of enterprises.Therefore,the research on the E-commerce applied to the construction of marketing is popular today.This paper applie...

  3. Interdisciplinary Research Drivers and Serendipity Factor: An Applied Mechanics Perspective on Some Past Application Platforms

    Directory of Open Access Journals (Sweden)

    Chih-Kung Lee


    Full Text Available In recent years, interdisciplinary research has been the main focus of academia, research institutes, and industry.  Out of the many interdisciplinary research fields, Applied Mechanics continues to play an essential role due to its fundamental nature and its influence to many emerging fields.  The search for the appropriate interdisciplinary organization, either through a matrix organization or by a formal organization, has been a focus of concern within the Applied Mechanics leadership.  This paper represents an attempt to reflect on the lessons learned from the rise and fall of the field of Theoretical & Applied Mechanics at various universities and institutes around the world.  In looking through the historical development of the field of Applied Mechanics, we can gain a better understanding of the driving forces of interdisciplinary research organizations.  The collaborations and competition between the various disciplinary research institutes and the more traditional engineering/applied sciences departments will be briefly discussed.  Based on a series of research and development experiences using Nano-BioMEMS/NEMS, Smart Structures, and Electrets as application platforms, we will look at the theoretical architecture and corresponding applications to further strengthen our claim that successful interdisciplinary applied science research requires the establishment of strong industries.  We look at today’s perspective with an added serendipity factor.  This is to say that a prepared mind, derived from a well-trained background, along with an open mind connected to other collaborative research efforts, will know when to seize the moment as new innovative opportunities arise.  We can look on same examples from the past to obtain some hints on how to further foster today’s interdisciplinary research.  The influence of an interdisciplinary organizational structure, its teamwork collaborative framework as well as the influence of


    Directory of Open Access Journals (Sweden)

    Angela Kleiman


    Full Text Available The paper discusses three aspects in New Literacies Studies research in Brazil, as developed by researchers from an Applied Linguistics perspective. This perspective contributes to determine epistemological, theoretical, and methodological issues in literacy research, as well as ethical issues in regard to the relationships established with the groups who participate in the research. Taking examples from our research group, known as Teacher Literacy Research Group (created in 1991, we discuss transdisciplinary relationships built between Literacy and Dialogism as developed by Bakhtin and his Circle. Another intersecting point between Applied Linguistics and Literacy Research discussed in the paper is the relation between ethics and research in the two fields; a third one has to do with the methods adopted: as in several other studies in Applied Linguistics, in literacy studies, ethnography has been the preferred methodology. We conclude pointing out that an approach that conceives its object in a transdisciplinary manner and adopts ethical criteria as a research validation element favors the development of critical studies about writing in which the choice of problems and research contexts support the social goals of the investigated groups.

  5. The Canadian Geoscience Education Network: a collaborative grassroots effort to support geoscience education (United States)

    Bank, C.; Halfkenny, B.; Hymers, L.; Clinton, L.; Heenan, S.; Jackson, D.; Nowlan, G.; Haidl, F.; Vodden, C.


    The Canadian Geoscience Education Network (CGEN) numbers over 300 members who are active in promoting geoscience to the general public and especially in schools. Our membership spreads from coast to coast to coast in Canada and represents the wide range of geosciences. Most members work in education, government, industry, academia, or not-for-profit organizations. Our common goals are to (1) provide resources to teachers for the K-12 curriculum, (2) encourage students to pursue higher education and a rewarding career in geoscience, and (3) lobby to effect change to the school curriculum. Our strength is grounded in a grassroots approach (eg, regional chapters), flexible organization, and emphasis on a cost-effective style. Together we have created and maintain resources for teachers; for example, EdGEO (local workshops for teachers), Geoscape (community-based posters and lesson plans), and EarthNet (virtual resource centre). A new website showcases careers in the Earth sciences. CGEN members ensure that these resources remain current, promote them at individual outreach activities, and see to it that they are maintained. Although we have limited funding we draw strength from the networks of our members and capitalize on partnerships between seemingly disparate organizations and groups to get experts involved in the education of future geoscientists. (Details about CGEN may be found at

  6. Ancient Secrets of Open-Source Geoscience Software Management (Invited) (United States)

    Zender, C. S.


    Geoscience research often involves complex models and data analysis designed to test increasingly sophisticated theories. Re-use and improvement of existing models and tools can be more efficient than their re-invention, and this re-use can accelerate knowledge generation and discovery. Open Source Software (OSS) is designed and intended to be re-used, extended, and improved. Hence Earth and Space Science Models (ESSMs) intended for community use are commonly distributed with OSS or OSS-like licenses. Why is it that, despite their permissive licenses, only a relatively small fraction of ESSMs receive community adoption, improvement, and extension? One reason is that developing community geoscience software remains a difficult and perilous exercise for the practicing researcher. This presentation will intercompare the rationale and results of different software management approaches taken in my dozen years as a developer and maintainer of, and participant in, four distinct ESSMs with 10 to 10,000 users. The primary lesson learned is that geoscience research is similar to the wider OSS universe in that most participants are motivated by the desire for greater professional recognition and attribution best summarized as "mindshare". ESSM adoption often hinges on whether the tension between users and developers for mindshare manifests as cooperation or competition. ESSM project management, therefore, should promote (but not require) recognition of all contributors. More practical model management practices include mailing lists, highly visible documentation, consistent APIs, regression tests, and periodic releases to improve features and fix bugs and builds. However, most ESSMs originate as working incarnations of short-term (~three year) research projects and, as such, lack permanent institutional support. Adhering to best software practices to transition these ESSMs from personal to community models often requires sacrificing research time. Recently, funding agencies

  7. Programming and Technology for Accessibility in Geoscience (United States)

    Sevre, E.; Lee, S.


    Many people, students and professors alike, shy away from learning to program because it is often believed to be something scary or unattainable. However, integration of programming into geoscience education can be a valuable tool for increasing the accessibility of content for all who are interested. It is my goal to dispel these myths and convince people that: 1) Students with disabilities can use programming to increase their role in the classroom, 2) Everyone can learn to write programs to simplify daily tasks, 3) With a deep understanding of the task, anyone can write a program to do a complex task, 4) Technology can be combined with programming to create an inclusive environment for all students of geoscience, and 5) More advanced knowledge of programming and technology can lead geoscientists to create software to serve as assistive technology in the classroom. It is my goal to share my experiences using technology to enhance the classroom experience as a way of addressing the aforementioned issues. Through my experience, I have found that programming skills can be included and learned by all to enhance the content of courses without detracting from curriculum. I hope that, through this knowledge, geoscience courses can become more accessible for people with disabilities by including programming and technology to the benefit of all involved.

  8. Addressing Issues of Broadening Participation Highlighted in the Report on the Future of Undergraduate Geoscience Education (United States)

    McDaris, J. R.; Manduca, C. A.; Macdonald, H.; Iverson, E. A. R.


    The final report for the Summit on the Future of Geoscience Education lays out a consensus on issues that must be tackled by the geoscience community collectively if there are to be enough qualified people to fill the large number of expected geoscience job vacancies over the coming decade. Focus areas cited in the report include: Strengthening the connections between two-year colleges and four-year institutions Sharing and making use of successful recruitment and retention practices for students from underrepresented groups Making students aware of high-quality job prospects in the geosciences as well as its societal relevance The InTeGrate STEP Center for the Geosciences, the Supporting and Advancing Geoscience Education at Two-Year Colleges (SAGE 2YC) program, and the Building Strong Geoscience Departments (BSGD) project together have developed a suite of web resources to help faculty and program leaders begin to address these and other issues. These resources address practices that support the whole student, both in the classroom and as a part of the co-curriculum as well as information on geoscience careers, guidance for developing coherent degree programs, practical advice for mentoring and advising, and many others. In addition to developing web resources, InTeGrate has also undertaken an effort to profile successful program practices at a variety of institutions. An analysis of these data shows several common themes (e.g. proactive marketing, community building, research experiences) that align well with the existing literature on what works to support student success. But there are also indications of different approaches and emphases between Minority Serving Institutions (MSIs) and Primarily White Institutions (PWIs) as well as between different kinds of MSIs. Highlighting the different strategies in use can point both MSIs and PWIs to possible alternate solutions to the challenges their students face. InTeGrate - http

  9. The Centre of High-Performance Scientific Computing, Geoverbund, ABC/J - Geosciences enabled by HPSC (United States)

    Kollet, Stefan; Görgen, Klaus; Vereecken, Harry; Gasper, Fabian; Hendricks-Franssen, Harrie-Jan; Keune, Jessica; Kulkarni, Ketan; Kurtz, Wolfgang; Sharples, Wendy; Shrestha, Prabhakar; Simmer, Clemens; Sulis, Mauro; Vanderborght, Jan


    The Centre of High-Performance Scientific Computing (HPSC TerrSys) was founded 2011 to establish a centre of competence in high-performance scientific computing in terrestrial systems and the geosciences enabling fundamental and applied geoscientific research in the Geoverbund ABC/J (geoscientfic research alliance of the Universities of Aachen, Cologne, Bonn and the Research Centre Jülich, Germany). The specific goals of HPSC TerrSys are to achieve relevance at the national and international level in (i) the development and application of HPSC technologies in the geoscientific community; (ii) student education; (iii) HPSC services and support also to the wider geoscientific community; and in (iv) the industry and public sectors via e.g., useful applications and data products. A key feature of HPSC TerrSys is the Simulation Laboratory Terrestrial Systems, which is located at the Jülich Supercomputing Centre (JSC) and provides extensive capabilities with respect to porting, profiling, tuning and performance monitoring of geoscientific software in JSC's supercomputing environment. We will present a summary of success stories of HPSC applications including integrated terrestrial model development, parallel profiling and its application from watersheds to the continent; massively parallel data assimilation using physics-based models and ensemble methods; quasi-operational terrestrial water and energy monitoring; and convection permitting climate simulations over Europe. The success stories stress the need for a formalized education of students in the application of HPSC technologies in future.

  10. Evaluation of research projects Perspectives for applied research in food and agriculture

    DEFF Research Database (Denmark)

    Pedersen, S.M.; Boesen, M.V.; Baker, D.


    In this study, the task of evaluating research projects’ relevance and scientific quality is addressed, and a pilot study is executed for five Danish food and agricultural research programmes. Literature reviewed emphasises the importance of context, of consistency and transparency and of the cos...

  11. Making Geoscience Data Relevant for Students, Teachers, and the Public (United States)

    Taber, M.; Ledley, T. S.; Prakash, A.; Domenico, B.


    The scientific data collected by government funded research belongs to the public. As such, the scientific and technical communities are responsible to make scientific data accessible and usable by the educational community. However, much geoscience data are difficult for educators and students to find and use. Such data are generally described by metadata that are narrowly focused and contain scientific language. Thus, data access presents a challenge to educators in determining if a particular dataset is relevant to their needs, and to effectively access and use the data. The AccessData project (EAR-0623136, EAR-0305058) has developed a model for bridging the scientific and educational communities to develop robust inquiry-based activities using scientific datasets in the form of Earth Exploration Toolbook (EET, chapters. EET chapters provide step-by-step instructions for accessing specific data and analyzing it with a software analysis tool to explore issues or concepts in science, technology, and mathematics. The AccessData model involves working directly with small teams made up of data providers from scientific data archives or research teams, data analysis tool specialists, scientists, curriculum developers, and educators (AccessData, The process involves a number of steps including 1) building of the team; 2) pre-workshop facilitation; 3) face-to-face 2.5 day workshop; 4) post-workshop follow-up; 5) completion and review of the EET chapter. The AccessData model has been evolved over a series of six annual workshops hosting ~10 teams each. This model has been expanded to other venues to explore expanding its scope and sustainable mechanisms. These venues include 1) workshops focused on the data collected by a large research program (RIDGE, EarthScope); 2) a workshop focused on developing a citizen scientist guide to conducting research; and 3) facilitating a team on an annual basis

  12. Developing a Geoscience Literacy Exam: Pushing Geoscience Literacy Assessment to New Levels (United States)

    Iverson, E. A.; Steer, D. N.; Manduca, C. A.


    InTeGrate is a community effort aimed at improving geoscience literacy and building a workforce that can use geoscience to solve societal issues. As part of this work we have developed a geoscience literacy assessment instrument to measure students' higher order thinking. This assessment is an important part of the development of curricula designed to increase geoscience literacy for all undergraduate students. To this end, we developed the Geoscience Literacy Exam (GLE) as one of the tools to quantify the effectiveness of these materials on students' understandings of geoscience literacy. The InTeGrate project is a 5-year, NSF-funded STEP Center grant in its first year of funding. Details concerning the project are found at The GLE instrument addresses content and concepts in the Earth, Climate, and Ocean Science literacy documents. The testing schema is organized into three levels of increasing complexity. Level 1 questions are single answer, understanding- or application-level multiple choice questions. For example, selecting which type of energy transfer is most responsible for the movement of tectonic plates. They are designed such that most introductory level students should be able to correctly answer after taking an introductory geoscience course. Level 2 questions are more advanced multiple answer/matching questions, at the understanding- through analysis-level. Students might be asked to determine the types of earth-atmosphere interactions that could result in changes to global temperatures in the event of a major volcanic eruption. Because the answers are more complicated, some introductory students and most advanced students should be able to respond correctly. Level 3 questions are analyzing- to evaluating-level short essays, such as describe the ways in which the atmosphere sustains life on Earth. These questions are designed such that introductory students could probably formulate a rudimentary response

  13. A roadmap for bridging basic and applied research in forensic entomology. (United States)

    Tomberlin, J K; Mohr, R; Benbow, M E; Tarone, A M; VanLaerhoven, S


    The National Research Council issued a report in 2009 that heavily criticized the forensic sciences. The report made several recommendations that if addressed would allow the forensic sciences to develop a stronger scientific foundation. We suggest a roadmap for decomposition ecology and forensic entomology hinging on a framework built on basic research concepts in ecology, evolution, and genetics. Unifying both basic and applied research fields under a common umbrella of terminology and structure would facilitate communication in the field and the production of scientific results. It would also help to identify novel research areas leading to a better understanding of principal underpinnings governing ecosystem structure, function, and evolution while increasing the accuracy of and ability to interpret entomological evidence collected from crime scenes. By following the proposed roadmap, a bridge can be built between basic and applied decomposition ecology research, culminating in science that could withstand the rigors of emerging legal and cultural expectations.

  14. The Public Communication of Geoscience (United States)

    Papatheodorou, Photini; Spathopoulos, Fivos


    Communication of scientific and technological developments to the public demands an in-depth understanding of relevant public perceptions and concerns and a resultant plan of action. Until recently, very little research and practice had been recorded on this front. The presentation wishes to promote the idea of dialogue as a tool for establishing public trust in scientific and technological development, in general. Different theoretical perspectives on public communication will be examined, as defined by current research. As a case study, the media coverage of shale gas and renewable energy sources projects around the world will be presented. The final proposition of the presentation will make the case of dialogue, as an effective form of engaging the public with scientific developments and will explore dialogic practices and their application in the fields of science and technology.

  15. Researching Creations: Applying Arts-Based Research to Bedouin Women's Drawings Ephrat Huss and Julie Cwikel

    Directory of Open Access Journals (Sweden)

    Ephrat Huss


    Full Text Available In this article, the author examines the combination of arts-based research and art therapy within Bedouin women's empowerment groups. The art fulfills a double role within the group of both helping to illuminate the women's self-defined concerns and goals, and simultaneously enriching and moving these goals forward. This creates a research tool that adheres to the feminist principles of finding new ways to learn from lower income women from a different culture, together with creating a research context that is of direct potential benefit and enrichment for the women. The author, through examples of the use of art within lower income Bedouin women's groups, examines the theoretical connection between arts-based research and art therapy, two areas that often overlap but whose connection has not been addressed theoretically.

  16. Developing Curriculum to Help Students Explore the Geosciences' Cultural Relevance (United States)

    Miller, G.; Schoof, J. T.; Therrell, M. D.


    Even though climate change and an unhealthy environment have a disproportionate affect on persons of color, there is a poor record of diversity in geoscience-related fields where researchers are investigating ways to improve the quality of the environment and human health. This low percentage of representation in the geosciences is equally troubling at the university where we are beginning the third and final year of a project funded through the National Science Foundation's (NSF) Opportunities to Enhance Diversity in the Geosciences (OEDG). The purpose of this project is to explore a novel approach to using the social sciences to help students, specifically underrepresented minorities, discover the geosciences' cultural relevance and consider a career in the earth, atmospheric, and ocean sciences. To date, over 800 college freshmen have participated in a design study to evaluate the curriculum efficacy of a geoscience reader. Over half of these participants are students of color. The reader we designed allows students to analyze multiple, and sometimes conflicting, sources such as peer-reviewed journal articles, political cartoons, and newspaper articles. The topic for investigation in the reader is the 1995 Chicago Heat Wave, a tragic event that killed over 700 residents. Students use this reader in a core university course required for entering freshmen with low reading comprehension scores on standardized tests. To support students' comprehension, evaluation, and corroboration of these sources, we incorporated instructional supports aligned with the principles of Universal Design for Learning (UDL), reciprocal teaching, historical reasoning, media literacy, and quantitative reasoning. Using a digital format allows students to access multiple versions of the sources they are analyzing and definitions of challenging vocabulary and scientific concepts. Qualitative and quantitative data collected from participating students and their instructors included focus

  17. Featuring dental education research: applying the principles of action research to improve teaching of dental prosthetics. (United States)

    Khan, S B


    This article focuses on educational research conducted at the newly merged UWC faculty of dentistry. The research emphasises the change in teaching methods employed to address the concerns experienced in teaching the new large classes as observed in the prosthetic techniques module. These educational interventions were conducted over 5 years and the study design included the principles of action research. Students were assisted in learning the theory of the practical procedures and the subsequent completion of these procedures with the accurate application of the theoretical concepts. Changes in the teaching methods enhanced students learning and successful translation of the theory into practical work. The active learning exercises incorporated into the teaching further motivated and assisted students with deep learning. The debates indicated that students know and accept the value of the module as part of their training.

  18. The Other Kind of Rock: Diversifying Geosciences Outreach with some Tools from Rock n' Roll (United States)

    Konecky, B. L.


    Music can communicate science at times when words and graphs fail. For this reason, earth scientists are increasingly using sounds and rhythms to capture the public's imagination while demonstrating technical concepts and sharing the societal impacts of their research. Musical approaches reach across the boundaries of perceptual learning style, age, gender, and life history. Music therefore makes science (and scientists) more approachable to a wide range of people. But in addition to its unique power for engaging diverse audiences, music-based outreach also sets an example for the geosciences' untapped potential as a public empowerment tool. Like many STEM fields, the music industry has long been criticized for poor inclusion of women and minorities. Rock n' roll camps for girls are answering this challenge by teaching music as a vessel for empowerment, with principles that can easily be adapted to geoscience outreach and education. The process of observing the planet is innately empowering; outreach programs that emphasize this in their design will take their impacts to the next level. Just as diversity in the scientific community benefits geoscience, geoscience also benefits diverse communities. This presentation will outline some principles and applications from the music world to achieving both of these aims.

  19. Forensic geoscience: applications of geology, geomorphology and geophysics to criminal investigations (United States)

    Ruffell, Alastair; McKinley, Jennifer


    One hundred years ago Georg Popp became the first scientist to present in court a case where the geological makeup of soils was used to secure a criminal conviction. Subsequently there have been significant advances in the theory and practice of forensic geoscience: many of them subsequent to the seminal publication of "Forensic Geology" by Murray and Tedrow [Murray, R., Tedrow, J.C.F. 1975 (republished 1986). Forensic Geology: Earth Sciences and Criminal Investigation. Rutgers University Press, New York, 240 pp.]. Our review places historical development in the modern context of how the allied disciplines of geology (mineralogy, sedimentology, microscopy), geophysics, soil science, microbiology, anthropology and geomorphology have been used as tool to aid forensic (domestic, serious, terrorist and international) crime investigations. The latter half of this paper uses the concept of scales of investigation, from large-scale landforms through to microscopic particles as a method of categorising the large number of geoscience applications to criminal investigation. Forensic geoscience has traditionally used established non-forensic techniques: 100 years after Popp's seminal work, research into forensic geoscience is beginning to lead, as opposed to follow other scientific disciplines.

  20. Carleton College: Geoscience Education for the Liberal Arts and the Geoscience Profession (United States)

    Savina, M. E.


    Carleton College is a small (current enrollment ~1950), four-year, residential liberal arts college that has graduated more than 900 geology majors since the inception of the geology department inception in 1933. Since 1974, an average of more than 20 geology students have graduated each year. The department curriculum aims to educate at least six overlapping groups of students, who, however, may not place themselves into one of these groups until well after graduating. These groups include students in non- science majors who take geology for breadth or because of interest; science majors; geology majors who end up in other professions; and geology majors who pursue careers related to geology, most of whom ultimately earn a higher, professional degree. Goals for these groups of students differ and the department focuses its curriculum on developing skills and providing student experiences that will serve all groups well. The department has a strong focus on field geology and communication skills, solving complex problems in many project-based courses (culminating in a senior independent project for each student), and much group work. These characteristics correlate well with Carleton institutional goals. The senior independent projects (all reported in written, visual and oral forms) form the basis for outcomes assessment. We also regularly survey alumni who are in graduate programs of all kinds (not just geoscience), asking them about how well their undergraduate education has prepared them. Finally, the staff meet at least annually to discuss the curriculum, its goals, values, skills and content, and do a formal self-study with external and internal reviewers at least once a decade. The success of Carleton geology alumni in government, research, industry, education, consulting and other professions is the ultimate assessment tool.

  1. A Categorical Framework for Model Classification in the Geosciences (United States)

    Hauhs, Michael; Trancón y Widemann, Baltasar; Lange, Holger


    Models have a mixed record of success in the geosciences. In meteorology, model development and implementation has been among the first and most successful examples of triggering computer technology in science. On the other hand, notorious problems such as the 'equifinality issue' in hydrology lead to a rather mixed reputation of models in other areas. The most successful models in geosciences are applications of dynamic systems theory to non-living systems or phenomena. Thus, we start from the hypothesis that the success of model applications relates to the influence of life on the phenomenon under study. We thus focus on the (formal) representation of life in models. The aim is to investigate whether disappointment in model performance is due to system properties such as heterogeneity and historicity of ecosystems, or rather reflects an abstraction and formalisation problem at a fundamental level. As a formal framework for this investigation, we use category theory as applied in computer science to specify behaviour at an interface. Its methods have been developed for translating and comparing formal structures among different application areas and seems highly suited for a classification of the current "model zoo" in the geosciences. The approach is rather abstract, with a high degree of generality but a low level of expressibility. Here, category theory will be employed to check the consistency of assumptions about life in different models. It will be shown that it is sufficient to distinguish just four logical cases to check for consistency of model content. All four cases can be formalised as variants of coalgebra-algebra homomorphisms. It can be demonstrated that transitions between the four variants affect the relevant observations (time series or spatial maps), the formalisms used (equations, decision trees) and the test criteria of success (prediction, classification) of the resulting model types. We will present examples from hydrology and ecology in

  2. Escalation research: providing new frontiers for applying behavior analysis to organizational behavior. (United States)

    Goltz, S M


    Decision fiascoes such as escalation of commitment, the tendency of decision makers to "throw good money after bad," can have serious consequences for organizations and are therefore of great interest in applied research. This paper discusses the use of behavior analysis in organizational behavior research on escalation. Among the most significant aspects of behavior-analytic research on escalation is that it has indicated that both the patterns of outcomes that decision makers have experienced for past decisions and the patterns of responses that they make are critical for understanding escalation. This research has also stimulated the refinement of methods by researchers to better assess decision making and the role reinforcement plays in it. Finally, behavior-analytic escalation research has not only indicated the utility of reinforcement principles for predicting more complex human behavior but has also suggested some additional areas for future exploration of decision making using behavior analysis.

  3. Geoscience on television : a review of science communication literature in the context of geosciences

    NARCIS (Netherlands)

    Hut, W R.; Land, A.M.; Smeets, I.; Stoof, C.


    Geoscience communication is becoming increasingly important as climate change increases the occurrence of natural hazards around the world. Few geoscientists are trained in effective science communication, and awareness of the formal science communication literature is also low. This can be challeng

  4. The Case for Infusing Quantitative Literacy into Introductory Geoscience Courses

    Directory of Open Access Journals (Sweden)

    Jennifer M. Wenner


    Full Text Available We present the case for introductory geoscience courses as model venues for increasing the quantitative literacy (QL of large numbers of the college-educated population. The geosciences provide meaningful context for a number of fundamental mathematical concepts that are revisited several times in a single course. Using some best practices from the mathematics education community surrounding problem solving, calculus reform, pre-college mathematics and five geoscience/math workshops, geoscience and mathematics faculty have identified five pedagogical ideas to increase the QL of the students who populate introductory geoscience courses. These five ideas include techniques such as: place mathematical concepts in context, use multiple representations, use technology appropriately, work in groups, and do multiple-day, in-depth problems that place quantitative skills in multiple contexts. We discuss the pedagogical underpinnings of these five ideas and illustrate some ways that the geosciences represent ideal places to use these techniques. However, the inclusion of QL in introductory courses is often met with resistance at all levels. Faculty who wish to include quantitative content must use creative means to break down barriers of public perception of geoscience as qualitative, administrative worry that enrollments will drop and faculty resistance to change. Novel ways to infuse QL into geoscience classrooms include use of web-based resources, shadow courses, setting clear expectations, and promoting quantitative geoscience to the general public. In order to help faculty increase the QL of geoscience students, a community-built faculty-centered web resource (Teaching Quantitative Skills in the Geosciences houses multiple examples that implement the five best practices of QL throughout the geoscience curriculum. We direct faculty to three portions of the web resource: Teaching Quantitative Literacy, QL activities, and the 2006 workshop website

  5. Applied Linguistics Project: Student-Led Computer Assisted Research in High School EAL/EAP (United States)

    Bohát, Róbert; Rödlingová, Beata; Horáková, Nina


    The Applied Linguistics Project (ALP) started at the International School of Prague (ISP) in 2013. Every year, Grade 9 English as an Additional Language (EAL) students identify an area of learning in need of improvement and design a research method followed by data collection and analysis using basic computer software tools or online corpora.…

  6. Investigating Move Structure of English Applied Linguistics Research Article Discussions Published in International and Thai Journals (United States)

    Amnuai, Wirada; Wannaruk, Anchalee


    This study investigates the rhetorical move structure of English applied linguistic research article Discussions published in Thai and international journals. Two corpora comprising of 30 Thai Discussions and 30 international Discussions were analyzed using Yang & Allison's (2003) move model. Based on the analysis, both similarities and…

  7. Incorporating Applied Undergraduate Research in Senior to Graduate Level Remote Sensing Courses (United States)

    Henley, Richard B.; Unger, Daniel R.; Kulhavy, David L.; Hung, I-Kuai


    An Arthur Temple College of Forestry and Agriculture (ATCOFA) senior spatial science undergraduate student engaged in a multi-course undergraduate research project to expand his expertise in remote sensing and assess the applied instruction methodology employed within ATCOFA. The project consisted of performing a change detection…

  8. Pursuing Quality Evidence: Applying Single-Subject Quality Indicators to Non-Experimental Qualitative Educational Research (United States)

    Stodden, Robert A.; Yamamoto, Kathryn K.; Folk, Eric; Kong, Eran; Otsuji, Derek N.


    The need for quality evidence in support of strategies used while working with persons with autism and intellectual disability (ID) has been long been recognized by researchers and practitioners. The authors reviewed and applied a number of evidence-based indicators, developed through the "What Works Clearinghouse" (WWC), to the conduct…

  9. Applying Quality Indicators to Single-Case Research Designs Used in Special Education: A Systematic Review (United States)

    Moeller, Jeremy D.; Dattilo, John; Rusch, Frank


    This study examined how specific guidelines and heuristics have been used to identify methodological rigor associated with single-case research designs based on quality indicators developed by Horner et al. Specifically, this article describes how literature reviews have applied Horner et al.'s quality indicators and evidence-based criteria.…

  10. Serendipity: Genesis of the Electrochemical Instrumentation at Princeton Applied Research Corporation (United States)

    Flato, J. B.


    Princeton Applied Research Corporation (PAR) was a small electronic instrument company in early 1960s but once they entered electrochemistry they were very successful. Since then they have developed and designed successful instruments with their tremendous knowledge and have made great contribution to the field of analytical chemistry.

  11. A Model Collaborative Platform for Geoscience Education (United States)

    Fox, S.; Manduca, C. A.; Iverson, E. A.


    Over the last decade SERC at Carleton College has developed a collaborative platform for geoscience education that has served dozens of projects, thousands of community authors and millions of visitors. The platform combines a custom technical infrastructure: the SERC Content Management system (CMS), and a set of strategies for building web-resources that can be disseminated through a project site, reused by other projects (with attribution) or accessed via an integrated geoscience education resource drawing from all projects using the platform. The core tools of the CMS support geoscience education projects in building project-specific websites. Each project uses the CMS to engage their specific community in collecting, authoring and disseminating the materials of interest to them. At the same time the use of a shared central infrastructure allows cross-fertilization among these project websites. Projects are encouraged to use common templates and common controlled vocabularies for organizing and displaying their resources. This standardization is then leveraged through cross-project search indexing which allow projects to easily incorporate materials from other projects within their own collection in ways that are relevant and automated. A number of tools are also in place to help visitors move among project websites based on their personal interests. Related links help visitors discover content related topically to their current location that is in a 'separate' project. A 'best bets' feature in search helps guide visitors to pages that are good starting places to explore resources on a given topic across the entire range of hosted projects. In many cases these are 'site guide' pages created specifically to promote a cross-project view of the available resources. In addition to supporting the cross-project exploration of specific themes the CMS also allows visitors to view the combined suite of resources authored by any particular community member. Automatically

  12. Geoscience Training for NASA Astronaut Candidates (United States)

    Young, K. E.; Evans, C. A.; Bleacher, J. E.; Graff, T. G.; Zeigler, R.


    After being selected to the astronaut office, crewmembers go through an initial two year training flow, astronaut candidacy, where they learn the basic skills necessary for spaceflight. While the bulk of astronaut candidate training currently centers on the multiple subjects required for ISS operations (EVA skills, Russian language, ISS systems, etc.), training also includes geoscience training designed to train crewmembers in Earth observations, teach astronauts about other planetary systems, and provide field training designed to investigate field operations and boost team skills. This training goes back to Apollo training and has evolved to support ISS operations and future exploration missions.

  13. Program for fundamental and applied research of fuel cells in VNIIEF

    Energy Technology Data Exchange (ETDEWEB)

    Anisin, A.V.; Borisseonock, V.A.; Novitskii, Y.Z.; Potyomckin, G.A.


    According to VNIIEF the integral part of development of fuel cell power plants is fundamental and applied research. This paper describes areas of research on molten carbonate fuel cells. Topics include the development of mathematical models for porous electrodes, thin film electrolytes, the possibility of solid nickel anodes, model of activation polarization of anode, electrolyte with high solubility of oxygen. Other areas include research on a stationary mode of stack operation, anticorrosion coatings, impedance diagnostic methods, ultrasound diagnostics, radiation treatments, an air aluminium cell, and alternative catalysts for low temperature fuel cells.

  14. Final Technical Report for "Applied Mathematics Research: Simulation Based Optimization and Application to Electromagnetic Inverse Problems"

    Energy Technology Data Exchange (ETDEWEB)

    Haber, Eldad


    The focus of research was: Developing adaptive mesh for the solution of Maxwell's equations; Developing a parallel framework for time dependent inverse Maxwell's equations; Developing multilevel methods for optimization problems with inequal- ity constraints; A new inversion code for inverse Maxwell's equations in the 0th frequency (DC resistivity); A new inversion code for inverse Maxwell's equations in low frequency regime. Although the research concentrated on electromagnetic forward and in- verse problems the results of the research was applied to the problem of image registration.

  15. A Collaborative Effort to Increase Enrollment and Retention in Geoscience Majors in North Carolina (United States)

    Thomas, C. J.; Fountain, J. C.; Bartek, C. S.; Tang, G.


    Under an NSF Opportunities for Enhancement of Diversity in Geosciences grant, the Department of Marine, Earth and Atmospheric Sciences at North Carolina State University partnered with NC A&T University, a HBCU, to implement a multi-faceted effort to increase enrollment and retention in geoscience majors, with particular emphasis on under represented groups. New student recruitment is facilitated by a trained graduate student who visits high schools and presents a multi-media presentation on research at NCSU and career opportunities in the geosciences. Interested high school students are then invited to participate in a hands-on, summer science camp. Community college students are recruited through a new introductory geology course developed for and offered at Robeson Community College (77% of students from under represented groups). NC A&T has developed a track in their physics curriculum to prepare students for a geophysics career. The track includes a planned semester in residence at NCSU. Students who choose to enroll at NCSU, register for an introductory course developed as part of our NSF STEP grant, Environmental Issues in Water Resources, during which geoscience careers are highlighted and in-class research focuses on a local watershed. The emphasis on undergraduate research continues with Environmental Geology, an upper division course in which the entire class studies water and sediment contamination on local watersheds. All courses developed build upon our physics department's successful model of integrating lectures and laboratories and engaging first-year students in group-oriented, undergraduate research ( Following the group research courses, advanced undergraduate students are placed in traditional research labs with faculty mentors while participating in a career development seminar in which research methods, proposal writing and presentation skills are introduced. Tutoring and mentoring programs provide

  16. Innovation and entrepreneurship in geosciences: challenges and opportunities for oil and gas production in marginal fields; Inovacao e empreendedorismo em geociencias: desafios e oportunidades para a producao de petroleo e gas em campos marginais

    Energy Technology Data Exchange (ETDEWEB)

    Rodrigues, Livia da Silva Modesto [Universidade do Estado da Bahia (UNEB), Salvador, BA (Brazil); Universidade Salvador (UNIFACS), BA (Brazil); Fundacao Visconde de Cairu, Salvador, BA (Brazil); Ferreira, Doneivan Fernandes [Universidade Federal da Bahia (UFBA), BA (Brazil)


    The purpose of this paper is to provide a conceptual perspective for the analysis of entrepreneurial behavior and the implementation of a innovation and applied research culture on the niche of marginal oil and gas production in Brazil. Among other topics discussed, there is the conceptual approach of entrepreneurship and innovation, its correlation to the geosciences field, the importance of applied research in the segment, the innovative environment in business and Academia and regulatory issues (Innovation Law and 'Lei do Bem'). The culture of innovation and entrepreneurship in the field of Geosciences should be embodied in the Upstream Segment, highlighting the opportunities represented by geo-knowledge and entrepreneurship, service, technical expertise, and even by the capacity to elaborate a Business Plan Document. The methodology used was literature research through existing publications, books, magazines, web sites, seminars and interaction with players in the niche of production in marginal fields, based on interviews and content analysis, and on the experience of the Group of Applied Research CNPq 'Production of Oil and Gas Marginal Fields' experienced at the Federal University of Bahia. (author)

  17. Selected case studies of technology transfer from mission-oriented applied research

    Energy Technology Data Exchange (ETDEWEB)

    Daellenbach, K.K.; Watts, R.L.; Young, J.K. (Pacific Northwest Lab., Richland, WA (United States)); Abarcar, R.B. (Energetics, Inc., Columbia, MD (United States))


    The US Department of Energy (DOE) Advanced Industrial Concepts Division (AICD) under the Office of Industrial Technologies (OIT) supports interdisciplinary applied research and exploratory development that will expand the knowledge base to enable industry to improve its energy efficiency and its capability to use alternative energy resources. AICD capitalizes on scientific and technical advances from the United States and abroad, applying them to address critical technical needs of American industry. As a result, AICD research and development products are many and varied, and the effective transfer of these products to diverse targeted users requires different strategies as well. This paper describes the products of AICD research, how they are transferred to potential users, and how actual transfer is determined.

  18. G.I.F.K. project: Geosciences Information For Kids (United States)

    Merlini, Anna Elisabetta; Grieco, Giovanni; Evardi, Mara; Oneta, Cristina; Invernizzi, Nicoletta; Aiello, Caterina


    Our GIFK program was born after the GIFT experience in 2015 when "The Geco" association attended the workshop focused on mineral resources topics. With an extremely clear vision of the fragility of our planet in relation to our "exploiting" society, we felt the need to find a new way to expose young generations to geoscience topics. With this awareness, a new scientific path for young students, named GIFK -Geosciences Information for Kids- has been created. Thanks to this program, young generations of students are involved in geoscience topics in order to bring up a more eco-aware generation in the future. Particularly, in Italy, we do need new didactic tools to bring kids into science. As part of the classic science program, often teachers do not have time to discuss about the current facts related to our planet and often students do not receive any type of "contact" with the daily scientific events from the school. This program is aimed to introduce small kids, from kindergarten to primary school, to Earth related issues. The key for the educational success is to give children the possibility to get involved in recent scientific information and to plunge into science topics. The connection with up to date scientific research or even just scientific news allows us to use media as a reinforcing tool, and provides a strong link to everyday life. In particular, the first project developed within the GIFK program deals with the amazing recent Sentinel missions performed by ESA (European Space Agency), related to the observation of the Earth from space. The main aim of this project is to discuss about environmental and exploitation problems that the Earth is facing, using satellite images in order to observe direct changes to the Earth surface overtime. Pupils are led to notice and understand how close the relation between daily life and planet Earth is and how important our behavior is even in small acts. Observing the Earth from space and in the Solar System context

  19. Strength Through Options: Providing Choices for Undergraduate Education in the Geosciences (United States)

    Furman, T.; Freeman, K. H.; Faculty, D.


    Undergraduate major enrollments in the Department of Geosciences at Penn State have held steady over the past 5 years despite generally declining national trends. We have successfully recruited and retained new students through intensive advising coupled with innovative curricular revision aimed to meet an array of students' educational and career goals. Our focus is on degree programs that reflect emerging interdisciplinary trends in both employment and student interest, and are designed to attract individuals from underrepresented groups. In addition to a traditional Geosciences BS program we offer a rigorous integrated Earth Sciences BS and a Geosciences BA tailored to students with interests in education and environmental law. The Earth Sciences BS incorporates course work from Geosciences, Geography and Meterology, and requires completion of an interdisciplinary minor (e.g., Climatology, Marine Sciences, Global Business Strategies). A new Geobiology BS program will attract majors with interests at the intersection of the earth and life sciences. The curriculum includes both paleontological and biogeochemical coursework, and is also tailored to accommodate pre-medicine students. We are working actively to recruit African-American students. A new minor in Science and Technology in Africa crosses disciplinary boundaries to educate students from the humanities as well as sciences. Longitudinal recruitment programs include summer research group experiences for high school students, summer research mentorships for college students, and dual undergraduate degree programs with HBCUs. Research is a fundamental component of every student's degree program. We require a capstone independent thesis as well as a field program for Geosciences and Geobiology BS students, and we encourage all students to pursue research as early as the freshman year. A new 5-year combined BS-MS program will enable outstanding students to carry their undergraduate research further before

  20. Geoscience communication in Namibia: YES Network Namibia spreading the message to young scientists (United States)

    Mhopjeni, Kombada


    The Young Earth Scientists (YES) Network is an international association for early-career geoscientists under the age of 35 years that was formed as a result of the International Year of Planet Earth (IYPE) in 2007. YES Network aims to establish an interdisciplinary global network of early-career geoscientists to solve societal issues/challenges using geosciences, promote scientific research and interdisciplinary networking, and support professional development of early-career geoscientists. The Network has several National Chapters including one in Namibia. YES Network Namibia (YNN) was formed in 2009, at the closing ceremony of IYPE in Portugal and YNN was consolidated in 2013 with the current set-up. YNN supports the activities and goals of the main YES Network at national level providing a platform for young Namibian scientists with a passion to network, information on geoscience opportunities and promoting earth sciences. Currently most of the members are geoscientists from the Geological Survey of Namibia (GSN) and University of Namibia. In 2015, YNN plans to carry out two workshops on career guidance, establish a mentorship program involving alumni and experienced industry experts, and increase involvement in outreach activities, mainly targeting high school pupils. Network members will participate in a range of educational activities such as school career and science fairs communicating geoscience to the general public, learners and students. The community outreach programmes are carried out to increase awareness of the role geosciences play in society. In addition, YNN will continue to promote interactive collaboration between the University of Namibia, Geological Survey of Namibia (GSN) and Geological Society of Namibia. Despite the numerous potential opportunities YNN offers young scientists in Namibia and its presence on all major social media platforms, the Network faces several challenges. One notable challenge the Network faces is indifference among

  1. Making a Difference: a Global Geoscience Initiative (United States)

    Nickless, E.


    Since 2009, an informal group, comprising four former board members of the International Year of Planet Earth, has been promoting the concept of a so-called Global Geoscientific Initiative. The GGI should: i.Be inclusive, involve a geoscience community, which is broad both in terms of discipline and nationality, and involve the social sciences; ii.Have a clear socio-economic context and global societal relevance; iii.Focus on a globally significant science theme and preferably involve global processes; iv.Attract the support of geoscientific communities, funding agencies, governments and other institutions in many countries, under the umbrella of UNESCO, ICSU and its geoscientific unions. A series of five town hall meetings have been held at which usually three invited, well-respected figures from the geoscientific community gave presentations. Those presentations were followed by discussion about the importance or otherwise of particular areas of science, and the need to engage better with legislators, policy makers, the media and the lay public. No one challenged the desirability of a large-scale programme that would attract researchers from many geoscientific disciplines and potentially involve the geo-unions. The discussions can be summarised under three broad themes: i.Mineral and hydrocarbon resources and their waste products; ii.Living with natural hazards; iii.Strategic Earth science in Africa through the Africa Alive corridors. During the course of development of the GGI, ICSU has issued a number of papers, most recently a strategic plan, covering the period 2012-2017, working parties have been undertaking foresight analysis and there have also been discussions concerning regional environmental change: human action and adaptation with the question "what does it take to meet the Belmont challenge?". The Belmont Forum brings together a number of funding agencies and could provide the resource to enable some initiative to go forward. More recently a programme

  2. Embedding Data Stewardship in Geoscience Australia (United States)

    Bastrakova, I.; Fyfe, S.


    Ten years of technological innovation now enable vast amounts of data to be collected, managed, processed and shared. At the same time, organisations have witnessed government legislative and policy requirements for open access to public sector data, and a demand for flexibility in access to data by both machine-to-machine and human consumption. Geoscience Australia (GA) has adopted Data Stewardship as an organisation-wide initiative to improve the way we manage and share our data. The benefits to GA including: - Consolidated understanding of GA's data assets and their value to the Agency; - Recognition of the significant role of data custodianship and data management; - Well-defined governance, policies, standards, practices and accountabilities that promote the accessibility, quality and interoperability of GA's data; - Integration of disparate data sets into cohesive information products available online in real time and equally accessible to researchers, government, industry and the public. Although the theory behind data stewardship is well-defined and accepted and the benefits are generally well-understood, practical implementation requires an organisation to prepare for a long-term commitment of resources, both financial and human. Fundamentally this involves: 1. Raising awareness in the organisation of the need for data stewardship and the challenges this entails; 2. Establishing a data stewardship framework including a data governance office to set policy and drive organisational change; and 3. Embedding the functions and a culture of data stewardship into business as usual operations. GA holds a vast amount of data ranging from petabytes of Big Data to significant quantities of relatively small ';long tail' geoscientific observations and measurements. Over the past four years, GA has undertaken strategic activities that prepare us for Data Stewardship: - Organisation-wide audits of GA's data holdings and identification of custodians for each dataset

  3. Masculinity theory in applied research with men and boys with intellectual disability. (United States)

    Wilson, Nathan John; Shuttleworth, Russell; Stancliffe, Roger; Parmenter, Trevor


    Researchers in intellectual disability have had limited theoretical engagement with mainstream theories of masculinity. In this article, the authors consider what mainstream theories of masculinity may offer to applied research on, and hence to therapeutic interventions with, men and boys with intellectual disability. An example from one research project that explored male sexual health illustrates how using masculinity theory provided greater insight into gendered data. Finally, we discuss the following five topics to illustrate how researchers might use theories of masculinity: (a) fathering, (b) male physical expression, (c) sexual expression, (d) men's health, and (e) underweight and obesity. Theories of masculinity offer an additional framework to analyze and conceptualize gendered data; we challenge researchers to engage with this body of work.

  4. Machine learning in geosciences and remote sensing

    Institute of Scientific and Technical Information of China (English)

    David J. Lary; Amir H. Alavi; Amir H. Gandomi; Annette L. Walker


    Learning incorporates a broad range of complex procedures. Machine learning (ML) is a subdivision of artificial intelligence based on the biological learning process. The ML approach deals with the design of algorithms to learn from machine readable data. ML covers main domains such as data mining, difficult-to-program applications, and software applications. It is a collection of a variety of algorithms (e.g. neural networks, support vector machines, self-organizing map, decision trees, random forests, case-based reasoning, genetic programming, etc.) that can provide multivariate, nonlinear, nonparametric regres-sion or classification. The modeling capabilities of the ML-based methods have resulted in their extensive applications in science and engineering. Herein, the role of ML as an effective approach for solving problems in geosciences and remote sensing will be highlighted. The unique features of some of the ML techniques will be outlined with a specific attention to genetic programming paradigm. Furthermore, nonparametric regression and classification illustrative examples are presented to demonstrate the ef-ficiency of ML for tackling the geosciences and remote sensing problems.

  5. Applied solid state science advances in materials and device research 3

    CERN Document Server

    Wolfe, Raymond


    Applied Solid State Science: Advances in Materials and Device Research, Volume 3 covers reviews that are directly related to the two devices which are the epitome of applied solid state science - the transistor and the laser. The book discusses the physics of multilayer-gate IGFET memories; the application of the transient charge technique in drift velocity; and trapping in semiconductors and in materials used in xerography, nuclear particle detectors, and space-charge-limited devices; as well as thin film transistors. The text describes the manipulation of laser beams in solids and discusses

  6. Strategic Roadmap for the U.S. Geoscience Information Network (United States)

    Allison, M. L.; Gallagher, K. T.; Richard, S. M.; Hutchison, V. B.


    An external advisory working group has prepared a 5-year strategic roadmap for the U.S. Geoscience Information Network (USGIN). USGIN is a partnership of the Association of American State Geologists (AASG) and the U.S. Geological Survey (USGS), who formally agreed in 2007 to develop a national geoscience information framework that is distributed, interoperable, uses open source standards and common protocols, respects and acknowledges data ownership, fosters communities of practice to grow, and develops new Web services and clients. The intention of the USGIN is to benefit the geological surveys by reducing the cost of online data publication and access provision, and to benefit society through easier (lower cost) access to public domain geoscience data. This information supports environmental planning, resource-development, hazard mitigation design, and decision-making. USGIN supposes that sharing resources for system development and maintenance, standardizing data discovery and creating better access mechanisms, causes cost of data access and maintenance to be reduced. Standardization in a wide variety of business domains provides economic benefits that range between 0.2 and 0.9% of the gross national product. We suggest that the economic benefits of standardization also apply in the informatics domain. Standardized access to rich data resources will create collaborative opportunities in science and business. Development and use of shared protocols and interchange formats for data publication will create a market for user applications, facilitating geoscience data discovery and utility for the benefit of society. The USGIN Working Group envisions further development of tools and capabilities, in addition to extending the community of practice that currently involves geoinformatics practitioners from the USGS and AASG. Promoting engagement and participation of the state geological surveys, and increasing communication between the states, USGS, and other

  7. Helping geoscience students improve their numeracy using online quizzes (United States)

    Nuttall, Anne-Marie; Stott, Tim; Sparke, Shaun


    This project aims to help geoscience undergraduates improve their competence and confidence in numeracy using online quizzes delivered via the Blackboard virtual learning environment. Numeracy materials are being developed based on actual examples used in a range of modules in the geoscience degree programmes taught at Liverpool John Moores University. This is to ensure the subject relevance which is considered vital to maintaining student interest & motivation. These materials are delivered as a collection of Blackboard quizzes on specific numeracy topics which students can access at any point in their studies, either on or off campus. Feedback and guidance is provided immediately so that a student gains a confidence boost if they get it right or else they can learn where they have gone wrong. It is intended that positive feedback and repetition/reinforcement will help build the confidence in numeracy which so many students seem to lack. The anonymous nature of the delivery means that students avoid the common fear of ‘asking a stupid question' in class, which can hamper their progress. The fact that students can access the quizzes anytime and from anywhere means that they can use the materials flexibly to suit their individual learning needs. In preliminary research, 70% of the students asked felt that they were expected to have greater numeracy skills than they possessed and 65% said that they would use numeracy support materials on Blackboard. Once fully developed and evaluated, the Blackboard quizzes can be opened up to other departments who may wish to use them with their own students.

  8. 3D Printing and Digital Rock Physics for the Geosciences (United States)

    Martinez, M. J.; Yoon, H.; Dewers, T. A.


    Imaging techniques for the analysis of porous structures have revolutionized our ability to quantitatively characterize geomaterials. For example, digital representations of rock from CT images and physics modeling based on these pore structures provide the opportunity to further advance our quantitative understanding of fluid flow, geomechanics, and geochemistry, and the emergence of coupled behaviors. Additive manufacturing, commonly known as 3D printing, has revolutionized production of custom parts, to the point where parts might be cheaper to print than to make by traditional means in a plant and ship. Some key benefits of additive manufacturing include short lead times, complex shapes, parts on demand, zero required inventory and less material waste. Even subtractive processing, such as milling and etching, may be economized by additive manufacturing. For the geosciences, recent advances in 3D printing technology may be co-opted to print reproducible porous structures derived from CT-imaging of actual rocks for experimental testing. The use of 3D printed microstructure allows us to surmount typical problems associated with sample-to-sample heterogeneity that plague rock physics testing and to test material response independent from pore-structure variability. Together, imaging, digital rocks and 3D printing potentially enables a new workflow for understanding coupled geophysical processes in a real, but well-defined setting circumventing typical issues associated with reproducibility, enabling full characterization and thus connection of physical phenomena to structure. In this talk we will discuss the possibilities that the marriage of these technologies can bring to geosciences, including examples from our current research initiatives in developing constitutive laws for transport and geomechanics via digital rock physics. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of

  9. Geoscience terminology for data interchange: the CGI Geoscience Terminology Work Group (Invited) (United States)

    Richard, S. M.; Gtwg, G.


    The Commission for the Management and Application of Geoscience Information (CGI), a Commission of the International Union of Geological Sciences (IUGS) has formed the Geoscience Terminology Working Group (GTWG, geoscience_terminology_ working_group.html) to unify vocabulary development efforts of the Multhes working group of the 1990s, the Multilingual Thesaurus Working Group (MLT) formed in 2003, and the Concept Definition Task Group formed in 2007. The workgroup charge is to develop, review, adopt, publish, and steward vocabularies and associated documentation for use in geoscience information systems. The group will develop liaisons with other semantic interoperability groups to ensure cross-domain interoperability. The objective is to create vocabularies that bind URIs to geoscience concepts, and allow linking between concepts in the CGI vocabularies and other vocabularies such as SWEET, GEMET, and the GCMD. Representations of the concepts use SKOS RDF/XML and a standardized vocabulary service that to enable navigating links to concepts, accessing definitions, and obtaining language-localized labels for concepts. The SISSvoc service developed by CSIRO Australia has been deployed for CGI vocabulary services. Vocabularies are currently constructed by gathering candidate terms in spreadsheet tables because these are easy for text editing and review. When the vocabulary is mature, it is migrated into SKOS, an RDF application for encoding concepts with identifiers, definitions, source information, standard thesaurus type relationships, and language-localized labels. Each vocabulary is 'shepherded' by a GTWG member, who is responsible for organizing a team to compile a draft vocabulary, present it for review by appropriate authorities, respond to review comments, and determine when the vocabulary is ready for adoption by a vote of the workgroup. The first meeting of the work group took place, hosted by VSEGEI in St

  10. News "Speed Dating" for Scientists and Journalists: Conveying geoscience news in haiku-short form (United States)

    Dybas, C. L.


    As Rachel Carson wrote in her 1956 book, The Sense of Wonder, it's important for everyone to develop an appreciation of "land, sea and sky." One of the best ways of getting the word out to the public about these realms is through the media. How do scientists capture the interest of the press in a society with a seemingly shorter and shorter attention span? Studies show that as the amount of scientific jargon and number of complex concepts in a news story increase, "filter-feeding" by the public of that news declines. When scientific jargon/complex concepts are few, the public "consumes" much more news. These results also apply to news story headlines: shorter headlines get the most interest. Based on these findings, one organization has started an experiment in "scientific speed dating": giving presenters three minutes to discuss results. They may have discovered something: news coverage of the research has been excellent. In today's world, conveying news about the geosciences in haiku-short form may be the best way of relating the wonders of land, sea and sky.

  11. 100 years of applied psychology research on individual careers: From career management to retirement. (United States)

    Wang, Mo; Wanberg, Connie R


    This article surveys 100 years of research on career management and retirement, with a primary focus on work published in the Journal of Applied Psychology. Research on career management took off in the 1920s, with most attention devoted to the development and validation of career interest inventories. Over time, research expanded to attend to broader issues such as the predictors and outcomes of career interests and choice; the nature of career success and who achieves it; career transitions and adaptability to change; retirement decision making and adjustment; and bridge employment. In this article, we provide a timeline for the evolution of the career management and retirement literature, review major theoretical perspectives and findings on career management and retirement, and discuss important future research directions. (PsycINFO Database Record

  12. Geospatial Technology and Geosciences - Defining the skills and competencies in the geosciences needed to effectively use the technology (Invited) (United States)

    Johnson, A.


    Maps, spatial and temporal data and their use in analysis and visualization are integral components for studies in the geosciences. With the emergence of geospatial technology (Geographic Information Systems (GIS), remote sensing and imagery, Global Positioning Systems (GPS) and mobile technologies) scientists and the geosciences user community are now able to more easily accessed and share data, analyze their data and present their results. Educators are also incorporating geospatial technology into their geosciences programs by including an awareness of the technology in introductory courses to advanced courses exploring the capabilities to help answer complex questions in the geosciences. This paper will look how the new Geospatial Technology Competency Model from the Department of Labor can help ensure that geosciences programs address the skills and competencies identified by the workforce for geospatial technology as well as look at new tools created by the GeoTech Center to help do self and program assessments.

  13. The Application of Intensive Longitudinal Methods to Investigate Change: Stimulating the Field of Applied Family Research. (United States)

    Bamberger, Katharine T


    The use of intensive longitudinal methods (ILM)-rapid in situ assessment at micro timescales-can be overlaid on RCTs and other study designs in applied family research. Particularly, when done as part of a multiple timescale design-in bursts over macro timescales-ILM can advance the study of the mechanisms and effects of family interventions and processes of family change. ILM confers measurement benefits in accurately assessing momentary and variable experiences and captures fine-grained dynamic pictures of time-ordered processes. Thus, ILM allows opportunities to investigate new research questions about intervention effects on within-subject (i.e., within-person, within-family) variability (i.e., dynamic constructs) and about the time-ordered change process that interventions induce in families and family members beginning with the first intervention session. This paper discusses the need and rationale for applying ILM to family intervention evaluation, new research questions that can be addressed with ILM, example research using ILM in the related fields of basic family research and the evaluation of individual-based interventions. Finally, the paper touches on practical challenges and considerations associated with ILM and points readers to resources for the application of ILM.

  14. The 71F Advantage: Applying Army Research Psychology for Health and Performance Gains (United States)


    Duval, T.S. and Wicklund, R.A. (1972). A theory of objective self-awareness. New York: Academic. Ellis, W. (1997). A source book of Gestalt psychology ...Research Psychology for Health and Performance Gains 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER 5e...Form 298 (Rev. 8-98) Prescribed by ANSI Std Z39-18 The 71F Advantage: Applying Army Research Psychology for Health and Performance Gains Edited by

  15. The challenge of comparative health policy research for applied medical anthropology. (United States)

    Hill, C E


    In this paper I argue that medical anthropologists can work in settings outside of academia to effect policy and that this work can simultaneously contribute to scientific knowledge and to the discipline of anthropology. In doing this, I first discuss the concept of policy and bind these ideas within the framework of health policy. Then I discuss the roles of anthropologists in the health policy field and the problems of selecting issues for research and the concern about the dichotomy between pure and applied research. Finally, I review some key health policy issues in American society and discuss how medical anthropologists can work toward practicing their craft in practical ways.

  16. Analysis of Petroleum Technology Advances Through Applied Research by Independent Oil Producers

    Energy Technology Data Exchange (ETDEWEB)

    Brashear, Jerry P.; North, Walter B.; Thomas Charles P.; Becker, Alan B.; Faulder, David D.


    Petroleum Technology Advances Through Applied Research by Independent Oil Producers is a program of the National Oil Research Program, U.S. Department of Energy. Between 1995 and 1998, the program competitively selected and cost-shared twenty-two projects with small producers. The purpose was to involve small independent producers in testing technologies of interest to them that would advance (directly or indirectly) one or more of four national program objectives: (1) Extend the productive life of reservoirs; (2) Increase production and/or reserves; (3) Improve environmental performance; and (4) Broaden the exchange of technology information.

  17. Ufa scientific school by e. a. Mukhacheva: applied operational research problems


    Filippova, A.; Valiakhmetova, Yu; Karamova, L.


    The Ufa Scientific Group busy with the research of cutting-packing problems was founded more than 50 years ago in the Ufa Aviation Institute. The class of cutting-packing problems includes problems of various applied interpretation. They are regarded as NP-hart problems, and development and research of effective methods of their solution is actual nowadays. This paper is devoted to the review of the basic problems and the methods of their solution developed under the guidance of Prof. E. A. M...

  18. Research into practice: Collaboration for Leadership in Applied Health Research and Care (CLAHRC for Nottinghamshire, Derbyshire, Lincolnshire (NDL

    Directory of Open Access Journals (Sweden)

    Rowley Emma


    Full Text Available Abstract Background To address the problem of translation from research-based evidence to routine healthcare practice, the Collaboration for Leadership in Applied Health Research and Care for Nottinghamshire, Derbyshire, and Lincolnshire (CLAHRC-NDL was funded by the National Institute for Health Research as one of nine CLAHRCs across England. This paper outlines the underlying theory and its application that CLAHRC-NDL has adopted, as a case example that might be generalised to practice outside the CLAHRC, in comparison to alternative models of implementation. Discussion Conventional approaches to health research frequently generate evidence in isolation from the environment in which it is intended for use. The premise of the CLAHRC-NDL model is that barriers to implementation can be overcome if knowledge is co-produced by academic and clinical service staff, taking account of the organisational context in which it is to be applied. This approach is founded on organisational learning theory, recognising that change is a social and political phenomenon. Evidence is produced in real time, taking full account of the environment in which it is to be implemented. To support this process, senior health service staff are seconded to the CLAHRC as ‘diffusion fellows’ (DFs to actively bridge the research to practice gap by being a full member of both the research team and their area of clinical practice. To facilitate innovation and embed change in the local health community, existing communities of practice are enhanced and new ones are fostered around specific themes. Our approach has been adopted by 16 clinical research studies in the areas of mental health, children and young people, primary care, and stroke rehabilitation. Summary The CLAHRC-NDL model of implementation applies organisational learning theory by addressing the social and situational barriers and enablers to implementation, and adopting a philosophy of co-production. Two key

  19. Research methods applied to studies with active elderly: A literature review


    Martins, L; Baptista, J.; Arezes, P.


    In almost every developed and in developing countries, the elderly population is increasing. It is assumed that environments, products and services must be appropriate and accessible to them as many people, regarding their characteristics, abilities and limitations. The purpose of this paper is to establish an outlook about the methods that are usually applied in research involving active elderly at the development stages of products designed for that specific segment of the Society.

  20. Towards a Conceptual Design of a Cross-Domain Integrative Information System for the Geosciences (United States)

    Zaslavsky, I.; Richard, S. M.; Valentine, D. W.; Malik, T.; Gupta, A.


    As geoscientists increasingly focus on studying processes that span multiple research domains, there is an increased need for cross-domain interoperability solutions that can scale to the entire geosciences, bridging information and knowledge systems, models, software tools, as well as connecting researchers and organization. Creating a community-driven cyberinfrastructure (CI) to address the grand challenges of integrative Earth science research and education is the focus of EarthCube, a new research initiative of the U.S. National Science Foundation. We are approaching EarthCube design as a complex socio-technical system of systems, in which communication between various domain subsystems, people and organizations enables more comprehensive, data-intensive research designs and knowledge sharing. In particular, we focus on integrating 'traditional' layered CI components - including information sources, catalogs, vocabularies, services, analysis and modeling tools - with CI components supporting scholarly communication, self-organization and social networking (e.g. research profiles, Q&A systems, annotations), in a manner that follows and enhances existing patterns of data, information and knowledge exchange within and across geoscience domains. We describe an initial architecture design focused on enabling the CI to (a) provide an environment for scientifically sound information and software discovery and reuse; (b) evolve by factoring in the impact of maturing movements like linked data, 'big data', and social collaborations, as well as experience from work on large information systems in other domains; (c) handle the ever increasing volume, complexity and diversity of geoscience information; (d) incorporate new information and analytical requirements, tools, and techniques, and emerging types of earth observations and models; (e) accommodate different ideas and approaches to research and data stewardship; (f) be responsive to the existing and anticipated needs

  1. Fourth annual workshop on management in basic and applied research environments

    Energy Technology Data Exchange (ETDEWEB)

    Bodnarczuk, M.W. [ed.


    The struggle to develop quality management concepts that ``map`` onto the cultural and work practices found in basic and applied research environments has been (for better or for worse) an attempt to differentiate basic and applied research from the nuclear industry. In the first (1990) edition of this ``Music Book`` proceedings, almost every laboratory that participated had a quality program that was traceable to, based on, influenced by, or in reaction to the nuclear quality standard ASME-NQA-1. This 1993 edition of the ``Music Book`` is very different in that almost every laboratory has developed a quality program that is based on, traceable to, or heavily influenced by DOE 5700.6C (Quality Assurance) and the DOE Standard; Implementation Guide for Quality Assurance Programs for Basic and Applied Research (DOE-ER-STD-6001-92). In order to construct a context for what follows and properly introduce the contents of this book, we want to briefly recount some of the highlights of the events that brought about this change, from the perspective of one who participated in the process.

  2. Gender in the Geosciences: Factors Supporting the Recruitment and Retention of Women in the Undergraduate Major (United States)

    Riggs, E. M.; Sexton, J. M.; Pugh, K.; Bergstrom, C.; Parmley, R.; Phillips, M.


    The proportion of women earning undergraduate geoscience degrees has remained about 40% for over a decade. Little research has investigated why women select and persist in a geoscience major. This study addresses why students major in the geosciences and why some programs are more successful at recruiting and retaining female students. We collected interview and survey data from faculty and students at six public US universities. Four sites had a low proportion of female degree recipients ( 48%). 408 students (64% female) completed surveys. Interviews were conducted with 49 faculty members and 151 students. Survey data analysis showed that interest/identity and transformative experiences were significant predictors of students' decision to major in geoscience. Institutional barriers and supports were significant predictors of confidence in the major while connection to instructor predicted students' intent to major. Analysis of pre- and post-course surveys show that students with a greater connection to instructors and students whose instructors expressed more passion for the content also reported higher levels of transformative experiences. This effect was especially pronounced for women and was a significant predictor of persistence in the major. Qualitative data show differences in departmental practices and climate between low and high female graduation sites. High sites used many student-centered approaches to teaching, had extensive opportunities for and a high number of undergraduate students involved in research, and had many opportunities for faculty-student interaction outside of class. Low sites had few of these practices. Qualitative data also showed differences in the gendered equity climate between high and low sites. High sites had more positive gender equity climates and low sites had more negative gender equity climates. At this time, we do not fully understand the causal relationships among all of these findings and higher female graduation rates

  3. Weather, Ocean and Climate topics in Geosciences, a new subject in Norwegian upper secondary education. (United States)

    Hansen, P. J. K.


    meteorology, oceanography, hydrology, geology or physics, we have given extensive in-service training and should during 2009 be able to offer further education from ½ to 1 year. The school year 2007/2008 was the first with Geosciences as an optional choice. Ca.80 schools of max. 300 were able to give GX a 3 hours/week course, and/or G1 a 5 h/w course. In 2008/2009 it is 92 schools, and the advanced level 5 h/w course G2 has been introduced in many schools. G2 is open to all, but chosen almost only by students with G1. X1 students accomplished the ever first national written exam in G2 in May 2009. Geosciences were introduced as an idea from the education minister, not as result of pressure from the grassroot. She wanted students to have more science subjects to choose among in upper secondary education. She hoped that Geosciences should be a vehicle for introducing new groups of students to science, and perhaps bring them to science studies on higher levels later on. We, who developed the curriculum and are also responsible for the national exam in G2. We are of course very curious about both responses from the schools on the curriculum and the exam, and on the students' attitudes, work and learning outcome. That's why we are setting up a science education research programme from spring 2009. The further education and research programmes are made possible because of a sponsorship (EUR 1.2mill.) to our Geo-Programme 2008-2013 from the Norwegian oil and gas company StatoilHydro. 1 Unknown till May 2009

  4. Geology in the Movies: Using Hollywood Films as a Teaching Tool in Introductory Geosciences Courses (United States)

    Lawrence, K. T.; Malinconico, L. L.


    A common challenge in introductory Geoscience courses is engaging students who often do not have a long- standing interest in science. In recent years Hollywood has produced a number of geoscience-themed films (Dante's Peak, Deep Impact, Day After Tomorrow, Inconvenient Truth), most of which contain kernels of scientific truth as well as gross misrepresentations of scientific reality. In our introductory courses (Geological Disasters: Agents of Chaos and Earth's Climate: Past Present and Future) we have had great success using these films as a way of both engaging students and accomplishing many of our course goals. Even though most of the students in these courses will not become geoscience majors, it is important for them to realize that they can make informed judgments about concepts portrayed in the popular media. We have incorporated short written movie critiques into our suite of introductory course laboratory exercises. Through these movie-critique labs, students have an opportunity to apply their new geoscience expertise to examining the validity of the scientific concepts presented in the film. Along the way, students start to see the relevance of course materials to their everyday lives, think more critically about how science is portrayed by non-scientists, synthesize what they have learned by applying their knowledge to a new problem, and improve their ability to communicate what they have learned. Despite the fact that these movie-critique labs require significantly more out-of-lab effort that our other introductory lab assignments, in our course evaluations many students rate the movie critiques as not only one of the most interesting lab exercises of the semester, but also the lab exercise containing the most educational value.

  5. Inside the "Black Box" of a Knowledge Translation Program in Applied Health Research. (United States)

    Heaton, Janet; Day, Jo; Britten, Nicky


    In this article, we present the findings of a participatory realistic evaluation of a 5-year program of health care research intended to promote the translation of knowledge into routine clinical practice. The program was one of the nine pilot Collaborations for Leadership in Applied Health Research and Care funded by the English National Institute for Health Research between 2008 and 2013. Our aim was to delineate the mechanisms by which, and circumstances in which, some projects carried out under the program achieved success in knowledge translation while others were frustrated. Using qualitative methods, we examined how closer collaboration between academics and clinicians worked in four purposefully chosen case studies. In a synthesis of the findings, we produced a "black box" model of how knowledge translation was enabled by the activation of nine mechanisms. These are summarized in the form of five simple rules for promoting knowledge translation through collaborations based on principles of coproduction.

  6. National Institute for Petroleum and Energy Research quarterly technical report, July 1--September 30, 1992. Volume 2, Energy production research

    Energy Technology Data Exchange (ETDEWEB)


    Volume II includes: chemical flooding--supporting research; gas displacement--supporting research; thermal recovery--supporting research; geoscience technology; resource assessment technology; and microbial technology.

  7. Utilizing Windows Azure to Support Geo-science Applications (United States)

    Xia, J.


    Windows Azure is a cloud computing platform and infrastructure, created by Microsoft for developing, deploying and managing applications through global networks. It provides Platform as a service (PaaS) which have been widely used in different domains to support scientific studies. This paper experiences the feasibility of utilizing Windows Azure to support different type of geo-science applications. Specially, the load balancing feature of Azure is used to address intensive concurrent access for geo-science data; cloud-based database is utilized for support Big Spatial data management; and the global deployment feature is used to improve the evaluation accuracy for geo-science services.

  8. 2001 Gordon Research Conference on Applied and Environmental Microbiology. Final progress report [agenda and attendee list

    Energy Technology Data Exchange (ETDEWEB)

    Drake, Harold


    The Gordon Research Conference on Applied and Environmental Microbiology was held at Connecticut College, New London, Connecticut, July 22-27, 2001. The conference was attended by 121 participants. The attendees represented the spectrum of endeavor in this field, coming from academia, industry, and government laboratories, and included US and foreign scientists, senior researchers, young investigators, and students. Emphasis was placed on current unpublished research and discussion of the future target areas in this field. There was a conscious effort to stimulate discussion about the key issues in the field today. Session topics included the following: Environmental and applied genomics, Cell-to-cell signaling and multicellular behavior, Emerging technologies and methods, Novel metabolisms and ecosystems, Directed evolution of enzymes and pathways, Symbiotic and trophic relationships, Synthesis and application of novel biopolymers, and Microbes at the oxic-anoxic interface. There was also a special lecture titled ''Under the umbrella of the big tree: microbial biology into the 21st century.''

  9. Systems, Society, Sustainability and the Geosciences: A Workshop to Create New Curricular Materials to Integrate Geosciences into the Teaching of Sustainability (United States)

    Gosselin, D. C.; Manduca, C. A.; Oches, E. A.; MacGregor, J.; Kirk, K. B.


    . Sustainability also provides a productive bridge from global to local issues, and vice versa. It has the potential to raise the value placed on faculty engagement with local resources and research questions, and to bring community-based stakeholders outside of academia into the classroom. There are many challenges that participants from geographically diverse parts of the country have in common, including the creation of new courses, and teaching interdisciplinary material beyond one's area of expertise. However, one of the greatest opportunities of using a sustainability theme is that it can be integrated into existing courses. It was also clear that incorporating one module on a sustainability topic can be stimulating and powerful mechanism for linking course content to real world issues. Two of the most important outcomes from the workshop were the creation of an online collection of activities and courses ( as well as the development of a community that can support integration of geoscience and issues of sustainability across the curriculum.

  10. Enabling Science Integration through the Marine Geoscience Data System Media Bank (United States)

    Leung, A.; Ferrini, V.; Arko, R.; Carbotte, S. M.; Goehring, L.; Simms, E.


    The Marine Geoscience Data System Media Bank ( was constructed to enable the sharing of high quality images, illustrations and animations among members of the science community and to provide a new forum for education and public outreach (EPO). The initial focus of Media Bank was to serve Ridge 2000 research and EPO efforts, but it was constructed as a flexible system that could accommodate media from other multidisciplinary marine geoscience research initiatives. Media Bank currently contains digital photographs, maps, 3-D visualizations, and video clips from the Ridge 2000 and MARGINS focus sites as well as the Antarctic and Southern Ocean. We actively seek contributions of other high quality marine geoscience media for inclusion in Media Bank. Media Bank is driven by a relational database backend, enabling image browsing, sorting by category, keyword search functionality, and the creation of media galleries. All media are accompanied by a descriptive figure caption that provides easy access to expert knowledge to help foster data integration across disciplines as well as EPO efforts. In addition to access to high quality media, Media Bank also provides basic metadata including geographic position, investigator name and affiliation, as well as copyright information, and links to references and relevant data sets. Since media are tied to geospatial coordinates, a map-based interface is also provided for access to media.

  11. Research on imaging, sensing, and characterization of cells at Research Center for Applied Sciences (RCAS), Academia Sinica (United States)

    Tsai, Hui-Chen; Chang, Chun-Fang; Chen, Bi-Chang; Cheng, Ji-Yen; Chu, Chih-Wei; Han, Hsieh-Cheng; Hatanaka, Koji; Hsieh, Tung-Han; Lee, Chau-Hwang; Lin, Jung-Hsin; Tung, Yi-Chung; Wei, Pei-Kuen; Yang, Fu-Liang; Tsai, Din Ping


    Development of imaging, sensing, and characterization of cells at Research Center for Applied Sciences (RCAS) of Academia Sinica in Taiwan is progressing rapidly. The research on advanced lattice light sheet microscopy for temporal visualization of cells in three dimensions at sub-cellular resolution shows novel imaging results. Label-free observation on filopodial dynamics provides a convenient assay on cancer cell motility. The newly-developed software enables us to track the movement of two types of particles through different channels and reconstruct the co-localized tracks. Surface plasmon resonance (SPR) for detecting urinary microRNA for diagnosis of acute kidney injury demonstrates excellent sensitivity. A fully automated and integrated portable reader was constructed as a home-based surveillance system for post-operation hepatocellular carcinoma. New microfluidic cell culture devices for fast and accurate characterizations prove various diagnosis capabilities.

  12. WHO Child Growth Standards Are Often Incorrectly Applied to Children Born Preterm in Epidemiologic Research. (United States)

    Perumal, Nandita; Gaffey, Michelle F; Bassani, Diego G; Roth, Daniel E


    In epidemiologic research, there is no standard approach for accounting for gestational age (GA) at birth when interpreting postnatal anthropometric data in analyses of cohorts that include children born preterm (CBP). A scoping review was conducted to describe analytical approaches to account for GA at birth when applying the WHO Growth Standards (WHO-GS) to anthropometric data in epidemiologic studies. We searched PubMed, Scopus, MEDLINE, Embase, and Web of Science for studies that applied WHO-GS, included CBP in the study population, had access to data within 1 mo of age, and were published between 2006 and 2015 in English. Of the 80 included studies that used the WHO-GS, 80% (64 of 80) included all children regardless of GA, whereas 20% (16 of 80) restricted analyses that used WHO-GS to term-born children. Among the 64 studies that included all children, 53 (83%) used chronological age and 11 (17%) used corrected age for CBP. Of the 53 studies that used chronological age, 12 (23%) excluded data that were likely contributed by CBP (e.g., very low birth weight or extremely low outlying z scores) and 19 (36%) adjusted for or stratified by GA at birth in regression analyses. In summary, researchers commonly apply WHO-GS to CBP, usually based on chronological age. Methodologic challenges of analyzing data from CBP in the application of WHO-GS were rarely explicitly addressed. Further efforts are required to establish acceptable approaches to account for heterogeneity in GA at birth in the analysis of post-term anthropometric data in epidemiologic research.

  13. Applied solid state science advances in materials and device research 6

    CERN Document Server

    Wolfe, Raymond


    Applied Solid State Science: Advances in Materials and Device Research, Volume 6 covers the application of composites in electronic systems. The book discusses different types of composite-composite materials consisting of finely dispersed mixtures of metals and insulators; composite devices in which two distinct semiconductor devices are combined in one package; and composite glass fibers with the core and cladding differing in their optical properties. The text describes articles dealing with properties that can be achieved in versatile materials; light-emitting diodes and photodetectors th

  14. Applied solid state science advances in materials and device research 2

    CERN Document Server

    Wolfe, Raymond


    Applied Solid State Science: Advances in Materials and Device Research, Volume 2 covers topics about complex oxide materials such as the garnets, which dominate the field of magnetoelasticity and are among the most important laser hosts, and sodalite, which is one of the classic photochromic materials. The book discusses the physics of the interactions of electromagnetic, elastic, and spin waves in single crystal magnetic insulators. The text then describes the mechanism on which inorganic photochromic materials are based, as observed in a variety of materials in single crystal, powder, and gl

  15. Oceans of Opportunity: Partnerships to Increase Minority Student Involvement in the Marine Geosciences (United States)

    Pride, C.; Christensen, B.


    The Oceans of Opportunity program to increase involvement of traditionally under-represented students in the marine geosciences is in its final phase of track 1 funding from NSF. The program employs a tiered approach to research, teaching and outreach activities to enhance the K-12 to graduate pipeline. Partner institutions include Savannah State University, an HBCU in coastal Georgia; Adelphi University serving a minority population from NYC; the Georgia State University Bio-Bus serving the metro-Atlanta area; and the Joint Oceanographic Institutions. The Oceans of Opportunity education pipeline includes 1) service learning activities implemented by SSU marine science majors in partner public schools with high minority enrollment; 2) outreach by the Georgia State University Bio-Bus to Savannah area schools; 3) expansion of the SSU geoscience curriculum; and 4) development of activities based on models of ODP cores for use in both outreach and college teaching. Service learning through SSU classes has permitted contact with a large number of K-12 students. More than 1000 predominantly African-American K-12 students completed hands-on lessons on plate tectonics and plankton contributors to marine sediments in the two years of this program under the guidance of HBCU science majors. Lessons on use of the marine sediment and fossil record as proxies in paleoclimatic studies using replicas of ODP cores were delivered to 600 students in the Savannah school system and about 2000 visitors to the Georgia Aquarium in Atlanta. The marine geoscience lessons delivered at the high school level resulted in greater test score improvement when the topic had already been thoroughly introduced by the teacher. A survey of science attitudes of the high school students (n=419) indicates African-American high school students have low levels of enjoyment of and interest in the sciences. In addition, more female than male African-American students are enrolling in science courses and

  16. Workshop for Early Career Geoscience Faculty: Providing resources and support for new faculty to succeed (United States)

    Hill, T. M.; Beane, R. J.; Macdonald, H.; Manduca, C. A.; Tewksbury, B. J.; Allen-King, R. M.; Yuretich, R.; Richardson, R. M.; Ormand, C. J.


    A vital strategy to educate future geoscientists is to support faculty at the beginning of their careers, thus catalyzing a career-long impact on the early-career faculty and on their future students. New faculty members are at a pivotal stage in their careers as they step from being research-focused graduate students and post-doctoral scholars, under the guidance of advisors, towards launching independent careers as professors. New faculty commonly, and not unexpectedly, feel overwhelmed as they face challenges to establish themselves in a new environment, prepare new courses, begin new research, and develop a network of support. The workshop for Early Career Geoscience Faculty: Teaching, Research, and Managing Your Career has been offered annually in the U.S. since 1999. The workshop is currently offered through the National Association of Geoscience Teachers On the Cutting Edge professional development program with support from the NSF, AGU and GSA. This five-day workshop, with associated web resources, offers guidance for incorporating evidence-based teaching practices, developing a research program, and managing professional responsibilities in balance with personal lives. The workshop design includes plenary and concurrent sessions, individual consultations, and personalized feedback from workshop participants and leaders. Since 1999, more than 850 U.S. faculty have attended the Early Career Geoscience Faculty workshop. Participants span a wide range of geoscience disciplines, and are in faculty positions at two-year colleges, four-year colleges, comprehensive universities and research universities. The percentages of women (~50%) and underrepresented participants (~8%) are higher than in the general geoscience faculty population. Multiple participants each year are starting positions after receiving all or part of their education outside the U.S. Collectively, participants report that they are better prepared to move forward with their careers as a result of

  17. The Applied Meteorology Unit: Nineteen Years Successfully Transitioning Research Into Operations for America's Space Program (United States)

    Madura, John T.; Bauman, William H., III; Merceret, Francis J.; Roeder, William P.; Brody, Frank C.; Hagemeyer, Bartlett C.


    The Applied Meteorology Unit (AMU) provides technology development and transition services to improve operational weather support to America's space program . The AMU was founded in 1991 and operates under a triagency Memorandum of Understanding (MOU) between the National Aeronautics and Space Administration (NASA), the United States Air Force (USAF) and the National Weather Service (NWS) (Ernst and Merceret, 1995). It is colocated with the 45th Weather Squadron (45WS) at Cape Canaveral Air Force Station (CCAFS) and funded by the Space Shuttle Program . Its primary customers are the 45WS, the Spaceflight Meteorology Group (SMG) operated for NASA by the NWS at the Johnson Space Center (JSC) in Houston, TX, and the NWS forecast office in Melbourne, FL (MLB). The gap between research and operations is well known. All too frequently, the process of transitioning research to operations fails for various reasons. The mission of the AMU is in essence to bridge this gap for America's space program.

  18. An applied research on remote sensing classification in the Loess Plateau

    Institute of Scientific and Technical Information of China (English)


    Due to complex terrain of the Loess Plateau, the classification accuracy is unsatisfactory when a single supervised classification is used in the remote sensing investigation of the sloping field. Taking the loess hill and gully area of northern Shaanxi Province as a test area, a research was conducted to extract sloping field and other land use categories by applying an integrated classification. Based on an integration of supervised classification and unsupervised classification, sampling method is remarkably improved. The results show that the classification accuracy is satisfactory by the method and is of critical significance in obtaining up-to-date information of the sloping field, which should be helpful in the state key project of converting fiumland to forest and grassland on slope land in this area. This research sought to improve the appfication accuracy of image classification in complex terrain areas.

  19. Process management incorporating the intellectual capital and knowledge management: an applied study in research centres

    Directory of Open Access Journals (Sweden)

    Enrique Saravia Vergara


    Full Text Available In today’s competitive environment, organizations seek to create value for customers through management approaches that not only ensure the supply of goods and services of quality and at low prices, but that achieve long-term competitive advantages. In this context, process management appears as a management model based on "quality"; whereas "intellectual capital" and "knowledge management" models represent the main models based on the management of intangible assets, the basis of competitive success of the XXI century. This study represents a trial that, from a process management model applied to a research and review of the relevant theoretical framework to the disciplines of "intellectual capital" and "knowledge management", analyses and proposes a model of process management in research centres incorporating Intellectual Capital and Knowledge Management.

  20. Deep Vadose Zone-Applied Field Research Initiative Fiscal Year 2011 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    Wellman, Dawn M.; Johnson, Timothy C.; Smith, Ronald M.; Truex, Michael J.; Matthews, Hope E.


    This annual report describes the background of the Deep Vadose Zone-Applied Field Research Initiative, and some of the programmatic approaches and transformational technologies in groundwater and deep vadose zone remediation developed during fiscal year 2011. The Department of Energy (DOE) Office of Technology Innovation and Development's (OTID) mission is to transform science into viable solutions for environmental cleanup. In 2010, OTID developed the Impact Plan, Science and Technology to Reduce the Life Cycle Cost of Closure to outline the benefits of research and development of the lifecycle cost of cleanup across the DOE complex. This plan outlines OTID's ability to reduce by $50 billion, the $200 billion life-cycle cost in waste processing, groundwater and soil, nuclear materials, and deactivation and decommissioning. The projected life-cycle costs and return on investment are based on actual savings realized from technology innovation, development, and insertion into remedial strategies and schedules at the Fernald, Mound, and Ashtabula sites. To achieve our goals, OTID developed Applied Field Research Initiatives to facilitate and accelerate collaborative development and implementation of new tools and approaches that reduce risk, cost and time for site closure. The primary mission of the Deep Vadose Zone-Applied Field Research Initiative (DVZ-AFRI) is to protect our nation's water resources, keeping them clean and safe for future generations. The DVZ-AFRI was established for the DOE to develop effective, science-based solutions for remediating, characterizing, monitoring, and predicting the behavior and fate of deep vadose zone contamination. Subsurface contaminants include radionuclides, metals, organics, and liquid waste that originated from various sources, including legacy waste from the nation's nuclear weapons complexes. The DVZ-AFRI project team is translating strategy into action by working to solve these complex challenges in a

  1. Analyzing research article introductions by Iranian and native English-speaking authors of Applied Linguistics

    Directory of Open Access Journals (Sweden)

    Shahriari Ahmadi, Hesamoddin


    Full Text Available Considering the role of academic writing in the dissemination of research findings among members of scientific communities, efforts have been made by language specialists to achieve a more detailed understanding of this register, with hopes that the derived features could then be used to teach researchers, writing in a second/foreign language, to more effectively communicate the results of their studies. This study sets out to achieve a similar goal through the analysis of research article introductions in terms of the frequency and function of their lexical bundles. To this end, a corpus of 200 research article introductions by published authors in the field of Applied Linguistics was compared to a similar corpus by Iranian, non-native writers of the same field. The findings reveal that Iranian authors use more 4-word lexical bundles in their writing compared to their native-speaker counterparts. Syntactic and functional differences between the two corpora are introduced and implications for academic writing instructors are discussed in detail.

  2. IBM Watson: How Cognitive Computing Can Be Applied to Big Data Challenges in Life Sciences Research. (United States)

    Chen, Ying; Elenee Argentinis, J D; Weber, Griff


    Life sciences researchers are under pressure to innovate faster than ever. Big data offer the promise of unlocking novel insights and accelerating breakthroughs. Ironically, although more data are available than ever, only a fraction is being integrated, understood, and analyzed. The challenge lies in harnessing volumes of data, integrating the data from hundreds of sources, and understanding their various formats. New technologies such as cognitive computing offer promise for addressing this challenge because cognitive solutions are specifically designed to integrate and analyze big datasets. Cognitive solutions can understand different types of data such as lab values in a structured database or the text of a scientific publication. Cognitive solutions are trained to understand technical, industry-specific content and use advanced reasoning, predictive modeling, and machine learning techniques to advance research faster. Watson, a cognitive computing technology, has been configured to support life sciences research. This version of Watson includes medical literature, patents, genomics, and chemical and pharmacological data that researchers would typically use in their work. Watson has also been developed with specific comprehension of scientific terminology so it can make novel connections in millions of pages of text. Watson has been applied to a few pilot studies in the areas of drug target identification and drug repurposing. The pilot results suggest that Watson can accelerate identification of novel drug candidates and novel drug targets by harnessing the potential of big data.

  3. The European Network of Analytical and Experimental Laboratories for Geosciences (United States)

    Freda, Carmela; Funiciello, Francesca; Meredith, Phil; Sagnotti, Leonardo; Scarlato, Piergiorgio; Troll, Valentin R.; Willingshofer, Ernst


    Integrating Earth Sciences infrastructures in Europe is the mission of the European Plate Observing System (EPOS).The integration of European analytical, experimental, and analogue laboratories plays a key role in this context and is the task of the EPOS Working Group 6 (WG6). Despite the presence in Europe of high performance infrastructures dedicated to geosciences, there is still limited collaboration in sharing facilities and best practices. The EPOS WG6 aims to overcome this limitation by pushing towards national and trans-national coordination, efficient use of current laboratory infrastructures, and future aggregation of facilities not yet included. This will be attained through the creation of common access and interoperability policies to foster and simplify personnel mobility. The EPOS ambition is to orchestrate European laboratory infrastructures with diverse, complementary tasks and competences into a single, but geographically distributed, infrastructure for rock physics, palaeomagnetism, analytical and experimental petrology and volcanology, and tectonic modeling. The WG6 is presently organizing its thematic core services within the EPOS distributed research infrastructure with the goal of joining the other EPOS communities (geologists, seismologists, volcanologists, etc...) and stakeholders (engineers, risk managers and other geosciences investigators) to: 1) develop tools and services to enhance visitor programs that will mutually benefit visitors and hosts (transnational access); 2) improve support and training activities to make facilities equally accessible to students, young researchers, and experienced users (training and dissemination); 3) collaborate in sharing technological and scientific know-how (transfer of knowledge); 4) optimize interoperability of distributed instrumentation by standardizing data collection, archive, and quality control standards (data preservation and interoperability); 5) implement a unified e-Infrastructure for data

  4. Software IV and V Research Priorities and Applied Program Accomplishments Within NASA (United States)

    Blazy, Louis J.


    The mission of this research is to be world-class creators and facilitators of innovative, intelligent, high performance, reliable information technologies that enable NASA missions to (1) increase software safety and quality through error avoidance, early detection and resolution of errors, by utilizing and applying empirically based software engineering best practices; (2) ensure customer software risks are identified and/or that requirements are met and/or exceeded; (3) research, develop, apply, verify, and publish software technologies for competitive advantage and the advancement of science; and (4) facilitate the transfer of science and engineering data, methods, and practices to NASA, educational institutions, state agencies, and commercial organizations. The goals are to become a national Center Of Excellence (COE) in software and system independent verification and validation, and to become an international leading force in the field of software engineering for improving the safety, quality, reliability, and cost performance of software systems. This project addresses the following problems: Ensure safety of NASA missions, ensure requirements are met, minimize programmatic and technological risks of software development and operations, improve software quality, reduce costs and time to delivery, and improve the science of software engineering

  5. NATO International Conference on Applied General Systems Research : Recent Developments and Trends

    CERN Document Server


    This volume consists of a selection of papers presented at the International Conference on Applied General Systems Research: Recent Developments and Trends which was held on the campus of the State University of New York at Binghamton in August 15-19, 1977, under the sponsorship of the Special Panel on Systems Science of the NATO Scientific Affairs Division. General systems research is a fairly new field which has been developing in the course of the last two or three decades. In my op~n10n, it can be best described as a movement which involves the study of all structural and context independent aspects of problem solving. As such, it is cross-disciplinary in nature and, in this sense, it might seem similar to mathematics. There is a consid­ erable difference, however, between the two. While pure mathe­ matics is basically oriented to the development of various axiomatic theories, regardless of whether or not they have any real world meaning, applied mathematics explores the applicability of some of these t...

  6. Personalized, Shareable Geoscience Dataspaces For Simplifying Data Management and Improving Reproducibility (United States)

    Malik, T.; Foster, I.; Goodall, J. L.; Peckham, S. D.; Baker, J. B. H.; Gurnis, M.


    Research activities are iterative, collaborative, and now data- and compute-intensive. Such research activities mean that even the many researchers who work in small laboratories must often create, acquire, manage, and manipulate much diverse data and keep track of complex software. They face difficult data and software management challenges, and data sharing and reproducibility are neglected. There is signficant federal investment in powerful cyberinfrastructure, in part to lesson the burden associated with modern data- and compute-intensive research. Similarly, geoscience communities are establishing research repositories to facilitate data preservation. Yet we observe a large fraction of the geoscience community continues to struggle with data and software management. The reason, studies suggest, is not lack of awareness but rather that tools do not adequately support time-consuming data life cycle activities. Through NSF/EarthCube-funded GeoDataspace project, we are building personalized, shareable dataspaces that help scientists connect their individual or research group efforts with the community at large. The dataspaces provide a light-weight multiplatform research data management system with tools for recording research activities in what we call geounits, so that a geoscientist can at any time snapshot and preserve, both for their own use and to share with the community, all data and code required to understand and reproduce a study. A software-as-a-service (SaaS) deployment model enhances usability of core components, and integration with widely used software systems. In this talk we will present the open-source GeoDataspace project and demonstrate how it is enabling reproducibility across geoscience domains of hydrology, space science, and modeling toolkits.

  7. Modellus: Interactive computational modelling to improve teaching of physics in the geosciences (United States)

    Neves, Rui G. M.; Neves, Maria C.; Teodoro, Vítor Duarte


    Many aspects of modern research and other professional activities in the geosciences require advanced knowledge about mathematical physics models and scientific computation methods and tools. In-depth meaningful learning of such knowledge skills is a difficult cognitive process which involves developing strong background knowledge of physics, mathematics and scientific computation appropriately contextualised in the geosciences themes. In this paper we describe an interactive engagement teaching approach that is based on Modellus, a freely available computer software system allowing (1) mathematical modelling ranging from explorative to expressive modelling, (2) the introduction of scientific computation without requiring the development of a working knowledge of programming and (3) the simultaneous manipulation and analysis of several different model representations, namely, tables, graphs and animations with interactive objects having properties defined in a visible and modifiable mathematical model. As examples of application, with insights for the development of other activities in a wide range of geosciences courses, we discuss a set of interactive computational modelling activities for introductory meteorology we have implemented in undergraduate university courses.

  8. Designing and Using Videos in Undergraduate Geoscience Education - a workshop and resource website review (United States)

    Wiese, K.; Mcconnell, D. A.


    Do you use video in your teaching? Do you make your own video? Interested in joining our growing community of geoscience educators designing and using video inside and outside the classroom? Over four months in Spring 2014, 22 educators of varying video design and development expertise participated in an NSF-funded On the Cutting Edge virtual workshop to review the best educational research on video design and use; to share video-development/use strategies and experiences; and to develop a website of resources for a growing community of geoscience educators who use video: The site includes links to workshop presentations, teaching activity collections, and a growing collection of online video resources, including "How-To" videos for various video editing or video-making software and hardware options. Additional web resources support several topical themes including: using videos to flip classes, handling ADA access and copyright issues, assessing the effectiveness of videos inside and outside the classroom, best design principles for video learning, and lists and links of the best videos publicly available for use. The workshop represents an initial step in the creation of an informal team of collaborators devoted to the development and support of an ongoing network of geoscience educators designing and using video. Instructors who are interested in joining this effort are encouraged to contact the lead author.

  9. Effective geoscience pedagogy at the undergraduate level (United States)

    Warden, Kelsey

    This investigation used constructivist pedagogical methods within the framework of an introductory level undergraduate geoscience course to gauge both the changes in attitude and cognition of students. Pedagogy was modified in the laboratory setting, but maintained in the lecture setting and homework. Curriculum was also maintained in the lecture, but was changed in the laboratory to emphasize the large concepts and systems stressed in Earth Science Literacy Principles. Student understanding of these concepts and systems was strengthened by factual knowledge, but recall and memorization were not the goal of the laboratory instruction. The overall goal of the study was to build student understanding more effectively than in previous semesters such that the students would become Earth Science literate adults. We hypothesized that a healthy comprehension of the connections between the human population and Earth's systems would lead to improved cognition and attitude toward Earth Science. This was tested using pre- and post-testing of attitudes via an anonymous survey on the first and last days of the laboratory, student responses to the end-of-course evaluations, and student performance on early-semester and late-semester content testing. The results support the hypotheses.

  10. Implementation Plan for the Deep Vadose Zone-Applied Field Research Center

    Energy Technology Data Exchange (ETDEWEB)

    Wellman, Dawn M.; Truex, Michael J.; Freshley, Mark D.; Gephart, Roy E.; Triplett, Mark B.; Johnson, Timothy C.


    The Long-Range Deep Vadose Zone Program Plan was published in October 2010. It summarized the U.S. Department of Energy’s (DOE’s) state-of-knowledge about the contaminant remediation challenges facing the deep vadose zone (DVZ) beneath the Central Plateau of the Hanford Site and their approach to solving those challenges. Developing an implementation plan is the next step to address the knowledge and capabilities required to solve DVZ challenges when needed. This multi-year plan (FY-11 through FY-20) identifies the short to long-term research, management, and execution plans required to solve those problems facing the DVZ-Applied Field Research Center (DVZ-AFRC). The schedule supporting implementation overlies existing activities and milestones from Hanford’s DOE-Environmental Management (EM) end-user projects. Success relies upon multi-project teams focused on coordinated subsurface projects undertaken across the DOE Complex combined with facilitated, problem-focused, research investments implemented through the DVZ-AFRC.

  11. Center for Fundamental and Applied Research in Nanostructured and Lightweight Materials. Final Technical Summary

    Energy Technology Data Exchange (ETDEWEB)

    Mullins, Michael; Rogers, Tony; King, Julia; Keith, Jason; Cornilsen, Bahne; Allen, Jeffrey; Gilbert, Ryan; Holles, Joseph


    The core projects for this DOE-sponsored Center at Michigan Tech have focused on several of the materials problems identified by the NAS. These include: new electrode materials, enhanced PEM materials, lighter and more effective bipolar plates, and improvement of the carbon used as a current carrier. This project involved fundamental and applied research in the development and testing of lightweight and nanostructured materials to be used in fuel cell applications and for chemical synthesis. The advent of new classes of materials engineered at the nanometer level can produce materials that are lightweight and have unique physical and chemical properties. The grant was used to obtain and improve the equipment infrastructure to support this research and also served to fund seven research projects. These included: 1. Development of lightweight, thermally conductive bipolar plates for improved thermal management in fuel cells; 2. Exploration of pseudomorphic nanoscale overlayer bimetallic catalysts for fuel cells; 3. Development of hybrid inorganic/organic polymer nanocomposites with improved ionic and electronic properties; 4. Development of oriented polymeric materials for membrane applications; 5. Preparation of a graphitic carbon foam current collectors; 6. The development of lightweight carbon electrodes using graphitic carbon foams for battery and fuel cell applications; and 7. Movement of water in fuel cell electrodes.

  12. Teaching Geoscience in Place for Local Diversity and Sustainability (United States)

    Semken, S.


    Globalization, careerism, media, thoughtless consumption, standardized education and assessment, and even well-meaning advocacy for far-flung environments and people all divert our attention from meaningful interaction with our own surroundings. Meanwhile, many young Americans prefer virtual realities over personal intimacy with nature. Many have lost sight of the pedagogical power of places: localities imbued with meaning by human experience. To lack a sense of local places is to be oblivious to their environmental, cultural, and aesthetic importance, and to risk acceding to their degradation. The geosciences, born and rooted in exploration of environments, have much to lose from this trend but can be pivotal in helping to reverse it. Place-based teaching is situated in local physical and cultural environments and blends experiential learning, transdisciplinary and multicultural content, and service to the community. It is advocated for its relevance and potential to engage diverse students. Authentically place-based education is informed not only by scientific knowledge of places but also by the humanistic meanings and attachments affixed to them. Leveraging and enriching the senses of place of students, teachers, and the community is a defining and desirable learning outcome. We have researched and piloted several place-based approaches to geoscience teaching at various places in the Southwest USA: at a rural Tribal College, a large urban university, and a teacher in-service program at an underserved, minority-majority rural school district. Curricula are situated in complexly evolved, ruggedly beautiful desert-mountain physical landscapes coincident with multicultural, deeply historic, but rapidly changing cultural landscapes. The organizing theme is a cyclical path of inquiry through Earth and Sky, derived from Indigenous ethnogeology; syllabi integrate geology, hydrology, climate, environmental quality, and cultural geography and are situated in real places

  13. Dynamic Web Services for Data Analysis in the Geosciences (United States)

    Erlebacher, G.; Lu, Z.; Gadgil, H.; Bollig, E. F.; Kadlec, B. J.; Yuen, D. A.; Pierce, M.; Pallickara, S.


    Current large-scale multidisciplinary efforts involve a combination of computation, visualization, and data analysis over geographically distributed environments. There is an urgent need to develop easy to use middleware systems that can dynamically adjust themselves to the needs of the researchers, while at the same time shielding them from the underlying details. In this poster, we present a framework that supports fault tolerance, collaboration, and the automatic linkage of web services selected by the user at runtime. We address this problem through a a unique and flexible middleware architecture (WEBIS), based on the NaradaBrokering (NB) middleware application program interface (API) (, [1]). NB is based on a publish/subscribe mechanism whereby all messages are sent to a system with a topic tag, to be received by any entity that has subscribed to that tag. This simple approach enables natural implementation of resource discovery, fault tolerance, system monitoring, and collaboration. On the server side, there is an increasing number of so-called web services available, ranging from weather services to sophisticated GIS (Geographic Information Services) systems that provide clients with querying capability. These services adhere to existing standards and are fully described through a WSDL (Web Service Definition Language) file, many of which are publicly available. In this poster, we will demonstrate a proxy service whose role is to connect existing web services to our framework based on user requests. After selecting a desired web service from one or more registries, a user interface is created automatically based on the information contained in the WSDL file. This enables clients to interact with the service. This is illustrated through a service that computes the wavelet transform of three-dimensional scalar data files. The transformed data is processed by a second service that generates a bitmap (using the visualization

  14. Impact cratering – fundamental process in geoscience and planetary science

    Indian Academy of Sciences (India)

    J K Pati; W U Reimold


    Impact cratering is a geological process characterized by ultra-fast strain rates, which generates extreme shock pressure and shock temperature conditions on and just below planetary surfaces. Despite initial skepticism, this catastrophic process has now been widely accepted by geoscientists with respect to its importance in terrestrial – indeed, in planetary – evolution. About 170 impact structures have been discovered on Earth so far, and some more structures are considered to be of possible impact origin. One major extinction event, at the Cretaceous–Paleogene boundary, has been firmly linked with catastrophic impact, but whether other important extinction events in Earth history, including the so-called “Mother of All Mass Extinctions” at the Permian–Triassic boundary, were triggered by huge impact catastrophes is still hotly debated and a subject of ongoing research. There is a beneficial side to impact events as well, as some impact structures worldwide have been shown to contain significant (in some cases, world class) ore deposits, including the gold– uranium province of the Witwatersrand basin in South Africa, the enormous Ni and PGE deposits of the Sudbury structure in Canada, as well as important hydrocarbon resources, especially in North America. Impact cratering is not a process of the past, and it is mandatory to improve knowledge of the past-impact record on Earth to better constrain the probability of such events in the future. In addition, further improvement of our understanding of the physico–chemical and geological processes fundamental to the impact cratering process is required for reliable numerical modeling of the process, and also for the correlation of impact magnitude and environmental effects. Over the last few decades, impact cratering has steadily grown into an integrated discipline comprising most disciplines of the geosciences as well as planetary science, which has created positive spin-offs including the study of

  15. A Unique Partnership to Promote Diversity in the Geosciences, San Jose, California (United States)

    Sedlock, R.; Metzger, E.; Johnson, D.


    We report here on a particularly satisfying partnership of academic institutions that focuses on enhancing the participation of underrepresented students in the geosciences. The Bay Area Earth Science Institute (BAESI) at San José State University (SJSU) has provided professional development opportunities to over 1,500 area teachers since 1990. BAESI offerings include summer and weekend workshops, field trips, classroom visits, and a lending library of curricula, sample sets, A/V materials, and equipment. The National Hispanic University (NHU) is a private, non-profit university that enrolls about 700 students, 80% of whom are of Hispanic descent. Another 13% are from other minority groups, 74% are from low-income families, and 70% are women. NHU houses the Latino College Preparatory Academy (LCPA), a charter high school that provides an alternative for students who struggle in traditional schools due to language issues. In the 1990s, administrators at SJSU and NHU set up formal agreements about course articulation, reciprocity, and joint degree programs. In 2002, informal discussions between BAESI and NHU staff led to collaboration on an NSF proposal to strengthen NHU's geoscience curriculum. Since then, the scope of BAESI-NHU actions has expanded greatly: (1) NHU and LCPA staff attended a week-long BAESI professional development workshop funded by NSF, and have attended numerous BAESI field trips. (2) BAESI staff visit NHU and LCPA classrooms to showcase SJSU's Geology Department and to enrich existing Chemistry and Physics classes with geoscience applications. (3) A nascent "Geologist-In-Residence" program pairs SJSU geology students with teachers at LCPA. (4) NHU students have interned with Metzger on local research projects. (5) BAESI brokered donation of an extensive USGS rock collection to NHU. (6) NHU, BAESI, and NASA-Ames staff collaborate on an online Earth Science curriculum for middle-school teachers. (7) We will adapt BAESI summer workshops to a one

  16. Does clinical equipoise apply to cluster randomized trials in health research?

    Directory of Open Access Journals (Sweden)

    Brehaut Jamie C


    Full Text Available Abstract This article is part of a series of papers examining ethical issues in cluster randomized trials (CRTs in health research. In the introductory paper in this series, Weijer and colleagues set out six areas of inquiry that must be addressed if the cluster trial is to be set on a firm ethical foundation. This paper addresses the third of the questions posed, namely, does clinical equipoise apply to CRTs in health research? The ethical principle of beneficence is the moral obligation not to harm needlessly and, when possible, to promote the welfare of research subjects. Two related ethical problems have been discussed in the CRT literature. First, are control groups that receive only usual care unduly disadvantaged? Second, when accumulating data suggests the superiority of one intervention in a trial, is there an ethical obligation to act? In individually randomized trials involving patients, similar questions are addressed by the concept of clinical equipoise, that is, the ethical requirement that, at the start of a trial, there be a state of honest, professional disagreement in the community of expert practitioners as to the preferred treatment. Since CRTs may not involve physician-researchers and patient-subjects, the applicability of clinical equipoise to CRTs is uncertain. Here we argue that clinical equipoise may be usefully grounded in a trust relationship between the state and research subjects, and, as a result, clinical equipoise is applicable to CRTs. Clinical equipoise is used to argue that control groups receiving only usual care are not disadvantaged so long as the evidence supporting the experimental and control interventions is such that experts would disagree as to which is preferred. Further, while data accumulating during the course of a CRT may favor one intervention over another, clinical equipoise supports continuing the trial until the results are likely to be broadly convincing, often coinciding with the planned

  17. Overview of basic and applied research on battery systems at Argonne

    Energy Technology Data Exchange (ETDEWEB)

    Nevitt, M. V.


    The need for a basic understanding of the ion transport and related effects that are observed under the unique physical and electrochemical conditions occurring in high-temperature, high-performance batteries is pointed out. Such effects include those that are typical of transport in bulk materials such as liquid and solid electrolytes and the less well understood effects observed in migration in and across the interfacial zones existing around electrodes. The basic and applied studies at Argonne National Laboratory, centered in part around the development of a Li(alloy)/iron sulfide battery system for energy storage, are briefly described as an example of the way that such an understanding is being sought by coordinated interdisciplinary research. 3 figures.

  18. Operations research techniques applied to service center logistics in power distribution users

    Directory of Open Access Journals (Sweden)

    Maria Teresinha Arns Steiner


    Full Text Available This paper deals with the optimization for the logistics regarding services demanded byusers of power distribution lines, served by the Portão office, located in Curitiba, PR, Brazil,and operated by COPEL (Paranaense Power Company. Through the use of OperationsResearch techniques, an Integer Programming Mathematical model and Floyd Algorithm, amethod was defined to determine in an optimized way, the number of teams needed by theselected office, as well as, the optimized assignment for the teams to the sites in need, inorder to offer efficient services to the users and, besides that, the immediate execution onemergencies and, as to the other services, accordingly to parameters set by the NationalPower Agency together with COPEL. The methodology hereby presented is generic, so thatit could be applied to any power network (or any of its lines, and it has presented verysatisfactory results to the case in analysis.

  19. A Genre Analysis of English and Iranian Research Articles Abstracts in Applied Linguistics and Mathematics

    Directory of Open Access Journals (Sweden)

    Biook Behnam


    Full Text Available In recent years, genre studies have attracted the attention of many researchers. The aim of the present study was to observe the differences in generic structure of abstract written by English native and non-native (Iranian students in two disciplines of mathematics and applied linguistics. To this end, twenty native English students’ abstract texts from each discipline and the same number of non-native (Iranian ones were selected. In this study, Hyland’s (2000 five‐move model was used to identify the rhetorical structure of the four sets of texts. After analyzing each text, the main moves were extracted and the frequencies of each one were calculated and compared. The cross-disciplinary and cross‐linguistic analyses reveal that linguistics abstracts follow a conventional scheme, but mathematics abstracts in these two languages do not exhibit the usual norms in terms of moves. Besides, greater difference in move structure is seen across languages in mathematics. The findings of the study have some pedagogical implications for academic writing courses for graduate students, especially students from non-English backgrounds in order to facilitate their successful acculturation into these disciplinary communities. Keywords: Genre Analysis, mathematics, applied linguistics

  20. Reevaluating the conceptual framework for applied research on host-plant resistance

    Institute of Scientific and Technical Information of China (English)

    Michael J.Stout


    Applied research on host-plant resistance to arthropod pests has been guided over the past 60 years by a framework originally developed by Reginald Painter in his 1951 book,Insect Resistance in Crop Plants.Painter divided the "phenomena" of resistance into three "mechanisms," nonpreference (later renamed antixenosis),antibiosis,and tolerance.The weaknesses of this framework are discussed.In particular,this trichotomous framework does not encompass all known mechanisms of resistance,and the antixenosis and antibiosis categories are ambiguous and inseparable in practice.These features have perhaps led to a simplistic approach to understanding arthropod resistance in crop plants.A dichotomous scheme is proposed as a replacement,with a major division between resistance (plant traits that limit injury to the plant) and tolerance (plant traits that reduce amount of yield loss per unit injury),and the resistance category subdivided into constitutive/inducible and direct/indirect subcategories.The most important benefits of adopting this dichotomous scheme are to more closely align the basic and applied literatures on plant resistance and to encourage a more mechanistic approach to studying plant resistance in crop plants.A more mechanistic approach will be needed to develop novel approaches for integrating plant resistance into pest management programs.

  1. Review of Recent Applied Linguistics Research in Finland and Sweden, with Specific Reference to Foreign Language Learning and Teaching (United States)

    Ringbom, Hakan


    This review covers recent applied linguistic research in Finland and Sweden during the years 2006-2011, with particular emphasis on foreign language learning and teaching. Its primary aim is to inform the international research community on the type of research that is going on in these countries. Special attention is given to topics which have…

  2. New Resources on the Building Strong Geoscience Departments Website (United States)

    Ormand, C. J.; Manduca, C. A.; MacDonald, H.


    The Building Strong Geoscience Departments program aims to foster communication and sharing among geoscience departments in order to allow for rapid dissemination of strong ideas and approaches. Sponsored by NAGT, AGI, AGU, and GSA, the project has developed a rich set of web resources and offered workshops on high-interest topics, such as recruiting students, curriculum development, and program assessment. The Building Strong Geoscience Departments website has a growing collection of resources, drawn from workshop discussions and presentations, showcasing how geoscience departments approach curriculum revision, student recruitment, and program assessment. Recruitment resources consist of specific examples of a wide variety of successful approaches to student recruitment from departments at a wide array of institutions. Curricular feature pages framing the process of curriculum development or revision and a collection of dozens of geoscience curricula, searchable by degree program name. Each curriculum in the collection includes a diagram of the course sequence and structure. Program assessment resources include a collection of assessment instruments, ranging from alumni surveys and student exit interviews to course evaluations and rubrics for assessing student work, and a collection of assessment planning documents, ranging from mission and vision statements through student learning goals and outcomes statements to departmental assessment plans and guidelines for external reviews. These recruitment strategies, curricula, and assessment instruments and documents have been contributed by the geoscience community. In addition, we are developing a collection of case studies of individual departments, highlighting challenges they have faced and the strategies they have used to successfully overcome those challenges. We welcome additional contributions to all of these collections. These online resources support the Building Strong Geoscience Departments Visiting

  3. Examining the Motivation and Learning Strategies Use of Different Populations in Introductory Geosciences (United States)

    van der Hoeven Kraft, K.; Stempien, J. A.; Bykerk-Kauffman, A.; Jones, M. H.; Matheney, R. K.; McConnell, D.; Perkins, D.; Wilson, M. J.; Wirth, K. R.


    The GARNET (Geoscience Affective Research Network) project examines the connection between student affect (attitudes, motivation, values, and regulation of learning) and geoscience learning outcomes. We investigated demographic groups participating in similar introductory geoscience courses. The Motivated Strategies for Learning Questionnaire (MSLQ; Pintrich et al., 1993) was used to measure student affect early and late in the semester with students from 7 institutions representing a range from community college to PhD granting universities. We analyzed differences in students on the basis of gender (539 males vs. 607 females) in 14 classes. We also examined contrasts on the basis of ethnicity for students enrolled in 4 classes where underrepresented ethnic groups made up 20% or more of the class. All of the data are from the 2009/2010 academic year. A MANOVA analysis of gender data indicate that female students enter the introductory geoscience classroom with significantly lower self-efficacy (confidence in their ability to succeed) than their male counterparts. Female students also reported employing a greater range of learning strategies. Both female and male students received similar final grades (no statistical difference between the populations), however, female students report that they are less likely to take another geology class relative to males. Wilcoxen analyses indicate that many of the factors that affect Caucasian students also affect students from underrepresented ethnic groups. However, both populations begin the course as distinctly different statistical groups. A decline in self-efficacy over the semester is noted for different demographic groups. Minority students begin the semester with a lower average self-efficacy (4.9/7) than the Caucasian students (5.2/7). The amount of effort that students anticipate putting into a class displays a similar trend; minority students enter with lower scores 4.8/7 vs. 5.1/7. Both populations have a similar

  4. Building Strong Geoscience Departments: Case Studies and Findings from Six Years of Programming (United States)

    Iverson, E. A.; Lee, S.; Ormand, C. J.; Feiss, P. G.; Macdonald, H.; Manduca, C. A.; Richardson, R. M.


    Begun in 2005, the Building Strong Geoscience Departments project sought to help geoscience departments respond to changes in geosciences research, academic pressures, and the changing face of the geosciences workforce by working as a team, planning strategically, and learning from the experiences of other geoscience departments. Key strategies included becoming more central to their institution's mission and goals; articulating the department's learning goals for students; designing coordinated curricula, co-curricular activities, and assessments to meet these goals; and recruiting students effectively. A series of topical workshops identified effective practices in use in the U.S. and Canada. These practices were documented on the project website and disseminated through a national workshop for teams of faculty, through activities at the AGU Heads and Chairs workshops, and in a visiting workshop program bringing leaders to campuses. The program has now involved over 450 participants from 185 departments. To understand the impact of the program, we engaged in ongoing discussion with five departments of various sizes and institutional types, and facing a variety of immediate challenges. In aggregate they made use of the full spectrum of project offerings. These departments all reported that the project brought an important new perspective to their ability to work as a department: they have a better understanding of how their departments' issues relate to the national scene, have more strategies for making the case for the entire department to college administrators, and are better poised to make use of campus resources including the external review process. These results were consistent with findings from end-of-workshop surveys. Further they developed the ability to work together as a team to address departmental challenges through collective problem solving. As a result of their workshop participation, two of the departments who considered their department to be

  5. Abstracts of the Atlantic Geoscience Society's 2007 colloquium and annual general meeting

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, S.; Parkhill, M.; Wilson, R.; Desrosiers, M.; Lentz, D.; Pitre, C.; Pronk, T.; Spooner, I.; Toole, R.; Wallace, P. (comps.)


    The Atlantic Geoscience Society (AGS) hosts annual meetings, workshops and field trips to promote a better understanding of the geology of Atlantic Canada. This colloquium highlighted current research in the Atlantic provinces with special sessions devoted to patterns and geohazards in the North Atlantic; late and post-glacial climate change events in eastern Canada; salt matters; tectonic, thermal and resource aspects of Paleozoic to Mesozoic evaporite basins; mineral resources research by students of the Society of Economic Geologists; dendrochronology; a physical volcanology workshop; and, a North American soil geochemical landscape project orientation session. One of the 74 papers presented at this colloquium has been catalogued separately for inclusion in this database.

  6. The neuroscience of social conformity: implications for fundamental and applied research

    Directory of Open Access Journals (Sweden)

    Mirre eStallen


    Full Text Available The development of closer ties between researchers and practitioners in the domain of behavior and behavioral change offers useful opportunities for better informing public policy campaigns via a deeper understanding of the psychological processes that operate in real-world decision-making. Here, we focus on the domain of social conformity, and suggest that the recent emergence of laboratory work using neuroscientific techniques to probe the brain basis of social influence can prove a useful source of data to better inform models of conformity. In particular, we argue that this work can have an important role to play in better understanding the specific mechanisms at work in social conformity, in both validating and extending current psychological theories of this process, and in assessing how behavioral change can take place as a result of exposure to the judgments of others. We conclude by outlining some promising future directions in this domain, and indicating how this research could potentially be usefully applied to policy issues.

  7. The neuroscience of social conformity: implications for fundamental and applied research. (United States)

    Stallen, Mirre; Sanfey, Alan G


    The development of closer ties between researchers and practitioners in the domain of behavior and behavioral change offers useful opportunities for better informing public policy campaigns via a deeper understanding of the psychological processes that operate in real-world decision-making. Here, we focus on the domain of social conformity, and suggest that the recent emergence of laboratory work using neuroscientific techniques to probe the brain basis of social influence can prove a useful source of data to better inform models of conformity. In particular, we argue that this work can have an important role to play in better understanding the specific mechanisms at work in social conformity, in both validating and extending current psychological theories of this process, and in assessing how behavioral change can take place as a result of exposure to the judgments of others. We conclude by outlining some promising future directions in this domain, and indicating how this research could potentially be usefully applied to policy issues.

  8. GEOScan: a geoscience facility from space (United States)

    Dyrud, Lars P.; Fentzke, Jonathan T.; Cahoy, Kerri; Murphy, Shawn; Wiscombe, Warren; Fish, Chad; Gunter, Brian; Bishop, Rebecca; Bust, Gary; Erlandson, Bob; Bauer, Brian; Gupta, Om


    GEOScan is a grassroots effort, proposed as globally networked orbiting observation facility utilizing the main Iridium NEXT 66-satellite constellation. This will create a revolutionary new capability of massively dense, global geoscience observations and targets elusive questions that scientists have not previously been able to answer, and will not answer, until simultaneous global measurements are made. This effort is enabled by Iridium as part of its Hosted Payload Program. By developing a common sensor suite the logistical and cost barriers for transmitting massive amounts of data from 66 satellites configured in 6 orbital planes with 11 evenly spaced slots per plane is removed. Each sensor suite of GEOScan's networked orbital observation facility consists of 6 system sensors: a Radiometer to measure Earth's total outgoing radiation; a GPS Compact Total Electron Content Sensor to image Earth's plasma environment and gravity field; a MicroCam Multispectral Imager to measure global cloud cover, vegetation, land use, and bright aurora, and also take the first uniform instantaneous image of the Earth; a Radiation Belt Mapping System (dosimeters) to measure energetic electron and proton distributions; a Compact Earth Observing Spectrometer to measure aerosol-atmospheric composition and vegetation; and MEMS Accelerometers to deduce non-conservative forces aiding gravity and neutral drag studies. Our analysis shows that the instrument suites evaluated in a constellation configuration onboard the Iridium NEXT satellites are poised to provide major breakthroughs in Earth and geospace science. GEOScan commercial-of-the-shelf instruments provide low-cost space situational awareness and intelligence, surveillance, and reconnaissance opportunities.

  9. Global dynamic topography: geoscience communities requirements (United States)

    Dewez, T.; Costeraste, J.


    The advent of free-of-charge global topographic data sets SRTM and Aster GDEM have enabled testing a host of geoscience hypotheses. This is because they first revealed the relief of previously unavailable earth landscapes, enabled quantitative geomorphometric analyses across entire landscapes and improved the resolution of measurements. Availability of such data is now considered standard, and though resolved at 30-m to 90-m pixel, which is amazing seeing where we come from, they are now regarded as mostly obsolete given the sub-meter imagery coming through web services like Google Earth. Geoscientists now appear to desire two additional features: field-scale-compatible elevation datasets (i.e. meter-scale digital models and sub-meter elevation precision) and dispose of regularly updated topography to retrieve earth surface changes, while retaining the key for success: data availability at no charge. A new satellite instrument is currently under phase 0 study at CNES, the French space agency, to fulfil these aims. The scientific community backing this demand is that of natural hazards, glaciology and to a lesser extent the biomass community. The system under study combines a native stereo imager and a lidar profiler. This combination provides spatially resolved elevation swaths together with absolute along-track elevation control point profiles. Data generated through this system, designed for revisit time better than a year, is intended to produce not only single acquisition digital surface models, colour orthoimages and small footprint full-wave-form lidar profiles to update existing topographic coverages, but also time series of them. This enables 3D change detection with centimetre-scale planimetric precision and metric vertical precision, in complement of classical spectral change appoaches. The purpose of this contribution, on behalf of the science team, is to present the mission concepts and philosophy and the scientific needs for such instrument including

  10. Implementing virtual reality interfaces for the geosciences

    Energy Technology Data Exchange (ETDEWEB)

    Bethel, W.; Jacobsen, J. [Lawrence Berkeley National Laboratory, CA (United States); Austin, A.; Lederer, M. [BP Exploration, Houston, TX (United States); Little, T. [Landmark Graphics Corp., Houston, TX (United States)


    For the past few years, a multidisciplinary team of computer and earth scientists at Lawrence Berkeley National Laboratory has been exploring the use of advanced user interfaces, commonly called {open_quotes}Virtual Reality{close_quotes} (VR), coupled with visualization and scientific computing software. Working closely with industry, these efforts have resulted in an environment in which VR technology is coupled with existing visualization and computational tools. VR technology may be thought of as a user interface. It is useful to think of a spectrum, ranging the gamut from command-line interfaces to completely immersive environments. In the former, one uses the keyboard to enter three or six-dimensional parameters. In the latter, three or six-dimensional information is provided by trackers contained either in hand-held devices or attached to the user in some fashion, e.g. attached to a head-mounted display. Rich, extensible and often complex languages are a vehicle whereby the user controls parameters to manipulate object position and location in a virtual world, but the keyboard is the obstacle in that typing is cumbersome, error-prone and typically slow. In the latter, the user can interact with these parameters by means of motor skills which are highly developed. Two specific geoscience application areas will be highlighted. In the first, we have used VR technology to manipulate three-dimensional input parameters, such as the spatial location of injection or production wells in a reservoir simulator. In the second, we demonstrate how VR technology has been used to manipulate visualization tools, such as a tool for computing streamlines via manipulation of a {open_quotes}rake.{close_quotes} The rake is presented to the user in the form of a {open_quotes}virtual well{close_quotes} icon, and provides parameters used by the streamlines algorithm.

  11. National Institute for Petroleum and Energy Research quarterly technical report, July 1--September 30, 1992

    Energy Technology Data Exchange (ETDEWEB)

    Gall, Bonnie L.; Liave, Feliciano M.; Noll, Leo A.


    Volume II includes: chemical flooding--supporting research; gas displacement--supporting research; thermal recovery--supporting research; geoscience technology; resource assessment technology; and microbial technology.

  12. Engaging teachers & students in geosciences by exploring local geoheritage sites (United States)

    Gochis, E. E.; Gierke, J. S.


    Understanding geoscience concepts and the interactions of Earth system processes in one's own community has the potential to foster sound decision making for environmental, economic and social wellbeing. School-age children are an appropriate target audience for improving Earth Science literacy and attitudes towards scientific practices. However, many teachers charged with geoscience instruction lack awareness of local geological significant examples or the pedagogical ability to integrate place-based examples into their classroom practice. This situation is further complicated because many teachers of Earth science lack a firm background in geoscience course work. Strategies for effective K-12 teacher professional development programs that promote Earth Science literacy by integrating inquiry-based investigations of local and regional geoheritage sites into standards based curriculum were developed and tested with teachers at a rural school on the Hannahville Indian Reservation located in Michigan's Upper Peninsula. The workshops initiated long-term partnerships between classroom teachers and geoscience experts. We hypothesize that this model of professional development, where teachers of school-age children are prepared to teach local examples of earth system science, will lead to increased engagement in Earth Science content and increased awareness of local geoscience examples by K-12 students and the public.

  13. BCube: A Broker Framework for Next Generation Geoscience (United States)

    Khalsa, S. S.; Pearlman, J.; Nativi, S.


    EarthCube is an NSF initiative that aims to transform the conduct of research through the creation of community-guided cyberinfrastructure enabling the integration information and data across the geosciences. Following an initial phase of concept and community development activities, NSF has made awards for the development of cyberinfrastructure 'building blocks.' In this talk we describe the goals and methods for one of these projects - BCube, for Brokering Building Blocks. BCube addresses the need for effective and efficient multi-disciplinary collaboration and interoperability through the introduction of brokering technologies. Brokers, as information systems middleware, have existed for many years and are found in diverse domains and industries such as financial systems, business-to-business interfaces, medicine and the automotive industry, to name a few. However, the emergence of brokers in science is relatively new and is now being piloted with great promise in cyberinfrastructure and science communities in the U.S., Europe, and elsewhere. Brokers act as intermediaries between information systems that implement well-defined interfaces, providing a bridge between communities using different specifications. The BCube project is helping to build a truly cross-disciplinary, global platform for data providers, cyberinfrastructure developers, and data users to make data more available and interoperable through a brokering framework. Building on the GEOSS Discover and Access Broker (DAB), BCube will develop new modules and services including * Expanded semantic brokering * Business Model support for work flows * Automated metadata generation * Automated linking to services discovered via web crawling * Plug and play for most community service buses * Credential passing for seamless access to data * Ranking of search results from brokered catalogs Because facilitating cross-discipline research involves cultural and well as technical challenges, BCube is also

  14. Current research activities: Applied and numerical mathematics, fluid mechanics, experiments in transition and turbulence and aerodynamics, and computer science (United States)


    Research conducted at the Institute for Computer Applications in Science and Engineering in applied mathematics, numerical analysis, fluid mechanics including fluid dynamics, acoustics, and combustion, aerodynamics, and computer science during the period 1 Apr. 1992 - 30 Sep. 1992 is summarized.

  15. Geosciences Information Network (GIN): A Distributed, Interoperable Data Network for the Geosciences (United States)

    Allison, L.; Gundersen, L. C.; Richard, S. M.; Dickinson, T. L.


    A coalition of the state geological surveys (AASG), the U.S. Geological Survey (USGS), and other partners will receive NSF funding over the next 3 years under the INTEROP solicitation to start building a distributed, interoperable data network that will make thousands of data bases from the geological surveys and their partners available, searchable, and interoperable. This Geosciences Information Network (GIN) will focus on both spatial and analytical geologic data collected across the country for the past 150 years. Key components of the proposed network include: 1) catalog systems for data discovery; 2) service definitions that define interfaces for searching catalogs and accessing resources; 3) shared interchange formats to encode information for transmission; 4) data providers that publish information using standardized services defined by the network; and 5) client applications enabled to utilize information resources provided by the network. The GIN will integrate and utilize catalog resources that currently exist or are in development. We are working closely with the USGS National Geologic Map Database and its existing map catalog; with the USGS National Geological and Geophysical Data Preservation project, which is developing a metadata catalog for geoscience information resource discovery; and with the GEON catalog. Existing and emerging extensible mark-up languages such as GeoSciML, ChemML, and Open Geospatial Consortium sensor, observation and measurement MLs will provide the necessary interchange formats. Client application development will be fostered by collaboration with industry partners such as ESRI who's Geology Data Model for ArcGIS software is being designed to be compatible with GIN. The GIN project will focus on development of the remaining aspects of the system including: service definitions, technical assistance to data providers to implement the services and bring content online, and system integration. The Geosciences Information Network

  16. Summary and abstracts: Applied Research Units and Projects 1996 UCETF Program

    Energy Technology Data Exchange (ETDEWEB)



    The Urban Consortium (UC), created by PTI, is a network of jurisdictions with populations of over 250,000. The UC provides a platform for research and enterprise through its Energy, Environmental, Transportation, and Telecommunications and Information Task Forces. The UC provides a unique creative forum where elected and appointed officials and technical managers identify, test, and validate practical ways to improve the provision of public services and, where possible, generate new revenue opportunities. Public Technology, Inc., is the non-profit technology organization of the National League of Cities, the National Association of Counties, and the International City/County Management Association. PTI creates and advances technology-based products, services, and enterprises in cities and counties nationwide. Staffed by PTI, the UC addresses the critical needs of local governments through its Task Forces. The Urban Consortium Energy Task Force (UCETF) program has, since its inception, acted as a laboratory to develop, test solutions and share the resulting products or management approaches with the wider audience of local governments. It has addressed the overlap between energy and environment and economic development policy issues, and, is the nation's most extensive cooperative local government program to improve energy management and decision-making through applied research and technology cooperation. Proposals to meet the specific objectives of the UCETF annual R and D program are solicited from major urban jurisdictions. Projects based on these proposals are then selected by the UCETF for direct conduct and management by staff of city and county governments. Projects selected for each year's program are organized in thematic units to assure effective management and ongoing peer-to-peer experience exchange, with results documented at the end of each program year.

  17. Observing efl classrooms in primary or secondary schools: a research task in applied linguistics Observing efl classrooms in primary or secondary schools: a research task in applied linguistics

    Directory of Open Access Journals (Sweden)

    Viviane Heberle


    Full Text Available Neste trabalho, com base em princípios da gramática funcional de Halliday e de análise crítica do discurso, bem como minha experiência em Lingüística Aplicada, discuto questões relacionadas à observação de aulas de inglês como língua estrangeira. A análise (de cunho etnográfico surge de discussões nas minhas aulas de Lingüística Aplicada e de relatos de alunos sobre as aulas observadas. O estudo visa contribuir para uma conscientização da relevância de uma prática educacional que vai além de, por exemplo, mera listagem de pronomes pessoais com as formas do verbo to be, para uma discussão de tópicos que possam, de alguma forma, integrar perspectivas socioculturais na educação de professores de inglês como língua estrangeira. In this paper, based on principles of systemic-functional grammar and critical discourse analysis, as well as on my experience as a teacher of Applied Linguistics, I discuss issues related to the observation of EFL classes. The analysis (qualitative, ethnographically-based arises from discussions in my Applied Linguistics course and students’ reports on the classes they observed. The study aims at contributing to an awareness of the relevance of an educational practice that goes beyond the mere listing of personal pronouns with the corresponding forms of the verb to be, for instance, and suggests a discussion of topics which could somehow integrate sociocultural perspectives into EFL teacher education.

  18. Using Low Cost Environmental Sensors in Geoscience Education (United States)

    Leeman, J.; Ammon, C. J.; Anandakrishnan, S.


    Advances in process technology have drastically reduced the cost of manufacturing almost every type of sensor and micro-controller, putting low-to-mid grade sensor technology in the reach of educators and hobbyists. We demonstrate how a low cost magnetometer and an Arduino micro-controller can be used in education. Students can easily connect the sensor to the Arduino and collect three-component magnetic field data. Experiments can easily be turned into long-term monitoring projects by connecting sensors to the internet and providing an Internet-of-Things interface to store and to display the data in near-real time. Low-cost sensors are generally much noisier than their research grade counterparts, but can still provide an opportunity for students to learn about fundamental concepts such as signal quality, sampling, averaging, and filtering and to gain hands-on, concrete experience with observations. Sensors can be placed at different locations and compared both qualitatively and quantitatively. For example, with an inexpensive magnetometer, students can examine diurnal magnetic field variations and look for magnetic storms. Magnetic field orientation can be calculated and compared to the predicted geomagnetic field orientation at a given location. Data can be stored in simple text files to facilitate analysis with any convenient package. We illustrate the idea using Python notebooks, allowing students to explore the data interactively and to learn the basic principles of programming and reproducible research. Using an Arduino encourages students to interact with open-source data collection hardware and to experiment with ways to quickly, cheaply, and effectively measure the environment. Analysis of these data can lead to a deeper understanding of both geoscience and data processing.

  19. Monuments and Memorials: Geoscience and the Historic Record (United States)

    Williams, E.; Smith, B. L.


    Many communities have a cemetery, war memorial, public sculpture or old historic buildings that are an important part of the historic record of that community. Such monuments celebrate achievements, commemorate people who died serving their country, or a prominent former member of the local community. Monuments and memorials can trace the histiry of settlement within a community. After a number of years researching cemeteries and memorials, primarily in western Canada my research partner, a historian, and I, a geoscience educator,have documented many monuments and memorials that are succumbing to basic weathering processes. Original design choices can be dictated by cost, material availability, access to transportation and emotions. Climate, type of material, construction methods, technology used and long-term maintenance can all have significant impacts on the sustainability of that material record. Over the last five years we have given many lectures and workshops on the nature of cemeteries to family historians, historical societies and classroom educators. These workshops and lectures focus on developing a better ommunity understanding of the fragility of the record. Field trips by students of all ages can contextualize both geology and history. Seeing local monumanets can facilitate the development of a sense of time and place as well as an appreciation of the environmental impacts and the longevity of the record. For the earth science student documentation of the installation enable comparisons of weathering rates of different materials, the effects of local climate or impacts of pollution. Being able to go to a local memorial or cemetery to compare diffrent structures brings a powerful local context to the learning. However we both have concerns that modern techniques that enable the creation of more elaborate memorials are actually setting the stage for more rapid deterioration. I will illustrate a cross section of our reseacrh and the impact it has had on

  20. National Geoscience Data Repository System: Phase 2 final report

    Energy Technology Data Exchange (ETDEWEB)



    The American Geological Institute (AGI) has completed Phase 2 of a project to establish a National Geoscience Data Repository System (NGDRS). The project`s primary objectives are to preserve geoscience data in jeopardy of being destroyed and to make that data available to those who have a need to use it in future investigations. These data are available for donation to the public as a result of the downsizing that has occurred in the major petroleum and mining companies in the US for the past decade. In recent years, these companies have consolidated domestic operations, sold many of their domestic properties and relinquished many of their leases. The scientific data associated with those properties are no longer considered to be useful assets and are consequently in danger of being lost forever. The national repository project will make many of these data available to the geoscience community for the first time. Phase 2 encompasses the establishment of standards for indexing and cataloging of geoscience data and determination of the costs of transferring data from the private sector to public-sector data repositories. Pilot projects evaluated the feasibility of the project for transfer of different data types and creation of a Web-based metadata supercatalog and browser. Also as part of the project, a national directory of geoscience data repositories was compiled to assess what data are currently available in existing facilities. The next step, Phase 3, will focus on the initiation of transfer of geoscience data from the private sector to the public domain and development of the web-based Geotrek metadata supercatalog.

  1. Applying the Principles of Systems Engineering and Project Management to Optimize Scientific Research (United States)

    Peterkin, Adria J.


    Systems Engineering is an interdisciplinary practice that analyzes different facets of a suggested area to properly develop and design an efficient system guided by the principles and restrictions of the science community. When entering an institution with quantitative and analytical scientific theory it is important to make sure that all parts of a system correlates in a structured and systematic manner so that all areas of intricacy will be prevented or quickly deduced. My research focused on interpreting and implementing Systems Engineering techniques in the construction, integration and operation of a NASA Radio Jove Kit to Observe Jupiter radio emissions. Jupiter emissions read at very low frequencies so when building the telescope it had to be able to read less than 39.5 MHz. The projected outcome was to receive long L-bursts and short S-burts signals; however, during the time of observation Jupiter was in conjunction with the Sun. We then decided to use the receiver built from the NASA Radio Jove Kit to hook it up to the Karl Jansky telescope to make an effort to listen to solar flares as well, nonetheless, we were unable to identify these signals and further realized they were noise. The overall project was a success in that we were able to apply and comprehend, the principles of Systems Engineering to facilitate the build.

  2. Human behavioural research applied to the leprosy control programme of Sarawak, Malaysia. (United States)

    Chen, P C


    In 1984, in Sarawak, there were a total of 1,099 recorded cases of leprosy for a population of 1.3 million. However, for each case recorded, it is estimated that two others remain undiagnosed as a consequence of the stigmatization associated with leprosy. For the five year period, 1979-1983, an average of 29 new cases were detected each year of which 8.6 (30%) were deformed due to the late stages at which it was being reported. To increase the case-finding rate, human behavioural research was applied to the leprosy control programme so as to develop culture-specific health education packages aimed at self diagnosis and self referral in order to detect the large pool of undiagnosed cases hidden behind the veil of aversion, fear and ignorance. This was achieved through anthropological studies to identify how the various major ethnic groups perceived leprosy and their attitudes towards leprosy. Taking into account these findings, health education packages aimed at adults as well as children were developed for the Chinese as well as the non-Chinese, and consisted of newspaper articles, cartoon tape-slides, cartoon story books and posters.

  3. The Praxis of Social Enterprise and Human Security: An Applied Research Agenda

    Directory of Open Access Journals (Sweden)

    Malcolm David Brown


    Full Text Available The growth of social enterprise within development NGO work might lead one to suspect it has been irredeemably corrupted by neo-liberal capitalism. However, using the tools of capitalism is not the same as subscribing to the values of capitalism. This paper is situated at the intersection of five fields: human security, international development, social enterprise, social franchising, and left-wing anti-capitalist thought. It examines the relevance of social en­terprise to human security and to development, the relationship between social enterprise and the anti-capitalist values of the left, and it then focuses on social franchising—a subset of social enterprise that highlights the importance of cooperation—suggesting that it may be a useful methodology for NGOs carrying out educational work in parts of the developing world. It syn­thesises and extends ideas that I have presented elsewhere [1-3], it draws on ethnographic fieldwork on the Thai-Burma border, and it puts forward an agenda for further applied research that is rooted in a sociological analysis of civil society and contributes to the human security paradigm.

  4. Basic versus applied research: Julius Sachs (1832-1897) and the experimental physiology of plants. (United States)

    Kutschera, Ulrich


    The German biologist Julius Sachs was the first to introduce controlled, accurate, quantitative experimentation into the botanical sciences, and is regarded as the founder of modern plant physiology. His seminal monograph Experimental-Physiologie der Pflanzen (Experimental Physiology of Plants) was published 150 y ago (1865), when Sachs was employed as a lecturer at the Agricultural Academy in Poppelsdorf/Bonn (now part of the University). This book marks the beginning of a new era of basic and applied plant science. In this contribution, I summarize the achievements of Sachs and outline his lasting legacy. In addition, I show that Sachs was one of the first biologists who integrated bacteria, which he considered to be descendants of fungi, into the botanical sciences and discussed their interaction with land plants (degradation of wood etc.). This "plant-microbe-view" of green organisms was extended and elaborated by the laboratory botanist Wilhelm Pfeffer (1845-1920), so that the term "Sachs-Pfeffer-Principle of Experimental Plant Research" appears to be appropriate to characterize this novel way of performing scientific studies on green, photoautotrophic organisms (embryophytes, algae, cyanobacteria).

  5. Texas A&M Geosciences and the growing importance of transfer students (United States)

    Riggs, E. M.


    Texas A&M University at College Station is the flagship university for the Texas A&M System, and is a major destination for transfer students, both from inside and outside the A&M system. The College of Geosciences consists of four academic departments and organized research centers spanning geoscience disciplines of Geology & Geophysics, Geography, Oceanography and Atmospheric Sciences. Two additional interdisciplinary degree programs offer undergraduate degrees in Environmental Geosciences and Environmental Studies and graduate degrees in Water and Hydrological Sciences. The College has increased its undergraduate enrollment and graduation numbers substantially in recent years, growing from 105 Baccalaureate graduates in 2006-07 College-wide to 187 in 2010-11. This 80% growth over this time period has greatly outpaced the undergraduate degree completion growth rate of 10% for the University as a whole. While the College of Geosciences is still the smallest at A&M in terms of overall B.S. graduation rate, it is by far the fastest growing of the nine undergraduate degree-granting colleges over the last five years. A significant number of our incoming and graduating undergraduate students are transfers from primarily 2-year colleges, mostly concentrated in the southeastern portion of Texas. University-wide between 2006 and 2010, 23-25% of degree recipients entered as transfer students. In the College of Geosciences transfer students are an even more significant portion of our graduating students, making up 34-35% of graduates during the same period. Most of the recent undergraduate enrollment growth in the College, however, has come from an increase in first-time freshmen and not from an increase in transfer admissions. Recent efforts to reinvigorate transfer admissions have sharply reversed this trend. Current enrollment data shows that incoming transfer students this year once again more closely mirror historic graduation rates with 34% of our new students

  6. MS PHD'S: A Successful Model Promoting Inclusion, Preparation and Engagement of Underrepresented Minorities within the Geosciences Workforce (United States)

    Padilla, E.; Scott, O.; Strickland, J. T.; Ricciardi, L.; Guzman, W. I.; Braxton, L.; Williamson, V.; Johnson, A.


    According to 2014 findings of the National Research Council, geoscience and related industries indicate an anticipated 48,000 blue-collar, scientific, and managerial positions to be filled by underrepresented minority (URM) workers in the next 15 years. An Information Handling Services (IHS) report prepared for the American Petroleum Institute forecasts even greater numbers estimating upward of 408,000 opportunities for URM workers related to growth in accelerated development of oil, gas and petroleum industries. However, many URM students lack the training in both the hard sciences and craft skills necessary to fill these positions. The Minorities Striving and Pursuing Higher Degrees of Success in Earth System Science (MS PHD'S) Professional Development Program uses integrative and holistic strategies to better prepare URM students for entry into all levels of the geoscience workforce. Through a three-phase program of mentoring, community building, networking and professional development activities, MS PHD'S promotes collaboration, critical thinking, and soft skills development for participants. Program activities expose URM students to education, training and real-life geoscience workforce experiences while maintaining a continuity of supportive mentoring and training networks via an active virtual community. MS PHD'S participants report increased self-confidence and self-efficacy in pursuing geoscience workforce goals. To date, the program supports 223 participants of who 57, 21 and 16 have received Doctorate, Masters and Baccalaureate degrees respectively and are currently employed within the geoscience and related industries workforce. The remaining 129 participants are enrolled in undergraduate and graduate programs throughout the U.S. Geographic representation of participants includes 35 states, the District of Columbia, Puerto Rico and two international postdoctoral appointments - one in Saudi Arabia and the other in France.

  7. The 1 MV multi-element AMS system for biomedical applications at the Netherlands Organization for Applied Scientific Research (TNO)

    NARCIS (Netherlands)

    Klein, M.; Vaes, W.H.J.; Fabriek, B.; Sandman, H.; Mous, D.J.W.; Gottdang, A.


    The Netherlands Organization for Applied Scientific Research (TNO) has installed a compact 1 MV multi-element AMS system manufactured by High Voltage Engineering Europa B.V., The Netherlands. TNO performs clinical research programs for pharmaceutical and innovative foods industry to obtain early pha

  8. A Comparison of Rhetorical Move Structure of Applied Linguistics Research Articles Published in International and National Thai Journals (United States)

    Wannaruk, Anchalee; Amnuai, Wirada


    The rhetorical organization of research articles has attracted extensive attention in genre study, and the focus of move-based analysis is on the textual function. The primary aim of the present study was the comparison of the rhetorical moves of English research articles in the field of Applied Linguistics written by Thai first authors and…

  9. Abstracts of the Atlantic Geoscience Society's 2009 colloquium and annual general meeting

    Energy Technology Data Exchange (ETDEWEB)



    The annual meetings, workshops and field trips hosted by the Atlantic Geoscience Society (AGS) are intended to promote a better understanding of the geology of Atlantic Canada. This colloquium highlighted current research in the Atlantic provinces with particular focus on the following themes: Quaternary geology; hydrocarbon geology; surficial geochemistry; environmental geochemistry; evolution of the Appalachian orogen; sedimentology; zircon geochronology; and economic geology. The meeting included a tour of the Sussex Potash Mine as well as a workshop on the rationalization of the Mississippian stratigraphy of the Lower Carboniferous sections in the Maritimes Basin through inter-regional lithostratigraphic correlations. Abstracts of 57 presentations were included in this issue of Atlantic Geology.

  10. An introduction to the special issue on Geoscience Papers of the Future (United States)

    David, Cédric H.; Gil, Yolanda; Duffy, Christopher J.; Peckham, Scott D.; Venayagamoorthy, S. Karan


    Advocates of enhanced quality for published scientific results are increasingly voicing the need for further transparency of data and software for scientific reproducibility. However, such advanced digital scholarship can appear perplexing to geoscientists that are seduced by the concept of open science yet wonder about the exact mechanics and implications of the associated efforts. This special issue of Earth and Space Science entitled "Geoscience Papers of the Future" includes a review of existing best practices for digital scholarship and bundles a set of example articles that share their digital research products and reflect on the process of opening their scientific approach in a common quest for reproducible science.

  11. Virtual tours as a new teaching tool in geoscience: an example from the Western Alps (United States)

    Berger, Antoine; Champagnac, Jean-Daniel; Nomade, Jérome


    Since almost two decades, numerical tools allowed to spread the science to the people at large, worldwide. Within a few minutes, it is now easy to find a detailed course on one technical or scientific topic. A teacher can lead students to online contents (created by his/her own or by others) to complement his/her own course, with videos, maps or any other content that would remain accessible for the students a long time after the course itself. In geosciences, many national and international institutions provide real time monitoring of the Earth (e.g. seismicity, climate, volcanisms...) and / or scientific content based on active research or more mature results. There is little doubt that this new scientific content is a great step forward for the students and the researchers alike. Geosciences (and especially geology), however, usually require field observations and in situ measurements, and a good student curriculum cannot be achieved without a significant amount of walking, observations, and questions answered on the field. We, as geologists, all experienced days and days of sun, dust and pouring rain... Most of the universities provide the students with field courses that allow them to (try to) apply what they have learnt in the universities' buildings. However, these few days (often reduced to cut the costs and fit teachers' schedules) may not be sufficient given the complexity of the area visited and the possible lack of some parts of the teacher's explanations for various reasons. It is therefore important to build a virtual suite to the field itself to provide a cost-free support available year round, to eventually achieve or complete the field course. The new images technologies now offer amazing visualization capabilities to "show" the field in an interactive fashion. For instance, a few tens of pictures taken with a good SRL camera equipped with an ultra wide angle lens permit to build a 360° panorama with no deformation of a point of interest. Moreover

  12. The HR factor: codes of conduct and gender issues as levers of innovation in geosciences (United States)

    Rubbia, Giuliana


    Professional geosciences organizations which support governments, industry and academic institutions in setting standards for communication, responsible use of geosciences information and continuing professional development do have codes of professional conduct, binding their members. "The geologist is responsible for the impression he gives of his profession in the opinion of those around him and of the public at large" reads one principle of the Code of Professional Conduct of the European Federation of Geologists. Several higher education institutions and public research bodies inspire their regulations to the European Charter of Researchers. In strengthening the relationships of professional organizations with industry, society and academy, it becomes interesting to highlight similarities and fruitful points of contacts between codes of professional ethics and the Charter of Researchers. Ethical principles, professional responsibility and attitude, accountability, dissemination and exploitation of results, public engagement, continuing professional development are some of the remarkable principles. Gender issues are also vital, as starting point to rethink processes in the knowledge society. Structural changes in institutions to improve excellence in research need more women in decision-making bodies, practices of work-family balance and codes of conduct which prevent hidden discriminations. In communication of natural hazards that have societal impact, the diversity management of both target public and communicators can make the difference between a generic communication and an effective one which is more tailored to information needs of women and men acting in the society.

  13. The International Association for Mathematical Geosciences; IAMG - Asociacion Internacional para las Geociencias Matematicas

    Energy Technology Data Exchange (ETDEWEB)

    Pawlowsky-Glahn, V.


    We introduce the International Association for Mathematical Geosciences (IAMG) from its origins to the present and summarize the means by which it is fulfilling its mission. The IAMG was set up in Prague in 1968 with the intention of promoting throughout the world the advancement of mathematics, statistics and informatics in the Geosciences. It is a non-profit organisation that includes among its members researchers, teachers, professionals and students dedicated to mathematical and statistical applications in all branches of the earth sciences. The IAMG publishes three major journals and a newsletter and organises a yearly conference, whilst at the same time supporting many others. It bestows 4 biennial prizes that recognise outstanding achievements in its field, organises a distinguished lecturer series, and encourages young researchers by providing student research and travel funds and promoting student societies. The IAMG celebrated its 40th anniversary in Oslo, Norway, in 2008 and continues to be a venue for a vast array of researchers in this broad field by providing a common driving force for their activities. (Author) 1 refs.

  14. The Need for an International Geoscience School Syllabus: Its Development and Publication (United States)

    King, C.


    International comparisons of school-level geoscience education across the world had shown great variability in the amount and content of the geoscience materials and in the ways in which it was taught. When this situation was discussed at meetings of organisations concerned with international school-level geoscience education in 2012, the decision…

  15. Future ISON development from points of view of scientific and applied researches (United States)

    Molotov, Igor; Agapov, Vladimir; Akim, Efraim

    International scientific optical network (ISON) project achieved all initially formulated goals. ISON is the world-wide system providing periodical monitoring of space objects in GEO region across the globe. New level of quality of GEO research is achieved. For the first time our knowledge of true GEO population of objects brighter than 15.5m is almost complete. ISON provides the discovering and tracking of faint deep space debris. Large amount of data on long time intervals is obtained for few hundred fragments including ones having high area-to-mass ratio. About 1115000 measurements in 120000 tracks are collected and processed at KIAM database in 2009 that allowed to maintain the orbits of 1467 GEO objects including 892 spacecraft, 250 upper stages and AKMs and 325 fragments and objects of undetermined type. ISON administrative, software and engineering groups are formed to support current project activities. 20 new telescopes were produced as a part of this work. At the same time ISON is involved into new scientific and applied projects which are formulating new tasks and needing further ISON development. Part of ISON is involved into Roscosmos project aimed on search and prediction of possible collisions between operational spacecraft and other space objects. Therefore it is required that periodicity of object monitoring and measurement precision would be improved. It is necessary to involve new observatories to minimize the weather dependence as well as dedicated telescopes to provide additional tracking of potentially dangerous objects. The goal of HEO object population studying requires development of dedicated telescopes with wider field of view for monitoring of larger areas of the sky. KIAM, as the ISON project leader, is responsible also for development of the new model of the small object population (in first turn for high orbits) that requires involvement of additional large aperture telescopes to verify the model. In addition, dedicated ISON subsystem

  16. Applying Science: Opportunities to Inform Disease Management Policy with Cooperative Research within a One Health Framework. (United States)

    Blackburn, Jason K; Kracalik, Ian T; Fair, Jeanne Marie


    The ongoing Ebola outbreak in West Africa and the current saiga antelope die off in Kazakhstan each represent very real and difficult to manage public or veterinary health crises. They also illustrate the importance of stable and funded surveillance and sound policy for intervention or disease control. While these two events highlight extreme cases of infectious disease (Ebola) or (possible) environmental exposure (saiga), diseases such as anthrax, brucellosis, tularemia, and plague are all zoonoses that pose risks and present surveillance challenges at the wildlife-livestock-human interfaces. These four diseases are also considered important actors in the threat of biological terror activities and have a long history as legacy biowarfare pathogens. This paper reviews recent studies done cooperatively between American and institutions within nations of the Former Soviet Union (FSU) focused on spatiotemporal, epidemiological, and ecological patterns of these four zoonoses. We examine recent studies and discuss the possible ways in which techniques, including ecological niche modeling, disease risk modeling, and spatiotemporal cluster analysis, can inform disease surveillance, control efforts, and impact policy. Our focus is to posit ways to apply science to disease management policy and actual management or mitigation practices. Across these examples, we illustrate the value of cooperative studies that bring together modern geospatial and epidemiological analyses to improve our understanding of the distribution of pathogens and diseases in livestock, wildlife, and humans. For example, ecological niche modeling can provide national level maps of pathogen distributions for surveillance planning, while space-time models can identify the timing and location of significant outbreak events for defining active control strategies. We advocate for the need to bring the results and the researchers from cooperative studies into the meeting rooms where policy is negotiated and

  17. Decision making for pregnant adolescents: applying reasoned action theory to research and treatment. (United States)

    Cervera, N J


    Unmarried adolescent mothers face greater risk of less schooling, more emotional problems, higher poverty, and less income than those who relinquish their infants for adoption. Currently, around 5% of unmarried mothers give up their children for adoption (52,000 children annually, of which 24,500 are infants). Reasoned-action theory according to Ajzen and Fishbein (1980) was utilized in order to examine the potent family and personal variables that underlie this decision. In addition, a literature review of research studies applying reasoned-action theory to pregnant teenagers is provided, along with suggestions for clinical application of the theory. Family support has been found an important variable in the teenagers' decision. Family members may encourage or discourage the teenagers to keep the baby. Families may come closer together to cope with an unplanned pregnancy; however, some families experience deterioration of adaptability over time. The theory focuses 1) on the relationship of the individual and the decision or behavioral intention (BI), and 2) on immediate sociopsychological determinants of a BI. In some instances behavior (B) and BI are unrelated. The theory characterizes BIs in terms of the subjective probability concerning behavioral performance. The person's intention to perform a behavior is the result of a choice between behavioral alternatives: 1) adoption, 2) keeping the child as single mother, 3) keeping the child and raising it with the father in a formal relationship, 4) keeping the child and raising it with the help of parents. According to the Fishbein and Ajzen model, differences between minority and White relinquishment rates occur because these groups 1) differ in their beliefs and attitudes toward behavioral alternatives, 2) differ in normative beliefs, and/or 3) differ in relative weights they accord to attitudes versus cultural norms. This model with many variables is useful in measuring behavior, choice, and BI; attitudes and

  18. Applying Science: opportunities to inform disease management policy with cooperative research within a One Health framework

    Directory of Open Access Journals (Sweden)

    Jason K. Blackburn


    Full Text Available The ongoing Ebola outbreak in West Africa and the current saiga antelope die off in Kazakhstan each represent very real and difficult to manage public or veterinary health crises. They also illustrate the importance of stable and funded surveillance and sound policy for intervention or disease control. While these two events highlight extreme cases of infectious disease (Ebola or (possible environmental exposure (saiga, diseases such as anthrax, brucellosis, tularemia, and plague are all zoonoses that pose risks and present surveillance challenges at the wildlife-livestock-human interfaces. These four diseases are also considered important actors in the threat of biological terror activities and have a long history as legacy biowarfare pathogens. This paper reviews recent studies done cooperatively between American and institutions within nations of the Former Soviet Union (FSU focused on spatiotemporal, epidemiological, and ecological patterns of these four zoonoses. We examine recent studies and discuss the possible ways in which techniques, including ecological niche modeling, disease risk modeling, and spatio-temporal cluster analysis, can inform disease surveillance, control efforts and impact policy. Our focus is to posit ways to apply science to disease management policy and actual management or mitigation practices. Across these examples, we illustrate the value of cooperative studies that bring together modern geospatial and epidemiological analyses to improve our understanding of the distribution of pathogens and diseases in livestock, wildlife, and humans. For example, ecological niche modeling can provide national level maps of pathogen distributions for surveillance planning, while space-time models can identify the timing and location of significant outbreak events for defining active control strategies. We advocate for the need to bring the results and the researchers from cooperative studies into the meeting rooms where policy is

  19. A project-based geoscience curriculum: select examples (United States)

    Brown, L. M.; Kelso, P. R.; White, R. J.; Rexroad, C. B.


    Principles of constructivist educational philosophy serve as a foundation for the recently completed National Science Foundation sponsored undergraduate curricular revision undertaken by the Geology Department of Lake Superior State University. We integrate lecture and laboratory sessions utilizing active learning strategies that focus on real-world geoscience experiences and problems. In this presentation, we discuss details of three research-like projects that require students to access original data, process and model the data using appropriate geological software, interpret and defend results, and disseminate results in reports, posters, and class presentations. The projects are from three upper division courses, Carbonate Systems, Sequence Stratigraphy, and Geophysical Systems, where teams of two to four students are presented with defined problems of durations ranging from a few weeks to an entire semester. Project goals and location, some background information, and specified dates and expectations for interim and final written and oral reports are provided to students. Some projects require the entire class to work on one data set, some require each team to be initially responsible for a portion of the project with teams ultimately merging data for interpretation and to arrive at final conclusions. Some projects require students to utilize data from appropriate geological web sites such as state geological surveys. Others require students to design surveys and utilize appropriate instruments of their choice for field data collection. Students learn usage and applications of appropriate geological software in compiling, processing, modeling, and interpreting data and preparing formal reports and presentations. Students uniformly report heightened interest and motivation when engaged in these projects. Our new curriculum has resulted in an increase in students" quantitative and interpretive skills along with dramatic improvement in communication and

  20. Student Enrollment in Geoscience Departments. 1982-1983. (United States)

    American Geological Inst., Washington, DC.

    Presented in table format are student enrollment data for geoscience disciplines at colleges and universities in the United States and Canada. Subfields for both countries include: geology; geophysics; oceanography; marine science; geological engineering; geophysical engineering; geochemistry; hydrology; mineralogy; paleontology; soil science;…

  1. Gender differences in recommendation letters for postdoctoral fellowships in geoscience (United States)

    Dutt, Kuheli; Pfaff, Danielle L.; Bernstein, Ariel F.; Dillard, Joseph S.; Block, Caryn J.


    Gender disparities in the fields of science, technology, engineering and mathematics, including the geosciences, are well documented and widely discussed. In the geosciences, despite receiving 40% of doctoral degrees, women hold less than 10% of full professorial positions. A significant leak in the pipeline occurs during postdoctoral years, so biases embedded in postdoctoral processes, such as biases in recommendation letters, may be deterrents to careers in geoscience for women. Here we present an analysis of an international data set of 1,224 recommendation letters, submitted by recommenders from 54 countries, for postdoctoral fellowships in the geosciences over the period 2007-2012. We examine the relationship between applicant gender and two outcomes of interest: letter length and letter tone. Our results reveal that female applicants are only half as likely to receive excellent letters versus good letters compared to male applicants. We also find no evidence that male and female recommenders differ in their likelihood to write stronger letters for male applicants over female applicants. Our analysis also reveals significant regional differences in letter length, with letters from the Americas being significantly longer than any other region, whereas letter tone appears to be distributed equivalently across all world regions. These results suggest that women are significantly less likely to receive excellent recommendation letters than their male counterparts at a critical juncture in their career.

  2. A Compilation and Review of over 500 Geoscience Misconceptions (United States)

    Francek, Mark


    This paper organizes and analyses over 500 geoscience misconceptions relating to earthquakes, earth structure, geologic resources, glaciers, historical geology, karst (limestone terrains), plate tectonics, rivers, rocks and minerals, soils, volcanoes, and weathering and erosion. Journal and reliable web resources were reviewed to discover (1) the…

  3. Connecting Brain Research to Classroom Learning: A Mixed-Method Study on How Teachers Apply Brain Research to Their Instruction (United States)

    McAteer, Todd C.


    Purpose. The purpose of this study was to examine how knowledgeable teachers are in utilizing brain-researched instructional strategies. The research focused on determining which brain-researched strategies are implemented, the accuracy with which they are employed, and the degree to which they are utilized. A literature review revealed the most…

  4. Reinvesting in Geosciences at Texas A&M University in the 21st Century (United States)

    Cifuentes, L. A.; Bednarz, S. W.; Miller, K. C.


    The College of Geosciences at Texas A&M University is implementing a three-prong strategy to build a strong college: 1) reinvesting in signature areas, 2) emphasizing environmental programs, and 3) nurturing a strong multi-disciplinary approach to course, program and research development. The college is home to one of the most comprehensive concentrations of geosciences students (837), faculty (107) and research scientists (32) in the country. Its departments include Atmospheric Sciences, Geography, Geology & Geophysics, and Oceanography. The college is also home to three major research centers: the Integrated Ocean Drilling Program, the Geochemical and Environmental Research Group, and the Texas Sea Grant College Program. During the 1990’s the college experienced a 20 percent loss in faculty when allocation of university funds was based primarily on student credit hour production while research expenditures were deemphasized. As part of Texas A&M University President Robert Gates’ Faculty Reinvestment and the college’s Ocean Drilling and Sustainable Earth Sciences hiring programs, 31 faculty members were hired in the college from 2004 through 2009, representing a significant investment-2.2 million in salaries and 4.6 million in start-up. Concurrent improvements to infrastructure and services important to signature programs included $3.0 million for radiogenic isotope and core imaging facilities and the hiring of a new Director of Student Recruitment. In contrast to faculty hiring in previous decades, the expectation of involvement in multi-disciplinary teaching, learning and research was emphasized during this hiring initiative. Returns on investments to date consist of growth in our environmental programs including new multidisciplinary course offerings, generation of a new research center and significant increases in student enrollment, research expenditures, and output of research and scholarly works. Challenges ahead include providing adequate staff

  5. Research on applying the interests distribution method of enterprise-university-research institute cooperation based on hash model

    Institute of Scientific and Technical Information of China (English)

    WANG Yu-dong


    In order to get an acceptable interests-distribution scheme for each partner of enterprise-university-research institute cooperation in advance, based on Nash model, the paper designs the interest distribution method of enterprise-university-research institute cooperation and provides the basis for determining the weight of each partner in accordance with the interest distribution principles and subjected relations between major factors in enterprise-university-research institute cooperation. Also, in combination with one example, an applicable method is provided to distribute interest in enterprise-university-research institute cooperation. The study gives some references for interests-distribution of enterprise-university-research institute cooperation.

  6. High Bandwidth, Multi-Purpose Passive Radar Receiver Design For Aerospace and Geoscience Targets (United States)

    Vertatschitsch, Laura

    Passive radar permits inexpensive and stealthy detection and tracking of aerospace and geoscience targets. Transmitters of opportunity such as commercial FM broadcast, DTV broadcast, and cell phone towers are already illuminating many populated areas with continuous power. Passive radar receivers can be located at a distance from the transmitter, and can sense this direct transmission as well as any reflections from ground clutter, aircraft, ionospheric turbulence and meteor trails. The 100% duty cycle allows for long coherent integration, increasing the sensitivity of these instruments greatly. Traditional radar receivers employ analog front end downconverters to translate the radio frequency spectrum to an intermediate frequency (IF) for sampling and signal processing. Such downconverters limit the spectrum available for study, and can introduce nonlinearities which limit the detectability of weak signals in the presence of strong signals. With suitably fast digitizers one can bypass the downconversion stage completely. Very fast digitizers may have relatively few bits, but precision is recovered in subsequent signal processing. We present a new passive radar receiver designed to utilize a broad spectrum of commercial transmitters without the use of a front end analog downconverter. The receiver centers around a Reconfigurable Open Architecture Computing Hardware (ROACH) board developed by the Collaboration for Astronomy Signal Processing and Electronics Research (CASPER) group. Fast sampling rates (8-bit samples as fast as 3 GSps) combined with 640 multiply/addition operations on the Virtex-5 FPGA centered on the ROACH allows for coherent processing of broad spectrum and dynamic decision-making on one device all while sharing a single front end, putting this device on the cutting edge of wideband receiver technology. The radar is also designed to support mobile operation. It fits within a 19'' rack, it is equipped with solid state hard drives, and can run off an

  7. Global Geoscience Initiatives From Windows to the Universe (United States)

    Russell, R. M.; Johnson, R.; Gardiner, L.; Lagrave, M.; Genyuk, J.; Bergman, J.; Foster, S. Q.


    The Windows to the Universe ( Earth and space science educational program and web site has an extensive international presence. The web site reaches a vast user audience, having served more than 124 million page views across approximately 14 million user sessions in the past year. About 44% of these user sessions originated from domains outside of the United States. The site, which contains roughly 7,000 pages originally offered in English, is being translated into Spanish. This effort, begun in 2003, is now approximately 80% complete. Availability in a second major language has dramatically increased use of the site both in the U.S.A. and abroad; about 29% (4.1 million) of the annual user sessions visit Spanish-language portions of the site. In September 2005 we began distributing a monthly electronic newsletter for teachers that highlights features on the web site as well as other geoscience programs and events of relevance to educators. We currently have more than 4,400 subscribers, 33.6% of whom are outside of the United States. We are actively seeking news and information about other programs of relevance to this audience to distribute via our newsletter. We have also begun to solicit information (tips, anecdotes, lesson plans, etc.) from geoscience teachers around the world to share via this newsletter. Finally, Windows to the Universe participated in the Education and Outreach efforts of the MILAGRO scientific field campaign in Mexico in March of 2006. MILAGRO was a collaborative, multi-agency, international campaign to conduct a coordinated study of the extent and effects of pollutants emitted by a "mega-city" (in this case Mexico City) in order to understand the impacts of vast urban environments on global climate modeling. We enlisted several scientists involved with MILAGRO to write "Postcards from the Field" about their ongoing research during the project; these electronic "postcards" were distributed, in English and Spanish, via

  8. Geosciences Information Network (GIN): A modular, distributed, interoperable data network for the geosciences (United States)

    Allison, M.; Gundersen, L. C.; Richard, S. M.; Dickinson, T. L.


    A coalition of the state geological surveys (AASG), the U.S. Geological Survey (USGS), and partners will receive NSF funding over 3 years under the INTEROP solicitation to start building the Geoscience Information Network ( a distributed, interoperable data network. The GIN project will develop standardized services to link existing and in-progress components using a few standards and protocols, and work with data providers to implement these services. The key components of this network are 1) catalog system(s) for data discovery; 2) service definitions for interfaces for searching catalogs and accessing resources; 3) shared interchange formats to encode information for transmission (e.g. various XML markup languages); 4) data providers that publish information using standardized services defined by the network; and 5) client applications adapted to use information resources provided by the network. The GIN will integrate and use catalog resources that currently exist or are in development. We are working with the USGS National Geologic Map Database's existing map catalog, with the USGS National Geological and Geophysical Data Preservation Program, which is developing a metadata catalog (National Digital Catalog) for geoscience information resource discovery, and with the GEON catalog. Existing interchange formats will be used, such as GeoSciML, ChemML, and Open Geospatial Consortium sensor, observation and measurement MLs. Client application development will be fostered by collaboration with industry and academic partners. The GIN project will focus on the remaining aspects of the system -- service definitions and assistance to data providers to implement the services and bring content online - and on system integration of the modules. Initial formal collaborators include the OneGeology-Europe consortium of 27 nations that is building a comparable network under the EU INSPIRE initiative, GEON, Earthchem, and GIS software company ESRI

  9. Teaching Introductory Geoscience: A Cutting Edge Workshop Report (United States)

    Manduca, C.; Tewksbury, B.; Egger, A.; MacDonald, H.; Kirk, K.


    Introductory undergraduate courses play a pivotal role in the geosciences. They serve as recruiting grounds for majors and future professionals, provide relevant experiences in geoscience for pre-service teachers, and offer opportunities to influence future policy makers, business people, professionals, and citizens. An introductory course is also typically the only course in geoscience that most of our students will ever take. Because the role of introductory courses is pivotal in geoscience education, a workshop on Teaching Introductory Courses in the 21st Century was held in July 2008 as part of the On the Cutting Edge faculty development program. A website was also developed in conjunction with the workshop. One of the central themes of the workshop was the importance of considering the long-term impact a course should have on students. Ideally, courses can be designed with this impact in mind. Approaches include using the local geology to focus the course and illustrate concepts; designing a course for particular audience (such as Geology for Engineers); creating course features that help students understand and interpret geoscience in the news; and developing capstone projects to teach critical thinking and problem solving skills in a geologic context. Workshop participants also explored strategies for designing engaging activities including exploring with Google Earth, using real-world scenarios, connecting with popular media, or making use of campus features on local field trips. In addition, introductory courses can emphasize broad skills such as teaching the process of science, using quantitative reasoning and developing communication skills. Material