WorldWideScience

Sample records for apoptosis assay implications

  1. Endometrial carcinoma in vitro chemosensitivity testing of single and combination chemotherapy regimens using the novel microculture kinetic apoptosis assay: implications for endometrial cancer treatment.

    Science.gov (United States)

    Ballard, Karen S; Homesley, Howard D; Hodson, Charles; Presant, Cary A; Rutledge, James; Hallquist, Allan; Perree, Mathieu

    2010-03-01

    The in vitro microculture kinetic (MiCK) apoptosis assay has been used to predict single or combination chemotherapy response in leukemia patients. This feasibility study addressed MiCK in endometrial cancer specimens. Endometrial cancer specimens from total abdominal hysterectomies were processed at a central laboratory. Single cell suspensions of viable endometrial cancer cells were plated in individual wells. Single and combination regimens were tested: combinations of doxorubicin, cisplatin, and paclitaxel and carboplatin and paclitaxel (Gynecologic Oncology Group [GOG] 209 endometrial cancer phase III trial arms) as well as single agent testing with paclitaxel, carboplatin, doxorubicin, cisplatin, ifosfamide, and vincristine (active agents in GOG trials). Apoptosis was measured continuously over 48 hours. Fifteen of nineteen patients had successful assays. The highest mean chemo sensitivity was noted in the combination of cisplatin, doxorubicin, and paclitaxel with lower mean chemosensitivity for carboplatin and paclitaxel. Combination chemotherapy had higher chemosensitivity than single drug chemotherapy. However, in 25% of patients a single drug had higher chemosensitivity than combination chemotherapy. As single agents, ifosfamide, cisplatin, and paclitaxel had the highest kinetic unit values. Using a panel of agents simulating clinical dose regimens, the MiCK assay was feasible in evaluating in vitro chemosensitivity of endometrial cancer. MiCK assay results correlated with GOG clinical trial results. However, 25% of patients might be best treated with single agent chemotherapy selected by MiCK. Ifosfamide, cisplatin, and paclitaxel appear to have high activity as single agents. MiCK may be useful in future new drug testing and individualizing endometrial cancer patient's chemotherapy management.

  2. Detection of radiation-induced apoptosis using the comet assay

    International Nuclear Information System (INIS)

    Wada, Seiichi; Kobayashi, Yasuhiko; Funayama, Tomoo; Yamamoto, Kazuo; Khoa, Tran Van; Natsuhori, Masahiro; Ito, Nobuhiko

    2003-01-01

    The electrophoresis pattern of apoptotic cells detected by the comet assay has a characteristic small head and spread tail. This image has been referred to as an apoptotic comet, but it has not been previously proven to be apoptotic cells by any direct method. In order to identify this image obtained by the comet assay as corresponding to an apoptotic cell, the frequency of appearance of apoptosis was examined using CHO-K1 and L5178Y cells which were exposed to gamma irradiation. As a method for detecting apoptosis, the terminal deoxynucleotidyl transferase mediated dUTP nick end labeling (TUNEL) assay was used. When the frequency of appearance of apoptotic cells following gamma irradiation was observed over a period of time, there was a significant increase in appearance of apoptosis when using the TUNEL assay. However, there was only a slight increase when using the comet assay. In order to verify the low frequency of appearance of apoptosis when using the comet assay, we attempted to use the TUNEL assay to satin the apoptotic comets detected in the comet assay. The apoptotic comets were TUNEL positive and the normal comets were TUNEL negative. This indicates that the apoptotic comets were formed from DNA fragments with 3'-hydroxy ends that are generated as cells undergo apoptosis. Therefore, it was understood that the characteristic pattern of apoptotic comets detected by the comet assay corresponds to cells undergoing apoptosis. (author)

  3. The single-cell gel electrophoresis assay to determine apoptosis ...

    African Journals Online (AJOL)

    When the frequency of appearance of apoptotic cells following was observed over a period of time, there was a significant increase in appearance of apoptosis when using single cell gel electrophoresis assay. The present report demonstrates that the characteristic pattern of apoptotic comets detected by the comet assay ...

  4. Use of the microculture kinetic assay of apoptosis to determine chemosensitivities of leukemias.

    Science.gov (United States)

    Kravtsov, V D; Greer, J P; Whitlock, J A; Koury, M J

    1998-08-01

    Chemotherapeutic agents exert their antitumor effects by inducing apoptosis. The microculture kinetic (MiCK) assay provides an automated, continuous means of monitoring apoptosis in a cell population. We used the MiCK assay to determine the chemosensitivities of the human promyelocytic HL-60 and lymphoblastic CEM cell lines and leukemia cells freshly isolated from patients with acute nonlymphocytic (ANLL) or acute lymphocytic (ALL) leukemias. Continuous monitoring of apoptosis in the MiCK assay permits determination of the time to the maximum apoptosis (Tm) and its two components which are initiation time (Ti) and development time (Td). Duration of the three timing components of apoptosis varies from hours to days depending on the drug, drug concentration, and type of target cells. In the MiCK assay, the extent of apoptosis is reported in kinetic units of apoptosis. Kinetic units are determined by the slope of the curve created when optical density caused by cell blebbing is plotted as a function of time. Using the leukemia cell lines, we define the relationship between kinetic units determined by the MiCK assay and the percentage of morphologically apoptotic cells in the culture. Flow cytometry analysis of apoptosis in Annexin-V-fluorescein isothiocyanate-labeled preparations of HL-60 and CEM cells was also used to compare with data obtained by the MiCK assay. The feasibility of the MiCK assay of apoptosis as a chemosensitivity test was confirmed by its comparison with a 3H-thymidine incorporation assay. We show that samples from 10 ANLL and ALL patients patients tested for sensitivity to various doses of idarubicin (IDR), daunorubicin (DNR), or mitoxantrone (MTA) gave the same percentages of apoptotic cells when calculated by the MiCK assay as when determined by morphological analysis. The MiCK assay was used for dose-response analyses of the sensitivities to IDR, DNR, and MTA of leukemia cells from 4 other patients (2 ANLL and 2 ALL). The results from both cell

  5. Evaluation of apoptosis and apoptosis proteins as possible markers of radiation at doses 0.1-2 Gy, in comparison to the micronucleus assay in three cell lines

    International Nuclear Information System (INIS)

    Jaworska, A.; Angelis, P. de

    1997-01-01

    In recent years the interest in apoptosis as possible indicator of radiation damage has increased. Studies have been done to examine the induction of apoptosis after ionizing radiation using morphological criteria, characteristic DNA damage pattern(ladders), early DNA damage using flow cytometry and/or expression of the proteins involved in apoptosis. But the picture which emerges from these investigations is unclear. Some researchers suggest that apoptosis studies can be used as potential assays of biological dosimetry, others doubt if apoptosis can be used as a marker of irradiation at all. Most studies have been done using relatively high doses of radiation. In this study we focus on apoptosis induction after relatively small doses (0,1-2 Gy). We detected apoptosis with the in situ terminal deoxynucleotidyl transferase assay by flow cytometry, and measured the expression of proteins that regulate apoptosis (Bcl-2, Bax, P53) with Western blotting. As comparison we used the cytokinesis-block micronucleus assay as a reference. The studies were carried out in three lymphoid cell lines: the mouse lymphoma L5178Y resistant and sensitive cell lines widely used in radiobiological studies, and the human pre-B cell leukemia Reh cells. Our results indicate that we can not consider the examined parameters of apoptosis as markers of radiation in these cell lines. (author)

  6. Apoptosis and Vocal Fold Disease: Clinically Relevant Implications of Epithelial Cell Death

    Science.gov (United States)

    Novaleski, Carolyn K.; Carter, Bruce D.; Sivasankar, M. Preeti; Ridner, Sheila H.; Dietrich, Mary S.; Rousseau, Bernard

    2017-01-01

    Purpose: Vocal fold diseases affecting the epithelium have a detrimental impact on vocal function. This review article provides an overview of apoptosis, the most commonly studied type of programmed cell death. Because apoptosis can damage epithelial cells, this article examines the implications of apoptosis on diseases affecting the vocal fold…

  7. Sensitivity of neuroprogenitor cells to chemical-induced apoptosis using a multiplexed assay suitable for high-throughput screening

    International Nuclear Information System (INIS)

    Druwe, Ingrid; Freudenrich, Theresa M.; Wallace, Kathleen; Shafer, Timothy J.; Mundy, William R.

    2015-01-01

    High-throughput methods are useful for rapidly screening large numbers of chemicals for biological activity, including the perturbation of pathways that may lead to adverse cellular effects. In vitro assays for the key events of neurodevelopment, including apoptosis, may be used in a battery of tests for detecting chemicals that could result in developmental neurotoxicity. Apoptosis contributes to nervous system development by regulating the size of the neuroprogenitor cell pool, and the balance between cellular proliferation and apoptosis during neuroprogenitor cell proliferation helps to determine the size and shape of the nervous system. Therefore, chemicals that affect apoptosis during neuronal development can have deleterious effects on the developing brain. The present study examined the utility of a high-throughput assay to detect chemical-induced apoptosis in mouse or human neuroprogenitor cells, as well as differentiated human neurons derived from induced pluripotent stem cells. Apoptosis was assessed using an assay that measures enzymatic activity of caspase-3/7 in a rapid and cost efficient manner. The results show that all three commercially available models generated a robust source of proliferating neuroprogenitor cells, and that the assay was sensitive and reproducible when used in a multi-well plate format. There were differences in the response of rodent and human neuroprogenitor cells to a set of chemicals previously shown to induce apoptosis in vitro. Neuroprogenitor cells were more sensitive to chemical-induced apoptosis than differentiated neurons, suggesting that neuroprogenitor cells are one of the cell models that should be considered for use in a developmental neurotoxicity screening battery

  8. Sensitivity of neuroprogenitor cells to chemical-induced apoptosis using a multiplexed assay suitable for high-throughput screening*

    Science.gov (United States)

    AbstractHigh-throughput methods are useful for rapidly screening large numbers of chemicals for biological activity, including the perturbation of pathways that may lead to adverse cellular effects. In vitro assays for the key events of neurodevelopment, including apoptosis, may ...

  9. Application of a drug-induced apoptosis assay to identify treatment strategies in recurrent or metastatic breast cancer.

    Directory of Open Access Journals (Sweden)

    Linda Bosserman

    Full Text Available A drug-induced apoptosis assay has been developed to determine which chemotherapy drugs or regimens can produce higher cell killing in vitro. This study was done to determine if this assay could be performed in patients with recurrent or metastatic breast cancer patients, to characterize the patterns of drug-induced apoptosis, and to evaluate the clinical utility of the assay. A secondary goal was to correlate assay use with clinical outcomes.In a prospective, non-blinded, multi institutional controlled trial, 30 evaluable patients with recurrent or metastatic breast cancer who were treated with chemotherapy had tumor samples submitted for the MiCK drug-induced apoptosis assay. After receiving results within 72 hours after biopsy, physicians could use the test to determine therapy (users, or elect to not use the test (non-users.The assay was able to characterize drug-induced apoptosis in tumor specimens from breast cancer patients and identified which drugs or combinations gave highest levels of apoptosis. Patterns of drug activity were also analyzed in triple negative breast cancer. Different drugs from a single class of agents often produced significantly different amounts of apoptosis. Physician frequently (73% used the assay to help select chemotherapy treatments in patients, Patients whose physicians were users had a higher response (CR+PR rate compared to non-users (38.1% vs 0%, p = 0.04 and a higher disease control (CR+PR+Stable rate (81% vs 25%, p<0.01. Time to relapse was longer in users 7.4 mo compared to non-users 2.2 mo (p<0.01.The MiCK assay can be performed in breast cancer specimens, and results are often used by physicians in breast cancer patients with recurrent or metastatic disease. These results from a good laboratory phase II study can be the basis for a future larger prospective multicenter study to more definitively establish the value of the assay.Clinicaltrials.gov NCT00901264.

  10. The microculture-kinetic (MiCK) assay: the role of a drug-induced apoptosis assay in drug development and clinical care.

    Science.gov (United States)

    Bosserman, Linda; Prendergast, Franklyn; Herbst, Roy; Fleisher, Martin; Salom, Emery; Strickland, Steven; Raptis, Anastasios; Hallquist, Allan; Perree, Mathieu; Rajurkar, Swapnil; Karimi, Misagh; Rogers, Karl; Davidson, Dirk; Willis, Carl; Penalver, Manuel; Homesley, Howard; Burrell, Matthew; Garrett, Audrey; Rutledge, James; Chernick, Michael; Presant, Cary A

    2012-08-15

    A drug-induced apoptosis assay, termed the microculture-kinetic (MiCK) assay, has been developed. Blinded clinical trials have shown higher response rates and longer survival in groups of patients with acute myelocytic leukemia and epithelial ovarian cancer who have been treated with drugs that show high apoptosis in the MiCK assay. Unblinded clinical trials in multiple tumor types have shown that the assay will be used frequently by clinicians to determine treatment, and when used, results in higher response rates, longer times to relapse, and longer survivals. Model economic analyses suggest possible cost savings in clinical use based on increased generic drug use and single-agent substitution for combination therapies. Two initial studies with drugs in development are promising. The assay may help reduce costs and speed time to drug approval. Correlative studies with molecular biomarkers are planned. This assay may have a role both in personalized clinical therapy and in more efficient drug development. ©2012 AACR.

  11. A high-throughput fluorescence resonance energy transfer (FRET)-based endothelial cell apoptosis assay and its application for screening vascular disrupting agents

    International Nuclear Information System (INIS)

    Zhu, Xiaoming; Fu, Afu; Luo, Kathy Qian

    2012-01-01

    Highlights: ► An endothelial cell apoptosis assay using FRET-based biosensor was developed. ► The fluorescence of the cells changed from green to blue during apoptosis. ► This method was developed into a high-throughput assay in 96-well plates. ► This assay was applied to screen vascular disrupting agents. -- Abstract: In this study, we developed a high-throughput endothelial cell apoptosis assay using a fluorescence resonance energy transfer (FRET)-based biosensor. After exposure to apoptotic inducer UV-irradiation or anticancer drugs such as paclitaxel, the fluorescence of the cells changed from green to blue. We developed this method into a high-throughput assay in 96-well plates by measuring the emission ratio of yellow fluorescent protein (YFP) to cyan fluorescent protein (CFP) to monitor the activation of a key protease, caspase-3, during apoptosis. The Z′ factor for this assay was above 0.5 which indicates that this assay is suitable for a high-throughput analysis. Finally, we applied this functional high-throughput assay for screening vascular disrupting agents (VDA) which could induce endothelial cell apoptosis from our in-house compounds library and dioscin was identified as a hit. As this assay allows real time and sensitive detection of cell apoptosis, it will be a useful tool for monitoring endothelial cell apoptosis in living cell situation and for identifying new VDA candidates via a high-throughput screening.

  12. Correlation of the microculture-kinetic drug-induced apoptosis assay with patient outcomes in initial treatment of adult acute myelocytic leukemia.

    Science.gov (United States)

    Strickland, Stephen A; Raptis, Anastasios; Hallquist, Allan; Rutledge, James; Chernick, Michael; Perree, Mathieu; Talbott, Mahsa S; Presant, Cary A

    2013-03-01

    Overall survival (OS) with acute myeloid leukemia (AML) remains poor. Determining prognostic factors will help in selecting patients for appropriate treatments. Our aim was to determine whether the level of drug-induced apoptosis (chemosensitivity) demonstrated by the microculture-kinetic drug-induced apoptosis (MiCK) assay significantly predicted outcomes after standard AML induction therapy. A total of 109 patients with untreated AML had blood and/or bone marrow aspirate samples analyzed for anthracycline-induced apoptosis using the MiCK assay. The amount of apoptosis observed over 48 h was determined and expressed as kinetic units of apoptosis (KU). Complete remission (CR) was significantly higher (72%) in patients with high idarubicin-induced apoptosis >3 KU compared to patients with apoptosis ≤ 3 KU (p = 0.01). Multivariate analysis showed the only significant variables to be idarubicin-induced apoptosis and karyotype. Median overall survival of patients with idarubicin-induced apoptosis >3 KU was 16.1 months compared to 4.5 months in patients with apoptosis ≤ 3 KU (p = 0.004). Multivariate analysis showed the only significant variable to be idarubicin-induced apoptosis. Chemotherapy-induced apoptosis measured by the MiCK assay demonstrated significant correlation with outcomes and appears predictive of complete remission and overall survival for patients receiving standard induction chemotherapy.

  13. A novel assay for discovery and characterization of pro-apoptotic drugs and for monitoring apoptosis in patient sera.

    Science.gov (United States)

    Bivén, K; Erdal, H; Hägg, M; Ueno, T; Zhou, R; Lynch, M; Rowley, B; Wood, J; Zhang, C; Toi, M; Shoshan, M C; Linder, S

    2003-06-01

    We have developed an apoptosis assay based on measurement of a neoepitope of cytokeratin-18 (CK18-Asp396) exposed after caspase-cleavage and detected by the monoclonal antibody M30. The total amount of caspase-cleaved CK18 which has accumulated in cells and tissue culture media during apoptosis is measured by ELISA. The sensitivity is sufficient for use in the 96-well format to allow high-through-put screening of drug libraries. We here describe strategies allowing classification of pro-apoptotic compounds according to their profiles of induction of apoptosis in the presence of pharmacological inhibitors. The time course of induction of CK18 cleavage can furthermore be used to distinguish structurally similar compounds. We propose that compounds that induce rapid CK18 cleavage have mechanisms of actions distinct from conventional genotoxic and microtubuli-targeting agents, and we present one example of an agent that induces almost immediate mitochondrial depolarization and cytochrome c release. Finally, CK18-Asp396 cleavage products are released from cells in tissue culture, and presumably from tumor cells in vivo. These products can be measured in sera from cancer patients. We present evidence suggesting that it will be possible to use the M30-ELISA assay for measuring chemotherapy-induced apoptosis in patient sera, opening possibilities for monitoring therapy.

  14. Prognostic implication of apoptosis and angiogenesis in cervical uteri cancer

    International Nuclear Information System (INIS)

    Zaghloul, Mohamed S.; El Naggar, Mervat; El Deeb, Amany; Khaled, Hussein; Mokhtar, Nadia

    2000-01-01

    Purpose: A retrospective study was performed to investigate the relationship between spontaneous apoptosis and angiogenesis uterine cervix squamous cell carcinoma patients. The prognostic value of each (and both) of these biologic parameters was also tested. Methods and Materials: The pathologic materials of 40 cervical uteri squamous cell carcinoma patients were examined and immunohistochemically stained to determine the tumor angiogenesis (tumor microvascular score), using factor VIII-related antigen, and their tumor apoptotic index (AI), using the TdT-mediated dUTP nick end-labeling (TUNEL) method. Three patients were Stage I, 18 were Stage II, 15 were Stage III, and 4 were Stage IV (FIGO classification). All patients were treated with radical radiotherapy and all had follow-up for more than 2 years. Results: The mean AI was 15.1 ± 12.8, with a median of 8.3. The mean tumor microvascular score was 3 9.7 ± 14.4, with a median of 3 8. The patients' age and tumor grade did not seem to significantly affect the prognosis. On the other hand, AI and angiogenesis (tumor microvascular score) were of high prognostic significance. The 3-year disease-free survival (DFS) rate for the patients having AI above the median was 78% (confidence interval [CI] 69-87%), compared to 32% (CI 22-42%) for those having AI below the median. The DFS was 18% (CI 9-27%) for patients having an angiogenesis score above the median, while it was 86% (CI 78-94%) for those patients having a score below the median. Conclusion: Determination of both tumor microvascular score and AI can identify patients with the best prognosis of 100% DFS (with low angiogenesis score and high AI). Women with a high score and low AI had the worst prognosis (DFS = 3%, CI 1-5%). Moreover, high AI can compensate partially for the aggressive behavior of tumors showing a high rate of angiogenesis.

  15. Widespread nanoparticle-assay interference: implications for nanotoxicity testing.

    Science.gov (United States)

    Ong, Kimberly J; MacCormack, Tyson J; Clark, Rhett J; Ede, James D; Ortega, Van A; Felix, Lindsey C; Dang, Michael K M; Ma, Guibin; Fenniri, Hicham; Veinot, Jonathan G C; Goss, Greg G

    2014-01-01

    The evaluation of engineered nanomaterial safety has been hindered by conflicting reports demonstrating differential degrees of toxicity with the same nanoparticles. The unique properties of these materials increase the likelihood that they will interfere with analytical techniques, which may contribute to this phenomenon. We tested the potential for: 1) nanoparticle intrinsic fluorescence/absorbance, 2) interactions between nanoparticles and assay components, and 3) the effects of adding both nanoparticles and analytes to an assay, to interfere with the accurate assessment of toxicity. Silicon, cadmium selenide, titanium dioxide, and helical rosette nanotubes each affected at least one of the six assays tested, resulting in either substantial over- or under-estimations of toxicity. Simulation of realistic assay conditions revealed that interference could not be predicted solely by interactions between nanoparticles and assay components. Moreover, the nature and degree of interference cannot be predicted solely based on our current understanding of nanomaterial behaviour. A literature survey indicated that ca. 95% of papers from 2010 using biochemical techniques to assess nanotoxicity did not account for potential interference of nanoparticles, and this number had not substantially improved in 2012. We provide guidance on avoiding and/or controlling for such interference to improve the accuracy of nanotoxicity assessments.

  16. Widespread nanoparticle-assay interference: implications for nanotoxicity testing.

    Directory of Open Access Journals (Sweden)

    Kimberly J Ong

    Full Text Available The evaluation of engineered nanomaterial safety has been hindered by conflicting reports demonstrating differential degrees of toxicity with the same nanoparticles. The unique properties of these materials increase the likelihood that they will interfere with analytical techniques, which may contribute to this phenomenon. We tested the potential for: 1 nanoparticle intrinsic fluorescence/absorbance, 2 interactions between nanoparticles and assay components, and 3 the effects of adding both nanoparticles and analytes to an assay, to interfere with the accurate assessment of toxicity. Silicon, cadmium selenide, titanium dioxide, and helical rosette nanotubes each affected at least one of the six assays tested, resulting in either substantial over- or under-estimations of toxicity. Simulation of realistic assay conditions revealed that interference could not be predicted solely by interactions between nanoparticles and assay components. Moreover, the nature and degree of interference cannot be predicted solely based on our current understanding of nanomaterial behaviour. A literature survey indicated that ca. 95% of papers from 2010 using biochemical techniques to assess nanotoxicity did not account for potential interference of nanoparticles, and this number had not substantially improved in 2012. We provide guidance on avoiding and/or controlling for such interference to improve the accuracy of nanotoxicity assessments.

  17. Insulin-like growth factors: assay methods and their implications

    International Nuclear Information System (INIS)

    Guyda, H.J.; Posner, B.I.; Schiffrin, A.; Rappaport, R.; Postel-Vinay, M.C.; Corvol, M.T.

    1981-01-01

    The insulin-like growth factors (IGF's) are small molecular weight peptides (6-10 x 10 3 daltons) that circulate in blood plasma almost entirely bound to macromolecular carrier proteins. The growth-promoting and insulin-like activities of IGF's can be explained by the observed ability of these peptides to interact with the IGF receptor on the one hand and with the insulin receptor on the other. These observations have led to the establishment of radioreceptor assays (RRA's), competitive protein binding assays (CPBA's), and more recently radioimmunoassays (RIA's) for the IGF's that have different specificities. Because of their ease of performance and sensitivity, the radioligand assays have largely supplanted the biological assays originally utilized to identify and characterize these anabolic peptides. In this report the authors' studies are summarised which utilize a slightly acidic IGF which has been purified on the basis of its insulin-like activity in an insulin RRA and which was termed ILAs. They refer to purified insulin-like peptides that have the properties of a somatomedin by the generic term insulin-like growth factor (IGF). Somatomedin (SM) activity will be utilized to connote that activity in plasma or serum determined by bioassay. The competitive dose-response curves for IGF peptides in the insulin RRA as well as those in the ILAs RRA are presented. A combination of bioassays, RRA and RIA were employed to assess somatomedin activity and IGF peptide levels in a number of clinical circumstances. The correlations are discussed. (Auth.)

  18. Rapid assay of intrinsic radiosensitivity based on apoptosis in human CD4 and CD8 T-lymphocytes

    International Nuclear Information System (INIS)

    Ozsahin, Mahmut; Ozsahin, Huelya; Yuquan, Shi; Larsson, Boerje; Wuergler, Friedrich E.; Crompton, Nigel E. A.

    1997-01-01

    Purpose: An assay for radiosensitivity has numerous applications in the clinic. Avoidance of acute responses, prediction of normal tissue toxicity, and individualization of patient radiotherapy are included among these. We have developed a rapid assay (about 24 h) able to predict intrinsic radiosensitivity of CD4 and CD8 T-lymphocytes based on radiation-induced apoptosis. Methods and Materials: Fresh blood samples (1-2 ml in heparinized tubes) were irradiated with 0-, 2-, and 8-Gy X rays at a dose rate of approximately 3 Gy/min. Following irradiation, the cells were collected and prepared for flow-cytometric analysis and cell sorting. In conjunction with the CellQuest software available with the FACSVantage cell sorter (Becton-Dickinson), two T-lymphocyte types were analyzed on the basis of their cell-specific antigens (CD4 and CD8), and DNA was stained with DAPI. Following the separation of these cell types, radiation-induced cell death was assessed. Cytotoxicity was characterized by gradual degradation of internucleosomal DNA which results in a sub-G1 peak on the DNA histogram, and by the associated loss of surface antigens causing an intermediate positive peak in the antibody histogram. Using the assay, we investigated the interdonor variation in a cohort of 45 healthy adult blood donors and 5 children [one had immunodeficiency, centromeric instability, and facial anomalies syndrome (ICF), and one had ataxia telangiectasia (AT)]. Intradonor variation was assessed with 10 different experiments from a single donor. Results: CD4 and CD8 T-lymphocyte radiosensitivities were correlated (r 0.63 and 0.65 for 2 and 8 Gy, respectively) in 45 adult donors. Both for CD4 and CD8 cells, 2 and 8 Gy irradiation responses showed a good correlation (r 0.77 for both). Interdonor variation was significantly higher than intradonor variation (p < 0.0005) for all CD4 and CD8 data. We observed a decrease in the antigen fluorescence of dying cells, a phenomenon referred to as antigen

  19. Outer Mitochondrial Membrane Localization of Apoptosis-Inducing Factor: Mechanistic Implications for Release

    Directory of Open Access Journals (Sweden)

    Seong-Woon Yu

    2009-10-01

    Full Text Available Poly(ADP-ribose polymerase-1-dependent cell death (known as parthanatos plays a pivotal role in many clinically important events including ischaemia/reperfusion injury and glutamate excitotoxicity. A recent study by us has shown that uncleaved AIF (apoptosis-inducing factor, but not calpain-hydrolysed truncated-AIF, was rapidly released from the mitochondria during parthanatos, implicating a second pool of AIF that might be present in brain mitochondria contributing to the rapid release. In the present study, a novel AIF pool is revealed in brain mitochondria by multiple biochemical analyses. Approx. 30% of AIF loosely associates with the outer mitochondrial membrane on the cytosolic side, in addition to its main localization in the mitochondrial intermembrane space attached to the inner membrane. Immunogold electron microscopic analysis of mouse brain further supports AIF association with the outer, as well as the inner, mitochondrial membrane in vivo. In line with these observations, approx. 20% of uncleaved AIF rapidly translocates to the nucleus and functionally causes neuronal death upon NMDA (N-methyl-d-aspartate treatment. In the present study we show for the first time a second pool of AIF in brain mitochondria and demonstrate that this pool does not require cleavage and that it contributes to the rapid release of AIF. Moreover, these results suggest that this outer mitochondrial pool of AIF is sufficient to cause cell death during parthanatos. Interfering with the release of this outer mitochondrial pool of AIF during cell injury paradigms that use parthanatos hold particular promise for novel therapies to treat neurological disorders.

  20. Cyanotoxins at low doses induce apoptosis and inflammatory effects in murine brain cells: Potential implications for neurodegenerative diseases

    Directory of Open Access Journals (Sweden)

    Larissa Takser

    Full Text Available Cyanotoxins have been shown to be highly toxic for mammalian cells, including brain cells. However, little is known about their effect on inflammatory pathways. This study investigated whether mammalian brain and immune cells can be a target of certain cyanotoxins, at doses approximating those in the guideline levels for drinking water, either alone or in mixtures. We examined the effects on cellular viability, apoptosis and inflammation signalling of several toxins on murine macrophage-like RAW264.7, microglial BV-2 and neuroblastoma N2a cell lines. We tested cylindrospermopsin (CYN, microcystin-LR (MC-LR, and anatoxin-a (ATX-a, individually as well as their mixture. In addition, we studied the neurotoxins β-N-methylamino-l-alanine (BMAA and its isomer 2,4-diaminobutyric acid (DAB, as well as the mixture of both. Cellular viability was determined by the MTT assay. Apoptosis induction was assessed by measuring the activation of caspases 3/7. Cell death and inflammation are the hallmarks of neurodegenerative diseases. Thus, our final step was to quantify the expression of a major proinflammatory cytokine TNF-α by ELISA. Our results show that CYN, MC-LR and ATX-a, but not BMAA and DAB, at low doses, especially when present in a mixture at threefold less concentrations than individual compounds are 3–15 times more potent at inducing apoptosis and inflammation. Our results suggest that common cyanotoxins at low doses have a potential to induce inflammation and apoptosis in immune and brain cells. Further research of the neuroinflammatory effects of these compounds in vivo is needed to improve safety limit levels for cyanotoxins in drinking water and food. Keywords: Cyanotoxins, Low doses, Apoptosis, Inflammation, Brain cells, Neurodegenerative diseases

  1. Cyanotoxins at low doses induce apoptosis and inflammatory effects in murine brain cells: Potential implications for neurodegenerative diseases.

    Science.gov (United States)

    Takser, Larissa; Benachour, Nora; Husk, Barry; Cabana, Hubert; Gris, Denis

    2016-01-01

    Cyanotoxins have been shown to be highly toxic for mammalian cells, including brain cells. However, little is known about their effect on inflammatory pathways. This study investigated whether mammalian brain and immune cells can be a target of certain cyanotoxins, at doses approximating those in the guideline levels for drinking water, either alone or in mixtures. We examined the effects on cellular viability, apoptosis and inflammation signalling of several toxins on murine macrophage-like RAW264.7, microglial BV-2 and neuroblastoma N2a cell lines. We tested cylindrospermopsin (CYN), microcystin-LR (MC-LR), and anatoxin-a (ATX-a), individually as well as their mixture. In addition, we studied the neurotoxins β- N -methylamino-l-alanine (BMAA) and its isomer 2,4-diaminobutyric acid (DAB), as well as the mixture of both. Cellular viability was determined by the MTT assay. Apoptosis induction was assessed by measuring the activation of caspases 3/7. Cell death and inflammation are the hallmarks of neurodegenerative diseases. Thus, our final step was to quantify the expression of a major proinflammatory cytokine TNF-α by ELISA. Our results show that CYN, MC-LR and ATX-a, but not BMAA and DAB, at low doses, especially when present in a mixture at threefold less concentrations than individual compounds are 3-15 times more potent at inducing apoptosis and inflammation. Our results suggest that common cyanotoxins at low doses have a potential to induce inflammation and apoptosis in immune and brain cells. Further research of the neuroinflammatory effects of these compounds in vivo is needed to improve safety limit levels for cyanotoxins in drinking water and food.

  2. A comparative study of U937 cell size changes during apoptosis initiation by flow cytometry, light scattering, water assay and electronic sizing.

    Science.gov (United States)

    Yurinskaya, Valentina; Aksenov, Nikolay; Moshkov, Alexey; Model, Michael; Goryachaya, Tatyana; Vereninov, Alexey

    2017-10-01

    A decrease in flow cytometric forward light scatter (FSC) is commonly interpreted as a sign of apoptotic cell volume decrease (AVD). However, the intensity of light scattering depends not only on the cell size but also on its other characteristics, such as hydration, which may affect the scattering in the opposite way. That makes estimation of AVD by FSC problematic. Here, we aimed to clarify the relationship between light scattering, cell hydration (assayed by buoyant density) and cell size by the Coulter technique. We used human lymphoid cells U937 exposed to staurosporine, etoposide or hypertonic stress as an apoptotic model. An initial increase in FSC was found to occur in apoptotic cells treated with staurosporine and hypertonic solutions; it is accompanied by cell dehydration and is absent in apoptosis caused by etoposide that is consistent with the lack of dehydration in this case. Thus, the effect of dehydration on the scattering signal outweighs the effect of reduction in cell size. The subsequent FSC decrease, which occurred in parallel to accumulation of annexin-positive cells, was similar in apoptosis caused by all three types of inducers. We conclude that an increase, but not a decrease in light scattering, indicates the initial cell volume decrease associated with apoptotic cell dehydration.

  3. Molecular mechanism implicated in Pemetrexed-induced apoptosis in human melanoma cells

    Directory of Open Access Journals (Sweden)

    Buqué Aitziber

    2012-04-01

    Full Text Available Abstract Background Metastatic melanoma is a lethal skin cancer and its incidence is rising every year. It represents a challenge for oncologist, as the current treatment options are non-curative in the majority of cases; therefore, the effort to find and/or develop novel compounds is mandatory. Pemetrexed (Alimta®, MTA is a multitarget antifolate that inhibits folate-dependent enzymes: thymidylate synthase, dihydrofolate reductase and glycinamide ribonucleotide formyltransferase, required for de novo synthesis of nucleotides for DNA replication. It is currently used in the treatment of mesothelioma and non-small cell lung cancer (NSCLC, and has shown clinical activity in other tumors such as breast, colorectal, bladder, cervical, gastric and pancreatic cancer. However, its effect in human melanoma has not been studied yet. Results In the current work we studied the effect of MTA on four human melanoma cell lines A375, Hs294T, HT144 and MeWo and in two NSCLC cell lines H1299 and Calu-3. We have found that MTA induces DNA damage, S-phase cell cycle arrest, and caspase- dependent and –independent apoptosis. We show that an increment of the intracellular reactive oxygen species (ROS and p53 is required for MTA-induced cytotoxicity by utilizing N-Acetyl-L-Cysteine (NAC to blockage of ROS and p53-defective H1299 NSCLC cell line. Pretreatment of melanoma cells with NAC significantly decreased the DNA damage, p53 up-regulation and cytotoxic effect of MTA. MTA was able to induce p53 expression leading to up-regulation of p53-dependent genes Mcl-1 and PIDD, followed by a postranscriptional regulation of Mcl-1 improving apoptosis. Conclusions We found that MTA induced DNA damage and mitochondrial-mediated apoptosis in human melanoma cells in vitro and that the associated apoptosis was both caspase-dependent and –independent and p53-mediated. Our data suggest that MTA may be of therapeutic relevance for the future treatment of human malignant melanoma.

  4. Conjugation of cytochrome c with hydrogen titanate nanotubes: novel conformational state with implications for apoptosis

    Energy Technology Data Exchange (ETDEWEB)

    Ray, Moumita; Mazumdar, Shyamalava [Department of Chemical Sciences, Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai 400005 (India); Chatterjee, Sriparna; Das, Tanmay; Bhattacharyya, Somnath; Ayyub, Pushan, E-mail: somnath@tifr.res.in, E-mail: pushan@tifr.res.in, E-mail: shyamal@tifr.res.in [Department of Condensed Matter Physics and Materials Science, Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai 400005 (India)

    2011-10-14

    We show that hydrogen titanate (H{sub 2}Ti{sub 3}O{sub 7}) nanotubes form strongly associated reversible nano-bio-conjugates with the vital respiratory protein, cytochrome c. Resonance Raman spectroscopy along with direct electrochemical studies indicate that in this nano-bio-conjugate, cytochrome c exists in an equilibrium of two conformational states with distinctly different formal redox potentials and coordination geometries of the heme center. The nanotube-conjugated cytochrome c also showed enhanced peroxidase activity similar to the membrane-bound protein that is believed to be an apoptosis initiator. This suggests that such a nanotube-cytochrome c conjugate may be a good candidate for cancer therapy applications.

  5. Sodium Butyrate Induces Endoplasmic Reticulum Stress and Autophagy in Colorectal Cells: Implications for Apoptosis.

    Directory of Open Access Journals (Sweden)

    Jintao Zhang

    Full Text Available Butyrate, a short-chain fatty acid derived from dietary fiber, inhibits proliferation and induces cell death in colorectal cancer cells. However, clinical trials have shown mixed results regarding the anti-tumor activities of butyrate. We have previously shown that sodium butyrate increases endoplasmic reticulum stress by altering intracellular calcium levels, a well-known autophagy trigger. Here, we investigated whether sodium butyrate-induced endoplasmic reticulum stress mediated autophagy, and whether there was crosstalk between autophagy and the sodium butyrate-induced apoptotic response in human colorectal cancer cells.Human colorectal cancer cell lines (HCT-116 and HT-29 were treated with sodium butyrate at concentrations ranging from 0.5-5mM. Cell proliferation was assessed using MTT tetrazolium salt formation. Autophagy induction was confirmed through a combination of Western blotting for associated proteins, acridine orange staining for acidic vesicles, detection of autolysosomes (MDC staining, and electron microscopy. Apoptosis was quantified by flow cytometry using standard annexinV/propidium iodide staining and by assessing PARP-1 cleavage by Western blot.Sodium butyrate suppressed colorectal cancer cell proliferation, induced autophagy, and resulted in apoptotic cell death. The induction of autophagy was supported by the accumulation of acidic vesicular organelles and autolysosomes, and the expression of autophagy-associated proteins, including microtubule-associated protein II light chain 3 (LC3-II, beclin-1, and autophagocytosis-associated protein (Atg3. The autophagy inhibitors 3-methyladenine (3-MA and chloroquine inhibited sodium butyrate induced autophagy. Furthermore, sodium butyrate treatment markedly enhanced the expression of endoplasmic reticulum stress-associated proteins, including BIP, CHOP, PDI, and IRE-1a. When endoplasmic reticulum stress was inhibited by pharmacological (cycloheximide and mithramycin and genetic

  6. 40 Years of the Salmonella Mutagenicity Assay: Implications for 21st Century Toxicology

    Science.gov (United States)

    The Salmonella (Ames) mutagenicity assay was developed and introduced by Bruce Ames and colleagues in 1971. Since then, it has become the standard assay for hazard identification of mutagens worldwide. It is a first-tier test for mutagenic activity in the pharmaceutical and chemi...

  7. Analysis of Apoptosis in Ultraviolet-Induced Sea Cucumber (Stichopus japonicus) Melting Using Terminal Deoxynucleotidyl-Transferase-Mediated dUTP Nick End-Labeling Assay and Cleaved Caspase-3 Immunohistochemistry.

    Science.gov (United States)

    Yang, Jing-Feng; Gao, Rong-Chun; Wu, Hai-Tao; Li, Peng-Fei; Hu, Xian-Shu; Zhou, Da-Yong; Zhu, Bei-Wei; Su, Yi-Cheng

    2015-11-04

    The sea cucumber body wall melting phenomenon occurs under certain circumstances, and the mechanism of this phenomenon remains unclear. This study investigated the apoptosis in the ultraviolet (UV)-induced sea cucumber melting phenomenon. Fresh sea cucumbers (Stichopus japonicus) were exposed to UV radiation for half an hour at an intensity of 0.056 mW/cm(2) and then held at room temperature for melting development. The samples were histologically processed into formalin-fixed paraffin-embedded tissues. The apoptosis of samples was analyzed with the terminal deoxynucleotidyl-transferase-mediated dUTP nick end-labeling (TUNEL) assay and cleaved caspase-3 immunohistochemistry. The emergence of TUNEL-positive cells speeds up between 0.5 and 2 h after UV irradiation. Cleaved caspase-3 positive cells were obviously detected in sample tissues immediately after the UV irradiation. These results demonstrated that sea cucumber melting induced by UV irradiation was triggered by the activation of caspase-3 followed by DNA fragmentation in sea cucumber tissue, which was attributed to apoptosis but was not a consequence of autolysis activity.

  8. Comparative microstructures and cytotoxicity assays for ballistic aerosols composed of micrometals and nanometals: respiratory health implications

    Science.gov (United States)

    Machado, Brenda I; Suro, Raquel M; Garza, Kristine M; Murr, Lawrence E

    2011-01-01

    Aerosol particulates collected on filters from ballistic penetration and erosion events for W–Ni–Co and W–Ni–Fe kinetic energy rod projectiles penetrating steel target plates were observed to be highly cytotoxic to human epithelial A549 lung cells in culture after 48 hours of exposure. The aerosol consisted of micron-sized Fe particulates and nanoparticulate aggregates consisting of W, Ni or W, Co, and some Fe, characterized by scanning electron microscopy and transmission electron microscopy, and using energy-dispersive (X-ray) spectrometry for elemental analysis and mapping. Cytotoxic assays of manufactured micron-sized and nanosized metal particulates of W, Ni, Fe, and Co demonstrated that, consistent with many studies in the literature, only the nanoparticulate elements demonstrated measurable cytotoxicity. These results suggest the potential for very severe, short-term, human toxicity, in particular to the respiratory system on inhaling ballistic aerosols. PMID:21499416

  9. Mir143-BBC3 cascade reduces microglial survival via interplay between apoptosis and autophagy: Implications for methamphetamine-mediated neurotoxicity

    Science.gov (United States)

    Zhang, Yuan; Shen, Kai; Bai, Ying; Lv, Xuan; Huang, Rongrong; Zhang, Wei; Chao, Jie; Nguyen, Lan K.; Hua, Jun; Gan, Guangming; Hu, Gang; Yao, Honghong

    2016-01-01

    ABSTRACT BBC3 (BCL2 binding component 3) is a known apoptosis inducer; however, its role in microglial survival remains poorly understood. In addition to the classical transcription factor TRP53, Mir143 is involved in BBC3 expression at the post-transcriptional level. Here, we identify unique roles of Mir143-BBC3 in mediating microglial survival via the regulation of the interplay between apoptosis and autophagy. Autophagy inhibition accelerated methamphetamine-induced apoptosis, whereas autophagy induction attenuated the decrease in microglial survival. Moreover, anti-Mir143-dependent BBC3 upregulation reversed the methamphetamine-induced decrease in microglial survival via the regulation of apoptosis and autophagy. The in vivo relevance of these findings was confirmed in mouse models, which demonstrated that the microinjection of anti-Mir143 into the hippocampus ameliorated the methamphetamine-induced decrease in microglia as well as that observed in heterozygous Mir143+/− mice. These findings provide new insight regarding the specific contributions of Mir143-BBC3 to microglial survival in the context of drug abuse. PMID:27464000

  10. Analysis of TNF-related apoptosis-inducing ligand and receptors and implications in thymus biology and myasthenia gravis.

    Science.gov (United States)

    Kanatli, Irem; Akkaya, Bahar; Uysal, Hilmi; Kahraman, Sevim; Sanlioglu, Ahter Dilsad

    2017-02-01

    Myasthenia Gravis is an autoantibody-mediated, neuromuscular junction disease, and is usually associated with thymic abnormalities presented as thymic tumors (~10%) or hyperplastic thymus (~65%). The exact role of thymus in Myasthenia Gravis development is not clear, yet many patients benefit from thymectomy. The apoptotic ligand TNF-Related Apoptosis-Inducing Ligand is thought to be involved in the regulation of thymocyte counts, although conflicting results are reported. We investigated differential expression profiles of TNF-Related Apoptosis-Inducing Ligand and its transmembrane receptors, Nuclear Factor-kB activation status, and apoptotic cell counts in healthy thymic tissue and pathological thymus from Myasthenia Gravis patients. All tissues expressed TNF-Related Apoptosis-Inducing Ligand and its receptors, with hyperplastic tissue having the highest expression levels of death receptors DR4 and DR5. No detectable Nuclear Factor-kB activation, at least via the canonical Protein Kinase A-mediated p65 Ser276 phosphorylation, was evident in any of the tissues studied. Apoptotic cell counts were higher in MG-associated tissue compared to the normal thymus. Possible use of the TNF-Related Apoptosis-Inducing Ligand within the concept of an apoptotic ligand-mediated medical thymectomy in thymoma- or thymic hyperplasia-associated Myasthenia Gravis is also discussed. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Single and 30 fraction tumor control doses correlate in xenografted tumor models: implications for predictive assays

    International Nuclear Information System (INIS)

    Gerweck, Leo E.; Dubois, Willum; Baumann, Michael; Suit, Herman D.

    1995-01-01

    Purpose/Objective: In a previous publication we reported that laboratory assays of tumor clonogen number, in combination with intrinsic radiosensitivity measured in-vitro, accurately predicted the rank-order of single fraction 50% tumor control doses, in six rodent and xenografted human tumors. In these studies, tumor hypoxia influenced the absolute value of the tumor control doses across tumor types, but not their rank-order. In the present study we hypothesize that determinants of the single fraction tumor control dose, may also strongly influence the fractionaled tumor control doses, and that knowledge of tumor clonogen number and their sensitivity to fractionated irradiation, may be useful for predicting the relative sensitivity of tumors treated by conventional fractionated irradiation. Methods/Materials: Five tumors of human origin were used for these studies. Special care was taken to ensure that all tumor control dose assays were performed over the same time frame, i.e., in-vitro cells of a similar passage were used to initiate tumor sources which were expanded and used in the 3rd or 4th generation. Thirty fraction tumor control doses were performed in air breathing mice, under normal blood flow conditions (two fractions/day). The results of these studies have been previously published. For studies under uniformly (clamp) hypoxic conditions, tumors arising from the same transplantation were randomized into single or fractionated dose protocols. For estimation of the fractionated TCD50 under hypoxic conditions, tumors were exposed to six 5.4 Gy fractions (∼ 2 Gy equivalent under air), followed by graded 'top-up' dose irradiation for determination of the TCD50; the time interval between doses was 6-9 hours. The single dose equivalent of the six 5.4 Gy doses was used to calculate an extrapolated 30 fraction hypoxic TCD50. Results: Fractionation substantially increased the dose required for tumor control in 4 of the 5 tumors investigated. For these 4 tumors

  12. T2 Magnetic Resonance Assay: Overview of Available Data and Clinical Implications

    Directory of Open Access Journals (Sweden)

    Ioannis M. Zacharioudakis

    2018-04-01

    Full Text Available Invasive candidiasis is a common healthcare-associated infection with a high mortality rate that can exceed 60% in cases of septic shock. Blood culture performance is far from ideal, due to the long time to positivity and suppression by antifungal agents. The T2 Magnetic Resonance (T2MR assay is an FDA-approved qualitative molecular diagnostic method that can detect and speciate the 5 most common Candida spp.; namely, Candida albicans, Candida glabrata, Candida parapsilosis, Candida tropicalis, and Candida krusei, in approximately 5 h. In a multicenter clinical trial that included both a prospective and a contrived arm to represent the full range of clinically relevant concentrations of Candida spp., T2MR demonstrated a sensitivity and specificity of 91.1% and 98.1%, respectively. The utility of T2MR in candidemia depends on the prevalence of disease in each clinical setting. In intensive care units and other high-prevalence settings, the incorporation of T2MR in diagnostic algorithms is very appealing. T2MR is expected to allow timely initiation of antifungal therapy and help with anti-fungal stewardship. In low-prevalence settings, the positive predictive value of T2MR might not be enough to justify initiation of antifungal treatment in itself. The performance of T2MR has not been studied in cases of deep-seated candidiasis. Despite some promising evidence in published clinical trials, further studies are needed to determine the performance of T2MR in invasive candidiasis without candidemia. Overall, experience with T2MR in everyday clinical practice is evolving but, in the right setting, this technology is expected to provide “actionable information” for the management of patients evaluated for candidemia.

  13. Heat shock protein-27 protects human bronchial epithelial cells against oxidative stress–mediated apoptosis: possible implication in asthma

    Science.gov (United States)

    Merendino, Anna M.; Paul, Catherine; Vignola, Antonio M.; Costa, Maria A.; Melis, Mario; Chiappara, Giuseppina; Izzo, V.; Bousquet, J.; Arrigo, André-Patrick

    2002-01-01

    Inflammation of the human bronchial epithelium, as observed in asthmatics, is characterized by the selective death of the columnar epithelial cells, which desquamate from the basal cells. Tissue repair initiates from basal cells that resist inflammation. Here, we have evaluated the extent of apoptosis as well as the Hsp27 level of expression in epithelial cells from bronchial biopsy samples taken from normal and asthmatic subjects. Hsp27 is a chaperone whose expression protects against oxidative stress. We report that in asthmatic subjects the basal epithelium cells express a high level of Hsp27 but no apoptotic morphology. In contrast, apoptotic columnar cells are devoid of Hsp27 expression. Moreover, we observed a decreased resistance to hydrogen peroxide–induced apoptosis in human bronchial epithelial 16–HBE cells when they were genetically modified to express reduced levels of Hsp27. PMID:12482203

  14. Cyanotoxins at low doses induce apoptosis and inflammatory effects in murine brain cells: Potential implications for neurodegenerative diseases

    OpenAIRE

    Takser, Larissa; Benachour, Nora; Husk, Barry; Cabana, Hubert; Gris, Denis

    2016-01-01

    Cyanotoxins have been shown to be highly toxic for mammalian cells, including brain cells. However, little is known about their effect on inflammatory pathways. This study investigated whether mammalian brain and immune cells can be a target of certain cyanotoxins, at doses approximating those in the guideline levels for drinking water, either alone or in mixtures. We examined the effects on cellular viability, apoptosis and inflammation signalling of several toxins on murine macrophage-like ...

  15. Lymphotropic Virions Affect Chemokine Receptor-Mediated Neural Signaling and Apoptosis: Implications for Human Immunodeficiency Virus Type 1-Associated Dementia

    Science.gov (United States)

    Zheng, Jialin; Ghorpade, Anuja; Niemann, Douglas; Cotter, Robin L.; Thylin, Michael R.; Epstein, Leon; Swartz, Jennifer M.; Shepard, Robin B.; Liu, Xiaojuan; Nukuna, Adeline; Gendelman, Howard E.

    1999-01-01

    Chemokine receptors pivotal for human immunodeficiency virus type 1 (HIV-1) infection in lymphocytes and macrophages (CCR3, CCR5, and CXCR4) are expressed on neural cells (microglia, astrocytes, and/or neurons). It is these cells which are damaged during progressive HIV-1 infection of the central nervous system. We theorize that viral coreceptors could effect neural cell damage during HIV-1-associated dementia (HAD) without simultaneously affecting viral replication. To these ends, we studied the ability of diverse viral strains to affect intracellular signaling and apoptosis of neurons, astrocytes, and monocyte-derived macrophages. Inhibition of cyclic AMP, activation of inositol 1,4,5-trisphosphate, and apoptosis were induced by diverse HIV-1 strains, principally in neurons. Virions from T-cell-tropic (T-tropic) strains (MN, IIIB, and Lai) produced the most significant alterations in signaling of neurons and astrocytes. The HIV-1 envelope glycoprotein, gp120, induced markedly less neural damage than purified virions. Macrophage-tropic (M-tropic) strains (ADA, JR-FL, Bal, MS-CSF, and DJV) produced the least neural damage, while 89.6, a dual-tropic HIV-1 strain, elicited intermediate neural cell damage. All T-tropic strain-mediated neuronal impairments were blocked by the CXCR4 antibody, 12G5. In contrast, the M-tropic strains were only partially blocked by 12G5. CXCR4-mediated neuronal apoptosis was confirmed in pure populations of rat cerebellar granule neurons and was blocked by HA1004, an inhibitor of calcium/calmodulin-dependent protein kinase II, protein kinase A, and protein kinase C. Taken together, these results suggest that progeny HIV-1 virions can influence neuronal signal transduction and apoptosis. This process occurs, in part, through CXCR4 and is independent of CD4 binding. T-tropic viruses that traffic in and out of the brain during progressive HIV-1 disease may play an important role in HAD neuropathogenesis. PMID:10482576

  16. Curcumin-induced fibroblast apoptosis and in vitro wound contraction are regulated by antioxidants and heme oxygenase: implications for scar formation.

    NARCIS (Netherlands)

    Scharstuhl, A.; Mutsaers, H.A.M.; Pennings, S.W.C.; Szarek, W.A.; Russel, F.G.M.; Wagener, F.A.D.T.G.

    2009-01-01

    Fibroblast apoptosis plays a crucial role in normal and pathological scar formation and therefore we studied whether the putative apoptosis-inducing factor curcumin affects fibroblast apoptosis and may function as a novel therapeutic. We show that 25-microM curcumin causes fibroblast apoptosis and

  17. Determinants and prognostic implications of Cardiac Troponin T measured by a sensitive assay in Type 2 Diabetes Mellitus

    Directory of Open Access Journals (Sweden)

    Hallén Jonas

    2010-09-01

    Full Text Available Abstract Background The cardiac troponins are biomarkers used for diagnosis of myocardial injury. They are also powerful prognostic markers in many diseases and settings. Recently introduced high-sensitivity assays indicate that chronic cardiac troponin elevations are common in response to cardiovascular (CV morbidity. Type 2 diabetes mellitus (T2DM confers a high risk of CV disease, but little is known about chronic cardiac troponin elevations in diabetic subjects. Accordingly, we aimed to understand the prevalence, determinants, and prognostic implications of cardiac troponin T (cTnT elevations measured with a high-sensitivity assay in patients with T2DM. Methods cTnT was measured in stored, frozen serum samples from 124 subjects enrolled in the Asker and Bærum Cardiovascular Diabetes trial at baseline and at 2-year follow-up, if availabe (96 samples available. Results were analyzed in relation to baseline variables, hospitalizations, and group assignment (multifactorial intensive versus conventional diabetes care for lowering CV risk. Results One-hundred thirteen (90 % had detectable cTnT at baseline and of those, 22 (18 % of the total population subjects had values above the 99th percentile for healthy controls (13.5 ng/L. Levels at baseline were associated with conventional CV risk factors (age, renal function, gender. There was a strong correlation between cTnT levels at the two time-points (r = 0.92, p > 0.001. Risk for hospitalizations during follow-up increased step-wise by quartiles of hscTnT measured at baseline (p = 0.058. Conclusions Elevations of cTnT above the 99th percentile measured by a highly sensitive assay were encountered frequently in a population of T2DM patients. cTnT levels appeared to be stable over time and associated with conventional CV risk factors. Although a clear trend was present, no statistically robust associations with adverse outcomes could be found.

  18. Butyrate down regulates BCL-XL and sensitizes human fibroblasts to radiation and chemotherapy induced apoptosis

    International Nuclear Information System (INIS)

    Chung, Diana H.; Ljungman, Mats; Zhang Fenfen; Chen Feng; McLaughlin, William P.

    1997-01-01

    Purpose/Objective: Butyrate is a short chain fatty acid that has been implicated in the induction of cell cycle arrest, cell differentiation and apoptosis. The purpose of this study was to determine if butyrate treatment sensitizes cells to radiation or chemotherapy induced apoptosis. Materials and Methods: Normal neonatal human diploid fibroblasts were used throughout this study. Apoptosis was scored and quantified using three different methods. First, cell morphology using propidium iodide and fluorescence microscopy was used to qualitatively determine apoptosis and to quantify the percentage of cells undergoing apoptosis. Second, apoptosis induced DNA degradation was scored by quantifying the amount of cells appearing in a sub-G1 peak using fixed and PI-stained cells and flow cytometry. Third, apoptosis-induced DNA degradation was examined by using an assay involving direct lysis of cells in the wells of agarose gels followed by conventional gel electrophoresis. Western blotting was used to quantify the cellular levels of the apoptosis regulators, Bcl-2, Bcl-XL and Bax. Results: Human diploid fibroblasts, which were resistant to radiation induced apoptosis, were found to undergo massive apoptosis when radiation was combined with butyrate treatment. Sensitization was obtained when butyrate was added before or after radiation although the combination of both pre and post-treatment was the most effective. Butyrate was also found to enhance UV light and cisplatin-induced apoptosis. These findings correlated with a reduction of the apoptosis antagonist Bcl-XL. Bcl-XL levels significantly dropped in a time and dose dependent manner. In addition, butyrate effectively blocked UV-induced accumulation of p53. Conclusion: Our results suggest that butyrate may be an attractive agent to use in combination with radiation or chemotherapy to lower the apoptotic threshold of tumor cells, regardless of the p53 status of the tumor cells

  19. Protective and detrimental effects of kaempferol in rat H4IIE cells: Implication of oxidative stress and apoptosis

    International Nuclear Information System (INIS)

    Niering, Petra; Michels, Gudrun; Waetjen, Wim; Ohler, Sandra; Steffan, Baerbel; Chovolou, Yvonni; Kampkoetter, Andreas; Proksch, Peter; Kahl, Regine

    2005-01-01

    Flavonoids are ubiquitous substances in fruits and vegetables. Among them, the flavonol kaempferol contributes up to 30% of total dietary flavonoid intake. Flavonoids are assumed to exert beneficial effects on human health, e.g., anticancer properties. For this reason, they are used in food supplements at high doses. The aim of this project was to determine the effects of kaempferol on oxidative stress and apoptosis in H4IIE rat hepatoma cells over a broad concentration range. Kaempferol is rapidly taken up and glucuronidated by H4IIE cells. The results demonstrate that kaempferol protects against H 2 O 2 -induced cellular damage at concentrations which lead to cell death and DNA strand breaks in the absence of H 2 O 2 -mediated oxidative stress. Preincubation with 50 μM kaempferol exerts protection against the loss of cell viability induced by 500 μM H 2 O 2 (2 h) while the same concentration of kaempferol reduces cell viability by 50% in the absence of H 2 O 2 (24 h). Preincubation with 50 μM kaempferol ameliorates the strong DNA damage induced by 500 μM H 2 O 2 while 50 μM kaempferol leads to a significant increase of DNA breakage in the absence of H 2 O 2 . Preincubation with 50 μM kaempferol reduces H 2 O 2 -mediated caspase-3 activity by 40% (4 h) while the same concentration of kaempferol leads to the formation of a DNA ladder in the absence of H 2 O 2 (24 h). It is concluded that the intake of high dose kaempferol in food supplements may not be advisable because in our cellular model protective kaempferol concentrations can also induce DNA damage and apoptosis by themselves

  20. Effects of P-Glycoprotein and Its Inhibitors on Apoptosis in K562 Cells

    Directory of Open Access Journals (Sweden)

    Yaqiong Zu

    2014-08-01

    Full Text Available P-glycoprotein (P-gp is a major factor in multidrug resistance (MDR which is a serious obstacle in chemotherapy. P-gp has also been implicated in causing apoptosis of tumor cells, which was shown to be another important mechanism of MDR recently. To study the influence of P-gp in tumor cell apoptosis, K562/A cells (P-gp+ and K562/S cells (P-gp− were subjected to doxorubicin (Dox, serum withdrawal, or independent co-incubation with multiple P-gp inhibitors, including valspodar (PSC833, verapamil (Ver and H108 to induce apoptosis. Apoptosis was simultaneously detected by apoptotic rate, cell cycle by flow cytometry and cysteine aspartic acid-specific protease 3 (caspase 3 activity by immunoassay. Cytotoxicity and apoptosis induced by PSC833 were evaluated through an MTT method and apoptosis rate, and cell cycle combined with caspase 3 activity, respectively. The results show that K562/A cells are more resistant to apoptosis and cell cycle arrest than K562/S cells after treatment with Dox or serum deprivation. The apoptosis of K562/A cells increased after co-incubation with each of the inhibitors of P-gp. P-gp inhibitors also enhanced cell cycle arrest in K562/A cell. PSC833 most strikingly decreased viability and led to apoptosis and S phase arrest of cell cycle in K562/A cells. Our study demonstrates that P-gp inhibits the apoptosis of tumor cells in addition to participating in the efflux of intracellular chemotherapy drugs. The results of the caspase 3 activity assay also suggest that the role of P-gp in apoptosis avoidance is caspase-related.

  1. Modeling of coupled differential equations for cellular chemical signaling pathways: Implications for assay protocols utilized in cellular engineering.

    Science.gov (United States)

    O'Clock, George D

    2016-08-01

    Cellular engineering involves modification and control of cell properties, and requires an understanding of fundamentals and mechanisms of action for cellular derived product development. One of the keys to success in cellular engineering involves the quality and validity of results obtained from cell chemical signaling pathway assays. The accuracy of the assay data cannot be verified or assured if the effect of positive feedback, nonlinearities, and interrelationships between cell chemical signaling pathway elements are not understood, modeled, and simulated. Nonlinearities and positive feedback in the cell chemical signaling pathway can produce significant aberrations in assay data collection. Simulating the pathway can reveal potential instability problems that will affect assay results. A simulation, using an electrical analog for the coupled differential equations representing each segment of the pathway, provides an excellent tool for assay validation purposes. With this approach, voltages represent pathway enzyme concentrations and operational amplifier feedback resistance and input resistance values determine pathway gain and rate constants. The understanding provided by pathway modeling and simulation is strategically important in order to establish experimental controls for assay protocol structure, time frames specified between assays, and assay concentration variation limits; to ensure accuracy and reproducibility of results.

  2. Nitrosative stress induces DNA strand breaks but not caspase mediated apoptosis in a lung cancer cell line

    Directory of Open Access Journals (Sweden)

    Bentz Brandon G

    2004-12-01

    Full Text Available Abstract Background Key steps crucial to the process of tumor progression are genomic instability and escape from apoptosis. Nitric oxide and its interrelated reactive intermediates (collectively denoted as NOX have been implicated in DNA damage and mutational events leading to cancer development, while also being implicated in the inhibition of apoptosis through S-nitrosation of key apoptotic enzymes. The purpose of this study was to explore the interrelationship between NOX-mediated DNA strand breaks (DSBs and apoptosis in cultured tumor cell lines. Methods Two well-characterized cell lines were exposed to increasing concentrations of exogenous NOX via donor compounds. Production of NOX was quantified by the Greiss reaction and spectrophotometery, and confirmed by nitrotyrosine immunostaining. DSBs were measured by the alkaline single-cell gel electrophoresis assay (the COMET assay, and correlated with cell viability by the MTT assay. Apoptosis was analyzed both by TUNEL staining and Annexin V/propidium iodine FACS. Finally, caspase enzymatic activity was measured using an in-vitro fluorogenic caspase assay. Results Increases in DNA strand breaks in our tumor cells, but not in control fibroblasts, correlated with the concentration as well as rate of release of exogenously administered NOX. This increase in DSBs did not correlate with an increase in cell death or apoptosis in our tumor cell line. Finally, this lack of apoptosis was found to correlate with inhibition of caspase activity upon exposure to thiol- but not NONOate-based NOX donor compounds. Conclusions Genotoxicity appears to be highly interrelated with both the concentration and kinetic delivery of NOX. Moreover, alterations in cell apoptosis can be seen as a consequence of the explicit mechanisms of NOX delivery. These findings lend credence to the hypothesis that NOX may play an important role in tumor progression, and underscores potential pitfalls which should be considered when

  3. LR-90 prevents methylglyoxal-induced oxidative stress and apoptosis in human endothelial cells

    Science.gov (United States)

    Figarola, James L.; Singhal, Jyotsana; Rahbar, Samuel; Awasthi, Sanjay

    2014-01-01

    Methylglyoxal (MGO) is a highly reactive dicarbonyl compound known to induce cellular injury and cytoxicity, including apoptosis in vascular cells. Vascular endothelial cell apoptosis has been implicated in the pathophysiology and progression of atherosclerosis. We investigated whether the advanced glycation end-product inhibitor LR-90 could prevent MGO-induced apoptosis in human umbilical vascular endothelial cells (HUVECs). HUVECs were pre-treated with LR-90 and then stimulated with MGO. Cell morphology, cytotoxicity and apoptosis were evaluated by light microscopy, MTT assay, and Annexin V-FITC and propidium iodide double staining, respectively. Levels of Bax, Bcl-2, cytochrome c, mitogen-activated protein kinases (MAPKs) and caspase activities were assessed by Western blotting. Reactive oxygen species (ROS) generation and mitochondrial membrane potential (MMP) were measured with fluorescent probes. LR-90 dose-dependently prevented MGO-associated HUVEC cytotoxicity and apoptotic biochemical changes such as loss of MMP, increased Bax/Bcl-2 protein ratio, mitochondrial cytochrome c release and activation of caspase-3 and 9. Additionally, LR-90 blocked intracellular ROS formation and MAPK (p44/p42, p38, JNK) activation, though the latter seem to be not directly involved in MGO-induced HUVEC apoptosis. LR-90 prevents MGO-induced HUVEC apoptosis by inhibiting ROS and associated mitochondrial-dependent apoptotic signaling cascades, suggesting that LR-90 possess cytoprotective ability which could be beneficial in prevention of diabetic related-atherosclerosis. PMID:24615331

  4. A point mutation of human p53, which was not detected as a mutation by a yeast functional assay, led to apoptosis but not p21Waf1/Cip1/Sdi1 expression in response to ionizing radiation in a human osteosarcoma cell line, Saos-2

    International Nuclear Information System (INIS)

    Okaichi, Kumio; Wang Lihong; Sasaki, Ji-ichiro; Saya, Hideyuki; Tada, Mitsuhiro; Okumura, Yutaka

    1999-01-01

    Purpose: The 123A point mutation of p53 showed increased radiosensitivity, whereas other mutations (143A, 175H, and 273H) were not affected. To determine the reason for increased radiosensitivity of the 123A mutation, the response of the transformant of 123A mutation to ionizing radiation (IR) was examined and compared to those of transformants with the wild type p53 or other point mutations (143A, 175H, and 273H). Methods and Materials: Stable transformants with a mutant or wild type p53 made by introducing cDNA into the human osteosarcoma cell line, Saos-2, which lacks an endogenous p53 were used. The transcriptional activity of mutant p53 was examined using a yeast functional assay. The transformants were examined for the accumulation of p53, the induction of p21 Waf1/Cip1/Sdi1 (hereafter referred to as p21), and the other response of p53-responsive genes (MDM2, Bax, and Bcl-2) by Western blotting. Apoptosis was analyzed by detection of DNA fragmentation. Results: The 123A point mutation of p53 was detected as a wild type in the yeast functional assay. The 123A mutant accumulated p53 in response to IR. The 123A mutant did not induce p21, but normally responded to MDM2, Bax, and Bcl-2. The 123A mutant entered apoptosis earlier than the wild type p53 transformant, and induced Fas at earlier in response to IR. Conclusion: The 123A mutant led to apoptosis, but not p21 expression in response to IR. The occurrence of apoptosis, but not induction of p21, corresponded to the radiosensitivity in the transformant. The early occurrence of apoptosis in 123A transformants may depend on the early induction of Fas

  5. Nothing is perfect, not even the local lymph node assay: a commentary and the implications for REACH.

    Science.gov (United States)

    Basketter, David A; McFadden, John F; Gerberick, Frank; Cockshott, Amanda; Kimber, Ian

    2009-02-01

    For many regulatory authorities, the local lymph node assay (LLNA) is the preferred assay for the predictive identification of skin-sensitizing chemicals. It is the initial requirement for sensitization testing within the new REACH (Registration, Evaluation, Authorization and Restriction of Chemical substances) regulations in the European Union. The primary reasons for the preferment of the LLNA are the animal welfare benefits it provides compared with traditional guinea-pig methods (refinement and reduction of animal usage) and the general performance characteristics of the assay with regard to overall reliability, accuracy, and interpretation. Moreover, a substantial published literature on the LLNA is available making it appropriate for use as a benchmark against which new approaches, including in vitro alternatives, can be evaluated and validated. There is, therefore, a view that the LLNA represents the 'gold standard' for skin sensitization testing. However, although this is probably correct, it is important to recognize and acknowledge that in common with all other predictive tests (whether they be validated or not), the LLNA has limitations, in addition to strengths, some of which were mentioned above. Arguably, it is the limitations (e.g., the occurrence of false positive and false negative results) of test methods that are most important to understand. With respect to the LLNA, these limitations are similar to those associated with guinea-pig skin sensitization methods. Among these are the occurrence of false positive and false negative results, susceptibility of results to changes in vehicle, and the possibility that interspecies differences may confound interpretation. In this commentary, these issues are reviewed and their impact on the utility of the LLNA for identification, classification, and potency assessment of skin sensitizers are considered. In addition, their relevance for the future development and validation of novel in vitro and in silico

  6. Circulating Autoantibodies in Age-Related Macular Degeneration Recognize Human Macular Tissue Antigens Implicated in Autophagy, Immunomodulation, and Protection from Oxidative Stress and Apoptosis.

    Directory of Open Access Journals (Sweden)

    Alessandro Iannaccone

    immune system in AMD pathogenesis, AAbs were identified in AMD sera, including early-stage disease. Identified targets may be mechanistically linked to AMD pathogenesis because the identified proteins are implicated in autophagy, immunomodulation, and protection from oxidative stress and apoptosis. In particular, a role in autophagy activation is shared by all five autoantigens, raising the possibility that the detected AAbs may play a role in AMD via autophagy compromise and downstream activation of the inflammasome. Thus, we propose that the detected AAbs provide further insight into AMD pathogenesis and have the potential to contribute to disease biogenesis and progression.

  7. Mycobacterium tuberculosis effectors interfering host apoptosis signaling.

    Science.gov (United States)

    Liu, Minqiang; Li, Wu; Xiang, Xiaohong; Xie, Jianping

    2015-07-01

    Tuberculosis remains a serious human public health concern. The coevolution between its pathogen Mycobacterium tuberculosis and human host complicated the way to prevent and cure TB. Apoptosis plays subtle role in this interaction. The pathogen endeavors to manipulate the apoptosis via diverse effectors targeting key signaling nodes. In this paper, we summarized the effectors pathogen used to subvert the apoptosis, such as LpqH, ESAT-6/CFP-10, LAMs. The interplay between different forms of cell deaths, such as apoptosis, autophagy, necrosis, is also discussed with a focus on the modes of action of effectors, and implications for better TB control.

  8. Palmitate induces VSMC apoptosis via toll like receptor (TLR)4/ROS/p53 pathway.

    Science.gov (United States)

    Zhang, Yuanjun; Xia, Guanghao; Zhang, Yaqiong; Liu, Juxiang; Liu, Xiaowei; Li, Weihua; Lv, Yaya; Wei, Suhong; Liu, Jing; Quan, Jinxing

    2017-08-01

    Toll-like receptor 4 (TLR4) has been implicated in vascular inflammation, as well as in the pathogenesis of atherosclerosis and diabetes. Vascular smooth muscle cell (VSMC) apoptosis has been shown to induce plaque vulnerability in atherosclerosis. Previous studies reported that palmitate induced apoptosis in VSMCs; however, the role of TLR4 in palmitate-induced apoptosis in VSMCs has not yet been defined. In this study, we investigated whether or not palmitate-induced apoptosis depended on the activation of the TLR4 pathway. VSMCs were treated with or without palmitate, CRISPR/Cas9z-mediated genome editing methods were used to deplete TLR4 expression, while NADPH oxidase inhibitors were used to inhibit reactive oxygen species (ROS) generation. Cell apoptosis was detected by terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay, ROS was measured using the 2',7'-dichlorodihydrofluorescein diacetate (DCFH-DA) method, the mRNA and protein expression levels of caspase 3, caspase 9, BCL-2 and p53 were studied by real-time polymerase chain reaction (RT-PCR) and ELISA. Palmitate significantly promotes VSMC apoptosis, ROS generation, and expression of caspase 3, caspase 9 and p53; while NADPH oxidase inhibitor pretreatment markedly attenuated these effects. Moreover, knockdown of TLR4 significantly blocked palmitate-induced ROS generation and VSMC apoptosis accompanied by inhibition of caspase 3, caspase 9, p53 expression and restoration of BCL-2 expression. Our results suggest that palmitate-induced apoptosis depends on the activation of the TLR4/ROS/p53 signaling pathway, and that TLR4 may be a potential therapeutic target for the prevention and treatment of atherosclerosis. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Regulation of S100A8/A9 (calprotectin) binding to tumor cells by zinc ion and its implication for apoptosis-inducing activity.

    Science.gov (United States)

    Nakatani, Yuichi; Yamazaki, Masatoshi; Chazin, Walter J; Yui, Satoru

    2005-10-24

    S100A8/A9 (calprotectin), which is released by neutrophils under inflammatory conditions, has the capacity to induce apoptosis in various cells. We previously reported that S100A8/A9 induces apoptosis of EL-4 lymphoma cells via the uptake of extracellular zinc in a manner similar to DTPA, a membrane-impermeable zinc chelator. In this study, S100A8/A9-induced apoptosis was examined in several cell lines that are weakly sensitive to DTPA, suggesting S100A8/A9 is directly responsible for apoptosis in these cells. Since zinc inhibits apoptosis of MM46, one of these cells, the regulation by zinc of the capacity of S100A8/A9 to bind MM46 cells was studied. When MM46 cells were incubated with S100A8/A9 in standard or zinc-depleted medium, the amounts of S100A8/A9 bound to cells was markedly lower at 3 h than at 1 h. In contrast, when MM46 cells were incubated with S100A8/A9 in the presence of high levels of zinc, binding to cells was the same at 1 and 3 h. When the cells were permeabilized with saponin prior to analysis, a larger amount of cell-associated S100A8/A9 was detected at 3 h. The amount was further increased in cells treated with chloroquine, suggesting that S100A8/A9 was internalized and degraded in lysosomes. Although it has been reported that S100A8/A9 binds to heparan sulfate on cell membranes, the amount of S100A8/A9 bound to MM46 cells was not reduced by heparinase treatment, but was reduced by trypsin treatment. These results suggest that S100A8/A9 induces apoptosis by direct binding to MM46 cells, and that this activity is regulated by zinc.

  10. Differential induction of apoptosis and autophagy by pyrrolizidine alkaloid clivorine in human hepatoma Huh-7.5 cells and its toxic implication

    Science.gov (United States)

    Fang, Shoucai; Ho, Wenzhe; Chen, Hui; Liang, Hao; Ye, Li; Tang, Jun

    2017-01-01

    Growing evidence suggests that the pyrrolizidine alkaloids (PAs)-induced hepatotoxicity is mediated by multiple cell death/defence modalities. However, the detailed mechanisms are still lacking. In this study, the hepatotoxic effects of four PAs including three retronecine-type ones (senecionine, seneciphylline and monocrotaline) and one otonecine-type (clivorine) on the proliferation of Huh-7.5 cells and the possible mechanisms were investigated. The results showed that all the PAs could inhibit cell proliferation and induce apoptosis in a concentration-dependent manner. Among them clivorine was the most significant one. In addition to its effect on apoptosis, clivorine treatment could promote autophagy in Huh-7.5 cells, as evidenced by the accumulation of autophagosomes, the enhancement of LC3B expression at the concentrations close to its IC0 value, and the increased conversion of LC3B-I to LC3B-II in the presence of lysosomal inhibitor (chloroquine) and decreased formation of green fluorescent protein (GFP)-LC3 positive puncta in the presence of autophagic sequestration inhibitor (3-methyladenine). Among the other tested PAs, senecionine and seneciphylline also activated autophagy at the same concentrations used for clivorine but monocrotaline did not. Furthermore, our study demonstrated that suppression or enhancement of autophagy resulted in the remarkable enhancement or suppression of senecionine, seneciphylline and clivorine-induced apoptosis at the concentration close to the IC10 for clivorine, respectively, indicating a protective role of autophagy against the PA-induced apoptosis at the low level of exposure. Collectively, our data suggest that PAs in different structures may exert different toxic disturbances on the liver cells. Apoptosis may be one of the most common models of the PA-induced cytotoxicity, while autophagy may be a structure-dependent defence model in the early stage of PA intoxication. Differential induction of apoptosis and autophagy

  11. DNA apoptosis and stability in B-cell chronic lymphoid leukaemia: implication of the DNA double-strand breaks repair system by non homologous recombination

    International Nuclear Information System (INIS)

    Deriano, L.

    2005-01-01

    After an introduction presenting the diagnosis and treatment of chronic lymphoid leukaemia, its molecular and genetic characteristics, and its cellular origin and clonal evolution, this research thesis describes the apoptosis (definition and characteristics, cancer and chemotherapy, apoptotic ways induced by gamma irradiation), the genotoxic stresses, the different repair mechanisms for different damages, and the DNA repair processes. It reports how human chronic lymphocytic leukaemia B cells can escape DNA damage-induced apoptosis through the non-homologous end-joining DNA repair pathway, and presents non-homologous end-joining DNA repair as a potent mutagenic process in human chronic lymphocytic leukaemia B cells

  12. Implication of extracellular zinc exclusion by recombinant human calprotectin (MRP8 and MRP14) from target cells in its apoptosis-inducing activity.

    Science.gov (United States)

    Yui, Satoru; Nakatani, Yuichi; Hunter, Michael J; Chazin, Walter J; Yamazaki, Masatoshi

    2002-06-01

    Calprotectin is a calcium-binding and zinc-binding protein complex that is abundant in the cytosol of neutrophils. This factor is composed of 8 and 14 kDa subunits, which have also been termed migration inhibitory factor-related proteins MRP8 and MRP14. We previously reported that rat calprotectin purified from inflammatory neutrophils induces apoptosis of various tumor cells or normal fibroblasts in a zinc-reversible manner. The present study was undertaken to elucidate which subunit is responsible for the apoptosis-inducing activity, and to explore the mechanism of zinc-reversible apoptosis induction. The apoptosis-inducing activity of recombinant human MRP8 (rhMRP8) and recombinant human MRP14 (rhMRP14) was examined against EL-4 lymphoma cells in vitro. To determine whether zinc deprivation by calprotectin was essential for the cytotoxicity, the activity of calprotectin was tested under conditions where physical contact between the factor and the cells was precluded by a low molecular weight cut-off dialysis membrane. The cytotoxicity of rhMRP14 against EL-4 cells was first detected at 10 microM in a standard medium, whereas rhMRP8 caused only marginal cytotoxicity at 40 microM. A mixture of both proteins showed higher specific activity (onset of cytotoxicity at 5 microM). When the cells were cultured in divalent cation-depleted medium, each dose-response curve was shifted to about a four-fold lower concentration range. Calprotectin was found to induce cell death even when the complex and the target cells were separated by dialysis membrane. A membrane-impermeable zinc chelator, diethylenetriamine pentaacetic acid (DTPA), also induced target cell apoptosis in a similar time-course as calprotectin. Moreover, the activities of calprotectin and DTPA were completely inhibited by the presence of zinc ions. These data indicate that calprotectin has higher specific activity to induce apoptosis than the Individual subunits, and that the mechanism is exclusion of zinc

  13. Implication of extracellular zinc exclusion by recombinant human calprotectin (MRP8 and MRP14 from target cells in its apoptosis-inducing activity

    Directory of Open Access Journals (Sweden)

    Satoru Yui

    2002-01-01

    Full Text Available Background: Calprotectin is a calcium-binding and zinc-binding protein complex that is abundant in the cytosol of neutrophils. This factor is composed of 8 and 14 kDa subunits, which have also been termed migration inhibitory factor-related proteins MRP8 and MRP14. We previously reported that rat calprotectin purified from inflammatory neutrophils induces apoptosis of various tumor cells or normal fibroblasts in a zinc-reversible manner.

  14. Anti-osteopontin monoclonal antibody prevents ovariectomy-induced osteoporosis in mice by promotion of osteoclast apoptosis

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Bo [International Joint Cancer Institute, The Second Military Medical University, 800 Xiang Yin Road, Shanghai 200433 (China); PLA General Hospital Cancer Center and PLA Cancer Research Institute, PLA Postgraduate School of Medicine, 28 Fuxing Road, Beijing (China); Dai, Jianxin [International Joint Cancer Institute, The Second Military Medical University, 800 Xiang Yin Road, Shanghai 200433 (China); PLA General Hospital Cancer Center and PLA Cancer Research Institute, PLA Postgraduate School of Medicine, 28 Fuxing Road, Beijing (China); National Engineering Research Center for Antibody Medicine and Shanghai Key Lab. of Cell Engineering and Antibody, 399 Libing Road, Shanghai 201203 (China); Wang, Huaqing [International Joint Cancer Institute, The Second Military Medical University, 800 Xiang Yin Road, Shanghai 200433 (China); Wei, Huafeng [International Joint Cancer Institute, The Second Military Medical University, 800 Xiang Yin Road, Shanghai 200433 (China); PLA General Hospital Cancer Center and PLA Cancer Research Institute, PLA Postgraduate School of Medicine, 28 Fuxing Road, Beijing (China); Zhao, Jian [International Joint Cancer Institute, The Second Military Medical University, 800 Xiang Yin Road, Shanghai 200433 (China); National Engineering Research Center for Antibody Medicine and Shanghai Key Lab. of Cell Engineering and Antibody, 399 Libing Road, Shanghai 201203 (China); Guo, Yajun, E-mail: yguo_smmu@163.com [International Joint Cancer Institute, The Second Military Medical University, 800 Xiang Yin Road, Shanghai 200433 (China); PLA General Hospital Cancer Center and PLA Cancer Research Institute, PLA Postgraduate School of Medicine, 28 Fuxing Road, Beijing (China); National Engineering Research Center for Antibody Medicine and Shanghai Key Lab. of Cell Engineering and Antibody, 399 Libing Road, Shanghai 201203 (China); and others

    2014-09-26

    Highlight: • We first report that anti-osteopontin mAb could protect osteoporosis in mice. • Anti-osteopontin mAb could promote the osteoclast apoptosis. • Targeting osteopontin might have therapeutic potentials for osteoporosis. - Abstract: Osteopontin (OPN) is abundant in mineralized tissues and has long been implicated in bone remodeling. However, the therapeutic effect of targeting OPN in bone loss diseases and the underlying molecular mechanism remain largely unknown. Here, we reported that anti-OPN mAb (23C3) could protect against ovariectomy-induced osteoporosis in mice, demonstrated by microcomputed tomography analysis and histopathology evaluation. In vitro assay showed that 23C3 mAb reduced osteoclasts (OCs)-mediated bone resorption through promotion of mature OC apoptosis. Thus, the study has important implications for understanding the role of OPN in OC bone resorption and survival, and OPN antagonists may have therapeutic potential for osteoporosis and other osteopenic diseases.

  15. Anti-osteopontin monoclonal antibody prevents ovariectomy-induced osteoporosis in mice by promotion of osteoclast apoptosis

    International Nuclear Information System (INIS)

    Zhang, Bo; Dai, Jianxin; Wang, Huaqing; Wei, Huafeng; Zhao, Jian; Guo, Yajun

    2014-01-01

    Highlight: • We first report that anti-osteopontin mAb could protect osteoporosis in mice. • Anti-osteopontin mAb could promote the osteoclast apoptosis. • Targeting osteopontin might have therapeutic potentials for osteoporosis. - Abstract: Osteopontin (OPN) is abundant in mineralized tissues and has long been implicated in bone remodeling. However, the therapeutic effect of targeting OPN in bone loss diseases and the underlying molecular mechanism remain largely unknown. Here, we reported that anti-OPN mAb (23C3) could protect against ovariectomy-induced osteoporosis in mice, demonstrated by microcomputed tomography analysis and histopathology evaluation. In vitro assay showed that 23C3 mAb reduced osteoclasts (OCs)-mediated bone resorption through promotion of mature OC apoptosis. Thus, the study has important implications for understanding the role of OPN in OC bone resorption and survival, and OPN antagonists may have therapeutic potential for osteoporosis and other osteopenic diseases

  16. JALUR MOLEKULER MEKANISME APOPTOSIS

    Directory of Open Access Journals (Sweden)

    Yani Corvianindya Rahayu

    2015-07-01

    Full Text Available Apoptosis or programmed cell death is a normal condition for development and live multicellular organism. Apoptosis is a morphological phenomenon that plays an important role in physiologic processes during fetal development and in adult. Mitochondria play an important role in apoptosis. Mitochondria can do apoptosis directly. Mitochondria has 2 family of protein Bcl-2. Bcl-2 and Bcl-XL are anti apoptosis while Bad an Bax are pro apoptosis. There are 3 different mechanism to receptors at the cell surface and a third may be triggered by dangerous agent that different from two ways before. Apoptosis also need caspase as cell death executor. Study of apoptosis still done especially in case of disease. Some disease have known related with disturbing of apoptosis mechanism for example cancer and auto immune. This article reviews about molecular mechanism of apoptosis for understanding disease and future therapy.

  17. High Fat Diet-Induced Skeletal Muscle Wasting Is Decreased by Mesenchymal Stem Cells Administration: Implications on Oxidative Stress, Ubiquitin Proteasome Pathway Activation, and Myonuclear Apoptosis

    Directory of Open Access Journals (Sweden)

    Johanna Abrigo

    2016-01-01

    Full Text Available Obesity can lead to skeletal muscle atrophy, a pathological condition characterized by the loss of strength and muscle mass. A feature of muscle atrophy is a decrease of myofibrillar proteins as a result of ubiquitin proteasome pathway overactivation, as evidenced by increased expression of the muscle-specific ubiquitin ligases atrogin-1 and MuRF-1. Additionally, other mechanisms are related to muscle wasting, including oxidative stress, myonuclear apoptosis, and autophagy. Stem cells are an emerging therapy in the treatment of chronic diseases such as high fat diet-induced obesity. Mesenchymal stem cells (MSCs are a population of self-renewable and undifferentiated cells present in the bone marrow and other mesenchymal tissues of adult individuals. The present study is the first to analyze the effects of systemic MSC administration on high fat diet-induced skeletal muscle atrophy in the tibialis anterior of mice. Treatment with MSCs reduced losses of muscle strength and mass, decreases of fiber diameter and myosin heavy chain protein levels, and fiber type transitions. Underlying these antiatrophic effects, MSC administration also decreased ubiquitin proteasome pathway activation, oxidative stress, and myonuclear apoptosis. These results are the first to indicate that systemically administered MSCs could prevent muscle wasting associated with high fat diet-induced obesity and diabetes.

  18. Keratin impact on PKCδ- and ASMase-mediated regulation of hepatocyte lipid raft size – implication for FasR-associated apoptosis

    Science.gov (United States)

    Gilbert, Stéphane; Loranger, Anne; Omary, M. Bishr

    2016-01-01

    ABSTRACT Keratins are epithelial cell intermediate filament (IF) proteins that are expressed as pairs in a cell-differentiation-regulated manner. Hepatocytes express the keratin 8 and 18 pair (denoted K8/K18) of IFs, and a loss of K8 or K18, as in K8-null mice, leads to degradation of the keratin partner. We have previously reported that a K8/K18 loss in hepatocytes leads to altered cell surface lipid raft distribution and more efficient Fas receptor (FasR, also known as TNFRSF6)-mediated apoptosis. We demonstrate here that the absence of K8 or transgenic expression of the K8 G62C mutant in mouse hepatocytes reduces lipid raft size. Mechanistically, we find that the lipid raft size is dependent on acid sphingomyelinase (ASMase, also known as SMPD1) enzyme activity, which is reduced in absence of K8/K18. Notably, the reduction of ASMase activity appears to be caused by a less efficient redistribution of surface membrane PKCδ toward lysosomes. Moreover, we delineate the lipid raft volume range that is required for an optimal FasR-mediated apoptosis. Hence, K8/K18-dependent PKCδ- and ASMase-mediated modulation of lipid raft size can explain the more prominent FasR-mediated signaling resulting from K8/K18 loss. The fine-tuning of ASMase-mediated regulation of lipid rafts might provide a therapeutic target for death-receptor-related liver diseases. PMID:27422101

  19. Cellular response after irradiation: Cell cycle control and apoptosis

    International Nuclear Information System (INIS)

    Siles, E.; Valenzuela, M.T.; Nunez, M.I.; Guerrero, R.; Villalobos, M.; Ruiz de Almodovar, J.M.

    1997-01-01

    The importance of apoptotic death was assessed in a set of experiments, involving eight human tumour cell lines (breast cancer, bladder carcinoma, medulloblastoma). Various aspects of the quantitative study of apoptosis and methods based on the detection of DNA fragmentation (in situ tailing and comet assay) are described and discussed. Data obtained support the hypothesis that apoptosis is not crucial for cellular radiosensitivity and that the relationship between p53 functionality or clonogenic survival and apoptosis may bee cell type specific. (author)

  20. Clinical implications of a new TSH-receptor-antibody-assay (DYNOtest {sup trademark} TRAKhuman) in autoimmune thyroid diseases; Klinische Implikationen eines neuen TSH-Rezeptor-Antikoerper-Assays (DYNOtest {sup trademark} TRAKhuman) bei autoimmunen Schilddruesenerkrankungen

    Energy Technology Data Exchange (ETDEWEB)

    Meller, J.; Schreivogel, I.; Becker, W. [Goettingen Univ. (Germany). Abt. fuer Nuklearmedizin; Bergmann, A.; Morgenthaler, N. [B.R.A.H.M.S Diagnostica, Berlin (Germany); Huefner, M. [Goettingen Univ. (Germany). Abt. Innere Medizin

    2000-07-01

    Aim: Conventional radioreceptor-antibody-assays (RAAs) fail in the detection of TSH-receptor antibodies (TRAKs) in 10-30% of patients with Graves' disease (GD). The aim of this study was the evaluation of the diagnostic and clinical impact of a new RRA (DYNOtest {sup trademark} TRAKhuman) which uses the human recombinant TSH-Receptor in the diagnosis of autoimmune thyroid disease. Methods: Sera from 142 consecutive patients (GD: n=50, autoimmune thyroiditis/AIT: n=92) and from 55 controls (31 patients without any thyroid disease and 14 with euthyroid goiter) were evaluated both with the DYNOtest {sup trademark} TRAKhuman-assay and a conventional RRA (TRAK-Assay {sup trademark}). Thyroid in vitro parameters and thyroid sonography were performed in all patients. Results: The DYNOtest {sup trademark} TRAK-assay was significantly superior to the conventional RRA in the diagnosis of GD (p<0,00012), especially in those who were treated by thionamides (p<0,003) and in the diagnosis of TRAK-positive patients with AIT (p<0,003). The majority of TRAK-positive AIT-patients suffered from hypothyroidism. One false positive result in patients with euthyroid goiter was found in the TRAK-Assay {sup trademark} as well as in the DYNOtest {sup trademark} TRAKhuman-Assay. Therefore the specifity of the DYNOtest {sup trademark} TRAKhuman was not inferior compared with the conventional assay. Conclusion: The DYNOtest {sup trademark} TRAK-assay is superior in the diagnostic work up of Graves' disease compared with a conventional TRAK-assay and offers an equal specifity. (orig.) [German] Ziel: Bei konventionellen Radiorezeptor-Antikoerper-Assays (RRAs) misslingt der Nachweis von TSH-Rezeptor Antikoerpern (TRAKS) bei 10-30% der immunogenen Hyperthyreosen (IH). Ziel der Studie war es, den diagnostischen und klinischen Stellenwertes eines neuen RRA (DYNOtest {sup trademark} TRAKhuman) bei autoimmunen Schilddruesenerkrankungen zu evaluieren. Methoden: Serumproben von 142

  1. TNF/TNFR1 pathway and endoplasmic reticulum stress are involved in ofloxacin-induced apoptosis of juvenile canine chondrocytes

    International Nuclear Information System (INIS)

    Zhang, Fu-Tao; Ding, Yi; Shah, Zahir; Xing, Dan; Gao, Yuan; Liu, Dong Ming; Ding, Ming-Xing

    2014-01-01

    Background and purpose: Quinolones cause obvious cartilaginous lesions in juvenile animals by chondrocyte apoptosis, which results in the restriction of their use in pediatric and adolescent patients. Studies showed that chondrocytes can be induced to produce TNFα, and the cisternae of the endoplasmic reticulum in quinolone-treated chondrocytes become dilated. We investigated whether TNF/TNFR 1 pathway and endoplasmic reticulum stress (ERs) are involved in ofloxacin (a typical quinolone)-induced apoptosis of juvenile canine chondrocytes. Experimental approach: Canine juvenile chondrocytes were treated with ofloxacin. Cell survival and apoptosis rates were determined with MTT method and flow cytometry, respectively. The gene expression levels of the related signaling molecules (TNFα, TNFR 1 , TRADD, FADD and caspase-8) in death receptor pathways and main apoptosis-related molecules (calpain, caspase-12, GADD153 and GRP78) in ERs were measured by qRT-PCR. The gene expression of TNFR 1 was suppressed with its siRNA. The protein levels of TNFα, TNFR 1 and caspase-12 were assayed using Western blotting. Key results: The survival rates decreased while apoptosis rates increased after the chondrocytes were treated with ofloxacin. The mRNA levels of the measured apoptosis-related molecules in death receptor pathways and ERs, and the protein levels of TNFα, TNFR 1 and caspase-12 increased after the chondrocytes were exposed to ofloxacin. The downregulated mRNA expressions of TNFR 1 , Caspase-8 and TRADD, and the decreased apoptosis rates of the ofloxacin-treated chondrocytes occurred after TNFR 1 –siRNA interference. Conclusions and implications: Ofloxacin-induced chondrocyte apoptosis in a time- and concentration-dependent fashion. TNF/TNFR 1 pathway and ERs are involved in ofloxacin-induced apoptosis of juvenile canine chondrocytes in the early stage. - Highlights: • Chondrocyte apoptosis is induced by ofloxacin in a time- and concentration-dependent manners.

  2. Acrolein produces nitric oxide through the elevation of intracellular calcium levels to induce apoptosis in human umbilical vein endothelial cells: implications for smoke angiopathy.

    Science.gov (United States)

    Misonou, Yoshiko; Asahi, Michio; Yokoe, Shunichi; Miyoshi, Eiji; Taniguchi, Naoyuki

    2006-03-01

    Acrolein is a highly electrophilic alpha, beta-unsaturated aldehyde, the levels of which are increased in the blood of smokers. To determine if acrolein is involved in the pathology of smoke angiopathy, the effect of acrolein on human umbilical vein endothelial cells (HUVEC) was examined. Intracellular nitric oxide (NO) levels, determined using diaminofluorescein-2 diacetate (DAF-2 DA), an NO sensitive fluorescent dye, were found to be increased after treatment in HUVEC with 10 microM acrolein. The measurement of nitrite with 2,3-diaminonaphthalene and a Western blot analysis revealed that nitrite and S-nitroso-cysteine levels were increased in a dose-dependent manner, confirming that NO production is increased by acrolein. The increase was not reduced by treatment with 10mM N-acetyl-l-cysteine (NAC), an anti-oxidant, but was reduced with 10 microM of the intracellular calcium chelator, 1,2-bis (o-aminophenoxy) ethane-N,N,N',N'-tetraacetic acid tetra (acetoxymethyl) ester. Acrolein-stimulated NO production was significantly reduced by pretreatment with 1mM N(G)-nitro-l-arginine-methyl ester (L-NAME), an NO synthase inhibitor. The cytotoxicity of acrolein was reduced by pretreatment with 10 microM 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl 3-oxide (carboxy-PTIO), an intracellular NO scavenger, or 1mM L-NAME, whereas it was not reduced by 10mM NAC, 20 microM Curcumin, another peroxide scavenger, or 100 microM Mn(III)TMPyP, a superoxide dismutase mimic. Nuclear staining and a Western blot analysis using an anti-cleaved caspase 3 antibody revealed that the reduced viability of HUVEC by acrolein was due to apoptosis, which was reversed after pretreatment with 0.1mM carboxy-PTIO or 1mM L-NAME. Thus, acrolein increases intracellular calcium production to induce intracellular NO production by a calcium-dependent NO synthase, possibly eNOS, and the excess and rapid increase in NO might lead to the apoptosis of HUVEC. These data suggest that acrolein might be

  3. Trimetazidine Protects Umbilical Cord Mesenchymal Stem Cells Against Hypoxia and Serum Deprivation Induced Apoptosis by Activation of Akt

    Directory of Open Access Journals (Sweden)

    Xuhe Gong

    2014-12-01

    Full Text Available Background: Mesenchymal stem cell (MSC transplantation is a promising therapy for cardiac repair. However, the efficacy is limited by the poor viability of MSCs in the infarcted heart. Recent findings have implicated that trimetazidine (TMZ enhanced the survival of the stem cells under various conditions. However, as the stem cells in these studies were animal-derived, little information is available about the effects of TMZ on human MSCs. Herein, we propose that TMZ may protect human MSCs against apoptosis induced by Hypoxia/Serum deprivation (H/SD. Methods: Human umbilical cord MSCs (UC-MSCs from Wharton's jelly were pretreated with 10µM TMZ of H/SD with or without the Akt inhibitor LY294002. The morphological changes were assessed using Hoechst 33342. Apoptosis was evaluated via Annexin V/PI staining; and apoptosis-related proteins were detected using Western-blot. Protein chip technology was used to screen for differences between the cell supernatants. Results: TMZ had a significant protective effect against H/SD-induced apoptosis, accompanied by an increase in Bcl-2 and p-Akt. The TMZ-mediated anti-apoptotic effect on MSCs could be attenuated by treatment with LY294002. Moreover, protein chip assays showed that TMZ treatment increased the paracrine functions of MSCs. Conclusion: Trimetazidine protects human UC-MSCs from H/SD-induced apoptosis via the Akt pathway and may therefore be a potentially useful therapeutic adjunct for transplanting MSCs into damaged heart after myocardial infarction.

  4. Mutagen Sensitivity, Apoptosis, and Polymorphism in DNA Repair as Measures of Prostate Cancer Risk

    National Research Council Canada - National Science Library

    Goldman, Radoslav

    2006-01-01

    .... We also created a computerized database of the samples in Microsoft Access. We developed assays for mutagen sensitivity, comet assay, and apoptosis in white blood cells exposed to bleomycin and ionizing radiation to evaluate...

  5. Membrane-proximal TRAIL species are incapable of inducing short circuit apoptosis signaling: Implications for drug development and basic cytokine biology.

    Science.gov (United States)

    Tatzel, Katharina; Kuroki, Lindsay; Dmitriev, Igor; Kashentseva, Elena; Curiel, David T; Goedegebuure, S Peter; Powell, Matthew A; Mutch, David G; Hawkins, William G; Spitzer, Dirk

    2016-03-03

    TRAIL continues to garner substantial interest as a recombinant cancer therapeutic while the native cytokine itself serves important tumor surveillance functions when expressed in membrane-anchored form on activated immune effector cells. We have recently developed the genetically stabilized TRAIL platform TR3 in efforts to improve the limitations associated with currently available drug variants. While in the process of characterizing mesothelin-targeted TR3 variants using a single chain antibody (scFv) delivery format (SS-TR3), we discovered that the membrane-tethered cytokine had a substantially increased activity profile compared to non-targeted TR3. However, cell death proceeded exclusively via a bystander mechanism and protected the mesothelin-positive targets from apoptosis rather than leading to their elimination. Incorporation of a spacer-into the mesothelin surface antigen or the cancer drug itself-converted SS-TR3 into a cis-acting phenotype. Further experiments with membrane-anchored TR3 variants and the native cytokine confirmed our hypothesis that membrane-proximal TRAIL species lack the capacity to physically engage their cognate receptors coexpressed on the same cell membrane. Our findings not only provide an explanation for the "peaceful" coexistence of ligand and receptor of a representative member of the TNF superfamily but give us vital clues for the design of activity-enhanced TR3-based cancer therapeutics.

  6. The Role of AKT/mTOR Pathway in Stress Response to UV-Irradiation: Implication in Skin Carcinogenesis by Regulation of Apoptosis, Autophagy and Senescence

    Science.gov (United States)

    Strozyk, Elwira; Kulms, Dagmar

    2013-01-01

    Induction of DNA damage by UVB and UVA radiation may generate mutations and genomic instability leading to carcinogenesis. Therefore, skin cells being repeatedly exposed to ultraviolet (UV) light have acquired multilayered protective mechanisms to avoid malignant transformation. Besides extensive DNA repair mechanisms, the damaged skin cells can be eliminated by induction of apoptosis, which is mediated through the action of tumor suppressor p53. In order to prevent the excessive loss of skin cells and to maintain the skin barrier function, apoptotic pathways are counteracted by anti-apoptotic signaling including the AKT/mTOR pathway. However, AKT/mTOR not only prevents cell death, but is also active in cell cycle transition and hyper-proliferation, thereby also counteracting p53. In turn, AKT/mTOR is tuned down by the negative regulators being controlled by the p53. This inhibition of AKT/mTOR, in combination with transactivation of damage-regulated autophagy modulators, guides the p53-mediated elimination of damaged cellular components by autophagic clearance. Alternatively, p53 irreversibly blocks cell cycle progression to prevent AKT/mTOR-driven proliferation, thereby inducing premature senescence. Conclusively, AKT/mTOR via an extensive cross talk with p53 influences the UV response in the skin with no black and white scenario deciding over death or survival. PMID:23887651

  7. Molecular imaging of apoptosis in cancer

    International Nuclear Information System (INIS)

    Hakumaeki, Juhana M.; Liimatainen, Timo

    2005-01-01

    Apoptosis plays an important role in cancer. Mechanisms hindering its action are implicated in a number of malignancies. Also, the induction of apoptosis plays a pivotal role in non-surgical cancer treatment regimes such as irradiation, chemotherapy, or hormones. Recent advanced in imaging science have made it now possible for us to detect and visualize previously inaccessible and even unrecognized biological phenomena in cells and tissue undergoing apoptosis in vivo. Not only are these imaging techniques painting an intriguing picture of the spatiotemporal characteristics and metabolic and biophysical of apoptosis in situ, but they are expected to have an ever increasing impact in preclinical testing and design of new anticancer agents as well. Rapid and accurate visualization of apoptotic response in the clinical settings can also be of significant diagnostic and prognostic worth. With the advent of molecular medicine and patient-tailored treatment options and therapeutic agents, such monitoring techniques are becoming paramount

  8. Apoptosis and cancer stem cells : Implications for apoptosis targeted therapy

    NARCIS (Netherlands)

    Kruyt, Frank A. E.; Schuringa, Jan Jacob

    2010-01-01

    Evidence is accumulating showing that cancer stem cells or tumor-initiating cells are key drivers of tumor formation and progression. Successful therapy must therefore eliminate these cells, which is hampered by their high resistance to commonly used treatment modalities. Thus far, only a limited

  9. PVP-coated silver nanoparticles and silver ions induce reactive oxygen species, apoptosis and necrosis in THP-1 monocytes

    DEFF Research Database (Denmark)

    Foldbjerg, Rasmus; Olesen, Ping Liu; Hougaard, Mads

    2009-01-01

    , both Ag NPs and Ag+ were shown to induce apoptosis and necrosis in THP-1 cells depending on dose and exposure time. Furthermore, the presence of apoptosis could be confirmed by the TUNEL method. A number of studies have implicated the production of reactive oxygen species (ROS) in cytotoxicity mediated...... the effect of well characterized, PVP-coated Ag NPs (69 nm ± 3 nm) and Ag+ in a human monocytic cell line (THP-1). Characterization of the Ag NPs was conducted in both stock suspension and cell media with or without serum and antibiotics. By using the flowcytometric annexin V/propidium iodide (PI) assay...... by NPs. We used the fluorogenic probe, 2′,7′-dichlorofluorescein to assess the levels of intracellular ROS during exposure to Ag NPs and Ag+. A drastic increase in ROS levels could be detected after 6–24 h suggesting that oxidative stress is an important mediator of cytotoxicity caused by Ag NPs and Ag+....

  10. Ghrelin modulates testicular germ cells apoptosis and proliferation in adult normal rats

    International Nuclear Information System (INIS)

    Kheradmand, Arash; Dezfoulian, Omid; Alirezaei, Masoud; Rasoulian, Bahram

    2012-01-01

    Highlights: ► Spermatogenesis is closely associated with the balance between germ cells proliferation and apoptosis. ► Numerous studies have documented the direct action of ghrelin in the modulation of apoptosis in different cell types. ► Ghrelin may be considered as a modulator of spermatogenesis in normal adult rats. ► Ghrelin may be potentially implicated for abnormal spermatogenesis in some testicular germ cell tumors. -- Abstract: Under normal condition in the most mammals, spermatogenesis is closely associated with the balance between germ cells proliferation and apoptosis. The present study was designed to determine the effects of ghrelin treatment on in vivo quality and quantity expression of apoptosis and proliferation specific indices in rat testicular germ cells. Twenty eight adult normal rats were subdivided into equal control and treatment groups. Treatment group received 3 nmol of ghrelin as subcutaneous injection for 30 consecutive days or vehicle to the control animals. The rats from each group (n = 7) were killed on days 10 and 30 and their testes were taken for immunocytochemical evaluation and caspase-3 assay. Immunohistochemical analysis indicated that the accumulations of Bax and PCNA peptides are generally more prominent in spermatocytes and spermatogonia of both groups. Likewise, the mean percentage of immunoreactive spermatocytes against Bax increased (P 0.05). Upstream of Bax substance parallel to down-regulation of PCNA demonstrate that ghrelin may prevent massive accumulation of germ cells during normal spermatogenesis. These observations also indicate that ghrelin may be considered as a modulator of spermatogenesis in normal adult rats and could be potentially implicated for abnormal spermatogenesis in some testicular germ cell tumors.

  11. TNF/TNFR{sub 1} pathway and endoplasmic reticulum stress are involved in ofloxacin-induced apoptosis of juvenile canine chondrocytes

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Fu-Tao; Ding, Yi; Shah, Zahir; Xing, Dan; Gao, Yuan; Liu, Dong Ming; Ding, Ming-Xing, E-mail: dmx@mail.hzau.edu.cn

    2014-04-15

    Background and purpose: Quinolones cause obvious cartilaginous lesions in juvenile animals by chondrocyte apoptosis, which results in the restriction of their use in pediatric and adolescent patients. Studies showed that chondrocytes can be induced to produce TNFα, and the cisternae of the endoplasmic reticulum in quinolone-treated chondrocytes become dilated. We investigated whether TNF/TNFR{sub 1} pathway and endoplasmic reticulum stress (ERs) are involved in ofloxacin (a typical quinolone)-induced apoptosis of juvenile canine chondrocytes. Experimental approach: Canine juvenile chondrocytes were treated with ofloxacin. Cell survival and apoptosis rates were determined with MTT method and flow cytometry, respectively. The gene expression levels of the related signaling molecules (TNFα, TNFR{sub 1}, TRADD, FADD and caspase-8) in death receptor pathways and main apoptosis-related molecules (calpain, caspase-12, GADD153 and GRP78) in ERs were measured by qRT-PCR. The gene expression of TNFR{sub 1} was suppressed with its siRNA. The protein levels of TNFα, TNFR{sub 1} and caspase-12 were assayed using Western blotting. Key results: The survival rates decreased while apoptosis rates increased after the chondrocytes were treated with ofloxacin. The mRNA levels of the measured apoptosis-related molecules in death receptor pathways and ERs, and the protein levels of TNFα, TNFR{sub 1} and caspase-12 increased after the chondrocytes were exposed to ofloxacin. The downregulated mRNA expressions of TNFR{sub 1}, Caspase-8 and TRADD, and the decreased apoptosis rates of the ofloxacin-treated chondrocytes occurred after TNFR{sub 1}–siRNA interference. Conclusions and implications: Ofloxacin-induced chondrocyte apoptosis in a time- and concentration-dependent fashion. TNF/TNFR{sub 1} pathway and ERs are involved in ofloxacin-induced apoptosis of juvenile canine chondrocytes in the early stage. - Highlights: • Chondrocyte apoptosis is induced by ofloxacin in a time- and

  12. [Apoptosis and pathological process].

    Science.gov (United States)

    Rami, Mukhammed Salim Iusef

    2007-01-01

    Apoptosis (programmed cell death) occurs normally for maitenance of tissue homeostasis and play an important role in morphogenesis, embriogenesis and tissue growth. On the other hand, apoptosis may be involved in different pathological processes such as malignancy, infectious diseases and autoimmune disorders. Apoptosis is regulated by various mediators. Caspases, death receptors, mitochondria, Bcl-2 protoncogenes and tumor supressor genes are considered to be the most important of them. Advance in apoptosis regulation research suggests enormouse facilities for therapy of wide range of human illnesses.

  13. The effect of melatonin on mouse jejunal crypt cell survival and apoptosis

    International Nuclear Information System (INIS)

    Kang, Jin Oh; Ha, Eun Young; Baik, Hyung Hwan; Cho, Yong Ho; Hong, Seong Eon

    2000-01-01

    To evaluate protective mechanism of melatonin against radiation damage and its relationship with apoptosis in mouse jejunum. 168 mice were divided into 28 groups according to radiation dose and melatonin treatment. To analysis crypt survival, microcolony survival assay was done according to Withers and Elkind's method. To analysis apoptosis, TUNEL assay was done according to Labet-Moleur's method. Radiation protection effect of melatonin was demonstrated by crypt survival assay and its effect was stronger in high radiation dose area. Apoptosis index with 8 Gy irradiation was 18.4% in control group and 16.5% in melatonin treated group. After 18 Gy, apoptosis index was 17.2%in control group and 15.4% in melatonin treated group. Apoptosis index did not show statistically significant difference between melatonin shows clear protective effect in mouse jejunum against radiation damage but its protective effect seems not to be related with apoptosis protection effect

  14. Activation of human herpesvirus replication by apoptosis.

    Science.gov (United States)

    Prasad, Alka; Remick, Jill; Zeichner, Steven L

    2013-10-01

    A central feature of herpesvirus biology is the ability of herpesviruses to remain latent within host cells. Classically, exposure to inducing agents, like activating cytokines or phorbol esters that stimulate host cell signal transduction events, and epigenetic agents (e.g., butyrate) was thought to end latency. We recently showed that Kaposi's sarcoma-associated herpesvirus (KSHV, or human herpesvirus-8 [HHV-8]) has another, alternative emergency escape replication pathway that is triggered when KSHV's host cell undergoes apoptosis, characterized by the lack of a requirement for the replication and transcription activator (RTA) protein, accelerated late gene kinetics, and production of virus with decreased infectivity. Caspase-3 is necessary and sufficient to initiate the alternative replication program. HSV-1 was also recently shown to initiate replication in response to host cell apoptosis. These observations suggested that an alternative apoptosis-triggered replication program might be a general feature of herpesvirus biology and that apoptosis-initiated herpesvirus replication may have clinical implications, particularly for herpesviruses that almost universally infect humans. To explore whether an alternative apoptosis-initiated replication program is a common feature of herpesvirus biology, we studied cell lines latently infected with Epstein-Barr virus/HHV-4, HHV-6A, HHV-6B, HHV-7, and KSHV. We found that apoptosis triggers replication for each HHV studied, with caspase-3 being necessary and sufficient for HHV replication. An alternative apoptosis-initiated replication program appears to be a common feature of HHV biology. We also found that commonly used cytotoxic chemotherapeutic agents activate HHV replication, which suggests that treatments that promote apoptosis may lead to activation of latent herpesviruses, with potential clinical significance.

  15. Apoptosis Gene Information System--AGIS.

    Science.gov (United States)

    Sakharkar, Kishore R; Clement, Marie V; Chow, Vincent T K; Pervaiz, Shazib

    2006-05-01

    Genes implicated in apoptosis have great relevance to biology, medicine and oncology. Here, we describe a unique resource, Apoptosis Gene Information System (AGIS) that provides data for over 2400 genes involved directly or indirectly, in apoptotic pathways of more than 350 different organisms. The organization of this information system is based on the principle of one-gene, one record. AGIS will be updated on a six monthly basis as new information becomes available. AGIS can be accessed at: http://www.cellfate.org/AGIS/.

  16. Interferences of homogentisic acid (HGA) on routine clinical chemistry assays in serum and urine and the implications for biochemical monitoring of patients with alkaptonuria.

    Science.gov (United States)

    Curtis, S L; Roberts, N B; Ranganath, L R

    2014-05-01

    We have assessed the effect of elevated concentrations of homogentisic acid (HGA) as in alkaptonuria (AKU), on a range of routine chemistry tests in serum and urine. HGA was added to pooled serum and a range of assays was analysed with Roche Modular chemistries. Effects on urine were assessed by diluting normal urine with urine from a patient with AKU, adding HGA to urine and after lowering output of urinary HGA with nitisinone treatment. Serum enzymatic creatinine showed 30% negative interference with 100μmol/L HGA and >50% at 400μmol/L. Serum urate 100 to 480μmol/L was reduced up to 20% at 100 and to 50% with 400μmol/L HGA. Serum cholesterol between 3 and 11mmol/L was reduced by 0.5mmol/L with 400μmol/L HGA. Urine enzymatic creatinine and urate with >2mmol/L HGA showed concentration dependent negative interference up to 80%. A positive interference in urine total protein by benzethonium turbidometric assay was observed, with 10mmol/L HGA equivalent to 1g/L protein. Jaffe creatinine, Na, K, Cl, Mg, Ca, phosphate, ALT, GGT, ALP activities and urea in serum and or urine were not affected by increases in HGA. To avoid interferences by HGA in alkaptonuria concentration of HGA should be established before samples are assayed with peroxidase assays and benzethonium urine protein. Copyright © 2013 The Canadian Society of Clinical Chemists. All rights reserved.

  17. Regulation of Viral Replication, Apoptosis and Pro-Inflammatory Responses by 17-AAG during Chikungunya Virus Infection in Macrophages

    Directory of Open Access Journals (Sweden)

    Tapas K. Nayak

    2017-01-01

    Full Text Available Chikungunya virus (CHIKV infection has re-emerged as a major public health concern due to its recent worldwide epidemics and lack of control measures. Although CHIKV is known to infect macrophages, regulation of CHIKV replication, apoptosis and immune responses towards macrophages are not well understood. Accordingly, the Raw264.7 cells, a mouse macrophage cell line, were infected with CHIKV and viral replication as well as new viral progeny release was assessed by flow cytometry and plaque assay, respectively. Moreover, host immune modulation and apoptosis were studied through flow cytometry, Western blot and ELISA. Our current findings suggest that expression of CHIKV proteins were maximum at 8 hpi and the release of new viral progenies were remarkably increased around 12 hpi. The induction of Annexin V binding, cleaved caspase-3, cleaved caspase-9 and cleaved caspase-8 in CHIKV infected macrophages suggests activation of apoptosis through both intrinsic and extrinsic pathways. The pro-inflammatory mediators (TNF and IL-6 MHC-I/II and B7.2 (CD86 were also up-regulated during infection over time. Further, 17-AAG, a potential HSP90 inhibitor, was found to regulate CHIKV infection, apoptosis and pro-inflammatory cytokine/chemokine productions of host macrophages significantly. Hence, the present findings might bring new insight into the therapeutic implication in CHIKV disease biology.

  18. Regulation of Viral Replication, Apoptosis and Pro-Inflammatory Responses by 17-AAG during Chikungunya Virus Infection in Macrophages.

    Science.gov (United States)

    Nayak, Tapas K; Mamidi, Prabhudutta; Kumar, Abhishek; Singh, Laishram Pradeep K; Sahoo, Subhransu S; Chattopadhyay, Soma; Chattopadhyay, Subhasis

    2017-01-06

    Chikungunya virus (CHIKV) infection has re-emerged as a major public health concern due to its recent worldwide epidemics and lack of control measures. Although CHIKV is known to infect macrophages, regulation of CHIKV replication, apoptosis and immune responses towards macrophages are not well understood. Accordingly, the Raw264.7 cells, a mouse macrophage cell line, were infected with CHIKV and viral replication as well as new viral progeny release was assessed by flow cytometry and plaque assay, respectively. Moreover, host immune modulation and apoptosis were studied through flow cytometry, Western blot and ELISA. Our current findings suggest that expression of CHIKV proteins were maximum at 8 hpi and the release of new viral progenies were remarkably increased around 12 hpi. The induction of Annexin V binding, cleaved caspase-3, cleaved caspase-9 and cleaved caspase-8 in CHIKV infected macrophages suggests activation of apoptosis through both intrinsic and extrinsic pathways. The pro-inflammatory mediators (TNF and IL-6) MHC-I/II and B7.2 (CD86) were also up-regulated during infection over time. Further, 17-AAG, a potential HSP90 inhibitor, was found to regulate CHIKV infection, apoptosis and pro-inflammatory cytokine/chemokine productions of host macrophages significantly. Hence, the present findings might bring new insight into the therapeutic implication in CHIKV disease biology.

  19. Radiation-induced apoptosis

    International Nuclear Information System (INIS)

    Ohyama, Harumi

    1995-01-01

    Apoptosis is an active process of gene-directed cellular self-destruction that can be induced in many cell types via numerous physiological and pathological stimuli. We found that interphasedeath of thymocytes is a typical apoptosis showing the characteristic features of apoptosis including cell shrinkage, chromatin condensation and DNA degradation. Moderate dose of radiation induces extensive apoptosis in rapidly proliferating cell population such as the epithelium of intestinal crypt. Recent reports indicate that the ultimate form of radiation-induced mitotic death in several cells is also apoptosis. One of the hallmarks of apoptosis is the enzymatic internucleosomal degradation of chromatin DNA. We identified an endonuclease responsible for the radiation-induced DNA degradation in rat thymocytes. The death-sparing effects of interrupting RNA and protein synthesis suggested a cell genetic program for apoptosis. Apoptosis of thymocytes initiated by DNA damage, such as radiation and radio mimetic substance, absolutely requires the protein of p53 cancer suppresser gene. The cell death induced by glucocorticoid, or aging, has no such requirement. Expression of oncogene bcl-2 rescues cells from the apoptosis. Massive apoptosis in radiosensitive cells induced by higher dose radiation may be fatal. It is suggested that selective apoptotic elimination of cells would play an important role for protection against carcinogenesis and malformation through removal of cells with unrepaired radiation-induced DNA damages. Data to evaluate the significance of apoptosis in the radiation risk are still poor. Further research should be done in order to clarify the roles of the cell death on the acute and late effects of irradiation. (author)

  20. Hormone assay

    International Nuclear Information System (INIS)

    Eisentraut, A.M.

    1977-01-01

    An improved radioimmunoassay is described for measuring total triiodothyronine or total thyroxine levels in a sample of serum containing free endogenous thyroid hormone and endogenous thyroid hormone bound to thyroid hormone binding protein. The thyroid hormone is released from the protein by adding hydrochloric acid to the serum. The pH of the separated thyroid hormone and thyroid hormone binding protein is raised in the absence of a blocking agent without interference from the endogenous protein. 125 I-labelled thyroid hormone and thyroid hormone antibodies are added to the mixture, allowing the labelled and unlabelled thyroid hormone and the thyroid hormone antibody to bind competitively. This results in free thyroid hormone being separated from antibody bound thyroid hormone and thus the unknown quantity of thyroid hormone may be determined. A thyroid hormone test assay kit is described for this radioimmunoassay. It provides a 'single tube' assay which does not require blocking agents for endogenous protein interference nor an external solid phase sorption step for the separation of bound and free hormone after the competitive binding step; it also requires a minimum number of manipulative steps. Examples of the assay are given to illustrate the reproducibility, linearity and specificity of the assay. (UK)

  1. Assay system

    International Nuclear Information System (INIS)

    Patzke, J.B.; Rosenberg, B.J.

    1984-01-01

    The accuracy of assays for monitoring concentrations of basic drugs in biological fluids containing a 1 -acid glycoproteins, such as blood (serum or plasma), is improved by the addition of certain organic phosphate compounds to minimize the ''protein effect.'' Kits containing the elements of the invention are also disclosed

  2. Different mechanisms between premitotic apoptosis and postmitotic apoptosis in X-irradiated U937 cells

    International Nuclear Information System (INIS)

    Shinomiya, Nariyoshi; Kuno, Yukie; Yamamoto, Fuyumi; Fukasawa, Masashi; Okumura, Atsushi; Uefuji, Megumi; Rokutanda, Makoto

    2000-01-01

    Purpose: Apoptosis is currently being evaluated for its importance as a pathway of radiation-induced cell death. However, the difference in the mechanisms between premitotic and postmitotic apoptosis following X-irradiation remains not well understood. We show here that the human monoblastoid cell line U937 can be induced to undergo these two different types of apoptosis. Methods and Materials: U937 cells were irradiated at a dose of 5 or 20 Gy, and the DNA fragmentation rate was measured by both flow cytometric analysis and gel electrophoresis. Activation of caspase-3 was detected by Western blot analysis and fluorogenic assay using acetyl-Asp-Glu-Val-Asp-7-amino-4-methyl-coumarin (Ac-DEVD-AMC). Detection of mitochondrial transmembrane potential (no. DELTAno. no. PSIno. ) was performed by using Rho123. Chasing of S-phase fraction following X-irradiation was performed after labeling with 5-bromo-2'-deoxyuridine (BrdU). Thymidine was used for synchronization of the cells. Inhibition of caspase-3 activity was achieved by Acetyl-Asp-Glu-Val-Asp-aldehyde (Ac-DEVD-CHO). Results: Time courses of the apoptotic rates, caspase activation, and no. DELTAno. no. PSIno. indicated that two different types of cell death were induced by the different X-ray doses. High-dose X-ray (20 Gy) induced a rapid and strong apoptosis, whereas low-dose X-ray (5 Gy) induced a slow and mild apoptosis. Cell-cycle analyses revealed that there was cell death before cell division in the former apoptosis but the cells must be dying after cell division in the latter apoptosis. By means of cell-cycle synchronization, the S-phase cells proved to be the most sensitive fraction to premitotic apoptosis, but an obvious difference in the susceptibility to cell death among the cell-cycle phases was not observed in postmitotic apoptosis. Ac-DEVD-CHO treatment effectively blocked caspase activity and premitotic apoptosis, but it failed to block postmitotic apoptosis. Conclusions: Irradiation of U937 cells at

  3. Puerarin protects differentiated PC12 cells from H₂O₂-induced apoptosis through the PI3K/Akt signalling pathway.

    Science.gov (United States)

    Zhang, Qin; Huang, Wei-Dong; Lv, Xue-Ying; Yang, Yun-Mei

    2012-05-01

    Oxidative stress has been implicated as a major mechanism underlying the pathogenesis of neurodegenerative disorders. ROS (reactive oxygen species) can cause cell death via apoptosis. NGF (nerve growth factor) differentiated rat PC12 cells have been extensively used to study the differentiation and apoptosis of neurons. This study has investigated the protective effects of puerarin in H2O2-induced apoptosis of differentiated PC12 cells, and the possible molecular mechanisms involved. Differentiated PC12 cells were incubated with 700 μM H2O2 in the absence or presence of different doses of puerarin (4, 8 and 16 μM). Apoptosis was assessed by MTS [3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium] assay, TUNEL (terminal deoxynucleotidyl transferase-mediated dUTP nick-end labelling) analysis and Annexin V-PI (propidium iodide) double staining flow cytometry. Protein levels of phospho-Akt and phospho-BAD (Bcl-2/Bcl-XL-antagonist, causing cell death) were assayed by Western blotting. After stimulation with H2O2 for 18 h, the viability of differentiated PC12 cells decreased significantly and a large number of cells underwent apoptosis. Differentiated PC12 cells were rescued from H2O2-induced apoptosis at different concentrations of puerarin in a dose-dependent manner. This was through increased production of phospho-Akt and phospho-BAD, an effect that could be reversed by wortmannin, an inhibitor of PI3K (phosphoinositide 3-kinase). The results suggest that puerarin may have neuroprotective effect through activation of the PI3K/Akt signalling pathway.

  4. Ubiquitination in apoptosis signaling

    NARCIS (Netherlands)

    van de Kooij, L.W.

    2014-01-01

    The work described in this thesis focuses on ubiquitination and protein degradation, with an emphasis on how these processes regulate apoptosis signaling. More specifically, our aims were: 1. To increase the understanding of ubiquitin-mediated regulation of apoptosis signaling. 2. To identify the E3

  5. Hyperthermia-induced apoptosis

    NARCIS (Netherlands)

    Nijhuis, E.H.A.

    2008-01-01

    This thesis describes a number of studies that investigated several aspects of heat-induced apoptosis in human lymphoid malignancies. Cells harbour both pro- and anti-apoptotic proteins and the balance between these proteins determines whether a cell is susceptible to undergo apoptosis. In this

  6. Apoptosis in the eye.

    OpenAIRE

    Chahory , Sabine; Torriglia , Alicia

    2006-01-01

    Apoptosis is a normal component of the development and health of multicellular organisms. Cells die during apoptosis in a controlled, regulated fashion. This form of cell death is very important in eye development as well as in eye pathology. We review in this chapter our current knowledge in this topic.

  7. Death penalty for keratinocytes: apoptosis versus cornification.

    Science.gov (United States)

    Lippens, S; Denecker, G; Ovaere, P; Vandenabeele, P; Declercq, W

    2005-11-01

    Homeostasis implies a balance between cell growth and cell death. This balance is essential for the development and maintenance of multicellular organisms. Homeostasis is controlled by several mechanisms including apoptosis, a process by which cells condemned to death are completely eliminated. However, in some cases, total destruction and removal of dead cells is not desirable, as when they fulfil a specific function such as formation of the skin barrier provided by corneocytes, also known as terminally differentiated keratinocytes. In this case, programmed cell death results in accumulation of functional cell corpses. Previously, this process has been associated with apoptotic cell death. In this overview, we discuss differences and similarities in the molecular regulation of epidermal programmed cell death and apoptosis. We conclude that despite earlier confusion, apoptosis and cornification occur through distinct molecular pathways, and that possibly antiapoptotic mechanisms are implicated in the terminal differentiation of keratinocytes.

  8. Apoptosis – is it good or bad?

    Directory of Open Access Journals (Sweden)

    Bakir Mehić

    2012-08-01

    induced by TNF-α. The over expression of antiapoptotic proteins may allow injured cells to survive, and autophagy may assist by providing critical metabolites. Apoptotic cells induce anergy or an immunosuppressive phenotype, whereas necrotic cells augment inflammation, in part by binding the receptor C-type lectin domain family 9 on dendritic cells.Clinical implications of apoptosis are consist in more than 50% of neoplasm’s that have defects in the apoptotic machinery mutations in the tumor-suppressor gene TP53, that is called the “guardian of the genome,” initiates apoptosis in response to DNA damage induced by radiation, chemical agents, oxidative stress, and other agents.[3] Abnormalities in apoptosis can increase susceptibility to autoimmune diseases.[4] There is growing evidence that neuronal apoptosis plays a key role in neonatal brain disorders.[5] Hepatocytes are particularly prone to apoptosis in response to various types of stress, including infections.[6] Necrosis predominates in ischemic injury, but often there are apoptotic cells in the hypoxic penumbra in myocardial infarction and stroke and in globally hypoxic zones after reperfusion injury. Sepsis is perhaps the most remarkable clinical setting in which apoptosis occurs. Massive apoptosis of immune effectors’ cells and gastrointestinal epithelial cells develops in patients with sepsis.[7] The profound loss of immune effectors’ cells in sepsis inhibits the ability of the immune system to eradicate the primary infection and renders the patient susceptible to nosocomial infections. Finally, why apoptosis is good? Because without apoptosis, 2 tons of bone marrow and lymph nodes and a 16-km intestine would probably accumulate in a human by the age of 8o.[8

  9. 3'-Azido-3'-deoxythymidine (AZT) induces apoptosis and alters metabolic enzyme activity in human placenta

    International Nuclear Information System (INIS)

    Collier, Abby C.; Helliwell, Rachel J.A.; Keelan, Jeffrey A.; Paxton, James W.; Mitchell, Murray D.; Tingle, Malcolm D.

    2003-01-01

    The anti-HIV drug 3'-azido-3'-deoxythymidine (AZT) is the drug of choice for preventing maternal-fetal HIV transmission during pregnancy. Our aim was to assess the cytotoxic effects of AZT on human placenta in vitro. The mechanisms of AZT-induced effects were investigated using JEG-3 choriocarcinoma cells and primary explant cultures from term and first-trimester human placentas. Cytotoxicity measures included trypan blue exclusion, MTT, and reactive oxygen species (ROS) assays. Apoptosis was measured with an antibody specific to cleaved caspase-3 and by rescue of cells by the general caspase inhibitor Boc-D-FMK. The effect of AZT on the activities of glutathione-S-transferase, β-glucuronidase, UDP-glucuronosyl transferase, cytochrome P450 (CYP) 1A, and CYP reductase (CYPR) in the placenta was assessed using biochemical assays and immunoblotting. AZT increased ROS levels, decreased cellular proliferation rates, was toxic to mitochondria, and initiated cell death by a caspase-dependent mechanism in the human placenta in vitro. In the absence of serum, the effects of AZT were amplified in all the models used. AZT also increased the amounts of activity of GST, β-glucuronidase, and CYP1A, whereas UGT and CYPR were decreased. We conclude that AZT causes apoptosis in the placenta and alters metabolizing enzymes in human placental cells. These findings have implications for the safe administration of AZT in pregnancy with respect to the maintenance of integrity of the maternal-fetal barrier

  10. Apoptosis induced by radionuclide 153Sm and expression of relevant genes in three different cancer cells

    International Nuclear Information System (INIS)

    Zou Baomin; Duan Xiaoyi; Chen Wei; Hu Guoying

    2003-01-01

    To study apoptosis of PC-3, ER-75-30 and A549 cells induced by radionuclide 153 Sm and the expression of bcl-2, bax in apoptosis cells, MTT assay was used to detect the anti-tumor effect, light microscope, transmission electron microscope, flow cytometer were used to detect apoptosis, while image analysis was used to detect the expression of bcl-2 and bax. 153 Sm showed anti-tumor effect and could induce tumor cell apoptosis. Both bcl-2 and bax played an important role in apoptosis. Different kind of cells had different sensitivity to 153 Sm

  11. Enzymatic and viability RT-qPCR assays for evaluation of enterovirus, hepatitis A virus and norovirus inactivation: Implications for public health risk assessment.

    Science.gov (United States)

    Monteiro, S; Santos, R

    2018-04-01

    To assess the potential of a viability dye and an enzymatic reverse transcription quantitative PCR (RT-qPCR) pretreatment to discriminate between infectious and noninfectious enteric viruses. Enterovirus (EntV), norovirus (NoV) GII.4 and hepatitis A virus (HAV) were inactivated at 95°C for 10 min, and four methods were used to compare the efficiency of inactivation: (i) cell culture plaque assay for HAV and EntV, (ii) RT-qPCR alone, (iii) RT-qPCR assay preceded by RNase treatment, and (iv) pretreatment with a viability dye (reagent D (RD)) followed by RT-qPCR. In addition, heat-inactivated NoV was treated with RD coupled with surfactants to increase the efficiency of the viability dye. No treatment was able to completely discriminate infectious from noninfectious viruses. RD-RT-qPCR reduced more efficiently the detection of noninfectious viruses with little to no removal observed with RNase. RD-RT-qPCR method was the closest to cell culture assay. The combination of surfactants and RD did not show relevant improvements on the removal of inactivated viruses signal compared with viability RT-qPCR, with the exception of Triton X-100. The use of surfactant/RD-RT-qPCR, although not being able to completely remove the signal from noninfectious viral particles, yielded a better estimation of viral infectivity. Surfactant/RD-RT-qPCR may be an advantageous tool for a better detection of infectious viruses with potential significant impact in the risk assessment of the presence of enteric viruses. © 2017 The Society for Applied Microbiology.

  12. Prognostic implications of high-sensitivity cardiac troponin T assay in a real-world population with non-ST-elevation acute coronary syndrome.

    Science.gov (United States)

    Magnoni, Marco; Gallone, Guglielmo; Ceriotti, Ferruccio; Vergani, Vittoria; Giorgio, Daniela; Angeloni, Giulia; Maseri, Attilio; Cianflone, Domenico

    2018-09-01

    High-sensitivity cardiac troponin T (hsTnT) was recently approved for clinical use by the Food and Drug Administration. The transition from contemporary to hsTnT assays requires a thorough understanding of the clinical differences between these assays. HsTnT may provide a more accurate prognostic stratification than contemporary cardiac troponin I (cTnI) in patients with non-ST-segment elevation acute coronary syndromes (NSTE-ACS). HsTnT and cTnI were measured in 644 patients with CK-MB negative NSTE-ACS who were enrolled in the prospective multicenter SPAI (Stratificazione Prognostica dell'Angina Instabile) study. Patients were stratified at the 99th percentile reference limit for each assay. The primary endpoint was cardiovascular death (CVD) or non-fatal myocardial infarction (MI); the secondary endpoint was the occurrence of unstable angina (UA). Follow-up lasted 180 days. Patients with hsTnT ≥99th percentile were at higher risk of CVD/MI (30-day: 5.9% vs 0.8%, p  = 0.001; 180-day: 11.1% vs 4.7%, p  = 0.004), also after adjusting for TIMI Risk Score. No significant difference in CVD/MI at 180-day was found between hsTnT-positive/cTnI-negative and hsTnT-negative/cTnI-negative patients (adjHR 1.61, 95% CI 0.74-3.49, p  = 0.232). Occurrence of UA was not differently distributed between hsTnT groups dichotomized at the 99th percentile (12.4% vs 12.5% p  = 0.54). Our investigation on a real-world NSTE-ACS population showed good prognostic performance of hsTnT in the risk stratification of the hard endpoint, but did not demonstrate the improved prognostic ability of hsTnT over contemporary cTn. Neither troponin assay predicted the recurrence of UA, suggesting the acute rise of cardiac troponin as a marker of severity, but not the occurrence of future coronary instability.

  13. Reaper-Induced Apoptosis

    National Research Council Canada - National Science Library

    Perry, Jennifer

    2005-01-01

    Reaper is a central regulator of apoptosis in the fly, Drosophila melanogaster. At the start of this proposal our laboratory identified what was believed to be a pro-apoptotic human homolog of Reaper...

  14. Apoptosis in Pneumovirus Infection

    Directory of Open Access Journals (Sweden)

    Reinout A. Bem

    2013-01-01

    Full Text Available Pneumovirus infections cause a wide spectrum of respiratory disease in humans and animals. The airway epithelium is the major site of pneumovirus replication. Apoptosis or regulated cell death, may contribute to the host anti-viral response by limiting viral replication. However, apoptosis of lung epithelial cells may also exacerbate lung injury, depending on the extent, the timing and specific location in the lungs. Differential apoptotic responses of epithelial cells versus innate immune cells (e.g., neutrophils, macrophages during pneumovirus infection can further contribute to the complex and delicate balance between host defense and disease pathogenesis. The purpose of this manuscript is to give an overview of the role of apoptosis in pneumovirus infection. We will examine clinical and experimental data concerning the various pro-apoptotic stimuli and the roles of apoptotic epithelial and innate immune cells during pneumovirus disease. Finally, we will discuss potential therapeutic interventions targeting apoptosis in the lungs.

  15. Clinical Implications of Measuring Drug and Anti-Drug Antibodies by Different Assays When Optimizing Infliximab Treatment Failure in Crohn's Disease

    DEFF Research Database (Denmark)

    Steenholdt, Casper; Bendtzen, Klaus; Brynskov, Jørn

    2014-01-01

    OBJECTIVES: Cost-effective guidance of therapeutic strategy in Crohn's disease patients with secondary infliximab (IFX) treatment failure may be achieved by serum IFX and anti-IFX antibody (Ab) measurements by radioimmunoassay (RIA). This study investigated implications of using other techniques...... on classification of underlying mechanism for treatment failure in most cases (79-94%). The majority (74-88%) failed IFX owing to pharmacodynamic problems, or had noninflammatory pathophysiology for symptoms resembling relapse. Applied threshold for therapeutic vs. subtherapeutic IFX level influenced...

  16. Peroxynitrite induces apoptosis of mouse cochlear hair cells via a Caspase-independent pathway in vitro.

    Science.gov (United States)

    Cao, Zhixin; Yang, Qianqian; Yin, Haiyan; Qi, Qi; Li, Hongrui; Sun, Gaoying; Wang, Hongliang; Liu, Wenwen; Li, Jianfeng

    2017-11-01

    Peroxynitrite (ONOO - ) is a potent and versatile oxidant implicated in a number of pathophysiological processes. The present study was designed to investigate the effect of ONOO - on the cultured cochlear hair cells (HCs) of C57BL/6 mice in vitro as well as the possible mechanism underlying the action of such an oxidative stress. The in vitro primary cultured cochlear HCs were subjected to different concentrations of ONOO - , then, the cell survival and morphological changes were examined by immunofluorescence and transmission electron microscopy (TEM), the apoptosis was determined by Terminal deoxynucleotidyl transferase dUNT nick end labeling (TUNEL) assay, the mRNA expressions of Caspase-3, Caspase-8, Caspase-9, Apaf1, Bcl-2, and Bax were analyzed by RT-PCR, and the protein expressions of Caspase-3 and AIF were assessed by immunofluorescence. This work demonstrated that direct exposure of primary cultured cochlear HCs to ONOO - could result in a base-to-apex gradient injury of HCs in a concentration-dependent manner. Furthermore, ONOO - led to much more losses of outer hair cells than inner hair cells mainly through the induction of apoptosis of HCs as evidenced by TEM and TUNEL assays. The mRNA expressions of Caspase-8, Caspase-9, Apaf1, and Bax were increased and, meanwhile, the mRNA expression of Bcl-2 was decreased in response to ONOO - treatment. Of interesting, the expression of Caspase-3 had no significant change, whereas, the expression alteration of AIF was observed. These results suggested that ONOO - can effectively damage the survival of cochlear HCs via triggering the apoptotic pathway. The findings from this work suggest that ONOO - -induced apoptosis is mediated, at least in part, via a Caspase-independent pathway in cochlear HCs.

  17. Mitochondrial dysfunction in lyssavirus-induced apoptosis.

    Science.gov (United States)

    Gholami, Alireza; Kassis, Raïd; Real, Eléonore; Delmas, Olivier; Guadagnini, Stéphanie; Larrous, Florence; Obach, Dorothée; Prevost, Marie-Christine; Jacob, Yves; Bourhy, Hervé

    2008-05-01

    Lyssaviruses are highly neurotropic viruses associated with neuronal apoptosis. Previous observations have indicated that the matrix proteins (M) of some lyssaviruses induce strong neuronal apoptosis. However, the molecular mechanism(s) involved in this phenomenon is still unknown. We show that for Mokola virus (MOK), a lyssavirus of low pathogenicity, the M (M-MOK) targets mitochondria, disrupts the mitochondrial morphology, and induces apoptosis. Our analysis of truncated M-MOK mutants suggests that the information required for efficient mitochondrial targeting and dysfunction, as well as caspase-9 activation and apoptosis, is held between residues 46 and 110 of M-MOK. We used a yeast two-hybrid approach, a coimmunoprecipitation assay, and confocal microscopy to demonstrate that M-MOK physically associates with the subunit I of the cytochrome c (cyt-c) oxidase (CcO) of the mitochondrial respiratory chain; this is in contrast to the M of the highly pathogenic Thailand lyssavirus (M-THA). M-MOK expression induces a significant decrease in CcO activity, which is not the case with M-THA. M-MOK mutations (K77R and N81E) resulting in a similar sequence to M-THA at positions 77 and 81 annul cyt-c release and apoptosis and restore CcO activity. As expected, the reverse mutations, R77K and E81N, introduced in M-THA induce a phenotype similar to that due to M-MOK. These features indicate a novel mechanism for energy depletion during lyssavirus-induced apoptosis.

  18. Characterization of radiation-induced Apoptosis in rodent cell lines

    International Nuclear Information System (INIS)

    Guo, Min; Chen, Changhu; Ling, C.C.

    1997-01-01

    For REC:myc(ch1), Rat1 and Rat1:myc b cells, we determined the events in the development of radiation-induced apoptosis to be in the following order: cell division followed by chromatin condensation, membrane blebbing, loss of adhesion and the uptake of vital dye. Experimental data which were obtained using 4 He ions of well defined energies and which compared the dependence of apoptosis and clonogenic survival on 4 He range strongly suggested that in our cells both apoptosis and loss of clonogenic survival resulted from radiation damage to the cell nucleus. Corroboratory evidence was that BrdU incorporation sensitized these cells to radiation-induced apoptosis. Comparing the dose response for apoptosis and the clonogenic survival curves for Rat1 and Rat1:myc b cells, we concluded that radiation-induced cell inactivation as assayed by clonogenic survival, and that a modified linear-quadratic model, proposed previously, modeled such a contribution effectively. In the same context, the selective increase in radiation-induced apoptosis. Comparing the dose response for apoptosis and the clonogenic survival curves for Rat1 and Rat1:myc b cells, we concluded that radiation-induced apoptosis contributed to the overall radiation-induced cell inactivation as assayed by clonogenic survival, and that a modified linear-quadratic model, proposed previously, modeled such a contribution effectively. In the same context, the selective increase in radiation-induced apoptosis during late S and G 2 phases reduced the relative radioresistance observed for clonogenic survival during late S and G 2 phases. 30 refs., 8 figs

  19. Ghrelin modulates testicular germ cells apoptosis and proliferation in adult normal rats

    Energy Technology Data Exchange (ETDEWEB)

    Kheradmand, Arash, E-mail: arashkheradmand@yahoo.com [Department of Clinical Sciences, School of Veterinary Medicine, Lorestan University, P.O. Box: 465, Khorram Abad (Iran, Islamic Republic of); Dezfoulian, Omid [Department of Pathobiology, School of Veterinary Medicine, Lorestan University, Khorram Abad (Iran, Islamic Republic of); Alirezaei, Masoud [Division of Biochemistry, School of Veterinary Medicine, Lorestan University, P.O. Box: 465, Khorram Abad (Iran, Islamic Republic of); Rasoulian, Bahram [Razi Herbal Medicine Research Center, Lorestan University of Medical Sciences, Khorram Abad (Iran, Islamic Republic of)

    2012-03-09

    Highlights: Black-Right-Pointing-Pointer Spermatogenesis is closely associated with the balance between germ cells proliferation and apoptosis. Black-Right-Pointing-Pointer Numerous studies have documented the direct action of ghrelin in the modulation of apoptosis in different cell types. Black-Right-Pointing-Pointer Ghrelin may be considered as a modulator of spermatogenesis in normal adult rats. Black-Right-Pointing-Pointer Ghrelin may be potentially implicated for abnormal spermatogenesis in some testicular germ cell tumors. -- Abstract: Under normal condition in the most mammals, spermatogenesis is closely associated with the balance between germ cells proliferation and apoptosis. The present study was designed to determine the effects of ghrelin treatment on in vivo quality and quantity expression of apoptosis and proliferation specific indices in rat testicular germ cells. Twenty eight adult normal rats were subdivided into equal control and treatment groups. Treatment group received 3 nmol of ghrelin as subcutaneous injection for 30 consecutive days or vehicle to the control animals. The rats from each group (n = 7) were killed on days 10 and 30 and their testes were taken for immunocytochemical evaluation and caspase-3 assay. Immunohistochemical analysis indicated that the accumulations of Bax and PCNA peptides are generally more prominent in spermatocytes and spermatogonia of both groups. Likewise, the mean percentage of immunoreactive spermatocytes against Bax increased (P < 0.01) in the ghrelin-treated group on day 10, while despite of 30% increment in the Bax level of spermatocytes in the treated rats on day 30, however, it was not statistically significant. During the experimental period, only a few spermatogonia represented Bax expression and the changes of Bax immunolabling cells were negligible upon ghrelin treatment. Likewise, there were immunostaining cells against Bcl-2 in each germ cell neither in the control nor in the treated animals. In fact

  20. Comparison of Estrogen Receptor Assay Results from Pathology Reports with Results from Central Laboratory Testing: Implications for Population-Based Studies of Breast Cancer

    Science.gov (United States)

    Collins, LC; Marotti, J; Baer, HJ; Deitz, AC; Colditz, GA; Tamimi, RM

    2014-01-01

    Population-based studies of women with breast cancer commonly utilize information culled from pathology reports rather than central pathology review. The reliability of this information, particularly with regard to tumor biomarker results, is of concern. To address this, we evaluated the concordance between estrogen receptor (ER) results as determined from the original pathology reports and ER results obtained on the same specimens following testing in a single laboratory. Tissue microarrays (TMAs) were constructed from paraffin blocks of 3,167 breast cancers that developed in women enrolled in the Nurses’ Health Study. ER immunostains were performed on all TMA sections in single run. Results of ER immunostains performed on the TMA sections were compared with ER assay results abstracted from pathology reports. Among 1,851 cases of invasive breast cancer in which both ER results from pathology reports and central ER test results were available, the reported ER status and the ER status as determined from immunostains on TMAs were in agreement in 1,651 cases (87.3 %; kappa value 0.64, ppathology reports is a reasonable, albeit imperfect, alternative to central laboratory ER testing for large, population-based studies of patients with breast cancer. PMID:18230800

  1. Apoptosis signaling and radiation protection

    International Nuclear Information System (INIS)

    Morita, Akinori; Suzuki, Norio; Hosoi, Yoshio

    2005-01-01

    Radiation protection by apoptosis control is the suppression of cell death in highly radiosensitive tissues. This paper describes the outline of radiation-induced apoptosis framework, apoptosis-concerned target molecules possibly related to apoptosis by radiation and their inhibitors. Although there are intrinsic (via mitochondria) and extrinsic (via death receptor) pathways in apoptosis, this review mainly mentions the former which is more important in radiation-induced apoptosis. Those molecules known at present in the apoptosis are caspase, Bcl-2 family and p53. Caspase, a group of cystein proteases, initiates apoptosis but its inhibition is known not always to result in apoptosis suppression, suggesting the existence of caspase-independent pathways. Bcl-2 family involves apoptosis-suppressing (possessing BH domains) and -promoting (lacking BH domains or possessing BH3 domain alone/BH3-only protein) groups. Two p53-transcription-dependent and one -independent pathways in p53-induced apoptosis are known and p53 can be a most possible target molecule since it positions at the start of apoptosis. Authors have found a vanadate inactivates p53. Inhibitors affecting upstream molecules of apoptosis will be the most useful candidate for apoptosis suppression/radiation protection. (S.I.) 106 refs

  2. Benzene activates caspase-4 and -12 at the transcription level, without an association with apoptosis, in mouse bone marrow cells lacking the p53 gene

    Energy Technology Data Exchange (ETDEWEB)

    Yi, Jung-Yeon; Han, Jeong-Hee; Yoon, Byung-Il [Kangwon National University, School of Veterinary Medicine, Chuncheon, Gangwon (Korea); Hirabayashi, Yoko; Kodama, Yukio; Kanno, Jun [National Institute of Health Sciences, Division of Cellular and Molecular Toxicology, Center for Biological Safety and Research, Tokyo (Japan); Choi, Yang-Kyu [Konkuk University, College of Veterinary Medicine, Seoul (Korea); Inoue, Tohru [National Institute of Health Sciences, Biological Safety and Research Center, Tokyo (Japan)

    2009-08-15

    Benzene is a well-known environmental pollutant that can induce hematotoxicity, aplastic anemia, acute myelogenous leukemia, and lymphoma. However, although benzene metabolites are known to induce oxidative stress and disrupt the cell cycle, the mechanism underlying lympho/leukemogenicity is not fully understood. Caspase-4 (alias caspase-11) and -12 are inflammatory caspases implicated in inflammation and endoplasmic reticulum stress-induced apoptosis. The objectives of this study were to investigate the altered expression of caspase-4 and -12 in mouse bone marrow after benzene exposure and to determine whether their alterations are associated with benzene-induced bone marrow toxicity, especially cellular apoptosis. In addition, we evaluated whether the p53 gene is involved in regulating the mechanism, using both wild-type (WT) mice and mice lacking the p53 gene. For this study, 8-week-old C57BL/6 mice [WT and p53 knockout (KO)] were administered a benzene solution (150 mg/kg diluted in corn oil) via oral gavage once daily, 5 days/week, for 1 or 2 weeks. Blood and bone marrow cells were collected and cell counts were measured using a Coulter counter. Total mRNA and protein extracts were prepared from the harvested bone marrow cells. Then qRT-PCR and Western blotting were performed to detect changes in the caspases at the mRNA and protein level, respectively. A DNA fragmentation assay and Annexin-V staining were carried out on the bone marrow cells to detect apoptosis. Results indicated that when compared to the control, leukocyte number and bone marrow cellularity decreased significantly in WT mice. The expression of caspase-4 and -12 mRNA increased significantly after 12 days of benzene treatment in the bone marrow cells of benzene-exposed p53KO mice. However, apoptosis detection assays indicated no evidence of apoptosis in p53KO or WT mice. In addition, no changes of other apoptosis-related caspases, such as caspase-3 and -9, were found in WT or p53KO mice at the

  3. Wavelength-dependent backscattering measurements for quantitative monitoring of apoptosis, Part 1: early and late spectral changes are indicative of the presence of apoptosis in cell cultures

    Science.gov (United States)

    Mulvey, Christine S.; Zhang, Kexiong; Liu, Wei-Han Bobby; Waxman, David J.; Bigio, Irving J.

    2011-11-01

    Apoptosis, a form of programmed cell death with unique morphological and biochemical features, is dysregulated in cancer and is activated by many cancer chemotherapeutic drugs. Noninvasive assays for apoptosis in cell cultures can aid in screening of new anticancer agents. We have previously demonstrated that elastic scattering spectroscopy can monitor apoptosis in cell cultures. In this report we present data on monitoring the detailed time-course of scattering changes in a Chinese hamster ovary (CHO) and PC-3 prostate cancer cells treated with staurosporine to induce apoptosis. Changes in the backscattering spectrum are detectable within 10 min, and continue to progress up to 48 h after staurosporine treatment, with the magnitude and kinetics of scattering changes dependent on inducer concentration. Similar responses were observed in CHO cells treated with several other apoptosis-inducing protocols. Early and late scattering changes were observed under conditions shown to induce apoptosis via caspase activity assay and were absent under conditions where apoptosis was not induced. Finally, blocking caspase activity and downstream apoptotic morphology changes prevented late scattering changes. These observations demonstrate that early and late changes in wavelength-dependent backscattering correlate with the presence of apoptosis in cell cultures and that the late changes are specific to apoptosis.

  4. PARP-1 is a key player in controlling apoptosis induced by high LET carbon ion beam and low LET gamma radiation in HeLa cells

    International Nuclear Information System (INIS)

    Ghorai, Atanu; Ghosh, Utpal; Bhattacharyya, Nitai P.; Sarma, Asitikantha

    2014-01-01

    PARP-1 inhibitors have long been used as chemo-sensitizer or radio-sensitizer and specific PARP-1 inhibitors are also in clinical trial for the treatment of various cancers. PARP-1 is not only involved in DNA repair but also plays very complex role in induction of apoptosis in postirradiation condition. Our objective is to investigate role of PARP-1 in apoptosis triggered by high LET carbon ion beam (CIB) and low LET gamma. We have treated HeLa and PARP-1 knock down HeLa (Hsil) cells with various doses of CIB and gamma. We measured DNA damage by comet assay and various apoptotic parameters such as nuclear fragmentation, activation of caspase-3,8,9, AIF translocation etc. We observed higher DNA breaks and also higher apoptosis in HsiI cells compared with HeLa cells. Both CIB and gamma treatment results G2/M arrest but unlike gamma CIB makes S-phase delay, implicating that gamma and CIB triggers different pathway after DNA damage. Cell death by CIB or by gamma increased up on knocking down of PARP-1 but increase is higher for high LET CIB compared with low LET gamma. Furthermore, expression level of PARP-1 controls the intensity of overall apoptosis in cells in post-irradiation condition. So, combination of PARP-1 inhibition with high LET CIB could be a promising tool to combat cancer. (author)

  5. Rhein triggers apoptosis via induction of endoplasmic reticulum stress, caspase-4 and intracellular calcium in primary human hepatic HL-7702 cells

    Energy Technology Data Exchange (ETDEWEB)

    KoraMagazi, Arouna [Department of Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu (China); Wang, Dandan [Department of Pharmacology, China Pharmaceutical University, Nanjing, Jiangsu (China); Yousef, Bashir; Guerram, Mounia [Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing, Jiangsu (China); Yu, Feng, E-mail: yufengcpu14@yahoo.com [Department of Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu (China); Department of Pharmacology, China Pharmaceutical University, Nanjing, Jiangsu (China); Key Laboratory of Drug Quality Control and Pharmacovigilance, China Pharmaceutical University, Nanjing, Jiangsu (China)

    2016-04-22

    Rhein is an active component of rhubarb; a traditional Chinese medicine reported to induce apoptosis and cause liver toxicity. However, rhein's apoptotic-inducing effects, as well as its molecular mechanisms of action on hepatic cells need to be further explored. In the present study, rhein was found to trigger apoptosis in primary human hepatic HL-7702 cells as showed by annexin V/PI double staining assay and nuclear morphological changes demonstrated by Hoechst 33258 staining. Moreover, it was observed that the mechanism implicated in rhein-induced apoptosis was caspase-dependent, presumably via ER-stress associated pathways, as illustrated by up-regulation of glucose-regulated protein 78 (GRP 78), PKR-like ER kinase (PERK), C-Jun N-terminal kinase (JNK) and CCAAT/enhancer-binding protein homologous protein (CHOP). Meanwhile, caspase-4 as a hallmark of ER-stress, was also showed to be activated following by caspase-3 activation. Furthermore, rhein also promoted intracellular elevation of calcium that contributed in apoptosis induction. Interestingly, pre-treatment with calpain inhibitor I reduced the effects of rhein on apoptosis induction and JNK activation. These data suggested that rhein-induced apoptosis through ER-stress and elevated intracellular calcium level in HL-7702 cells. - Highlights: • Rhein triggers apoptotic cell death on primary human hepatic HL-7702 cells. • Rhein leads to caspase-4 activation in HL-7702 cells. • Rhein induces endoplasmic reticulum stress pathways in HL-7702 cells. • Rhein causes elevation of intracellular calcium concentrations in HL-7702 cells.

  6. Measurement and Characterization of Apoptosis by Flow Cytometry.

    Science.gov (United States)

    Telford, William; Tamul, Karen; Bradford, Jolene

    2016-07-01

    Apoptosis is an important mechanism in cell biology, playing a critical regulatory role in virtually every organ system. It has been particularly well characterized in the immune system, with roles ranging from immature immune cell development and selection to down-regulation of the mature immune response. Apoptosis is also the primary mechanism of action of anti-cancer drugs. Flow cytometry has been the method of choice for analyzing apoptosis in suspension cells for more than 25 years. Numerous assays have been devised to measure both the earliest and latest steps in the apoptotic process, from the earliest signal-transduction events to the late morphological changes in cell shape and granularity, proteolysis, and chromatin condensation. These assays are particularly powerful when combined into multicolor assays determining several apoptotic characteristics simultaneously. The multiparametric nature of flow cytometry makes this technology particularly suited to measuring apoptosis. In this unit, we will describe the four main techniques for analyzing caspase activity in apoptotic cells, combined with annexin V and cell permeability analysis. These relatively simple multiparametric assays are powerful techniques for assessing cell death. © 2016 by John Wiley & Sons, Inc. Copyright © 2016 John Wiley & Sons, Inc.

  7. Chloroquinone Inhibits Cell Proliferation and Induces Apoptosis in ...

    African Journals Online (AJOL)

    Purpose: To demonstrate the role of chloroquinone (CQ) in inducing apoptosis in HONE-1 and HNE-1, nasopharyngeal carcinoma (NPC) cell lines. Methods: Water-soluble tetrazolium salt (WST)-1 assay was used for the determination of cell proliferation while an inverted microscope was employed for the analysis of ...

  8. Do prion protein gene polymorphisms induce apoptosis in non

    Indian Academy of Sciences (India)

    To elucidate the relationship between the SNPs and apoptosis, TUNEL assays and active caspase-3 immunodetection techniques in brain sections of the polymorphic samples were performed. The results revealed that TUNEL-positive cells and active caspase-3-positive cells in the turtles with four polymorphisms were ...

  9. Ulinastatin Reduces T Cell Apoptosis in Rats with Severe Acute ...

    African Journals Online (AJOL)

    T cell apoptosis was determined by Annexin-V/PI double-staining. Oxidative stress was evaluated by examining changes in the levels of reactive oxygen species (ROS). Total superoxide dismutase (SOD) in serum was tested by hydroxylamine colorimetric assay, and malondialdehyde levels were examined by thiobarbituric ...

  10. Inhibition of NF-κB Pathway and Modulation of MAPK Signaling Pathways in Glioblastoma and Implications for Lovastatin and Tumor Necrosis Factor-Related Apoptosis Inducing Ligand (TRAIL Combination Therapy.

    Directory of Open Access Journals (Sweden)

    Pi Chu Liu

    Full Text Available Glioblastoma is a common malignant brain tumor and it is refractory to therapy because it usually contains a mixture of cell types. The tumor necrosis factor-related apoptosis inducing ligand (TRAIL has been shown to induce apoptosis in a range of tumor cell types. Previously, we found that two human glioblastoma cell lines are resistant to TRAIL, while lovastatin sensitizes these glioblastoma cells to TRAIL-induced cell death. In this study, we investigated the mechanisms underlying the TRAIL-induced apoptosis in human glioblastoma cell lines by lovastatin. Furthermore, we have confirmed the anti-tumor effect of combination therapy with lovastatin and TRAIL in the subcutaneous brain tumor model. We showed that lovastatin significantly up-regulated the expression of death receptor 5 (DR5 in glioblastoma cell lines as well as in tumor-bearing mice with peri-tumoral administration of lovastatin. Further study in glioblastoma cell lines suggested that lovastatin treatment could inhibit NF-κB and Erk/MAPK pathways but activates JNK pathway. These results suggest that lovastatin sensitizes TRAIL-induced apoptosis by up-regulation of DR5 level via NF-κB inactivation, but also directly induces apoptosis by dysregulation of MAPK pathway. Our in vivo study showed that local peri-tumoral co-injection of lovastatin and TRAIL substantially reduced tumor growth compared with single injection of lovastatin or TRAIL in subcutaneous nude mice model. This study suggests that combined treatment of lovastatin and TRAIL is a promising therapeutic strategy to TRAIL-resistant glioblastoma.

  11. Mitochondria in neutrophil apoptosis

    NARCIS (Netherlands)

    van Raam, B. J.; Verhoeven, A. J.; Kuijpers, T. W.

    2006-01-01

    Central in the regulation of the short life span of neutrophils are their mitochondria. These organelles hardly contribute to the energy status of neutrophils but play a vital role in the apoptotic process. Not only do the mitochondria contain cytotoxic proteins that are released during apoptosis

  12. Apoptosis and inflammation

    Directory of Open Access Journals (Sweden)

    C. Haanen

    1995-01-01

    Full Text Available During the last few decades it has been recognized that cell death is not the consequence of accidental injury, but is the expression of a cell suicide programme. Kerr et al. (1972 introduced the term apoptosis. This form of cell death is under the influence of hormones, growth factors and cytokines, which depending upon the receptors present on the target cells, may activate a genetically controlled cell elimination process. During apoptosis the cell membrane remains intact and the cell breaks into apoptotic bodies, which are phagocytosed. Apoptosis, in contrast to necrosis, is not harmful to the host and does not induce any inflammatory reaction. The principal event that leads to inflammatory disease is cell damage, induced by chemical/physical injury, anoxia or starvation. Cell damage means leakage of cell contents into the adjacent tissues, resulting in the capillary transmigration of granulocytes to the injured tissue. The accumulation of neutrophils and release of enzymes and oxygen radicals enhances the inflammatory reaction. Until now there has been little research into the factors controlling the accumulation and the tissue load of granulocytes and their histotoxic products in inflammatory processes. Neutrophil apoptosis may represent an important event in the control of intlamtnation. It has been assumed that granulocytes disintegrate to apoptotic bodies before their fragments are removed by local macrophages. Removal of neutrophils from the inflammatory site without release of granule contents is of paramount importance for cessation of inflammation. In conclusion, apoptotic cell death plays an important role in inflammatory processes and in the resolution of inflammatory reactions. The facts known at present should stimulate further research into the role of neutrophil, eosinophil and macrophage apoptosis in inflammatory diseases.

  13. Thymocyte apoptosis in response to low-dose radiation

    International Nuclear Information System (INIS)

    Shu-Zheng, Liu; Ying-Chun, Zhang; Ying, Mu; Xu, Su; Jian-Xiang, Liu

    1996-01-01

    Thymocyte apoptosis was assessed by counting apoptotic bodies with flow cytometry (FCM) and measuring DNA fragmentation with fluorescence spectrophotometry (FSP). J-shaped dose-response curves were obtained after both whole-body irradiation (WBI) of mice and in vitro irradiation of EL4 cells with doses ranging from 0.025 to 4 Gy X-rays. There was a significant reduction of apoptosis rate to below control level with doses within 0.2 Gy, and a dose-dependent increase in apoptosis with doses above 0.5 Gy. When thymocytes were cultured 24 h after WBI with 75 mGy X-rays in complete RPMI 1640 medium, a reduction in apoptosis was observed in the course of incubation for 72 h, and the presence of Con A in the medium accentuated this reduction in a dose- and time-dependent manner. The implications of these observations and the possible molecular mechanisms for future studies are proposed

  14. Apoptosis imaging with Iodine-124 labeled Annexin V in Fas-mediated hepatic apoptosis model

    International Nuclear Information System (INIS)

    Lee, Tae Sup; Woo, Kwang Sun; Chung, Wee Sup; Kim, Kyung Min; Kim, Jae Hong; Chun, Kwon Soo; Choi, Chang Woon; Lim, Sang Moo; Cheon, Gi Jeong

    2006-01-01

    Healthy cells and, to a lesser extent, malignant cells undergo apoptosis or programmed cell death in response to a variety of stimuli. At an early stage in this process the cell membrane changes so that phosphatidylserine (PS), a lipid normally present on the membrane's inner surface, is exposed on the outer surface. This change in the membrane can be detected by the binding of annexin V to the external PS, and this has formed the basis for an in vitro assay for apoptosis. Blankenberg et al. have applied annexin V to the in vivo imaging of apoptosis by labeling annexin V with 99mTc. With this technique, they have been able to image apoptosis. To extend the use of annexin V to PET, it would be very desirable to iodinate the molecule. The relatively long half-life (4.2 d) of the positron emitting iodine-124 presents several advantages. For example in vivo detection and quantification of longer term biological processes is possible. Also, this cyclotron-generated radionuclide can be prepared well in advance and the established radioiodine labeling techniques can be applied. However, there are some disadvantages such as a relatively low ratio of disintegrations resulting in positrons (23%) and a rather complex decay scheme resulting in several high-energy gamma emissions (0.6- 1.69 MeV). Despite this fact, iodine-124 is still considered to be suitable for positron emission tomography (PET). In this study, we are investigating the feasibility of apoptosis imaging using iodine-124 labeled annexin V in Fas-mediated hepatic apoptosis model

  15. Genetic Signatures of HIV-1 Envelope-mediated Bystander Apoptosis

    Science.gov (United States)

    Joshi, Anjali; Lee, Raphael T. C.; Mohl, Jonathan; Sedano, Melina; Khong, Wei Xin; Ng, Oon Tek; Maurer-Stroh, Sebastian; Garg, Himanshu

    2014-01-01

    The envelope (Env) glycoprotein of HIV is an important determinant of viral pathogenesis. Several lines of evidence support the role of HIV-1 Env in inducing bystander apoptosis that may be a contributing factor in CD4+ T cell loss. However, most of the studies testing this phenomenon have been conducted with laboratory-adapted HIV-1 isolates. This raises the question of whether primary Envs derived from HIV-infected patients are capable of inducing bystander apoptosis and whether specific Env signatures are associated with this phenomenon. We developed a high throughput assay to determine the bystander apoptosis inducing activity of a panel of primary Envs. We tested 38 different Envs for bystander apoptosis, virion infectivity, neutralizing antibody sensitivity, and putative N-linked glycosylation sites along with a comprehensive sequence analysis to determine if specific sequence signatures within the viral Env are associated with bystander apoptosis. Our studies show that primary Envs vary considerably in their bystander apoptosis-inducing potential, a phenomenon that correlates inversely with putative N-linked glycosylation sites and positively with virion infectivity. By use of a novel phylogenetic analysis that avoids subtype bias coupled with structural considerations, we found specific residues like Arg-476 and Asn-425 that were associated with differences in bystander apoptosis induction. A specific role of these residues was also confirmed experimentally. These data demonstrate for the first time the potential of primary R5 Envs to mediate bystander apoptosis in CD4+ T cells. Furthermore, we identify specific genetic signatures within the Env that may be associated with the bystander apoptosis-inducing phenotype. PMID:24265318

  16. Evidence for a Proangiogenic Activity of TNF-Related Apoptosis-Inducing Ligand

    Directory of Open Access Journals (Sweden)

    Paola Secchiero

    2004-07-01

    Full Text Available Starting from the observation that tumor necrosis factor-related apoptosis-inducing ligand (TRAIL/ Apo-2L protein is expressed in both malignant and inflammatory cells in some highly vascularized soft tissue sarcomas, the angiogenic potential of TRAIL was investigated in a series of in vitro assays. Recombinant soluble TRAIL induced endothelial cell migration and vessel tube formation to a degree comparable to vascular endothelial growth factor (VEGF, one of the best-characterized angiogenic factors. However, the proangiogenic activity of TRAIL was not mediated by endogenous expression of VEGF. Although TRAIL potentiated VEGF-induced extracellular signal-regulated kinase (ERK phosphorylation and endothelial cell proliferation, the combination of TRAIL + VEGF did not show additive effects with respect to VEGF alone in inducing vessel tube formation. Thus, although TRAIL has gained attention as a potential anticancer therapeutic for its ability to induce apoptosis in a variety of cancer cells, our present data suggest that TRAIL might also play an unexpected role in promoting angiogenesis, which might have therapeutic implications.

  17. Study of progesterone mechanisms in radio-induced apoptosis prevention

    International Nuclear Information System (INIS)

    Vares, G.

    2004-10-01

    The purpose of this work was to study the modulation of radiation-induced cell death of human mammary tumoral cells by progesterone. On the one hand, we observed that progesterone protects cells against radiation-induced apoptosis and increases the proportion of surviving and proliferating damaged cells. On the other hand, a transcriptome analysis was undertaken in irradiated cells treated by progesterone, using DNA micro-arrays. This let us highlight several transcriptional dis-regulations that are likely to explain the protective effect of the hormone; in particular, we showed that progesterone regulates the expression of genes implicated in apoptosis signaling by death receptors. Knowing the crucial role of hormonal control and of apoptosis regulation in breast cancer initiation, our results may help to achieve a better understanding of the implication of progesterone in mammary carcinogenesis. (author)

  18. Induction of Apoptosis and expression of Apoptosis-related gene products in response to radiation in murine tumors

    International Nuclear Information System (INIS)

    Seong, J. S.

    1997-01-01

    To analyze the involvement of apoptosis regulatory genes p53, p21 waf1/cip1 , bax and bcl-2 in induction of apoptosis by radiation in murine tumors. The radiation-sensitive ovarian carcinoma OCa-I and the radiation-resistant hepatocarcinoma HCa-I were used. Tumors, 8mm in diameter, were irradiated with 25Gy and at various times after irradiation, ranging from 1 to 48 h, were analyzed histologically for apoptosis and by western blot for alterations in the expression of these genes. The p53 status of the tumors were determined by the polymerase chain reaction-single strand conformation polymorphism assay. Both tumors were positive for wild-type p53. Radiation induced apoptosis in OCa-I but not in HCa-I. Apoptosis developed rapidly, peaked at 2 h after irradiation and returned to almost the background level at 48 h. In OCa-I radiation upregulated the expression of p53, p21 waf1/cip1 , and the bcl-2/bax ratio was decreased. In HCa-I radiation increased the expression of both p53 and p21 waf1/cip1 , although the increase of the latter was small. The bcl-2/bax ratio was greatly increased. In general the observed changes occurred within a few hours after irradiation, and either preceded or coincided with development of apoptosis. The development of apoptosis required upregulation of both p53 and p21 waf1/cip1 as well as a decrease in bcl-2/bax ratio. In contrast, an increase in bcl-2/bax ratio prevented apoptosis in the presence of upregulated p53 and p21 waf1/cip1 . These findings identified the involvement of multiple oncogenes in apoptosis regulation in vivo and demonstrate the complexity that may be associated with the use of a single oncogene assessment for predicting the outcome of cancer therapy with cytotoxic agents. (author)

  19. Induction of Apoptosis and expression of Apoptosis-related gene products in response to radiation in murine tumors

    Energy Technology Data Exchange (ETDEWEB)

    Seong, J S [Yonsei Univ., Seoul (Korea, Republic of). Coll. of Medicine; Hunter, N R; Milas, L [Texas Univ., Houston, TX (United States)

    1997-09-01

    To analyze the involvement of apoptosis regulatory genes p53, p21{sup waf1/cip1}, bax and bcl-2 in induction of apoptosis by radiation in murine tumors. The radiation-sensitive ovarian carcinoma OCa-I and the radiation-resistant hepatocarcinoma HCa-I were used. Tumors, 8mm in diameter, were irradiated with 25Gy and at various times after irradiation, ranging from 1 to 48 h, were analyzed histologically for apoptosis and by western blot for alterations in the expression of these genes. The p53 status of the tumors were determined by the polymerase chain reaction-single strand conformation polymorphism assay. Both tumors were positive for wild-type p53. Radiation induced apoptosis in OCa-I but not in HCa-I. Apoptosis developed rapidly, peaked at 2 h after irradiation and returned to almost the background level at 48 h. In OCa-I radiation upregulated the expression of p53, p21{sup waf1/cip1}, and the bcl-2/bax ratio was decreased. In HCa-I radiation increased the expression of both p53 and p21{sup waf1/cip1}, although the increase of the latter was small. The bcl-2/bax ratio was greatly increased. In general the observed changes occurred within a few hours after irradiation, and either preceded or coincided with development of apoptosis. The development of apoptosis required upregulation of both p53 and p21{sup waf1/cip1} as well as a decrease in bcl-2/bax ratio. In contrast, an increase in bcl-2/bax ratio prevented apoptosis in the presence of upregulated p53 and p21{sup waf1/cip1}. These findings identified the involvement of multiple oncogenes in apoptosis regulation in vivo and demonstrate the complexity that may be associated with the use of a single oncogene assessment for predicting the outcome of cancer therapy with cytotoxic agents. (author).

  20. Chronic Opium Treatment Can Differentially Induce Brain and Liver Cells Apoptosis in Diabetic and Non-diabetic Male and Female Rats

    OpenAIRE

    Asiabanha, Majid; Asadikaram, Gholamreza; Rahnema, Amir; Mahmoodi, Mehdi; Hasanshahi, Gholamhosein; Hashemi, Mohammad; Khaksari, Mohammad

    2011-01-01

    It has been shown that some opium derivatives promote cell death via apoptosis. This study was designed to examine the influence of opium addiction on brain and liver cells apoptosis in male and female diabetic and non-diabetic Wistar rats. This experimental study was performed on normal, opium-addicted, diabetic and diabetic opium-addicted male and female rats. Apoptosis was evaluated by TUNEL and DNA fragmentation assays. Results of this study showed that apoptosis in opium-addicted and dia...

  1. The p53-MDM2 network: from oscillations to apoptosis

    Indian Academy of Sciences (India)

    PRAKASH KUMAR

    Apoptosis; cancer; cell cycle; MDM2 overexpression; tumour suppressor .... model of the p53-MDM2 negative feedback loop included an .... MDM2 overexpression, when subjected to nutlin-3 treatment. Some aspects of the model are similar to those ... A family of proteases termed caspases .... Implications for therapy; Proc.

  2. Fullerene and apoptosis

    Directory of Open Access Journals (Sweden)

    M. A. Orlova

    2013-01-01

    Full Text Available Fullerene derivatives superfamily attracts a serious attention as antiviral and anticancer agents and drug delivery carriers as well. A large number of such fullerene С60 derivatives obtained to date. However, there is an obvious deficit of information about causes and mechanisms of immediately and long-term consequences of their effects in vivo which is a true obstacle on the way leading to practical medical use of them. First, this concerns their impact on the proliferation, apoptosis and necrosis regulation. Fullerene nanoparticle functionalization type, their sizes and surface nanopathology are of great importance to further promoting of either cytoprotective or cytotoxic effects. This lecture provides modern concept analysis regarding fullerenes effects on apoptosis pathway in normal and tumor cells.

  3. Cl- channels in apoptosis

    DEFF Research Database (Denmark)

    Wanitchakool, Podchanart; Ousingsawat, Jiraporn; Sirianant, Lalida

    2016-01-01

    A remarkable feature of apoptosis is the initial massive cell shrinkage, which requires opening of ion channels to allow release of K(+), Cl(-), and organic osmolytes to drive osmotic water movement and cell shrinkage. This article focuses on the role of the Cl(-) channels LRRC8, TMEM16/anoctamin......, and cystic fibrosis transmembrane conductance regulator (CFTR) in cellular apoptosis. LRRC8A-E has been identified as a volume-regulated anion channel expressed in many cell types. It was shown to be required for regulatory and apoptotic volume decrease (RVD, AVD) in cultured cell lines. Its presence also......(-) channels or as regulators of other apoptotic Cl(-) channels, such as LRRC8. CFTR has been known for its proapoptotic effects for some time, and this effect may be based on glutathione release from the cell and increase in cytosolic reactive oxygen species (ROS). Although we find that CFTR is activated...

  4. Restraining reactive oxygen species in Listeria monocytogenes promotes the apoptosis of glial cells.

    Science.gov (United States)

    Li, Sen; Li, Yixuan; Chen, Guowei; Zhang, Jingchen; Xu, Fei; Wu, Man

    2017-07-01

    Listeria monocytogenes is a facultative anaerobic foodborne pathogen that can traverse the blood-brain barrier and cause brain infection. L. monocytogenes infection induces host cell apoptosis in several cell types. In this study, we investigated the apoptosis of human glioma cell line U251 invaded by L. monocytogenes and evaluated the function of bacterial reactive oxygen species (ROS) during infection. Bacterial ROS level was reduced by carrying out treatment with N-acetyl cysteine (NAC) and diphenyleneiodonium chloride (DPI). After infection, the apoptosis of U251 cells was examined by flow cytometry assay and propidium iodide staining. DPI and NAC efficiently decreased ROS level in L. monocytogenes without affecting bacterial growth. Moreover, the apoptosis of glial cells was enhanced upon invasion of DPI- and NAC-pretreated L. monocytogenes. Results indicate that the apoptosis of glial cells can be induced by L. monocytogenes, and that the inhibition of bacterial ROS increases the apoptosis of host cells.

  5. BIGH3 protein and macrophages in retinal endothelial cell apoptosis.

    Science.gov (United States)

    Mondragon, Albert A; Betts-Obregon, Brandi S; Moritz, Robert J; Parvathaneni, Kalpana; Navarro, Mary M; Kim, Hong Seok; Lee, Chi Fung; LeBaron, Richard G; Asmis, Reto; Tsin, Andrew T

    2015-01-01

    Diabetes is a pandemic disease with a higher occurrence in minority populations. The molecular mechanism to initiate diabetes-associated retinal angiogenesis remains largely unknown. We propose an inflammatory pathway of diabetic retinopathy in which macrophages in the diabetic eye provide TGFβ to retinal endothelial cells (REC) in the retinal microvasculature. In response to TGFβ, REC synthesize and secrete a pro-apoptotic BIGH3 (TGFβ-Induced Gene Human Clone 3) protein, which acts in an autocrine loop to induce REC apoptosis. Rhesus monkey retinal endothelial cells (RhREC) were treated with dMCM (cell media of macrophages treated with high glucose and LDL) and assayed for apoptosis (TUNEL), BIGH3 mRNA (qPCR), and protein (Western blots) expressions. Cells were also treated with ΤGFβ1 and 2 for BIGH3 mRNA and protein expression. Inhibition assays were carried out using antibodies for TGFβ1 and for BIGH3 to block apoptosis and mRNA expression. BIGH3 in cultured RhREC cells were identified by immunohistochemistry (IHC). Distribution of BIGH3 and macrophages in the diabetic mouse retina was examined with IHC. RhRECs treated with dMCM or TGFβ showed a significant increase in apoptosis and BIGH3 protein expression. Recombinant BIGH3 added to RhREC culture medium led to a dose-dependent increase in apoptosis. Antibodies (Ab) directed against BIGH3 and TGFβ, as well as TGFβ receptor blocker resulted in a significant reduction in apoptosis induced by either dMCM, TGFβ or BIGH3. IHC showed that cultured RhREC constitutively expressed BIGH3. Macrophage and BIGH3 protein were co-localized to the inner retina of the diabetic mouse eye. Our results support a novel inflammatory pathway for diabetic retinopathy. This pathway is initiated by TGFβ released from macrophages, which promotes synthesis and release of BIGH3 protein by REC and REC apoptosis.

  6. Leptin-dependent neurotoxicity via induction of apoptosis in adult rat neural stem cells

    Directory of Open Access Journals (Sweden)

    Stéphanie eSEGURA

    2015-09-01

    Full Text Available Adipocyte-derived hormone leptin has been recently implicated in the control of neuronal plasticity. To explore whether modulation of adult neurogenesis may contribute to leptin control of neuronal plasticity, we used the neurosphere assay of neural stem cells derived from the adult rat subventricular zone (SVZ. Endogenous expression of specific leptin receptor (ObRb transcripts, as revealed by RT-PCR, is associated with activation of both ERK and STAT-3 pathways via phosphorylation of the critical ERK/STAT-3 amino acid residues upon addition of leptin to neurospheres. Furthermore, leptin triggered withdrawal of neural stem cells from the cell cycle as monitored by Ki67 labelling. This effect was blocked by pharmacological inhibition of ERK activation thus demonstrating that ERK mediates leptin effects on neural stem cell expansion. Leptin-dependent withdrawal of neural stem cells from the cell cycle was associated with increased apoptosis, as detected by TUNEL, which was preceded by cyclin D1 induction. Cyclin D1 was indeed extensively colocalized with TUNEL-positive apoptotic cells. Cyclin-D1 silencing by specific shRNA prevented leptin-induced decrease of the cell number per neurosphere thus pointing to the causal relationship between leptin actions on apoptosis and cyclin D1 induction. Leptin target cells in SVZ neurospheres were identified by double TUNEL/phenotypic marker immunocytofluorescence as differentiating neurons mostly. The inhibition of neural stem cell expansion via ERK/cyclin D1-triggered apoptosis defines novel biological action of leptin which may be involved in adiposity-dependent neurotoxicity.

  7. A novel firefly luciferase biosensor enhances the detection of apoptosis induced by ESAT-6 family proteins of Mycobacterium tuberculosis

    International Nuclear Information System (INIS)

    Shi, Junwei; Zhang, Huan; Fang, Liurong; Xi, Yongqiang; Zhou, Yanrong; Luo, Rui; Wang, Dang; Xiao, Shaobo; Chen, Huanchun

    2014-01-01

    Highlights: • We developed a novel firefly luciferase based biosensor to detect apoptosis. • The novel biosensor 233-DnaE-DEVDG was reliable, sensitive and convenient. • 233-DnaE-DEVDG faithfully indicated ESAT-6 family proteins of Mycobacterium tuberculosis induced apoptosis. • EsxA, esxT and esxL in ESAT-6 family proteins induced apoptosis. • Activation of nuclear factor-κB (NF-κB) participated in esxT-induced apoptosis. - Abstract: The activation of caspase-3 is a key surrogate marker for detecting apoptosis. To quantitate caspase-3 activity, we constructed a biosensor comprising a recombinant firefly luciferase containing a caspase-3 cleavage site. When apoptosis was induced, caspase-3 cleavage of the biosensor activated firefly luciferase by a factor greater than 25. The assay conveniently detected apoptosis in real time, indicating that it will facilitate drug discovery. We screened ESAT-6 family proteins of Mycobacterium tuberculosis and found that esxA, esxT and esxL induced apoptosis. Further, activation of nuclear factor-κB (NF-κB) and the NF-κB-regulated genes encoding tumor necrosis factor-α (TNF-α) and tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) participated in esxT-induced apoptosis. We conclude that this assay is useful for high-throughput screening to identify and characterize proteins and drugs that regulate apoptosis

  8. A novel firefly luciferase biosensor enhances the detection of apoptosis induced by ESAT-6 family proteins of Mycobacterium tuberculosis

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Junwei; Zhang, Huan; Fang, Liurong; Xi, Yongqiang; Zhou, Yanrong; Luo, Rui; Wang, Dang, E-mail: wangdang511@126.com; Xiao, Shaobo; Chen, Huanchun

    2014-10-03

    Highlights: • We developed a novel firefly luciferase based biosensor to detect apoptosis. • The novel biosensor 233-DnaE-DEVDG was reliable, sensitive and convenient. • 233-DnaE-DEVDG faithfully indicated ESAT-6 family proteins of Mycobacterium tuberculosis induced apoptosis. • EsxA, esxT and esxL in ESAT-6 family proteins induced apoptosis. • Activation of nuclear factor-κB (NF-κB) participated in esxT-induced apoptosis. - Abstract: The activation of caspase-3 is a key surrogate marker for detecting apoptosis. To quantitate caspase-3 activity, we constructed a biosensor comprising a recombinant firefly luciferase containing a caspase-3 cleavage site. When apoptosis was induced, caspase-3 cleavage of the biosensor activated firefly luciferase by a factor greater than 25. The assay conveniently detected apoptosis in real time, indicating that it will facilitate drug discovery. We screened ESAT-6 family proteins of Mycobacterium tuberculosis and found that esxA, esxT and esxL induced apoptosis. Further, activation of nuclear factor-κB (NF-κB) and the NF-κB-regulated genes encoding tumor necrosis factor-α (TNF-α) and tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) participated in esxT-induced apoptosis. We conclude that this assay is useful for high-throughput screening to identify and characterize proteins and drugs that regulate apoptosis.

  9. Hypoxia causes IL-8 secretion, Charcot Leyden crystal formation, and suppression of corticosteroid-induced apoptosis in human eosinophils.

    Science.gov (United States)

    Porter, L M; Cowburn, A S; Farahi, N; Deighton, J; Farrow, S N; Fiddler, C A; Juss, J K; Condliffe, A M; Chilvers, E R

    2017-06-01

    Inflamed environments are typically hypercellular, rich in pro-inflammatory cytokines, and profoundly hypoxic. While the effects of hypoxia on neutrophil longevity and function have been widely studied, little is known about the consequences of this stimulus on eosinophils. We sought to investigate the effects of hypoxia on several key aspects of eosinophil biology, namely secretion, survival, and their sensitivity to glucocorticosteroids (GCS), agents that normally induce eosinophil apoptosis. Eosinophils derived from patients with asthma/atopy or healthy controls were incubated under normoxia and hypoxia, with or without glucocorticoids. Activation was measured by flow cytometry, ELISA of cultured supernatants, and F-actin staining; apoptosis and efferocytosis by morphology and flow cytometry; and GCS efficacy by apoptosis assays and qPCR. Hypoxic incubation (3 kPa) caused (i) stabilization of HIF-2α and up-regulation of hypoxia-regulated genes including BNIP3 (BCL2/adenovirus E1B 19-kDa protein-interacting protein 3) and GLUT1 (glucose transporter 1); (ii) secretion of pre-formed IL-8, and Charcot Leyden crystal (CLC) formation, which was most evident in eosinophils derived from atopic and asthmatic donors; (iii) enhanced F-actin formation; (iv) marked prolongation of eosinophil lifespan (via a NF-κB and Class I PI3-kinase-dependent mechanism); and (v) complete abrogation of the normal pro-apoptotic effect of dexamethasone and fluticasone furoate. This latter effect was evident despite preservation of GCS-mediated gene transactivation under hypoxia. These data indicate that hypoxia promotes an eosinophil pro-inflammatory phenotype by enhancing eosinophil secretory function, delaying constitutive apoptosis, and importantly, antagonizing the normal pro-apoptotic effect of GCS. As eosinophils typically accumulate at sites that are relatively hypoxic, particularly during periods of inflammation, these findings may have important implications to understanding the

  10. Knockdown of HIF-1α and IL-8 induced apoptosis of hepatocellular carcinoma triggers apoptosis of vascular endothelial cells.

    Science.gov (United States)

    Choi, Sung Hoon; Park, Jun Yong; Kang, Wonseok; Kim, Seung Up; Kim, Do Young; Ahn, Sang Hoon; Ro, Simon Wonsang; Han, Kwang-Hyub

    2016-01-01

    A local hypoxic microenvironment is one of the most important characteristics of solid tumors. Hypoxia inducible factor-1α (HIF-1α) and Interleukin-8 (IL-8) activate tumor survival from hypoxic-induced apoptosis in each pathway. This study aimed to evaluate whether knockdown of HIF-1α and IL-8 induced apoptosis of the hepatocellular carcinoma (HCC) and endothelial cell lines. HCC cell lines were infected with adenovirus-expressing shRNA for HIF-1α and IL-8 and maintained under hypoxic conditions (1% O2, 24 h). The expression levels of HIF-1α and both apoptotic and growth factors were examined by real-time quantitative PCR and western blot. We also investigated apoptosis by TUNEL assay (FACS and Immunofluorescence) and measured the concentration of cytochrome C. Inhibition of HIF-1α and IL-8 up-regulated the expression of apoptotic factors while downregulating anti-apoptotic factors simultaneously. Knockdown of HIF-1α and IL-8 increased the concentration of cytochrome C and enhanced DNA fragmentation in HCC cell lines. Moreover, culture supernatant collected from the knockdown of HIF-1α and IL-8 in HCC cell lines induced apoptosis in human umbilical vein endothelial cells under hypoxia, and the expression of variable apoptotic ligand increased from HCC cell lines, time-dependently. These data suggest that adenovirus-mediated knockdown of HIF-1α and IL-8 induced apoptosis in HCC cells and triggered apoptosis of vascular endothelial cells.

  11. Inhibition of VDAC1 prevents Ca²⁺-mediated oxidative stress and apoptosis induced by 5-aminolevulinic acid mediated sonodynamic therapy in THP-1 macrophages.

    Science.gov (United States)

    Chen, Haibo; Gao, Weiwei; Yang, Yang; Guo, Shuyuan; Wang, Huan; Wang, Wei; Zhang, Shuisheng; Zhou, Qi; Xu, Haobo; Yao, Jianting; Tian, Zhen; Li, Bicheng; Cao, Wenwu; Zhang, Zhiguo; Tian, Ye

    2014-12-01

    Ultrasound combined with endogenous protoporphyrin IX derived from 5-aminolevulinic acid (ALA-SDT) is known to induce apoptosis in multiple cancer cells and macrophages. Persistent retention of macrophages in the plaque has been implicated in the pathophysiology and progression of atherosclerosis. Here we investigated the effects of inhibition of voltage-dependent anion channel 1 (VDAC1) on ALA-SDT-induced THP-1 macrophages apoptosis. Cells were pre-treated with VDAC1 inhibitor 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid (DIDS) disodium salt for 1 h or downregulated VDAC1 expression by small interfering RNA and exposed to ultrasound. Cell viability was assessed by MTT assay, and cell apoptosis along with necrosis was evaluated by Hoechst 33342/propidium iodide staining and flow cytometry. Levels of cytochrome c release was assessed by confocal microscope and Western blot. The levels of full length caspases, caspase activation, and VDAC isoforms were analyzed by Western blot. Intracellular reactive oxygen species generation, mitochondrial membrane permeability, and intracellular Ca(2+) [Ca(2+)]i levels were measured with fluorescent probes. We confirmed that the pharmacological inhibition of VDAC1 by DIDS notably prevented ALA-SDT-induced cell apoptosis in THP-1 macrophages. Additionally, DIDS significantly inhibited intracellular ROS generation and apoptotic biochemical changes such as inner mitochondrial membrane permeabilization, loss of mitochondrial membrane potential, cytochrome c release and activation of caspase-3 and caspase-9. Moreover, ALA-SDT elevated the [Ca(2+)]i levels and it was also notably reduced by DIDS. Furthermore, both of intracellular ROS generation and cell apoptosis were predominately inhibited by Ca(2+) chelating reagent BAPTA-AM. Intriguingly, ALA-treatment markedly augmented VDAC1 protein levels exclusively, and the downregulation of VDAC1 expression by specific siRNA also significantly abolished cell apoptosis. Altogether, these

  12. Apoptosis in HEp-2 cells infected with Ureaplasma diversum.

    Science.gov (United States)

    Amorim, Aline Teixeira; Marques, Lucas Miranda; Santos, Angelita Maria Oliveira Gusmão; Martins, Hellen Braga; Barbosa, Maysa Santos; Rezende, Izadora Souza; Andrade, Ewerton Ferraz; Campos, Guilherme Barreto; Lobão, Tássia Neves; Cortez, Beatriz Araujo; Monezi, Telma Alvez; Machado-Santelli, Glaucia Maria; Timenetsky, Jorge

    2014-09-04

    Bacterial pathogens have many strategies for infecting and persisting in host cells. Adhesion, invasion and intracellular life are important features in the biology of mollicutes. The intracellular location of Ureaplasma diversum may trigger disturbances in the host cell. This includes activation or inhibition of pro and anti-apoptotic factors, which facilitate the development of host damage. The aim of the present study was to associate U. diversum infection in HEp-2 cells and apoptosis induction. Cells were infected for 72hs with four U. diversum clinical isolates and an ATCC strain. The U. diversum invasion was analyzed by Confocal Laser Scanning Microscopy and gentamicin invasion assay. The apoptosis was evaluated using pro-apoptotic and anti-apoptotic gene expression, and FITC Annexin V/Dead Cell Apoptosis Kit. The number of internalized ureaplasma in HEp-2 cells increased significantly throughout the infection. The flow cytometry analysis with fluorochromes to detect membrane depolarization and gene expression for caspase 2, 3 and 9 increased in infected cells after 24 hours. However, after 72 hours a considerable decrease of apoptotic cells was observed. The data suggests that apoptosis may be initially induced by some isolates in association with HEp-2 cells, but over time, there was no evidence of apoptosis in the presence of ureaplasma and HEp-2 cells. The initial increase and then decrease in apoptosis could be related to bacterial pathogen-associated molecular pattern (PAMPS). Moreover, the isolates of U. diversum presented differences in the studied parameters for apoptosis. It was also observed that the amount of microorganisms was not proportional to the induction of apoptosis in HEp-2 cells.

  13. Noxa/Mcl-1 Balance Regulates Susceptibility of Cells to Camptothecin-Induced Apoptosis

    Directory of Open Access Journals (Sweden)

    Yide Mei

    2007-10-01

    Full Text Available Although camptothecin (CPT has been reported to induce apoptosis in various cancer cells, the molecular details of this regulation remain largely unknown. In this study, we demonstrate that 131-113-only protein Noxa is upregulated during CPT-induced apoptosis, which is independent of p53. In addition, we show that phosphatidylinositol 3-kinase (PI3K/Akt signaling pathway is responsible for Noxa's induction. Luciferase assay, cAMP response element binding protein (CREB knockdown experiments further demonstrate that CREB is involved in the transcriptional upregulation of Noxa. Moreover, blocking Noxa expression using specific small interfering ribonucleic acid (siRNA significantly reduces the apoptosis in response to CPT, indicating that Noxa is an essential mediator for CPT-induced apoptosis. Interestingly, antiapoptotic Mcl-1 was also upregulated through PI3K/Akt signaling pathway upon CPT treatment. Using immunoprecipitation assay, Noxa was found to interact with Mcl-1 in the presence or absence of CPT. Knockdown of Mcl-1 expression by short hairpin ribonucleic acid (shRNA was shown to potentiate CPT-induced apoptosis. Consistently, ectopic overexpression of Mcl-1 rescued cells from apoptosis induced by CPT. Cells coexpressing Noxa, Mcl-1 at different ratio correlates well with the extent of apoptosis, suggesting that the balance between Noxa, Mcl-1 may determine the susceptibility of HeLa cells to CPT-induced apoptosis.

  14. Noxa/Mcl-1 Balance Regulates Susceptibility of Cells to Camptothecin-Induced Apoptosis1

    Science.gov (United States)

    Mei, Yide; Xie, Chongwei; Xie, Wei; Tian, Xu; Li, Mei; Wu, Mian

    2007-01-01

    Although camptothecin (CPT) has been reported to induce apoptosis in various cancer cells, the molecular details of this regulation remain largely unknown. In this study, we demonstrate that BH3-only protein Noxa is upregulated during CPT-induced apoptosis, which is independent of p53. In addition, we show that phosphatidylinositol 3-kinase (PI3K)/Akt signaling pathway is responsible for Noxa's induction. Luciferase assay and cAMP response element binding protein (CREB) knockdown experiments further demonstrate that CREB is involved in the transcriptional upregulation of Noxa. Moreover, blocking Noxa expression using specific small interfering ribonucleic acid (siRNA) significantly reduces the apoptosis in response to CPT, indicating that Noxa is an essential mediator for CPT-induced apoptosis. Interestingly, antiapoptotic Mcl-1 was also upregulated through PI3K/Akt signaling pathway upon CPT treatment. Using immunoprecipitation assay, Noxa was found to interact with Mcl-1 in the presence or absence of CPT. Knockdown of Mcl-1 expression by short hairpin ribonucleic acid (shRNA) was shown to potentiate CPT-induced apoptosis. Consistently, ectopic overexpression of Mcl-1 rescued cells from apoptosis induced by CPT. Cells coexpressing Noxa and Mcl-1 at different ratio correlates well with the extent of apoptosis, suggesting that the balance between Noxa and Mcl-1 may determine the susceptibility of HeLa cells to CPT-induced apoptosis. PMID:17971907

  15. Molecular Imaging of Apoptosis: From Micro to Macro

    Science.gov (United States)

    Zeng, Wenbin; Wang, Xiaobo; Xu, Pengfei; Liu, Gang; Eden, Henry S.; Chen, Xiaoyuan

    2015-01-01

    Apoptosis, or programmed cell death, is involved in numerous human conditions including neurodegenerative diseases, ischemic damage, autoimmune disorders and many types of cancer, and is often confused with other types of cell death. Therefore strategies that enable visualized detection of apoptosis would be of enormous benefit in the clinic for diagnosis, patient management, and development of new therapies. In recent years, improved understanding of the apoptotic machinery and progress in imaging modalities have provided opportunities for researchers to formulate microscopic and macroscopic imaging strategies based on well-defined molecular markers and/or physiological features. Correspondingly, a large collection of apoptosis imaging probes and approaches have been documented in preclinical and clinical studies. In this review, we mainly discuss microscopic imaging assays and macroscopic imaging probes, ranging in complexity from simple attachments of reporter moieties to proteins that interact with apoptotic biomarkers, to rationally designed probes that target biochemical changes. Their clinical translation will also be our focus. PMID:25825597

  16. Long Non-Coding RNA MEG3 Inhibits Cell Proliferation and Induces Apoptosis in Prostate Cancer

    Directory of Open Access Journals (Sweden)

    Gang Luo

    2015-11-01

    Full Text Available Background/Aims: Long non-coding RNAs (lncRNAs play important roles in diverse biological processes, such as cell growth, apoptosis and migration. Although downregulation of lncRNA maternally expressed gene 3 (MEG3 has been identified in several cancers, little is known about its role in prostate cancer progression. The aim of this study was to detect MEG3 expression in clinical prostate cancer tissues, investigate its biological functions in the development of prostate cancer and the underlying mechanism. Methods: MEG3 expression levels were detected by qRT-PCR in both tumor tissues and adjacent non-tumor tissues from 21 prostate cancer patients. The effects of MEG3 on PC3 and DU145 cells were assessed by MTT assay, colony formation assay, western blot and flow cytometry. Transfected PC3 cells were transplanted into nude mice, and the tumor growth curves were determined. Results: MEG3 decreased significantly in prostate cancer tissues relative to adjacent normal tissues. MEG3 inhibited intrinsic cell survival pathway in vitro and in vivo by reducing the protein expression of Bcl-2, enhancing Bax and activating caspase 3. We further demonstrated that MEG3 inhibited the expression of cell cycle regulatory protein Cyclin D1 and induced cell cycle arrest in G0/G1 phase. Conclusions: Our study presents an important role of MEG3 in the molecular etiology of prostate cancer and implicates the potential application of MEG3 in prostate cancer therapy.

  17. Reassessing apoptosis in plants.

    Science.gov (United States)

    Dickman, Martin; Williams, Brett; Li, Yurong; de Figueiredo, Paul; Wolpert, Thomas

    2017-10-01

    Cell death can be driven by a genetically programmed signalling pathway known as programmed cell death (PCD). In plants, PCD occurs during development as well as in response to environmental and biotic stimuli. Our understanding of PCD regulation in plants has advanced significantly over the past two decades; however, the molecular machinery responsible for driving the system remains elusive. Thus, whether conserved PCD regulatory mechanisms include plant apoptosis remains enigmatic. Animal apoptotic regulators, including Bcl-2 family members, have not been identified in plants but expression of such regulators can trigger or suppress plant PCD. Moreover, plants exhibit nearly all of the biochemical and morphological features of apoptosis. One difference between plant and animal PCD is the absence of phagocytosis in plants. Evidence is emerging that the vacuole may be key to removal of unwanted plant cells, and may carry out functions that are analogous to animal phagocytosis. Here, we provide context for the argument that apoptotic-like cell death occurs in plants.

  18. Radiation-induced apoptosis of lymphocytes in peripheral blood

    International Nuclear Information System (INIS)

    Oh, Yoon Kyeong; Lee, Tae Bum; Nam, Taek Keun; Kee, Keun Hong; Choi, Cheol Hee

    2003-01-01

    This study quantitatively evaluated the apoptosis in human peripheral blood lymphocytes using flow cytometry, and investigated the possibility of using this method, with a small amount of blood, and the time and dose dependence of radiation-induced apoptosis. Peripheral blood lymphocytes were isolated from the heparinized venous blood of 11 healthy volunteers, 8 men and 3 women, with each 10 ml of blood being divided into 15 samples. The blood lymphocytes were irradiated using a linear accelerator at a dose rate of 2.4 Gy/min, to deliver doses of 0.5, 1, 2 and 5 Gy. The control samples, and irradiated cells, were maintained in culture medium for 24, 48 and 72 hours following the irradiation. The number of apoptotic cells after the in vitro X-irradiation was measured by flow cytometry after incubation periods of 24, 48 and 72 hours. We also observed the apoptotic cells using a DNA fragmentation assay and electron microscopy. The rate of spontaneous apoptosis increased in relation to the time interval following irradiation (1.761±0.161, 3.563±0.564, 11.098±2.849, at 24, 48, and 72 hours). The apoptotic cells also increased in the samples irradiated with 0.5, 1, 2 and 5 Gy, in a radiation dose and time interval after irradiation manner, with the apoptosis being too great at 72 hours after irradiation. The dose-response curves were characterized by an initial steep increase in the number of apoptotic cells for irradiation doses below 2 Gy, with a flattening of the curves as the dose approached towards 5 Gy. The flow cytometric assay technique yielded adequate data, and required less than 1 mL of blood. The time and dose dependence of the radiation-induced apoptosis, was also shown. It is suggested that the adequate time interval required for the evaluation of apoptosis would be 24 to 48 hours after blood sampling

  19. MicroRNA-134 regulates lung cancer cell H69 growth and apoptosis by targeting WWOX gene and suppressing the ERK1/2 signaling pathway

    International Nuclear Information System (INIS)

    Chen, Tianjun; Gao, Fei; Feng, Sifang; Yang, Tian; Chen, Mingwei

    2015-01-01

    MicroRNAs have been shown to act as crucial modulators during carcinogenesis. Recent studies have implied that miR-134 expression associated with epithelial-to-mesenchymal transition phenotype and invasive potential of NSCLC cells. Our study investigated the pathogenic implications of miR-134 in small cell lung cancer (SCLC). Overexpression or inhibition MiR-134 expression by miR-134 mimics or miR-134 inhibitors (anti-miR-134) in SCLC cell lines was detected using qRT-PCR. Lactate dehydrogenase (LDH) assay, MTT assays and flow cytometry were performed in order to clarify the growth and apoptosis of SCLC cells which had been transfected with miR-134 mimics or anti-miR-134. WWOX expression in H69 cells was detected by qRT-PCR and western blot, respectively. The results showed that overexpression miR-134 was significantly promoting SCLC cells growth and inhibit its apoptosis. In addition, reduced miR-134 expression was significantly correlated with cell growth inhibition and apoptosis promotion. Furthermore, transfection of miR-134 mimics into the SCLC cells markedly down-regulated the level of WWOX, whereas, anti-miR-134 up-regulated WWOX expression. We also found that overexpression WWOX attenuate miR-134 induced H69 cells growth, and promote cell apoptosis. Moreover, miR-134 promoted cell proliferation and inhibit apoptosis via the activation of ERK1/2 pathway. These findings suggest that miR-134 may be an ideal diagnostic and prognostic marker, and may be attributed to the molecular therapy of SCLC. - Highlights: • MiR-134 play roles in small cell lung cancer cell growth and apoptosis. • MiR-134 negative regulated the level of WWOX in H69 cells. • WWOX overexpression attenuate miR-134 induced H69 cells growth. • MiR-134 promotes cell growth via the activation of ERK1/2 pathway

  20. Effect of Mst1 on Endometriosis Apoptosis and Migration: Role of Drp1-Related Mitochondrial Fission and Parkin-Required Mitophagy.

    Science.gov (United States)

    Zhao, Qingdong; Ye, Mingxia; Yang, Wen; Wang, Min; Li, Mingxia; Gu, Chenglei; Zhao, Luyang; Zhang, Zhe; Han, Weidong; Fan, Wensheng; Meng, Yuanguang

    2018-01-01

    Mitochondrial homeostasis is implicated in the development and progression of endometriosis through poorly defined mechanisms. Mst1 is the major growth suppressor related to cancer migration, apoptosis and proliferation. However, whether Mst1 is involved in endometriosis apoptosis and migration via regulating the mitochondrial function remains to be elucidated. Expression of Mst1 in endometriosis was examined via western blots. Cellular apoptosis was detected via MTT and TUNEL assay. Gain of function assay about Mst1 was conducted via adenovirus over-expression. Mitochondrial functions were evaluated via mitochondrial membrane potential JC-1 staining, ROS flow cytometry analysis, mPTP opening assessment and immunofluorescence of HtrA2/Omi. The mitophagy activity were examined via western blots and immunofluorescence. First, we found that Mst1 was significantly downregulated in the ectopic endometrium of endometriosis compared to the normal endometrium. However, the recovery of Mst1 function was closely associated with the inability of endometrial stromal cells (ESCs) to migrate and survive. A functional study indicated that regaining Mst1 enhanced Drp1 post-transcriptional phosphorylation at Ser616 and repressed Parkin transcription activity via p53, leading to mitochondrial fission activation and mitophagy inhibition. Excessive Drp1-related fission forced the mitochondria to liberate HtrA2/Omi into the cytoplasm. Moreover, Mst1-induced defective mitophagy evoked cellular oxidative stress, energy metabolism and calcium overload. Through excessive mitochondrial fission and aberrant mitophagy, Mst1 launched caspase 9-related mitochondrial apoptosis and abrogated F-actin/lamellipodium-dependent cellular migration. Notably, we also defined NR4A/miR181c as the upstream signal for Mst1 dysfunction in endometriosis. Collectively, our results comprehensively described the important role of the NR4A-miR181c-Mst1 pathway in endometriosis, which handled mitochondrial

  1. Intracoronary levosimendan during ischemia prevents myocardial apoptosis.

    Directory of Open Access Journals (Sweden)

    Markus eMalmberg

    2012-02-01

    Full Text Available Background. Levosimendan is a calcium-sensitizing inotropic agent that prevents myocardial contractile depression following cardiac surgery. Levosimendan has also anti-apoptotic properties, but the role of this mechanism is not clear. We studied whether levosimendan prevents cardiomyocyte apoptosis and post-operative stunning after either intracoronary administration or intravenous infusion in an experimental model. Methods. Pigs (n=24 were subjected to 40 minutes of global, cardioplegic ischemia under cardiopulmonary bypass and 240 minutes of reperfusion. L-IV group received intravenous infusion of levosimendan (65 μg/kg 40 minutes before ischemia and L-IC group received levosimendan (65 μg/kg during ischemia administered intracoronary. Control group was operated without levosimendan. Echocardiography was performed to all animals. Apoptosis was determined from transmyocardial biopsies taken from left ventricle using TUNEL assay and immunohistochemistry of active caspace-3. Results. Apoptosis was induced after ischemia-reperfusion in all groups (pre L-IV 0.002±0.004 % vs. post L-IV 0.020±0.017 % p=0.02, pre L-IC 0.001±0.004 % vs. post L-IC 0.020±0.017 % p<0.001, pre control 0.007±0.013 % vs. post control 0.062±0.044 % p=0.01. The amount of apoptosis was higher in the controls, compared with the L-IV (p=0.03 and the L-IC (p=0.03 groups. Longitudinal left ventricular contraction was significantly reduced in the L-IC and the control groups when compared to the L-IV group (L-IV 0.75±0.12 mm vs. L-IC 0.53±0.11 mm p=0.003, L-IV vs. control 0.54±0.11 p=0.01. Conclusions. Both intracoronary administration and pre-ischemic intravenous infusion of levosimendan equally prevented apoptosis, but intravenous administration was required for optimal preservation of the post-operative systolic left ventricle function.

  2. Cardiovascular molecular imaging of apoptosis

    International Nuclear Information System (INIS)

    Wolters, S.L.; Reutelingsperger, C.P.M.; Corsten, M.F.; Hofstra, L.; Narula, J.

    2007-01-01

    Molecular imaging strives to visualise processes at the molecular and cellular level in vivo. Understanding these processes supports diagnosis and evaluation of therapeutic efficacy on an individual basis and thereby makes personalised medicine possible. Apoptosis is a well-organised mode of cell suicide that plays a role in cardiovascular diseases (CVD). Apoptosis is associated with loss of cardiomyocytes following myocardial infarction, atherosclerotic plaque instability, congestive heart failure and allograft rejection of the transplanted heart. Thus, apoptosis constitutes an attractive target for molecular imaging of CVD. Our current knowledge about the molecular players and mechanisms underlying apoptosis offers a rich palette of potential molecular targets for molecular imaging. However, only a few have been successfully developed so far. This review highlights aspects of the molecular machinery and biochemistry of apoptosis relevant to the development of molecular imaging probes. It surveys the role of apoptosis in four major areas of CVD and portrays the importance and future perspectives of apoptosis imaging. The annexin A5 imaging protocol is emphasised since it is the most advanced protocol to measure apoptosis in both preclinical and clinical studies. (orig.)

  3. Cardiovascular molecular imaging of apoptosis

    Energy Technology Data Exchange (ETDEWEB)

    Wolters, S.L.; Reutelingsperger, C.P.M. [Maastricht University, Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht (Netherlands); Corsten, M.F.; Hofstra, L. [Maastricht University, Department of Cardiology, Cardiovascular Research Institute Maastricht, P.O. Box 616, Maastricht (Netherlands); Narula, J. [University of California Irvine, Department of Cardiology, Irvine (United States)

    2007-06-15

    Molecular imaging strives to visualise processes at the molecular and cellular level in vivo. Understanding these processes supports diagnosis and evaluation of therapeutic efficacy on an individual basis and thereby makes personalised medicine possible. Apoptosis is a well-organised mode of cell suicide that plays a role in cardiovascular diseases (CVD). Apoptosis is associated with loss of cardiomyocytes following myocardial infarction, atherosclerotic plaque instability, congestive heart failure and allograft rejection of the transplanted heart. Thus, apoptosis constitutes an attractive target for molecular imaging of CVD. Our current knowledge about the molecular players and mechanisms underlying apoptosis offers a rich palette of potential molecular targets for molecular imaging. However, only a few have been successfully developed so far. This review highlights aspects of the molecular machinery and biochemistry of apoptosis relevant to the development of molecular imaging probes. It surveys the role of apoptosis in four major areas of CVD and portrays the importance and future perspectives of apoptosis imaging. The annexin A5 imaging protocol is emphasised since it is the most advanced protocol to measure apoptosis in both preclinical and clinical studies. (orig.)

  4. Ionizing radiation induces apoptosis in hematopoietic stem and progenitor cells

    International Nuclear Information System (INIS)

    Meng, A.; Zhou, D.; Geiger, H.; Zant, G.V.

    2003-01-01

    The aims of this study was to determine if ionizing radiation (IR) induces apoptosis in hematopoietic stem (HSC) and progenitor cells. Lin-cells were isolated from mouse bone marrow (BM) and pretreated with vehicle or 100 μM z-VAD 1 h prior to exposure to 4 Gy IR. The apoptotic and/or necrotic responses of these cells to IR were analyzed by measuring the annexin V and/or 7-AAD staining in HSC and progenitor populations using flow cytometry, and hematopoietic function of these cells was determined by CAFC assay. Exposure of Lin-cells to IR selectively decreased the numbers of HSC and progenitors in association with an increase in apoptosis in a time-dependent manner. Pretreatment of Lin- cells with z-VAD significantly inhibited IR-induced apoptosis and the decrease in the numbers of HSC and progenitors. However, IR alone or in combination with z-VAD did not lead to a significant increase in necrotic cell death in either HSC or progenitors. In addition, pretreatment of BM cells with z-VAD significantly attenuated IR-induced reduction in the frequencies of day-7, -28 and -35 CAFC. Exposure of HSC and progenitors to IR induces apoptosis. The induction of HSC and progenitor apoptosis contributes to IR-induced suppression of their hematopoietic function

  5. 5-Fluorouracil-induced apoptosis in cultured oral cancer cells.

    Science.gov (United States)

    Tong, D; Poot, M; Hu, D; Oda, D

    2000-03-01

    Chemotherapy is commonly used to treat advanced oral squamous cell carcinoma (SCC) and is known to kill cancer cells through apoptosis. Our hypothesis states that 5-fluorouracil (5FU) also kills cultured oral epithelial cells through programmed cell death or apoptosis. Cultured oral cancer cells were exposed to an optimum dose of 20 mg/ml of 5FU. Cells were analyzed for changes in cell cycle distribution and induction of cell death including apoptosis. Normal control, human papilloma virus-immortalized (PP), ATCC SCC cell line (CA1) and two primary oral SCC cell lines (CA3 and -4) were studied. Inhibition of apoptosis by a pan-caspase inhibitor was used. SYTO 11 flow cytometry showed increased apoptosis in all 5FU-treated cell cultures compared to untreated controls. The results show biological variation in apoptotic response. CA1 had the lowest apoptotic rate of the cancer cell lines at 1.5%. Next lowest was CA3, followed by CA4 and PP. In addition, alteration in the G1 and S phase fractions were found. Untreated CA1 showed 28% G1, 53% S compared to 43% G1, and 40% S of treated. We investigated the pathway of apoptosis using the pan-caspase inhibitor IDN-1529 by methylthiazolyl diphenyl tetrazolium bromide (MTT) colorimetric analysis. Results showed mild inhibition of cell death when cells were incubated with 50 microM IDN-1529 for 24 h. This suggests a probable caspase-dependent apoptotic pathway. In conclusion, our data suggest that 5FU induces oral cancer cell death through apoptosis and that biological variation exists between normal and cancer cells and between different types of cancer cells themselves. Our data indicate that cultures of a useful in vitro model for chemosensitivity assays are possible. Our results also suggest a caspase-dependent pathway for chemocytotoxicity in oral SCC.

  6. Fisetin induces apoptosis through mitochondrial apoptosis pathway in human uveal melanoma cells.

    Science.gov (United States)

    Wang, Kai; Hu, Dan-Ning; Lin, Hui-Wen; Yang, Wei-En; Hsieh, Yi-Hsien; Chien, Hsiang-Wen; Yang, Shun-Fa

    2018-05-01

    Fisetin, a diatery flavonoid, been reported that possess anticancer effects in various cancers. The purpose of the study was to investigate the antitumor effects of fisetin in cultured uveal melanoma cell lines and compared with normal retinal pigment epithelial (RPE) cells. MTT assay was used for evaluating cytotoxic effects of fisetin. Flow cytometry study was used for the determination of apoptosis. JC-1 fluorescent reader was used to determine mitochondrial transmembrane potential changes. The results shown that fisetin dose-dependently decreased the cell viability of uveal melanoma cells but not influenced the cell viability of RPE cells. Apoptosis of uveal melanoma cells was induced by fisetin efficiently. Fisetin inhibited antiapoptotic Bcl-2 family proteins and damaged the mitochondrial transmembrane potential. The levels of proapoptotic Bcl-2 proteins, cytochrome c, and various caspase activities were increased by fisetin. In conclusion, fisetin induces apoptosis of uveal melanoma cells selectively and may be a promising agent to be explored for the treatment of uveal melanoma. © 2018 Wiley Periodicals, Inc.

  7. Effect modification by apoptosis-related gene polymorphisms on the associations of phthalate exposure with spermatozoa apoptosis and semen quality

    International Nuclear Information System (INIS)

    Yang, Pan; Gong, Ya-Jie; Wang, Yi-Xin; Liang, Xin-Xiu; Liu, Qing; Liu, Chong; Chen, Ying-Jun; Sun, Li; Lu, Wen-Qing

    2017-01-01

    Background: Human studies indicate that phthalate exposure is associated with adverse male reproductive health, and this association may be modified by genetic polymorphisms. Objectives: We investigated whether apoptosis-related gene polymorphisms modified the associations of phthalate exposure with spermatozoa apoptosis and semen quality. Methods: In this Chinese population who sought for semen examination in an infertility clinic, we measured 8 phthalate metabolites in two urine samples to assess the individual's exposure levels. Apoptosis-related gene (Fas, FasL, and caspase3) polymorphisms were performed by real-time PCR. Spermatozoa apoptosis and semen quality parameters were evaluated by Annexin V/PI assay and computer-aided semen analysis, respectively. Results: We found that Fas rs2234767, FasL rs763110, and caspase3 rs12108497 gene polymorphisms significantly modified the associations between urinary phthalate metabolites and spermatozoa apoptosis. For example, urinary monobutyl phthalate (MBP) associated with an increased percentage of Annexin V + /PI − spermatozoa of 25.11% (95% CI: 4.08%, 50.53%) were only observed among men with CT/TT genotype of FasL rs763110. In addition, we found that caspase3 rs12108497 gene polymorphisms significantly modified the associations of urinary mono (2-ethyl-5-hydroxyhexyl) phthalate (MEHHP) with decreased sperm concentration and sperm count (both p-values for interactions = 0.02). Conclusion: Our results provided the first evidence that apoptosis-related gene polymorphisms might contribute to the effects of phthalate exposure on male reproductive health. - Highlights: • We used two urine samples to assess the individual's phthalate exposure levels. • Fas, FasL, and caspase3 variants modified the association between phthalate exposure and spermatozoa apoptosis. • Caspase3 variants modified the association between phthalate exposure and semen quality. • Gene-environment interaction effects should be

  8. Effect of cycloheximide and actinomycin D on radionuclide 235U-induced apoptosis

    International Nuclear Information System (INIS)

    Fu Qiang; Zhang Lansheng; Zhu Shoupeng

    1999-01-01

    Objective: The mechanism of apoptosis induced by radionuclide 235 U was studied. Methods: MTT and JAM assay were used to analyse the cell viability and quantification of fragmented DNA. Results: The inhibitor of protein cycloheximide (CHX), and the inhibitor of RNA synthesis, actinomycin D. cannot inhibit the apoptosis induced by 235 U, but CHX can partly inhibit apoptotic cells DNA fragmentation. Conclusion: The pathway of apoptosis induced by radionuclide 235 U is different from X-and γ-ray external irradiation, protein synthesis is not essential for it, but synthetic endonuclease is necessary for DNA fragmentation of apoptotic cells

  9. [RNA interference of HERC4 inhibits proliferation, apoptosis and migration of cervical cancer Hela cells].

    Science.gov (United States)

    Wei, Min; Zhang, Yan-Ling; Chen, Lan; Cai, Cui-Xia; Wang, Han-Duo

    2016-02-20

    To explore the effects of silencing HERC4 on the proliferation, apoptosis, and migration of cervical cancer cell line Hela and the possible molecular mechanisms. Three HERC4-specific small interfering RNAs (siRNAs) were transfected into Hela cells, and HERC4 expression in the cells was examined with Western blotting. CCK-8 assay, annexin V-FITC/PI assay, and wound healing assay were used to assess the effect of HERC4 silencing on the proliferation, apoptosis and migration ability of Hela cells. The expression levels of cyclin D1 and Bcl-2 in the cells were detected using Western blotting. Transfection of siRNA-3 resulted in significantly decreased HERC4 protein expression (PHela cells, increased the apoptosis rate (PHela cells in vitro, and the underlying mechanisms may involve the down-regulation of cyclin D1 and Bcl-2.

  10. MicroRNA-145 protects cardiomyocytes against hydrogen peroxide (H₂O₂-induced apoptosis through targeting the mitochondria apoptotic pathway.

    Directory of Open Access Journals (Sweden)

    Ruotian Li

    Full Text Available MicroRNAs, a class of small and non-encoding RNAs that transcriptionally or post-transcriptionally modulate the expression of their target genes, has been implicated as critical regulatory molecules in many cardiovascular diseases, including ischemia/reperfusion induced cardiac injury. Here, we report microRNA-145, a tumor suppressor miRNA, can protect cardiomyocytes from hydrogen peroxide H₂O₂-induced apoptosis through targeting the mitochondrial pathway. Quantitative real-time PCR (qPCR demonstrated that the expression of miR-145 in either ischemia/reperfused mice myocardial tissues or H₂O₂-treated neonatal rat ventricle myocytes (NRVMs was markedly down-regulated. Over-expression of miR-145 significantly inhibited the H₂O₂-induced cellular apoptosis, ROS production, mitochondrial structure disruption as well as the activation of key signaling proteins in mitochondrial apoptotic pathway. These protective effects of miR-145 were abrogated by over-expression of Bnip3, an initiation factor of the mitochondrial apoptotic pathway in cardiomyocytes. Finally, we utilized both luciferase reporter assay and western blot analysis to identify Bnip3 as a direct target of miR-145. Our results suggest miR-145 plays an important role in regulating mitochondrial apoptotic pathway in heart challenged with oxidative stress. MiR-145 may represent a potential therapeutic target for treatment of oxidative stress-associated cardiovascular diseases, such as myocardial ischemia/reperfusion injury.

  11. [Gene Expression Profile of Apoptosis in Leukemia Cells Induced by Hsp90 Selective inhibitor 17-AAG].

    Science.gov (United States)

    Wang, Na-Na; Li, Zhi-Heng; Tao, Yan-Fang; Xu, Li-Xiao; Pan, Jian; Hu, Shao-Yan

    2016-06-01

    To investigate the apoptotic effects of Hsp90 selective inhibitor 17-AAG on human leukemia HL-60 and NB4 cells and analyse its possible mechanism. CCK-8 assay was used to quantify the growth inhibition of cells after exposure to 17-AAG for 24 hours. Flow cytometrve with annexin V/propidium iodide staining was used to detect apoptosis of leukemia cells. Then Western blot was used to detect the activation of apoptosis related protein caspase-3 and PARP level. Gene expression profile of NB4 cells treated with 17-AAG was analyzed with real-time PCR arrays. The inhibition of leukemia cell proliferation displayed a dose-dependent manner. Annexin V assay, cell cycle analysis and activation of PARP demonstrate that 17-AAG induced apoptosis leukemia cells. Real-time PCR array analysis showed that expression of 56 genes significantly up-regulated and expression of 23 genes were significantly down-regulated after 17-AAG treatment. The 17-AAG can inhibit the proliferation and induce the apoptosis of leukemia cells. After leukemia cells are treated with 17-AAG, the significant changes of apoptosis-related genes occured, and the cell apoptosis occurs via activating apoptosis related signaling pathway.

  12. Role of apoptosis in airway epithelium

    International Nuclear Information System (INIS)

    Alenzi, F.Q.

    2009-01-01

    Airway epithelial cells may play an important clinical role in the apoptosis of eosinophils. To study recognition pathways, two types of large bronchial airway epithelial cells were used (LAECs and A549). Both resting, and dexamethasone-stimulated epithelial cells, were used in an inhibition assay. Confocal microscopy was used to demonstrate engulfment of apoptotic eosinophils. Apoptotic eosinophils were recognized and phagocytosed by macrophages, and by LAECs. The ability of LAECs to engulf apoptotic eosinophils was enhanced by dexamethasone and interlukin-1 (IL-1beta). Inhibition by monoclonal antibodies (Mabs) prevented the uptake of apoptotic cells by LAECs. This study therefore suggests that LAECs are capable of recognizing and engulfing apoptotic eosinophils, and that this process is enhanced by IL-1 beta and dexamethasone. (author)

  13. Apoptosis and signalling in acid sphingomyelinase deficient cells

    Directory of Open Access Journals (Sweden)

    Sillence Dan J

    2001-11-01

    Full Text Available Abstract Background Recent evidence suggests that the activation of a non-specific lipid scramblase during apoptosis induces the flipping of sphingomyelin from the cell surface to the cytoplasmic leaftet of the plasma membrane. Inner leaflet sphingomyelin is then cleaved to ceramide by a neutral sphingomyelinase. The production of this non-membrane forming lipid induces blebbing of the plasma membrane to aid rapid engulfment by professional phagocytes. However contrary evidence suggests that cells which are deficient in acid sphingomyelinase are defective in apoptosis signalling. This data has been interpreted as support for the activation of acid sphingomyelinase as an early signal in apoptosis. Hypothesis An alternative explanation is put forward whereby the accumulation of intracellular sphingomyelin in sphingomyelinase deficient cells leads to the formation of intracellular rafts which lead to the sequestration of important signalling molecules that are normally present on the cell surface where they perform their function. Testing the hypothesis It is expected that the subcellular distribution of important signalling molecules is altered in acid sphingomyelinase deficient cells, leading to their sequestration in late endosomes / lysosomes. Other sphingolipid storage diseases such as Niemann-Pick type C which have normal acid sphingomyelinase activity would also be expected to show the same phenotype. Implications of the hypothesis If true the hypothesis would provide a mechanism for the pathology of the sphingolipid storage diseases at the cellular level and also have implications for the role of ceramide in apoptosis.

  14. The correlation between spontaneous and radiation-induced apoptosis in T3B bladder cancer (histological grade G3), and the precedence between the two kinds of apoptosis for predicting clinical prognosis

    International Nuclear Information System (INIS)

    Harada, Satoshi; Sato, Ryuichi; Nakamura, Ryuji; Oikawa, Hiroshi; Oikawa, Hirobumi; Ohgi, Shie; Tamakawa, Yoshiharu; Yanagisawa, Toru

    2000-01-01

    Purpose: The correlation between the frequency of spontaneous and radiation-induced apoptosis, and the precedence between those for predicting prognosis were studied at clinical level. Methods and Materials: Twenty-one patients (mean age, 65.8 years; 16 men and 5 women) with bladder cancer (transitional cell carcinoma Grade 3, T3bN0M0, Stage IIIb) underwent intraoperative radiotherapy: single 30-Gy 12-MV electron beam irradiation to bladder, followed by total cystectomy 6 h after irradiation. The specimens of pretreatment and irradiated bladder cancer were assayed for apoptosis, using TUNEL staining with counter staining of hematoxylin. The apoptotic index (AI) was calculated by dividing the number of apoptotic cells by the total number of cells and multiplying by 100. The Pearson's linear fitting was used to test the correlation between spontaneous and radiation-induced apoptosis. The Kaplan-Meier product-limit estimation was used for overall survival (OS) and freedom from recurrence (FFR). The precedence between spontaneous and radiation-induced apoptosis for predicting the clinical prognosis was estimated using the proportional hazard regression. Results: The mean AI of spontaneous and radiation-induced apoptosis was 1.18 ± 0.16 and 2.63 ± 0.45, respectively, which was significantly different. There was strong correlation between spontaneous and radiation-induced apoptosis (r 2 = 0.864, adjusted r 2 = 0.857). Radiation-induced apoptosis was estimated by equitation: y (radiation-induced apoptosis) = 2.67 x (spontaneous apoptosis) -0.52. However, the proportional hazard regression test indicated that only spontaneous apoptosis was significant for predicting OS and FFR (vertical bar t vertical bar > 0.2), but radiation-induced apoptosis was not. Conclusion: Estimating AI in radiation-induced apoptosis from AI in spontaneous apoptosis is possible. However, spontaneous apoptosis is more accurate in predicting clinical prognosis

  15. Methylselenium and Prostate Cancer Apoptosis

    National Research Council Canada - National Science Library

    Lu, Junxuan

    2004-01-01

    The purpose of this research is to gain a better understanding of the biochemical pathways and molecular targets for the selective induction of apoptosis signaling and execution of PCa cells by methyl selenium (Se)/selenol...

  16. Methylselenium and Prostate Cancer Apoptosis

    National Research Council Canada - National Science Library

    Lu, Junxuan

    2008-01-01

    The purpose of this research is to gain a better understanding of the biochemical pathways and molecular targets for the selective induction of apoptosis signaling and execution of prostate cancer (PCa...

  17. Methylselenium and Prostate Cancer Apoptosis

    National Research Council Canada - National Science Library

    Lu, Junxuan

    2003-01-01

    The purpose of this research is to gain a better understanding of the biochemical pathways and molecular targets for the selective induction of apoptosis signaling and execution of PCa cells by methyl selenium (Se...

  18. Methylselenium and Prostate Cancer Apoptosis

    National Research Council Canada - National Science Library

    Lu, Junxuan

    2005-01-01

    The purpose of this research is to gain a better understanding of the biochemical pathways and molecular targets for the selective induction of apoptosis signaling and execution of prostate cancer (PCa...

  19. Methylselenium and Prostate Cancer Apoptosis

    National Research Council Canada - National Science Library

    Lu, Junxuan

    2007-01-01

    The purpose of this research is to gain a better understanding of the biochemical pathways and molecular targets for the selective induction of apoptosis signaling and execution of prostate cancer (PCa...

  20. Methylselenium and Prostate Cancer Apoptosis

    National Research Council Canada - National Science Library

    Lu, Junxuan

    2006-01-01

    The purpose of this research is to gain a better understanding of the biochemical pathways and molecular targets for the selective induction of apoptosis signaling and execution of prostate cancer (PCa...

  1. Effects of topical vitamin E on keratocyte apoptosis after traditional photorefractive keratectomy.

    Science.gov (United States)

    Bilgihan, K; Adiguzel, U; Sezer, C; Akyol, G; Hasanreisoglu, B

    2001-01-01

    To evaluate the keratocyte apoptosis and effects of topical vitamin E on keratocyte apoptosis after photorefractive surgery. Rabbits were divided into 7 groups, and all groups were compared with controls after epithelial scraping, epithelial scrape and photorefractive keratectomy (PRK) (traditional PRK), transepithelial PRK, production of a corneal flap with microkeratome and laser-assisted in situ keratomileusis (LASIK). The effects of topical Vitamin E treatment were investigated in the traditional PRK group. The terminal deoxyribonucleotidyl transferase-mediated dUTP-digoxigenin nick-end labelling assay (to detect DNA fragmentation in situ) and light microscopy have been used to detect apoptosis in rabbit cornea. Transepithelial PRK induced minimal keratocyte apoptosis, less than in all other refractive surgical procedures. The greatest amount of keratocyte apoptosis was observed after traditional PRK (p = 0.001), therefore we tested the effects of topical vitamin E in this group. The number of apoptotic keratocytes significantly reduced after vitamin E therapy (p < 0.005). Keratocytes undergo apoptosis after refractive surgery in response to mechanical epithelial removal, preparing of corneal flap and excimer laser stromal photoablation. The topical application of vitamin E immediately after surgery can prevent keratocyte apoptosis, and this result suggests that free radicals may be partly responsible for keratocyte apoptosis after excimer laser keratectomy. Copyright 2001 S. Karger AG, Basel

  2. Keratocyte apoptosis and corneal antioxidant enzyme activities after refractive corneal surgery.

    Science.gov (United States)

    Bilgihan, K; Bilgihan, A; Adiguzel, U; Sezer, C; Yis, O; Akyol, G; Hasanreisoglu, B

    2002-01-01

    Refractive corneal surgery induces keratocyte apoptosis and generates reactive oxygen radicals (ROS) in the cornea. The purpose of the present study is to evaluate the correlation between keratocyte apoptosis and corneal antioxidant enzyme activities after different refractive surgical procedures in rabbits. Rabbits were divided into six groups. All groups were compared with the control group (Group 1), after epithelial scraping (Group 2), epithelial scrape and photorefractive keratectomy (PRK) (traditional PRK: Group 3), transepithelial PRK (Group 4), creation of a corneal flap with microkeratome (Group 5) and laser-assisted in situ keratomileusis (LASIK, Group 6). Terminal deoxyribonucleotidyl transferase-mediated dUTP-digoxigenin nick-end labelling assay (to detect DNA fragmentation in situ) and light microscopy were used to detect apoptosis in rabbit eyes. Glutathione peroxidase (Gpx) and superoxide dismutase (SOD) activities of the corneal tissues were measured with spectrophotometric methods. Corneal Gpx and SOD activities decreased significantly in all groups when compared with the control group (P<0.05) and groups 2, 3 and 6 showed a significantly higher amount of keratocyte apoptosis (P<0.05). Not only a negative correlation was observed between corneal SOD activity and keratocyte apoptosis (cc: -0.3648) but Gpx activity also showed negative correlation with keratocyte apoptosis (cc: -0.3587). The present study illustrates the negative correlation between keratocyte apoptosis and corneal antioxidant enzyme activities. This finding suggests that ROS may be partly responsible for keratocyte apoptosis after refractive surgery.

  3. The mitochondria-mediate apoptosis of Lepidopteran cells induced by azadirachtin.

    Directory of Open Access Journals (Sweden)

    Jingfei Huang

    Full Text Available Mitochondria have been shown to play an important role in apoptosis using mammalian cell lines. However, this seems not to be the case in Drosophila, an insect model organism; thus more in-depth studies of insect cell apoptosis are necessary. In the present study, mitochondrial involvement during azadirachtin- and camptothecin-induced apoptosis in Spodoptera frugiperda Sf9 cells (isolated from Spodoptera frugiperda pupal ovarian tissue was investigated. The results showed that both azadirachtin and camptothecin could induce apoptosis in Sf9 cells. Reactive oxygen species (ROS generation, activation of mitochondrial permeability transition pores (MPTPs and loss of mitochondrial membrane potential (MMP were observed very early during apoptosis and were followed subsequently by the release of cytochrome-c from the mitochondria. Furthermore, the results also revealed that the opening of MPTPs and the loss of MMP induced by azadirachtin could be significantly inhibited by the permeability transition pore (PTP inhibitor cyclosporin A (CsA, which was used to identify the key role of mitochondria in the apoptosis of Sf9 cells. However, in camptothecin-treated Sf9 cells, CsA could not suppress the opening of MPTPs and the loss of MMP when apoptosis was induced. The data from caspase-3 and caspase-9 activity assays and detection of apoptosis by morphological observation and flow cytometry also uncovered the different effect of CsA on the two botanical apoptosis inducers. Although different mechanisms of apoptosis induction exist, our study revealed that mitochondria play a crucial role in insect cell line apoptosis.

  4. The mitochondria-mediate apoptosis of Lepidopteran cells induced by azadirachtin.

    Science.gov (United States)

    Huang, Jingfei; Lv, Chaojun; Hu, Meiying; Zhong, Guohua

    2013-01-01

    Mitochondria have been shown to play an important role in apoptosis using mammalian cell lines. However, this seems not to be the case in Drosophila, an insect model organism; thus more in-depth studies of insect cell apoptosis are necessary. In the present study, mitochondrial involvement during azadirachtin- and camptothecin-induced apoptosis in Spodoptera frugiperda Sf9 cells (isolated from Spodoptera frugiperda pupal ovarian tissue) was investigated. The results showed that both azadirachtin and camptothecin could induce apoptosis in Sf9 cells. Reactive oxygen species (ROS) generation, activation of mitochondrial permeability transition pores (MPTPs) and loss of mitochondrial membrane potential (MMP) were observed very early during apoptosis and were followed subsequently by the release of cytochrome-c from the mitochondria. Furthermore, the results also revealed that the opening of MPTPs and the loss of MMP induced by azadirachtin could be significantly inhibited by the permeability transition pore (PTP) inhibitor cyclosporin A (CsA), which was used to identify the key role of mitochondria in the apoptosis of Sf9 cells. However, in camptothecin-treated Sf9 cells, CsA could not suppress the opening of MPTPs and the loss of MMP when apoptosis was induced. The data from caspase-3 and caspase-9 activity assays and detection of apoptosis by morphological observation and flow cytometry also uncovered the different effect of CsA on the two botanical apoptosis inducers. Although different mechanisms of apoptosis induction exist, our study revealed that mitochondria play a crucial role in insect cell line apoptosis.

  5. RP105 Protects Against Apoptosis in Ischemia/Reperfusion-Induced Myocardial Damage in Rats by Suppressing TLR4-Mediated Signaling Pathways

    Directory of Open Access Journals (Sweden)

    Jun Yang

    2015-07-01

    Full Text Available Background: Myocardial apoptosis is heavily implicated in the myocardial damage caused by ischemia-reperfusion (I/R. Toll-like receptor 4 (TLR4 is a potent inducer of these apoptotic cascades. In contrast, the radioprotective 105 kDa protein (RP105 is a specific negative regulator of TLR4 signaling pathways. However, the precise mechanisms by which RP105 inhibits myocardium apoptosis via TLR4-associated pathways during I/R is not fully understood. Methods: We utilized a rat model of myocardial ischemic reperfusion injury (MIRI. Animals were pre-treated with Ad-EGFP adenovirus, Ad-EGFP-RP105 adenovirus, saline, or nothing (sham. After three days, rats underwent a 30min left anterior descending coronary artery occlusion and a 4h reperfusion. Mycardial tissue was assessed by immunohistochemistry, TUNEL-staining, Western blot, quantitative RT-PCR, and a morphometric assay. Results: RP105 overexpression resulted in a reduction in infarct size, fewer TUNEL-positive cardiomyocytes, and a reduction in mitochondrial-associated apoptosis cascade activity. Further, RP105 overexpression repressed I/R-induced myocardial injury by attenuating myocardial apoptosis. This was mediated by inhibiting TLR4 activation and the phosphorylation of P38MAPK and the downstream transcription factor AP-1. Conclusion: RP105 overexpression leads to the de-activation of TLR4, P38MAPK, and AP-1 signaling pathways, and subsequently represses apoptotic cascades and ensuing damage of myocardial ischemic reperfusion. These findings may become the basis of a novel therapeutic approach for reducing of cardiac damage caused by MIRI.

  6. The sensitivity of diffuse large B-cell lymphoma cell lines to histone deacetylase inhibitor-induced apoptosis is modulated by BCL-2 family protein activity.

    Directory of Open Access Journals (Sweden)

    Ryan C Thompson

    Full Text Available BACKGROUND: Diffuse large B-cell lymphoma (DLBCL is a genetically heterogeneous disease and this variation can often be used to explain the response of individual patients to chemotherapy. One cancer therapeutic approach currently in clinical trials uses histone deacetylase inhibitors (HDACi's as monotherapy or in combination with other agents. METHODOLOGY/PRINCIPAL FINDINGS: We have used a variety of cell-based and molecular/biochemical assays to show that two pan-HDAC inhibitors, trichostatin A and vorinostat, induce apoptosis in seven of eight human DLBCL cell lines. Consistent with previous reports implicating the BCL-2 family in regulating HDACi-induced apoptosis, ectopic over-expression of anti-apoptotic proteins BCL-2 and BCL-XL or pro-apoptotic protein BIM in these cell lines conferred further resistance or sensitivity, respectively, to HDACi treatment. Additionally, BCL-2 family antgonist ABT-737 increased the sensitivity of several DLBCL cell lines to vorinostat-induced apoptosis, including one cell line (SUDHL6 that is resistant to vorinostat alone. Moreover, two variants of the HDACi-sensitive SUDHL4 cell line that have decreased sensitivity to vorinostat showed up-regulation of BCL-2 family anti-apoptotic proteins such as BCL-XL and MCL-1, as well as decreased sensitivity to ABT-737. These results suggest that the regulation and overall balance of anti- to pro-apoptotic BCL-2 family protein expression is important in defining the sensitivity of DLBCL to HDACi-induced apoptosis. However, the sensitivity of DLBCL cell lines to HDACi treatment does not correlate with expression of any individual BCL-2 family member. CONCLUSIONS/SIGNIFICANCE: These studies indicate that the sensitivity of DLBCL to treatment with HDACi's is dependent on the complex regulation of BCL-2 family members and that BCL-2 antagonists may enhance the response of a subset of DLBCL patients to HDACi treatment.

  7. Patulin causes DNA damage leading to cell cycle arrest and apoptosis through modulation of Bax, p53 and p21/WAF1 proteins in skin of mice

    International Nuclear Information System (INIS)

    Saxena, Neha; Ansari, Kausar M.; Kumar, Rahul; Dhawan, Alok; Dwivedi, Premendra D.; Das, Mukul

    2009-01-01

    Patulin (PAT), a mycotoxin found in apples, grapes, oranges, pear and peaches, is a potent genotoxic compound. WHO has highlighted the need for the study of cutaneous toxicity of PAT as manual labour is employed during pre and post harvest stages, thereby causing direct exposure to skin. In the present study cutaneous toxicity of PAT was evaluated following topical application to Swiss Albino mice. Dermal exposure of PAT, to mice for 4 h resulted in a dose (40-160 μg/animal) and time (up to 6 h) dependent enhancement of ornithine decarboxylase (ODC), a marker enzyme of cell proliferation. The ODC activity was found to be normal after 12 and 24 h treatment of patulin. Topical application of PAT (160 μg/100 μl acetone) for 24-72 h caused (a) DNA damage in skin cells showing significant increase (34-63%) in olive tail moment, a parameter of Comet assay (b) significant G 1 and S-phase arrest along with induction of apoptosis (2.8-10 folds) as shown by annexin V and PI staining assay through flow cytometer. Moreover PAT leads to over expression of p 21/WAF1 (3.6-3.9 fold), pro apoptotic protein Bax (1.3-2.6) and tumor suppressor wild type p 53 (2.8-3.9 fold) protein. It was also shown that PAT induced apoptosis was mediated through mitochondrial intrinsic pathway as revealed through the release of cytochrome C protein in cytosol leading to enhancement of caspase-3 activity in skin cells of mice. These results suggest that PAT has a potential to induce DNA damage leading to p 53 mediated cell cycle arrest along with intrinsic pathway mediated apoptosis that may also be correlated with enhanced polyamine production as evident by induction of ODC activity, which may have dermal toxicological implications

  8. Neuroprotective effects of Salvia aristata Aucher ex Benth. on hydrogen peroxide induced apoptosis in SH-SY5Y neuroblastoma cells

    Directory of Open Access Journals (Sweden)

    M. A. Esmaeili

    2015-08-01

    Full Text Available Background and objectives: Oxidative stress is implicated in the neuronal damage associated with Alzheimer’s disease, Parkinson’s disease, Huntington’s disease, amyotropic lateral sclerosis and cerebral ischemic stroke. The present work was designed to establish the neuroprotective effects of Salvia aristata extract on H2O2-induced apoptosis in human dopaminergic SH-SY5Y cells. Methods: The total phenol and flavonoids contents of the plant extracts were quantified by colorimetric methods. The antioxidant activity was assessed using DPPH free radicals scavenging activity assay, and the neuroprotective effect on H2O2-induced oxidative stress was also investigated using human dopaminergic SH-SY5Y cells by MTT assay and western blotting techniques. Results: The highest scavenging activity was found for methanol extract of S. aristata roots (85.28 ± 2.61 μg/mL, with the highest total phenolic and flavonoids content (90.28 mg total phenols as gallic acid and 250.12 mg total flavonoids as rutin, respectively. Our results also, showed that H2O2-induced cytotoxicity in SH-SY5Y cells was suppressed by treatment with S. aristata. Moreover, S. aristata root extract was effective in attenuating the disruption of mitochondrial membrane potential and apoptotic cell death has induced by H2O2.  S. aristata suppressed the down-regulation of Bcl-2, upregulation of Bax, and the release of mitochondrial cytochrome c to cytosol. In addition, S. aristata attenuated caspase-3, and -9 activation, and eventually protected the cells against H2O2-induced apoptosis. Conclusion: Theresults of the present study suggest that treatment of SH-SY5Y cells with S. aristata could block H2O2-induced apoptosis by regulating Bcl-2 family members and by suppressing caspase cascade activation.

  9. Podocyte hypertrophy precedes apoptosis under experimental diabetic conditions.

    Science.gov (United States)

    Lee, Sun Ha; Moon, Sung Jin; Paeng, Jisun; Kang, Hye-Young; Nam, Bo Young; Kim, Seonghun; Kim, Chan Ho; Lee, Mi Jung; Oh, Hyung Jung; Park, Jung Tak; Han, Seung Hyeok; Yoo, Tae-Hyun; Kang, Shin-Wook

    2015-08-01

    Podocyte hypertrophy and apoptosis are two hallmarks of diabetic glomeruli, but the sequence in which these processes occur remains a matter of debate. Here we investigated the effects of inhibiting hypertrophy on apoptosis, and vice versa, in both podocytes and glomeruli, under diabetic conditions. Hypertrophy and apoptosis were inhibited using an epidermal growth factor receptor inhibitor (PKI 166) and a pan-caspase inhibitor (zAsp-DCB), respectively. We observed significant increases in the protein expression of p27, p21, phospho-eukaryotic elongation factor 4E-binding protein 1, and phospho-p70 S6 ribosomal protein kinase, in both cultured podocytes exposed to high-glucose (HG) medium, and streptozotocin-induced diabetes mellitus (DM) rat glomeruli. These increases were significantly inhibited by PKI 166, but not by zAsp-DCB. In addition, the amount of protein per cell, the relative cell size, and the glomerular volume were all significantly increased under diabetic conditions, and these changes were also blocked by treatment with PKI 166, but not zAsp-DCB. Increased protein expression of cleaved caspase-3 and cleaved poly (ADP-ribose) polymerase, together with increased Bax/Bcl-2 ratios, were also observed in HG-stimulated podocytes and DM glomeruli. Treatment with either zAsp-DCB or PKI 166 resulted in a significant attenuation of these effects. Both PKI 166 and zAsp-DCB also inhibited the increase in number of apoptotic cells, as assessed by Hoechst 33342 staining and TUNEL assay. Under diabetic conditions, inhibition of podocyte hypertrophy results in attenuated apoptosis, whereas blocking apoptosis has no effect on podocyte hypertrophy, suggesting that podocyte hypertrophy precedes apoptosis.

  10. Microbead agglutination based assays

    KAUST Repository

    Kodzius, Rimantas

    2013-01-21

    We report a simple and rapid room temperature assay for point-of-care (POC) testing that is based on specific agglutination. Agglutination tests are based on aggregation of microbeads in the presence of a specific analyte thus enabling the macroscopic observation. Such tests are most often used to explore antibody-antigen reactions. Agglutination has been used for protein assays using a biotin/streptavidin system as well as a hybridization based assay. The agglutination systems are prone to selftermination of the linking analyte, prone to active site saturation and loss of agglomeration at high analyte concentrations. We investigated the molecular target/ligand interaction, explaining the common agglutination problems related to analyte self-termination, linkage of the analyte to the same bead instead of different microbeads. We classified the agglutination process into three kinds of assays: a two- component assay, a three-component assay and a stepped three- component assay. Although we compared these three kinds of assays for recognizing DNA and protein molecules, the assay can be used for virtually any molecule, including ions and metabolites. In total, the optimized assay permits detecting analytes with high sensitivity in a short time, 5 min, at room temperature. Such a system is appropriate for POC testing.

  11. Overexpression of BAG3 Attenuates Hypoxia-Induced Cardiomyocyte Apoptosis by Inducing Autophagy.

    Science.gov (United States)

    Zhang, Jiankai; He, Zhangyou; Xiao, Wenjian; Na, Qingqing; Wu, Tianxiu; Su, Kaixin; Cui, Xiaojun

    2016-01-01

    Hypoxia is a well-known factor in the promotion of apoptosis, which contributes to the development of numerous cardiac diseases, such as heart failure and myocardial infarction. Inhibiting apoptosis is an important therapeutic strategy for the treatment of related heart diseases caused by ischemia/hypoxic injury. Previous studies have demonstrated that BAG3 plays an important role in cardiomyocyte apoptosis and survival. However, the role of BAG3 in hypoxia-induced cardiomyocyte apoptosis remains to be clarified. Here, we demonstrate that BAG3 is induced by hypoxia stimuli in cultured cardiomyocytes. BAG3 expression level was measured in H9c2 cells treated with hypoxia for 48 h. Cell proliferation and apoptosis were tested using MTT assay and Annexin V FITC-PI staining assay, respectively. The mRNA or protein expression level of BAG3, LC3-I, LC3-II, Atg5, NF-x03BA;B p65 and phosphorylated NF-x03BA;B p65 were assessed by qRT-PCR and western blot assay, respectively. Resluts: Overexpression of BAG3 inhibited cell apoptosis and promoted proliferation in hypoxia-injured H9c2 cells. Furthermore, autophagy and NF-x03BA;B were activated by BAG3 overexpression, and the NF-x03BA;B inhibitor PDTC could inhibit the activation of autophagy induced by BAG3 overexpression. In addition, the autophagy inhibitor 3-MA partly impeded the inhibitory effect of BAG3 on hypoxia-induced cardiomyocyte apoptosis. these results suggested that overexpression of BAG3 promoted cell proliferation and inhibited apoptosis by activating autophagy though the NF-x03BA;B signaling pathway in hypoxia-injured cardiomyocytes. © 2016 The Author(s) Published by S. Karger AG, Basel.

  12. Overexpression of BAG3 Attenuates Hypoxia-Induced Cardiomyocyte Apoptosis by Inducing Autophagy

    Directory of Open Access Journals (Sweden)

    Jiankai Zhang

    2016-07-01

    Full Text Available Background: Hypoxia is a well-known factor in the promotion of apoptosis, which contributes to the development of numerous cardiac diseases, such as heart failure and myocardial infarction. Inhibiting apoptosis is an important therapeutic strategy for the treatment of related heart diseases caused by ischemia/hypoxic injury. Previous studies have demonstrated that BAG3 plays an important role in cardiomyocyte apoptosis and survival. However, the role of BAG3 in hypoxia-induced cardiomyocyte apoptosis remains to be clarified. Here, we demonstrate that BAG3 is induced by hypoxia stimuli in cultured cardiomyocytes. Methods: BAG3 expression level was measured in H9c2 cells treated with hypoxia for 48 h. Cell proliferation and apoptosis were tested using MTT assay and Annexin V FITC-PI staining assay, respectively. The mRNA or protein expression level of BAG3, LC3-I, LC3-II, Atg5, NF-κB p65 and phosphorylated NF-κB p65 were assessed by qRT-PCR and western blot assay, respectively. Resluts: Overexpression of BAG3 inhibited cell apoptosis and promoted proliferation in hypoxia-injured H9c2 cells. Furthermore, autophagy and NF-κB were activated by BAG3 overexpression, and the NF-κB inhibitor PDTC could inhibit the activation of autophagy induced by BAG3 overexpression. In addition, the autophagy inhibitor 3-MA partly impeded the inhibitory effect of BAG3 on hypoxia-induced cardiomyocyte apoptosis. Conclusion: these results suggested that overexpression of BAG3 promoted cell proliferation and inhibited apoptosis by activating autophagy though the NF-κB signaling pathway in hypoxia-injured cardiomyocytes.

  13. Radioreceptor opioid assay

    International Nuclear Information System (INIS)

    Miller, R.J.; Chang, K.-J.

    1981-01-01

    A radioreceptor assay is described for assaying opioid drugs in biological fluids. The method enables the assay of total opioid activity, being specific for opioids as a class but lacking specificity within the class. A radio-iodinated opioid and the liquid test sample are incubated with an opiate receptor material. The percentage inhibition of the binding of the radio-iodinated compound to the opiate receptor is calculated and the opioid activity of the test liquid determined from a standard curve. Examples of preparing radio-iodinated opioids and assaying opioid activity are given. A test kit for the assay is described. Compared to other methods, this assay is cheap, easy and rapid. (U.K.)

  14. Inhibition of miR-155 Protects Against LPS-induced Cardiac Dysfunction and Apoptosis in Mice

    Directory of Open Access Journals (Sweden)

    Hui Wang

    2016-01-01

    Full Text Available Sepsis-induced myocardial dysfunction represents a major cause of death in intensive care units. Dysregulated microRNAs (miR-155 has been implicated in multiple cardiovascular diseases and miR-155 can be induced by lipopolysaccharide (LPS. However, the role of miR-155 in LPS-induced cardiac dysfunction is unclear. Septic cardiac dysfunction in mice was induced by intraperitoneal injection of LPS (5 mg/kg and miR-155 was found to be significantly increased in heart challenged with LPS. Pharmacological inhibition of miR-155 using antagomiR improved cardiac function and suppressed cardiac apoptosis induced by LPS in mice as determined by echocardiography, terminal deoxynucleotidyl transferase nick-end labeling (TUNEL assay, and Western blot for Bax and Bcl-2, while overexpression of miR-155 using agomiR had inverse effects. Pea15a was identified as a target gene of miR-155, mediating its effects in controlling apoptosis of cardiomyocytes as evidenced by luciferase reporter assays, quantitative real time-polymerase chain reaction, Western blot, and TUNEL staining. Noteworthy, miR-155 was also found to be upregulated in the plasma of patients with septic cardiac dysfunction compared to sepsis patients without cardiac dysfunction, indicating a potential clinical relevance of miR-155. The receiver-operator characteristic curve indicated that plasma miR-155 might be a biomarker for sepsis patients developing cardiac dysfunction. Therefore, inhibition of miR-155 represents a novel therapy for septic myocardial dysfunction.

  15. Genetic ablation of Bcl-x attenuates invasiveness without affecting apoptosis or tumor growth in a mouse model of pancreatic neuroendocrine cancer.

    Directory of Open Access Journals (Sweden)

    Jeffrey H Hager

    Full Text Available Tumor cell death is modulated by an intrinsic cell death pathway controlled by the pro- and anti-apoptotic members of the Bcl-2 family. Up-regulation of anti-apoptotic Bcl-2 family members has been shown to suppress cell death in pre-clinical models of human cancer and is implicated in human tumor progression. Previous gain-of-function studies in the RIP1-Tag2 model of pancreatic islet carcinogenesis, involving uniform or focal/temporal over-expression of Bcl-x(L, demonstrated accelerated tumor formation and growth. To specifically assess the role of endogenous Bcl-x in regulating apoptosis and tumor progression in this model, we engineered a pancreatic beta-cell-specific knockout of both alleles of Bcl-x using the Cre-LoxP system of homologous recombination. Surprisingly, there was no appreciable effect on tumor cell apoptosis rates or on tumor growth in the Bcl-x knockout mice. Other anti-apoptotic Bcl-2 family members were expressed but not substantively altered at the mRNA level in the Bcl-x-null tumors, suggestive of redundancy without compensatory transcriptional up-regulation. Interestingly, the incidence of invasive carcinomas was reduced, and tumor cells lacking Bcl-x were impaired in invasion in a two-chamber trans-well assay under conditions mimicking hypoxia. Thus, while the function of Bcl-x in suppressing apoptosis and thereby promoting tumor growth is evidently redundant, genetic ablation implicates Bcl-x in selectively facilitating invasion, consistent with a recent report documenting a pro-invasive capability of Bcl-x(L upon exogenous over-expression.

  16. Effect modification by apoptosis-related gene polymorphisms on the associations of phthalate exposure with spermatozoa apoptosis and semen quality.

    Science.gov (United States)

    Yang, Pan; Gong, Ya-Jie; Wang, Yi-Xin; Liang, Xin-Xiu; Liu, Qing; Liu, Chong; Chen, Ying-Jun; Sun, Li; Lu, Wen-Qing; Zeng, Qiang

    2017-12-01

    Human studies indicate that phthalate exposure is associated with adverse male reproductive health, and this association may be modified by genetic polymorphisms. We investigated whether apoptosis-related gene polymorphisms modified the associations of phthalate exposure with spermatozoa apoptosis and semen quality. In this Chinese population who sought for semen examination in an infertility clinic, we measured 8 phthalate metabolites in two urine samples to assess the individual's exposure levels. Apoptosis-related gene (Fas, FasL, and caspase3) polymorphisms were performed by real-time PCR. Spermatozoa apoptosis and semen quality parameters were evaluated by Annexin V/PI assay and computer-aided semen analysis, respectively. We found that Fas rs2234767, FasL rs763110, and caspase3 rs12108497 gene polymorphisms significantly modified the associations between urinary phthalate metabolites and spermatozoa apoptosis. For example, urinary monobutyl phthalate (MBP) associated with an increased percentage of Annexin V + /PI - spermatozoa of 25.11% (95% CI: 4.08%, 50.53%) were only observed among men with CT/TT genotype of FasL rs763110. In addition, we found that caspase3 rs12108497 gene polymorphisms significantly modified the associations of urinary mono (2-ethyl-5-hydroxyhexyl) phthalate (MEHHP) with decreased sperm concentration and sperm count (both p-values for interactions = 0.02). Our results provided the first evidence that apoptosis-related gene polymorphisms might contribute to the effects of phthalate exposure on male reproductive health. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Absolute nuclear material assay

    Science.gov (United States)

    Prasad, Manoj K [Pleasanton, CA; Snyderman, Neal J [Berkeley, CA; Rowland, Mark S [Alamo, CA

    2010-07-13

    A method of absolute nuclear material assay of an unknown source comprising counting neutrons from the unknown source and providing an absolute nuclear material assay utilizing a model to optimally compare to the measured count distributions. In one embodiment, the step of providing an absolute nuclear material assay comprises utilizing a random sampling of analytically computed fission chain distributions to generate a continuous time-evolving sequence of event-counts by spreading the fission chain distribution in time.

  18. The role of cPLA2 in Methylglyoxal-induced cell apoptosis of HUVECs

    International Nuclear Information System (INIS)

    Yuan, Jie; Zhu, Chao; Hong, Yali; Sun, Zongxing; Fang, Xianjun; Wu, Biao; Li, Shengnan

    2017-01-01

    Methylglyoxal (MGO), a highly reactive dicarbonyl compound, is mainly formed as a byproduct of glycolysis. Elevated MGO level is known to induce apoptosis of vascular endothelial cells, which is implicated with progression of atherosclerosis and diabetic complications. However, the underlying mechanisms have not been exhaustively investigated yet. Here, we further characterized the mechanisms how MGO induced apoptosis in human umbilical vein endothelial cells (HUVECs). Our data revealed that cytosolic phospholipase A2 (cPLA2) played an important role in MGO-induced cell apoptosis. It was found that MGO could increase both the activity and expression of cPLA2. Inhibition of cPLA2 by Pyrrophenone (PYR) or siRNA significantly attenuated the MGO-induced apoptosis. Additionally, MGO time-dependently decreased the phosphorylation of nuclear factor κB (NF-κB). Pretreatment of the cells with NF-κB inhibitor, BAY11-7082, further increased MGO-induced apoptosis of HUVECs, indicating that NF-κB played a survival role in this MGO-induced apoptosis. Furthermore, in the presence of si-cPLA2 or PYR, MGO no longer decreased NF-κB phosphorylation. Beyond that, the antioxidant N-acetyl cysteine (NAC) could reverse the changes of both cPLA2 and NF-κB caused by MGO. p38, the upstream of cPLA2, was also significantly phosphorylated by MGO. However, p38 inhibitor failed to reverse the apoptosis induced by MGO. This study gives an important insight into the downstream signaling mechanisms of MGO, cPLA2-NF-κB, in endothelial apoptosis. - Highlights: • cPLA2 participated in MGO-induced HUVECs apoptosis. • Inhibition of NF-κB was involved in MGO-cPLA2-mediated cell apoptosis. • Antioxidant NAC attenuated MGO-induced cPLA2 activation and cell apoptosis.

  19. The role of cPLA2 in Methylglyoxal-induced cell apoptosis of HUVECs

    Energy Technology Data Exchange (ETDEWEB)

    Yuan, Jie; Zhu, Chao; Hong, Yali; Sun, Zongxing; Fang, Xianjun [Jiangsu Provincial Key Lab of Cardiovascular Diseases and Molecular intervention, Department of Pharmacology, Nanjing Medical University, Nanjing 210029 (China); Wu, Biao, E-mail: wubiao@ncu.edu.cn [Department of Surgery, The First Affiliated Hospital, Nanchang University (China); Li, Shengnan, E-mail: snli@njmu.edu.cn [Jiangsu Provincial Key Lab of Cardiovascular Diseases and Molecular intervention, Department of Pharmacology, Nanjing Medical University, Nanjing 210029 (China)

    2017-05-15

    Methylglyoxal (MGO), a highly reactive dicarbonyl compound, is mainly formed as a byproduct of glycolysis. Elevated MGO level is known to induce apoptosis of vascular endothelial cells, which is implicated with progression of atherosclerosis and diabetic complications. However, the underlying mechanisms have not been exhaustively investigated yet. Here, we further characterized the mechanisms how MGO induced apoptosis in human umbilical vein endothelial cells (HUVECs). Our data revealed that cytosolic phospholipase A2 (cPLA2) played an important role in MGO-induced cell apoptosis. It was found that MGO could increase both the activity and expression of cPLA2. Inhibition of cPLA2 by Pyrrophenone (PYR) or siRNA significantly attenuated the MGO-induced apoptosis. Additionally, MGO time-dependently decreased the phosphorylation of nuclear factor κB (NF-κB). Pretreatment of the cells with NF-κB inhibitor, BAY11-7082, further increased MGO-induced apoptosis of HUVECs, indicating that NF-κB played a survival role in this MGO-induced apoptosis. Furthermore, in the presence of si-cPLA2 or PYR, MGO no longer decreased NF-κB phosphorylation. Beyond that, the antioxidant N-acetyl cysteine (NAC) could reverse the changes of both cPLA2 and NF-κB caused by MGO. p38, the upstream of cPLA2, was also significantly phosphorylated by MGO. However, p38 inhibitor failed to reverse the apoptosis induced by MGO. This study gives an important insight into the downstream signaling mechanisms of MGO, cPLA2-NF-κB, in endothelial apoptosis. - Highlights: • cPLA2 participated in MGO-induced HUVECs apoptosis. • Inhibition of NF-κB was involved in MGO-cPLA2-mediated cell apoptosis. • Antioxidant NAC attenuated MGO-induced cPLA2 activation and cell apoptosis.

  20. Sulforaphane Prevents Neuronal Apoptosis and Memory Impairment in Diabetic Rats

    Directory of Open Access Journals (Sweden)

    Gengyin Wang

    2016-08-01

    Full Text Available Background/Aims: To explore the effects of sulforaphane (SFN on neuronal apoptosis in hippocampus and memory impairment in diabetic rats. Methods: Thirty male rats were randomly divided into normal control, diabetic model and SFN treatment groups (N = 10 in each group. Streptozotocin (STZ was applied to establish diabetic model. Water Morris maze task was applied to test learning and memory. Tunel assaying was used to detect apoptosis in hippocampus. The expressions of Caspase-3 and myeloid cell leukemia 1(MCL-1 were detected by western blotting. Neurotrophic factor levels and AKT/GSK3β pathway were also detected. Results: Compared with normal control, learning and memory were apparently impaired, with up-regulation of Caspase-3 and down-regulation of MCL-1 in diabetic rats. Apoptotic neurons were also found in CA1 region after diabetic modeling. By contrast, SFN treatment prevented the memory impairment, decreased the apoptosis of hippocampal neurons. SFN also attenuated the abnormal expression of Caspase-3 and MCL-1 in diabetic model. Mechanically, SFN treatment reversed diabetic modeling-induced decrease of p-Akt, p-GSK3β, NGF and BDNF expressions. Conclusion: SFN could prevent the memory impairment and apoptosis of hippocampal neurons in diabetic rat. The possible mechanism was related to the regulation of neurotropic factors and Akt/GSK3β pathway.

  1. Induction of apoptosis by eugenol in human breast cancer cells

    International Nuclear Information System (INIS)

    Vidhya, N.; Niranjali Devaraj, S.

    2011-01-01

    In the present study, potential anticancer effect of eugenol on inhibition of cell proliferation and induction of apoptosis in human MCF-7 breast cancer cells was investigated. Induction of cell death by eugenol was evaluated following MTT assay and monitoring lactate dehydrogenase released into the culture medium for cell viability and cytotoxicity, giemsa staining for morphological alterations, fluorescence microscopy analysis of cells using ethidium bromide and acridine orange and quantitation of DNA fragments for induction of apoptosis. Effect of eugenol on intracellular redox status of the human breast cancer cells was assessed by determining the level of glutathione and lipid peroxidation products (TBARS). Eugenol treatment inhibited the growth and proliferation of human MCF-7 breast cancer cells through induction of cell death, which was dose and time dependent. Microscopic examination of eugenol treated cells showed cell shrinkage, membrane blebbing and apoptotic body formation. Further, eugenol treatment also depleted the level of intracellular glutathione and increased the level of lipid peroxidation. The dose dependent increase in the percentage of apoptotic cells and DNA fragments suggested that apoptosis was involved in eugenol induced cell death and apoptosis might have played a role in the chemopreventive action of eugenol. (author)

  2. alpha-Amanitin induced apoptosis in primary cultured dog hepatocytes.

    Directory of Open Access Journals (Sweden)

    Adam Szelag

    2010-06-01

    Full Text Available Amatoxin poisoning is caused by mushroom species belonging to the genera Amanita, Galerina and Lepiota with the majority of lethal mushroom exposures attributable to Amanita phalloides. High mortality rate in intoxications with these mushrooms is principally a result of the acute liver failure following significant hepatocyte damage due to hepatocellular uptake of amatoxins. A wide variety of amatoxins have been isolated; however, alpha-amanitin (alpha-AMA appears to be the primary toxin. Studies in vitro and in vivo suggest that alpha-AMA does not only cause hepatocyte necrosis, but also may lead to apoptotic cell death. The objective of this study was to evaluate the complex hepatocyte apoptosis in alpha-AMA cytotoxicity. All experiments were performed on primary cultured canine hepatocytes. The cells were incubated for 12 h with alpha-AMA at a final concentration of 1, 5, 10 and 20 microM. Viability test (MTT assay, apoptosis evaluation (TUNEL reaction, detection of DNA laddering and electron microscopy were performed at 6 and 12 h of exposure to alpha-AMA. There was a clear correlation between hepatocyte viability, concentration of alpha-AMA and time of exposure to this toxin. The decline in cultured dog hepatocyte viability during the exposure to alpha-AMA is most likely preceded by enhanced cellular apoptosis. Our results demonstrate that apoptosis might contribute to pathogenesis of the severe liver injury in the course of amanitin intoxication, particularly during the early phase of poisoning.

  3. Surfactant protein D delays Fas- and TRAIL-mediated extrinsic pathway of apoptosis in T cells.

    Science.gov (United States)

    Djiadeu, Pascal; Kotra, Lakshmi P; Sweezey, Neil; Palaniyar, Nades

    2017-05-01

    Only a few extracellular soluble proteins are known to modulate apoptosis. We considered that surfactant-associated protein D (SP-D), an innate immune collectin present on many mucosal surfaces, could regulate apoptosis. Although SP-D is known to be important for immune cell homeostasis, whether SP-D affects apoptosis is unknown. In this study we aimed to determine the effects of SP-D on Jurkat T cells and human T cells dying by apoptosis. Here we show that SP-D binds to Jurkat T cells and delays the progression of Fas (CD95)-Fas ligand and TRAIL-TRAIL receptor induced, but not TNF-TNF receptor-mediated apoptosis. SP-D exerts its effects by reducing the activation of initiator caspase-8 and executioner caspase-3. SP-D also delays the surface exposure of phosphatidylserine. The effect of SP-D was ablated by the presence of caspase-8 inhibitor, but not by intrinsic pathway inhibitors. The binding ability of SP-D to dying cells decreases during the early stages of apoptosis, suggesting the release of apoptotic cell surface targets during apoptosis. SP-D also delays FasL-induced death of primary human T cells. SP-D delaying the progression of the extrinsic pathway of apoptosis could have important implications in regulating immune cell homeostasis at mucosal surfaces.

  4. Biological dosimetry: the potential use of radiation-induced apoptosis in human T-lymphocytes

    International Nuclear Information System (INIS)

    Menz, R.; Andres, R.; Larsson, B.; Ozsahin, M.; Crompton, N.E.A.; Trott, K.

    1997-01-01

    An assay for biological dosimetry based on the induction of apoptosis in human T-lymphocytes is described. Radiation-induced apoptosis was assessed by flow cytometric identification of cells displaying apoptosis-associated DNA condensation. CD4 and CD8 T-lymphocytes were analysed. They were recognized on the basis of their cell-surface antigens. Four parameters were measured for both cell types: cell size, granularity, antigen immunofluorescence and DNA content. Apoptosis was quantified as the fraction of CD4-, or CD8-positive cells with a characteristic reduction of cell size and DNA content. At doses below 1 Gy, levels of radiation-induced apoptosis increased for up to 5 days after irradiation. Optimal dose discrimination was observed 4 days after irradiation, at which time the dose-response curves were linear, with a slope of 8% ± 0.5% per 0.1 Gy. In controlled, dose-response experiments the lowest dose level at which the radiation-induced apoptosis frequency was still significantly above control was 0.05 Gy. After 5 days post-irradiation incubation, intra- and interdonor variations were measured and found to be similar; thus, apoptotic levels depend more on the dose than on the donor. The results demonstrate the potential of this assay as a biological dosimeter. (orig.)

  5. Kinetics of apoptotic markers in exogeneously induced apoptosis of EL4 cells.

    Science.gov (United States)

    Jessel, Robert; Haertel, Steffen; Socaciu, Carmen; Tykhonova, Svetlana; Diehl, Horst A

    2002-01-01

    We investigated the time-dependence of apoptotic events in EL4 cells by monitoring plasma membrane changes in correlation to DNA fragmentation and cell shrinkage. We applied three apoptosis inducers (staurosporine, tubericidine and X-rays) and we looked at various markers to follow the early-to-late apoptotic events: phospholipid translocation (identified through annexin V-fluorescein assay and propidium iodide), lipid package (via merocyanine assay), membrane fluidity and anisotropy (via fluorescent measurements), DNA fragmentation by the fluorescence-labeling test and cell size measurements. The different apoptotic inducers caused different reactions of the cells: staurosporine induced apoptosis most rapidly in a high number of cells, tubercidine triggered apoptosis only in the S phase cells, while X-rays caused a G2/M arrest and subsequently apoptosis. Loss of lipid asymmetry is promptly detectable after one hour of incubation time. The phosphatidylserine translocation, decrease of lipid package and anisotropy, and the increase of membrane fluidity appeared to be based on the same process of lipid asymmetry loss. Therefore, the DNA fragmentation and the cell shrinkage appear to be parallel and independent processes running on different time scales but which are kinetically inter-related. The results indicate different signal steps to apoptosis dependent on inducer characteristics but the kinetics of "early-to-late" apoptosis appears to be a fixed program.

  6. Endogenous Locus Reporter Assays.

    Science.gov (United States)

    Liu, Yaping; Hermes, Jeffrey; Li, Jing; Tudor, Matthew

    2018-01-01

    Reporter gene assays are widely used in high-throughput screening (HTS) to identify compounds that modulate gene expression. Traditionally a reporter gene assay is built by cloning an endogenous promoter sequence or synthetic response elements in the regulatory region of a reporter gene to monitor transcriptional activity of a specific biological process (exogenous reporter assay). In contrast, an endogenous locus reporter has a reporter gene inserted in the endogenous gene locus that allows the reporter gene to be expressed under the control of the same regulatory elements as the endogenous gene, thus more accurately reflecting the changes seen in the regulation of the actual gene. In this chapter, we introduce some of the considerations behind building a reporter gene assay for high-throughput compound screening and describe the methods we have utilized to establish 1536-well format endogenous locus reporter and exogenous reporter assays for the screening of compounds that modulate Myc pathway activity.

  7. Apoptosis in unicellular organisms: mechanisms and evolution.

    Science.gov (United States)

    Gordeeva, A V; Labas, Y A; Zvyagilskaya, R A

    2004-10-01

    Data about the programmed death (apoptosis) in unicellular organisms, from bacteria to ciliates, are discussed. Firstly apoptosis appeared in lower eukaryotes, but its mechanisms in these organisms are different from the classical apoptosis. During evolution, the apoptotic process has been improving gradually, with reactive oxygen species and Ca2+ playing an essential role in triggering apoptosis. All eukaryotic organisms have apoptosis inhibitors, which might be introduced by viruses. In the course of evolution, caspases and apoptosis-inducing factor appeared before other apoptotic proteins, with so-called death receptors being the last among them. The functional analogs of eukaryotic apoptotic proteins take parts in the programmed death of bacteria.

  8. Apoptosis: Targets in Pancreatic Cancer

    Directory of Open Access Journals (Sweden)

    Kalthoff Holger

    2003-01-01

    Full Text Available Abstract Pancreatic adenocarcinoma is characterized by poor prognosis, because of late diagnosis and lack of response to chemo- and/or radiation therapies. Resistance to apoptosis mainly causes this insensitivity to conventional therapies. Apoptosis or programmed cell death is a central regulator of tissue homeostasis. Certain genetic disturbances of apoptotic signaling pathways have been found in carcinomas leading to tumor development and progression. In the past few years, the knowledge about the complex pathways of apoptosis has strongly increased and new therapeutic approaches based on this knowledge are being developed. This review will focus on the role of apoptotic proteins contributing to pancreatic cancer development and progression and will demonstrate possible targets to influence this deadly disease.

  9. Cord blood stem cell-mediated induction of apoptosis in glioma downregulates X-linked inhibitor of apoptosis protein (XIAP.

    Directory of Open Access Journals (Sweden)

    Venkata Ramesh Dasari

    2010-07-01

    Full Text Available XIAP (X-linked inhibitor of apoptosis protein is one of the most important members of the apoptosis inhibitor family. XIAP is upregulated in various malignancies, including human glioblastoma. It promotes invasion, metastasis, growth and survival of malignant cells. We hypothesized that downregulation of XIAP by human umbilical cord blood mesenchymal stem cells (hUCBSC in glioma cells would cause them to undergo apoptotic death.We observed the effect of hUCBSC on two malignant glioma cell lines (SNB19 and U251 and two glioma xenograft cell lines (4910 and 5310. In co-cultures of glioma cells with hUCBSC, proliferation of glioma cells was significantly inhibited. This is associated with increased cytotoxicity of glioma cells, which led to glioma cell death. Stem cells induced apoptosis in glioma cells, which was evaluated by TUNEL assay, FACS analyses and immunoblotting. The induction of apoptosis is associated with inhibition of XIAP in co-cultures of hUCBSC. Similar results were obtained by the treatment of glioma cells with shRNA to downregulate XIAP (siXIAP. Downregulation of XIAP resulted in activation of caspase-3 and caspase-9 to trigger apoptosis in glioma cells. Apoptosis is characterized by the loss of mitochondrial membrane potential and upregulation of mitochondrial apoptotic proteins Bax and Bad. Cell death of glioma cells was marked by downregulation of Akt and phospho-Akt molecules. We observed similar results under in vivo conditions in U251- and 5310-injected nude mice brains, which were treated with hUCBSC. Under in vivo conditions, Smac/DIABLO was found to be colocalized in the nucleus, showing that hUCBSC induced apoptosis is mediated by inhibition of XIAP and activation of Smac/DIABLO.Our results indicate that downregulation of XIAP by hUCBSC treatment induces apoptosis, which led to the death of the glioma cells and xenograft cells. This study demonstrates the therapeutic potential of XIAP and hUCBSC to treat malignant

  10. Influenza virus induces apoptosis via BAD-mediated mitochondrial dysregulation.

    Science.gov (United States)

    Tran, Anh T; Cortens, John P; Du, Qiujiang; Wilkins, John A; Coombs, Kevin M

    2013-01-01

    Influenza virus infection results in host cell death and major tissue damage. Specific components of the apoptotic pathway, a signaling cascade that ultimately leads to cell death, are implicated in promoting influenza virus replication. BAD is a cell death regulator that constitutes a critical control point in the intrinsic apoptosis pathway, which occurs through the dysregulation of mitochondrial outer membrane permeabilization and the subsequent activation of downstream apoptogenic factors. Here we report a novel proviral role for the proapoptotic protein BAD in influenza virus replication. We show that influenza virus-induced cytopathology and cell death are considerably inhibited in BAD knockdown cells and that both virus replication and viral protein production are dramatically reduced, which suggests that virus-induced apoptosis is BAD dependent. Our data showed that influenza viruses induced phosphorylation of BAD at residues S112 and S136 in a temporal manner. Viral infection also induced BAD cleavage, late in the viral life cycle, to a truncated form that is reportedly a more potent inducer of apoptosis. We further demonstrate that knockdown of BAD resulted in reduced cytochrome c release and suppression of the intrinsic apoptotic pathway during influenza virus replication, as seen by an inhibition of caspases-3, caspase-7, and procyclic acidic repetitive protein (PARP) cleavage. Our data indicate that influenza viruses carefully modulate the activation of the apoptotic pathway that is dependent on the regulatory function of BAD and that failure of apoptosis activation resulted in unproductive viral replication.

  11. Synergistic Effect and Molecular Mechanism of Homoharringtonine and Bortezomib on SKM-1 Cell Apoptosis.

    Directory of Open Access Journals (Sweden)

    Jing Zhang

    Full Text Available Myelodysplastic syndromes (MDS are clonal marrow stem-cell disorders with a high risk of progression to acute myeloid leukemia (AML. Treatment options are limited and targeted therapies are not available for MDS. In the present study, we investigated the cytotoxicity and the molecular mechanism of Homoharringtonine (HHT and Bortezomib towards high-risk MDS cell line SKM-1 in vitro and the role of miR-3151 was first evaluated in SKM-1 cells.SKM-1 cells were treated with different concentrations of HHT or Bortezomib, and cell viability was analyzed with CCK-8 assay. The influence on cell proliferation, cell cycle distribution and the percentage of apoptosis cells were analyzed by flow cytometry. Calcusyn software was used to calculate combination index (CI values. Western blot was used to analysis phosphorylation of Akt and nuclear NF-κB protein expression in SKM-1 cells. Mature miR-3151 level and p53 protein level were detected after HHT or Bortezomib treatment. The cell proliferation and p53 protein level were reassessed in SKM-1 cells infected with lentivirus to overexpress miR-3151.Simultaneous exposure to HHT and Bortezomib (10.4:1 resulted in a significant reduction of cell proliferation in SKM-1 cells (P < 0.05. Cell cycle arrest at G0/G1 and G2/M phase was observed (P < 0.05. HHT and Bortezomib synergistically induced cell apoptosis by regulating members of caspase 9, caspase 3 and Bcl-2 family (P < 0.01. The mechanisms of the synergy involved Akt and NF-κB signaling pathway inhibition, downregulation of mature miR-3151 and increment of downstream p53 protein level. Overexpression of miR-3151 promoted cell proliferation and inhibited p53 protein expression in SKM-1 (P < 0.01.HHT and Bortezomib synergistically inhibit SKM-1 cell proliferation and induce apoptosis in vitro. Inhibition of Akt and NF-κB pathway signaling contribute to molecular mechanism of HHT and Bortezomib. miR-3151 abundance is implicated in SKM-1 cell viability, cell

  12. Molecular Mechanisms Regulating Ocular Apoptosis in Zebrafish gdf6a Mutants

    DEFF Research Database (Denmark)

    Pant, Sameer D.; March, Lindsey D.; Famulski, Jakub K.

    2013-01-01

    intrinsic or extrinsic apoptotic mechanisms were involved, morpholino antisense oligonucleotides targeting baxa, baxb, and p53 were employed. Caspase-3 immunohistochemistry (IHC) was performed to assay apoptosis. Pharmacologic inhibition (using SB203580) and IHC were used to investigate the role of p38...... occurs 28 hours post fertilization (hpf) in gdf6a(-/-) mutants that is mediated independently of p53 by intrinsic mechanisms involving Bax proteins. Also, gdf6a(-/-) mutants exhibit markedly increased p38 MAP kinase activation that can be inhibited to significantly reduce retinal apoptosis. A reduction...... in retinal smad1 expression was also noted in gdf6a(-/-) mutants. CONCLUSIONS. gdf6a(-/-)-induced apoptosis is characterized by the involvement of intrinsic apoptotic pathways, p38 MAP kinases, and dysregulated smad expression. Modulation of key mediators can inhibit retinal apoptosis offering potential...

  13. Ursolic acid mediates photosensitization by initiating mitochondrial-dependent apoptosis

    Science.gov (United States)

    Lee, Yuan-Hao; Wang, Exing; Kumar, Neeru; Glickman, Randolph D.

    2013-02-01

    The signaling pathways PI3K/Akt and MAPK play key roles in transcription, translation and carcinogenesis, and may be activated by light exposure. These pathways may be modulated or inhibited by naturally-occurring compounds, such as the triterpenoid, ursolic acid (UA). Previously, the transcription factors p53 and NF-kB, which transactivate mitochondrial apoptosis-related genes, were shown to be differentially modulated by UA. Our current work indicates that UA causes these effects via the mTOR and insulin-mediated pathways. UA-modulated apoptosis, following exposure to UV radiation, is observed to correspond to differential levels of oxidative stress in retinal pigment epithelial (RPE) and skin melanoma (SM) cells. Flow cytometry analysis, DHE (dihydroethidium) staining and membrane permeability assay showed that UA pretreatment potentiated cell cycle arrest and radiation-induced apoptosis selectively on SM cells while DNA photo-oxidative damage (i.e. strand breakage) was reduced, presumably by some antioxidant activity of UA in RPE cells. The UA-mediated NF-κB activation in SM cells was reduced by rapamycin pretreatment, which indicates that these agents exert inter-antagonistic effects in the PI3K/Akt/mTOR pathway. In contrast, the antagonistic effect of UA on the PI3K/Akt pathway was reversed by insulin leading to greater NF-κB and p53 activation in RPE cells. MitoTracker, a mitochondrial functional assay, indicated that mitochondria in RPE cells experienced reduced oxidative stress while those in SM cells exhibited increased oxidative stress upon UA pretreatment. When rapamycin administration was followed by UA, mitochondrial oxidative stress was increased in RPE cells but decreased in SM cells. These results indicate that UA modulates p53 and NF-κB, initiating a mitogenic response to radiation that triggers mitochondria-dependent apoptosis.

  14. A high ratio of apoptosis to proliferation correlates with improved survival after radiotherapy for cervical adenocarcinoma

    International Nuclear Information System (INIS)

    Sheridan, Mary T.; Cooper, Rachel A.; West, Catharine M.L.

    1999-01-01

    Purpose: A retrospective study was made of the role of apoptosis in determining radiotherapy outcome in 39 adenocarcinoma of the cervix. A comparison was also made of the detection of apoptosis by morphology and the TdT dUtp nick end-labeling (TUNEL) assay. Methods and Materials: The level of apoptosis was assessed in paraffin-embedded sections by cell morphology, the TUNEL assay, and a combination of the two. A total of 2,000 cells were counted per section, to obtain apoptotic (AI) and mitotic (MI) indices. Results: Patients with a high AI had a higher survival rate than those with a low AI, however, the difference was not significant. Using a ratio of apoptosis to proliferation indices, patients with an AI:MI > median had significantly better survival than those with AI:MI < median. This was true where the AI was quantified by morphology alone (p = 0.030) or in combination with the TUNEL assay (p = 0.008). Where the AI was quantified by a combination of morphology and TUNEL, the 5-year survival rates for women with AI:MI greater or less than the median were 81% and 25%, respectively. Conclusion: A high ratio of AI:MI in adenocarcinoma of the cervix indicates a good prognosis. A combination of the TUNEL assay and morphology provided the best discrimination between outcome groups

  15. MicroRNA-1185 Induces Endothelial Cell Apoptosis by Targeting UVRAG and KRIT1

    Directory of Open Access Journals (Sweden)

    Haoyuan Deng

    2017-04-01

    Full Text Available Background/Aims: Atherosclerosis is a multifactorial chronic disease and is the main cause of death and impairment in the world. Endothelial injury and apoptosis play a crucial role in the onset and development of atherosclerosis. MicroRNAs (miRNAs have been proven to be involved in the pathogenesis of atherosclerosis. However, studies of the functional role of apoptosis-related miRNAs in the endothelium during atherogenesis are limited. Methods: Cell injury and apoptosis were measured in five types of cells transfected with miR-1185 or co-transfected with miR-1185 and its inhibitor. Bioinformatics analysis and a luciferase reporter assay were used to confirm the targets of miR-1185. The effects of the targets of miR-1185 on endothelial apoptosis were determined using small-interfering RNA. Results: In this study, we first report that miR-1185 significantly promoted apoptosis in endothelial cells but not in vascular smooth muscle cells and macrophages. A mechanistic analysis showed that ultraviolet irradiation resistance-associated gene (UVRAG and krev1 interaction trapped gene 1 (KRIT1, targets of miR-1185, mediated miR-1185-induced endothelial cell apoptosis. Conclusion: The results revealed the impact of miR-1185 on endothelial apoptosis, suggesting that miR-1185 may be a potential target for the prevention and treatment of atherosclerosis.

  16. Heme oxygenase-1 prevents non-alcoholic steatohepatitis through suppressing hepatocyte apoptosis in mice

    Directory of Open Access Journals (Sweden)

    Fu Na

    2010-10-01

    Full Text Available Abstract Objective Heme oxygenase-1 (HO-1, the rate-limiting enzyme in heme catabolism, has been reported to have potential antioxidant properties. However, the role of HO-1 on hepatocyte apoptosis remains unclear. We aim to elucidate the effects of HO-1 on oxidative stress related hepatocellular apoptosis in nutritional steatohepatitis in mice. Methods C57BL/6J mice were fed with methionine-choline deficient (MCD diet for four weeks to induce hepatic steatohepatitis. HO-1 chemical inducer (hemin, HO-1 chemical inhibitor zinc protoporphyrin IX (ZnPP-IX and/or adenovirus carrying HO-1 gene (Ad-HO-1 were administered to mice, respectively. Hepatocyte apoptosis was evaluated by terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL assay, the mRNA and protein expression of apoptosis related genes were assayed by quantitative real-time PCR and Western blot. Results Hepatocyte signs of oxidative related apoptotic injury were presented in mice fed with MCD diet for 4 weeks. Induction of HO-1 by hemin or Ad-HO-1 significantly attenuated the severity of liver histology, which was associated with decreased hepatic lipid peroxidation content, reduced number of apoptotic cells by TUNEL staining, down-regulated expression of pro-apoptosis related genes including Fas/FasL, Bax, caspase-3 and caspase-9, reduced expression of cytochrome p4502E1 (CYP2E1, inhibited cytochrome c (Cyt-c release, and up-regulated expression of anti-apoptosis gene Bcl-2. Whereas, inhibition of HO-1 by ZnPP-IX caused oxidative stress related hepatic injury, which concomitant with increased number of TUNEL positive cells and up-regulated expression of pro-apoptosis related genes. Conclusions The present study provided evidences for the protective role of HO-1 in preventing nutritional steatohepatitis through suppressing hepatocyte apoptosis in mice.

  17. Solid phase assays

    International Nuclear Information System (INIS)

    Reese, M.G.; Johnson, L.R.; Ransom, D.K.

    1980-01-01

    In a solid phase assay for quantitative determination of biological and other analytes, a sample such as serum is contacted with a receptor for the analyte being assayed, the receptor being supported on a solid support. No tracer for the analyte is added to the sample before contacting with the receptor; instead the tracer is contacted with the receptor after unbound analyte has been removed from the receptor. The assay can be otherwise performed in a conventional manner but can give greater sensitivity. (author)

  18. Apoptosis in fresh and cryopreserved cardiac valves of pig samples.

    Science.gov (United States)

    Rendal Vázquez, M Esther; Díaz Román, T M; Rodríguez Cabarcos, M; Zavanella Botta, C; Domenech García, N; González Cuesta, M; Sánchez Dopico, M J; Pértega Díaz, S; Andión Núñez, C

    2008-06-01

    To analyse the influence of cold ischemic time (CIT) (2-24 h) and of cryopreservation (liquid phase) on the viability of the valvular fibroblasts and in the presence of apoptosis. Cardiac valves from 10 pigs were evaluated by anatomo-pathological study of the wall, muscle and leaflet. At the same time, the presence of cellular death due to apoptosis was investigated in two ways; directly on tissue by Apodetec system and by two-colour flow cytometry assay analyzing a suspension of fibroblast from valve leaflets using Anexina V and propidium iodure (PI). We established three groups of samples to compare different experimental conditions: 2 h of ischemia (group 1), 24 h of ischemia (group 2), and a programme of cryopreservation (-1 degrees C/min) after 2 h of ischemia, followed by storage in liquid nitrogen during a week and thawing was performed (group 3). The analysis of viabilities showed slight differences between all three groups. The results indicated CIT of 24 h undergoing more structural affectation than CIT of 2 h. Flow cytometry analysis did not show important differences between groups; however cryopreserved samples (group 3) slightly less viability and a higher percentage of death by apoptosis than group 1 and 2 using flow cytometry. Apoptosis was confirmed on tissue from all valves but mainly in samples of group 2 and group 3. In summary, the viability of the valves in the case of ischemic times of 2 h, 24 h or after cryopreservation/thawing differs slightly. The death of the cells is mainly mediated by necrosis and not by apoptosis.

  19. Evaluating In Vitro DNA Damage Using Comet Assay.

    Science.gov (United States)

    Lu, Yanxin; Liu, Yang; Yang, Chunzhang

    2017-10-11

    DNA damage is a common phenomenon for each cell during its lifespan, and is defined as an alteration of the chemical structure of genomic DNA. Cancer therapies, such as radio- and chemotherapy, introduce enormous amount of additional DNA damage, leading to cell cycle arrest and apoptosis to limit cancer progression. Quantitative assessment of DNA damage during experimental cancer therapy is a key step to justify the effectiveness of a genotoxic agent. In this study, we focus on a single cell electrophoresis assay, also known as the comet assay, which can quantify single and double-strand DNA breaks in vitro. The comet assay is a DNA damage quantification method that is efficient and easy to perform, and has low time/budget demands and high reproducibility. Here, we highlight the utility of the comet assay for a preclinical study by evaluating the genotoxic effect of olaparib/temozolomide combination therapy to U251 glioma cells.

  20. Radiopharmacological evaluation of 18F-labeled phosphatidylserine-binding peptides for molecular imaging of apoptosis

    International Nuclear Information System (INIS)

    Wuest, Melinda; Perreault, Amanda; Kapty, Janice; Richter, Susan; Foerster, Christian; Bergman, Cody; Way, Jenilee; Mercer, John; Wuest, Frank

    2015-01-01

    [ 18 F]FBAM-CPGDLSR (SUV 5min 0.16, SUV 60min 0.10). Drug-treated EL4 tumors did not show an increased uptake for both [ 18 F]FBAM-labeled peptides. Conclusion: Although both 18 F-labeled peptides [ 18 F]FBAM-CLIKKPF and [ 18 F]FBAM-CPGDLSR showed higher binding to apoptotic Jurkat cells in vitro, their in vivo uptake profiles were not different in apoptotic EL4 tumors. This may explained by the relatively low potency of both compounds to compete with binding of 64 Cu-labeled annexin-V to PS. Overall the novel competitive radiometric PS-binding assay with 64 Cu-labeled annexin-V represents a versatile and very robust screening platform to analyze potential PS-binding compounds in vitro. Further studies will be necessary to evaluate alternative peptide structures toward their use as PET radiotracers imaging apoptosis in vivo. Advances in knowledge and implications for patient care: Development of peptide-based radiotracers for imaging apoptosis in vivo remains a significant challenge.

  1. Factor IX assay

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/article/003679.htm Factor IX assay To use the sharing features on ... M. is also a founding member of Hi-Ethics and subscribes to the principles of the Health ...

  2. Factor VIII assay

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/article/003678.htm Factor VIII assay To use the sharing features on ... M. is also a founding member of Hi-Ethics and subscribes to the principles of the Health ...

  3. Factor II assay

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/article/003674.htm Factor II assay To use the sharing features on ... M. is also a founding member of Hi-Ethics and subscribes to the principles of the Health ...

  4. Factor VII assay

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/article/003676.htm Factor VII assay To use the sharing features on ... M. is also a founding member of Hi-Ethics and subscribes to the principles of the Health ...

  5. Microbead agglutination based assays

    KAUST Repository

    Kodzius, Rimantas; Castro, David; Foulds, Ian G.; Parameswaran, Ash M.; Sumanpreet, K. Chhina

    2013-01-01

    We report a simple and rapid room temperature assay for point-of-care (POC) testing that is based on specific agglutination. Agglutination tests are based on aggregation of microbeads in the presence of a specific analyte thus enabling

  6. Apoptosis detection in histological sections

    Czech Academy of Sciences Publication Activity Database

    Matalová, Eva; Dubská, Lenka; Míšek, Ivan

    2003-01-01

    Roč. 72, č. 7 (2003), s. 18-19 ISSN 0001-7213. [Congress of the European Association of Veterinary Anatomists/24./. 21.07.2002-25.07.2002, Brno] R&D Projects: GA ČR GP204/02/P112 Institutional research plan: CEZ:AV0Z5045916 Keywords : apoptosis Subject RIV: FF - HEENT, Dentistry

  7. Molecular mechanism of apoptosis and characterization of apoptosis induced by radiation

    International Nuclear Information System (INIS)

    Li Yumin; Zhang Yuguang; Li Yukun

    1999-01-01

    The major discoveries of apoptosis research in recent years were reviewed briefly. The mechanisms of caspases/ICE gene family and bcl-2 gene family on apoptosis were analyzed. And the signal transduction pathway of apoptosis found currently has been summarized. The characterizations of apoptosis induced by radiation such as time-effects, dose-effects and the radiosensibility were summed up

  8. Baicalein antagonizes rotenone-induced apoptosis in dopaminergic SH-SY5Y cells related to Parkinsonism

    OpenAIRE

    Song Ju-Xian; Choi Mandy; Wong Kavin; Chung Winkie; Sze Stephen; Ng Tzi-Bun; Zhang Kalin

    2012-01-01

    Abstract Background Two active compounds, baicalein and its glycoside baicalin were found in the dried root of Scutellaria baicalensis Georgi, and reported to be neuroprotective in vitro and in vivo. This study aims to evaluate the protective effects of baicalein on the rotenone-induced apoptosis in dopaminergic SH-SY5Y cells related to parkinsonism. Methods Cell viability and cytotoxicity were determined by MTT assay. The degree of nuclear apoptosis was evaluated with a fluorescent DNA-bindi...

  9. Bim is a crucial regulator of apoptosis induced by Mycobacterium tuberculosis

    Science.gov (United States)

    Aguiló, N; Uranga, S; Marinova, D; Martín, C; Pardo, J

    2014-01-01

    Mycobacterium tuberculosis, the causative agent of tuberculosis, induces apoptosis in infected macrophages in vitro and in vivo. However, the molecular mechanism controlling this process is not known. In order to study the involvement of the mitochondrial apoptotic pathway in M. tuberculosis-induced apoptosis, we analysed cell death in M. tuberculosis-infected embryonic fibroblasts (MEFs) derived from different knockout mice for genes involved in this route. We found that apoptosis induced by M. tuberculosis is abrogated in the absence of Bak and Bax, caspase 9 or the executioner caspases 3 and 7. Notably, we show that MEF deficient in the BH3-only BCL-2-interacting mediator of cell death (Bim) protein were also resistant to this process. The relevance of these results has been confirmed in the mouse macrophage cell line J774, where cell transfection with siRNA targeting Bim impaired apoptosis induced by virulent mycobacteria. Notably, only infection with a virulent strain, but not with attenuated ESX-1-defective strains, such as Bacillus Calmette-Guerin and live-attenuated M. tuberculosis vaccine strain MTBVAC, induced Bim upregulation and apoptosis, probably implicating virulence factor early secreted antigenic target 6-kDa protein in this process. Our results suggest that Bim upregulation and apoptosis is mediated by the p38MAPK-dependent pathway. Our findings show that Bim is a master regulator of apoptosis induced by M. tuberculosis. PMID:25032866

  10. P53-mediated rapid induction of apoptosis conveys resistance to viral infection in Drosophila melanogaster.

    Directory of Open Access Journals (Sweden)

    Bo Liu

    2013-02-01

    Full Text Available Arthropod-borne pathogens account for millions of deaths each year. Understanding the genetic mechanisms controlling vector susceptibility to pathogens has profound implications for developing novel strategies for controlling insect-transmitted infectious diseases. The fact that many viruses carry genes that have anti-apoptotic activity has long led to the hypothesis that induction of apoptosis could be a fundamental innate immune response. However, the cellular mechanisms mediating the induction of apoptosis following viral infection remained enigmatic, which has prevented experimental verification of the functional significance of apoptosis in limiting viral infection in insects. In addition, studies with cultured insect cells have shown that there is sometimes a lack of apoptosis, or the pro-apoptotic response happens relatively late, thus casting doubt on the functional significance of apoptosis as an innate immunity. Using in vivo mosquito models and the native route of infection, we found that there is a rapid induction of reaper-like pro-apoptotic genes within a few hours following exposure to DNA or RNA viruses. Recapitulating a similar response in Drosophila, we found that this rapid induction of apoptosis requires the function of P53 and is mediated by a stress-responsive regulatory region upstream of reaper. More importantly, we showed that the rapid induction of apoptosis is responsible for preventing the expression of viral genes and blocking the infection. Genetic changes influencing this rapid induction of reaper-like pro-apoptotic genes led to significant differences in susceptibility to viral infection.

  11. Apoptosis inducing activity of benzophenanthridine-type alkaloids and 2-arylbenzofuran neolignans in HCT116 colon carcinoma cells.

    Science.gov (United States)

    Mansoor, Tayyab A; Borralho, Pedro M; Luo, Xuan; Mulhovo, Silva; Rodrigues, Cecília M P; Ferreira, Maria-José U

    2013-07-15

    Thirteen compounds belonging to different classes of alkaloids (1-9) and lignans (10-13), isolated from the methanol extract of roots of the African medicinal plant Zanthoxylum capense, were assayed for their ability as apoptosis inducers in HCT116 colon carcinoma cells. The cytotoxicity of these compounds was evaluated in HCT116 colon carcinoma cells by the MTS assay. Out of the tested compounds, three benzophenanthridine alkaloids (1, 4, and 7), a dibenzyl butyrolactone lignan (10), and two 2-arylbenzofuran neolignans (12 and 13) displayed significant cytotoxicity to HCT116 cells, confirmed by the Guava ViaCount viability assay. The selected compounds (1, 4, 7, 10, 12, and 13) were further tested for apoptosis induction activity in HCT116 cells, by evaluation of nuclear morphology following Hoechst staining, and by caspase-3 like activity assays. Morphologic evaluation of HCT116 nuclei following Hoechst staining and fluorescence microscopy revealed that compounds 1, 4, 7, 10, 12, and 13 induced apoptosis in HCT116 colon carcinoma cells, producing similar, or higher, apoptosis levels when compared with 5-fluorouracil (5-FU), the cornerstone cytotoxic used in colon cancer treatment for several decades. In fact, HCT116 cells developed morphological changes characteristic of apoptosis, including chromatin condensation, nuclear fragmentation and formation of apoptotic bodies. Importantly, compounds 4 and 13 at 20 μM were the most promising in this study, inducing respectively ∼11- and 7-fold increases in apoptotic cells as compared to vehicle control, whereas 5-FU increased apoptosis by ∼2-fold. Apoptosis induction for compounds 4 and 13 was further confirmed by caspase-3-like activity assays, which showed respectively ∼2- and 1.5-fold increases in caspase-3-like activity compared to vehicle control. These results suggested that specific benzophenanthridine alkaloids and 2-arylbenzofuran neolignans isolated from Zanthoxylum capense show strong anticancer

  12. Autophagy Is a Protective Response to the Oxidative Damage to Endplate Chondrocytes in Intervertebral Disc: Implications for the Treatment of Degenerative Lumbar Disc

    Directory of Open Access Journals (Sweden)

    Ke Chen

    2017-01-01

    Full Text Available Low back pain (LBP is the leading cause of disability in the elderly. Intervertebral disc degeneration (IDD was considered as the main cause for LBP. Degeneration of cartilaginous endplate was a crucial harmful factor during the initiation and development of IDD. Oxidative stress was implicated in IDD. However, the underlying molecular mechanism for the degeneration of cartilaginous endplate remains elusive. Herein, we found that oxidative stress could induce apoptosis and autophagy in endplate chondrocytes evidenced by western blot analysis, flow cytometry, immunofluorescence staining, GFP-LC3B transfection, and MDC staining. In addition, we also found that the apoptosis of endplate chondrocytes was significantly increased after the inhibition of autophagy by bafilomycin A1 shown by flow cytometry. Furthermore, mTOR pathway upstream autophagy was greatly suppressed suggested by western blot assay. In conclusion, our study strongly revealed that oxidative stress could increase autophagy and apoptosis of endplate chondrocytes in intervertebral disc. The increase of autophagy activity could prevent endplate chondrocytes from apoptosis. The autophagy in endplate chondrocytes induced by oxidative stress was mTOR dependent. These findings might shed some new lights on the mechanism for IDD and provide new strategies for the treatments of IDD.

  13. Epithelial apoptosis in mechanistically distinct methods of injury in the murine small intestine

    Science.gov (United States)

    Vyas, Dinesh; Robertson, Charles M; Stromberg, Paul E; Martin, James R.; Dunne, W. Michael; Houchen, Courtney W; Barrett, Terrence A; Ayala, Alfred; Perl, Mario; Buchman, Timothy G; Coopersmith, Craig M

    2007-01-01

    Gut epithelial apoptosis is involved in the pathophysiology of multiple diseases. This study characterized intestinal apoptosis in three mechanistically distinct injuries with different kinetics of cell death. FVB/N mice were subjected to gamma radiation, Pseudomonas aeruginosa pneumonia or injection of monoclonal anti-CD3 antibody and sacrificed 4, 12, or 24 hours post-injury (n=10/time point). Apoptosis was quantified in the jejunum by hematoxylin and eosin (H&E), active caspase-3, terminal deoxynucleotidyl transferase dUTP-mediated nick end labeling (TUNEL), in situ oligoligation reaction (ISOL,) cytokeratin 18, and annexin V staining. Reproducible results were obtained only for H&E, active caspase-3, TUNEL and ISOL, which were quantified and compared against each other for each injury at each time point. Kinetics of injury were different with early apoptosis highest following radiation, late apoptosis highest following anti CD3, and more consistent levels following pneumonia. ISOL was the most consistent stain and was always statistically indistinguishable from at least 2 stains. In contrast, active caspase-3 demonstrated lower levels of apoptosis, while the TUNEL assay had higher levels of apoptosis in the most severely injured intestine regardless of mechanism of injury. H&E was a statistical outlier more commonly than any other stain. This suggests that regardless of mechanism or kinetics of injury, ISOL correlates to other quantification methods of detecting gut epithelial apoptosis more than any other method studied and compares favorably to other commonly accepted techniques of quantifying apoptosis in a large intestinal cross sectional by balancing sensitivity and specificity across a range of times and levels of death. PMID:17357092

  14. LP-THAE induced tumor cell apoptosis of rabbit VX2 liver carcinoma

    International Nuclear Information System (INIS)

    Chen Shengli; Quan Yi; Huang Zicheng; Chen Guodong; Zhu Dongliang

    2007-01-01

    Objective: To research tumor cell apoptosis induced by Lp-THAE of rabbit VX2 liver implanted tumor. Methods: 27 New Zealand white rabbits implanted with VX2 tumor at left middle lobe of the liver divided into three groups: Group A(n= 9) Lp-THAE: treated through transhepatic artery catheterization; Group B(n=9) THAI and Group C(n=9) as control. The rabbits were executed at second to fifth day after treatment. HE dye microscopy was taken for counting the typical apoptosis cells and calculating apoptosis index (ApI). FITC-AnnexinV/PI assay was used for measuring apoptosis by flow cytometry. Results: The ApI of tumor central area and marginal area were (17.769±2.417)%, (4.129±1.172)%, P<0.01. The percentages of tumor cell apoptosis and tumor cell necrosis were (16.483±1.404)%, (9.478±0.964)%, P<0.01 and (43.559±5.053)%, (33.460±1.840)%, P=0.093. The total percentages of tumor cell apoptosis and necrosis were (60.042±13.979)%, (42.938±8.979)%, P< 0.01, at tumor center and marginal area in THAE group respectively. The ApI, percentages of tumor cell apoptosis and necrosis in THAE group were significantly higher than those of THAI group (P<0.01). The percentages of tumor cell apoptosis at tumor center area in THAE group were significantly higher than those of tumor marginal area(P<0.01). Conclusion: Induced tumor cell apoptosis and necrosis are two mechanisms of action for Lp-THAE treatment of liver carcinoma. (authors)

  15. Neutrophil and macrophage apoptosis in bronchoalveolar lavage fluid from healthy horses and horses with recurrent airway obstruction (RAO)

    Science.gov (United States)

    2014-01-01

    Background Dysregulation of apoptosis has been implicated in a range of diseases including tumors, neurodegenerative and autoimmine diseases, as well as allergic asthma and chronic obstructive pulmonary disease (COPD) in humans. Although it has a different pathophysiology, delayed apoptosis of various inflammatory cells may play a pivotal role in the development of recurrent airway obstruction (RAO) in horses. Reduction of inflammatory cell apoptosis or a dysregulation of this process could lead to chronic inflammation and tissue injury. Therefore, the aim of this study was to investigate the rate of apoptosis and necrosis of neutrophils and macrophages in bronchoalveolar lavage fluid obtained from seven horses suffering from RAO (study group) and seven control horses. Results We demonstrated that neutrophil/macrophage apoptosis is altered in RAO-affected horses compared with the control group in the BAL fluid. We found a significant difference between the median percentage of early and late apoptosis of neutrophils between the study and control group of horses. Moreover, we found a positive correlation between the rate of apoptosis and the median percentage of macrophages in RAO-affected horses. Conclusion The findings suggest that apoptosis dysregulation may play a significant role in the pathogenesis of RAO. However, further studies are needed to clarify the role of altered apoptosis in the course of equine recurrent airway obstruction. PMID:24460911

  16. Monitoring environmental exposures with semen assays

    International Nuclear Information System (INIS)

    Anon.

    1979-01-01

    Semen studies in humans and animals have yielded extensive and compelling evidence that sperm can be used to assess reproductive potential and diagnose pathology. More recent studies on mutagens and carcinogens both at this and other laboratories suggest that a combination of mouse and human assays can be an efficient, effective approach to monitoring for reproductive hazards in the environment. We are investigating the potential of using variability in sperm morphology and DNA content to quantify and monitor the effects of environmental agents on the human testes. Here we review the status of human and mouse assays for environmental surveillance, discuss the genetic and fertility implications of chemically induced semen changes, and describe the high-speed flow methods being developed to automate sperm assays

  17. Targeting Apoptosis Signaling in Pancreatic Cancer

    International Nuclear Information System (INIS)

    Fulda, Simone

    2011-01-01

    The ability to escape apoptosis or programmed cell death is a hallmark of human cancers, for example pancreatic cancer. This can promote tumorigenesis, since too little cell death by apoptosis disturbs tissue homeostasis. Additionally, defective apoptosis signaling is the underlying cause of failure to respond to current treatment approaches, since therapy-mediated antitumor activity requires the intactness of apoptosis signaling pathways in cancer cells. Thus, the elucidation of defects in the regulation of apoptosis in pancreatic carcinoma can result in the identification of novel targets for therapeutic interference and for exploitation for cancer drug discovery

  18. Targeting Apoptosis Signaling in Pancreatic Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Fulda, Simone [Institute for Experimental Cancer Research in Pediatrics, Goethe-University Frankfurt, Komturstr. 3a, 60528 Frankfurt (Germany)

    2011-01-11

    The ability to escape apoptosis or programmed cell death is a hallmark of human cancers, for example pancreatic cancer. This can promote tumorigenesis, since too little cell death by apoptosis disturbs tissue homeostasis. Additionally, defective apoptosis signaling is the underlying cause of failure to respond to current treatment approaches, since therapy-mediated antitumor activity requires the intactness of apoptosis signaling pathways in cancer cells. Thus, the elucidation of defects in the regulation of apoptosis in pancreatic carcinoma can result in the identification of novel targets for therapeutic interference and for exploitation for cancer drug discovery.

  19. Assay method and compositions

    International Nuclear Information System (INIS)

    1977-01-01

    Methods are described for measuring catecholamine levels in human and animal body fluids and tissues using the catechol-O-methyl-transferase (COMT) radioassay. The assay involves incubating the biological sample with COMT and the tritiated methyl donor, S-adenosyl-L-methionine( 3 H)-methyl. The O-methylated ( 3 H) epinephrine and/or norepinephrine are extracted and oxidised to vanillin- 3 H which in turn is extracted and its radioactivity counted. When analysing dopamine levels the assay is extended by vanillin- 3 H and raising the pH of the aqueous periodate phase from which O-methylated ( 3 H) dopamine is extracted and counted. The assay may be modified depending on whether measurements of undifferentiated total endogenous catecholamine levels or differential analyses of the catecholamine levels are being performed. The sensitivity of the assay can be as low as 5 picograms for norepinephrine and epinephrine and 12 picograms for dopamine. The assemblance of the essential components of the assay into a kit for use in laboratories is also described. (U.K.)

  20. The novel NF-κB inhibitor IMD-0354 induces apoptosis in chronic lymphocytic leukemia

    Energy Technology Data Exchange (ETDEWEB)

    Kanduri, M; Tobin, G [Rudbeck Laboratory, Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala (Sweden); Åleskog, A [Department of Medical Sciences, Clinical Pharmacology, Uppsala University, Uppsala (Sweden); Nilsson, K; Rosenquist, R [Rudbeck Laboratory, Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala (Sweden)

    2011-03-01

    Nuclear factor-κB (NF-κB) is an important regulator of cell survival and has been shown to be constitutively active in chronic lymphocytic leukemia (CLL) cells. Recently, a novel NF-κB inhibitor, IMD-0354 (N-(3, 5-bis-trifluoromethyl-phenyl)-5-chloro-2-hydroxy-benzamide), was shown to specifically inhibit the phosphorylation of IκBα by IkB kinases, thus preventing NF-κB release. In this study, we investigated if IMD-0354 can inhibit NF-κB activation and induce apoptosis in CLL cells in vitro. The rate of increase in apoptosis, drug sensitivity and DNA-binding activity of NF-κB were studied using Annexin V stainings, the fluorometric microculture cytotoxicity assay and electrophoretic mobility shift assay, respectively. Finally, the impact of IMD-0354 treatment on the expression of a set of apoptosis-related genes was investigated. The results clearly show that IMD-0354 induced apoptosis (mean 26%, range 8–48%) in CLL cells, independent of immunoglobulin heavy variable (IGHV) gene mutational status, and showed a dose-dependent cytotoxic effect. IMD-0354 treatment also significantly lowered the DNA-binding activity of NF-κB in CLL cells. In addition, we identified differences in expression levels of pro- and antiapoptotic genes following IMD-0354 treatment. In summary, our novel findings show that IMD-0354 can induce apoptosis in CLL cells, and thus merits further investigation as an anticancer agent in vivo.

  1. Study on apoptosis of prostate cancer cell induced by 125I seed irradiation

    International Nuclear Information System (INIS)

    Liao Anyan; Wang Junjie; Wang Jidong; Zhuang Hongqing; Zhao Yong

    2007-01-01

    Objective: To explore the mechanism of apoptosis induced by 125 I seed irradiation on PC3 cells. Methods: Human prostate cancer cell line PC3 was treated by irradiation of 125 I (2.77 cGy/h) with various dose. Agarose gel electrophoresis of DNA and flows cytometry were used to detect the apoptosis of PC3 cells and indirect immunofluorescence assay was used to detect the expression of Bcl-2. The activity of Caspase-3 was measured by Caspase Colorimetric Assay Kits. Results: Apoptosis of PC3 cells could be efficiently induced by 125 I seed irradiation. The apoptotic peaks were found by flow cytometry and DNA ladder appeared on 1.8% agarose gel. The activity of Caspase-3 on PC3 cells treated by 125 I seed irradiation was not changed significantly. Bcl-2 gene expression was down-regulated with the sample concentration increased. Conclusion: 125 I irradiation can induce the apoptosis of PC3 cells and the mechanism of apoptosis is related with down regulation of Bcl-2 gene expression and is not related with Caspase-3 activity. (authors)

  2. The novel NF-κB inhibitor IMD-0354 induces apoptosis in chronic lymphocytic leukemia

    International Nuclear Information System (INIS)

    Kanduri, M; Tobin, G; Åleskog, A; Nilsson, K; Rosenquist, R

    2011-01-01

    Nuclear factor-κB (NF-κB) is an important regulator of cell survival and has been shown to be constitutively active in chronic lymphocytic leukemia (CLL) cells. Recently, a novel NF-κB inhibitor, IMD-0354 (N-(3, 5-bis-trifluoromethyl-phenyl)-5-chloro-2-hydroxy-benzamide), was shown to specifically inhibit the phosphorylation of IκBα by IkB kinases, thus preventing NF-κB release. In this study, we investigated if IMD-0354 can inhibit NF-κB activation and induce apoptosis in CLL cells in vitro. The rate of increase in apoptosis, drug sensitivity and DNA-binding activity of NF-κB were studied using Annexin V stainings, the fluorometric microculture cytotoxicity assay and electrophoretic mobility shift assay, respectively. Finally, the impact of IMD-0354 treatment on the expression of a set of apoptosis-related genes was investigated. The results clearly show that IMD-0354 induced apoptosis (mean 26%, range 8–48%) in CLL cells, independent of immunoglobulin heavy variable (IGHV) gene mutational status, and showed a dose-dependent cytotoxic effect. IMD-0354 treatment also significantly lowered the DNA-binding activity of NF-κB in CLL cells. In addition, we identified differences in expression levels of pro- and antiapoptotic genes following IMD-0354 treatment. In summary, our novel findings show that IMD-0354 can induce apoptosis in CLL cells, and thus merits further investigation as an anticancer agent in vivo

  3. The novel NF-κB inhibitor IMD-0354 induces apoptosis in chronic lymphocytic leukemia

    Science.gov (United States)

    Kanduri, M; Tobin, G; Åleskog, A; Nilsson, K; Rosenquist, R

    2011-01-01

    Nuclear factor-κB (NF-κB) is an important regulator of cell survival and has been shown to be constitutively active in chronic lymphocytic leukemia (CLL) cells. Recently, a novel NF-κB inhibitor, IMD-0354 (N-(3, 5-bis-trifluoromethyl-phenyl)-5-chloro-2-hydroxy-benzamide), was shown to specifically inhibit the phosphorylation of IκBα by IkB kinases, thus preventing NF-κB release. In this study, we investigated if IMD-0354 can inhibit NF-κB activation and induce apoptosis in CLL cells in vitro. The rate of increase in apoptosis, drug sensitivity and DNA-binding activity of NF-κB were studied using Annexin V stainings, the fluorometric microculture cytotoxicity assay and electrophoretic mobility shift assay, respectively. Finally, the impact of IMD-0354 treatment on the expression of a set of apoptosis-related genes was investigated. The results clearly show that IMD-0354 induced apoptosis (mean 26%, range 8–48%) in CLL cells, independent of immunoglobulin heavy variable (IGHV) gene mutational status, and showed a dose-dependent cytotoxic effect. IMD-0354 treatment also significantly lowered the DNA-binding activity of NF-κB in CLL cells. In addition, we identified differences in expression levels of pro- and antiapoptotic genes following IMD-0354 treatment. In summary, our novel findings show that IMD-0354 can induce apoptosis in CLL cells, and thus merits further investigation as an anticancer agent in vivo. PMID:22829125

  4. Utilizing the virus-induced blocking of apoptosis in an easy baculovirus titration method.

    Science.gov (United States)

    Niarchos, Athanasios; Lagoumintzis, George; Poulas, Konstantinos

    2015-10-22

    Baculovirus-mediated protein expression is a robust experimental technique for producing recombinant higher-eukaryotic proteins because it combines high yields with considerable post-translational modification capabilities. In this expression system, the determination of the titer of recombinant baculovirus stocks is important to achieve the correct multiplicity of infection for effective amplification of the virus and high expression of the target protein. To overcome the drawbacks of existing titration methods (e.g., plaque assay, real-time PCR), we present a simple and reliable assay that uses the ability of baculoviruses to block apoptosis in their host cells to accurately titrate virus samples. Briefly, after incubation with serial dilutions of baculovirus samples, Sf9 cells were UV irradiated and, after apoptosis induction, they were viewed via microscopy; the presence of cluster(s) of infected cells as islets indicated blocked apoptosis. Subsequently, baculovirus titers were calculated through the determination of the 50% endpoint dilution. The method is simple, inexpensive, and does not require unique laboratory equipment, consumables or expertise; moreover, it is versatile enough to be adapted for the titration of every virus species that can block apoptosis in any culturable host cells which undergo apoptosis under specific conditions.

  5. The Immunomodulatory Small Molecule Imiquimod Induces Apoptosis in Devil Facial Tumour Cell Lines.

    Directory of Open Access Journals (Sweden)

    Amanda L Patchett

    Full Text Available The survival of the Tasmanian devil (Sarcophilus harrisii is threatened by devil facial tumour disease (DFTD. This transmissible cancer is usually fatal, and no successful treatments have been developed. In human studies, the small immunomodulatory molecule imiquimod is a successful immunotherapy, activating anti-tumour immunity via stimulation of toll-like receptor-7 (TLR7 signaling pathways. In addition, imiquimod is a potent inducer of apoptosis in human tumour cell lines via TLR7 independent mechanisms. Here we investigate the potential of imiquimod as a DFTD therapy through analysis of treated DFTD cell lines and Tasmanian devil fibroblasts. WST-8 proliferation assays and annexin V apoptosis assays were performed to monitor apoptosis, and changes to the expression of pro- and anti-apoptotic genes were analysed using qRT-PCR. Our results show that DFTD cell lines, but not Tasmanian devil fibroblasts, are sensitive to imiquimod-induced apoptosis in a time and concentration dependent manner. Induction of apoptosis was accompanied by down-regulation of the anti-apoptotic BCL2 and BCLXL genes, and up-regulation of the pro-apoptotic BIM gene. Continuous imiquimod treatment was required for these effects to occur. These results demonstrate that imiquimod can deregulate DFTD cell growth and survival in direct and targeted manner. In vivo, this may increase DFTD vulnerability to imiquimod-induced TLR7-mediated immune responses. Our findings have improved the current knowledge of imiquimod action in tumour cells for application to both DFTD and human cancer therapy.

  6. Rover waste assay system

    Energy Technology Data Exchange (ETDEWEB)

    Akers, D.W.; Stoots, C.M.; Kraft, N.C.; Marts, D.J. [Idaho National Engineering Lab., Idaho Falls, ID (United States)

    1997-11-01

    The Rover Waste Assay System (RWAS) is a nondestructive assay system designed for the rapid assay of highly-enriched {sup 235}U contaminated piping, tank sections, and debris from the Rover nuclear rocket fuel processing facility at the Idaho Chemical Processing Plant. A scanning system translates a NaI(Tl) detector/collimator system over the structural components where both relative and calibrated measurements for {sup 137}Cs are made. Uranium-235 concentrations are in operation and is sufficiently automated that most functions are performed by the computer system. These functions include system calibration, problem identification, collimator control, data analysis, and reporting. Calibration of the system was done through a combination of measurements on calibration standards and benchmarked modeling. A description of the system is presented along with the methods and uncertainties associated with the calibration and analysis of the system for components from the Rover facility. 4 refs., 2 figs., 4 tabs.

  7. Rover waste assay system

    International Nuclear Information System (INIS)

    Akers, D.W.; Stoots, C.M.; Kraft, N.C.; Marts, D.J.

    1997-01-01

    The Rover Waste Assay System (RWAS) is a nondestructive assay system designed for the rapid assay of highly-enriched 235 U contaminated piping, tank sections, and debris from the Rover nuclear rocket fuel processing facility at the Idaho Chemical Processing Plant. A scanning system translates a NaI(Tl) detector/collimator system over the structural components where both relative and calibrated measurements for 137 Cs are made. Uranium-235 concentrations are in operation and is sufficiently automated that most functions are performed by the computer system. These functions include system calibration, problem identification, collimator control, data analysis, and reporting. Calibration of the system was done through a combination of measurements on calibration standards and benchmarked modeling. A description of the system is presented along with the methods and uncertainties associated with the calibration and analysis of the system for components from the Rover facility. 4 refs., 2 figs., 4 tabs

  8. Radioreceptor assay for insulin

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, Kazuo [Tokyo Univ. (Japan). Faculty of Medicine

    1975-04-01

    Radioreceptor assay of insulin was discussed from the aspects of the measuring method, its merits and problems to be solved, and its clinical application. Rat liver 10 x g pellet was used as receptor site, and enzymatic degradation of insulin by the system contained in this fraction was inhibited by adding 1 mM p-CMB. /sup 125/I-labelled porcine insulin was made by lactoperoxidase method under overnight incubation at 4/sup 0/C and later purification by Sephadex G-25 column and Whatman CF-11 cellulose powder. Dog pancreatic vein serum insulin during and after the glucose load was determined by radioreceptor assay and radioimmunoassay resulting that both measurements accorded considerably. Radioreceptor assay would clarify the pathology of disorders of glucose metabolism including diabetes.

  9. Apoptosis-Related Gene Expression Profiling in Hematopoietic Cell Fractions of MDS Patients

    NARCIS (Netherlands)

    MC Langemeijer, Saskia; Mariani, Niccolo; Knops, Ruth; Gilissen, Christian; Woestenenk, Rob; de Witte, Theo; Huls, Gerwin; van der Reijden, Bert A.; Jansen, Joop H.

    2016-01-01

    Although the vast majority of patients with a myelodysplastic syndrome (MDS) suffer from cytopenias, the bone marrow is usually normocellular or hypercellular. Apoptosis of hematopoietic cells in the bone marrow has been implicated in this phenomenon. However, in MDS it remains only partially

  10. Clonogenic assay: adherent cells.

    Science.gov (United States)

    Rafehi, Haloom; Orlowski, Christian; Georgiadis, George T; Ververis, Katherine; El-Osta, Assam; Karagiannis, Tom C

    2011-03-13

    The clonogenic (or colony forming) assay has been established for more than 50 years; the original paper describing the technique was published in 1956. Apart from documenting the method, the initial landmark study generated the first radiation-dose response curve for X-ray irradiated mammalian (HeLa) cells in culture. Basically, the clonogenic assay enables an assessment of the differences in reproductive viability (capacity of cells to produce progeny; i.e. a single cell to form a colony of 50 or more cells) between control untreated cells and cells that have undergone various treatments such as exposure to ionising radiation, various chemical compounds (e.g. cytotoxic agents) or in other cases genetic manipulation. The assay has become the most widely accepted technique in radiation biology and has been widely used for evaluating the radiation sensitivity of different cell lines. Further, the clonogenic assay is commonly used for monitoring the efficacy of radiation modifying compounds and for determining the effects of cytotoxic agents and other anti-cancer therapeutics on colony forming ability, in different cell lines. A typical clonogenic survival experiment using adherent cells lines involves three distinct components, 1) treatment of the cell monolayer in tissue culture flasks, 2) preparation of single cell suspensions and plating an appropriate number of cells in petri dishes and 3) fixing and staining colonies following a relevant incubation period, which could range from 1-3 weeks, depending on the cell line. Here we demonstrate the general procedure for performing the clonogenic assay with adherent cell lines with the use of an immortalized human keratinocyte cell line (FEP-1811). Also, our aims are to describe common features of clonogenic assays including calculation of the plating efficiency and survival fractions after exposure of cells to radiation, and to exemplify modification of radiation-response with the use of a natural antioxidant

  11. Effect of quercetin on apoptosis of PANC-1 cells.

    Science.gov (United States)

    Lee, Joo Hyun; Lee, Han-Beom; Jung, Gum O; Oh, Jung Taek; Park, Dong Eun; Chae, Kwon Mook

    2013-12-01

    To investigate the chemotherapeutic effect of quercetin against cancer cells, signaling pathway of apoptosis was explored in human pancreatic cells. Various anticancer drugs including adriamycin, cisplatin, 5-fluorouracil (5-FU) and gemcitabine were used. Cell viability was measured by 3-[4,5-dimethylthiazol-2-yl]-2,5-diphe-nyltetra zolium bromide assay. Apoptosis was determined by 4'-6-diamidino-2-phenylindole nuclei staining and flow cytometry in PANC-1 cells treated with 50 µg/mL quercetin for 24 hours. Expression of endoplas mic reticulum (ER) stress mediators including, Grp78/Bip, p-PERK, PERK, ATF4, ATF6 and GADD153/CHOP proteins were measured by Western blot analysis. Mitochondrial membrane potential was measured by fluorescence staining with JC-1, rhodamine 123. Quercetin induced the apoptosis of PANC-1, which was characterized as nucleic acid and genomic DNA fragmentation, chromatin condensation, and sub-G0/G1 fraction of cell cycle increase. But not adriamycin, cisplatin, gemcitabine, and 5-FU. PANC-1 cells were markedly sensitive to quercetin. Treatment with quercetin resulted in the increased accumulation of intracellular Ca(2+) ion. Treatment with quercetin also increased the expression of Grp78/Bip and GADD153/CHOP protein and induced mitochondrial dysfunction. Quercetin exerted cytotoxicity against human pancreatic cancer cells via ER stress-mediated apoptotic signaling including reactive oxygen species production and mitochondrial dysfunction. These data suggest that quercetin may be an important modulator of chemosensitivity of cancer cells against anticancer chemotherapeutic agents.

  12. Neuronal apoptosis in the neonates born to preeclamptic mothers.

    Science.gov (United States)

    Cosar, Hese; Ozer, Erdener; Topel, Hande; Kahramaner, Zelal; Turkoglu, Ebru; Erdemir, Aydin; Sutcuoglu, Sumer; Bagriyanik, Alper; Ozer, Esra Arun

    2013-07-01

    Preeclampsia may result in uteroplacental insufficiency and chronic intrauterine fetal distress. The aim of this study is to address this issue investigating neuronal apoptosis in an experimental model of preeclampsia and to evaluate the neurological outcome of the perinatal asphyxia in the neonates born to preeclamptic mother. Two out of four pregnant Sprague-Dawley rats (preeclamptic group) were given water containing 1.8% NaCl on gestation day 15 and 22 in order to establish the model of preeclampsia whereas other two (non-preeclamptic group) received normal diet. A model of perinatal asphyxia was established on the postnatal 7th day to one preeclamptic and one non-preeclamptic dam. Overall 23 pups born to overall four dams were decapitated to assess neuronal apoptosis by the TUNEL assay. The number of apoptotic neuronal cells was significantly higher in the preeclampsia groups in comparison with the control group (p = 0.006 and p = 0.006, respectively). It was also significantly higher in the asphyctic/non-preeclamptic group than the count in the control group (p = 0.01). There was also significant difference between both asphyctic groups (p = 0.003). We conclude that preeclampsia causes small babies for the gestational age and cerebral hypoplasia. Both preeclampsia and perinatal asphyxia can cause increased neuronal apoptosis in the neonatal brains. However, the prognosis for neurological outcome is much worse when the perinatal asphyxia occurs in newborns born to preeclamptic mothers.

  13. Induction of apoptosis by opium in some tumor cell lines.

    Science.gov (United States)

    Khaleghi, M; Farsinejad, A; Dabiri, S; Asadikaram, G

    2016-09-30

    The current study is aimed at investigation of the opium effects on the apoptosis of different cell lines in culture medium and compares such effects with one another. The study is carried out on over 8 cell lines (AA8, AGS, Hela, HepG2, MCF7, N2a, PC12, WEHI). A 2.86 x 10-4 g/ml opium concentration was prepared and added to the culture medium of the cell lines for 48 hours. Cytotoxicity was tested by 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide (MTT) assay. The apoptotic effect of opium on the cell lines was analyzed by Annexin-PI test. Opium with concentration of 2.86 x 10-4 g/ml in 48 hours significantly induces apoptosis in certain cell lines (i.e. AA8, N2a, WEHI), apoptosis and necrosis in some others (i.e. Hela, HepG2, MCF7, and PC12), and also solely necrosis in the AGS cell line. One could infer that the usage of opium with different levels in different tissues leads to certain disorders in some tissues and may have therapeutic effects under distinctive conditions (i.e. unchecked growth of cells) as confirmed by the results.

  14. Hot water extract of Chlorella vulgaris induced DNA damage and apoptosis

    Science.gov (United States)

    Yusof, Yasmin Anum Mohd; Md. Saad, Suhana; Makpol, Suzana; Shamaan, Nor Aripin; Ngah, Wan Zurinah Wan

    2010-01-01

    OBJECTIVES: The aim of this study was to determine the antiproliferative and apoptotic effects of hot water extracts of Chlorella vulgaris on hepatoma cell line HepG2. INTRODUCTION: The search for food and spices that can induce apoptosis in cancer cells has been a major study interest in the last decade. Chlorella vulgaris, a unicellular green algae, has been reported to have antioxidant and anti‐cancer properties. However, its chemopreventive effects in inhibiting the growth of cancer cells have not been studied in great detail. METHODS: HepG2 liver cancer cells and WRL68 normal liver cells were treated with various concentrations (0‐4 mg/ml) of hot water extract of C. vulgaris after 24 hours incubation. Apoptosis rate was evaluated by TUNEL assay while DNA damage was assessed by Comet assay. Apoptosis proteins were evaluated by Western blot analysis. RESULTS: Chlorella vulgaris decreased the number of viable HepG2 cells in a dose dependent manner (p Chlorella vulgaris tested. Evaluation of apoptosis by TUNEL assay showed that Chlorella vulgaris induced a higher apoptotic rate (70%) in HepG2 cells compared to normal liver cells, WRL68 (15%). Western blot analysis showed increased expression of pro‐ apoptotic proteins P53, Bax and caspase‐3 in the HepG2 cells compared to normal liver cells WRL68, and decreased expression of the anti‐apoptotic protein Bcl‐2. CONCLUSIONS: Chlorella vulgaris may have anti‐cancer effects by inducing apoptosis signaling cascades via an increased expression of P53, Bax and caspase‐3 proteins and through a reduction of Bcl‐2 protein, which subsequently lead to increased DNA damage and apoptosis. PMID:21340229

  15. Cannabidiol rather than Cannabis sativa extracts inhibit cell growth and induce apoptosis in cervical cancer cells.

    Science.gov (United States)

    Lukhele, Sindiswa T; Motadi, Lesetja R

    2016-09-01

    Cervical cancer remains a global health related issue among females of Sub-Saharan Africa, with over half a million new cases reported each year. Different therapeutic regimens have been suggested in various regions of Africa, however, over a quarter of a million women die of cervical cancer, annually. This makes it the most lethal cancer amongst black women and calls for urgent therapeutic strategies. In this study we compare the anti-proliferative effects of crude extract of Cannabis sativa and its main compound cannabidiol on different cervical cancer cell lines. To achieve our aim, phytochemical screening, MTT assay, cell growth analysis, flow cytometry, morphology analysis, Western blot, caspase 3/7 assay, and ATP measurement assay were conducted. Results obtained indicate that both cannabidiol and Cannabis sativa extracts were able to halt cell proliferation in all cell lines at varying concentrations. They further revealed that apoptosis was induced by cannabidiol as shown by increased subG0/G1 and apoptosis through annexin V. Apoptosis was confirmed by overexpression of p53, caspase 3 and bax. Apoptosis induction was further confirmed by morphological changes, an increase in Caspase 3/7 and a decrease in the ATP levels. In conclusion, these data suggest that cannabidiol rather than Cannabis sativa crude extracts prevent cell growth and induce cell death in cervical cancer cell lines.

  16. Antiproliferative and Apoptosis Induction Potential of the Methanolic Leaf Extract of Holarrhena floribunda (G. Don

    Directory of Open Access Journals (Sweden)

    J. A. Badmus

    2015-01-01

    Full Text Available Natural plant products with potent growth inhibition and apoptosis induction properties are extensively being investigated for their cancer chemopreventive potential. Holarrhena floribunda (HF is used in a wide range of traditional medicine practices. The present study investigated the antiproliferative and apoptosis induction potential of methanolic leaf extracts of HF against breast (MCF-7, colorectal (HT-29, and cervical (HeLa cancer cells relative to normal KMST-6 fibroblasts. The MTT assay in conjunction with the trypan blue dye exclusion and clonogenic assays were used to determine the effects of the extracts on the cells. Caspase activities were assayed with Caspase-Glo 3/7 and Caspase-9 kits. Apoptosis induction was monitored by flow cytometry using the APOPercentage and Annexin V-FITC kits. Reactive oxygen species (ROS was measured using the fluorogenic molecular probe 5-(and-6-chloromethyl-2′,7′-dichlorofluorescein diacetate acetyl ester and cell cycle arrest was detected with propidium iodide. Dose-response analyses of the extract showed greater sensitivity in cancer cell lines than in fibroblast controls. Induction of apoptosis, ROS, and cell cycle arrest were time- and dose-dependent for the cancer cell lines studied. These findings provide a basis for further studies on the isolation, characterization, and mechanistic evaluation of the bioactive compounds responsible for the antiproliferative activity of the plant extract.

  17. Scintillation proximity assay

    International Nuclear Information System (INIS)

    Hart, H.

    1980-01-01

    In a method of immunological assay two different classes of particles which interact at short distances to produce characteristic detectable signals are employed in a modification of the usual latex fixation test. In one embodiment an aqueous suspension of antigen coated tritiated latex particles (LH) and antigen coated polystyrene scintillant particles (L*) is employed to assay antibody in the aqueous medium. The amount of (LH) (L*) dimer formation and higher order aggregation induced and therefore the concentration of antibody (or antigen) present which caused the aggregation can be determined by using standard liquid scintillation counting equipment. (author)

  18. Assays for calcitonin receptors

    International Nuclear Information System (INIS)

    Teitelbaum, A.P.; Nissenson, R.A.; Arnaud, C.D.

    1985-01-01

    The assays for calcitonin receptors described focus on their use in the study of the well-established target organs for calcitonin, bone and kidney. The radioligand used in virtually all calcitonin binding studies is 125 I-labelled salmon calcitonin. The lack of methionine residues in this peptide permits the use of chloramine-T for the iodination reaction. Binding assays are described for intact bone, skeletal plasma membranes, renal plasma membranes, and primary kidney cell cultures of rats. Studies on calcitonin metabolism in laboratory animals and regulation of calcitonin receptors are reviewed

  19. Interferon-gamma sensitizes colonic epithelial cell lines to physiological and therapeutic inducers of colonocyte apoptosis.

    LENUS (Irish Health Repository)

    O'Connell, J

    2012-02-03

    Homeostasis in the colonic epithelium is achieved by a continuous cycle of proliferation and apoptosis, in which imbalances are associated with disease. Inflammatory bowel disease (IBD) and colon cancer are associated with either excessive or insufficient apoptosis of colonic epithelial cells, respectively. By using two colonic epithelial cell lines, HT29 and SW620, we investigated how the epithelial cell\\'s sensitivity to apoptosis was regulated by the proinflammatory cytokine interferon-gamma (IFN-gamma). We found that IFN-gamma sensitized HT29 cells, and to a lesser extent SW620, to diverse inducers of apoptosis of physiologic or therapeutic relevance to the colon. These apoptosis inducers included Fas (CD95\\/APO-1) ligand (FasL), short-chain fatty acids, and chemotherapeutic drugs. The extent of IFN-gamma-mediated apoptosis sensitization in these two cell lines correlated well with the degree of IFN-gamma-mediated upregulation of the proapoptotic protease caspase-1. Although IFN-gamma alone effectively sensitized HT29 cells to apoptosis, inclusion of the protein synthesis inhibitor cyclohexamide (CHX) during apoptotic challenge was necessary for maximal sensitization of SW620. The requirement of CHX to sensitize SW620 cells to apoptosis implies a need to inhibit translation of antiapoptotic proteins absent from HT29. In particular, the antiapoptotic protein Bcl-2 was strongly expressed in SW620 cells but absent from HT29. Our results indicate that IFN-gamma increases the sensitivity of colonic epithelial cells to diverse apoptotic stimuli in concert, via upregulation of caspase-1. Our findings implicate caspase-1 and Bcl-2 as important central points of control determining the general sensitivity of colonic epithelial cells to apoptosis.

  20. The marine toxin, Yessotoxin, induces apoptosis and increases mitochondrial activity

    Directory of Open Access Journals (Sweden)

    Andrea Fernandez-Araujo

    2014-06-01

    Discussion: Colorimetric MTT assay is widely used as a viability measurement method (McHale and L., 1988;Chiba et al., 1998. But after YTX treatment, MTT assay had shown problems to detect a cell viability decrease. In this sense, in primary cardiac cell cultures, a false increment of the proliferation rate opposite to Sulforhodamine B assay (SRB results was reported after YTX treatment (Dell'Ovo et al., 2008. Also the same effect was obtained in different cancer cell lines after assaying anticancer therapies (Ulukaya et al., 2004. In our study, an increase in cell viability using MTT was observed when the number of cells was high, while by using the LDH assay a significant viability decrease was measured. In these conditions, YTX is activating extrinsic apoptosis cell death by increasing caspase 8 activity and caspase 3 levels. The explanation for this increase was found when the mitochondrial activity was quantified cell by cell in a cytometer. In these conditions a significant increment of mitochondrial activity was detected. Since the cell population is too high, the increase in mitochondrial activity that detects the MTT test disguised the decrease of signal due to the cell death and point to a false proliferation increase. In this sense, a mitochondrial activity decrease was observed after 48 hours YTX treatment in BE(2-M17 neuroblastoma cell line (Leira et al., 2002. However, this study was done in a microplate reader with a small number of cells (Leira et al., 2002. Therefore, to measure the viability by MTT assay is very important to take into account the number of cells per condition when the experiment is designed. Alternative assays, such as LDH test, independently of the direct mitochondrial activity, can be used.

  1. Sulphamoylated 2-methoxyestradiol analogues induce apoptosis in adenocarcinoma cell lines.

    Directory of Open Access Journals (Sweden)

    Michelle Visagie

    Full Text Available 2-Methoxyestradiol (2ME2 is a naturally occurring estradiol metabolite which possesses antiproliferative, antiangiogenic and antitumor properties. However, due to its limited biological accessibility, synthetic analogues have been synthesized and tested in attempt to develop drugs with improved oral bioavailability and efficacy. The aim of this study was to evaluate the antiproliferative effects of three novel in silico-designed sulphamoylated 2ME2 analogues on the HeLa cervical adenocarcinoma cell line and estrogen receptor-negative breast adenocarcinoma MDA-MB-231 cells. A dose-dependent study (0.1-25 μM was conducted with an exposure time of 24 hours. Results obtained from crystal violet staining indicated that 0.5 μM of all 3 compounds reduced the number of cells to 50%. Lactate dehydrogenase assay was used to assess cytotoxicity, while the mitotracker mitochondrial assay and caspase-6 and -8 activity assays were used to investigate the possible occurrence of apoptosis. Tubulin polymerization assays were conducted to evaluate the influence of these sulphamoylated 2ME2 analogues on tubulin dynamics. Double immunofluorescence microscopy using labeled antibodies specific to tyrosinate and detyrosinated tubulin was conducted to assess the effect of the 2ME2 analogues on tubulin dynamics. An insignificant increase in the level of lactate dehydrogenase release was observed in the compounds-treated cells. These sulphamoylated compounds caused a reduction in mitochondrial membrane potential, cytochrome c release and caspase 3 activation indicating apoptosis induction by means of the intrinsic pathway in HeLa and MDA-MB-231 cells. Microtubule depolymerization was observed after exposure to these three sulphamoylated analogues.

  2. Canine distemper virus induces apoptosis in cervical tumor derived cell lines

    Directory of Open Access Journals (Sweden)

    Rajão Daniela S

    2011-06-01

    Full Text Available Abstract Apoptosis can be induced or inhibited by viral proteins, it can form part of the host defense against virus infection, or it can be a mechanism for viral spread to neighboring cells. Canine distemper virus (CDV induces apoptotic cells in lymphoid tissues and in the cerebellum of dogs naturally infected. CDV also produces a cytopathologic effect, leading to apoptosis in Vero cells in tissue culture. We tested canine distemper virus, a member of the Paramyxoviridae family, for the ability to trigger apoptosis in HeLa cells, derived from cervical cancer cells resistant to apoptosis. To study the effect of CDV infection in HeLa cells, we examined apoptotic markers 24 h post infection (pi, by flow cytometry assay for DNA fragmentation, real-time PCR assay for caspase-3 and caspase-8 mRNA expression, and by caspase-3 and -8 immunocytochemistry. Flow cytometry showed that DNA fragmentation was induced in HeLa cells infected by CDV, and immunocytochemistry revealed a significant increase in the levels of the cleaved active form of caspase-3 protein, but did not show any difference in expression of caspase-8, indicating an intrinsic apoptotic pathway. Confirming this observation, expression of caspase-3 mRNA was higher in CDV infected HeLa cells than control cells; however, there was no statistically significant change in caspase-8 mRNA expression profile. Our data suggest that canine distemper virus induced apoptosis in HeLa cells, triggering apoptosis by the intrinsic pathway, with no participation of the initiator caspase -8 from the extrinsic pathway. In conclusion, the cellular stress caused by CDV infection of HeLa cells, leading to apoptosis, can be used as a tool in future research for cervical cancer treatment and control.

  3. CD36 Mediated Fatty Acid-Induced Podocyte Apoptosis via Oxidative Stress.

    Directory of Open Access Journals (Sweden)

    Wei Hua

    Full Text Available Hyperlipidemia-induced apoptosis mediated by fatty acid translocase CD36 is associated with increased uptake of ox-LDL or fatty acid in macrophages, hepatocytes and proximal tubular epithelial cells, leading to atherosclerosis, liver damage and fibrosis in obese patients, and diabetic nephropathy (DN, respectively. However, the specific role of CD36 in podocyte apoptosis in DN with hyperlipidemia remains poorly investigated.The expression of CD36 was measured in paraffin-embedded kidney tissue samples (Ctr = 18, DN = 20 by immunohistochemistry and immunofluorescence staining. We cultured conditionally immortalized mouse podocytes (MPC5 and treated cells with palmitic acid, and measured CD36 expression by real-time PCR, Western blot analysis and immunofluorescence; lipid uptake by Oil red O staining and BODIPY staining; apoptosis by flow cytometry assay, TUNEL assay and Western blot analysis; and ROS production by DCFH-DA fluorescence staining. All statistical analyses were performed using SPSS 21.0 statistical software.CD36 expression was increased in kidney tissue from DN patients with hyperlipidemia. Palmitic acid upregulated CD36 expression and promoted its translocation from cytoplasm to plasma membrane in podocytes. Furthermore, palmitic acid increased lipid uptake, ROS production and apoptosis in podocytes, Sulfo-N-succinimidyloleate (SSO, the specific inhibitor of the fatty acid binding site on CD36, decreased palmitic acid-induced fatty acid accumulation, ROS production, and apoptosis in podocytes. Antioxidant 4-hydroxy-2,2,6,6- tetramethylpiperidine -1-oxyl (tempol inhibited the overproduction of ROS and apoptosis in podocytes induced by palmitic acid.CD36 mediated fatty acid-induced podocyte apoptosis via oxidative stress might participate in the process of DN.

  4. Benzylidene derivatives of andrographolide inhibit growth of breast and colon cancer cells in vitro by inducing G1 arrest and apoptosis

    Science.gov (United States)

    Jada, S R; Matthews, C; Saad, M S; Hamzah, A S; Lajis, N H; Stevens, M F G; Stanslas, J

    2008-01-01

    Background and purpose: Andrographolide, the major phytoconstituent of Andrographis paniculata, was previously shown by us to have activity against breast cancer. This led to synthesis of new andrographolide analogues to find compounds with better activity than the parent compound. Selected benzylidene derivatives were investigated for their mechanisms of action by studying their effects on the cell cycle progression and cell death. Experimental approach: Microculture tetrazolium, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) and sulphorhodamine B (SRB) assays were utilized in assessing the in vitro growth inhibition and cytotoxicity of compounds. Flow cytometry was used to analyse the cell cycle distribution of control and treated cells. CDK1 and CDK4 levels were determined by western blotting. Apoptotic cell death was assessed by fluorescence microscopy and flow cytometry. Key results: Compounds, in nanomolar to micromolar concentrations, exhibited growth inhibition and cytotoxicity in MCF-7 (breast) and HCT-116 (colon) cancer cells. In the NCI screen, 3,19-(2-bromobenzylidene) andrographolide (SRJ09) and 3,19-(3-chloro-4-fluorobenzylidene) andrographolide (SRJ23) showed greater cytotoxic potency and selectivity than andrographolide. SRJ09 and SRJ23 induced G1 arrest and apoptosis in MCF-7 and HCT-116 cells, respectively. SRJ09 downregulated CDK4 but not CDK1 level in MCF-7 cells. Apoptosis induced by SRJ09 and SRJ23 in HCT-116 cells was confirmed by annexin V-FITC/PI flow cytometry analysis. Conclusion and implications: The new benzylidene derivatives of andrographolide are potential anticancer agents. SRJ09 emerged as the lead compound in this study, exhibiting anticancer activity by downregulating CDK4 to promote a G1 phase cell cycle arrest, coupled with induction of apoptosis. PMID:18806812

  5. Alternative therapeutic approach to renal-cell carcinoma: induction of apoptosis with combination of vitamin K3 and D-fraction.

    Science.gov (United States)

    Degen, Michael; Alexander, Bobby; Choudhury, Muhammad; Eshghi, Majid; Konno, Sensuke

    2013-12-01

    Because of a dismal prognosis for advanced renal-cell carcinoma (RCC), an alternative therapeutic approach, using vitamin K3 (VK3) and D-fraction (DF) was investigated. VK3 is a synthetic VK derivative and DF is a bioactive mushroom extract, and they have been shown to have antitumor activity. We examined if the combination of VK3 and DF would exhibit the improved anticancer effect on RCC in vitro. Human RCC, ACHN cell line, were treated with varying concentrations of VK3, DF, or a combination of the two. Cell viability was assessed at 72 hours by MTT assay. To explore the possible anticancer mechanism, studies on cell cycle, chromatin modifications, and apoptosis were conducted. VK3 alone led to a ~20% reduction in cell viability at 4 μM, while DF alone induced a 20% to 45% viability reduction at ≥ 500 μg/mL. A combination of VK3 (4 μM) and DF (300 μg/mL) led to a drastic >90% viability reduction, however. Cell cycle analysis indicated that VK3/DF treatment induced a G1 cell cycle arrest, accompanied by the up-regulation of p21(WAF1) and p27(Kip1). Histone deacetylase (HDAC) was also significantly (~60%) inactivated, indicating chromatin modifications. In addition, Western blot analysis revealed that the up-regulation of Bax and activation of poly-(ADP-ribose)-polymerase (PARP) were seen in VK3/DF-treated cells, indicating induction of apoptosis. The combination of VK3 and DF can lead to a profound reduction in ACHN cell viability, through a p21(WAF1)-mediated G1 cell cycle arrest, and ultimately induces apoptosis. Therefore, the combination of VK3/DF may have clinical implications as an alternative, improved therapeutic modality for advanced RCC.

  6. MiR-34a-3p alters proliferation and apoptosis of meningioma cells in vitro and is directly targeting SMAD4, FRAT1 and BCL2

    Science.gov (United States)

    Werner, Tamara V.; Hart, Martin; Nickels, Ruth; Kim, Yoo-Jin; Menger, Michael D.; Bohle, Rainer M.; Keller, Andreas; Ludwig, Nicole; Meese, Eckart

    2017-01-01

    Micro (mi)RNAs are short, noncoding RNAs and deregulation of miRNAs and their targets are implicated in tumor generation and progression in many cancers. Meningiomas are mostly benign, slow growing tumors of the central nervous system with a small percentage showing a malignant phenotype. Following in silico prediction of potential targets of miR-34a-3p, SMAD4, FRAT1, and BCL2 have been confirmed as targets by dual luciferase assays with co-expression of miR-34a-3p and reporter gene constructs containing the respective 3'UTRs. Disruption of the miR-34a-3p binding sites in the 3'UTRs resulted in loss of responsiveness to miR-34a-3p overexpression. In meningioma cells, overexpression of miR-34a-3p resulted in decreased protein levels of SMAD4, FRAT1 and BCL2, while inhibition of miR-34a-3p led to increased levels of these proteins as confirmed by Western blotting. Furthermore, deregulation of miR-34a-3p altered cell proliferation and apoptosis of meningioma cells in vitro. We show that SMAD4, FRAT1 and BCL2 are direct targets of miR-34a-3p and that deregulation of miR-34a-3p alters proliferation and apoptosis of meningioma cells in vitro. As part of their respective signaling pathways, which are known to play a role in meningioma genesis and progression, deregulation of SMAD4, FRAT1 and BCL2 might contribute to the aberrant activation of these signaling pathways leading to increased proliferation and inhibition of apoptosis in meningiomas. PMID:28340489

  7. Ursodeoxycholic acid induces apoptosis in hepatocellular carcinoma xenografts in mice

    Science.gov (United States)

    Liu, Hui; Xu, Hong-Wei; Zhang, Yu-Zhen; Huang, Ya; Han, Guo-Qing; Liang, Tie-Jun; Wei, Li-Li; Qin, Cheng-Yong; Qin, Cheng-Kun

    2015-01-01

    AIM: To evaluate the efficacy of ursodeoxycholic acid (UDCA) as a chemotherapeutic agent for the treatment of hepatocellular carcinoma (HCC). METHODS: BALB/c nude mice were randomized into four groups 24 h before subcutaneous injection of hepatocarcinoma BEL7402 cells suspended in phosphate buffered saline (PBS) into the right flank. The control group (n = 10) was fed a standard diet while treatment groups (n = 10 each) were fed a standard daily diet supplemented with different concentrations of UDCA (30, 50 and 70 mg/kg per day) for 21 d. Tumor growth was measured once each week, and tumor volume (V) was calculated with the following equation: V = (L × W2) × 0.52, where L is the length and W is the width of the xenograft. After 21 d, mice were killed under ether anesthesia, and tumors were excised and weighed. Apoptosis was evaluated through detection of DNA fragmentation with gel electrophoresis and the terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end labeling (TUNEL) assay. Western blot analysis was performed to determine the expression of apoptosis-related proteins BAX, BCL2, APAF1, cleaved caspase-9, and cleaved caspase-3. RESULTS: UDCA suppressed tumor growth relative to controls. The mean tumor volumes were the following: control, 1090 ± 89 mm3; 30 mg/kg per day, 612 ± 46 mm3; 50 mg/kg per day, 563 ± 38 mm3; and 70 mg/kg per day, 221 ± 26 mm3. Decreased tumor volumes reached statistical significance relative to control xenografts (30 mg/kg per day, P < 0.05; 50 mg/kg per day, P < 0.05; 70 mg/kg per day, P < 0.01). Increasing concentrations of UDCA led to increased DNA fragmentation observed on gel electrophoresis and in the TUNEL assay (control, 1.6% ± 0.3%; 30 mg/kg per day, 2.9% ± 0.5%; 50 mg/kg per day, 3.15% ± 0.7%, and 70 mg/kg per day, 4.86% ± 0.9%). Western blot analysis revealed increased expression of BAX, APAF1, cleaved-caspase-9 and cleaved-caspase-3 proteins, which induce apoptosis, but decreased expression of BCL2

  8. Ursodeoxycholic acid induces apoptosis in hepatocellular carcinoma xenografts in mice.

    Science.gov (United States)

    Liu, Hui; Xu, Hong-Wei; Zhang, Yu-Zhen; Huang, Ya; Han, Guo-Qing; Liang, Tie-Jun; Wei, Li-Li; Qin, Cheng-Yong; Qin, Cheng-Kun

    2015-09-28

    To evaluate the efficacy of ursodeoxycholic acid (UDCA) as a chemotherapeutic agent for the treatment of hepatocellular carcinoma (HCC). BALB/c nude mice were randomized into four groups 24 h before subcutaneous injection of hepatocarcinoma BEL7402 cells suspended in phosphate buffered saline (PBS) into the right flank. The control group (n = 10) was fed a standard diet while treatment groups (n = 10 each) were fed a standard daily diet supplemented with different concentrations of UDCA (30, 50 and 70 mg/kg per day) for 21 d. Tumor growth was measured once each week, and tumor volume (V) was calculated with the following equation: V = (L × W(2)) × 0.52, where L is the length and W is the width of the xenograft. After 21 d, mice were killed under ether anesthesia, and tumors were excised and weighed. Apoptosis was evaluated through detection of DNA fragmentation with gel electrophoresis and the terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end labeling (TUNEL) assay. Western blot analysis was performed to determine the expression of apoptosis-related proteins BAX, BCL2, APAF1, cleaved caspase-9, and cleaved caspase-3. UDCA suppressed tumor growth relative to controls. The mean tumor volumes were the following: control, 1090 ± 89 mm(3); 30 mg/kg per day, 612 ± 46 mm(3); 50 mg/kg per day, 563 ± 38 mm(3); and 70 mg/kg per day, 221 ± 26 mm(3). Decreased tumor volumes reached statistical significance relative to control xenografts (30 mg/kg per day, P < 0.05; 50 mg/kg per day, P < 0.05; 70 mg/kg per day, P < 0.01). Increasing concentrations of UDCA led to increased DNA fragmentation observed on gel electrophoresis and in the TUNEL assay (control, 1.6% ± 0.3%; 30 mg/kg per day, 2.9% ± 0.5%; 50 mg/kg per day, 3.15% ± 0.7%, and 70 mg/kg per day, 4.86% ± 0.9%). Western blot analysis revealed increased expression of BAX, APAF1, cleaved-caspase-9 and cleaved-caspase-3 proteins, which induce apoptosis, but decreased expression of BCL2 protein, which

  9. H2O2 INDUCES APOPTOSIS OF RABBIT CHONDROCYTES VIA BOTH THE EXTRINSIC AND THE CASPASE-INDEPENDENT INTRINSIC PATHWAYS

    Directory of Open Access Journals (Sweden)

    CAIPING ZHUANG

    2013-07-01

    Full Text Available Osteoarthritis (OA, one of the most common joint diseases with unknown etiology, is characterized by the progressive destruction of articular cartilage and the apoptosis of chondrocytes. The purpose of this study is to elucidate the molecular mechanisms of H2O2-mediated rabbit chondrocytes apoptosis. CCK-8 assay showed that H2O2 treatment induced a remarkable reduction of cell viability, which was further verified by the remarkable phosphatidylserine externalization after H2O2 treatment for 1 h, the typical characteristics of apoptosis. H2O2 treatment induced a significant dysfunction of mitochondrial membrane potential (ΔΨm, but did not induce casapse-9 activation, indicating that H2O2 treatment induced caspase-independent intrinsic apoptosis that was further verified by the fact that silencing of AIF but not inhibiting caspase-9 potently prevented H2O2-induced apoptosis. H2O2 treatment induced a significant increase of caspase-8 and -3 activation, and inhibition of caspase-8 or -3 significantly prevented H2O2-induced apoptosis, suggesting that the extrinsic pathway played an important role. Collectively, our findings demonstrate that H2O2 induces apoptosis via both the casapse-8-mediated extrinsic and the caspase-independent intrinsic apoptosis pathways in rabbit chondrocytes.

  10. Troglitazone induced apoptosis via PPARγ activated POX-induced ROS formation in HT29 cells.

    Science.gov (United States)

    Wang, Jing; Lv, XiaoWen; Shi, JiePing; Hu, XiaoSong; DU, YuGuo

    2011-08-01

    In order to investigate the potential mechanisms in troglitazone-induced apoptosis in HT29 cells, the effects of PPARγ and POX-induced ROS were explored. [3- (4, 5)-dimethylthiazol-2-yl]-2, 5-diphenyltetrazolium bromide (MTT) assay, Annexin V and PI staining using FACS, plasmid transfection, ROS formation detected by DCFH staining, RNA interference, RT-PCR & RT-QPCR, and Western blotting analyses were employed to investigate the apoptotic effect of troglitazone and the potential role of PPARγ pathway and POX-induced ROS formation in HT29 cells. Troglitazone was found to inhibit the growth of HT29 cells by induction of apoptosis. During this process, mitochondria related pathways including ROS formation, POX expression and cytochrome c release increased, which were inhibited by pretreatment with GW9662, a specific antagonist of PPARγ. These results illustrated that POX upregulation and ROS formation in apoptosis induced by troglitazone was modulated in PPARγ-dependent pattern. Furthermore, the inhibition of ROS and apoptosis after POX siRNA used in troglitazone-treated HT29 cells indicated that POX be essential in the ROS formation and PPARγ-dependent apoptosis induced by troglitazone. The findings from this study showed that troglitazone-induced apoptosis was mediated by POX-induced ROS formation, at least partly, via PPARγ activation. Copyright © 2011 The Editorial Board of Biomedical and Environmental Sciences. Published by Elsevier B.V. All rights reserved.

  11. Arsenic induced apoptosis in rat liver following repeated 60 days exposure

    International Nuclear Information System (INIS)

    Bashir, Somia; Sharma, Yukti; Irshad, M.; Nag, T.C.; Tiwari, Monica; Kabra, M.; Dogra, T.D.

    2006-01-01

    Background: Accumulation of the wide spread environmental toxin arsenic in liver results in hepatotoxcity. Exposure to arsenite and other arsenicals has been previously shown to induce apoptosis in certain tumor cell lines at low (1-3 μM) concentration. Aim: The present study was focused to elucidate the role of free radicals in arsenic toxicity and to investigate the nature of in vivo sodium arsenite induced cell death in liver. Methods: Male wistar rats were exposed to arsenite at three different doses of 0.05, 2.5 and 5 mg/l for 60 days. Oxidative stress in liver was measured by estimating pro-oxidant and antioxidant activity in liver. Histopathological examination of liver was carried out by light and transmission electron microscopy. Analysis of DNA fragmentation by gel electrophoresis was used to identify apoptosis after the exposure. Terminal deoxy-nucleotidyl transferase mediated dUTP Nick end-labeling (TUNEL) assay was used to qualify and quantify apoptosis. Results: A significant increase in cytochrome-P450 and lipid peroxidation accompanied with a significant alteration in the activity of many of the antioxidants was observed, all suggestive of arsenic induced oxidative stress. Histopathological examination under light and transmission electron microscope suggested a combination of ongoing necrosis and apoptosis. DNA-TUNEL showed an increase in apoptotic cells in liver. Agarose gel electrophoresis of DNA of hepatocytes resulted in a characteristic ladder pattern. Conclusion: Chronic arsenic administration induces a specific pattern of apoptosis called post-mitotic apoptosis

  12. Ursodeoxycholic Acid Induces Death Receptor-mediated Apoptosis in Prostate Cancer Cells

    Science.gov (United States)

    Lee, Won Sup; Jung, Ji Hyun; Panchanathan, Radha; Yun, Jeong Won; Kim, Dong Hoon; Kim, Hye Jung; Kim, Gon Sup; Ryu, Chung Ho; Shin, Sung Chul; Hong, Soon Chan; Choi, Yung Hyun; Jung, Jin-Myung

    2017-01-01

    Background Bile acids have anti-cancer properties in a certain types of cancers. We determined anticancer activity and its underlying molecular mechanism of ursodeoxycholic acid (UDCA) in human DU145 prostate cancer cells. Methods Cell viability was measured with an MTT assay. UDCA-induced apoptosis was determined with flow cytometric analysis. The expression levels of apoptosis-related signaling proteins were examined with Western blotting. Results UDCA treatment significantly inhibited cell growth of DU145 in a dose-dependent manner. It induced cellular shrinkage and cytoplasmic blebs and accumulated the cells with sub-G1 DNA contents. Moreover, UDCA activated caspase 8, suggesting that UDCA-induced apoptosis is associated with extrinsic pathway. Consistent to this finding, UDCA increased the expressions of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) receptor, death receptor 4 (DR4) and death receptor 5 (DR5), and TRAIL augmented the UDCA-induced cell death in DU145 cells. In addition, UDCA also increased the expressions of Bax and cytochrome c and decreased the expression of Bcl-xL in DU145 cells. This finding suggests that UDCA-induced apoptosis may be involved in intrinsic pathway. Conclusions UDCA induces apoptosis via extrinsic pathway as well as intrinsic pathway in DU145 prostate cancer cells. UDCA may be a promising anti-cancer agent against prostate cancer. PMID:28382282

  13. Improvement of porcine cloning efficiency by trichostain A through early-stage induction of embryo apoptosis.

    Science.gov (United States)

    Ji, Qianqian; Zhu, Kongju; Liu, Zhiguo; Song, Zhenwei; Huang, Yuankai; Zhao, Haijing; Chen, Yaosheng; He, Zuyong; Mo, Delin; Cong, Peiqing

    2013-03-15

    Trichostain A (TSA), an inhibitor of histone deacetylases, improved developmental competence of SCNT embryos in many species, apparently by improved epigenetic reprogramming. The objective of the present study was to determine the effects of TSA-induced apoptosis in cloned porcine embryos. At various developmental stages, a comet assay and terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick-end labeling staining were used to detect apoptosis, and real-time polymerase chain reaction was used to assess expression of genes related to apoptosis and pluripotency. In this study, TSA significantly induced apoptosis (in a dose-dependent manner) at the one-, two-, and four-cell stages. However, in blastocyst stage embryos, TSA decreased the apoptotic index (P < 0.05). Expression levels of Caspase 3 were higher in TSA-treated versus control embryos at the two-cell stage (not statistically significant). The expression ratio of antiapoptotic Bcl-xl gene to proapoptotic Bax gene, an indicator of antiapoptotic potential, was higher in TSA-treated groups at the one-, two-, and four-cell and blastocyst stages. Furthermore, expression levels of pluripotency-related genes, namely, Oct4 and Nanog, were elevated at the morula stage (P < 0.05) in TSA treatment groups. We concluded that inducing apoptosis might be a mechanism by which TSA promotes development of reconstructed embryos. At the initial stage of apoptosis induction, abnormal cells were removed, thereby enhancing proliferation of healthy cells and improving embryo quality. Copyright © 2013 Elsevier Inc. All rights reserved.

  14. 3,3'-diindolylmethane potentiates tumor necrosis factor-related apoptosis-inducing ligand-induced apoptosis of gastric cancer cells.

    Science.gov (United States)

    Ye, Yang; Miao, Shuhan; Wang, Yan; Zhou, Jianwei; Lu, Rongzhu

    2015-05-01

    Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) specifically kills cancer cells without destroying the majority of healthy cells. However, numerous types of cancer cell, including gastric cancer cells, tend to be resistant to TRAIL. The bioactive product 3,3'-diindolylmethane (DIM), which is derived from cruciferous vegetables, is also currently recognized as a candidate anticancer agent. In the present study, a Cell Counting Kit 8 cell growth assay and an Annexin V-fluorescein isothiocyanate apoptosis assay were performed to investigate the potentiating effect of DIM on TRAIL-induced apoptosis in gastric cancer cells, and the possible mechanisms of this potentiation. The results obtained demonstrated that, compared with TRAIL or DIM treatment alone, co-treatment with TRAIL (25 or 50 ng/ml) and DIM (10 µmol/l) induced cytotoxic and apoptotic effects in BGC-823 and SGC-7901 gastric cancer cells. Furthermore, western blot analysis revealed that the protein expression levels of death receptor 5 (DR5), CCAAT/enhancer binding protein homologous protein (CHOP) and glucose-regulated protein 78 (GRP78) were upregulated in the co-treated gastric cancer cells. To the best of our knowledge, the present study is the first to provide evidence that DIM sensitizes TRAIL-induced inhibition of proliferation and apoptosis in gastric cancer cells, accompanied by the upregulated expression of DR5, CHOP and GRP78 proteins, which may be involved in endoplasmic reticulum stress mechanisms.

  15. The experimental research in the effects of 32P combined with cisplatin on the apoptosis of lung cancer cell

    International Nuclear Information System (INIS)

    Yang Nianqin; Wu Jinchuan; Huang Gang; Liu Jianjun; Cheng Xu

    2004-01-01

    Objective: To study the effects and mechanism of 32 P on the apoptosis of cultured nonsmall-cell lung cancer (NSCLC) cell line, A549, and explore the value of its apoptosis induced by radiation combined with Cisplatin. Methods: The A549 cells cultured in vitro were irradiated by 32 P and/or treated with Cisplatin of different doses. The methyl thiazolyl tetrazolium (MTT) test, transmission electron microscopy and immunocytochemistry assay, flow cytometry were used to investigate the effects of β-particles on apoptosis of A549 cells, such as cell viability, cell apoptosis rate, cell ultrastructural morphological changes and related gene expression. Results: There were significant changes in the viability, cell apoptosis rate, and cellular ultrastructure of A549 cells along with the irradiation dose increasing, compared with that in the control group; and while the Cisplatin combined with low-dose 32 P radiation, the viable cell proportion markedly decreased, cell apoptosis rate significantly increased, and cellular ultrastructure was destroyed. The expression of p53, bax gene was up-regulated and bcl-2/bax down-regulated with the apoptosis of A549 cells induced by radiation. Conclusions: Low-dose radiation combined with chemotherapy on A549 cells could inhibit its proliferation, and significantly effect on cell viability, cell apoptosis rate, cell ultrastructure, meanwhile, it could result in significant apoptosis. The induction of apoptosis may be related to the expression of p53, bcl-2 and bax gene. Low-dose radiation combined with chemotherapy could be an ideal way, which not only enhance the apoptosis of A549 cells, but also decrease the doses of both agents used in the study

  16. [Heat shock protein 90--modulator of TNFalpha-induced apoptosis of Jurkat tumor cells].

    Science.gov (United States)

    Kaĭgorodova, E V; Riazantseva, N V; Novitskiĭ, V V; Moroshkina, A N; Belkina, M V; Iakushina, V D

    2011-01-01

    rTNFalpha-induced programmed death of Jurkat tumor cells cultured with 17-AAG, a selective inhibitor of heat shock protein (Hsp90), was studied by fluorescent microscopy with the use of FITC-labeled annexin V and propidium iodide. Caspase-3 and -8 activities were determined by spectrophotometry using a caspase- 3 and -8 colorimetric assay kit. It was shown that inhibition of Hsp90 leads to activation of Jurkat cell apoptosis while Hsp90 itself suppresses this process. 17-AAG enhances rTNFa-induced apoptosis of tumor cells.

  17. Curcumin induces apoptosis and protective autophagy in castration-resistant prostate cancer cells through iron chelation

    Directory of Open Access Journals (Sweden)

    Yang C

    2017-02-01

    Full Text Available Chunguang Yang,1,* Xueyou Ma,1,* Zhihua Wang,1 Xing Zeng,1 Zhiquan Hu,1 Zhangqun Ye,1 Guanxin Shen2 1Department of Urology, Tongji Hospital, 2Department of Immunology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People’s Republic of China *These authors contributed equally to this work Background: Curcumin induces apoptosis and autophagy in different cancer cells. Moreover, chemical and biological experiments have evidenced that curcumin is a biologically active iron chelator and induces cytotoxicity through iron chelation. We thus hypothesized that curcumin may induce apoptosis and autophagy in castration-resistant prostate cancer (CRPC cells through its iron-chelating properties.Materials and methods: CRPC cells were loaded with curcumin alone or in combination with ferric ammonium citrate (FAC. Cytotoxicity was measured by 3-(4,5-dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide (MTT assay. Apoptosis was assessed by flow cytometry, terminal deoxynucleotidyl transferase nick end labeling (TUNEL assay and caspase activity. Autophagy status was analyzed by the detection of autophagosomes and light chain 3-II (LC3-II using transmission electron microscopy and Western blot. Iron-binding activity of curcumin was assessed by spectrophotometry and MTT assay. The expression levels of transferrin receptor 1 (TfR1 and iron regulatory protein 1 (IRP1 were examined by Western blot.Results: Curcumin induced apoptosis and autophagy in CRPC cells. Combining curcumin with autophagy inhibitors (3-methyladenine [3-MA] synergized the apoptotic effect of curcumin. Moreover, curcumin bound to FAC at a ratio of ~1:1, as assessed by spectrophotometry and MTT assay. Apoptosis and autophagy induced by curcumin were counteracted by equal amounts of FAC. At apoptosis- and autophagy-inducing concentrations, curcumin enhanced the expression levels of TfR1 and IRP1, indicative of iron deprivation induced by curcumin

  18. [Essential oil from Artemisia lavandulaefolia induces apoptosis and necrosis of HeLa cells].

    Science.gov (United States)

    Zhang, Lu-min; Lv, Xue-wei; Shao, Lin-xiang; Ma, Yan-fang; Cheng, Wen-zhao; Gao, Hai-tao

    2013-12-01

    To investigate the effects of Artemisia lavandulaefolia essential oil on apoptosis and necrosis of HeLa cells. Cell viability was assayed using MTT method. The morphological and structure alterations in HeLa cells were observed by microscopy. Furthermore, cell apoptosis was measured by DNA Ladder and flow cytometry. DNA damage was measured by comet assay, and the protein expression was examined by Western blot analysis. MTT assay displayed essential oil from Artemisia lavandulaefolia could inhibit the proliferation of HeLa cells in a dose-dependent manner. After treated with essential oil of Artemisia lavadulaefolia for 24 h, HeLa cells in 100 and 200 microg/mL experiment groups exhibited the typical morphology changes of undergoing apoptosis, such as cell shrinkage and nucleus chromatin condensed. However, the cells in the 400 microg/mL group showed the necrotic morphology changes including cytomembrane rupture and cytoplasm spillover. In addition, DNA Ladder could be demonstrated by DNA electrophoresis in each experiment group. Apoptosis peak was also evident in flow cytometry in each experiment group. After treating the HeLa cells with essential oil of Artemisia lavadulaefolia for 6 h, comet tail was detected by comet assay. Moreover, western blotting analysis showed that caspase-3 was activated and the cleavage of PARP was inactivated. Essential oil from Artemisia lavadulaefolia can inhibit the proliferation of HeLa cells in vitro. Low concentration of essential oil from Artemisia lavadulaefolia can induce apoptosis, whereas high concentration of the compounds result in necrosis of HeLa cells. And,the mechanism may be related to the caspase-3-mediated-PARP apoptotic signal pathway.

  19. Lateral flow assays

    NARCIS (Netherlands)

    Posthuma-Trumpie, G.A.; Amerongen, van A.

    2012-01-01

    A simple version of immunochemical-based methods is the Lateral Flow Assay (LFA). It is a dry chemistry technique (reagents are included); the fluid from the sample runs through a porous membrane (often nitrocellulose) by capillary force. Typically the membrane is cut as a strip of 0.5*5 cm. In most

  20. Microchemiluminescent assay system

    Energy Technology Data Exchange (ETDEWEB)

    Kiel, J.L.

    1986-04-09

    The patent concerns a microchemiluminescent assay system, which can be used to detect ionizing radiation, heat or specific substances. The method involves the use of a complex formed from serum albumin and a luminescer which, in the presence of ionizing radiation (heat, or a specific analyte), will emit light in an amount proportional to the amount of radiation, etc. (U.K.).

  1. (MTT) dye reduction assay.

    African Journals Online (AJOL)

    to inhibit proliferation of HeLa cells was determined using the 3443- dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide (MTT) dye reduction assay. Extracts from roots of Agathisanthemum bojeri, Synaptolepis kirkii and Zanha africana and the leaf extract of Physalis peruviana at a concentration of 10 pg/ml inhibited cell ...

  2. Hyaluronic Acid Assays

    DEFF Research Database (Denmark)

    Itenov, Theis S; Kirkby, Nikolai S; Bestle, Morten H

    2015-01-01

    BACKGROUD: Hyaluronic acid (HA) is proposed as a marker of functional liver capacity. The aim of the present study was to compare a new turbidimetric assay for measuring HA with the current standard method. METHODS: HA was measured by a particle-enhanced turbidimetric immunoassay (PETIA) and enzyme...

  3. FLUIDICS DEVICE FOR ASSAY

    DEFF Research Database (Denmark)

    2007-01-01

    The present invention relates to a device for use in performing assays on standard laboratory solid supports whereon chemical entities are attached. The invention furthermore relates to the use of such a device and a kit comprising such a device. The device according to the present invention is a...

  4. A Triterpenoid from Thalictrum fortunei Induces Apoptosis in BEL-7402 Cells Through the P53-Induced Apoptosis Pathway

    Directory of Open Access Journals (Sweden)

    Lvyi Chen

    2011-11-01

    Full Text Available Thalictrum fortunei S. Moore, a perennial plant distributed in the southeastern part of China, has been used in Traditional Chinese Medicine for thousands of years for its antitumor, antibacterial and immunoregulatory effects. In order to investigate the active components and the mechanism of the anti-tumor effects of Thalictrum fortunei, the growth inhibitory effects of eight triterpenoids isolated from the aerial parts of the plant on tumor cell lines were examined by 3-(4,5-dimethylthiazoy1-3,5-diphenyltetrazolium bromide (MTT assay. The MTT-assay results showed that the inhibitory activity of 3-O-β-D-glucopyranosyl-(1→4-β-D-fucopyranosyl(22S,24Z-cycloart-24-en-3β,22,26-triol 26-O-β-D-glucopyranoside (1 was stronger than that of the other seven tested triterpenoids on human hepatoma Bel-7402 cell line (Bel-7402, human colon lovo cells (LoVo, human non-small cells lung cancer NCIH-460 cells (NCIH-460 and human gastric carcinoma SGC-7901 cells (SGC-7901 after 48 h treatment in vitro, with the IC50 values of 66.4, 84.8, 73.5, 89.6 μM, respectively. Moreover, the antitumor mechanism of compound 1 on Bel-7402 cell was explored through nucleus dyeing, fluorescence assay, flow cytometry and western blot. The flow cytometric analysis results revealed that compound 1 caused apoptosis and mitochondrial membrane potential (MMP loss in Bel-7402 cells. A fluorescence assay indicated that intracellular reactive oxygen species (ROS were markedly provoked by compound 1 treatment compared to control cells. Immunoblot results showed that compound 1 significantly increased the expression levels of cleaved caspase-3, P53 and Bax protein, and decreased the expression level of Bcl-2 protein. These findings indicate that compound 1 inhibits the growth activity of tumor cells, probably through the P53 protein-induced apoptosis pathway.

  5. CIRRHOSIS INDUCES APOPTOSIS IN RENAL TISSUE THROUGH INTRACELLULAR OXIDATIVE STRESS

    Directory of Open Access Journals (Sweden)

    Keli Cristina Simões da SILVEIRA

    2015-03-01

    Full Text Available Background Renal failure is a frequent and serious complication in patients with decompensated cirrhosis. Objectives We aimed to evaluate the renal oxidative stress, cell damage and impaired cell function in animal model of cirrhosis. Methods Secondary biliary cirrhosis was induced in rats by ligation of the common bile duct. We measured TBARS, ROS and mitochondrial membrane potential in kidney as markers of oxidative stress, and activities of the antioxidant enzymes. Relative cell viability was determined by trypan blue dye-exclusion assay. Annexin V-PE was used with a vital dye, 7-AAD, to distinguish apoptotic from necrotic cells and comet assay was used for determined DNA integrity in single cells. Results In bile duct ligation animals there was significant increase in the kidney lipoperoxidation and an increase of the level of intracellular ROS. There was too an increase in the activity of all antioxidant enzymes evaluated in the kidney. The percentage viability was above 90% in the control group and in bile duct ligation was 64.66% and the dominant cell death type was apoptosis. DNA damage was observed in the bile duct ligation. There was a decreased in the mitochondrial membrane potential from 71.40% ± 6.35% to 34.48% ± 11.40% in bile duct ligation. Conclusions These results indicate that intracellular increase of ROS cause damage in the DNA and apoptosis getting worse the renal function in cirrhosis.

  6. Combination of VP3 and CD147-knockdown enhance apoptosis and tumor growth delay index in colorectal tumor allograft

    International Nuclear Information System (INIS)

    Ismail, Ruzila; Allaudin, Zeenathul Nazariah; Abdullah, Rasedee; Mohd Lila, Mohd-Azmi; Rahman, Nik-Mohd-Afizan Nik Abd.; Abdul Rahman, Sheikh-Omar

    2016-01-01

    Cancer therapies that kill cancer cells without affecting normal cells is the ultimate mode of treating cancers. The VP3, an avian virus-derived protein, can specifically initiate cell death through several signal transduction pathways leading to apoptosis. In cancer, chemoresistance and cell survivability implicate the cell surface protein, CD147. In this study, transfection of VP3 and silencing of CD147 genes was achieved through the treatment of tumors with pVIVO1-GFP/VP3 (VP3), psiRNA-CD147/2 (shCD147/2), and their combination of CT26 colon cancer cell-induced in mice. The effectiveness of tumor-treatment was ascertained by electrophoresis, TUNEL assay, and flow cytometry analysis. While histopathological and biochemical analysis were used as toxic side effect identification. The tumor growth delay index (TGDI) after treatment with VP3, shCD147/2, and their combination treatments increased by 1.3-, 1.2-, 2.0- and 2.3-fold respectively, over untreated control. The VP3-shCD147/2 combination treatment was more efficacious then either VP3 or shCD147/2 alone in the retardation of mouse CT26 colorectal cell tumor allograft. The antitumor effect of the combination treatment is the result of synergistic effects of VP3 and shCD147/2 on the tumor cells resulting in apoptosis. Thus, the study shows that combination of VP3 and shCD147/2 treatment can be developed into a potential approach for anticolorectal cancer treatment regimen. The online version of this article (doi:10.1186/s12885-016-2530-8) contains supplementary material, which is available to authorized users

  7. Cell Culture Assay for Human Noroviruses [response

    Energy Technology Data Exchange (ETDEWEB)

    Straub, Tim M.; Honer Zu Bentrup, Kerstin; Orosz Coghlan, Patricia; Dohnalkova, Alice; Mayer, Brooke K.; Bartholomew, Rachel A.; Valdez, Catherine O.; Bruckner-Lea, Cindy J.; Gerba, Charles P.; Abbaszadegan, Morteza A.; Nickerson, Cheryl A.

    2007-07-01

    We appreciate the comments provided by Leung et al., in response to our recently published article “In Vitro Cell Culture Infectivity Assay for Human Noroviruses” by Straub et al. (1). The specific aim of our project was to develop an in vitro cell culture infectivity assay for human noroviruses (hNoV) to enhance risk assessments when they are detected in water supplies. Reverse transcription (RT) qualitative or quantitative PCR are the primary assays for waterborne NoV monitoring. However, these assays cannot distinguish between infectious vs. non-infectious virions. When hNoV is detected in water supplies, information provided by our infectivity assay will significantly improve risk assessment models and protect human health, regardless of whether we are propagating NoV. Indeed, in vitro cell culture infectivity assays for the waterborne pathogen Cryptosporidium parvum that supplement approved fluorescent microscopy assays, do not result in amplification of the environmentally resistant hard-walled oocysts (2). However, identification of life cycle stages in cell culture provides evidence of infectious oocysts in a water supply. Nonetheless, Leung et al.’s assertion regarding the suitability of our method for the in vitro propagation of high titers of NoV is valid for the medical research community. In this case, well-characterized challenge pools of virus would be useful for developing and testing diagnostics, therapeutics, and vaccines. As further validation of our published findings, we have now optimized RT quantitative PCR to assess the level of viral production in cell culture, where we are indeed finding significant increases in viral titer. The magnitude and time course of these increases is dependent on both virus strain and multiplicity of infection. We are currently preparing a manuscript that will discuss these findings in greater detail, and the implications this may have for creating viral challenge pools

  8. Investigation of the cytotoxicity, apoptosis and pharmacokinetics of Raddeanin A.

    Science.gov (United States)

    Gu, Guiying; Qi, Huanhuan; Jiang, Tianyue; Ma, Bo; Fang, Zheng; Xu, Hong; Zhang, Qi

    2017-03-01

    Raddeanin A, one of the triterpenoid saponins extracted from Anemone raddeana rhizome of the Ranunculaceae family, has demonstrated the ability to inhibit the growth of human hepatic and gastric cancer cells. However, the effects of Raddeanin A on human colon cancer cells have not been investigated extensively. The present study aimed to examine the antiproliferative and apoptosis-inducing effects of Raddeanin A on the HCT-116 human colon cancer cell line in vitro , and evaluate the pharmacokinetic and biodistribution properties of Raddeanin A in mice following a single oral administration. A 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay was used to assess the in vitro cytotoxicity of Raddeanin A against HCT-116 cells. 4',6-Diamidino-2-phenylindole, dihydrochloride staining and flow cytometry were performed to further examine the apoptosis-inducing capability of Raddeanin A. The concentrations of Raddeanin A in the plasma and tissues were analyzed using liquid chromatography-tandem mass spectrometry. Raddeanin A showed a dose-dependent antiproliferative effect towards the HCT-116 cells, with a half maximal inhibitory concentration of ~1.4 µM. Treatment with Raddeanin A resulted in a significant induction of apoptosis, observed as apparent morphological changes of the nuclei, with a total apoptotic ratio of 41.8% at a concentration of 3 µM. Low concentrations of Raddeanin A were detected in the heart, liver, spleen, lung, kidney and plasma of the mice following oral administration, however, the majority of the Raddeanin A was distributed in the intestinal tract, particularly in the colon and caecum. These present study confirmed the growth-inhibitory and apoptosis-inducing effects of Raddeanin A on HCT-116 cells and performed preliminary examinations of its pharmacokinetic properties, which provide a foundation for further investigating the inhibitory mechanism on the colon cancer cells in vivo .

  9. Colorectal cancer: can nutrients modulate NF-kappaB and apoptosis?

    Science.gov (United States)

    Ravasco, Paula; Aranha, Márcia M; Borralho, Pedro M; Moreira da Silva, Isabel B; Correia, Luís; Fernandes, Afonso; Rodrigues, Cecília M P; Camilo, Maria

    2010-02-01

    NF-kappaB may promote carcinogenesis by altering cell cycle, inflammatory responses and apoptosis-related gene expression, though cell mechanisms relating diet and colorectal cancer (CRC) remain unveiled in humans. This study in patients with CRC aimed to explore potential interactions between the dietary pattern, nutrient intake, expression of NF-kappaB, apoptosis and tumour histological aggressiveness. Usual diet was assessed by diet history; nutrient composition was determined by DIETPLAN software. Histologically classified patient tissue samples (adenoma, adenocarcinoma and normal surrounding mucosa) were obtained via biopsies during colonoscopy (n=16) or surgery (n=8). NF-kappaB expression was determined by immunohistochemistry and apoptosis by TUNEL assay. NF-kappaB expression and apoptosis were higher in tumours (p<0.01), greater along with histological aggressiveness (p<0.01). Highest intake terciles of animal protein, refined carbohydrates, saturated fat, n-6 fatty acids and alcohol were associated with higher NF-kappaB, apoptosis and histological aggressiveness (p<0.01); the opposite tissue characteristics were associated with highest intake terciles of n-3 fatty acids, fibre, vitamin E, flavonoids, isoflavones, beta-carotene and selenium (p<0.002). Additionally, higher n-6:n-3 fatty acids ratio (median 26:1) was associated with higher NF-kappaB (p<0.006) and apoptosis (p<0.01), and more aggressive histology (p<0.01). Conversely, lower n-6:n-3 fatty acids ratio (median 6:1) was associated with lower NF-kappaB (p<0.002) and apoptosis (p<0.002), and less aggressive histology (p<0.002). NF-kappaB expression and apoptosis increased from adenoma to poorly differentiated adenocarcinoma. This degenerative transition, recognized as key in carcinogenesis, appear to have been influenced by a diet promoting a pro-inflammatory milieu that can trigger NF-kappaB. Copyright 2009 Elsevier Ltd and European Society for Clinical Nutrition and Metabolism. All rights reserved.

  10. Simultaneous modulation of the intrinsic and extrinsic pathways by simvastatin in mediating prostate cancer cell apoptosis

    International Nuclear Information System (INIS)

    Goc, Anna; Kochuparambil, Samith T; Al-Husein, Belal; Al-Azayzih, Ahmad; Mohammad, Shuaib; Somanath, Payaningal R

    2012-01-01

    Recent studies suggest the potential benefits of statins as anti-cancer agents. Mechanisms by which statins induce apoptosis in cancer cells are not clear. We previously showed that simvastatin inhibit prostate cancer cell functions and tumor growth. Molecular mechanisms by which simvastatin induce apoptosis in prostate cancer cells is not completely understood. Effect of simvastatin on PC3 cell apoptosis was compared with docetaxel using apoptosis, TUNEL and trypan blue viability assays. Protein expression of major candidates of the intrinsic pathway downstream of simvastatin-mediated Akt inactivation was analyzed. Gene arrays and western analysis of PC3 cells and tumor lysates were performed to identify the candidate genes mediating extrinsic apoptosis pathway by simvastatin. Data indicated that simvastatin inhibited intrinsic cell survival pathway in PC3 cells by enhancing phosphorylation of Bad, reducing the protein expression of Bcl-2, Bcl-xL and cleaved caspases 9/3. Over-expression of PC3 cells with Bcl-2 or DN-caspase 9 did not rescue the simvastatin-induced apoptosis. Simvastatin treatment resulted in increased mRNA and protein expression of molecules such as TNF, Fas-L, Traf1 and cleaved caspase 8, major mediators of intrinsic apoptosis pathway and reduced protein levels of pro-survival genes Lhx4 and Nme5. Our study provides the first report that simvastatin simultaneously modulates intrinsic and extrinsic pathways in the regulation of prostate cancer cell apoptosis in vitro and in vivo, and render reasonable optimism that statins could become an attractive anti-cancer agent

  11. Voltage dependent anion channel-1 regulates death receptor mediated apoptosis by enabling cleavage of caspase-8

    International Nuclear Information System (INIS)

    Chacko, Alex D; Liberante, Fabio; Paul, Ian; Longley, Daniel B; Fennell, Dean A

    2010-01-01

    Activation of the extrinsic apoptosis pathway by tumour necrosis factor related apoptosis inducing ligand (TRAIL) is a novel therapeutic strategy for treating cancer that is currently under clinical evaluation. Identification of molecular biomarkers of resistance is likely to play an important role in predicting clinical anti tumour activity. The involvement of the mitochondrial type 1 voltage dependent anion channel (VDAC1) in regulating apoptosis has been highly debated. To date, a functional role in regulating the extrinsic apoptosis pathway has not been formally excluded. We carried out stable and transient RNAi knockdowns of VDAC1 in non-small cell lung cancer cells, and stimulated the extrinsic apoptotic pathway principally by incubating cells with the death ligand TRAIL. We used in-vitro apoptotic and cell viability assays, as well as western blot for markers of apoptosis, to demonstrate that TRAIL-induced toxicity is VDAC1 dependant. Confocal microscopy and mitochondrial fractionation were used to determine the importance of mitochondria for caspase-8 activation. Here we show that either stable or transient knockdown of VDAC1 is sufficient to antagonize TRAIL mediated apoptosis in non-small cell lung cancer (NSCLC) cells. Specifically, VDAC1 is required for processing of procaspase-8 to its fully active p18 form at the mitochondria. Loss of VDAC1 does not alter mitochondrial sensitivity to exogenous caspase-8-cleaved BID induced mitochondrial depolarization, even though VDAC1 expression is essential for TRAIL dependent activation of the intrinsic apoptosis pathway. Furthermore, expression of exogenous VDAC1 restores the apoptotic response to TRAIL in cells in which endogenous VDAC1 has been selectively silenced. Expression of VDAC1 is required for full processing and activation of caspase-8 and supports a role for mitochondria in regulating apoptosis signaling via the death receptor pathway

  12. CD 95 mediated apoptosis in embryogenesis: implication in tooth development.

    Czech Academy of Sciences Publication Activity Database

    Matalová, Eva; Šetková, Jana; Blackburn, J.; Míšek, Ivan; Sharpe, P. T.

    2006-01-01

    Roč. 9, 3 (2006), s. 123-128 ISSN 1397-5927 R&D Projects: GA ČR GA304/04/0101; GA MŠk OC B23.001 Institutional research plan: CEZ:AV0Z50450515 Keywords : fas * embryonic development * odontogenesis Subject RIV: EB - Genetics ; Molecular Biology

  13. Evidence that tumor necrosis factor-related apoptosis inducing ligand (TRAIL) inhibits angiogenesis by inducing vascular endothelial cell apoptosis

    International Nuclear Information System (INIS)

    Chen, Pei-Lin; Easton, Alexander S.

    2010-01-01

    Tumor necrosis factor (TNF) and its related ligands TNF-related apoptosis inducing ligand (TRAIL) and Fas ligand (FasL) play roles in the regulation of vascular responses, but their effect on the formation of new blood vessels (angiogenesis) is unclear. Therefore, we have examined the effects of these ligands on angiogenesis modeled with primary cultures of human umbilical vein endothelial cells (HUVEC). To examine angiogenesis in the context of the central nervous system, we have also modeled cerebral angiogenesis with the human brain endothelial cell line hCMEC/D3. Parameters studied were bromodeoxyuridine (BrdU) incorporation and cell number (MTT) assay (to assess endothelial proliferation), scratch assay (migration) and networks on Matrigel (tube formation). In our hands, neither TRAIL nor FasL (1, 10, and 100 ng/ml) had an effect on parameters of angiogenesis in the HUVEC model. In hCMEC/D3 cells by contrast, TRAIL inhibited all parameters (10-100 ng/ml, 24 h). This was due to apoptosis, since its action was blocked by the pan-caspase inhibitor zVADfmk (5 x 10 -5 mol/l) and TRAIL increased caspase-3 activity 1 h after application. However FasL (100 ng/ml) increased BrdU uptake without other effects. We conclude that TRAIL has different effects on in vitro angiogenesis depending on which model is used, but that FasL is generally ineffective when applied in vitro. The data suggest that TRAIL primarily influences angiogenesis by the induction of vascular endothelial apoptosis, leading to vessel regression.

  14. Kurarinol induces hepatocellular carcinoma cell apoptosis through suppressing cellular signal transducer and activator of transcription 3 signaling

    International Nuclear Information System (INIS)

    Shu, Guangwen; Yang, Jing; Zhao, Wenhao; Xu, Chan; Hong, Zongguo; Mei, Zhinan; Yang, Xinzhou

    2014-01-01

    Kurarinol is a flavonoid isolated from roots of the medical plant Sophora flavescens. However, its cytotoxic activity against hepatocellular carcinoma (HCC) cells and toxic effects on mammalians remain largely unexplored. Here, the pro-apoptotic activities of kurarinol on HCC cells and its toxic impacts on tumor-bearing mice were evaluated. The molecular mechanisms underlying kurarinol-induced HCC cell apoptosis were also investigated. We found that kurarinol dose-dependently provoked HepG2, Huh-7 and H22 HCC cell apoptosis. In addition, kurarinol gave rise to a considerable decrease in the transcriptional activity of signal transducer and activator of transcription 3 (STAT3) in HCC cells. Suppression of STAT3 signaling is involved in kurarinol-induced HCC cell apoptosis. In vivo studies showed that kurarinol injection substantially induced transplanted H22 cell apoptosis with low toxic impacts on tumor-bearing mice. Similarly, the transcriptional activity of STAT3 in transplanted tumor tissues was significantly suppressed after kurarinol treatment. Collectively, our current research demonstrated that kurarinol has the capacity of inducing HCC cell apoptosis both in vitro and in vivo with undetectable toxic impacts on the host. Suppressing STAT3 signaling is implicated in kurarinol-mediated HCC cell apoptosis. - Highlights: • Kurarinol induces hepatocellular carcinoma (HCC) cell apoptosis. • Kurarinol induces HCC cell apoptosis via inhibiting STAT3. • Kurarinol exhibits low toxic effects on tumor-bearing animals

  15. Mycobacterium tuberculosis nuoG is a virulence gene that inhibits apoptosis of infected host cells.

    Directory of Open Access Journals (Sweden)

    Kamalakannan Velmurugan

    2007-07-01

    Full Text Available The survival and persistence of Mycobacterium tuberculosis depends on its capacity to manipulate multiple host defense pathways, including the ability to actively inhibit the death by apoptosis of infected host cells. The genetic basis for this anti-apoptotic activity and its implication for mycobacterial virulence have not been demonstrated or elucidated. Using a novel gain-of-function genetic screen, we demonstrated that inhibition of infection-induced apoptosis of macrophages is controlled by multiple genetic loci in M. tuberculosis. Characterization of one of these loci in detail revealed that the anti-apoptosis activity was attributable to the type I NADH-dehydrogenase of M. tuberculosis, and was mainly due to the subunit of this multicomponent complex encoded by the nuoG gene. Expression of M. tuberculosis nuoG in nonpathogenic mycobacteria endowed them with the ability to inhibit apoptosis of infected human or mouse macrophages, and increased their virulence in a SCID mouse model. Conversely, deletion of nuoG in M. tuberculosis ablated its ability to inhibit macrophage apoptosis and significantly reduced its virulence in mice. These results identify a key component of the genetic basis for an important virulence trait of M. tuberculosis and support a direct causal relationship between virulence of pathogenic mycobacteria and their ability to inhibit macrophage apoptosis.

  16. Drosophila MOF regulates DIAP1 and induces apoptosis in a JNK dependent pathway.

    Science.gov (United States)

    Pushpavalli, Sreerangam N C V L; Sarkar, Arpita; Ramaiah, M Janaki; Koteswara Rao, G; Bag, Indira; Bhadra, Utpal; Pal-Bhadra, Manika

    2016-03-01

    Histone modulations have been implicated in various cellular and developmental processes where in Drosophila Mof is involved in acetylation of H4K16. Reduction in the size of larval imaginal discs is observed in the null mutants of mof with increased apoptosis. Deficiency involving Hid, Reaper and Grim [H99] alleviated mof (RNAi) induced apoptosis in the eye discs. mof (RNAi) induced apoptosis leads to activation of caspases which is suppressed by over expression of caspase inhibitors like P35 and Diap1 clearly depicting the role of caspases in programmed cell death. Also apoptosis induced by knockdown of mof is rescued by JNK mutants of bsk and tak1 indicating the role of JNK in mof (RNAi) induced apoptosis. The adult eye ablation phenotype produced by ectopic expression of Hid, Rpr and Grim, was restored by over expression of Mof. Accumulation of Mof at the Diap1 promoter 800 bp upstream of the transcription start site in wild type larvae is significantly higher (up to twofolds) compared to mof (1) mutants. This enrichment coincides with modification of histone H4K16Ac indicating an induction of direct transcriptional up regulation of Diap1 by Mof. Based on these results we propose that apoptosis triggered by mof (RNAi) proceeds through a caspase-dependent and JNK mediated pathway.

  17. Involvement of AMPK signaling cascade in capsaicin-induced apoptosis of HT-29 colon cancer cells.

    Science.gov (United States)

    Kim, Young Min; Hwang, Jin-Taek; Kwak, Dong Wook; Lee, Yun Kyung; Park, Ock Jin

    2007-01-01

    Adenosine monophosphate (AMP)-activated protein kinase (AMPK) is activated during ATP-depleting metabolic states, such as hypoxia, heat shock, oxidative stress, and exercise. As a highly conserved heterotrimeric kinase that functions as a major metabolic switch to maintain energy homeostasis, AMPK has been shown to exert as an intrinsic regulator of mammalian cell cycle. Moreover, AMPK cascade has emerged as an important pathway implicated in cancer control. In this article, we have investigated the effects of capsaicin on apoptosis in relation to AMPK activation in colon cancer cell. Capsaicin-induced apoptosis was revealed by the presence of nucleobodies in the capsaicin-treated HT-29 colon cancer cells. Concomitantly, the activation of AMPK and the increased expression of the inactive form of acetyl-CoA carboxylase (ACC) were detected in capsaicin-treated colon cancer cells. We showed that both capsaicin and 5'-aminoimidazole-4-carboxamide-1-beta-D-ribonucleoside (AICAR), an AMPK activator possess the AMPK-activating capacity as well as apoptosis-inducing properties. Evidence of the association between AMPK activation and the increased apoptosis in HT-29 colon cancer cells by capsaicin treatment, and further findings of the correlation of the activated AMPK and the elevated apoptosis by cotreatment of AICAR and capsaicin support AMPK as an important component of apoptosis, as well as a possible target of cancer control.

  18. Hypoxia promotes apoptosis of neuronal cells through hypoxia-inducible factor-1α-microRNA-204-B-cell lymphoma-2 pathway.

    Science.gov (United States)

    Wang, Xiuwen; Li, Ji; Wu, Dongjin; Bu, Xiangpeng; Qiao, Yong

    2016-01-01

    Neuronal cells are highly sensitive to hypoxia and may be subjected to apoptosis when exposed to hypoxia. Several apoptosis-related genes and miRNAs involve in hypoxia-induced apoptosis. This study aimed to examine the role of HIF1α-miR-204-BCL-2 pathway in hypoxia-induced apoptosis in neuronal cells. Annexin V/propidium iodide assay was performed to analyze cell apoptosis in AGE1.HN and PC12 cells under hypoxic or normoxic conditions. The expression of BCL-2 and miR-204 were determined by Western blot and qRT-PCR. The effects of miR-204 overexpression or knockdown on the expression of BCL-2 were evaluated by luciferase assay and Western blot under hypoxic or normoxic conditions. HIF-1α inhibitor YC-1 and siHIF-1α were employed to determine the effect of HIF-1α on the up-regulation of miR-204 and down-regulation of BCL-2 induced by hypoxia. Apoptosis assay showed the presence of apoptosis induced by hypoxia in neuronal cells. Moreover, we found that hypoxia significantly down-regulated the expression of BCL-2, and increased the mRNA level of miR-204 in neuronal cells than that in control. Bioinformatic analysis and luciferase reporter assay demonstrated that miR-204 directly targeted and regulated the expression of BCL-2. Specifically, the expression of BCL-2 was inhibited by miR-204 mimic and enhanced by miR-204 inhibitor. Furthermore, we detected that hypoxia induced cell apoptosis via HIF-1α/miR-204/BCL-2 in neuronal cells. This study demonstrated that HIF-1α-miR-204-BCL-2 pathway contributed to apoptosis of neuronal cells induced by hypoxia, which could potentially be exploited to prevent spinal cord ischemia-reperfusion injury. © 2015 by the Society for Experimental Biology and Medicine.

  19. Radioreceptor assay for oxyphenonium

    International Nuclear Information System (INIS)

    Ensing, K.; Zeeuw, R.A. de

    1984-01-01

    The development of a radioreceptor assay for the quaternary anticholinergic drug, oxyphenonium, in plasma is reported. It is based on competition between this drug and 3 H-dexetimide for binding to muscarinic receptors. After ion pair extraction and reextraction, the drug can be determined in plasma at concentrations down to a value of 100 pg/ml. This permits pharmacokinetic studies to be made after inhalation of oxyphenonium. (author)

  20. Dual isotope assays

    International Nuclear Information System (INIS)

    Smith, G.F.W.; Stevens, R.A.J.; Jacoby, B.

    1980-01-01

    Dual isotope assays for thyroid function are performed by carrying out a radio-immunoassay for two of thyroxine (T4), tri-iodothyronine (T3), thyroid stimulating hormone (TSH), and thyroxine binding globulin (TBG), by a method wherein a version of one of the thyroid components, preferably T4 or T3 is labelled with Selenium-75 and the version of the other thyroid component is labelled with a different radionuclide, preferably Iodine-125. (author)

  1. Apoptosis and Molecular Targeting Therapy in Cancer

    Science.gov (United States)

    Hassan, Mohamed; Watari, Hidemichi; AbuAlmaaty, Ali; Ohba, Yusuke; Sakuragi, Noriaki

    2014-01-01

    Apoptosis is the programmed cell death which maintains the healthy survival/death balance in metazoan cells. Defect in apoptosis can cause cancer or autoimmunity, while enhanced apoptosis may cause degenerative diseases. The apoptotic signals contribute into safeguarding the genomic integrity while defective apoptosis may promote carcinogenesis. The apoptotic signals are complicated and they are regulated at several levels. The signals of carcinogenesis modulate the central control points of the apoptotic pathways, including inhibitor of apoptosis (IAP) proteins and FLICE-inhibitory protein (c-FLIP). The tumor cells may use some of several molecular mechanisms to suppress apoptosis and acquire resistance to apoptotic agents, for example, by the expression of antiapoptotic proteins such as Bcl-2 or by the downregulation or mutation of proapoptotic proteins such as BAX. In this review, we provide the main regulatory molecules that govern the main basic mechanisms, extrinsic and intrinsic, of apoptosis in normal cells. We discuss how carcinogenesis could be developed via defective apoptotic pathways or their convergence. We listed some molecules which could be targeted to stimulate apoptosis in different cancers. Together, we briefly discuss the development of some promising cancer treatment strategies which target apoptotic inhibitors including Bcl-2 family proteins, IAPs, and c-FLIP for apoptosis induction. PMID:25013758

  2. Mechanisms of Neuronal Apoptosis In Vivo

    National Research Council Canada - National Science Library

    Martin, Lee J

    2004-01-01

    .... Neuronal cell death in the form of apoptosis or necrosis occurs after exposure to neurotoxins, chemical warfare agents, radiation, viruses, and after seizures, trauma, limb amputation, and hypoxic...

  3. Bystander apoptosis in human cells mediated by irradiated blood plasma

    Energy Technology Data Exchange (ETDEWEB)

    Vinnikov, Volodymyr, E-mail: vlad.vinnikov@mail.ru [Grigoriev Institute for Medical Radiology of the National Academy of Medical Science of Ukraine (Ukraine); Lloyd, David; Finnon, Paul [Centre for Radiation, Chemical and Environmental Hazards of the Health Protection Agency of the United Kingdom (United Kingdom)

    2012-03-01

    Following exposure to high doses of ionizing radiation, due to an accident or during radiotherapy, bystander signalling poses a potential hazard to unirradiated cells and tissues. This process can be mediated by factors circulating in blood plasma. Thus, we assessed the ability of plasma taken from in vitro irradiated human blood to produce a direct cytotoxic effect, by inducing apoptosis in primary human peripheral blood mononuclear cells (PBM), which mainly comprised G{sub 0}-stage lymphocytes. Plasma was collected from healthy donors' blood irradiated in vitro to 0-40 Gy acute {gamma}-rays. Reporter PBM were separated from unirradiated blood with Histopaque and held in medium with the test plasma for 24 h at 37 Degree-Sign C. Additionally, plasma from in vitro irradiated and unirradiated blood was tested against PBM collected from blood given 4 Gy. Apoptosis in reporter PBM was measured by the Annexin V test using flow cytometry. Plasma collected from unirradiated and irradiated blood did not produce any apoptotic response above the control level in unirradiated reporter PBM. Surprisingly, plasma from irradiated blood caused a dose-dependent reduction of apoptosis in irradiated reporter PBM. The yields of radiation-induced cell death in irradiated reporter PBM (after subtracting the respective values in unirradiated reporter PBM) were 22.2 {+-} 1.8% in plasma-free cultures, 21.6 {+-} 1.1% in cultures treated with plasma from unirradiated blood, 20.2 {+-} 1.4% in cultures with plasma from blood given 2-4 Gy and 16.7 {+-} 3.2% in cultures with plasma from blood given 6-10 Gy. These results suggested that irradiated blood plasma did not cause a radiation-induced bystander cell-killing effect. Instead, a reduction of apoptosis in irradiated reporter cells cultured with irradiated blood plasma has implications concerning oncogenic risk from mutated cells surviving after high dose in vivo irradiation (e.g. radiotherapy) and requires further study.

  4. Bystander apoptosis in human cells mediated by irradiated blood plasma

    International Nuclear Information System (INIS)

    Vinnikov, Volodymyr; Lloyd, David; Finnon, Paul

    2012-01-01

    Following exposure to high doses of ionizing radiation, due to an accident or during radiotherapy, bystander signalling poses a potential hazard to unirradiated cells and tissues. This process can be mediated by factors circulating in blood plasma. Thus, we assessed the ability of plasma taken from in vitro irradiated human blood to produce a direct cytotoxic effect, by inducing apoptosis in primary human peripheral blood mononuclear cells (PBM), which mainly comprised G 0 -stage lymphocytes. Plasma was collected from healthy donors’ blood irradiated in vitro to 0–40 Gy acute γ-rays. Reporter PBM were separated from unirradiated blood with Histopaque and held in medium with the test plasma for 24 h at 37 °C. Additionally, plasma from in vitro irradiated and unirradiated blood was tested against PBM collected from blood given 4 Gy. Apoptosis in reporter PBM was measured by the Annexin V test using flow cytometry. Plasma collected from unirradiated and irradiated blood did not produce any apoptotic response above the control level in unirradiated reporter PBM. Surprisingly, plasma from irradiated blood caused a dose-dependent reduction of apoptosis in irradiated reporter PBM. The yields of radiation-induced cell death in irradiated reporter PBM (after subtracting the respective values in unirradiated reporter PBM) were 22.2 ± 1.8% in plasma-free cultures, 21.6 ± 1.1% in cultures treated with plasma from unirradiated blood, 20.2 ± 1.4% in cultures with plasma from blood given 2–4 Gy and 16.7 ± 3.2% in cultures with plasma from blood given 6–10 Gy. These results suggested that irradiated blood plasma did not cause a radiation-induced bystander cell-killing effect. Instead, a reduction of apoptosis in irradiated reporter cells cultured with irradiated blood plasma has implications concerning oncogenic risk from mutated cells surviving after high dose in vivo irradiation (e.g. radiotherapy) and requires further study.

  5. Induction of Mitochondrial Dependent Apoptosis in Human Leukemia K562 Cells by Meconopsis integrifolia: A Species from Traditional Tibetan Medicine

    Directory of Open Access Journals (Sweden)

    Jianping Fan

    2015-06-01

    Full Text Available Objectives: Meconopsis integrifolia (M. integrifolia is one of the most popular members in Traditional Tibetan Medicine. This study aimed to investigate the anticancer effect of M. integrifolia and to detect the underlying mechanisms of these effects. Methods: 3-(4,5-dimethylthiazol-2-yl-2,5-diphenyl tetrazolium bromide (MTT assay and trypan blue assay were used to evaluate the cytotoxicity of M. integrifolia. Changes in cell nuclear morphology and reactive oxygen species (ROS level were observed by fluorescent microscopy. Apoptosis ratio, DNA damage and mitochondrial membrane potential (MMP loss were analyzed by flow cytometry. Western blotting assay was adopted to detect the proteins related to apoptosis. Immunofluorescence was used to observe the release of cytochrome C. Results: The obtained data revealed that M. integrifolia could significantly inhibit K562 cell viability, mainly by targeting apoptosis induction and cell cycle arrest in G2/M phase. Collapse in cell morphology, chromatin condensation, DNA damage and ROS accumulation were observed. Further mechanism detection revealed that mitochondrion might be a key factor in M. integrifolia-induced apoptosis. Conclusions: M. integrifolia could induce mitochondria mediated apoptosis and cell cycle arrest in G2/M phase with little damage to normal cells, suggesting that M. integrifolia might be a potential and efficient anticancer agent that deserves further investigation.

  6. Advanced oxidation protein products induce chondrocyte apoptosis via receptor for advanced glycation end products-mediated, redox-dependent intrinsic apoptosis pathway.

    Science.gov (United States)

    Wu, Qian; Zhong, Zhao-Ming; Zhu, Si-Yuan; Liao, Cong-Rui; Pan, Ying; Zeng, Ji-Huan; Zheng, Shuai; Ding, Ruo-Ting; Lin, Qing-Song; Ye, Qing; Ye, Wen-Bin; Li, Wei; Chen, Jian-Ting

    2016-01-01

    Pro-inflammatory cytokine-induced chondrocyte apoptosis is a primary cause of cartilage destruction in the progression of rheumatoid arthritis (RA). Advanced oxidation protein products (AOPPs), a novel pro-inflammatory mediator, have been confirmed to accumulate in patients with RA. However, the effect of AOPPs accumulation on chondrocyte apoptosis and the associated cellular mechanisms remains unclear. The present study demonstrated that the plasma formation of AOPPs was enhanced in RA rats compared with normal. Then, chondrocyte were treated with AOPPs-modified rat serum albumin (AOPPs-RSA) in vitro. Exposure of chondrocyte to AOPPs activated nicotinamide adenine dinucleotide phosphate (NADPH) oxidase and increased expression of NADPH oxidase subunits, which was mediated by receptor for advanced glycation end products (RAGE), but not scavenger receptor CD36. Moreover, AOPPs challenge triggered NADPH oxidase-dependent ROS generation which induced mitochondrial dysfunction and endoplasmic reticulum stress resulted in activation of caspase family that eventually lead to apoptosis. Lastly, blockade of RAGE, instead of CD36, largely attenuated these signals. Our study demonstrated first time that AOPPs induce chondrocyte apoptosis via RAGE-mediated and redox-dependent intrinsic apoptosis pathway in vitro. These data implicates that AOPPs may represent a novel pathogenic factor that contributes to RA progression. Targeting AOPPs-triggered cellular mechanisms might emerge as a promising therapeutic option for patients with RA.

  7. Demethoxycurcumin Retards Cell Growth and Induces Apoptosis in Human Brain Malignant Glioma GBM 8401 Cells

    Directory of Open Access Journals (Sweden)

    Tzuu-Yuan Huang

    2012-01-01

    Full Text Available Demethoxycurcumin (DMC; a curcumin-related demethoxy compound has been recently shown to display antioxidant and antitumor activities. It has also produced a potent chemopreventive action against cancer. In the present study, the antiproliferation (using the MTT assay, DMC was found to have cytotoxic activities against GBM 8401 cell with IC50 values at 22.71 μM and induced apoptosis effects of DMC have been investigated in human brain malignant glioma GBM 8401 cells. We have studied the mitochondrial membrane potential (MMP, DNA fragmentation, caspase activation, and NF-κB transcriptional factor activity. By these approaches, our results indicated that DMC has produced an inhibition of cell proliferation as well as the activation of apoptosis in GBM 8401 cells. Both effects were observed to increase in proportion with the dosage of DMC treatment, and the apoptosis was induced by DMC in human brain malignant glioma GBM 8401 cells via mitochondria- and caspase-dependent pathways.

  8. Effect of topical vitamin E on ethanol-induced corneal epithelial apoptosis.

    Science.gov (United States)

    Bilgihan, Kamil; Konuk, Onur; Hondur, Ahmet; Akyürek, Nalan; Ozogul, Candan; Hasanreisoglu, Berati

    2005-01-01

    Ethanol is used to loosen the corneal epithelium before photoablation in laser subepithelial keratomileusis (LASEK). In this study, the apoptotic index of corneal epithelium after ethanol exposure and the effects of topical vitamin E were evaluated. The study was performed on 28 rabbit eyes in four groups. Group 1 comprised the controls. In group 2, 20% ethanol was applied topically for 20 seconds. In group 3, topical vitamin E was applied following 20% ethanol application. In group 4, only topical vitamin E was applied. Apoptosis was evaluated with TUNEL assay and transmission electron microscopy. Epithelial apoptosis was detected in all specimens in group 2. No apoptosis was detected in other groups except for one eye in group 1. The apoptotic index in group 2 was statistically higher than other groups (P < .001).

  9. Thioredoxin-2 (TRX-2) is an essential gene regulating mitochondria-dependent apoptosis.

    Science.gov (United States)

    Tanaka, Toru; Hosoi, Fumihito; Yamaguchi-Iwai, Yuko; Nakamura, Hajime; Masutani, Hiroshi; Ueda, Shugo; Nishiyama, Akira; Takeda, Shunichi; Wada, Hiromi; Spyrou, Giannis; Yodoi, Junji

    2002-04-02

    Thioredoxin-2 (Trx-2) is a mitochondria-specific member of the thioredoxin superfamily. Mitochondria have a crucial role in the signal transduction for apoptosis. To investigate the biological significance of Trx-2, we cloned chicken TRX-2 cDNA and generated clones of the conditional Trx-2-deficient cells using chicken B-cell line, DT40. Here we show that TRX-2 is an essential gene and that Trx-2-deficient cells undergo apoptosis upon repression of the TRX-2 transgene, showing an accumulation of intracellular reactive oxygen species (ROS). Cytochrome c is released from mitochondria, while caspase-9 and caspase-3, but not caspase-8, are activated upon inhibition of the TRX-2 transgene. In addition, Trx-2 and cytochrome c are co-immunoprecipitated in an in vitro assay. These results suggest that mitochondrial Trx-2 is essential for cell viability, playing a crucial role in the scavenging ROS in mitochondria and regulating the mitochondrial apoptosis signaling pathway.

  10. Cigarette smoke causes caspase-independent apoptosis of bronchial epithelial cells from asthmatic donors.

    Directory of Open Access Journals (Sweden)

    Fabio Bucchieri

    Full Text Available Epidemiologic studies have demonstrated important links between air pollution and asthma. Amongst these pollutants, environmental cigarette smoke is a risk factor both for asthma pathogenesis and exacerbation. As the barrier to the inhaled environment, the bronchial epithelium is a key structure that is exposed to cigarette smoke.Since primary bronchial epithelial cells (PBECs from asthmatic donors are more susceptible to oxidant-induced apoptosis, we hypothesized that they would be susceptible to cigarette smoke-induced cell death.PBECs from normal and asthmatic donors were exposed to cigarette smoke extract (CSE; cell survival and apoptosis were assessed by fluorescence-activated cell sorting, and protective effects of antioxidants evaluated. The mechanism of cell death was evaluated using caspase inhibitors and immunofluorescent staining for apoptosis-inducing factor (AIF.Exposure of PBEC cultures to CSE resulted in a dose-dependent increase in cell death. At 20% CSE, PBECs from asthmatic donors exhibited significantly more apoptosis than cells from non-asthmatic controls. Reduced glutathione (GSH, but not ascorbic acid (AA, protected against CSE-induced apoptosis. To investigate mechanisms of CSE-induced apoptosis, caspase-3 or -9 inhibitors were tested, but these failed to prevent apoptosis; in contrast, CSE promoted nuclear translocation of AIF from the mitochondria. GSH reduced the number of nuclear-AIF positive cells whereas AA was ineffective.Our results show that PBECs from asthmatic donors are more susceptible to CSE-induced apoptosis. This response involves AIF, which has been implicated in DNA damage and ROS-mediated cell-death. Epithelial susceptibility to CSE may contribute to the impact of environmental tobacco smoke in asthma.

  11. Advances in cell proliferation and apoptosis signal pathway and therapies of polycystic kidney disease

    Directory of Open Access Journals (Sweden)

    Xiao-ying LIAN

    2016-12-01

    Full Text Available Polycystic kidney disease (PKD is one of the monogenic inherited diseases. In PKD, excessive cell proliferation and fluid secretion, and disruption of the mechanisms controlling tubular diameter may all lead to cyst formation. Current evidence has demonstrated that intracellular calcium ion and cAMP imbalance drive both abnormal cell proliferation and apoptosis signal pathway. The present paper summarized the evidence implicating calcium ion and cAMP as central players in the signaling pathway of cell proliferation and apoptosis in PKD, and considered the potential therapeutic approaches targeted to slow cyst growth in PKD. DOI: 10.11855/j.issn.0577-7402.2016.11.13

  12. E2F-1 induces melanoma cell apoptosis via PUMA up-regulation and Bax translocation

    International Nuclear Information System (INIS)

    Hao, Hongying; Dong, Yanbin; Bowling, Maria T; Gomez-Gutierrez, Jorge G; Zhou, H Sam; McMasters, Kelly M

    2007-01-01

    PUMA is a pro-apoptotic Bcl-2 family member that has been shown to be involved in apoptosis in many cell types. We sought to ascertain whether induction of PUMA plays a crucial role in E2F-1-induced apoptosis in melanoma cells. PUMA gene and protein expression levels were detected by real-time PCR and Western blot in SK-MEL-2 and HCT116 cell lines after Ad-E2F-1 infection. Activation of the PUMA promoter by E2F-1 overexpression was detected by dual luciferase reporter assay. E2F-1-induced Bax translocation was shown by immunocytochemistry. The induction of caspase-9 activity was measured by caspase-9 colorimetric assay kit. Up-regulation of the PUMA gene and protein by E2F-1 overexpression was detected by real-time PCR and Western blot analysis in the SK-MEL-2 melanoma cell line. In support of this finding, we found six putative E2F-1 binding sites within the PUMA promoter. Subsequent dual luciferase reporter assay showed that E2F-1 expression could increase the PUMA gene promoter activity 9.3 fold in SK-MEL-2 cells. The role of PUMA in E2F-1-induced apoptosis was further investigated in a PUMA knockout cell line. Cell viability assay showed that the HCT116 PUMA-/- cell line was more resistant to Ad-E2F-1-mediated cell death than the HCT116 PUMA+/+ cell line. Moreover, a 2.2-fold induction of the PUMA promoter was also noted in the HCT116 PUMA+/+ colon cancer cell line after Ad-E2F-1 infection. Overexpression of a truncated E2F-1 protein that lacks the transactivation domain failed to up-regulate PUMA promoter, suggesting that PUMA may be a transcriptional target of E2F-1. E2F-1-induced cancer cell apoptosis was accompanied by Bax translocation from the cytosol to mitochondria and the induction of caspase-9 activity, suggesting that E2F-1-induced apoptosis is mediated by PUMA through the cytochrome C/Apaf-1-dependent pathway. Our studies strongly demonstrated that E2F-1 induces melanoma cell apoptosis via PUMA up-regulation and Bax translocation. The signaling

  13. DNA fragmentation and apoptosis induced by safranal in human prostate cancer cell line

    Directory of Open Access Journals (Sweden)

    Saeed Samarghandian

    2013-01-01

    Full Text Available Objectives: Apoptosis, an important mechanism that contributes to cell growth reduction, is reported to be induced by Crocus sativus (Saffron in different cancer types. However, limited effort has been made to correlate these effects to the active ingredients of saffron. The present study was designed to elucidate cytotoxic and apoptosis induction by safranal, the major coloring compound in saffron, in a human prostate cancer cell line (PC-3. Materials and Methods: PC-3 and human fetal lung fibroblast (MRC-5 cells were cultured and exposed to safranal (5, 10, 15, and 20 μg/ml. The 3-(4,5-dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide (MTT assay was performed to assess cytotoxicity. DNA fragmentation was assessed by gel electrophoresis. Cells were incubated with different concentrations of safranal, and cell morphologic changes and apoptosis were determined by the normal inverted microscope, Annexin V, and propidium iodide, followed by flow cytometric analysis, respectively. Results: MTT assay revealed a remarkable and concentration-dependent cytotoxic effect of safranal on PC-3 cells in comparison with non-malignant cell line. The morphologic alterations of the cells confirmed the MTT results. The IC 50 values against PC-3 cells were found to be 13.0 ΁ 0.07 and 6.4 ΁ 0.09 μg/ml at 48 and 72 h, respectively. Safranal induced an early and late apoptosis in the flow cytometry histogram of treated cells, indicating apoptosis is involved in this toxicity. DNA analysis revealed typical ladders as early as 48 and 72 h after treatment, indicative of apoptosis. Conclusions: Our preclinical study demonstrated a prostate cancer cell line to be highly sensitive to safranal-mediated growth inhibition and apoptotic cell death. Although the molecular mechanisms of safranal action are not clearly understood, it appears to have potential as a therapeutic agent.

  14. miR-326 targets antiapoptotic Bcl-xL and mediates apoptosis in human platelets.

    Directory of Open Access Journals (Sweden)

    Shifang Yu

    Full Text Available Platelets play crucial roles in hemostasis, thrombosis, wound healing, inflammation, angiogenesis, and tumor metastases. Because they are anucleated blood cells, platelets lack nuclear DNA, but they do contain mitochondrial DNA, which plays a key role in regulating apoptosis. Recent evidence has suggested that miRNAs are also involved in regulating gene expression and apoptosis in platelets. Our previous study showed that the expression of miR-326 increased visibly when apheresis platelets were stored in vitro. The antiapoptotic Bcl-2 family regulator Bcl-xL has been identified as a putative target of miR-326. In the present study, dual reporter luciferase assays were used to characterize the function of miR-326 in the regulation of the apoptosis of platelet cells. These assays demonstrated that miR-326 bound to the 3'-translated region of Bcl-xL. To directly assess the functional effects of miR-326 expression, levels of Bcl-xL and the apoptotic status of stored apheresis platelets were measured after transfection of miR-326 mimic or inhibitor. Results indicated that miR-326 inhibited Bcl-xL expression and induced apoptosis in stored platelets. Additionally, miR-326 inhibited Bcl-2 protein expression and enhanced Bak expression, possibly through an indirect mechanism, though there was no effect on the expression of Bax. The effect of miR-326 appeared to be limited to apoptosis, with no significant effect on platelet activation. These results provide new insight into the molecular mechanisms affecting differential platelet gene regulation, which may increase understanding of the role of platelet apoptosis in multiple diseases.

  15. PRAF3 induces apoptosis and inhibits migration and invasion in human esophageal squamous cell carcinoma

    International Nuclear Information System (INIS)

    Shi, Guo-Zhen; Yuan, Yang; Jiang, Guo-Jun; Ge, Zhi-Jun; Zhou, Jian; Gong, De-Jun; Tao, Jing; Tan, Yong-Fei; Huang, Sheng-Dong

    2012-01-01

    Prenylated Rab acceptor 1 domain family member 3 (PRAF3) is involved in the regulation of many cellular processes including apoptosis, migration and invasion. This study was conducted to investigate the effect of PRAF3 on apoptosis, migration and invasion in human esophageal squamous cell carcinoma (ESCC). The expression of PRAF3 mRNA and protein in primary ESCC and the matched normal tissues (57cases) was determined by quantitative RT-PCR and Western blot. Immunohistochemical analysis of PRAF3 expression was carried out in paraffin-embedded sections of ESCC and correlated with clinical features. The role of PRAF3 in apoptosis, migration and invasion was studied in ESCC cell lines of Eca109 and TE-1 through the adenovirus mediated PRAF3 gene transfer. The effect of PRAF3 on apoptosis was analyzed by annexin V-FITC assay. The regulation of PRAF3 on migration was determined by transwell and wounding healing assay, while the cellular invasion was analyzed by matrigel-coated transwell assay. We found that the expression of PRAF3 was significantly down-regulated in ESCC tissue compared with the matched normal tissue and was correlated with the clinical features of pathological grade, tumor stage and lymph node metastasis. Moreover, overexpression of PRAF3 induced cell apoptosis through both caspase-8 and caspase-9 dependent pathways, and inhibited cell migration and invasion by suppressing the activity of both MMP-2 and MMP-9 in human ESCC cell lines. Our data suggest that PRAF3 plays an important role in the regulation of tumor progression and metastasis and serves as a tumor suppressor in human ESCC. We propose that PRAF3 might be used as a potential therapeutic agent for human ESCC

  16. Radiation-induced apoptosis in differentially modulated by PTK inhibitora in K562 cells

    International Nuclear Information System (INIS)

    Lee, Hyung Sik; Moon, Chang Woo; Hur, Won Joo; Jeong, Su Jin; Jeong Min Ho; Lee, Jeong Hyeon; Lim, Young Jin; Park, Heon Joo

    2000-01-01

    The effect of PTK inhibitors (herbimycin A and genistein) on the induction of radiation-induced apoptosis in Ph-positive K562 leukemia cell line was investigated. K562 cells in exponential growth phase were irradiated with a linear accelerator at room temperature. For 6 MV X-ray irradiation and drug treatment, cultures were initiated at 2x10 6 cells/ml. The cells were irradiated with 10Gy. Stock solutions of herbimycin A and genistein were prepared in dimethyl sulphoxide (DMSO). After incubation at 37 .deg. for 0-48 h, the extent of apoptosis was determined using agarose gel electrophoresis and TUNEL assay. The progression of cells through the cell cycle after irradiation and drug treatment was also determined with flow cytometry. Western blot analysis was used to monitor bcl-2, bcl-X-L and bax protein levels. Treatment with 10 Gy X-irradiation did not result in the induction of apoptosis. The HMA alone (500 nM) also failed to induce apoptosis. By contrast, incubation of K562 cells with HMA after irradiation resulted in a substantial induction of nuclear condensation and fragmentation by agarose gel electrophoresis and TUNEL assay. Genistein failed to enhance the ability of X-irradiation to induce DNA fragmentation. Enhancement of apoptosis by HMA was not attributable to downregulation of the bcl-2 or bcl-X-L anti-apoptotic proteins. When the cells were irradiated and maintained with HMA, the percentage of cells in G2/M phase decreased to 30-40% at 48 h. On the other hand, cells exposed to 10 Gy X-irradiation alone or maintained with genistein did not show marked cell cycle redistribution. We have shown that nanomolar concentrations of the PTK inhibitor HMA synergize with X-irradiation in inducing the apoptosis in Ph (+) K562 leukemia cell line. While, genistein, a PTK inhibitor which is not selective for p210 bcr/abl failed to enhance the radiation induced apoptosis in K562 cells. It is unlikely that the ability of HMA to enhance apoptosis in K562 cells is

  17. A fluorescence-based rapid screening assay for cytotoxic compounds

    International Nuclear Information System (INIS)

    Montoya, Jessica; Varela-Ramirez, Armando; Estrada, Abril; Martinez, Luis E.; Garza, Kristine; Aguilera, Renato J.

    2004-01-01

    A simple fluorescence-based assay was developed for the rapid screening of potential cytotoxic compounds generated by combinatorial chemistry. The assay is based on detection of nuclear green fluorescent protein (GFP) staining of a human cervical cancer cell line (HeLa) carrying an integrated histone H2B-GFP fusion gene. Addition of a cytotoxic compound to the HeLa-GFP cells results in the eventual degradation of DNA and loss of the GFP nuclear fluorescence. Using this assay, we screened 11 distinct quinone derivatives and found that several of these compounds were cytotoxic. These compounds are structurally related to plumbagin an apoptosis-inducing naphthoquinone isolated from Black Walnut. In order to determine the mechanism by which cell death was induced, we performed additional experiments with the most cytotoxic quinones. These compounds were found to induce morphological changes (blebbing and nuclear condensation) consistent with induction of apoptosis. Additional tests revealed that the cytotoxic compounds induce both necrotic and apoptotic modes of death

  18. Elevated Apoptosis in the Liver of Dairy Cows with Ketosis.

    Science.gov (United States)

    Du, Xiliang; Chen, Liang; Huang, Dan; Peng, Zhicheng; Zhao, Chenxu; Zhang, Yuming; Zhu, Yiwei; Wang, Zhe; Li, Xinwei; Liu, Guowen

    2017-01-01

    Dairy cows with ketosis are characterized by oxidative stress and hepatic damage. The aim of this study was to investigate hepatic oxidative stress and the apoptotic status of ketotic cows, as well as the underlying apoptosis pathway. The blood aspartate aminotransferase (AST), alanine aminotransferase (ALT), glutamate dehydrogenase (GLDH) and gamma-glutamyl transferase (GGT) activities and the haptoglobin (HP), serum amyloid A (SAA) and serum apoptotic cytokeratin 18 neo-epitope M30 (CK18 M30) concentrations were determined by commercially available kits and ELISA kits, respectively. Liver histology, TUNEL and Oil red O staining were performed in liver tissue samples. TG contents were measured using an enzymatic kit; Caspase 3 assays were carried out using the Caspase 3 activity assay kit; oxidation and antioxidant markers were measured using biochemical kits; apoptosis pathway were determined by qRT-PCR and western blot. Ketotic cows displayed hepatic fat accumulation. The hepatic malondialdehyde (MDA) content was significantly increased, but the activities of catalase (CAT), superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) were markedly decreased in ketotic cows compared with control cows, indicating that ketotic cows displayed severe oxidative stress. Significantly higher serum levels of the hepatic damage markers AST, ALT, GGT and GLDH were observed in ketotic cows than in control cows. The blood concentration of the apoptotic marker CK18 M30 and the number of TUNEL-positive cells in the liver of ketotic cows were 1.19- and 2.61-fold, respectively, higher than the values observed in control cows. Besides, Caspase 3 activity was significantly increased in the liver of ketosis cows. Importantly, the levels of phosphorylated c-Jun N-terminal kinase (JNK) and p38 mitogen-activated protein kinase (p38MAPK) were significantly increased but the level of phosphorylated extracellular signal-regulated kinase1/2 (ERK1/2) was markedly decreased, which

  19. Elevated Apoptosis in the Liver of Dairy Cows with Ketosis

    Directory of Open Access Journals (Sweden)

    Xiliang Du

    2017-09-01

    Full Text Available Background/Aims: Dairy cows with ketosis are characterized by oxidative stress and hepatic damage. The aim of this study was to investigate hepatic oxidative stress and the apoptotic status of ketotic cows, as well as the underlying apoptosis pathway. Methods: The blood aspartate aminotransferase (AST, alanine aminotransferase (ALT, glutamate dehydrogenase (GLDH and gamma-glutamyl transferase (GGT activities and the haptoglobin (HP, serum amyloid A (SAA and serum apoptotic cytokeratin 18 neo-epitope M30 (CK18 M30 concentrations were determined by commercially available kits and ELISA kits, respectively. Liver histology, TUNEL and Oil red O staining were performed in liver tissue samples. TG contents were measured using an enzymatic kit; Caspase 3 assays were carried out using the Caspase 3 activity assay kit; oxidation and antioxidant markers were measured using biochemical kits; apoptosis pathway were determined by qRT-PCR and western blot. Results: Ketotic cows displayed hepatic fat accumulation. The hepatic malondialdehyde (MDA content was significantly increased, but the activities of catalase (CAT, superoxide dismutase (SOD and glutathione peroxidase (GSH-Px were markedly decreased in ketotic cows compared with control cows, indicating that ketotic cows displayed severe oxidative stress. Significantly higher serum levels of the hepatic damage markers AST, ALT, GGT and GLDH were observed in ketotic cows than in control cows. The blood concentration of the apoptotic marker CK18 M30 and the number of TUNEL-positive cells in the liver of ketotic cows were 1.19- and 2.61-fold, respectively, higher than the values observed in control cows. Besides, Caspase 3 activity was significantly increased in the liver of ketosis cows. Importantly, the levels of phosphorylated c-Jun N-terminal kinase (JNK and p38 mitogen-activated protein kinase (p38MAPK were significantly increased but the level of phosphorylated extracellular signal-regulated kinase1

  20. [Effects of 17-AAG on the proliferation and apoptosis of human lung cancer A549 and H446 cells].

    Science.gov (United States)

    Niu, Ben; Lin, Jingshuang; Feng, Tao

    2015-04-01

    To observe the effect of 17-(allylamino)-17-demethoxygeldanamycin (17-AAG) on the apoptosis of human lung cancer cell lines A549 and H446, and to investigate the potential mechanisms. Proliferation inhibition and apoptosis assays, and the cell cycles were detected by MTT and flow cytometry respectively. Western blot was used to determine the expression level of proteins such as Hsp90, Hsp70, AKt, Her-2, Bcl-2 and Bax. After treated with 17-AAG, the proliferation of both A549 and H446 cells was inhibited significantly in a dose-dependent manner; as the concentration of 17-AAG was from 50 to 500 nmol/L, the IC₅₀ values to A549 and H446 cell lines were (222 ± 13) nmol/L and (189 ± 7) nmol/L respectively at 48 h. Cell cycle assays showed that 17-AAG was able to arrest cell cycles of A549 and H446 cell lines at the G₂/M phase. Apoptosis assay showed that 17-AAG was capable of inducing apoptosis in A549 and H446 cell lines. After treated with 17-AAG for 48 h, there were significant differences between the 400 nmol/L groups(46.3% for A549 cell line and 56.9% for H446 cell line) and the control group (11.9% for A549 cell line and 6.9% for H446 cell line, P AAG treatment: Akt and Her-2 decreased significantly while the expression of Hsp70 increased. Meanwhile, the expression of Bcl-2 decreased but that of Bax increased, indicating that 17-AAG was able to promote apoptosis mode in A549 and H446 cells. 17-AAG can regulate the expression level of apoptosis-related proteins such as Bax and Bcl-2 by Hsp90 signaling pathway in A549 and H446 cells, and ultimately inhibit cell proliferation and induce apoptosis.

  1. Assessment of 16 chemicals on proliferation and apoptosis in human neuroprogenitor cells using high-content image analysis (HCA).

    Science.gov (United States)

    The need for efficient methods of screening chemicals for the potential to cause developmental neurotoxicity is paramount. We previously described optimization of an HCA assay for proliferation and apoptosis in ReNcell CX cells (ReN), identifying appropriate controls. Utility of ...

  2. The effects of Crataegus aronia var. dentata Browicz extract on biochemical indices and apoptosis in partially hepatectomized liver in rats

    Directory of Open Access Journals (Sweden)

    Nazan Keskin

    2012-08-01

    Full Text Available Crataegus species have been widely used in herbal medicine, especially for the hearth diseases. In the present study, the effect of Crataegus aronia var. dentata Browicz extract on partially hepatectomized rats was investigated with biochemical and TUNEL apoptosis assays. The extracts of the plant at the concentrations of 0.5 and 1 ml/100 g body weight/day were administered orally to the two experimental groups including partially hepatectomized rats for 42 days. At the end of the experimental period, animals were sacrificed, blood was collected for the assessment of serum levels of alanine aminotransferase (ALT, aspartate aminotransferase (AST and gamma-glutamyltransferase (GGT, and the liver tissue was used for TUNEL assay.In biochemical assay, it was found a significant decrease in the levels of serum ALT and AST in the experimental groups. On the other hand, the plant extract did not cause any significant changes in the level of GGT in these groups. In apoptosis assay, TUNEL positive hepatocytes could not be detected in both experimental groups.The present findings can suggest that Crataegus aronia var. dentata Browicz extract can decrease the levels of serum ALT and AST and play a role in apoptosis of hepatocytes in the liver of partially hepatectomized rats. However, further studies are required to confirm the effects of the plant extract on hepatoprotection and apoptosis in the regenerating liver after partial hepatectomy in animal models. 

  3. Dopamine Attenuates Ketamine-Induced Neuronal Apoptosis in the Developing Rat Retina Independent of Early Synchronized Spontaneous Network Activity.

    Science.gov (United States)

    Dong, Jing; Gao, Lingqi; Han, Junde; Zhang, Junjie; Zheng, Jijian

    2017-07-01

    Deprivation of spontaneous rhythmic electrical activity in early development by anesthesia administration, among other interventions, induces neuronal apoptosis. However, it is unclear whether enhancement of neuronal electrical activity attenuates neuronal apoptosis in either normal development or after anesthesia exposure. The present study investigated the effects of dopamine, an enhancer of spontaneous rhythmic electrical activity, on ketamine-induced neuronal apoptosis in the developing rat retina. TUNEL and immunohistochemical assays indicated that ketamine time- and dose-dependently aggravated physiological and ketamine-induced apoptosis and inhibited early-synchronized spontaneous network activity. Dopamine administration reversed ketamine-induced neuronal apoptosis, but did not reverse the inhibitory effects of ketamine on early synchronized spontaneous network activity despite enhancing it in controls. Blockade of D1, D2, and A2A receptors and inhibition of cAMP/PKA signaling partially antagonized the protective effect of dopamine against ketamine-induced apoptosis. Together, these data indicate that dopamine attenuates ketamine-induced neuronal apoptosis in the developing rat retina by activating the D1, D2, and A2A receptors, and upregulating cAMP/PKA signaling, rather than through modulation of early synchronized spontaneous network activity.

  4. Inhibitory effects of glucocorticoid on apoptosis and activation of NF-κB in P388 cells induced by radiation

    International Nuclear Information System (INIS)

    Shi Jianhui; Niu Yuhong; Ge Junbo; Xu Xiaoping; Cheng Wenying; Feng Xiao; Zhang Zongliang

    2002-01-01

    Objective: To explore effects of glucocorticoid on apoptosis and activation of NF-κB in P388 cells induced by radiation. Methods: Apoptosis in P388 cells induced by radiation treatment was detected by TUNEL assay. EMSA was used to detect the activation of NF-κB . Results: The apoptosis and activation of NF-κB in P388 cells could be induced by radiation. Dexamethasone (DXM) which could suppress activation of NF-κB of P388 cells increased significantly the apoptosis induced by radiation. Apoptosis rates in DXM-treated P388 cells after 2, 4, 6 and 8 Gy exposure increased by 60%, 100%, 129% and 67%, respectively. Activation rates of NF-κB in DXM-treated P388 cells after 2, 4, 6 and 8 Gy exposure decreased by 25%, 45%, 52% and 40%, respectively. Conclusion: Radiation induces apoptosis and activation of NF-κB in P388 cells simultaneously. Glucocorticoid enhances apoptosis in leukemic cells, which may be by means of suppressing activation of NF-κB

  5. Radiorespirometic assay device

    International Nuclear Information System (INIS)

    Levin, G.V.; Straat, P.A.

    1981-01-01

    A radiorespirometic assay device is described in which the presence of microorganisms in a sample is determined by placing the sample in contact with a metabolisable radioactive labelled substrate, collecting any gas evolved, exposing a photosensitive material to the gas and determining if a spot is produced on the material. A spot indicates the presence of radioactivity showing that the substrate has been metabolized by a microorganism. Bacteria may be detected in body fluids, hospital operating rooms, water, food, cosmetics and drugs. (U.K.)

  6. Radon assay for SNO+

    Energy Technology Data Exchange (ETDEWEB)

    Rumleskie, Janet [Laurentian University, Greater Sudbury, Ontario (Canada)

    2015-12-31

    The SNO+ experiment will study neutrinos while located 6,800 feet below the surface of the earth at SNOLAB. Though shielded from surface backgrounds, emanation of radon radioisotopes from the surrounding rock leads to back-grounds. The characteristic decay of radon and its daughters allows for an alpha detection technique to count the amount of Rn-222 atoms collected. Traps can collect Rn-222 from various positions and materials, including an assay skid that will collect Rn-222 from the organic liquid scintillator used to detect interactions within SNO+.

  7. The extract from Punica granatum (pomegranate) peel induces apoptosis and impairs metastasis in prostate cancer cells.

    Science.gov (United States)

    Deng, Yuanle; Li, Yali; Yang, Fangfang; Zeng, Anqi; Yang, Shuping; Luo, Yi; Zhang, Yiwen; Xie, Yongmei; Ye, Tinghong; Xia, Yong; Yin, Wenya

    2017-09-01

    Prostate cancer is a big threat to male for its poor prognosis and high mortality rate. Natural compounds are important resources of many anticancer drugs. Pomegranate is a kind of antioxidant-rich fruit and its peel and seed has potential anticancer activities. In this study, we aimed to investigate the effects of pomegranate peel extract (PoPx) on the apoptosis and metastasis of prostate cancer cells and the related mechanism. We found that PoPx showed growth inhibition on prostate cancer cells. Nuclei morphological and flow cytometer (FCM) analysis indicated that PoPx could induce prostate cancer apoptosis. Further investigation indicated that mitochondrial mediated intrinsic pathway is involved in the apoptosis. Exposure to PoPx led to loss of mitochondrial transmembrane potential (Δym), accumulation of reactive oxygen species (ROS). Western blot analysis showed that PoPx could increase the expression ratio of Bax/Bcl2 and activation of apoptosis executor caspase 3. Wound healing assay and transwell migration and invasion assay implied that PoPx has the potential to inhibit migration and invasion, two critical steps in prostate cancer metastasis. Downregulation of MMP2/MMP9 and upregulation of TIMP2 showed accordance with the inhibition of migration and invasion. In summary, the present data showed that PoPx could be a promising drug candidate to treat prostate cancer, showing us a better way to develop novel drugs from natural compounds. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  8. [Effects of cucurmosin on the cell proliferation and apoptosis in human pancreatic PANC-1 cells].

    Science.gov (United States)

    Xu, Chun-Sen; Huang, He-Guang; Chen, Ming-Huang

    2012-02-01

    To observe the effects of cucurmosin (CUS) on the cell proliferation and apoptosis in pancreatic PANC-1 cells. The inhibition of CUS on the PANC-1 cell growth was observed using MTT assay. The inhibition ratio of CUS on the pancreatic orthotopic transplantation was in vivo observed in the NOD/SCID mouse model. The changes of microstructure of the apoptosis-inducing effect of CUS on PANC-1 was observed under electron microscope. The cell cycle and apoptosis after CUS intervention was detected using flow cytometry. The Caspase-3 activity after CUS treatment was detected using enzyme linked immunospecific assay (ELISA). Treatment with CUS at the dose of 0.125, 0.25, and 0.5 mg/kg inhibited the growth of pancreatic carcinoma PANC-1 xenografs with the ratio of 45.2%, 50.0%, and 59.7%, respectively (P PANC-1 cells in a dose-dependent maner. Being exposed to 40.0 microg/mL of the CUS for 24, 48, and 72 h, the percentage of G0/ G1 phase cells was 56.60% +/- 6.65%, 67.83% +/- 6.76%, and 77.00% +/- 6.73%, respectively (P PANC-1 cells in the G0/G1 phase of the cell cycle in a time-dependent maner. CUS significantly inhibited the growth of PANC-1 cells possibly through the G0/G1 cell cycle arrest and apoptosis.

  9. Effect of loop structure of bovine lactoferricin on apoptosis in Jurkat cells.

    Science.gov (United States)

    Zhang, Tie-nan; Yang, Wei; Liu, Ning

    2010-06-01

    Bovine lactoferricin (LfcinB) is a cationic peptide that selectively induces apoptosis in Jurkat cells. However less is known about the influence of this kind of apoptosis on the intra-cellular ceramide metabolism and the structure-function relationship between the loop structure of LfcinB and its action of inducing apoptosis in Jurkat cells. In the present study, the artificially synthesized LfcinB and LfcinB-derived peptide (Cys 19 residue in LfcinB was replaced by Ala) was added in Jurkat cells, the nucleolus shape was observed by fluorescent microscopy, the ceramide concentration in Jurkat cells was determined by reversed phase high performance liquid chromatography (RP-HPLC). The results of MTT assay showed that LfcinB inhibited proliferation of Jurkat cells, and the inhibition rate was approximately 18.90%. Moreover, the inhibition rate of LfcinB together with MAPP was upto approximately 59.89%. The RP-HPLC result showed that LfcinB improved the ceramide level in Jurkat cells. By using the DNA fragmentation assay and observing the nucleolus shape, the result displayed deficiency of the loop structure could cause LfcinB losing the biological activity of inducing apoptosis in Jurkat cells.

  10. Calreticulin Binds to Fas Ligand and Inhibits Neuronal Cell Apoptosis Induced by Ischemia-Reperfusion Injury

    Directory of Open Access Journals (Sweden)

    Beilei Chen

    2015-01-01

    Full Text Available Background. Calreticulin (CRT can bind to Fas ligand (FasL and inhibit Fas/FasL-mediated apoptosis of Jurkat T cells. However, its effect on neuronal cell apoptosis has not been investigated. Purpose. We aimed to evaluate the neuroprotective effect of CRT following ischemia-reperfusion injury (IRI. Methods. Mice underwent middle cerebral artery occlusion (MCAO and SH-SY5Y cells subjected to oxygen glucose deprivation (OGD were used as models for IRI. The CRT protein level was detected by Western blotting, and mRNA expression of CRT, caspase-3, and caspase-8 was measured by real-time PCR. Immunofluorescence was used to assess the localization of CRT and FasL. The interaction of CRT with FasL was verified by coimmunoprecipitation. SH-SY5Y cell viability was determined by MTT assay, and cell apoptosis was assessed by flow cytometry. The measurement of caspase-8 and caspase-3 activity was carried out using caspase activity assay kits. Results. After IRI, CRT was upregulated on the neuron surface and bound to FasL, leading to increased viability of OGD-exposed SH-SY5Y cells and decreased activity of caspase-8 and caspase-3. Conclusions. This study for the first time revealed that increased CRT inhibited Fas/FasL-mediated neuronal cell apoptosis during the early stage of ischemic stroke, suggesting it to be a potential protector activated soon after IRI.

  11. Effect of Acrylamide on Oocyte Nuclear Maturation and Cumulus Cells Apoptosis in Mouse In Vitro.

    Directory of Open Access Journals (Sweden)

    Shuzhen Liu

    Full Text Available Acrylamide (ACR is a chemical compound with severe neurotoxicity, genotoxicity, carcinogenicity and reproductive toxicity. Recent studies showed that ACR impairs the function of reproductive organs, e.g., epididymis and testes. In vitro maturation of mouse oocyte is a sensitive assay to identify potential chemical hazard to female fertility. The aim of this study was to evaluate the adverse effects of ACR on the nuclear maturation and cumulus cells apoptosis of mouse oocytes in vitro. Cumulus-oocyte complexes were incubated in a maturation medium containing 0, 5, 10 and 20 μM of ACR. Chromosome alignment and spindle morphology of oocytes was determined by immunofluorescence and confocal microscopy. Our results showed that oocytes exposed to different doses of ACR in vitro were associated with a significant decrease of oocyte maturation, significant increase of chromosome misalignment rate, occurrence of abnormal spindle configurations, and the inhibition of oocyte parthenogenetic activation. Furthermore, apoptosis of cumulus cells was determined by TUNEL and CASPASE-3 assay. Results showed that apoptosis in cumulus cells was enhanced and the expression of CASPASE-3 was increased after cumulus-oocyte complexes were exposed to ACR. Therefore, ACR may affect the nuclear maturation of oocytes via the apoptosis of cumulus cells in vitro.

  12. The critical role of quercetin in autophagy and apoptosis in HeLa cells.

    Science.gov (United States)

    Wang, Yijun; Zhang, Wei; Lv, Qiongying; Zhang, Juan; Zhu, Dingjun

    2016-01-01

    In recent years, the effects of quercetin on autophagy and apoptosis of cancer cells have been widely reported, while effects on HeLa cells are still unclear. Here, HeLa cells were subjected to quercetin treatment, and then proliferation, apoptosis, and autophagy were evaluated using MTT, flow cytometry, and MDC staining, respectively. The LC3-I/II, Beclin 1, active caspase-3, and S6K1 phosphorylation were detected using Western blot assay. The ultrastructure of HeLa was observed via transmission electron microscope (TEM). Our findings showed that quercetin can dose-dependently inhibit the growth of HeLa cells. The MDC fluorescence was enhanced with increased concentration of quercetin and hit a plateau at 50 μmol/l. Western blot assay revealed that LC3-I/II ratio, Beclin 1, and active caspase-3 protein were enforced in a dose-dependent method. However, the phosphorylation of S6K1 gradually decreased, concomitant with an increase of autophagy. In addition, TEM revealed that the number of autophagic vacuoles was peaked at 50 μmol/l of quercetin. Besides, interference of autophagy with 3-MA led to proliferation inhibition and increased apoptosis in HeLa cells, accompanied by the decreased LC3-I/II conversion and the increased active caspase-3. In conclusion, quercetin can inhibit HeLa cell proliferation and induce protective autophagy at low concentrations; thus, 3-MA plus quercetin would suppress autophagy and effectively increased apoptosis.

  13. A multiplexed method for kinetic measurements of apoptosis and proliferation using live-content imaging.

    Science.gov (United States)

    Artymovich, Katherine; Appledorn, Daniel M

    2015-01-01

    In vitro cell proliferation and apoptosis assays are widely used to study cancer cell biology. Commonly used methodologies are however performed at a single, user-defined endpoint. We describe a kinetic multiplex assay incorporating the CellPlayer(TM) NucLight Red reagent to measure proliferation and the CellPlayer(TM) Caspase-3/7 reagent to measure apoptosis using the two-color, live-content imaging platform, IncuCyte(TM) ZOOM. High-definition phase-contrast images provide an additional qualitative validation of cell death based on morphological characteristics. The kinetic data generated using this strategy can be used to derive informed pharmacology measurements to screen potential cancer therapeutics.

  14. Mycobacterium tuberculosis infection causes different levels of apoptosis and necrosis in human macrophages and alveolar epithelial cells.

    Science.gov (United States)

    Danelishvili, Lia; McGarvey, Jeffery; Li, Yong-Jun; Bermudez, Luiz E

    2003-09-01

    Mycobacterium tuberculosis interacts with macrophages and epithelial cells in the alveolar space of the lung, where it is able to invade and replicate in both cell types. M. tuberculosis-associated cytotoxicity to these cells has been well documented, but the mechanisms of host cell death are not well understood. We examined the induction of apoptosis and necrosis of human macrophages (U937) and type II alveolar epithelial cells (A549) by virulent (H37Rv) and attenuated (H37Ra) M. tuberculosis strains. Apoptosis was determined by both enzyme-linked immunosorbent assay (ELISA) and TdT-mediated dUTP nick end labelling (TUNEL) assay, whereas necrosis was evaluated by the release of lactate dehydrogenase (LDH). Both virulent and attenuated M. tuberculosis induced apoptosis in macrophages; however, the attenuated strain resulted in significantly more apoptosis than the virulent strain after 5 days of infection. In contrast, cytotoxicity of alveolar cells was the result of necrosis, but not apoptosis. Although infection with M. tuberculosis strains resulted in apoptosis of 14% of the cells on the monolayer, cell death associated with necrosis was observed in 59% of alveolar epithelial cells after 5 days of infection. Infection with M. tuberculosis suppressed apoptosis of alveolar epithelial cells induced by the kinase inhibitor, staurosporine. Because our findings suggest that M. tuberculosis can modulate the apoptotic response of macrophages and epithelial cells, we carried out an apoptosis pathway-specific cDNA microarray analysis of human macrophages and alveolar epithelial cells. Whereas the inhibitors of apoptosis, bcl-2 and Rb, were upregulated over 2.5-fold in infected (48 h) alveolar epithelial cells, the proapoptotic genes, bad and bax, were downregulated. The opposite was observed when U937 macrophages were infected with M. tuberculosis. Upon infection of alveolar epithelial cells with M. tuberculosis, the generation of apoptosis, as determined by the

  15. Fas-induced apoptosis in malnourished infants

    African Journals Online (AJOL)

    EL-HAKIM

    deprivation in animals, including man11. Factor of apoptosis signal (Fas) induces apoptosis in activated T cells when they are repeatedly stimulated by antigen and functions to maintain T cell tolerance by deleting auto reactive cells12. The functional role of Fas (CD95) in the immune system has been examined in a variety ...

  16. Apoptosis in mammalian oocytes: a review.

    Science.gov (United States)

    Tiwari, Meenakshi; Prasad, Shilpa; Tripathi, Anima; Pandey, Ashutosh N; Ali, Irfan; Singh, Arvind K; Shrivastav, Tulsidas G; Chaube, Shail K

    2015-08-01

    Apoptosis causes elimination of more than 99% of germ cells from cohort of ovary through follicular atresia. Less than 1% of germ cells, which are culminated in oocytes further undergo apoptosis during last phases of oogenesis and depletes ovarian reserve in most of the mammalian species including human. There are several players that induce apoptosis directly or indirectly in oocytes at various stages of meiotic cell cycle. Premature removal of encircling granulosa cells from immature oocytes, reduced levels of adenosine 3',5'-cyclic monophosphate and guanosine 3',5'-cyclic monophosphate, increased levels of calcium (Ca(2+)) and oxidants, sustained reduced level of maturation promoting factor, depletion of survival factors, nutrients and cell cycle proteins, reduced meiotic competency, increased levels of proapoptotic as well as apoptotic factors lead to oocyte apoptosis. The BH3-only proteins also act as key regulators of apoptosis in oocyte within the ovary. Both intrinsic (mitochondria-mediated) as well as extrinsic (cell surface death receptor-mediated) pathways are involved in oocyte apoptosis. BID, a BH3-only protein act as a bridge between both apoptotic pathways and its cleavage activates cell death machinery of both the pathways inside the follicular microenvironment. Oocyte apoptosis leads to the depletion of ovarian reserve that directly affects reproductive outcome of various mammals including human. In this review article, we highlight some of the important players and describe the pathways involved during oocyte apoptosis in mammals.

  17. Targeted induction of apoptosis for cancer therapy

    NARCIS (Netherlands)

    Bremer, Edwin

    2006-01-01

    Introduction to the thesis Programmed cell death, known as apoptosis, is an essential cellular homeostasis mechanism that ensures correct development and function of multi-cellular organisms. The pivotal importance of correct execution of apoptosis is apparent from the many human diseases with

  18. Apoptosis Effect of Girinimbine Isolated from Murraya koenigii on Lung Cancer Cells In Vitro

    Directory of Open Access Journals (Sweden)

    Syam Mohan

    2013-01-01

    Full Text Available Murraya koenigii Spreng has been traditionally claimed as a remedy for cancer. The current study investigated the anticancer effects of girinimbine, a carbazole alkaloid isolated from Murraya koenigii Spreng, on A549 lung cancer cells in relation to apoptotic mechanistic pathway. Girinimbine was isolated from Murraya koenigii Spreng. The antiproliferative activity was assayed using MTT and the apoptosis detection was done by annexin V and lysosomal stability assays. Multiparameter cytotoxicity assays were performed to investigate the change in mitochondrial membrane potential and cytochrome c translocation. ROS, caspase, and human apoptosis proteome profiler assays were done to investigate the apoptotic mechanism of cell death. The MTT assay revealed that the girinimbine induces cell death with an IC50 of 19.01 μM. A significant induction of early phase of apoptosis was shown by annexin V and lysosomal stability assays. After 24 h treatment with 19.01 μM of girinimbine, decrease in the nuclear area and increase in mitochondrial membrane potential and plasma membrane permeability were readily visible. Moreover the translocation of cytochrome c also was observed. Girinimbine mediates its antiproliferative and apoptotic effects through up- and downregulation of apoptotic and antiapoptotic proteins. There was a significant involvement of both intrinsic and extrinsic pathways. Moreover, the upregulation of p53 as well as the cell proliferation repressor proteins, p27 and p21, and the significant role of insulin/IGF-1 signaling were also identified. Moreover the caspases 3 and 8 were found to be significantly activated. Our results taken together indicated that girinimbine may be a potential agent for anticancer drug development.

  19. RAS - Screens & Assays - Drug Discovery

    Science.gov (United States)

    The RAS Drug Discovery group aims to develop assays that will reveal aspects of RAS biology upon which cancer cells depend. Successful assay formats are made available for high-throughput screening programs to yield potentially effective drug compounds.

  20. In vivo nuclear imaging of apoptosis

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Tae Sup; Cheon, Gi Jeong [Korea Institute of Radiological and Medical Sciences, Seoul (Korea, Republic of)

    2004-04-01

    Apoptosis plays a role in the pathophysiology of many kinds of diseases and in the response of treatment. Compared to the necrosis, the apoptosis a genetically controlled and energy-dependent process which removes the unwanted cells from the body; programmed cell death or cell suicide. During the apoptosis, phosphatidylserine is expressed in the cytoplasmic outer membrane in the early phase. Annexin V, an endogenous human protein (MW=35 kD), has an affinity of about 10{sup -9} M for the phosphatidylserine exposed on the outer membrane of apoptotic cells. Annexin V can be radiolabeled with {sup 99}mTc by HYNIC or EC chelators, which can be used as an radiotracer for the in vivo imaging of apoptosis. In this article, we reviewed the apoptosis, radiolabeling of annexin V, and the experimental and clinical data using annexin V imaging.

  1. Improving shuffler assay accuracy

    International Nuclear Information System (INIS)

    Rinard, P.M.

    1995-01-01

    Drums of uranium waste should be disposed of in an economical and environmentally sound manner. The most accurate possible assays of the uranium masses in the drums are required for proper disposal. The accuracies of assays from a shuffler are affected by the type of matrix material in the drums. Non-hydrogenous matrices have little effect on neutron transport and accuracies are very good. If self-shielding is known to be a minor problem, good accuracies are also obtained with hydrogenous matrices when a polyethylene sleeve is placed around the drums. But for those cases where self-shielding may be a problem, matrices are hydrogenous, and uranium distributions are non-uniform throughout the drums, the accuracies are degraded. They can be greatly improved by determining the distributions of the uranium and then applying correction factors based on the distributions. This paper describes a technique for determining uranium distributions by using the neutron count rates in detector banks around the waste drum and solving a set of overdetermined linear equations. Other approaches were studied to determine the distributions and are described briefly. Implementation of this correction is anticipated on an existing shuffler next year

  2. Competitive protein binding assay

    International Nuclear Information System (INIS)

    Kaneko, Toshio; Oka, Hiroshi

    1975-01-01

    The measurement of cyclic GMP (cGMP) by competitive protein binding assay was described and discussed. The principle of binding assay was represented briefly. Procedures of our method by binding protein consisted of preparation of cGMP binding protein, selection of 3 H-cyclic GMP on market, and measurement procedures. In our method, binding protein was isolated from the chrysalis of silk worm. This method was discussed from the points of incubation medium, specificity of binding protein, the separation of bound cGMP from free cGMP, and treatment of tissue from which cGMP was extracted. cGMP existing in the tissue was only one tenth or one scores of cGMP, and in addition, cGMP competed with cGMP in binding with binding protein. Therefore, Murad's technique was applied to the isolation of cGMP. This method provided the measurement with sufficient accuracy; the contamination by cAMP was within several per cent. (Kanao, N.)

  3. Advanced glycation end products (AGEs) and their receptor (RAGE) induce apoptosis of periodontal ligament fibroblasts

    International Nuclear Information System (INIS)

    Li, D.X.; Deng, T.Z.; Lv, J.; Ke, J.

    2014-01-01

    Diabetics have an increased prevalence of periodontitis, and diabetes is one of the causative factors of severe periodontitis. Apoptosis is thought to be involved in this pathogenic relationship. The aim of this study was to investigate apoptosis in human periodontal ligament (PDL) fibroblasts induced by advanced glycation end products (AGEs) and their receptor (RAGE). We examined the roles of apoptosis, AGEs, and RAGE during periodontitis in diabetes mellitus using cultured PDL fibroblasts that were treated by AGE-modified bovine serum albumin (AGE-BSA), bovine serum albumin (BSA) alone, or given no treatment (control). Microscopy and real-time quantitative PCR indicated that PDL fibroblasts treated with AGE-BSA were deformed and expressed higher levels of RAGE and caspase 3. Cell viability assays and flow cytometry indicated that AGE-BSA reduced cell viability (69.80±5.50%, P<0.01) and increased apoptosis (11.31±1.73%, P<0.05). Hoechst 33258 staining and terminal-deoxynucleotidyl transferase-mediated nick-end labeling revealed that AGE-BSA significantly increased apoptosis of PDL fibroblasts. The results showed that the changes in PDL fibroblasts induced by AGE-BSA may explain how AGE-RAGE participates in and exacerbates periodontium destruction

  4. A short caspase-3 isoform inhibits chemotherapy-induced apoptosis by blocking apoptosome assembly.

    Directory of Open Access Journals (Sweden)

    Frédérique Végran

    Full Text Available Alternative splicing of caspase-3 produces a short isoform caspase-3s that antagonizes caspase-3 apoptotic activity. However, the mechanism of apoptosis inhibition by caspase-3s remains unknown. Here we show that exogenous caspase-3 sensitizes MCF-7 and HBL100 breast cancers cells to chemotherapeutic treatments such as etoposide and methotrexate whereas co-transfection with caspase-3s strongly inhibits etoposide and methotrexate-induced apoptosis underlying thus the anti-apoptotic role of caspase-3s. In caspase-3 transfected cells, lamin-A and α-fodrin were cleaved when caspase-3 was activated by etoposide or methotrexate. When caspase-3s was co-transfected, this cleavage was strongly reduced. Depletion of caspase-3 by RNA interference in HBL100 containing endogenous caspase-3s caused reduction in etoposide and methotrexate-induced apoptosis, whereas the depletion of caspase-3s sensitized cells to chemotherapy. In the presence of caspase-3s, a lack of interaction between caspase-3 and caspase-9 was observed. Immunoprecipitation assays showed that caspase-3s binds the pro-forms of caspase-3. This result suggested that the absence of interaction with caspase-9 when both variants of caspase-3 are present contribute to block the apoptosome assembly and inhibit apoptosis. These data support that caspases-3s negatively interferes with caspase-3 activation and apoptosis in breast cancer, and that it can play key roles in the modulation of response to chemotherapeutic treatments.

  5. Protective Effect of Edaravone against Carbon Monoxide Induced Apoptosis in Rat Primary Cultured Astrocytes

    Directory of Open Access Journals (Sweden)

    Xiaodan Xu

    2017-01-01

    Full Text Available Objective. To observe the protective effect of edaravone (Eda on astrocytes after prolonged exposure to carbon monoxide (CO and further to investigate the potential mechanisms of Eda against CO-induced apoptosis. Methods. The rat primary cultured astrocytes were cultured in vitro and exposed to 1% CO for 24 h after being cultured with different concentrations of Eda. MTT assay was used to detect the cytotoxicity of CO. Flow cytometry was used to detect the apoptosis rate, membrane potential of mitochondria, and ROS level. The mRNA and protein expressions of Bcl-2, Bax, and caspase-3 were assessed by real-time PCR and Western blotting analysis, respectively. Results. Eda can significantly suppress cytotoxicity of CO, and it can significantly increase membrane potential of mitochondria and Bcl-2 expressions and significantly suppress the apoptosis rate, ROS level, Bax, and caspase-3 expressions. Conclusion. Eda protects against CO-induced apoptosis in rat primary cultured astrocytes through decreasing ROS production and subsequently inhibiting mitochondrial apoptosis pathway.

  6. Effects of ceramide inhibition on radiation-induced apoptosis in human leukemia MOLT-4 cells

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, Eriko; Inanami, Osamu; Asanuma, Taketoshi; Kuwabara, Mikinori [Hokkaido Univ., Graduate School of Veterinary Medicine, Sapporo, Hokkaido (Japan)

    2006-03-15

    In the present study, using inhibitors of ceramide synthase (fumonisin B{sub 1}), ketosphinganine synthetase (L-cycloserine), acid sphingomyelinase (D609 and desipramine) and neutral sphingomyelinase (GW4869), the role of ceramide in X-ray-induced apoptosis was investigated in MOLT-4 cells. The diacylglycerol kinase (DGK) assay showed that the intracellular concentration of ceramide increased time-dependently after X irradiation of cells, and this radiation-induced accumulation of ceramide did not occur prior to the appearance of apoptotic cells. Treatment with D609 significantly inhibited radiation-induced apoptosis, but did not inhibit the increase of intracellular ceramide. Treatment with desipramine or GW4869 prevented neither radiation-induced apoptosis nor the induced increase of ceramide. On the other hand, fumonisin B{sub 1} and L-cycloserine had no effect on the radiation-induced induction of apoptosis, in spite of significant inhibition of the radiation-induced ceramide. From these results, it was suggested that the increase of the intracellular concentration of ceramide was not essential for radiation-induced apoptosis in MOLT-4 cells. (author)

  7. Effects of ceramide inhibition on radiation-induced apoptosis in human leukemia MOLT-4 cells

    International Nuclear Information System (INIS)

    Takahashi, Eriko; Inanami, Osamu; Asanuma, Taketoshi; Kuwabara, Mikinori

    2006-01-01

    In the present study, using inhibitors of ceramide synthase (fumonisin B 1 ), ketosphinganine synthetase (L-cycloserine), acid sphingomyelinase (D609 and desipramine) and neutral sphingomyelinase (GW4869), the role of ceramide in X-ray-induced apoptosis was investigated in MOLT-4 cells. The diacylglycerol kinase (DGK) assay showed that the intracellular concentration of ceramide increased time-dependently after X irradiation of cells, and this radiation-induced accumulation of ceramide did not occur prior to the appearance of apoptotic cells. Treatment with D609 significantly inhibited radiation-induced apoptosis, but did not inhibit the increase of intracellular ceramide. Treatment with desipramine or GW4869 prevented neither radiation-induced apoptosis nor the induced increase of ceramide. On the other hand, fumonisin B 1 and L-cycloserine had no effect on the radiation-induced induction of apoptosis, in spite of significant inhibition of the radiation-induced ceramide. From these results, it was suggested that the increase of the intracellular concentration of ceramide was not essential for radiation-induced apoptosis in MOLT-4 cells. (author)

  8. Loss of runt-related transcription factor 3 expression leads hepatocellular carcinoma cells to escape apoptosis

    Directory of Open Access Journals (Sweden)

    Nakamura Shinichiro

    2011-01-01

    Full Text Available Abstract Background Runt-related transcription factor 3 (RUNX3 is known as a tumor suppressor gene for gastric cancer and other cancers, this gene may be involved in the development of hepatocellular carcinoma (HCC. Methods RUNX3 expression was analyzed by immunoblot and immunohistochemistry in HCC cells and tissues, respectively. Hep3B cells, lacking endogenous RUNX3, were introduced with RUNX3 constructs. Cell proliferation was measured using the MTT assay and apoptosis was evaluated using DAPI staining. Apoptosis signaling was assessed by immunoblot analysis. Results RUNX3 protein expression was frequently inactivated in the HCC cell lines (91% and tissues (90%. RUNX3 expression inhibited 90 ± 8% of cell growth at 72 h in serum starved Hep3B cells. Forty-eight hour serum starvation-induced apoptosis and the percentage of apoptotic cells reached 31 ± 4% and 4 ± 1% in RUNX3-expressing Hep3B and control cells, respectively. Apoptotic activity was increased by Bim expression and caspase-3 and caspase-9 activation. Conclusion RUNX3 expression enhanced serum starvation-induced apoptosis in HCC cell lines. RUNX3 is deleted or weakly expressed in HCC, which leads to tumorigenesis by escaping apoptosis.

  9. The effect of the anaesthetic agent isoflurane on the rate of neutrophil apoptosis in vitro.

    LENUS (Irish Health Repository)

    Tyther, R

    2012-02-03

    BACKGROUND: Volatile anaesthetic agents influence neutrophil function, and potentially, the inflammatory response to surgery. AIM: The objective of this study was to determine the effect of isoflurane (1-4%) on human polymorphonuclear neutrophil apoptosis in vitro. METHODS: Venous blood from 12 healthy volunteers was exposed to 0, 1, and 4% isoflurane delivered via a 14G Wallace flexihub internal jugular cannula, at a fresh gas flow of 0.51\\/min for 5 minutes. Isolated neutrophils were assessed for apoptosis at 1, 12, and 24 hours in culture using dual staining with annexin V-FITC and propidium iodide (Annexin-V FITC assay). Data were analysed using paired, one-tailed Student\\'s t-tests. p<0.05 was considered significant. RESULTS: At 1 hour apoptosis was inhibited in the 1% (5.1 [6.8]%; p=0.017) and 4% (4.8 [4.5]%; p=0.008) isoflurane groups compared to control (11.3 [6.9]%). At 12 and 24 hours, a dose-dependent inhibition of apoptosis was demonstrated, i.e. 4% > 1% > 0%. CONCLUSION: Human neutrophil apoptosis is inhibited in a concentration-dependent manner in vitro by isoflurane in clinical concentrations.

  10. Melatonin resists oxidative stress-induced apoptosis in nucleus pulposus cells.

    Science.gov (United States)

    He, Ruijun; Cui, Min; Lin, Hui; Zhao, Lei; Wang, Jiayu; Chen, Songfeng; Shao, Zengwu

    2018-04-15

    Intervertebral disc degeneration (IVDD) is thought to be the major cause of low back pain (LBP), which is still in lack of effective etiological treatment. Oxidative stress has been demonstrated to participate in the impairment of nucleus pulposus cells (NPCs). As the most important neuroendocrine hormone in biological clock regulation, melatonin (MLT) is also featured by good antioxidant effect. In this study, we investigated the effect and mechanisms of melatonin on oxidative stress-induced damage in rat NPCs. Cytotoxicity of H 2 O 2 and protecting effect of melatonin were analyzed with Cell Counting kit-8 (CCK-8). Cell apoptosis rate was detected by Annexin V-FITC/PI staining. DCFH-DA probe was used for the reactive oxygen species (ROS) detection. The mitochondrial membrane potential (MMP) changes were analyzed with JC-1 probe. Intracellular oxidation product and reductants were measured through enzymatic reactions. Extracellular matrix (ECM) and apoptosis associated proteins were analyzed with Western blot assays. Melatonin preserved cell viability of NPCs under oxidative stress. The apoptosis rate, ROS level and malonaldehyde (MDA) declined with melatonin. MLT/H 2 O 2 group showed higher activities of GSH and SOD. The fall of MMP receded and the expression of ECM protein increased with treatment of melatonin. The mitochondrial pathway of apoptosis was inhibited by melatonin. Melatonin alleviated the oxidative stress-induced apoptosis of NPCs. Melatonin could be a promising alternative in treatment of IVDD. Copyright © 2018 Elsevier Inc. All rights reserved.

  11. Advanced glycation end products (AGEs) and their receptor (RAGE) induce apoptosis of periodontal ligament fibroblasts

    Energy Technology Data Exchange (ETDEWEB)

    Li, D.X.; Deng, T.Z.; Lv, J.; Ke, J. [Department of Stomatology, Air Force General Hospital PLA, Haidian District, Beijing (China)

    2014-09-19

    Diabetics have an increased prevalence of periodontitis, and diabetes is one of the causative factors of severe periodontitis. Apoptosis is thought to be involved in this pathogenic relationship. The aim of this study was to investigate apoptosis in human periodontal ligament (PDL) fibroblasts induced by advanced glycation end products (AGEs) and their receptor (RAGE). We examined the roles of apoptosis, AGEs, and RAGE during periodontitis in diabetes mellitus using cultured PDL fibroblasts that were treated by AGE-modified bovine serum albumin (AGE-BSA), bovine serum albumin (BSA) alone, or given no treatment (control). Microscopy and real-time quantitative PCR indicated that PDL fibroblasts treated with AGE-BSA were deformed and expressed higher levels of RAGE and caspase 3. Cell viability assays and flow cytometry indicated that AGE-BSA reduced cell viability (69.80±5.50%, P<0.01) and increased apoptosis (11.31±1.73%, P<0.05). Hoechst 33258 staining and terminal-deoxynucleotidyl transferase-mediated nick-end labeling revealed that AGE-BSA significantly increased apoptosis of PDL fibroblasts. The results showed that the changes in PDL fibroblasts induced by AGE-BSA may explain how AGE-RAGE participates in and exacerbates periodontium destruction.

  12. Pathway of 3-MCPD-induced apoptosis in human embryonic kidney cells.

    Science.gov (United States)

    Ji, Jian; Zhu, Pei; Sun, Chao; Sun, Jiadi; An, Lu; Zhang, Yinzhi; Sun, Xiulan

    2017-01-01

    3-Chloropropane-1,2-diol (3-MCPD) is a heat-produced contaminant formed during the preparation of soy sauce worldwide. The present investigation was conducted to determine the molecular aspects of 3-MCPD toxicity on human embryonic kidney cells (HEK293). Cell viability and apoptosis were assessed in response to exposure to 3-MCPD using the MTT assay and high-content screening (HCS). DNA damage, intracellular reactive oxygen species (ROS) and apoptosis-related proteins were evaluated. Genes related with apoptosis were detected by qPCR-array for further understanding the 3-MCPD induced cell apoptosis signaling pathway. Our results clearly showed that 3-MCPD treatment inhibits cell proliferation and reactive oxygen species generation. qPCR-array indicated that nine apoptotic genes were up-regulated more than 2-fold and six down-regulated more than 2-fold. Genes associated with the mitochondrial apoptotic pathway, especially BCL2 family genes, changed significantly, indicating that the mitochondrial apoptotic pathway is activated. Death receptor pathway-related genes, TNFRSF11B and TNFRSF1A, changed significantly, indicating that the death receptor pathway is also activated, resulting in the inhibition of cell growth and proliferation as well as induction of apoptosis. To sum up, the experiment results indicated that 3-MCPD induced HEK293 cell toxicity through the death receptor pathway and mitochondrial pathway.

  13. Roles of acid sphingomyelinase activation in neuronal cells apoptosis induced by microwave irradiation

    International Nuclear Information System (INIS)

    Zhang Lei; Xu Shangcheng; Zhang Guangbin; Yu Zhengping

    2009-01-01

    The present study is to examine the effect of microwave on acid sphingomyelinase (ASM) activity and expression, and to explore the role of ASM activation in neuronal cells apoptosis induced by microwave irradiation. Primary cultured hippocampal neurons were irradiated by 30 W/cm 2 microwave for 10 min, and ASM activity assay was used to investigate ASM activity alteration. RT-PCR and western blot were used to detect ASM mRNA and protein expression respectively. Apoptosis was observed by Hoechst 33342 fluorescence staining. ASM specific inhibitor imipramine was applied to inhibit ASM activation. It has been found that apoptosis rate of primary cultured hippocampal neurons increased significantly after microwave irradiation. ASM was activated while ASM mRNA and protein expression were upregulated in neurons after microwave irradiation. Pretreatment with imipramine could reverse neuronal apoptosis induced by microwave irradiation. Results show that microwave irradiation causes increment of ASM activation and expression and ASM activation is involved in microwave induced neuronal apoptosis. (authors)

  14. Does chronic occupational exposure to volatile anesthetic agents influence the rate of neutrophil apoptosis?

    LENUS (Irish Health Repository)

    Goto, Y

    2012-02-03

    PURPOSE: The purpose of this preliminary investigation was to determine whether the rate of neutrophil apoptosis in health care workers is influenced by exposure to volatile anesthetic agents. METHODS: Percentage neutrophil apoptosis (Annexin-V FITC assay) was measured in health care workers (n = 20) and unexposed volunteers (n = 10). For the health care workers, time weighted personal exposure monitoring to N2O, sevoflurane and isoflurane was carried out. RESULTS: The sevoflurane and isoflurane concentrations to which health care workers were exposed were less than recommended levels in all 20 cases. Percent apoptosis was less at 24 (but not at one and 12) hr culture in health care workers [50.5 (9.7)%; P = 0.008] than in unexposed volunteers [57.3 (5.1)%]. CONCLUSION: Inhibition of neutrophil apoptosis at 24 hr culture was demonstrated in health care workers chronically exposed to volatile anesthetic agents. Exposure was well below recommended levels in the both scavenged and unscavenged work areas in which the study was carried out. Further study is required to assess the effect of greater degrees of chronic exposure to volatile anesthetic agents on neutrophil apoptosis.

  15. Urtica dioica dichloromethane extract induce apoptosis from intrinsic pathway on human prostate cancer cells (PC3).

    Science.gov (United States)

    Mohammadi, A; Mansoori, B; Aghapour, M; Baradaran, B

    2016-03-31

    Prostate cancer is considered as the major cause of death among men around the world. There are a number of medicinal plants triggering apoptosis response in cancer cells, thus have a therapeutic potential. Therefore, further studies to characterize beneficial properties of these plants in order to introduce novel anti-cancer drugs are the interest of recent researches on the alternative medicine. On the other hand, due to traditional uses and availability of Urtica dioica extract, we decided to evaluate the efficacy of this medicinal herb on pc3 prostate cancer cell line. In the present study the cytotoxic effects of Urtica dioica extract were assessed by 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) assay and trypan blue viability dye. Then, DNA fragmentation and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay were exploited to measure cell death and apoptosis stage. The expression levels of caspase 3, caspase 9 and Bcl-2 genes were quantified by Real-Time PCR. Finally, Cell cycle was analyzed by flow cytometry. MTT assay showed that dichloromethanolic extract of Urtica dioica significantly inhibited the cell growth. According to the DNA fragmentation and TUNEL assay results, the herbal extract was able to induce apoptosis in prostate cancer cells. Our findings also demonstrated that the plant extract substantially increases the caspase 3 and 9 mRNA expression, while decreases Bcl-2. Cell cycle arrest was occurred in G2 stage, due to the results of flow cytometry. These results indicate that dichloromethanolic extract of Urtica dioica can successfully induce apoptosis in PC3 cells. Therefore, it could be used as a novel therapeutic candidate for prostate tumor treatment.

  16. Noscapine induces mitochondria-mediated apoptosis in human colon cancer cells in vivo and in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Zi-Rong; Liu, Meng; Peng, Xiu-Lan; Lei, Xiao-Fei; Zhang, Ji-Xiang [Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province (China); Dong, Wei-Guo, E-mail: dongwg1966@yahoo.com.cn [Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province (China)

    2012-05-11

    Highlights: Black-Right-Pointing-Pointer Noscapine inhibited cell viability of colon cancer in a time- and dose- dependent manner. Black-Right-Pointing-Pointer G{sub 2}/M phase arrest and chromatin condensation and nuclear fragmentation were induced. Black-Right-Pointing-Pointer Noscapine promoted apoptosis via mitochondrial pathways. Black-Right-Pointing-Pointer Tumorigenicity was inhibited by noscapine. -- Abstract: Noscapine, a phthalide isoquinoline alkaloid derived from opium, has been widely used as a cough suppressant for decades. Noscapine has recently been shown to potentiate the anti-cancer effects of several therapies by inducing apoptosis in various malignant cells without any detectable toxicity in cells or tissues. However, the mechanism by which noscapine induces apoptosis in colon cancer cells remains unclear. The signaling pathways by which noscapine induces apoptosis were investigated in colon cancer cell lines treated with various noscapine concentrations for 72 h, and a dose-dependent inhibition of cell viability was observed. Noscapine effectively inhibited the proliferation of LoVo cells in vitro (IC{sub 50} = 75 {mu}M). This cytotoxicity was reflected by cell cycle arrest at G{sub 2}/M and subsequent apoptosis, as indicated by increased chromatin condensation and fragmentation, the upregulation of Bax and cytochrome c (Cyt-c), the downregulation of survivin and Bcl-2, and the activation of caspase-3 and caspase-9. Moreover, in a xenograft tumor model in mice, noscapine injection clearly inhibited tumor growth via the induction of apoptosis, which was demonstrated using a TUNEL assay. These results suggest that noscapine induces apoptosis in colon cancer cells via mitochondrial pathways. Noscapine may be a safe and effective chemotherapeutic agent for the treatment of human colon cancer.

  17. The role of apoptosis in MCLR-induced developmental toxicity in zebrafish embryos

    Energy Technology Data Exchange (ETDEWEB)

    Zeng, Cheng [College of Fisheries, Huazhong Agricultural University, Wuhan 430070 (China); Sun, Hong [Hubei Maternal and Child Health Hospital, Wuhan 430070 (China); Xie, Ping [Donghu Experimental Station of Lake Ecosystems, State Key Laboratory for Freshwater Ecology and Biotechnology of China, Institute of Hydrobiology, The Chinese Academy of Sciences, Wuhan 430072 (China); Wang, Jianghua; Zhang, Guirong; Chen, Nan [College of Fisheries, Huazhong Agricultural University, Wuhan 430070 (China); Yan, Wei, E-mail: Yanwei75126@163.com [Institute of Agricultural Quality Standards and Testing Technology, Hubei Academy of Agricultural Sciences, Wuhan 430064 (China); Li, Guangyu, E-mail: ligy2001@163.com [College of Fisheries, Huazhong Agricultural University, Wuhan 430070 (China); Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan 430070 (China)

    2014-04-01

    Highlights: • MCLR-induced apoptosis in the heart of developing embryos leads to the growth delay in zebrafish. • MCLR-triggered apoptosis might be induced by ROS. • P53–Bax–Bcl-2 and caspase-dependent apoptotic pathway contribute greatly to MCLR-induced apoptosis. Abstract: We previously demonstrated that cyanobacteria-derived microcystin–leucine–arginine (MCLR) is able to induce developing toxicity, such as malformation, growth delay and also decreased heart rates in zebrafish embryos. However, the molecular mechanisms by which MCLR induces its toxicity during the development of zebrafish remain largely unknown. Here, we evaluate the role of apoptosis in MCLR-induced developmental toxicity. Zebrafish embryos were exposed to various concentrations of MCLR (0, 0.2, 0.5, 2, and 5.0 mg L⁻¹ for 96 h, at which time reactive oxygen species (ROS) was significantly induced in the 2 and 5.0 mg L⁻¹ MCLR exposure groups. Acridine orange (AO) staining and terminal deoxynucleotide transferase-mediated deoxy-UTP nick end labelling (TUNEL) assay showed that MCLR exposure resulted in cell apoptosis. To test the apoptotic pathway, the expression pattern of several apoptotic-related genes was examined for the level of enzyme activity, gene and protein expression, respectively. The overall results demonstrate that MCLR induced ROS which consequently triggered apoptosis in the heart of developing zebrafish embryos. Our results also indicate that the p53–Bax–Bcl-2 pathway and the caspase-dependent apoptotic pathway play major roles in MCLR-induced apoptosis in the developing embryos.

  18. Intrinsic mechanism of estradiol-induced apoptosis in breast cancer cells resistant to estrogen deprivation.

    Science.gov (United States)

    Lewis, Joan S; Meeke, Kathleen; Osipo, Clodia; Ross, Eric A; Kidawi, Noman; Li, Tianyu; Bell, Eric; Chandel, Navdeep S; Jordan, V Craig

    2005-12-07

    We previously developed an estrogen receptor (ER)-positive breast cancer cell line (MCF-7:5C) that is resistant to long-term estrogen deprivation and undergoes rapid and complete apoptosis in the presence of physiologic concentrations of 17beta-estradiol. Here, we investigated the role of the mitochondrial apoptotic pathway in this process. Apoptosis in MCF-7:5C cells treated with estradiol, fulvestrant, or vehicle (control) was investigated by annexin V-propidium iodide double staining and 4',6-diamidino-2-phenylindole (DAPI) staining. Apoptosis was also analyzed in MCF-7:5C cells transiently transfected with small interfering RNAs (siRNAs) to apoptotic pathway components. Expression of apoptotic pathway intermediates was measured by western blot analysis. Mitochondrial transmembrane potential (psim) was determined by rhodamine-123 retention assay. Mitochondrial pathway activity was determined by cytochrome c release and cleavage of poly(ADP-ribose) polymerase (PARP) protein. Tumorigenesis was studied in ovariectomized athymic mice that were injected with MCF-7:5C cells. Differences between the treatment groups and control group were determined by two-sample t test or one-factor analysis of variance. All statistical tests were two-sided. MCF-7:5C cells treated with estradiol underwent apoptosis and showed increased expression of proapoptotic proteins, decreased psim, enhanced cytochrome c release, and PARP cleavage compared with cells treated with fulvestrant or vehicle. Blockade of Bax, Bim, and p53 mRNA expression by siRNA reduced estradiol-induced apoptosis relative to control by 76% [95% confidence interval (CI) = 73% to 79%, P estradiol-induced apoptosis in long-term estrogen-deprived breast cancer cells. Physiologic concentrations of estradiol could potentially be used to induce apoptosis and tumor regression in tumors that have developed resistance to aromatase inhibitors.

  19. Myeloperoxidase serves as a redox switch that regulates apoptosis in epithelial ovarian cancer.

    Science.gov (United States)

    Saed, Ghassan M; Ali-Fehmi, Rouba; Jiang, Zhong L; Fletcher, Nicole M; Diamond, Michael P; Abu-Soud, Husam M; Munkarah, Adnan R

    2010-02-01

    Resistance to apoptosis is a key feature of cancer cells and is believed to be regulated by nitrosonium ion (NO(+))-induced S-nitrosylation of key enzymes. Nitric oxide (NO), produced by inducible nitric oxide synthase (iNOS), is utilized by MPO to generated NO(+). We sought to investigate the expression of myeloperoxidase (MPO) and iNOS in epithelial ovarian cancer (EOC) and determine their effect on S-nitrosylation of caspase-3 and its activity as well as apoptosis. MPO and iNOS expression were determined using immunofluorescence in SKOV-3 and MDAH-2774 and EOC tissue sections. S-nitrosylation of caspase-3 and its activity, levels of MPO and iNOS, as well as apoptosis, were evaluated in the EOC cells before and after silencing MPO or iNOS genes with specific siRNA probes utilizing real-time RT-PCR, ELISA, and TUNEL assays. MPO and iNOS are expressed in EOC cell lines and in over 60% of invasive EOC cases with no expression in normal ovarian epithelium. Indeed, silencing of MPO or iNOS gene expression resulted in decreased S-nitrosylation of caspase-3, increased caspase-3 activity, and increased apoptosis but with a more significant effect when silencing MPO. MPO and iNOS are colocalized to the same cells in EOC but not in the normal ovarian epithelium. Silencing of either MPO or iNOS significantly induced apoptosis, highlighting their role as a redox switch that regulates apoptosis in EOC. Understanding the mechanisms by which MPO functions as a redox switch in regulating apoptosis in EOC may lead to future diagnostic tools and therapeutic interventions. Copyright 2009 Elsevier Inc. All rights reserved.

  20. Simvastatin induces apoptosis by a Rho-dependent mechanism in cultured cardiac fibroblasts and myofibroblasts

    International Nuclear Information System (INIS)

    Copaja, Miguel; Venegas, Daniel; Aranguiz, Pablo; Canales, Jimena; Vivar, Raul; Catalan, Mabel; Olmedo, Ivonne; Rodriguez, Andrea E.; Chiong, Mario; Leyton, Lisette; Lavandero, Sergio; Diaz-Araya, Guillermo

    2011-01-01

    Several clinical trials have shown the beneficial effects of statins in the prevention of coronary heart disease. Additionally, statins promote apoptosis in vascular smooth muscle cells, in renal tubular epithelial cells and also in a variety of cell lines; yet, the effects of statins on cardiac fibroblast and myofibroblast, primarily responsible for cardiac tissue healing are almost unknown. Here, we investigated the effects of simvastatin on cardiac fibroblast and myofibroblast viability and studied the molecular cell death mechanism triggered by simvastatin in both cell types. Methods: Rat neonatal cardiac fibroblasts and myofibroblasts were treated with simvastatin (0.1-10 μM) up to 72 h. Cell viability and apoptosis were evaluated by trypan blue exclusion method and by flow cytometry, respectively. Caspase-3 activation and Rho protein levels and activity were also determined by Western blot and pull-down assay, respectively. Results: Simvastatin induces caspase-dependent apoptosis of cardiac fibroblasts and myofibroblasts in a concentration- and time-dependent manner, with greater effects on fibroblasts than myofibroblasts. These effects were prevented by mevalonate, farnesylpyrophosphate and geranylgeranylpyrophosphate, but not squalene. These last results suggest that apoptosis was dependent on small GTPases of the Rho family rather than Ras. Conclusion: Simvastatin triggered apoptosis of cardiac fibroblasts and myofibroblasts by a mechanism independent of cholesterol synthesis, but dependent of isoprenilation of Rho protein. Additionally, cardiac fibroblasts were more susceptible to simvastatin-induced apoptosis than cardiac myofibroblasts. Thus simvastatin could avoid adverse cardiac remodeling leading to a less fibrotic repair of the damaged tissues. - Research Highlights: → Simvastatin decreases CF and CMF viability independent of cholesterol synthesis. → Simvastatin induces CF and CMF apoptosis in a caspase-dependent manner being CMF more resistant

  1. Coenzyme Q10 protects retinal cells from apoptosis induced by radiation in vitro and in vivo

    International Nuclear Information System (INIS)

    Lulli, M.; Witort, E.; Papucci, L.; Torre, E.; Schiavone, N.; Capaccioli, S.; Dal Monte, M.

    2012-01-01

    The key pathogenetic event of many retinopathies is apoptosis of retinal cells. Our previous studies have demonstrated that Coenzyme Q10 (CoQ10) prevents apoptosis of corneal keratocytes both in vitro and in vivo, by virtue of its ability to inhibit mitochondrial depolarization, independently of its free radical scavenger role. The aim of this study was to evaluate whether CoQ10 can protect cultured retinal cells and the retinas of rats from radiation-induced apoptosis, if instilled as eye drops in the cornea. In vitro experiments were carried out on cultured ARPE-19 or retinal ganglion cells (RGC)-5 cells pretreated with CoQ10 before eliciting apoptosis by ultraviolet (UV)- and γ-radiation, chemical hypoxia (Antimycin A) and serum starvation. Cell viability was evaluated by light microscopy and fluorescence activated cell sorting analysis. Apoptotic events were scored by time-lapse videomicroscopy. Mitochondrial permeability transition was evaluated by JC-1. The anti-apoptotic effectiveness of CoQ10 in retina was also evaluated by an in situ end-labeling assay in Wistar albino rats treated with CoQ10 eye drops prior to UV irradiation of the eye. CoQ10 substantially increased cell viability and lowered retinal cell apoptosis in response both to UV- and γ-radiation and to chemical hypoxia or serum starvation by inhibiting mitochondrion depolarization. In the rat, CoQ10, even when applied as eye drops on the cornea, protected all retina layers from ultraviolet radiation (UVR)-induced apoptosis. The ability of CoQ10 to protect retinal cells from radiation-induced apoptosis following its instillation on the cornea suggests the possibility for CoQ10 eye drops to become a future therapeutic countermeasure for radiation-induced retinal lesions. (author)

  2. Noscapine induces mitochondria-mediated apoptosis in human colon cancer cells in vivo and in vitro

    International Nuclear Information System (INIS)

    Yang, Zi-Rong; Liu, Meng; Peng, Xiu-Lan; Lei, Xiao-Fei; Zhang, Ji-Xiang; Dong, Wei-Guo

    2012-01-01

    Highlights: ► Noscapine inhibited cell viability of colon cancer in a time- and dose- dependent manner. ► G 2 /M phase arrest and chromatin condensation and nuclear fragmentation were induced. ► Noscapine promoted apoptosis via mitochondrial pathways. ► Tumorigenicity was inhibited by noscapine. -- Abstract: Noscapine, a phthalide isoquinoline alkaloid derived from opium, has been widely used as a cough suppressant for decades. Noscapine has recently been shown to potentiate the anti-cancer effects of several therapies by inducing apoptosis in various malignant cells without any detectable toxicity in cells or tissues. However, the mechanism by which noscapine induces apoptosis in colon cancer cells remains unclear. The signaling pathways by which noscapine induces apoptosis were investigated in colon cancer cell lines treated with various noscapine concentrations for 72 h, and a dose-dependent inhibition of cell viability was observed. Noscapine effectively inhibited the proliferation of LoVo cells in vitro (IC 50 = 75 μM). This cytotoxicity was reflected by cell cycle arrest at G 2 /M and subsequent apoptosis, as indicated by increased chromatin condensation and fragmentation, the upregulation of Bax and cytochrome c (Cyt-c), the downregulation of survivin and Bcl-2, and the activation of caspase-3 and caspase-9. Moreover, in a xenograft tumor model in mice, noscapine injection clearly inhibited tumor growth via the induction of apoptosis, which was demonstrated using a TUNEL assay. These results suggest that noscapine induces apoptosis in colon cancer cells via mitochondrial pathways. Noscapine may be a safe and effective chemotherapeutic agent for the treatment of human colon cancer.

  3. High LET radiation enhances apoptosis in mutated p53 cancer cells through Caspase-9 activation

    International Nuclear Information System (INIS)

    Yamakawa, Nobuhiro; Takahashi, Akihisa; Mori, Eiichiro; Imai, Yuichiro; Ohnishi, Ken; Kirita, Tadaaki; Ohnishi, Takeo; Furusawa, Yoshiya

    2008-01-01

    Although mutations in the p53 gene can lead to resistance to radiotherapy, chemotherapy and thermotherapy, high linear energy transfer (LET) radiation induces apoptosis regardless of p53 gene status in cancer cells. The aim of this study was to clarify the mechanisms involved in high LET radiation-induced apoptosis. Human gingival cancer cells (Ca9-22 cells) containing a mutated p53 (mp53) gene were irradiated with X-rays, C-ion (13-100 KeV/μm), or Fe-ion beams (200 KeV/μm). Cellular sensitivities were determined using colony forming assays. Apoptosis was detected and quantified with Hoechst 33342 staining. The activity of Caspase-3 was analyzed with Western blotting and flow cytometry. Cells irradiated with high LET radiation showed a high sensitivity with a high frequency of apoptosis induction. The relative biological effectiveness (RBE) values for the surviving fraction and apoptosis induction increased in a LET-dependent manner. Both RBE curves reached a peak at 100 KeV/μm, and then decreased at values over 100 KeV/μm. When cells were irradiated with high LET radiation, Caspase-3 was cleaved and activated, leading to poly (ADP-ribose) polymerase (PARP) cleavage. In addition, Caspase-9 inhibitor suppressed Caspase-3 activation and apoptosis induction resulting from high LET radiation to a greater extent than Caspase-8 inhibitor. These results suggest that high LET radiation enhances apoptosis by activation of Caspase-3 through Caspase-9, even in the presence of mp53. (author)

  4. MiR-155 promotes cell proliferation and inhibits apoptosis by PTEN signaling pathway in the psoriasis.

    Science.gov (United States)

    Xu, Longjiang; Leng, Hong; Shi, Xin; Ji, Jiang; Fu, Jinxiang; Leng, Hong

    2017-06-01

    MicroRNAs (miRNAs) have been demonstrated to contribute to malignant progression in psoriasis development. The purposes of the study was to evaluated the effects of miRNA-155 on cell proliferation, migration and apoptosis in psoriasis development via PTEN singaling pathway and identify its direct target protein. Quantitative real-time RT-PCR (qRT-PCR) was performed to examine the level of miR-155 in psoriasis cells, miR-155 was downregulated in a psoriasis cell line Hacat by transfected with small interfering RNA (siRNA), respectively. Cell survival was detected by the MTT assay and colony formation assay. Cell migration and invasion were measured via wound-healing assayand transwell assay. In addition, cell cycle and apoptosis about psoriasis cells was measured by flow cytometry. In this study, qRT-PCR assay showed that the expressions of miR-155 mRNA in psoriasis tissues were significantly higher than that in normal tissues. The assays about cell growth and proliferation showed that miR-155 knockdown led to a significant decrease in cell proliferation which was determined by MTT assay and colony formation assay compared to those of Lv-NC cells. Flow cytometry analysis showed that depletion of miR-155 could cause cell cycle change and the number of apoptotic cells was significantly increased in Lv-miR155 cells compared with control cells. In addition, the expression of several apoptosis-related factors were dramatically changed, such as PTEN, PIP 3 , AKT, p-AKT, Bax and Bcl-2. Our findings indicate that down-regulation of miR-155 significantly inhibits proliferation, migration, invasion and promotes apoptosis through PTEN singaling pathway in psoriasis cells. miR-155 might function as an oncogene miRNA in the progress of psoriasis. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  5. Echinophora platyloba DC (Apiaceae crude extract induces apoptosis in human prostate adenocarcinoma cells (PC 3

    Directory of Open Access Journals (Sweden)

    Fatemeh Zare Shahneh

    2014-10-01

    Full Text Available Background: Prostate cancer is the second leading malignancy worldwide and the second prominent cause of cancer-related deaths among men. Therefore, there is a serious necessity for finding advanced alternative therapeutic measures against this lethal malignancy. In this article, we report the cytotoxicity and the mechanism of cell death of the methanolic extract prepared from Echinophora platyloba DC plant against human prostate adenocarcinoma PC 3 cell line and Human Umbilical Vein Endothelial Cells HUVEC cell line. Methods: Cytotoxicity and viability of the methanolic extract were assessed by 3-(4,5-dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide (MTT assay and dye exclusion assay. Cell death enzyme-linked immunosorbent assay (ELISA was employed to quantify the nucleosome production resulting from nuclear DNA fragmentation during apoptosis and determine whether the mechanism involves induction of apoptosis or necrosis. The cell death was identified as apoptosis using terminal deoxynucleotidyl transferase (TdT-mediated dUTP nick end labeling (TUNEL assay and DNA fragmentation gel electrophoresis. Results: E. platyloba could decrease cell viability in malignant cells in a dose- and time-dependent manner. The IC50 values against PC 3 were determined as 236.136 ± 12.4, 143.400 ± 7.2, and 69.383 ± 1.29 μg/ml after 24, 36, and 48 h, respectively, but there was no significant activity in HUVEC normal cell (IC50 > 800 μg/ml. Morphological characterizations and DNA laddering assay showed that the methanolic extract treated cells displayed marked apoptotic characteristics such as nuclear fragmentation, appearance of apoptotic bodies, and DNA laddering fragment. Increase in an early apoptotic population was observed in a dose-dependent manner. PC 3 cell death elicited by the extract was found to be apoptotic in nature based a clear indication of TUNEL assay and gel electrophoresis DNA fragmentation, which is a hallmark of apoptosis

  6. Newly synthesized quinazolinone HMJ-38 suppresses angiogenetic responses and triggers human umbilical vein endothelial cell apoptosis through p53-modulated Fas/death receptor signaling

    Energy Technology Data Exchange (ETDEWEB)

    Chiang, Jo-Hua [Department of Life Sciences, National Chung Hsing University, 250, Kuo-Kuang Road, Taichung 402, Taiwan (China); Yang, Jai-Sing [Department of Pharmacology, China Medical University, Taichung 404, Taiwan (China); Lu, Chi-Cheng [Department of Life Sciences, National Chung Hsing University, 250, Kuo-Kuang Road, Taichung 402, Taiwan (China); Hour, Mann-Jen; Chang, Shu-Jen [School of Pharmacy, China Medical University, Taichung 40402, Taiwan (China); Lee, Tsung-Han, E-mail: thlee@email.nchu.edu.tw [Department of Life Sciences, National Chung Hsing University, 250, Kuo-Kuang Road, Taichung 402, Taiwan (China); Department of Biological Science and Technology, China Medical University, 91, Hsueh-Shih Road, Taichung 404, Taiwan (China); Chung, Jing-Gung, E-mail: jgchung@mail.cmu.edu.tw [Department of Biological Science and Technology, China Medical University, 91, Hsueh-Shih Road, Taichung 404, Taiwan (China); Department of Biotechnology, Asia University, Taichung 413, Taiwan (China)

    2013-06-01

    The current study aims to investigate the antiangiogenic responses and apoptotic death of human umbilical vein endothelial cells (HUVECs) by a newly synthesized compound named 2-(3′-methoxyphenyl)-6-pyrrolidinyl-4-quinazolinone (HMJ-38). This work attempted to not only explore the effects of angiogenesis on in vivo and ex vivo studies but also hypothesize the implications for HUVECs (an ideal cell model for angiogenesis in vitro) and further undermined apoptotic experiments to verify the underlying molecular signaling by HMJ-38. Our results demonstrated that HMJ-38 significantly inhibited blood vessel growth and microvessel formation by the mouse Matrigel plug assay of angiogenesis, and the suppression of microsprouting from the rat aortic ring assay was observed after HMJ-38 exposure. In addition, HMJ-38 disrupted the tube formation and blocked the ability of HUVECs to migrate in response to VEGF. We also found that HMJ-38 triggered cell apoptosis of HUVECs in vitro. HMJ-38 concentration-dependently suppressed viability and induced apoptotic damage in HUVECs. HMJ-38-influenced HUVECs were performed by determining the oxidative stress (ROS production) and ATM/p53-modulated Fas and DR4/DR5 signals that were examined by flow cytometry, Western blotting, siRNA and real-time RT-PCR analyses, respectively. Our findings demonstrate that p53-regulated extrinsic pathway might fully contribute to HMJ-38-provoked apoptotic death in HUVECs. In view of these observations, we conclude that HMJ-38 reduces angiogenesis in vivo and ex vivo as well as induces apoptosis of HUVECs in vitro. Overall, HMJ-38 has a potent anti-neovascularization effect and could warrant being a vascular targeting agent in the future. - Highlights: • HMJ-38 suppresses angiogenic actions in vivo and ex vivo. • Inhibitions of blood vessel and microvessel formation by HMJ-38 are acted. • Cytotoxic effects of HUVECs occur by HMJ-38 challenge. • p53-modulated extrinsic pathway contributes to HMJ-38

  7. Sphingoid bases from sea cucumber induce apoptosis in human hepatoma HepG2 cells through p-AKT and DR5.

    Science.gov (United States)

    Hossain, Zakir; Sugawara, Tatsuya; Hirata, Takashi

    2013-03-01

    Biofunctional marine compounds have recently received substantial attention for their nutraceutical characteristics. In this study, we investigated the apoptosis-inducing effects of sphingoid bases prepared from sea cucumber using human hepatoma HepG2 cells. Apoptotic effects were determined by cell viability assay, DNA fragmentation assay, caspase-3 and caspase-8 activities. The expression levels of apoptosis-inducing death receptor-5 (DR5) and p-AKT were assayed by western blot analysis, and mRNA expression of bax, GADD45 and PPARγ was assayed by quantitative RT-PCR analysis. Sphingoid bases from sea cucumber markedly reduced the cell viability of HepG2 cells. DNA fragmentation indicative of apoptosis was observed in a dose-dependent manner. The expression levels of the apoptosis inducer protein Bax were increased by the sphingoid bases from sea cucumber. GADD45, which plays an important role in apoptosis-inducing pathways, was markedly upregulated by sphingoid bases from sea cucumber. Upregulation of PPARγ mRNA was also observed during apoptosis induced by the sphingoid bases. The expression levels of DR5 and p-AKT proteins were increased and decreased, respectively, as a result of the effects of sphingoid bases from sea cucumber. The results indicate that sphingoid bases from sea cucumber induce apoptosis in HepG2 cells through upregulation of DR5, Bax, GADD45 and PPARγ and downregulation of p-AKT. Our results show for the first time the functional properties of marine sphingoid bases as inducers of apoptosis in HepG2 cells.

  8. NFAT2 mediates high glucose-induced glomerular podocyte apoptosis through increased Bax expression

    International Nuclear Information System (INIS)

    Li, Ruizhao; Zhang, Li; Shi, Wei; Zhang, Bin; Liang, Xinling; Liu, Shuangxin; Wang, Wenjian

    2013-01-01

    Background: Hyperglycemia promotes podocyte apoptosis and plays a key role in the pathogenesis of diabetic nephropathy. However, the mechanisms that mediate hyperglycemia-induced podocyte apoptosis is still far from being fully understood. Recent studies reported that high glucose activate nuclear factor of activated T cells (NFAT) in vascular smooth muscle or pancreatic β-cells. Here, we sought to determine if hyperglycemia activates NFAT2 in cultured podocyte and whether this leads to podocyte apoptosis. Meanwhile, we also further explore the mechanisms of NFAT2 activation and NFAT2 mediates high glucose-induced podocyte apoptosis. Methods: Immortalized mouse podocytes were cultured in media containing normal glucose (NG), or high glucose (HG) or HG plus cyclosporine A (a pharmacological inhibitor of calcinerin) or 11R-VIVIT (a special inhibitor of NFAT2). The activation of NFAT2 in podocytes was detected by western blotting and immunofluorescence assay. The role of NFAT2 in hyperglycemia-induced podocyte apoptosis was further evaluated by observing the inhibition of NFAT2 activation by 11R-VIVIT using flow cytometer. Intracellular Ca 2+ was monitored in HG-treated podcocytes using Fluo-3/AM. The mRNA and protein expression of apoptosis gene Bax were measured by real time-qPCR and western blotting. Results: HG stimulation activated NFAT2 in a time- and dose-dependent manner in cultured podocytes. Pretreatment with cyclosporine A (500 nM) or 11R-VIVIT (100 nM) completely blocked NFAT2 nuclear accumulation. Meanwhile, the apoptosis effects induced by HG were also abrogated by concomitant treatment with 11R-VIVIT in cultured podocytes. We further found that HG also increased [Ca 2+ ]i, leading to activation of calcineurin, and subsequent increased nuclear accumulation of NFAT2 and Bax expression in cultured podocytes. Conclusion: Our results identify a new finding that HG-induced podocyte apoptosis is mediated by calcineurin/NFAT2/Bax signaling pathway, which may

  9. NFAT2 mediates high glucose-induced glomerular podocyte apoptosis through increased Bax expression

    Energy Technology Data Exchange (ETDEWEB)

    Li, Ruizhao, E-mail: liruizhao1979@126.com [Department of Nephrology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, 106 Zhongshan No. 2 Road, Guangzhou, 510080 (China); Zhang, Li, E-mail: Zhanglichangde@163.com [Department of Nephrology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, 106 Zhongshan No. 2 Road, Guangzhou, 510080 (China); Southern Medical University, Guangzhou, Guangdong (China); Shi, Wei, E-mail: shiwei.gd@139.com [Department of Nephrology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, 106 Zhongshan No. 2 Road, Guangzhou, 510080 (China); Zhang, Bin, E-mail: zhangbinyes@yahoo.com.cn [Department of Nephrology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, 106 Zhongshan No. 2 Road, Guangzhou, 510080 (China); Liang, Xinling, E-mail: xinlingliang@yahoo.com [Department of Nephrology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, 106 Zhongshan No. 2 Road, Guangzhou, 510080 (China); Liu, Shuangxin, E-mail: mplsxi@yahoo.com.cn [Department of Nephrology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, 106 Zhongshan No. 2 Road, Guangzhou, 510080 (China); Wang, Wenjian, E-mail: wwjph@yahoo.com [Department of Nephrology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, 106 Zhongshan No. 2 Road, Guangzhou, 510080 (China)

    2013-04-15

    Background: Hyperglycemia promotes podocyte apoptosis and plays a key role in the pathogenesis of diabetic nephropathy. However, the mechanisms that mediate hyperglycemia-induced podocyte apoptosis is still far from being fully understood. Recent studies reported that high glucose activate nuclear factor of activated T cells (NFAT) in vascular smooth muscle or pancreatic β-cells. Here, we sought to determine if hyperglycemia activates NFAT2 in cultured podocyte and whether this leads to podocyte apoptosis. Meanwhile, we also further explore the mechanisms of NFAT2 activation and NFAT2 mediates high glucose-induced podocyte apoptosis. Methods: Immortalized mouse podocytes were cultured in media containing normal glucose (NG), or high glucose (HG) or HG plus cyclosporine A (a pharmacological inhibitor of calcinerin) or 11R-VIVIT (a special inhibitor of NFAT2). The activation of NFAT2 in podocytes was detected by western blotting and immunofluorescence assay. The role of NFAT2 in hyperglycemia-induced podocyte apoptosis was further evaluated by observing the inhibition of NFAT2 activation by 11R-VIVIT using flow cytometer. Intracellular Ca{sup 2+} was monitored in HG-treated podcocytes using Fluo-3/AM. The mRNA and protein expression of apoptosis gene Bax were measured by real time-qPCR and western blotting. Results: HG stimulation activated NFAT2 in a time- and dose-dependent manner in cultured podocytes. Pretreatment with cyclosporine A (500 nM) or 11R-VIVIT (100 nM) completely blocked NFAT2 nuclear accumulation. Meanwhile, the apoptosis effects induced by HG were also abrogated by concomitant treatment with 11R-VIVIT in cultured podocytes. We further found that HG also increased [Ca{sup 2+}]i, leading to activation of calcineurin, and subsequent increased nuclear accumulation of NFAT2 and Bax expression in cultured podocytes. Conclusion: Our results identify a new finding that HG-induced podocyte apoptosis is mediated by calcineurin/NFAT2/Bax signaling pathway

  10. The effects of CD147 on the cell proliferation, apoptosis, invasion, and angiogenesis in glioma.

    Science.gov (United States)

    Yin, Haoyuan; Shao, Ying; Chen, Xuan

    2017-01-01

    To analyze the effects of extracellular matrix metalloproteinase inducer (CD147) on glioma proliferation, apoptosis, invasion, and angiogenesis. Tissue samples were obtained from 101 glioma cases while normal brain tissues were obtained from 30 brain injury cases. Immunohistochemical assay was performed to detect the expressions of CD147, CD34, and VEGF in tissue samples. QRT-PCR was performed to detect the relative expression of CD147 mRNA in human glioma cell lines. CD147 siRNA was transfected into glioma cell line U251. Cell proliferation, apoptosis, invasion, and angiogenesis were tested by MTT, flow cytometry, Transwell assay, and vasculogenic mimicry assay, respectively. Expressions of relative proteins were analyzed with western blot. CD147 was positively expressed with the percentage of 0, 37.5, 44.8, 67.9, and 85.7 % in normal tissues and glioma tissues with WHO grades I-IV, respectively, and the scores of MVDand VEGF were associated with the expression of CD147. CD147 was significantly upregulated in the human glioma cell lines (P CD147 suppressed cell proliferation, blocked cell cycle, induced apoptosis, inhibited cell invasion and angiogenesis in glioma cells in vitro. The expression of CD147 was significantly associated with WHO tumor grade and angiogenesis; silencing of CD147 contributed to inhibition of glioma proliferation, invasion, and angiogenesis. Our study provided firm evidence that CD 147 is a potential glioma target for anti-angiogenic therapies.

  11. Role of PD 0332991 on the Proliferation and Apoptosis of Vascular Endothelial Cells

    Directory of Open Access Journals (Sweden)

    Chenlong ZHAO

    2018-05-01

    Full Text Available Background and objective Angiogenesis is an important process in the development of tumor. PD 0332991, a cell cycle inhibitor, can specifically inhibit CD4/6 phosphorylation and cell cycle progression. In xeongraft mice models, PD 0332991 treated mice had significantly decreased angiogenesis and vascular density compared with the control group, but the mechanism remains unknown. The purpose of this study is to investigate the role and molecular mechanism of PD 0332991 on vascular endothelial cells. Methods EA.hy926 cells, a kind of vascular endothelial cell, were used as the research model. The effects of PD 0332991 on the activity and proliferation of EA.hy926 cells were detected by the MTT, EdU assays. Wound-healing assays and transwell assays were used to determine the effects of PD 0332991 on the mobility of EA.hy926. The influence of PD 0332991 on cell cycle and apoptosis of endothelial cells was tested by flow cytometry, and the Western blot was applied to observe the expression of cell cycle related proteins in EA.hy926 cells treated by PD 0332991. Results PD 0332991 significantly inhibited the proliferation and mobility of EA.hy926 cells, caused cell cycle arrest and apoptosis. At the same time, PD 0332991 inhibited the expression of CDK4/6 and phosphorylation of Rb, and thus inhibited the cell cycle progression of EA.hy926 cells. Conclusion PD 0332991 can inhibit the proliferation and activity of endothelial cells and induces apoptosis.

  12. Chlorella vulgaris Induces Apoptosis of Human Non-Small Cell Lung Carcinoma (NSCLC) Cells.

    Science.gov (United States)

    Zhang, Zhi-Dong; Liang, Kai; Li, Kun; Wang, Guo-Quan; Zhang, Ke-Wei; Cai, Lei; Zhai, Shui-Ting; Chou, Kuo-Chen

    2017-01-01

    Chlorella vulgaris (C. vulgaris), a unicellular green microalga, has been widely used as a food supplement and reported to have antioxidant and anticancer properties. The current study was designed to assess the cytotoxic, apoptotic, and DNA-damaging effects of C. vulgaris growth factor (CGF), hot water C. vulgaris extracts, inlung tumor A549 and NCI-H460 cell lines. A549 cells, NCI-H460 cells, and normal human fibroblasts were treated with CGF at various concentrations (0-300 μg/ml) for 24 hr. The comet assay and γH2AX assay showed DNA damage in A549 and NCI-H460 cells upon CGF exposure. Evaluation of apoptosis by the TUNEL assay and DNA fragmentation analysis by agarose gel electrophoresis showed that CGF induced apoptosis in A549 and NCI-H460 cells. Chlorella vulgaris hot water extract induced apoptosis and DNA damage in human lung carcinoma cells. CGF can thus be considered a potential cytotoxic or genotoxic drug for treatment of lung carcinoma. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  13. An acoustic prion assay

    Directory of Open Access Journals (Sweden)

    Gordon Hayward

    2016-12-01

    Full Text Available An acoustic prion assay has been demonstrated for sheep brain samples. Only five false positives and no false negatives were observed in a test of 45 positive and 45 negative samples. The acoustic prion sensor was constructed using a thickness shear mode quartz resonator coated with a covalently bound recombinant prion protein. The characteristic indicator of a scrapie infected sheep brain sample was an observed shoulder in the frequency decrease in response to a sample.The response of the sensor aligns with a conformational shift in the surface protein and with the propagation mechanism of the disease. This alignment is evident in the response timing and shape, dependence on concentration, cross species behaviour and impact of blood plasma. This alignment is far from sufficient to prove the mechanism of the sensor but it does offer the possibility of a rapid and inexpensive additional tool to explore prion disease. Keywords: Prions, Thickness shear mode quartz sensor

  14. Assay of oestrogen

    International Nuclear Information System (INIS)

    Edwards, J.C.

    1981-01-01

    A particular problem with the direct radioimmunoassay of unconjugated oestriol in pregnancy is caused by the increased amount of steroid-binding proteins present in pregnancy serum and plasma. The steroid-binding proteins react with oestriol and 125 I-labelled oestriol during the assay procedure and the steroid-protein bound 125 I-labelled oestriol is precipitated along with the antibody-bound 125 I-labelled oestriol by the ammonium sulphate solution separation system. A novel method is described whereby progesterone (1-20 μg/ml) is used to block the action of steroid-binding proteins in pregnancy serum and plasma samples, thus minimizing interference in a direct radioimmunoassay for unconjugated oestriol using a specific anti-oestriol serum. (U.K.)

  15. Gallic acid induces apoptosis in EGFR-mutant non-small cell lung cancers by accelerating EGFR turnover.

    Science.gov (United States)

    Nam, Boas; Rho, Jin Kyung; Shin, Dong-Myung; Son, Jaekyoung

    2016-10-01

    Gallic acid is a common botanic phenolic compound, which is present in plants and foods worldwide. Gallic acid is implicated in various biological processes such as cell growth and apoptosis. Indeed, gallic acid has been shown to induce apoptosis in many cancer types. However, the molecular mechanisms of gallic acid-induced apoptosis in cancer, particularly lung cancer, are still unclear. Here, we report that gallic acid induces apoptosis in EGFR-mutant non-small cell lung cancer (NSCLC) cells, but not in EGFR-WT NSCLC cells. Treatment with gallic acid resulted in a significant reduction in proliferation and induction of apoptosis, only in EGFR-mutant NSCLC cells. Interestingly, treatment with gallic acid led to a robust decrease in EGFR levels, which is critical for NSCLC survival. Treatment with gallic acid had no significant effect on transcription, but induced EGFR turnover. Indeed, treatment with a proteasome inhibitor dramatically reversed gallic acid-induced EGFR downregulation. Moreover, treatment with gallic acid induced EGFR turnover leading to apoptosis in EGFR-TKI (tyrosine kinase inhibitor)-resistant cell lines, which are dependent on EGFR signaling for survival. Thus, these studies suggest that gallic acid can induce apoptosis in EGFR-dependent lung cancers that are dependent on EGFR for growth and survival via acceleration of EGFR turnover. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Gallic Acid Induces Apoptosis in Human Gastric Adenocarcinoma Cells.

    Science.gov (United States)

    Tsai, Chung-Lin; Chiu, Ying-Ming; Ho, Tin-Yun; Hsieh, Chin-Tung; Shieh, Dong-Chen; Lee, Yi-Ju; Tsay, Gregory J; Wu, Yi-Ying

    2018-04-01

    Gastric cancer is one of the most common malignant cancers with a poor prognosis and high mortality rate worldwide. Current treatment of gastric cancer includes surgery and chemotherapy as the main modalities, but the potentially severe side-effects of chemotherapy present a considerable challenge. Gallic acid is a trihydroxybenzoic acid found to exert an anticancer effect against a variety of cancer cells. The purpose of this study was to determine the anti-cancer activity of Galla chinensis and its main component gallic acid on human gastric adenocarcinoma cells. MTT assay and cell death ELISA were used to determine the apoptotic effect of Gallic Chinensis and gallic acid on human gastric adenocarcinoma cells. To determine the pathway and relevant components by which gallic acid-induced apoptosis is mediated through, cells were transfected with siRNA (Fas, FasL, DR5, p53) using Lipofectamine 2000. Reults: Gallic Chinensis and gallic acid induced apoptosis of human gastric adenocarcinoma cells. Gallic acid induced up-regulation of Fas, FasL, and DR5 expression in AGS cells. Transfection of cells with Fas, FasL, or DR5 siRNA reduced gallic acid-induced cell death. In addition, p53 was shown to be involved in gallic acid-mediated Fas, FasL, and DR5 expression as well as cell apoptosis in AGS cells. These results suggest that gallic acid has a potential role in the treatment of gastric cancer. Copyright© 2018, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  17. Ouabain enhances ADPKD cell apoptosis via the intrinsic pathway

    Directory of Open Access Journals (Sweden)

    Gustavo eBlanco

    2016-03-01

    Full Text Available Progression of autosomal dominant polycystic kidney disease (ADPKD is highly influenced by factors circulating in blood. We have shown that the hormone ouabain enhances several characteristics of the ADPKD cystic phenotype, including the rate of cell proliferation, fluid secretion and the capacity of the cells to form cysts. In this work, we found that physiological levels of ouabain (3nM also promote programmed cell death of renal epithelial cells obtained from kidney cysts of patients with ADPKD (ADPKD cells. This was determined by Alexa Fluor 488 labeled-Annexin-V staining and TUNEL assay, both biochemical markers of apoptosis. Ouabain-induced apoptosis also takes place when ADPKD cell growth is blocked; suggesting that the effect is not secondary to the stimulatory actions of ouabain on cell proliferation. Ouabain alters the expression of BCL family of proteins, reducing BCL-2 and increasing BAX expression levels, anti- and pro-apoptotic mediators respectively. In addition, ouabain caused the release of cytochrome c from mitochondria. Moreover, ouabain activates caspase-3, a key executioner caspase in the cell apoptotic pathway, but did not affect caspase-8. This suggests that ouabain triggers ADPKD cell apoptosis by stimulating the intrinsic, but not the extrinsic pathway of programmed cell death. The apoptotic effects of ouabain are specific for ADPKD cells and do not occur in normal human kidney cells (NHK cells. Taken together with our previous observations, these results show that ouabain causes an imbalance in cell growth/death, to favor growth of the cystic cells. This event, characteristic of ADPKD, further suggests the importance of ouabain as a circulating factor that promotes ADPKD progression.

  18. Celecoxib prevents colitis associated colon carcinogenesis: an upregulation of apoptosis.

    Science.gov (United States)

    Setia, Shruti; Nehru, Bimla; Sanyal, Sankar N

    2014-12-01

    Uncontrolled cell proliferation and suppressed apoptosis are the critical events transforming a normal cell to a cancerous one wherein the inflammatory microenvironment supports this oncogenic transformation. The process of colon carcinogenesis may be aggravated in chronic inflammatory conditions such as ulcerative colitis where non-steroidal anti-inflammatory drugs (NSAIDs) may effectively prevent the cellular and molecular events. Western blots and immunofluorescent analysis of DNA mismatch repair enzymes, cell cycle regulators and pro- and anti-apoptotic proteins were performed in dextran sulfate sodium (DSS)-induced ulcerative colitis and 1,2-dimethyl benz(a)anthracene (DMH)-induced colon cancer. Also, apoptotic studies were done in isolated colonocytes using fluorescent staining and in paraffin sections using TUNEL assay. An upregulation of cell cycle regulators: cyclin D1/cdk4 and cyclin E/cdk2 and anti-apoptotic Bcl-2, along with the suppression of DNA repair enzymes: MLH1 and MSH2; tumour suppressors: p53, p21and Rb and pro-apoptotic proteins: Bax and Bad were observed in the DSS, DMH and DSS+DMH groups. Proliferating cell nuclear antigen (PCNA) was also overexpressed in these groups. The ultimate executioner of the apoptotic pathway; caspase-3, was suppressed in these groups. Apoptotic studies in colonocytes and paraffin sections revealed suppressed apoptosis in these groups. These effects were corrected with the administration of a second generation NSAID, celecoxib along with the treatment of DSS and DMH. The chemopreventive action of celecoxib in colitis mediated colon carcinogenesis may include the regulation of DNA mismatch repair enzymes, cell cycle check points, cell proliferation and apoptosis. Copyright © 2014 Institute of Pharmacology, Polish Academy of Sciences. Published by Elsevier Urban & Partner Sp. z o.o. All rights reserved.

  19. Nickel nanowires induced and reactive oxygen species mediated apoptosis in human pancreatic adenocarcinoma cells

    Directory of Open Access Journals (Sweden)

    Kleve MG

    2011-07-01

    Full Text Available Md. Zakir Hossain1, Maurice G Kleve21Applied Biosciences (Bionanotechnology Research, Department of Applied Science, 2Molecular Biotechnology and Microscopy Laboratory, Department of Biology, University of Arkansas at Little Rock, Little Rock, Arkansas, USABackground: The ability to evade apoptosis is one of the key properties of cancer. The apoptogenic effect of nickel nanowires (Ni NWs on cancer cell lines has never been adequately addressed. Due to the unique physicochemical characteristics of Ni NWs, we envision the development of a novel anticancer therapeutics specifically for pancreatic cancer. Thus, we investigated whether Ni NWs induce ROS-mediated apoptosis in human pancreatic adenocarcinoma (Panc-1 cells. Methods: In this study Ni NWs were fabricated using the electrodeposition method. Synthesized Ni NWs were physically characterized by energy dispersive X-ray analysis, UV-Vis spectroscopy of NanoDrop 2000 (UV-Vis, magnetization study, scanning electron microscopy, and transmission electron microscopy. Assessment of morphological apoptotic characteristics by phase contrast microscopy (PCM, Ni-NWs-induced apoptosis staining with ethidium bromide (EB and acridine orange (AO followed by fluorescence microscopy (FM was performed. For molecular biological and biochemical characterization, Panc-1 cell culture and cytotoxic effect of Ni NWs were determined by using 3-(4, 5-dimethylthiazol-2-yl-2, 5-diphenyl tetrazolium bromide (MTT assay. Quantitative apoptosis was analyzed by flow cytometry staining with propidium iodide through cell cycle arrest and generation of ROS using 2', 7'-dichlorofluorescein diacetate fluorescence intensity. In all experiments, Panc-1 cancer cells without any treatment were used as the negative controls.Results: The intracellular uptake of Ni NWs through endocytosis by Panc-1 cells was observed by PCM. EB and AO staining of FM and MTT assay qualitatively and quantitatively confirmed the extent of apoptosis. Flow

  20. Honey and Apoptosis in Human Gastric Mucosa

    Directory of Open Access Journals (Sweden)

    Alireza Ostadrahimi

    2012-07-01

    Full Text Available Background: Gastric cancer is the fourth most common malignancy in the world. Honey is acomplex mixture of special biological active constituents. Honey possesses antioxidant and antitumorproperties. Nutritional studies have indicated that consumption of honey modulates therisk of developing gastric cancer. On the other hand, apoptosis has been reported to play a decisiverole in precancerous changes. Our chief study was conducted to assess the relationship betweenconsumption of honey and apoptosis in human gastric mucosa.Method: This cross-sectional study was conducted on 98 subjects over 18 years old, referred totwo hospitals in Tabriz, Iran. Subjects were undergone an upper gastrointestinal endoscopy, 62subjects were finally enrolled. Honey consumption was assessed by a Food Frequency Questionnaire(FFQ and apoptosis was detected by TUNEL technique. We tested polynomial curve tofind the best fit between honey consumption and apoptosis.Results: A positive relation between honey consumption and apoptosis was found (P=0.024.Our results indicated that the final and the best fit curve was: apoptosis = 1.714+1.648(honeyamount - 0.533(honey amount2 +1.833×10-5(honey amount7.Conclusion: Honey consumption had positive effects on gastric cancer by inducing apoptosis ingastric mucosa.

  1. Chk2 mediates RITA-induced apoptosis.

    Science.gov (United States)

    de Lange, J; Verlaan-de Vries, M; Teunisse, A F A S; Jochemsen, A G

    2012-06-01

    Reactivation of the p53 tumor-suppressor protein by small molecules like Nutlin-3 and RITA (reactivation of p53 and induction of tumor cell apoptosis) is a promising strategy for cancer therapy. The molecular mechanisms involved in the responses to RITA remain enigmatic. Several groups reported the induction of a p53-dependent DNA damage response. Furthermore, the existence of a p53-dependent S-phase checkpoint has been suggested, involving the checkpoint kinase Chk1. We have recently shown synergistic induction of apoptosis by RITA in combination with Nutlin-3, and we observed concomitant Chk2 phosphorylation. Therefore, we investigated whether Chk2 contributes to the cellular responses to RITA. Strikingly, the induction of apoptosis seemed entirely Chk2 dependent. Transcriptional activity of p53 in response to RITA required the presence of Chk2. A partial rescue of apoptosis observed in Noxa knockdown cells emphasized the relevance of p53 transcriptional activity for RITA-induced apoptosis. In addition, we observed an early p53- and Chk2-dependent block of DNA replication upon RITA treatment. Replicating cells seemed more prone to entering RITA-induced apoptosis. Furthermore, the RITA-induced DNA damage response, which was not a secondary effect of apoptosis induction, was strongly attenuated in cells lacking p53 or Chk2. In conclusion, we identified Chk2 as an essential mediator of the cellular responses to RITA.

  2. In vitro assays for predicting tumor cell response to radiation by apoptotic pathways

    International Nuclear Information System (INIS)

    Algan, Oe.; Hanks, G.E.; Biade, S.; Chapman, J.D.

    1995-01-01

    Purpose: We had previously shown that the rate of spontaneous and radiation-induced apoptosis was significantly greater in well-differentiated compared to anaplastic Dunning prostate carcinomas. The goal of this study was to define the most useful assay for quantifying radiation-induced apoptotic cell death and to determine if measured rates of radiation-induced apoptosis in tumor cell populations can predict treatment outcome. Materials and Methods: The time course and extent of radiation-induced apoptosis after single doses of Cesium-137 gamma-rays were measured by five different assays. These included gross DNA degradation, nucleosome ladder formation, labeling of 3'-OH ends in DNA with an immunofluorescence probe, immunofluorescence vital stains (LIVE/DEAD[reg] EUKOLIGHT TM ) and trypan blue. The majority of these studies were performed with DU-145 human prostate cells. Data was analyzed to determine the component of cell inactivation resulting from apoptosis with the modified linear quadratic equation, -1n (SF) = (α a + α p ) D + β p D 2 , were α a represents cell inactivation by radiation-induced apoptosis, α p and β p represent cell death by proliferative mechanisms and D represents radiation dose. Results: These studies indicated that DU-145 cell death after radiation occurs over two distinct time periods. The first phase of death begins shortly after irradiation and plateaus within 16-24 hr. This process of cell death has properties consistent with apoptosis as determined by 3'-OH DNA end-labeling and nucleosome ladder assays. The second phase of cell death (determined by viability staining) begins approximately 48 hr after irradiation and continues until the remainder of inactivated cells express their death. This longer phase of cell inactivation probably represents proliferative cell death and other non-apoptotic mechanisms. The five different assays were performed on DU-145 cells 24 hr after irradiation with 10 Gy. Significant nucleosome ladders

  3. Dopamine induces neutrophil apoptosis through a dopamine D-1 receptor-independent mechanism.

    LENUS (Irish Health Repository)

    Sookhai, S

    2012-02-03

    BACKGROUND: For the normal resolution of an acute inflammatory response, neutrophil (PMN) apoptosis is essential to maintain immune homeostasis and to limit inappropriate host tissue damage. A delay in PMN apoptosis has been implicated in the pathogenesis of the systemic inflammatory response syndrome (SIRS). Dopamine, a biogenic amine with known cardiovascular and neurotransmitter properties, is used in patients with SIRS to maintain hemodynamic stability. We sought to determine whether dopamine may also have immunoregulatory properties capable of influencing PMN apoptosis, function, and activation state in patients with SIRS. METHODS: PMNs were isolated from healthy volunteers and patients with SIRS and treated with varying doses of dopamine and a dopamine D-1 receptor agonist, fenoldopam. PMN apoptosis was assessed every 6 hours with use of propidium iodide DNA staining and PMN function was assessed with use of respiratory burst activity, phagocytosis ability, and CD11a, CD11b, and CD18 receptor expression as functional markers. RESULTS: There was a significant delay in PMN apotosis in patients with SIRS compared with controls. Treatment of isolated PMNs from both healthy controls and patients with SIRS with 10 and 100 mumol\\/L dopamine induced apoptosis. PMN ingestive and cytocidal capacity were both decreased in patients with SIRS compared with controls. Treatment with dopamine significantly increased phagocytic function. Fenoldopam did not induce PMN apoptosis. CONCLUSION: Our data demonstrate for the first time that dopamine induces PMN apoptosis and modulates PMN function both in healthy controls and in patients with SIRS. These results indicate that dopamine may be beneficial during SIRS through a nonhemodynamic PMN-dependent proapoptotic mechanism.

  4. Chlorella vulgaris triggers apoptosis in hepatocarcinogenesis-induced rats*

    Science.gov (United States)

    Mohd Azamai, Emey Suhana; Sulaiman, Suhaniza; Mohd Habib, Shafina Hanim; Looi, Mee Lee; Das, Srijit; Abdul Hamid, Nor Aini; Wan Ngah, Wan Zurinah; Mohd Yusof, Yasmin Anum

    2009-01-01

    Chlorella vulgaris (CV) has been reported to have antioxidant and anticancer properties. We evaluated the effect of CV on apoptotic regulator protein expression in liver cancer-induced rats. Male Wistar rats (200~250 g) were divided into eight groups: control group (normal diet), CDE group (choline deficient diet supplemented with ethionine in drinking water to induce hepatocarcinogenesis), CV groups with three different doses of CV (50, 150, and 300 mg/kg body weight), and CDE groups treated with different doses of CV (50, 150, and 300 mg/kg body weight). Rats were sacrificed at various weeks and liver tissues were embedded in paraffin blocks for immunohistochemistry studies. CV, at increasing doses, decreased the expression of anti-apoptotic protein, Bcl-2, but increased the expression of pro-apoptotic protein, caspase 8, in CDE rats, which was correlated with decreased hepatoctyes proliferation and increased apoptosis as determined by bromodeoxy-uridine (BrdU) labeling and terminal deoxynucleotidyl transferase mediated dUTP nick-end labeling (TUNEL) assay, respectively. Our study shows that CV has definite chemopreventive effect by inducing apoptosis via decreasing the expression of Bcl-2 and increasing the expression of caspase 8 in hepatocarcinogenesis-induced rats. PMID:19198018

  5. Apoptosis maintains oocyte quality in aging Caenorhabditis elegans females.

    Directory of Open Access Journals (Sweden)

    Sara Andux

    2008-12-01

    Full Text Available In women, oocytes arrest development at the end of prophase of meiosis I and remain quiescent for years. Over time, the quality and quantity of these oocytes decreases, resulting in fewer pregnancies and an increased occurrence of birth defects. We used the nematode Caenorhabditis elegans to study how oocyte quality is regulated during aging. To assay quality, we determine the fraction of oocytes that produce viable eggs after fertilization. Our results show that oocyte quality declines in aging nematodes, as in humans. This decline affects oocytes arrested in late prophase, waiting for a signal to mature, and also oocytes that develop later in life. Furthermore, mutations that block all cell deaths result in a severe, early decline in oocyte quality, and this effect increases with age. However, mutations that block only somatic cell deaths or DNA-damage-induced deaths do not lower oocyte quality. Two lines of evidence imply that most developmentally programmed germ cell deaths promote the proper allocation of resources among oocytes, rather than eliminate oocytes with damaged chromosomes. First, oocyte quality is lowered by mutations that do not prevent germ cell deaths but do block the engulfment and recycling of cell corpses. Second, the decrease in quality caused by apoptosis mutants is mirrored by a decrease in the size of many mature oocytes. We conclude that competition for resources is a serious problem in aging germ lines, and that apoptosis helps alleviate this problem.

  6. Discovery and structure-activity relationships of (2-(arylthio)benzylideneamino)guanidines as a novel series of potent apoptosis inducers.

    Science.gov (United States)

    Zhang, Han-Zhong; Crogan-Grundy, Candace; May, Chris; Drewe, John; Tseng, Ben; Cai, Sui Xiong

    2009-04-01

    1-(2-(2,5-Dimethoxyphenylthio)benzylidene)semicarbazide (2a) was discovered as a potent apoptosis inducer through our cell based HTS assay. SAR study led to the discovery of a more aqueous soluble analog (2-(2,5-dimethoxyphenylthio)-6-methoxybenzylideneamino)guanidine (5e) with EC(50) value of 60 nM in the caspase activation assay and GI(50) value of 62 nM in the growth inhibition assay in T47D cells. Compound 5e was found to be an inhibitor of tubulin polymerization and efficacious in a MX-1 breast tumor model.

  7. Gonadal steroids modulate Fas-induced apoptosis of lactotropes and somatotropes.

    Science.gov (United States)

    Jaita, Gabriela; Zárate, Sandra; Ferrari, Luciana; Radl, Daniela; Ferraris, Jimena; Eijo, Guadalupe; Zaldivar, Verónica; Pisera, Daniel; Seilicovich, Adriana

    2011-02-01

    We have previously reported that Fas activation induces apoptosis of anterior pituitary cells from rats at proestrus but not at diestrus and in an estrogen-dependent manner. In this study, we evaluated the effect of Fas activation on apoptosis of lactotropes and somatotropes during the estrous cycle and explored the action of gonadal steroids on Fas-induced apoptosis. Also, we studied whether changes in Fas expression are involved in the apoptotic response of anterior pituitary cells. Fas activation increased the percentage of TUNEL-positive lactotropes and somatotropes at proestrus but not at diestrus. FasL triggered apoptosis of somatotropes only when cells from ovariectomized rats were cultured in the presence of 17 β-estradiol (E2). Progesterone (P4) blocked the apoptotic action of the Fas/FasL system in lactotropes and somatotropes incubated with E2. Both E2 and P4 increased the percentage of cells expressing Fas at the cell membrane. Our results show that Fas activation induces apoptosis of lactotropes and somatotropes at proestrus but not at diestrus. Gonadal steroids may be involved in the apoptotic response of lactotropes and somatotropes, suggesting that Fas activation is implicated in the renewal of these pituitary subpopulations during the estrous cycle. The effect of gonadal steroids on Fas expression may be only partially involved in regulation of the Fas/FasL apoptotic pathway in the anterior pituitary gland.

  8. Role of Bax in resveratrol-induced apoptosis of colorectal carcinoma cells

    International Nuclear Information System (INIS)

    Mahyar-Roemer, Mojgan; Köhler, Hans; Roemer, Klaus

    2002-01-01

    The natural plant polyphenol resveratrol present in some foods including grapes, wine, and peanuts, has been implicated in the inhibition, delay, and reversion of cellular events associated with heart diseases and tumorigenesis. Recent work has suggested that the cancer chemoprotective effect of the compound is primarily linked to its ability to induce cell division cycle arrest and apoptosis, the latter possibly through the activation of pro-apoptotic proteins such as Bax. The expression, subcellular localization, and importance of Bax for resveratrol-provoked apoptosis were assessed in human HCT116 colon carcinoma cells and derivatives with both bax alleles inactivated. Low to moderate concentrations of resveratrol induced co-localization of cellular Bax protein with mitochondria, collapse of the mitochondrial membrane potential, activation of caspases 3 and 9, and finally, apoptosis. In the absence of Bax, membrane potential collapse was delayed, and apoptosis was reduced but not absent. Resveratrol inhibited the formation of colonies by both HCT116 and HCT116 bax -/- cells. Resveratrol at physiological doses can induce a Bax-mediated and a Bax-independent mitochondrial apoptosis. Both can limit the ability of the cells to form colonies

  9. Crosstalk between Apoptosis and Autophagy: Molecular Mechanisms and Therapeutic Strategies in Cancer

    Directory of Open Access Journals (Sweden)

    Abdelouahid El-Khattouti

    2013-01-01

    Full Text Available Both apoptosis and autophagy are highly conserved processes that besides their role in the maintenance of the organismal and cellular homeostasis serve as a main target of tumor therapeutics. Although their important roles in the modulation of tumor therapeutic strategies have been widely reported, the molecular actions of both apoptosis and autophagy are counteracted by cancer protective mechanisms. While apoptosis is a tightly regulated process that is implicated in the removal of damaged or unwanted cells, autophagy is a cellular catabolic pathway that is involved in lysosomal degradation and recycling of proteins and organelles, and thereby is considered an important survival/protective mechanism for cancer cells in response to metabolic stress or chemotherapy. Although the relationship between autophagy and cell death is very complicated and has not been characterized in detail, the molecular mechanisms that control this relationship are considered to be a relevant target for the development of a therapeutic strategy for tumor treatment. In this review, we focus on the molecular mechanisms of apoptosis, autophagy, and those of the crosstalk between apoptosis and autophagy in order to provide insight into the molecular mechanisms that may be essential for the balance between cell survival and death as well as their role as targets for the development of novel therapeutic approaches.

  10. Effects of chronic occupational exposure to anaesthetic gases on the rate of neutrophil apoptosis among anaesthetists.

    LENUS (Irish Health Repository)

    Tyther, R

    2012-02-03

    BACKGROUND AND OBJECTIVE: Volatile anaesthetic agents are known to influence neutrophil function. The aim was to determine the effect of chronic occupational exposure to volatile anaesthetic agents on the rate of neutrophil apoptosis among anaesthetists. To test this hypothesis, we compared the rate of neutrophil apoptosis in anaesthetists who had been chronically exposed to volatile anaesthetic agents with that in unexposed volunteers. METHODS: Venous blood (20 mL) was withdrawn from 24 ASA I-II volunteers, from which neutrophils were isolated, and maintained in culture. At 1, 12 and 24 h in culture, the percentage of neutrophil apoptosis was assessed by dual staining with annexin V-FITC and propidium iodide. RESULTS: At 1 h (but not at 12 and 24 h) in culture, the rate of neutrophil apoptosis was significantly less in the anaesthetists--13.8 (12.9%) versus 34.4 (12.1%) (P = 0.001). CONCLUSIONS: Chronic occupational exposure to volatile anaesthetic agents may inhibit neutrophil apoptosis. This may have implications for anaesthetists and similarly exposed healthcare workers in terms of the adequacy of their inflammatory response.

  11. X-ray-induced cell death by apoptosis in the immature rat cerebellum

    International Nuclear Information System (INIS)

    Harmon, B.V.; Allan, D.J.

    1988-01-01

    The cells of the external granular layer (EGL) of the developing cerebellum are known to be particularly sensitive to radiation. In the past, changes induced in this layer by irradiation have been referred to by non-specific terms such as pyknotic cells and the mode of cell death has been assumed to be necrosis. However, in published light micrographs of these dying cells, the appearance is suggestive of apoptosis, a distinctive mode of cell death which occurs spontaneously in normal adult and embryonic tissues and can also be triggered by certain pathological stimuli. This light and transmission electron microscopic study of control and irradiated (7 h post-irradiation) rat cerebellum from 18 day fetuses and 5 day-old neonates showed that the cell death was effected by apoptosis. The apoptosis was markedly enhanced by x-irradiation and quantification of the cell death in the EGL of 5 day-old rats exposed to 4, 8, 25, 100, and 400 cGy x-irradiation demonstrated that there was a positive dose response relationship. The extent of cell death by apoptosis which was 0.2% in control, ranged from 0.8% after 4 cGy to 62.3% after 400 cGy x-irradiation. The recognition that cell death by apoptosis can be a major component of x-irradiation damage has important implications for radiobiological studies

  12. BIM is the primary mediator of MYC-induced apoptosis in multiple solid tissues.

    Science.gov (United States)

    Muthalagu, Nathiya; Junttila, Melissa R; Wiese, Katrin E; Wolf, Elmar; Morton, Jennifer; Bauer, Barbara; Evan, Gerard I; Eilers, Martin; Murphy, Daniel J

    2014-09-11

    MYC is one of the most frequently overexpressed oncogenes in human cancer, and even modestly deregulated MYC can initiate ectopic proliferation in many postmitotic cell types in vivo. Sensitization of cells to apoptosis limits MYC's oncogenic potential. However, the mechanism through which MYC induces apoptosis is controversial. Some studies implicate p19ARF-mediated stabilization of p53, followed by induction of proapoptotic BH3 proteins NOXA and PUMA, whereas others argue for direct regulation of BH3 proteins, especially BIM. Here, we use a single experimental system to systematically evaluate the roles of p19ARF and BIM during MYC-induced apoptosis, in vitro, in vivo, and in combination with a widely used chemotherapeutic, doxorubicin. We find a common specific requirement for BIM during MYC-induced apoptosis in multiple settings, which does not extend to the p53-responsive BH3 family member PUMA, and find no evidence of a role for p19ARF during MYC-induced apoptosis in the tissues examined. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  13. Oxidative stress in NSC-741909-induced apoptosis of cancer cells

    Directory of Open Access Journals (Sweden)

    Huang Peng

    2010-04-01

    Full Text Available Abstract Background NSC-741909 is a novel anticancer agent that can effectively suppress the growth of several cell lines derived from lung, colon, breast, ovarian, and kidney cancers. We recently showed that NSC-741909-induced antitumor activity is associated with sustained Jun N-terminal kinase (JNK activation, resulting from suppression of JNK dephosphorylation associated with decreased protein levels of MAPK phosphatase-1. However, the mechanisms of NSC-741909-induced antitumor activity remain unclear. Because JNK is frequently activated by oxidative stress in cells, we hypothesized that reactive oxygen species (ROS may be involved in the suppression of JNK dephosphorylation and the cytotoxicity of NSC-741909. Methods The generation of ROS was measured by using the cell-permeable nonfluorescent compound H2DCF-DA and flow cytometry analysis. Cell viability was determined by sulforhodamine B assay. Western blot analysis, immunofluorescent staining and flow cytometry assays were used to determine apoptosis and molecular changes induced by NSC-741909. Results Treatment with NSC-741909 induced robust ROS generation and marked MAPK phosphatase-1 and -7 clustering in NSC-741909-sensitive, but not resistant cell lines, in a dose- and time-dependent manner. The generation of ROS was detectable as early as 30 min and ROS levels were as high as 6- to 8-fold above basal levels after treatment. Moreover, the NSC-741909-induced ROS generation could be blocked by pretreatment with antioxidants, such as nordihydroguaiaretic acid, aesculetin, baicalein, and caffeic acid, which in turn, inhibited the NSC-741909-induced JNK activation and apoptosis. Conclusion Our results demonstrate that the increased ROS production was associated with NSC-741909-induced antitumor activity and that ROS generation and subsequent JNK activation is one of the primary mechanisms of NSC-741909-mediated antitumor cell activity.

  14. MicroRNA-1 promotes apoptosis of hepatocarcinoma cells by targeting apoptosis inhibitor-5 (API-5).

    Science.gov (United States)

    Li, Dong; Liu, Yu; Li, Hua; Peng, Jing-Jing; Tan, Yan; Zou, Qiang; Song, Xiao-Feng; Du, Min; Yang, Zheng-Hui; Tan, Yong; Zhou, Jin-Jun; Xu, Tao; Fu, Zeng-Qiang; Feng, Jian-Qiong; Cheng, Peng; chen, Tao; Wei, Dong; Su, Xiao-Mei; Liu, Huan-Yi; Qi, Zhong-Chun; Tang, Li-Jun; Wang, Tao; Guo, Xin; Hu, Yong-He; Zhang, Tao

    2015-01-02

    Although microRNA-1 (miR-1) is a known liver cancer suppressor, the role of miR-1 in apoptosis of hepatoma cells has remained largely unknown. Our study shows that ectopic miR-1 overexpression induced apoptosis of liver hepatocellular carcinoma (HepG2) cells. Apoptosis inhibitor 5 (API-5) was found to be a potential regulator of miR-1 induced apoptosis, using a bioinformatics approach. Furthermore, an inverse relationship between miR-1 and API-5 expression was observed in human liver cancer tissues and adjacent normal liver tissues. Negative regulation of API-5 expression by miR-1 was demonstrated to promote apoptosis of HepG2 cells. Our study provides a novel regulatory mechanism of miR-1 in the apoptosis of hepatoma cells. Copyright © 2014 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  15. Apoptosis: its pathophysiology and monitoring. The role of apoptosis in the radioiodine therapy of hyperthyroidism

    International Nuclear Information System (INIS)

    Sopotyk, J.; Rogowski, F.; Parfienczyk, A.

    2004-01-01

    The review aims to give an up to date understanding of the mechanisms of apoptosis (programmed cell death), the methods of detecting apoptosis, in particular with regard to imaging such changes non-invasively. Radioiodine (I-131) is a gamma and beta emitting radionuclide and is commonplace in the treatment of hyperthyroidism. I-131 therapy relies on the destruction of thyroid tissue by beta radiation, and such destruction is proposed to be partly as a result of apoptosis. The review undertakes to explore and provoke research into the mechanisms of thyroid cell destruction by I-131, and whether such changes are able to be detected or monitored. Current knowledge concerning apoptosis in the thyroid gland in diseased states (including cancer) are described. The clinical significance of monitoring and modifying apoptosis are emphasized. Furthermore, overt and late destruction of thyroid tissue following I-131 therapy requires elaboration, and the relevance of detecting and modifying thyroid cell apoptosis following I-131 are questioned.(author)

  16. Homozygous mutations in the Fhit gene results in resistance to ionizing radiation and inhibition of apoptosis

    International Nuclear Information System (INIS)

    Turner, B.C.; Potoczek, M.B.; Ottey, M.; Croce, C.M.; Huebner, K.

    2001-01-01

    Purpose: The Fhit gene was identified because it represents the most active constitutive chromosome fragile site and has functions often associated with a tumor suppressor gene. Mutations in the Fhit locus have been identified in many cancer-derived cell lines, primary human tumors including lung, head and neck, colon, breast, and esophagus, and are associated with tobacco-induced lung cancers. In this study, we examined the cellular response of mouse epithelial cells with complete loss of Fhit to therapeutic doses of ionizing radiation and the prognostic importance of Fhit protein in early stage breast cancer patients treated with breast conserving therapy. Materials and Methods: Mouse epithelial cell lines containing either homozygous mutant Fhit -/- or wild-type Fhit +/+ were derived from mice (C57BL/6J X 129/SvJ) with either wild-type or inactivated Fhit gene. Clonogenic cell survival assays were carried out on subconfluent cells in logarithmic growth using a 137 Cs irradiator and survival curves were plotted as the log of the surviving cells versus dose and corrected for cloning efficiency. Apoptosis following ionizing radiation was determined by flow cytometry using the Annexin-V FITC kit and DAPI staining. Paraffin-embedded breast tumor blocks were obtained from 42 women with local breast tumor recurrence and 42 matched breast cancer patients without local cancer relapse treated with breast conserving therapy and stained with a 1:4000 dilution of polyclonal antibody to the Fhit protein and scored based on both intensity and distribution of Fhit staining within the invasive breast cancer component. Results: Treatment of Fhit -/- mouse epithelial cells with single fraction doses of ionizing radiation including 2, 4, 6, and 10 Gy result in 4-6 fold increase in cellular survival compared with isogenic parental cells from Fhit +/+ mice. Fhit -/- epithelial cells displayed 3-5 fold lower levels of apoptosis in response to both low and high doses of ionizing

  17. [Pulmonary apoptosis and necrosis in hyperoxia-induced acute mouse lung injury].

    Science.gov (United States)

    Zhang, Xiang-feng; Foda, Hussein D

    2004-07-01

    To investigate the pathways to cell death in hyperoxia-induced lung injury and the functional significance of apoptosis in vivo in response to hyperoxia. Seventy-two mice were exposed in sealed cages > 98% oxygen (for 24 - 72 h) or room air, and the severity of lung injury and epithelium sloughing was evaluated. The extent and location of apoptosis in injured lung tissues were studied by terminal transferase dUTP end labeling assay (TUNEL), reverse transcript-polymerase chain reaction (RT-PCR) and immunohistochemistry. Hyperoxia caused acute lung injury; the hyperoxic stress resulted in marked epithelium sloughing. TUNEL assay exhibited increased apoptosis index both in alveolar epithelial cells and bronchial epithelial cells in sections from mice after 48 h hyperoxia compared with their control group (0.51 +/- 0.10, 0.46 +/- 0.08 verse 0.04 +/- 0.02, 0.02 +/- 0.01). This was accompanied by increased expression of caspase-3 mRNA in lung tissues after 48 h hyperoxia compared with their control group (0.53 +/- 0.09 verse 0.34 +/- 0.07), the expression was higher at 72 h of hyperoxia (0.60 +/- 0.08). Immunohistochemistry study showed caspase-3 protein was located in cytoplasm and nuclei of airway epithelial cells, alveolar epithelial cells and macrophage in hyperoxia mice. The expression of caspase-3 protein in airway epithelium significantly increased at 24 h of hyperoxia compared with their control group (41.62 +/- 3.46 verse 15.86 +/- 1.84), the expression level was highest at 72 h of hyperoxia (55.24 +/- 6.80). Both apoptosis and necrosis contribute to cell death during hyperoxia. Apoptosis plays an important role in alveolar damage and cell death from hyperoxia.

  18. Regulation of apoptosis-inducing factor-mediated, cisplatin-induced apoptosis by Akt

    OpenAIRE

    Yang, X; Fraser, M; Abedini, M R; Bai, T; Tsang, B K

    2008-01-01

    Cisplatin is a first-line chemotherapeutic for ovarian cancer, although chemoresistance limits treatment success. Apoptosis, an important determinant of cisplatin sensitivity, occurs via caspase-dependent and -independent mechanisms. Activation of the protein kinase Akt, commonly observed in ovarian tumours, confers resistance to ovarian cancer cells via inhibition of caspase-dependent apoptosis. However, the effect of Akt on cisplatin-induced, caspase-independent apoptosis remains unclear. W...

  19. Comparison of gull-specific assays targeting 16S rRNA gene of Catellicoccus marimammalium and Streptococcus spp.

    Science.gov (United States)

    Gulls have been implicated as a source of fecal contamination in inland and coastal waters. Only one gull-specific assay is currently available (i.e., gull2 qPCR assay). This assay is based on the 16S rRNA gene of Catellicocclls marimammalium and has showed a high level of host-s...

  20. Compound K, a metabolite of ginseng saponin, induces apoptosis via caspase-8-dependent pathway in HL-60 human leukemia cells

    International Nuclear Information System (INIS)

    Cho, Sung-Hee; Chung, Kyung-Sook; Choi, Jung-Hye; Kim, Dong-Hyun; Lee, Kyung-Tae

    2009-01-01

    Compound K [20-O-β-(D-glucopyranosyl)-20(S)-protopanaxadiol], a metabolite of the protopanaxadiol-type saponins of Panax ginseng C.A. Meyer, has been reported to possess anti-tumor properties to inhibit angiogenesis and to induce tumor apoptosis. In the present study, we investigated the effect of Compound K on apoptosis and explored the underlying mechanisms involved in HL-60 human leukemia cells. We examined the effect of Compound K on the viabilities of various cancer cell lines using MTT assays. DAPI assay, Annexin V and PI double staining, Western blot assay and immunoprecipitation were used to determine the effect of Compound K on the induction of apoptosis. Compound K was found to inhibit the viability of HL-60 cells in a dose- and time-dependent manner with an IC 50 of 14 μM. Moreover, this cell death had typical features of apoptosis, that is, DNA fragmentation, DNA ladder formation, and the externalization of Annexin V targeted phosphatidylserine residues in HL-60 cells. In addition, compound-K induced a series of intracellular events associated with both the mitochondrial- and death receptor-dependent apoptotic pathways, namely, (1) the activation of caspases-3, -8, and -9; (2) the loss of mitochondrial membrane potential; (3) the release of cytochrome c and Smac/DIABLO to the cytosol; (4) the translocation of Bid and Bax to mitochondria; and (5) the downregulations of Bcl-2 and Bcl-xL. Furthermore, a caspase-8 inhibitor completely abolished caspase-3 activation, Bid cleavage, and subsequent DNA fragmentation by Compound K. Interestingly, the activation of caspase-3 and -8 and DNA fragmentation were significantly prevented in the presence of cycloheximide, suggesting that Compound K-induced apoptosis is dependent on de novo protein synthesis. The results indicate that caspase-8 plays a key role in Compound K-stimulated apoptosis via the activation of caspase-3 directly or indirectly through Bid cleavage, cytochrome c release, and caspase-9 activation

  1. LyGDI expression in HeLa cells increased its sensitivity to radiation-induced apoptosis

    International Nuclear Information System (INIS)

    Zhou Xinwen; Xu Yaxiang

    2006-01-01

    Objective: In order to confirm whether LyGDI has apoptotic signal transduction function and can increase the apoptotic rate of radiation-induced cell death, the lyGDI and mutant D19lyGDI gene, which constructed with the pCDNA3. 1 His A, were transfected into no-endogenous lyGDI HeLa cells. Methods Transient expressions of lyGDI and D19lyGDI in HeLa cells were analyzed by Western blot using anti-mono antibody of LyGDI and Xpress tag. Cell apoptosis was assayed with Annexin V-FITC apoptosis kit. To select stable clone, the transferred HeLa cells had been maintained in G418 medium for 3 weeks, then a cell line, which stably expressed LyGDI and mutant D19lyGDI, was selected. The selected cell line was irradiated with 12 Gy 60 Co y-rays. Caspase-3 activity of the cells was determined by Western blot and cell viability by clone-forming assay after 48 hours post-irradiation culture. Results: Western blot and Annexin V-FITC apoptotic analysis revealed that lyGDI and D19lyGDI transient expressions in HeLa cells induced apoptosis; Caspase-3 activity measurement and clone-forming assay showed that lyGDI increased sensitivity to radiation-induced cell apoptosis. Conclusions: lyGDI performs function in apoptosis signal transduction, its expression in HeLa cells can increase the sensitivity to radiation-induced cell apoptosis. (authors)

  2. Stattic Enhances Radiosensitivity and Reduces Radio-Induced Migration and Invasion in HCC Cell Lines through an Apoptosis Pathway

    Directory of Open Access Journals (Sweden)

    Gang Xu

    2017-01-01

    Full Text Available Purpose. Signal transducer and activator of transcription factor 3 (STAT3 is involved in tumorigenesis, development, and radioresistance of many solid tumors. The aim of this study is to investigate the effects of stattic (an inhibitor of STAT3 on the radiosensitivity and radio-induced migration and invasion ability in hepatocellular carcinoma (HCC cell lines. Methods. HCC cells were treated with stattic, and cell survival rate was analyzed through CCK-8 assay. Radiosensitivity was evaluated using cloning formation analysis; STAT3, p-STAT3, and apoptosis related proteins were detected by western blot. Radio-induced migration and invasion ability in HCC cells were analyzed by wound-healing assay and transwell test. Results. Stattic inhibits the expression of p-STAT3 and reduces cell survival in a dose-dependent manner in HCC cell lines, and the IC50 values for Hep G2, Bel-7402, and SMMC-7721 are 2.94 μM, 2.5 μM, and 5.1 μM, respectively. Cloning formation analysis shows that stattic enhances the radiosensitivity of HCC cells. Wound-healing assay and transwell test show that stattic inhibits radio-induced migration and invasion. Further study indicates that stattic promotes radio-induce apoptosis through regulating the expression of apoptosis related proteins in HCC cells. Conclusion. Stattic enhances radiosensitivity and reduces radio-induced migration and invasion ability in HCC cells probably through apoptosis pathway.

  3. Modeling pulmonary fibrosis by abnormal expression of telomerase/apoptosis/collagen V in experimental usual interstitial pneumonia

    International Nuclear Information System (INIS)

    Parra, E.R.; Pincelli, M.S.; Teodoro, W.R.; Velosa, A.P.P.; Martins, V.; Rangel, M.P.; Barbas-Filho, J.V.; Capelozzi, V.L.

    2014-01-01

    Limitations on tissue proliferation capacity determined by telomerase/apoptosis balance have been implicated in pathogenesis of idiopathic pulmonary fibrosis. In addition, collagen V shows promise as an inductor of apoptosis. We evaluated the quantitative relationship between the telomerase/apoptosis index, collagen V synthesis, and epithelial/fibroblast replication in mice exposed to butylated hydroxytoluene (BHT) at high oxygen concentration. Two groups of mice were analyzed: 20 mice received BHT, and 10 control mice received corn oil. Telomerase expression, apoptosis, collagen I, III, and V fibers, and hydroxyproline were evaluated by immunohistochemistry, in situ detection of apoptosis, electron microscopy, immunofluorescence, and histomorphometry. Electron microscopy confirmed the presence of increased alveolar epithelial cells type 1 (AEC1) in apoptosis. Immunostaining showed increased nuclear expression of telomerase in AEC type 2 (AEC2) between normal and chronic scarring areas of usual interstitial pneumonia (UIP). Control lungs and normal areas from UIP lungs showed weak green birefringence of type I and III collagens in the alveolar wall and type V collagen in the basement membrane of alveolar capillaries. The increase in collagen V was greater than collagens I and III in scarring areas of UIP. A significant direct association was found between collagen V and AEC2 apoptosis. We concluded that telomerase, collagen V fiber density, and apoptosis evaluation in experimental UIP offers the potential to control reepithelization of alveolar septa and fibroblast proliferation. Strategies aimed at preventing high rates of collagen V synthesis, or local responses to high rates of cell apoptosis, may have a significant impact in pulmonary fibrosis

  4. Modeling pulmonary fibrosis by abnormal expression of telomerase/apoptosis/collagen V in experimental usual interstitial pneumonia

    Energy Technology Data Exchange (ETDEWEB)

    Parra, E.R.; Pincelli, M.S. [Departamento de Patologia, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP (Brazil); Teodoro, W.R.; Velosa, A.P.P. [Disciplina de Reumatologia, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP (Brazil); Martins, V.; Rangel, M.P.; Barbas-Filho, J.V.; Capelozzi, V.L. [Departamento de Patologia, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP (Brazil)

    2014-06-04

    Limitations on tissue proliferation capacity determined by telomerase/apoptosis balance have been implicated in pathogenesis of idiopathic pulmonary fibrosis. In addition, collagen V shows promise as an inductor of apoptosis. We evaluated the quantitative relationship between the telomerase/apoptosis index, collagen V synthesis, and epithelial/fibroblast replication in mice exposed to butylated hydroxytoluene (BHT) at high oxygen concentration. Two groups of mice were analyzed: 20 mice received BHT, and 10 control mice received corn oil. Telomerase expression, apoptosis, collagen I, III, and V fibers, and hydroxyproline were evaluated by immunohistochemistry, in situ detection of apoptosis, electron microscopy, immunofluorescence, and histomorphometry. Electron microscopy confirmed the presence of increased alveolar epithelial cells type 1 (AEC1) in apoptosis. Immunostaining showed increased nuclear expression of telomerase in AEC type 2 (AEC2) between normal and chronic scarring areas of usual interstitial pneumonia (UIP). Control lungs and normal areas from UIP lungs showed weak green birefringence of type I and III collagens in the alveolar wall and type V collagen in the basement membrane of alveolar capillaries. The increase in collagen V was greater than collagens I and III in scarring areas of UIP. A significant direct association was found between collagen V and AEC2 apoptosis. We concluded that telomerase, collagen V fiber density, and apoptosis evaluation in experimental UIP offers the potential to control reepithelization of alveolar septa and fibroblast proliferation. Strategies aimed at preventing high rates of collagen V synthesis, or local responses to high rates of cell apoptosis, may have a significant impact in pulmonary fibrosis.

  5. Glechoma longituba (Lamiaceae) alleviates apoptosis in calcium ...

    African Journals Online (AJOL)

    Glechoma longituba pre-treatment on cell oxidative stress and apoptosis induced by CaOx. Conclusion: ... reproduction in any medium, provided the original work is properly credited. Tropical .... kit (MaiBio, Hong Kong, China) according to the.

  6. Apoptosis and Tumor Progressionin Prostate Cancer

    National Research Council Canada - National Science Library

    Tenniswood, Martin P

    2005-01-01

    ... (as measured by BrdU incorporation) and apoptosis as measured by TUNEL staining. We have standardized an efficient methodologies for isolating cells from primary tumors expressing REP by fluorescence activated cell sorting (FACS...

  7. Mitochondrial disfunction and apoptosis in leukemia cells

    Directory of Open Access Journals (Sweden)

    Annamaria PALLAG

    2008-05-01

    Full Text Available Apoptosis or programmed cell death is a process which involves the intentional degradation of the cell from the inside, the participation of the mitochondria to propagate the apoptotic signal, the alteration of the phospholipid cell membrane composition, the perturbation and alteration of the cell metabolism.The antineoplastic drugs is inducing the apoptotic process in the sensitive cells.It have been studied acute lymphoblastic leukemia cells. Using Annexin V-PE Apoptosis Detection Kit and flow cytometer, the amount of cells undergoing apoptosis, in various stages of the antineoplasic treatment, was detected. At the same time, were monitored, the serum level of malondialdehyde. The results obtained confirm the alteration of the mitochondrial metabolism. We can observed the mitochondrial dysfunction role in cell apoptosis.

  8. Norcantharidin (NCTD) induces mitochondria mediated apoptosis in ...

    African Journals Online (AJOL)

    Administrator

    2011-06-15

    Jun 15, 2011 ... cancer deaths for both sexes being attributable to hepatoma. However ..... Resveratrol induces apoptosis and cell cycle arrest of human T24 bladder cancer cells in ... involvement of the CD95 receptor/ligand. J. Cancer. Res.

  9. Molecular Analysis of Neurotoxin-Induced Apoptosis

    National Research Council Canada - National Science Library

    D'Mello, Santosh R

    2006-01-01

    Apoptosis is a cell-suicide process that is required for the normal development of the nervous system, but that can be aberrantly activated in neurodegenerative diseases and following exposure to neurotoxins...

  10. Advanced Glycation End-Products Induce Apoptosis of Vascular Smooth Muscle Cells: A Mechanism for Vascular Calcification

    Directory of Open Access Journals (Sweden)

    Sayo Koike

    2016-09-01

    Full Text Available Vascular calcification, especially medial artery calcification, is associated with cardiovascular death in patients with diabetes mellitus and chronic kidney disease (CKD. To determine the underlying mechanism of vascular calcification, we have demonstrated in our previous report that advanced glycation end-products (AGEs stimulated calcium deposition in vascular smooth muscle cells (VSMCs through excessive oxidative stress and phenotypic transition into osteoblastic cells. Since AGEs can induce apoptosis, in this study we investigated its role on VSMC apoptosis, focusing mainly on the underlying mechanisms. A rat VSMC line (A7r5 was cultured, and treated with glycolaldehyde-derived AGE-bovine serum albumin (AGE3-BSA. Apoptotic cells were identified by Terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL staining. To quantify apoptosis, an enzyme-linked immunosorbent assay (ELISA for histone-complexed DNA fragments was employed. Real-time PCR was performed to determine the mRNA levels. Treatment of A7r5 cells with AGE3-BSA from 100 µg/mL concentration markedly increased apoptosis, which was suppressed by Nox inhibitors. AGE3-BSA significantly increased the mRNA expression of NAD(PH oxidase components including Nox4 and p22phox, and these findings were confirmed by protein levels using immunofluorescence. Dihydroethidisum assay showed that compared with cBSA, AGE3-BSA increased reactive oxygen species level in A7r5 cells. Furthermore, AGE3-induced apoptosis was significantly inhibited by siRNA-mediated knockdown of Nox4 or p22phox. Double knockdown of Nox4 and p22phox showed a similar inhibitory effect on apoptosis as single gene silencing. Thus, our results demonstrated that NAD(PH oxidase-derived oxidative stress are involved in AGEs-induced apoptosis of VSMCs. These findings might be important to understand the pathogenesis of vascular calcification in diabetes and CKD.

  11. Interactions Between IGFBP-3 and Nuclear Receptors in Prostate Cancer Apoptosis

    Science.gov (United States)

    2009-01-01

    Genova, Italy . September 2008. 14 Conclusions Thus, we conclude that IGFBP-3 is a potent apoptosis inducer with potential implications in...11780 Pecan Way Loma Linda, CA 92354 Ph: (909) 799-1510 E-mail: kukwhalee@mednet.ucla.edu Present Position Assistant...Metabolism Utilizing IGFBP-3 KO mice. GRS/IGF 4th International Congress. Genova, Italy . September 2008. Poster presentations Lee, K.-W

  12. Cadmium Chloride Induces DNA Damage and Apoptosis of Human Liver Carcinoma Cells via Oxidative Stress

    Directory of Open Access Journals (Sweden)

    Anthony Skipper

    2016-01-01

    Full Text Available Cadmium is a heavy metal that has been shown to cause its toxicity in humans and animals. Many documented studies have shown that cadmium produces various genotoxic effects such as DNA damage and chromosomal aberrations. Ailments such as bone disease, renal damage, and several forms of cancer are attributed to overexposure to cadmium.  Although there have been numerous studies examining the effects of cadmium in animal models and a few case studies involving communities where cadmium contamination has occurred, its molecular mechanisms of action are not fully elucidated. In this research, we hypothesized that oxidative stress plays a key role in cadmium chloride-induced toxicity, DNA damage, and apoptosis of human liver carcinoma (HepG2 cells. To test our hypothesis, cell viability was determined by MTT assay. Lipid hydroperoxide content stress was estimated by lipid peroxidation assay. Genotoxic damage was tested by the means of alkaline single cell gel electrophoresis (Comet assay. Cell apoptosis was measured by flow cytometry assessment (Annexin-V/PI assay. The result of MTT assay indicated that cadmium chloride induces toxicity to HepG2 cells in a concentration-dependent manner, showing a 48 hr-LD50 of 3.6 µg/mL. Data generated from lipid peroxidation assay resulted in a significant (p < 0.05 increase of hydroperoxide production, specifically at the highest concentration tested. Data obtained from the Comet assay indicated that cadmium chloride causes DNA damage in HepG2 cells in a concentration-dependent manner. A strong concentration-response relationship (p < 0.05 was recorded between annexin V positive cells and cadmium chloride exposure. In summary, these in vitro studies provide clear evidence that cadmium chloride induces oxidative stress, DNA damage, and programmed cell death in human liver carcinoma (HepG2 cells.

  13. The contribution of apoptosis and necrosis in freezing injury of sea urchin embryonic cells.

    Science.gov (United States)

    Boroda, Andrey V; Kipryushina, Yulia O; Yakovlev, Konstantin V; Odintsova, Nelly A

    2016-08-01

    Sea urchins have recently been reported to be a promising tool for investigations of oxidative stress, UV light perturbations and senescence. However, few available data describe the pathway of cell death that occurs in sea urchin embryonic cells after cryopreservation. Our study is focused on the morphological and functional alterations that occur in cells of these animals during the induction of different cell death pathways in response to cold injury. To estimate the effect of cryopreservation on sea urchin cell cultures and identify the involved cell death pathways, we analyzed cell viability (via trypan blue exclusion test, MTT assay and DAPI staining), caspase activity (via flow cytometry and spectrophotometry), the level of apoptosis (via annexin V-FITC staining), and cell ultrastructure alterations (via transmission electron microscopy). Using general caspase detection, we found that the level of caspase activity was low in unfrozen control cells, whereas the number of apoptotic cells with activated caspases rose after freezing-thawing depending on cryoprotectants used, also as the number of dead cells and cells in a late apoptosis. The data using annexin V-binding assay revealed a very high apoptosis level in all tested samples, even in unfrozen cells (about 66%). Thus, annexin V assay appears to be unsuitable for sea urchin embryonic cells. Typical necrotic cells with damaged mitochondria were not detected after freezing in sea urchin cell cultures. Our results assume that physical cell disruption but not freezing-induced apoptosis or necrosis is the predominant reason of cell death in sea urchin cultures after freezing-thawing with any cryoprotectant combination. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Cadmium telluride quantum dots induce apoptosis in human breast cancer cell lines.

    Science.gov (United States)

    Naderi, Saeed; Zare, Hakimeh; Taghavinia, Nima; Irajizad, Azam; Aghaei, Mahmoud; Panjehpour, Mojtaba

    2018-05-01

    Semiconductor quantum dots (QDs), especially those containing cadmium, have undergone marked improvements and are now widely used nanomaterials in applicable biological fields. However, great concerns exist regarding their toxicity in biomedical applications. Because of the lack of sufficient data regarding the toxicity mechanism of QDs, this study aimed to evaluate the cytotoxicity of three types of QDs: CdTe QDs, high yield CdTe QDs, and CdTe/CdS core/shell QDs on two human breast cancer cell lines MDA-MB468 and MCF-7. The breast cancer cells were treated with different concentrations of QDs, and cell viability was evaluated via MTT assay. Hoechst staining was applied for observation of morphological changes due to apoptosis. Apoptotic DNA fragmentation was visualized by the agarose gel electrophoresis assay. Flow cytometric annexin V/propidium iodide (PI) measurement was used for apoptosis detection. A significant decrease in cell viability was observed after QDs treatment ( p < 0.05). Apoptotic bodies and chromatin condensation was observed by Hoechst staining. DNA fragmentation assay demonstrated a DNA ladder profile in the exposed cells and also annexin V/PI flow cytometry confirmed apoptosis in a dose-dependent manner. Our results revealed that CdTe, high yield CdTe, and CdTe/CdS core/shell QDs induce apoptosis in breast cancer cell lines in a dose-dependent manner. This study would help realizing the underlying cytotoxicity mechanism, at least partly, of CdTe QDs and may provide information for the development of nanotoxicology and safe use of biological applications of QDs.

  15. The role of apoptosis in immunosuppression of dogs with demodicosis.

    Science.gov (United States)

    Singh, Shanker K; Dimri, Umesh; Sharma, Mahesh C; Swarup, Devendra; Sharma, Bhaskar; Pandey, Hari Om; Kumari, Priyambada

    2011-12-15

    The aim of the present study was to evaluate the status of apoptosis in peripheral blood leukocytes of dogs with demodicosis. A total of 26 dogs suffering from demodicosis, and positive for Demodex canis mites by skin scraping, participated in the study, 13 with localized demodicosis (LD) and 13 with generalized demodicosis (GD). A further 13 clinically healthy dogs, all of whom were negative for mites upon skin scraping, were used as controls. The dogs with GD revealed significantly higher (P ≤ 0.0001) percentage of leukocytes with externalization of phosphatidylserine (PS) and depolarized mitochondrial membrane potentials (ΔΨm) as compared with the dogs with LD and healthy controls. These dogs also revealed significantly lower values (P ≤ 0.0001) of hematological parameters viz. hemoglobin, total erythrocytes count total leukocytes count, lymphocytes, monocytes and neutrophils. Significantly higher (P ≤ 0.0001) percentages of leukocytes with externalization of PS and depolarized ΔΨm were also found in dogs with LD as compared with the healthy controls. These dogs also revealed significantly lower values of Hb (P ≤ 0.0001), TEC (P=0.025), TLC (P ≤ 0.0001), lymphocytes (P=0.008), monocytes (P ≤ 0.0001) and neutrophils (P=0.03). It is concluded that premature apoptosis of PBL may be implicated in the immunosuppression of the dogs with demodicosis. Copyright © 2011 Elsevier B.V. All rights reserved.

  16. The kinetics of Fe and Ca for the development of radiation-induced apoptosis by micro-PIXE imaging

    International Nuclear Information System (INIS)

    Harada, S.; Tamakawa, Y.; Ishii, K.; Tanaka, A.; Satoh, T.; Matsuyama, S.; Yamazaki, H.; Kamiya, T.; Sakai, T.; Arakawa, K.; Saitoh, M.; Oikawa, S.; Sera, K.

    2002-01-01

    To study the interactions between the induction of radiation-induced apoptosis and trace elements kinetics, human leukemia cells were irradiated in vitro by 60 Co γ rays, after which the cells were evaluated for the detection of apoptosis and trace element (Fe, Ca, Zn) imaging was carried out. The frequency of apoptosis, i.e. the number of apoptotic bodies per 100 nuclei, was obtained by microscopic assay using TUNEL staining at 400x magnification. The trace element distribution in the cell was determined by micro-PIXE using 2 MeV proton beams. In the early phase of apoptosis, the maximum level of Fe accumulation was observed in the cell stroma. In the mid to end phase, Fe accumulation was diminished, and instead, Ca accumulation increased and Zn decreased in the nucleus. There appear to be two steps for the development of apoptosis: (1) the signaling from cell stroma to nucleus by Fe or an Fe-containing enzyme; and (2) the degeneration of the nucleus by Ca-dependent enzyme, and release of Zn from digested nucleus. Those strong accumulations may be new markers for apoptosis

  17. Glutaredoxin 1 (GRX1) inhibits oxidative stress and apoptosis of chondrocytes by regulating CREB/HO-1 in osteoarthritis.

    Science.gov (United States)

    Sun, Jie; Wei, Xuelei; Lu, Yandong; Cui, Meng; Li, Fangguo; Lu, Jie; Liu, Yunjiao; Zhang, Xi

    2017-10-01

    GRX1 (glutaredoxin1), a sulfhydryl disulfide oxidoreductase, is involved in many cellular processes, including anti-oxidation, anti-apoptosis, and regulation of cell differentiation. However, the role of GRX1 in the oxidative stress and apoptosis of osteoarthritis chondrocytes remains unclear, prompting the current study. Protein and mRNA expressions were measured by Western blot and RT-qPCR. Oxidative stress was detected by the measurement of MDA and SOD contents. Cells apoptosis were detected by Annexin V-FITC/PI and caspase-3 activity assays. We found that the mRNA and protein expressions of GRX1 were significantly down-regulated in osteoarthritis tissues and cells. GRX1 overexpression increased the mRNA and protein expression of CREB and HO-1. Meanwhile, GRX1 overexpression inhibited oxidative stress and apoptosis in osteoarthritis chondrocytes. Furthermore, we found that GRX1 overexpression regulated HO-1 by increasing CREB, and that HO-1 regulated oxidative stress and apoptosis in osteoarthritis chondrocytes. Thus, GRX1 overexpression constrains oxidative stress and apoptosis in osteoarthritis chondrocytes by regulating CREB/HO-1, providing a novel insight into the molecular mechanism and potential treatment of osteoarthritis. Copyright © 2017. Published by Elsevier Ltd.

  18. An atmospheric-pressure cold plasma leads to apoptosis in Saccharomyces cerevisiae by accumulating intracellular reactive oxygen species and calcium

    International Nuclear Information System (INIS)

    Ma, R N; Zhang, Q; Tian, Y; Su, B; Zhang, J; Fang, J; Feng, H Q; Liang, Y D

    2013-01-01

    A non-thermal plasma is known to induce apoptosis of various cells but the mechanism is not yet clear. A eukaryotic model organism Saccharomyces cerevisiaewas used to investigate the cellular and biochemical regulations of cell apoptosis and cell cycle after an atmospheric-pressure cold plasma treatment. More importantly, intracellular calcium (Ca 2+ ) was first involved in monitoring the process of plasma-induced apoptosis in this study. We analysed the cell apoptosis and cell cycle by flow cytometry and observed the changes in intracellular reactive oxygen species (ROS) and Ca 2+ concentration, cell mitochondrial membrane potential (Δψ m ) as well as nuclear DNA morphology via fluorescence staining assay. All experimental results indicated that plasma-generated ROS leads to the accumulation of intracellular ROS and Ca 2+ that ultimately contribute to apoptosis associated with cell cycle arrest at G1 phase through depolarization of Δψ m and fragmenting nuclear DNA. This work provides a novel insight into the physical and biological mechanism of apoptosis induced by a plasma which could benefit for promoting the development of plasmas applied to cancer therapy. (paper)

  19. miR-24-2 controls H2AFX expression regardless of gene copy number alteration and induces apoptosis by targeting antiapoptotic gene BCL-2: a potential for therapeutic intervention.

    Science.gov (United States)

    Srivastava, Niloo; Manvati, Siddharth; Srivastava, Archita; Pal, Ranjana; Kalaiarasan, Ponnusamy; Chattopadhyay, Shilpi; Gochhait, Sailesh; Dua, Raina; Bamezai, Rameshwar N K

    2011-04-04

    New levels of gene regulation with microRNA (miR) and gene copy number alterations (CNAs) have been identified as playing a role in various cancers. We have previously reported that sporadic breast cancer tissues exhibit significant alteration in H2AX gene copy number. However, how CNA affects gene expression and what is the role of miR, miR-24-2, known to regulate H2AX expression, in the background of the change in copy number, are not known. Further, many miRs, including miR-24-2, are implicated as playing a role in cell proliferation and apoptosis, but their specific target genes and the pathways contributing to them remain unexplored. Changes in gene copy number and mRNA/miR expression were estimated using real-time polymerase chain reaction assays in two mammalian cell lines, MCF-7 and HeLa, and in a set of sporadic breast cancer tissues. In silico analysis was performed to find the putative target for miR-24-2. MCF-7 cells were transfected with precursor miR-24-2 oligonucleotides, and the gene expression levels of BRCA1, BRCA2, ATM, MDM2, TP53, CHEK2, CYT-C, BCL-2, H2AFX and P21 were examined using TaqMan gene expression assays. Apoptosis was measured by flow cytometric detection using annexin V dye. A luciferase assay was performed to confirm BCL-2 as a valid cellular target of miR-24-2. It was observed that H2AX gene expression was negatively correlated with miR-24-2 expression and not in accordance with the gene copy number status, both in cell lines and in sporadic breast tumor tissues. Further, the cells overexpressing miR-24-2 were observed to be hypersensitive to DNA damaging drugs, undergoing apoptotic cell death, suggesting the potentiating effect of mir-24-2-mediated apoptotic induction in human cancer cell lines treated with anticancer drugs. BCL-2 was identified as a novel cellular target of miR-24-2. mir-24-2 is capable of inducing apoptosis by modulating different apoptotic pathways and targeting BCL-2, an antiapoptotic gene. The study suggests

  20. Effect of sevoflurane on human neutrophil apoptosis.

    LENUS (Irish Health Repository)

    Tyther, R

    2012-02-03

    BACKGROUND AND OBJECTIVE: Both chronic occupational exposure to volatile anaesthetic agents and acute in vitro exposure of neutrophils to isoflurane have been shown to inhibit the rate of apoptosis of human neutrophils. It is possible that inhibition of neutrophil apoptosis arises through delaying mitochondrial membrane potential collapse. We assessed mitochondrial depolarization and apoptosis in unexposed neutrophils and neutrophils exposed to sevoflurane in vivo. METHODS: A total of 20 mL venous blood was withdrawn pre- and postinduction of anaesthesia, the neutrophils isolated and maintained in culture. At 1, 12 and 24 h in culture, the percentage of neutrophil apoptosis was assessed by dual staining with annexin V-FITC and propidium iodide. Mitochondrial depolarization was measured using the dual emission styryl dye JC-1. RESULTS: Apoptosis was significantly inhibited in neutrophils exposed to sevoflurane in vivo at 24 (exposed: 38 (12)% versus control: 28 (11)%, P = 0.001), but not at 1 or 12 h, in culture. Mitochondrial depolarization was not delayed in neutrophils exposed to sevoflurane. CONCLUSIONS: The most important findings are that sevoflurane inhibits neutrophil apoptosis in vivo and that inhibition is not mediated primarily by an effect on mitochondrial depolarization.

  1. Opposite effects of flurbiprofen and the nitroxybutyl ester of flurbiprofen on apoptosis in cultured guinea-pig gastric mucous cells

    OpenAIRE

    Johal, Kamaljit; Hanson, Peter J

    2000-01-01

    The nitric oxide (NO)-donating nitroxybutyl ester of flurbiprofen (NO-flurbiprofen), shows reduced gastro-intestinal toxicity relative to flurbiprofen. NO may exert either pro- or anti-apoptotic effects, while non-steroidal anti-inflammatory drugs may induce apoptosis. The aim of the present work was therefore to compare the effects of flurbiprofen and NO-flurbiprofen on apoptosis in guinea-pig gastric mucous cells.Apoptotic activity was assessed by assay of caspase activity and from the frag...

  2. Brain-derived neurotrophic factor exerts neuroprotective actions against amyloid β-induced apoptosis in neuroblastoma cells

    OpenAIRE

    KIM, JIN HEE

    2014-01-01

    Alzheimer’s disease (AD) brains demonstrate decreased levels of brain-derived neurotrophic factor (BDNF) and increased levels of β-amyloid peptide (Aβ), which is neurotoxic. The present study assessed the impact of BDNF on the toxic effects of Aβ25–35-induced apoptosis and the effects on BDNF-mediated signaling using the MTT assay, western blotting and reverse transcription quantitative polymerase chain reaction. Aβ25–35 was found to induce an apoptosis, dose-dependent effect on SH-SY5Y neuro...

  3. Cudraflavone C Induces Apoptosis of A375.S2 Melanoma Cells through Mitochondrial ROS Production and MAPK Activation.

    Science.gov (United States)

    Lee, Chiang-Wen; Yen, Feng-Lin; Ko, Horng-Huey; Li, Shu-Yu; Chiang, Yao-Chang; Lee, Ming-Hsueh; Tsai, Ming-Horng; Hsu, Lee-Fen

    2017-07-13

    Melanoma is the most malignant form of skin cancer and is associated with a very poor prognosis. The aim of this study was to evaluate the apoptotic effects of cudraflavone C on A375.S2 melanoma cells and to determine the underlying mechanisms involved in apoptosis. Cell viability was determined using the MTT and real-time cytotoxicity assays. Flow cytometric evaluation of apoptosis was performed after staining the cells with Annexin V-FITC and propidium iodide. The mitochondrial membrane potential was evaluated using the JC-1 assay. Cellular ROS production was measured using the CellROX assay, while mitochondrial ROS production was evaluated using the MitoSOX assay. It was observed that cudraflavone C inhibited growth in A375.S2 melanoma cells, and promoted apoptosis via the mitochondrial pathway mediated by increased mitochondrial ROS production. In addition, cudraflavone C induced phosphorylation of MAPKs (p38, ERK, and JNK) and up-regulated the expression of apoptotic proteins (Puma, Bax, Bad, Bid, Apaf-1, cytochrome C, caspase-9, and caspase-3/7) in A375.S2 cells. Pretreatment of A375.S2 cells with MitoTEMPOL (a mitochondria-targeted antioxidant) attenuated the phosphorylation of MAPKs, expression of apoptotic proteins, and the overall progression of apoptosis. In summary, cudraflavone C induced apoptosis in A375.S2 melanoma cells by increasing mitochondrial ROS production; thus, activating p38, ERK, and JNK; and increasing the expression of apoptotic proteins. Therefore, cudraflavone C may be regarded as a potential form of treatment for malignant melanoma.

  4. Evaluation of the nuclear DNA Diffusion Assay to detect apoptosis and necrosis

    Czech Academy of Sciences Publication Activity Database

    Gichner, Tomáš; Mukherjee, A.; Wagner, E. D.; Plewa, M. J.

    2005-01-01

    Roč. 586, č. 1 (2005), s. 38-46 ISSN 1383-5718 R&D Projects: GA ČR GA521/05/0500 Institutional research plan: CEZ:AV0Z50380511 Keywords : DNase-I * Ethyl methanesulphonate * Hydrogen peroxide Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 2.188, year: 2005

  5. Can vitamin d suppress endothelial cells apoptosis in multiple sclerosis patients?

    Science.gov (United States)

    Dehghani, Leila; Meamar, Rokhsareh; Etemadifar, Masoud; Sheshde, Zahra Dehghani; Shaygannejad, Vahid; Sharifkhah, Mostafa; Tahani, Soheil

    2013-05-01

    Multiple sclerosis (MS) is an autoimmune disease of central nerves system, in which neurological disabilities occur in young adults. Despite increasing number of studies on MS, some aspects of this disorder are still unclear. In the previous studies, it has been proven that there is direct relation between MS incidence and vitamin D deficiency. Thereby, strong evidence in MS pathogenesis suggests that endothelial cells (EC) could be harmed in MS. In addition, functional changes in EC and macrovascular injuries lead blood-brain barrier disruption in MS. Current study is the first investigation to elucidate positive influences of vitamin D against EC apoptosis in MS. Human umbilical vein endothelial cells (HUVECs) were cultured and then treated with sera from patients with active MS (in relapse) and sera from healthy volunteer participants as control group (each group n=15). 3-(4,5-dimethylthiazol-2-yl)-5- (3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium, inner salt (MTS) assay for cell surveillance and cell-death detection kit for evaluating apoptosis were used in this study. There was a significant decrease in apoptosis rate by the serum of patients, just when 1,25(OH)2D3 applied before treating HUVECs with sera from active MS (in relapse). Furthermore, the cells surveillance increased markedly with the presence of 1,25(OH)(2)D(3) in culture, too. Withregard to increment in EC apoptosis rate, which treated by the sera from MS patients and decrement in apoptosis rate by the presence of vitamin D in culture media, it could be proposed that vitamin D pre-treatment can be used for MS patients, due to its beneficial effects on protecting EC apoptosis.

  6. BAK overexpression mediates p53-independent apoptosis inducing effects on human gastric cancer cells

    Directory of Open Access Journals (Sweden)

    Liu Jun

    2004-07-01

    Full Text Available Abstract Background BAK (Bcl-2 homologous antagonist/killer is a novel pro-apoptotic gene of the Bcl-2 family. It has been reported that gastric tumors have reduced BAK levels when compared with the normal mucosa. Moreover, mutations of the BAK gene have been identified in human gastrointestinal cancers, suggesting that a perturbation of BAK-mediated apoptosis may contribute to the pathogenesis of gastric cancer. In this study, we explored the therapeutic effects of gene transfer mediated elevations in BAK expression on human gastric cancer cells in vitro. Methods Eukaryotic expression vector for the BAK gene was constructed and transferred into gastric cancer cell lines, MKN-45 (wild-type p53 and MKN-28 (mutant-type p53. RT-PCR and Western Blotting detected cellular BAK gene expression. Cell growth activities were detected by MTT colorimetry and flow cytometry, while apoptosis was assayed by electronic microscopy and TUNEL. Western Blotting and colorimetry investigated cellular caspase-3 activities. Results BAK gene transfer could result in significant BAK overexpression, decreased in vitro growth, cell cycle G0/G1 arrest, and induced apoptosis in gastric cancer cells. In transferred cells, inactive caspase-3 precursor was cleaved into the active subunits p20 and p17, during BAK overexpression-induced apoptosis. In addition, this process occurred equally well in p53 wild-type (MKN-45, or in p53 mutant-type (MKN-28 gastric cancer cells. Conclusions The data presented suggests that overexpression of the BAK gene can lead to apoptosis of gastric cancer cells in vitro, which does not appear to be dependent on p53 status. The action mechanism of BAK mediated apoptosis correlates with activation of caspase-3. This could be served as a potential strategy for further development of gastric cancer therapies.

  7. Radiation induced apoptosis and initial DNA damage are inversely related in locally advanced breast cancer patients

    International Nuclear Information System (INIS)

    Pinar, Beatriz; Henríquez-Hernández, Luis Alberto; Lara, Pedro C; Bordon, Elisa; Rodriguez-Gallego, Carlos; Lloret, Marta; Nuñez, Maria Isabel; De Almodovar, Mariano Ruiz

    2010-01-01

    DNA-damage assays, quantifying the initial number of DNA double-strand breaks induced by radiation, have been proposed as a predictive test for radiation-induced toxicity. Determination of radiation-induced apoptosis in peripheral blood lymphocytes by flow cytometry analysis has also been proposed as an approach for predicting normal tissue responses following radiotherapy. The aim of the present study was to explore the association between initial DNA damage, estimated by the number of double-strand breaks induced by a given radiation dose, and the radio-induced apoptosis rates observed. Peripheral blood lymphocytes were taken from 26 consecutive patients with locally advanced breast carcinoma. Radiosensitivity of lymphocytes was quantified as the initial number of DNA double-strand breaks induced per Gy and per DNA unit (200 Mbp). Radio-induced apoptosis at 1, 2 and 8 Gy was measured by flow cytometry using annexin V/propidium iodide. Radiation-induced apoptosis increased in order to radiation dose and data fitted to a semi logarithmic mathematical model. A positive correlation was found among radio-induced apoptosis values at different radiation doses: 1, 2 and 8 Gy (p < 0.0001 in all cases). Mean DSB/Gy/DNA unit obtained was 1.70 ± 0.83 (range 0.63-4.08; median, 1.46). A statistically significant inverse correlation was found between initial damage to DNA and radio-induced apoptosis at 1 Gy (p = 0.034). A trend toward 2 Gy (p = 0.057) and 8 Gy (p = 0.067) was observed after 24 hours of incubation. An inverse association was observed for the first time between these variables, both considered as predictive factors to radiation toxicity

  8. Autophagy inhibition enhances apigenin-induced apoptosis in human breast cancer cells

    Institute of Scientific and Technical Information of China (English)

    Xuchen Cao; Bowen Liu; Wenfeng Cao; Weiran Zhang; Fei Zhang; Hongmeng Zhao; Ran Meng

    2013-01-01

    Apigenin (4',5,7-trihydroxyflavone) is a member of the flavone subclass of flavonoids present in fruits and vegetables.The involvement of autophagy in the apigenin-induced apoptotic death of human breast cancer cells was investigated.Cell proliferation and viability were assessed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and clonogenic assays.Flow cytometry,fluorescent staining and Western blot analysis were employed to detect apoptosis and autophagy,and the role of autophagy was assessed using autophagy inhibitors.Apigenin dose-and time-dependently repressed the proliferation and clonogenic survival of the human breast cancer T47D and MDA-MB-231 cell lines.The death of T47D and MDA-MB-231 cells was due to apoptosis associated with increased levels of Caspase3,PARP cleavage and Bax/Bcl-2 ratios.The results from flow cytometry and fluorescent staining also verified the occurrence of apoptosis.In addition,the apigenin-treated cells exhibited autophagy,as characterized by the appearance of autophagosomes under fluorescence microscopy and the accumulation of acidic vesicular organelles (AVOs)by flow cytometry.Furthermore,the results of the Western blot analysis revealed that the level of LC3-Ⅱ,the processed form of LC3-Ⅰ,was increased.Treatment with the autophagy inhibitor,3-methyladenine (3-MA),significantly enhanced the apoptosis induced by apigenin,which was accompanied by an increase in the level of PARP cleavage.Similar results were also confirmed by flow cytometry and fluorescence microscopy.These results indicate that apigenin has apoptosis-and autophagy-inducing effects in breast cancer cells.Autophagy plays a cyto-protective role in apigenin-induced apoptosis,and the combination of apigenin and an autophagy inhibitor may be a promising strategy for breast cancer control.

  9. BAK overexpression mediates p53-independent apoptosis inducing effects on human gastric cancer cells

    International Nuclear Information System (INIS)

    Tong, Qiang-Song; Zheng, Li-Duan; Wang, Liang; Liu, Jun; Qian, Wei

    2004-01-01

    BAK (Bcl-2 homologous antagonist/killer) is a novel pro-apoptotic gene of the Bcl-2 family. It has been reported that gastric tumors have reduced BAK levels when compared with the normal mucosa. Moreover, mutations of the BAK gene have been identified in human gastrointestinal cancers, suggesting that a perturbation of BAK-mediated apoptosis may contribute to the pathogenesis of gastric cancer. In this study, we explored the therapeutic effects of gene transfer mediated elevations in BAK expression on human gastric cancer cells in vitro. Eukaryotic expression vector for the BAK gene was constructed and transferred into gastric cancer cell lines, MKN-45 (wild-type p53) and MKN-28 (mutant-type p53). RT-PCR and Western Blotting detected cellular BAK gene expression. Cell growth activities were detected by MTT colorimetry and flow cytometry, while apoptosis was assayed by electronic microscopy and TUNEL. Western Blotting and colorimetry investigated cellular caspase-3 activities. BAK gene transfer could result in significant BAK overexpression, decreased in vitro growth, cell cycle G 0 /G 1 arrest, and induced apoptosis in gastric cancer cells. In transferred cells, inactive caspase-3 precursor was cleaved into the active subunits p20 and p17, during BAK overexpression-induced apoptosis. In addition, this process occurred equally well in p53 wild-type (MKN-45), or in p53 mutant-type (MKN-28) gastric cancer cells. The data presented suggests that overexpression of the BAK gene can lead to apoptosis of gastric cancer cells in vitro, which does not appear to be dependent on p53 status. The action mechanism of BAK mediated apoptosis correlates with activation of caspase-3. This could be served as a potential strategy for further development of gastric cancer therapies

  10. The endogenous bacteria alter gut epithelial apoptosis and decrease mortality following Pseudomonas aeruginosa pneumonia.

    Science.gov (United States)

    Fox, Amy C; McConnell, Kevin W; Yoseph, Benyam P; Breed, Elise; Liang, Zhe; Clark, Andrew T; O'Donnell, David; Zee-Cheng, Brendan; Jung, Enjae; Dominguez, Jessica A; Dunne, W Michael; Burd, Eileen M; Coopersmith, Craig M

    2012-11-01

    The endogenous bacteria have been hypothesized to play a significant role in the pathophysiology of critical illness, although their role in sepsis is poorly understood. The purpose of this study was to determine how commensal bacteria alter the host response to sepsis. Conventional and germ-free (GF) C57Bl/6 mice were subjected to Pseudomonas aeruginosa pneumonia. All GF mice died within 2 days, whereas 44% of conventional mice survived for 7 days (P = 0.001). Diluting the dose of bacteria 10-fold in GF mice led to similar survival in GF and conventional mice. When animals with similar mortality were assayed for intestinal integrity, GF mice had lower levels of intestinal epithelial apoptosis but similar levels of proliferation and intestinal permeability. Germ-free mice had significantly lower levels of tumor necrosis factor and interleukin 1β in bronchoalveolar lavage fluid compared with conventional mice without changes in systemic cytokine production. Under conventional conditions, sepsis unmasks lymphocyte control of intestinal epithelial apoptosis, because sepsis induces a greater increase in gut apoptosis in Rag-1 mice than in wild-type mice. However, in a separate set of experiments, gut apoptosis was similar between septic GF Rag-1 mice and septic GF wild-type mice. These data demonstrate that the endogenous bacteria play a protective role in mediating mortality from pneumonia-induced sepsis, potentially mediated through altered intestinal apoptosis and the local proinflammatory response. In addition, sepsis-induced lymphocyte-dependent increases in gut epithelial apoptosis appear to be mediated by the endogenous bacteria.

  11. Silibinin induces mitochondrial NOX4-mediated endoplasmic reticulum stress response and its subsequent apoptosis

    International Nuclear Information System (INIS)

    Kim, Sang-Hun; Kim, Kwang-Youn; Yu, Sun-Nyoung; Seo, Young-Kyo; Chun, Sung-Sik; Yu, Hak-Sun; Ahn, Soon-Cheol

    2016-01-01

    Silibinin, a biologically active compound of milk thistle, has chemopreventive effects on cancer cell lines. Recently it was reported that silibinin inhibited tumor growth through activation of the apoptotic signaling pathway. Although various evidences showed multiple signaling pathways of silibinin in apoptosis, there were no reports to address the clear mechanism of ROS-mediated pathway in prostate cancer PC-3 cells. Several studies suggested that reactive oxygen species (ROS) play an important role in various signaling cascades, but the primary source of ROS was currently unclear. The effect of silibinin was investigated on cell growth of prostate cell lines by MTT assay. We examined whether silibinin induced apoptosis through production of ROS using flow cytometry. Expression of apoptosis-, endoplasmic reticulum (ER)-related protein and gene were determined by western blotting and RT-PCR, respectively. Results showed that silibinin triggered mitochondrial ROS production through NOX4 expression and finally led to induce apoptosis. In addition, mitochondrial ROS caused ER stress through disruption of Ca 2+ homeostasis. Co-treatment of ROS inhibitor reduced the silibinin-induced apoptosis through the inhibition of NOX4 expression, resulting in reduction of both Ca 2+ level and ER stress response. Taken together, silibinin induced mitochondrial ROS-dependent apoptosis through NOX4, which is associated with disruption of Ca 2+ homeostasis and ER stress response. Therefore, the regulation of NOX4, mitochondrial ROS producer, could be a potential target for the treatment of prostate cancer. The online version of this article (doi:10.1186/s12885-016-2516-6) contains supplementary material, which is available to authorized users

  12. Implicative Algebras

    African Journals Online (AJOL)

    Tadesse

    In this paper we introduce the concept of implicative algebras which is an equivalent definition of lattice implication algebra of Xu (1993) and further we prove that it is a regular Autometrized. Algebra. Further we remark that the binary operation → on lattice implicative algebra can never be associative. Key words: Implicative ...

  13. Single-cell nanotoxicity assays of superparamagnetic iron oxide nanoparticles.

    Science.gov (United States)

    Eustaquio, Trisha; Leary, James F

    2012-01-01

    Properly evaluating the nanotoxicity of nanoparticles involves much more than bulk-cell assays of cell death by necrosis. Cells exposed to nanoparticles may undergo repairable oxidative stress and DNA damage or be induced into apoptosis. Exposure to nanoparticles may cause the cells to alter their proliferation or differentiation or their cell-cell signaling with neighboring cells in a tissue. Nanoparticles are usually more toxic to some cell subpopulations than others, and toxicity often varies with cell cycle. All of these facts dictate that any nanotoxicity assay must be at the single-cell level and must try whenever feasible and reasonable to include many of these other factors. Focusing on one type of quantitative measure of nanotoxicity, we describe flow and scanning image cytometry approaches to measuring nanotoxicity at the single-cell level by using a commonly used assay for distinguishing between necrotic and apoptotic causes of cell death by one type of nanoparticle. Flow cytometry is fast and quantitative, provided that the cells can be prepared into a single-cell suspension for analysis. But when cells cannot be put into suspension without altering nanotoxicity results, or if morphology, attachment, and stain location are important, a scanning image cytometry approach must be used. Both methods are described with application to a particular type of nanoparticle, a superparamagnetic iron oxide nanoparticle (SPION), as an example of how these assays may be applied to the more general problem of determining the effects of nanomaterial exposure to living cells.

  14. Estimates of DNA strand breakage in bottlenose dolphin (Tursiops truncatus leukocytes measured with the Comet and DNA diffusion assays

    Directory of Open Access Journals (Sweden)

    Adriana Díaz

    2009-01-01

    Full Text Available The analysis of DNA damage by mean of Comet or single cell gel electrophoresis (SCGE assay has been commonly used to assess genotoxic impact in aquatic animals being able to detect exposure to low concentrations of contaminants in a wide range of species. The aims of this work were 1 to evaluate the usefulness of the Comet to detect DNA strand breakage in dolphin leukocytes, 2 to use the DNA diffusion assay to determine the amount of DNA strand breakage associated with apoptosis or necrosis, and 3 to determine the proportion of DNA strand breakage that was unrelated to apoptosis and necrosis. Significant intra-individual variation was observed in all of the estimates of DNA damage. DNA strand breakage was overestimated because a considerable amount (~29% of the DNA damage was derived from apoptosis and necrosis. The remaining DNA damage in dolphin leukocytes was caused by factors unrelated to apoptosis and necrosis. These results indicate that the DNA diffusion assay is a complementary tool that can be used together with the Comet assay to assess DNA damage in bottlenose dolphins.

  15. Antioxidant enzyme gene delivery to protect from HIV-1 gp120-induced neuronal apoptosis.

    Science.gov (United States)

    Agrawal, L; Louboutin, J-P; Reyes, B A S; Van Bockstaele, E J; Strayer, D S

    2006-12-01

    Human immunodeficiency virus-1 (HIV-1) infection in the central nervous system (CNS) may lead to neuronal loss and progressively deteriorating CNS function: HIV-1 gene products, especially gp120, induce free radical-mediated apoptosis. Reactive oxygen species (ROS), are among the potential mediators of these effects. Neurons readily form ROS after gp120 exposure, and so might be protected from ROS-mediated injury by antioxidant enzymes such as Cu/Zn-superoxide dismutase (SOD1) and/or glutathione peroxidase (GPx1). Both enzymes detoxify oxygen free radicals. As they are highly efficient gene delivery vehicles for neurons, recombinant SV40-derived vectors were used for these studies. Cultured mature neurons derived from NT2 cells and primary fetal neurons were transduced with rSV40 vectors carrying human SOD1 and/or GPx1 cDNAs, then exposed to gp120. Apoptosis was measured by terminal deoxynucleotidyl transferase-mediated nick end labeling (TUNEL) assay. Transduction efficiency of both neuron populations was >95%, as assayed by immunostaining. Transgene expression was also ascertained by Western blotting and direct assays of enzyme activity. Gp120 induced apoptosis in a high percentage of unprotected NT2-N. Transduction with SV(SOD1) and SV(GPx1) before gp120 challenge reduced neuronal apoptosis by >90%. Even greater protection was seen in cells treated with both vectors in sequence. Given singly or in combination, they protect neuronal cells from HIV-1-gp120 induced apoptosis. We tested whether rSV40 s can deliver antioxidant enzymes to the CNS in vivo: intracerebral injection of SV(SOD1) or SV(GPx1) into the caudate putamen of rat brain yielded excellent transgene expression in neurons. In vivo transduction using SV(SOD1) also protected neurons from subsequent gp120-induced apoptosis after injection of both into the caudate putamen of rat brain. Thus, SOD1 and GPx1 can be delivered by SV40 vectors in vitro or in vivo. This approach may merit consideration for

  16. Six2 Is a Coordinator of LiCl-Induced Cell Proliferation and Apoptosis

    Directory of Open Access Journals (Sweden)

    Jianing Liu

    2016-09-01

    Full Text Available The metanephric mesenchyme (MM cells are a subset of kidney progenitor cells and play an essential role in mesenchymal-epithelial transition (MET, the key step of nephron generation. Six2, a biological marker related to Wnt signaling pathway, promotes the proliferation, inhibits the apoptosis and maintains the un-differentiation of MM cells. Besides, LiCl is an activator of Wnt signaling pathway. However, the role of LiCl in cellular regulation of MM cells remains unclear, and the relationship between LiCl and Six2 in this process is also little known. Here, we performed EdU assay and flow cytometry assay to, respectively, detect the proliferation and apoptosis of MM cells treated with LiCl of increasing dosages. In addition, reverse transcription-PCR (RT-PCR and Western-blot were conducted to measure the expression of Six2 and some maker genes of Wnt and bone-morphogenetic-protein (BMP signaling pathway. Furthermore, luciferase assay was also carried out to detect the transcriptional regulation of Six2. Then we found LiCl promoted MM cell proliferation at low-concentration (10, 20, 30, and 40 mM. The expression of Six2 was dose-dependently increased in low-concentration (10, 20, 30, and 40 mM at both mRNA and protein level. In addition, both of cell proliferation and Six2 expression in MM cells declined when dosage reached high-concentration (50 mM. However, Six2 knock-down converted the proliferation reduction at 50 mM. Furthermore, Six2 deficiency increased the apoptosis of MM cells, compared with negative control cells at relative LiCl concentration. However, the abnormal rise of apoptosis at 30 mM of LiCl concentration implies that it might be the reduction of GSK3β that increased cell apoptosis. Together, these demonstrate that LiCl can induce the proliferation and apoptosis of MM cells coordinating with Six2.

  17. Imiquimod activates p53-dependent apoptosis in a human basal cell carcinoma cell line.

    Science.gov (United States)

    Huang, Shi-Wei; Chang, Shu-Hao; Mu, Szu-Wei; Jiang, Hsin-Yi; Wang, Sin-Ting; Kao, Jun-Kai; Huang, Jau-Ling; Wu, Chun-Ying; Chen, Yi-Ju; Shieh, Jeng-Jer

    2016-03-01

    The tumor suppressor p53 controls DNA repair, cell cycle, apoptosis, autophagy and numerous other cellular processes. Imiquimod (IMQ), a synthetic toll-like receptor (TLR) 7 ligand for the treatment of superficial basal cell carcinoma (BCC), eliminates cancer cells by activating cell-mediated immunity and directly inducing apoptosis and autophagy in cancer cells. To evaluate the role of p53 in IMQ-induced cell death in skin cancer cells. The expression, phosphorylation and subcellular localization of p53 were detected by real-time PCR, luciferase reporter assay, cycloheximide chase analysis, immunoblotting and immunocytochemistry. Using BCC/KMC1 cell line as a model, the upstream signaling of p53 activation was dissected by over-expression of TLR7/8, the addition of ROS scavenger, ATM/ATR inhibitors and pan-caspase inhibitor. The role of p53 in IMQ-induced apoptosis and autophagy was assessed by genetically silencing p53 and evaluated by a DNA content assay, immunoblotting, LC3 puncta detection and acridine orange staining. IMQ induced p53 mRNA expression and protein accumulation, increased Ser15 phosphorylation, promoted nuclear translocation and up-regulated its target genes in skin cancer cells in a TLR7/8-independent manner. In BCC/KMC1 cells, the induction of p53 by IMQ was achieved through increased ROS production to stimulate the ATM/ATR-Chk1/Chk2 axis but was not mediated by inducing DNA damage. The pharmacological inhibition of ATM/ATR significantly suppressed IMQ-induced p53 activation and apoptosis. Silencing of p53 significantly decreased the IMQ-induced caspase cascade activation and apoptosis but enhanced autophagy. Mutant p53 skin cancer cell lines were more resistant to IMQ-induced apoptosis than wildtype p53 skin cancer cell lines. IMQ induced ROS production to stimulate ATM/ATR pathways and contributed to p53-dependent apoptosis in a skin basal cell carcinoma cell line BCC/KMC1. Copyright © 2015 Japanese Society for Investigative Dermatology

  18. P143 proteins from heterologous nucleopolyhedroviruses induce apoptosis in BM-N cells derived from the silkworm Bombyx mori.

    Science.gov (United States)

    Hamajima, Rina; Kobayashi, Michihiro; Ikeda, Motoko

    2017-04-02

    We previously demonstrated that ribosomal RNA (rRNA) of Bombyx mori BM-N cells is rapidly degraded upon infection with heterologous nucleopolyhedroviruses (NPVs), including Autographa californica multiple NPV (AcMNPV), Hyphantria cunea MNPV, Spodoptera exigua MNPV and S. litura MNPV, and that this response is triggered by viral P143 proteins. The transient expression of P143 proteins from heterologous NPVs was also shown to induce apoptosis and caspase-3-like protease activation in BM-N cells. In the present study, we conducted a transient expression assay using BM-N cells expressing mutant AcMNPV P143 (Ac-P143) proteins and demonstrated that five amino acid residues cooperatively participate in Ac-P143 protein-triggered apoptosis of BM-N cells. Notably, these five residues were previously shown to be required for triggering rRNA degradation in BM-N cells. As rRNA degradation in BM-N cells does not result from apoptosis, the present results suggest that Ac-P143-triggered rRNA degradation is the upstream signal for apoptosis induction in BM-N cells. We further showed that P143 protein-triggered apoptosis does not occur in S. frugiperda Sf9 or Lymantria dispar Ld652Y cells, indicating that apoptosis induction by heterologous P143 proteins is a BM-N cell-specific response. In addition, the observed induction of apoptosis in BM-N cells was found to be mediated by activation of the initiator caspase Bm-Dronc. Taken together, these results suggest that BM-N cells evolved a unique antiviral system that recognizes heterologous NPV P143 proteins to induce rRNA degradation and caspase-dependent apoptosis. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. (3'R)-hydroxytabernaelegantine C: A bisindole alkaloid with potent apoptosis inducing activity in colon (HCT116, SW620) and liver (HepG2) cancer cells.

    Science.gov (United States)

    Paterna, Angela; Gomes, Sofia E; Borralho, Pedro M; Mulhovo, Silva; Rodrigues, Cecília M P; Ferreira, Maria-José U

    2016-12-24

    Tabernaemontana elegans Stapf. (Apocynaceae) is a medicinal plant traditionally used in African countries to treat cancer. To discover new apoptosis inducing lead compounds from T. elegans and provide scientific validation of the ethnopharmacological use of this plant. Through fractionation, (3'R)-hydroxytaberanelegantine C (1), a vobasinyl-iboga bisindole alkaloid, was isolated from a cytotoxic alkaloid fraction of the methanol extract of T. elegans roots. Its structure was identified by spectroscopic methods, mainly 1D and 2D NMR experiments. Compound 1 was evaluated for its ability to induce apoptosis in HCT116 and SW620 colon and HepG2 liver carcinoma cells. The cell viability of compound 1 was evaluated by the MTS and lactate dehydrogenase (LDH) assays. Induction of apoptosis was analyzed through Guava ViaCount assay, by flow cytometry, caspase-3/7 activity assays and evaluation of nuclear morphology by Hoechst staining. To determine the molecular pathways elicited by 1 exposure, immunoblot analysis was also performed. (3'R)-hydroxytaberanelegantine C (1) displayed strong apoptosis induction activity as compared to 5-fluorouracil (5-FU), the most used anticancer agent in colorectal cancer treatment. In the MTS assay, compound 1 exhibited IC 50 values similar or lower than 5-FU in the three cell lines tested. The IC 50 value of 1 was also calculated in CCD18co normal human colon fibroblasts. The lactate dehydrogenase assay showed increased LDH release by compound 1, and the Guava ViaCount assay revealed that 1 significantly increased the incidence of apoptosis to a further extent than 5-FU. Moreover, the induction of apoptosis was corroborated by evaluation of nuclear morphology by Hoechst staining and caspase-3/7 activity assays of 1 treated cells. As expected, in immunoblot analysis, compound 1 treatment led to poly(ADP-ribose) polymerase cleavage. This was accompanied by decreased anti-apoptotic proteins Bcl-2 and XIAP steady state levels in all three cancer

  20. APOPTOSIS DURING HUMAN FETAL KIDNEY DEVELOPMENT

    Directory of Open Access Journals (Sweden)

    Rade Čukuranović

    2005-01-01

    Full Text Available Kidney morphogenesis is a complex and stepwise process. The formation of mature kidney in mammals is preceded by two primitive embryonic kidneys known as pronephros and mesonephros. Metanephros develops as a result of reciprocal inductive interactions between two primordial mesodermal derivates: ureteric bud, an epithelial outgrowth of the Wolffian duct, and metanephric blastema, a group of mesenchymal cells. The ureteric bud induces the metanephric mesenchyme to differentiate and form nephrons, whilst the metanephric mesenchyme induces the ureteric bud to grow and branch to form collecting ducts. The nephron goes through four developmental stages, which are described as: 1 vesicle, 2 comma-shaped and S-shaped stages, 3 developing capillary loop, and finally 4 maturing glomerulus. Apoptosis (programmed cell death is a predominant form of physiological cell death, by which organism eliminate unwanted or damaged cells. It is the major component of normal development and disease. Apoptosis is the result of series of biochemical processes happening in certain order in a dying cell, among which the most important is activation of enzyme families called caspases which influence different cell components. Apoptosis is characterized by membrane blebbing, shrinkage of the cell, nuclear fragmentation and chromatin condensation. Organelles are preserved almost intact. Cell surface molecules change. A variety of physiological and pathological stimuli can initiate apoptosis. They act via receptor mechanisms, through biochemical agents, or cause DNA and cell membrane damage. Apoptosis is an important component of fetal development. It is thought that apoptosis is the one of the main regulatory events involved in kidney morphogenesis, considering that among great number of developed cells, only a few of them are involved in the developing program by escaping apoptosis. In any period during kidney development about 3 to 5%of cells are apoptotic. Thorough

  1. Raddeanin A induces human gastric cancer cells apoptosis and inhibits their invasion in vitro

    International Nuclear Information System (INIS)

    Xue, Gang; Zou, Xi; Zhou, Jin-Yong; Sun, Wei; Wu, Jian; Xu, Jia-Li; Wang, Rui-Ping

    2013-01-01

    Highlights: •Raddeanin A is a triterpenoid saponin in herb medicine Anemone raddeana Regel. •Raddeanin A can inhibit 3 kinds of gastric cancer cells’ proliferation and invasion. •Caspase-cascades’ activation indicates apoptosis induced by Raddeanin A. •MMPs, RECK, Rhoc and E-cad are involved in Raddeanin A-induced invasion inhibition. -- Abstract: Raddeanin A is one of the triterpenoid saponins in herbal medicine Anemone raddeana Regel which was reported to suppress the growth of liver and lung cancer cells. However, little was known about its effect on gastric cancer (GC) cells. This study aimed to investigate its inhibitory effect on three kinds of different differentiation stage GC cells (BGC-823, SGC-7901 and MKN-28) in vitro and the possible mechanisms. Proliferation assay and flow cytometry demonstrated Raddeanin A’s dose-dependent inhibitory effect and determined its induction of cells apoptosis, respectively. Transwell assay, wounding heal assay and cell matrix adhesion assay showed that Raddeanin A significantly inhibited the abilities of the invasion, migration and adhesion of the BGC-823 cells. Moreover, quantitative real time PCR and Western blot analysis found that Raddeanin A increased Bax expression while reduced Bcl-2, Bcl-xL and Survivin expressions and significantly activated caspase-3, caspase-8, caspase-9 and poly-ADP ribose polymerase (PARP). Besides, Raddeanin A could also up-regulate the expression of reversion inducing cysteine rich protein with Kazal motifs (RECK), E-cadherin (E-cad) and down-regulate the expression of matrix metalloproteinases-2 (MMP-2), MMP-9, MMP-14 and Rhoc. In conclusion, Raddeanin A inhibits proliferation of human GC cells, induces their apoptosis and inhibits the abilities of invasion, migration and adhesion, exhibiting potential to become antitumor drug

  2. Effects of hydroxyapatite nanoparticles on proliferation and apoptosis of human breast cancer cells (MCF-7)

    International Nuclear Information System (INIS)

    Meena, Ramovatar; Kesari, Kavindra Kumar; Rani, Madhu; Paulraj, R.

    2012-01-01

    The study aimed to correlate cell proliferation inhibition with oxidative stress and p53 protein expression in cancerous cells. Hydroxyapatite (HAP) (Ca 10 (PO 4 ) 6 (OH) 2 ) is the essential component of inorganic composition in human bone. It has been found to have obvious inhibitory function on growth of many kinds of tumor cells and its nanoparticle has stronger anti-cancerous effect than macromolecule microparticles. Human breast cancer cells (MCF-7) were cultured and treated with HAP nanoparticles at various concentrations. Cells viability was detected with MTT colorimetric assay. The morphology of the cancerous cells was performed by transmission electron microscopy and the expression of a cell apoptosis related gene (p53) was determined by ELISA assay and flow cytometry (FCM). The intracellular reactive oxygen species (ROS) level in HAP exposed cells was measured by H 2 DCFDA staining. DNA damage was measured by single-cell gel electrophoresis assay. The statistical analysis was done by one way ANOVA. The cellular proliferation inhibition rate was significantly (p < 0.05) increasing in a dose-dependent manner of HAP nanoparticles. Cell apoptotic characters were observed after MCF-7 cells were treated by HAP nanoparticles for 48 h. Moreover, ELISA assay and FCM shows a dose-dependent activation of p53 in MCF-7 cells treated with nanoHAP. These causative factors of the above results may be justified by an overproduction of ROS. In this study, a significant (p < 0.05) increase in the level of intracellular ROS in HAP-treated cells was observed. This study shows that HAP inhibits the growth of human breast cancer MCF-7 cells as well as induces cell apoptosis. This study shows that HAP NPs Induce the production of intracellular reactive oxygen species and activate p53, which may be responsible for DNA damage and cell apoptosis.

  3. Raddeanin A induces human gastric cancer cells apoptosis and inhibits their invasion in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Xue, Gang [Department of Oncology, Nanjing University of Chinese Medicine, Nanjing (China); Zou, Xi [Department of Oncology, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Traditional Chinese Medicine, Nanjing (China); Zhou, Jin-Yong [Laboratory Center, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Traditional Chinese Medicine, Nanjing (China); Sun, Wei [Department of Oncology, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Traditional Chinese Medicine, Nanjing (China); Wu, Jian [Laboratory Center, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Traditional Chinese Medicine, Nanjing (China); Xu, Jia-Li [Department of Oncology, Nanjing University of Chinese Medicine, Nanjing (China); Wang, Rui-Ping, E-mail: ruipingwang61@hotmail.com [Department of Oncology, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Traditional Chinese Medicine, Nanjing (China)

    2013-09-20

    Highlights: •Raddeanin A is a triterpenoid saponin in herb medicine Anemone raddeana Regel. •Raddeanin A can inhibit 3 kinds of gastric cancer cells’ proliferation and invasion. •Caspase-cascades’ activation indicates apoptosis induced by Raddeanin A. •MMPs, RECK, Rhoc and E-cad are involved in Raddeanin A-induced invasion inhibition. -- Abstract: Raddeanin A is one of the triterpenoid saponins in herbal medicine Anemone raddeana Regel which was reported to suppress the growth of liver and lung cancer cells. However, little was known about its effect on gastric cancer (GC) cells. This study aimed to investigate its inhibitory effect on three kinds of different differentiation stage GC cells (BGC-823, SGC-7901 and MKN-28) in vitro and the possible mechanisms. Proliferation assay and flow cytometry demonstrated Raddeanin A’s dose-dependent inhibitory effect and determined its induction of cells apoptosis, respectively. Transwell assay, wounding heal assay and cell matrix adhesion assay showed that Raddeanin A significantly inhibited the abilities of the invasion, migration and adhesion of the BGC-823 cells. Moreover, quantitative real time PCR and Western blot analysis found that Raddeanin A increased Bax expression while reduced Bcl-2, Bcl-xL and Survivin expressions and significantly activated caspase-3, caspase-8, caspase-9 and poly-ADP ribose polymerase (PARP). Besides, Raddeanin A could also up-regulate the expression of reversion inducing cysteine rich protein with Kazal motifs (RECK), E-cadherin (E-cad) and down-regulate the expression of matrix metalloproteinases-2 (MMP-2), MMP-9, MMP-14 and Rhoc. In conclusion, Raddeanin A inhibits proliferation of human GC cells, induces their apoptosis and inhibits the abilities of invasion, migration and adhesion, exhibiting potential to become antitumor drug.

  4. Vorinostat induces apoptosis and differentiation in myeloid malignancies: genetic and molecular mechanisms.

    Directory of Open Access Journals (Sweden)

    Gabriela Silva

    Full Text Available BACKGROUND: Aberrant epigenetic patterns are central in the pathogenesis of haematopoietic diseases such as myelodysplastic syndromes (MDS and acute myeloid leukaemia (AML. Vorinostat is a HDACi which has produced responses in these disorders. The purpose of this study was to address the functional effects of vorinostat in leukemic cell lines and primary AML and MDS myeloid cells and to dissect the genetic and molecular mechanisms by which it exerts its action. METHODOLOGY/PRINCIPAL FINDINGS: Functional assays showed vorinostat promoted cell cycle arrest, inhibited growth, and induced apoptosis and differentiation of K562, HL60 and THP-1 and of CD33(+ cells from AML and MDS patients. To explore the genetic mechanism for these effects, we quantified gene expression modulation by vorinostat in these cells. Vorinostat increased expression of genes down-regulated in MDS and/or AML (cFOS, COX2, IER3, p15, RAI3 and suppressed expression of genes over-expressed in these malignancies (AXL, c-MYC, Cyclin D1 and modulated cell cycle and apoptosis genes in a manner which would favor cell cycle arrest, differentiation, and apoptosis of neoplastic cells, consistent with the functional assays. Reporter assays showed transcriptional effect of vorinostat on some of these genes was mediated by proximal promoter elements in GC-rich regions. Vorinostat-modulated expression of some genes was potentiated by mithramycin A, a compound that interferes with SP1 binding to GC-rich DNA sequences, and siRNA-mediated SP1 reduction. ChIP assays revealed vorinostat inhibited DNA binding of SP1 to the proximal promoter regions of these genes. These results suggest vorinostat transcriptional action in some genes is regulated by proximal promoter GC-rich DNA sequences and by SP1. CONCLUSION: This study sheds light on the effects of vorinostat in AML and MDS and supports the implementation of clinical trials to explore the use of vorinostat in the treatment of these diseases.

  5. Vorinostat induces apoptosis and differentiation in myeloid malignancies: genetic and molecular mechanisms.

    Science.gov (United States)

    Silva, Gabriela; Cardoso, Bruno A; Belo, Hélio; Almeida, António Medina

    2013-01-01

    Aberrant epigenetic patterns are central in the pathogenesis of haematopoietic diseases such as myelodysplastic syndromes (MDS) and acute myeloid leukaemia (AML). Vorinostat is a HDACi which has produced responses in these disorders. The purpose of this study was to address the functional effects of vorinostat in leukemic cell lines and primary AML and MDS myeloid cells and to dissect the genetic and molecular mechanisms by which it exerts its action. Functional assays showed vorinostat promoted cell cycle arrest, inhibited growth, and induced apoptosis and differentiation of K562, HL60 and THP-1 and of CD33(+) cells from AML and MDS patients. To explore the genetic mechanism for these effects, we quantified gene expression modulation by vorinostat in these cells. Vorinostat increased expression of genes down-regulated in MDS and/or AML (cFOS, COX2, IER3, p15, RAI3) and suppressed expression of genes over-expressed in these malignancies (AXL, c-MYC, Cyclin D1) and modulated cell cycle and apoptosis genes in a manner which would favor cell cycle arrest, differentiation, and apoptosis of neoplastic cells, consistent with the functional assays. Reporter assays showed transcriptional effect of vorinostat on some of these genes was mediated by proximal promoter elements in GC-rich regions. Vorinostat-modulated expression of some genes was potentiated by mithramycin A, a compound that interferes with SP1 binding to GC-rich DNA sequences, and siRNA-mediated SP1 reduction. ChIP assays revealed vorinostat inhibited DNA binding of SP1 to the proximal promoter regions of these genes. These results suggest vorinostat transcriptional action in some genes is regulated by proximal promoter GC-rich DNA sequences and by SP1. This study sheds light on the effects of vorinostat in AML and MDS and supports the implementation of clinical trials to explore the use of vorinostat in the treatment of these diseases.

  6. Nuclear orphan receptor TLX affects gene expression, proliferation and cell apoptosis in beta cells

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Xiaoli; Xiong, Xiaokan; Dai, Zhe; Deng, Haohua; Sun, Li; Hu, Xuemei; Zhou, Feng; Xu, Yancheng, E-mail: oxyccc@163.com

    2015-12-04

    Nuclear orphan receptor TLX is an essential regulator of the growth of neural stem cells. However, its exact function in pancreatic islet cells is still unknown. In the present study, gene expression profiling analysis revealed that overexpression of TLX in beta cell line MIN6 causes suppression of 176 genes and upregulation of 49 genes, including a cadre of cell cycle, cell proliferation and cell death control genes, such as Btg2, Ddit3 and Gadd45a. We next examined the effects of TLX overexpression on proliferation, apoptosis and insulin secretion in MIN6 cells. Proliferation analysis using EdU assay showed that overexpression of TLX increased percentage of EdU-positive cells. Cell cycle and apoptosis analysis revealed that overexpression of TLX in MIN6 cells resulted in higher percentage of cells exiting G1 into S-phase, and a 58.8% decrease of cell apoptosis induced by 0.5 mM palmitate. Moreover, TLX overexpression did not cause impairment of insulin secretion. Together, we conclude that TLX is among factors capable of controlling beta cell proliferation and survival, which may serve as a target for the development of novel therapies for diabetes. - Highlights: • TLX overexpression in MIN6 cell causes significant expression changes of 225 genes. • TLX overexpression promotes MIN6 cell proliferation and decreases cell apoptosis. • TLX overexpression does not cause impairment of insulin secretion.

  7. Nuclear orphan receptor TLX affects gene expression, proliferation and cell apoptosis in beta cells

    International Nuclear Information System (INIS)

    Shi, Xiaoli; Xiong, Xiaokan; Dai, Zhe; Deng, Haohua; Sun, Li; Hu, Xuemei; Zhou, Feng; Xu, Yancheng

    2015-01-01

    Nuclear orphan receptor TLX is an essential regulator of the growth of neural stem cells. However, its exact function in pancreatic islet cells is still unknown. In the present study, gene expression profiling analysis revealed that overexpression of TLX in beta cell line MIN6 causes suppression of 176 genes and upregulation of 49 genes, including a cadre of cell cycle, cell proliferation and cell death control genes, such as Btg2, Ddit3 and Gadd45a. We next examined the effects of TLX overexpression on proliferation, apoptosis and insulin secretion in MIN6 cells. Proliferation analysis using EdU assay showed that overexpression of TLX increased percentage of EdU-positive cells. Cell cycle and apoptosis analysis revealed that overexpression of TLX in MIN6 cells resulted in higher percentage of cells exiting G1 into S-phase, and a 58.8% decrease of cell apoptosis induced by 0.5 mM palmitate. Moreover, TLX overexpression did not cause impairment of insulin secretion. Together, we conclude that TLX is among factors capable of controlling beta cell proliferation and survival, which may serve as a target for the development of novel therapies for diabetes. - Highlights: • TLX overexpression in MIN6 cell causes significant expression changes of 225 genes. • TLX overexpression promotes MIN6 cell proliferation and decreases cell apoptosis. • TLX overexpression does not cause impairment of insulin secretion.

  8. Nano Copper Induces Apoptosis in PK-15 Cells via a Mitochondria-Mediated Pathway.

    Science.gov (United States)

    Zhang, Hui; Chang, Zhenyu; Mehmood, Khalid; Abbas, Rao Zahid; Nabi, Fazul; Rehman, Mujeeb Ur; Wu, Xiaoxing; Tian, Xinxin; Yuan, Xiaodan; Li, Zhaoyang; Zhou, Donghai

    2018-01-01

    Nano-sized copper particles are widely used in various chemical, physical, and biological fields. However, earlier studies have shown that nano copper particles (40-100 μg/mL) can induce cell toxicity and apoptosis. Therefore, this study was conducted to investigate the role of nano copper in mitochondrion-mediated apoptosis in PK-15 cells. The cells were treated with different doses of nano copper (20, 40, 60, and 80 μg/mL) to determine the effects of apoptosis using acridine orange/ethidium bromide (AO/EB) fluorescence staining and a flow cytometry assay. The levels of malondialdehyde (MDA) and superoxide dismutase (SOD) in the PK-15 cells were examined using commercially available kits. Moreover, the mRNA levels of the Bax, Bid, Caspase-3, and CYCS genes were assessed by real-time PCR. The results revealed that nano copper exposure induced apoptosis and changed the mitochondrial membrane potential. In addition, nano copper significantly altered the levels of the Bax, Bid, Caspase-3, and CYCS genes at a concentration of 40 μg/mL. To summarize, nano copper significantly (P nano copper can play an important role in inducing the apoptotic pathway in PK-15 cells, which may be the mechanism by which nano copper induces nephrotoxicity.

  9. Effect of Evodiamine on Inducing Apoptosis of Human Gastric Cancer Cell Line SGC-7901 in Vitro

    Directory of Open Access Journals (Sweden)

    LIU Shao-ping

    2014-09-01

    Full Text Available Objective: To explore the proliferation inhibition and apoptosis-inducing effect of evodiamine in human gastric cancer SGC-7901 cells. Methods: After 48 or 24 h exposure to different concentrations of evodiamine, cell proliferation was analyzed using tetrazolium blue (MTT assay while apoptosis and cell-cycle phase distribution using flow cytometry. Results: In 0.01~30.00 μg/mL range of concentrations, evodiamine inhibited the proliferation of SGC-7901 cells in dose-dependent manner, and the overall mean IC50 was (3.79±0.16 μg/mL; the apoptosis rate was increased from 3.4% to 7.0%, 13.8% and 36.3% at concentrations of 0, 0.5, 1.5 and 30 μg/mL of evodiamine, respectively; the percentage of cells accumulated in G2/M phase was increased from 17.26% to 98.92% in the cells treated with evodiamine for 24 h in 0.01~30.00 μg/mL range of concentrations. Conclusion: Evodiamine can inhibit the proliferation, induce apoptosis in human gastric cancer cell line SGC-7901 in vitro and arrest the cell cycle at the G2/M phase.

  10. TFF1 inhibits proliferation and induces apoptosis of gastric cancer cells in vitro

    Directory of Open Access Journals (Sweden)

    Yanli Ge

    2012-05-01

    Full Text Available Trefoil Factor Family (TFF plays an essential role in the intestinal epithelial restitution, but the relationship between TFF1 and gastric cancer (GC is still unclear. The present study aimed to determine the role of TFF1 in repairing gastric mucosa and in the pathogenesis of GC.The TFF1 expression in different gastric mucosas was measured with immunohistochemistry. Then, siRNA targeting TFF1 or plasmids expressing TFF1 gene were transfected into BGC823 cells, SGC7901 cells and GES-1 cells. The cell proliferation was detected with MTT assay and apoptosis and cell cycle measured by flow cytometry.From normal gastric mucosa to mucosa with dysplasia and to gastric cancer, the TFF1 expression had a decreasing trend. Down-regulation of TFF1 expression significantly reduced the apoptosis of three cell lines and markedly facilitated their proliferation but had no significant effect on cell cycle. Over-expression of TFF1 could promote apoptosis of three cell lines and inhibit proliferation but had no pronounced effect on cell cycle. TFF1 can inhibit proliferation and induce apoptosis of GC cells in vitro.

  11. BIRC6 protein, an inhibitor of apoptosis: role in survival of human prostate cancer cells.

    Directory of Open Access Journals (Sweden)

    Christopher G Low

    Full Text Available BIRC6 is a member of the Inhibitors of Apoptosis Protein (IAP family which is thought to protect a variety of cancer cells from apoptosis. The main objective of the present study was to investigate whether BIRC6 plays a role in prostate cancer and could be useful as a novel therapeutic target.BIRC6 expression in cell lines was assessed using Western blot analysis and in clinical samples using immunohistochemistry of tissue microarrays. The biological significance of BIRC6 was determined by siRNA-induced reduction of BIRC6 expression in LNCaP cells followed by functional assays.Elevated BIRC6 protein expression was found in prostate cancer cell lines and clinical specimens as distinct from their benign counterparts. Increased BIRC6 expression was associated with Gleason 6-8 cancers and castration resistance. Reduction of BIRC6 expression in LNCaP cells led to a marked reduction in cell proliferation which was associated with an increase in apoptosis and a decrease in autophagosome formation. Doxorubicin-induced apoptosis was found to be coupled to a reduction in BIRC6 protein expression.The data suggest a role for BIRC6 in prostate cancer progression and treatment resistance, and indicate for the first time that the BIRC6 gene and its product are potentially valuable targets for treatment of prostate cancers.

  12. MicroRNA-27b Modulates Inflammatory Response and Apoptosis during Mycobacterium tuberculosis Infection.

    Science.gov (United States)

    Liang, Shuxin; Song, Zhigang; Wu, Yongyan; Gao, Yuanpeng; Gao, Mingqing; Liu, Fayang; Wang, Fengyu; Zhang, Yong

    2018-04-16

    Mycobacterium tuberculosis poses a significant global health threat. MicroRNAs play an important role in regulating host anti-mycobacterial defense; however, their role in apoptosis-mediated mycobacterial elimination and inflammatory response remains unclear. In this study, we explored the role of microRNA-27b (miR-27b) in murine macrophage responses to M. tuberculosis infection. We uncovered that the TLR-2/MyD88/NF-κB signaling pathway induced the expression of miR-27b and miR-27b suppressed the production of proinflammatory factors and the activity of NF-κB, thereby avoiding an excessive inflammation during M. tuberculosis infection. Luciferase reporter assay and Western blotting showed that miR-27b directly targeted Bcl-2-associated athanogene 2 (Bag2) in macrophages. Overexpression of Bag2 reversed miR-27b-mediated inhibition of the production of proinflammatory factors. In addition, miR-27b increased p53-dependent cell apoptosis and the production of reactive oxygen species and decreased the bacterial burden. We also showed that Bag2 interacts with p53 and negatively regulates its activity, thereby controlling cell apoptosis and facilitating bacterial survival. In summary, we revealed a novel role of the miR-27b/Bag2 axis in the regulation of inflammatory response and apoptosis and provide a potential molecular host defense mechanism against mycobacteria. Copyright © 2018 by The American Association of Immunologists, Inc.

  13. Evaluation of a dansyl-based amino acid DNSBA as an imaging probe for apoptosis detection.

    Science.gov (United States)

    Tang, Min; Huang, Jiaguo; Weng, Xinxian; Yang, Lifang; Liu, Meihui; Zhou, Ming; Wang, Xiaobo; Gao, Jinghe; Yi, Wei; Zeng, Wenbin; Sun, Lunquan; Cao, Ya

    2015-03-01

    Imaging agents that enable direct detection of apoptosis are highly desirable in the field of monitoring chemotherapeutic response as well as early diagnosis and disease monitoring. Previous work demonstrated that the dansyled amino acid DNSBA is used to specifically and selectively detect apoptotic cancer cells at the both early and late stages, but the mechanism remains unclear. In this work, we evaluated DNSBA as a tool for monitoring cell apoptosis in CNE1 tumor cell models both in vitro and ex vivo after its in vivo administration, which was confirmed by other assays. The ability of DNSBA to detect multiple pathways and different stages of apoptosis leading to cell death may be advantageous in the evaluation of cancer treatment indicative of a positive therapeutic outcome. The uptake change of molecular probes DNSBA in CNE1 cells represented the changes of apoptotic rate in a caspase-dependent manner. However, the accumulation of DNSBA in apoptotic cells did not increase with the enhanced membrane permeability. Furthermore, ex vivo study demonstrated DNSBA has a similar pattern as the TUNEL-positive cells. In conclusion, DNSBA cellular imaging is useful for the early assessment of treatment-induced apoptosis, and thus may act as a substitute for Annexin V for assessing treatment response.

  14. Mitochondrial respiratory pathways inhibition in Rhizopus oryzae potentiates activity of posaconazole and itraconazole via apoptosis.

    Directory of Open Access Journals (Sweden)

    Fazal Shirazi

    Full Text Available The incidence of mucormycosis has increased drastically in immunocompromised patients. Also the array of targets whose inhibition results in Mucorales death is limited. Recently, researchers identified mitochondria as important regulators of detoxification and virulence mechanisms in fungi. In this context, targeting the mitochondrial respiratory chain may provide a new platform for antifungal development. We hypothesized that targeting respiratory pathways potentiates triazoles activity via apoptosis. We found that simultaneous administration of antimycin A (AA and benzohydroxamate (BHAM, inhibitors of classical and alternative mitochondrial pathways respectively, resulted in potent activity of posaconazole (PCZ and itraconazole (ICZ against Rhizopus oryzae. We observed cellular changes characteristic of apoptosis in R. oryzae cells treated with PCZ or ICZ in combination with AA and BHAM. The fungicidal activity of this combination against R. oryzae was correlated with intracellular reactive oxygen species accumulation (ROS, phosphatidylserine externalization, mitochondrial membrane depolarization, and increased caspase like activity. DNA fragmentation and condensation assays also revealed apoptosis of R. oryzae cells. These apoptotic features were prevented by the addition of the ROS scavenger N-acetyl-cysteine. Taken together, these findings suggest that the use of PCZ or ICZ in combination with AA and BHAM makes R. oryzae exquisitely sensitive to treatment with triazoles via apoptosis. This strategy may serve as a new model for the development of improved or novel antifungal agents.

  15. Soluble Prokaryotic Expression and Purification of Bioactive Tumor Necrosis Factor-Related Apoptosis-Inducing Ligand.

    Science.gov (United States)

    Do, Bich Hang; Nguyen, Minh Tan; Song, Jung-A; Park, Sangsu; Yoo, Jiwon; Jang, Jaepyeong; Lee, Sunju; So, Seoungjun; Yoon, Yejin; Kim, Inki; Lee, Kyungjin; Jang, Yeon Jin; Choe, Han

    2017-12-28

    Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is considered as an antitumor agent owing to its ability to induce apoptosis of cancer cells without imparting toxicity toward most normal cells. TRAIL is produced in poor yield because of its insoluble expression in the cytoplasm of E. coli . In this study, we achieved soluble expression of TRAIL by fusing maltose-binding protein (MBP), b'a' domain of protein disulfide isomerase (PDIb'a'), or protein disulfide isomerase at the N-terminus of TRAIL. The TRAIL was purified using subsequent immobilized metal affinity chromatography and amylose-binding chromatography, with the tag removal using tobacco etch virus protease. Approximately 4.5 mg of pure TRAIL was produced from 125 ml flask culture with a purification yield of 71.6%. The endotoxin level of the final product was 0.4 EU/μg, as measured by the Limulus amebocyte lysate endotoxin assay. The purified TRAIL was validated and shown to cause apoptosis of HeLa cells with an EC₅₀ and Hill coefficient of 0.6 ± 0.03 nM and 2.41 ± 0.15, respectively. The high level of apoptosis in HeLa cells following administration of purified TRAIL indicates the significance and novelty of this method for producing high-grade and high-yield TRAIL.

  16. SPAG6 regulates cell apoptosis through the TRAIL signal pathway in myelodysplastic syndromes.

    Science.gov (United States)

    Li, Xinxin; Yang, Bihui; Wang, Li; Chen, Liping; Luo, Xiaohua; Liu, Lin

    2017-05-01

    Myelodysplastic syndromes (MDSs) are a group of malignant clone hematopoietic stem-cell diseases, and the evolution and progression of MDS depend on the abnormal apoptosis of bone marrow cells. Our previous studies have indicated that sperm-associated antigen 6 (SPAG6), located in the uniparental disomy regions of myeloid cells, is overexpressed in patients with MDS as compared to controls, and SPAG6 can inhibit apoptosis of SKM-1. However, the concrete mechanism is still unclear. In the present study, it was found that the TNF-related apoptosis-inducing ligand (TRAIL)signal pathway was activated when the expression of SPAG6 was inhibited by SPAG6-shRNA lentivirus in SKM-1 cells. Additionally, the results of flow cytometry, Cell Counting Kit-8 assay and western blot analysis implied that the TRAIL signal pathway could be inhibited by a high expression of SPAG6. However, SPAG6 cannot influence the expression of TRAIL death receptors, except for FADD. Additionally the interaction between FADD and TRAIL death receptors also increased in SKM-1 cells infected with SPAG6-shRNA lentivirus. Thus, our study demonstrates that SPAG6 may regulate apoptosis in SKM-1 through the TRAIL signal pathway, indicating that SPAG6 could be a potential therapeutic target.

  17. Anthraquinone G503 Induces Apoptosis in Gastric Cancer Cells through the Mitochondrial Pathway

    Science.gov (United States)

    Li, Shuai; Duan, Junting; Ye, Fang; Li, Hanxiang; She, Zhigang; Gao, Guoquan; Yang, Xia

    2014-01-01

    G503 is an anthraquinone compound isolated from the secondary metabolites of a mangrove endophytic fungus from the South China Sea. The present study elucidates the anti-tumor activity and the underlying mechanism of G503. Cell viability assay performed in nine cancer cell lines and two normal cell lines demonstrated that the gastric cancer cell line SGC7901 is the most G503-sensitive cancer cells. G503 induced SGC7901 cell death via apoptosis. G503 exposure activated caspases-3, -8 and -9. Pretreatment with the pan-caspase inhibitor Z-VAD-FMK and caspase-9 inhibitor Z-LEHD-FMK, but not caspase-8 inbibitor Z-IETD-FMK, attenuated the effect of G503. These results suggested that the intrinsic mitochondrial apoptosis pathway, rather than the extrinsic pathway, was involved in G503-induced apoptosis. Furthermore, G503 increased the ratio of Bax to Bcl-2 in the mitochondria and decreased the ratio in the cytosol. G503 treatment resulted in mitochondrial depolarization, cytochrome c release and the subsequent cleavage of caspase -9 and -3. Moreover, it is reported that the endoplasmic reticulum apoptosis pathway may also be activated by G503 by inducing capase-4 cleavage. In consideration of the lower 50% inhibitory concentration for gastric cancer cells, G503 may serve as a promising candidate for gastric cancer chemotherapy. PMID:25268882

  18. Gambogic Acid Lysinate Induces Apoptosis in Breast Cancer MCF-7 Cells by Increasing Reactive Oxygen Species

    Directory of Open Access Journals (Sweden)

    Yong-Zhan Zhen

    2015-01-01

    Full Text Available Gambogic acid (GA inhibits the proliferation of various human cancer cells. However, because of its water insolubility, the antitumor efficacy of GA is limited. Objectives. To investigate the antitumor activity of gambogic acid lysinate (GAL and its mechanism. Methods. Inhibition of cell proliferation was determined by MTT assay; intracellular ROS level was detected by staining cells with DCFH-DA; cell apoptosis was determined by flow cytometer and the mechanism of GAL was investigated by Western blot. Results. GAL inhibited the proliferation of MCF-7 cells with IC50 values 1.46 μmol/L comparable with GA (IC50, 1.16 μmol/L. GAL promoted the production of ROS; however NAC could remove ROS and block the effect of GAL. GAL inhibited the expression of SIRT1 but increased the phosphorylation of FOXO3a and the expression of p27Kip1. At knockdown of FOXO3a, cell apoptosis induced by GAL can be partly blocked. In addition it also enhanced the cleavage of caspase-3. Conclusions. GAL inhibited MCF-7 cell proliferation and induced MCF-7 cell apoptosis by increasing ROS level which could induce cell apoptosis by both SIRT1/FOXO3a/p27Kip1 and caspase-3 signal pathway. These results suggested that GAL might be useful as a modulation agent in cancer chemotherapy.

  19. Effects of fasting and refeeding on intestinal cell proliferation and apoptosis in hammerhead shark (Sphyrna lewini

    Directory of Open Access Journals (Sweden)

    Hideya Takahashi

    2014-04-01

    Full Text Available Objective: To examine the effects of fasting and refeeding on intestinal cell proliferation and apoptosis in an opportunistic predator, hammerhead shark (Sphyrna lewini of elasmobranch fishes which are among the earliest known extant groups of vertebrates to have the valvular intestine typical for the primitive species. Methods: Animals were euthanized after 5-10 d of fasting or feeding, or after 10-day fasting and 5-day refeeding. Intestinal apoptosis and cell proliferation were assessed by using oligonucleotide detection assay, terminal deoxynucleotidyl transferase dUTP nick end labeling staining, and immunohistochemistry of proliferating cells nuclear antigen. Results: Plasma levels of cholesterol and glucose were reduced by fasting. Intestinal apoptosis generally decreased during fasting. Numerous apoptotic cells were observed around the tips of the villi, primarily in the epithelium in the fed sharks, whereas fewer labeled nuclei were detected in the epithelium of fasted sharks. Refeeding returned intestinal apoptosis to the level in the fed sharks. Proliferating cells were observed in the epithelium around the troughs of the villi and greater in number in fed sharks, whereas fewer labeled nuclei were detected in fasted sharks. Conclusions: The cell turnover is modified in both intestinal epithelia of the shark and the murines by fasting/feeding, but in opposite directions. The difference may reflect the feeding ecology of the elasmobranchs, primitive intermittent feeders.

  20. Regorafenib Induces Apoptosis and Inhibits Metastatic Potential of Human Bladder Carcinoma Cells.

    Science.gov (United States)

    Hsu, Fei-Ting; Sun, Cho-Chin; Wu, Chia-Hsing; Lee, Yen-Ju; Chiang, Chih-Hung; Wang, Wei-Shu

    2017-09-01

    The aim of the present study was to verify the effects of regorafenib on apoptosis and metastatic potential in TSGH 8301 human bladder carcinoma cells in vitro. Cells were treated with different concentration of regorafenib for different periods of time. Effects of regorafenib on cell viability, apoptosis pathways, metastatic potential, and expression of metastatic and anti-apoptotic proteins were evaluated with the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium (MTT) assay, flow cytometry, cell migration and invasion assay, and western blotting. We found regorafenib significantly reduced cell viability, cell migration and invasion, and expression of metastatic and anti-apoptotic proteins. In addition, regorafenib significantly induced accumulation of sub-G 1 phase cells, loss of mitochondrial membrane potential, and expression of active caspase-3 and caspase-8. These results show that regorafenib not only induces apoptosis, but also inhibits metastatic potential in bladder cancer TSGH 8301 cells in vitro. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  1. Tafazzin (TAZ promotes the tumorigenicity of cervical cancer cells and inhibits apoptosis.

    Directory of Open Access Journals (Sweden)

    Mei Chen

    Full Text Available Tafazzin (TAZ is often aberrantly expressed in some cancers, including rectal cancer and thyroid neoplasms. However, the function of TAZ in cervical cancer cells remains unknown. This study aims to explore the expression and function of TAZ in cervical cancer cells. Here, we determined the expression of TAZ protein in normal cervical tissue (NC, n = 27, high-grade squamous intraepithelial lesions (HSIL, n = 26 and squamous cervical carcinoma (SCC, n = 41 by immunohistochemistry, the expression of TAZ protein gradually increased from NC to HSIL to SCC. TAZ was overexpressed or down-regulated in cervical cancer cells by stably transfecting a TAZ-expressing plasmid or a shRNA plasmid targeting TAZ. In vitro, the cell growth curves and MTT assays showed that TAZ may promote the growth and viability of cervical cancer cells. In vivo, xenografts experiment showed that TAZ may increase tumor-forming ability. The percentage of apoptosis cells analyzed by FACS and TUNEL assays consistently showed that TAZ inhibits apoptosis in cervical cancer cells. Furthermore, the Cleaved Caspase 9 and Cleaved Caspase 3 were down-regulated by TAZ in cervical cancer cells. Taken together, this study demonstrated that TAZ is overexpressed in cervical cancer and may promote tumorigenicity of cervical cancer cells and inhibit apoptosis.

  2. Chemical and biological insights into uranium-induced apoptosis of rat hepatic cell line

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Fang; You, Yong [University of South China, College of Hunan Province, Key Laboratory of Tumor Cellular and Molecular Pathology, Hengyang (China); Du, Ke-Jie [University of South China, School of Chemistry and Chemical Engineering, Hengyang (China); Fang, Zhen [Anhui Normal University, College of Chemistry and Materials Science, Wuhu (China); Wen, Ge-Bo [University of South China, College of Hunan Province, Key Laboratory of Tumor Cellular and Molecular Pathology, Hengyang (China); University of South China, Laboratory of Protein Structure and Function, Hengyang (China); Lin, Ying-Wu [University of South China, School of Chemistry and Chemical Engineering, Hengyang (China); University of South China, Laboratory of Protein Structure and Function, Hengyang (China)

    2015-05-15

    Uranium release into the environment is a threat to human health, and the mechanisms of cytotoxicity caused by uranium are not well-understood. To improve our understanding in this respect, we herein evaluated the effects of uranium exposure on normal rat hepatic BRL cells. As revealed by scanning electron microscopy and transmission electron microscope analysis, uranyl nitrate was found to be transformed into uranyl phosphate particles in the medium and taken up by BRL cells in an endocytotic uptake manner, which presumably initiates apoptosis of the cell, although soluble uranyl ion may also be toxic. The apoptosis of BRL cells upon uranium exposure was also confirmed by both the acridine orange and ethidium bromide double staining assay and the Annexin V/propidium iodide double staining assay. Further studies revealed that uranium induced the loss of mitochondrial membrane potential in a dose-dependent manner. Moreover, the uranium-induced apoptosis was found to be associated with the activation of caspase-3, caspase-8 and caspase-9, indicating both a mitochondria-dependent signaling pathway and a death receptor pathway by a crosstalk. This study provides new chemical and biological insights into the mechanism of uranium toxicity toward hepatic cells, which will help seek approaches for biological remediation of uranium. (orig.)

  3. Dihydromyricetin induces cell cycle arrest and apoptosis in melanoma SK-MEL-28 cells.

    Science.gov (United States)

    Zeng, Guofang; Liu, Jie; Chen, Hege; Liu, Bin; Zhang, Qingyu; Li, Mingyi; Zhu, Runzhi

    2014-06-01

    Dihydromyricetin (DHM) exhibits multiple pharmacological activities; however, the role of DHM in anti-melanoma activities and the underlying molecular mechanisms are unclear. The aim of the present study was to evaluate the effects of DHM on cell proliferation, cell cycle distribution and apoptosis in the human melanoma SK-MEL-28 cell line, and to explore the related mechanisms. The effect of DHM on cell proliferation was investigated by MTT assay, and cell cycle distribution was determined by flow cytometry. TUNEL assay was used to evaluate DHM-mediated apoptosis, and western blotting was applied to examine expression levels of p53, p21, Cdc25A, Cdc2, P-Cdc2, Bax, IKK-α, NF-κB p65, p38 and P-p38 proteins. The results revealed that DHM suppressed cell proliferation of SK-MEL-28 cells in a concentration- and time-dependent manner, and caused cell cycle arrest at the G1/S phase. DHM increased the production of p53 and p21 proteins and downregulated the production of Cdc25A, Cdc2 and P-Cdc2 proteins, which induced cell cycle arrest. Additionally, DHM significantly induced the apoptosis of SK-MEL-28 cells, and enhanced the expression levels of Bax proteins and decreased the protein levels of IKK-α, NF-κB (p65) and P-p38. The results suggest that DHM may be a novel and effective candidate agent to inhibit the growth of melanoma.

  4. Bulbophyllum sterile petroleum ether fraction induces apoptosis in vitro and ameliorates tumor progression in vivo.

    Science.gov (United States)

    Biswas, Subhankar; Pardeshi, Rashmi; Reddy, Neetinkumar D; Shoja, Muhammed Haneefa; Nayak, Pawan G; Setty, M Manjunath; Pai, K Sreedhara R

    2016-12-01

    Orchids of the genus Bulbophyllum have been reported to possess antitumor activity. Present study investigated the possible antitumor activity of the active fraction of bulb and root of Bulbophyllum sterile. Alcoholic extract along with petroleum ether, dichloromethane and ethyl acetate fractions were subjected to SRB assay in HCT-116, MDA-MB-231 and A549 cell lines. The active fractions were further evaluated for apoptosis, expression of apoptotic signaling proteins, comet assay and cell cycle analysis. Furthermore, they were assessed for in vivo antitumor activity in Ehrlich ascites carcinoma model. Petroleum fraction of bulbs (PFB) and roots (PFR) was found to be most active in HCT-116 cell lines with IC 50 value of 94.2±6.0 and 75.7±9.8, respectively. Apoptosis was evident from acridine orange/ethidium bromide staining along with the expression of phospho-p53 and phospho-Bad. Both PFB and PFR arrested G 2 /M phase of the cell cycle with 32.6% and 49.4% arrest, respectively compared to 17.5% arrest with control. An increase in mean life span and hepatic antioxidant levels was observed with PFB and PFR treatment in EAC inoculated mice. The results suggested that the active fractions of bulbs and roots possess anticancer activity likely by inducing apoptosis through phospho-p53 dependent pathway. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  5. Curcumin Induces Autophagy, Apoptosis, and Cell Cycle Arrest in Human Pancreatic Cancer Cells

    Directory of Open Access Journals (Sweden)

    Yaping Zhu

    2017-01-01

    Full Text Available Objective. Curcumin is an active extract from turmeric. The aim of this study was to identify the underlying mechanism of curcumin on PCa cells and the role of autophagy in this process. Methods. The inhibitory effect of curcumin on the growth of PANC1 and BxPC3 cell lines was detected by CCK-8 assay. Cell cycle distribution and apoptosis were tested by flow cytometry. Autophagosomes were tested by cell immunofluorescence assay. The protein expression was detected by Western blot. The correlation between LC3II/Bax and cell viability was analyzed. Results. Curcumin inhibited the cell proliferation in a dose- and time-dependent manner. Curcumin could induce cell cycle arrest at G2/M phase and apoptosis of PCa cells. The autophagosomes were detected in the dosing groups. Protein expression of Bax and LC3II was upregulated, while Bcl2 was downregulated in the high dosing groups of curcumin. There was a significant negative correlation between LC3II/Bax and cell viability. Conclusions. Autophagy could be triggered by curcumin in the treatment of PCa. Apoptosis and cell cycle arrest also participated in this process. These findings imply that curcumin is a multitargeted agent for PCa cells. In addition, autophagic cell death may predominate in the high concentration groups of curcumin.

  6. Kaempferol suppresses bladder cancer tumor growth by inhibiting cell proliferation and inducing apoptosis.

    Science.gov (United States)

    Dang, Qiang; Song, Wenbin; Xu, Defeng; Ma, Yanmin; Li, Feng; Zeng, Jin; Zhu, Guodong; Wang, Xinyang; Chang, Luke S; He, Dalin; Li, Lei

    2015-09-01

    The effects of the flavonoid compound, kaempferol, which is an inhibitor of cancer cell proliferation and an inducer of cell apoptosis have been shown in various cancers, including lung, pancreatic, and ovarian, but its effect has never been studied in bladder cancer. Here, we investigated the effects of kaempferol on bladder cancer using multiple in vitro cell lines and in vivo mice studies. The MTT assay results on various bladder cancer cell lines showed that kaempferol enhanced bladder cancer cell cytotoxicity. In contrast, when analyzed by the flow cytometric analysis, DNA ladder experiment, and TUNEL assay, kaempferol significantly was shown to induce apoptosis and cell cycle arrest. These in vitro results were confirmed in in vivo mice studies using subcutaneous xenografted mouse models. Consistent with the in vitro results, we found that treating mice with kaempferol significant suppression in tumor growth compared to the control group mice. Tumor tissue staining results showed decreased expressions of the growth related markers, yet increased expressions in apoptosis markers in the kaempferol treated group mice tissues compared to the control group mice. In addition, our in vitro and in vivo data showed kaempferol can also inhibit bladder cancer invasion and metastasis. Further mechanism dissection studies showed that significant down-regulation of the c-Met/p38 signaling pathway is responsible for the kaempferol mediated cell proliferation inhibition. All these findings suggest kaempferol might be an effective and novel chemotherapeutic drug to apply for the future therapeutic agent to combat bladder cancer. © 2014 Wiley Periodicals, Inc.

  7. Viability, Apoptosis, Proliferation, Activation, and Cytokine Secretion of Human Keratoconus Keratocytes after Cross-Linking

    Directory of Open Access Journals (Sweden)

    Xuefei Song

    2015-01-01

    Full Text Available Purpose. The purpose of this study was to determine the impact of cross-linking (CXL on viability, apoptosis, proliferation, activation, and cytokine secretion of human keratoconus (KC keratocytes, in vitro. Methods. Primary KC keratocytes were cultured in DMEM/Ham’s F12 medium supplemented with 10% FCS and underwent UVA illumination (370 nm, 2 J/cm2 during exposure to 0.1% riboflavin and 20% Dextran in PBS. Twenty-four hours after CXL, viability was assessed using Alamar blue assay; apoptosis using APO-DIRECT Kit; proliferation using ELISA-BrdU kit; and CD34 and alpha-smooth muscle actin (α-SMA expression using flow cytometry. Five and 24 hours after CXL, FGFb, HGF, TGFβ1, VEGF, KGF, IL-1β, IL-6, and IL-8 secretion was measured using enzyme-linked-immunoabsorbent assay (ELISA. Results. Following CXL, cell viability and proliferation decreased (P0.06. Five hours after CXL, FGFb secretion increased significantly (P=0.037; however no other cytokine secretion differed significantly from controls after 5 or 24 hours (P>0.12. Conclusions. Cross-linking decreases viability, triggers apoptosis, and inhibits proliferation, without an impact on multipotent hematopoietic stem cell transformation and myofibroblastic transformation of KC keratocytes. CXL triggers FGFb secretion of KC keratocytes transiently (5 hours, normalizing after 24 hours.

  8. [Effects of metformin on human oral cancer KB cell proliferation and apoptosis in vitro].

    Science.gov (United States)

    Wang, Fang; Xu, Jincheng; Xia, Fei; Liu, Zhe; Zhao, Surong; Liu, Hao; Jiang, Zhiwen

    2014-02-01

    To investigate the effects of metformin on the proliferation and apoptosis of human oral cancer cell line KB in vitro. Human oral cancer cell line KB was exposed to different doses of metformin (0, 1.25, 2.5, 5, 10, and 20 mmol/L), and the changes in cell viability were detected using MTT assay. Colony formation of the cells was observed following an 8-day metformin exposure. The changes in mitochondrial membrane potential were measured by JC-1 assay, and PI staining was used to observe the cell apoptosis. Western blotting was employed to detect the changes in the protein expressions of GRP78 and activated caspase-3. Metformin exposure caused time- and dose-dependent suppression of KB cell proliferation, and exposure to 5 mmol/L metformin for 24, 48 and 72 h resulted in cell survival rates of 68.0%, 36.9%, and 14.5%, respectively. Metformin significantly inhibited KB cell colony formation. Exposure of the cells to increased concentrations of metformin gradually increased the apoptotic rate and decreased mitochondrial membrane potential. Metformin caused an initial up-regulation followed by a down-regulation of GRP78 expression in KB cells and increased the expression of activated caspase-3. Metformin can inhibit the proliferation and induce apoptosis of KB cells, the mechanism of which may involve the activation of the mitochondrial apoptotic pathway and endoplasmic reticulum stress.

  9. Effect of leptin on proliferation and apoptosis of cholangiocarcinoma QBC939 cells

    Directory of Open Access Journals (Sweden)

    DAI Kai

    2013-03-01

    Full Text Available ObjectiveTo determine whether leptin can exert anti-proliferative and pro-apoptotic effects on human cholangiocarcinoma cells and to investigate the underlying molecular mechanisms. MethodsHuman cholangiocarcinoma QBC939 cells were cultured and treated with different concentrations of leptin. Changes in the proliferation rate were measured by the MTT assay. Changes in cell cycle and in the apoptosis incidence rate were detected by flow cytometry. Changes in cyclin D1, bax and bcl-2 gene expression were detected by measuring mRNA levels by real-time quantitative reverse transcription-polymerase chain reaction (qPCR. Changes in caspase-3 protease activity were detected by fluorometric assay. ResultsLeptin treatment significantly increased the proliferation rate of QBC939 cells in a dose- and time-dependent manner. Compared to untreated QBC939 cells, leptin treatment led to significantly more G0/G1 to S phase transition and significantly lower apoptosis rate. In addition, leptin-treated QBC939 cells showed enhanced mRNA expression of cyclin D1 and bcl-2, but decreased mRNA expression of bax. The leptin treatment also led to decreased caspase-3 activity. ConclusionLeptin promotes S to G0/G1 phase transition and proliferation, but inhibits apoptosis, of human cholangiocarcinoma cells in vitro.

  10. Human Adipose Derived Stem Cells Induced Cell Apoptosis and S Phase Arrest in Bladder Tumor

    Directory of Open Access Journals (Sweden)

    Xi Yu

    2015-01-01

    Full Text Available The aim of this study was to determine the effect of human adipose derived stem cells (ADSCs on the viability and apoptosis of human bladder cancer cells. EJ and T24 cells were cocultured with ADSCs or cultured with conditioned medium of ADSCs (ADSC-CM, respectively. The cell counting and colony formation assay showed ADSCs inhibited the proliferation of EJ and T24 cells. Cell viability assessment revealed that the secretions of ADSCs, in the form of conditioned medium, were able to decrease cancer cell viability. Wound-healing assay suggested ADSC-CM suppressed migration of T24 and EJ cells. Moreover, the results of the flow cytometry indicated that ADSC-CM was capable of inducing apoptosis of T24 cells and inducing S phase cell cycle arrest. Western blot revealed ADSC-CM increased the expression of cleaved caspase-3 and cleaved PARP, indicating that ADSC-CM induced apoptosis in a caspase-dependent way. PTEN/PI3K/Akt pathway and Bcl-2 family proteins were involved in the mechanism of this reaction. Our study indicated that ADSCs may provide a promising and practicable manner for bladder tumor therapy.

  11. Zeb1 Is a Potential Regulator of Six2 in the Proliferation, Apoptosis and Migration of Metanephric Mesenchyme Cells

    Directory of Open Access Journals (Sweden)

    Yuping Gu

    2016-08-01

    Full Text Available Nephron progenitor cells surround around the ureteric bud tips (UB and inductively interact with the UB to originate nephrons, the basic units of renal function. This process is determined by the internal balance between self-renewal and consumption of the nephron progenitor cells, which is depending on the complicated regulation networks. It has been reported that Zeb1 regulates the proliferation of mesenchymal cells in mouse embryos. However, the role of Zeb1 in nephrons generation is not clear, especially in metanephric mesenchyme (MM. Here, we detected cell proliferation, apoptosis and migration in MM cells by EdU assay, flow cytometry assay and wound healing assay, respectively. Meanwhile, Western and RT-PCR were used to measure the expression level of Zeb1 and Six2 in MM cells and developing kidney. Besides, the dual-luciferase assay was conducted to study the molecular relationship between Zeb1 and Six2. We found that knock-down of Zeb1 decreased cell proliferation, migration and promoted cell apoptosis in MM cells and Zeb1 overexpression leaded to the opposite data. Western-blot and RT-PCR results showed that knock-down of Zeb1 decreased the expression of Six2 in MM cells and Zeb1 overexpression contributed to the opposite results. Similarly, Zeb1 promoted Six2 promoter reporter activity in luciferase assays. However, double knock-down of Zeb1 and Six2 did not enhance the apoptosis of MM cells compared with control cells. Nevertheless, double silence of Zeb1 and Six2 repressed cell proliferation. In addition, we also found that Zeb1 and Six2 had an identical pattern in distinct developing phases of embryonic kidney. These results indicated that there may exist a complicated regulation network between Six2 and Zeb1. Together, we demonstrate Zeb1 promotes proliferation and apoptosis and inhibits the migration of MM cells, in association with Six2.