WorldWideScience

Sample records for aphid aphis craccivora

  1. Resistance source to cowpea aphid (Aphis craccivora Koch) in ...

    African Journals Online (AJOL)

    The present study evaluated the resistance of 7 varieties of the broad bean Vicia faba L. to cowpea aphid, Aphis craccivora Koch, 1854. These landraces from the region of Biskra (in the south of Algeria) were selected in an initial field trial and subjected to further testing in the greenhouse. Landrace V51 proved to be the ...

  2. Resistance source to cowpea aphid (Aphis craccivora Koch) in ...

    African Journals Online (AJOL)

    STORAGESEVER

    2008-07-18

    Jul 18, 2008 ... The present study evaluated the resistance of 7 varieties of the broad bean Vicia faba L. to cowpea aphid, Aphis craccivora Koch, 1854. These landraces from the region of Biskra (in the south of Algeria) were selected in an initial field trial and subjected to further testing in the greenhouse. Landrace V51.

  3. Worldwide populations of the aphid Aphis craccivora are infected with diverse facultative bacterial symbionts.

    Science.gov (United States)

    Brady, Cristina M; Asplen, Mark K; Desneux, Nicolas; Heimpel, George E; Hopper, Keith R; Linnen, Catherine R; Oliver, Kerry M; Wulff, Jason A; White, Jennifer A

    2014-01-01

    Facultative bacterial endosymbionts can play an important role in the evolutionary trajectory of their hosts. Aphids (Hemiptera: Aphididae) are infected with a wide variety of facultative endosymbionts that can confer ecologically relevant traits, which in turn may drive microevolutionary processes in a dynamic selective environment. However, relatively little is known about how symbiont diversity is structured in most aphid species. Here, we investigate facultative symbiont species richness and prevalence among world-wide populations of the cowpea aphid, Aphis craccivora Koch. We surveyed 44 populations of A. craccivora, and detected 11 strains of facultative symbiotic bacteria, representing six genera. There were two significant associations between facultative symbiont and aphid food plant: the symbiont Arsenophonus was found at high prevalence in A. craccivora populations collected from Robinia sp. (locust), whereas the symbiont Hamiltonella was almost exclusively found in A. craccivora populations from Medicago sativa (alfalfa). Aphids collected from these two food plants also had divergent mitochondrial haplotypes, potentially indicating the formation of specialized aphid lineages associated with food plant (host-associated differentiation). The role of facultative symbionts in this process remains to be determined. Overall, observed facultative symbiont prevalence in A. craccivora was lower than that of some other well-studied aphids (e.g., Aphis fabae and Acyrthosiphon pisum), possibly as a consequence of A. craccivora's almost purely parthenogenetic life history. Finally, most (70 %) of the surveyed populations were polymorphic for facultative symbiont infection, indicating that even when symbiont prevalence is relatively low, symbiont-associated phenotypic variation may allow population-level evolutionary responses to local selection.

  4. Comparison of complete mitochondrial DNA sequences between old and new world strains of the cowpea aphid, Aphis craccivora (Hemiptera: Aphididae)

    Science.gov (United States)

    Mitochondrial DNA provides useful tools for inferring population genetic structure within a species and phylogenetic relationships between species. The complete mitogenome sequences were assembled from strains of the cowpea aphids, Aphis craccivora, from the old (15,308 bp) and new world (15,305 bp...

  5. All 37 Mitochondrial Genes of Aphid Aphis craccivora Obtained from Transcriptome Sequencing: Implications for the Evolution of Aphids.

    Science.gov (United States)

    Song, Nan; Zhang, Hao; Li, Hu; Cai, Wanzhi

    2016-01-01

    The availability of mitochondrial genome data for Aphididae, one of the economically important insect pest families, in public databases is limited. The advent of next generation sequencing technology provides the potential to generate mitochondrial genome data for many species timely and cost-effectively. In this report, we used transcriptome sequencing technology to determine all the 37 mitochondrial genes of the cowpea aphid, Aphis craccivora. This method avoids the necessity of finding suitable primers for long PCRs or primer-walking amplicons, and is proved to be effective in obtaining the whole set of mitochondrial gene data for insects with difficulty in sequencing mitochondrial genome by PCR-based strategies. Phylogenetic analyses of aphid mitochondrial genome data show clustering based on tribe level, and strongly support the monophyly of the family Aphididae. Within the monophyletic Aphidini, three samples from Aphis grouped together. In another major clade of Aphididae, Pterocomma pilosum was recovered as a potential sister-group of Cavariella salicicola, as part of Macrosiphini.

  6. All 37 Mitochondrial Genes of Aphid Aphis craccivora Obtained from Transcriptome Sequencing: Implications for the Evolution of Aphids.

    Directory of Open Access Journals (Sweden)

    Nan Song

    Full Text Available The availability of mitochondrial genome data for Aphididae, one of the economically important insect pest families, in public databases is limited. The advent of next generation sequencing technology provides the potential to generate mitochondrial genome data for many species timely and cost-effectively. In this report, we used transcriptome sequencing technology to determine all the 37 mitochondrial genes of the cowpea aphid, Aphis craccivora. This method avoids the necessity of finding suitable primers for long PCRs or primer-walking amplicons, and is proved to be effective in obtaining the whole set of mitochondrial gene data for insects with difficulty in sequencing mitochondrial genome by PCR-based strategies. Phylogenetic analyses of aphid mitochondrial genome data show clustering based on tribe level, and strongly support the monophyly of the family Aphididae. Within the monophyletic Aphidini, three samples from Aphis grouped together. In another major clade of Aphididae, Pterocomma pilosum was recovered as a potential sister-group of Cavariella salicicola, as part of Macrosiphini.

  7. The role of detoxifying enzymes in the resistance of the cowpea aphid (Aphis craccivora Koch to thiamethoxam

    Directory of Open Access Journals (Sweden)

    Abdallah Ibrahim Saleh

    2016-01-01

    Full Text Available The cowpea aphid (Aphis craccivora Koch is considered a serious insect pest attacking several crops. We carried out biochemical studies to elucidate the role of the metabolising enzymes in conferring resistance to thiamethoxam, in two strains (resistant and susceptible of the cowpea aphid. Bioassay experiments showed that the thiamethoxam selected strain developed a 48 fold resistance after consecutive selection with thiamethoxam for 12 generations. This resistant strain also exhibited cross-resistance to the tested carbamates; pirimicarb and carbosulfan, organophosphorus (malathion, fenitrothion, and chlorpyrifos-methyl, and the neonicotinoid (acetamiprid. Synergism studies have indicated that S,S,S-tributyl phosphorotrithioate (DEF, a known inhibitor for esterases, increased thiamethoxam toxicity 5.58 times in the resistant strain compared with the susceptible strain. Moreover, the biochemical determination revealed that carboxylestersae activity was 30 times greater in the resistant strain than in the susceptible strain. In addition, the enzyme activity of glutathione S-transferase (GST and mixed function oxidases (mfo increased only in the resistant strain 3.7 and 2.7 times, respectively, in relation to the susceptible (the control. Generally, our results suggest that the higher activity of the detoxifying enzymes, particularly carboxylesterase, in the resistant strain of the cowpea aphid, apparently have a significant role in endowing resistance to thiamethoxam, although additional mechanisms may contribute.

  8. New Sources of Resistance in Cowpea to the Cowpea Aphid (Aphis ...

    African Journals Online (AJOL)

    Twenty-two advanced breeding genotypes of cowpea were evaluated for their responses to infes-tation by the cowpea aphid, Aphis craccivora Koch. The aim of the study was to identify geno-type(s) of cowpea resistant to A. craccivora to be used as breeding line(s). Seedling screening technique and aphid growth and ...

  9. Pengendalian Aphis craccivora Koch. dengan kitosan dan pengaruhnya terhadap penularan Bean common mosaic virus strain Black eye cowpea (BCMV-BlC pada kacang panjang

    Directory of Open Access Journals (Sweden)

    Dita Megasari

    2015-09-01

    Full Text Available Aphis craccivora is one of the important pests on yard long bean. It causes direct damage and also has an indirect effect as insect vector of the Bean common mosaic virus (BCMV. The research was done to test the effectiveness of chitosan in suppressing aphid population growth, feeding preference and its ability in transmiting BCMV. Chitosan with concentration ranging of 0.1–1.0% were applied on leaves using spraying method at 1 day before BCMV transmission. BCMV was transmitted by using 3 individuals of viruliferous aphids on each plant. Results show that chitosan treatments on leaves or plants significantly suppressed the population and feeding preferences of A. craccivora. Further, treated plants showed lower disease incidence, severity and BCMV titre significantly compared with untreated control plants. The positive effects of chitosan in suppressing population growth as feeding preferences and BCMV transmission might be due to the anti-feedant effect of chitosan on A. craccivora. Based on the result, chitosan at concentration 0.9% is the most effective concentration in suppressing BCMV and its vector A. craccivora.

  10. The behavior of Aphis gossypii and Aphis craccivora (Hemiptera: Aphididae and of their predator Cycloneda sanguinea (Coleoptera: Coccinellidae in cotton-cowpea intercropping systems

    Directory of Open Access Journals (Sweden)

    FRANCISCO S. FERNANDES

    2018-02-01

    Full Text Available ABSTRACT The intercropping is an important cultural practice commonly used in pest management. It is based on the principle that increased plant diversity in the agro-ecosystem can lead to reductions of pest populations in the crop. The current study aimed to assess the impact the colored fiber cotton-cowpea intercropped systems on Aphis gossypii and Aphis craccivora and on their predator Cycloneda sanguinea and the losses and the dispersion behavior of these aphids and their predator in these cropping systems. The experiment had a randomized block experimental design with two bioassays and four treatments. The number of apterous and alate aphids (A. gossypii per cotton plant was 1.46 and 1.73 or 1.97 and 2.19 times highest in the solid cotton system than that found in the cotton-cowpea intercropped systems (S1 and (S2, respectively. On the other hand, the cotton-cowpea intercropped systems (S1 and S2 reduced, respectively, in 43% and 31% the number of apterousA. gossypiiper cotton plant compared to the control. Implementing cotton-cowpea intercropped system in the S1 scheme reduced A. gossypii infestation, favored the multiplication of C. sanguinea, and allowed obtaining heavier open bolls.

  11. The behavior of Aphis gossypii and Aphis craccivora (Hemiptera: Aphididae) and of their predator Cycloneda sanguinea (Coleoptera: Coccinellidae) in cotton-cowpea intercropping systems.

    Science.gov (United States)

    Fernandes, Francisco S; Godoy, Wesley A C; Ramalho, Francisco S; Malaquias, José B; Santos, Bárbara D B

    2018-02-01

    The intercropping is an important cultural practice commonly used in pest management. It is based on the principle that increased plant diversity in the agro-ecosystem can lead to reductions of pest populations in the crop. The current study aimed to assess the impact the colored fiber cotton-cowpea intercropped systems on Aphis gossypii and Aphis craccivora and on their predator Cycloneda sanguinea and the losses and the dispersion behavior of these aphids and their predator in these cropping systems. The experiment had a randomized block experimental design with two bioassays and four treatments. The number of apterous and alate aphids (A. gossypii) per cotton plant was 1.46 and 1.73 or 1.97 and 2.19 times highest in the solid cotton system than that found in the cotton-cowpea intercropped systems (S1) and (S2), respectively. On the other hand, the cotton-cowpea intercropped systems (S1 and S2) reduced, respectively, in 43% and 31% the number of apterousA. gossypiiper cotton plant compared to the control. Implementing cotton-cowpea intercropped system in the S1 scheme reduced A. gossypii infestation, favored the multiplication of C. sanguinea, and allowed obtaining heavier open bolls.

  12. Tissue specific expression of potent insecticidal, Allium sativum leaf agglutinin (ASAL) in important pulse crop, chickpea (Cicer arietinum L.) to resist the phloem feeding Aphis craccivora.

    Science.gov (United States)

    Chakraborti, Dipankar; Sarkar, Anindya; Mondal, Hossain Ali; Das, Sampa

    2009-08-01

    The phloem sap-sucking hemipteran insect, Aphis craccivora, commonly known as cowpea aphid, cause major yield loss of important food legume crop chickpea. Among different plant lectins Allium sativum leaf agglutinin (ASAL), a mannose binding lectin was found to be potent antifeedant for sap sucking insect A. craccivora. Present study describes expression of ASAL in chickpea through Agrobacterium-mediated transformation of "single cotyledon with half embryo" explant. ASAL was expressed under the control of CaMV35S promoter for constitutive expression and phloem specific rolC promoter for specifically targeting the toxin at feeding site, using pCAMBIA2301 vector containing plant selection marker nptII. Southern blot analysis demonstrated the integration and copy number of chimeric ASAL gene in chickpea and its inheritance in T(1) and T(2) progeny plants. Expression of ASAL in T(0) and T(1) plants was confirmed through northern and western blot analysis. The segregation pattern of ASAL transgene was observed in T(1) progenies, which followed the 3:1 Mendelian ratio. Enzyme linked immunosorbant assay (ELISA) determined the level of ASAL expression in different transgenic lines in the range of 0.08-0.38% of total soluble protein. The phloem tissue specific expression of ASAL gene driven by rolC promoter has been monitored by immunolocalization analysis of mature stem sections. Survival and fecundity of A. craccivora decreased to 11-26% and 22-42%, respectively when in planta bioassay conducted on T(1) plants compared to untransformed control plant which showed 85% survival. Thus, through unique approach of phloem specific expression of novel insecticidal lectin (ASAL), aphid resistance has been successfully achieved in chickpea.

  13. Newly identified resistance to soybean aphid (Aphis glycines) in soybean plant introduction lines

    Science.gov (United States)

    Host-plant resistance is potentially efficacious in managing the soybean aphid (SA, Aphis glycines Matsumura), a major invasive pest in northern soybean-production regions of North America. However, development of aphid-resistant soybean has been complicated by the presence of virulent SA biotypes,...

  14. Identificatoin and confirmation of resistance against soybean aphid (Aphis glycines) in eight wild soybean lines

    Science.gov (United States)

    The development and use of aphid-resistant soybean (Glycine max) cultivars has been complicated by the presence of multiple virulent biotypes of the soybean aphid (SA, Aphis glycines Matsumura). Ultimately, a variety of unique resistance sources may be needed to develop cultivars with a broad spectr...

  15. National Plant Diagnostic Network, Taxonomic training videos: Aphids under the microscope - Aphis gossypii

    Science.gov (United States)

    Training is a critical part of aphid (Hemiptera: Aphididae) identification. This video provides provides training to identify the cotton aphid, Aphis gossypii, using a compound microscope and an electronic identification key called “LUCID.” The video demonstrates key morphological structures that ca...

  16. Association mapping of aphid resistance in USDA cowpea (Vigna unguiculata L. Walp.) core collection using SNPs

    Science.gov (United States)

    Cowpea aphid (CPA; Aphis craccivora) is a destructive insect pest of cowpea, as well as other legume crops including alfalfa, beans, chickpea, lentils, lupins and peanuts. The utilization of aphid resistance in cowpea breeding is one of the most efficient and environmental friendly methods to contro...

  17. Ants Learn Aphid Species as Mutualistic Partners: Is the Learning Behavior Species-Specific?

    Science.gov (United States)

    Hayashi, Masayuki; Nakamuta, Kiyoshi; Nomura, Masashi

    2015-12-01

    In ant-aphid associations, many aphid species provide ants with honeydew and are tended by ants, whereas others are never tended and are frequently preyed upon by ants. In these relationships, ants must have the ability to discriminate among aphid species, with mutualistic aphids being accepted as partners rather than prey. Although ants reportedly use cuticular hydrocarbons (CHCs) of aphids to differentiate between mutualistic and non-mutualistic species, it is unclear whether the ability to recognize mutualistic aphid species as partners is innate or involves learning. Therefore, we tested whether aphid recognition by ants depends on learning, and whether the learning behavior is species-specific. When workers of the ant Tetramorium tsushimae had previously tended the cowpea aphid, Aphis craccivora, they were less aggressive toward this species. In addition, ants also reduced their aggressiveness toward another mutualistic aphid species, Aphis fabae, after tending A. craccivora, whereas ants remained aggressive toward the non-mutualistic aphid, Acyrthosiphon pisum, regardless of whether or not they had previous experience in tending A. craccivora. When ants were offered glass dummies treated with CHCs of these aphid species, ants that had tended A. craccivora displayed reduced aggression toward CHCs of A. craccivora and A. fabae. Chemical analyses showed the similarity of the CHC profiles between A. craccivora and A. fabae but not with A. pisum. These results suggest that aphid recognition of ants involves learning, and that the learning behavior may not be species-specific because of the similarity of CHCs between different aphid species with which they form mutualisms.

  18. Host Preference between Symbiotic and Aposymbiotic Aphis fabae, by the Aphid Parasitoid, Lysiphlebus ambiguus

    Science.gov (United States)

    Cheng, Rui-Xia; Meng, Ling; Mills, Nickolas J; Li, Baoping

    2011-01-01

    Few empirical studies have directly explored the association between Buchnera aphidicola (Enterobacteriales: Enterobacteriaceae), the primary endosymbiont of aphids, and the life history strategies of aphid parasitoids. A series of paired-choice experiments were conducted to explore the preference of the parasitoid Lysiphlebus ambiguus Halliday (Hymenoptera: Aphididae) for symbiotic and aposymbiotic Aphis fabae Scopoli (Hemiptera: Aphididae) and the suitability of these hosts for parasitoid development. When given a choice between symbiotic and aposymbiotic aphids of the same instar, the parasitoid significantly preferred symbiotic over aposymbiotic aphids only during the later instars (L4 and adult). The suitability of aposymbiotic aphids for parasitoid development was equal to that of symbiotic aphids in terms of survivorship and sex ratio, but was significantly lower than that of symbiotic aphids for L4 and adult instars in development rate and/or female adult size. When given a choice between similar-sized symbiotic L2 and aposymbiotic L4 aphids, the parasitoid preferred the former. No significant differences in preference or host suitability were demonstrated when the parasitoid was given a choice between different instars of aposymbiotic aphids. While parasitoid lifetime fecundity increased with aphid instar at the time of oviposition, there was no significant influence of previous development from symbiotic versus aposymbiotic aphids. These results suggest that while L. ambiguus can discriminate between symbiotic and aposymbiotic A. fabae during later instars and when the aphids are of a similar size, the primary endosymbiont is not needed for successful parasitoid development; and its absence only compromises parasitoid growth reared from later instar aposymbiotic host. PMID:21870967

  19. Status Of Cotton Aphid, Aphis gssypii

    African Journals Online (AJOL)

    They call for a strict national effort to regulate the influx of pesticides on the market, and ensure safe insecticide types and usage, as well as manage resistance in all concerned major insect pests. Les caractéristiques de répartition en groupes électrophorétiques et les analyses quantitatives de carboxylestérases de l'aphidé ...

  20. Potential candidates for biological control of the black bean aphid Aphis fabae in Serbia

    Directory of Open Access Journals (Sweden)

    Stanković, S.S.

    2015-09-01

    Full Text Available The black bean aphid is widely spread aphid species in the Palaearctic, known to attack over 1150 plant species. Because some of the host plants are of great agricultural interest, Aphis fabae represent a very important pest. We assembled all data concerning the presence of this pest and connected it in tritrophic associations. In the period of 24 years investigation on the territory of Serbia it has been recorded in 107 trophic associations. In total there are 145 findings of A. fabae parasitized by 19 taxa of Aphidiinae (Brackonidae from seven genera. The most suitable biocontrol agents for the black bean aphid are Lysiphlebus fabarum, Binodoxys angelicae, Lipolesis gracilis and the introduced species Lysiphlebus testaceipes.

  1. Do aphid carcasses on the backs of larvae of green lacewing work as chemical mimicry against aphid-tending ants?

    Science.gov (United States)

    Hayashi, Masayuki; Choh, Yasuyuki; Nakamuta, Kiyoshi; Nomura, Masashi

    2014-06-01

    Ants attack and exclude natural enemies of aphids in ant-aphid mutualisms. However, larvae of the green lacewing, Mallada desjardinsi, prey on the cowpea aphid, Aphis craccivora, without exclusion by aphid-tending ants. Lacewing larvae are protected from ants by carrying aphid carcasses on their backs. Here, we tested whether cuticular hydrocarbons (CHCs) of aphid carcasses affected the aggressiveness of aphid-tending ants. Aphid carcasses were washed with n-hexane to remove lipids. Lacewing larvae with washed aphid carcasses were attacked by aphid-tending ants more frequently than those with untreated aphid carcasses. We measured the aggressiveness of aphid-tending ants to lacewing larvae that were either carrying a piece of cotton wool (a dummy aphid carcass) treated with CHCs from aphids or lacewing larvae, or carrying aphid carcasses. The rates of attack by ants on lacewing larvae carrying CHCs of aphids or aphid carcasses were lower than that of attack on lacewing larvae with conspecific CHCs. Chemical analysis by gas chromatography/mass spectrometry showed similarity of CHCs between aphids and aphid carcasses. These results suggest that aphid carcasses on the backs of lacewing larvae function via chemical camouflage to limit attacks by aphid-tending ants.

  2. Tetramorium tsushimae Ants Use Methyl Branched Hydrocarbons of Aphids for Partner Recognition.

    Science.gov (United States)

    Sakata, Itaru; Hayashi, Masayuki; Nakamuta, Kiyoshi

    2017-10-01

    In mutualisms, partner discrimination is often the most important challenge for interacting organisms. The interaction between ants and aphids is a model system for studying mutualisms; ants are provided with honeydew by aphids and, in turn, the ants offer beneficial services to the aphids. To establish and maintain this system, ants must discriminate mutualistic aphid species correctly. Although recent studies have shown that ants recognize aphids as mutualistic partners based on their cuticular hydrocarbons (CHCs), it was unclear which CHCs are involved in recognition. Here, we tested whether the n-alkane or methylalkane fraction, or both, of aphid CHCs were utilized as partner recognition cues by measuring ant aggressiveness toward these fractions. When workers of Tetramorium tsushimae ants were presented with dummies coated with n-alkanes of their mutualistic aphid Aphis craccivora, ants displayed higher levels of aggression than to dummies treated with total CHCs or methyl alkanes of A. craccivora; responses to dummies treated with n-alkanes of A. craccivora were similar to those to control dummies or dummies treated with the CHCs of the non-mutualistic aphid Acyrthosiphon pisum. By contrast, ants exhibited lower aggression to dummies treated with either total CHCs or the methylalkane fraction of the mutualistic aphid than to control dummies or dummies treated with CHCs of the non-mutualistic aphid. These results suggest that T. tsushimae ants use methylalkanes of the mutualistic aphid's CHCs to recognize partners, and that these ants do not recognize aphids as partners on the basis of n-alkanes.

  3. Establishment of in vitro soybean aphids, Aphis glycines (Hemiptera: Aphididae): a tool to facilitate studies of aphid symbionts, plant-insect interactions and insecticide efficacy.

    Science.gov (United States)

    Gunadi, Andika; Bansal, Raman; Finer, John J; Michel, Andy

    2017-06-01

    Studies on plant-insect interactions of the soybean aphid, Aphis glycines (Matsumura), can be influenced by environmental fluctuations, status of the host plant and variability in microbial populations. Maintenance of aphids on in vitro-grown plants minimizes environmental fluctuations, provides uniform host materials and permits the selective elimination of aphid-associated microbes for more standardized controls in aphid research. Aphids were reared on sterile, in vitro-grown soybean seedlings germinated on plant tissue culture media amended with a mixture of antimicrobials. For initiation and maintenance of in vitro aphid colonies, single aphids were inoculated onto single in vitro seedlings. After three rounds of transfer of 'clean' aphids to fresh in vitro seedlings, contamination was no longer observed, and aphids performed equally well when compared with those reared on detached leaves. The addition of the insecticides thiamethoxam and chlorantraniliprole to the culture medium confirmed uptake and caused significant mortality to the in vitro aphids. The use of the antimicrobial mixture removed the associated bacteria Arsenophonus but retained Buchnera and Wolbachia within the in vitro aphids. The in vitro aphid system is a novel and highly useful tool to understand insecticidal efficacy and expand our knowledge of tritrophic interactions among plants, insects and symbionts. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  4. [Pathogenicity of hyphomycet fungi to aphids Aphis gossypii Glover and Myzus persicae (Sulzer) (Hemiptera: Aphididae)].

    Science.gov (United States)

    Loureiro, Elisângela de S; oino, Alcides

    2006-01-01

    The aphids Aphis gossypii and Myzus persicae are cosmopolitan, poliphagous and damage cultivated plants. The effects of the entomopathogenic fungi Beauveria bassiana (isolate IBCB 66), Metarhizium anisopliae (isolate IBCB 121), Paecilomyces fumosoroseus (isolate IBCB 141) and Lecanicillium (= Verticillium) lecanii (isolate JAB 02) on third instar nymphs of A. gossypii and M. persicae were evaluated in the laboratory at 25 degrees C, 70 +/- 10% RH and 12h photophase. The aphids were transferred to petri dishes with a foliar disk (cotton or pepper) with a layer of 1 cm tick of agar-water. The fungi were applied in a suspension containing 1.0 x 106 to 1.0 x 108 conidia/ml. In the control treatment 1 ml of sterilized water was added to the foliar disks. The mortality of aphids was evaluated daily. B. bassiana and M. anisopliae caused 100% mortality at the seventh day after inoculation, for both species. L. lecanii was the fungus that provided mortality later in the aphids and M. persicae was more susceptible to both fungi than A. gossypii.

  5. Aboveground feeding by soybean aphid, Aphis glycines, affects soybean cyst nematode, Heterodera glycines, reproduction belowground.

    Directory of Open Access Journals (Sweden)

    Michael T McCarville

    Full Text Available Heterodera glycines is a cyst nematode that causes significant lost soybean yield in the U.S. Recent studies observed the aphid Aphis glycines and H. glycines interacting via their shared host, soybean, Glycine max. A greenhouse experiment was conducted to discern the effect of A. glycines feeding on H. glycines reproduction. An H. glycines-susceptible cultivar, Kenwood 94, and a resistant cultivar, Dekalb 27-52, were grown in H. glycines-infested soil for 30 and 60 d. Ten days after planting, plants were infested with either zero, five, or ten aphids. At 30 and 60 d, the number of H. glycines females and cysts (dead females and the number of eggs within were counted. In general, H. glycines were less abundant on the resistant than the susceptible cultivar, and H. glycines abundance increased from 30 to 60 d. At 30 d, 33% more H. glycines females and eggs were produced on the resistant cultivar in the ten-aphid treatment compared to the zero-aphid treatment. However, at 30 d the susceptible cultivar had 50% fewer H. glycines females and eggs when infested with ten aphids. At 60 d, numbers of H. glycines females and cysts and numbers of eggs on the resistant cultivar were unaffected by A. glycines feeding, while numbers of both were decreased by A. glycines on the susceptible cultivar. These results indicate that A. glycines feeding improves the quality of soybean as a host for H. glycines, but at higher herbivore population densities, this effect is offset by a decrease in resource quantity.

  6. Biological control of cotton aphid (Aphis gossypii Glover) in cotton (inter)cropping systems in China : a simulation study

    NARCIS (Netherlands)

    Xia, J.

    1997-01-01

    Cotton aphid ( Aphis gossypii Glover) is the key insect pest of seedling cotton ( Gossypium hirsutum L. ) in China, particularly in the North China cotton region. The resulting annual losses amount to 10-15% of the attainable yield. Sole reliance on

  7. Reciprocal interactions between native and introduced populations of common milkweed, Asclepias syriaca, and the specialist aphid, Aphis nerii

    NARCIS (Netherlands)

    Bukovinszky, T.; Gols, R.; Agrawal, A.A.; Roge, C.; Bezemer, T.M.; Biere, A.; Harvey, J.A.

    2014-01-01

    Following its introduction into Europe (EU), the common milkweed (Asclepias syriaca) has been free of most specialist herbivores that are present in its native North American (NA) range, except for the oleander aphid Aphis nerii. We compared EU and NA populations of A. nerii on EU and NA milkweed

  8. Alfalfa Leaf Curl Virus: an Aphid-Transmitted Geminivirus.

    Science.gov (United States)

    Roumagnac, Philippe; Granier, Martine; Bernardo, Pauline; Deshoux, Maëlle; Ferdinand, Romain; Galzi, Serge; Fernandez, Emmanuel; Julian, Charlotte; Abt, Isabelle; Filloux, Denis; Mesléard, François; Varsani, Arvind; Blanc, Stéphane; Martin, Darren P; Peterschmitt, Michel

    2015-09-01

    The family Geminiviridae comprises seven genera differentiated by genome organization, sequence similarity, and insect vector. Capulavirus, an eighth genus, has been proposed to accommodate two newly discovered highly divergent geminiviruses that presently have no known vector. Alfalfa leaf curl virus, identified here as a third capulavirus, is shown to be transmitted by Aphis craccivora. This is the first report of an aphid-transmitted geminivirus. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  9. Identification of semiochemicals released by cotton, Gossypium hirsutum, upon infestation by the cotton aphid, Aphis gossypii.

    Science.gov (United States)

    Hegde, Mahabaleshwar; Oliveira, Janser N; da Costa, Joao G; Bleicher, Ervino; Santana, Antonio E G; Bruce, Toby J A; Caulfield, John; Dewhirst, Sarah Y; Woodcock, Christine M; Pickett, John A; Birkett, Michael A

    2011-07-01

    The cotton aphid, Aphis gossypii (Homoptera: Aphididae), is increasing in importance as a pest worldwide since the introduction of Bt-cotton, which controls lepidopteran but not homopteran pests. The chemical ecology of interactions between cotton, Gossypium hirsutum (Malvaceae), A. gossypii, and the predatory lacewing Chrysoperla lucasina (Neuroptera: Chrysopidae), was investigated with a view to providing new pest management strategies. Behavioral tests using a four-arm (Pettersson) olfactometer showed that alate A. gossypii spent significantly more time in the presence of odor from uninfested cotton seedlings compared to clean air, but significantly less time in the presence of odor from A. gossypii infested plants. A. gossypii also spent significantly more time in the presence of headspace samples of volatile organic compounds (VOCs) obtained from uninfested cotton seedlings, but significantly less time with those from A. gossypii infested plants. VOCs from uninfested and A. gossypii infested cotton seedlings were analyzed by gas chromatography (GC) and coupled GC-mass spectrometry (GC-MS), leading to the identification of (Z)-3-hexenyl acetate, (E)-4,8-dimethyl-1,3,7-nonatriene (DMNT), methyl salicylate, and (E,E)-4,8,12-trimethyl-1,3,7,11-tridecatetraene (TMTT), which were produced in larger amounts from A. gossypii infested plants compared to uninfested plants. In behavioral tests, A. gossypii spent significantly more time in the control (solvent) arms when presented with a synthetic blend of these four compounds, with and without the presence of VOCs from uninfested cotton. Coupled GC-electroantennogram (EAG) recordings with the lacewing C. lucasina showed significant antennal responses to VOCs from A. gossypii infested cotton, suggesting they have a role in indirect defense and indicating a likely behavioral role for these compounds for the predator as well as the aphid.

  10. Tritrophic associations and taxonomic notes on Lysiphlebus fabarum (Marshall (Hymenoptera: Braconidae: Aphidiinae, a keystone aphid parasitoid in Iran

    Directory of Open Access Journals (Sweden)

    Rakhshani Ehsan

    2013-01-01

    Full Text Available An investigation of host associations, distribution and types of reproduction (sexual, asexual of Lysiphlebus fabarum (Marshall across 20 provinces of Iran during 2006-2011 was undertaken. The parasitoid was reared from three groups of host aphids belonging to genera Aphis and Brachycaudus, and occasional host aphid genera. Aphis craccivora Koch was the most frequent host aphid for L. fabarum on various host plants, including economically important crops. The field sex ratio generally favored females, but in some cases, only thelytokous (uniparental populations were found. In those cases, the host was always an Aphis species. Specimens reared from Brachycaudus aphids were all biparental, indicating the presence of a sibling biological species. Overall analysis of diagnostic morphological characters in the forewing indicated intra-specific variability in forewing marginal setae as well as variations in length of the R1 vein. [Projekat Ministarstva nauke Republike Srbije, br. 43001

  11. Economic Injury Levels for Aphis glycines Matsumura (Hemiptera: Aphididae) on the Soybean Aphid Tolerant KS4202 Soybean.

    Science.gov (United States)

    Marchi-Werle, Lia; Baldin, Edson L L; Fischer, Hillary D; Heng-Moss, Tiffany M; Hunt, Thomas E

    2017-10-01

    The soybean aphid, Aphis glycines Matsumura (Hemiptera: Aphididae), is an invasive species from Asia that has been the major economic insect pest of soybeans, Glycine max (L.) Merrill, since 2000. While use of soybeans expressing antibiosis and antixenosis is a well-studied strategy to manage this pest, aphid-tolerant soybeans remain underexplored. This study examined the relationship between cumulative aphid-days (CAD) and yield loss in the tolerant soybean KS4202 during two growing seasons to determine the economic injury levels (EILs) for soybean aphids on KS4202. Soybean aphid infestations were initiated during the soybean reproductive stages. A range of CAD treatments (3,000-45,000 CADs) were applied during the growing seasons. Aphid populations reached 45,000 CAD in 2011 and 38,000 CAD in 2013 in plots that were not treated with insecticides. It was estimated that the population doubling time was 9.4 d. In infested plots, soybean yield was reduced by 1.4-13.3%, equivalent to a 3.1% yield loss for every 10,000 CAD. Overall, most CAD treatments did not affect yield parameters, although CAD > 39,000 caused a significant reduction in most yield parameters. The EILs calculated for KS4202 ranged from 526 to 2,050 aphids/plant, which were approximately 2.5-fold higher when compared to EILs previously calculated for susceptible soybean. The adoption of soybean aphid tolerant soybean with higher EILs may help mitigate treatment delay problems by lengthening the treatment lead-time and possibly reduce the number of insecticide applications. © The Author 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  12. Evidence for an Invasive Aphid “Superclone”: Extremely Low Genetic Diversity in Oleander Aphid (Aphis nerii) Populations in the Southern United States

    Science.gov (United States)

    Harrison, John Scott; Mondor, Edward B.

    2011-01-01

    Background The importance of genetic diversity in successful biological invasions is unclear. In animals, but not necessarily plants, increased genetic diversity is generally associated with successful colonization and establishment of novel habitats. The Oleander aphid, Aphis nerii, though native to the Mediterranean region, is an invasive pest species throughout much of the world. Feeding primarily on Oleander (Nerium oleander) and Milkweed (Asclepias spp.) under natural conditions, these plants are unlikely to support aphid populations year round in the southern US. The objective of this study was to describe the genetic variation within and among US populations of A. nerii, during extinction/recolonization events, to better understand the population ecology of this invasive species. Methodology/Principal Findings We used five microsatellite markers to assess genetic diversity over a two year period within and among three aphid populations separated by small (100 km) and large (3,700 km) geographic distances on two host plant species. Here we provide evidence for A. nerii “superclones”. Genotypic variation was absent in all populations (i.e., each population consisted of a single multilocus genotype (MLG) or “clone”) and the genetic composition of only one population completely changed across years. There was no evidence of sexual reproduction or host races on different plant species. Conclusions/Significance Aphis nerii is a well established invasive species despite having extremely low genetic diversity. As this aphid appears to be obligatorily asexual, it may share more similarities with clonally reproducing invasive plants, than with other animals. Patterns of temporal and geographic genetic variation, viewed in the context of its population dynamics, have important implications for the management of invasive pests and the evolutionary biology of asexual species. PMID:21408073

  13. Evidence for an invasive aphid "superclone": extremely low genetic diversity in Oleander aphid (Aphis nerii populations in the southern United States.

    Directory of Open Access Journals (Sweden)

    John Scott Harrison

    2011-03-01

    Full Text Available The importance of genetic diversity in successful biological invasions is unclear. In animals, but not necessarily plants, increased genetic diversity is generally associated with successful colonization and establishment of novel habitats. The Oleander aphid, Aphis nerii, though native to the Mediterranean region, is an invasive pest species throughout much of the world. Feeding primarily on Oleander (Nerium oleander and Milkweed (Asclepias spp. under natural conditions, these plants are unlikely to support aphid populations year round in the southern US. The objective of this study was to describe the genetic variation within and among US populations of A. nerii, during extinction/recolonization events, to better understand the population ecology of this invasive species.We used five microsatellite markers to assess genetic diversity over a two year period within and among three aphid populations separated by small (100 km and large (3,700 km geographic distances on two host plant species. Here we provide evidence for A. nerii "superclones". Genotypic variation was absent in all populations (i.e., each population consisted of a single multilocus genotype (MLG or "clone" and the genetic composition of only one population completely changed across years. There was no evidence of sexual reproduction or host races on different plant species.Aphis nerii is a well established invasive species despite having extremely low genetic diversity. As this aphid appears to be obligatorily asexual, it may share more similarities with clonally reproducing invasive plants, than with other animals. Patterns of temporal and geographic genetic variation, viewed in the context of its population dynamics, have important implications for the management of invasive pests and the evolutionary biology of asexual species.

  14. Weed host specificity of the aphid, Aphis spiraecola: developmental and reproductive performance of aphids in relation to plant growth and leaf chemicals of the Siam weed, Chromolaena odorata.

    Science.gov (United States)

    Agarwala, B K; Das, Jhuma

    2012-01-01

    Density, distribution, and nutritional quality of plants are the causal basis of host plant selection in aphids. Nutritional qualities of a plant vary according to its growth stage and also in response to seasonal variation. How host plant growth stages shape aphid performance was studied in Aphis spiraecola Patch (Homoptera: Aphididae) on the perennial Siam weed, Chromolaena odorata (L.) King and Robinson (Asterales: Asteraceae). This plant species is the preferred host in the hot and humid tropical parts of northeast and southern India. Variations in developmental and reproductive performances in apterous viviparous female aphids were recorded in relation to differences in leaf chemicals in different growth stages of C. odorata. Aphids reproduced at higher rates in the vegetative stage of C. odorata when developmental time was shortest, and fecundity was higher in a longer reproductive time. Intrinsic rate of increase and net reproductive rate were also recorded to be higher in the vegetative stage of the weed host. In the vegetative stage, leaves contained higher quantity of proteins and nitrogen, which are vital for insect reproduction. Results of this study have demonstrated that A spiraecola showed synchronization of its developmental and reproductive performances to growth stages of C. odorata, which occur in high abundance in the study area.

  15. Effects on the non-target aphid Aphis Gossypii Glover (Homoptera ...

    African Journals Online (AJOL)

    bych76-zhjh77

    2012-05-22

    May 22, 2012 ... parasitoids and their honeydew is an important energy source for several arthropods. Analyses of the impact of transgenic plants expressing Cry toxins on aphids gave variable results ranging from minor negative effects on aphid survival and fecundity to significant beneficial effects on aphid populations ...

  16. APHiD: Hierarchical Task Placement to Enable a Tapered Fat Tree Topology for Lower Power and Cost in HPC Networks

    Energy Technology Data Exchange (ETDEWEB)

    Michelogiannakis, George; Ibrahim, Khaled Z.; Shalf, John; Wilke, Jeremiah J.; Knight, Samuel; Kenny, Joseph P.

    2017-05-14

    The power and procurement cost of bandwidth in system-wide networks has forced a steady drop in the byte/flop ratio. This trend of computation becoming faster relative to the network is expected to hold. In this paper, we explore how cost-oriented task placement enables reducing the cost of system-wide networks by enabling high performance even on tapered topologies where more bandwidth is provisioned at lower levels. We describe APHiD, an efficient hierarchical placement algorithm that uses new techniques to improve the quality of heuristic solutions and reduces the demand on high-level, expensive bandwidth in hierarchical topologies. We apply APHiD to a tapered fat-tree, demonstrating that APHiD maintains application scalability even for severely tapered network configurations. Using simulation, we show that for tapered networks APHiD improves performance by more than 50% over random placement and even 15% in some cases over costlier, state-of-the-art placement algorithms.

  17. Host Races of the Cotton Aphid, Aphis gossypii, in Asexual Populations from Wild Plants of Taro and Brinjal

    Science.gov (United States)

    Agarwala, B.K.; Choudhury, Parichita Ray

    2013-01-01

    Worldwide, several studies have shown that adaptation to different host plants in phytophagous insects can promote speciation. The cotton aphid, Aphis gossypii Glover (Homoptera: Aphididae: Aphidini), is a highly polyphagous species, but its populations increase by parthenogenetic reproduction alone in Indian subcontinent. This study showed that genotypes living in wild plants of taro, Colocasia esculenta var. esculenta (L.) Schott (Alismatales: Araceae), and brinjal, Solanum torvum Swartz (Solanales: Solanaceae), behave as distinct host races. Success rates of colonization after reciprocal host transfers were very poor. Clones of A. gossypii from wild taro partly survived in the first generation when transferred to wild brinjal, but nymph mortality was 100% in the second generation. In contrast, brinjal clones, when transferred to taro, could not survive even in the first generation. Significant differences between the clones from two host species were also recorded in development time, generation time, fecundity, intrinsic rate of increase, net reproductive rate, and mean relative growth rate. Morphologically, aphids of wild taro clones possessed longer proboscis and fore-femora than the aphids of the brinjal clones. The results showed that A. gossypii exists as distinct host races with different abilities of colonizing host plants, and its populations appear to have more potential of sympatic evolution than previously regarded. PMID:23895554

  18. Host races of the cotton aphid, Aphis gossypii, in asexual populations from wild plants of taro and brinjal.

    Science.gov (United States)

    Agarwala, B K; Choudhury, Parichita Ray

    2013-01-01

    Worldwide, several studies have shown that adaptation to different host plants in phytophagous insects can promote speciation. The cotton aphid, Aphis gossypii Glover (Homoptera: Aphididae: Aphidini), is a highly polyphagous species, but its populations increase by parthenogenetic reproduction alone in Indian subcontinent. This study showed that genotypes living in wild plants of taro, Colocasia esculenta var. esculenta (L.) Schott (Alismatales: Araceae), and brinjal, Solanum torvum Swartz (Solanales: Solanaceae), behave as distinct host races. Success rates of colonization after reciprocal host transfers were very poor. Clones of A. gossypii from wild taro partly survived in the first generation when transferred to wild brinjal, but nymph mortality was 100% in the second generation. In contrast, brinjal clones, when transferred to taro, could not survive even in the first generation. Significant differences between the clones from two host species were also recorded in development time, generation time, fecundity, intrinsic rate of increase, net reproductive rate, and mean relative growth rate. Morphologically, aphids of wild taro clones possessed longer proboscis and fore-femora than the aphids of the brinjal clones. The results showed that A. gossypii exists as distinct host races with different abilities of colonizing host plants, and its populations appear to have more potential of sympatic evolution than previously regarded.

  19. THE EFFECT OF AGRO-ECOLOGICAL ZONES ON THE INCIDENCE AND DISTRIBUTION OF APHID VECTORS OF PEPPER VEINAL MOTTLE VIRUS, ON CULTIVATED PEPPER (CAPSICUM ANNUUM L. IN NIGERIA

    Directory of Open Access Journals (Sweden)

    A.A. FAJINMI

    2011-11-01

    Full Text Available The distribution of aphid vectors of Pepper veinal mottle virus (PVMV was studied on cultivated pepper between 2003 and 2005 in the major pepper producing areas of the six agro-ecological zones in Nigeria. The aphids were isolated, identified and their transmission ability determined. Population of aphid vectors increased progressively in all the agro-ecological zones from March at the onset of raining season reaching a peak in August and then declining from September at the on set of the dry season. The Humid forest and Derived Savanna agro-ecological zones recorded highest mean population of aphids / leaf and types of aphid’s species compared with other agro-ecological zones. Six species of aphid, Myzus persicae (Sulzer, Aphis gossipii (Glover, Aphis craccivora (Koch, Aphis spiraecola (Patch, Aphis fabae (Blanchard, and Rhopalosiphum maidis (Fitch, were identified on the pepper fields surveyed in all the agro-ecological zones. There was no significant difference in the occurrence of M. persicae, A. gossipii, A. craccivora, and R. maidis while A. spiraecola and A. fabae that varied in occurrence in all the zones. Ability to transmit PVMV to a healthy pepper plants varied in all the identified aphid species but R. maidis was not able to transmit PVMV from infected to a healthy pepper plant. A more sustainable approach to controlling pepper viruses is by targeting the aphid vectors and preventing the vectors from reaching the crops because the aphid vectors which are virus specific are the major means of transmitting virus to healthy plant.

  20. Age-Stage, Two-Sex Life Tables of the Lady Beetle (Coleoptera: Coccinellidae) Feeding on Different Aphid Species.

    Science.gov (United States)

    Farooq, Muhammad; Shakeel, Muhammad; Iftikhar, Ayesha; Shahid, Muhammad Rafiq; Zhu, Xun

    2018-04-02

    Life table and predation data were collected for Coccinella septempunctata (Linnaeus) (Coleoptera: Coccinellidae) feeding on three different host aphid species, Aphis craccivora (Koch) (Hemiptera: Aphididae), Lipaphis erysimi (Kaltenbach) (Hemiptera: Aphididae), and Myzus persicae (Sulzer) (Hemiptera: Aphididae), under laboratory conditions, using age-stage, two-sex life table. The preadult developmental period of C. septempunctata was the shortest on M. persicae (21.12 d) and the longest on A. craccivora (28.81 d). Net reproductive rate (R0) ranged from 77.31 offspring per individual on A. craccivora to 165.97 offspring per individual on M. persicae. Mean generation time (T) ranged from 39.10 d on M. persicae to 51.96 d on L. erysimi. Values of the intrinsic rate of increase (r) decreased in the order M. persicae, A. craccivora, and L. erysimi (0.1302, 0.0864 and 0.0848 d-1, respectively). The highest finite rate of increase (λ) was observed on M. persicae (1.1391 d-1) and the lowest was observed on A. craccivora and L. erysimi (1.0903 and 1.0885 d-1, respectively). This information will be useful in relation to the mass rearing of C. septempunctata in biological control systems.

  1. Interspecific Associations between Cycloneda sanguinea and Two Aphid Species (Aphis gossypii and Hyadaphis foeniculi) in Sole-Crop and Fennel-Cotton Intercropping Systems.

    Science.gov (United States)

    Fernandes, Francisco S; Ramalho, Francisco S; Malaquias, José B; Godoy, Wesley A C; Santos, Bárbara Davis B

    2015-01-01

    Aphids cause significant damage to crop plants. Studies regarding predator-prey relationships in fennel (Foeniculum vulgare Mill.) and cotton (Gossypium hirsutum L.) crops are important for understanding essential ecological interactions in the context of intercropping and for establishing pest management programs for aphids. This study evaluated the association among Hyadaphis foeniculi (Passerini) (Hemiptera: Aphididae), Aphis gossypii Glover (Hemiptera: Aphididae) and Cycloneda sanguinea (L.) (Coleoptera: Coccinellidae) in cotton with coloured fibres, fennel and cotton intercropped with fennel. Association analysis was used to investigate whether the presence or absence of prey and predator species can indicate possible interactions between aphids and ladybugs. Significant associations among both apterous and alate H. foeniculi and C. sanguinea were observed in both the fennel and fennel-cotton intercropping systems. The similarity analysis showed that the presence of aphids and ladybugs in the same system is significantly dependent on the type of crop. A substantial amount of evidence indicates that the presence of the ladybug C. sanguinea, is associated with apterous or alate A. gossypii and H. foeniculi in fennel-cotton intercropping system. We recommend that future research vising integrated aphid management taking into account these associations for take decisions.

  2. Pathogenicity of conidia-based preparations of entomopathogenic fungi against the greenhouse pest aphids Myzus persicae, Aphis gossypii, and Aulacorthum solani (Hemiptera: Aphididae).

    Science.gov (United States)

    Jandricic, S E; Filotas, M; Sanderson, J P; Wraight, S P

    2014-05-01

    Seeking new isolates of entomopathogenic fungi with greater virulence against greenhouse aphid pests than those currently registered in North America for control of these insects, single-dose screening assays of 44 selected fungal isolates and 4 commercially available strains were conducted against first-instar nymphs of Myzus persicae and Aphis gossypii. The assays identified a number of Beauveria and Metarhizium isolates with virulence equal to or greater than that of the commercial strains against the nymphal aphids, but none exhibited exceptionally high virulence. Virulence of Isaria isolates was unexpectedly low (1000conidia/mm(2)). In dose-response assays, Beauveria ARSEF 5493 proved most virulent against M. persicae and A. gossypii; however, LC50s of this isolate did not differ significantly from those of B. bassiana commercial strain JW-1. Dose-response assays were also conducted with Aulacorthum solani, the first reported evaluations of Beauveria and Metarhizium against this pest. The novel isolate Metarhizium 5471 showed virulence⩾that of Beauveria 5493 in terms of LC25 and LC50, but 5493 produced a steeper dose response (slope). Additional tests showed that adult aphids are more susceptible than nymphs to fungal infection but confirmed that infection has a limited pre-mortem effect on aphid reproduction. Effects of assay techniques and the potential of fungal pathogens as aphid-control agents are discussed. Copyright © 2014 Elsevier Inc. All rights reserved.

  3. Molecular screening of insecticides with sigma glutathione S-transferases (GST) in cotton aphid Aphis gossypii using docking.

    Science.gov (United States)

    Gawande, Nilesh Dinkar; Subashini, Swaminathan; Murugan, Marimuthu; Subbarayalu, Mohankumar

    2014-01-01

    Glutathione S-transferases (GSTs) are one of the major families of detoxifying enzymes that detoxifies different chemical compounds including insecticides in different insect species. Among the GST subclasses, sigma GSTs are found to be the most abundant and conserved among different insect orders. These GSTs are found to play an important role in lipid peroxidation as well as detoxification. Cotton aphid, Aphis gossypii is the most damaging sucking pest with a wide range of hosts and vector of more than 50 plant viruses. Resistance to insecticides in A. gossypii is reported in India and in other countries. Glutathione S transferases (GSTs), an oxidative enzyme is understood to have a role in insecticide resistance and plant resistance breakdown. In relation to this, we have focused on the sigma 1 (GenBank Accession No: JN989964.1) and sigma 2 (GenBank Accession No: JN989965.1) GSTs of A. gossypii and their interaction with plant natural compounds and insecticides. Molecular screening of different insecticides (Chlorphinamidine, Mevinphos, Nitenpyrum, Piperonyl butoxide, Tetrachlorovinphos, Pyrethrins, Resmetrin, Pirimicarb and Dinotefuran) and known plant derived natural compounds (Catechin, Gossypol, Myrcene, Kaempferol, P-coumaric acid, Quercetin, Tannins, α-mangostin, Capsaicin, Cinnamic acid, Citronellal, Curcumin, Dicumarol, Ellagic acid, Eugenol, Geriniol, Isoeugenol, Juglone, Menadione, Methyl jasmonate, Morin, Myricetin, Myristicin, Piperine, Plumbagin, Tangitinin C, Thymol, Vanillin, Alpha pipene, α-terpineol Apigenin and β-Caryophyllene) with sigma 1 and sigma 2 GST protein models was completed using Maestro 9.3 (Schrodinger, USA). This exercise showed the binding of piperonyl butoxide with sigma 1 GST and tannin with sigma 2 GST for further consideration.

  4. Natural occurrence of entomophthoroid fungi of aphid pests on Medicago sativa L. in Argentina

    Directory of Open Access Journals (Sweden)

    Romina G Manfrino

    Full Text Available Four species of entomophthoroid fungi, Pandora neoaphidis (Entomophthorales: Entomophthoraceae, Zoophthora radicans (Entomophthorales: Entomophthoraceae, Entomophthora planchoniana (Entomophthorales: Entomophthoraceae and Neozygites fresenii (Neozygitales: Neozygitaceae were found to infect Aphis craccivora, Therioaphis trifolii, and Acyrthosiphon pisum and unidentified species of Acyrthosiphon on lucerne in Argentina. Samples were collected from five sites (Ceres, Rafaela, Sarmiento, Monte Vera and Bernardo de Irigoyen in the province of Santa Fe. In this study, Zoophthora radicans was the most important pathogen and was recorded mainly on Acyrthosiphon sp. Zoophthora radicans was successfully isolated and maintained in pure cultures. This study is the first report of entomophthoroid fungi infecting lucerne (Medicago sativa L. aphids in Argentina.

  5. Differential Life History Trait Associations of Aphids with Nonpersistent Viruses in Cucurbits.

    Science.gov (United States)

    Angelella, G M; Egel, D S; Holland, J D; Nemacheck, J A; Williams, C E; Kaplan, I

    2015-06-01

    The diversity of vectors and fleeting nature of virus acquisition and transmission renders nonpersistent viruses a challenge to manage. We assessed the importance of noncolonizing versus colonizing vectors with a 2-yr survey of aphids and nonpersistent viruses on commercial pumpkin farms. We quantified aphid alightment using pan traps, while testing leaf samples with multiplex RT-PCR targeting cucumber mosaic virus (CMV), zucchini yellow mosaic virus (ZYMV), watermelon mosaic virus (WMV), and papaya ringspot virus (PRSV). Overall, we identified 53 aphid species (3,899 individuals), from which the melon aphid, Aphis gossypii Glover, a pumpkin-colonizing species, predominated (76 and 37% of samples in 2010 and 2011, respectively). CMV and ZYMV were not detected, but WMV and PRSV were prevalent, both regionally (WMV: 28/29 fields, PRSV: 21/29 fields) and within fields (infection rates = 69 and 55% for WMV in 2010 and 2011; 28 and 25% for PRSV in 2010 and 2011). However, early-season samples showed extremely low infection levels, suggesting cucurbit viruses are not seed-transmitted and implicating aphid activity as a causal factor driving virus spread. Interestingly, neither noncolonizer and colonizer alightment nor total aphid alightment were good predictors of virus presence, but community analyses revealed species-specific relationships. For example, cowpea aphid (Aphis craccivora Koch) and spotted alfalfa aphid (Therioaphis trifolii Monell f. maculata) were associated with PRSV infection, whereas the oleander aphid (Aphis nerii Bover de Fonscolombe) was associated with WMV spread within fields. These outcomes highlight the need for tailored management plans targeting key vectors of nonpersistent viruses in agricultural systems. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  6. Effect of petroleum-derived substances on life history traits of black bean aphid (Aphis fabae Scop.) and on the growth and chemical composition of broad bean.

    Science.gov (United States)

    Rusin, Milena; Gospodarek, Janina; Nadgórska-Socha, Aleksandra; Barczyk, Gabriela

    2017-04-01

    The aim of the study was to determine the effects of various petroleum-derived substances, namely petrol, diesel fuel and spent engine oil, on life history traits and population dynamics of the black bean aphid Aphis fabae Scop. and on growth and chemical composition of its host plant Vicia faba L. Each substance was tested separately, using two concentrations (9 g kg -1 and 18 g kg -1 ). The experiment was conducted in four replications (four pots with five plants in each pot per treatment). Plants were cultivated in both control and contaminated soils. After six weeks from soil contamination and five weeks from sowing the seeds, observations of the effect of petroleum-derived substances on traits of three successive generations of aphids were conducted. Aphids were inoculated separately on leaves using cylindrical cages hermetically closed on both sides. Contamination of aphid occurred through its host plant. Results showed that all tested substances adversely affected A. fabae life history traits and population dynamics: extension of the prereproductive period, reduction of fecundity and life span, reduction of the population intrinsic growth rate. In broad bean, leaf, roots, and shoot growth was also impaired in most conditions, whereas nutrient and heavy metal content varied according to substances, their concentration, as well as plant part analysed. Results indicate that soil contamination with petroleum-derived substances entails far-reaching changes not only in organisms directly exposed to these pollutants (plants), but also indirectly in herbivores (aphids) and consequently provides information about potential negative effects on further links of the food chain, i.e., for predators and parasitoids.

  7. THE IMPACT OF SOYBEAN AND CORN INTERCROPPING SYSTEM AND SOIL FERTILITY MANAGEMENT ON SOYBEAN APHID POPULATIONS APHIS GLYCINES (HEMIPTERA: APHIDIDAE AND SOYBEAN GROWTH PERFORMANCE

    Directory of Open Access Journals (Sweden)

    Rosma Hasibuan

    2013-09-01

    Full Text Available Agricultural management cropping systems play an important role in affecting a crop plant’s ability to tolerate or resist insect pests.  Field studies were conducted to examine the effect of two strategies management systems: fertilizer treatment and intercropping soybean with corn on soybean  aphid (Aphis glycines Matsumura population and soybean growth  and yield parameters. The intercropping treatments were: soybean alone; 2:1 soybean/corn intercrop; and 3:1 soybean/corn intercrop. While the soil fertility treatments were the combination of NPK (urea 100 kg ha-1 + SP-36 200 kg ha-1 + KCl 200 kg ha-1 levels, dolomite (4 ton ha-1, compost  (10 ton ha-1, and chicken manure (10 ton ha-1.  The results of the first study showed that the intercropping soybean with corn  significantly reduced the population density of soybean aphids. However, there were no significant effects of intercropping systems on soybean growth (plant height and yield (number seed per pod and  thousand seed weight performances except on the number of soybean pods per plant. Meanwhile, the result of the second study indicated that soil fertilizer treatments had  a significant effect on the soybean plant characteristics: leaf numbers; pod numbers; and plant height.  Combining  intercropping methods and soil fertilizer management offer an opportunity to protect the soybean plants by natural and sustainable pest management.

  8. Studying Plant–Insect Interactions with Solid Phase Microextraction: Screening for Airborne Volatile Emissions Response of Soybeans to the Soybean Aphid, Aphis glycines Matsumura (Hemiptera: Aphididae

    Directory of Open Access Journals (Sweden)

    Lingshuang Cai

    2015-05-01

    Full Text Available Insects trigger plants to release volatile compounds that mediate the interaction with both pest and beneficial insects. Soybean aphids (Aphis glycines induces soybean (Glycine max leaves to produce volatiles that attract predators of the aphid. In this research, we describe the use of solid-phase microextraction (SPME for extraction of volatiles from A. glycines-infested plant. Objectives were to (1 determine if SPME can be used to collect soybean plant volatiles and to (2 use headspace SPME-GC-MS approach to screen compounds associated with A. glycines-infested soybeans, grown in the laboratory and in the field, to identify previously known and potentially novel chemical markers of infestation. A total of 62 plant volatiles were identified, representing 10 chemical classes. 39 compounds had not been found in previous studies of soybean volatile emissions. 3-hexen-1-ol, dimethyl nonatriene, indole, caryophyllene, benzaldehyde, linalool, methyl salicylate (MeSA, benzene ethanol, and farnesene were considered herbivore-induced plant volatiles (HIPVs. For reproductive field-grown soybeans, three compounds were emitted in greater abundance from leaves infested with A. glycines, cis-3-hexen-1-ol acetate, MeSA and farnesene. In summary, SPME can detect the emission of HIPVs from plants infested with insect herbivores.

  9. Review of invasive grapevine aphid, Aphis illinoisensis Shimer, and native parasitoids in the Mediterranean (Hemiptera, Aphididae; Hymenoptera, Braconidae, Aphidiinae)

    Czech Academy of Sciences Publication Activity Database

    Havelka, Jan; Shukshuk, A. H.; Ghaliow, M. E.; Laamari, M.; Kavallieratos, N. G.; Tomanović, Ž.; Rakhshani, E.; Pons, X.; Starý, Petr

    2011-01-01

    Roč. 63, č. 1 (2011), s. 269-274 ISSN 0354-4664 Grant - others:Ministry of Science and Technological Development of the Republic of Serbia(CS) 43001 Institutional research plan: CEZ:AV0Z50070508 Keywords : invasions * Aphis illinoisensis * grapevine Subject RIV: EH - Ecology, Behaviour Impact factor: 0.360, year: 2011

  10. Identification of aphid (Hemiptera: Aphididae) species of economic importance in Kenya using DNA barcodes and PCR-RFLP-based approach.

    Science.gov (United States)

    Kinyanjui, G; Khamis, F M; Mohamed, S; Ombura, L O; Warigia, M; Ekesi, S

    2016-02-01

    Aphids are among pests of economic importance throughout the world. Together with transmitting plant viruses, aphids are capable of inflicting severe crop production losses. They also excrete honeydew that favours the growth of sooty mold which reduces the quality of vegetables and fruits and hence their market values. Rapid and accurate identification of aphids to the species level is a critical component in effective pest management and plant quarantine systems. Even though morphological taxonomy has made a tremendous impact on species-level identifications, polymorphism, morphological plasticity and immature stages are among the many challenges to accurate identification. In addition, their small size, presence of cryptic species and damaged specimens dictate the need for a strategy that will ensure timely and accurate identification. In this study, polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP)-based on mitochondrial cytochrome c oxidase subunit I gene and DNA barcoding were applied to identify different aphid species collected from different agro-ecological zones of Kenya. Three restriction enzymes RsaI, AluI and Hinf1 produced patterns that allowed unambiguous identification of the species except Aphis craccivora and Aphis fabae. Analyses of the barcode region indicated intraspecific and interspecific sequence divergences of 0.08 and 6.63%, respectively. DNA barcoding identified all species, including the morphologically indistinguishable A. craccivora and A. fabae and separated two subspecies of A. fabae. Based on these results, both PCR-RFLPs and DNA barcoding could provide quick and accurate tools for identification of aphid species within Aphididae subsequently aiding in effective pest management programmes and enhance plant quarantine systems.

  11. The Joint Action of Destruxins and Botanical Insecticides (Rotenone, Azadirachtin and Paeonolum Against the Cotton Aphid, Aphis gossypii Glover

    Directory of Open Access Journals (Sweden)

    Meiying Hu

    2012-06-01

    Full Text Available The joint action of destruxins and three botanical insecticides, rotenone (Rot, azadirachtin (Aza and paeonolum (Pae against the cotton aphid, Aphis gossypii, was bioassayed. In laboratory experiment, several synergistic groups of destruxins with botanical insecticides were found by means of Sun’s Co-toxicity Coefficients (CTC and Finney’s Synergistic Coefficient (SC. The best synergistic effect was discovered in the ratio group Des/Rot 1/9 with the CTC or SC and LC50 values of 479.93 or 4.8 and 0.06 μg/mL, respectively. The second and third synergistic effects were recorded in the ratio groups Des/Rot 7/3 and 9/1. Although the ratio groups Des/Aza 6/4, Des/Pae 4/6, 3/7 and 2/8 indicated synergism by Sun’s CTC, they were determined as additive actions by Finney’s SC. Additive actions were also found in most of the ratio groups, but antagonism were recorded only in three ratio groups: Des/Pae 9/1, 7/3 and 6/4. In greenhouse tests, the highest mortality was 98.9% with the treatment Des/Rot 1/9 at 0.60 μg/mL, meanwhile, the treatments Des/Pae 4/6 and Des/Aza 6/4 had approximately 88% mortality.

  12. Review of invasive grapevine aphid, Aphis illinoisensis Shimer, and native parasitoids in the Mediterranean (Hemiptera, Aphididae; Hymenoptera, Braconidae, Aphidiinae

    Directory of Open Access Journals (Sweden)

    Havelka J.

    2011-01-01

    Full Text Available A summary of the study of Aphis illinoisensis Shimer on grapes, Vitis vinifera in the Mediterranean area brings references and new findings on its distribution in Crete/Greece, Turkey, Northern Cyprus, Malta, Israel, Montenegro, Tunisia, Algeria and Libya. Parasitoids of A. illinoisensis were only occasionally found (Aphidius matricariae Hal. - Cyprus, Turkey, Greece; Aphidius colemani Viereck - Libya; Lysiphlebus testaceipes Cress. - Algeria. Of the native species, i.e. A. colemani, and others similar to the native species, L. testaceipes seem to be a promising biocontrol agent within the framework of an ecologically friendly management in the area. Given the evidence of its expansion, A. illinoisensis is expected to expand further in several directions from the recently documented invaded area to all the grape-growing areas of the Mediterranean and even those of South-Eastern and Central Europe.

  13. Assessing the value and pest management window provided by neonicotinoid seed treatments for management of soybean aphid (Aphis glycines Matsumura) in the Upper Midwestern United States.

    Science.gov (United States)

    Krupke, Christian H; Alford, Adam M; Cullen, Eileen M; Hodgson, Erin W; Knodel, Janet J; McCornack, Brian; Potter, Bruce D; Spigler, Madeline I; Tilmon, Kelley; Welch, Kelton

    2017-10-01

    A 2-year, multi-state study was conducted to assess the benefits of using soybean seed treated with the neonicotinoid thiamethoxam to manage soybean aphid in the upper Midwestern USA and compare this approach with an integrated pest management (IPM) approach that included monitoring soybean aphids and treating with foliar-applied insecticide only when the economic threshold was reached. Concentrations of thiamethoxam in soybean foliage were also quantified throughout the growing season to estimate the pest management window afforded by insecticidal seed treatments. Both the IPM treatment and thiamethoxam-treated seed resulted in significant reductions in cumulative aphid days when soybean aphid populations reached threshold levels. However, only the IPM treatment resulted in significant yield increases. Analysis of soybean foliage from thiamethoxam-treated seeds indicated that tissue concentrations of thiamethoxam were statistically similar to plants grown from untreated seeds beginning at the V2 growth stage, indicating that the period of pest suppression for soybean aphid is likely to be relatively short. These data demonstrate that an IPM approach, combining scouting and foliar-applied insecticide where necessary, remains the best option for treatment of soybean aphids, both in terms of protecting the yield potential of the crop and of break-even probability for producers. Furthermore, we found that thiamethoxam concentrations in foliage are unlikely to effectively manage soybean aphids for most of the pests' activity period across the region. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  14. Genetic differentiating Aphis fabae and Aphis craccivora (Hemiptera: Sternorranycha: Aphididae) populations in Egypt using mitochondrial COI

    Czech Academy of Sciences Publication Activity Database

    Helmi, A.; Sharaf, Abdoallah

    2016-01-01

    Roč. 71, č. 11 (2016), s. 1266-1273 ISSN 0006-3088 Institutional support: RVO:60077344 Keywords : DNA sequencing * Aphididae * COI * biotypes * SNPs * molecular phylogeny Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 0.759, year: 2016

  15. Aphid (Hemiptera: Aphididae) species determined on herbaceous ...

    African Journals Online (AJOL)

    This study aimed to find out the Aphidoidea species feeding on herbaceous and shrub plants of Bartýn province. As a result, total of 28 aphid species belonging to 14 genus and 4 tribes of the super family Aphidoidea were determined. Of these determined species, Aphis fabae Scopoli, Aphis farinosa J. F. Gmelin, Aphis ...

  16. Circulative Nonpropagative Aphid Transmission of Nanoviruses: an Oversimplified View

    Science.gov (United States)

    Sicard, Anne; Zeddam, Jean-Louis; Yvon, Michel; Michalakis, Yannis; Gutiérrez, Serafin

    2015-01-01

    ABSTRACT Plant virus species of the family Nanoviridae have segmented genomes with the highest known number of segments encapsidated individually. They thus likely represent the most extreme case of the so-called multipartite, or multicomponent, viruses. All species of the family are believed to be transmitted in a circulative nonpropagative manner by aphid vectors, meaning that the virus simply crosses cellular barriers within the aphid body, from the gut to the salivary glands, without replicating or even expressing any of its genes. However, this assumption is largely based on analogy with the transmission of other plant viruses, such as geminiviruses or luteoviruses, and the details of the molecular and cellular interactions between aphids and nanoviruses are poorly investigated. When comparing the relative frequencies of the eight genome segments in populations of the species Faba bean necrotic stunt virus (FBNSV) (genus Nanovirus) within host plants and within aphid vectors fed on these plants, we unexpectedly found evidence of reproducible changes in the frequencies of some specific segments. We further show that these changes occur within the gut during early stages of the virus cycle in the aphid and not later, when the virus is translocated into the salivary glands. This peculiar observation, which was similarly confirmed in three aphid vector species, Acyrthosiphon pisum, Aphis craccivora, and Myzus persicae, calls for revisiting of the mechanisms of nanovirus transmission. It reveals an unexpected intimate interaction that may not fit the canonical circulative nonpropagative transmission. IMPORTANCE A specific mode of interaction between viruses and arthropod vectors has been extensively described in plant viruses in the three families Luteoviridae, Geminiviridae, and Nanoviridae, but never in arboviruses of animals. This so-called circulative nonpropagative transmission contrasts with the classical biological transmission of animal arboviruses in that

  17. A new species of Lysiphlebus Förster 1862 (Hymenoptera: Braconidae, Aphidiinae) attacking soybean aphid, Aphis glycines Matsumura (Hemiptera: Aphididae) from China

    Czech Academy of Sciences Publication Activity Database

    Starý, Petr; Rakhshani, E.; Tomanović, Ž.; Hoelmer, K.; Kavallieratos, N. G.; Yu, J.; Wang, M.; Heimpel, G. E.

    2010-01-01

    Roč. 19, č. 1 (2010), s. 179-186 ISSN 1070-9428 Grant - others:Ministry of Science and Technological Developments of the Republic of Serbia(SR) 143006B Institutional research plan: CEZ:AV0Z50070508 Keywords : Lysiphlebus orientalis sp. n. * aphid parasitoids * Glycine max Subject RIV: EG - Zoology Impact factor: 0.500, year: 2010

  18. Susceptibilities of two populations of Aphis gossiper Glover to ...

    African Journals Online (AJOL)

    user

    2011-01-24

    Jan 24, 2011 ... Two populations of Aphis gossypii were collected from cotton and melon crops treated with insecticides to control this aphid species. The susceptibility of both aphid populations to pymetrozine,. Pirimicarb, Oxydemeton-methyl and Imidacloprid was evaluated using leaf deep bioassays in. Laboratory which ...

  19. Susceptibilities of two populations of Aphis gossiper Glover to ...

    African Journals Online (AJOL)

    Two populations of Aphis gossypii were collected from cotton and melon crops treated with insecticides to control this aphid species. The susceptibility of both aphid populations to pymetrozine, Pirimicarb, Oxydemeton-methyl and Imidacloprid was evaluated using leaf deep bioassays in Laboratory which were commonly ...

  20. Aphid resistance in florist's chrysanthemum (Chrysanthemum ...

    African Journals Online (AJOL)

    ... SAE is readily toxic when ingested by the pea aphid, Acyrthosiphon pisum, and the cotton aphid, Aphis gossypii. We transformed chrysanthemum genotype 1581 by Agrobacterium tumefaciens-mediated transformation with the SAE gene under the control of the chrysanthemum RbcS promoter to induce aphid resistance.

  1. Presence of the Aphid, Chaetosiphon fragaefolii, on Strawberry in Argentina

    OpenAIRE

    C?dola, Claudia; Grecob, Nancy

    2010-01-01

    Seasonal abundance of the strawberry aphid complex under different agronomic practices in the outskirts of La Plata, Argentina was studied on strawberry, Fragaria x ananassa Duchesne (Rosales: Rosaceae). Aphid densities were low in strawberry fields in which insecticides and fungicides were used. In addition to Aphis gossypii, Aphis fabae, Mysus persicae and Macrosiphum euphorbiae, the aphid, Chaetosiphon fragaefolii (Cockerell) (Homoptera: Aphididae), was recorded for the first time in this ...

  2. 77 FR 46373 - Field Release of Aphelinus glycinis for the Biological Control of the Soybean Aphid in the...

    Science.gov (United States)

    2012-08-03

    ... of the Soybean Aphid in the Continental United States; Availability of an Environmental Assessment... for the biological control of the soybean aphid, Aphis glycines, in the continental United States. We... INFORMATION: Background The soybean aphid, Aphis glycinis, which is native to Asia, was found in North America...

  3. Effect of the inherent variation in the mineral concentration of alfalfa cultivars on aphid populations Efeito da variação inata da concentração de minerais em cultivares de alfafa (Medicago sativa em população de afídeos (Hemiptera: Aphididae

    Directory of Open Access Journals (Sweden)

    Alexandre de Almeida e Silva

    2005-01-01

    Full Text Available Plants have inherent variability of mineral content which affects their physiology and consequently the herbivorous insects feeding on them. Besides, insects need considerable amounts of potassium, phosphorus and magnesium in their diets, whereas little calcium, sodium and chloride are required. In this study, the inherent variation on mineral (Ca, S, Mg, N, P, K and also C:N ratio concentrations and aphid (Acyrthosiphon spp., Therioaphis maculata, Aphis craccivora populations on three alfalfa (Medicago sativa cultivars (P3; Crioula, the most widely cultivated in Brazil, and CUF 101, an aphid-resistant were studied between September/1997 and August/1998. A significant variation on mineral concentrations and aphid populations was observed among different sampling times and cultivars. The correlations between C:N ratio, Mg, N, P and S concentrations and aphid density variation suggest that the mineral status affects aphid population dynamics under field conditions.As plantas têm variação inata do conteúdo de minerais e seu estado nutricional afeta sua fisiologia cloretos. A variação inata na concentração de minerais (Ca, S, Mg, N, P, K e também a razão C:N e na população de afídeos (Acyrthosiphon spp., Therioaphis maculata, Aphis craccivora em três cultivares de alfafa (M. sativa - P3; Crioula, as mais cultivadas no Brasil, e CUF 101, resistente a afídeos - foi estudada entre setembro/1997 a agosto/1998 neste trabalho. A concentração de minerais e as populações de pulgões variaram significativamente entre os diferentes períodos de coleta e cultivares. As correlações encontradas entre as concentrações de Mg, N, P, S e a razão C:N e a variação no número de pulgões sugerem que os minerais da planta afetam a dinâmica populacional dos pulgões em campo.

  4. Preferência do pulgão-preto e da cigarrinha-verde em diferentes genótipos de feijão-caupi em Roraima = Preference of the black aphid and green leafhopper in different genotypes of cowpea in Roraima, Brazil

    Directory of Open Access Journals (Sweden)

    Hugo Falkyner da Silva Bandeira

    2015-03-01

    Full Text Available A ocorrência de insetos praga está entre os fatores que mais afetam a produtividade do feijão-caupi. Objetivou-se, com este trabalho, avaliar a resistência de nove genótipos de feijão-caupi ao ataque do pulgão-preto, Aphis craccivora Koch, 1854, e da cigarrinha-verde, (Empoasca sp., e a flutuação populacional de A. craccivora sobre a cultura, em condições de campo. Foram selecionados nove genótipos de feijão-caupi (Vigna unguiculata (L. Walp, a saber: BR-17 Gurgueia, BRS Guariba, BRS Cauamé, Pretinho Precoce 1, UFRR Grão Verde, Apiaú, Iracema, Cara-Preta e Sempre Verde. O delineamento experimental foi realizado em blocos casualizados, em esquema de parcela subdividida, com quatro repetições. Cada variedade foi plantada em quatro linhas paralelas, considerando as duas fileiras centrais como área útil. A contagem dos pulgões foi feita diretamente na última folha trifoliolada completamente aberta, enquanto que a das cigarrinhas foi realizada pelo método da batida de plantas em bandeja com água. Nos genótipos BRS Cauamé, BRS Guariba e Pretinho Precoce 1 foram observados os menores índices de infestação por A. craccivora, apresentando, portanto, resistência do tipo não preferência em relação aos demais avaliados. O genótipo Apiaú mostrou-se suscetível a Empoasca sp., e os BR-17 Gurgueia, Cara-Preta, Sempre Verde, UFRR Grão Verde e BRS Cauamé foram os mais resistentes, em função da menor preferência pelas cigarrinhas, registrada, principalmente, aos 28 e 35 dias após a emergência das plantas. = The occurrence of insect pests is among the most important factors affecting cowpea productivity. This study aimed at evaluating the resistance of nine genotypes of cowpea attack in black aphid Aphis craccivora Koch, 1854, and of green leafhopper (Empoasca sp., and the population fluctuation of A. craccivora on culture, under field conditions. Nine cowpea (Vigna unguiculata (L. Walp genotypes were chosen: BR-17

  5. The influence of natural enemies on wing induction in Aphis fabae and Megoura viciae (Hemiptera: Aphididae).

    Science.gov (United States)

    Kunert, G; Schmoock-Ortlepp, K; Reissmann, U; Creutzburg, S; Weisser, W W

    2008-02-01

    Previous studies have shown that the aphid species, Aphis fabae Scopoli and Megoura viciae Buckton, do not produce winged offspring in the presence of natural enemies, in contrast to results for the pea aphid (Acyrthosiphon pisum (Harris)) and the cotton aphid (Aphis gossypii Glover); but these studies did not involve exposing aphids directly to natural enemies. We exposed colonies of both A. fabae and M. viciae to foraging lacewing (Chrysoperla carnea (Stephens)) larvae and found that the predators did not induce winged morphs among offspring compared to unexposed controls. Colonies of A. fabae responded to an increase in aphid density with increasing winged morph production, while such response was not found for M. viciae. We suggest that different aphid species differ in their susceptibility to natural enemy attack, as well as in their sensitivity to contact.

  6. Genetic mapping and legume synteny of aphid resistance in African cowpea (Vigna unguiculata L. Walp.) grown in California.

    Science.gov (United States)

    Huynh, Bao-Lam; Ehlers, Jeffrey D; Ndeve, Arsenio; Wanamaker, Steve; Lucas, Mitchell R; Close, Timothy J; Roberts, Philip A

    The cowpea aphid Aphis craccivora Koch (CPA) is a destructive insect pest of cowpea, a staple legume crop in Sub-Saharan Africa and other semiarid warm tropics and subtropics. In California, CPA causes damage on all local cultivars from early vegetative to pod development growth stages. Sources of CPA resistance are available in African cowpea germplasm. However, their utilization in breeding is limited by the lack of information on inheritance, genomic location and marker linkage associations of the resistance determinants. In the research reported here, a recombinant inbred line (RIL) population derived from a cross between a susceptible California blackeye cultivar (CB27) and a resistant African breeding line (IT97K-556-6) was genotyped with 1,536 SNP markers. The RILs and parents were phenotyped for CPA resistance using field-based screenings during two main crop seasons in a 'hotspot' location for this pest within the primary growing region of the Central Valley of California. One minor and one major quantitative trait locus (QTL) were consistently mapped on linkage groups 1 and 7, respectively, both with favorable alleles contributed from IT97K-556-6. The major QTL appeared dominant based on a validation test in a related F2 population. SNP markers flanking each QTL were positioned in physical contigs carrying genes involved in plant defense based on synteny with related legumes. These markers could be used to introgress resistance alleles from IT97K-556-6 into susceptible local blackeye varieties by backcrossing.

  7. Variable isotopic compositions of host plant populations preclude assessment of aphid overwintering sites

    Science.gov (United States)

    Soybean aphid (Aphis glycines Matsumura) is a pest of soybean in the northern Midwest whose migratory patterns have been difficult to quantify. Improved knowledge of soybean aphid overwintering sites could facilitate the development of control efforts with exponential impacts on aphid densities on a...

  8. Molecular and morphological differentiation between Aphis gossypii Glover (Hemiptera, Aphididae) and related species, with particular reference to the North American Midwest

    OpenAIRE

    Lagos-Kutz,Doris; Favret,Colin; Giordano,Rosanna; Voegtlin,David

    2014-01-01

    Abstract The cotton aphid, Aphis gossypii , is one of the most biologically diverse species of aphids; a polyphagous species in a family where most are host specialists. It is economically important and belongs to a group of closely related species that has challenged aphid taxonomy. The research presented here seeks to clarify the taxonomic relationships and status of species within the Aphid gossypii group in the North American Midwest. Sequences of the mitochondrial cytochrome oxidase 1 (C...

  9. Aphid Species Affect Foraging Behavior of Coccinella septempunctata (Coccinellidae: Coleoptera).

    Science.gov (United States)

    Farooq, Muhammad Umar; Qadri, Hafiz Faqir Hussain; Khan, Muhammad Ahmad

    2017-01-01

    Flowers are admirable in scenic good looks and artistic beautification. These are also playing necessary roles in therapeutic preparations. Aphid is an important sucking pest of various flowers in ornamental territories and it is generally controlled by predators, so it was necessary to evaluate which aphid species affect the predator more or less. Biocontrol agent Coccinella septempunctata was used against cosmos aphid (Aphis spiraecola, rose aphid (Macrosiphum rosea), gul e ashrafi aphid (Aphis fabae), kaner aphid (Aphis nerii), chandni aphid (Sitobion avenae), dahlia aphid (Myzus persicae) and annual chrysanthemum aphid (Macrosiphoniella sanborni). The grub of C. septempunctata consumed 283.8±9.04 M. rosea, 487.7±12.6 M. sanborni, 432.75±16.02 A. spiraecola, 478.2±8.07 A. fabae, 552.3±9.04 M. persicae, 142±1.32 A. nerii and 498.5±13.09 S. avenae in its whole larval life. The M. persicae and M. rosea consuming grubs showed 100% adult emergence while, M. sanborni, A. spiraecola, A. fabae and S. avenae showed 96.58, 89.02, 94.78 and 75.45% adult emergence, respectively. The C. septempunctata has significant predatory potential against A. spiraecola, M. rosea, A. fabae, S. avenae, M. persicae and M. sanborni except A. nerii. Thus, further studies are needed to find out alternate predator to control A. nerii on ornamentals.

  10. Transgenerational effects and the cost of ant tending in aphids.

    Science.gov (United States)

    Tegelaar, Karolina; Glinwood, Robert; Pettersson, Jan; Leimar, Olof

    2013-11-01

    In mutualistic interactions, partners obtain a net benefit, but there may also be costs associated with the provision of benefits for a partner. The question of whether aphids suffer such costs when attended by ants has been raised in previous work. Transgenerational effects, where offspring phenotypes are adjusted based on maternal influences, could be important in the mutualistic interaction between aphids and ants, in particular because aphids have telescoping generations where two offspring generations can be present in a mature aphid. We investigated the immediate and transgenerational influence of ant tending on aphid life history and reproduction by observing the interaction between the facultative myrmecophile Aphis fabae and the ant Lasius niger over 13 aphid generations in the laboratory. We found that the effect of ant tending changes dynamically over successive aphid generations after the start of tending. Initially, total aphid colony weight, aphid adult weight and aphid embryo size decreased compared with untended aphids, consistent with a cost of ant association, but these differences disappeared within four generations of interaction. We conclude that transgenerational effects are important in the aphid-ant interactions and that the costs for aphids of being tended by ants can vary over generations.

  11. Respon Fungsional Menochilus sexmaculatus Fabricius terhadap Aphis Gossypii Glover

    Directory of Open Access Journals (Sweden)

    F. X. Wagiman

    1996-12-01

    Full Text Available Laboratory and field-cage experiments were conducted at the Universiti Pertanian Malaysia. Objective of the study was to determine the functional response of Menochilus sexmaculatus Fabricius (Coleoptera: Coccinellidae predating on chilli aphid Aphis gossypii Glover (Homoptera: Aphididae. The larvae and adults of the predaceous coccinellid exhibited the Hulling's Type II functional response. A first instar of the coccinellid predating on single first instar of the aphid within 24.6 minutes in the laboratory and 16.8 minutes in the field. While a fourth instar and an adult of the coccinellid predating on single fourth instar of the aphid within 4.2 and 1.5 minutes respectively.

  12. Aphid alarm pheromone as a cue for ants to locate aphid partners.

    Directory of Open Access Journals (Sweden)

    François J Verheggen

    Full Text Available The mutualistic relationships that occur between myrmecophilous aphids and ants are based on the rich food supply that honeydew represents for ants and on the protection they provide against aphid natural enemies. While aphid predators and parasitoids actively forage for oviposition sites by using aphid semiochemicals, scouts of aphid-tending ant species would also benefit from locating honeydew resources by orienting toward aphid pheromone sources. The present study aims to provide additional information on the use of Aphis fabae alarm pheromone, i.e. (E-β-farnesene (EβF, by ant scouts. The perception and behavioral impact of EβF on Lasius niger were investigated using electroantennography and two bio-assays measuring their attraction and orientation towards aphid semiochemicals. Pronounced electrical depolarizations were observed from L. niger scout antennae to stimulations of A. fabae alarm pheromone, while other sesquiterpenes elicited weak or no responses. L. niger scouts were significantly attracted toward EβF in a four-arm olfactometer, as well as in an two-choice bioassay. These laboratory results suggest for the first time that low amounts of aphid alarm pheromone can be used by L. niger scouts as a cue indicating the presence of aphid colonies and could therefore mediate the aphid-ant partnership in the field.

  13. Kaolin particle films suppress many apple pests, disrupt natural enemies and promote woolly apple aphid

    NARCIS (Netherlands)

    Markó, V.; Blommers, L.H.M.; Bogya, S.; Helsen, H.H.M.

    2008-01-01

    Multiple applications of hydrophobic kaolin particle film in apple orchards suppressed numbers of blossom weevil (Anthonomus pomorum), brown leaf weevil (Phyllobius oblongus), attelabid weevil (Caenorhinus pauxillus), leafhoppers (Empoasca vitis and Zygina flammigera) and green apple aphid (Aphis

  14. Biological parameters of the non-target pest Aphis gossypii Glover ...

    African Journals Online (AJOL)

    In the present work, we aimed to evaluate: 1) the influence of the Cry1Ac protein expressed by the genetically modified cotton variety (Bt) NuOpal, on the biological parameters of a non-target pest, Aphis gossypii, reared under laboratory conditions; 2) the influence of plant age on aphid development. Cotton cultivars were ...

  15. No choice but to find resistance to soybean aphid biotype 4

    Science.gov (United States)

    Host plant resistance in soybean [Glycine max (L.) Merr] utilizes its natural defenses to limit soybean aphid (Aphis glycines Matsamura, SBA) injury, reducing insecticide reliance. Specific genes called Rag or Resistance to Aphis glycines are unfavorable to SBA and may suppress their development and...

  16. Host specificity of Aphelinus species collected from soybean aphid in Asia

    Science.gov (United States)

    The soybean aphid, Aphis glycines Matsumura (Hemiptera: Aphididae), is native to Asia where it is an occasional pest of soybean, Glycine max (L.). Aphis glycines was found during 2000 in North America and since then has spread throughout much of the area where soybean is grown. In Asia, A. glycines ...

  17. Ant Larval Demand Reduces Aphid Colony Growth Rates in an Ant-Aphid Interaction

    Directory of Open Access Journals (Sweden)

    James M. Cook

    2012-02-01

    Full Text Available Ants often form mutualistic interactions with aphids, soliciting honeydew in return for protective services. Under certain circumstances, however, ants will prey upon aphids. In addition, in the presence of ants aphids may increase the quantity or quality of honeydew produced, which is costly. Through these mechanisms, ant attendance can reduce aphid colony growth rates. However, it is unknown whether demand from within the ant colony can affect the ant-aphid interaction. In a factorial experiment, we tested whether the presence of larvae in Lasius niger ant colonies affected the growth rate of Aphis fabae colonies. Other explanatory variables tested were the origin of ant colonies (two separate colonies were used and previous diet (sugar only or sugar and protein. We found that the presence of larvae in the ant colony significantly reduced the growth rate of aphid colonies. Previous diet and colony origin did not affect aphid colony growth rates. Our results suggest that ant colonies balance the flow of two separate resources from aphid colonies- renewable sugars or a protein-rich meal, depending on demand from ant larvae within the nest. Aphid payoffs from the ant-aphid interaction may change on a seasonal basis, as the demand from larvae within the ant colony waxes and wanes.

  18. Plant genotype shapes ant-aphid interactions: implications for community structure and indirect plant defense.

    Science.gov (United States)

    Mooney, Kailen A; Agrawal, Anurag A

    2008-06-01

    Little is known about the mechanisms by which plant genotype shapes arthropod community structure. In a field experiment, we measured the effects of milkweed (Asclepias syriaca) genotype and ants on milkweed arthropods. Populations of the ant-tended aphid Aphis asclepiadis and the untended aphid Myzocallis asclepiadis varied eight- to 18-fold among milkweed genotypes, depending on aphid species and whether ants were present. There was no milkweed effect on predatory arthropods. Ants increased Aphis abundance 59%, decreased Myzocallis abundance 52%, and decreased predator abundance 56%. Milkweed genotype indirectly influenced ants via direct effects on Aphis and Myzocallis abundance. Milkweed genotype also modified ant-aphid interactions, influencing the number of ants attracted per Aphis and Myzocallis. While ant effects on Myzocallis were consistently negative, effects on Aphis ranged from antagonistic to mutualistic among milkweed genotypes. As a consequence of milkweed effects on ant-aphid interactions, ant abundance varied 13-fold among milkweed genotypes, and monarch caterpillar survival was negatively correlated with genetic variation in ant abundance. We speculate that heritable variation in milkweed phloem sap drives these effects on aphids, ants, and caterpillars. In summary, milkweed exerts genetic control over the interactions between aphids and an ant that provides defense against foliage-feeding caterpillars.

  19. Bacterial Communities of Two Parthenogenetic Aphid Species Cocolonizing Two Host Plants across the Hawaiian Islands ▿

    Science.gov (United States)

    Jones, Ryan T.; Bressan, Alberto; Greenwell, April M.; Fierer, Noah

    2011-01-01

    Aphids (Hemiptera: Aphididae) have been the focus of several studies with respect to their interactions with inherited symbionts, but bacterial communities of most aphid species are still poorly characterized. In this research, we used bar-coded pyrosequencing to characterize bacterial communities in aphids. Specifically, we examined the diversity of bacteria in two obligately parthenogenetic aphid species (the melon aphid, Aphis gossypii, and the cardamom aphid, Pentalonia caladii) cocolonizing two plant species (taro, Colocasia esculenta, and ginger, Alpinia purpurata) across four Hawaiian Islands (Hawaii, Kauai, Maui, and Oahu). Results from this study revealed that heritable symbionts dominated the bacterial communities for both aphid species. The bacterial communities differed significantly between the two species, and A. gossypii harbored a more diverse bacterial community than P. caladii. The bacterial communities also differed across aphid populations sampled from the different islands; however, communities did not differ between aphids collected from the two host plants. PMID:21965398

  20. Bacterial communities of two parthenogenetic aphid species cocolonizing two host plants across the Hawaiian Islands.

    Science.gov (United States)

    Jones, Ryan T; Bressan, Alberto; Greenwell, April M; Fierer, Noah

    2011-12-01

    Aphids (Hemiptera: Aphididae) have been the focus of several studies with respect to their interactions with inherited symbionts, but bacterial communities of most aphid species are still poorly characterized. In this research, we used bar-coded pyrosequencing to characterize bacterial communities in aphids. Specifically, we examined the diversity of bacteria in two obligately parthenogenetic aphid species (the melon aphid, Aphis gossypii, and the cardamom aphid, Pentalonia caladii) cocolonizing two plant species (taro, Colocasia esculenta, and ginger, Alpinia purpurata) across four Hawaiian Islands (Hawaii, Kauai, Maui, and Oahu). Results from this study revealed that heritable symbionts dominated the bacterial communities for both aphid species. The bacterial communities differed significantly between the two species, and A. gossypii harbored a more diverse bacterial community than P. caladii. The bacterial communities also differed across aphid populations sampled from the different islands; however, communities did not differ between aphids collected from the two host plants.

  1. Characterization and genetics of multiple soybean aphid biotype resistance in five soybean plant introductions

    Science.gov (United States)

    Soybean aphid (Aphis glycines Matsumura) is the most important soybean [Glycine max (L.) Merr.] insect pest in the USA. The objectives of this study were to characterize the resistance expressed in the five plant introductions (PIs) to four soybean aphid biotypes, determine the mode of resistance in...

  2. Mind your elders: wild soybean’s contribution to soybean aphid resistance

    Science.gov (United States)

    Currently, biotype 4 soybean aphid (Aphis glycines Matsamura, SBA) is the most virulent SBA biotype. Overcoming the most aphid resistant genes, SBA biotype 4 has become the greatest challenge in utilizing plant resistance in soybean [Glycine max (L.) Merr.]. Soybean’s wild ancestor Glycine soja (Sie...

  3. Aphid (Hemiptera: Aphididae) species determined in Çanakkale Province with a new record for the aphid fauna of Turkey

    OpenAIRE

    KÖK, Şahin; KASAP, İsmail; ÖZDEMİR, Işıl

    2016-01-01

    As a result of a study conducted to determine aphid species on herbaceous plants, shrubs and trees in cultivated and uncultivated areas from 2013 to 2015 in Çanakkale Province, Turkey, 39 species and one subspecies in 24 genera of Aphididae family were determined. Of these species, Aphis sedi Kaltenbach, 1843 collected from Lampranthus sp. (Aizoaceae) was new record for the aphid fauna of Turkey. Also, Helianthus annuus L. (Asteraceae) and Pimpinella saxifraga L. (Apiaceae) were determined as...

  4. Molecular characterization of the Aphis gossypii olfactory receptor gene families.

    Directory of Open Access Journals (Sweden)

    Depan Cao

    Full Text Available The cotton aphid, Aphis gossypii Glover, is a polyphagous pest that inflicts great damage to cotton yields worldwide. Antennal olfaction, which is extremely important for insect survival, mediates key behaviors such as host preference, mate choice, and oviposition site selection. In insects, odor detection is mediated by odorant receptors (ORs and ionotropic receptors (IRs, which ensure the specificity of the olfactory sensory neuron responses. In this study, our aim is to identify chemosensory receptors in the cotton aphid genome, as a means to uncover olfactory encoding of the polyphagous feeding habits as well as to aid the discovery of new targets for behavioral interference. We identified a total of 45 candidate ORs and 14 IRs in the cotton aphid genome. Among the candidate AgoORs, 9 are apparent pseudogenes, while 19 can be clustered with ORs from the pea aphid, forming 16 AgoOR/ApOR orthologous subgroups. Among the candidate IRs, we identified homologs of the two highly conserved co-receptors IR8a and IR25a; no AgoIR retain the complete glutamic acid binding domain, suggesting that putative AgoIRs bind different ligands. Our results provide the necessary information for functional characterization of the chemosensory receptors of A. gossypii, with potential for new or refined applications of semiochemicals-based control of this pest insect.

  5. Bacteria may contribute to distant species recognition in ant-aphid mutualistic relationships.

    Science.gov (United States)

    Fischer, Christophe Y; Detrain, Claire; Thonart, Philippe; Haubruge, Eric; Francis, Frédéric; Verheggen, François J; Lognay, Georges C

    2017-04-01

    Mutualistic interactions between ant and aphid species have been the subject of considerable historical and contemporary investigations, the primary benefits being cleaning and protection for the aphids and carbohydrate-rich honeydew for the ants. Questions remained, however, as to the volatile semiochemical factor influencing this relationship. A recent study highlighted the role of bacterial honeydew volatile compounds in ant attraction. Here, ant's ability to distantly discriminate 2 aphid species was investigated based on bacterial honeydew semiochemicals emissions using a two-way olfactometer. Both the mutualistic aphid Aphis fabae L. and the nonmyrmecophilous aphid Acyrthosiphon pisum Harris were found to be attractive for the ant Lasius niger L. The level of attraction was similar in both assays (control vs. one of the aphid species). However, when given a choice between these 2 aphid species, ants showed a significant preference for Aphis fabae. Honeydew volatiles, mostly from bacterial origins, are known to be a key element in ant attraction. Using the same olfactometry protocol, the relative attractiveness of volatiles emitted by honeydews collected from each aphid species and by bacteria isolated from each honeydew was investigated. Again, ants significantly preferred volatiles released by Aphis fabae honeydew and bacteria. This information suggests that microbial honeydew volatiles enable ants to distantly discriminate aphid species. These results strengthen the interest of studying the occurrence and potential impact of microorganisms in insect symbioses. © 2015 Institute of Zoology, Chinese Academy of Sciences.

  6. Effects of aposymbiotic and symbiotic aphids on parasitoid progeny development and adult oviposition behavior within aphid instars.

    Science.gov (United States)

    Cheng, Rui-Xia; Meng, Ling; Li, Bao-Ping

    2010-04-01

    This study aims at exploring the potential relationship between aphidiine parasitoid development and the primary endosymbiont in aphids by focusing on specific aphid instars and the relative effects on parasitoid oviposition behavior and progeny development. Lysiphlebus ambiguus (Aphidiidae, Hymenoptera) is a solitary parasitoid of several species of aphids, including Aphis fabae. In this study, A. fabae was treated with antibiotic rifampicin to obtain aposymbiotic hosts and exposed to parasitism. L. ambiguus launched significantly more attacks on symbiotic L(2) (the second instar), aposymbiotic L(3) (the third instar) and L(4) (the forth instar) hosts than on the corresponding hosts at the same age. L. ambiguus also parasitized more L(1) aphids compared with adults irrespective of whether the aphid was asymbiotic or not. Pupa mortality rate of parasitoid progeny was significantly lower from aposymbiotic hosts than from the corresponding symbiotics at all stages. Female-biased parasitoid progeny was produced from aposymbiotic aphids without respect to host ages, but female progeny increased linearly with host ages at parasitism from symbiotic aphids. Body size of parasitoid progeny increased linearly with host instars at parasitism in symbiotic aphids but did not significantly change across host instars in aposymbiotic aphids. The offspring parasitoids turned out to be generally large in body size from attacking aposymbiotic aphids compared with the symbiotics. Development time of egg-to-adult of parasitoid progeny decreased with host instars in both symbiotic and aposymbiotic aphids but was generally much longer in aposymbiotic aphids than in symbiotic aphids. Our study suggests that age or body size of host aphids may not be the only cue exercised by L. ambiguus to evaluate host quality and that offspring parasitoids may be able to compensate for the nutrition stress associated with disruption of primary endosymbiotc bacteria in aposymbiotic aphids.

  7. Stability of soybean aphid resistance in soybean across different temperatures

    Science.gov (United States)

    The soybean aphid, Aphis glycines Matsumura, is the most important insect pest posing a threat to soybean, Glycine max (L.) Merr., grain production in the United States. Soybean cultivars with resistance are currently being deployed to aid in management of the pest. Temperature has been reported to ...

  8. Antibiosis and antixenosis to Aphis gossypii (Homoptera: Aphididac) in Colocasia esculenta.

    Science.gov (United States)

    Coleson, Jenifer L; Miller, Ross H

    2005-06-01

    Fifty cultivars of taro, Colocasia esculenta (L.) Schott (Araceae), collected from islands in Micronesia and Polynesia, eight cultivars from the University of Hawaii's taro germplasm collection, and a closely related aroid, Xanthosorna sagittifolium (L.) (Araceae), were screened for antibiosis and antixenosis to Aphis gossypii Clover. Life history data for A. gossypii were collected by assessing survivorship and fecundity of aphids caged on taro leaves in the field. Significant differences in aphid reproductive rate and longevity were observed among the taro cultivars, and cultivars were ranked from most resistant to most susceptible. Antixenosis was assayed in the laboratory in a multiround choice test where A. gossypii were offered four leaf discs excised from different taro cultivars. Additionally, field observations of aphid abundance on taro cultivars were made to corroborate clip cage studies and laboratory experiments. 'Iliuaua','Rumung Mary','Maria', 'Ketan 36', and'Agaga' were the most resistant in terms of reducing aphid fecundity and survivorship, whereas the Iliuana,'Purple', 'TC-83001', and 'Putih 24' were least preferred in aphid choice tests. X. sagittifolium consistently exhibited strong aphid resistance. Resistant cultivars identified in this study may form the basis of breeding programs seeking to combine aphid resistance with other desirable agronomic traits in taro.

  9. Effects of nitrogen fertilization in cotton crop on Aphis gossypii Glover (Hemiptera: Aphididae) biology

    International Nuclear Information System (INIS)

    Barros, Ricardo; Degrande, Paulo E.; Fernandes, Marcos G.; Nogueira, Rodrigo F.

    2007-01-01

    The cotton aphid, Aphis gossypii Glove, is one of the pests of cotton crop and its relation with the host seem to depend on the amount of nitrogen available to the plant. The biology of A. gossypii using different cotton nitrogen fertility regimes was studied under greenhouse conditions, in Dourados, MS. A completely randomized design with nine replications in a factorial scheme (2x4x2)+1 was used. Two nitrogen sources (sulphate of ammonium and urea), four doses of nitrogen (50, 100, 150 and 200 kg ha-1), two different times of nitrogen application and one additional treatment without nitrogen were taken as factors. The nymphal phases, the pre-reproductive, reproductive and pos-reproductive periods, longevity, the life cycle and fecundity of the cotton aphid were evaluated. The doses of nitrogen influenced the cotton aphid biology in both sources and times of application, favoring its development and fecundity. (author)

  10. An Attractant of the Aphidophagous Gall Midge Aphidoletes aphidimyza From Honeydew of Aphis gossypii.

    Science.gov (United States)

    Watanabe, Hiroshi; Yano, Eizi; Higashida, Keita; Hasegawa, Syouichi; Takabayashi, Junji; Ozawa, Rika

    2016-02-01

    Many natural enemies of insects use honeydew as a volatile cue to locate hosts or prey, as an oviposition stimulant, and as an arrestant for foraging. The aphidophagous gall midge Aphidoletes aphidimyza (Rondani) (Diptera: Cecidomyiidae) has predacious larval stages and can be used to control aphid populations, especially in greenhouses. Previous studies have shown that the honeydew, excreted by the aphid Myzus persicae, attracts A. aphidimyza, but the crucial attractants have not been identified. Using an olfactometer, we studied behavioral responses of female A. aphidimyza to volatiles emitted from honeydew excreted by the aphid Aphis gossypii on eggplants. The volatiles attracted female midges and induced oviposition. Moreover, using gas chromatography coupled with mass spectrometry (GC/MS), we identified phenylacetaldehyde as the attractant compound in the honeydew, although it did not induce oviposition in olfactometer experiments.

  11. Survey of aphid population in a yellow passion fruit crop and its relationship on the spread Cowpea aphid-borne mosaic virus in a subtropical region of Brazil.

    Science.gov (United States)

    Garcêz, Renata Maia; Chaves, Alexandre Levi Rodrigues; Eiras, Marcelo; Meletti, Laura Maria Molina; de Azevedo Filho, Joaquim Adelino; da Silva, Leonardo Assis; Colariccio, Addolorata

    2015-01-01

    Passion fruit woodiness may be caused by Cowpea aphid-borne mosaic virus (CABMV) and is currently the major passion fruit disease in Brazil. To assess the virus-vector-host interactions, a newly introduced golden passion fruit plantation located in eastern region of São Paulo State, Brazil, was monitored. Dissemination of CABMV was determined analyzing golden passion fruit plants monthly for 18 months by PTA-ELISA. Seasonality and aphid fauna diversity was determined by identification of the captured species using yellow sticky, yellow water-pan and green tile traps. Population composition of the aphid species was determined using the descriptive index of occurrence, dominance and general classification and overlap of species in the R program. Analyses of species grouping afforded to recognize 14 aphid species. The genus Aphis represented 55.42 % of the species captured. Aphid species formed two distinct clusters, one of which was characterized by the diversity of polyphagous species that presented high potential to spread CABMV. The low abundance and diversity of aphid species did not interfere negatively in the CABMV epidemiology. The genus Aphis, particularly Aphis fabae/solanella and A. gossypii, was crucial in the spread of CABMV in passion fruit orchards in the eastern State of São Paulo.

  12. Mutualisme pucerons – fourmis : étude des bénéfices retirés par les colonies d'Aphis fabae en milieu extérieur

    Directory of Open Access Journals (Sweden)

    Verheggen F.

    2009-01-01

    Full Text Available Aphid – ant mutualism: an outdoor study of the benefits for Aphis fabae. Aphid – ant relationships are common examples of mutualism. Aphids are indeed submitted to predation and therefore require protection, while ants are continuously looking for new sugar sources. The present work aimed to study the benefits that a mutualistic relationship with Lasius niger (Hymenoptera, Formicidae could bring to the black bean aphid Aphis fabae (Homoptera, Aphididae. Several parameters were observed in the field, on broad bean plants infested with an initial amount of 100 A. fabae and in presence or not of a L. niger colony. More aphids were observed on plants being visited by ants as well as a higher proportion of winged individuals. One explanation is that fewer predators were observed on plants being visited by ants, demonstrating their protective role. However, the number of parasitized aphids was not reduced in presence of L. niger. On the other hand, fewer different aphid species were present on plants foraged by ants, what suggests that they could exert a predation on unattended aphids. Our observations do not allow to conclude on any impact of L. niger on the fitness of the aphid host plant, although fewer exuvia and honeydew spots were observed when they were present. All these results confirm that L. niger increase the fitness of A. fabae colonies mainly by decreasing the number of predators and by reducing competition from aphid species unattended by ants.

  13. Presence and Effects of Chemical Toxin on Feeding of Cowpea ...

    African Journals Online (AJOL)

    Cowpea, Vigna unguiculata (L.) Walp is one of the most important grain legumes produced in Nigeria. It is mostly grown as a mixed crop with cereals in a traditional cereal/legume farming system. Cowpea aphid, Aphis craccivora Koch is the main aphid pest of cowpea. In view of the importance and serious damage caused ...

  14. Collective defense of Aphis nerii and Uroleucon hypochoeridis (Homoptera, Aphididae against natural enemies.

    Directory of Open Access Journals (Sweden)

    Manfred Hartbauer

    2010-04-01

    Full Text Available The prevalent way aphids accomplish colony defense against natural enemies is a mutualistic relationship with ants or the occurrence of a specialised soldier caste typical for eusocial aphids, or even both. Despite a group-living life style of those aphid species lacking these defense lines, communal defense against natural predators has not yet been observed there. Individuals of Aphis nerii (Oleander aphid and Uroleucon hypochoeridis, an aphid species feeding on Hypochoeris radicata (hairy cat's ear, show a behavioral response to visual stimulation in the form of spinning or twitching, which is often accompanied by coordinated kicks executed with hind legs. Interestingly, this behaviour is highly synchronized among members of a colony and repetitive visual stimulation caused strong habituation. Observations of natural aphid colonies revealed that a collective twitching and kicking response (CTKR was frequently evoked during oviposition attempts of the parasitoid wasp Aphidius colemani and during attacks of aphidophagous larvae. CTKR effectively interrupted oviposition attempts of this parasitoid wasp and even repelled this parasitoid from colonies after evoking consecutive CTKRs. In contrast, solitary feeding A. nerii individuals were not able to successfully repel this parasitoid wasp. In addition, CTKR was also evoked through gentle substrate vibrations. Laser vibrometry of the substrate revealed twitching-associated vibrations that form a train of sharp acceleration peaks in the course of a CTKR. This suggests that visual signals in combination with twitching-related substrate vibrations may play an important role in synchronising defense among members of a colony. In both aphid species collective defense in encounters with different natural enemies was executed in a stereotypical way and was similar to CTKR evoked through visual stimulation. This cooperative defense behavior provides an example of a surprising sociality that can be found

  15. Detecting aphid predation by earwigs in organic citrus orchards using molecular markers.

    Science.gov (United States)

    Romeu-Dalmau, C; Piñol, J; Agustí, N

    2012-10-01

    Aphids (Hemiptera: Aphidoidea) can damage citrus trees via direct damage to leaves and flowers or via the indirect transmission of viruses. Predators such as the European earwig, Forficula auricularia Linnaeus (Dermaptera: Forficulidae), may assist in keeping aphid populations under control in citrus orchards. Group-specific primers were developed to detect aphid DNA in earwigs, in order to determine earwig predation rates in aphids in Mediterranean organic citrus trees. These primers were designed in accordance with the alignment of comparable sequences of aphids and earwigs, and they amplified a 224 bp fragment of the mitochondrial cytochrome c oxidase subunit I (COI) region. Following the consumption of three to five Aphis spiraecola Patch, aphid DNA was still detectable in 50% of earwigs one day after the ingestion. When predation was evaluated in the field, aphid DNA was detected in earwigs in May, June and July but not in April and August. The most interesting result is that of May, when aphid abundance was very low but 30% of the earwigs tested positive for aphid DNA. This finding suggests that earwigs are important aphid predators in citrus orchards, as they probably alter aphid dynamics as a result of early seasonal pressure on this pest.

  16. Activity of aphids associated with lettuce and broccoli in Spain and their efficiency as vectors of Lettuce mosaic virus.

    Science.gov (United States)

    Nebreda, M; Moreno, A; Pérez, N; Palacios, I; Seco-Fernández, V; Fereres, A

    2004-03-01

    This research sought to identify the aphid virus vector species associated with lettuce and broccoli crops in Spain, and to determine their population dynamics and ability to transmit Lettuce mosaic virus (LMV). Green tile traps and Moericke yellow water-pan traps were used to monitor aphid flights during the spring and autumn growing seasons of 2001. Aphid species feeding on lettuce were counted weekly. The transmission efficiencies of LMV were determined for the aphid species caught most frequently. The Moericke traps generally caught more aphid species than the tile trap, but the latter was the most suitable to estimate flight activity of species involved in virus spread. Spring aphid catches indicated that the main aphid species landing on lettuce in the regions of Madrid and Murcia was Hyperomyzus lactucae, but Brachycaudus helichrysi was also abundant in both regions. In broccoli in the Navarra region, the most abundant species in spring were Aphis fabae, B. helichrysi and H. lactucae. In autumn-sown crops, the main species landing on lettuce in the Madrid region were Hyadaphis coriandri and Aphis spiraecola. In Murcia, A. spiraecola and Myzus persicae were the most abundant, while in Navarra, Therioaphis trifolii, and various Aphis spp. were the most numerous landing on broccoli. The main aphid species colonising lettuce was Nasonovia ribisnigri, but other less abundant colonising species were Aulacorthum solani and Macrosiphum euphorbiae. The most efficient vectors of LMV were M. persicae, Aphis gossypii and M. euphorbiae, while A. fabae and H. lactucae transmitted with low efficiency, and Rhopalosiphum padi and N. ribisnigri did not transmit. Occurrence of LMV epidemics in central Spain in relation to aphid flights and the role of weeds as virus reservoirs is discussed.

  17. Impact of Rag1 aphid resistant soybeans on Binodoxys communis (Hymenoptera: Braconidae), a parasitoid of soybean aphid (Hemiptera: Aphididae).

    Science.gov (United States)

    Ghising, Kiran; Harmon, Jason P; Beauzay, Patrick B; Prischmann-Voldseth, Deirdre A; Helms, Ted C; Ode, Paul J; Knodel, Janet J

    2012-04-01

    Multiple strategies are being developed for pest management of the soybean aphid, Aphis glycines Matsumura; however, there has been little published research thus far to determine how such strategies may influence each other, thereby complicating their potential effectiveness. A susceptible soybean (Glycine max L.) variety without the Rag1 gene and a near isogenic resistant soybean variety with the Rag1 gene were evaluated in the laboratory for their effects on the fitness of the soybean aphid parasitoid, Binodoxys communis (Gahan). The presence or absence of the Rag1 gene was verified by quantifying soybean aphid growth. To test for fitness effects, parasitoids were allowed to attack soybean aphids on either a susceptible or resistant plant for 24 h and then aphids were kept on the same plant throughout parasitoid development. Parasitoid fitness was measured by mummy and adult parasitoid production, adult parasitoid emergence, development time, and adult size. Parasitoids that attacked soybean aphids on susceptible plants produced more mummies, more adult parasitoids, and had a higher emergence rate compared with those on resistant plants. Adult parasitoids that emerged from resistant plants took 1 d longer and were smaller compared with those from susceptible plants. This study suggests that biological control by B. communis may be compromised when host plant resistance is widely used for pest management of soybean aphids.

  18. Impacts of thiamethoxam seed treatment and host plant resistance on the soybean aphid fungal pathogen, Pandora neoaphidis.

    Science.gov (United States)

    Koch, Karrie A; Ragsdale, David W

    2011-12-01

    Since the introduction of soybean aphid, Aphis glycines Matsumura, from Asia, insecticide use in soybean has increased substantially in the north central United States. Insecticide seed treatments and aphid resistant soybean varieties are management tactics that may reduce reliance on foliar applications of broad-spectrum insecticides. Exploring potential nontarget impacts of these technologies will be an important step in incorporating them into aphid management programs. We investigated impacts of thiamethoxam seed treatment and Rag1 aphid resistant soybean on a fungal pathogen of soybean aphid, Pandora neoaphidis (Remaudière & Hennebert) Humber, via open plot and cage studies. We found that although thiamethoxam seed treatment did significantly lower aphid pressure in open plots compared with an untreated control, this reduction in aphid density translated into nonsignificant decreases in fungal disease prevalence in aphids. Furthermore, when aphid densities were approximately equal in seed treated and untreated soybean, no impact on aphid fungal disease was observed. In open plots, Rag1 resistant soybean experienced lower aphid pressure and aphid disease prevalence compared with a nonresistant isoline. However, in cages when aphid densities were equivalent in both resistant and susceptible soybean, resistance had no impact on aphid disease prevalence. The addition of thiamethoxam seed treatment to resistant soybean yielded aphid densities and aphid disease prevalence similar to untreated, resistant soybean. These studies provide evidence that thiamethoxam seed treatments and Rag1 resistance can impact P. neoaphidis via decreased aphid densities; however, this impact is minimal, implying use of seed treatments and host plant resistance are compatible with P. neoaphidis.

  19. Two-year oscillation cycle in abundance of soybean aphid in Indiana

    Czech Academy of Sciences Publication Activity Database

    Rhainds, M.; Yoo, H. J. S.; Kindlmann, Pavel; Voegtlin, D.; Castillo, D.; Rutledge, C.; Sadof, C.; Yaninek, S.; O'Neil, R. J.

    2010-01-01

    Roč. 12, č. 3 (2010), s. 251-257 ISSN 1461-9555 Institutional research plan: CEZ:AV0Z60870520 Keywords : Aphididae * Aphis glycines * autumn migration * Hemiptera * heteroecy * Rhamnus * seesaw effect * soybean aphid Subject RIV: EH - Ecology, Behaviour Impact factor: 1.484, year: 2010

  20. Survival and feeding rates of four aphid species (Hemiptera: Aphididae) on various sucrose concentrations in diets

    Science.gov (United States)

    Different concentrations of sucrose were used to investigate how survival and feeding was affected on four species of aphids (Hemiptera: Aphididae). Seven sucrose concentrations were evaluated in feeding chambers fitted with a parafilm membranes and infested with nymphs of Aphis glycines, Diuraphi...

  1. Infestation ratings database for soybean aphid on early-maturity wild soybean lines

    Science.gov (United States)

    Soybean aphid (Aphis glycines Matsumura; SA) is a major invasive pest of soybean [Glycine max (L.) Merr.] in northern production regions of North America. Although insecticides are currently the main method for controlling this pest, SA-resistant cultivars are being developed to sustainably manage ...

  2. Inventory and assessment of foliar natural enemies of the soybean aphid (Hemiptera: Aphididae) in South Dakota

    Science.gov (United States)

    Soybean aphid (Aphis glycines Matsumura) (Hemiptera: Aphididae) is a major pest of soybean in northern production regions of North America, and insecticides have been the primary management approach while alternative methods are developed. Knowledge of arthropod natural enemies and their impact on ...

  3. Effects of nitrogen fertilization in cotton crop on Aphis gossypii Glover (Hemiptera: Aphididae) biology; Efeitos da adubacao nitrogenada em algodoeiro sobre a biologia de Aphis gossypii Glover (Hemiptera: Aphididae)

    Energy Technology Data Exchange (ETDEWEB)

    Barros, Ricardo; Degrande, Paulo E.; Fernandes, Marcos G.; Nogueira, Rodrigo F. [Universidade Federal da Grande Dourados, MS (Brazil). Faculdade de Ciencias Agrarias]. E-mail: rbarrosufms@yahoo.com.br, degrande@ufgd.edu.br

    2007-09-15

    The cotton aphid, Aphis gossypii Glove, is one of the pests of cotton crop and its relation with the host seem to depend on the amount of nitrogen available to the plant. The biology of A. gossypii using different cotton nitrogen fertility regimes was studied under greenhouse conditions, in Dourados, MS. A completely randomized design with nine replications in a factorial scheme (2x4x2)+1 was used. Two nitrogen sources (sulphate of ammonium and urea), four doses of nitrogen (50, 100, 150 and 200 kg ha-1), two different times of nitrogen application and one additional treatment without nitrogen were taken as factors. The nymphal phases, the pre-reproductive, reproductive and pos-reproductive periods, longevity, the life cycle and fecundity of the cotton aphid were evaluated. The doses of nitrogen influenced the cotton aphid biology in both sources and times of application, favoring its development and fecundity. (author)

  4. Spectral Detection of Soybean Aphid (Hemiptera: Aphididae) and Confounding Insecticide Effects in Soybean

    Science.gov (United States)

    Alves, Tavvs Micael

    Soybean aphid, Aphis glycines (Hemiptera: Aphididae) is the primary insect pest of soybean in the northcentral United States. Soybean aphid may cause stunted plants, leaf discoloration, plant death, and decrease soybean yield by 40%. Sampling plans have been developed for supporting soybean aphid management. However, growers' perception about time involved in direct insect counts has been contributing to a lower adoption of traditional pest scouting methods and may be associated with the use of prophylactic insecticide applications in soybean. Remote sensing of plant spectral (light-derived) responses to soybean aphid feeding is a promising alternative to estimate injury without direct insect counts and, thus, increase adoption and efficiency of scouting programs. This research explored the use of remote sensing of soybean reflectance for detection of soybean aphids and showed that foliar insecticides may have implications for subsequent use of soybean spectral reflectance for pest detection. (Abstract shortened by ProQuest.).

  5. Predatory behavior of Pseudodorus clavatus (Diptera, Syrphidae on aphids tended by ants

    Directory of Open Access Journals (Sweden)

    Alexandra Bächtold

    2013-12-01

    Full Text Available Predatory behavior of Pseudodorus clavatus (Diptera, Syrphidae on aphids tended by ants. In this study, we examined the interactions between myrmecophilous aphids, their ant-guards and a predatory syrphid species, Pseudodorus clavatus (F.. Larvae of this predator were found in the colonies of three aphid species: Aphis gossypii, A. spiraecola and Toxoptera sp., which were tended by eight ant species, especially Camponotus. Hoverfly larvae managed to infiltrate the aphid colonies and consume nymphs. Predator larvae exhibited inconspicuous movements and were not detected by ants which were commonly observed touching and antennating the larvae they come into contact. These results suggest that behavioral and chemical cues are involved in the infiltration and on the successful predation of syrphids upon aphids.

  6. Aphids (Homoptera, Aphidodea inhabiting the trees Crataegus x media Bechst. in the urban green area. Part I. The population dynamics

    Directory of Open Access Journals (Sweden)

    Bożena Jaśkiwicz

    2013-12-01

    Full Text Available The studies were conducted in the years 1999-2001 in the green areas of Lublin, on the trees of Crataegus x media Bechst. The purpose of the studies was to establish the species composition and the population dynamics of aphids inhabiting hawthorn in the street and park sites. The studies found out the presence of four aphid species on the examined trees, namely Aphis pomi De Geer, aphids from the genus Dysaphis Börn., Ovatus crataegarius (Walk. and Rhopalosiphum insertum (Walk.. More aphid species and bigger populations were found in the street site (A as compa red with the park site (B.The weather conditions (air temperatures of over 30°C and stormy rainfalls limited the population of all aphid species. On the other hand, a mild winter and a warm spring with the rainfalls within the norm caused that the number of aphids decreased considerably.

  7. Presence of the aphid, Chaetosiphon fragaefolii, on strawberry in Argentina.

    Science.gov (United States)

    Cédola, Claudia; Grecob, Nancy

    2010-01-01

    Seasonal abundance of the strawberry aphid complex under different agronomic practices in the outskirts of La Plata, Argentina was studied on strawberry, Fragaria x ananassa Duchesne (Rosales: Rosaceae). Aphid densities were low in strawberry fields in which insecticides and fungicides were used. In addition to Aphis gossypii, Aphis fabae, Mysus persicae and Macrosiphum euphorbiae, the aphid, Chaetosiphon fragaefolii (Cockerell) (Homoptera: Aphididae), was recorded for the first time in this horticultural area. Life history and some demographic parameters were calculated for C. fragaefolii. The mean duration of nymphal stages was 10.44 days, the oviposition period was 11.8 days, and the mean number of nymph/female/day was 2.4 +/- 0.3. Demographic parameters analyzed included the net reproductive rate R(o) = 14.55 +/- 0.096 nymph/female, generation time T=16.91 +/- 0.035 days, and the intrinsic rate of increase r(m) = 0.158 +/- (0.004). No parasites were found associated with C. fragaefolli. The pathogenic fungus, Entomophthora planchoniana Cornu (Zygomycetes: Entomophthorales) was the main mortality factor. Although aphids are not the main pests in strawberry fields, C. fragaefolii can be a serious problem because it can transmit several virus diseases of strawberry. Greater knowledge of life history traits and mortality factors of this species is needed in order to design appropriate control strategies.

  8. The Endosymbiont Arsenophonus Provides a General Benefit to Soybean Aphid (Hemiptera: Aphididae) Regardless of Host Plant Resistance (Rag).

    Science.gov (United States)

    Wulff, Jason A; White, Jennifer A

    2015-06-01

    Soybean aphid, Aphis glycines Matsumura (Hemiptera: Aphididae), invokes substantial chemical treatment and economic cost in North America. Resistant soybean genotypes hold promise as a low-impact control methodology, but soybean aphid "biotypes" capable of development on resistant soy cast doubt on the durability of soy resistance. We hypothesized that variation in soybean aphid ability to colonize resistant soy is partially attributable to a bacterial symbiont of soybean aphid, Arsenophonus. We used microinjection to manipulate Arsenophonus infection in both virulent and avirulent aphid biotypes, resulting in five pairs of infected versus uninfected isolines. These isolines were subjected to various population growth rate assays on resistant Rag versus susceptible soybean. We found that aphid virulence on Rag soybean was not dependent on Arsenophonus: virulent aphid biotypes performed well on Rag soybean, and avirulent aphid biotypes performed poorly on Rag soybean, regardless of whether Arsenophonus was present or not. However, we did find that Arsenophonus-infected clones on average performed significantly better than their paired uninfected isolines. This pattern was not consistently evident on every date for every clone, either in the population assays nor when we compared lifetime fecundity of individual aphids in a separate experiment. Nevertheless, this overall benefit for infected aphids may be sufficient to explain the high frequency of Arsenophonus infection in soybean aphids. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  9. Effects of thiamethoxam seed treatments on soybean aphid (Hemiptera: Aphididae) feeding behavior.

    Science.gov (United States)

    Stamm, M D; Heng-Moss, T M; Baxendale, F P; Reese, J C; Siegfried, B D; Hunt, T E; Gaussoin, R E; Blankenship, E E

    2013-12-01

    Since its discovery in North America in 2000, the soybean aphid, Aphis glycines Matsumura (Hemiptera: Aphididae), has rapidly become an important pest of soybean [Glycine max (L.) Merrill], sometimes resulting in significant yield losses. Previous research has documented the toxicity of neonicotinoid seed treatments to soybean aphids, but control under field conditions has been inconsistent. Imidacloprid, a popular neonicotinoid insecticide, has been shown to exhibit antifeedant effects on aphids. Antifeedant activity has not been demonstrated for other neonicotinoids, including thiamethoxam. This research investigated the effects of a thiamethoxam seed treatment on soybean aphid feeding behavior by using electronic penetration graphs (EPG) to visualize stylet penetration behavior. Soybean aphid feeding behavior was assessed for 9 h on thiamethoxam-treated and untreated soybeans (V2 and V4 stages). Because results were inconclusive from initial experiments, a study was conducted to document the effects of thiamethoxam-treated soybeans on soybean aphid survival. The seed treatment was shown to negatively affect aphid survival at 4, 8, and 11 d after aphid introduction. A subsequent EPG study then was designed to document soybean aphid feeding behavior for 15 h, after an initial exposure of 9 h to thiamethoxam-treated soybeans. In this study, the exposed aphids exhibited significant differences in feeding behavior compared with those aphids feeding on untreated soybeans. Soybean aphids on thiamethoxam-treated soybeans spent significantly less time feeding in the sieve element phase, with a greater duration of nonprobing events. These studies suggest soybean aphids are unable to ingest phloem sap, which may be another important element in seed treatment protection.

  10. Toxin delivery by the coat protein of an aphid-vectored plant virus provides plant resistance to aphids.

    Science.gov (United States)

    Bonning, Bryony C; Pal, Narinder; Liu, Sijun; Wang, Zhaohui; Sivakumar, S; Dixon, Philip M; King, Glenn F; Miller, W Allen

    2014-01-01

    The sap-sucking insects (order Hemiptera), including aphids, planthoppers, whiteflies and stink bugs, present one of the greatest challenges for pest management in global agriculture. Insect neurotoxins offer an alternative to chemical insecticides for controlling these pests, but require delivery into the insect hemocoel. Here we use the coat protein of a luteovirus, an aphid-vectored plant virus, to deliver a spider-derived, insect-specific toxin that acts within the hemocoel. The luteovirid coat protein is sufficient for delivery of fused proteins into the hemocoel of pea aphids, Acyrthosiphon pisum, without virion assembly. We show that when four aphid pest species-A. pisum, Rhopalosiphum padi, Aphis glycines and Myzus persicae-feed on a recombinant coat protein-toxin fusion, either in an experimental membrane sachet or in transgenic Arabidopsis plants, they experience significant mortality. Aphids fed on these fusion proteins showed signs of neurotoxin-induced paralysis. Luteovirid coat protein-insect neurotoxin fusions represent a promising strategy for transgenic control of aphids and potentially other hemipteran pests.

  11. Aphis Glycines Virus 2, a Novel Insect Virus with a Unique Genome Structure

    Directory of Open Access Journals (Sweden)

    Sijun Liu

    2016-11-01

    Full Text Available The invasive soybean aphid, Aphis glycines, is a major pest in soybeans, resulting in substantial economic loss. We analyzed the A. glycines transcriptome to identify sequences derived from viruses of A. glycines. We identified sequences derived from a novel virus named Aphis glycines virus 2 (ApGlV2. The assembled virus genome sequence was confirmed by reverse transcription polymerase chain reaction (RT-PCR and Sanger sequencing, conserved domains were characterized, and distribution, and transmission examined. This virus has a positive sense, single-stranded RNA genome of ~4850 nt that encodes three proteins. The RNA-dependent RNA polymerase (RdRp of ApGlV2 is a permuted RdRp similar to those of some tetraviruses, while the capsid protein is structurally similar to the capsid proteins of plant sobemoviruses. ApGlV2 also encodes a larger minor capsid protein, which is translated by a readthrough mechanism. ApGlV2 appears to be widespread in A. glycines populations and to persistently infect aphids with a 100% vertical transmission rate. ApGlV2 is susceptible to the antiviral RNA interference (RNAi pathway. This virus, with its unique genome structure with both plant- and insect-virus characteristics, is of particular interest from an evolutionary standpoint.

  12. Seasonal phenology and species composition of the aphid fauna in a northern crop production area.

    Directory of Open Access Journals (Sweden)

    Sascha M Kirchner

    Full Text Available BACKGROUND: The species diversity of aphids and seasonal timing of their flight activity can have significant impacts on crop production, as aphid species differ in their ability to transmit plant viruses and flight timing affects virus epidemiology. The aim of the study was to characterise the species composition and phenology of aphid fauna in Finland in one of the northernmost intensive crop production areas of the world (latitude 64°. METHODOLOGY/PRINCIPAL FINDINGS: Flight activity was monitored in four growing seasons (2007-010 using yellow pan traps (YPTs placed in 4-8 seed potato fields and a Rothamsted suction trap. A total of 58,528 winged aphids were obtained, identified to 83 taxa based on morphology, and 34 species were additionally characterised by DNA barcoding. Seasonal flight activity patterns analysed based on YPT catch fell into three main phenology clusters. Monoecious taxa showed early or middle-season flight activity and belonged to species living on shrubs/trees or herbaceous plants, respectively. Heteroecious taxa occurred over the entire potato growing season (ca. 90 days. Abundance of aphids followed a clear 3-year cycle based on suction trap data covering a decade. Rhopalosiphum padi occurring at the end of the potato growing season was the most abundant species. The flight activity of Aphis fabae, the main vector of Potato virus Y in the region, and Aphis gossypii peaked in the beginning of potato growing season. CONCLUSIONS/SIGNIFICANCE: Detailed information was obtained on phenology of a large number aphid species, of which many are agriculturally important pests acting as vectors of plant viruses. Aphis gossypii is known as a pest in greenhouses, but our study shows that it occurs also in the field, even far in the north. The novel information on aphid phenology and ecology has wide implications for prospective pest management, particularly in light of climate change.

  13. Inventory and assessment of foliar natural enemies of the soybean aphid (Hemiptera: Aphididae) in South Dakota.

    Science.gov (United States)

    Hesler, Louis S

    2014-06-01

    Soybean aphid (Aphis glycines Matsumura) (Hemiptera: Aphididae) is a major pest of soybean in northern production regions of North America, and insecticides have been the primary management approach while alternative methods are developed. Knowledge of arthropod natural enemies and their impact on soybean aphid is critical for developing biological control as a management tool. Soybean is a major field crop in South Dakota, but information about its natural enemies and their impact on soybean aphid is lacking. Thus, this study was conducted in field plots in eastern South Dakota during July and August of 2004 and 2005 to characterize foliar-dwelling, arthropod natural enemies of soybean aphid, and it used exclusion techniques to determine impact of natural enemies and ants (Hymenoptera: Formicidae) on soybean aphid densities. In open field plots, weekly soybean aphid densities reached a plateau of several hundred aphids per plant in 2004, and peaked at roughly 400 aphids per plant in 2005. Despite these densities, a relatively high frequency of aphid-infested plants lacked arthropod natural enemies. Lady beetles (Coleoptera: Coccinellidae) were most abundant, peaking at 90 and 52% of all natural enemies sampled in respective years, and Harmonia axyridis Pallas was the most abundant lady beetle. Green lacewings (Neuroptera: Chrysopidae) were abundant in 2005, due mainly to large numbers of their eggs. Abundances of arachnids and coccinellid larvae correlated with soybean aphid densities each year, and chrysopid egg abundance was correlated with aphid density in 2005. Three-week cage treatments of artificially infested soybean plants in 2004 showed that noncaged plants had fewer soybean aphids than caged plants, but abundance of soybean aphid did not differ among open cages and ones that provided partial or total exclusion of natural enemies. In 2005, plants within open cages had fewer soybean aphids than those within cages that excluded natural enemies, and aphid

  14. Potential Overwintering Locations of Soybean Aphid (Hemiptera: Aphididae) Colonizing Soybean in Ohio and Wisconsin.

    Science.gov (United States)

    Crossley, Michael S; Hogg, David B

    2015-04-01

    Soybean aphids, Aphis glycines Matsumura, depend on long-distance, wind-aided dispersal to complete their life cycle. Despite our general understanding of soybean aphid biology, little is explicitly known about dispersal of soybean aphids between winter and summer hosts in North America. This study compared genotypic diversity of soybean aphids sampled from several overwintering locations in the Midwest and soybean fields in Ohio and Wisconsin to test the hypothesis that these overwintering locations are sources of the soybean colonists. In addition, air parcel trajectory analyses were used to demonstrate the potential for long-distance dispersal events to occur to or from these overwintering locations. Results suggest that soybean aphids from overwintering locations along the Illinois-Iowa border and northern Indiana-Ohio are potential colonists of soybean in Ohio and Wisconsin, but that Ohio is also colonized by soybean aphids from other unknown overwintering locations. Soybean aphids in Ohio and Wisconsin exhibit a small degree of population structure that is not associated with the locations of soybean fields in which they occur, but that may be related to specific overwintering environments, multiple introductions to North America, or spatial variation in aphid phenology. There may be a limited range of suitable habitat for soybean aphid overwintering, in which case management of soybean aphids may be more effective at their overwintering sites. Further research efforts should focus on discovering more overwintering locations of soybean aphid in North America, and the relative impact of short- and long-distance dispersal events on soybean aphid population dynamics. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  15. Interactions between extrafloral nectaries, aphids and ants: are there competition effects between plant and homopteran sugar sources?

    NARCIS (Netherlands)

    Engel, V.; Fischer, M.D.; Wäckers, F.L.; Volkl, W.

    2001-01-01

    Broad bean (Vicia faba), an annual plant bearing extrafloral nectaries (EFN) at the base of the upper leaves, is regularly infested by two aphid species, Aphis fabae and Acyrthosiphon pisum. EFN and A. fabae are commonly attended by the ant, Lasius niger, while Ac. pisum usually remains uninfested.

  16. Leaf endophytic fungi of chili (Capsicum annuum and their role in the protection against Aphis gossypii (Homoptera: Aphididae

    Directory of Open Access Journals (Sweden)

    HENY HERNAWATI

    2011-10-01

    Full Text Available Hernawati H, Wiyono S, Santoso S (2011 Leaf endophytic fungi of chili (Capsicum annuum and their role in the protection against Aphis gossypii (Homoptera: Aphididae. Biodiversitas 12: 187-191. The objectives of the research were to study the diversity of leaf endophytic fungi of chili, and investigate its potency in protecting host plants against Aphis gossypii Glov. Endophytic fungi were isolated from chili leaves with two categories: aphid infested plants and aphid-free plants, collected from farmer’s field in Bogor, West Java. Abundance of each fungal species from leave samples was determined by calculating frequency of isolation. The isolated fungi were tested on population growth of A. gossypii. The fungal isolates showed suppressing effect in population growth test, was further tested on biology attributes i.e. life cycle, fecundity and body length. Five species of leaf endophytic fungi of chili were found i.e. Aspergillus flavus, Nigrospora sp., Coniothyrium sp., and SH1 (sterile hypha 1, SH2 (sterile hypha 2. Eventhough the number of endophytic fungi species in aphid-free and aphid-infested plant was same, the abundance of each species was different. Nigrospora sp., sterile hyphae 1 and sterile hyphae 2 was more abundant in aphid-free plants, but there was no difference in dominance of Aspergillus flavus and Coniothyrium sp. Nigrospora sp., SH1 and SH2 treatment reduced significantly fecundity of A. gossypii. Only SH2 treatment significantly prolonged life cycle and suppress body length, therefore the fungus had the strongest suppressing effect on population growth among fungi tested. The abundance and dominance of endophytic fungal species has relation with the infestation of A. gossypii in the field.

  17. Soybean Aphid Infestation Induces Changes in Fatty Acid Metabolism in Soybean.

    Directory of Open Access Journals (Sweden)

    Charles Kanobe

    Full Text Available The soybean aphid (Aphis glycines Matsumura is one of the most important insect pests of soybeans in the North-central region of the US. It has been hypothesized that aphids avoid effective defenses by inhibition of jasmonate-regulated plant responses. Given the role fatty acids play in jasmonate-induced plant defenses, we analyzed the fatty acid profile of soybean leaves and seeds from aphid-infested plants. Aphid infestation reduced levels of polyunsaturated fatty acids in leaves with a concomitant increase in palmitic acid. In seeds, a reduction in polyunsaturated fatty acids was associated with an increase in stearic acid and oleic acid. Soybean plants challenged with the brown stem rot fungus or with soybean cyst nematodes did not present changes in fatty acid levels in leaves or seeds, indicating that the changes induced by aphids are not a general response to pests. One of the polyunsaturated fatty acids, linolenic acid, is the precursor of jasmonate; thus, these changes in fatty acid metabolism may be examples of "metabolic hijacking" by the aphid to avoid the induction of effective defenses. Based on the changes in fatty acid levels observed in seeds and leaves, we hypothesize that aphids potentially induce interference in the fatty acid desaturation pathway, likely reducing FAD2 and FAD6 activity that leads to a reduction in polyunsaturated fatty acids. Our data support the idea that aphids block jasmonate-dependent defenses by reduction of the hormone precursor.

  18. Validation of a hairy roots system to study soybean-soybean aphid interactions

    Science.gov (United States)

    Morriss, Stephanie C.; Studham, Matthew E.; Tylka, Gregory L.

    2017-01-01

    The soybean aphid (Aphis glycines) is one of the main insect pests of soybean (Glycine max) worldwide. Genomics approaches have provided important data on transcriptome changes, both in the insect and in the plant, in response to the plant-aphid interaction. However, the difficulties to transform soybean and to rear soybean aphid on artificial media have hindered our ability to systematically test the function of genes identified by those analyses as mediators of plant resistance to the insect. An efficient approach to produce transgenic soybean material is the production of transformed hairy roots using Agrobacterium rhizogenes; however, soybean aphids colonize leaves or stems and thus this approach has not been utilized. Here, we developed a hairy root system that allowed effective aphid feeding. We show that this system supports aphid performance similar to that observed in leaves. The use of hairy roots to study plant resistance is validated by experiments showing that roots generated from cotyledons of resistant lines carrying the Rag1 or Rag2 resistance genes are also resistant to aphid feeding, while related susceptible lines are not. Our results demonstrate that hairy roots are a good system to study soybean aphid-soybean interactions, providing a quick and effective method that could be used for functional analysis of the resistance response to this insect. PMID:28358854

  19. Variable Isotopic Compositions of Host Plant Populations Preclude Assessment of Aphid Overwintering Sites

    Directory of Open Access Journals (Sweden)

    Michael S. Crossley

    2017-12-01

    Full Text Available Soybean aphid (Aphis glycines Matsumura is a pest of soybean in the northern Midwest whose migratory patterns have been difficult to quantify. Improved knowledge of soybean aphid overwintering sites could facilitate the development of control efforts with exponential impacts on aphid densities on a regional scale. In this preliminary study, we explored the utility of variation in stable isotopes of carbon and nitrogen to distinguish soybean aphid overwintering origins. We compared variation in bulk 13C and 15N content in buckthorn (Rhamnus cathartica L. and soybean aphids in Wisconsin, among known overwintering locations in the northern Midwest. Specifically, we looked for associations between buckthorn and environmental variables that could aid in identifying overwintering habitats. We detected significant evidence of correlation between the bulk 13C and 15N signals of soybean aphids and buckthorn, despite high variability in stable isotope composition within and among buckthorn plants. Further, the 15N signal in buckthorn varied predictably with soil composition. However, lack of sufficient differentiation of geographic areas along axes of isotopic and environmental variation appears to preclude the use of carbon and nitrogen isotopic signals as effective predictors of likely aphid overwintering sites. These preliminary data suggest the need for future work that can further account for variability in 13C and 15N within/among buckthorn plants, and that explores the utility of other stable isotopes in assessing likely aphid overwintering sites.

  20. Evaluation of neem seed extract for the control of major field pests of ...

    African Journals Online (AJOL)

    The insect pests studied were the cowpea aphid, Aphis craccivora Koch, legume bud thrips Megalurothrips sjostedti Tryb, legume pod borer, Maruca vitrata Fab. and pod sucking bugs under the application of 5% aqueous extract of neem seed kernel extract (NSKE). The trials were conducted during the early and late ...

  1. Development of groundnut rosette disease and vector resistant ...

    African Journals Online (AJOL)

    Mo

    It is transmitted by the aphid (Aphis craccivora) as the principal vector of the virus. It can cause up to 100% yield loss in severe attacks. Globally, rosette is estimated to cause annual yield losses worth US$ 156 million and potential yield gains in alleviating this constraint through crop improvement are estimated at US $ 121 ...

  2. Screening for Development of Host Plant Resistance to Infestation ...

    African Journals Online (AJOL)

    A study was carried out at International Institute of Tropical Agriculture (IITA) Kano station during 2009 and 2010 growing season, to screen fifty two (52) cowpea varieties for resistance to aphids (Aphis craccivora) attack. It was found that only seven (7) varieties were highly resistant, nine (9) were highly susceptible and the ...

  3. Antibiotics, primary symbionts and wing polyphenism in three aphid species.

    Science.gov (United States)

    Hardie, Jim; Leckstein, Peter

    2007-08-01

    The possible role of the primary Buchnera symbionts in wing polyphenism is examined in three aphid species. Presumptive winged aphids were fed on antibiotic-treated beans to destroy these symbionts. As previously reported, this leads to inhibited growth and low/zero fecundity. When such treatment is applied to the short-day-induced gynoparae (the winged autumn migrant) of the black bean aphid, Aphis fabae, it also causes many insects to develop as wingless or winged/wingless intermediate adult forms (apterisation). However, whilst antibiotic treatment of crowd-induced, long-day winged forms of the pea aphid, Acyrthosiphon pisum (a green and a pink clone) and the vetch aphid, Megoura viciae has similar effects on size and fecundity, it does not affect wing development. Food deprivation also promotes apterisation in A. fabae gynoparae but not in the crowd-induced winged morphs of the other two species. Thus, it appears that apterisation in A. fabae is not a direct effect of antibiotic treatment or a novel role for symbionts but is most likely related to impaired nutrition induced by the loss of the symbiont population.

  4. Studies on the quantitative uptake of 32P-labelled Trakephone by aphids

    International Nuclear Information System (INIS)

    Richter, S.

    1978-01-01

    The present paper reports methodical studies concerning the quantitative uptake of active substances by Acyrthosiphon pisum (Harris) and Aphis fabae Scop. on Vicia faba L. enriched by 32 P-labelled Trakephone. Aphids increasing in size were found to take up rising quantities of active substance. The uptake is the more continuous the more sessile the pests are. Feeding is delayed by the presence of Trakephone in the plant. The quantification of the active substance amounts is only practical in parts per million using the weight of the aphids. Higher concentrations of active substances in the plant will increase the uptake by the aphids. The autoradiogram qualitatively demonstrates the beginning of the uptake of active substances. It may be taken into consideration for examining the repellent properties of chemical compounds towards aphids. (author)

  5. Hypersensitive response to Aphis gossypii Glover in melon genotypes carrying the Vat gene.

    Science.gov (United States)

    Villada, Emilio Sarria; González, Elisa Garzo; López-Sesé, Ana Isabel; Castiel, Alberto Fereres; Gómez-Guillamón, María Luisa

    2009-01-01

    Aphis gossypii Glover causes direct and indirect damage to Cucumis melo L. crops. To decrease the harmful effects of this pest, one of the most economically and environmentally acceptable options is to use genetically resistant melon varieties. To date, several sources of resistance carrying the Vat gene are used in melon breeding programmes that aim to prevent A. gossypii colonization and the subsequent aphid virus transmission. The results suggest that the resistance conferred by this gene is associated with a microscopic hypersensitive response specific against A. gossypii. Soon after aphid infestation, phenol synthesis, deposits of callose and lignin in the cell walls, damage to the plasmalemma, and a micro-oxidative burst were detected in genotypes carrying the Vat gene. According to electrical penetration graph experiments, this response seems to occur after aphid stylets puncture the plant cells and not during intercellular stylet penetration. This type of plant tissue reaction was not detected in melon plants infested with Bemisia tabaci Gennadius nor Myzus persicae Sulzer.

  6. Soybean aphid (Hemiptera: Aphididae) response to soybean plant defense: stress levels, tradeoffs, and cross-virulence.

    Science.gov (United States)

    Enders, Laramy; Bickel, Ryan; Brisson, Jennifer; Heng-Moss, Tiffany; Siegfried, Blair; Zera, Anthony; Miller, Nick

    2014-02-01

    A variety of management methods to control the soybean aphid (Aphis glycines Matsumura) have been investigated since its invasion into North America in 2000, among them plant resistance has emerged as a viable option for reducing aphid damage to soybeans and preventing outbreaks. Plant resistance methods often use natural soybean plant defenses that impose stress on aphids by reducing fitness and altering behavior. Research efforts have heavily focused on identification and development of aphid resistant soybean varieties, leaving much unknown about soybean aphid response to stressful host plant defenses. In this study, we aimed to 1) evaluate lifetime fitness consequences and phenotypic variation in response to host plant-induced stress and 2) investigate whether trade-offs involving fitness costs and/or cross-virulence to multiple antibiotic soybean varieties exists. We compared aphid survival and reproduction during and after a short period of exposure to soybeans with the Rag2 resistance gene and measured aphid clonal variation in response to Rag2 soybeans. In addition, we measured the performance of Rag2 virulent and avirulent aphids on five soybean varieties with various forms of antibiotic resistance. Our results indicate that plant defenses impose high levels of stress and have long-term fitness consequences, even after aphids are removed from resistant plants. We identified one aphid clone that was able to colonize Rag2 among the seven clones tested, suggesting that virulent genotypes may be prevalent in natural populations. Finally, although we did not find evidence of cross-virulence to multiple antibiotic soybean varieties, our results suggest independent mechanisms of aphid virulence to Rag1 and Rag2 that may involve fitness costs.

  7. Indian Bt Cotton Varieties Do Not Affect the Performance of Cotton Aphids

    Science.gov (United States)

    Lawo, Nora C.; Wäckers, Felix L.; Romeis, Jörg

    2009-01-01

    Cotton varieties expressing Cry proteins derived from the soil bacterium Bacillus thuringiensis (Bt) are grown worldwide for the management of pest Lepidoptera. To prevent non-target pest outbreaks and to retain the biological control function provided by predators and parasitoids, the potential risk that Bt crops may pose to non-target arthropods is addressed prior to their commercialization. Aphids play an important role in agricultural systems since they serve as prey or host to a number of predators and parasitoids and their honeydew is an important energy source for several arthropods. To explore possible indirect effects of Bt crops we here examined the impact of Bt cotton on aphids and their honeydew. In climate chambers we assessed the performance of cotton aphids, Aphis gossypii Glover (Hemiptera: Aphididae) when grown on three Indian Bt (Cry1Ac) cotton varieties (MECH 12, MECH 162, MECH 184) and their non-transformed near isolines. Furthermore, we examined whether aphids pick up the Bt protein and analyzed the sugar composition of aphid honeydew to evaluate its suitability for honeydew-feeders. Plant transformation did not have any influence on aphid performance. However, some variation was observed among the three cotton varieties which might partly be explained by the variation in trichome density. None of the aphid samples contained Bt protein. As a consequence, natural enemies that feed on aphids are not exposed to the Cry protein. A significant difference in the sugar composition of aphid honeydew was detected among cotton varieties as well as between transformed and non-transformed plants. However, it is questionable if this variation is of ecological relevance, especially as honeydew is not the only sugar source parasitoids feed on in cotton fields. Our study allows the conclusion that Bt cotton poses a negligible risk for aphid antagonists and that aphids should remain under natural control in Bt cotton fields. PMID:19279684

  8. Plant genetic variation mediates an indirect ecological effect between belowground earthworms and aboveground aphids.

    Science.gov (United States)

    Singh, Akanksha; Braun, Julia; Decker, Emilia; Hans, Sarah; Wagner, Agnes; Weisser, Wolfgang W; Zytynska, Sharon E

    2014-10-21

    Interactions between aboveground and belowground terrestrial communities are often mediated by plants, with soil organisms interacting via the roots and aboveground organisms via the shoots and leaves. Many studies now show that plant genetics can drive changes in the structure of both above and belowground communities; however, the role of plant genetic variation in mediating aboveground-belowground interactions is still unclear. We used an earthworm-plant-aphid model system with two aphid species (Aphis fabae and Acyrthosiphon pisum) to test the effect of host-plant (Vicia faba) genetic variation on the indirect interaction between the belowground earthworms (Eisenia veneta) on the aboveground aphid populations. Our data shows that host-plant variety mediated an indirect ecological effect of earthworms on generalist black bean aphids (A. fabae), with earthworms increasing aphid growth rate in three plant varieties but decreasing it in another variety. We found no effect of earthworms on the second aphid species, the pea aphid (A. pisum), and no effect of competition between the aphid species. Plant biomass was increased when earthworms were present, and decreased when A. pisum was feeding on the plant (mediated by plant variety). Although A. fabae aphids were influenced by the plants and worms, they did not, in turn, alter plant biomass. Previous work has shown inconsistent effects of earthworms on aphids, but we suggest these differences could be explained by plant genetic variation and variation among aphid species. This study demonstrates that the outcome of belowground-aboveground interactions can be mediated by genetic variation in the host-plant, but depends on the identity of the species involved.

  9. Aphid Transmission of the Ontario Isolate of Plum Pox Virus.

    Science.gov (United States)

    Lowery, D Thomas; Vickers, Patricia M; Bittner, Lori A; Stobbs, Lorne W; Foottit, Robert G

    2015-10-01

    Utilization of timed virus acquisition access probes in studies of plum pox virus (PPV) transmission by aphids demonstrated that endemic species transmitted the virus readily from plum, Prunus domestica (L.) Batsch; peach, P. persica (L.); or dwarf flowering almond, P. glandulosa Thunberg., to peach seedlings. The green peach aphid, Myzus persicae (Sulzer), was shown to be the most efficient vector. Acquisition of virus by green peach aphids from infected peach leaves resulted in 18-28% infected peach seedlings, while aphids previously fed on infected leaves of plum transferred virus to 36% of peach seedlings. Although the spirea aphid, Aphis spiraecola (Patch), was a less efficient vector than M. persicae it is perhaps more important for the spread of PPV due to its greater abundance and occurrence earlier in the season when peach trees are thought to be more susceptible to infection. Virus transmission rates varied depending on the virus source and healthy test plant species. In contrast to many previous studies, aphid inoculation of the experimental host Nicotiana benthamiana Domin occurred at a low rate, never exceeding 4%. Acquisition of PPV by M. persicae from infected peach fruit was greatly reduced compared with acquisition from leaves. The results of this research indicate that the Ontario isolate of PPV-D is readily transmissible by aphids to peach and natural spread of the virus needs to be considered in future management or eradication programs. © Her Majesty in Right of Canada, as represented by the Minister of Agriculture and Agri-Food Canada. Published by Oxford University Press on behalf of Entomological Society of America.

  10. First record of the adventive oriental aphid Schizaphis piricola (Matsumura, 1917 (Hemiptera, Aphididae in Europe

    Directory of Open Access Journals (Sweden)

    Nicolás Pérez-Hidalgo

    2011-04-01

    Full Text Available The oriental aphid Schizaphis piricola Matsumura, is recorded for the first time in Europe, on the ornamental pear tree Pyrus calleryana in landscaped areas in Madrid (Spain. Data on the morphology of the primary host (apterous and alate fundatrigeniae and fundatrices, and their biology and distribution are given. The keys for identifying species of Schizaphis (Schizaphis in the Iberian Peninsula are updated. Two species of aphids are also recorded for the first time on Pyrus calleryana: S. piricola and Aphis pomi.

  11. New invasive species of aphids (Hemiptera, Aphididae in Serbia and Montenegro

    Directory of Open Access Journals (Sweden)

    Petrović-Obradović Olivera

    2010-01-01

    Full Text Available Three new invasive species of aphids have been found in Serbia: Chaitophorus populifolli Essig, Myzocallis walshii (Monell and Trichosiphonaphis polygonifoliae (Shinji and two have been found in Montenegro: Aphis illinoisensis Shimer and Tinocallis kahawaluokalani (Kirkaldy. A. illinoisensis is a pest of the grapevine, T. polygonifoliae, feeds on a decorative shrub (Lonicera and the other three feed on trees (Populus, Quercus and Lagerostroemia. Three of the species are American aphids and two are of Asian origin. Their morphology, illustrated by original drawings and data on the biology and distribution are given. .

  12. Effect of silicon and acibenzolar-s-methyl on colored cotton plants infested or not with Aphis gossypii Glover (Hemiptera, Aphididae

    Directory of Open Access Journals (Sweden)

    Eliana Alcantra

    2011-06-01

    Full Text Available Effect of silicon and acibenzolar-s-methyl on colored cotton plants infested or not with Aphis gossypii Glover (Hemiptera, Aphididae. The aphid Aphis gossypii is an insect pest that causes damage mainly at the beginning of the cotton plant development. The effect of resistance inductors silicon and acibenzolar-s-methyl (ASM on the development of colored cotton plants were researched in the presence and absence of A. gossypii. Three colored cotton cultivars were sown in pots and individually infested with 25 apterous aphids, 13 days after the application of the inductors. Fifteen days after plant emergence, the silicon was applied at a dosage equivalent to 3 t/ha and acibenzolar-s-methyl in 0.2% solution of the product BION 500®. After 21 days of infestation the following parameters were evaluated: plant height, stem diameter, dry matter of aerial part and root, and total number of aphids replaced. It was verified that the plant height was reduced in the presence of aphids and all variables were negatively affected by the application of ASM. However, silicon did not affect plant development.

  13. The Vat locus encodes for a CC-NBS-LRR protein that confers resistance to Aphis gossypii infestation and A. gossypii-mediated virus resistance.

    Science.gov (United States)

    Dogimont, Catherine; Chovelon, Veronique; Pauquet, Jerome; Boualem, Adnane; Bendahmane, Abdelhafid

    2014-12-01

    Aphis gossypii is a polyphagous sucking aphid and a vector for many viruses. In Cucumis melo, a dominant locus, Vat, confers a high level of resistance to Aphis gossypii infestation and to viruses transmitted by this vector. To investigate the mechanism underlying this double resistance, we first genetically dissected the Vat locus. We delimited the double resistance to a single gene that encodes for a coiled-coil-nucleotide-binding-site-leucine-rich repeat (CC-NBS-LRR) protein type. To validate the genetic data, transgenic lines expressing the Vat gene were generated and assessed for the double resistance. In this analysis, Vat-transgenic plants were resistant to A. gossypii infestation as well as A. gossypii-mediated virus transmission. When the plants were infected mechanically, virus infection occurred on both transgenic and non-transgenic control plants. These results confirmed that the cloned CC-NBS-LRR gene mediates both resistance to aphid infestation and virus infection using A. gossypii as a vector. This resistance also invokes a separate recognition and response phases in which the recognition phase involves the interaction of an elicitor molecule from the aphid and Vat from the plant. The response phase is not specific and blocks both aphid infestation and virus infection. Sequence analysis of Vat alleles suggests a major role of an unusual conserved LRR repeat in the recognition of A. gossypii. © 2014 The Authors The Plant Journal © 2014 John Wiley & Sons Ltd.

  14. Cucumber Plants Baited with Methyl Salicylate Accelerates Scymnus (Pullus) sodalis (Coleoptera: Coccinellidae) Visiting to Reduce Cotton Aphid (Hemiptera: Aphididae) Infestation.

    Science.gov (United States)

    Dong, Y J; Hwang, S Y

    2017-10-01

    The cotton aphid, Aphis gossypii (Glover) (Hemiptera: Aphididae), is a major pest of many crops worldwide and a major cucumber plant pest in Taiwan. Because cotton aphids rapidly develop insecticide resistance and because of the insecticide residue problem, a safe and sustainable method is required to replace conventional chemical control methods. Methyl salicylate (MeSA), a herbivore-induced plant volatile, has been shown to affect aphids' behavior and attract the natural enemies of aphids for reducing their population. Therefore, this study examined the direct effects of MeSA on cotton aphids' settling preference, population development, and attractiveness to natural enemies. The efficiency of using MeSA and the commercial insecticide pymetrozine for reducing the cotton aphid population in laboratory and outdoor cucumber plant pot was also examined. The results showed no difference in winged aphids' settling preference and population development between the MeSA and blank treatments. Cucumber plants infested with cotton aphids and baited with 0.1% or 10% MeSA contained significantly higher numbers of the natural enemy of cotton aphids, namely Scymnus (Pullus) sodalis (Weise) (Coleoptera: Coccinellidae), and MeSA-treated cucumber plants contained a lower number of aphids. Significantly lower cotton aphid numbers were found on cucumber plants within a 10-m range of MeSA application. In addition, fruit yield showed no difference between the MeSA and pymetrozine treatments. According to our findings, 0.1% MeSA application can replace insecticides as a cotton aphid control tool. However, large-scale experiments are necessary to confirm its efficiency and related conservation biological control strategies before further use. © The Author 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  15. Resistance of squash cultivars to Aphis gossypii Resistência de cultivares de abobrinha italiana a Aphis gossypii

    Directory of Open Access Journals (Sweden)

    Edson LL Baldin

    2009-09-01

    Full Text Available The Cucurbitaceae plants are damaged by attack of a wide spectrum of insects and microorganisms. Among the sucker insects causing damages on squash Cucurbita pepo (L., the aphid Aphis gossypii (Glover (Hemiptera: Aphididae is pointed as one of the most important, once their nymphs and adults suck the sap of the leaves continuously, besides being potential vector of virus. The present research evaluated different cultivars, aiming to identify the resistance against this aphid. The cultivars Novita, Sandy, Caserta Cac Melhorada, Novita Plus, Samira, AF-2858 and Caserta TS were used in laboratory assays (T= 25±2ºC; RH= 70±10% and fotophase= 12 h. In the immature phase the duration of nymphal instars was evaluated, the total duration and their viability, confining individuals on leaf disks from cultivars. In the adult phase the duration of reproductive period, the fecundity and the biological cycle were observed. The cultivar 'Sandy' expressed high level of antibiosis and feeding non-preference against A. gossypii, increasing the nymphal stage and causing mortality near to 70%. Besides, this cultivar reduced the production of nymphs and the longevity of the insects. The 'Novita Plus' cultivar also induced significant nymphal mortality, however in lower levels than those verified in 'Sandy', indicating a moderate resistance.As plantas da família Cucurbitaceae são prejudicadas pelo ataque de um amplo espectro de insetos e microrganismos. Dentre os insetos sugadores que atacam a abobrinha Cucurbita pepo (L., o pulgão Aphis gossypii (Glover (Hemiptera: Aphididae merece destaque, uma vez que suas ninfas e adultos sugam a seiva das folhas constantemente, além de ser potencial vetor de vírus. A presente pesquisa foi realizada com o objetivo de avaliar diferetes cultivares de abobrinha italiana quanto à resistência a esse pulgão. Utilizaram-se as cultivares Novita, Sandy, Caserta Cac Melhorada, Novita Plus, Samira, AF-2858 e Caserta TS em ensaios

  16. Evaluation of Aphis glycines as an Alternative Host for Supporting Aphelinus albipodus Against Myzus persicae on Capsicum annuum cv. Ox Horn and Hejiao 13.

    Science.gov (United States)

    Song, Y Q; Sun, H Z; Du, J; Wang, X D; Cheng, Z J

    2017-04-01

    Bank plant systems provide effective biological control for pests infesting commercially important crops. Aphids cause physical damage to crops by feeding on the leaves, as well as transmitting damaging viral diseases. To develop a bank plant system to control aphids that damage vegetable crops, we initially reared the parasitoid Aphelinus albipodus (Hayat and Fatima) on the soybean aphid, Aphis glycines (Matsumura) reared on the soybean plant, Glycine max (L.) that was elected as the alternate host. Parasitoid adults that emerged from A. glycines were allowed to parasitize second instar nymphs of the aphid Myzus persicae (Sulzer) which were reared on sweet pepper and chili pepper leaves. The results showed that A. albipodus females feeding and parasitizing M. persicae nymphs reared on sweet pepper lived for 18.9 days, with an average fecundity of 337.3 progenies/female, while females feeding and parasitizing on M. persicae nymphs reared on chili pepper lived for 18.8 days, with an average fecundity of 356.2 progenies/female. There were no significant difference in the development time and reproduction of A. albipodus individuals parasitizing M. persicae nymphs reared on sweet pepper and chili pepper plants. The intrinsic rate of increase (r), net reproductive rate (R 0 ), net aphid killing rate (Z 0 ), and finite aphid killing rate (θ) of A. albipodus parasitizing sweet pepper and chili pepper M. persicae was 0.2258 days -1 , 171.7 progeny adults, 222.6 aphids, and 0.4048 and 0.2295 days -1 , 191.8 progeny adults, 243.3 aphids, and 0.4021, respectively. Our results suggested that A. glycines could serve as an effective alternative host for supporting A. albipodus against M. persicae infesting sweet pepper and chili pepper.

  17. Composition of the essential oil of Cynanchum mongolicum (Asclepiadaceae) and insecticidal activities against Aphis glycines (Hemiptera: Aphidiae)

    Science.gov (United States)

    Yang, Wang; Zhao, An; Congai, Zhen; Qizhi, Liu; Wangpeng, Shi

    2014-01-01

    Background: Farmers have applied Cynanchum mongolicum (Maxim) to control crop pests. The aim of this study was to analyze composition of essential oil from C. mongolicum, evaluate insecticidal activities against Aphis glycines, and lethal doses. Materials and Methods: Essential oil from C. mongolicum was efficiently extracted by steam distillation. The main components of the oil were analyzed with a gas chromatography/mass spectrometry (GC/MS) system, and the insecticidal activity of the essential oil on soybean aphids Aphis glycines was tested using a variety of methods. Results: The components of the essential oil from C. mongolicum mainly included terpenes and ester compounds, of which (Z)-3-Hexen-1-ol acetate, cis-3-hexenyl isovalerate, α-farnesene, and β-caryophyllene accounted for 15.8, 10.4, 8.4, and 5.5%, respectively. With 1- and 2-day exposure, the essential oil showed pronounced contact toxicity (median lethal concentration (LC50) =37.8 and 38.4 μL/mL, respectively), weak fumigant toxicity (LC50 = 139.7 and 139.9 μL/L, respectively). The essential oil showed strong deterrent activity on soybean aphids in 2 and 4 h. Conclusion: The essential oil of C. mongolicum contained insecticidal components and possessed contact toxicity and deterrent activity to A. glycines. PMID:24914292

  18. Aphids and ladybird beetle’s abundance and diversity in alfalfa fields of Yasouj, southwestern of Iran

    Directory of Open Access Journals (Sweden)

    S. Mirfakhraie

    2017-12-01

    Full Text Available Alfalfa (Medicago sativa L. is the oldest and the most important forage legume. It has been cultivated for forage longer than any other crop. Diversity indices provide information about community composition. Diversity indices are measured by species richness and species evenness therefore, it could give us more ecological information rather than a simple species list in the fields. During 2015-2016, aphids and ladybird beetle’s abundance and diversity were monitored in alfalfa fields of Yasouj. Samplings were conducted with 150 plants in the alfalfa fields from mid-May to mid-November. Species richness was measured using Shannon and Simpson indices. In this study, six aphids and five coccinellid species were collected and identified. Among the collected aphid species, Aphis fabae (Scopoli, 1763 and Therioaphis maculata (Buckton, 1899 were most abundant in the fields. For coccinellids, Coccinella septempunctata L. was the most abundant species. Highest aphid species diversity was observed on 17 May 2016.

  19. Aphids, predators and parasitoids.

    Science.gov (United States)

    Wadhams, L J; Birkett, M A; Powell, W; Woodcock, C M

    1999-01-01

    A number of studies have demonstrated the role of herbivore-induced release of plant volatiles in mediating foraging behaviour of aphid parasitoids, particularly with the parasitoid Aphidius ervi, its aphid host Acyrthosiphon pisum and the aphid food plant Vicia faba. These studies have shown that feeding by the aphid alters the composition of volatiles released by the plant and that these compounds act as synomones for the foraging parasitoid. Of particular interest is the species-specificity of the herbivore-induced synomones associated with different aphids feeding on V. faba. Aphids employ various pheromones that mediate behaviour, particularly mating and alarm responses. These pheromones play important roles in reproduction and defence against predation and parasitism. Many species of aphids reproduce sexually on their primary hosts during the autumn and the sexual females produce a pheromone that attracts males. The sex pheromones for a number of aphid species have been identified and laboratory and field studies have shown that synthetic material can act as a kairomone in attracting predators and parasitoids. The aphid alarm pheromone is released from the cornicles of aphids when they are attacked by predators or parasitoids. The activity of the main alarm pheromone component, (E)-beta-farnesene, is inhibited by the related sesquiterpene hydrocarbon beta-caryophyllene, which is reported to attract the lacewing Chrysoperla carnea. In addition, electrophysiological studies have shown that the seven-spot ladybird, Coccinella septempunctata, possesses specific olfactory receptors for (E)-beta-farnesene and beta-caryophyllene. Laboratory studies show these compounds to have behavioural activity with C. septempunctata, suggesting that they may be involved in prey location.

  20. Resource Provisioning as a Habitat Manipulation Tactic to Enhance the Aphid Parasitoid, Aphidius colemani Viereck (Hymenoptera: Braconidae: Aphidiinae), and the Plant-Mediated Effects of a Systemic Insecticide, Imidacloprid

    OpenAIRE

    Charles-Tollerup, Jennifer Jean

    2012-01-01

    Resource provisioning as a habitat manipulation tactic to control the melon aphid, Aphis gossypii, by the polyphagous aphid parasitoid, Aphidius colemani, was investigated in the ornamental, potted-plant nursery using the shrub Photinia x fraseri as a plant host. Floral food resources from an invasive, Conium maculatum, an ornamental, P. x fraseri, and a native, Salvia apiana considerably improved the longevity and fecundity of A. colemani in laboratory experiments. Additionally, floral nec...

  1. Evidence for Soybean Aphid (Hemiptera: Aphididae) Resistance to Pyrethroid Insecticides in the Upper Midwestern United States.

    Science.gov (United States)

    Hanson, Anthony A; Menger-Anderson, James; Silverstein, Celia; Potter, Bruce D; MacRae, Ian V; Hodgson, Erin W; Koch, Robert L

    2017-10-01

    Soybean aphid, Aphis glycines Matsumura (Hemiptera: Aphididae), is a damaging invasive pest of soybean in the upper Midwest. Threshold-based insecticide applications are the primary control method for soybean aphid, but few insecticide groups are available (i.e., pyrethroids, organophosphates, and neonicotinoids). To quantify current levels of soybean aphid susceptibility to pyrethroids in the upper Midwest and monitor for insecticide resistance, leaf-dip bioassays were performed with λ-cyhalothrin in 2013-2015, and glass-vial bioassays were performed with λ-cyhalothrin and bifenthrin in 2015 and 2016. Soybean aphids were collected from 27 population-years in Minnesota and northern Iowa, and were compared with a susceptible laboratory colony with no known insecticide exposure since discovery of soybean aphid in North America in 2000. Field-collected aphids from some locations in leaf-dip and glass-vial bioassays had significantly lower rates of insecticide-induced mortality compared with the laboratory population, although field population susceptibility varied by year. In response to sublethal concentrations of λ-cyhalothrin, adult aphids from some locations required higher concentrations of insecticide to reduce nymph production compared with the laboratory population. The most resistant field population demonstrated 39-fold decreased mortality compared with the laboratory population. The resistance documented in this study, although relatively low for most field populations, indicates that there has been repeated selection pressure for pyrethroid resistance in some soybean aphid populations. Integrated pest management and insecticide resistance management should be practiced to slow further development of soybean aphid resistance to pyrethroids. © The Author 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  2. Rapid evolution of symbiont-mediated resistance compromises biological control of aphids by parasitoids.

    Science.gov (United States)

    Käch, Heidi; Mathé-Hubert, Hugo; Dennis, Alice B; Vorburger, Christoph

    2018-02-01

    There is growing interest in biological control as a sustainable and environmentally friendly way to control pest insects. Aphids are among the most detrimental agricultural pests worldwide, and parasitoid wasps are frequently employed for their control. The use of asexual parasitoids may improve the effectiveness of biological control because only females kill hosts and because asexual populations have a higher growth rate than sexuals. However, asexuals may have a reduced capacity to track evolutionary change in their host populations. We used a factorial experiment to compare the ability of sexual and asexual populations of the parasitoid Lysiphlebus fabarum to control caged populations of black bean aphids ( Aphis fabae ) of high and low clonal diversity. The aphids came from a natural population, and one-third of the aphid clones harbored Hamiltonella defensa , a heritable bacterial endosymbiont that increases resistance to parasitoids. We followed aphid and parasitoid population dynamics for 3 months but found no evidence that the reproductive mode of parasitoids affected their effectiveness as biocontrol agents, independent of host clonal diversity. Parasitoids failed to control aphids in most cases, because their introduction resulted in strong selection for clones protected by H. defensa . The increasingly resistant aphid populations escaped control by parasitoids, and we even observed parasitoid extinctions in many cages. The rapid evolution of symbiont-conferred resistance in turn imposed selection on parasitoids. In cages where asexual parasitoids persisted until the end of the experiment, they became dominated by a single genotype able to overcome the protection provided by H. defensa . Thus, there was evidence for parasitoid counteradaptation, but it was generally too slow for parasitoids to regain control over aphid populations. It appears that when pest aphids possess defensive symbionts, the presence of parasitoid genotypes able to overcome

  3. Coexistence of three specialist aphids on common milkweed, Asclepias syriaca.

    Science.gov (United States)

    Smith, R A; Mooney, K A; Agrawal, A A

    2008-08-01

    Coexistence of host-specific herbivores on plants is believed to be governed by interspecific interactions, but few empirical studies have systematically unraveled these dynamics. We investigated the role of several factors in promoting coexistence among the aphids Aphis nerii, Aphis asclepiadis, and Myzocallis asclepiadis that all specialize on common milkweed (Asclepias syriaca). Competitive exclusion is thought to occur when interspecific competition is stronger than intraspecific competition. Consequently, we investigated whether predators, mutualists, or resource quality affected the strength of intra- vs. interspecific competition among aphids in factorial manipulations of competition with exposure to predation, ants, and variable plant genotypes in three separate experiments. In the predation x competition experiment, predators reduced aphid per capita growth by 66%, but the strength of intra- and interspecific competition did not depend on predators. In the ants x competition experiment, ants reduced per capita growth of A. nerii and M. asclepiadis (neither of which were mutualists with ants) by approximately one-half. In so doing, ants ameliorated the negative effects of these competitors on ant-tended A. asclepiadis by two-thirds, representing a novel benefit of ant-aphid mutualism. Nevertheless, ants alone did not explain the persistence of competitively inferior A. asclepiadis as, even in the presence of ants, interspecific competition remained stronger than intraspecific competition. In the plant genotype x competition experiment, both A. asclepiadis and M. asclepiadis were competitively inferior to A. nerii, with the strength of interspecific competition exceeding that of intraspecific competition by 83% and 23%, respectively. Yet these effects differed among milkweed genotypes, and there were one or more plant genotypes for each aphid species where coexistence was predicted. A synthesis of our results shows that predators play little or no role in

  4. Modeling distribution and abundance of soybean aphid in soybean fields using measurements from the surrounding landscape.

    Science.gov (United States)

    Bahlai, C A; Sikkema, S; Hallett, R H; Newman, J; Schaafsma, A W

    2010-02-01

    Soybean aphid (Aphis glycines Matsumura) is a severe pest of soybean in central North America. Outbreaks of the aphid in Ontario are often spotty in distribution, with some geographical areas affected severely and others with few or no aphid populations occurring in soybean for the duration of the season. A. glycines spend summers on soybean and overwinter on buckthorn, a shrub that is widespread in southern Ontario and is commonly found in agricultural hedgerows and at the margins of woodlots. A. glycines likely use both short distance migratory flights from buckthorn and longer distance dispersal flights in the search for acceptable summer hosts. This study aims to model colonization of soybean fields by A. glycines engaged in early-season migration from overwintering hosts. Akaike's information criterion (AIC) was used to rank numerous competing linear and probit models using field parameters to predict aphid presence, colonization, and density. The variable that best modeled aphid density in soybean fields in the early season was the ratio of buckthorn density to field area, although dramatic differences in relationships between the parameters were observed between study years. This study has important applications in predicting areas that are at elevated risk of developing economically damaging populations of soybean aphid and which may act as sources for further infestation.

  5. Evaluation of late vegetative and reproductive stage soybeans for resistance to soybean aphid (Hemiptera: Aphididae).

    Science.gov (United States)

    Prochaska, T J; Pierson, L M; Baldin, E L L; Hunt, T E; Heng-Moss, T M; Reese, J C

    2013-04-01

    The soybean aphid, Aphis glycines Matsumura, has become the most significant soybean [Glycine max (L.) Merrill] insect pest in the north central soybean production region of North America. The objectives of this research were to measure selected genotypes for resistance to the soybean aphid in the later vegetative and reproductive stages under field conditions, and confirm the presence of tolerance in KS4202. The results from 2007 to 2011 indicate that KS4202 can support aphid populations with minimal yield loss at levels where significant yield loss would be expected in most other genotypes. The common Nebraska cultivar, 'Asgrow 2703', appears to show signs of tolerance as well. None of the yield parameters were significantly different between the aphid infested and noninfested treatments. Based on our results, genotypes may compensate for aphid feeding in different ways. Asgrow 2703 appears to produce a similar number of seeds as its noninfested counterpart, although the seeds produced are slightly smaller. Field evaluation of tolerance in KS4202 indicated a yield loss of only 13% at 34,585-53,508 cumulative aphid-days, when 24-36% yield loss would have been expected.

  6. Aphid Parasitoid Mothers Don't Always Know Best through the Whole Host Selection Process.

    Directory of Open Access Journals (Sweden)

    Quentin Chesnais

    Full Text Available Parasitoid host selection behaviour has been extensively studied in experimentally simplified tritrophic systems formed by one single food chain (one plant, one herbivore and one parasitoid species. The "Mother knows best" hypothesis predicts that the preference for a plant-host complex should be positively correlated with plant quality for offspring performance. We studied the host selection behaviour of the generalist endoparasitoid Aphidius matricariae towards the black bean aphid Aphis fabae in the intercrop system including Vicia faba as a focal plant and its companion plant Camelina sativa. Dual-choice laboratory bioassays revealed that parasitoid females preferred to orientate towards (1 the plant-aphid complex over the non-infested plant whatever the complex (2 the C. sativa-A. fabae complex over the V. faba-A. fabae complex. In dual choice attack rate bioassays, parasitoid females showed more interest towards the aphids on C. sativa but paradoxically chose to oviposit more in aphids on V. faba. Ultimately, parasitoids that had developed on the V. faba-A. fabae complex exhibited better fitness parameters. By demonstrating that parasitoid females were able to discriminate the aphid host that offered the highest fitness to their offspring but selected beforehand the least suitable plant-aphid complex, we provide key insight into the disruption in their host selection behaviour potentially triggered by diverse habitats. This suggests that the "Mother knows best" hypothesis could be thwarted by increasing the complexity of the studied systems.

  7. Aphid Parasitoid Mothers Don't Always Know Best through the Whole Host Selection Process.

    Science.gov (United States)

    Chesnais, Quentin; Ameline, Arnaud; Doury, Géraldine; Le Roux, Vincent; Couty, Aude

    2015-01-01

    Parasitoid host selection behaviour has been extensively studied in experimentally simplified tritrophic systems formed by one single food chain (one plant, one herbivore and one parasitoid species). The "Mother knows best" hypothesis predicts that the preference for a plant-host complex should be positively correlated with plant quality for offspring performance. We studied the host selection behaviour of the generalist endoparasitoid Aphidius matricariae towards the black bean aphid Aphis fabae in the intercrop system including Vicia faba as a focal plant and its companion plant Camelina sativa. Dual-choice laboratory bioassays revealed that parasitoid females preferred to orientate towards (1) the plant-aphid complex over the non-infested plant whatever the complex (2) the C. sativa-A. fabae complex over the V. faba-A. fabae complex. In dual choice attack rate bioassays, parasitoid females showed more interest towards the aphids on C. sativa but paradoxically chose to oviposit more in aphids on V. faba. Ultimately, parasitoids that had developed on the V. faba-A. fabae complex exhibited better fitness parameters. By demonstrating that parasitoid females were able to discriminate the aphid host that offered the highest fitness to their offspring but selected beforehand the least suitable plant-aphid complex, we provide key insight into the disruption in their host selection behaviour potentially triggered by diverse habitats. This suggests that the "Mother knows best" hypothesis could be thwarted by increasing the complexity of the studied systems.

  8. The effects of Aphis fabae infestation on the antioxidant response and heavy metal content in field grown Philadelphus coronarius plants

    Energy Technology Data Exchange (ETDEWEB)

    Kafel, Alina, E-mail: akafel@us.edu.pl [University of Silesia, Department of Animal Physiology and Ecotoxicology, Bankowa 9, PL 40-007, Katowice (Poland); Nadgorska-Socha, Aleksandra [University of Silesia, Department of Ecology, Bankowa 9, PL 40-007, Katowice (Poland); Gospodarek, Janina [Agricultural University of Krakow, Department of Agricultural Environment Protection, Mickiewicza 21, PL 31-120, Krakow (Poland); Babczynska, Agnieszka; Skowronek, Magda [University of Silesia, Department of Animal Physiology and Ecotoxicology, Bankowa 9, PL 40-007, Katowice (Poland); Kandziora, Marta [University of Silesia, Department of Ecology, Bankowa 9, PL 40-007, Katowice (Poland); Rozpedek, Katarzyna [University of Silesia, Department of Animal Physiology and Ecotoxicology, Bankowa 9, PL 40-007, Katowice (Poland)

    2010-02-01

    The purpose of this study was to explore a possible relationship between the soil availability of metals and their concentrations in various parts of Philadelphuscoronarius plants. Moreover, the possible impact of an aphid infestation on the contamination and antioxidant response of plants from the urban environment of Krakow and the reference rural area of Zagaje Stradowskie (southern Poland) was analyzed. The contents of the glutathione, proline, non-protein - SH groups, antioxidants, and phosphorous and the levels of guaiacol peroxidase and catalase activity in leaves and shoots either infested or not by the aphid Aphis fabae Scop., were measured. The potential bioavailability of metals (Cd; Cu; Ni; Pb; Zn) in the soil and their concentrations in P. coronarius plants originating from both sites were compared. The antioxidant responses were generally elevated in the plants in the polluted area. Such reactions were additionally changed by aphid infestation. Generally, the concentrations of metals in the HNO{sub 3} and CaCl{sub 2} extractants of the soils from two layers at the 0-20 and 20-40 cm depths from the polluted area were higher than in those from the reference area. Such differences were found for nickel and lead (in all examined extractants), zinc (in soil extractants from the layer at 20-40 cm) and cadmium (in HNO{sub 3} extractants). Significant positive relationships between the lead concentrations in the soil and in the plants were found. In the parts of plants from the polluted area, higher concentrations of Pb and Zn (leaves and shoots) and Cd (shoots) were recorded. The shoots and leaves of plants infested with aphids had higher concentrations of Zn but lower Pb. Moreover, their leaves had higher contaminations of Cu and Ni. In conclusion, aphids affected not only the antioxidant response of the plants but also their contamination with metals, especially contamination of the leaves.

  9. Ant mimicry by an aphid parasitoid, Lysiphlebus fabarum.

    Science.gov (United States)

    Rasekh, Arash; Michaud, J P; Kharazi-Pakdel, Aziz; Allahyari, Hossein

    2010-01-01

    In Iran, Lysiphlebus fabarum (Marshall) (Hymenoptera: Braconidae: Aphidiinae) is a uniparental parasitoid of the black bean aphid, Aphis fabae Scopoli (Hemiptera: Aphididae), that possesses various highly evolved adaptations for foraging within ant-tended aphid colonies. Direct observations and video recordings were used to analyze the behavior of individual females foraging for A. fabae on bean leaf disks in open arenas in the laboratory. Females exploited aphids as hosts and as a source of food, allocating within-patch time as follows: resting - 10.4%, grooming - 8.2%, searching - 11.5%, antennation (host recognition) - 7.5%, antennation (honeydew solicitation mimicking ants) - 31.9%, abdominal bending (attack preparation) 19.7%, probing with the ovipositor (attack) - 10.8%. The mean handling time for each aphid encountered was 2.0 ± 0.5 min. Females encountered an average of 47.4 ± 6.4 aphids per hour, but laid only 1.2 eggs per hour. The ovipositor insertion time for parasitism ranged from 2 sec to longer than a minute, but most insertions did not result in an egg being laid. A. fabae defensive behaviors included kicking, raising and swiveling the body, and attempts to smear the attacker with cornicle secretions, sometimes with lethal results. Food deprivation for 4-6 h prior to testing increased the frequency of ant mimcry by L. fabarum. Females also used ant-like antennation to reduce A. fabae defensive behavior, e.g. the frequency of kicking. L. fabarum attacks primed A. fabae to be more responsive to subsequent honeydew solicitation, such that experienced females improved their feeding success by alternating between the roles of parasitoid and ant mimic. These results reveal the possibility for mutualisms to evolve between L. fabarum and the ant species that tend A. fabae, since L. fabarum receive ant protection for their progeny and may benefit the ants by improving A. fabae responsiveness to honeydew solicitation.

  10. Long-term phenological trends, species accumulation rates, aphid traits and climate: five decades of change in migrating aphids.

    Science.gov (United States)

    Bell, James R; Alderson, Lynda; Izera, Daniela; Kruger, Tracey; Parker, Sue; Pickup, Jon; Shortall, Chris R; Taylor, Mark S; Verrier, Paul; Harrington, Richard

    2015-01-01

    Aphids represent a significant challenge to food production. The Rothamsted Insect Survey (RIS) runs a network of 12·2-m suction-traps throughout the year to collect migrating aphids. In 2014, the RIS celebrated its 50th anniversary. This paper marks that achievement with an extensive spatiotemporal analysis and the provision of the first British annotated checklist of aphids since 1964. Our main aim was to elucidate mechanisms that advance aphid phenology under climate change and explain these using life-history traits. We then highlight emerging pests using accumulation patterns. Linear and nonlinear mixed-effect models estimated the average rate of change per annum and effects of climate on annual counts, first and last flights and length of flight season since 1965. Two climate drivers were used: the accumulated day degrees above 16 °C (ADD16) indicated the potential for migration during the aphid season; the North Atlantic Oscillation (NAO) signalled the severity of the winter before migration took place. All 55 species studied had earlier first flight trends at rate of β = -0·611 ± SE 0·015 days year(-1). Of these species, 49% had earlier last flights, but the average species effect appeared relatively stationary (β = -0·010 ± SE 0·022 days year(-1)). Most species (85%) showed increasing duration of their flight season (β = 0·336 ± SE 0·026 days year(-1)), even though only 54% increased their log annual count (β = 0·002 ± SE aphid phenology in a spatiotemporal context. Early in the year when the first aphids were migrating, the effect of the winter NAO was highly significant. Further into the year, ADD16 was a strong predictor. Latitude had a near linear effect on first flights, whereas longitude produced a generally less-clear effect on all responses. Aphids that are anholocyclic (permanently parthenogenetic) or are monoecious (non-host-alternating) were advancing their phenology faster than those that were not

  11. Tanggap fungsional Menochilus sexmaculatus Fabricius (Coleoptera: Coccinellidae terhadap Aphis gossypii (Glover (Homoptera: Aphididae pada umur tanaman cabai berbeda

    Directory of Open Access Journals (Sweden)

    Novri Nelly

    2015-09-01

    Full Text Available The lady beetle, Menochilus sexmaculatus is one of the biological control agents that can be used to control aphids. Presently, there is a lack of information about the effectiveness of this beetle to control aphids. The objective of this research was to study the functional response of M. sexmaculatus on Aphis gossypii at different ages of plants. All preys were exposed to one M. sexmaculatus adult for an hour at five different densities of aphids (10, 20, 30, 40, and 50 individuals is four different ages of chilli plants (2,4,6, and 8 weeks. Data were analyzed by ANOVA and logistic regression to determine the type of functional response. The results showed that the ability of M. sexmaculatus to prey was not significant at 2 to 4 and 6 to 8 weeks old chilli plants. At 2 week old chilli plants M. sexmaculatus showed type I of functional response, while at 4, 6 and 8 weeks the functional response were type III.

  12. Identification of top-down forces regulating cotton aphid population growth in transgenic Bt cotton in central China.

    Directory of Open Access Journals (Sweden)

    Peng Han

    Full Text Available The cotton aphid Aphis gossypii Glover is the main aphid pest in cotton fields in the Yangtze River Valley Cotton-planting Zone (YRZ in central China. Various natural enemies may attack the cotton aphid in Bt cotton fields but no studies have identified potential specific top-down forces that could help manage this pest in the YRZ in China. In order to identify possibilities for managing the cotton aphid, we monitored cotton aphid population dynamics and identified the effect of natural enemies on cotton aphid population growth using various exclusion cages in transgenic Cry1Ac (Bt+CpTI (Cowpea trypsin inhibitor cotton field in 2011. The aphid population growth in the open field (control was significantly lower than those protected or restricted from exposure to natural enemies in the various exclusion cage types tested. The ladybird predator Propylaea japonica Thunberg represented 65% of Coccinellidae predators, and other predators consisted mainly of syrphids (2.1% and spiders (1.5%. The aphid parasitoids Aphidiines represented 76.7% of the total count of the natural enemy guild (mainly Lysiphlebia japonica Ashmead and Binodoxys indicus Subba Rao & Sharma. Our results showed that P. japonica can effectively delay the establishment and subsequent population growth of aphids during the cotton growing season. Aphidiines could also reduce aphid density although their impact may be shadowed by the presence of coccinellids in the open field (likely both owing to resource competition and intraguild predation. The implications of these results are discussed in a framework of the compatibility of transgenic crops and top-down forces exerted by natural enemy guild.

  13. Arabidopsis thaliana—Aphid Interaction

    Science.gov (United States)

    Louis, Joe; Singh, Vijay; Shah, Jyoti

    2012-01-01

    Aphids are important pests of plants that use their stylets to tap into the sieve elements to consume phloem sap. Besides the removal of photosynthates, aphid infestation also alters source-sink patterns. Most aphids also vector viral diseases. In this chapter, we will summarize on recent significant findings in plant-aphid interaction, and how studies involving Arabidopsis thaliana and Myzus persicae (Sülzer), more commonly known as the green peach aphid (GPA), are beginning to provide important insights into the molecular basis of plant defense and susceptibility to aphids. The recent demonstration that expression of dsRNA in Arabidopsis can be used to silence expression of genes in GPA has further expanded the utility of Arabidopsis for evaluating the contribution of the aphid genome-encoded proteins to this interaction. PMID:22666177

  14. The effect of Chrysoperla carnea (Neuroptera: Chrysopidae) and Adalia bipunctata (Coleoptera: Coccinellidae) on the spread of cucumber mosaic virus (CMV) by Aphis gossypii (Hemiptera: Aphididae).

    Science.gov (United States)

    Garzón, A; Budia, F; Medina, P; Morales, I; Fereres, A; Viñuela, E

    2015-02-01

    The effects of two aphidophagous predators, the larvae of Chrysoperla carnea and adults of Adalia bipunctata, on the spread of cucumber mosaic virus (CMV) transmitted in a non-persistent manner by the cotton aphid Aphis gossypii were studied under semi-field conditions. Natural enemies and aphids were released inside insect-proof cages (1 m × 1 m × 1 m) with a central CMV-infected cucumber plant surrounded by 48 healthy cucumber seedlings, and the spatiotemporal dynamics of the virus and vector were evaluated in the short and long term (1 and 5 days) in the presence and absence of the natural enemy. The spatial analysis by distance indices methodology together with other indices measuring the dispersal around a single focus was used to assess the spatial pattern and the degree of association between the virus and its vector. Both natural enemies significantly reduced the number of aphids in the CMV-source plant after 5 days but not after 1 day. The CMV transmission rate was generally low, especially after 1 day, due to the limited movement of aphids from the central CMV-source plant, which increased slightly after 5 days. Infected plants were mainly located around the central virus-infected source plant, and the percentage of aphid occupation and CMV-infected plants did not differ significantly in absence and presence of natural enemies. The distribution patterns of A. gossypii and CMV were only coincident close to the central plant. The complexity of multitrophic interactions and the role of aphid predators in the spread of CMV are discussed.

  15. Mapping novel aphid resistance QTL from wild soybean, Glycine soja 85-32.

    Science.gov (United States)

    Zhang, Shichen; Zhang, Zhongnan; Bales, Carmille; Gu, Cuihua; DiFonzo, Chris; Li, Ming; Song, Qijian; Cregan, Perry; Yang, Zhenyu; Wang, Dechun

    2017-09-01

    Two novel QTLs conferring aphid resistance were mapped and validated on soybean chromosomes 8 and 16, respectively. Closely linked markers were developed to assist breeding for aphid resistance. Soybean aphid, Aphis glycines Matsumura, is a highly destructive pest for soybean production. E08934, a soybean advanced breeding line derived from the wild soybean Glycine soja 85-32, has shown strong resistance to aphids. To dissect the genetic basis of aphid resistance in E08934, a mapping population (070020) consisting of 140 F 3 -derived lines was developed by crossing E08934 with an aphid-susceptible line E00003. This mapping population was evaluated for aphid resistance in a greenhouse trial in 2010 and three field trials in 2009, 2010, and 2011, respectively. The broad-sense heritability across the field trials was 0.84. In the mapping population 070020, two major quantitative trait loci (QTL) were detected as significantly associated with aphid resistance, and designated as Rag6 and Rag3c, respectively. Rag6 was mapped to a 10.5 centiMorgan (cM) interval between markers MSUSNP08-2 and Satt209 on chromosome 8, explaining 19.5-46.4% of the phenotypic variance in different trials. Rag3c was located at a 7.5 cM interval between markers MSUSNP16-10 and Sat_370 on chromosome 16, explaining 12.5-22.9% of the phenotypic variance in different trials. Rag3c had less resistance effect than Rag6 across all the trials. Furthermore, Rag6 and Rag3c were confirmed in two validation populations with different genetic backgrounds. No significant interaction was detected between Rag6 and Rag3c in either the mapping population or the validation populations. Both Rag6 and Rag3c were indicated as conferring antibiosis resistance to aphids by a no-choice test. The new aphid-resistance gene(s) derived from the wild germplasm G. soja 85-32 are valuable in improving soybeans for aphid resistance.

  16. Comparative transcriptome analysis of Gossypium hirsutum L. in response to sap sucking insects: aphid and whitefly.

    Science.gov (United States)

    Dubey, Neeraj Kumar; Goel, Ridhi; Ranjan, Alok; Idris, Asif; Singh, Sunil Kumar; Bag, Sumit K; Chandrashekar, Krishnappa; Pandey, Kapil Deo; Singh, Pradhyumna Kumar; Sawant, Samir V

    2013-04-11

    Cotton (Gossypium hirsutum L.) is a major fiber crop that is grown worldwide; it faces extensive damage from sap-sucking insects, including aphids and whiteflies. Genome-wide transcriptome analysis was performed to understand the molecular details of interaction between Gossypium hirsutum L. and sap-sucking pests, namely Aphis gossypii (Aphid) and Bemisia tabacci (Whiteflies). Roche's GS-Titanium was used to sequence transcriptomes of cotton infested with aphids and whiteflies for 2 h and 24 h. A total of 100935 contigs were produced with an average length of 529 bp after an assembly in all five selected conditions. The Blastn of the non-redundant (nr) cotton EST database resulted in the identification of 580 novel contigs in the cotton plant. It should be noted that in spite of minimal physical damage caused by the sap-sucking insects, they can change the gene expression of plants in 2 h of infestation; further change in gene expression due to whiteflies is quicker than due to aphids. The impact of the whitefly 24 h after infestation was more or less similar to that of the aphid 2 h after infestation. Aphids and whiteflies affect many genes that are regulated by various phytohormones and in response to microbial infection, indicating the involvement of complex crosstalk between these pathways. The KOBAS analysis of differentially regulated transcripts in response to aphids and whiteflies indicated that both the insects induce the metabolism of amino acids biosynthesis specially in case of whiteflies infestation at later phase. Further we also observed that expression of transcript related to photosynthesis specially carbon fixation were significantly influenced by infestation of Aphids and Whiteflies. A comparison of different transcriptomes leads to the identification of differentially and temporally regulated transcripts in response to infestation by aphids and whiteflies. Most of these differentially expressed contigs were related to genes involved in biotic

  17. The entomopathogenic fungal endophytes Purpureocillium lilacinum (formerly Paecilomyces lilacinus and Beauveria bassiana negatively affect cotton aphid reproduction under both greenhouse and field conditions.

    Directory of Open Access Journals (Sweden)

    Diana Castillo Lopez

    Full Text Available The effects of two entomopathogenic fungal endophytes, Beauveria bassiana and Purpureocillium lilacinum (formerly Paecilomyces lilacinus, were assessed on the reproduction of cotton aphid, Aphis gossypii Glover (Homoptera:Aphididae, through in planta feeding trials. In replicate greenhouse and field trials, cotton plants (Gossypium hirsutum were inoculated as seed treatments with two concentrations of B. bassiana or P. lilacinum conidia. Positive colonization of cotton by the endophytes was confirmed through potato dextrose agar (PDA media plating and PCR analysis. Inoculation and colonization of cotton by either B. bassiana or P. lilacinum negatively affected aphid reproduction over periods of seven and 14 days in a series of greenhouse trials. Field trials were conducted in the summers of 2012 and 2013 in which cotton plants inoculated as seed treatments with B. bassiana and P. lilacinum were exposed to cotton aphids for 14 days. There was a significant overall effect of endophyte treatment on the number of cotton aphids per plant. Plants inoculated with B. bassiana had significantly lower numbers of aphids across both years. The number of aphids on plants inoculated with P. lilacinum exhibited a similar, but non-significant, reduction in numbers relative to control plants. We also tested the pathogenicity of both P. lilacinum and B. bassiana strains used in the experiments against cotton aphids in a survival experiment where 60% and 57% of treated aphids, respectively, died from infection over seven days versus 10% mortality among control insects. Our results demonstrate (i the successful establishment of P. lilacinum and B. bassiana as endophytes in cotton via seed inoculation, (ii subsequent negative effects of the presence of both target endophytes on cotton aphid reproduction using whole plant assays, and (iii that the P. lilacinum strain used is both endophytic and pathogenic to cotton aphids. Our results illustrate the potential of

  18. Comparative transcriptional analysis of asexual and sexual morphs reveals possible mechanisms in reproductive polyphenism of the cotton aphid.

    Directory of Open Access Journals (Sweden)

    Li-Jun Liu

    Full Text Available Aphids, the destructive insect pests in the agriculture, horticulture and forestry, are capable of reproducing asexually and sexually upon environmental change. However, the molecular basis of aphid reproductive mode switch remains an enigma. Here we report a comparative analysis of differential gene expression profiling among parthenogenetic females, gynoparae and sexual females of the cotton aphid Aphis gossypii, using the RNA-seq approach with next-generation sequencing platforms, followed by RT-qPCR. At the cutoff criteria of fold change ≥2 and P<0.01, we identified 741 up- and 879 down-regulated genes in gynoparae versus parthenogenetic females, 2,101 up- and 2,210 down-regulated genes in sexual females compared to gynoparae, and 1,614 up- and 2,238 down-regulated genes in sexual females relative to parthenogenetic females. Gene ontology category and KEGG pathway analysis suggest the involvement of differentially expressed genes in multiple cellular signaling pathways into the reproductive mode transition, including phototransduction, cuticle composition, progesterone-mediated oocyte maturation and endocrine regulation. This study forms a basis for deciphering the molecular mechanisms underlying the shift from asexual to sexual reproduction in the cotton aphid. It also provides valuable resources for future studies on this host-alternating aphid species, and the insight into the understanding of reproductive mode plasticity in different aphid species.

  19. Selection of entomopathogenic fungi for aphid control.

    Science.gov (United States)

    Vu, Van Hanh; Hong, Suk Il; Kim, Keun

    2007-12-01

    Twelve strains of entomopathogenic fungi such as Lecanicillium lecanii, Paecilomyces farinosus, Beauveria bassiana, Metarhizium anisopliae, Cordyceps scarabaeicola, and Nomuraea rileyi were screened for aphid control. At 25 degrees C and 75% relative humidity (RH), among tested entomopathogenic fungi, L. lecanii 41185 showed the highest virulent pathogenicity for both Myzus persicae and Aphis gossypii, and their control values were both nearly 100% 5 and 2 d after treatment, respectively. Moreover, at an RH of 45% and in a wide temperature range (20-30 degrees C), L. lecanii 41185 also exhibited the highest virulence to M. persicae. The control value of M. persicae and the 50% lethal time (LT50) decreased significantly as the applied conidial concentration increased. The 50% lethal concentration (LC50) of the conidial suspension of this fungus was determined to be 6.55x10(5) conidia/ml. The control values of M. persicae resulting from the application of 1x10(7) and 1x10(8) conidia/ml were nearly the same and were significantly higher than that of 1x10(6) conidia/ml. The tested entomopathogenic fungi grew in a broad temperature range (15-30 degrees C). Lecanicillium strains showed optimum growth at 25 degrees C. The aerial conidia of Lecanicillium strains also could germinate in a broad temperature range (15-30 degrees C) and L. lecanii 41185 was the only strain with conidial germination at 35 degrees C.

  20. The mitochondrial genome of the Russian wheat aphid Diuraphis noxia: large repetitive sequences between trnE and trnF in aphids.

    Science.gov (United States)

    Zhang, Bo; Ma, Chuan; Edwards, Owain; Fuller, Susan; Kang, Le

    2014-01-01

    To characterize aphid mitochondrial genome (mitogenome) features, we sequenced the complete mitogenome of the Russian wheat aphid, Diuraphis noxia. The 15,784-bp mitogenome with a high A+T content (84.76%) and strong C skew (-0.26) was arranged in the same gene order as that of the ancestral insect. Unlike typical insect mitogenomes, D. noxia possessed a large tandem repeat region (644 bp) located between trnE and trnF. Sequencing partial mitogenome of the cotton aphid (Aphis gossypii) further confirmed the presence of the large repeat region in aphids, but with different repeat length and copy number. Another motif (58 bp) tandemly repeated 2.3 times in the control region of D. noxia. All repeat units in D. noxia could be folded into stem-loop secondary structures, which could further promote an increase in copy numbers. Characterization of the D. noxia mitogenome revealed distinct mitogenome architectures, thus advancing our understanding of insect mitogenomic diversities and evolution. © 2013 Elsevier B.V. All rights reserved.

  1. Fertility life table of Lysiphlebus testaceipes (Cresson) (Hymenoptera, Braconidae, Aphidiinae) in Rhopalosiphum maidis (Fitch) and Aphis gossypii Glover (Hemiptera, Aphididae); Tabela de vida de fertilidade de Lysiphlebus testaceipes (Cresson) (Hymenoptera, Braconidae, Aphidiinae) em Rhopalosiphum maidis (Fitch) e Aphis gossypii Glover (Hemiptera, Aphididae)

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Robson Jose da; Bueno, Vanda Helena Paes; Silva, Diego Bastos [Universidade Federal de Lavras (UFLA), MG (Brazil). Dept. de Entomologia. Lab. de Controle Biologico], e-mail: ecosbio@yahoo.com.br, e-mail: vhpbueno@ufla.br; Sampaio, Marcus Vinicius [Universidade Federal de Uberlandia, Umuarama, MG (Brazil). Inst. de Ciencias Agrarias], e-mail: mvsampaio@iciag.ufu.br

    2008-07-01

    Fertility life table of Lysiphlebus testaceipes (Cresson) (Hymenoptera, Braconidae, Aphidiinae) in Rhopalosiphum maidis (Fitch) and Aphis gossypii Glover (Hemiptera, Aphididae). The evaluation of the growth potential of Lysiphlebus testaceipes (Cresson) is important for its use in biological control programs of aphids. This work aimed to evaluate the fertility life table of L. testaceipes in Rhopalosiphum maidis (Fitch) and Aphis gossypii Glover. To determine the immature mortality, development and the sex ratio of the parasitoid, 12 females parasitoid, and 480 nymphs of each aphids were used. To evaluate the longevity and fertility 15 female parasitoid were used. Nymphs of each aphid (3 day old) were offered for each parasitoid female daily, until the female died, being 300 (first day); 250 (second day); 200 (third day); 150 (fourth day) and 50 nymphs in the other days. L. testaceipes showed immature mortality rates of 5.6 % in R. maidis and 9.2 % in A. gossypii. The development time of L. testaceipes in R. maidis and A. gossypii was 10.2 and 10.1 days, and the sex ratio of 0.71 and 0.66, respectively. The female of L. testaceipes had a fecundity of 498.8 eggs in R. maidis and 327.8 eggs in A. gossypii. The growth parameters the L. testaceipes in R. maidis and A. gossypii were, respectively R{sub o}= 205.38 and 164.08 females; r{sub m}= 0.449 and 0.431 females/females/day; {lambda}= 1.57 and 1.54 females/day; T= 11.86 and 11.83 days and TD= 10.78 and 11.27 days. L. testaceipes showed great growth potential on both aphid hosts. R. maidis could be a suitable host for proposals of mass-rearing and open rearing system using L. testaceipes. (author)

  2. Aphid honeydew quality as a food source for parasitoids is maintained in Bt cotton.

    Science.gov (United States)

    Hagenbucher, Steffen; Wäckers, Felix L; Romeis, Jörg

    2014-01-01

    Bt-transgenic cotton has proven to be highly efficient in controlling key lepidopteran pests. One concern with the deployment of Bt cotton varieties is the potential proliferation of non-target pests. We previously showed that Bt cotton contained lower concentrations of insecticidal terpenoids as a result of reduced caterpillar damage, which benefited the aphid Aphis gossypii. It is thus important that non-target herbivores are under biological control in Bt cotton fields. The induction or lack of induction of terpenoids could also influence the quality of aphid honeydew, an important food source for beneficial insects. We therefore screened A. gossypii honeydew for cotton terpenoids, that are induced by caterpillars but not the aphids. We then tested the influence of induced insect-resistance of cotton on honeydew nutritional quality for the aphid parasitoid Lysiphlebus testaceipes and the whitefly parasitoid Eretmocerus eremicus. We detected the cotton terpenoids gossypol and hemigossypolone in A. gossypii honeydew. Although a feeding assay demonstrated that gossypol reduced the longevity of both parasitoid species in a non-linear, dose-dependent manner, the honeydew was capable of sustaining parasitoid longevity and reproduction. The level of caterpillar damage to Bt and non-Bt cotton had no impact on the quality of honeydew for the parasitoids.These results indicate that the nutritional quality of honeydew is maintained in Bt cotton and is not influenced by induced insect resistance.

  3. Aphid honeydew quality as a food source for parasitoids is maintained in Bt cotton.

    Directory of Open Access Journals (Sweden)

    Steffen Hagenbucher

    Full Text Available Bt-transgenic cotton has proven to be highly efficient in controlling key lepidopteran pests. One concern with the deployment of Bt cotton varieties is the potential proliferation of non-target pests. We previously showed that Bt cotton contained lower concentrations of insecticidal terpenoids as a result of reduced caterpillar damage, which benefited the aphid Aphis gossypii. It is thus important that non-target herbivores are under biological control in Bt cotton fields. The induction or lack of induction of terpenoids could also influence the quality of aphid honeydew, an important food source for beneficial insects. We therefore screened A. gossypii honeydew for cotton terpenoids, that are induced by caterpillars but not the aphids. We then tested the influence of induced insect-resistance of cotton on honeydew nutritional quality for the aphid parasitoid Lysiphlebus testaceipes and the whitefly parasitoid Eretmocerus eremicus. We detected the cotton terpenoids gossypol and hemigossypolone in A. gossypii honeydew. Although a feeding assay demonstrated that gossypol reduced the longevity of both parasitoid species in a non-linear, dose-dependent manner, the honeydew was capable of sustaining parasitoid longevity and reproduction. The level of caterpillar damage to Bt and non-Bt cotton had no impact on the quality of honeydew for the parasitoids.These results indicate that the nutritional quality of honeydew is maintained in Bt cotton and is not influenced by induced insect resistance.

  4. Methyl salicylate, a soybean aphid-induced plant volatile attractive to the predator Coccinella septempunctata.

    Science.gov (United States)

    Zhu, Junwei; Park, Kye-Chung

    2005-08-01

    Induced volatiles provide a signal to foraging predatory insects about the location of their prey. In Iowa, early in the growing season of soybean, Glycine max, many predacious seven-spotted lady beetles, Coccinella septempunctata, were observed on plants with heavy infestations of soybean aphid, Aphis glycines. We studied whether the attraction of this beetle is caused by the release of specific volatile compounds of soybean plants infested by aphids. Volatile compounds emitted by soybean plants infested by aphids were compared with those of undamaged, uninfested, and artificially damaged plants. Gas chromatography-mass spectrometry analyses revealed consistent differences in the profiles of volatile compounds between aphid-infested soybean plants and undamaged ones. Significantly more methyl salicylate was released from infested plants at both the V1 and V2 plant growth stages. However, release patterns of two other induced plant volatiles, (D)-limonene and (E,E)-alpha-farnesene, differed between the two plant growth stages. Gas chromatographic-electroantennographic detection of volatile extracts from infested soybean plants showed that methyl salicylate elicited significant electrophysiological responses in C. septempunctata. In field tests, traps baited with methyl salicylate were highly attractive to adult C. septempunctata, whereas 2-phenylethanol was most attractive to the lacewing Chrysoperla carnea and syrphid flies. Another common lady beetle, the multicolored Asian lady beetle, Harmonia axyridis, showed no preference for the compounds. These results indicate that C. septempunctata may use methyl salicylate as the olfactory cue for prey location. We also tested the attractiveness of some selected soybean volatiles to alate soybean aphids in the field, and results showed that traps baited with benzaldehyde caught significantly higher numbers of aphids.

  5. The Effect of an Interspersed Refuge on Aphis glycines (Hemiptera: Aphididae), Their Natural Enemies, and Biological Control.

    Science.gov (United States)

    Varenhorst, A J; O'Neal, M E

    2016-02-01

    Soybean production in the north central United States has relied heavily on the use of foliar and seed applied insecticides to manage Aphis glycines (Hemiptera: Aphididae). An additional management strategy is the use soybean cultivars containing A. glycines resistance genes (Rag). Previous research has demonstrated that Rag cultivars are capable of preventing yield loss equivalent to the use of foliar and seed-applied insecticides.However, the presence of virulent biotypes in North America has raised concern for the durability of Rag genes. A resistance management program that includes a refuge for avirulent biotypes could limit the frequency at which virulent biotypes increase within North America. To what extent such a refuge reduces the effectiveness of aphid-resistant soybean is not clear. We conducted an experiment to determine whether a susceptible refuge mixed into resistant soybean (i.e., interspersed refuge or refuge-in-a-bag) affects the seasonal exposure of aphids, their natural enemies, biological control, and yield protection provided by aphid resistance. We compared three ratios of interspersed refuges (resistant: susceptible; 95:5, 90:10, 75:25) to plots grown with 100%susceptible or resistant soybean. We determined that an interspersed refuge of at least 25% susceptible seed would be necessary to effectively produce avirulent individuals. Interspersed refuges had negligible effects onyield and the natural enemy community. However, there was evidence that they increased the amount of biological control that occurred within a plot. We discuss the compatibility of interspersed refuges for A. glycines management and whether resistance management can prolong the durability of Rag genes.

  6. Effectiveness of Lysiphlebus testaceïpes Cresson as biocontrol agent of Aphis gossypii Glover infesting pepper plants

    Directory of Open Access Journals (Sweden)

    M. Ben Halima Kamel

    2011-12-01

    Full Text Available In Tunisia, greenhouse crops are damaged by Aphis gossypii Glover and Myzus persicae Sulzer (Ben Halima Kamel 1991; Ben Halima Kamel and Ben Hamouda 1993, 1998. These aphids are considered to be the most dangerous pests of pepper because of their biology and biotic potential (Ben Halima Kamel 1991; Blackman and Eastop 2000. There are several ways of controlling these pests with chemical control being the most widely used. This method has more disadvantages than benefits (Gibson et al. 1982. The use of natural enemies to control aphids is an effective way of improving the yield and quality of protected crops. There are many studies on the following naturally occurring enemies of A. gossypii: Aphidius matricariae Haliday, Lysiphlebus fabarum Marshall, Aphidoletes aphidimyza (Rondani, Episyrphus balteatus (De Geer (Ben Halima Kamel and Ben Hamouda 1998 and Lysiphlebus testaceipes (Cresson (Ben Halima Kamel, unpublished data, 1999. It is now important to evaluate the effectiveness of L. testaceipes as a biocontrol agent of A. gossypii. This parasitoďd was introduced into the Mediterranean area (Carver and Franzmann 2001 and is thought to be an important parasite of A. gossypii (Lopes et al. 2007. The aim of this mainly laboratory study was to determine the factors affecting the establishment and success of a biological control agent, in particular the number of L. testaceďpes relative to the initial density of A. gossypii, needed to control the aphid. In addition, the effect of the L. testaceďpes on structure of A. gossypii populations was evaluated. Furthermore, the effectiveness of L. testaceipes in controlling A. gossypii infesting a protected crop of pepper plants and the subsequent effect on the growth of the pepper plants was also evaluated.

  7. Are aphid parasitoids locally adapted to the prevalence of defensive symbionts in their hosts?

    Science.gov (United States)

    Vorburger, Christoph; Rouchet, Romain

    2016-12-12

    Insect parasitoids are under strong selection to overcome their hosts' defences. In aphids, resistance to parasitoids is largely determined by the presence or absence of protective endosymbionts such as Hamiltonella defensa. Hence, parasitoids may become locally adapted to the prevalence of this endosymbiont in their host populations. To address this, we collected isofemale lines of the aphid parasitoid Lysiphlebus fabarum from 17 sites in Switzerland and France, at which we also estimated the frequency of infection with H. defensa as well as other bacterial endosymbionts in five important aphid host species. The parasitoids' ability to overcome H. defensa-mediated resistance was then quantified by estimating their parasitism success on a single aphid clone (Aphis fabae fabae) that was either uninfected or experimentally infected with one of three different isolates of H. defensa. The five aphid species (Aphis fabae fabae, A. f. cirsiiacanthoides, A. hederae, A. ruborum, A. urticata) differed strongly in the relative frequencies of infection with different bacterial endosymbionts, but there was also geographic variation in symbiont prevalence. Specifically, the frequency of infection with H. defensa ranged from 22 to 47 % when averaged across species. Parasitoids from sites with a high prevalence of H. defensa tended to be more infective on aphids possessing H. defensa, but this relationship was not significant, thus providing no conclusive evidence that L. fabarum is locally adapted to the occurrence of H. defensa. On the other hand, we observed a strong interaction between parasitoid line and H. defensa isolate on parasitism success, indicative of a high specificity of symbiont-conferred resistance. This study is the first, to our knowledge, to test for local adaptation of parasitoids to the frequency of defensive symbionts in their hosts. While it yielded useful information on the occurrence of facultative endosymbionts in several important host species of L

  8. Monitoring of aphid flight activities in seed potato crops in Serbia

    Directory of Open Access Journals (Sweden)

    Andja Vucetic

    2013-07-01

    Full Text Available Aphid flight activities in seed potato fields have been studied by the yellow water traps. It is a good method for monitoring aphids as vectors of viruses, but this study also showed it is a suitable method for insect-diversity research. During the four-year studies, over 11.500 specimens were collected and a total of 107 different taxa of aphids were identified. The most abundant species were polyphagous species, such as: Acyrthosiphon pisum (Haris, Aphis fabae Scopoli, Aphis gossypii Glover and Brachycaudus helichrysi (Kaltenbach. The results of the studies show that diversity of aphids in different regions of Serbia is similar regardless of the altitude and the diversity of terrain. At most sites it ranged from 2 to 3. The highest value was recorded in Begeč, locality in northern part of Serbia, in year 2008, and it was 2.92. The maximum values of the Shannon-Weaver diversity index at all sites were recorded in the first weeks of the monitoring of aphid flight activities. Morisita-Horn similarity index shows no significant differences between sites regardless of altitudes. The sites are grouped by year, not by similarity of relief. In spite of these results, the Chi-square analysis showed highly significant difference in vector frequencies among seasons and sites with more pronounced differences for PVY. As a consequence of differences in vector frequencies, the vector pressure index in some regions was different also. The number of vectors and vector pressure index vary depending on the altitude of localities. At localities at altitudes under 1000 m, they were high. The highest index was at Kotraža, locality in central part of Serbia, in 2007, when PVY index exceeded the value of 180, while for PLRV it was 60. At high altitudes on mountain Golija, above 1100 m, the number of aphids was low, as well as the vector pressure index which indicates that these regions are suitable for producing virus-free seed potato.

  9. Viral metagenomics of aphids present in bean and maize plots on mixed-use farms in Kenya reveals the presence of three dicistroviruses including a novel Big Sioux River virus-like dicistrovirus.

    Science.gov (United States)

    Wamonje, Francis O; Michuki, George N; Braidwood, Luke A; Njuguna, Joyce N; Musembi Mutuku, J; Djikeng, Appolinaire; Harvey, Jagger J W; Carr, John P

    2017-10-02

    Aphids are major vectors of plant viruses. Common bean (Phaseolus vulgaris L.) and maize (Zea mays L.) are important crops that are vulnerable to aphid herbivory and aphid-transmitted viruses. In East and Central Africa, common bean is frequently intercropped by smallholder farmers to provide fixed nitrogen for cultivation of starch crops such as maize. We used a PCR-based technique to identify aphids prevalent in smallholder bean farms and next generation sequencing shotgun metagenomics to examine the diversity of viruses present in aphids and in maize leaf samples. Samples were collected from farms in Kenya in a range of agro-ecological zones. Cytochrome oxidase 1 (CO1) gene sequencing showed that Aphis fabae was the sole aphid species present in bean plots in the farms visited. Sequencing of total RNA from aphids using the Illumina platform detected three dicistroviruses. Maize leaf RNA was also analysed. Identification of Aphid lethal paralysis virus (ALPV), Rhopalosiphum padi virus (RhPV), and a novel Big Sioux River virus (BSRV)-like dicistrovirus in aphid and maize samples was confirmed using reverse transcription-polymerase chain reactions and sequencing of amplified DNA products. Phylogenetic, nucleotide and protein sequence analyses of eight ALPV genomes revealed evidence of intra-species recombination, with the data suggesting there may be two ALPV lineages. Analysis of BSRV-like virus genomic RNA sequences revealed features that are consistent with other dicistroviruses and that it is phylogenetically closely related to dicistroviruses of the genus Cripavirus. The discovery of ALPV and RhPV in aphids and maize further demonstrates the broad occurrence of these dicistroviruses. Dicistroviruses are remarkable in that they use plants as reservoirs that facilitate infection of their insect replicative hosts, such as aphids. This is the first report of these viruses being isolated from either organism. The BSRV-like sequences represent a potentially novel

  10. 75 FR 75170 - APHIS User Fee Web Site

    Science.gov (United States)

    2010-12-02

    ... information about APHIS' user fees, contact Mrs. Kris Caraher, Section Head, User Fees Section, Financial... contains information about the Agency's user fees. ADDRESSES: The Agency's user fee Web site is located at.... SUPPLEMENTARY INFORMATION: A user fee is a charge to identifiable recipients (e.g., individuals or firms)--users...

  11. What do spring migrants reveal about sex and host selection in the melon aphid?

    Directory of Open Access Journals (Sweden)

    Thomas Sophie

    2012-04-01

    Full Text Available Abstract Background Host plants exert considerable selective pressure on aphids because the plants constitute their feeding, mating and oviposition sites. Therefore, host specialisation in aphids evolves through selection of the behavioural and chemical mechanisms of host-plant location and recognition, and through metabolic adaptation to the phloem content of the host plant. How these adaptive traits evolve in an aphid species depends on the complexity of the annual life cycle of that species. The purpose of this field study was to determine how winged spring-migrant populations contribute to the evolution and maintenance of host specialisation in Aphis gossypii through host-plant choice and acceptance. We also assessed whether host-specialised genotypes corresponded exclusively to anholocyclic lineages regardless of the environmental conditions. Results The spring populations of cotton-melon aphids visiting newly planted melon crops exhibited an unexpectedly high level of genetic diversity that contrasted with the very low diversity characterising the host-specialised populations of this aphid species. This study illustrated in natura host-plant-selection pressure by showing the great differences in genetic diversity between the spring-migrant populations (alate aphids and the melon-infesting populations (the apterous offspring of the alate aphids. Moreover, an analysis of the genetic composition of these alate and apterous populations in four geographic regions suggested differences in life-history strategies, such as host choice and reproductive mode, and questioned the common assertion that A. gossypii is an anholocyclic species throughout its distribution area, including Europe. Conclusions Our results clearly demonstrate that the melon plant acts as a selective filter against the reproduction of non-specialised individuals. We showed that olfactory cues are unlikely to be decisive in natura for host recognition by spring-migrant aphid

  12. Qualitative analysis of aphid and primary parasitoid trophic relations of genus Alloxysta (Hymenoptera: Cynipoidea: Figitidae: Charipinae).

    Science.gov (United States)

    Ferrer-Suay, Mar; Janković, Marina; Selfa, Jesús; Van Veen, F J Frank; Tomanović, Željko; Kos, Katarina; Rakhshani, Ehsan; Pujade-Villar, Juli

    2014-12-01

    Charipinae hyperparasitoids affect effectiveness of the primary parasitoids of aphids by decreasing their abundance and modifying their behavior. As a result, increase of aphid populations can cause severe yield losses in some crops. Therefore, ecological studies on the subfamily Charipinae have a great economical and biological importance. Host specificity of these hyperparasitoids is still under debate and for many Charipinae species very little is known about their trophic relations. Here, we give a comprehensive overview of the trophic relationships between the Charipinae species of the genus Alloxysta Förster and their aphid and primary parasitoids hosts, worldwide. Within this subfamily, Alloxysta arcuata (Kieffer), Alloxysta brevis (Thomson), Alloxysta fuscicornis (Hartig), and Alloxysta victrix (Westwood) are the most generalist species sharing many aphid hosts, while for primary parasitoid hosts these are A. arcuata, A. brevis, Alloxysta pleuralis (Cameron), and A. victrix. Alloxysta citripes (Thomson), Alloxysta halterata (Thomson), Alloxysta leunisii (Hartig), and Alloxysta ramulifera (Thomson) appear, up to now, as the most specialized in relation to the primary parasitoid hosts. Primary parasitoids of the genera Aphidius Nees, Lysiphlebus Förster, Praon Haliday, and Trioxys Haliday are the most common hosts for Alloxysta species, and the common host aphid species belong to the genera Aphis L., Uroleucon Mordvilko, Myzus Passerini, and Sitobion Mordvilko. Host range is analyzed for each Alloxysta species, as well as the extent of overlap between them. We used Jaccard's distance and a hierarchical cluster analysis to determine the host range dissimilarity. A permutation test has been applied to analyze if the host range dissimilarity is significantly different from what is expected by chance. We have calculated additional qualitative measures that complement well the Alloxysta niche overlap analysis and evaluated their host specificity using different

  13. Effect of silicon and acibenzolar-s-methyl on colored cotton plants infested or not with Aphis gossypii Glover (Hemiptera, Aphididae

    Directory of Open Access Journals (Sweden)

    Eliana Alcantra

    2011-06-01

    Full Text Available Effect of silicon and acibenzolar-s-methyl on colored cotton plants infested or not with Aphis gossypii Glover (Hemiptera, Aphididae. The aphid Aphis gossypii is an insect pest that causes damage mainly at the beginning of the cotton plant development. The effect of resistance inductors silicon and acibenzolar-s-methyl (ASM on the development of colored cotton plants were researched in the presence and absence of A. gossypii. Three colored cotton cultivars were sown in pots and individually infested with 25 apterous aphids, 13 days after the application of the inductors. Fifteen days after plant emergence, the silicon was applied at a dosage equivalent to 3 t/ha and acibenzolar-s-methyl in 0.2% solution of the product BION 500®. After 21 days of infestation the following parameters were evaluated: plant height, stem diameter, dry matter of aerial part and root, and total number of aphids replaced. It was verified that the plant height was reduced in the presence of aphids and all variables were negatively affected by the application of ASM. However, silicon did not affect plant development.Efeito do silício e do acibenzolar-s-methyl em plantas de algodão colorido infestadas ou não com Aphis gossypii Glover (Hemiptera, Aphididae. O pulgão Aphis gossypii é um inseto-praga que causa danos principalmente no início do ciclo do algodoeiro. Foram pesquisados os efeitos dos indutores silício e acibenzolar-s-methyl (ASM no desenvolvimento de plantas de algodão colorido, na presença e ausência de A. gossypii. Três cultivares de algodão colorido foram semeadas em vasos e individualmente infestadas com 25 pulgões ápteros, 13 dias após a aplicação dos indutores. Quinze dias após emergência das plantas o silício foi aplicado na dosagem equivalente a 3 t/ha e o acibenzolar-s-methyl (ASM na solução 0,2% do produto BION 500®. Após 21 dias da infestação foram avaliados os seguintes parâmetros: altura da planta, diâmetro do caule

  14. Comparative analysis of mitochondrial genomes of five aphid species (Hemiptera: Aphididae and phylogenetic implications.

    Directory of Open Access Journals (Sweden)

    Yuan Wang

    Full Text Available Insect mitochondrial genomes (mitogenomes are of great interest in exploring molecular evolution, phylogenetics and population genetics. Only two mitogenomes have been previously released in the insect group Aphididae, which consists of about 5,000 known species including some agricultural, forestry and horticultural pests. Here we report the complete 16,317 bp mitogenome of Cavariella salicicola and two nearly complete mitogenomes of Aphis glycines and Pterocomma pilosum. We also present a first comparative analysis of mitochondrial genomes of aphids. Results showed that aphid mitogenomes share conserved genomic organization, nucleotide and amino acid composition, and codon usage features. All 37 genes usually present in animal mitogenomes were sequenced and annotated. The analysis of gene evolutionary rate revealed the lowest and highest rates for COI and ATP8, respectively. A unique repeat region exclusively in aphid mitogenomes, which included variable numbers of tandem repeats in a lineage-specific manner, was highlighted for the first time. This region may have a function as another origin of replication. Phylogenetic reconstructions based on protein-coding genes and the stem-loop structures of control regions confirmed a sister relationship between Cavariella and pterocommatines. Current evidence suggest that pterocommatines could be formally transferred into Macrosiphini. Our paper also offers methodological instructions for obtaining other Aphididae mitochondrial genomes.

  15. miRNA-mediated auxin signalling repression during Vat-mediated aphid resistance in Cucumis melo.

    Science.gov (United States)

    Sattar, Sampurna; Addo-Quaye, Charles; Thompson, Gary A

    2016-06-01

    Resistance to Aphis gossypii in melon is attributed to the presence of the single dominant R gene virus aphid transmission (Vat), which is biologically expressed as antibiosis, antixenosis and tolerance. However, the mechanism of resistance is poorly understood at the molecular level. Aphid-induced transcriptional changes, including differentially expressed miRNA profiles that correspond to resistance interaction have been reported in melon. The potential regulatory roles of miRNAs in Vat-mediated aphid resistance were further revealed by identifying the specific miRNA degradation targets. A total of 70 miRNA:target pairs, including 28 novel miRNA:target pairs, for the differentially expressed miRNAs were identified: 11 were associated with phytohormone regulation, including six miRNAs that potentially regulate auxin interactions. A model for a redundant regulatory system of miRNA-mediated auxin insensitivity is proposed that incorporates auxin perception, auxin modification and auxin-regulated transcription. Chemically inhibiting the transport inhibitor response-1 (TIR-1) auxin receptor in susceptible melon tissues provides in vivo support for the model of auxin-mediated impacts on A. gossypii resistance. © 2016 John Wiley & Sons Ltd.

  16. Transgenic Bt Cotton Does Not Disrupt the Top-Down Forces Regulating the Cotton Aphid in Central China.

    Directory of Open Access Journals (Sweden)

    Yong-Sheng Yao

    Full Text Available Top-down force is referred to arthropod pest management delivered by the organisms from higher trophic levels. In the context of prevalent adoption of transgenic Bt crops that produce insecticidal Cry proteins derived from Bacillus thuringiensis (Bt, it still remains elusive whether the top-down forces are affected by the insect-resistant traits that introduced into the Bt crops. We explored how Bt cotton affect the strength of top-down forces via arthropod natural enemies in regulating a non-target pest species, the cotton aphid Aphis gossypii Glover, using a comparative approach (i.e. Bt cotton vs. conventional cotton under field conditions. To determine top-down forces, we manipulated predation/parasitism exposure of the aphid to their natural enemies using exclusion cages. We found that the aphid population growth was strongly suppressed by the dominant natural enemies including Coccinellids, spiders and Aphidiines parasitoids. Coccinellids, spiders and the assemblage of other arthropod natural enemies (mainly lacewings and Hemipteran bugs are similarly abundant in both plots, but with the parasitoid mummies less abundant in Bt cotton plots compared to the conventional cotton plots. However, the lower abundance of parasitoids in Bt cotton plots alone did not translate into differential top-down control on A. gossypii populations compared to conventional ones. Overall, the top-down forces were equally strong in both plots. We conclude that transgenic Bt cotton does not disrupt the top-down forces regulating the cotton aphid in central China.

  17. Ultrastructure of compatible and incompatible interactions in phloem sieve elements during the stylet penetration by cotton aphids in melon.

    Science.gov (United States)

    Garzo, Elisa; Fernández-Pascual, Mercedes; Morcillo, Cesar; Fereres, Alberto; Gómez-Guillamón, M Luisa; Tjallingii, W Fred

    2017-02-18

    Resistance of the melon line TGR-1551 to the aphid Aphis gossypii is based on preventing aphids from ingesting phloem sap. In electrical penetration graphs (EPGs), this resistance has been characterized with A. gossypii showing unusually long phloem salivation periods (waveform E1) mostly followed by pathway activities (waveform C) or if followed by phloem ingestion (waveform E2), ingestion was not sustained for more than 10 min. Stylectomy with aphids on susceptible and resistant plants was performed during EPG recording while the stylet tips were phloem inserted. This was followed by dissection of the penetrated leaf section, plant tissue fixation, resin embedding, and ultrathin sectioning for transmission electron microscopic observation in order to study the resistance mechanism in the TGR. The most obvious aspect appeared to be the coagulation of phloem proteins inside the stylet canals and the punctured sieve elements. Stylets of 5 aphids per genotype were amputated during sieve element (SE) salivation (E1) and SE ingestion (E2). Cross-sections of stylet bundles in susceptible melon plants showed that the contents of the stylet canals were totally clear and also, no coagulated phloem proteins occurred in their punctured sieve elements. In contrast, electron-dense coagulations were found in both locations in the resistant plants. Due to calcium binding, aphid saliva has been hypothesized to play an essential role in preventing/suppressing such coagulations that cause occlusion of sieves plate and in the food canal of the aphid's stylets. Doubts about this role of E1 salivation are discussed on the basis of our results. © 2017 Institute of Zoology, Chinese Academy of Sciences.

  18. New Records of Aphid Fauna in Turkey

    OpenAIRE

    Kaygin, Azize Toper; Gorur, Gazi; Cota, Figen

    2010-01-01

    Three aphid species were identified as new records for Turkey aphid fauna from Bartin province. These species are Ceruraphis viburnicola (Gillette) (Hemiptera: Aphididae), Dysaphis apiifolia (Theobald) (Hemiptera: Aphididae) and Macrosiphum mordvilkoi Miyazaki (Hemiptera: Aphididae). These records increase the recorded aphid-fauna of Turkey to 433 species.

  19. Efficacy of Chemical Mimicry by Aphid Predators Depends on Aphid-Learning by Ants.

    Science.gov (United States)

    Hayashi, Masayuki; Nomura, Masashi; Nakamuta, Kiyoshi

    2016-03-01

    Chemical mimicry is an effective strategy when signal receivers recognize and discriminate models by relying on chemical cues. Some aphid enemies mimic the cuticular chemicals of aphids through various means thus avoiding detection and attack by aphid-tending ants. However, because ants have been reported to learn the chemical signatures of aphids in order to distinguish the aphids, the efficacy of chemical mimicry is predicted to depend on the experience of the ants that had tended aphids. The present study tested this hypothesis using two predator species: larvae of the green lacewing Mallada desjardinsi, and larvae of the ladybeetle Scymnus posticalis. Lacewing larvae carry the carcasses of aphids on which they have preyed upon their backs, and these function via chemical camouflage to reduce the aggressiveness of aphid-tending ants toward the larvae. Ladybeetle larvae reportedly produce a covering of wax structures, and their chemicals appear to attenuate ant aggression. We examined whether the behavior of the ant Tetramorium tsushimae toward these predators changed depending on their aphid-tending experience. Ants moderated their aggressiveness toward both predators when they had previously tended aphids, indicating that chemical mimicry by both aphid predators is dependent on previous experience of the ants in tending aphids. Chemical mimicry by the predators of ant-tended aphids is therefore considered to exploit learning-dependent aphid recognition systems of ants.

  20. Social transmission of information about a mutualist via trophallaxis in ant colonies.

    Science.gov (United States)

    Hayashi, Masayuki; Hojo, Masaru K; Nomura, Masashi; Tsuji, Kazuki

    2017-08-30

    Partner discrimination is crucial in mutualistic interactions between organisms to counteract cheating by the partner. Trophobiosis between ants and aphids is a model system of such mutualistic interaction. To establish and maintain the mutualistic association, ants need to correctly discriminate mutualistic aphids. However, the mechanism by which ants recognize aphids as their partners is poorly understood, despite its ecological and evolutionary importance. Here, we show for the first time the evidence that interaction with nest-mates that have tended aphids ( Aphis craccivora ) allows ants ( Tetramorium tsushimae ) to learn to recognize the aphid species as their partner. When ants had previously tended aphids, they moderated their aggressiveness towards aphids. More importantly, ants that had interacted with aphid-experienced nest-mates also reduced their aggressiveness towards aphids, even though they had never directly experienced them, indicating that aphid information was transmitted from aphid-experienced ants to inexperienced ants. Furthermore, inhibition of mouth-to-mouth contact (trophallaxis) from aphid-experienced ants to inexperienced ants by providing the inexperienced ants with artificial honeydew solution caused the inexperienced ants to become aggressive towards aphids. These results, with further supporting data, strongly suggest that ants transfer information on their mutualists during trophallactic interactions. © 2017 The Author(s).

  1. Quantitation and localization of pospiviroids in aphids.

    Science.gov (United States)

    Van Bogaert, N; De Jonghe, K; Van Damme, E J M; Maes, M; Smagghe, G

    2015-01-01

    In this paper, the potential role of aphids in viroid transmission was explored. Apterous aphids were fed on pospiviroid-infected plants and viroid targets in the aphids were consequently quantified through RT-qPCR and localized within the aphid body using fluorescence in situ hybridization (FISH). Based on the analytical sensitivity test, the limit of detection (LOD) was estimated at 1.69×10(6) viroid copies per individual aphid body. To localize the viroids in the aphids, a pospiviroid-generic Cy5-labelled probe was used and the fluorescent signal was determined by confocal microscopy. Viroids were clearly observed in the aphid's stylet and stomach, but not in the embryos. Viroids were detected in 29% of the aphids after a 24h feeding period, which suggests only a partial and low concentration viroid uptake by the aphid population including viroid concentrations under the LOD. However, these results show that viroids can be ingested by aphids while feeding on infected plants, thus potentially increasing the transmission risk. The combination of FISH and RT-qPCR provides reliable and fast localization and quantitation of viroid targets in individual aphids and thus constitutes a valuable tool in future epidemiological research. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Separate and Combined Effects of Mentha piperata and Mentha pulegium Essential Oils and a Pathogenic Fungus Lecanicillium muscarium Against Aphis gossypii (Hemiptera: Aphididae).

    Science.gov (United States)

    Ebadollahi, Asgar; Davari, Mahdi; Razmjou, Jabrael; Naseri, Bahram

    2017-06-01

    In the present study, the toxicity of essential oils of Mentha piperata L. and Mentha pulegium L. and pathogenicity of Lecanicillium muscarium (Zare & Gams) were studied in the melon aphid, Aphis gossypii Glover. Analyses of the essential oils by GC-MS indicated limonene (27.28%), menthol (24.71%), menthone (14.01%), and carvol (8.46%) in the M. piperata essential oil and pulegone (73.44%), piperitenone (5.49%), decane (4.99%), and limonene (3.07%) in the essential oil of M. pulegium as the main components. Both essential oils and the pathogenic fungus had useful toxicity against A. gossypii. Probit analysis indicated LC50 values (lethal concentrations to kill 50% of population; 95% confidence limits in parentheses) of M. piperata and M. pulegium essential oils as 15.25 (12.25-19.56) and 23.13 (19.27-28.42) µl/liter air, respectively. Susceptibility to the pathogenic fungus increased with exposure time. Aphid mortality also increased when the essential oils were combined with L. muscarium, although the phenomena was additive rather than synergistic. Mycelial growth inhibition of L. muscarium exposed to the essential oils was also very low. Based on our results, M. piperata and M. pulegium essential oils and the pathogenic fungus L. muscarium have some potential for management of A. gossypii. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  3. Nano-formulation enhances insecticidal activity of natural pyrethrins against Aphis gossypii (Hemiptera: Aphididae) and retains their harmless effect to non-target predators.

    Science.gov (United States)

    Papanikolaou, Nikos E; Kalaitzaki, Argyro; Karamaouna, Filitsa; Michaelakis, Antonios; Papadimitriou, Vassiliki; Dourtoglou, Vassilis; Papachristos, Dimitrios P

    2018-04-01

    The insecticidal activity of a new nano-formulated natural pyrethrin was examined on the cotton aphid, Aphis gossypii Glover (Hemiptera: Aphididae), and the predators Coccinella septempunctata L. (Coleoptera: Coccinellidae) and Macrolophus pygmaeus Rambur (Hemiptera: Miridae), in respect with the nano-scale potential to create more effective and environmentally responsible pesticides. Pyrethrin was nano-formulated in two water-in-oil micro-emulsions based on safe biocompatible materials, i.e., lemon oil terpenes as dispersant, polysorbates as stabilizers, and mixtures of water with glycerol as the dispersed aqueous phase. Laboratory bioassays showed a superior insecticidal effect of the pyrethrin micro-emulsions compared to two commercial suspension concentrates of natural pyrethrins against the aphid. The nano-formulated pyrethrins were harmless, in terms of caused mortality and survival time, to L3 larvae and four-instar nymphs of the predators C. septempunctata and M. pygmaeus, respectively. We expect that these results can contribute to the application of nano-technology in optimization of pesticide formulation, with further opportunities in the development of effective plant protection products compatible with integrated pest management practices.

  4. 7 CFR 322.15 - APHIS review of permit applications; denial or cancellation of permits.

    Science.gov (United States)

    2010-01-01

    ... (Continued) ANIMAL AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE BEES, BEEKEEPING BYPRODUCTS, AND BEEKEEPING EQUIPMENT Importation of Restricted Organisms § 322.15 APHIS review of permit...

  5. Evaluation and application of parasitoids for biological control of Aphis gossypii in glasshouse cucumber crops

    NARCIS (Netherlands)

    Steenis, van M.

    1995-01-01

    Introduction
    Aphids are an important problem in glasshouse vegetables. Already at low aphid densities fruits can get contaminated with honeydew, which decreases the economical value of the fruits. When aphids feed on the growing tips of the plants, the new shoots can get heavily

  6. Evaluation and application of parasitoids for biological control of Aphis gossypii in glasshouse cucumber crops

    NARCIS (Netherlands)

    Steenis, van M.

    1995-01-01

    Introduction
    Aphids are an important problem in glasshouse vegetables. Already at low aphid densities fruits can get contaminated with honeydew, which decreases the economical value of the fruits. When aphids feed on the growing tips of the plants, the new shoots can

  7. Demography and Mass-Rearing Harmonia dimidiata (Coleoptera: Coccinellidae) Using Aphis gossypii (Hemiptera: Aphididae) and Eggs of Bactrocera dorsalis (Diptera: Tephritidae).

    Science.gov (United States)

    Yu, Jih-Zu; Chen, Bing Huei; Güncan, Ali; Atlihan, Remzi; Gökçe, Ayhan; Smith, Cecil L; Gümüs, Ebru; Chi, Hsin

    2018-04-02

    We compared rearing Harmonia dimidiata (F.) (Coleoptera: Coccinellidae) on four combinations of Aphis gossypii Glover (Hemiptera: Aphididae), and eggs of Bactrocera dorsalis Hendel (Diptera: Tephritidae), using the age-stage, two-sex life table. The four combinations were: both larvae and adults were reared on aphids; larvae were reared on aphids and adults were reared on fresh fruit fly eggs; larvae were reared on lyophilized fruit fly eggs and adults were reared on aphids; and larvae were reared on lyophilized eggs and adults were reared on fresh eggs. The highest intrinsic rate of increase (r = 0.1125 d-1) and net reproductive rate (R0 = 260.7 offspring) were observed when both larval and adult stages of H. dimidiata were reared on A. gossypii. When B. dorsalis eggs were used as rearing media for larvae, adults, or both, the values of r and R0 were significantly decreased. The lowest values (r = 0.0615 d-1 and R0 = 38.6 offspring) were observed when both larvae and adults were reared entirely on B. dorsalis eggs. Despite the lower r and R0 values, our results showed that B. dorsalis eggs could be considered as an adequate, less expensive alternative diet for rearing H. dimidiata because of the time and labor savings resulting from the ease of preparation and the ability to store the eggs for timely usage. The mass-rearing analysis showed that the most economical rearing system was to rear larvae on A. gossypii and adults on B. dorsalis eggs.

  8. Plant immunity in plant–aphid interactions

    Science.gov (United States)

    Jaouannet, Maëlle; Rodriguez, Patricia A.; Lenoir, Camille J. G.; MacLeod, Ruari; Escudero-Martinez, Carmen; Bos, Jorunn I.B.

    2014-01-01

    Aphids are economically important pests that cause extensive feeding damage and transmit viruses. While some species have a broad host range and cause damage to a variety of crops, others are restricted to only closely related plant species. While probing and feeding aphids secrete saliva, containing effectors, into their hosts to manipulate host cell processes and promote infestation. Aphid effector discovery studies pointed out parallels between infection and infestation strategies of plant pathogens and aphids. Interestingly, resistance to some aphid species is known to involve plant resistance proteins with a typical NB-LRR domain structure. Whether these resistance proteins indeed recognize aphid effectors to trigger ETI remains to be elucidated. In addition, it was recently shown that unknown aphid derived elicitors can initiate reactive oxygen species (ROS) production and callose deposition and that these responses were dependent on BAK1 (BRASSINOSTERIOD INSENSITIVE 1-ASSOCIATED RECEPTOR KINASE 1) which is a key component of the plant immune system. In addition, BAK-1 contributes to non-host resistance to aphids pointing to another parallel between plant-pathogen and – aphid interactions. Understanding the role of plant immunity and non-host resistance to aphids is essential to generate durable and sustainable aphid control strategies. Although insect behavior plays a role in host selection and non-host resistance, an important observation is that aphids interact with non-host plants by probing the leaf surface, but are unable to feed or establish colonization. Therefore, we hypothesize that aphids interact with non-host plants at the molecular level, but are potentially not successful in suppressing plant defenses and/or releasing nutrients. PMID:25520727

  9. Prey Acceptability and Preference of Oenopia conglobata (Coleoptera: Coccinellidae, a Candidate for Biological Control in Urban Green Areas

    Directory of Open Access Journals (Sweden)

    Belén Lumbierres

    2018-01-01

    Full Text Available Oenopia conglobata is one of the most common ladybird species in urban green areas of the Mediterranean region. We have obtained data about its prey acceptability and prey preferences. In a laboratory experiment, we investigated the acceptability of seven aphid and one psyllid species as prey for this coccinellid: the aphids Chaitophorus populeti, Aphis gossypii, Aphis craccivora Monelliopsis caryae, Eucallipterus tiliae, Aphis nerii (on white poplar, pomegranate, false acacia, black walnut, lime, and oleander, respectively, and the psyllid Acizzia jamatonica on Persian silk tree. These species are abundant in urban green areas in the Mediterranean region. In addition, we tested the acceptability of Rhopalosiphum padi on barley, an aphid species easily reared in the laboratory. We also tested preferences of the predator in cafeteria experiments with three aphid species and one aphid and the psyllid. Adults and larvae of the coccinellid accepted all of the preys offered, except A. nerii, with a clear preference for M. caryae. The predator also showed preference for M. caryae when it was offered in a cafeteria experiment with other aphid species or with the psyllid. The aphid R. padi obtained a good acceptability and could be used for rearing O. conglobata in the laboratory.

  10. Prey Acceptability and Preference of Oenopia conglobata (Coleoptera: Coccinellidae), a Candidate for Biological Control in Urban Green Areas.

    Science.gov (United States)

    Lumbierres, Belén; Madeira, Filipe; Pons, Xavier

    2018-01-12

    Oenopia conglobata is one of the most common ladybird species in urban green areas of the Mediterranean region. We have obtained data about its prey acceptability and prey preferences. In a laboratory experiment, we investigated the acceptability of seven aphid and one psyllid species as prey for this coccinellid: the aphids Chaitophorus populeti, Aphis gossypii , Aphis craccivora Monelliopsis caryae , Eucallipterus tiliae , Aphis nerii (on white poplar, pomegranate, false acacia, black walnut, lime, and oleander, respectively), and the psyllid Acizzia jamatonica on Persian silk tree. These species are abundant in urban green areas in the Mediterranean region. In addition, we tested the acceptability of Rhopalosiphum padi on barley, an aphid species easily reared in the laboratory. We also tested preferences of the predator in cafeteria experiments with three aphid species and one aphid and the psyllid. Adults and larvae of the coccinellid accepted all of the preys offered, except A. nerii , with a clear preference for M. caryae . The predator also showed preference for M. caryae when it was offered in a cafeteria experiment with other aphid species or with the psyllid. The aphid R. padi obtained a good acceptability and could be used for rearing O. conglobata in the laboratory.

  11. SOYBEAN.APHID.SD.2017

    Science.gov (United States)

    Infestations by soybean aphid (SA) can reduce soybean yield. Thus, SA-resistant soybean may be useful in reducing infestations and limiting yield loss. Expression of resistance was characterized among 746 soybean accessions in 56 growth chamber tests at the North Central Agricultural Research Labo...

  12. Ability of Aphis gossypii and Myzus persicae to Transmit Cucumber mosaic virus in Single and Mixed Infection with Two Potyviruses to Zucchini Squash Eficiência dos afídeos Aphis gossypii e Myzus persicae na transmissão do Cucumber mosaic virus em infecção simples e mista com dois Potyvirus para abobrinha de moita

    Directory of Open Access Journals (Sweden)

    Zayame Vegette Pinto

    2008-06-01

    Full Text Available The main objective of this work was to investigate the ability of Aphis gossypii and Myzus persicae to transmit Cucumber mosaic virus (CMV singly and mixed with two potyviruses (Papaya ringspot virus - type W, PRSV-W and Zucchini yellow mosaic virus, ZYMV, to zucchini squash plants (Cucurbita pepo. The results showed that the potyviruses in general were more efficiently transmitted by both species of aphids as compared to CMV. The transmission of PRSV-W, ZYMV and CMV separately was more efficient than in mixture.O objetivo desse trabalho foi estudar a eficiência de Aphis gossypii e Myzus persicae na transmissão do vírus do mosaico do pepino (Cucumber mosaic virus, CMV, isoladamente e em mistura com duas espécies de potyvirus (Vírus do mosaico do mamoeiro = Papaya ringspot virus - type W, PRSV-W e Vírus do mosaico amarelo da abobrinha = Zucchini yellow mosaic virus, ZYMV, para planta-testes de abobrinha de moita (Cucurbita pepo. Os dois potyvirus em geral foram transmitidos com mais eficiência pelas duas espécies de afídeos do que o CMV. A transmissão do PRSV-W, ZYMV e CMV, separadamente, foi mais eficiente do que em mistura.

  13. Dispersal strategies of phytophagous insects at a local scale: adaptive potential of aphids in an agricultural environment

    Directory of Open Access Journals (Sweden)

    Boll Roger

    2006-10-01

    Full Text Available Abstract Background The spread of agriculture greatly modified the selective pressures exerted by plants on phytophagous insects, by providing these insects with a high-level resource, structured in time and space. The life history, behavioural and physiological traits of some insect species may have evolved in response to these changes, allowing them to crowd on crops and to become agricultural pests. Dispersal, which is one of these traits, is a key concept in evolutionary biology but has been over-simplified in most theoretical studies. We evaluated the impact of the local-scale dispersal strategy of phytophagous insects on their fitness, using an individual-based model to simulate population dynamics and dispersal between leaves and plants, by walking and flying, of the aphid Aphis gossypii, a major agricultural pest, in a melon field. We compared the optimal values for dispersal parameters in the model with the corresponding observed values in experimental trials. Results We show that the rates of walking and flying disperser production on leaves were the most important traits determining the fitness criteria, whereas dispersal distance and the clustering of flying dispersers on the target plant had no effect. We further show that the effect of dispersal parameters on aphid fitness depended strongly on plant characteristics. Conclusion Parameters defining the dispersal strategies of aphids at a local scale are key components of the fitness of these insects and may thus be essential in the adaptation to agricultural environments that are structured in space and time. Moreover, the fact that the effect of dispersal parameters on aphid fitness depends strongly on plant characteristics suggests that traits defining aphid dispersal strategies may be a cornerstone of host-plant specialization.

  14. 77 FR 15033 - Privacy Act Systems of Records; APHIS Veterinary Services User Fee System

    Science.gov (United States)

    2012-03-14

    ... Foundation Financial Information System (FFIS), the official APHIS financial system. The UFS database... Fort Collins, CO, and a backup of the system is maintained in APHIS offices in Riverdale, MD... for admittance at all times. Backup media is taken weekly to an offsite storage facility and stored on...

  15. Altruistic defence behaviours in aphids

    Directory of Open Access Journals (Sweden)

    Brodeur Jacques

    2010-01-01

    Full Text Available Abstract Background Altruistic anti-predatory behaviours pose an evolutionary problem because they are costly to the actor and beneficial to the recipients. Altruistic behaviours can evolve through indirect fitness benefits when directed toward kin. The altruistic nature of anti-predatory behaviours is often difficult to establish because the actor can obtain direct fitness benefits, or the behaviour could result from selfish coercion by others, especially in eusocial animals. Non-eusocial parthenogenetically reproducing aphids form colonies of clone-mates, which are ideal to test the altruistic nature of anti-predatory defence behaviours. Many aphids release cornicle secretions when attacked by natural enemies such as parasitoids. These secretions contain an alarm pheromone that alerts neighbours (clone-mates of danger, thereby providing indirect fitness benefits to the actor. However, contact with cornicle secretions also hampers an attacker and could provide direct fitness to the actor. Results We tested the hypothesis that cornicle secretions are altruistic by assessing direct and indirect fitness consequences of smearing cornicle secretions onto an attacker, and by manipulating the number of clone-mates that could benefit from the behaviour. We observed parasitoids, Aphidius rhopalosiphi, foraging singly in patches of the cereal aphid Sitobion avenae of varied patch size (2, 6, and 12 aphids. Aphids that smeared parasitoids did not benefit from a reduced probability of parasitism, or increase the parasitoids' handling time. Smeared parasitoids, however, spent proportionately more time grooming and less time foraging, which resulted in a decreased host-encounter and oviposition rate within the host patch. In addition, individual smearing rate increased with the number of clone-mates in the colony. Conclusions Cornicle secretions of aphids were altruistic against parasitoids, as they provided no direct fitness benefits to secretion

  16. Genetic origin and dispersal of the invasive soybean aphid inferred from population genetic analysis and approximate Bayesian computation.

    Science.gov (United States)

    Fang, Fang; Chen, Jing; Jiang, Li-Yun; Qu, Yan-Hua; Qiao, Ge-Xia

    2018-01-09

    Biological invasion is considered one of the most important global environmental problems. Knowledge of the source and dispersal routes of invasion could facilitate the eradication and control of invasive species. Soybean aphid, Aphis glycines Matsumura, is one of the most destructive soybean pests. For effective management of this pest, we conducted genetic analyses and approximate Bayesian computation (ABC) analysis to determine the origins and dispersal of the aphid species, as well as the source of its invasion in the USA, using eight microsatellite loci and the mitochondrial cytochrome c oxidase subunit I (COI) gene. We were able to identify a significant isolation by distance (IBD) pattern and three genetic lineages in the microsatellite data but not in the mtDNA dataset. The genetic structure showed that the USA population has the closest relationship with those from Korea and Japan, indicating that the two latter populations might be the sources of the invasion to the USA. Both population genetic analyses and ABC showed that the northeastern populations in China were the possible sources of the further spread of A. glycines to Indonesia. The dispersal history of this aphid can provide useful information for pest management strategies and can further help predict areas at risk of invasion. This article is protected by copyright. All rights reserved.

  17. Aphid-proof plants: biotechnology-based approaches for aphid control.

    Science.gov (United States)

    Will, Torsten; Vilcinskas, Andreas

    2013-01-01

    Aphids are economically significant agricultural pests that are responsible for large yield losses in many different crops. Because the use of insecticides is restricted in the context of integrated pest management and aphids develop resistance against them rapidly, new biotechnology-based approaches are required for aphid control. These approaches focus on the development of genetically modified aphid-resistant plants that express protease inhibitors, dsRNA, antimicrobial peptides, or repellents, thus addressing different levels of aphid-plant interactions. However, a common goal is to disturb host plant acceptance by aphids and to disrupt their ability to take nutrition from plants. The defense agents negatively affect different fitness-associated parameters such as growth, reproduction, and survival, which therefore reduce the impact of infestations. The results from several different studies suggest that biotechnology-based approaches offer a promising strategy for aphid control.

  18. A functional genomics approach identifies candidate effectors from the aphid species Myzus persicae (green peach aphid.

    Directory of Open Access Journals (Sweden)

    Jorunn I B Bos

    2010-11-01

    Full Text Available Aphids are amongst the most devastating sap-feeding insects of plants. Like most plant parasites, aphids require intimate associations with their host plants to gain access to nutrients. Aphid feeding induces responses such as clogging of phloem sieve elements and callose formation, which are suppressed by unknown molecules, probably proteins, in aphid saliva. Therefore, it is likely that aphids, like plant pathogens, deliver proteins (effectors inside their hosts to modulate host cell processes, suppress plant defenses, and promote infestation. We exploited publicly available aphid salivary gland expressed sequence tags (ESTs to apply a functional genomics approach for identification of candidate effectors from Myzus persicae (green peach aphid, based on common features of plant pathogen effectors. A total of 48 effector candidates were identified, cloned, and subjected to transient overexpression in Nicotiana benthamiana to assay for elicitation of a phenotype, suppression of the Pathogen-Associated Molecular Pattern (PAMP-mediated oxidative burst, and effects on aphid reproductive performance. We identified one candidate effector, Mp10, which specifically induced chlorosis and local cell death in N. benthamiana and conferred avirulence to recombinant Potato virus X (PVX expressing Mp10, PVX-Mp10, in N. tabacum, indicating that this protein may trigger plant defenses. The ubiquitin-ligase associated protein SGT1 was required for the Mp10-mediated chlorosis response in N. benthamiana. Mp10 also suppressed the oxidative burst induced by flg22, but not by chitin. Aphid fecundity assays revealed that in planta overexpression of Mp10 and Mp42 reduced aphid fecundity, whereas another effector candidate, MpC002, enhanced aphid fecundity. Thus, these results suggest that, although Mp10 suppresses flg22-triggered immunity, it triggers a defense response, resulting in an overall decrease in aphid performance in the fecundity assays. Overall, we

  19. THE EFFECT OF WATER EXTRACTS FROM WINTER SAVORY ON BLACK BEAN APHID MORTALITY

    Directory of Open Access Journals (Sweden)

    Milena Rusin

    2016-01-01

    Full Text Available The aim of this study was to determine the effect of water extracts prepared from fresh and dry matter of winter savory (Satureja montana L. on mortality of wingless females and larvae of black bean aphid (Aphis fabae Scop.. The experiment was conducted in the laboratory, in six replicates. Dry extracts were prepared at concentration of 2%, 5% and 10%, while the fresh plant at concentration of 10%, 20% and 30%. Stomach poisoning of extracts was determined by soaking broad bean leaves in the respective solutions, and then determining mortality of wingless female and larvae feeding on leaves thus prepared at 12 hour intervals. The results of the experiment showed that the extract prepared from dry matter at the highest concentration (10%, as well as the extracts from fresh matter at concentration of 20% and 30% contributed to an increase in mortality of wingless female of black bean aphid. Meanwhile, extracts prepared from both dry and fresh matter at two highest concentrations caused an increase in mortality of larvae of this pest. Furthermore, with increasing concentrations of analysed extracts prepared from both fresh and dry matter of winter savory, their negative effect on wingless females and larvae usually increase.

  20. Spruce aphid (Elatobium abietinum Walker) (Hemiptera: Aphididae) [Chapter XXIV

    Science.gov (United States)

    Ann M. Lynch

    2014-01-01

    Elatobium abietinum Walker is a spruce-feeding aphid that in Europe is referred to as the green spruce aphid (Day et al., 1998a) (Fig. 1). However, in North America E. abietinum is known simply as the spruce aphid, while the common name "green spruce aphid" refers to a different species, Cinara fornacula Hottes (Hemiptera: Aphididae) (http://www.entsoc.org/...

  1. Aphid (Hemiptera: Aphididae) species determined on herbaceous ...

    African Journals Online (AJOL)

    STORAGESEVER

    2009-06-17

    Jun 17, 2009 ... As a result, total of 28 aphid species belonging to 14 genus and 4 tribes of the super family. Aphidoidea were determined. ... species of Aphidoidea family attack various plants, infest- ing leaves, terms, fruits and roots ... Aphids were collected from their host plants with a fine brush and put in to a tube which ...

  2. Effect of reproductive mode on host plant utilization of melon aphid (Hemiptera: Aphididae).

    Science.gov (United States)

    Liu, Xiangdong; Gao, Xue

    2010-12-01

    Variation in the reproductive mode of melon aphid Aphis gossypii Glover occurred on the large geographic scale, but the performance of different reproductive modes to use host plant is poorly understood. Life tables of melon aphid population that undergo the anholocyclic, androcyclic, and intermediate reproductive mode were conducted on different host plants. The results showed that the anholocyclic and androcyclic strains could become adults and produce offspring on cotton Gossypium hirsutum L., whereas the intermediate strain could not. The survival rate, net reproductive rate (R(0)), and intrinsic rate of natural increase (r(m)) of the androcyclic strain on cotton were significantly greater than that of the anholocyclic strain. The three strains could aptly use cucurbits host plants including cucumber Cucumis sativa L., pumpkin Cucurbita moschata (Duchesne ex Lam.), and zucchini Cucurbita pepo L.; survival rate and R(0) were not significantly different on these two host plants. Moreover, the r(m) of the anholocyclic strain on cucumber and the androcyclic strain on pumpkin and zucchini were significantly greater than that of the other two strains. The abilities of the three strains to use a host plant were flexible, because their r(m) on pumpkin or zucchini became equal after rearing for four successive generations; furthermore, the intermediate strain attained the ability to use cotton, and the performance of anholocyclic and intermediate strains to use cotton also significantly increased after feeding on pumpkin or zucchini for one or three generations. It was concluded that the reproductive mode and feeding experience affected the performance of melon aphid to use a host plant. © 2010 Entomological Society of America

  3. The effect of insecticide applications to melon crop on melon aphid and its natural enemies

    International Nuclear Information System (INIS)

    Guerra, J.; Gonzalez, J.E.; Ceballos, J.; Checa, B.

    1999-01-01

    Melons are an important export crop for Panama and are cultivated on more than 1000 ha of land. Long growing season, extending well into January, allows several generations and build up of heavy populations of an important insect pest, Aphis gossypii, the melon aphid. Growers find it difficult to cultivate melons without several applications of insecticides. Although the insecticide applications control the aphids, they may also have adverse effects on the natural enemies of the aphid, in particular the two predatory insects Cycloneda sanguinea and Chrysoperla carnea. The purpose of this research was to evaluate the impact of insecticide applications on these insects and on the yield of melons, and to estimate residues of the applied insecticides in soil. The insecticides were applied as four different type of treatments to melon crop. The treatments were (i) three periodic applications of endosulfan (Thiodan 35EC), each at 0.52 kg a.i./ha, (ii) three applications of fenitrothion (Sumithion 50WP), each at 0.35 kg a.i./ha, (iii) two applications of fenitrothion and one of endosulfan, and (iv) grower's treatment, which included applications of six different insecticides. The effect of the insecticide applications was evaluated by estimating numbers of each of the three type of insects before and within 72 hours after the applications and estimating yield of melons. All insecticide treatments reduced the populations of Aphis gossypii, but they also reduced the numbers of the benificial insects. Endosulfan was somewhat less toxic to C. carnea than the other insecticides were, since greater number of C. carnea were recorded from the plots treated with endosulfan than the other treated plots. The best yield of melons was recorded in the plots which were sprayed with fenitrothion, followed by the plots sprayed with endosulfan. and then those with grower's insecticides. Soon after the application of endosulfan the residue in the soil was 0.2 mg/kg, but it declined to less

  4. Aphid incidence and its correlation with different environmental factors

    OpenAIRE

    Hasan, M.R; Ahmad, M.; Rahman, M.H; Haque, M.A

    2009-01-01

    The aphid incidence and its correlation with environmental factors were studied. Mustard variety “Sampad” was used as test crop. Aphid incidence varied significantly at various parts of mustard plant and time of the day. The highest number of aphid was observed in the vegetative parts of the mustard plant in the morning. High cloudiness, relative humidity and dew point favoured the aphid population and slight rain fall quickly declined the aphid population. Among the different environmental f...

  5. Potato aphid salivary proteome: enhanced salivation using resorcinol and identification of aphid phosphoproteins.

    Science.gov (United States)

    Chaudhary, Ritu; Atamian, Hagop S; Shen, Zhouxin; Briggs, Steven P; Kaloshian, Isgouhi

    2015-04-03

    Aphids deliver saliva into plants and acquire plant sap for their nourishment using a specialized mouthpart or stylets. Aphid saliva is of great importance because it contains effectors that are involved in modulating host defense and metabolism. Although profiling aphid salivary glands and identifying secreted proteins have been successfully used, success in direct profiling of aphid saliva have been limited due to scarcity of saliva collected in artificial diets. Here we present the use of a neurostimulant, resorcinol, for inducing aphid salivation. Saliva of potato aphids (Macrosiphum euphorbiae), maintained on tomato, was collected in resorcinol diet. Salivary proteins were identified using mass spectrometry and compared with the existing M. euphorbiae salivary proteome collected in water. Comparative analysis was also performed with existing salivary proteomes from additional aphid species. Most of the proteins identified in the resorcinol diet were also present in the water diet and represented proteins with a plethora of functions in addition to a large number of unknowns. About half of the salivary proteins were not predicted for secretion or had canonical secretion signal peptides. We also analyzed the phosphorylation states of M. euphorbiae salivary proteins and identified three known aphid effectors, Me_WB01635/Mp1, Me10/Mp58, and Me23 that carry phosphorylation marks. In addition to insect proteins, tomato host proteins were also identified in aphid saliva. Our results indicate that aphid saliva is complex and provides a rich resource for functional characterization of effectors.

  6. Fecundidade e longevidade de Aphis gossypii Glover, 1877 (Hemiptera, Aphididae em diferentes temperaturas e cultivares comerciais de crisântemo (Dendranthema grandiflora Tzvelev

    Directory of Open Access Journals (Sweden)

    Soglia Maria C. de M.

    2003-01-01

    Full Text Available Fecundity and longevity of Aphis gossypii Glover, 1877 (Hemiptera, Aphididae at different temperatures and commercial chrysanthemum cultivars (Dendranthema grandiflora Tzvelev. The aphid A. gossypii is one of the main pests in a number of crops both under field and protected conditions. The objective of the present study was to evaluate the fecundity and longevity of A. gossypii under different temperatures and commercial chrysanthemum cultivars (Yellow Snowdon, White Reagan and Dark Splendid Reagan with different trichomes densities (11.3; 16.6 and 21.6 trichome/mm² of the leaf, respectively The trials were carried out in climatic chambers, at four temperatures (15, 20, 25 and 30 ±1 °C, 70 ± 10% RH and photophase 10h. The reproductive period significantly decreased with increase of temperature in the three cultivars. In Yellow Snowdon cultivar average duration of the reproductive period was 14.3 days at 25 °C. The maximum fecundity was obtained at the temperature of 25 ºC with 3,1; 2,8 and 3,6 nymphs/female/day in the Yellow Snowdon, White Reagan and Dark S. Reagan cultivars, respectively. The total fecundity was reduced by extreme temperatures (15 and 30 °C, and was obtained at 25 °C with 35,9 nymphs/female. Females maintained in Yellow Snowdon cultivar significantly showed superiority (30,7 nymphs/female in total fecundity in relation to White Reagan (22,1 nymphs/female and Dark S. Reagan (22,9 nymphs/female. The Yellow Snowdon cultivar (with a lower trichome density had a significant influence in daily and total capacity of nymphs production, showing a higher fecundity of A. gossypii females. The aphid's longevity was affected by cultivars and temperature, and this longevity decreased whit increase of temperature. The results showed that there was an interaction between the temperature and host plant on reproductive parameters of A. gossypii.

  7. Plant-aphid interactions: molecular and ecological perspectives.

    Science.gov (United States)

    Goggin, Fiona L

    2007-08-01

    Many aphids are major agricultural pests because of their unparalleled reproductive capacity and their ability to manipulate host plant physiology. Aphid population growth and its impact on plant fitness are strongly influenced by interactions with other organisms, including plant pathogens, endophytes, aphid endosymbionts, predators, parasitoids, ants, and other herbivores. Numerous molecular and genomic resources have recently been developed to identify sources of aphid resistance in plants, as well as potentially novel targets for control in aphids. Moreover, the same model systems that are used to explore direct molecular interactions between plants and aphids can be utilized to study the ecological context in which they occur.

  8. Application of some insecticides and plant crude extracts for controlling insect pests in yard long bean

    Directory of Open Access Journals (Sweden)

    Wipawadee Chamnan

    2003-05-01

    Full Text Available Tests on plant crude extracts of neem seeds, galanga and citronella grass at the rates of 200 ml/20 L of water together with synthetic insecticides, cypermethrin, methamidophos, carbosulfan and carbofuran, at the recommended rates showed that none of the treatments was effective in controlling plant damage caused by adult of bean fly (Ophiomyia phaseoli Tryon. The application of the synthetic insecticide, methamidophos, and plant crude extracts of neem seeds + galanga + citronella grass provided the highest effectiveness tocontrol aphids (Aphis craccivora Koch. Control of A. craccivora was not significantly different between the synthetic insecticide and plant crude extracts, except methamidophos. Pod damage caused by pod borer (Maruca testulalis Geyer and yields were also not significantly different among treatments. However, the highest yield of 1,224.7 kg/rai was recorded in plots treated with neem seed extracts and the synthetic insecticide, carbosulfan. In untreated plots, the lowest yield of 587.3 kg/rai was collected.

  9. Thermal tolerance and resource partitioning in aphids

    Czech Academy of Sciences Publication Activity Database

    Dixon, Anthony F. G.

    XCII, - (2009), s. 171-173 ISSN 0370-4327 Institutional research plan: CEZ:AV0Z60870520 Keywords : aphids * coexistence * food quality * resource partitioning * thermal tolerance Subject RIV: EG - Zoology

  10. Long range migration of aphids into Sweden

    Science.gov (United States)

    Wiktelius, Staffan

    1984-09-01

    A five year study of migration of aphids across the southern part of the Baltic Sea is reported. The aphids were caught in a suction trap placed on a lighthouse 50 m from the shoreline. Large sections of the results are presented as case studies i.e. catches of aphids from periods containing at least three consecutive days with a southerly gradient wind. Some periods contained large and diverse catches and it is assumed that aphids regularly cross the Baltic Sea. The catches was largest on days when a cold front passed the trapping site within a period. More Myzus persicae were caught on days when the wind was southerly than on days with a northerly wind direction.

  11. Aphid Heritable Symbiont Exploits Defensive Mutualism.

    Science.gov (United States)

    Doremus, Matthew R; Oliver, Kerry M

    2017-04-15

    Insects and other animals commonly form symbioses with heritable bacteria, which can exert large influences on host biology and ecology. The pea aphid, Acyrthosiphon pisum , is a model for studying effects of infection with heritable facultative symbionts (HFS), and each of its seven common HFS species has been reported to provide resistance to biotic or abiotic stresses. However, one common HFS, called X-type, rarely occurs as a single infection in field populations and instead typically superinfects individual aphids with Hamiltonella defensa , another HFS that protects aphids against attack by parasitic wasps. Using experimental aphid lines comprised of all possible infection combinations in a uniform aphid genotype, we investigated whether the most common strain of X-type provides any of the established benefits associated with aphid HFS as a single infection or superinfection with H. defensa We found that X-type does not confer protection to any tested threats, including parasitoid wasps, fungal pathogens, or thermal stress. Instead, component fitness assays identified large costs associated with X-type infection, costs which were ameliorated in superinfected aphids. Together these findings suggest that X-type exploits the aphid/ H. defensa mutualism and is maintained primarily as a superinfection by "hitchhiking" via the mutualistic benefits provided by another HFS. Exploitative symbionts potentially restrict the functions and distributions of mutualistic symbioses with effects that extend to other community members. IMPORTANCE Maternally transmitted bacterial symbionts are widespread and can have major impacts on the biology of arthropods, including insects of medical and agricultural importance. Given that host fitness and symbiont fitness are tightly linked, inherited symbionts can spread within host populations by providing beneficial services. Many insects, however, are frequently infected with multiple heritable symbiont species, providing potential

  12. Pyramiding different aphid-resistance genes in elite soybean germplasm to combat dynamic aphid populations

    Science.gov (United States)

    The soybean aphid, an invasive species, has posed a significant threat to soybean production in North America since 2001. Use of resistant cultivars is an effective tactic to protect soybean yield. However, the variability and dynamics of aphid populations could limit the effectiveness of host-resis...

  13. AphID (Lucid key) http://AphID.AphidNet.org

    Science.gov (United States)

    This peer-reviewed web site concentrates on the 66 adult alate and apterous aphids that are the world's most cosmopolitan and polyphagous species. The site includes fact sheets about the various aphids species, a glossary of terms helpful to the student, hundreds of photographs and illustrations, a...

  14. Factors affecting colonization and abundance of Aphis gossypii glover (hemiptera: aphididae on okra plantations Fatores que afetam a colonização e abundância de Aphis gossypii glover (Hemiptera: Aphididae em plantações de quiabeiro

    Directory of Open Access Journals (Sweden)

    Germano Leão Demolin Leite

    2007-04-01

    Full Text Available The control of Aphis gossypii Glover (Hemiptera: Aphididae on okra Abelmoschus esculentus (L. (Malvaceae consist primarily in the use of insecticides, due to the lack of information on other mortality factors. The objective of this study was to determine the effects of predators and parasitoids, height of canopy, plant age, leaf areas, organic compounds leaves, levels of leaf nitrogen and potassium, density of leaf trichomes, total rainfall and median temperature on attack intensity of A. gossypii on two successive A. esculentus var. Santa Cruz plantations. Monthly number estimates of A. gossypii and natural enemies (visual inspection occurred on bottom, middle and apical parts of 30 plants/plantation (one leaf/plant. Plants senescence, leaf areas and natural enemies, mainly Adialytus spp., spiders and Coccinellidae, were some of the factors that most contributed to aphid reduction. A higher number of aphids was found on the bottom part than medium and apical parts of okra plants. Total rainfall can reduce the aphid population. Trichomes non-glandular or low density, organic compounds leaves and levels of N and K were not important for reducing aphid population.O controle de Aphis gossypii Glover (Hemiptera: Aphididae em quiabeiro Abelmoschus esculentus (L. (Malvaceae consiste principalmente no uso de inseticidas, em virtude da falta de informação sobre outros fatores de mortalidade. Objetivou-se com este estudo determinar os efeitos de predadores e parasitóides, altura de dossel, idade da planta, área foliar, compostos orgânicos foliares, níveis de nitrogênio e potássio, densidade de tricomas, pluviosidade e temperatura na intensidade de ataque de A. gossypii em dois cultivos sucessivos de Abelmoschus esculentus var. Santa Cruz. Estimou-se, mensalmente, o número de A. gossypii e de inimigos naturais (inspeção visual ocorridos nas folhas (uma folha/planta localizadas nas partes basal, mediana e apical de 30 plantas/plantação. Os

  15. Both point mutations and low expression levels of the nicotinic acetylcholine receptor β1 subunit are associated with imidacloprid resistance in an Aphis gossypii (Glover) population from a Bt cotton field in China.

    Science.gov (United States)

    Chen, Xuewei; Li, Fen; Chen, Anqi; Ma, Kangsheng; Liang, Pingzhuo; Liu, Ying; Song, Dunlun; Gao, Xiwu

    2017-09-01

    Aphis gossypii Glover is a destructive pest of numerous crops throughout the world. Although the expansion of Bt cotton cultivation has helped to control some insect pests, the damage from cotton aphids has not been mitigated. The evolution of aphid resistance to imidacloprid has made its chemical control more difficult since its introduction in 1991. Field populations of A. gossypii that were collected from different transgenic (Bt) cotton planting areas of China in 2014 developed different levels of resistance to imidacloprid. The IMI_R strain has developed high resistance to imidacloprid with the resistance ratio >1200-fold. Compared with the susceptible IMI_S strain, the IMI_R strain also developed a high level cross resistance to sulfoxaflor and acetamiprid. The limited synergism with either PBO or DEF suggests that resistance may be due to the site mutation of molecular target rather than to enhanced detoxification. Three target-site mutations within the nicotinic acetylcholine receptor (nAChR) β1 subunit were detected in the IMI_R strain. The R81T mutation has been reported to be responsible for imidacloprid resistance in A. gossypii and M. persicae. Both V62I and K264E were first detected in A. gossypii. These point mutations are also present in field populations, suggesting that they play a role in the resistance to imidacloprid. Furthermore, the expression level of transcripts encoding β1 subunit was decreased significantly in the IMI_R strain compared with the IMI_S strain, suggesting that both point mutations and the down-regulation of nAChR β1 subunit expression may be involved in the resistance mechanism for imidacloprid in A. gossypii. These results should be useful for the management of imidacloprid-resistant cotton aphids in Bt cotton fields in China. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Community-wide impact of an exotic aphid on introduced tall goldenrod

    OpenAIRE

    ANDO, YOSHINO; UTSUMI, SHUNSUKE; OHGUSHI, TAKAYUKI

    2011-01-01

    1. The aphid Uroleucon nigrotuberculatum Olive, which is specialised to the tall goldenrod, Solidago altissima L., in its native range, has become a dominant species on the introduced tall goldenrod in Japan. How this exotic aphid influenced arthropod communities on the introduced tall goldenrod in aphid-present (spring) and aphid-absent (autumn) seasons was examined, using an aphid removal experiment. 2. In spring, aphid presence increased ant abundance because aphid honeydew attracted forag...

  17. Host plant resistance to aphids in cultivated crops: genetic and molecular bases, and interactions with aphid populations.

    Science.gov (United States)

    Dogimont, Catherine; Bendahmane, Abdelhafid; Chovelon, Véronique; Boissot, Nathalie

    2010-01-01

    Host plant resistance is an efficient and environmentally friendly means of controlling insects, including aphids, but resistant-breaking biotypes have occurred in several plant-aphid systems. Our review of the genetic and molecular bases of aphid resistance in crop species emphasizes the limited number of aphid resistance genes and alleles. Inheritance of aphid resistance may be monogenic (dominant or recessive genes) or polygenic. Two dominant, aphid resistance genes have been isolated to date. They both encode NBS-LRR proteins involved in the specific recognition of aphids. Strategies to ensure aphid resistance effectiveness and durability are discussed. Innovative research activities are proposed. Copyright 2010 Académie des sciences. Published by Elsevier SAS. All rights reserved.

  18. Ability of systemic insecticide dimethoate to prevent aphid ...

    African Journals Online (AJOL)

    Weekly collection of aphids at both sites showcrl a predominance of Myzus persicae (Sul.), the principle vector of most potato viruses. Dimethoate controlled aphids at Kalengyere but not at Namulonge. As a result, seed potatoes obtained from Kalengyere and grown at Namulonge acquired the aphid-transmitled PLRV in ...

  19. Whitefly and aphid inducible promoters of Arabidopsis thaliana L.

    Indian Academy of Sciences (India)

    NEERAJ KUMAR DUBEY

    2018-02-16

    Feb 16, 2018 ... After 2, 24, 48, 72 and 96 h of aphid infesta- tion, aphids were removed with a fine brush and the leaves were used for RNA isolation. For aphid (M. nicotinae) infestation treatment of the T2 transgenic tobacco plant, leaf disks of a 10-mm diameter were cut, transferred to agar plate, and challenged with.

  20. Loss of aphid transmissibility of plum pox virus isolates

    NARCIS (Netherlands)

    Kamenova, I.; Lohuis, H.; Peters, D.

    2002-01-01

    The aphid transmissibility of seven Plum pox virus (PPV) isolates and the amino acid sequences of their coat proteins were analysed Two aphid transmissible isolates PPV-A and PPV-P contained the DAG amino triplet, while DAL or NAG replaced this triplet in the coat proteins of non-aphid transmissible

  1. Insecticied effect of silver and zinc nanoparticles against Aphis nerii Boyer of fonscolombe (Hemiptera: Aphididae Efecto insecticida de nanopartículas de plata y zinc contra Aphis nerii Boyer de Fonscolombe (Hemiptera: Aphididae

    Directory of Open Access Journals (Sweden)

    Mohammad Rouhani

    2012-12-01

    Full Text Available The oleander aphid, Aphis nerii Boyer de Fonscolombe, is one of the common pests of ornamental plants in the families of Apocynaceae and Sclepiadaceae and distributed throughout the world, which has been responsible for the mortality of a large number of oleander (Nerium oleander L. shrubs each year. In this research, the insecticidal activity of Ag nanoparticles against the A. nerii was investigated. Nanoparticles of Ag and Ag-Zn were synthesized through a solvothermal method, and using them, insecticidal solutions of different concentrations were prepared and tested on A. nerii. For comparison purposes, imidacloprid was also used as a conventional insecticide. In the experiments, the LC50 value for imidacloprid, Ag and Ag-Zn nanoparticles were calculated to be 0.13 μL mL-1, 424.67 mg mL-1, and 539.46 mg mL-1, respectively. The result showed that Ag nanoparticles can be used as a valuable tool in pest management programs of A. nerii. Additionally, the study showed that imidacloprid at 1 μL mL-1 and nanoparticles at 700 mg mL-1 had the highest insect mortality effect.El áfido de la adelfa, Aphis nerii Boyer de Fonscolombe, es una de las plagas más comunes de plantas ornamentales en las familias Apocynaceae y Sclepiadaceae y tiene distribución mundial, ha sido responsable de la mortalidad de un gran número de arbustos de adelfa (Nerium oleander L. cada ano. En este estudio se investigó la actividad insecticida de nanopartículas de Ag contra A. nerii. Nanopartículas de Ag y Ag-Zn fueron sintetizadas a través de un método solvotérmico, y con ellas se prepararon soluciones insecticidas de diferentes concentraciones y se probaron contra A. nerii. Con fines de comparación, también se usó imidacloprid como un insecticida convencional. En los experimentos, el valor LC50 para imidacloprid, nanopartículas de Ag y Ag-Zn se calculó como 0.13 μL mL-1, 424.67 mg mL-1, y 539.46 mg mL-1, respectivamente. El resultado mostró que nanopart

  2. Root-lesion nematodes suppress cabbage aphid population development by reducing aphid daily reproduction

    Directory of Open Access Journals (Sweden)

    W. H. Gera eHol

    2016-02-01

    Full Text Available Empirical studies have shown that belowground feeding herbivores can affect the performance of aboveground herbivores in different ways. Often the critical life-history parameters underlying the observed performance effects remain unexplored. In order to better understand the cause for the observed effects on aboveground herbivores, these ecological mechanisms must be better understood. In this study we combined empirical experiments with a modelling approach to analyse the effect of two root feeding endoparasitic nematodes with different feeding strategies on the population growth of the aboveground feeding specialist aphid Brevicoryne brassicae on Brassica nigra. The aim was to test whether emerging differences in life history characteristics (days until reproduction, daily reproduction would be sufficient to explain observed differences in aphid population development on plants with and without two species of nematodes. Aphid numbers were lower on plants with Pratylenchus penetrans in comparison to aphid numbers on plants with Meloidogyne spp. A dedicated experiment showed that aphid daily reproduction was lower on plants with P. penetrans (3.08 offspring per female per day in comparison to both uninfested plants and plants with Meloidogyne spp. (3.50 offspring per female per day. The species-specific reduction of aphid reproduction appeared independent of changes in amino acids, soluble sugars or the glucosinolate sinigrin in the phloem. An individual-based model revealed that relatively small differences in reproduction rate per female were sufficient to yield a similar difference in aphid populations as was found in the empirical experiments.

  3. Thiamine treatments alleviate aphid infestations in barley and pea.

    Science.gov (United States)

    Hamada, Afaf M; Jonsson, Lisbeth M V

    2013-10-01

    Treatment of plants with thiamine (Vitamin B1) has before been shown to activate plant defence against microorganisms. Here, we have studied the effects of thiamine treatments of plants on aphid reproduction and behaviour. The work was mainly carried out with bird cherry-oat aphid (Rhopalosiphum padi L.) on barley (Hordeum vulgare L.). Aphid population growth and aphid acceptance on plants grown from seeds soaked in a 150μM thiamine solution were reduced to ca. 60% of that on control plants. R. padi life span and the total number of offspring were reduced on barley plants treated with thiamine. Healthy aphids and aphids infected with the R. padi virus were similarly affected. Spraying or addition of thiamine at 150μM to nutrient solutions likewise resulted in reduced aphid population growth to ca. 60%, as did plant exposure to thiamine odour at 4mM. Thiamine treatments resulted in reduced aphid population growth also when tested with grain aphid (Sitobion avenae F.) on barley and pea aphid (Acyrthosiphon pisum H.) on pea (Pisum sativum L.). There was no direct effect of thiamine on aphid reproduction or thiamine odour on aphid behaviour, as evaluated using artificial diets and by olfactometer tests, respectively. Two gene sequences regulated by salicylic acid showed higher transcript abundance and one gene sequence regulated by methyl jasmonate showed lower transcript abundance in thiamine-treated plants but not in control plants after aphid infestation. These results suggest that the aphid antibiosis and antixenosis effects may be related to priming of defence, but more studies are needed to explain the effects against aphids. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. A new species of Aphis Linnaeus, 1758 (Hem. Aphididae collected on Gymnophyton Clos (Apiaceae in Argentina

    Directory of Open Access Journals (Sweden)

    Sara I. López Ciruelos

    2017-02-01

    Full Text Available Aphis cuyana López Ciruelos & Ortego, sp. n. (Aphididae, Aphidinae is described from apterous and alate viviparous females collected on Gymnophyton polycephalum (Apiaceae in localities of the Argentinean provinces of La Rioja, San Juan and Mendoza. A table with differences of the apterous viviparous females of the new species from the species of Aphis and its close genera Andinaphis and Protaphis known in South America is presented. http://urn:lsid:zoobank.org:pub:4834FEF4-171C-4EBD-BF91-2137B517491E

  5. Impact of reduced-risk insecticides on soybean aphid and associated natural enemies.

    Science.gov (United States)

    Ohnesorg, Wayne J; Johnson, Kevin D; O'Neal, Matthew E

    2009-10-01

    Insect predators in North America suppress Aphis glycines Matsumura (Hemiptera: Aphididae) populations; however, insecticides are required when populations reach economically damaging levels. Currently, insecticides used to manage A. glycines are broad-spectrum (pyrethroids and organophosphates), and probably reduce beneficial insect abundance in soybean, Glycine max (L.) Merr. Our goal was to determine whether insecticides considered reduced-risk by the Environmental Protection Agency could protect soybean yield from A. glycines herbivory while having a limited impact on the aphid's natural enemies. We compared three insecticides (imidacloprid, thiamethoxam, and pymetrozine,) to a broad-spectrum insecticide (lamda-cyhalothrin) and an untreated control using two application methods. We applied neonicotinoid insecticides to seeds (imidacloprid and thiamethoxam) as well as foliage (imidacloprid); pymetrozine and lamda-cyhalothrin were applied only to foliage. Foliage-applied insecticides had lower A. glycines populations and higher yields than the seed-applied insecticides. Among foliage-applied insecticides, pymetrozine and imidacloprid had an intermediate level of A. glycines population and yield protection compared with lamda-cyhalothrin and the untreated control. We monitored natural enemies with yellow sticky cards, sweep-nets, and direct observation. Before foliar insecticides were applied (i.e., before aphid populations developed) seed treatments had no observable effect on the abundance of natural enemies. After foliar insecticides were applied, differences in natural enemy abundance were observed when sampled with sweep-nets and direct observation but not with yellow sticky cards. Based on the first two sampling methods, pymetrozine and the foliage-applied imidacloprid had intermediate abundances of natural enemies compared with the untreated control and lamda-cyhalothrin.

  6. Improvement of wheat for resistance to Russian Wheat Aphid

    International Nuclear Information System (INIS)

    Kinyua, M.; Malinga, J.N.; Wanyama, J.; Karanja, L.; Njau, P.; Leo, T.; Alomba, E.

    2001-01-01

    Breeding for resistance against Russian wheat aphid in Kenya is reported. Results of six of the lines were found to have high to moderate resistance to Russian wheat aphid. Popular lines were susceptible in the greenhouse when subjected to aphid pressure but showed moderate susceptibility when screened under field conditions, indicating that in years or location with low aphid pressure farmers may still get a crop. However in areas of high aphid pressure or bad years they may lose their crop. Consequently, developing resistant/torerant varieties is urgent

  7. Manipulation of parasitoids for aphid pest management: progress and prospects.

    Science.gov (United States)

    Powell, Wilf; Pickett, John A

    2003-02-01

    This paper describes research at IACR-Rothamsted on aphid parasitoid responses to semiochemical foraging stimuli, aimed at developing novel ways of manipulating these behaviours to overcome ecological constraints to biological and integrated pest control. Female parasitoids respond both to aphid sex pheromones acting as kairomones, and to aphid-induced plant volatiles, acting as synomones. A range of economically important parasitoid species respond to aphid sex pheromones, and their potential for enhancing parasitization of aphid populations has been demonstrated in the field. Commercial production of the pheromone from the plant Nepeta cataria L has been developed and strategies for its use in arable crops are being investigated. Aphid-induced plant volatiles are released systemically throughout the plant and are aphid species specific, probably induced by elicitors in aphid saliva. Aphid-infested plants can induce uninfested neighbours to release damage-related volatiles, plant-to-plant communication occurring via the rhizosphere. The plant compound cis-jasmone has been identified as a plant signal with potential for aphid control, inducing plant defence mechanisms that both deter colonising aphids and attract parasitoids and predators. Such compounds may represent a new generation of crop protectants and their further investigation and development will be aided by the tools generated by genomic and post-genomic biology.

  8. Partial aphid resistance in lettuce negatively affects parasitoids.

    Science.gov (United States)

    Lanteigne, Marie-Eve; Brodeur, Jacques; Jenni, Sylvie; Boivin, Guy

    2014-10-01

    This study investigated the effects of partial plant resistance on the lettuce aphid Nasonovia ribisnigri (Mosley) (Hemiptera: Aphididae), a major pest of cultivated lettuce (Lactuca sativa L.), and one of its parasitoids, Aphidius ervi Haliday (Hymenoptera: Braconidae). Aphids were reared on susceptible (L. sativa variety Estival; S) or partially resistant (Lactuca serriola L. PI 491093; PR) lettuce, and next parasitized by A. ervi females. Fitness proxies were measured for both aphids and parasitoids. Developmental time to adult stage took longer for alate and apterous aphids (an average of 3.5 and 1.5 additional days, respectively) on PR than on S lettuce, and fecundity of alate aphids reared on PR lettuce was reduced by 37.8% relative to those reared on S lettuce. Size (tibia length) and weight of aphids reared on PR lettuce were lower than for aphids reared on S lettuce from the third and second instar onward, respectively. Parasitism of aphids reared on PR plants resulted in lower parasitoid offspring emergence (-49.9%), lower adult female (-30.3%) and male (-27.5%) weight, smaller adult female (-17.5%) and male (-11.9%) size, and lower female fecundity (37.8% fewer eggs) than when parasitoids developed from aphids reared on S plants. Our results demonstrate that partial aphid resistance in lettuce negatively affects both the second and third trophic levels. Host plant resistance in cultivated lettuce may therefore create an ecological sink for aphid parasitoids.

  9. Identification of a new species of Aphis (Hemiptera: Aphididae) based on distinct morphology

    Science.gov (United States)

    Aphis elena Lagos-Kutz and Voegtlin, sp. nov. (Hemiptera: Aphididae), is described from specimens collected in Illinois, USA, on the North American native plant, Pycnanthemum virginianum (L.) T. Dur. & B.D. Jacks. ex B.L. Rob. & Fernald (Family: Lamiaceae). Both apterous and alate viviparae are desc...

  10. Biological parameters of the non-target pest Aphis gossypii Glover ...

    African Journals Online (AJOL)

    Thiago Mota

    2013-04-17

    Apr 17, 2013 ... Development and commercial use of Bollgard cotton in the USA nearly promises versus today reality. Plant. J. 27:489-501. Pessoa LGA, Souza B, Carvalho CF, Silva M (2004). Aspectos da biologia de Aphis gossypii Glover, 1877 (Hemiptera: Aphididae) em quatro cultivares de Algodoeiro, em Laboratório.

  11. 76 FR 72897 - Privacy Act Systems of Records; APHIS Animal Health Surveillance and Monitoring System

    Science.gov (United States)

    2011-11-28

    ... Veterinary Services Laboratory Submissions (VSLS), the National Poultry Improvement Plan (NPIP), and the... private industry employed to identify patterns, trends or anomalies indicative of fraud, waste, or abuse... Service, Farm Service Agency, APHIS' Wildlife Services, or from State veterinary health officials and...

  12. Plant-aphid interactions under elevated CO2: some cues from aphid feeding behavior

    Directory of Open Access Journals (Sweden)

    Yu-Cheng eSun

    2016-04-01

    Full Text Available Although the increasing concentration of atmospheric carbon dioxide (CO2 accelerates the accumulation of carbohydrates and increases the biomass and yield of C3 crop plants, it also reduces their nitrogen status. The consequent changes in primary and secondary metabolites affect the palatability of host plants and the feeding of herbivorous insects. Aphids are phloem feeders and are considered the only feeding guild that positively responds to elevated CO2. In this review, we consider how elevated CO2 modifies host defenses, nutrients, and water-use efficiency by altering concentrations of the phytohormones jasmonic acid, salicylic acid, ethylene, and abscisic acid. We will describe how these elevated CO2-induced changes in defenses, nutrients, and water status facilitate specific stages of aphid feeding, including penetration, phloem-feeding, and xylem absorption. We conclude that a better understanding of the effects of elevated CO2 on aphids and on aphid damage to crop plants will require research on the molecular aspects of the interaction between plant and aphid but also research on aphid interactions with their intra- and inter-specific competitors and with their natural enemies.

  13. Angiotensin-converting enzymes modulate aphid-plant interactions.

    Science.gov (United States)

    Wang, Wei; Luo, Lan; Lu, Hong; Chen, Shaoliang; Kang, Le; Cui, Feng

    2015-03-06

    Angiotensin-converting enzymes (ACEs) are key components of the renin-angiotensin system in mammals. However, the function of ACE homologs in insect saliva is unclear. Aphids presumably deliver effector proteins via saliva into plant cells to maintain a compatible insect-plant interaction. In this study, we showed that ACE modulates aphid-plant interactions by affecting feeding behavior and survival of aphids on host plants. Three ACE genes were identified from the pea aphid Acyrthosiphon pisum genome. ACE1 and ACE2 were highly expressed in the salivary glands and are predicted to function as secretory proteins. The ACE2 transcript level decreased in aphids fed on artificial diet compared with aphids fed on Vicia faba. The knockdown of the expression of each ACE by RNAi failed to affect aphid survival. When ACE1 and ACE2 were simultaneously knocked down, aphid feeding was enhanced. Aphids required less time to find the phloem sap and showed longer passive ingestion. However, the simultaneous knockdown of ACE1 and ACE2 resulted in a higher mortality rate than the control group when aphids were fed on plants. These results indicated that ACE1 and ACE2 function together to modulate A. pisum feeding and survival on plants.

  14. Chemical Ecology and Sociality in Aphids: Opportunities and Directions.

    Science.gov (United States)

    Abbot, Patrick; Tooker, John; Lawson, Sarah P

    2018-04-10

    Aphids have long been recognized as good phytochemists. They are small sap-feeding plant herbivores with complex life cycles that can involve cyclical parthenogenesis and seasonal host plant alternation, and most are plant specialists. Aphids have distinctive traits for identifying and exploiting their host plants, including the expression of polyphenisms, a form of discrete phenotypic plasticity characteristic of insects, but taken to extreme in aphids. In a relatively small number of species, a social polyphenism occurs, involving sub-adult "soldiers" that are behaviorally or morphologically specialized to defend their nestmates from predators. Soldiers are sterile in many species, constituting a form of eusociality and reproductive division of labor that bears striking resemblances with other social insects. Despite a wealth of knowledge about the chemical ecology of non-social aphids and their phytophagous lifestyles, the molecular and chemoecological mechanisms involved in social polyphenisms in aphids are poorly understood. We provide a brief primer on aspects of aphid life cycles and chemical ecology for the non-specialists, and an overview of the social biology of aphids, with special attention to chemoecological perspectives. We discuss some of our own efforts to characterize how host plant chemistry may shape social traits in aphids. As good phytochemists, social aphids provide a bridge between the study of insect social evolution sociality, and the chemical ecology of plant-insect interactions. Aphids provide many promising opportunities for the study of sociality in insects, and to understand both the convergent and novel traits that characterize complex sociality on plants.

  15. Mechanisms and evolution of plant resistance to aphids.

    Science.gov (United States)

    Züst, Tobias; Agrawal, Anurag A

    2016-01-06

    Aphids are important herbivores of both wild and cultivated plants. Plants rely on unique mechanisms of recognition, signalling and defence to cope with the specialized mode of phloem feeding by aphids. Aspects of the molecular mechanisms underlying aphid-plant interactions are beginning to be understood. Recent advances include the identification of aphid salivary proteins involved in host plant manipulation, and plant receptors involved in aphid recognition. However, a complete picture of aphid-plant interactions requires consideration of the ecological outcome of these mechanisms in nature, and the evolutionary processes that shaped them. Here we identify general patterns of resistance, with a special focus on recognition, phytohormonal signalling, secondary metabolites and induction of plant resistance. We discuss how host specialization can enable aphids to co-opt both the phytohormonal responses and defensive compounds of plants for their own benefit at a local scale. In response, systemically induced resistance in plants is common and often involves targeted responses to specific aphid species or even genotypes. As co-evolutionary adaptation between plants and aphids is ongoing, the stealthy nature of aphid feeding makes both the mechanisms and outcomes of these interactions highly distinct from those of other herbivore-plant interactions.

  16. Mechanisms Underlying the Nonconsumptive Effects of Parasitoid Wasps on Aphids.

    Science.gov (United States)

    Ingerslew, K S; Finke, D L

    2017-02-01

    Natural enemies need not consume herbivores to suppress herbivore populations. Behavioral interactions can adversely impact herbivore fitness from reduced time feeding, investment in defense, or injury from failed attacks. The importance of such "nonconsumptive effects" for herbivore suppression may vary across species based on the specificity and intensity of the herbivore defensive response. In a series of manipulative studies, we quantified the nature and consequences of nonconsumptive interactions between two parasitoid wasps, Aphidius ervi Haliday and Aphidius colemani Viereck, on two aphid species, pea aphids (Acyrthosiphon pisum (Harris)) and green peach aphids (Myzus persicae (Sulzer)). Both wasps successfully parasitize green peach aphids, but only A. ervi parasitizes pea aphids. We observed A. ervi antennating and stinging pea aphids and documented a decrease in pea aphid longevity in response to stinging even when the aphid survived the interaction and no mummy formed. The primary defensive tactic of pea aphids in response to either wasp species was dropping from the host plant. Both wasp species antennated and stung green peach aphids, but they elicited unique defensive behaviors. Green peach aphids kicked or emitted cornicle secretions in response to A. colemani but spent more time off the plant in the presence of A. ervi. Green peach aphid longevity and fecundity were not affected by wasp stings when the aphid survived and no mummy formed. Our study demonstrates the complexity of behavioral interactions between parasitoids and their potential hosts and contributes to a mechanistic understanding of variation in the nonconsumptive suppression of herbivore populations. © The Authors 2016. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  17. Comparative transcriptomic analyses revealed divergences of two agriculturally important aphid species

    OpenAIRE

    Wang, Dahai; Liu, Qi; Jones, Huw D; Bruce, Toby; Xia, Lanqin

    2014-01-01

    Background Grain aphid (Sitobion avenae F) and pea aphid (Acyrthosiphon pisum) are two agriculturally important pest species, which cause significant yield losses to crop plants each year by inflicting damage both through the direct effects of feeding and by vectoring debilitating plant viruses. Although a close phylogenetic relationship between grain aphid and pea aphid was proposed, the biological variations between these two aphid species are obvious. While the host ranges of grain aphid i...

  18. Trial to control woolly aphid by earwigs

    OpenAIRE

    Trautmann, Martin; Scheer, Christian

    2006-01-01

    In years of disadvantageous atmospheric conditions natural control of woolly aphid by its parasite A. mali is insufficient in the majority of cases. In organic fruit-growing a chemical control is not possible. Settlements of earwigs showed a complete and lasting control of the pest in the year of testing, 2005. Fruitdamages were not found.

  19. Pathogenicity of conidia-based preparations of entomopathogenic fungi against the greenhouse pest aphids: green peach aphid, melon aphid, and foxglove aphid

    Science.gov (United States)

    Seeking new isolates of entomopathogenic fungi with greater virulence against greenhouse aphid pests than those currently registered in North America for control of these insects, single-dose screening assays of 44 selected fungal isolates and 4 commercially available strains were conducted against ...

  20. Aphid parasitoids (Hymenoptera, Braconidae, Aphidiinae) from Thailand

    Czech Academy of Sciences Publication Activity Database

    Starý, Petr; Rakhshani, E.; Tomanović, Ž.; Kavallieratos, N. G.; Sharkey, M.

    -, č. 2498 (2010), s. 47-52 ISSN 1175-5326 Grant - others:Ministry of Science of the Republic of Serbia(CS) 143006B; U. S. National Science Foundation(US) DEB 0542864 Institutional research plan: CEZ:AV0Z50070508 Keywords : aphids * parasitoids * biodiversity Subject RIV: EG - Zoology Impact factor: 0.853, year: 2010

  1. Aphid egg protection by ants: a novel aspect of the mutualism between the tree-feeding aphid Stomaphis hirukawai and its attendant ant Lasius productus

    Science.gov (United States)

    Matsuura, Kenji; Yashiro, Toshihisa

    2006-10-01

    Aphids often form mutualistic associations with ants, in which the aphids provide the ants with honeydew and the ants defend the aphids from predators. In this paper, we report aphid egg protection by ants as a novel aspect of the deeply interdependent relationship between a tree-feeding aphid and its attendant ant. The ant Lasius productus harbours oviparous females, males, and eggs of the hinoki cypress-feeding aphid Stomaphis hirukawai in its nests in winter. We investigated the behaviour of ants kept with aphid eggs in petri dishes to examine whether the ants recognise the aphid eggs and tend them or only provide a refuge for the aphids. Workers carried almost all of the aphid eggs into the nest within 24 h. The ants indiscriminately tended aphid eggs collected from their own colonies and those from other ant colonies. The ants cleaned the eggs and piled them up in the nest, and egg tending by ants dramatically increased aphid egg survival rates. Starving the ants showed no significant effect on aphid egg survivorship. Without ants, aphid eggs were rapidly killed by fungi. These results suggested that grooming by the ants protected the aphid eggs, at least, against pathogenic fungi. This hygienic service afforded by the ants seems indispensable for egg survival of these aphids in an environment rich in potentially pathogenic microorganisms.

  2. Evolutionary ecology of the interactions between aphids and their parasitoids.

    Science.gov (United States)

    Le Ralec, Anne; Anselme, Caroline; Outreman, Yannick; Poirié, Marylène; van Baaren, Joan; Le Lann, Cécile; van Alphen, Jacques J-M

    2010-01-01

    Many organisms, including entomopathogenous fungi, predators or parasites, use aphids as ressources. Parasites of aphids are mostly endoparasitoid insects, i.e. insects which lay eggs inside the body of an other insect which will die as a result of their development. In this article, we review the consequences of the numerous pecularities of aphid biology and ecology for their endoparasitoids, notably the Aphidiinae (Hymenoptera: Braconidae). We first examine the various mechanisms used by aphids for defence against these enemies. We then explore the strategies used by aphidiine parasitoids to exploit their aphid hosts. Finally, we consider the responses of both aphids and parasitoids to ecological constraints induced by seasonal cycles and to environmental variations linked to host plants and climate. The fundamental and applied interest of studying these organisms is discussed. Copyright 2010 Académie des sciences. Published by Elsevier SAS. All rights reserved.

  3. Research on recognition methods of aphid objects in complex backgrounds

    Science.gov (United States)

    Zhao, Hui-Yan; Zhang, Ji-Hong

    2009-07-01

    In order to improve the recognition accuracy among the kinds of aphids in the complex backgrounds, the recognition method among kinds of aphids based on Dual-Tree Complex Wavelet Transform (DT-CWT) and Support Vector Machine (Libsvm) is proposed. Firstly the image is pretreated; secondly the aphid images' texture feature of three crops are extracted by DT-CWT in order to get the training parameters of training model; finally the training model could recognize aphids among the three kinds of crops. By contrasting to Gabor wavelet transform and the traditional extracting texture's methods based on Gray-Level Co-Occurrence Matrix (GLCM), the experiment result shows that the method has a certain practicality and feasibility and provides basic for aphids' recognition between the identification among same kind aphid.

  4. Aphid-encoded variability in susceptibility to a parasitoid.

    Science.gov (United States)

    Martinez, Adam J; Ritter, Shannon G; Doremus, Matthew R; Russell, Jacob A; Oliver, Kerry M

    2014-06-10

    Many animals exhibit variation in resistance to specific natural enemies. Such variation may be encoded in their genomes or derived from infection with protective symbionts. The pea aphid, Acyrthosiphon pisum, for example, exhibits tremendous variation in susceptibility to a common natural enemy, the parasitic wasp Aphidius ervi. Pea aphids are often infected with the heritable bacterial symbiont, Hamiltonella defensa, which confers partial to complete resistance against this parasitoid depending on bacterial strain and associated bacteriophages. That previous studies found that pea aphids without H. defensa (or other symbionts) were generally susceptible to parasitism, together with observations of a limited encapsulation response, suggested that pea aphids largely rely on infection with H. defensa for protection against parasitoids. However, the limited number of uninfected clones previously examined, and our recent report of two symbiont-free resistant clones, led us to explicitly examine aphid-encoded variability in resistance to parasitoids. After rigorous screening for known and unknown symbionts, and microsatellite genotyping to confirm clonal identity, we conducted parasitism assays using fifteen clonal pea aphid lines. We recovered significant variability in aphid-encoded resistance, with variation levels comparable to that contributed by H. defensa. Because resistance can be costly, we also measured aphid longevity and cumulative fecundity of the most and least resistant aphid lines under permissive conditions, but found no trade-offs between higher resistance and these fitness parameters. These results indicate that pea aphid resistance to A. ervi is more complex than previously appreciated, and that aphids employ multiple tactics to aid in their defense. While we did not detect a tradeoff, these may become apparent under stressful conditions or when resistant and susceptible aphids are in direct competition. Understanding sources and amounts of

  5. Implications of predator foraging on aphid pathogen dynamics.

    Science.gov (United States)

    Roy, H E; Pell, J K; Clark, S J; Alderson, P G

    1998-05-01

    The foraging behavior of starved and nonstarved second and fourth instar Coccinella septempunctata larvae on dead Acyrthosiphon pisum aphids, either infected with the entomopathogenic fungus Erynia neoaphidis (sporulating) or uninfected, was examined. Larvae searched for longer and fed less when presented with infected rather than uninfected A. pisum. Although no sporulating infected aphids were completely consumed, both adult and larval ladybirds can still be considered as intraguild predators. In a further study, fourth instar larvae fed on dying infected, dead infected (not sporulating), and dead uninfected aphids for similar periods of time but again the infected aphids were seldom entirely consumed. Live uninfected aphids were fed upon for significantly longer than any other prey. Infected aphids which were damaged at an early stage of infection (0, 1, or 2 days after inoculation) did not sporulate, whereas damaged moribund aphids (3 days after inoculation) did subsequently sporulate. Damaged sporulating cadavers continued to sporulate. However, damage to moribund and sporulating infected aphids, both mechanical or due to C. septempunctata feeding, reduced the number of conidia subsequently produced. Larval feeding caused the most significant reduction. Under laboratory conditions, C. septempunctata foraging on infected aphids did, therefore, reduce the pathogen density. However, conidia produced from a damaged cadaver resulted in levels of transmission to healthy aphids comparable to that resulting from an intact cadaver. Furthermore, the presence of a foraging adult ladybird resulted in a significant increase in transmission of the fungus to healthy aphids. Preliminary studies to assess the potential of other aphid natural enemies as intraguild predators illustrated that adults of the generalist carabid, Pterostichus madidus, entirely consumed sporulating cadavers. Third instar lacewing, Chrysoperla carnea, and hoverfly, Episyrphus balteatus, larvae never

  6. On the evolution of dispersal and altruism in aphids.

    Science.gov (United States)

    Abbot, Patrick

    2009-10-01

    How competitive interactions and population structure promote or inhibit cooperation in animal groups remains a key challenge in social evolution. In eusocial aphids, there is no single explanation for what predisposes some lineages of aphids to sociality, and not others. Because the assumption has been that most aphid species occur in essentially clonal groups, the roles of intra- and interspecific competition and population structure in aphid sociality have been given little consideration. Here, I used microsatellites to evaluate the patterns of variation in the clonal group structure of both social and nonsocial aphid species. Multiclonal groups are consistent features across sites and host plants, and all species-social or not-can be found in groups composed of large fractions of multiple clones, and even multiple species. Between-group dispersal in gall-forming aphids is ubiquitous, implying that factors acting ultimately to increase between-clone interactions and decrease within-group relatedness were present in aphids prior to the origins of sociality. By demonstrating that between-group dispersal is common in aphids, and thus interactions between clones are also common, these results suggest that understanding the ecological dynamics of dispersal and competition may offer unique insights into the evolutionary puzzle of sociality in aphids.

  7. 78 FR 689 - Notice of Request for Revision to and Extension of Approval of an Information Collection; APHIS...

    Science.gov (United States)

    2013-01-04

    ... participate in character and team building activities and diversity workshops. Two programs currently in the..., Diversity and Inclusion, Office of the Administrator, APHIS, 4700 River Road Unit 92, Riverdale, MD 20737...

  8. Watery Saliva Secreted by the Grain Aphid Sitobion avenae Stimulates Aphid Resistance in Wheat.

    Science.gov (United States)

    Zhang, Yong; Fan, Jia; Francis, Frédéric; Chen, Julian

    2017-10-11

    Infestation with Sitobion avenae induces localized defense responses in wheat; in this study, the role of S. avenae watery saliva in resistance induction was examined by infiltrating aphid saliva into wheat leaves. After feeding S. avenae on an artificial diet for 48 h, we first collected watery saliva from them and then separated the salivary proteins using one-dimensional gel electrophoresis. Gene expression studies showed that infiltration of S. avenae watery saliva in wheat leaves induced a strong salicylic acid-responsive defense but moderate jasmonic acid-dependent defense. Feeding on wheat leaves infiltrated with aphid saliva, compared with untreated leaves, significantly decreased the number of nymphs produced per day and the intrinsic rate of increase of the population of S. avenae. In a choice test against untreated wheat, saliva-infiltrated wheat had repellent effects on aphids. Additionally, electrical penetration graph results showed that the feeding behavior of S. avenae on saliva-treated wheat was negatively affected compared with that on untreated wheat. These findings provided direct evidence that salivary components of S. avenae are involved in the induction of wheat resistance against aphids and further demonstrated the important roles of watery saliva in aphid-plant interactions.

  9. Caracterização da transmissão do vírus do mosaico-das-nervuras do algodoeiro pelo pulgão Aphis gossyphii com relação à persistência e ao tempo necessário para inoculação Characterization of cotton vein mosaic vírus by Aphis gossyphii transmission with relation to persistence and time necessary for inoculation

    Directory of Open Access Journals (Sweden)

    Marcos Doniseti Michelotto

    2007-01-01

    Full Text Available Na cultura do algodoeiro, Gossypium hirsutum L., o pulgão Aphis gossypii Glover, 1877 (Hemiptera: Aphididae destaca-se pela transmissão do vírus do mosaico-das-nervuras do algodoeiro. O objetivo deste trabalho foi avaliar a persistência da transmissão desse vírus por A. gossypii e determinar o período necessário para sua inoculação. No ensaio de persistência, 20 pulgões ápteros virulíferos foram individualizados e transferidos diariamente para plantas de algodoeiro sadias. O período necessário para inoculação foi determinado em adultos ápteros e alados virulíferos, que permaneceram confinados isoladamente em plantas sadias por períodos de 40 segundos, 45 minutos, 1,5 hora, 3, 6, 12, 24 e 48 horas. Observou-se que 35% dos pulgões transmitiram o vírus por mais de cinco plantas sucessivamente, no ensaio de persistência. Verificou-se transmissão por um período máximo de 12 dias após a aquisição, o que caracteriza a relação vírus-vetor como persistente. Os adultos ápteros transmitiram o vírus para maior percentual de plantas (75,0% quando o período de acesso à inoculação foi de 24 horas. Os alados transmitiram o vírus em todos os períodos de acesso à inoculação, com porcentagens variando de 5,0% (40 segundos a 60,0% (48 horas. A persistência da transmissão do vírus pelo pulgão e o aumento na eficiência de transmissão em função do aumento do período de acesso à inoculação revelam que a transmissão é do tipo circulativa.In cotton crops (Gossypium hirsutum L., the aphid Aphis gossypii Glover, 1877 (Hemiptera: Aphididae is a major sanitary factor due forts efficiency on transmission of cotton vein mosaic virus (CVMV. The objective of this work was to evaluate the persistence of CVMV on transmission by A. gossypii and to determine the necessary feeding period for inoculation. In the persistence assay, individual aphids wingless viruliferous were separately transferred daily to successive series of

  10. The R81T mutation in the nicotinic acetylcholine receptor of Aphis gossypii is associated with neonicotinoid insecticide resistance with differential effects for cyano- and nitro-substituted neonicotinoids.

    Science.gov (United States)

    Hirata, Koichi; Jouraku, Akiya; Kuwazaki, Seigo; Kanazawa, Jun; Iwasa, Takao

    2017-11-01

    The cotton aphid, Aphis gossypii Glover, is one of the most agriculturally important insect pests. Neonicotinoid insecticides and sulfoxaflor have generally shown excellent control of A. gossypii, but these aphids have recently developed resistance against neonicotinoid insecticides. We previously characterized a field-collected A. gossypii Kushima clone that showed higher resistance to nitro-substituted neonicotinoids, such as imidacloprid, than to cyano-substituted neonicotinoids, such as acetamiprid. This Kushima clone harbors the R81T mutation in the nicotinic acetylcholine receptor (nAChR) β1 subunit; this mutation is the source of neonicotinoid insecticide resistance. In the present study, electrophysiological analyses and molecular modeling were employed to investigate the differential effects of the R81T mutation on cyano- and nitro-substituted neonicotinoids and sulfoxaflor. We isolated full-length coding sequences of A. gossypii nAChR α1, α2, and β1 subunits. When co-expressed in Xenopus laevis oocytes with chicken β2 nAChR, A. gossypii α1 evoked inward currents in a concentration-dependent manner in response to acetylcholine (ACh) and showed sensitivity to neonicotinoid and sulfoxaflor. Additionally, the chicken β2 T77R+E79V (equivalent double mutant of R81T) mutation resulted in a lower effect to cyano-substituted neonicotinoids and sulfoxaflor than to nitro-substituted neonicotinoids. Electrophysiological data and nAChR homology modeling analysis suggested that the Kushima clone exhibited different levels of resistance to cyano- and nitro-substituted neonicotinoid insecticides. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Potato aphid Macrosiphum euphorbiae performance is determined by aphid genotype and not mycorrhizal fungi or water availability.

    Science.gov (United States)

    Karley, Alison Jane; Emslie-Smith, Matthew; Bennett, Alison Elizabeth

    2017-12-01

    Intra- and interspecific variation in plant and insect traits can alter the strength and direction of insect-plant interactions, with outcomes modified by soil biotic and abiotic conditions. We used the potato aphid (Macrosiphum euphorbiae Thomas) feeding on cultivated Solanum tuberosum and wild Solanum berthaulti to study the impact of water availability and plant mutualistic arbuscular mycorrhizal (AM) fungi on aphid performance and susceptibility to a parasitoid wasp (Aphidius ervi Haliday). Plants were grown under glass with live or sterile AM fungal spores and supplied with sufficient or reduced water supply. Plants were infested with 1 of 3 genotypes of M. euphorbiae or maintained as aphid-free controls; aphid abundance was scored after 1 week, after which aphid susceptibility to A. ervi was assayed ex planta. Solanum tuberosum accumulated c. 20% more dry mass than S. berthaultii, and root mass of S. berthaultii was smallest under reduced water supply in the presence of AM fungi. Aphid abundance was lowest on S. berthaultii and highest for genotype "2" aphids; genotype "1" aphid density was particularly reduced on S. berthaultii. Aphid genotype "1" exhibited low susceptibility to parasitism and was attacked less frequently than the other two more susceptible aphid genotypes. Neither AM fungi nor water availability affected insect performance. Our study suggests a fitness trade-off in M. euphorbiae between parasitism resistance and aphid performance on poor quality Solanum hosts that warrants further exploration, and indicates the importance of accounting for genotype identity in determining the outcome of multitrophic interactions. © 2017 Institute of Zoology, Chinese Academy of Sciences.

  12. Effect of Intercropping Collard with Beans or Onions on Aphid ...

    African Journals Online (AJOL)

    ... resistance and pollution to the environment. This study was therefore, an attempt to look into alternative and environmentally friendly ways of controlling aphids in collard. To achieve this, two studies were conducted in Kenya to determine the effects of intercropping and nitrogen fertilization on aphid population on collard ...

  13. New aphid (Aphidoidea) records for the Netherlands (1984-2005)

    NARCIS (Netherlands)

    Piron, P.G.M.

    2009-01-01

    Presented are 18 species.of aphids in combination with their food-plants found in The Netherlands from 1984 to 2005 not earlier described here. Among these are well-known species that are caught with the high suction trap andlor MOERICKE yellow water traps and aphids new for The Netherlands. The

  14. Molecular sabotage of plant defense by aphid saliva

    NARCIS (Netherlands)

    Will, T.; Tjallingii, W.F.; Thönnessen, A.; Bel, van A.J.E.

    2007-01-01

    Aphids, which constitute one of the most important groups of agricultural pests, ingest nutrients from sieve tubes, the photoassimilate transport conduits in plants. Aphids are able to successfully puncture sieve tubes with their piercing mouthparts (stylets) and ingest phloem sap without eliciting

  15. Detection of novel QTLs for foxglove aphid resistance in soybean

    Science.gov (United States)

    Foxglove aphid, Aulacorthum solani (Kaltenbach), is a Hemipteran insect that infected a wide variety of plants worldwide and caused serious yield losses in crops. The objective of this study was to identify the putative QTL for foxglove aphid resistance in wild soybean, PI 366121, (Glycine soja Sieb...

  16. Evaluation on the resistance to aphids of wheat germplasm ...

    African Journals Online (AJOL)

    A collection of more than 200 wheat lines from the main wheat-producing areas of China was evaluated for resistance to wheat aphids, using fuzzy recognition technique in five field experiments over 2 years. The results show that susceptibility to wheat aphids was exhibited in most of the lines tested, and no immune and ...

  17. Saliva fractions from South African Russian wheat aphid biotypes ...

    African Journals Online (AJOL)

    The Russian wheat aphid (RWA), Diuraphis noxia (Kurdjomov, 1913), is a notorious pest that reduces yield in wheat. Nevertheless, the source of eliciting activity during RWA–wheat interaction has not been established. This paper reports on the isolation of eliciting activity in aphid saliva that is capable of inducing ...

  18. The resistance of lettuce to the aphid Nasonovia ribisnigri

    NARCIS (Netherlands)

    Helden, van M.

    1995-01-01

    The resistance of lettuce to the aphid Nasonovia ribisnigri is based on a single, dominant gene, the Nr-gene. On the resistant plant aphids died within a few days, without any honeydew production. Transfer-experiments with a short stay on a resistant plant followed by a

  19. Molecular basis and ecological relevance of aphid body colors.

    Science.gov (United States)

    Tsuchida, Tsutomu

    2016-10-01

    Aphids are small phloem sap-feeding insects, and show color polymorphism even within the same species. Crossing experiments have revealed the inheritance pattern of the body color. Coloration of aphids is determined by mainly three pigments, melanin, carotenoid, and aphin, and is influenced by both abiotic and biotic environmental factors. Aphid body colors also seem to correspond with specific biological functions under various environments. Partly due to the presence of natural enemies in the environment, a variety of physiological and behavioral responses have evolved in each color form. Thus, predation is one of the most significant external factors for maintaining body color polymorphisms. In addition, endosymbiont infections also influence aphid body color and prey-predator interactions. However, many unsolved questions remain regarding the molecular basis for and biological functions of aphid body colors. Further work, including the development of molecular techniques for comprehensive functional analysis, is needed in these areas. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Ants farm subterranean aphids mostly in single clone groups

    DEFF Research Database (Denmark)

    Ivens, Aniek B.F.; Kronauer, Daniel Jan Christoph; Pen, Ido

    2012-01-01

    a single aphid species, a significantly higher percentage than expected from a random distribution. Over 60% of these single-species mounds had a single aphid clone, and clones tended to persist across subsequent years. Whenever multiple species/clones co-occurred in the same mound, they were spatially...... separated with more than 95% of the aphid chambers containing individuals of a single clone. Conclusions L. flavus “husbandry” is characterized by low aphid “livestock” diversity per colony, especially at the nest-chamber level, but it lacks the exclusive monocultures known from other cultivation mutualisms...... benefitting the domesticated aphids as long as their clone-mates reproduce successfully. The cost-benefit logic of this type of polyculture husbandry has striking analogies with human farming practices based on slaughtering young animals for meat to maximize milk-production by a carefully regulated adult...

  1. Parasitic wasp responses to symbiont-based defense in aphids

    Directory of Open Access Journals (Sweden)

    Oliver Kerry M

    2012-02-01

    Full Text Available Abstract Background Recent findings indicate that several insect lineages receive protection against particular natural enemies through infection with heritable symbionts, but little is yet known about whether enemies are able to discriminate and respond to symbiont-based defense. The pea aphid, Acyrthosiphon pisum, receives protection against the parasitic wasp, Aphidius ervi, when infected with the bacterial symbiont Hamiltonella defensa and its associated bacteriophage APSE (Acyrthosiphon pisum secondary endosymbiont. Internally developing parasitoid wasps, such as A. ervi, use maternal and embryonic factors to create an environment suitable for developing wasps. If more than one parasitoid egg is deposited into a single aphid host (superparasitism, then additional complements of these factors may contribute to the successful development of the single parasitoid that emerges. Results We performed experiments to determine if superparasitism is a tactic allowing wasps to overcome symbiont-mediated defense. We found that the deposition of two eggs into symbiont-protected aphids significantly increased rates of successful parasitism relative to singly parasitized aphids. We then conducted behavioral assays to determine whether A. ervi selectively superparasitizes H. defensa-infected aphids. In choice tests, we found that A. ervi tends to deposit a single egg in uninfected aphids, but two or more eggs in H. defensa-infected aphids, indicating that oviposition choices may be largely determined by infection status. Finally, we identified differences in the quantity of the trans-β-farnesene, the major component of aphid alarm pheromone, between H. defensa-infected and uninfected aphids, which may form the basis for discrimination. Conclusions Here we show that the parasitic wasp A. ervi discriminates among symbiont-infected and uninfected aphids, and changes its oviposition behavior in a way that increases the likelihood of overcoming symbiont

  2. Project APhiD: A Lorenz-gauged A-Φ decomposition for parallelized computation of ultra-broadband electromagnetic induction in a fully heterogeneous Earth

    Science.gov (United States)

    Weiss, Chester J.

    2013-08-01

    An essential element for computational hypothesis testing, data inversion and experiment design for electromagnetic geophysics is a robust forward solver, capable of easily and quickly evaluating the electromagnetic response of arbitrary geologic structure. The usefulness of such a solver hinges on the balance among competing desires like ease of use, speed of forward calculation, scalability to large problems or compute clusters, parsimonious use of memory access, accuracy and by necessity, the ability to faithfully accommodate a broad range of geologic scenarios over extremes in length scale and frequency content. This is indeed a tall order. The present study addresses recent progress toward the development of a forward solver with these properties. Based on the Lorenz-gauged Helmholtz decomposition, a new finite volume solution over Cartesian model domains endowed with complex-valued electrical properties is shown to be stable over the frequency range 10-2-1010 Hz and range 10-3-105 m in length scale. Benchmark examples are drawn from magnetotellurics, exploration geophysics, geotechnical mapping and laboratory-scale analysis, showing excellent agreement with reference analytic solutions. Computational efficiency is achieved through use of a matrix-free implementation of the quasi-minimum-residual (QMR) iterative solver, which eliminates explicit storage of finite volume matrix elements in favor of "on the fly" computation as needed by the iterative Krylov sequence. Further efficiency is achieved through sparse coupling matrices between the vector and scalar potentials whose non-zero elements arise only in those parts of the model domain where the conductivity gradient is non-zero. Multi-thread parallelization in the QMR solver through OpenMP pragmas is used to reduce the computational cost of its most expensive step: the single matrix-vector product at each iteration. High-level MPI communicators farm independent processes to available compute nodes for simultaneous computation of multi-frequency or multi-transmitter responses.

  3. Faba bean forisomes can function in defence against generalist aphids.

    Science.gov (United States)

    Medina-Ortega, Karla J; Walker, Gregory P

    2015-06-01

    Phloem sieve elements have shut-off mechanisms that prevent loss of nutrient-rich phloem sap when the phloem is damaged. Some phloem proteins such as the proteins that form forisomes in legume sieve elements are one such mechanism and in response to damage, they instantly form occlusions that stop the flow of sap. It has long been hypothesized that one function of phloem proteins is defence against phloem sap-feeding insects such as aphids. This study provides the first experimental evidence that aphid feeding can induce phloem protein occlusion and that the aphid-induced occlusions inhibit phloem sap ingestion. The great majority of phloem penetrations in Vicia faba by the generalist aphids Myzus persicae and Macrosiphum euphorbiae triggered forisome occlusion and the aphids eventually withdrew their stylets without ingesting phloem sap. This contrasts starkly with a previous study on the legume-specialist aphid, Acyrthosiphon pisum, where penetration of faba bean sieve elements did not trigger forisome occlusion and the aphids readily ingested phloem sap. Next, forisome occlusion was demonstrated to be the cause of failed phloem ingestion attempts by M. persicae: when occlusion was inhibited by the calcium channel blocker lanthanum, M. persicae readily ingested faba bean phloem sap. © 2014 John Wiley & Sons Ltd.

  4. Aphid Identification and Counting Based on Smartphone and Machine Vision

    Directory of Open Access Journals (Sweden)

    Suo Xuesong

    2017-01-01

    Full Text Available Exact enumeration of aphids before the aphids outbreak can provide basis for precision spray. This paper designs counting software that can be run on smartphones for real-time enumeration of aphids. As a first step of the method used in this paper, images of the yellow sticky board that is aiming to catch insects are segmented from complex background by using GrabCut method; then the images will be normalized by perspective transformation method. The second step is the pretreatment on the images; images of aphids will be segmented by using OSTU threshold method after the effect of random illumination is eliminated by single image difference method. The last step of the method is aphids’ recognition and counting according to area feature of aphids after extracting contours of aphids by contour detection method. At last, the result of the experiment proves that the effect of random illumination can be effectively eliminated by using single image difference method. The counting accuracy in greenhouse is above 95%, while it can reach 92.5% outside. Thus, it can be seen that the counting software designed in this paper can realize exact enumeration of aphids under complicated illumination which can be used widely. The design method proposed in this paper can provide basis for precision spray according to its effective detection insects.

  5. Native aphids of New Zealand--diversity and host associations.

    Science.gov (United States)

    Teulon, D A J; Stufkens, M A W; Drayton, G M; Maw, H E L; Scott, I A W; Bulman, S R; Carver, M; Von Dohlen, C D; Eastop, V F; Foottit, R G

    2013-01-01

    At least 15 species of aphids are now recognised as New Zealand natives and most of these are very likely to be endemic. Most native aphids belong in the subfamily Aphidinae (Aphidini), with a possible single species in Aphidinae-Macrosiphini, at least two in Neophyllaphidinae and one in Taiwanaphidinae. With one exception, native aphids are restricted to a single host plant genus, and these hosts are from 13 genera and 12 plant families in the Pinales and Angiospermae-Eudicotyledonae, suggesting that the aphids are a remnant fauna. No known native aphids have host plants from the Pteridophyta or Angiospermae-Monocotyledonae, with the possible exception of two possibly native species extracted from native tussock grassland turfs. Most host plant genera have some degree of Gondwanan distribution, but only two indigenous species are found on large forest trees and only one host is deciduous. Native aphids have been recorded from sea level to the subalpine zone, reflecting their host plant distributions. Sexual reproduction, followed by several parthenogenetic generations on the same host plant, appears to be the norm for most species. Eggs appear to be used for surviving winter conditions in some species and summer conditions in others. Native aphid distribution and abundance varies with five species considered to be scarce, one species localised, two species sparse and three relatively common based on current knowledge.

  6. Multiple cues for winged morph production in an aphid metacommunity.

    Directory of Open Access Journals (Sweden)

    Mohsen Mehrparvar

    Full Text Available Environmental factors can lead individuals down different developmental pathways giving rise to distinct phenotypes (phenotypic plasticity. The production of winged or unwinged morphs in aphids is an example of two alternative developmental pathways. Dispersal is paramount in aphids that often have a metapopulation structure, where local subpopulations frequently go extinct, such as the specialized aphids on tansy (Tanacetum vulgare. We conducted various experiments to further understand the cues involved in the production of winged dispersal morphs by the two dominant species of the tansy aphid metacommunity, Metopeurum fuscoviride and Macrosiphoniella tanacetaria. We found that the ant-tended M. fuscoviride produced winged individuals predominantly at the beginning of the season while the untended M. tanacetaria produced winged individuals throughout the season. Winged mothers of both species produced winged offspring, although in both species winged offspring were mainly produced by unwinged females. Crowding and the presence of predators, effects already known to influence wing production in other aphid species, increased the percentage of winged offspring in M. tanacetaria, but not in M. fuscoviride. We find there are also other factors (i.e. temporal effects inducing the production of winged offspring for natural aphid populations. Our results show that the responses of each aphid species are due to multiple wing induction cues.

  7. Role of the aphid species and their feeding locations in parasitization behavior of Aphelinus abdominalis, a parasitoid of the lettuce aphid Nasonovia ribisnigri

    OpenAIRE

    Shrestha, Govinda; Skovg?rd, Henrik; Reddy, Gadi V. P.; Steenberg, Tove; Enkegaard, Annie

    2017-01-01

    Aphid species feeding on lettuce occupy distinct feeding sites: the lettuce aphid Nasonovia ribisnigri prefers to feed on heart leaves, whereas the potato aphid Macrosiphum euphorbiae feeds only on outer leaves. The aphid parasitoid Aphelinus abdominalis, known to be able to regulate M. euphorbiae on many crops, has recently been indicated as a promising biocontrol candidate also for use against N. ribisnigri, a major pest of lettuce. This study therefore examined A. abdominalis parasitizatio...

  8. Social aggregation in pea aphids: experiment and random walk modeling.

    Science.gov (United States)

    Nilsen, Christa; Paige, John; Warner, Olivia; Mayhew, Benjamin; Sutley, Ryan; Lam, Matthew; Bernoff, Andrew J; Topaz, Chad M

    2013-01-01

    From bird flocks to fish schools and ungulate herds to insect swarms, social biological aggregations are found across the natural world. An ongoing challenge in the mathematical modeling of aggregations is to strengthen the connection between models and biological data by quantifying the rules that individuals follow. We model aggregation of the pea aphid, Acyrthosiphon pisum. Specifically, we conduct experiments to track the motion of aphids walking in a featureless circular arena in order to deduce individual-level rules. We observe that each aphid transitions stochastically between a moving and a stationary state. Moving aphids follow a correlated random walk. The probabilities of motion state transitions, as well as the random walk parameters, depend strongly on distance to an aphid's nearest neighbor. For large nearest neighbor distances, when an aphid is essentially isolated, its motion is ballistic with aphids moving faster, turning less, and being less likely to stop. In contrast, for short nearest neighbor distances, aphids move more slowly, turn more, and are more likely to become stationary; this behavior constitutes an aggregation mechanism. From the experimental data, we estimate the state transition probabilities and correlated random walk parameters as a function of nearest neighbor distance. With the individual-level model established, we assess whether it reproduces the macroscopic patterns of movement at the group level. To do so, we consider three distributions, namely distance to nearest neighbor, angle to nearest neighbor, and percentage of population moving at any given time. For each of these three distributions, we compare our experimental data to the output of numerical simulations of our nearest neighbor model, and of a control model in which aphids do not interact socially. Our stochastic, social nearest neighbor model reproduces salient features of the experimental data that are not captured by the control.

  9. Escherichia coli K-12 pathogenicity in the pea aphid, Acyrthosiphon pisum, reveals reduced antibacterial defense in aphids.

    Science.gov (United States)

    Altincicek, Boran; Ter Braak, Bas; Laughton, Alice M; Udekwu, Klas I; Gerardo, Nicole M

    2011-10-01

    To better understand the molecular basis underlying aphid immune tolerance to beneficial bacteria and immune defense to pathogenic bacteria, we characterized how the pea aphid Acyrthosiphon pisum responds to Escherichia coli K-12 infections. E. coli bacteria, usually cleared in the hemolymph of other insect species, were capable of growing exponentially and killing aphids within a few days. Red fluorescence protein expressing E. coli K-12 laboratory strain multiplied in the aphid hemolymph as well as in the digestive tract, resulting in death of infected aphids. Selected gene deletion mutants of the E. coli K-12 predicted to have reduced virulence during systemic infections showed no difference in either replication or killing rate when compared to the wild type E. coli strain. Of note, however, the XL1-Blue E. coli K-12 strain exhibited a significant lag phase before multiplying and killing aphids. This bacterial strain has recently been shown to be more sensitive to oxidative stress than other E. coli K-12 strains, revealing a potential role for reactive oxygen species-mediated defenses in the otherwise reduced aphid immune system. Copyright © 2011 Elsevier Ltd. All rights reserved.

  10. The Green Lacewing, Chrysoperla carnea: Preference between Lettuce Aphids, Nasonovia ribisnigri, and Western Flower Thrips, Frankliniella occidentalis

    OpenAIRE

    Shrestha, Govinda; Enkegaard, Annie

    2013-01-01

    This study investigated the prey preference of 3rd instar green lacewing, Chrysoperla carnea Stephens (Neuroptera: Chrysopidae), between western flower thrips, Frankliniella occidentalis (Pergande) (Thysanoptera: Thripidae), and lettuce aphids, Nasonovia ribisnigri (Mosley) (Hemiptera: Aphididae) in laboratory experiments at 25 ? 1? C and 70 ? 5% RH with five prey ratios (10 aphids:80 thrips, 25 aphids:65 thrips, 45 aphids:45 thrips, 65 aphids:25 thrips, and 80 aphids:10 thrips). Third instar...

  11. UV-B impact on aphid performance mediated by plant quality and plant changes induced by aphids.

    Science.gov (United States)

    Kuhlmann, F; Müller, C

    2010-07-01

    Plants face various abiotic and biotic environmental factors and therefore need to adjust their phenotypic traits on several levels. UV-B radiation is believed to impact herbivorous insects via host plant changes. Plant responses to abiotic challenges (UV-B radiation) and their interaction with two aphid species were explored in a multifactor approach. Broccoli plants [Brassica oleracea L. convar. botrytis (L.), Brassicaceae] were grown in two differently covered greenhouses, transmitting either 80% (high UV-B) or 4% (low UV-B) of ambient UV-B. Three-week-old plants were infested with either specialist cabbage aphids [Brevicoryne brassicae (L.), Sternorrhyncha, Aphididae] or generalist green peach aphids [Myzus persicae (Sulzer), Sternorrhyncha, Aphididae]. Plants grown under high-UV-B intensities were smaller and had higher flavonoid concentrations. Furthermore, these plants had reduced cuticular wax coverage, whereas amino acid concentrations of the phloem sap were little influenced by different UV-B intensities. Cabbage aphids reproduced less on plants grown under high UV-B than on plants grown under low UV-B, whereas reproduction of green peach aphids in both plant light sources was equally poor. These results are likely related to the different specialisation-dependent sensitivities of the two species. The aphids also affected plant chemistry. High numbers of cabbage aphid progeny on low-UV-B plants led to decreased indolyl glucosinolate concentrations. The induced change in these glucosinolates may depend on an infestation threshold. UV-B radiation considerably impacts plant traits and subsequently affects specialist phloem-feeding aphids, whereas aphid growth forces broccoli to generate specific defence responses.

  12. Biological control of tortricids and aphids in strawberries

    DEFF Research Database (Denmark)

    Sigsgaard, Lene; Enkegaard, Annie; Eilenberg, Jørgen

    Cropping practice and biological control can contribute to reduced pesticide use in strawberries. Organic strawberries are less attacked by strawberry tortricid and buckwheat flower strips can augment its natural enemies. Against shallot aphid the two-spot ladybird is promising....

  13. New genus and species of the extinct aphid family Szelegiewicziidae and their implications for aphid evolution.

    Science.gov (United States)

    Wegierek, Piotr; Żyła, Dagmara; Homan, Agnieszka; Cai, Chenyang; Huang, Diying

    2017-10-24

    Recently, we are witnessing an increased appreciation for the importance of the fossil record in phylogenetics and testing various evolutionary hypotheses. However, this approach brings many challenges, especially for such a complex group as aphids and requires a thorough morphological analysis of the extinct groups. The extinct aphid family Szelegiewicziidae is supposed to be one of the oviparous lineages in aphid evolution. New material from the rock fossil deposits of Shar Teg (Upper Jurassic of Mongolia), Baissa (Lower Cretaceous of Siberia-Russia), and Burmese amber (Upper Cretaceous of Myanmar) allowed us to undertake a more detailed examination of the morphological features and carry out an analysis of the taxonomical composition and evolution of the family. This led us to the conclusion that evolution of the body plan and wing structure was similar in different, often not closely related groups, probably as a result of convergence. Additionally, we present a description of a new genus and two species (Tinaphis mongolica Żyła &Wegierek, sp. nov., and Feroorbis burmensis Wegierek & Huang, gen. et sp. nov.) that belong to this family.

  14. New genus and species of the extinct aphid family Szelegiewicziidae and their implications for aphid evolution

    Science.gov (United States)

    Wegierek, Piotr; Żyła, Dagmara; Homan, Agnieszka; Cai, Chenyang; Huang, Diying

    2017-12-01

    Recently, we are witnessing an increased appreciation for the importance of the fossil record in phylogenetics and testing various evolutionary hypotheses. However, this approach brings many challenges, especially for such a complex group as aphids and requires a thorough morphological analysis of the extinct groups. The extinct aphid family Szelegiewicziidae is supposed to be one of the oviparous lineages in aphid evolution. New material from the rock fossil deposits of Shar Teg (Upper Jurassic of Mongolia), Baissa (Lower Cretaceous of Siberia-Russia), and Burmese amber (Upper Cretaceous of Myanmar) allowed us to undertake a more detailed examination of the morphological features and carry out an analysis of the taxonomical composition and evolution of the family. This led us to the conclusion that evolution of the body plan and wing structure was similar in different, often not closely related groups, probably as a result of convergence. Additionally, we present a description of a new genus and two species ( Tinaphis mongolica Żyła &Wegierek, sp. nov., and Feroorbis burmensis Wegierek & Huang, gen. et sp. nov.) that belong to this family.

  15. Mulches reduce aphid-borne viruses and whiteflies in cantaloupe

    OpenAIRE

    Summers, Charles G.; Mitchell, Jeffrey P.; Stapleton, James J.

    2005-01-01

    We compared reflective plastic and wheat straw mulches with conventional bare soil for managing aphid-borne virus diseases and silverleaf whitefly in cantaloupe. The occurrence of aphid-borne virus diseases was significantly reduced with both mulches as opposed to bare soil, and reflective plastic performed better than wheat straw. Silverleaf whitefly numbers, both adults and nymphs, were reduced equally by plastic mulch and wheat straw, and were significantly lower than with bare soil. Refle...

  16. Aphids alter host-plant nitrogen isotope fractionation

    Science.gov (United States)

    Wilson, Alex C. C.; Sternberg, Leonel da S. L.; Hurley, Katherine B.

    2011-01-01

    Plant sap-feeding insects and blood-feeding parasites are frequently depleted in 15N relative to their diet. Unfortunately, most fluid-feeder/host nitrogen stable-isotope studies simply report stable-isotope signatures, but few attempt to elucidate the mechanism of isotopic trophic depletion. Here we address this deficit by investigating the nitrogen stable-isotope dynamics of a fluid-feeding herbivore-host plant system: the green peach aphid, Myzus persicae, feeding on multiple brassicaceous host plants. M. persicae was consistently more than 6‰ depleted in 15N relative to their hosts, although aphid colonized plants were 1.5‰ to 2.0‰ enriched in 15N relative to uncolonized control plants. Isotopic depletion of aphids relative to hosts was strongly related to host nitrogen content. We tested whether the concomitant aphid 15N depletion and host 15N enrichment was coupled by isotopic mass balance and determined that aphid 15N depletion and host 15N enrichment are uncoupled processes. We hypothesized that colonized plants would have higher nitrate reductase activity than uncolonized plants because previous studies had demonstrated that high nitrate reductase activity under substrate-limiting conditions can result in increased plant δ15N values. Consistent with our hypothesis, nitrate reductase activity in colonized plants was twice that of uncolonized plants. This study offers two important insights that are likely applicable to understanding nitrogen dynamics in fluid-feeder/host systems. First, isotopic separation of aphid and host depends on nitrogen availability. Second, aphid colonization alters host nitrogen metabolism and subsequently host nitrogen stable-isotope signature. Notably, this work establishes a metabolic framework for future hypothesis-driven studies focused on aphid manipulation of host nitrogen metabolism. PMID:21646532

  17. Aphid performance changes with plant defense mediated by Cucumber mosaic virus titer.

    Science.gov (United States)

    Shi, Xiaobin; Gao, Yang; Yan, Shuo; Tang, Xin; Zhou, Xuguo; Zhang, Deyong; Liu, Yong

    2016-04-22

    Cucumber mosaic virus (CMV) causes appreciable losses in vegetables, ornamentals and agricultural crops. The green peach aphid, Myzus persicae Sulzer (Aphididae) is one of the most efficient vectors for CMV. The transmission ecology of aphid-vectored CMV has been well investigated. However, the detailed description of the dynamic change in the plant-CMV-aphid interaction associated with plant defense and virus epidemics is not well known. In this report, we investigated the relationship of virus titer with plant defense of salicylic acid (SA) and jasmonic acid (JA) during the different infection time and their interaction with aphids in CMV-infected tobacco plants. Our results showed that aphid performance changed with virus titer and plant defense on CMV-inoculated plants. At first, plant defense was low and aphid number increased gradually. The plant defense of SA signaling pathway was induced when virus titer was at a high level, and aphid performance was correspondingly reduced. Additionally, the winged aphids were increased. Our results showed that aphid performance was reduced due to the induced plant defense mediated by Cucumber mosaic virus titer. Additionally, some wingless aphids became to winged aphids. In this way CMV could be transmitted with the migration of winged aphids. We should take measures to prevent aphids in the early stage of their occurrence in the field to prevent virus outbreak.

  18. Seed treatments with thiamine reduce the performance of generalist and specialist aphids on crop plants.

    Science.gov (United States)

    Hamada, A M; Fatehi, J; Jonsson, L M V

    2018-02-01

    Thiamine is a vitamin that has been shown to act as a trigger to activate plant defence and reduce pathogen and nematode infection as well as aphid settling and reproduction. We have here investigated whether thiamine treatments of seeds (i.e. seed dressing) would increase plant resistance against aphids and whether this would have different effects on a generalist than on specialist aphids. Seeds of wheat, barley, oat and pea were treated with thiamine alone or in combination with the biocontrol bacteria Pseudomonas chlororaphis MA 342 (MA 342). Plants were grown in climate chambers. The effects of seed treatment on fecundity, host acceptance and life span were studied on specialist aphids bird cherry-oat aphid (Rhopalosiphum padi L.) and pea aphid (Acyrthosiphon pisum Harris) and on the generalist green peach aphid (Myzus persicae, Sulzer). Thiamine seed treatments reduced reproduction and host acceptance of all three aphid species. The number of days to reproduction, the length of the reproductive life, the fecundity and the intrinsic rate of increase were found reduced for bird cherry-oat aphid after thiamine treatment of the cereal seeds. MA 342 did not have any effect in any of the plant-aphid combinations, except a weak decrease of pea aphid reproduction on pea. The results show that there are no differential effects of either thiamine or MA 342 seed treatments on specialist and generalist aphids and suggest that seed treatments with thiamine has a potential in aphid pest management.

  19. Host Plants Indirectly Influence Plant Virus Transmission by Altering Gut Cysteine Protease Activity of Aphid Vectors*

    Science.gov (United States)

    Pinheiro, Patricia V.; Ghanim, Murad; Rebelo, Ana Rita; Santos, Rogerio S.; Orsburn, Benjamin C.; Gray, Stewart

    2017-01-01

    The green peach aphid, Myzus persicae, is a vector of the Potato leafroll virus (PLRV, Luteoviridae), transmitted exclusively by aphids in a circulative manner. PLRV transmission efficiency was significantly reduced when a clonal lineage of M. persicae was reared on turnip as compared with the weed physalis, and this was a transient effect caused by a host-switch response. A trend of higher PLRV titer in physalis-reared aphids as compared with turnip-reared aphids was observed at 24 h and 72 h after virus acquisition. The major difference in the proteomes of these aphids was the up-regulation of predicted lysosomal enzymes, in particular the cysteine protease cathepsin B (cathB), in aphids reared on turnip. The aphid midgut is the site of PLRV acquisition, and cathB and PLRV localization were starkly different in midguts of the aphids reared on the two host plants. In viruliferous aphids that were reared on turnip, there was near complete colocalization of cathB and PLRV at the cell membranes, which was not observed in physalis-reared aphids. Chemical inhibition of cathB restored the ability of aphids reared on turnip to transmit PLRV in a dose-dependent manner, showing that the increased activity of cathB and other cysteine proteases at the cell membrane indirectly decreased virus transmission by aphids. Understanding how the host plant influences virus transmission by aphids is critical for growers to manage the spread of virus among field crops. PMID:27932519

  20. The Protease Inhibitor CI2c Gene Induced by Bird Cherry-Oat Aphid in Barley Inhibits Green Peach Aphid Fecundity in Transgenic Arabidopsis.

    Science.gov (United States)

    Losvik, Aleksandra; Beste, Lisa; Mehrabi, Sara; Jonsson, Lisbeth

    2017-06-20

    Aphids are phloem feeders that cause large damage globally as pest insects. They induce a variety of responses in the host plant, but not much is known about which responses are promoting or inhibiting aphid performance. Here, we investigated whether one of the responses induced in barley by the cereal aphid, bird cherry-oat aphid ( Rhopalosiphum padi L.) affects aphid performance in the model plant Arabidopsis thaliana L. A barley cDNA encoding the protease inhibitor CI2c was expressed in A. thaliana and aphid performance was studied using the generalist green peach aphid ( Myzus persicae Sulzer). There were no consistent effects on aphid settling or preference or on parameters of life span and long-term fecundity. However, short-term tests with apterous adult aphids showed lower fecundity on three of the transgenic lines, as compared to on control plants. This effect was transient, observed on days 5 to 7, but not later. The results suggest that the protease inhibitor is taken up from the tissue during probing and weakly inhibits fecundity by an unknown mechanism. The study shows that a protease inhibitor induced in barley by an essentially monocot specialist aphid can inhibit a generalist aphid in transgenic Arabidopsis.

  1. The Protease Inhibitor CI2c Gene Induced by Bird Cherry-Oat Aphid in Barley Inhibits Green Peach Aphid Fecundity in Transgenic Arabidopsis

    Directory of Open Access Journals (Sweden)

    Aleksandra Losvik

    2017-06-01

    Full Text Available Aphids are phloem feeders that cause large damage globally as pest insects. They induce a variety of responses in the host plant, but not much is known about which responses are promoting or inhibiting aphid performance. Here, we investigated whether one of the responses induced in barley by the cereal aphid, bird cherry-oat aphid (Rhopalosiphum padi L. affects aphid performance in the model plant Arabidopsis thaliana L. A barley cDNA encoding the protease inhibitor CI2c was expressed in A. thaliana and aphid performance was studied using the generalist green peach aphid (Myzus persicae Sulzer. There were no consistent effects on aphid settling or preference or on parameters of life span and long-term fecundity. However, short-term tests with apterous adult aphids showed lower fecundity on three of the transgenic lines, as compared to on control plants. This effect was transient, observed on days 5 to 7, but not later. The results suggest that the protease inhibitor is taken up from the tissue during probing and weakly inhibits fecundity by an unknown mechanism. The study shows that a protease inhibitor induced in barley by an essentially monocot specialist aphid can inhibit a generalist aphid in transgenic Arabidopsis.

  2. Aggressive mimicry coexists with mutualism in an aphid

    Science.gov (United States)

    Salazar, Adrián; Fürstenau, Benjamin; Quero, Carmen; Pérez-Hidalgo, Nicolás; Carazo, Pau; Font, Enrique; Martínez-Torres, David

    2015-01-01

    Understanding the evolutionary transition from interspecific exploitation to cooperation is a major challenge in evolutionary biology. Ant–aphid relationships represent an ideal system to this end because they encompass a coevolutionary continuum of interactions ranging from mutualism to antagonism. In this study, we report an unprecedented interaction along this continuum: aggressive mimicry in aphids. We show that two morphs clonally produced by the aphid Paracletus cimiciformis during its root-dwelling phase establish relationships with ants at opposite sides of the mutualism–antagonism continuum. Although one of these morphs exhibits the conventional trophobiotic (mutualistic) relationship with ants of the genus Tetramorium, aphids of the alternative morph are transported by the ants to their brood chamber and cared for as if they were true ant larvae. Gas chromatography-mass spectrometry analyses reveal that the innate cuticular hydrocarbon profile of the mimic morph resembles the profile of ant larvae more than that of the alternative, genetically identical nonmimic morph. Furthermore, we show that, once in the brood chamber, mimic aphids suck on ant larva hemolymph. These results not only add aphids to the limited list of arthropods known to biosynthesize the cuticular chemicals of their deceived hosts to exploit their resources but describe a remarkable case of plastic aggressive mimicry. The present work adds a previously unidentified dimension to the classical textbook paradigm of aphid–ant relationships by showcasing a complex system at the evolutionary interface between cooperation and exploitation. PMID:25583474

  3. Does aphid salivation affect phloem sieve element occlusion in vivo?

    Science.gov (United States)

    Medina-Ortega, Karla J; Walker, G P

    2013-12-01

    To protect against loss of photo-assimilate-rich phloem sap, plants have evolved several mechanisms to plug phloem sieve tubes in response to damage. In many Fabaceae, each sieve element contains a discrete proteinaceous body called a forisome, which, in response to damage, rapidly transforms from a condensed configuration that does not impede the flow of sap to a dispersed configuration that plugs the sieve element. Aphids and other specialized phloem sap feeders can ingest phloem sap from a single sieve element for hours or days, and to do this, they must be able to suppress or reverse phloem plugging. A recent study provided in vitro evidence that aphid saliva can reverse forisome plugs. The present study tested this hypothesis in vivo by inducing forisome plugs which triggered aphids to switch behaviour from phloem sap ingestion to salivation into the sieve element. After salivating into the sieve element for various periods of time, the aphids were instantaneously cryofixed (freeze fixed) in situ on their leaf. The state of the forisome was then determined in the penetrated sieve element and in nearby non-penetrated sieve elements which served as controls for sieve elements not subjected to direct aphid salivation. Forisomes were almost always in close contact with the stylet tips and thus came into direct contact with the saliva. Nonetheless, forisome plugs in the penetrated sieve element did not revert back to a non-plugging state any faster than those in neighbouring sieve elements that were not subjected to direct aphid salivation.

  4. Aphid Polyphenisms: Trans-generational Developmental Regulation through Viviparity

    Directory of Open Access Journals (Sweden)

    Kota eOgawa

    2014-01-01

    Full Text Available Polyphenism, in which multiple discrete phenotypes develop from a single genotype, is considered to have contributed to the evolutionary success of aphids. Of the various polyphenisms observed in the complex life cycle of aphids, the reproductive and wing polyphenisms seen in most aphid species are conspicuous. In reproductive polyphenism, the reproductive modes can change between viviparous parthenogenesis and sexual reproduction in response to the photoperiod. Under short-day conditions in autumn, sexual morphs (males and oviparous females are produced parthenogenetically. Winged polyphenism is observed in viviparous generations during summer, when winged or wingless (flightless aphids are produced depending on a variety of environmental conditions (e.g. density, predators. Here, we review the physiological mechanisms underlying reproductive and wing polyphenism in aphids. In reproductive polyphenism, morph determination (male, oviparous or viviparous female within mother aphids is regulated by juvenile hormone (JH titers in the mothers. In wing polyphenism, although JH is considered to play an important role in phenotype determination (winged or wingless, the role is still controversial. In both cases, the acquisition of viviparity in Aphididae is considered to be the basis for maternal regulation of these polyphenisms, and through which environmental cues can be transferred to developing embryos through the physiological state of the mother. Although the mechanisms by which mothers alter the developmental programs of their progeny have not yet been clarified, continued developments in molecular biology will likely unravel these questions.

  5. Constitutive emission of the aphid alarm pheromone, (E)-β-farnesene, from plants does not serve as a direct defense against aphids.

    Science.gov (United States)

    Kunert, Grit; Reinhold, Carolina; Gershenzon, Jonathan

    2010-11-23

    The sesquiterpene, (E)-β-farnesene (EBF), is the principal component of the alarm pheromone of many aphid species. Released when aphids are attacked by enemies, EBF leads aphids to undertake predator avoidance behaviors and to produce more winged offspring that can leave the plant. Many plants also release EBF as a volatile, and so it has been proposed that this compound could act to defend plants against aphid infestation by 1) deterring aphids from settling, 2) reducing aphid performance due to frequent interruption of feeding and 3) inducing the production of more winged offspring. Here we tested the costs and benefits of EBF as a defense against the green peach aphid, Myzus persicae, using transgenic Arabidopsis thaliana lines engineered to continuously emit EBF. No metabolic costs of EBF synthesis could be detected in these plants as they showed no differences in growth or seed production from wild-type controls under two fertilizer regimes. Likewise, no evidence was found for the ability of EBF to directly defend the plant against aphids. EBF emission did not significantly repel winged or wingless morphs from settling on plants. Nor did EBF reduce aphid performance, measured as reproduction, or lead to an increase in the proportion of winged offspring. The lack of any defensive effect of EBF in this study might be due to the fact that natural enemy attack on individual aphids leads to a pulsed emission, but the transgenic lines tested continuously produce EBF to which aphids may become habituated. Thus our results provide no support for the hypothesis that plant emission of the aphid alarm pheromone EBF is a direct defense against aphids. However, there is scattered evidence elsewhere in the literature suggesting that EBF emission might serve as an indirect defense by attracting aphid predators.

  6. Constitutive emission of the aphid alarm pheromone, (E-β-farnesene, from plants does not serve as a direct defense against aphids

    Directory of Open Access Journals (Sweden)

    Gershenzon Jonathan

    2010-11-01

    Full Text Available Abstract Background The sesquiterpene, (E-β-farnesene (EBF, is the principal component of the alarm pheromone of many aphid species. Released when aphids are attacked by enemies, EBF leads aphids to undertake predator avoidance behaviors and to produce more winged offspring that can leave the plant. Many plants also release EBF as a volatile, and so it has been proposed that this compound could act to defend plants against aphid infestation by 1 deterring aphids from settling, 2 reducing aphid performance due to frequent interruption of feeding and 3 inducing the production of more winged offspring. Here we tested the costs and benefits of EBF as a defense against the green peach aphid, Myzus persicae, using transgenic Arabidopsis thaliana lines engineered to continuously emit EBF. Results No metabolic costs of EBF synthesis could be detected in these plants as they showed no differences in growth or seed production from wild-type controls under two fertilizer regimes. Likewise, no evidence was found for the ability of EBF to directly defend the plant against aphids. EBF emission did not significantly repel winged or wingless morphs from settling on plants. Nor did EBF reduce aphid performance, measured as reproduction, or lead to an increase in the proportion of winged offspring. Conclusions The lack of any defensive effect of EBF in this study might be due to the fact that natural enemy attack on individual aphids leads to a pulsed emission, but the transgenic lines tested continuously produce EBF to which aphids may become habituated. Thus our results provide no support for the hypothesis that plant emission of the aphid alarm pheromone EBF is a direct defense against aphids. However, there is scattered evidence elsewhere in the literature suggesting that EBF emission might serve as an indirect defense by attracting aphid predators.

  7. An analysis of arthropod interceptions by APHIS-PPQ and Customs and Border Patrol in Puerto Rico

    Science.gov (United States)

    USDA Animal Plant Health Inspection Service Plant Protection and Quarantine (APHIS-PPQ) and Customs and Border Patrol (CBP) inspect traffic entering the United States for arthropods that pose a threat to national agriculture and/or ecosystems. We analyzed interceptions made by these agencies in Puer...

  8. 77 FR 73613 - Notice of Request for Revision to and Extension of Approval of an Information Collection; APHIS...

    Science.gov (United States)

    2012-12-11

    ... members of the general public, nature organizations, school groups, garden clubs, and others help APHIS... 0.083 hours per response. Respondents: General public, nature organizations, school groups, and garden clubs. Estimated annual number of respondents: 5,000. Estimated annual number of responses per...

  9. Distribuição espacial de Aphis gossypii (Glover (Hemiptera, Aphididae e Bemisia tabaci (Gennadius biótipo B (Hemiptera, Aleyrodidae em algodoeiro Bt e não-Bt Spatial distribution of Aphis gossypii (Glover (Hemiptera, Aphididae and Bemisia tabaci (Gennadius biotype B (Hemiptera, Aleyrodidae on Bt and non-Bt cotton

    Directory of Open Access Journals (Sweden)

    Tatiana Rojas Rodrigues

    2010-03-01

    Full Text Available Distribuição espacial de Aphis gossypii (Glover (Hemiptera, Aphididae e Bemisia tabaci (Gennadius biótipo B (Hemiptera, Aleyrodidae em algodoeiro Bt e não-Bt. O estudo da distribuição espacial de adultos de Bemisia tabaci e de Aphis gossypii nas culturas do algodoeiro Bt e não-Bt é fundamental para a otimização de técnicas de amostragens, além de revelar diferenças de comportamento de espécies não-alvo dessa tecnologia Bt entre as duas cultivares. Nesse sentido, o experimento buscou investigar o padrão da distribuição espacial dessas espécies de insetos no algodoeiro convencional não-Bt e no cultivar Bt. As avaliações ocorreram em dois campos de 5.000 m² cada, nos quais se realizou 14 avaliações com contagem de adultos da mosca-branca e colônias de pulgões. Foram calculados os índices de agregação (razão variância/média, índice de Morisita e Expoente k da Distribuição Binomial Negativa e realizados os testes ajustes das classes numéricas de indivíduos encontradas e esperadas às distribuições teóricas de freqüência (Poisson, Binomial Negativa e Binomial Positiva. Todas as análises mostraram que, em ambas as cultivares, a distribuição espacial de B. tabaci ajustou-se a distribuição binomial negativa durante todo o período analisado, indicando que a cultivar transgênica não influenciou o padrão de distribuição agregada desse inseto. Já com relação às análises para A. gossypii, os índices de agregação apontaram distribuição agregada nas duas cultivares, mas as distribuições de freqüência permitiram concluir a ocorrência de distribuição agregada apenas no algodoeiro convencional, pois não houve nenhum ajuste para os dados na cultivar Bt. Isso indica que o algodão Bt alterou o padrão normal de dispersão dos pulgões no cultivo.The study of spatial distribution of the adults of Bemisia tabaci and the colonies of Aphis gossypii on Bt and non-Bt cotton crop is fundamental for

  10. Agronomy of strip intercropping broccoli with alyssum for biological control of aphids

    Science.gov (United States)

    Organic broccoli growers in California typically control aphids by intercropping broccoli with strips of alyssum (Lobularia maritima (L.) Desv.) which attracts hoverflies (Diptera: Syrphidae) that are important predators of aphids. A three year study with transplanted organic broccoli in Salinas, ...

  11. Preparing soft-bodied arthropods for microscope examination: Aphids (Insecta: Hemiptera: Aphididae)

    Science.gov (United States)

    Proper identification of aphids (Hemiptera: Aphididae) require preparation of the specimen on a microscope slide. This training video provides visual instruction on how to prepare aphid specimens on microscope slides for examination and indentification. Steps ranging from collection, specimen clear...

  12. Phloem protein partners of Cucurbit aphid borne yellows virus: possible involvement of phloem proteins in virus transmission by aphids.

    Science.gov (United States)

    Bencharki, B; Boissinot, S; Revollon, S; Ziegler-Graff, V; Erdinger, M; Wiss, L; Dinant, S; Renard, D; Beuve, M; Lemaitre-Guillier, C; Brault, V

    2010-06-01

    Poleroviruses are phytoviruses strictly transmitted by phloem-feeding aphids in a circulative and nonpropagative mode. During ingestion, aphids sample virions in sieve tubes along with sap. Therefore, any sap protein bound to virions will be acquired by the insects and could potentially be involved in the transmission process. By developing in vitro virus-overlay assays on sap proteins collected from cucumber, we observed that approximately 20 proteins were able to bind to purified particles of Cucurbit aphid borne yellows virus (CABYV). Among them, eight proteins were identified by mass spectrometry. The role of two candidates belonging to the PP2-like family (predominant lectins found in cucurbit sap) in aphid transmission was further pursued by using purified orthologous PP2 proteins from Arabidopsis. Addition of these proteins to the virus suspension in the aphid artificial diet greatly increased virus transmission rate. This shift was correlated with an increase in the number of viral genomes in insect cells and with an increase of virion stability in vitro. Surprisingly, increase of the virus transmission rate was also monitored after addition of unrelated proteins in the aphid diet, suggesting that any soluble protein at sufficiently high concentration in the diet and acquired together with virions could stimulate virus transmission.

  13. National Plant Diagnostic Network, Taxonomic training videos: Introduction to AphID

    Science.gov (United States)

    Training is a critical part of aphid (Hemiptera: Aphididae) identification. This video provides visual instruction on the use of the expert system, AphID, for aphid examination and identification. The video demonstrates the use of different training modules that allow the user to gain familiarity wi...

  14. Aphidius gifuensis: a promising parasitoid for biological control of two important aphid species in sweet pepper

    NARCIS (Netherlands)

    Messelink, G.J.; Bloemhard, C.M.J.; Hoogerbrugge, H.; Schelt, van J.

    2011-01-01

    The parasitoid Aphidius gifuensis is able to parasitize both the green peach aphid Myzus persicae and the foxglove aphid Aulacorthum solani in sweet pepper. In a greenhouse experiment we showed that rates of parasitism on green peach aphids alone were equal to the commonly used Aphidius colemani,

  15. Comparison of transmission efficiency of different isolates of Potato virus Y among three aphid vectors

    Science.gov (United States)

    Potato virus Y (PVY) strains are transmitted by different aphid species in a non-persistent, non-circulative manner. Green peach aphid (GPA, Myzus persicae Sulzer; Aphididae, Macrosiphini) is the most efficient vector in laboratory studies, but potato aphid (PA, Macrosiphum euphorbiae Thomas; Aphidi...

  16. Suppression of plant defenses by a Myzus persicae (green peach aphid) salivary effector protein.

    Science.gov (United States)

    Elzinga, Dezi A; De Vos, Martin; Jander, Georg

    2014-07-01

    The complex interactions between aphids and their host plant are species-specific and involve multiple layers of recognition and defense. Aphid salivary proteins, which are released into the plant during phloem feeding, are a likely mediator of these interactions. In an approach to identify aphid effectors that facilitate feeding from host plants, eleven Myzus persicae (green peach aphid) salivary proteins and the GroEL protein of Buchnera aphidicola, a bacterial endosymbiont of this aphid species, were expressed transiently in Nicotiana tabacum (tobacco). Whereas two salivary proteins increased aphid reproduction, expression of three other aphid proteins and GroEL significantly decreased aphid reproduction on N. tabacum. These effects were recapitulated in stable transgenic Arabidopsis thaliana plants. Further experiments with A. thaliana expressing Mp55, a salivary protein that increased aphid reproduction, showed lower accumulation of 4-methoxyindol-3-ylmethylglucosinolate, callose and hydrogen peroxide in response to aphid feeding. Mp55-expressing plants also were more attractive for aphids in choice assays. Silencing Mp55 gene expression in M. persicae using RNA interference approaches reduced aphid reproduction on N. tabacum, A. thaliana, and N. benthamiana. Together, these results demonstrate a role for Mp55, a protein with as-yet-unknown molecular function, in the interaction of M. persicae with its host plants.

  17. National Plant Diagnostic Network, Taxonomic training videos: Aphids under the microscope - overview

    Science.gov (United States)

    Training is a critical part of aphid (Hemiptera: Aphididae) identification. This training video provides provides an overview of general aphid morphology by using a compound microscope. The narrator discusses and highlights structures on the aphid that are important to make a species identification....

  18. Mountain aphid and parasitoid guilds on Aconitum spp. in Europe

    Czech Academy of Sciences Publication Activity Database

    Havelka, Jan; Tomanović, Ž.; Kos, K.; Kavallieratos, N. G.; Janeček, J.; Pons, X.; Rakhshani, E.; Starý, Petr

    2014-01-01

    Roč. 67, č. 1 (2014), s. 57-61 ISSN 1721-8861 Grant - others:Ministry of Education, Science and Technological Development(RS) III43001 Institutional support: RVO:60077344 Keywords : aphis * Aphididae * parasitoids Subject RIV: EH - Ecology, Behaviour Impact factor: 1.494, year: 2014 http://www.bulletinofinsectology.org/pdfarticles/vol67-2014-057-061havelka.pdf

  19. Cereal aphid colony turnover and persistence in winter wheat.

    Directory of Open Access Journals (Sweden)

    Linton Winder

    Full Text Available An understanding of spatial and temporal processes in agricultural ecosystems provides a basis for rational decision-making with regards to the management and husbandry of crops, supporting the implementation of integrated farming strategies. In this study we investigated the spatial and temporal distribution of aphid pests (Sitobion avenae and Metopolophium dirhodum within winter wheat fields. Using an intensive sampling programme we investigated distributions at both the small (single shoot and large (field scales. Within two fields, a grid with 82 locations was established (area 120 m by 168 m. At each location, 25 shoots were individually marked and aphid counts by observation conducted on 21 and 22 occasions as the crop matured, resulting in 43,050 and 45,100 counts being conducted in the two fields respectively. We quantified field scale spatial distributions, demonstrating that spatial pattern generally emerged, with temporal stability being both species- and field- dependent. We then measured turnover of colonies at the small (individual shoot and large (field scales by comparing consecutive pairs of sampling occasions. Four turnover categories were defined: Empty (no aphids recorded on either occasion; Colonised (aphids recorded on the second occasion but not the first; Extinction (aphids recorded on the first occasion but not the second; Stable (aphids recorded on both occasions. At the field scale, population stability soon established, but, at the small scale there was a consistently high proportion of unoccupied shoots with considerable colonisation and extinction and low stability. The redistribution of aphids within the crop at the local scale is a vulnerability which could be used to disrupt population development--by mediating exposure to ground-active natural enemies and by incurring a metabolic cost caused by the physiological demands to re-establish on a nearby host plant.

  20. Mechanisms regulating caste differentiation in an aphid social system.

    Science.gov (United States)

    Shibao, Harunobu; Kutsukake, Mayako; Matsuyama, Shigeru; Fukatsu, Takema; Shimada, Masakazu

    2010-01-01

    For evolution and maintenance of the social systems of insect colonies, caste production should be controlled in response to external cues so that caste ratio in the colony is kept at an optimal range. Recent developments using artificial diet rearing techniques have revealed an underlying mechanism for adaptive control of caste production in a social aphid, Tuberaphis styraci, which has a sterile soldier caste in the 2(nd) instar. Aphid density was the proximate cue that acts on 1(st) instar nymphs and embryos to induce soldier differentiation. The final determination of soldier differentiation occurred postnatally, probably at a late 1(st) instar stage. Direct contact stimuli from live non-soldier aphids mediated the density effect. While coexisting non-soldiers facilitated soldier differentiation in 1(st) instar nymphs, coexisting soldiers acted to suppress such differentiation. These results suggest that caste production in aphid colonies is controlled by positive and negative feedback mechanisms consisting of density-dependent induction and suppression of soldier differentiation. Here, we demonstrate the mechanisms that coordinate aphid society, and provide a striking case of clonal superorganism system where simple responses of colony members to local extrinsic stimuli are integrated into a highly organized regulation of the whole colony.

  1. Predicting the occurrence of alate aphids in Brassicaceae

    Directory of Open Access Journals (Sweden)

    Francisco Jorge Cividanes

    2012-04-01

    Full Text Available The objective of this work was to predict the occurrence of alates of Brevicoryne brassicae, Lipaphis erysimi, and Myzus persicae (Hemiptera, Aphididae in Brassicaceae. The alate aphids were collected in yellow water traps from July 1997 to August 2005. Aphid population peaks were predicted using a degree‑day model. The meteorological factors, temperature, air relative humidity, rainfall, and sunshine hours, were used to provide precision indexes to evaluate the best predictor for the date of the first capture of alate aphids by the traps. The degree‑day model indicated that the peak population of the evaluated aphid species can be predicted using one of the following biofix dates: January 1st, June 1st, and the date of the first capture of the alate aphid species by the yellow water traps. The best predictor of B. brassicae occurrence is the number of days with minimum temperature >15°C, and of L. erysimi and M. persicae, the number of days with rainfall occurrence.

  2. Aphid sex pheromones: from discovery to commercial production.

    Science.gov (United States)

    Birkett, Michael A; Pickett, John A

    2003-03-01

    This review charts the progress made with aphid sex pheromone chemistry, from initial identification of cyclopentanoid nepetalactones, for example (4aS,7S,7aR)-nepetalactone (1). and (1R,4aS,7S,7aR)-nepetalactol (2). to commercial production from a renewable non-food crop, the catmint, Nepeta cataria (Lamiaceae). The availability of aphid sex pheromone components is now facilitating the development of new aphid pest control strategies, incorporating the use of other semiochemicals, particularly in the manipulation of populations of aphid parasitoids and aphid predators such as lacewings, which can utilise the nepetalactones and closely related molecules to locate their hosts and prey. This is the first example of a plant resource being developed as a feedstock for the production of a commercially valuable insect pheromone. The development of a plant-based production route highlights the tremendous potential that higher plants offer as cheap and renewable resources for the production of insect semiochemicals, through the wide array of secondary metabolites that they can generate.

  3. Análise faunística de afídeos (Hemiptera, Aphididae na Serra do Mar, Paraná, Brasil Faunistic analysis of aphids (Hemiptera, Aphididae in the Serra do Mar, Paraná, Brazil

    Directory of Open Access Journals (Sweden)

    Crisleide Maria Lazzarotto

    2005-06-01

    Full Text Available Foram coletados na Serra do Mar, Paraná, 8134 espécimes de afídeos pertencentes a 87 espécies usando armadilhas amarelas de água durante 13 meses em onze locais com um gradiente altitudinal entre 10 m sobre o nível do mar (s.n.m. e 1000 m s.n.m. A ocorrência e a dominância dos afídeos foram correlacionadas com características ambientais de cada área, principalmente com a altitude, flora local e alterações antrópicas. O número mais elevado de espécimes foi entre 78 m e 555 m s.n.m., sendo a grande maioria das espécies classificada como raras. As espécies consideradas comuns coletadas em todos os locais foram as de hábito polífago e aquelas cujos hospedeiros preferenciais estavam presentes na área, como: Aphis spiraecola, Toxoptera aurantii, Brevicoryne brassicae, Tetraneura nigriabdominalis e Uroleucon ambrosiae. Não foi observada uma relação clara entre os índices faunísticos obtidos com a flora local e a altitude das áreas. As armadilhas colocadas em áreas de transição entre os macro-ambientes de Floresta Ombrófila Densa Atlântica Montana e de Floresta Ombrófila Mista capturaram o maior número de espécies de afídeos.A total of 8,134 aphids belonging to 87 species were collected with yellow pan traps during 13 months in Serra do Mar, Paraná State. Eleven places at different altitudes (-10 m to 1000 m above sea level - a.s.l. were surveyed. The occurrence and dominance of the aphids were related to altitude, local flora, and environmental disruption. The number of specimens was the highest at 78 m and 555 m a.s.l., but most of the species were classified as rare. The common species registered were either polyphagous or had their preferential host plants present in the areas. The species Aphis spiraecola, Toxoptera aurantii, Brevicoryne brassicae, Tetraneura nigriabdominalis, and Uroleucon ambrosiae occurred in all surveyed areas. There was no clear relation between the faunistic data with the environmental

  4. Virulent Diuraphis noxia Aphids Over-Express Calcium Signaling Proteins to Overcome Defenses of Aphid-Resistant Wheat Plants.

    Science.gov (United States)

    Sinha, Deepak K; Chandran, Predeesh; Timm, Alicia E; Aguirre-Rojas, Lina; Smith, C Michael

    2016-01-01

    The Russian wheat aphid, Diuraphis noxia, an invasive phytotoxic pest of wheat, Triticum aestivum, and barley, Hordeum vulgare, causes huge economic losses in Africa, South America, and North America. Most acceptable and ecologically beneficial aphid management strategies include selection and breeding of D. noxia-resistant varieties, and numerous D. noxia resistance genes have been identified in T. aestivum and H. vulgare. North American D. noxia biotype 1 is avirulent to T. aestivum varieties possessing Dn4 or Dn7 genes, while biotype 2 is virulent to Dn4 and avirulent to Dn7. The current investigation utilized next-generation RNAseq technology to reveal that biotype 2 over expresses proteins involved in calcium signaling, which activates phosphoinositide (PI) metabolism. Calcium signaling proteins comprised 36% of all transcripts identified in the two D. noxia biotypes. Depending on plant resistance gene-aphid biotype interaction, additional transcript groups included those involved in tissue growth; defense and stress response; zinc ion and related cofactor binding; and apoptosis. Activation of enzymes involved in PI metabolism by D. noxia biotype 2 aphids allows depletion of plant calcium that normally blocks aphid feeding sites in phloem sieve elements and enables successful, continuous feeding on plants resistant to avirulent biotype 1. Inhibition of the key enzyme phospholipase C significantly reduced biotype 2 salivation into phloem and phloem sap ingestion.

  5. Aphidophagous parasitoids can forage wheat crops before aphid infestation, Parana State, Brazil.

    Science.gov (United States)

    Ceolin Bortolotto, Orcial; de Oliveira Menezes Júnior, Ayres; Thibes Hoshino, Adriano

    2015-01-01

    Aphid parasitoids are common in Brazilian wheat fields, and parasitize aphids at the wheat tillering stage. However, there is little information available about when this natural enemy occurs in wheat crops. This study investigated the initial occurrence of aphid parasitoids in four commercial wheat crops in northern Paraná during the 2009 crop season. We installed two Malaise traps at each wheat farm, and 400 tillers were assessed weekly in each field for aphid abundance. During this study, we captured 4,355 aphid parasitoids and 197 aphids. Three species of braconid parasitoids were identified, including Aphidius colemani (Viereck 1912), Lysiphlebus testaceipes (Cresson 1880), and Diaeretiella rapae (McIntosh 1855). The aphids species identified were Rhopalosiphum padi (Linnaeus 1758) and Sitobion avenae (Fabricius 1775). This study showed that aphid parasitoids are present in wheat crops even when aphid densities are low, and in one farm, occurred before the aphids colonization. These reports can justified the high efficiency of these natural enemies against aphids in wheat fields. © The Author 2015. Published by Oxford University Press on behalf of the Entomological Society of America.

  6. Orally Delivered Scorpion Antimicrobial Peptides Exhibit Activity against Pea Aphid (Acyrthosiphon pisum and Its Bacterial Symbionts

    Directory of Open Access Journals (Sweden)

    Karen Luna-Ramirez

    2017-08-01

    Full Text Available Aphids are severe agricultural pests that damage crops by feeding on phloem sap and vectoring plant pathogens. Chemical insecticides provide an important aphid control strategy, but alternative and sustainable control measures are required to avoid rapidly emerging resistance, environmental contamination, and the risk to humans and beneficial organisms. Aphids are dependent on bacterial symbionts, which enable them to survive on phloem sap lacking essential nutrients, as well as conferring environmental stress tolerance and resistance to parasites. The evolution of aphids has been accompanied by the loss of many immunity-related genes, such as those encoding antibacterial peptides, which are prevalent in other insects, probably because any harm to the bacterial symbionts would inevitably affect the aphids themselves. This suggests that antimicrobial peptides (AMPs could replace or at least complement conventional insecticides for aphid control. We fed the pea aphids (Acyrthosiphon pisum with AMPs from the venom glands of scorpions. The AMPs reduced aphid survival, delayed their reproduction, displayed in vitro activity against aphid bacterial symbionts, and reduced the number of symbionts in vivo. Remarkably, we found that some of the scorpion AMPs compromised the aphid bacteriome, a specialized organ that harbours bacterial symbionts. Our data suggest that scorpion AMPs holds the potential to be developed as bio-insecticides, and are promising candidates for the engineering of aphid-resistant crops.

  7. Stem nematode counteracts plant resistance of aphids in alfalfa, Medicago sativa.

    Science.gov (United States)

    Ramirez, Ricardo A; Spears, Lori R

    2014-10-01

    Plants are exploited by a diverse community of insect herbivores and phytopathogens that interact indirectly through plant-mediated interactions. Generally, plants are thought to respond to insects and pathogens through different defensive signaling pathways. As plants are selected for resistance to one phytophagous organism type (insect vs. pathogen) in managed systems, it is not clear how this selection may affect community interactions. This study examined the effect of nematode-resistant varieties on aphid (Acyrthosiphon pisum) suppression, and then determined how infection by the stem nematode, Ditylenchus dipsaci, mediated ecological effects on aphids and on plant defense proteins. Four alfalfa (Medicago sativa) varieties were selected with resistance to nematodes only (+,-), aphids only (-,+), nematodes and aphids (+,+), and susceptibility to nematodes and aphids (-,-). Field and greenhouse experiments were conducted to isolate the effect of nematode infection and aphid abundance on each variety. We found that varieties resistant to nematode, regardless of aphid resistance, had the lowest aphid counts, suggesting possible cross-resistance. Aphid abundance, however, increased when plants were exposed to nematodes. Resistant varieties were associated with elevated saponins but these compounds were not affected by insect or pathogen feeding. Concentrations of peroxidases and trypsin inhibitors, however, were increased in nematode resistant varieties when exposed to nematodes and aphids, respectively. The patterns of plant defense were variable, and a combination of resistance traits and changes in nutrient availability may drive positive interactions between nematodes and aphids aboveground.

  8. Association of the Root Aphid Parasitoids Aclitus sappaphis and Paralipsis eikoae (Hymenoptera, Aphidiidae) with the Aphid-attending Ants Pheidole fervida and Lasius niger (Hymenoptera, Formicidae)

    OpenAIRE

    Hajimu, TAKADA; Yoshiaki, HASHIMOTO; Laboratory of Entomology, Faculty of Agriculture, Kyoto Prefectural University; Laboratory of Entomology, Faculty of Agriculture, Kyoto Prefectural University:(Present address)Graduate School of Science and Technology, Kobe University

    1985-01-01

    The association of two aphidiid parasitoids of a root aphid (Sappaphis piri MATSUMURA) on wormwood, Aclitus sappaphis TAKADA & SHIGA and Paralipsis eikoae (YASUMATSU), with two aphid-attending ants, Pheidole fervida FR. SMITH and Lasius niger (LINNE), was examined experimentally. The oviposition behavior of A. sappaphis was also observed. A single female parasitoid of each species was released on an aphid colony attended by workers (and soldiers) of either of the two ants, and her behavior an...

  9. Metabolomic profiling of the response of susceptible and resistant soybean strains to foxglove aphid, Aulacorthum solani Kaltenbach.

    Science.gov (United States)

    Sato, Dan; Akashi, Hiromichi; Sugimoto, Masahiro; Tomita, Masaru; Soga, Tomoyoshi

    2013-04-15

    Aphid infection reduces soybean (Glycine max [L.] Merr.) yield. Consequently, cultivation of aphid-resistant strains is a promising approach to pest control, and understanding the resistance mechanism is of importance. Here, we characterized the resistance of soybeans to foxglove aphid, Aulacorthum solani Kaltenbach, at the metabolite level. First, we evaluated aphid mortality and settlement rates on the leaves of two soybean strains, 'Tohoku149' and 'Suzuyutaka', and found that the former had strong resistance soon after introduction of the aphids. The metabolomic response to aphid introduction was analyzed using capillary electrophoresis-time-of-flight mass spectrometry. We found the following three features in the profiles: (1) concentrations of citrate, amino acids, and their intermediates were intrinsically higher for Tohoku149 than Suzuyutaka, (2) concentrations of several metabolites producing secondary metabolites, such as flavonoids and alkaloids, drastically changed 6h after aphid introduction, and (3) concentrations of TCA cycle metabolites increased in Tohoku149 48 h after aphid introduction. We also profiled free amino acids in aphids reared on both soybean strains and under starvation, and found that the profile of the aphids on Tohoku149 was similar to that of the starved aphids, but different to that of aphids on Suzuyutaka. These tests confirmed that aphids suck phloem sap even from Tohoku149. This study demonstrates the metabolomic profiles of both soybean strains and aphids, which will contribute to the molecular level understanding of mechanisms of soybean resistance to aphids. Copyright © 2013 Elsevier B.V. All rights reserved.

  10. Aphid infestation affecting the biogeochemistry of European beech saplings

    Science.gov (United States)

    Michalzik, B.; Levia, D. F., Jr.; Bischoff, S.; Näthe, K.

    2014-12-01

    Mass outbreaks of herbivore insects are known to perturb the functional properties of forests. However, it is less clear how endemic to moderate aboveground herbivory affects the vertical flow of nutrients from tree canopies to the soil. Here, we report on the effects of low to moderate infestation levels of the woolly beech aphid (Phyllaphis fagi L.) on the nutrient dynamics and hydrology of European beech (Fagus sylvatica L.). In a potted sapling experiment, we followed the vertical dynamics of nutrients via throughfall (TF), stemflow (SF) and litter leachates (LL) collected over ten weeks underneath infested and uninfested control trees. Aphid infestation amplifies the fluxes of K+, Mn2+ and particulate nitrogen (0.45μm aphid abundance by 26 and 16%, respectively. Differences in canopy-derived dissolved nitrogen and carbon compounds, sulfur (S), Ca2+, Mg2+, Na+ were aphid abundance on nutrient dynamics was most notable in TF and SF and diminished in LL.Aphid infestation greatly altered the SF fluxes of DOC, K+, Mn2+, DON and sulfur-species, which were significantly concentrated at the tree base by "funneling" the rainfall through the canopy biomass to the trunk. Normalized to one square meter, water and nutrient fluxes were amplified by a factor of up to 200 compared to TF.Imaging of leaf surfaces by scanning electron microscopy exhibited notable differences of the surface morphology and microbiology of control, lightly infested, and heavily infested leaves. This observation might point to an aphid-mediated alteration of the phyllosphere ecology triggering the microbial uptake of NH4-N and SO4-S and its transformation to particulate N by magnified biomass growth of the phyllosphere microflora, consequently changing the chemical partitioning and temporal availability of nitrogen.

  11. The NIa-Pro protein of Turnip mosaic virus improves growth and reproduction of the aphid vector, Myzus persicae (green peach aphid).

    Science.gov (United States)

    Casteel, Clare L; Yang, Chunling; Nanduri, Ananya C; De Jong, Hannah N; Whitham, Steven A; Jander, Georg

    2014-02-01

    Many plant viruses depend on aphids and other phloem-feeding insects for transmission within and among host plants. Thus, viruses may promote their own transmission by manipulating plant physiology to attract aphids and increase aphid reproduction. Consistent with this hypothesis, Myzus persicae (green peach aphids) prefer to settle on Nicotiana benthamiana infected with Turnip mosaic virus (TuMV) and fecundity on virus-infected N. benthamiana and Arabidopsis thaliana (Arabidopsis) is higher than on uninfected controls. TuMV infection suppresses callose deposition, an important plant defense, and increases the amount of free amino acids, the major source of nitrogen for aphids. To investigate the underlying molecular mechanisms of this phenomenon, 10 TuMV genes were over-expressed in plants to determine their effects on aphid reproduction. Production of a single TuMV protein, nuclear inclusion a-protease domain (NIa-Pro), increased M. persicae reproduction on both N. benthamiana and Arabidopsis. Similar to the effects that are observed during TuMV infection, NIa-Pro expression alone increased aphid arrestment, suppressed callose deposition and increased the abundance of free amino acids. Together, these results suggest a function for the TuMV NIa-Pro protein in manipulating the physiology of host plants. By attracting aphid vectors and promoting their reproduction, TuMV may influence plant-aphid interactions to promote its own transmission. © 2013 The Authors The Plant Journal © 2013 John Wiley & Sons Ltd.

  12. Spatial and Temporal Dynamics of Aphids (Hemiptera: Aphididae) in the Columbia Basin and Northeastern Oregon.

    Science.gov (United States)

    Klein, Mathew L; Rondon, Silvia I; Walenta, Darrin L; Zeb, Qamar; Murphy, Alexzandra F

    2017-08-01

    Aphid species, such as the potato aphid, Macrosiphum euphorbiae Thomas, and the green peach aphid, Myzus persicae Sulzer, are routinely considered the most important pests of potatoes. Potato aphid, green peach aphid, and more recently, other aphids such as the bird cherry-oat aphid Rhopalosiphum padi L. have been identified as vectors of multiple plant pathogenic viruses in potatoes. Since 2006, an area-wide trapping network consisting of ∼60 sites was developed through collaboration between researchers, extension faculty, and stakeholders, to monitor aphid populations in the Columbia Basin of Oregon (Umatilla and Morrow counties) and in northeastern Oregon (Union and Baker counties). Over a 9-yr period (2006 to 2014), aphid specimens were collected weekly using yellow bucket traps and specimens were then identified and counted to determine population levels during the growing season (May-September). Thus, aphid population data were compiled and subjected to spatial and temporal distribution analysis. Weather data, obtained from an established network of weather stations located in the monitoring areas, were used in a nonparametric multiplicative regression analysis to determine which abiotic variables may impact aphid populations. Weather conditions were characterized using confidence intervals (CIs) established based on weather data from 1999 to 2005 for each environmental variable. Aphid populations were found to have a heterogeneous distribution in most years; a few sites had high aphid populations while low numbers were observed at most sites; aphids were also found to correlate with several abiotic variables, namely, elevation, previous season temperature, and previous season dew point. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  13. Persistence and transgenerational effect of plant-mediated RNAi in aphids.

    Science.gov (United States)

    Coleman, A D; Wouters, R H M; Mugford, S T; Hogenhout, S A

    2015-02-01

    Plant-mediated RNA interference (RNAi) has been successfully used as a tool to study gene function in aphids. The persistence and transgenerational effects of plant-mediated RNAi in the green peach aphid (GPA) Myzus persicae were investigated, with a focus on three genes with different functions in the aphid. Rack1 is a key component of various cellular processes inside aphids, while candidate effector genes MpC002 and MpPIntO2 (Mp2) modulate aphid-plant interactions. The gene sequences and functions did not affect RNAi-mediated down-regulation and persistence levels in the aphids. Maximal reduction of gene expression was ~70% and this was achieved at between 4 d and 8 d of exposure of the aphids to double-stranded RNA (dsRNA)-producing transgenic Arabidopsis thaliana. Moreover, gene expression levels returned to wild-type levels within ~6 d after removal of the aphids from the transgenic plants, indicating that a continuous supply of dsRNA is required to maintain the RNAi effect. Target genes were also down-regulated in nymphs born from mothers exposed to dsRNA-producing transgenic plants, and the RNAi effect lasted twice as long (12-14 d) in these nymphs. Investigations of the impact of RNAi over three generations of aphids revealed that aphids reared on dsMpC002 transgenic plants experienced a 60% decline in aphid reproduction levels compared with a 40% decline of aphids reared on dsRack1 and dsMpPIntO2 plants. In a field setting, a reduction of the aphid reproduction by 40-60% would dramatically decrease aphid population growth, contributing to a substantial reduction in agricultural losses. © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  14. Orange oil effect in the control of fennel aphid

    OpenAIRE

    Ivanildo Cavalcanti de Albuquerque; Luciano de Medeiros Pereira Brito; Carlos Henrique de Brito; Edson Batista Lopes; Jacinto de Luna Batista

    2009-01-01

    In the properties where fennel is grown, in the states of Bahia, Sergipe, Pernambuco and Paraiba, at the Northeast of Brazil, a high rate of usage of pesticides in the crop, aiming to control the aphid Hyadaphis foeniculi. The purpose of this study was to evaluate the effect of orange oil Prev-Am (sodium tetraborohydrate decahydrate), in the control of H. foeniculi aphid of the fennel crop. The trial was conducted in a fennel field located in Lagoa Seca Experimental Station, belonging to the ...

  15. The Anisotropic Aphid: Three-Dimensional Induction Modeling of Electrical Texture with Mixed Potentials

    Science.gov (United States)

    Weiss, C. J.

    2014-12-01

    At the macroscopic scale, where the e-folding distance of low-frequency electromagnetic fields in conductive geomaterials is much larger than the size of organized heterogeneities such as fracture sets or laminations that constitute the geologic texture therein, electrical properties can be conveniently approximated by a generalized 3x3 tensor σ. Less convenient, however, are the algorithmic consequences of this approximation in electromagnetic modeling of 3D induction methods for geophysical exploration. Previous efforts at modelling generalized anisotropy with finite differences on a staggered Cartesian grid (e.g. Weiss and Newman, 2002; Wang and Fang, 2001) are posed in terms of the electric field with its governing "curl-curl" equation and well-documented null-space issues at low induction numbers. In contrast, Weiss (2013) proposed an alternate full-physics formulation in terms of Lorenz-gauged magentic vector A and electric scalar Φ potentials (Project APhiD) that eliminates the troublesome curl-curl operator, with ultrabroadband examples drawn from geologies with scalar, isotropic conductivity over the frequency range 10-2-1010 Hz. Here, the anisotropic theory presented in Weiss (2013) is implemented with finite differences on a Cartesian grid. Briefly stated, in this theoretical approach the conductivity tensor σ is split in terms of a rotationally-invariant isotropic conductivity σ* = ⅓ Tr(σ) and the residual σ - σ*I. This splitting decomposes the resulting finite difference coefficient matrix K into the sum Kiso + Kaniso, where the Kiso term is the coefficient matrix for the isotropic medium σ*, thus enabling reuse of the various routines previously developed for computing matrix coefficients in the isotropic case. Treatment of anisotropy is algorithmically therefore restricted to computing the coefficients in the sparse matrix Kaniso consisting of simple inner products of (σ - σ*I) · (A-∇Φ) and their divergence. In keeping with the

  16. An exponential growth model with decreasing r captures bottom-up effects on the population growth of Aphis glycines Matsumura (Hemiptera: Aphididae)

    NARCIS (Netherlands)

    Costamagna, A.C.; Werf, van der W.; Bianchi, F.J.J.A.; Landis, D.A.

    2007-01-01

    1 There is ample evidence that the life history and population dynamics of aphids are closely linked to plant phenology. Based on life table studies, it has been proposed that the growth of aphid populations could be modeled with an exponential growth model, with r decreasing linearly with time.

  17. Biological parameters and fertility life table of Aphis forbesi Weed, 1889 (Hemiptera: Aphididae on strawberry

    Directory of Open Access Journals (Sweden)

    E. S. Araujo

    Full Text Available Abstract This study provides the first contribution of the biology and life table of Aphis forbesi Weed, 1889 (Hemiptera: Aphididae, an important strawberry pest throughout the world. This species lives in the crown and leaf petioles of the plant. It is difficulty to rear this species in laboratory due to protocooperation with ants observed only in the field. We studied the life cycle of A. forbesi on the leaves of the Albion strawberry cultivar at 25 ± 2 °C, 60 ± 10% relative humidity, and a 12-h photophase. The experiment was randomised with 100 replicates. The parameters of the fertility life table were calculated using TabVida. In the population studied, 25% and 46% had four and three instars, respectively. A mean of 1.43 nymphs per female per day was generated. The mean reproductive period was seven days and the mean longevity was 10 days. In every 11 days there is a generation of A. forbesi, where each female has the potential to generate between 6 to 9 individuals daily, increasing its population by 1.2 times. The average life cycle was 16.8 days. High viability observed in all instars and the resulting values of R0, rm and λ suggest that A. forbesi has the capacity to increase their numbers in a short period of time, while generating high populations in strawberry crops, requiring differential management.

  18. A laboratory and field condition comparison of life table parameters of Aphis gossypii Glover (Hemiptera: Aphididae

    Directory of Open Access Journals (Sweden)

    Hosseini-Tabesh Behnaz

    2015-01-01

    Full Text Available Life table studies are essential tools for understanding population dynamics. The life table parameters of Aphis gossypii Glover (Hemiptera: Aphididae feeding on the host plant, Hibiscus syriacus L. were studied under laboratory (25±1°C and relative humidity of 65±5% and a photoperiod of 16L : 8D h and field conditions (23-43°C, and relative humidity of 27-95%. The data were analysed using the age-stage, two-sex life table theory. The life table studies were started with 50 and 40 nymphs in laboratory and field conditions, respectively. Under laboratory conditions, A. gossypii reared on H. syriacus had a higher survival rate, fecundity, and longevity than those reared under field conditions. When reared under field conditions, A. gossypii had a longer nymphal developmental time, shorter adult longevity, and lower fecundity than those reared under laboratory conditions. The intrinsic rate of increase (r, net reproductive rate (R0, and the finite rate of increase (λ under laboratory conditions, were higher than those obtained under field conditions. Nevertheless, there were no significant differences in the mean generation time T (days between field and laboratory conditions. In the present study, the results clearly showed that life table parameters of A. gossypii were significantly different under field and laboratory conditions. These results could help us to understand the A. gossypii population dynamics under field conditions. The results could also help us make better management decisions for economically important crops

  19. KELIMPAHAN DAN KEANEKARAGAMAN SPESIES SERANGGA PREDATOR DAN PARASITOID Aphis gossypii DI SUMATERA SELATAN

    Directory of Open Access Journals (Sweden)

    . Riyanto

    2011-11-01

    Full Text Available This study was aimed to analysis abundance and species diversity of predatory insects and parasitoid of Aphis gossypii from lowland and highland areas of South Sumatra.    Survey of was conducted in 11 vegetable centers of  South Sumatra.  The results showed that 20 species of predatory insects and 3 species of parasitoids were found from the survey. The predatory insects consisted of 15 species of coccinellid beetles, two species of syrphids, and  one species of chamaemyiid, mantid and staphylinid.  Parasitoid found were 2 species of Aphidiidae (Diaretiella rapae and Aphidius sp. and a species of Aphelinidae (Aphelinus sp..  The highest abundance of the predator was found in Soak (42.61 larvae and adults and the highest abundance of the parasitoid was found in Talang Buruk (25.99 adults.  The highest species diversity of the predator and the parasitoid were found in Soak (15 species and H’= 0.94 and in Talang Buruk (2 species and H’ = 0.27, respectively.  Abundance and species diversity of the predators and parasitoids were higher in the dry season than those in rainy season. Thus, the abundance and species diversity of the predators and parasiotids were higher in the lowland than highland areas in South Sumatra, while the seasons affected the abundance and species diversity of the predators and parasitoids.

  20. First report of Pandora neoaphidis resting spore formation in vivo in aphid hosts

    DEFF Research Database (Denmark)

    Clara Scorsetti, Ana; Jensen, Annette Bruun; Lopez Lastra, Claudia

    2012-01-01

    The entomopathogenic fungus Pandora neoaphidis is a recognized pathogen of aphids, causes natural epizootics in aphid populations, and interacts and competes with aphid predators and parasitoids. Survival of entomophthoralean fungi in periods of unsuitable weather conditions or lack of appropriat...

  1. The use of refuge in host plant resistance systems for the control of virulent biotype adaptation in the soybean aphid (Hemiptera: Aphididae.

    Science.gov (United States)

    Wenger, Jacob; Ramstad, Monica; Mian, M A Rouf; Michel, Andy

    2014-08-01

    Host plant resistant (HPR) crop varieties offer control of many insect pest species. However, the evolution of virulent biotypes capable of overcoming plant resistance poses challenges for the implementation of HPR. Widespread planting of HPR crops further reduces HPR efficacy by increasing selection pressure on pests, favoring the rapid proliferation of virulence. An analogous situation occurs in managing insect resistance to transgenic Bt crops, where planting of susceptible refuges effectively delays the evolution and spread of Bt resistance. We investigated the applicability of susceptible refuges in HPR as a tactic to manage virulent biotypes, using the soybean aphid (Aphis glycines Matsumura) as a model system. The virulent biotype 3 and avirulent biotype 1 were reared in greenhouse microcosms using a variety of refuge size, HPR gene, and biotype mixture treatments, allowing us to discern how the presence of a refuge alters the relative fitness and movement of biotypes both by themselves and in competition. The virulent biotype had greater relative fitness in 10 of 12 tested microcosms, with the greatest advantage observed in refuge-free microcosms. In microcosms with a refuge, avirulent fitness increased significantly as these biotypes moved to and used refuge plants. When the two biotypes were reared in the same microcosm, biotype 3's fitness increased significantly relative to when reared in isolation, while biotype 1's fitness was slightly, but not significantly, increased. Our findings suggested that while susceptible refuges would be incapable of reversing the proliferation of virulent biotypes, they could slow the spread of virulence by maintaining avirulence.

  2. Dropping Behavior in the Pea Aphid (Hemiptera: Aphididae): How Does Environmental Context Affect Antipredator Responses?

    Science.gov (United States)

    Harrison, Katharine V; Preisser, Evan L

    2016-01-01

    The pea aphid Acyrthosiphon pisum : Harris (Hemiptera: Aphididae) is a phloem-feeding insect whose antipredator defenses include kicking, walking away, and dropping from the plant. Aphid dropping, a risky and energetically costly antipredator behavior, can be increased by the release of aphid alarm pheromone; there is also evidence that insect density and plant health can affect the likelihood of aphids engaging in this behavior. We investigated whether interactions between alarm cues, insect density, and plant health can alter the dropping behavior of aphids in response to an artificial disturbance. The presence of the alarm pheromone E-β-farnesene resulted in a nearly 15-fold increase in aphid dropping behavior; the other two factors, however, did not affect dropping and none of the two- or three-way interactions were significant. This was surprising because aphids affected plant health: production of new plant biomass after 5 d of exposure to high aphid densities was 50% lower than in the control treatment. This research adds to our understanding of the factors affecting aphid antipredator behavior; the fact that neither aphid density nor feeding period impacted dropping may reflect the high energetic costs of this activity and an unwillingness to use it in any but the riskiest situations. © The Authors 2016. Published by Oxford University Press on behalf of Entomological Society of America.

  3. Parasitoid- and hyperparasitoid-mediated seasonal dynamics of the cabbage aphid (Hemiptera: Aphididae).

    Science.gov (United States)

    Nematollahi, Mohammad Reza; Fathipour, Yaghoub; Talebi, Ali Asghar; Karimzadeh, Javad; Zalucki, Myron Philip

    2014-12-01

    The population dynamics of the cabbage aphid, Brevicoryne brassicae (L.), its parasitoid, Diaeretiella rapae McIntosh, and hyperparasitoids, Pachyneuron spp., were quantified under field conditions during 2011-2013, by examining synchronization, parasitoid: aphid ratio, possible effect of density on the finite rate of increase, and spatial coincidence. The rates of parasitism and hyperparasitism were based on rearing field-collected mummies and live parasitized aphids, and density of the aphid were estimated using heat extraction and subsampling techniques. Only one parasitoid, D. rapae (80% on average), and two hyperparasitoid species from the genus of Pachyneuron (6.5% on average), namely Pachyneuron aphidis (Bouché) and Pachyneuron groenlandicum (Holmgren), were reared from the aphid mummies. Significant Pearson's time lagged correlations for percentage parasitism versus aphid density and for percentage hyperparasitism versus mummy density indicated that 2-3 wk is needed for D. rapae and Pachyneuron spp. to show impact on their respective host's population. In early spring, the parasitoid: aphid ratio was low (0.11 on average) while aphid density was increasing. Based on Taylor's power law, D. rapae and Pachyneuron spp., as well as B. brassicae, had an aggregated distribution among canola plants. Moreover, a high degree of spatial overlap was found between D. rapae and B. brassicae and between Pachyneuron spp. and D. rapae. In general, the parasitoid had good spatial coincidence with its aphid host but because of a lack of parasitoid-host synchronization and low parasitoid: aphid ratio, impact on the host population was low.

  4. High susceptibility of Bt maize to aphids enhances the performance of parasitoids of lepidopteran pests.

    Directory of Open Access Journals (Sweden)

    Cristina A Faria

    Full Text Available Concerns about possible undesired environmental effects of transgenic crops have prompted numerous evaluations of such crops. So-called Bt crops receive particular attention because they carry bacteria-derived genes coding for insecticidal proteins that might negatively affect non-target arthropods. Here we show a remarkable positive effect of Bt maize on the performance of the corn leaf aphid Rhopalosiphum maidis, which in turn enhanced the performance of parasitic wasps that feed on aphid honeydew. Within five out of six pairs that were evaluated, transgenic maize lines were significantly more susceptible to aphids than their near-isogenic equivalents, with the remaining pair being equally susceptible. The aphids feed from the phloem sieve element content and analyses of this sap in selected maize lines revealed marginally, but significantly higher amino acid levels in Bt maize, which might partially explain the observed increased aphid performance. Larger colony densities of aphids on Bt plants resulted in an increased production of honeydew that can be used as food by beneficial insects. Indeed, Cotesia marginiventris, a parasitoid of lepidopteran pests, lived longer and parasitized more pest caterpillars in the presence of aphid-infested Bt maize than in the presence of aphid-infested isogenic maize. Hence, depending on aphid pest thresholds, the observed increased susceptibility of Bt maize to aphids may be either a welcome or an undesirable side effect.

  5. The effect of predators and hymenopterous parasites on population fluctuations of alfalfa aphids.

    Science.gov (United States)

    Rassoulian, Gh Reza

    2005-01-01

    Among alfalfa pests in Iran three aphid species, green alfalfa aphid Acyrthosiphon pisum Harris spotted alfalfa aphid Therioaphis trifolii forma maculata Buckton and blue alfalfa aphid, Acyrthosiphon kondoi Shinji are important pests. The green alfalfa aphid can be observed all along the growing season particularly from late May to mid June at Karaj climate conditions. During this period, the mean monthly maximum temperature and relative humidity were about 28 degrees C and 60-65% respectively. This aphid overwinters as nymph and viviparous female. Sexual forms and eggs could not be seen under field conditions. Spotted alfalfa aphid, Therioaphis trifolii fonna maculata is the most prevalent aphid in summer time, when the mean monthly maximum temperature and relative humidity are about 33-34 degrees C and 44-58% respectively. Sexual individuals have been observed in the laboratory but not in the field. Among predators (Coccinella septempunctata, Adonia variegata, Syrphus cinctus, S. corolae, S. grassulariae, Chrysoperla carnea and Nabis capsiformis) one coccinellid species, C. septempunctata, had greatest impact on fluctuations of population. Among hymenopterous parasitoids two species have been collected from alfalfa field they were Aphidius ervi and Praon palitans. These parasitoids destroyed a good percent of aphids and statistically proved to lower aphid populations significantly.

  6. Host Plants Indirectly Influence Plant Virus Transmission by Altering Gut Cysteine Protease Activity of Aphid Vectors.

    Science.gov (United States)

    Pinheiro, Patricia V; Ghanim, Murad; Alexander, Mariko; Rebelo, Ana Rita; Santos, Rogerio S; Orsburn, Benjamin C; Gray, Stewart; Cilia, Michelle

    2017-04-01

    The green peach aphid, Myzus persicae , is a vector of the Potato leafroll virus (PLRV, Luteoviridae), transmitted exclusively by aphids in a circulative manner. PLRV transmission efficiency was significantly reduced when a clonal lineage of M. persicae was reared on turnip as compared with the weed physalis, and this was a transient effect caused by a host-switch response. A trend of higher PLRV titer in physalis-reared aphids as compared with turnip-reared aphids was observed at 24 h and 72 h after virus acquisition. The major difference in the proteomes of these aphids was the up-regulation of predicted lysosomal enzymes, in particular the cysteine protease cathepsin B (cathB), in aphids reared on turnip. The aphid midgut is the site of PLRV acquisition, and cathB and PLRV localization were starkly different in midguts of the aphids reared on the two host plants. In viruliferous aphids that were reared on turnip, there was near complete colocalization of cathB and PLRV at the cell membranes, which was not observed in physalis-reared aphids. Chemical inhibition of cathB restored the ability of aphids reared on turnip to transmit PLRV in a dose-dependent manner, showing that the increased activity of cathB and other cysteine proteases at the cell membrane indirectly decreased virus transmission by aphids. Understanding how the host plant influences virus transmission by aphids is critical for growers to manage the spread of virus among field crops. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  7. Ecological specialization in Diaeretiella rapae (Hymenoptera: Braconidae: Aphidiinae) on aphid species from wild and cultivated plants.

    Science.gov (United States)

    Navasse, Y; Derocles, S A P; Plantegenest, M; Le Ralec, A

    2018-04-01

    Diaeretiella rapae is an aphid parasitoid with potential for use in biological control strategies. However, several recent genetic studies have challenged the long held view that it is a generalist parasitoid. We investigated its ecological specialization and ability to use resources in cultivated and uncultivated areas. Ecological specialization would reduce its ability to exploit the diversity of aphid species, particularly in uncultivated areas, and to control pest aphids. Four D. rapae strains were studied, three reared on pest aphids on Brassicaceae and one strain on a non-pest aphid on Chenopodiaceae. For each strain, we performed host-switching experiments, with a total of six aphid species, five of which D. rapae parasitizes in France. We tested cross-breeding ability between strains to detect potential reproductive isolation linked to aphid host species in D. rapae. The strain reared on non-pest aphids was able to develop on aphid species from both cultivated and uncultivated plants. The strains reared on pest aphids, however, exclusively parasitized aphid species on cultivated Brassicaceae. In addition, reproductive isolation was detected between strains from uncultivated and cultivated plants. Thus, the D. rapae populations examined here appear to be showing ecological specialization or they may even be composed of a complex of cryptic species related to the aphid hosts. The role of Chenopodium album as a reservoir for D. rapae, by providing a habitat for non-pest aphids on which it can feed, appears to be severely limited, and thus its efficiency to maintain local populations of D. rapae in the vicinity of crops is questionable.

  8. Contribution of Noncolonizing Aphids to Potato Virus Y Prevalence in Potato in Idaho.

    Science.gov (United States)

    Mondal, Shaonpius; Wenninger, Erik J; Hutchinson, Pamela J S; Weibe, Monica A; Eigenbrode, Sanford D; Bosque-Pérez, Nilsa A

    2016-12-01

    Potato virus Y (PVY) is a major concern for potato production in the United States given its impact on both crop quality and yield. Although green peach aphid, Myzus persicae (Sulzer), is the most efficient PVY vector, it may be less abundant in potato-growing areas of Idaho relative to non-potato-colonizing aphid vectors of PVY that may disperse from nearby cereal fields and other crops. A field study was conducted during 2012-2013 to examine if noncolonizing aphids disperse to nearby potato fields as cereal crops dry down before harvest. The aphid fauna was sampled weekly in four different potato fields in south-central and southeastern Idaho using yellow sticky traps and yellow pan traps. Potato fields were chosen with an adjacent cereal field such that the prevailing westerly wind would facilitate aphid dispersal from cereal fields to potato. Non-potato-colonizing aphids sampled included 10 cereal aphid species, the most abundant of which were Rhopalosiphum padi L. and Metopolophium dirhodum (Walker). More than 35 species from noncereal hosts also were found. Overall, green peach aphid abundance was relatively low, ranging from 0.5-2.5% of the total aphid capture between years and among fields. In both years and all locations, cereal aphid abundance peaked in mid- to late July (cereal ripening stage) and decreased thereafter as cereal crops dried. PVY prevalence in the potato fields increased following these increases in aphid abundance. This study suggests that cereal aphids and other noncolonizing aphids are important contributors to PVY prevalence in potato in southern Idaho. © The Authors 2016. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  9. Shallot aphids, Myzus ascalonicus, in strawberry

    DEFF Research Database (Denmark)

    Enkegaard, Annie; Sigsgaard, Lene; Kristensen, Kristian

    2013-01-01

    to either inoculative or inundative biocontrol of shallot aphids in strawberry. The three predators studied were the green lacewing, Chrysoperla carnea Steph. (Neuroptera: Chrysopi-dae), the two-spotted lady beetle, Adalia bipunctata L. (Coleoptera: Coccinellidae), and the gall midge Aphidoletes aphidimyza...

  10. Recent characterization of cowpea aphid-borne mosaic virus ...

    African Journals Online (AJOL)

    Woodiness disease is the most important disorder of passion fruit worldwide. The causal agent in Brazil is the Cowpea aphid-borne mosaic virus (CABMV), and despite the economic relevance of passion fruit for agriculture there have been recently very few studies about this virus in Brazil and worldwide. This work reveals ...

  11. Control of whiteflies and aphids in tomato ( Solanum lycopersicum L ...

    African Journals Online (AJOL)

    Whitefly (Bemisia tabaci, Homoptera: Aleyrodidae) and aphid (Homoptera) on tomato (Solanum lycopersicum L.) are economically important insect pests that are difficult to manage due to their resistance to a wide range of chemical pesticides. Field experiments were conducted to assess the effects of fermented plant ...

  12. Is the response of aphids to alarm pheromone stable?

    Czech Academy of Sciences Publication Activity Database

    Thieme, T.; Dixon, Anthony F. G.

    2015-01-01

    Roč. 139, č. 10 (2015), s. 741-746 ISSN 0931-2048 R&D Projects: GA MŠk(CZ) LO1415 Institutional support: RVO:67179843 Keywords : (E)-β-farnesene * dropping response * habituation * Leguminosae * pea aphid Subject RIV: EH - Ecology, Behaviour Impact factor: 1.517, year: 2015

  13. Predator efficiency reconsidered for a ladybird-aphid system

    Czech Academy of Sciences Publication Activity Database

    Kindlmann, Pavel; Yasuda, H.; Kajita, Y.; Sato, S.; Dixon, Anthony F. G.

    2015-01-01

    Roč. 3, mar (2015), s. 27 ISSN 2296-701X R&D Projects: GA MŠk(CZ) LO1415; GA ČR GB14-36098G Institutional support: RVO:67179843 Keywords : biological control * generation time ratio * population dynamics * predator-prey systems * ladybirds * aphids Subject RIV: EH - Ecology, Behaviour

  14. Sugarcane aphid spatial distribution in grain sorghum fields

    Science.gov (United States)

    Sorghum is an important summer grain crop in the United States. In 2014, the U.S. produced 432 million bushels of sorghum valued at $1.67 billion on more than 6 million acres. The sugarcane aphid, Melanaphis sacchari (Zehntner), was discovered in damaging numbers in grain sorghum, Sorghum bicolor ...

  15. Enhancement of resistance to aphids by introducing the snowdrop ...

    Indian Academy of Sciences (India)

    The toxicity of GNA-expressing plants to aphids has also been studied. The independently derived plants were subjected to molecular analyses. Polymerase chain reaction (PCR) and Southern blot analyses confirmed that the gna gene was integrated into maize genome and inherited to the following generations.

  16. Aspects of the Biology of the Carrot Aphid Chomaphis (dysaphis ...

    African Journals Online (AJOL)

    1958), and often covered with soil. Although C.foeniculus has hitherto not been reported from Uganda, recent observations at. Makerere University Agricultural Research In- stitute, Kabanyolo (MUARIK), suggest that sig- nificant infestation of carrots by the aphid oc- curs in the country. Given this pest potential (a.

  17. Diversity of cereal aphid parasitoids in simple and complex landscapes

    NARCIS (Netherlands)

    Vollhardt, I.M.G.; Tscharntke, T.; Wackers, F.L.; Bianchi, F.J.J.A.; Thies, C.

    2008-01-01

    Structurally complex landscapes may enhance local species richness and interactions, which is possibly due to a higher species pool in complex landscapes. This hypothesis was tested using cereal aphid parasitoids (Hymenoptera, Aphidiidae) by comparing 12 winter wheat fields in structurally complex

  18. Short Communication: Occurrence of the pea aphid, Acyrthosiphon ...

    African Journals Online (AJOL)

    The occurrence of pea aphid, Acyrthosiphon pisum (Harris) (Homoptera: Aphididae), on wild annual and perennial leguminous plants was studied at two locations (Adet and Wondata) in West Gojam, Ethiopia in 1999/2000 seasons. Annual and perennial leguminous wild or volunteer plants encountered in the study areas ...

  19. occurrence of the pea aphid, acyrthosiphon pisum (harris)

    African Journals Online (AJOL)

    Preferred Customer

    alfalfa (Medicago sativa), clover (Trifolium sp.) and other leguminous crops ... holocyclic life cycle (i.e., it reproduces parthenogenetically ... Table 1. Plant species infested by pea aphid at Adet and. Wondata, Ethiopia, in 1999/2000. Host plant species. Total. Number of plants. Vetch Clover Lupine. Alfalfa. Infested plants.

  20. Trichoderma harzianum enhances tomato indirect defense against aphids.

    Science.gov (United States)

    Coppola, Mariangela; Cascone, Pasquale; Chiusano, Maria Luisa; Colantuono, Chiara; Lorito, Matteo; Pennacchio, Francesco; Rao, Rosa; Woo, Sheridan Lois; Guerrieri, Emilio; Digilio, Maria Cristina

    2017-12-01

    Many fungal root symbionts of the genus Trichoderma are well-known for their beneficial effects on agronomic performance and protection against plant pathogens; moreover, they may enhance protection from insect pests, by triggering plant resistance mechanisms. Defense barriers against insects are induced by the activation of metabolic pathways involved in the production of defense-related plant compounds, either directly active against herbivore insects, or exerting an indirect effect, by increasing the attraction of herbivore natural enemies. In a model system composed of the tomato plant, the aphid Macrosiphum euphorbiae and the parasitoid Aphidius ervi, plant metabolic changes induced by Trichoderma harzianum and their effects on higher trophic levels have been assessed. T. harzianum T22 treatments induce a primed state that upon aphid attacks leads to an increased attraction of aphid parasitoids, mediated by the enhanced production of volatile organic compounds (VOCs) that are known to induce Aphidius ervi flight. Transcriptome sequencing of T22-treated plants infested by aphids showed a remarkable upregulation of genes involved in terpenoids biosynthesis and salicylic acid pathway, which are consistent with the observed flight response of A. ervi and the VOC bouquet profile underlying this behavioral response. © 2017 Institute of Zoology, Chinese Academy of Sciences.

  1. Bird cherry-oat aphid: do we have resistance?

    Science.gov (United States)

    Bird cherry-oat aphid (BCOA), Rhopalosiphum padi (L.), is a highly efficient, non-propagative, persistent vector of the phloem limited leutovirus BYD-PAV. BYD is the most important viral disease of cereal grains in the world and PAV is the most prevalent strain of BYD in North America. Not all BCO...

  2. Local predators attack exotic aphid Brachycaudus divaricatae in Lithuania

    Czech Academy of Sciences Publication Activity Database

    Danilov, J.; Rakauskas, R.; Havelka, Jan; Starý, Petr

    2016-01-01

    Roč. 69, č. 2 (2016), s. 263-269 ISSN 1721-8861 Institutional support: RVO:60077344 Keywords : Prunus * Aphids * Brachycaudus divaricatae Subject RIV: EH - Ecology, Behaviour Impact factor: 1.051, year: 2016 http://www.bulletinofinsectology.org/pdfarticles/vol69-2016-263-269danilov.pdf

  3. Suitability of an artificial diet for rape aphid, Brevicoryne brassicae ...

    African Journals Online (AJOL)

    STORAGESEVER

    2009-09-15

    Sep 15, 2009 ... discs (a) and artificial diet (b). structure of our testing material and show just the effect of that. The results in this investigation showed that this artificial diet can support all life stages of B. brassicae and this aphid can be established on that. The compare- son of results with life table parameters that Francisco.

  4. Transgenic plants expressing the coat protein gene of cowpea aphid ...

    African Journals Online (AJOL)

    Cowpea aphid-borne mosaic virus (CABMV) is a potyvirus that infects cowpea causing significant yield reduction. However, there is no durable natural resistance to the virus within the crop and genetic engineering for virus resistance was not possible because of a lack of an efficient, reliable and reproducible cowpea ...

  5. Molecular characterization of aphid resistance in black raspberry germplasm

    Science.gov (United States)

    Black raspberry is a minor but lucrative crop with most of the acreage in the U.S. found in Oregon. Rapid decline of plantings results from virus infection vectored by the North American large raspberry aphid and is the most limiting factor for growing black raspberry. Existing cultivars are suscept...

  6. Plant-generated artificial small RNAs mediated aphid resistance.

    Directory of Open Access Journals (Sweden)

    Hongyan Guo

    Full Text Available BACKGROUND: RNA silencing is an important mechanism for regulation of endogenous gene expression and defense against genomic intruders in plants. This natural defense system was adopted to generate virus-resistant plants even before the mechanism of RNA silencing was unveiled. With the clarification of that mechanism, transgenic antiviral plants were developed that expressed artificial virus-specific hairpin RNAs (hpRNAs or microRNAs (amiRNAs in host plants. Previous works also showed that plant-mediated RNA silencing technology could be a practical method for constructing insect-resistant plants by expressing hpRNAs targeting essential genes of insects. METHODOLOGY/PRINCIPAL FINDINGS: In this study, we chose aphid Myzus persicae of order Hemiptera as a target insect. To screen for aphid genes vulnerable to attack by plant-mediated RNA silencing to establish plant aphid resistance, we selected nine genes of M. persicae as silencing targets, and constructed their hpRNA-expressing vectors. For the acetylcholinesterase 2 coding gene (MpAChE2, two amiRNA-expressing vectors were also constructed. The vectors were transformed into tobacco plants (Nicotiana tabacum cv. Xanti. Insect challenge assays showed that most of the transgenic plants gained aphid resistance, among which those expressing hpRNAs targeting V-type proton ATPase subunit E-like (V-ATPaseE or tubulin folding cofactor D (TBCD genes displayed stronger aphicidal activity. The transgenic plants expressing amiRNAs targeting two different sites in the MpAChE2 gene exhibited better aphid resistance than the plants expressing MpAChE2-specific hpRNA. CONCLUSIONS/SIGNIFICANCE: Our results indicated that plant-mediated insect-RNA silencing might be an effective way to develop plants resistant to insects with piercing-sucking mouthparts, and both the selection of vulnerable target genes and the biogenetic type of the small RNAs were crucial for the effectiveness of aphid control. The expression of

  7. Gene Expression Analysis of Parthenogenetic Embryonic Development of the Pea Aphid, Acyrthosiphon pisum, Suggests That Aphid Parthenogenesis Evolved from Meiotic Oogenesis

    Science.gov (United States)

    Srinivasan, Dayalan G.; Abdelhady, Ahmed; Stern, David L.

    2014-01-01

    Aphids exhibit a form of phenotypic plasticity, called polyphenism, in which genetically identical females reproduce sexually during one part of the life cycle and asexually (via parthenogenesis) during the remainder of the life cycle. The molecular basis for aphid parthenogenesis is unknown. Cytological observations of aphid parthenogenesis suggest that asexual oogenesis evolved either through a modification of meiosis or from a mitotic process. As a test of these alternatives, we assessed the expression levels and expression patterns of canonical meiotic recombination and germline genes in the sexual and asexual ovaries of the pea aphid, Acyrthosiphon pisum. We observed expression of all meiosis genes in similar patterns in asexual and sexual ovaries, with the exception that some genes encoding Argonaute-family members were not expressed in sexual ovaries. In addition, we observed that asexual aphid tissues accumulated unspliced transcripts of Spo11, whereas sexual aphid tissues accumulated primarily spliced transcripts. In situ hybridization revealed Spo11 transcript in sexual germ cells and undetectable levels of Spo11 transcript in asexual germ cells. We also found that an obligately asexual strain of pea aphid produced little spliced Spo11 transcript. Together, these results suggest that parthenogenetic oogenesis evolved from a meiosis-like, and not a mitosis-like, process and that the aphid reproductive polyphenism may involve a modification of Spo11 gene activity. PMID:25501006

  8. Gene expression analysis of parthenogenetic embryonic development of the pea aphid, Acyrthosiphon pisum, suggests that aphid parthenogenesis evolved from meiotic oogenesis.

    Science.gov (United States)

    Srinivasan, Dayalan G; Abdelhady, Ahmed; Stern, David L

    2014-01-01

    Aphids exhibit a form of phenotypic plasticity, called polyphenism, in which genetically identical females reproduce sexually during one part of the life cycle and asexually (via parthenogenesis) during the remainder of the life cycle. The molecular basis for aphid parthenogenesis is unknown. Cytological observations of aphid parthenogenesis suggest that asexual oogenesis evolved either through a modification of meiosis or from a mitotic process. As a test of these alternatives, we assessed the expression levels and expression patterns of canonical meiotic recombination and germline genes in the sexual and asexual ovaries of the pea aphid, Acyrthosiphon pisum. We observed expression of all meiosis genes in similar patterns in asexual and sexual ovaries, with the exception that some genes encoding Argonaute-family members were not expressed in sexual ovaries. In addition, we observed that asexual aphid tissues accumulated unspliced transcripts of Spo11, whereas sexual aphid tissues accumulated primarily spliced transcripts. In situ hybridization revealed Spo11 transcript in sexual germ cells and undetectable levels of Spo11 transcript in asexual germ cells. We also found that an obligately asexual strain of pea aphid produced little spliced Spo11 transcript. Together, these results suggest that parthenogenetic oogenesis evolved from a meiosis-like, and not a mitosis-like, process and that the aphid reproductive polyphenism may involve a modification of Spo11 gene activity.

  9. Transcriptomic responses of the aphid Myzus persicae nicotianae Blackman (Hemiptera: Aphididae to insecticides: Analyses in the single Chilean clone of the tobacco aphid

    Directory of Open Access Journals (Sweden)

    Marco Cabrera-Brandt

    2014-04-01

    Full Text Available The tobacco aphid Myzus persicae nicotianae Blackman is a subspecies of the highly polyphagous and agricultural pest Myzus persicae (Sulzer. For its control, insecticide applications are widely used, but resistance to numerous molecules has been reported, displaying at least three insecticide resistance mechanisms, including: (i elevated carboxylesterases (E-Carb, (ii modification of the acetylcholinesterase (MACE, and (iii kdr and super-kdr insensitivity mutations. In Chile, populations of the tobacco aphid are characterized by the presence of a single predominant clone, which is also present in high proportions in other countries of the Americas. This aphid clone exhibits low levels of carboxylesterase activity and is kdr susceptible, but the MACE mechanism of insecticide resistance has not been studied. In order to characterize the tobacco aphid in terms of the MACE mechanism and to identify a preliminary group of aphid genes putatively involved in insecticide resistance, a cDNA microarray was used to study the transcriptomic responses when aphids are sprayed with a carbamate insecticide. The single Chilean clone of the tobacco aphid was characterized as MACE susceptible, but we found 38 transcripts significantly regulated by insecticide exposure (13 up- and 25 down-regulated genes. The expression of six of them was validated by qRT-PCR experiments at several time points (6, 12, 18, 24, 30, 36, and 42 h after insecticide application. This mutational and transcriptomic characterization of the tobacco aphid responding to insecticide spray opens new hypotheses in the understanding of the molecular mechanisms underlying insecticide resistance.

  10. High throughput phenotyping for aphid resistance in large plant collections

    Directory of Open Access Journals (Sweden)

    Chen Xi

    2012-08-01

    Full Text Available Abstract Background Phloem-feeding insects are among the most devastating pests worldwide. They not only cause damage by feeding from the phloem, thereby depleting the plant from photo-assimilates, but also by vectoring viruses. Until now, the main way to prevent such problems is the frequent use of insecticides. Applying resistant varieties would be a more environmental friendly and sustainable solution. For this, resistant sources need to be identified first. Up to now there were no methods suitable for high throughput phenotyping of plant germplasm to identify sources of resistance towards phloem-feeding insects. Results In this paper we present a high throughput screening system to identify plants with an increased resistance against aphids. Its versatility is demonstrated using an Arabidopsis thaliana activation tag mutant line collection. This system consists of the green peach aphid Myzus persicae (Sulzer and the circulative virus Turnip yellows virus (TuYV. In an initial screening, with one plant representing one mutant line, 13 virus-free mutant lines were identified by ELISA. Using seeds produced from these lines, the putative candidates were re-evaluated and characterized, resulting in nine lines with increased resistance towards the aphid. Conclusions This M. persicae-TuYV screening system is an efficient, reliable and quick procedure to identify among thousands of mutated lines those resistant to aphids. In our study, nine mutant lines with increased resistance against the aphid were selected among 5160 mutant lines in just 5 months by one person. The system can be extended to other phloem-feeding insects and circulative viruses to identify insect resistant sources from several collections, including for example genebanks and artificially prepared mutant collections.

  11. A survey of aphid parasitoids (Hymenoptera: Braconidae: Aphidiinae) of Southeastern Europe and their aphid-plant associations

    Czech Academy of Sciences Publication Activity Database

    Kavallieratos, N. G.; Tomanovic, K.; Starý, Petr; Athanassiou, CH. G.; Sarlis, G. P.; Petrovic, O.; Niketic, M.; Veroniki, M. A.

    2004-01-01

    Roč. 39, č. 3 (2004), s. 527-563 ISSN 0003-6862 R&D Projects: GA AV ČR IAA6007106; GA AV ČR IBS5007102 Institutional research plan: CEZ:AV0Z5007907 Keywords : Aphidiinae * parasitoid -aphid-plant associations * faunistic complexes Subject RIV: EG - Zoology Impact factor: 0.448, year: 2004

  12. Ocorrência e flutuação populacional de tripes, pulgões e inimigos naturais em crisântemo de corte em casa de vegetação Occurrence and population fluctuation of thrips, aphids and natural enemies in cut chrysanthemum in greenhouse

    Directory of Open Access Journals (Sweden)

    Lívia Mendes Carvalho

    2006-01-01

    Full Text Available Os pulgões e os tripes são importantes pragas em cultivo de crisântemo em casas de vegetação. O objetivo deste trabalho foi avaliar a ocorrência e flutuação populacional de tripes, pulgões e inimigos naturais em cultivares de crisântemo de corte ('White Reagan', 'Yellow Snowdon' e 'Sunny Reagan' em casa de vegetação comercial. A amostragem de tripes foi realizada através de batidas nas plantas ("tapping method" e a de pulgões a partir de coletas diretas nas plantas. Das espécies de tripes amostradas, mais de 90% foram identificadas como Frankliniella occidentalis (Pergande, e o restante incluíram F. gemina (Bagnall, Frankliniella sp., Caliothrips phaseoli (Hood e Haplothrips gowdeyi (Franklin. Foi observado maior número de tripes/planta no cultivar White Reagan se comparado com 'Yellow Snowdon'. Aphis gossypii Glover foi a espécie de pulgão mais comum (> 80%, sendo também coletados Myzus persicae (Sulzer e Dysaphis sp. Maior número de pulgões foi verificado na cultivar White Reagan, quando comparada com 'Sunny Reagan'. Orius insidiosus (Say foi o único predador encontrado associado aos tripes, sendo verificada uma correlação positiva significativa entre a população de tripes e a desse predador. Dentre os inimigos naturais relacionados aos pulgões, foram observados parasitóides (Aphidius colemani Viereck e Lysiphlebus testaceipes Cresson e predadores (Chrysoperla sp., Cycloneda sanguinea Linnaeus e Scymnus sp.. Houve uma correlação positiva significativa entre o crescimento populacional de pulgões e desses predadores e parasitóides nas cultivares White Reagan e Sunny Reagan. Inimigos naturais podem ocorrer naturalmente em casas de vegetação e influenciar as populações de pragas.Aphids and thrips play an important role on chrysanthemum crops in greenhouses. The objective of this work was to evaluate the occurrence and population densities of thrips, aphids and natural enemies in cut chrysanthemum cultivars

  13. Arabidopsis thaliana - Myzus persicae interaction: shaping the understanding of plant defense against phloem-feeding aphids

    Directory of Open Access Journals (Sweden)

    Joe eLouis

    2013-07-01

    Full Text Available The phloem provides a unique niche for several organisms. Aphids are a large group of Hemipteran insects that utilize stylets present in their mouthparts to pierce sieve elements and drink large volumes of phloem sap. In addition, many aphids also vector viral diseases. Myzus persicae, commonly known as the green peach aphid (GPA, is an important pest of a large variety of plants that includes Arabidopsis thaliana. This review summarizes recent studies that have exploited the compatible interaction between Arabidopsis and GPA to understand the molecular and physiological mechanisms utilized by plants to control aphid infestation, as well as genes and mechanisms that contribute to susceptibility. In addition, recent efforts to identify aphid-delivered elicitors of plant defenses and novel aphid salivary components that facilitate infestation are also discussed.

  14. Role of the aphid species and their feeding locations in parasitization behavior of Aphelinus abdominalis, a parasitoid of the lettuce aphid Nasonovia ribisnigri

    Science.gov (United States)

    Shrestha, Govinda; Skovgård, Henrik; Reddy, Gadi V. P.; Steenberg, Tove; Enkegaard, Annie

    2017-01-01

    Aphid species feeding on lettuce occupy distinct feeding sites: the lettuce aphid Nasonovia ribisnigri prefers to feed on heart leaves, whereas the potato aphid Macrosiphum euphorbiae feeds only on outer leaves. The aphid parasitoid Aphelinus abdominalis, known to be able to regulate M. euphorbiae on many crops, has recently been indicated as a promising biocontrol candidate also for use against N. ribisnigri, a major pest of lettuce. This study therefore examined A. abdominalis parasitization preference between N. ribisnigri and M. euphorbiae and its ability to parasitize aphids feeding on different parts of lettuce plants. In addition, life history traits of A. abdominalis on these aphid species were investigated. In no-choice laboratory experiments on leaf discs and 24 h exposure, A. abdominalis successfully parasitized 54% and 60% of the offered N. ribisnigri and M. euphorbiae, respectively, with no significant difference. In the corresponding choice experiment, however, A. abdominalis had a tendency for a significantly higher preference for M. euphorbiae (38%) compared to N. ribisnigri (30%). Growth chamber experiments on whole plants demonstrated that A. abdominalis was able to parasitize aphids, regardless of their feeding locations on lettuce plants. However, aphid feeding behavior had a significant effect on the parasitization rate. A. abdominalis parasitized significantly higher percentages of M. euphorbiae or N. ribisnigri when aphids were exposed separately to parasitoids on whole lettuce plants as compared with N. ribisnigri exposed only on heart leaf. A significant preference of A. abdominalis for M. euphorbiae compared to N. ribisnigri was also observed in the growth chamber choice experiment. A high percentage of adult emergence (> 84%) and female-biased sex ratio (> 83%) were found irrespective of the aphid species. PMID:28854232

  15. Role of the aphid species and their feeding locations in parasitization behavior of Aphelinus abdominalis, a parasitoid of the lettuce aphid Nasonovia ribisnigri.

    Science.gov (United States)

    Shrestha, Govinda; Skovgård, Henrik; Reddy, Gadi V P; Steenberg, Tove; Enkegaard, Annie

    2017-01-01

    Aphid species feeding on lettuce occupy distinct feeding sites: the lettuce aphid Nasonovia ribisnigri prefers to feed on heart leaves, whereas the potato aphid Macrosiphum euphorbiae feeds only on outer leaves. The aphid parasitoid Aphelinus abdominalis, known to be able to regulate M. euphorbiae on many crops, has recently been indicated as a promising biocontrol candidate also for use against N. ribisnigri, a major pest of lettuce. This study therefore examined A. abdominalis parasitization preference between N. ribisnigri and M. euphorbiae and its ability to parasitize aphids feeding on different parts of lettuce plants. In addition, life history traits of A. abdominalis on these aphid species were investigated. In no-choice laboratory experiments on leaf discs and 24 h exposure, A. abdominalis successfully parasitized 54% and 60% of the offered N. ribisnigri and M. euphorbiae, respectively, with no significant difference. In the corresponding choice experiment, however, A. abdominalis had a tendency for a significantly higher preference for M. euphorbiae (38%) compared to N. ribisnigri (30%). Growth chamber experiments on whole plants demonstrated that A. abdominalis was able to parasitize aphids, regardless of their feeding locations on lettuce plants. However, aphid feeding behavior had a significant effect on the parasitization rate. A. abdominalis parasitized significantly higher percentages of M. euphorbiae or N. ribisnigri when aphids were exposed separately to parasitoids on whole lettuce plants as compared with N. ribisnigri exposed only on heart leaf. A significant preference of A. abdominalis for M. euphorbiae compared to N. ribisnigri was also observed in the growth chamber choice experiment. A high percentage of adult emergence (> 84%) and female-biased sex ratio (> 83%) were found irrespective of the aphid species.

  16. Role of the aphid species and their feeding locations in parasitization behavior of Aphelinus abdominalis, a parasitoid of the lettuce aphid Nasonovia ribisnigri.

    Directory of Open Access Journals (Sweden)

    Govinda Shrestha

    Full Text Available Aphid species feeding on lettuce occupy distinct feeding sites: the lettuce aphid Nasonovia ribisnigri prefers to feed on heart leaves, whereas the potato aphid Macrosiphum euphorbiae feeds only on outer leaves. The aphid parasitoid Aphelinus abdominalis, known to be able to regulate M. euphorbiae on many crops, has recently been indicated as a promising biocontrol candidate also for use against N. ribisnigri, a major pest of lettuce. This study therefore examined A. abdominalis parasitization preference between N. ribisnigri and M. euphorbiae and its ability to parasitize aphids feeding on different parts of lettuce plants. In addition, life history traits of A. abdominalis on these aphid species were investigated. In no-choice laboratory experiments on leaf discs and 24 h exposure, A. abdominalis successfully parasitized 54% and 60% of the offered N. ribisnigri and M. euphorbiae, respectively, with no significant difference. In the corresponding choice experiment, however, A. abdominalis had a tendency for a significantly higher preference for M. euphorbiae (38% compared to N. ribisnigri (30%. Growth chamber experiments on whole plants demonstrated that A. abdominalis was able to parasitize aphids, regardless of their feeding locations on lettuce plants. However, aphid feeding behavior had a significant effect on the parasitization rate. A. abdominalis parasitized significantly higher percentages of M. euphorbiae or N. ribisnigri when aphids were exposed separately to parasitoids on whole lettuce plants as compared with N. ribisnigri exposed only on heart leaf. A significant preference of A. abdominalis for M. euphorbiae compared to N. ribisnigri was also observed in the growth chamber choice experiment. A high percentage of adult emergence (> 84% and female-biased sex ratio (> 83% were found irrespective of the aphid species.

  17. Aphid secondary symbionts do not affect prey attractiveness to two species of predatory lady beetles

    OpenAIRE

    Kovacs, Jennifer L.; Wolf, Candice; Voisin, Den?; Wolf, Seth

    2017-01-01

    Heritable symbionts have been found to mediate interactions between host species and their natural enemies in a variety of organisms. Aphids, their facultative symbionts, and their potential fitness effects have been particularly well-studied. For example, the aphid facultative symbiont Regiella can protect its host from infection from a fungal pathogen, and aphids with Hamiltonella are less likely to be parasitized by parasitic wasps. Recent work has also found there to be negative fitness e...

  18. Impact of fertilization and granular insecticides on the incidence of tobacco aphid, myzus persicae (sulz)

    International Nuclear Information System (INIS)

    Razaq, A.; Hussain, N.; Khalil, S.K.; Alamzeb

    1989-01-01

    Field studies were conducted on the control of tobacco aphid, Myzus persicase (Sulz) with four granular insecticides, viz, Furadan 3% G, Diazinon 5% g, Thiodan 5% g and Larsban 5% g, with and without NPK fertilization. The aphid population was significantly higher in the fertilized plots compared to the non-fertilized ones. All the four insecticides significantly reduced the aphids density compared to the check. Furada 3% gave best results for the control of this pest. (author)

  19. Sugarcane Aphid (Hemiptera: Aphididae): A New Pest on Sorghum in North America.

    Science.gov (United States)

    Bowling, Robert D; Brewer, Michael J; Kerns, David L; Gordy, John; Seiter, Nick; Elliott, Norman E; Buntin, G David; Way, M O; Royer, T A; Biles, Stephen; Maxson, Erin

    2016-01-01

    In 2013, the sugarcane aphid, Melanaphis sacchari (Zehntner) (Hemiptera: Aphididae), a new invasive pest of sorghum species in North America, was confirmed on sorghum in 4 states and 38 counties in the United States. In 2015, the aphid was reported on sorghum in 17 states and over 400 counties as well as all sorghum-producing regions in Mexico. Ability to overwinter on living annual and perennial hosts in southern sorghum-producing areas and wind-aided movement of alate aphids appear to be the main factors in its impressive geographic spread in North America. Morphological characteristics of the sugarcane aphid include dark tarsi, cornicles, and antennae, allowing easy differentiation from other aphids on the crop. Sugarcane aphid damages sorghum by removing sap and covering plants with honeydew, causing general plant decline and yield loss. Honeydew and sooty mold can disrupt harvesting. The aphid's high reproductive rate on susceptible sorghum hybrids has resulted in reports of yield loss ranging from 10% to greater than 50%. In response, a combination of research-based data and field observations has supported development of state extension identification, scouting, and treatment guides that aid in initiating insecticide applications to prevent yield losses. Highly efficacious insecticides have been identified and when complemented by weekly scouting and use of thresholds, economic loss by sugarcane aphid can be minimized. Some commercial sorghum hybrids are partially resistant to the aphid, and plant breeders have identified other lines with sugarcane aphid resistance. A very diverse community of predators and parasitoids of sugarcane aphid has been identified, and their value to limit sugarcane aphid population growth is under investigation.

  20. Aphids (Homoptera, Aphidodea inhabiting the trees Crataegus x media Bechst. in the urban green area. Part II. Domination and frequency of aphids, their enemies and the damage caused by aphids

    Directory of Open Access Journals (Sweden)

    Aneta Sławińska

    2013-12-01

    Full Text Available The studies were conducted in Lublin in the years 1999-2001 in two sites (street and park ones on the trees Crataegus x inedia Bechst. The purpose was to determine the domination and frequency of particular aphid species, their effect on the decorative character of plants as well as the occurrence of the aphidophagous in aphid colonies. It was found out that A. pomi was the dominating species in both sites. The decorative character of the studied trees was lowered by aphids A. pomi and aphids from the genus Dysaphis. Aphids from the genus Dysaphis also caused changes in the chemical composition of the injured plant parts. The presence of predatory arthropods was observed in aphid colonies occurring on hawthorn. The most numerous of these were the larvae of Syrphidae and Coccinellidae. The culture of parasitized aphids gave numerous flights of parasitoids and hyperparasitoids. Greater number of both predators and parasitoids of I and II grades were observed in the street site as compared to the park site.

  1. Ecological effects of aphid abundance, genotypic variation, and contemporary evolution on plants.

    Science.gov (United States)

    Turley, Nash E; Johnson, Marc T J

    2015-07-01

    Genetic variation and contemporary evolution within populations can shape the strength and nature of species interactions, but the relative importance of these forces compared to other ecological factors is unclear. We conducted a field experiment testing the effects of genotypic variation, abundance, and presence/absence of green peach aphids (Myzus persicae) on the growth, leaf nitrogen, and carbon of two plant species (Brassica napus and Solanum nigrum). Aphid genotype affected B. napus but not S. nigrum biomass explaining 20 and 7% of the total variation, respectively. Averaging across both plant species, the presence/absence of aphids had a 1.6× larger effect size (Cohen's d) than aphid genotype, and aphid abundance had the strongest negative effects on plant biomass explaining 29% of the total variation. On B. napus, aphid genotypes had different effects on leaf nitrogen depending on their abundance. Aphids did not influence leaf nitrogen in S. nigrum nor leaf carbon in either species. We conducted a second experiment in the field to test whether contemporary evolution could affect plant performance. Aphid populations evolved in as little as five generations, but the rate and direction of this evolution did not consistently vary between plant species. On one host species (B. napus), faster evolving populations had greater negative effects on host plant biomass, with aphid evolutionary rate explaining 23% of the variation in host plant biomass. Together, these results show that genetic variation and evolution in an insect herbivore can play important roles in shaping host plant ecology.

  2. Aphid secondary symbionts do not affect prey attractiveness to two species of predatory lady beetles.

    Directory of Open Access Journals (Sweden)

    Jennifer L Kovacs

    Full Text Available Heritable symbionts have been found to mediate interactions between host species and their natural enemies in a variety of organisms. Aphids, their facultative symbionts, and their potential fitness effects have been particularly well-studied. For example, the aphid facultative symbiont Regiella can protect its host from infection from a fungal pathogen, and aphids with Hamiltonella are less likely to be parasitized by parasitic wasps. Recent work has also found there to be negative fitness effects for the larvae of two species of aphidophagous lady beetles that consumed aphids with facultative symbionts. In both species, larvae that consumed aphids with secondary symbionts were significantly less likely to survive to adulthood. In this study we tested whether adult Harmonia axyridis and Hippodamia convergens lady beetles avoided aphids with symbionts in a series of choice experiments. Adults of both lady beetle species were as likely to choose aphids with symbionts as those without, despite the potential negative fitness effects associated with consuming aphids with facultative symbionts. This may suggest that under natural conditions aphid secondary symbionts are not a significant source of selection for predatory lady beetles.

  3. Aphid secondary symbionts do not affect prey attractiveness to two species of predatory lady beetles

    Science.gov (United States)

    Wolf, Candice; Voisin, Dené; Wolf, Seth

    2017-01-01

    Heritable symbionts have been found to mediate interactions between host species and their natural enemies in a variety of organisms. Aphids, their facultative symbionts, and their potential fitness effects have been particularly well-studied. For example, the aphid facultative symbiont Regiella can protect its host from infection from a fungal pathogen, and aphids with Hamiltonella are less likely to be parasitized by parasitic wasps. Recent work has also found there to be negative fitness effects for the larvae of two species of aphidophagous lady beetles that consumed aphids with facultative symbionts. In both species, larvae that consumed aphids with secondary symbionts were significantly less likely to survive to adulthood. In this study we tested whether adult Harmonia axyridis and Hippodamia convergens lady beetles avoided aphids with symbionts in a series of choice experiments. Adults of both lady beetle species were as likely to choose aphids with symbionts as those without, despite the potential negative fitness effects associated with consuming aphids with facultative symbionts. This may suggest that under natural conditions aphid secondary symbionts are not a significant source of selection for predatory lady beetles. PMID:28880922

  4. Aphid secondary symbionts do not affect prey attractiveness to two species of predatory lady beetles.

    Science.gov (United States)

    Kovacs, Jennifer L; Wolf, Candice; Voisin, Dené; Wolf, Seth

    2017-01-01

    Heritable symbionts have been found to mediate interactions between host species and their natural enemies in a variety of organisms. Aphids, their facultative symbionts, and their potential fitness effects have been particularly well-studied. For example, the aphid facultative symbiont Regiella can protect its host from infection from a fungal pathogen, and aphids with Hamiltonella are less likely to be parasitized by parasitic wasps. Recent work has also found there to be negative fitness effects for the larvae of two species of aphidophagous lady beetles that consumed aphids with facultative symbionts. In both species, larvae that consumed aphids with secondary symbionts were significantly less likely to survive to adulthood. In this study we tested whether adult Harmonia axyridis and Hippodamia convergens lady beetles avoided aphids with symbionts in a series of choice experiments. Adults of both lady beetle species were as likely to choose aphids with symbionts as those without, despite the potential negative fitness effects associated with consuming aphids with facultative symbionts. This may suggest that under natural conditions aphid secondary symbionts are not a significant source of selection for predatory lady beetles.

  5. Aphid Infestation Increases Fusarium langsethiae and T-2 and HT-2 Mycotoxins in Wheat.

    Science.gov (United States)

    Drakulic, Jassy; Ajigboye, Olubukola; Swarup, Ranjan; Bruce, Toby; Ray, Rumiana V

    2016-11-15

    Fusarium langsethiae is a fungal pathogen of cereal crops that is an increasing problem in northern Europe, but much of its epidemiology is poorly understood. The species produces the mycotoxins T-2 and HT-2, which are highly toxic. It was hypothesized that grain aphids, Sitobion avenae, may transmit F. langsethiae inoculum between wheat plants, and a series of transmission experiments and volatile chemical analyses was performed to test this. Manual translocation of aphids from inoculated to uninfected hosts resulted in pathogen DNA accumulation in hosts. However, the free movement of wingless aphids from infected to healthy plants did not. The addition of winged aphids reared on F. langsethiae-inoculated wheat seedlings to wheat plants also did not achieve successful pathogen transfer. While our data suggested that aphid transmission of the pathogen was not very efficient, we observed an increase in disease when aphids were present. After seedling inoculation, an increase in pathogen DNA accumulation in seedling leaves was observed upon treatment with aphids. Furthermore, the presence of aphids on wheat plants with F. langsethiae-inoculated ears not only led to a rise in the amount of F. langsethiae DNA in infected grain but also to an increase in the concentrations of T-2 and HT-2 toxins, with more than 3-fold higher toxin levels than diseased plants without aphids. This work highlights that aphids increase the susceptibility of wheat host plants to F. langsethiae and that aphid infestation is a risk factor for accumulating increased levels of T-2 and HT-2 in wheat products. Fusarium langsethiae is shown here to cause increased contamination levels of grain with toxins produced by fungus when aphids share the host plant. This effect has also recently been demonstrated with Fusarium graminearum, yet the two fungal species show stark differences in their effect on aphid populations. In both cases, aphids improve the ability of the pathogens to cause and initiate

  6. Comparative transcriptomics and proteomics of three different aphid species identifies core and diverse effector sets.

    Science.gov (United States)

    Thorpe, Peter; Cock, Peter J A; Bos, Jorunn

    2016-03-02

    Aphids are phloem-feeding insects that cause significant economic losses to agriculture worldwide. While feeding and probing these insects deliver molecules, called effectors, inside their host to enable infestation. The identification and characterization of these effectors from different species that vary in their host range is an important step in understanding the infestation success of aphids and aphid host range variation. This study employs a multi-disciplinary approach based on transcriptome sequencing and proteomics to identify and compare effector candidates from the broad host range aphid Myzus persicae (green peach aphid) (genotypes O, J and F), and narrow host range aphids Myzus cerasi (black cherry aphid) and Rhopalosiphum padi (bird-cherry oat aphid). Using a combination of aphid transcriptome sequencing on libraries derived from head versus body tissues as well as saliva proteomics we were able to predict candidate effectors repertoires from the different aphid species and genotypes. Among the identified conserved or core effector sets, we identified a significant number of previously identified aphid candidate effectors indicating these proteins may be involved in general infestation strategies. Moreover, we identified aphid candidate effector sequences that were specific to one species, which are interesting candidates for further validation and characterization with regards to species-specific functions during infestation. We assessed our candidate effector repertoires for evidence of positive selection, and identified 49 candidates with DN/DS ratios >1. We noted higher rates of DN/DS ratios in predicted aphid effectors than non-effectors. Whether this reflects positive selection due to co-evolution with host plants, or increased neofunctionalization upon gene duplication remains to be investigated. Our work provides a comprehensive overview of the candidate effector repertoires from three different aphid species with varying host ranges

  7. First survey on ecological host range of aphid pathogenic fungi (Phylum Entomophthoromycota) in Tunisia

    DEFF Research Database (Denmark)

    Ben Fekih, Ibtissem; Boukhris-Bouhachem, Sonia; Allagui, Mohamed Bechir

    2015-01-01

    Summary. The natural occurrence of fungal pathogens of aphids and their ecological host range was investigated in Tunisia from 2009 to 2012. The survey focused on aphid infesting different crops and weeds and included 10 different aphid species. Samples were collected from eight agricultural crops...... C. obscurus and N. fresenii were sporadically present on a limited number of aphid species. This study is the first survey on ecological host range of entomophthoralean fungi in Tunisia, and the first documentation of C. obscurus and N. fresenii to occur in Tunisia and Maghreb Region....

  8. A dietary test of putative deleterious sterols for the aphid Myzus persicae.

    Science.gov (United States)

    Bouvaine, Sophie; Faure, Marie-Line; Grebenok, Robert J; Behmer, Spencer T; Douglas, Angela E

    2014-01-01

    The aphid Myzus persicae displays high mortality on tobacco plants bearing a transgene which results in the accumulation of the ketosteroids cholestan-3-one and cholest-4-en-3-one in the phloem sap. To test whether the ketosteroids are the basis of the plant resistance to the aphids, M. persicae were reared on chemically-defined diets with different steroid contents at 0.1-10 µg ml(-1). Relative to sterol-free diet and dietary supplements of the two ketosteroids and two phytosterols, dietary cholesterol significantly extended aphid lifespan and increased fecundity at one or more dietary concentrations tested. Median lifespan was 50% lower on the diet supplemented with cholest-4-en-3-one than on the cholesterol-supplemented diet. Aphid feeding rate did not vary significantly across the treatments, indicative of no anti-feedant effect of any sterol/steroid. Aphids reared on diets containing equal amounts of cholesterol and cholest-4-en-3-one showed fecundity equivalent to aphids on diets containing only cholesterol. Aphids were reared on diets that reproduced the relative steroid abundance in the phloem sap of the control and modified tobacco plants, and their performance on the two diet formulations was broadly equivalent. We conclude that, at the concentrations tested, plant ketosteroids support weaker aphid performance than cholesterol, but do not cause acute toxicity to the aphids. In plants, the ketosteroids may act synergistically with plant factors absent from artificial diets but are unlikely to be solely responsible for resistance of modified tobacco plants.

  9. Chemical and physiological changes caused by aphids feeding on their host plants*

    Directory of Open Access Journals (Sweden)

    Cichocka Elżbieta

    2015-12-01

    Full Text Available We present significant information about damage caused to plants by the feeding of piercing–sucking insects, based on the example of aphids. Research concerning the impact of aphids on their host plants was already being carried out in the 1950s in the 20th century, but it is still being undertaken as it is very important. Aphid feeding causes deformation of plant tissues, disorders in plant metabolism and changes in the amount of various compounds in plant tissues. Plant viruses are transmitted in aphid saliva.

  10. New data on aphid fauna (Hemiptera, Aphididae) in Algeria

    Science.gov (United States)

    Laamari, Malik; d’Acier, Armelle Coeur; Jousselin, Emmanuelle

    2013-01-01

    Abstract A survey of aphids was carried out during the period 2008-2011 in different regions of Algeria by collecting and identifying aphids and their host plants. Aphids were collected from 46 host plants. Forty-six species were reported including thirty-six species which were recorded for the first time in this country and thirty species which were recorded for the first time in the Maghreb (North Africa). This study extends the number of known Algerian aphid to 156 species. PMID:24039520

  11. High levels of exotic armored scales on imported avocados raise concerns regarding USDA-APHIS' phytosanitary risk assessment.

    Science.gov (United States)

    Morse, J G; Rugman-Jones, P F; Watson, G W; Robinson, L J; Bi, J L; Stouthamer, R

    2009-06-01

    Between 1914 and 2007, a quarantine protected California avocado, Persea americana Mill., groves from pests that might be introduced into the state along with fresh, imported avocados. Soon after Mexican avocados were first allowed entry on 1 February 2007, live specimens of several species of armored scales (Hemiptera: Diaspididae) not believed to be present in California were detected on 'Hass' avocados entering the state from Mexico. Initially, the California Department of Food and Agriculture (CDFA) prevented avocados infested with these scales from entering the state or required that they be fumigated with an approved treatment such as methyl bromide. After a Science Advisory Panel meeting in May 2007, U.S. Department of Agriculture-Animal and Plant Health Inspection Service (USDA-APHIS) reaffirmed its position that armored scales on shipments of fruit for consumption (including avocados) pose a "low risk" for pest establishment. In compliance with APHIS protocols, as of 18 July 2007, CDFA altered its policy to allow shipments of scale-infested avocados into the state without treatment. Here, we report on sampling Mexican avocados over an 8-mo period, September 2007-April 2008. An estimated 67 million Mexican Hass avocados entered California over this period. Based on samples from 140 trucks containing approximately 15.6% of this volume of fruit, we estimate that approximately 47.6 million live, sessile armored scales and an additional 20.1 million live eggs and crawlers were imported. We found eight probable species of armored scales in the samples, seven of these are not believed to occur in California; 89.3% of the live scales were Abgrallaspis aguacatae Evans, Watson and Miller, a recently described species. In contrast to the USDA-APHIS opinion, we believe the volume of shipments and levels of live scales they contain present a significant risk to California's US$300 million avocado industry and to other crops that might become infested by one or more of

  12. NDVI to Detect Sugarcane Aphid Injury to Grain Sorghum.

    Science.gov (United States)

    Elliott, N C; Backoulou, G F; Brewer, M J; Giles, K L

    2015-06-01

    Multispectral remote sensing has potential to provide quick and inexpensive information on sugarcane aphid, Melanaphis sacchari (Zehntner), pest status in sorghum fields. We describe a study conducted to determine if injury caused by sugarcane aphid to sorghum plants in fields of grain sorghum could be detected using multispectral remote sensing from a fixed wing aircraft. A study was conducted in commercial grain sorghum fields in the Texas Gulf Coast region in June 2014. Twenty-six commercial grain sorghum fields were selected and rated for the level of injury to sorghum plants in the field caused by sugarcane aphid. Plant growth stage ranged from 5.0 (watery ripe) to 7.0 (hard dough) among fields; and plant injury rating from sugarcane aphid ranged from 1.0 (little or no injury) to 4.0 (>40% of plants displaying injury) among fields. The normalized differenced vegetation index (NDVI) is calculated from light reflectance in the red and near-infrared wavelength bands in multispectral imagery and is a common index of plant stress. High NDVI indicates low levels of stress and low NDVI indicates high stress. NDVI ranged from -0.07 to 0.26 among fields. The correlation between NDVI and plant injury rating was negative and significant, as was the correlation between NDVI and plant growth stage. The negative correlation of NDVI with injury rating indicated that plant stress increased with increasing plant injury. Reduced NDVI with increasing plant growth probably resulted from reduced photosynthetic activity in more mature plants. The correlation between plant injury rating and plant growth stage was positive and significant indicating that plant injury from sugarcane aphid increased as plants matured. The partial correlation of NDVI with plant injury rating was negative and significant indicating that NDVI decreased with increasing plant injury after adjusting for its association with plant growth stage. We demonstrated that remotely sensed imagery acquired from grain

  13. Evidence of indirect symbiont conferred protection against the predatory lady beetle Harmonia axyridis in the pea aphid.

    Science.gov (United States)

    Kovacs, Jennifer L; Wolf, Candice; Voisin, Dené; Wolf, Seth

    2017-07-11

    Defensive symbionts can provide significant fitness advantages to their hosts. Facultative symbionts can protect several species of aphid from fungal pathogens, heat shock, and parasitism by parasitoid wasps. Previous work found that two of these facultative symbionts can also indirectly protect pea aphids from predation by the lady beetle Hippocampus convergens. When aphids reproduce asexually, there is extremely high relatedness among aphid clone-mates and often very limited dispersal. Under these conditions, symbionts may indirectly protect aphid clone-mates from predation by negatively affecting the survival of a predator after the consumption of aphids harboring the same vertically transmitted facultative symbionts. In this study, we wanted to determine whether this indirect protection extended to another lady beetle species, Harmonia axyridis. We fed Ha. axyridis larvae aphids from one of four aphid sub-clonal symbiont lines which all originated from the same naturally symbiont free clonal aphid lineage. Three of the sub-clonal lines harbor different facultative symbionts that were introduced to the lines via microinjection. Therefore these sub-clonal lineages vary primarily in their symbiont composition, not their genetic background. We found that aphid facultative symbionts affected larval survival as well as pupal survival in their predator Ha. axyridis. Additionally, Ha. axyridis larvae fed aphids with the Regiella symbiont had significantly longer larval developmental times than beetle larvae fed other aphids, and females fed aphids with the Regiella symbiont as larvae weighed less as adults. These fitness effects were different from those previously found in another aphid predator Hi. convergens suggesting that the fitness effects may not be the same in different aphid predators. Overall, our findings suggest that some aphid symbionts may indirectly benefit their clonal aphid hosts by negatively impacting the development and survival of a lady beetle

  14. Improving the artificial diet for adult of seven spotted ladybird beetle Coccinella septempunctata L. (Coleoptera: Coccinellidae) with orthogonal design.

    Science.gov (United States)

    Cheng, Y; Zhi, J R; Li, F L; Li, W H; Zhou, Y H

    2017-09-19

    In this study, an orthogonal array design with 16 factors at two levels (216) was performed to develop an artificial diet rearing the adults of seven spotted ladybird beetle Coccinella septempunctata. The parameters of weight gain and survival rate of adults, preoviposition period, fecundity and hatching rate of diet-fed adults were monitored. The 16 factors were included: pork liver, infant formula, sucrose, olive oil, yolk, corn oil, yeast powder, cholesterol, casein, casein hydrolysate, vitamin powder, 65% juvenile hormone III, protein powder, vitamin E, honey and pumpkin. Results indicated that pork liver, sucrose, yolk, yeast powder, juvenile hormone, pumpkin and honey were the main ingredients of the artificial diet contributing to weight gain and survival rate of adults, preoviposition period, fecundity and hatching rate. A follow-up fed with a selection of improved formulas confirmed the validity of the optimization as predicted by the orthogonal array analysis, indicating the usefulness of this method for selecting artificial diets for C. septempunctata. The weight gain and fecundity of adults reared on the improved artificial diet were 87.46 and 62.70% of those reared on Aphis craccivora; the survival rate and hatch rate were similar between the diet-fed and aphid-fed, while the preoviposition period was significantly shorter for C. septempunctata fed on the diet than on A. craccivora. The latter formula was superior to any formerly developed formulas and may thus have potential for the improved artificial diet mass rearing of C. septempunctata.

  15. Evidence of indirect symbiont conferred protection against the predatory lady beetle Harmonia axyridis in the pea aphid

    OpenAIRE

    Kovacs, Jennifer L.; Wolf, Candice; Voisin, Den?; Wolf, Seth

    2017-01-01

    Background Defensive symbionts can provide significant fitness advantages to their hosts. Facultative symbionts can protect several species of aphid from fungal pathogens, heat shock, and parasitism by parasitoid wasps. Previous work found that two of these facultative symbionts can also indirectly protect pea aphids from predation by the lady beetle Hippocampus convergens. When aphids reproduce asexually, there is extremely high relatedness among aphid clone-mates and often very limited disp...

  16. Effects of Entomopathogenic Nematodes on the Development of Root-knot Nematode and Aphid, and on the Parasitism of Aphid Parasitoid in Tobacco

    Directory of Open Access Journals (Sweden)

    WANG Yu-kun

    2017-05-01

    Full Text Available Entomopathogenic nematodes(EPN which is recognized as a kind of potential biological control material have been paid more and more attention in recent years. In the present study, we selected tobacco(Nicotiana tabacum as the object to study the effects of EPN (Steinernema carpocapsae and Heterorhabditis bacteriophoraon the development of root-knot nematodes and aphid (Myzus persicae, and on the parasitism of aphid parasitoid (Aphidius gifuensis in tobacco. The results showed that (1Under the condition of the artificial removal of aphids, the number of egg per plant was significantly lower under the EPN treatments than control treatment(PS. carpocapsae treatment than the other treatments(PH. bacteriophora cadaver treatment were 89.6 individual·plant-1 and 0.996 g·plant-1, 99.8 individual·plant-1 and 3.258 g·plant-1, 76.6 individual·plant-1 and 1.643 g·plant-1, respectively, indicating that EPN treatment could decrease the number of aphids per mass; (3On the first three observation dates, the number of aphid mummies was significantly lower under S. carpocapsae cadaver treatment than H. bacteriophora cadaver treatment. The results indicated that EPN treatments in tobacco could affect the development of root-knot nematode, and had impact on the development of aphids and the activities of aphid parasitoid by "bottom-up" approach, and these effects were affected by the species of EPN.

  17. Oral activity of FMRFamide-related peptides on the pea aphid Acyrthosiphon pisum (Hemiptera: Aphididae) and degradation by enzymes from the aphid gut.

    Science.gov (United States)

    Down, Rachel E; Matthews, H June; Audsley, Neil

    2011-11-10

    Insect myosuppressins and myosuppressin analogues were tested for oral toxicity against the pea aphid Acyrthosiphon pisum (Harris) by incorporation into an artificial diet. Acyrthosiphon pisum myosuppressin (Acypi-MS) and leucomyosuppressin (LMS) had significant dose-dependent effects (0.1-0.5μg peptide/μl diet) on feeding suppression, mortality, reduced growth and fecundity compared with control insects, but Acypi-MS was more potent than LMS. One hundred percent of aphids had died after 10days of feeding on 0.5μg Acypi-MS/μl diet whereas 40% of aphids feeding on 0.5μg LMS/μl diet were still alive after 13days. Myosuppressins were degraded by aphid gut enzymes; degradation was most likely due to a carboxypeptidase-like protease, an aminopeptidase and a cathepsin L cysteine protease. The estimated half-life of Acypi-MS in a gut extract was 30min, whereas LMS was degraded more slowly (t½=54min). No toxicity was observed when the analogues δR(9) LMS and citrolline(9) Acypi-MS or FMRFamide were fed to the pea aphid. These findings not only help to better understand the biological effects of myosuppressins in aphids but also demonstrate the potential use of myosuppressins in a strategy to control aphid pests. Crown Copyright © 2011. Published by Elsevier B.V. All rights reserved.

  18. The Process of Aphid Egg-Laying and the Little Known Role of the Coccinellidae in Aphid Egg Destruction in Poland – Preliminary Results

    Directory of Open Access Journals (Sweden)

    Lubiarz Magdalena

    2014-07-01

    Full Text Available No detailed studies have been conducted in Poland with regard to aphid eggs or egg survival in particular. So far, no studies have been conducted concerning the role of ladybird beetles in reducing the number of aphid eggs in spring, before the development of leaves, and in autumn, after the leaves have been shed. At these times, other developmental stages of aphids are unavailable as food for the ladybirds. The paper presents the preliminary results of a three-year study on the process of aphid egg-laying (especially Chaetosiphon tetrarhodum, Macrosiphum rosae, Metopolophium dirhodum, and Maculolachnus submacula. The paper also deals with the little known role of ladybirds in aphid egg destruction. Research was conducted in Otrębusy (Western Mazovia, Poland, in the years 2008-2010, on the rugosa rose and on the dog rose. In the years 2011-2013, in Otrębusy, the occurrence of M. submacula was also observed on the ornamental grandiflora rose. Furthermore, in the years 2003-2004, observations were conducted on the pedunculate oak in Polesie National Park and in the town of Puławy (Lublin Region, Poland. The observations which took place in Puławy focused on egglaying of aphids representing the genera Phylloxera and Lachnus. The study investigated aphid oviposition sites. Data was collected on the number of aphid eggs noted on the studied plants. The study also showed, that sometimes winter eggs of aphids could provide nutrition for ladybirds. This was especially true in autumn when ladybird beetles were preparing for hibernation.

  19. Fine mapping of the soybean aphid resistance genes Rag6 and Rag3c from glycine soja 85-32

    Science.gov (United States)

    The soybean aphid, an invasive species, has significantly threatened soybean production in North America since 2001. Host-plant resistance is known as an ideal management of aphids. Two novel aphid-resistant loci, Rag6 and Rag3c, from the Glycine soja accession 85-32, were previously detected in a 1...

  20. Impact of aphid alarm pheromone release on virus transmission efficiency: When pest control strategy could induce higher virus dispersion.

    Science.gov (United States)

    Lin, Fang-Jing; Bosquée, Emilie; Liu, Ying-Jie; Chen, Ju-Lian; Yong, Liu; Francis, Frédéric

    2016-09-01

    Aphids cause serious damages to crops not only by tacking sap but also by transmitting numerous viruses. To develop biological control, the aphid alarm pheromone, namely E-β-farnesene (EβF), has been demonstrated to be efficient to repel aphids and as attract beneficials, making it a potential tool to control aphid pests. Considering aphids also as virus vectors, changes of their behavior could also interfere with the virus acquisition and transmission process. Here, a combination of two aphid species and two potato virus models were selected to test the influence of EβF release on aphid and virus dispersion under laboratory conditions. EβF release was found to significantly decrease the population of Myzus persicae and Macrosiphum euphorbiae around the infochemical releaser but simultaneously also increasing the dispersal of Potato Virus Y (PVY). At the opposite, no significant difference for Potato Leaf Roll Virus (PLRV) transmission efficiency was observed with similar aphid alarm pheromone releases for none of the aphid species. These results provide some support to carefully consider infochemical releasers not only for push-pull strategy and pest control but also to include viral disease in a the plant protection to aphids as they are also efficient virus vectors. Impact of aphid kinds and transmission mechanisms will be discussed according to the large variation found between persistent and non persistent potato viruses and interactions with aphids and related infochemicals. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Host Plant Specialization in the Sugarcane Aphid Melanaphis sacchari.

    Directory of Open Access Journals (Sweden)

    Samuel Nibouche

    Full Text Available Most aphids are highly specialized on one or two related plant species and generalist species often include sympatric populations adapted to different host plants. Our aim was to test the hypothesis of the existence of host specialized lineages of the aphid Melanaphis sacchari in Reunion Island. To this end, we investigated the genetic diversity of the aphid and its association with host plants by analyzing the effect of wild sorghum Sorghum bicolor subsp. verticilliflorum or sugarcane as host plants on the genetic structuring of populations and by performing laboratory host transfer experiments to detect trade-offs in host use. Genotyping of 31 samples with 10 microsatellite loci enabled identification of 13 multilocus genotypes (MLG. Three of these, Ms11, Ms16 and Ms15, were the most frequent ones. The genetic structure of the populations was linked to the host plants. Ms11 and Ms16 were significantly more frequently observed on sugarcane, while Ms15 was almost exclusively collected in colonies on wild sorghum. Laboratory transfer experiments demonstrated the existence of fitness trade-offs. An Ms11 isofemale lineage performed better on sugarcane than on sorghum, whereas an Ms15 lineage developed very poorly on sugarcane, and two Ms16 lineages showed no significant difference in performances between both hosts. Both field and laboratory results support the existence of host plant specialization in M. sacchari in Reunion Island, despite low genetic differentiation. This study illustrates the ability of asexual aphid lineages to rapidly undergo adaptive changes including shifting from one host plant to another.

  2. Scaling up population dynamic processes in a ladybird–aphid

    Czech Academy of Sciences Publication Activity Database

    Houdková, Kateřina; Kindlmann, Pavel

    2006-01-01

    Roč. 48, - (2006), s. 323-332 ISSN 1438-3896 R&D Projects: GA ČR(CZ) GEDIV/06/E013; GA MŠk(CZ) LC06073; GA AV ČR(CZ) IAA6087301; GA ČR(CZ) GD206/03/H034 Keywords : Aphids * Egg window * Ladybirds * Metapopulation * Model * Population dynamics Subject RIV: EH - Ecology, Behaviour Impact factor: 1.534, year: 2006

  3. Coping with shorter days: do phenology shifts constrain aphid fitness?

    Science.gov (United States)

    Joschinski, Jens; Hovestadt, Thomas; Krauss, Jochen

    2015-01-01

    Climate change can alter the phenology of organisms. It may thus lead seasonal organisms to face different day lengths than in the past, and the fitness consequences of these changes are as yet unclear. To study such effects, we used the pea aphid Acyrthosiphon pisum as a model organism, as it has obligately asexual clones which can be used to study day length effects without eliciting a seasonal response. We recorded life-history traits under short and long days, both with two realistic temperature cycles with means differing by 2 °C. In addition, we measured the population growth of aphids on their host plant Pisum sativum. We show that short days reduce fecundity and the length of the reproductive period of aphids. Nevertheless, this does not translate into differences at the population level because the observed fitness costs only become apparent late in the individual's life. As expected, warm temperature shortens the development time by 0.7 days/°C, leading to faster generation times. We found no interaction of temperature and day length. We conclude that day length changes cause only relatively mild costs, which may not decelerate the increase in pest status due to climate change.

  4. Coping with shorter days: do phenology shifts constrain aphid fitness?

    Directory of Open Access Journals (Sweden)

    Jens Joschinski

    2015-07-01

    Full Text Available Climate change can alter the phenology of organisms. It may thus lead seasonal organisms to face different day lengths than in the past, and the fitness consequences of these changes are as yet unclear. To study such effects, we used the pea aphid Acyrthosiphon pisum as a model organism, as it has obligately asexual clones which can be used to study day length effects without eliciting a seasonal response. We recorded life-history traits under short and long days, both with two realistic temperature cycles with means differing by 2 °C. In addition, we measured the population growth of aphids on their host plant Pisum sativum. We show that short days reduce fecundity and the length of the reproductive period of aphids. Nevertheless, this does not translate into differences at the population level because the observed fitness costs only become apparent late in the individual’s life. As expected, warm temperature shortens the development time by 0.7 days/°C, leading to faster generation times. We found no interaction of temperature and day length. We conclude that day length changes cause only relatively mild costs, which may not decelerate the increase in pest status due to climate change.

  5. The effect of co-infestation by conspecific and heterospecific aphids on the feeding behaviour of Nasonovia ribisnigri on resistant and susceptible lettuce cultivars

    NARCIS (Netherlands)

    Broeke, ten Cindy J.M.; Dicke, Marcel; Loon, van Joop J.A.

    2017-01-01

    Aphid saliva can suppress the blocking of sieve elements, a reaction that plants employ to inhibit aphid feeding, but aphid saliva can also elicit plant defence responses. Such plant responses might affect interactions between different aphid species and intraspecifically, e.g. among different

  6. First record of larvae of Allograpta exotica Wiedemann (Diptera, Syrphidae preying on Aphis gossypii Glover (Hemiptera, Aphididae in watermelon in Brazil

    Directory of Open Access Journals (Sweden)

    Vinícius Soares Sturza

    2011-06-01

    Full Text Available First record of larvae of Allograpta exotica Wiedemann (Diptera, Syrphidae preying on Aphis gossypii Glover (Hemiptera, Aphididae in watermelon in Brazil. Brazil is one of the largest world producers of watermelon (Citrullus lanatus Thumb. Mansf. and Aphis gossypii Glover, 1877 (Hemiptera, Aphididae is among the most important pest on this crop. Larvae of Allograpta exotica Wiedemann, 1830 (Diptera, Syrphidae were found preying on A. gossypii in watermelon crop, in Santa Maria, Rio Grande do Sul State, what represents the first report of this tritrophic association in Brazil.

  7. Risk to native Uroleucon aphids (Hemiptera: Aphididae) from non-native lady beetles (Coleoptera: Coccinellidae)

    Science.gov (United States)

    Aphids in the genus Uroleucon Mordvilko (Hemiptera: Aphididae) are native herbivores that feed on goldenrod (Solidago spp.) and other Asteraceae in North America. The aphids are potential prey for a wide variety of natural enemies, including native and non-native species of lady beetles (Coleoptera...

  8. Plant resistance in sorghums to the sugarcane aphid Melanaphis sacchari (Hemiptera: Aphididae)

    Science.gov (United States)

    We evaluated ten sorghum lines that were near or in commercial release with the intent of identifying phenotypic expression of host-plant resistance to the sugarcane aphid. Two of the ten entries OL2042 and SP7715 expressed a high degree of resistance to the sugarcane aphid with damage ratings <3.0...

  9. Towards efficient multi-scale methods for monitoring sugarcane aphid infestations in sorghum

    Science.gov (United States)

    We discuss approaches and issues involved with developing optimal monitoring methods for sugarcane aphid infestations (SCA) in grain sorghum. We discuss development of sequential sampling methods that allow for estimation of the number of aphids per sample unit, and statistical decision making rela...

  10. Identification of conditions for successful aphid control by ladybirds in greenhouses

    Science.gov (United States)

    As part of my research on the mass production and augmentative release of ladybirds, I reviewed the primary research literature to test the prediction that ladybirds are effective aphid predators in greenhouses. Aphid population reduction exceeded 50% in most studies and ladybird release rates usual...

  11. The Effects of Aphid Traits on Parasitoid Host Use and Specialist Advantage.

    Science.gov (United States)

    Gagic, Vesna; Petrović-Obradović, Olivera; Fründ, Jochen; Kavallieratos, Nickolas G; Athanassiou, Christos G; Starý, Petr; Tomanović, Željko

    2016-01-01

    Specialization is a central concept in ecology and one of the fundamental properties of parasitoids. Highly specialized parasitoids tend to be more efficient in host-use compared to generalized parasitoids, presumably owing to the trade-off between host range and host-use efficiency. However, it remains unknown how parasitoid host specificity and host-use depends on host traits related to susceptibility to parasitoid attack. To address this question, we used data from a 13-year survey of interactions among 142 aphid and 75 parasitoid species in nine European countries. We found that only aphid traits related to local resource characteristics seem to influence the trade-off between host-range and efficiency: more specialized parasitoids had an apparent advantage (higher abundance on shared hosts) on aphids with sparse colonies, ant-attendance and without concealment, and this was more evident when host relatedness was included in calculation of parasitoid specificity. More traits influenced average assemblage specialization, which was highest in aphids that are monophagous, monoecious, large, highly mobile (easily drop from a plant), without myrmecophily, habitat specialists, inhabit non-agricultural habitats and have sparse colonies. Differences in aphid wax production did not influence parasitoid host specificity and host-use. Our study is the first step in identifying host traits important for aphid parasitoid host specificity and host-use and improves our understanding of bottom-up effects of aphid traits on aphid-parasitoid food web structure.

  12. GroEL from the endosymbiont Buchnera aphidicola betrays the aphid by triggering plant defense

    Science.gov (United States)

    Chaudhary, Ritu; Atamian, Hagop S.; Shen, Zhouxin; Briggs, Steven P.; Kaloshian, Isgouhi

    2014-01-01

    Aphids are sap-feeding plant pests and harbor the endosymbiont Buchnera aphidicola, which is essential for their fecundity and survival. During plant penetration and feeding, aphids secrete saliva that contains proteins predicted to alter plant defenses and metabolism. Plants recognize microbe-associated molecular patterns and induce pattern-triggered immunity (PTI). No aphid-associated molecular pattern has yet been identified. By mass spectrometry, we identified in saliva from potato aphids (Macrosiphum euphorbiae) 105 proteins, some of which originated from Buchnera, including the chaperonin GroEL. Because GroEL is a widely conserved bacterial protein with an essential function, we tested its role in PTI. Applying or infiltrating GroEL onto Arabidopsis (Arabidopsis thaliana) leaves induced oxidative burst and expression of PTI early marker genes. These GroEL-induced defense responses required the known coreceptor BRASSINOSTEROID INSENSITIVE 1-ASSOCIATED RECEPTOR KINASE 1. In addition, in transgenic Arabidopsis plants, inducible expression of groEL activated PTI marker gene expression. Moreover, Arabidopsis plants expressing groEL displayed reduced fecundity of the green peach aphid (Myzus persicae), indicating enhanced resistance against aphids. Furthermore, delivery of GroEL into tomato (Solanum lycopersicum) or Arabidopsis through Pseudomonas fluorescens, engineered to express the type III secretion system, also reduced potato aphid and green peach aphid fecundity, respectively. Collectively our data indicate that GroEL is a molecular pattern that triggers PTI. PMID:24927572

  13. Screening of sorghum lines for resistance against sugarcane aphid, Melanaphis sacchari (Zehnter)

    Science.gov (United States)

    The sugarcane aphid Melanaphis sacchari (Zehnter) has emerged as the most significant threat to sorghum (Sorghum bicolor (L.) Moench) production in the United States. Since 2013, discovery of aphid resistant germplasm has been a priority all stakeholders involved. We screened twenty three differen...

  14. Aphidoletes aphidimyza oviposition behaviour when multiple aphid pests are present in the greenhouse

    Science.gov (United States)

    The generalist aphid predator Aphidoletes aphidimyza was investigated for oviposition behaviour on the pest aphids Myzus persicae and Aulacorthum solani in greenhouse trials. Oviposition was significantly lower on A. solani than M. persicae. Myzus persicae were concentrated at the growing points of ...

  15. Contact Bioassay of an Endemic Plant to Ethiopia on Three Aphid ...

    African Journals Online (AJOL)

    Based on this, extracts from birbira with water or chloroform were assayed on three aphid species. Substance extracted both by water and chloroform caused significantly higher mortality on the three aphid species than the residue in chloroform and the untreated control. The LC50 amounts of water and chloroform extracts, ...

  16. (E)-β-farnesene synthase genes affect aphid (Myzus persicae) infestation in tobacco (Nicotiana tabacum).

    Science.gov (United States)

    Yu, Xiudao; Jones, Huw D; Ma, Youzhi; Wang, Genping; Xu, Zhaoshi; Zhang, Baoming; Zhang, Yongjun; Ren, Guangwei; Pickett, John A; Xia, Lanqin

    2012-03-01

    Aphids are major agricultural pests which cause significant yield losses of the crop plants each year. (E)-β-farnesene (EβF) is the alarm pheromone involved in the chemical communication between aphids and particularly in the avoidance of predation. In the present study, two EβF synthase genes were isolated from sweet wormwood and designated as AaβFS1 and AaβFS2, respectively. Overexpression of AaβFS1 or AaβFS2 in tobacco plants resulted in the emission of EβF ranging from 1.55 to 4.65 ng/day/g fresh tissues. Tritrophic interactions involving the peach aphids (Myzus persicae), predatory lacewings (Chrysopa septempunctata) demonstrated that the transgenic tobacco expressing AaβFS1 and AaβFS2 could repel peach aphids, but not as strongly as expected. However, AaβFS1 and AaβFS2 lines exhibited strong and statistically significant attraction to lacewings. Further experiments combining aphids and lacewing larvae in an octagon arrangement showed transgenic tobacco plants could repel aphids and attract lacewing larvae, thus minimizing aphid infestation. Therefore, we demonstrated a potentially valuable strategy of using EβF synthase genes from sweet wormwood for aphid control in tobacco or other economic important crops in an environmentally benign way.

  17. Selection by phage display of a mustard chymotrypsin inhibitor toxic to pea aphid.

    NARCIS (Netherlands)

    Ceci, L.R.; Volpicella, M.; Conti, S.; Gallerani, R.; Beekwilder, M.J.; Jongsma, M.A.

    2003-01-01

    The mustard trypsin inhibitor, MTI-2, is a potent inhibitor of trypsin with no activity towards chymotrypsin. MTI-2 is toxic for lepidopteran insects, but has low activity against aphids. In an attempt to improve the activity of the inhibitor towards aphids, a library of inhibitor variants was

  18. Utilization of ladybird beetles to curb aphids in strawberry high tunnels: preliminary results

    Science.gov (United States)

    Native and exotic aphid species continue to pose a threat to the successful cultivation of small fruits in greenhouses, glasshouses, and high tunnels throughout the World. There is considerable interest in using biological controls (predators and parasitoids) to manage aphids in lieu of synthetic in...

  19. National Plant Diagnostic Network, Taxonomic training videos: Aphids under the microscope - Myzus persicae

    Science.gov (United States)

    Training is a critical part of aphid (Hemiptera: Aphididae) identification. This video provides provides training to identify the green peach aphid, Myzus persicae, using a compound microscope and an electronic identification key called “LUCID.” The video demonstrates key morphological structures t...

  20. National Plant Diagnostic Network, Taxonomic training videos: Aphids under the microscope - Cerataphis brasiliensis

    Science.gov (United States)

    Training is a critical part of aphid (Hemiptera: Aphididae) identification. This video provides provides training to identify the palm aphid, Cerataphis brasiliensis, using a compound microscope and an electronic identification key called “LUCID.” The video demonstrates key morphological structures...

  1. First report on the entomopathogenic genus Neozygites (Entomophthoromycota) and Neozygites osornensis on aphids in Brazil

    Science.gov (United States)

    The genus Neozygites has been known in Brazil until now only on mites, and this is its first report on aphids in Brazil. Tree-dwelling aphids (Cinara sp.) on a cypress tree were regularly monitored for entomopathogenic fungi in the city of Terezópolis de Goiás in Central Brazil between July 2014 and...

  2. Fitness trade-off in peach-potato aphids (Myzus persicae) between insecticide resistance and vulnerability to parasitoid attack at several spatial scales.

    Science.gov (United States)

    Foster, S P; Denholm, I; Poppy, G M; Thompson, R; Powell, W

    2011-12-01

    Insecticide-resistant clones of the peach-potato aphid, Myzus persicae (Sulzer), have previously been shown to have a reduced response to aphid alarm pheromone compared to susceptible ones. The resulting vulnerability of susceptible and resistant aphids to attack by the primary endoparasitoid, Diaeretiella rapae (McIntosh), was investigated across three spatial scales. These scales ranged from aphids confined on individual leaves exposed to single female parasitoids, to aphids on groups of whole plants exposed to several parasitoids. In all experiments, significantly fewer aphids from insecticide-susceptible clones became parasitised compared to insecticide-resistant aphids. Investigations of aphid movement showed at the largest spatial scale that more susceptible aphids than resistant aphids moved from their inoculation leaves to other leaves on the same plant after exposure to parasitoids. The findings imply that parasitoids, and possibly other natural enemies, can influence the evolution and dynamics of insecticide resistance through pleiotropic effects of resistance genes on important behavioural traits.

  3. Quality of different aphids as hosts of the parasitoid Lysiphlebus testaceipes (Cresson) (Hymenoptera: Braconidae, Aphidiinae); Qualidade de diferentes especies de pulgoes como hospedeiros do parasitoide Lysiphlebus testaceipes (Cresson) (Hymenoptera: Braconidae, Aphidiinae)

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Robson J.; Bueno, Vanda H.P. [Universidade Federal de Lavras, MG (Brazil). Dept. de Entomologia]. E-mail: vhpbueno@ufla.br; Sampaio, Marcus V.[Universidade Federal de Uberlandia (UFU), MG (Brazil). Inst. de Ciencias Agrarias]. E-mail: mvsampaio@iciag.ufu.br

    2008-03-15

    Lysiphlebus testaceipes (Cresson) has a broad aphid host range; however the quality of these preys may interfere in its biological feature. This study aimed to evaluate the quality of three Macrosiphini, Brevicoryne brassicae (L.), Lipaphis erysimi (Kaltenbach) and Myzus persicae (Sulzer), and three Aphidini Schizaphis graminum (Rondani) Rhopalosiphum maidis (Fitch) and Aphis gossypii Glover as hosts to L. testaceipes and to determine the relation possible of host preference, of size and quality of the host. The tests were carried out in climatic chamber at 25 {+-} 1 deg C, RH 70 {+-} 10% and 12h photophase. The parasitoid did not oviposite in B. brassicae and L. erysimi, while the other species were nutritionally suitable to the parasitoid. L. testaceipes showed preference for aphids from tribe Aphidini and these hosts presented better quality to the parasitoid when compared to Macrosiphini. Interactions among size, preference and quality between the Aphidini were found. L. testaceipes showed preference (parasitism rate 76.7%) for R. maidis, the bigger host (hind tibia with 0.281 mm). This host provided bigger size (hind tibia with 0.49 mm) and higher emergence rate (95.6%) to the parasitoid when compared to A. gossypii (parasitism rate of 55.7%). Also the smaller host A. gossypii (0.266 mm) provided smaller size hind tibia (0.45 mm) and higher mortality of the parasitoid (emergence rate 72.1%). However, the development time was shorter and the longevity was higher in A. gossypii (6.3 and 5.4 days, respectively) when compared to the host R. maidis (6.7 and 3.8 days, respectively), and not been related to host size. (author)

  4. The effect of co-infestation by conspecific and heterospecific aphids on the feeding behaviour of Nasonovia ribisnigri on resistant and susceptible lettuce cultivars

    OpenAIRE

    Broeke, ten, Cindy J.M.; Dicke, Marcel; Loon, van, Joop J.A.

    2017-01-01

    Aphid saliva can suppress the blocking of sieve elements, a reaction that plants employ to inhibit aphid feeding, but aphid saliva can also elicit plant defence responses. Such plant responses might affect interactions between different aphid species and intraspecifically, e.g. among different biotypes. The objectives of our study were to investigate if feeding behaviour and performance of two biotypes of the lettuce aphid Nasonovia ribisnigri are affected by (1) feeding by the other biotype ...

  5. Aphid symbionts and endogenous resistance traits mediate competition between rival parasitoids.

    Science.gov (United States)

    Kraft, Laura J; Kopco, James; Harmon, Jason P; Oliver, Kerry M

    2017-01-01

    Insects use endogenous mechanisms and infection with protective symbionts to thwart attacks from natural enemies. Defenses that target specific enemies, however, potentially mediate competition between rivals and thereby impact community composition. Following its introduction to North America to control pea aphids (Acyrthosiphon pisum), the parasitoid Aphidius ervi competitively displaced other parasitoids, except for the native Praon pequodorum. The pea aphid exhibits tremendous clonal variation in resistance to A. ervi, primarily through infection with the heritable bacterial symbiont Hamiltonella defensa, although some symbiont-free aphid genotypes encode endogenous resistance. Interestingly, H. defensa strains and aphid genotypes that protect against A. ervi, provide no protection against the closely related, P. pequodorum. Given the specificity of aphid defenses, we hypothesized that aphid resistance traits may contribute to the continued persistence of P. pequodorum. We conducted multiparasitism assays to determine whether aphid resistance traits mediate internal competition between these two solitary parasitoid species, but found this was not the case; P. pequodorum was the successful internal competitor across lines varying in susceptibility to A. ervi. Next, to determine whether resistance traits influence competitive interactions resulting in the stable persistence of P. pequodorum, we established replicated cages varying in the proportion of resistant aphids and recorded successful parasitism for each wasp species over time. As expected, A. ervi outcompeted P. pequodorum in cages containing only susceptible aphids. However, P. pequodorum not only persisted, but was the superior competitor in populations containing any proportion (20-100%) of resistant aphids (20-100%). Smaller scale, better replicated competition cage studies corroborated this finding, and no-competition and behavioral assays provide insight into the processes mediating competition

  6. Diversity, frequency, and geographic distribution of facultative bacterial endosymbionts in introduced aphid pests.

    Science.gov (United States)

    Sepúlveda, Daniela A; Zepeda-Paulo, Francisca; Ramírez, Claudio C; Lavandero, Blas; Figueroa, Christian C

    2017-06-01

    Facultative bacterial endosymbionts in insects have been under intense study during the last years. Endosymbionts can modify the insect's phenotype, conferring adaptive advantages under environmental stress. This seems particularly relevant for a group of worldwide agricultural aphid pests, because endosymbionts modify key fitness-related traits, including host plant use, protection against natural enemies and heat tolerance. Aimed to understand the role of facultative endosymbionts on the success of introduced aphid pests, the distribution and abundance of 5 facultative endosymbionts (Hamiltonella defensa, Regiella insecticola, Serratia symbiotica, Rickettsia and Spiroplasma) were studied and compared in 4 cereal aphids (Sitobion avenae, Diuraphis noxia, Metopolophium dirhodum and Schizaphis graminium) and in the pea aphid Acyrthosiphon pisum complex from 2 agroclimatic zones in Chile. Overall, infections with facultative endosymbionts exhibited a highly variable and characteristic pattern depending on the aphid species/host race and geographic zone, which could explain the success of aphid pest populations after their introduction. While S. symbiotica and H. defensa were the most frequent endosymbionts carried by the A. pisum pea-race and A. pisum alfalfa-race aphids, respectively, the most frequent facultative endosymbiont carried by all cereal aphids was R. insecticola. Interestingly, a highly variable composition of endosymbionts carried by S. avenae was also observed between agroclimatic zones, suggesting that endosymbionts are responding differentially to abiotic variables (temperature and precipitations). In addition, our findings constitute the first report of bacterial endosymbionts in cereal aphid species not screened before, and also the first report of aphid endosymbionts in Chile. © 2016 Institute of Zoology, Chinese Academy of Sciences.

  7. Overexpression of IRM1 enhances resistance to aphids in Arabidopsis thaliana.

    Science.gov (United States)

    Chen, Xi; Zhang, Zhao; Visser, Richard G F; Broekgaarden, Colette; Vosman, Ben

    2013-01-01

    Aphids are insects that cause direct damage to crops by the removal of phloem sap, but more importantly they spread devastating viruses. Aphids use their sophisticated mouthpart (i.e. stylet) to feed from the phloem sieve elements of the host plant. To identify genes that affect host plant resistance to aphids, we previously screened an Arabidopsis thaliana activation tag mutant collection. In such mutants, tagged genes are overexpressed by a strong 35S enhancer adjacent to the natural promoter, resulting in a dominant gain-of-function phenotype. We previously identified several of these mutants on which the aphid Myzus persicae showed a reduced population development compared with wild type. In the present study we show that the gene responsible for the phenotype of one of the mutants is At5g65040 and named this gene Increased Resistance to Myzus persicae 1 (IRM1). Overexpression of the cloned IRM1 gene conferred a phenotype identical to that of the original mutant. Conversely, an IRM1 knockout mutant promoted aphid population development compared to the wild type. We performed Electrical Penetration Graph analysis to investigate how probing and feeding behaviour of aphids was affected on plants that either overexpressed IRM1 or contained a knockout mutation in this gene. The EPG results indicated that the aphids encounter resistance factors while reaching for the phloem on the overexpressing line. This resistance mechanism also affected other aphid species and is suggested to be of mechanical nature. Interestingly, genetic variation for IRM1 expression in response to aphid attack was observed. Upon aphid attack the expression of IRM1 was initially (after 6 hours) induced in ecotype Wassilewskija followed by suppression. In Columbia-0, IRM1 expression was already suppressed six hours after the start of the infestation. The resistance conferred by the overexpression of IRM1 in A. thaliana trades off with plant growth.

  8. Overexpression of IRM1 enhances resistance to aphids in Arabidopsis thaliana.

    Directory of Open Access Journals (Sweden)

    Xi Chen

    Full Text Available Aphids are insects that cause direct damage to crops by the removal of phloem sap, but more importantly they spread devastating viruses. Aphids use their sophisticated mouthpart (i.e. stylet to feed from the phloem sieve elements of the host plant. To identify genes that affect host plant resistance to aphids, we previously screened an Arabidopsis thaliana activation tag mutant collection. In such mutants, tagged genes are overexpressed by a strong 35S enhancer adjacent to the natural promoter, resulting in a dominant gain-of-function phenotype. We previously identified several of these mutants on which the aphid Myzus persicae showed a reduced population development compared with wild type. In the present study we show that the gene responsible for the phenotype of one of the mutants is At5g65040 and named this gene Increased Resistance to Myzus persicae 1 (IRM1. Overexpression of the cloned IRM1 gene conferred a phenotype identical to that of the original mutant. Conversely, an IRM1 knockout mutant promoted aphid population development compared to the wild type. We performed Electrical Penetration Graph analysis to investigate how probing and feeding behaviour of aphids was affected on plants that either overexpressed IRM1 or contained a knockout mutation in this gene. The EPG results indicated that the aphids encounter resistance factors while reaching for the phloem on the overexpressing line. This resistance mechanism also affected other aphid species and is suggested to be of mechanical nature. Interestingly, genetic variation for IRM1 expression in response to aphid attack was observed. Upon aphid attack the expression of IRM1 was initially (after 6 hours induced in ecotype Wassilewskija followed by suppression. In Columbia-0, IRM1 expression was already suppressed six hours after the start of the infestation. The resistance conferred by the overexpression of IRM1 in A. thaliana trades off with plant growth.

  9. Effect of plant nutrition on aphid size, prey consumption, and life history characteristics of green lacewing.

    Science.gov (United States)

    Aqueel, Muhammad A; Collins, Catherine M; Raza, Abu-bakar M; Ahmad, Shahbaz; Tariq, Muhammad; Leather, Simon R

    2014-02-01

    Plant quality can directly and indirectly affect the third trophic level. The predation by all the instars of green lacewing, Chrysoperla carnea (S.) (Neuroptera: Chrysopidae) on the cereal aphids, Rhopalosiphum padi (L.), and Sitobion avenae (F.) at varying nitrogen fertilizer levels was calculated under laboratory conditions. Wheat plants were grown on four nitrogen fertilizer levels and aphids were fed on these plants and subsequently offered as food to the C. carnea. Aphid densities of 10, 30, and 90 were offered to first, second, and third instar larvae of green lacewing. Increased nitrogen application improved nitrogen contents of the plants and also the body weight of cereal aphids feeding on them. Aphid consumption by green lacewings was reduced with the increase in nitrogen content in the host plants of aphids. Predation of both aphid species by first, second, and third instars larvae of C. carnea was highest on aphids reared on plants with the lowest rate of fertilization, suggesting a compensatory consumption to overcome reduced biomass (lower aphid size). Total biomass devoured by C. carnea on all nitrogen fertilizer treatments was not statistically different. Additionally, the heavier host prey influenced by the plant nutrition had an effect on the life history characteristics of green lacewings. The larval duration, pupal weight, pupal duration, fecundity, and male and female longevity were significantly affected by the level of nitrogen fertilization to the aphid's host plants, except for pupal duration when fed on S. avenae. This study showed that quantity of prey supplied to the larvae affects the prey consumption and thereafter the life history characteristics of green lacewings. © 2013 Institute of Zoology, Chinese Academy of Sciences.

  10. Parasitization of commercially available parasitoid species against the lettuce aphid, Nasonovia ribisnigri (Hemiptera: Aphididae).

    Science.gov (United States)

    Shrestha, G; Skovgård, H; Enkegaard, A

    2014-12-01

    The lettuce aphid, Nasonovia ribisnigri (Mosley), is an economically important pest of lettuce worldwide. Little documentation exists for the control efficacy of aphid parasitoids against N. ribisnigri. This laboratory study evaluated three commercially available parasitoid species: Aphidius colemani (Viereck), Lysiphlebus testaceipes (Cresson), and Aphelinus abdominalis (Dalman) for their mortality impact on N. ribisnigri. The green peach aphid Myzus persicae (Sulzer) was included as a reference aphid. The study showed that A. abdominalis successfully parasitized 39 and 13% of the offered N. ribisnigri and M. persicae, respectively, within a 24-h exposure period. In contrast, none of the lettuce aphids exposed to Ap. colemani or L. testaceipes were successfully parasitized, whereas 60 and 3.5% of M. persicae, respectively, were successfully parasitized within a 6-h exposure period. Lettuce aphid mortality due to incomplete parasitization was 26 and 31% when exposed to Ap. colemani and L. testaceipes, respectively, with corresponding values for M. persicae being 5 and 10%, respectively. Mortality as a result of incomplete parasitization when aphids were exposed to A. abdominalis was low for both aphid species. The total mortality inflicted by A. abdominalis within a 24-h exposure period was 51% for the lettuce aphids and significantly less (19%) for green peach aphids. In contrast, Ap. colemani inflicted a higher mortality in M. persicae (65%) compared with N. ribisnigri (26%) within a 6-h exposure period. L. testaceipes caused a greater mortality in N. ribisnigri as compared with M. persicae. This study concludes that A. abdominalis has the potential to be used against N. ribisnigri in inoculative biocontrol programs as compared with the other parasitoid species based on successful parasitization.

  11. The green lacewing, Chrysoperla carnea: preference between lettuce aphids, Nasonovia ribisnigri, and Western flower thrips, Frankliniella occidentalis.

    Science.gov (United States)

    Shrestha, Govinda; Enkegaard, Annie

    2013-01-01

    This study investigated the prey preference of 3(rd) instar green lacewing, Chrysoperla carnea Stephens (Neuroptera: Chrysopidae), between western flower thrips, Frankliniella occidentalis (Pergande) (Thysanoptera: Thripidae), and lettuce aphids, Nasonovia ribisnigri (Mosley) (Hemiptera: Aphididae) in laboratory experiments at 25 ± 1° C and 70 ± 5% RH with five prey ratios (10 aphids:80 thrips, 25 aphids:65 thrips, 45 aphids:45 thrips, 65 aphids:25 thrips, and 80 aphids:10 thrips). Third instar C. carnea larvae readily preyed upon both thrips and aphids, with thrips mortality varying between 40 and 90%, and aphid mortality between 52 and 98%. Chrysoperla carnea had a significant preference for N. ribisnigri at two ratios (10 aphids:80 thrips, 65 aphids:25 thrips), but no preference for either prey at the other ratios. There was no significant linear relationship between preference index and prey ratio, but a significant intercept of the linear regression indicated an overall preference of C. carnea for aphids with a value of 0.651 ± 0.054. The possible implications of these findings for control of N. ribisnigri and F. occidentalis by C. carnea are discussed.

  12. A trio of viral proteins tunes aphid-plant interactions in Arabidopsis thaliana.

    Science.gov (United States)

    Westwood, Jack H; Groen, Simon C; Du, Zhiyou; Murphy, Alex M; Anggoro, Damar Tri; Tungadi, Trisna; Luang-In, Vijitra; Lewsey, Mathew G; Rossiter, John T; Powell, Glen; Smith, Alison G; Carr, John P

    2013-01-01

    Virus-induced deterrence to aphid feeding is believed to promote plant virus transmission by encouraging migration of virus-bearing insects away from infected plants. We investigated the effects of infection by an aphid-transmitted virus, cucumber mosaic virus (CMV), on the interaction of Arabidopsis thaliana, one of the natural hosts for CMV, with Myzus persicae (common names: 'peach-potato aphid', 'green peach aphid'). Infection of Arabidopsis (ecotype Col-0) with CMV strain Fny (Fny-CMV) induced biosynthesis of the aphid feeding-deterrent 4-methoxy-indol-3-yl-methylglucosinolate (4MI3M). 4MI3M inhibited phloem ingestion by aphids and consequently discouraged aphid settling. The CMV 2b protein is a suppressor of antiviral RNA silencing, which has previously been implicated in altering plant-aphid interactions. Its presence in infected hosts enhances the accumulation of CMV and the other four viral proteins. Another viral gene product, the 2a protein (an RNA-dependent RNA polymerase), triggers defensive signaling, leading to increased 4MI3M accumulation. The 2b protein can inhibit ARGONAUTE1 (AGO1), a host factor that both positively-regulates 4MI3M biosynthesis and negatively-regulates accumulation of substance(s) toxic to aphids. However, the 1a replicase protein moderated 2b-mediated inhibition of AGO1, ensuring that aphids were deterred from feeding but not poisoned. The LS strain of CMV did not induce feeding deterrence in Arabidopsis ecotype Col-0. Inhibition of AGO1 by the 2b protein could act as a booby trap since this will trigger antibiosis against aphids. However, for Fny-CMV the interplay of three viral proteins (1a, 2a and 2b) appears to balance the need of the virus to inhibit antiviral silencing, while inducing a mild resistance (antixenosis) that is thought to promote transmission. The strain-specific effects of CMV on Arabidopsis-aphid interactions, and differences between the effects of Fny-CMV on this plant and those seen previously in tobacco

  13. Association between patterns in agricultural landscapes and the abundance of wheat aphids and their natural enemies

    Directory of Open Access Journals (Sweden)

    Jun-He Liu

    2013-12-01

    Full Text Available Effect of different landscape patterns on insect distribution and diversity was determined by studying wheat fields in complex and simple agricultural landscapes. We studied the influence of simple and complex agricultural landscapes on wheat aphids and their natural enemies in terms of the time of migration, abundance, population growth rate of the aphids and parasitoid abundance. The results indicate that the diversity of natural enemies is greater in the complex agricultural landscape and the effect of natural enemies on the abundance of wheat aphids was greater in the complex non-crop habitat. Wheat aphid hyperparasitoid populations differed in different agricultural landscapes with a greater number of parasites in complex agricultural landscapes. Resident times of predatory natural enemies differ in simple and complex agricultural landscapes. The number and types of predatory natural enemies are higher in complex than simple agricultural landscapes. Aphid population growth rates and the maximum population densities of wheat aphids differed significantly in simple and complex landscapes. Maximum population densities of different wheat aphids were very different in simple and complex landscape structures. The population growth rates and maximum population densities of the different predatory natural enemies and hyperparasitoids differed greatly.

  14. Redox Control of Aphid Resistance through Altered Cell Wall Composition and Nutritional Quality1[OPEN

    Science.gov (United States)

    Rasool, Brwa; Marcus, Sue E.

    2017-01-01

    The mechanisms underpinning plant perception of phloem-feeding insects, particularly aphids, remain poorly characterized. Therefore, the role of apoplastic redox state in controlling aphid infestation was explored using transgenic tobacco (Nicotiana tabacum) plants that have either high (PAO) or low (TAO) ascorbate oxidase (AO) activities relative to the wild type. Only a small number of leaf transcripts and metabolites were changed in response to genotype, and cell wall composition was largely unaffected. Aphid fecundity was decreased significantly in TAO plants compared with other lines. Leaf sugar levels were increased and maximum extractable AO activities were decreased in response to aphids in all genotypes. Transcripts encoding the Respiratory Burst Oxidase Homolog F, signaling components involved in ethylene and other hormone-mediated pathways, photosynthetic electron transport components, sugar, amino acid, and cell wall metabolism, were increased significantly in the TAO plants in response to aphid perception relative to other lines. The levels of galactosylated xyloglucan were decreased significantly in response to aphid feeding in all the lines, the effect being the least in the TAO plants. Similarly, all lines exhibited increases in tightly bound (1→4)-β-galactan. Taken together, these findings identify AO-dependent mechanisms that limit aphid infestation. PMID:28743764

  15. Redox Control of Aphid Resistance through Altered Cell Wall Composition and Nutritional Quality.

    Science.gov (United States)

    Rasool, Brwa; McGowan, Jack; Pastok, Daria; Marcus, Sue E; Morris, Jenny A; Verrall, Susan R; Hedley, Peter E; Hancock, Robert D; Foyer, Christine H

    2017-09-01

    The mechanisms underpinning plant perception of phloem-feeding insects, particularly aphids, remain poorly characterized. Therefore, the role of apoplastic redox state in controlling aphid infestation was explored using transgenic tobacco ( Nicotiana tabacum ) plants that have either high (PAO) or low (TAO) ascorbate oxidase (AO) activities relative to the wild type. Only a small number of leaf transcripts and metabolites were changed in response to genotype, and cell wall composition was largely unaffected. Aphid fecundity was decreased significantly in TAO plants compared with other lines. Leaf sugar levels were increased and maximum extractable AO activities were decreased in response to aphids in all genotypes. Transcripts encoding the Respiratory Burst Oxidase Homolog F, signaling components involved in ethylene and other hormone-mediated pathways, photosynthetic electron transport components, sugar, amino acid, and cell wall metabolism, were increased significantly in the TAO plants in response to aphid perception relative to other lines. The levels of galactosylated xyloglucan were decreased significantly in response to aphid feeding in all the lines, the effect being the least in the TAO plants. Similarly, all lines exhibited increases in tightly bound (1→4)-β-galactan. Taken together, these findings identify AO-dependent mechanisms that limit aphid infestation. © 2017 American Society of Plant Biologists. All Rights Reserved.

  16. Differential Expression of Superoxide Dismutase Genes in Aphid-Stressed Maize (Zea mays L.) Seedlings

    Science.gov (United States)

    Sytykiewicz, Hubert

    2014-01-01

    The aim of this study was to compare the expression patterns of superoxide dismutase genes (sod2, sod3.4, sod9 and sodB) in seedling leaves of the Zea mays L. Tasty Sweet (susceptible) and Ambrozja (relatively resistant) cultivars infested with one of two hemipteran species, namely monophagous Sitobion avenae F. (grain aphid) or oligophagous Rhopalosiphum padi L. (bird cherry-oat aphid). Secondarily, aphid-elicited alternations in the antioxidative capacity towards DPPH (1,1-diphenyl-2-picrylhydrazyl) radical in insect-stressed plants were evaluated. Comprehensive comparison of expression profiles of the four sod genes showed that both insect species evoked significant upregulation of three genes sod2, sod3.4 and sod9). However, aphid infestation affected non-significant fluctuations in expression of sodB gene in seedlings of both maize genotypes. The highest levels of transcript accumulation occurred at 8 h (sod2 and sod3.4) or 24 h (sod9) post-infestation, and aphid-induced changes in the expression of sod genes were more dramatic in the Ambrozja cultivar than in the Tasty Sweet variety. Furthermore, bird cherry-oat aphid colonization had a more substantial impact on levels of DPPH radical scavenging activity in infested host seedlings than grain aphid colonization. Additionally, Ambrozja plants infested by either hemipteran species showed markedly lower antioxidative capacity compared with attacked Tasty Sweet plants. PMID:24722734

  17. AtWRKY22 promotes susceptibility to aphids and modulates salicylic acid and jasmonic acid signalling.

    Science.gov (United States)

    Kloth, Karen J; Wiegers, Gerrie L; Busscher-Lange, Jacqueline; van Haarst, Jan C; Kruijer, Willem; Bouwmeester, Harro J; Dicke, Marcel; Jongsma, Maarten A

    2016-05-01

    Aphids induce many transcriptional perturbations in their host plants, but the signalling cascades responsible and the effects on plant resistance are largely unknown. Through a genome-wide association (GWA) mapping study in Arabidopsis thaliana, we identified WRKY22 as a candidate gene associated with feeding behaviour of the green peach aphid, Myzus persicae The transcription factor WRKY22 is known to be involved in pathogen-triggered immunity, and WRKY22 gene expression has been shown to be induced by aphids. Assessment of aphid population development and feeding behaviour on knockout mutants and overexpression lines showed that WRKY22 increases susceptibility to M. persicae via a mesophyll-located mechanism. mRNA sequencing analysis of aphid-infested wrky22 knockout plants revealed the up-regulation of genes involved in salicylic acid (SA) signalling and down-regulation of genes involved in plant growth and cell-wall loosening. In addition, mechanostimulation of knockout plants by clip cages up-regulated jasmonic acid (JA)-responsive genes, resulting in substantial negative JA-SA crosstalk. Based on this and previous studies, WRKY22 is considered to modulate the interplay between the SA and JA pathways in response to a wide range of biotic and abiotic stimuli. Its induction by aphids and its role in suppressing SA and JA signalling make WRKY22 a potential target for aphids to manipulate host plant defences. © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  18. Characterization of Peroxidase Changes in Tolerant and Susceptible Soybeans Challenged by Soybean Aphid (Hemiptera: Aphididae).

    Science.gov (United States)

    Marchi-Werle, L; Heng-Moss, T M; Hunt, T E; Baldin, E L L; Baird, L M

    2014-10-01

    Changes in protein content, peroxidase activity, and isozyme profiles in response to soybean aphid feeding were documented at V1 (fully developed leaves at unifoliate node, first trifoliate leaf unrolled) and V3 (fully developed leaf at second trifoliate node, third trifoliate leaf unrolled) stages of soybean aphid-tolerant (KS4202) and -susceptible (SD76R) soybeans. Protein content was similar between infested and control V1 and V3 stage plants for both KS4202 and SD76R at 6, 16, and 22 d after aphid introduction. Enzyme kinetics studies documented that control and aphid-infested KS4202 V1 stage and SD76R V1 and V3 stages had similar levels of peroxidase activity at the three time points evaluated. In contrast, KS4202 aphid-infested plants at the V3 stage had significantly higher peroxidase activity levels than control plants at 6 and 22 d after aphid introduction. The differences in peroxidase activity observed between infested and control V3 stage KS4202 plants at these two time points suggest that peroxidases may be playing multiple roles in the tolerant plant. Native gels stained for peroxidase were able to detect differences in the isozyme profiles of aphid-infested and control plants for both KS4202 and SD76R. © 2014 Entomological Society of America.

  19. Indirect effect of a transgenic wheat on aphids through enhanced powdery mildew resistance.

    Directory of Open Access Journals (Sweden)

    Simone von Burg

    Full Text Available In agricultural ecosystems, arthropod herbivores and fungal pathogens are likely to colonise the same plant and may therefore affect each other directly or indirectly. The fungus that causes powdery mildew (Blumeria graminis tritici and cereal aphids are important pests of wheat but interactions between them have seldom been investigated. We studied the effects of powdery mildew of wheat on two cereal aphid species, Metopolophium dirhodum and Rhopalosiphum padi. We hypothesized that aphid number and size will be smaller on powdery mildew-infected plants than on non-infected plants. In a first experiment we used six commercially available wheat varieties whereas in the second experiment we used a genetically modified (GM mildew-resistant wheat line and its non-transgenic sister line. Because the two lines differed only in the presence of the transgene and in powdery mildew resistance, experiment 2 avoided the confounding effect of variety. In both experiments, the number of M. dirhodum but not of R. padi was reduced by powdery mildew infection. Transgenic mildew-resistant lines therefore harboured bigger aphid populations than the non-transgenic lines. For both aphid species individual size was mostly influenced by aphid number. Our results indicate that plants that are protected from a particular pest (powdery mildew became more favourable for another pest (aphids.

  20. Aphid wing induction and ecological costs of alarm pheromone emission under field conditions.

    Directory of Open Access Journals (Sweden)

    Eduardo Hatano

    2010-06-01

    Full Text Available The pea aphid, Acyrthosiphon pisum Harris, (Homoptera: Aphididae releases the volatile sesquiterpene (E-beta-farnesene (EBF when attacked by a predator, triggering escape responses in the aphid colony. Recently, it was shown that this alarm pheromone also mediates the production of the winged dispersal morph under laboratory conditions. The present work tested the wing-inducing effect of EBF under field conditions. Aphid colonies were exposed to two treatments (control and EBF and tested in two different environmental conditions (field and laboratory. As in previous experiments aphids produced higher proportion of winged morphs among their offspring when exposed to EBF in the laboratory but even under field conditions the proportion of winged offspring was higher after EBF application (6.84+/-0.98% compared to the hexane control (1.54+/-0.25%. In the field, the proportion of adult aphids found on the plant at the end of the experiment was lower in the EBF treatment (58.1+/-5.5% than in the control (66.9+/-4.6%, in contrast to the climate chamber test where the numbers of adult aphids found on the plant at the end of the experiment were, in both treatments, similar to the numbers put on the plant initially. Our results show that the role of EBF in aphid wing induction is also apparent under field conditions and they may indicate a potential cost of EBF emission. They also emphasize the importance of investigating the ecological role of induced defences under field conditions.

  1. Differential expression of superoxide dismutase genes in aphid-stressed maize (Zea mays L. seedlings.

    Directory of Open Access Journals (Sweden)

    Hubert Sytykiewicz

    Full Text Available The aim of this study was to compare the expression patterns of superoxide dismutase genes (sod2, sod3.4, sod9 and sodB in seedling leaves of the Zea mays L. Tasty Sweet (susceptible and Ambrozja (relatively resistant cultivars infested with one of two hemipteran species, namely monophagous Sitobion avenae F. (grain aphid or oligophagous Rhopalosiphum padi L. (bird cherry-oat aphid. Secondarily, aphid-elicited alternations in the antioxidative capacity towards DPPH (1,1-diphenyl-2-picrylhydrazyl radical in insect-stressed plants were evaluated. Comprehensive comparison of expression profiles of the four sod genes showed that both insect species evoked significant upregulation of three genes sod2, sod3.4 and sod9. However, aphid infestation affected non-significant fluctuations in expression of sodB gene in seedlings of both maize genotypes. The highest levels of transcript accumulation occurred at 8 h (sod2 and sod3.4 or 24 h (sod9 post-infestation, and aphid-induced changes in the expression of sod genes were more dramatic in the Ambrozja cultivar than in the Tasty Sweet variety. Furthermore, bird cherry-oat aphid colonization had a more substantial impact on levels of DPPH radical scavenging activity in infested host seedlings than grain aphid colonization. Additionally, Ambrozja plants infested by either hemipteran species showed markedly lower antioxidative capacity compared with attacked Tasty Sweet plants.

  2. Coping with shorter days: do phenology shifts constrain aphid fitness?

    OpenAIRE

    Joschinski, Jens; Hovestadt, Thomas; Krauss, Jochen

    2015-01-01

    Climate change can alter the phenology of organisms. It may thus lead seasonal organisms to face different day lengths than in the past, and the fitness consequences of these changes are as yet unclear. To study such effects, we used the pea aphid Acyrthosiphon pisum as a model organism, as it has obligately asexual clones which can be used to study day length effects without eliciting a seasonal response. We recorded life-history traits under short and long days, both with two realistic temp...

  3. Does Aphid Infestation Interfere with Indirect Plant Defense against Lepidopteran Caterpillars in Wild Cabbage?

    Science.gov (United States)

    Li, Yehua; Weldegergis, Berhane T; Chamontri, Surachet; Dicke, Marcel; Gols, Rieta

    2017-05-01

    Attraction of parasitoids to plant volatiles induced by multiple herbivory depends on the specific combinations of attacking herbivore species, especially when their feeding modes activate different defense signalling pathways as has been reported for phloem feeding aphids and tissue feeding caterpillars. We studied the effects of pre-infestation with non-host aphids (Brevicoryne brassicae) for two different time periods on the ability of two parasitoid species to discriminate between volatiles emitted by plants infested by host caterpillars alone and those emitted by plants infested with host caterpillars plus aphids. Using plants originating from three chemically distinct wild cabbage (Brassica oleracea) populations, Diadegma semiclausum switched preference for dually infested plants to preference for plants infested with Plutella xylostella hosts alone when the duration of pre-aphid infestation doubled from 7 to 14 days. Microplitis mediator, a parasitoid of Mamestra brassicae caterpillars, preferred dually-infested plants irrespective of aphid-infestation duration. Separation of the volatile blends emitted by plants infested with hosts plus aphids or with hosts only was poor, based on multivariate statistics. However, emission rates of individual compounds were often reduced in plants infested with aphids plus hosts compared to those emitted by plants infested with hosts alone. This effect depended on host caterpillar species and plant population and was little affected by aphid infestation duration. Thus, the interactive effect of aphids and hosts on plant volatile production and parasitoid attraction can be dynamic and parasitoid specific. The characteristics of the multi-component volatile blends that determine parasitoid attraction are too complex to be deduced from simple correlative statistical analyses.

  4. Soil pathogen-aphid interactions under differences in soil organic matter and mineral fertilizer.

    Science.gov (United States)

    van Gils, Stijn; Tamburini, Giovanni; Marini, Lorenzo; Biere, Arjen; van Agtmaal, Maaike; Tyc, Olaf; Kos, Martine; Kleijn, David; van der Putten, Wim H

    2017-01-01

    There is increasing evidence showing that microbes can influence plant-insect interactions. In addition, various studies have shown that aboveground pathogens can alter the interactions between plants and insects. However, little is known about the role of soil-borne pathogens in plant-insect interactions. It is also not known how environmental conditions, that steer the performance of soil-borne pathogens, might influence these microbe-plant-insect interactions. Here, we studied effects of the soil-borne pathogen Rhizoctonia solani on aphids (Sitobion avenae) using wheat (Triticum aestivum) as a host. In a greenhouse experiment, we tested how different levels of soil organic matter (SOM) and fertilizer addition influence the interactions between plants and aphids. To examine the influence of the existing soil microbiome on the pathogen effects, we used both unsterilized field soil and sterilized field soil. In unsterilized soil with low SOM content, R. solani addition had a negative effect on aphid biomass, whereas it enhanced aphid biomass in soil with high SOM content. In sterilized soil, however, aphid biomass was enhanced by R. solani addition and by high SOM content. Plant biomass was enhanced by fertilizer addition, but only when SOM content was low, or in the absence of R. solani. We conclude that belowground pathogens influence aphid performance and that the effect of soil pathogens on aphids can be more positive in the absence of a soil microbiome. This implies that experiments studying the effect of pathogens under sterile conditions might not represent realistic interactions. Moreover, pathogen-plant-aphid interactions can be more positive for aphids under high SOM conditions. We recommend that soil conditions should be taken into account in the study of microbe-plant-insect interactions.

  5. A Secreted MIF Cytokine Enables Aphid Feeding and Represses Plant Immune Responses.

    Science.gov (United States)

    Naessens, Elodie; Dubreuil, Géraldine; Giordanengo, Philippe; Baron, Olga Lucia; Minet-Kebdani, Naïma; Keller, Harald; Coustau, Christine

    2015-07-20

    Aphids attack virtually all plant species and cause serious crop damages in agriculture. Despite their dramatic impact on food production, little is known about the molecular processes that allow aphids to exploit their host plants. To date, few aphid salivary proteins have been identified that are essential for aphid feeding, and their nature and function remain largely unknown. Here, we show that a macrophage migration inhibitory factor (MIF) is secreted in aphid saliva. In vertebrates, MIFs are important pro-inflammatory cytokines regulating immune responses. MIF proteins are also secreted by parasites of vertebrates, including nematodes, ticks, and protozoa, and participate in the modulation of host immune responses. The finding that a plant parasite secretes a MIF protein prompted us to question the role of the cytokine in the plant-aphid interaction. We show here that expression of MIF genes is crucial for aphid survival, fecundity, and feeding on a host plant. The ectopic expression of aphid MIFs in leaf tissues inhibits major plant immune responses, such as the expression of defense-related genes, callose deposition, and hypersensitive cell death. Functional complementation analyses in vivo allowed demonstrating that MIF1 is the member of the MIF protein family that allows aphids to exploit their host plants. To our knowledge, this is the first report of a cytokine that is secreted by a parasite to modulate plant immune responses. Our findings suggest a so-far unsuspected conservation of infection strategies among parasites of animal and plant species. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. A dietary test of putative deleterious sterols for the aphid Myzus persicae.

    Directory of Open Access Journals (Sweden)

    Sophie Bouvaine

    Full Text Available The aphid Myzus persicae displays high mortality on tobacco plants bearing a transgene which results in the accumulation of the ketosteroids cholestan-3-one and cholest-4-en-3-one in the phloem sap. To test whether the ketosteroids are the basis of the plant resistance to the aphids, M. persicae were reared on chemically-defined diets with different steroid contents at 0.1-10 µg ml(-1. Relative to sterol-free diet and dietary supplements of the two ketosteroids and two phytosterols, dietary cholesterol significantly extended aphid lifespan and increased fecundity at one or more dietary concentrations tested. Median lifespan was 50% lower on the diet supplemented with cholest-4-en-3-one than on the cholesterol-supplemented diet. Aphid feeding rate did not vary significantly across the treatments, indicative of no anti-feedant effect of any sterol/steroid. Aphids reared on diets containing equal amounts of cholesterol and cholest-4-en-3-one showed fecundity equivalent to aphids on diets containing only cholesterol. Aphids were reared on diets that reproduced the relative steroid abundance in the phloem sap of the control and modified tobacco plants, and their performance on the two diet formulations was broadly equivalent. We conclude that, at the concentrations tested, plant ketosteroids support weaker aphid performance than cholesterol, but do not cause acute toxicity to the aphids. In plants, the ketosteroids may act synergistically with plant factors absent from artificial diets but are unlikely to be solely responsible for resistance of modified tobacco plants.

  7. Host settling behavior, reproductive performance, and effects on plant growth of an exotic cereal aphid, Metopolophium festucae subsp. cerealium (Hemiptera: Aphididae).

    Science.gov (United States)

    Davis, T S; Wu, Y; Eigenbrode, S D

    2014-06-01

    The cereal aphid Metopolophium festucae subsp. cerealium (Stroyan) is a recent addition to North America, but little is known about this species in its exotic habitat. We surveyed aphid populations for 3 years (2011-2013) to investigate changes in aphid density in the Pacific Northwest United States. We tested aphid host settling preference and fecundity on eight grass species, four native grasses (bluebunch wheatgrass, blue wild rye, Idaho fescue, and rough fescue) and four cereal crops (corn, wheat, barley, and oat), and evaluated the effects of aphid feeding on plant biomass. Four important findings emerged: 1) aphid prevalence in sweep net samples increased from 2011 to 2012, but remained stable from 2012 to 2013; 2) aphids preferentially settled on wheat and avoided corn, but aphids did not discriminate between barley, oat, and native grasses; 3) aphid fecundity was high on wheat and barley, intermediate on oat and blue wild rye, low on Idaho fescue, rough fescue, and bluebunch wheatgrass, and aphids did not reproduce at all on corn; and 4) barley, corn, oats, Idaho fescue, and blue wild rye were not susceptible to aphid feeding damage, but wheat, rough fescue, and bluebunch wheatgrass were susceptible to aphid feeding damage. Our results suggest that wheat and barley are preferred by M. festucae cerealium, and that aphids reproduce most rapidly on these hosts and cause significant reductions in wheat but not barley growth. Also, M. festucae cerealium appears capable of surviving on native grasses, although only bluebunch wheatgrass and rough fescue were susceptible to aphid feeding damage.

  8. Sugarcane Aphid (Hemiptera: Aphididae): A New Pest on Sorghum in North America

    OpenAIRE

    Bowling, Robert D.; Brewer, Michael J.; Kerns, David L.; Gordy, John; Seiter, Nick; Elliott, Norman E.; Buntin, G. David; Way, M. O.; Royer, T. A.; Biles, Stephen; Maxson, Erin

    2016-01-01

    In 2013, the sugarcane aphid, Melanaphis sacchari (Zehntner) (Hemiptera: Aphididae), a new invasive pest of sorghum species in North America, was confirmed on sorghum in 4 states and 38 counties in the United States. In 2015, the aphid was reported on sorghum in 17 states and over 400 counties as well as all sorghum-producing regions in Mexico. Ability to overwinter on living annual and perennial hosts in southern sorghum-producing areas and wind-aided movement of alate aphids appear to be th...

  9. Orco mediates olfactory behaviors and winged morph differentiation induced by alarm pheromone in the grain aphid, Sitobion avenae.

    Science.gov (United States)

    Fan, Jia; Zhang, Yong; Francis, Frédéric; Cheng, Dengfa; Sun, Jingrun; Chen, Julian

    2015-09-01

    Olfaction is crucial for short distance host location and pheromone detection by insects. Complexes of olfactory receptors (ORs) are composed of odor-specific ORs and OR co-receptors (Orco). Orcos are widely co-expressed with odor-specific ORs and are conserved across insect taxa. A number of Orco orthologs have been studied to date, although none has been identified in cereal aphids. In this study, an Orco gene ortholog was cloned from the grain aphid, Sitobion avenae, and named "SaveOrco"; RNA interference (RNAi) reduced the expression of SaveOrco to 34.11% in aphids, resulting in weaker EAG (electroantennogram) responses to plant volatiles (Z-3-hexene-1-ol; methyl salicylate, MeSA) and aphid alarm pheromone (E-β-farnesene, EBF). Aphid wing differentiation induced by EBF was investigated in both RNAi treated and untreated aphids. EBF induced production of winged aphids in both pre-natal and post-natal periods in untreated aphids, but no such induction was observed in the RNAi-treated aphids. We conclude that SaveOrco is crucial for the aphid's response to pheromones and other volatiles, and is involved in wing differentiation triggered by EBF. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  10. Aphid parasitoid (Hymenoptera:Braconidae: Aphidiinae) in wetland habitats in western Palearctic: key and associated aphid parasitoid guilds

    Czech Academy of Sciences Publication Activity Database

    Tomanović, Ž.; Starý, Petr; Kavallieratos, N. G.; Gagić, V.; Plećaš, M.; Janković, M.; Rakhshani, E.; Ćetković, A.; Petrović, A.

    2012-01-01

    Roč. 48, 1-2 (2012), s. 189-198 ISSN 0037-9271 Grant - others:The Ministry of Science and Technological Development of the Republic of Serbia(RS) 043001 Institutional research plan: CEZ:AV0Z50070508 Keywords : aphid parasitoids * tritrophic interactions * wetlands Subject RIV: EH - Ecology, Behaviour Impact factor: 0.529, year: 2012 http://zoologie.umh.ac.be/asef/pdf/2012_48_01_02/full/Tomanovic_et_al_2012_ASEF_48_1_2_189_198_full.pdf

  11. Cyclical parthenogenesis and viviparity in aphids as evolutionary novelties.

    Science.gov (United States)

    Davis, Gregory K

    2012-09-01

    Evolutionary novelties represent challenges to biologists, particularly those who would like to understand the developmental and genetic changes responsible for their appearance. Most modern aphids possess two apparent evolutionary novelties: cyclical parthenogenesis (a life cycle with both sexual and asexual phases) and viviparity (internal development and live birth of progeny) in their asexual phase. Here I discuss the evolution of these apparent novelties from a developmental standpoint. Although a full understanding of the evolution of cyclical parthenogenesis and viviparity in aphids can seem a daunting task, these complex transitions can at least be broken down into a handful of steps. I argue that these should include the following: a differentiation of two developmentally distinct oocytes; de novo synthesis of centrosomes and modification of meiosis during asexual oogenesis; a loss or bypass of any cell cycle arrest and changes in key developmental events during viviparous oogenesis; and a change in how mothers specify the sexual vs. asexual fates of their progeny. Grappling with the nature of such steps and the order in which they occurred ought to increase our understanding and reduce the apparent novelty of complex evolutionary transitions. © 2012 Wiley Periodicals, Inc.

  12. Day length constrains the time budget of aphid predators.

    Science.gov (United States)

    Joschinski, Jens; Kiess, Tim; Krauss, Jochen

    2017-07-20

    Phenology shifts and range expansions cause organisms to experience novel day length - temperature correlations. Depending on the temporal niche, organisms may benefit or suffer from changes in day length, thus potentially affecting phenological adaptation. We assessed the impact of day length changes on larvae of Chrysoperla carnea (Stephens) and Episyrphus balteatus (De Geer), both of which prey on aphids. Larvae of E. balteatus are night-active, whereas those of C. carnea appear to be crepuscular. We subjected both species in climate chambers to day lengths of 16 : 8 L : D and, to circumvent diapause responses, 20 : 4 L : D. We recorded development times and predation rates of both species. E. balteatus grew 13% faster in the 16 : 8 L : D treatment and preyed on significantly more aphids. In contrast, C. carnea grew 13% faster in the 20 : 4 L : D treatment and higher predation rates in 20 : 4 L : D were marginally significant. Our results show that day length affects development and predation, but that the direction depends on species. Such differences in the use of day length may alter the efficiency of biocontrol agents in a changing climate. © 2017 Institute of Zoology, Chinese Academy of Sciences.

  13. Nitrogen-Mediated Interaction: A Walnut-Aphid-Parasitoid System.

    Science.gov (United States)

    Mace, Kevi C; Mills, Nicholas J

    2016-08-01

    The effects of plant quality on natural enemies are often overlooked in planning and executing biological control programs for insect pests in agriculture. Plant quality, however, could help to explain some of the observed variation in effectiveness of biological control, as it can indirectly influence natural enemy populations. In this study, we used the walnut aphid Chromaphis juglandicola (Kaltenbach) to address the effect of increased nitrogen availability to the host plant on parasitism by the specialist parasitoid Trioxys pallidus (Haliday). In laboratory experiments with walnut seedlings, a higher chlorophyll content index of the foliage in response to added nitrogen was correlated with a decrease in the number of mummies produced by female parasitoids over a 24-h period but an increase in the proportion and the size of female offspring. In field sampling of walnut orchards, there was no relationship between the percent parasitism of walnut aphids by T. pallidus and the chlorophyll content index of the trees. Nitrogen fertilizer and plant quality can clearly affect biological control and should be given greater consideration in integrated pest management. © The Authors 2016. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  14. Do asexual morphs of the peach-potato aphid, Myzus persicae, utilise the aphid sex pheromone? Behavioural and electrophysiological responses of M. persicae virginoparae to (4aS,7S,7aR)-nepetalactone and its effect on aphid performance.

    Science.gov (United States)

    Fernández-Grandon, G Mandela; Woodcock, Christine M; Poppy, Guy M

    2013-08-01

    The aphid sex pheromone component (4aS,7S,7aR)-nepetalactone is considered to be a potential tool for enhancing biological control of aphids. Studies have confirmed its potential to attract parasitoids, increase parasitism rates in the field and also alter the spatial distribution of parasitoids. An important aspect that has been overlooked is the impact that the introduction of nepetalactone may have on aphid populations already present in field or glasshouse environments. The most prevalent pest aphid populations in glasshouse and field environments are the asexual morphs, which are capable of exponential growth if populations are not controlled. The short-term implications of the sex pheromone on asexual aphids were observed through their behavioural response. Using Y-tube olfactometry, it is shown that virginoparae of the peach-potato aphid, Myzus persicae, are repelled by high concentrations of nepetalactone. Long-term effects of the pheromone which may span the aphid's life, or even generations, were assessed via mean relative growth rate (MRGR) and the intrinsic rate of natural increase (rm). Electroantennography also demonstrated that asexual female aphids are able to detect aphid sex pheromone components. To our knowledge, this is the first time it has been reported that M. persicae virginoparae are able to detect aphid sex pheromone components or that their behavioural response and/or performance has been studied. The implications of these results and their significance in understanding semiochemical communication are discussed.

  15. Effect of Bt-cotton on chrysopids, ladybird beetles and their prey: aphids and whiteflies.

    Science.gov (United States)

    Mellet, M A; Schoeman, A S

    2007-06-01

    The effect of Bt-cotton, i.e. genetically modified cotton that contain genes expressing delta-endotoxin, on aphid, whitefly, chrysopid and coccinellid populations was determined with a two-year field study at a cotton farm near Marble Hall, South Africa. Although Bt-cotton is lepidopteran specific, non-lepidopteran arthropod populations may be indirectly influenced by the endotoxin. Abundance of aphid, whitefly, chrysopid and coccinellid populations and predator-prey interactions were used as measures to determine possible effects on the populations under investigation. The cultivation of Bt-cotton had no effect on aphid, whitefly, chrysopid or coccinellid abundance. Positive density dependent interactions occurred between aphids and coccinellids which were not influenced by Bt-cotton. A significant relationship between whitefly and coccinellid abundance, i.e. predator-prey reaction, occurred in the control and sprayed non-Bt cotton fields but was absent from the Bt-cotton fields.

  16. Characterisation and cross-amplification of polymorphic microsatellite loci in ant-associated root-aphids

    DEFF Research Database (Denmark)

    Ivens, A.B.F.; Kronauer, Daniel Jan Christoph; Boomsma, J.J.

    2011-01-01

    Twenty-six polymorphic microsatellite loci were developed for four species of ant-associated root-aphids: Geoica utricularia, Forda marginata, Tetraneura ulmi and Anoecia corni. We found up to 9 alleles per locus, with an average of 4.8. We also report polymorphic cross-amplification of eleven...... of these markers between different pairs of study species. Furthermore, we tested previously published aphid microsatellites and found one locus developed for Pemphigus bursarius to be polymorphic in G. utricularia. These microsatellite markers will be useful to study the population structure of aphids associated...... with the ant Lasius flavus and possibly other ants. Such studies are relevant because: 1. L. flavus mounds and their associated flora and fauna are often key components in protected temperate grasslands, and 2. L. flavus and its diverse community of root-aphids provide an interesting model system for studying...

  17. Foraging behaviour at the fourth trophic level: a comparative study of host location in aphid hyperparasitoids

    NARCIS (Netherlands)

    Buitenhuis, R.; Vet, L.E.M.; Boivin, G.; Brodeur, J.

    2005-01-01

    In studies of foraging behaviour in a multitrophic context, the fourth trophic level has generally been ignored. We used four aphid hyperparasitoid species: Dendrocerus carpenteri (Curtis) (Hymenoptera: Megaspilidae), Asaphes suspensus Walker (Hymenoptera: Pteromalidae), Alloxysta victrix (Westwood)

  18. Heterodera schachtii nematodes interfere with aphid-plant relations on Brassica oleracea

    NARCIS (Netherlands)

    Hol, W.H.G.; Boer, de W.; Termorshuizen, A.J.; Meyer, K.M.; Schneider, J.H.M.; Putten, van der W.H.; Dam, N.M.

    2013-01-01

    Aboveground and belowground herbivore species modify plant defense responses differently. Simultaneous attack can lead to non-additive effects on primary and secondary metabolite composition in roots and shoots. We previously found that aphid (Brevicoryne brassicae) population growth on Brassica

  19. Reproduction and dispersal in an ant-associated root aphid community

    DEFF Research Database (Denmark)

    Ivens, A.B.F.; Kronauer, Daniel Jan Christoph; Pen, I.

    2012-01-01

    Clonal organisms with occasional sex are important for our general understanding of the costs and benefits that maintain sexual reproduction. Cyclically parthenogenetic aphids are highly variable in their frequency of sexual reproduction. However, studies have mostly focused on free-living aphids...... viscosity is high and winged aphids rare, consistent with infrequent horizontal transmission between ant host colonies. The absence of the primary host shrub (Pistacia) may explain the absence of sex in three of the studied species, but elm trees (Ulmus) that are primary hosts of the fourth species (T...... to L. flavus populations, so that all four root aphid species would have realistic opportunities for completing their sexual life cycle....

  20. The polerovirus minor capsid protein determines vector specificity and intestinal tropism in the aphid.

    Science.gov (United States)

    Brault, Véronique; Périgon, Sophie; Reinbold, Catherine; Erdinger, Monique; Scheidecker, Danièle; Herrbach, Etienne; Richards, Ken; Ziegler-Graff, Véronique

    2005-08-01

    Aphid transmission of poleroviruses is highly specific, but the viral determinants governing this specificity are unknown. We used a gene exchange strategy between two poleroviruses with different vectors, Beet western yellows virus (BWYV) and Cucurbit aphid-borne yellows virus (CABYV), to analyze the role of the major and minor capsid proteins in vector specificity. Virus recombinants obtained by exchanging the sequence of the readthrough domain (RTD) between the two viruses replicated in plant protoplasts and in whole plants. The hybrid readthrough protein of chimeric viruses was incorporated into virions. Aphid transmission experiments using infected plants or purified virions revealed that vector specificity is driven by the nature of the RTD. BWYV and CABYV have specific intestinal sites in the vectors for endocytosis: the midgut for BWYV and both midgut and hindgut for CABYV. Localization of hybrid virions in aphids by transmission electron microscopy revealed that gut tropism is also determined by the viral origin of the RTD.

  1. Arabidopsis thaliana-Myzus persicae interaction: shaping the understanding of plant defense against phloem-feeding aphids.

    Science.gov (United States)

    Louis, Joe; Shah, Jyoti

    2013-01-01

    The phloem provides a unique niche for several organisms. Aphids are a large group of Hemipteran insects that utilize stylets present in their mouthparts to pierce sieve elements and drink large volumes of phloem sap. In addition, many aphids also vector viral diseases. Myzus persicae, commonly known as the green peach aphid (GPA), is an important pest of a large variety of plants that includes Arabidopsis thaliana. This review summarizes recent studies that have exploited the compatible interaction between Arabidopsis and GPA to understand the molecular and physiological mechanisms utilized by plants to control aphid infestation, as well as genes and mechanisms that contribute to susceptibility. In addition, recent efforts to identify aphid-delivered elicitors of plant defenses and novel aphid salivary components that facilitate infestation are also discussed.

  2. Expression differences in Aphidius ervi (Hymenoptera: Braconidae females reared on different aphid host species

    Directory of Open Access Journals (Sweden)

    Gabriel I. Ballesteros

    2017-08-01

    Full Text Available The molecular mechanisms that allow generalist parasitoids to exploit many, often very distinct hosts are practically unknown. The wasp Aphidius ervi, a generalist koinobiont parasitoid of aphids, was introduced from Europe into Chile in the late 1970s to control agriculturally important aphid species. A recent study showed significant differences in host preference and host acceptance (infectivity depending on the host A. ervi were reared on. In contrast, no genetic differentiation between A. ervi populations parasitizing different aphid species and aphids of the same species reared on different host plants was found in Chile. Additionally, the same study did not find any fitness effects in A. ervi if offspring were reared on a different host as their mothers. Here, we determined the effect of aphid host species (Sitobion avenae versus Acyrthosiphon pisum reared on two different host plants alfalfa and pea on the transcriptome of adult A. ervi females. We found a large number of differentially expressed genes (between host species: head: 2,765; body: 1,216; within the same aphid host species reared on different host plants: alfalfa versus pea: head 593; body 222. As expected, the transcriptomes from parasitoids reared on the same host species (pea aphid but originating from different host plants (pea versus alfalfa were more similar to each other than the transcriptomes of parasitoids reared on a different aphid host and host plant (head: 648 and 1,524 transcripts; body: 566 and 428 transcripts. We found several differentially expressed odorant binding proteins and olfactory receptor proteins in particular, when we compared parasitoids from different host species. Additionally, we found differentially expressed genes involved in neuronal growth and development as well as signaling pathways. These results point towards a significant rewiring of the transcriptome of A. ervi depending on aphid-plant complex where parasitoids develop, even if

  3. A Trio of Viral Proteins Tunes Aphid-Plant Interactions in Arabidopsis thaliana

    Science.gov (United States)

    Du, Zhiyou; Murphy, Alex M.; Anggoro, Damar Tri; Tungadi, Trisna; Luang-In, Vijitra; Lewsey, Mathew G.; Rossiter, John T.; Powell, Glen; Smith, Alison G.; Carr, John P.

    2013-01-01

    Background Virus-induced deterrence to aphid feeding is believed to promote plant virus transmission by encouraging migration of virus-bearing insects away from infected plants. We investigated the effects of infection by an aphid-transmitted virus, cucumber mosaic virus (CMV), on the interaction of Arabidopsis thaliana, one of the natural hosts for CMV, with Myzus persicae (common names: ‘peach-potato aphid’, ‘green peach aphid’). Methodology/Principal Findings Infection of Arabidopsis (ecotype Col-0) with CMV strain Fny (Fny-CMV) induced biosynthesis of the aphid feeding-deterrent 4-methoxy-indol-3-yl-methylglucosinolate (4MI3M). 4MI3M inhibited phloem ingestion by aphids and consequently discouraged aphid settling. The CMV 2b protein is a suppressor of antiviral RNA silencing, which has previously been implicated in altering plant-aphid interactions. Its presence in infected hosts enhances the accumulation of CMV and the other four viral proteins. Another viral gene product, the 2a protein (an RNA-dependent RNA polymerase), triggers defensive signaling, leading to increased 4MI3M accumulation. The 2b protein can inhibit ARGONAUTE1 (AGO1), a host factor that both positively-regulates 4MI3M biosynthesis and negatively-regulates accumulation of substance(s) toxic to aphids. However, the 1a replicase protein moderated 2b-mediated inhibition of AGO1, ensuring that aphids were deterred from feeding but not poisoned. The LS strain of CMV did not induce feeding deterrence in Arabidopsis ecotype Col-0. Conclusions/Significance Inhibition of AGO1 by the 2b protein could act as a booby trap since this will trigger antibiosis against aphids. However, for Fny-CMV the interplay of three viral proteins (1a, 2a and 2b) appears to balance the need of the virus to inhibit antiviral silencing, while inducing a mild resistance (antixenosis) that is thought to promote transmission. The strain-specific effects of CMV on Arabidopsis-aphid interactions, and differences between

  4. Tracking the global dispersal of a cosmopolitan insect pest, the peach potato aphid

    Directory of Open Access Journals (Sweden)

    Kasprowicz Louise

    2009-05-01

    Full Text Available Abstract Background Global commerce and human transportation are responsible for the range expansion of various insect pests such as the plant sucking aphids. High resolution DNA markers provide the opportunity to examine the genetic structure of aphid populations, identify aphid genotypes and infer their evolutionary history and routes of expansion which is of value in developing management strategies. One of the most widespread aphid species is the peach-potato aphid Myzus persicae, which is considered as a serious pest on various crops in many parts of the world. The present study examined the genetic variation of this aphid at a world scale and then related this to distribution patterns. In particular, 197 aphid parthenogenetic lineages from around the world were analysed with six microsatellite loci. Results Bayesian clustering and admixture analysis split the aphid genotypes into three genetic clusters: European M. persicae persicae, New Zealand M. persicae persicae and Global M. persicae nicotianae. This partition was supported by FST and genetic distance analyses. The results showed two further points, a possible connection between genotypes found in the UK and New Zealand and globalization of nicotianae associated with colonisation of regions where tobacco is not cultivated. In addition, we report the presence of geographically widespread clones and for the first time the presence of a nicotianae genotype in the Old and New World. Lastly, heterozygote deficiency was detected in some sexual and asexual populations. Conclusion The study revealed important genetic variation among the aphid populations we examined and this was partitioned according to region and host-plant. Clonal selection and gene flow between sexual and asexual lineages are important factors shaping the genetic structure of the aphid populations. In addition, the results reflected the globalization of two subspecies of M. persicae with successful clones being spread at

  5. Trophic transfer of soil arsenate and associated toxic effects in a plant-aphid-parasitoid system

    Science.gov (United States)

    Lee, Y. S.; Wee, J.; Lee, M.; Hong, J.; Cho, K.

    2017-12-01

    Terrestrial toxic effects of soil arsenic were studied using a model system consisting of soil which artificially treated with arsenic, Capsicum annum,Myzus persicae and Aphidus colemani. We investigated the transfer of arsenic in a soil-plant-aphid system and toxic effect of elevated arsenic through a plant-aphid-parasitoid system. To remove the effect of poor plant growth on aphid performance, test concentrations which have a no effect on health plant growth were selected. Arsenic concentration of growth medium, plant tissues (root, stem, leaf) aphids were measured to observe the arsenic transfer. Correlation matrix was made with arsenic in growth medium which extracted with three extractants (aquaregia, 0.01 M CaCl2 and deionized water), arsenic in plant tissues and plant performance. Toxic effects of elevated arsenic concentrations on each species were investigated at population level. Studied plant performances were dry weight of each tissue, elongation of roots and stems, area of leaves, chlorophyll content of leaves, protein content of leaves and sugar content of leaves. Mean development time, fecundity and honeydew excretion of the aphids and host choice capacity and parasitism success of the parasitoids were examined. In addition, enzyme activities of the plants and the aphids against reactive oxygen species (ROS) induced by arsenic stress were also investigated. The results suggest that arsenic concentration in plant tissues and aphids were elevated with increased concentration of arsenic in soil. Decreased fecundity and honeydew excretion of aphids were observed and decreased eclosion rate of parasitoids were observed with increased arsenic treatment in growth medium. The results showed low concentration of arsenic in soil can transfer through food chain and can impact on higher trophic level species.

  6. Specificity of Multi-Modal Aphid Defenses against Two Rival Parasitoids

    Science.gov (United States)

    Martinez, Adam J.; Kim, Kyungsun L.; Harmon, Jason P.; Oliver, Kerry M.

    2016-01-01

    Insects are often attacked by multiple natural enemies, imposing dynamic selective pressures for the development and maintenance of enemy-specific resistance. Pea aphids (Acyrthosiphon pisum) have emerged as models for the study of variation in resistance against natural enemies, including parasitoid wasps. Internal defenses against their most common parasitoid wasp, Aphidius ervi, are sourced through two known mechanisms– 1) endogenously encoded resistance or 2) infection with the heritable bacterial symbiont, Hamiltonella defensa. Levels of resistance can range from nearly 0–100% against A. ervi but varies based on aphid genotype and the strain of toxin-encoding bacteriophage (called APSE) carried by Hamiltonella. Previously, other parasitoid wasps were found to commonly attack this host, but North American introductions of A. ervi have apparently displaced all other parasitoids except Praon pequodorum, a related aphidiine braconid wasp, which is still found attacking this host in natural populations. To explain P. pequodorum’s persistence, multiple studies have compared direct competition between both wasps, but have not examined specificity of host defenses as an indirectly mediating factor. Using an array of experimental aphid lines, we first examined whether aphid defenses varied in effectiveness toward either wasp species. Expectedly, both types of aphid defenses were effective against A. ervi, but unexpectedly, were completely ineffective against P. pequodorum. Further examination showed that P. pequodorum wasps suffered no consistent fitness costs from developing in even highly ‘resistant’ aphids. Comparison of both wasps’ egg-larval development revealed that P. pequodorum’s eggs have thicker chorions and hatch two days later than A. ervi’s, likely explaining their differing abilities to overcome aphid defenses. Overall, our results indicate that aphids resistant to A. ervi may serve as reservoirs for P. pequodorum, hence contributing to

  7. The Cellular Immune Response of the Pea Aphid to Foreign Intrusion and Symbiotic Challenge

    Science.gov (United States)

    Schmitz, Antonin; Anselme, Caroline; Ravallec, Marc; Rebuf, Christian; Simon, Jean-Christophe; Gatti, Jean-Luc; Poirié, Marylène

    2012-01-01

    Recent studies suggest that the pea aphid (Acyrthosiphon pisum) has low immune defenses. However, its immune components are largely undescribed, and notably, extensive characterization of circulating cells has been missing. Here, we report characterization of five cell categories in hemolymph of adults of the LL01 pea aphid clone, devoid of secondary symbionts (SS): prohemocytes, plasmatocytes, granulocytes, spherulocytes and wax cells. Circulating lipid-filed wax cells are rare; they otherwise localize at the basis of the cornicles. Spherulocytes, that are likely sub-cuticular sessile cells, are involved in the coagulation process. Prohemocytes have features of precursor cells. Plasmatocytes and granulocytes, the only adherent cells, can form a layer in vivo around inserted foreign objects and phagocytize latex beads or Escherichia coli bacteria injected into aphid hemolymph. Using digital image analysis, we estimated that the hemolymph from one LL01 aphid contains about 600 adherent cells, 35% being granulocytes. Among aphid YR2 lines differing only in their SS content, similar results to LL01 were observed for YR2-Amp (without SS) and YR2-Ss (with Serratia symbiotica), while YR2-Hd (with Hamiltonella defensa) and YR2(Ri) (with Regiella insecticola) had strikingly lower adherent hemocyte numbers and granulocyte proportions. The effect of the presence of SS on A. pisum cellular immunity is thus symbiont-dependent. Interestingly, Buchnera aphidicola (the aphid primary symbiont) and all SS, whether naturally present, released during hemolymph collection, or artificially injected, were internalized by adherent hemocytes. Inside hemocytes, SS were observed in phagocytic vesicles, most often in phagolysosomes. Our results thus raise the question whether aphid symbionts in hemolymph are taken up and destroyed by hemocytes, or actively promote their own internalization, for instance as a way of being transmitted to the next generation. Altogether, we demonstrate here a

  8. Water stress and aphid feeding differentially influence metabolite composition in Arabidopsis thaliana (L..

    Directory of Open Access Journals (Sweden)

    Inga Mewis

    Full Text Available Little is known about how drought stress influences plant secondary metabolite accumulation and how this affects plant defense against different aphids. We therefore cultivated Arabidopsis thaliana (L. plants under well-watered, drought, and water-logged conditions. Two aphid species were selected for this study: the generalist Myzus persicae (Sulzer and the crucifer specialist Brevicoryne brassicae (L.. Metabolite concentrations in the phloem sap, which influence aphid growth, changed particularly under drought stress. Levels of sucrose and several amino acids, such as glutamic acid, proline, isoleucine, and lysine increased, while concentrations of 4-methoxyindol-3-ylmethyl glucosinolate decreased. M. persicae population growth was highest on plants under drought stress conditions. However, B. brassicae did not profit from improved phloem sap quality under drought stress and performed equally in all water treatments. Water stress and aphids generally had an opposite effect on the accumulation of secondary metabolites in the plant rosettes. Drought stress and water-logging led to increased aliphatic glucosinolate and flavonoid levels. Conversely, aphid feeding, especially of M. persicae, reduced levels of flavonoids and glucosinolates in the plants. Correspondingly, transcript levels of aliphatic biosynthetic genes decreased after feeding of both aphid species. Contrary to M. persicae, drought stress did not promote population growth of B. brassicae on these plants. The specialist aphid induced expression of CYP79B2, CYP79B3, and PAD3 with corresponding accumulation of indolyl glucosinolates and camalexin. This was distinct from M. persicae, which did not elicit similarly strong camalexin accumulation, which led to the hypothesis of a specific defense adaptations against the specialist aphid.

  9. Water stress and aphid feeding differentially influence metabolite composition in Arabidopsis thaliana (L.).

    Science.gov (United States)

    Mewis, Inga; Khan, Mohammed A M; Glawischnig, Erich; Schreiner, Monika; Ulrichs, Christian

    2012-01-01

    Little is known about how drought stress influences plant secondary metabolite accumulation and how this affects plant defense against different aphids. We therefore cultivated Arabidopsis thaliana (L.) plants under well-watered, drought, and water-logged conditions. Two aphid species were selected for this study: the generalist Myzus persicae (Sulzer) and the crucifer specialist Brevicoryne brassicae (L.). Metabolite concentrations in the phloem sap, which influence aphid growth, changed particularly under drought stress. Levels of sucrose and several amino acids, such as glutamic acid, proline, isoleucine, and lysine increased, while concentrations of 4-methoxyindol-3-ylmethyl glucosinolate decreased. M. persicae population growth was highest on plants under drought stress conditions. However, B. brassicae did not profit from improved phloem sap quality under drought stress and performed equally in all water treatments. Water stress and aphids generally had an opposite effect on the accumulation of secondary metabolites in the plant rosettes. Drought stress and water-logging led to increased aliphatic glucosinolate and flavonoid levels. Conversely, aphid feeding, especially of M. persicae, reduced levels of flavonoids and glucosinolates in the plants. Correspondingly, transcript levels of aliphatic biosynthetic genes decreased after feeding of both aphid species. Contrary to M. persicae, drought stress did not promote population growth of B. brassicae on these plants. The specialist aphid induced expression of CYP79B2, CYP79B3, and PAD3 with corresponding accumulation of indolyl glucosinolates and camalexin. This was distinct from M. persicae, which did not elicit similarly strong camalexin accumulation, which led to the hypothesis of a specific defense adaptations against the specialist aphid.

  10. Water Stress and Aphid Feeding Differentially Influence Metabolite Composition in Arabidopsis thaliana (L.)

    Science.gov (United States)

    Mewis, Inga; Khan, Mohammed A. M.; Glawischnig, Erich; Schreiner, Monika; Ulrichs, Christian

    2012-01-01

    Little is known about how drought stress influences plant secondary metabolite accumulation and how this affects plant defense against different aphids. We therefore cultivated Arabidopsis thaliana (L.) plants under well-watered, drought, and water-logged conditions. Two aphid species were selected for this study: the generalist Myzus persicae (Sulzer) and the crucifer specialist Brevicoryne brassicae (L.). Metabolite concentrations in the phloem sap, which influence aphid growth, changed particularly under drought stress. Levels of sucrose and several amino acids, such as glutamic acid, proline, isoleucine, and lysine increased, while concentrations of 4-methoxyindol-3-ylmethyl glucosinolate decreased. M. persicae population growth was highest on plants under drought stress conditions. However, B. brassicae did not profit from improved phloem sap quality under drought stress and performed equally in all water treatments. Water stress and aphids generally had an opposite effect on the accumulation of secondary metabolites in the plant rosettes. Drought stress and water-logging led to increased aliphatic glucosinolate and flavonoid levels. Conversely, aphid feeding, especially of M. persicae, reduced levels of flavonoids and glucosinolates in the plants. Correspondingly, transcript levels of aliphatic biosynthetic genes decreased after feeding of both aphid species. Contrary to M. persicae, drought stress did not promote population growth of B. brassicae on these plants. The specialist aphid induced expression of CYP79B2, CYP79B3, and PAD3 with corresponding accumulation of indolyl glucosinolates and camalexin. This was distinct from M. persicae, which did not elicit similarly strong camalexin accumulation, which led to the hypothesis of a specific defense adaptations against the specialist aphid. PMID:23144921

  11. Russian wheat aphid, Diuraphis noxia in the Czech Republic – cause of the significant population decrease

    Czech Academy of Sciences Publication Activity Database

    Havelka, Jan; Žurovcová, Martina; Rychlý, S.; Starý, Petr

    2014-01-01

    Roč. 138, č. 4 (2014), s. 273-280 ISSN 0931-2048 R&D Projects: GA ČR GA522/09/ 1940 Institutional support: RVO:60077344 Keywords : alien aphid species * anholocyclic populations * aphids overwintering mortality Subject RIV: EH - Ecology, Behaviour Impact factor: 1.650, year: 2014 http://onlinelibrary.wiley.com/doi/10.1111/jen.12068/pdf

  12. Winter treatments against the woolly apple aphid (Eriosoma lanigerum): products and timing of applications

    OpenAIRE

    Kelderer, Markus; Lardschneider, Ewald; Casera, Claudio

    2008-01-01

    In organic apple growing the woolly apple aphid (Eriosoma lanigerum) is still an unsolved problem. Various approaches to use beneficial insects were not really effective. Only winter treatments with mineral oils showed partial and fluctuating success. In 2006 and 2007 field trials were carried out to evaluate the efficacy of winter treatments to control woolly apple aphids. The efficacy of several products (different mineral oils, lime sulphur, and lime sulphur + mineral oil) w...

  13. Relationship between the abundance of aphids and their natural enemies in cereal fields and landscape composition

    OpenAIRE

    Diab Al Hassan; Nicolas Parisey; Françoise Burel; Manuel Plantegenest; Pavel Kindlmann; Alain Butet

    2013-01-01

    We investigated, over the course of two years, the association between the abundance of aphids and their natural carabid enemies and landscape, which may help in the development of effective strategies for reducing the incidence of aphid outbreaks in agricultural crops. This was undertaken in 12 wheat and 12 maize fields each year in an agricultural landscape in western France. Our study area was characterized by hedgerows surrounding arable fields and permanent grassland. Some areas have not...

  14. Aphids and parasitoids on willows and poplars in southeastern Europe (Homoptera: Aphidoidea; Hymenoptera, Braconidae, Aphidiinae)

    Czech Academy of Sciences Publication Activity Database

    Tomanovic, Ž.; Kavallieratos, N. G.; Starý, Petr; Petrovic-Obradovic, O.; Tomanovic, S.; Jovanović, S.

    2006-01-01

    Roč. 113, č. 4 (2006), s. 174-180 ISSN 1861-3829 R&D Projects: GA AV ČR(CZ) IBS5007102 Grant - others:Ministry of Science and Environmental Protection of the Republic of Serbia(CS) 143006B; Ministry of Science and Environmental Protection of the Republic of Serbia(CS) 145002 Institutional research plan: CEZ:AV0Z50070508 Keywords : agroecosystems * aphids * aphid parasitoid s Subject RIV: EH - Ecology, Behaviour

  15. The Polerovirus Minor Capsid Protein Determines Vector Specificity and Intestinal Tropism in the Aphid

    OpenAIRE

    Brault, Véronique; Périgon, Sophie; Reinbold, Catherine; Erdinger, Monique; Scheidecker, Danièle; Herrbach, Etienne; Richards, Ken; Ziegler-Graff, Véronique

    2005-01-01

    Aphid transmission of poleroviruses is highly specific, but the viral determinants governing this specificity are unknown. We used a gene exchange strategy between two poleroviruses with different vectors, Beet western yellows virus (BWYV) and Cucurbit aphid-borne yellows virus (CABYV), to analyze the role of the major and minor capsid proteins in vector specificity. Virus recombinants obtained by exchanging the sequence of the readthrough domain (RTD) between the two viruses replicated in pl...

  16. Root Exudation by Aphid Leaf Infestation Recruits Root-Associated Paenibacillus spp. to Lead Plant Insect Susceptibility.

    Science.gov (United States)

    Kim, Bora; Song, Geun Cheol; Ryu, Choong-Min

    2016-03-01

    Aphids are a large group of hemipteran pests that affect the physiology, growth, and development of plants by using piercing mouthparts to consume fluids from the host. Based an recent data, aphids modulate the microbiomes of plants and thereby affect the overall outcome of the biological interaction. However, in a few reports, aboveground aphids manipulate the metabolism of the host and facilitate infestations by rhizosphere bacteria (rhizobacteria). In this study, we evaluated whether aphids alter the plant resistance that is mediated by the bacterial community of the root system. The rhizobacteria were affected by aphid infestation of pepper, and a large population of gram-positive bacteria was detected. Notably, Paenibacillus spp. were the unique gram-positive bacteria to respond to changes induced by the aphids. Paenibacillus polymyxa E681 was used as a rhizobacterium model to assess the recruitment of bacteria to the rhizosphere by the phloem-sucking of aphids and to test the effect of P. polymyxa on the susceptibility of plants to aphids. The root exudates secreted from peppers infested with aphids increased the growth rate of P. polymyxa E681. The application of P. polymyxa E681 to pepper roots promoted the colonization of aphids within 2 days of inoculation. Collectively, our results suggest that aphid infestation modulated the root exudation, which led to the recruitment of rhizobacteria that manipulated the resistance of peppers to aphids. In this study, new information is provided on how the infestation of insects is facilitated through insect-derived modulation of plant resistance with the attraction of gram-positive rhizobacteria.

  17. The perspective of USDA APHIS Veterinary Services Emergency Management and Diagnostics in preparing and responding to Foreign Animal Diseases - plans, strategies, and countermeasures.

    Science.gov (United States)

    Díez, J R; Styles, D K

    2013-01-01

    The United States Department of Agriculture (USDA) Animal and Plant Health Inspection Service (APHIS) Veterinary Services (VS) is charged with monitoring, controlling, and responding to select reportable diseases and all foreign animal diseases. Emergency Management and Diagnostics (EM&D) oversees Foreign Animal Disease (FAD) preparedness and response. In order to effectively prepare for and respond to FADs, such as highly pathogenic avian influenza and foot-and-mouth disease, VS develops plans, strategies, and policies to effectively combat an intrusion. USDA APHIS VS has made significant gains in preparedness and response planning. However, much remains to be done especially in surveillance, diagnostic tools, and vaccines. There are significant needs for novel medical technologies to improve diagnostic capabilities and offer additional approaches for FAD response.

  18. Expression Profiling of Selected Glutathione Transferase Genes in Zea mays (L.) Seedlings Infested with Cereal Aphids

    Science.gov (United States)

    Sytykiewicz, Hubert; Chrzanowski, Grzegorz; Czerniewicz, Paweł; Sprawka, Iwona; Łukasik, Iwona; Goławska, Sylwia; Sempruch, Cezary

    2014-01-01

    The purpose of this report was to evaluate the expression patterns of selected glutathione transferase genes (gst1, gst18, gst23 and gst24) in the tissues of two maize (Zea mays L.) varieties (relatively resistant Ambrozja and susceptible Tasty Sweet) that were colonized with oligophagous bird cherry-oat aphid (Rhopalosiphum padi L.) or monophagous grain aphid (Sitobion avenae L.). Simultaneously, insect-triggered generation of superoxide anion radicals (O2•−) in infested Z. mays plants was monitored. Quantified parameters were measured at 1, 2, 4, 8, 24, 48 and 72 h post-initial aphid infestation (hpi) in relation to the non-infested control seedlings. Significant increases in gst transcript amounts were recorded in aphid-stressed plants in comparison to the control seedlings. Maximal enhancement in the expression of the gst genes in aphid-attacked maize plants was found at 8 hpi (gst23) or 24 hpi (gst1, gst18 and gst24) compared to the control. Investigated Z. mays cultivars formed excessive superoxide anion radicals in response to insect treatments, and the highest overproduction of O2•− was noted 4 or 8 h after infestation, depending on the aphid treatment and maize genotype. Importantly, the Ambrozja variety could be characterized as having more profound increments in the levels of gst transcript abundance and O2•− generation in comparison with the Tasty Sweet genotype. PMID:25365518

  19. Testing the physiological barriers to viral transmission in aphids using microinjection.

    Science.gov (United States)

    Tamborindeguy, Cecilia; Gray, Stewart; Jander, Georg

    2008-05-14

    Potato loafroll virus (PLRV), from the family Luteoviridae infects solanaceous plants. It is transmitted by aphids, primarily, the green peach aphid. When an uninfected aphid feeds on an infected plant it contracts the virus through the plant phloem. Once ingested, the virus must pass from the insect gut to the hemolymph (the insect blood ) and then must pass through the salivary gland, in order to be transmitted back to a new plant. An aphid may take up different viruses when munching on a plant, however only a small fraction will pass through the gut and salivary gland, the two main barriers for transmission to infect more plants. In the lab, we use physalis plants to study PLRV transmission. In this host, symptoms are characterized by stunting and interveinal chlorosis (yellowing of the leaves between the veins with the veins remaining green). The video that we present demonstrates a method for performing aphid microinjection on insects that do not vector PLVR viruses and tests whether the gut is preventing viral transmission. The video that we present demonstrates a method for performing Aphid microinjection on insects that do not vector PLVR viruses and tests whether the gut or salivary gland is preventing viral transmission.

  20. Expression profiling of selected glutathione transferase genes in Zea mays (L.) seedlings infested with cereal aphids.

    Science.gov (United States)

    Sytykiewicz, Hubert; Chrzanowski, Grzegorz; Czerniewicz, Paweł; Sprawka, Iwona; Łukasik, Iwona; Goławska, Sylwia; Sempruch, Cezary

    2014-01-01

    The purpose of this report was to evaluate the expression patterns of selected glutathione transferase genes (gst1, gst18, gst23 and gst24) in the tissues of two maize (Zea mays L.) varieties (relatively resistant Ambrozja and susceptible Tasty Sweet) that were colonized with oligophagous bird cherry-oat aphid (Rhopalosiphum padi L.) or monophagous grain aphid (Sitobion avenae L.). Simultaneously, insect-triggered generation of superoxide anion radicals (O2•-) in infested Z. mays plants was monitored. Quantified parameters were measured at 1, 2, 4, 8, 24, 48 and 72 h post-initial aphid infestation (hpi) in relation to the non-infested control seedlings. Significant increases in gst transcript amounts were recorded in aphid-stressed plants in comparison to the control seedlings. Maximal enhancement in the expression of the gst genes in aphid-attacked maize plants was found at 8 hpi (gst23) or 24 hpi (gst1, gst18 and gst24) compared to the control. Investigated Z. mays cultivars formed excessive superoxide anion radicals in response to insect treatments, and the highest overproduction of O2•- was noted 4 or 8 h after infestation, depending on the aphid treatment and maize genotype. Importantly, the Ambrozja variety could be characterized as having more profound increments in the levels of gst transcript abundance and O2•- generation in comparison with the Tasty Sweet genotype.

  1. Aphid Sex Pheromone Compounds Interfere with Attraction of Common Green Lacewings to Floral Bait.

    Science.gov (United States)

    Koczor, Sándor; Szentkirályi, Ferenc; Pickett, John A; Birkett, Michael A; Tóth, Miklós

    2015-06-01

    Common green lacewings (Chrysoperla carnea complex) form a group of generalist predators important for biological control. Several reports show attraction of these insects to plant volatiles, and a highly attractive ternary compound floral bait has been developed. With aphids being a preferred prey of larvae, one might expect these lacewings to be attracted to aphid semiochemicals, for instance, to aphid sex pheromones, as found for several other green lacewing species. However, in a previous study, we found that traps containing aphid sex pheromone compounds (1R,4aS,7S,7aR)-nepetalactol (NEPOH), (4aS,7S,7aR)-nepetalactone (NEPONE), and a ternary floral bait attracted fewer individuals than those containing the ternary floral bait alone. In the present study, possible causes for this effect of NEPOH and NEPONE on trap capture were studied. We established that C. carnea complex catches in traps with a ternary floral lure were not influenced by the presence of Chrysopa formosa individuals in traps (attracted by NEPOH and NEPONE) or by synthetic skatole (a characteristic component of Chrysopa defense secretion). A direct negative effect of NEPOH and NEPONE on attraction of C. carnea complex was found, suggesting active avoidance of these aphid sex pheromone components. This finding is surprising as the larvae of these lacewings prey preferentially on aphids. Possible mechanisms underlying this phenomenon are discussed.

  2. Characterization of an aphid-specific, cysteine-rich protein enriched in salivary glands.

    Science.gov (United States)

    Guo, Kun; Wang, Wei; Luo, Lan; Chen, Jun; Guo, Ya; Cui, Feng

    2014-05-01

    Aphids secrete saliva into the phloem during their infestation of plants. Previous studies have identified numerous saliva proteins, but little is known about the characteristics (physical and chemical) and functions of these proteins in aphid-plant interactions. This study characterized an unknown protein (ACYPI39568) that was predicted to be enriched in the salivary glands of pea aphid. This protein belongs to an aphid-specific, cysteine-rich protein family that contains 14 conserved cysteines. ACYPI39568 is a monomeric globular protein with a high beta strand extent. The binding stoichiometric ratios for Zn(2+) and ACYPI39568 were approximately 3:1 and 1:1 at two binding sites. ACYPI39568 was predominantly expressed in the first instar stage and in the salivary glands. Aphids required more ACYPI39568 when feeding on plants than when feeding on an artificial diet. However, the interference of ACYPI39568 expression did not affect the survival rate of aphids on plants. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. High-throughput phenotyping of plant resistance to aphids by automated video tracking.

    Science.gov (United States)

    Kloth, Karen J; Ten Broeke, Cindy Jm; Thoen, Manus Pm; Hanhart-van den Brink, Marianne; Wiegers, Gerrie L; Krips, Olga E; Noldus, Lucas Pjj; Dicke, Marcel; Jongsma, Maarten A

    2015-01-01

    Piercing-sucking insects are major vectors of plant viruses causing significant yield losses in crops. Functional genomics of plant resistance to these insects would greatly benefit from the availability of high-throughput, quantitative phenotyping methods. We have developed an automated video tracking platform that quantifies aphid feeding behaviour on leaf discs to assess the level of plant resistance. Through the analysis of aphid movement, the start and duration of plant penetrations by aphids were estimated. As a case study, video tracking confirmed the near-complete resistance of lettuce cultivar 'Corbana' against Nasonovia ribisnigri (Mosely), biotype Nr:0, and revealed quantitative resistance in Arabidopsis accession Co-2 against Myzus persicae (Sulzer). The video tracking platform was benchmarked against Electrical Penetration Graph (EPG) recordings and aphid population development assays. The use of leaf discs instead of intact plants reduced the intensity of the resistance effect in video tracking, but sufficiently replicated experiments resulted in similar conclusions as EPG recordings and aphid population assays. One video tracking platform could screen 100 samples in parallel. Automated video tracking can be used to screen large plant populations for resistance to aphids and other piercing-sucking insects.

  4. Characterization of the natural enemy community attacking cotton aphid in the Bt cotton ecosystem in Northern China

    Science.gov (United States)

    Ali, Abid; Desneux, Nicolas; Lu, Yanhui; Liu, Bing; Wu, Kongming

    2016-01-01

    Planting Bt cotton in China since 1997 has led to important changes in the natural enemy communities occurring in cotton, however their specific effect on suppressing the cotton aphids (being notorious in conventional cotton ecosystem) has not been fully documented yet. We observed strong evidence for top-down control of the aphid population, e.g. the control efficiency of natural enemies on cotton aphid increased significantly in open field cages compared to exclusion cages, accounted for 60.2, 87.2 and 76.7% in 2011, 2012 and 2013 season, respectively. The cotton aphid populations peaked in early June to late July (early and middle growth stages) in open field cotton survey from 2011 to 2013. The population densities of cotton aphids and natural enemies were highest on middle growth stage while lowest densities were recorded on late stage for aphids and on early plant stage for natural enemies. Aphid parasitoids (Trioxys spp., Aphidius gifuensis), coccinellids and spiders were key natural enemies of cotton aphid. Briefly, natural enemies can suppress aphid population increase from early to middle plant growth stages by providing biocontrol services in Chinese Bt cotton. PMID:27075171

  5. Characterization of the natural enemy community attacking cotton aphid in the Bt cotton ecosystem in Northern China.

    Science.gov (United States)

    Ali, Abid; Desneux, Nicolas; Lu, Yanhui; Liu, Bing; Wu, Kongming

    2016-04-14

    Planting Bt cotton in China since 1997 has led to important changes in the natural enemy communities occurring in cotton, however their specific effect on suppressing the cotton aphids (being notorious in conventional cotton ecosystem) has not been fully documented yet. We observed strong evidence for top-down control of the aphid population, e.g. the control efficiency of natural enemies on cotton aphid increased significantly in open field cages compared to exclusion cages, accounted for 60.2, 87.2 and 76.7% in 2011, 2012 and 2013 season, respectively. The cotton aphid populations peaked in early June to late July (early and middle growth stages) in open field cotton survey from 2011 to 2013. The population densities of cotton aphids and natural enemies were highest on middle growth stage while lowest densities were recorded on late stage for aphids and on early plant stage for natural enemies. Aphid parasitoids (Trioxys spp., Aphidius gifuensis), coccinellids and spiders were key natural enemies of cotton aphid. Briefly, natural enemies can suppress aphid population increase from early to middle plant growth stages by providing biocontrol services in Chinese Bt cotton.

  6. Overexpression and Down-Regulation of Barley Lipoxygenase LOX2.2 Affects Jasmonate-Regulated Genes and Aphid Fecundity

    Directory of Open Access Journals (Sweden)

    Aleksandra Losvik

    2017-12-01

    Full Text Available Aphids are pests on many crops and depend on plant phloem sap as their food source. In an attempt to find factors improving plant resistance against aphids, we studied the effects of overexpression and down-regulation of the lipoxygenase gene LOX2.2 in barley (Hordeum vulgare L. on the performance of two aphid species. A specialist, bird cherry-oat aphid (Rhopalosiphum padi L. and a generalist, green peach aphid (Myzus persicae Sulzer were studied. LOX2.2 overexpressing lines showed up-regulation of some other jasmonic acid (JA-regulated genes, and antisense lines showed down-regulation of such genes. Overexpression or suppression of LOX2.2 did not affect aphid settling or the life span on the plants, but in short term fecundity tests, overexpressing plants supported lower aphid numbers and antisense plants higher aphid numbers. The amounts and composition of released volatile organic compounds did not differ between control and LOX2.2 overexpressing lines. Up-regulation of genes was similar for both aphid species. The results suggest that LOX2.2 plays a role in the activation of JA-mediated responses and indicates the involvement of LOX2.2 in basic defense responses.

  7. Assessment of patch quality by aphidophagous ladybirds: laboratory study on the minimum density of aphids required for oviposition

    Directory of Open Access Journals (Sweden)

    B. C. Das

    2011-12-01

    Full Text Available Many studies indicate that there is a density of aphids below which ladybirds are unlikely to lay eggs. This is adaptive as theory indicates that a certain minimum population density of aphids is required if hatchling larvae are to survive. The responses of gravid females of the two spot ladybird, Adalia bipunctata (L. (Coleoptera: Coccinellidae, recorded over a period of an hour, to colonies of 5 and 50 pea aphids on bean plants and similar plants each previously infested with the same number of aphids for 48 hours were determined. Proportionally more of the ladybirds on plants with 50 aphids or that were previously infested with the same number of aphids for 48 hours laid eggs and larger clusters of eggs, and were less active than those on plants that were infested with or had previously been infested with five aphids. That is, gravid females showed similar oviposition and activity responses to aphid abundance and different levels of honeydew contamination. This indicates that honeydew contamination may be an important cue used by ladybirds when locating and assessing the abundance of prey in aphid colonies.

  8. Review and key to the world parasitoids (Hymenoptera: Braconidae: Aphidiinae) of Aphis ruborum (Hemiptera: Aphididae) and its role as a host reservoir

    Czech Academy of Sciences Publication Activity Database

    Havelka, Jan; Tomanović, Ž.; Kavallieratos, N. G.; Rakhshani, E.; Pons, X.; Petrović, A.; Pike, K. S.; Starý, Petr

    2012-01-01

    Roč. 105, č. 3 (2012), s. 386-394 ISSN 0013-8746 Grant - others:The Ministry of Education and Science of the Republic of Serbia(RS) III43001; University of Zabol(IR) 89-9198 Institutional research plan: CEZ:AV0Z50070508 Institutional support: RVO:60077344 Keywords : Rubus spp. * Aphis ruborum * parasitoid complex Subject RIV: EG - Zoology Impact factor: 1.196, year: 2012

  9. Development of a stage-structured process-based predator–prey model to analyse biological control of cotton aphid, Aphis gossypii, by the sevenspot ladybeetle, Coccinella septempunctata, in cotton

    NARCIS (Netherlands)

    Xia, J.Y.; Wang, J.; Cui, J.J.; Leffelaar, P.A.; Rabbinge, R.; Werf, van der W.

    2018-01-01

    Agricultural system diversification is well known to affect the population dynamics of crop pests, but predator–prey dynamics in crop systems are difficult to analyse due to interactions between multiple life stages of predator and prey, the modulating effect of temperature, the actions of

  10. Comparative analysis of Solanum stoloniferum responses to probing by the green peach aphid Myzus persicae and the potato aphid Macrosiphum euphorbiae.

    Science.gov (United States)

    Alvarez, Adriana E; Broglia, Viviana G; Alberti D'Amato, Anahí M; Wouters, Doret; van der Vossen, Edwin; Garzo, Elisa; Tjallingii, W Fred; Dicke, Marcel; Vosman, Ben

    2013-04-01

    Plants protect themselves against aphid attacks by species-specific defense mechanisms. Previously, we have shown that Solanum stoloniferum Schlechtd has resistance factors to Myzus persicae Sulzer (Homoptera: Aphididae) at the epidermal/mesophyll level that are not effective against Macrosiphum euphorbiae Thomas (Homoptera: Aphididae). Here, we compare the nymphal mortality, the pre-reproductive development time, and the probing behavior of M. persicae and M. euphorbiae on S. stoloniferum and Solanum tuberosum L. Furthermore, we analyze the changes in gene expression in S. stoloniferum 96 hours post infestation by either aphid species. Although the M. euphorbiae probing behavior shows that aphids encounter more probing constrains on phloem activities-longer probing and salivation time- on S. stoloniferum than on S. tuberosum, the aphids succeeded in reaching a sustained ingestion of phloem sap on both plants. Probing by M. persicae on S. stoloniferum plants resulted in limited feeding only. Survival of M. euphorbiae and M. persicae was affected on young leaves, but not on senescent leaves of S. stoloniferum. Infestation by M. euphorbiae changed the expression of more genes than M. persicae did. At the systemic level both aphids elicited a weak response. Infestation of S. stoloniferum plants with a large number of M. persicae induced morphological changes in the leaves, leading to the development of pustules that were caused by disrupted vascular parenchyma and surrounding tissue. In contrast, an infestation by M. euphorbiae had no morphological effects. Both plant species can be regarded as good host for M. euphorbiae, whereas only S. tuberosum is a good host for M. persicae and S. stoloniferum is not. Infestation of S. stoloniferum by M. persicae or M. euphorbiae changed the expression of a set of plant genes specific for each of the aphids as well as a set of common genes. © 2012 The Authors Insect Science © 2012 Institute of Zoology, Chinese Academy of

  11. Alternaria toxin-induced resistance against rose aphids and olfactory response of aphids to toxin-induced volatiles of rose plants*

    Science.gov (United States)

    Yang, Fa-zhong; Li, Li; Yang, Bin

    2012-01-01

    The search for active toxins for managing weeds or plant diseases is believed to be a promising avenue of investigation. However, the effects of Alternaria toxins on insects have just begun to be investigated. Bioactivities of toxins from four strains of Alternaria alternata on Rosa chinensis and rose aphid Macrosiphum rosivorum were tested in the present study. At a concentration of 50.0 μg/ml, the crude extract (toxin) of strain 7484 was found not to be harmful to rose plants with excised leaf-puncture method (P≥0.079), and rose plants showed enhanced resistance to rose aphids when this Alternaria toxin was sprayed on the plants (P≤0.001). However, this toxin caused no detrimental effects on aphids in insecticidal bioassay at a concentration of 10.0 to 160.0 μg/ml (P≥0.096). Therefore, the Alternaria toxin had significantly induced the resistance of rose plants against rose aphids, demonstrating that the resistance mechanism triggered by the Alternaria toxin in the rose plant may also be used by the plant to defend itself against insects. Further bioassays aimed to discover the olfactory responses of aphids to the toxin-induced volatiles of host plants. The aphids were significantly more attracted to both volatiles emitted and collected from control rose plants than to both volatiles emitted and collected from the toxin-treated rose plants (P≤0.014). This result showed that the toxin-induced resistance related to the volatile changes of host plants. PMID:22302426

  12. An annotated checklist of the Aphids (Hemiptera: Aphidomorpha of Poland

    Directory of Open Access Journals (Sweden)

    Wojciechowski Wacław

    2015-12-01

    Full Text Available The paper presents a comprehensive compilation of 764 taxa (species and subspecies, distributed over 167 genera, belonging to 17 subfamilies, three families and three superfamilies of Aphidomorpha recorded to date from Poland. The systematic positions of 19 taxa have been revised in accordance with recent changes in nomenclature. The presence in the Polish aphidofauna of Drepanosiphum oregonensis and Coloradoa huculaki, previously included without any distribution data in checklists of Polish aphids, has been confirmed. One species Sitobion (Sitobion alopecuri is recognized as being new to Poland. At least 44 species (6% of local fauna of Aphidomorpha are alien to Poland; among them 11 species collected from plants imported or cultivated in indoor conditions are listed.

  13. Keefektifan fosfin formulasi cair terhadap Aphis gossypii Glover dan Macrosiphoniella sanborni Gillette (Hemiptera: Aphididae pada bunga potong krisan

    Directory of Open Access Journals (Sweden)

    Nur Rachman

    2016-09-01

    Full Text Available Cut flower of chrysanthemum has high aesthetic and economic values. Export volume of chrysanthemums from Indonesia are lower than other countries, due to the impact of insect pest. Insect pests, Aphis gossypii Glover and Macrosiphoniella sanborni Gillette are currently associated with cut flowers  especially chrysanthemum. One control measures usually taken in quarantine is fumigation. Alternative fumigant, liquified phosphine formulations may potentially be applied for quarantine treatment. The objectives of this study were to determine the concentration and exposure time of liquified phosphine against these species and to evaluate the effect of fumigant on the physical quality of cut flowers. The experiment was conducted in four steps: (1 identification and mass rearing of A. gossypii and M. sanborni; (2 preliminary tests on adult and third instar nymphs; (3 determination of liquified phosphine with various concentration and exposure time against adult and third instar nymphs of A. gosspypii and M. sanborni and; (4 validation test of effective concentration of fumigant and exposure time and the effect on quality of cut flowers. The results of study showed concentration of fumigant causing 100% mortality A. gossypii and M. sanborni  ere 500 ppm and 700 ppm, respectively with exposure time 12 hours. Concentrations of 700 ppm and exposure time up to 18 hours did not cause negative impact to the quality of chrysanthemum cut flowers.

  14. Performance of the Natural Mortality Factors of Aphis gossypii (Hemiptera: Aphididae) as a Function of Cotton Plant Variety and Phenology.

    Science.gov (United States)

    Chamuene, António; Araújo, Tamíris Alves; Silva, Gerson; Costa, Thiago Leandro; Berger, Paulo Geraldo; Picanço, Marcelo Coutinho

    2018-02-07

    Natural mortality factors are responsible for regulating pest populations in the field. However, plant attributes such as the variety and phenological stage can influence the performance of these factors. Therefore, we investigated the performance of the natural mortality factors of Aphis gossypii (Glover; Hemiptera: Aphididae) as a function of the plant variety and phenology. To investigate the performance of these factors, we evaluated the mortality of A. gossypii caused by natural mortality factors for 2 yr in field conditions in transgenic (Bacillus thuringiensis/Roundup Ready) and non-transgenic cotton crops during vegetative, flowering, and fruiting stages. The natural mortality factors were affected similarly between the transgenic and non-transgenic plants; however, differences were observed in their performance, depending on the phenological stage of the cotton plant. Compared with other stages, predation was higher in the flowering stage, whereas the mortality caused by rainfall was higher in the vegetative stage. Coccinellid beetles were primarily responsible for the predation on A. gossypii. These findings highlight that the performance of the natural mortality factors of A. gossypii varied more as a function of the phenological stage of cotton than of the variety. © The Author(s) 2018. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  15. Core RNAi Machinery and Sid1, a Component for Systemic RNAi, in the Hemipteran Insect, Aphis glycines

    Directory of Open Access Journals (Sweden)

    Raman Bansal

    2013-02-01

    Full Text Available RNA interference (RNAi offers a novel tool to manage hemipteran pests. For the success of RNAi based pest control in the field, a robust and systemic RNAi response is a prerequisite. We identified and characterized major genes of the RNAi machinery, Dicer2 (Dcr2, Argonaute2 (Ago2, and R2d2 in Aphis glycines, a serious pest of soybean. The A. glycines genome encodes for at least one copy of Dcr2, R2d2 and Ago2. Comparative and molecular evolution analyses (dN/dS showed that domain regions of encoded proteins are highly conserved, whereas linker (non-domain regions are diversified. Sequence homology and phylogenetic analyses suggested that the RNAi machinery of A. glycines is more similar to that of Tribolium casteneum as compared to that of Drosophila melanogaster. We also characterized Sid1, a major gene implicated in the systemic response for RNAi-mediated gene knockdown. Through qPCR, Dcr2, R2d2, Ago2, and Sid1 were found to be expressed at similar levels in various tissues, but higher expression of Dcr2, R2d2, and Ago2 was seen in first and second instars. Characterization of RNAi pathway and Sid1 in A. glycines will provide the foundation of future work for controlling one of the most important insect pests of soybean in North America.

  16. Shallot aphids, Myzus ascalonicus, in strawberry: biocontrol potential of three predators and three parasitoids.

    Science.gov (United States)

    Enkegaard, Annie; Sigsgaard, Lene; Kristensen, Kristian

    2013-01-01

    The parasitization capacity of 3 parasitoids and the predation capacity of 3 predators towards the shallot aphid, Myzus ascalonicus Doncaster (Homoptera: Aphididae), on strawberry, Fragaria x ananassa Duchesne (Rosales: Rosaceae) cv. Honeoye, were examined in laboratory experiments. In Petri dish assays, both Aphidius colemani Viereck (Hymenoptera: Aphidiidae) and A. ervi Haliday readily stung shallot aphids, with no significant difference in stinging frequency between the two species. A. ervi induced a significantly higher mortality (79.0 ± 7.2%) in terms of stung aphids compared with A. colemani (55.3 ± 4.1%); however, only a minor fraction (2.7 ± 1.8% and 7.1 ± 3.1%, respectively) of the killed aphids resulted in formation of mummies, presumably due to a physiological response to parasitism. The low percentage of mummification precludes the use of either Aphidius species in anything but inundative biocontrol. In similar set-ups, Aphelinus abdominalis (Dalman) (Hymenoptera: Aphelinidae) killed almost half (49.6 ± 5.3%) of the exposed aphids through host feeding. In addition, 23.2 ± 7.3% of non-host-fed aphids developed into mummified aphids, and 38.1 ± 13.2% of non-host-fed aphids died from other parasitoid-induced causes. However, the host feeding rate was reduced to only 1.2 ± 0.8%, and no significant parasitization mortality was observed on strawberry plants, suggesting that host plants interfered with A. abdominalis activity. This parasitoid does not, therefore, seem to be suited to either inoculative or inundative biocontrol of shallot aphids in strawberry. The three predators studied were the green lacewing, Chrysoperla carnea Steph. (Neuroptera: Chrysopidae), the two-spotted lady beetle, Adalia bipunctata L. (Coleoptera: Coccinellidae), and the gall midge Aphidoletes aphidimyza (Rondani) (Diptera: Cecidomyiidae). Third instars of all 3 predators readily preyed upon the shallot aphid in Petri dish set-ups with significant differences in daily

  17. The ethylene response factor Pti5 contributes to potato aphid resistance in tomato independent of ethylene signalling

    Science.gov (United States)

    Wu, Chengjun; Avila, Carlos A.; Goggin, Fiona L.

    2015-01-01

    Ethylene response factors (ERFs) comprise a large family of transcription factors that regulate numerous biological processes including growth, development, and response to environmental stresses. Here, we report that Pti5, an ERF in tomato [Solanum lycopersicum (Linnaeus)] was transcriptionally upregulated in response to the potato aphid Macrosiphum euphorbiae (Thomas), and contributed to plant defences that limited the population growth of this phloem-feeding insect. Virus-induced gene silencing of Pti5 enhanced aphid population growth on tomato, both on an aphid-susceptible cultivar and on a near-isogenic genotype that carried the Mi-1.2 resistance (R) gene. These results indicate that Pti5 contributes to basal resistance in susceptible plants and also can synergize with other R gene-mediated defences to limit aphid survival and reproduction. Although Pti5 contains the ERF motif, induction of this gene by aphids was independent of ethylene, since the ACC deaminase (ACD) transgene, which inhibits ethylene synthesis, did not diminish the responsiveness of Pti5 to aphid infestation. Furthermore, experiments with inhibitors of ethylene synthesis revealed that Pti5 and ethylene have distinctly different roles in plant responses to aphids. Whereas Pti5 contributed to antibiotic plant defences that limited aphid survival and reproduction on both resistant (Mi-1.2+) and susceptible (Mi-1.2–) genotypes, ethylene signalling promoted aphid infestation on susceptible plants but contributed to antixenotic defences that deterred the early stages of aphid host selection on resistant plants. These findings suggest that the antixenotic defences that inhibit aphid settling and the antibiotic defences that depress fecundity and promote mortality are regulated through different signalling pathways. PMID:25504643

  18. The ethylene response factor Pti5 contributes to potato aphid resistance in tomato independent of ethylene signalling.

    Science.gov (United States)

    Wu, Chengjun; Avila, Carlos A; Goggin, Fiona L

    2015-02-01

    Ethylene response factors (ERFs) comprise a large family of transcription factors that regulate numerous biological processes including growth, development, and response to environmental stresses. Here, we report that Pti5, an ERF in tomato [Solanum lycopersicum (Linnaeus)] was transcriptionally upregulated in response to the potato aphid Macrosiphum euphorbiae (Thomas), and contributed to plant defences that limited the population growth of this phloem-feeding insect. Virus-induced gene silencing of Pti5 enhanced aphid population growth on tomato, both on an aphid-susceptible cultivar and on a near-isogenic genotype that carried the Mi-1.2 resistance (R) gene. These results indicate that Pti5 contributes to basal resistance in susceptible plants and also can synergize with other R gene-mediated defences to limit aphid survival and reproduction. Although Pti5 contains the ERF motif, induction of this gene by aphids was independent of ethylene, since the ACC deaminase (ACD) transgene, which inhibits ethylene synthesis, did not diminish the responsiveness of Pti5 to aphid infestation. Furthermore, experiments with inhibitors of ethylene synthesis revealed that Pti5 and ethylene have distinctly different roles in plant responses to aphids. Whereas Pti5 contributed to antibiotic plant defences that limited aphid survival and reproduction on both resistant (Mi-1.2+) and susceptible (Mi-1.2-) genotypes, ethylene signalling promoted aphid infestation on susceptible plants but contributed to antixenotic defences that deterred the early stages of aphid host selection on resistant plants. These findings suggest that the antixenotic defences that inhibit aphid settling and the antibiotic defences that depress fecundity and promote mortality are regulated through different signalling pathways. © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  19. Toxicity of newly isolated piperideine alkaloids from the red imported fire ant, Solenopsis invicta Buren, against the green peach aphid, Myzus persicae (Sulzer)

    Science.gov (United States)

    The green peach aphid, Myzus persicae (Sulzer), is a major insect pest of many agronomic and horticultural crops and is distributed worldwide Aphid management is often based on application of insecticides. However, the aphid is now resistant to many of these and much interest has recently develope...

  20. Aphid-parasitoid asssociations of the Impatiens plants in Central Europe (Hemiptera, Aphididae; Hymenoptera, Braconidae, Aphidiinae)

    Czech Academy of Sciences Publication Activity Database

    Starý, Petr; Rakhshani, E.; Tomanović, Ž.; Kavallieratos, N. G.; Petrović, A.; Žikić, V.; Havelka, Jan

    2014-01-01

    Roč. 16, č. 3 (2014), s. 33-43 ISSN 1302-0250 Grant - others:The Ministry of Education, Science and Technological Development of the Republic of Serbia(RS) 43001 Institutional support: RVO:60077344 Keywords : invasions * Aphis fabae * Impatientinum asiaticum Subject RIV: EH - Ecology, Behaviour Impact factor: 0.400, year: 2014

  1. Molecular systematics of aphids (Homoptera: Aphididae): new insights from the long-wavelength opsin gene.

    Science.gov (United States)

    Ortiz-Rivas, Benjamín; Moya, Andrés; Martínez-Torres, David

    2004-01-01

    Viviparous aphids (Aphididae) constitute a monophyletic group within the Homoptera with more than 4000 extant species worldwide but higher diversity in temperate regions. Several aspects of their biology account for attention paid to this group of insects. Their plant-sap-sucking way of feeding with many species transmitting viruses to crop plants has important implications on crop management strategies. Cyclical parthenogenesis associated in many groups to host alternation and elaborate polyphenisms is of special interests for evolutionists. Finally, the ancient association of most aphid species with intracellular endosymbiotic bacteria (Buchnera sp.) has also received much attention from evolutionists interested in mechanisms involved in the symbiotic process. Knowing the phylogenetic relationships among major aphid taxa is of special interest to evolutionists interested in the above issues. However, until recently, molecular approaches to aphid phylogeny were absent and discussions on the evolution of aphid life-cycles and on evolutionary aspects of their symbiotic association with Buchnera were framed by morphology-based phylogenies. Recently, two reports using molecular approaches attempted to address the yet unresolved phylogeny of Aphididae with limited although somehow different conclusions. In the present report we study the utility of the long-wave opsin gene in resolving phylogenetic relationships among seven subfamilies within the Aphididae. Our results corroborate some previously proposed relationships and suggest a revision of some others. In particular, our data support grouping the analysed aphid species into three main clades, being the subfamily Lachninae one of them, which contradicts its generally accepted sistership relationship with the subfamily Aphidinae. Moreover, our data also suggest a basal position of Lachninae which has implications on current discussions about the ancestrality of conifer-feeding in modern aphids.

  2. Pest control of aphids depends on landscape complexity and natural enemy interactions

    Directory of Open Access Journals (Sweden)

    Emily A. Martin

    2015-07-01

    Full Text Available Aphids are a major concern in agricultural crops worldwide, and control by natural enemies is an essential component of the ecological intensification of agriculture. Although the complexity of agricultural landscapes is known to influence natural enemies of pests, few studies have measured the degree of pest control by different enemy guilds across gradients in landscape complexity. Here, we use multiple natural-enemy exclosures replicated in 18 fields across a gradient in landscape complexity to investigate (1 the strength of natural pest control across landscapes, measured as the difference between pest pressure in the presence and in the absence of natural enemies; (2 the differential contributions of natural enemy guilds to pest control, and the nature of their interactions across landscapes. We show that natural pest control of aphids increased up to six-fold from simple to complex landscapes. In the absence of pest control, aphid population growth was higher in complex than simple landscapes, but was reduced by natural enemies to similar growth rates across all landscapes. The effects of enemy guilds were landscape-dependent. Particularly in complex landscapes, total pest control was supplied by the combined contribution of flying insects and ground-dwellers. Birds had little overall impact on aphid control. Despite evidence for intraguild predation of flying insects by ground-dwellers and birds, the overall effect of enemy guilds on aphid control was complementary. Understanding pest control services at large spatial scales is critical to increase the success of ecological intensification schemes. Our results suggest that, where aphids are the main pest of concern, interactions between natural enemies are largely complementary and lead to a strongly positive effect of landscape complexity on pest control. Increasing the availability of seminatural habitats in agricultural landscapes may thus benefit not only natural enemies, but also the

  3. Rapid Cold Hardening Capacity and Its Impact on Performance of Russian Wheat Aphid (Hemiptera: Aphididae).

    Science.gov (United States)

    Saeidi, Fatemeh; Moharramipour, Saeid; Mikani, Azam

    2017-08-01

    The Russian wheat aphid, Diuraphis noxia (Kurdjumov), is one of the most important pests of wheat and barley in most wheat-producing countries. Rapid cold hardiness (RCH) is a capacity of insects to develop, within hours, protection against subfreezing temperatures that plays an important role in aphid survival in response to sudden decreases in air temperature. In this research, we investigated the duration and rate of cooling on the induction of RCH of D. noxia and the costs of RCH on aphid development and fecundity. By transferring aphids directly from 20 °C to a range of subzero temperatures for 2 h, the lower lethal temperature for 80% mortality (LT80) was determined to be - 11.9 °C. Preconditioning the aphids at 0 °C for 1-3 h prior to exposure at (LT80) (-11.9 °C) resulted in a sharp increase in survival, with little change with longer durations of preconditioning. The slowest cooling rate (0.05 °C/min) increased survival fourfold, whereas rates from 0.1 to 1 °C/min increased survival twofold compared with a direct transfer to 0 °C, regardless of aphid stage used. Deleterious effects of RCH were not observed on aphid development, longevity, or fecundity. The present study indicates that RCH is induced in D. noxia in just a few hours in response to sudden lowering of temperatures to freezing, with little or no cost in reproductive capacity. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  4. Chromosomal mapping reveals a dynamic organization of the histone genes in aphids (Hemiptera: Aphididae

    Directory of Open Access Journals (Sweden)

    M. Mandrioli

    2013-07-01

    Full Text Available Despite their involvement in different processes, histone genes have been analysed in few insects. In order to improve the knowledge about this important gene family, genes coding for histones have been analysed in the aphid Acyrthosiphon pisum showing that at the amino acid level, aphid histones are highly conserved. In particular, data from A. pisum confirm that H1 is the most variable of the five histones, whereas histones H3 and H4 are highly conserved with the H3 almost identical from insects to vertebrates. A. pisum histone genes are organized in a quintet with the H1 gene followed by H2A and H2B genes that are adjacent and transcribed in same directions, in the opposite strand in respect to the H1 gene. At the 3’ end of the histone cluster, genes H3 and H4 constitute an oppositely transcribed pair. The span of the aphid histone genes (more than 7 kb is greater than the average length of the histone cluster till now reported in insects (about 5 kb. Furthermore, spacers that separate the aphid histone genes vary in length. The histone genes have been mapped in A. pisum and successively in the aphids Myzus persicae and Rhopalosiphum padi showing that they are present in a single large cluster located in an interstitial position of autosomes 1, differently from what reported in the Russian wheat aphid Diuraphis noxia, where histone genes have been localized in a telomere of the two X chromosomes suggesting a dynamic organization of this multigene family in aphids.

  5. The phytopathogen Dickeya dadantii (Erwinia chrysanthemi 3937) is a pathogen of the pea aphid.

    Science.gov (United States)

    Grenier, Anne-Marie; Duport, Gabrielle; Pagès, Sylvie; Condemine, Guy; Rahbé, Yvan

    2006-03-01

    Dickeya dadantii (Erwinia chrysanthemi) is a phytopathogenic bacterium causing soft rot diseases on many crops. The sequencing of its genome identified four genes encoding homologues of the Cyt family of insecticidal toxins from Bacillus thuringiensis, which are not present in the close relative Pectobacterium carotovorum subsp. atrosepticum. The pathogenicity of D. dadantii was tested on the pea aphid Acyrthosiphon pisum, and the bacterium was shown to be highly virulent for this insect, either by septic injury or by oral infection. The lethal inoculum dose was calculated to be as low as 10 ingested bacterial cells. A D. dadantii mutant with the four cytotoxin genes deleted showed a reduced per os virulence for A. pisum, highlighting the potential role of at least one of these genes in pathogenicity. Since only one bacterial pathogen of aphids has been previously described (Erwinia aphidicola), other species from the same bacterial group were tested. The pathogenic trait for aphids was shown to be widespread, albeit variable, within the phytopathogens, with no link to phylogenetic positioning in the Enterobacteriaceae. Previously characterized gut symbionts from thrips (Erwinia/Pantoea group) were also highly pathogenic to the aphid, whereas the potent entomopathogen Photorhabdus luminescens was not. D. dadantii is not a generalist insect pathogen, since it has low pathogenicity for three other insect species (Drosophila melanogaster, Sitophilus oryzae, and Spodoptera littoralis). D. dadantii was one of the most virulent aphid pathogens in our screening, and it was active on most aphid instars, except for the first one, probably due to anatomical filtering. The observed difference in virulence toward apterous and winged aphids may have an ecological impact, and this deserves specific attention in future research.

  6. Selective and irreversible inhibitors of aphid acetylcholinesterases: steps toward human-safe insecticides.

    Directory of Open Access Journals (Sweden)

    Yuan-Ping Pang

    Full Text Available Aphids, among the most destructive insects to world agriculture, are mainly controlled by organophosphate insecticides that disable the catalytic serine residue of acetylcholinesterase (AChE. Because these agents also affect vertebrate AChEs, they are toxic to non-target species including humans and birds. We previously reported that a cysteine residue (Cys, found at the AChE active site in aphids and other insects but not mammals, might serve as a target for insect-selective pesticides. However, aphids have two different AChEs (termed AP and AO, and only AP-AChE carries the unique Cys. The absence of the active-site Cys in AO-AChE might raise concerns about the utility of targeting that residue. Herein we report the development of a methanethiosulfonate-containing small molecule that, at 6.0 microM, irreversibly inhibits 99% of all AChE activity extracted from the greenbug aphid (Schizaphis graminum without any measurable inhibition of the human AChE. Reactivation studies using beta-mercaptoethanol confirm that the irreversible inhibition resulted from the conjugation of the inhibitor to the unique Cys. These results suggest that AO-AChE does not contribute significantly to the overall AChE activity in aphids, thus offering new insight into the relative functional importance of the two insect AChEs. More importantly, by demonstrating that the Cys-targeting inhibitor can abolish AChE activity in aphids, we can conclude that the unique Cys may be a viable target for species-selective agents to control aphids without causing human toxicity and resistance problems.

  7. Efeito repelente de azadiractina e óleos essenciais sobre Aphis gossypii Glover (Hemiptera: Aphididae em algodoeiro Repellent effect of azadirachtin and essential oils on Aphis gossypii Glover (Hemiptera: Aphididae in cotton plants

    Directory of Open Access Journals (Sweden)

    Lígia Helena de Andrade

    2013-09-01

    Full Text Available A repelência de inseticidas botânicos tem se destacado como uma tática promissora no controle alternativo de pragas agrícolas e urbanas, podendo ser um dos componentes do manejo integrado de pragas. Objetivou-se com este trabalho identificar a repelência de inseticidas botânicos sobre fêmeas ápteras de Aphis gossypii Glover. Testes com chance de escolha foram realizados com discos de folha de algodoeiro, imersos nas caldas dos inseticidas e testemunha (água destilada com DMSO a 2%. Utilizou-se azadirachtina (0,075% e os óleos essenciais de Piper hispidinervum CDC, P. aduncum L., Cymbopogon winterianus (L., C. citratus (D.C. Stapf, Foeniculum vulgare Mill, Syzygium aromaticum (L. Merrill e Perry, Cinnamomum zeylanicum Blume, Schinus terebinthifolius Raddi e Chenopodium ambrosioides L. na concentração de 0,05%. C. citratus, C. winterianus, P. aduncum, S. terebinthifolius, azadirachtina e C. zeylanicum apresentaram os maiores percentuais de repelência, 100; 84; 66,67; 64; 60,87 e 48% respectivamente e reduziram a produção de ninfas em 100; 92; 42,9; 87,5; 80,65 e 89,74%, apresentando resultados significativos pelo teste do χ2 ao nível de 10% de probabilidade. Nos testes com F. vulgare (χ2 = 3,66, P = 0,05 as fêmeas de A. gossypii foram atraídas significativamente para os discos tratados e ocorreu um aumento na produção de ninfas nos resultados obtidos para F. vulgare (χ2 = 5,87, P = 0,02 e C. ambrosioides (χ2 = 14,31, P = 0,001.The repellence of botanical insecticides has emerged as a promising technique in the alternative control of urban and agricultural pests, being seen as one component of integrated pest management. The aim of this work was to identify the repellence of botanical insecticides on apterous females of Aphis gossypii Glover. Random-choice tests were carried out with discs from the leaves of cotton plants immersed in insecticide solution and in a control (distilled water with 2% DMSO. Azadirachtin was used

  8. Host selection and probing behavior of the poplar aphid Chaitophorus leucomelas (Sternorrhyncha: Aphididae) on two poplar hybrids with contrasting susceptibility to aphids.

    Science.gov (United States)

    Barrios-San Martín, Joceline; Quiroz, Andrés; Verdugo, Jaime A; Parra, Leonardo; Hormazabal, Emilio; Astudillo, Luis A; Rojas-Herrera, Marcelo; Ramírez, Claudio C

    2014-02-01

    Poplars are frequently attacked by aphids. The differential susceptibility of poplar hybrids to the aphid Chaitophorus leucomelas Koch (Sternorrhyncha: Aphididae) has been described, but the mechanism underlying this pattern is unknown. This work tested the hypothesis that poplar resistance to this aphid is associated with the presence of volatiles and secondary plant compounds that affect host selection and feeding behavior. This hypothesis was tested by studying the host choice and feeding behavior of C. leucomelas on two poplar hybrids with contrasting susceptibilities to this aphid ([Populus trichocarpa Torrey & Gray x Populus deltoides Bartram ex Marshall] x P. deltoides [TD x D], and [P. trichocarpa x Populus maximowiczii Henry] x [P. trichocarpa x P. maximowiczii] [TM x TM]). The results showed that C. leucomelas rejected leaves of the TM x TM hybrid and did not prefer odors from either hybrid. Electronic monitoring of the probing behavior of C. leucomelas suggested the involvement of antifeedant factors in the TM x TM hybrid. In addition, the chemical characterization of volatiles, epicuticular waxes, and internal phenols of leaves from both poplar hybrids revealed that TM x TM had a higher abundance of monoterpenes, sesquiterpenes, n-alkanes, and phenols. These results are discussed in terms of their contribution to poplar breeding programs aimed at enhancing insect resistance.

  9. Preference and performance of the hyperparasitoid Syrphophagus aphidivorus (Hymenoptera: Encyrtidae): fitness consequences of selecting hosts in live aphids or aphid mummies

    NARCIS (Netherlands)

    Buitenhuis, R.; Boivin, G.; Vet, L.E.M.; Brodeur, J.

    2004-01-01

    1. Theoretical models predict that ovipositional decisions of parasitoid females should lead to the selection of the most profitable host for parasitoid development. Most parasitoid species have evolved specific adaptations to exploit a single host stage. However, females of the aphid

  10. Effects of Manduca sexta allatostatin and an analog on the pea aphid Acyrthosiphon pisum (Hemiptera: Aphididae) and degradation by enzymes from the aphid gut.

    Science.gov (United States)

    Down, Rachel E; Matthews, H June; Audsley, Neil

    2010-03-01

    The C-type allatostatin, Manduca sexta allatostatin (Manse-AS) and the analog delta R(3)delta R(5)Manse-AS, where R residues were replaced by their d-isomers, were tested for oral toxicity against the pea aphid Acyrthosiphon pisum (Harris) by incorporation into an artificial diet. Both peptides had significant dose-dependent feeding suppression effects, resulting in mortality, reduced growth and fecundity compared with control insects. The delta R(3)delta R(5)Manse-AS analog had an estimated LC(50) of 0.18 microg/microl diet, and was more potent than Manse-AS. At a dose of 0.35 microg delta R(3)delta R(5)Manse-AS/microl diet, 98% of aphids were dead within 3 days, at a rate similar to those aphids that had been starved (no diet controls). On comparison, it required 13 days and three times the dose of Manse-AS fed to aphids to attain 96% mortality. It is possible that the feeding suppression effects of Manse-AS on aphids are due to the inhibition of gut motility. The estimated half-life of Manse-AS when incubated with a gut extract from A. pisum was 54 min. Degradation was most likely due to cathepsin L cysteine and/or trypsin-like proteases, by an unidentified glutamine-specific protease and by a carboxypeptidase-like enzyme. The d-isomers of R in the Manse-AS analog appeared to prevent hydrolysis by cathepsin L cysteine and trypsin-like enzymes, and enhance its half-life (145 min). However delta R(3)delta R(5)Manse-AS was cleaved by enzymes with carboxypeptidase-like and chymotrypsin-like activity. The increased stability of the Manse-AS analog may explain its enhanced feeding suppression effects when continually fed to aphids, and demonstrates the potential use of Manse-AS in a strategy to control aphid pests. (c) 2009. Published by Elsevier Inc. All rights reserved.

  11. Silencing the expression of the salivary sheath protein causes transgenerational feeding suppression in the aphid Sitobion avenae.

    Science.gov (United States)

    Abdellatef, Eltayb; Will, Torsten; Koch, Aline; Imani, Jafargholi; Vilcinskas, Andreas; Kogel, Karl-Heinz

    2015-08-01

    Aphids produce gel saliva during feeding which forms a sheath around the stylet as it penetrates through the apoplast. The sheath is required for the sustained ingestion of phloem sap from sieve elements and is thought to form when the structural sheath protein (SHP) is cross-linked by intermolecular disulphide bridges. We investigated the possibility of controlling aphid infestation by host-induced gene silencing (HIGS) targeting shp expression in the grain aphid Sitobion avenae. When aphids were fed on transgenic barley expressing shp double-stranded RNA (shp-dsRNA), they produced significantly lower levels of shp mRNA compared to aphids feeding on wild-type plants, suggesting that the transfer of inhibitory RNA from the plant to the insect was successful. shp expression remained low when aphids were transferred from transgenic plants and fed for 1 or 2 weeks, respectively, on wild-type plants, confirming that silencing had a prolonged impact. Reduced shp expression correlated with a decline in growth, reproduction and survival rates. Remarkably, morphological and physiological aberrations such as winged adults and delayed maturation were maintained over seven aphid generations feeding on wild-type plants. Targeting shp expression therefore appears to cause strong transgenerational effects on feeding, development and survival in S. avenae, suggesting that the HIGS technology has a realistic potential for the control of aphid pests in agriculture. © 2015 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.

  12. Resistance of Endophyte-Infected Plants of Tall Fescue and Perennial Ryegrass to the Russian Wheat Aphid (Homoptera: Aphididae)

    Science.gov (United States)

    S.L. Clement; K.S. Pike; W.J. Kaiser; A. Dan Wilson

    1991-01-01

    Fewer aphids of the Russian wheat aphid, (Mordvilko), were found on tall fescue and perennial ryegrass plants harboring systemic fungal endophytes than on endophyte-free plants in laboratory tests. These results indicate that enhanced resistance in some perennial grasses to D. noxia is associated with the presence of endophytic fungi.

  13. Assessment of fennel aphids (Hemiptera: Aphididae) and their predators in fennel intercropped with cotton with colored fibers.

    Science.gov (United States)

    Ramalho, F S; Fernandes, F S; Nascimento, A R B; Nascimento Júnior, J L; Malaquias, J B; Silva, C A D

    2012-02-01

    The fennel aphid, Hyadaphis foeniculi (Passerini) (Hemiptera: Aphididae) is a major pest of fennel, Foeniculum vulgare Miller in northeast region of Brazil. We hypothesize that intercropping can be used as an alternative pest management strategy to reduce aphid yield loss in fennel. Thus, we investigated the severity of fennel plant damage in relation to infestation by the fennel aphid and predation by Cycloneda sanguinea (L.) (Coleoptera: Coccinellidae) (spotless lady beetle), green lacewing, Chrysoperla carnea (Stephens) (Neuroptera: Chrysopidae), and Scymnus spp. (Coleoptera: Coccinellidae) in sole fennel plots and plots of fennel intercropped with cotton with colored fibers. The fennel aphid populations in nontreated plots were significantly larger in sole fennel plots than in intercropped plots. The highest densities of C. sanguinea, green lacewings and Scymnus spp., associated with the suppression of fennel aphid populations was found in fennel in the intercropping systems. Fennel aphids reduced the fennel seed yield by 80% in the sole fennel plots compared with approximately 30% for all intercropping systems. The results obtained in this research are of practical significance for designing appropriate strategies for fennel aphid control in fennel-cotton intercropping systems. In summary, intercropping fennel with cotton with colored fibers apparently promoted biocontrol of fennel aphid in fennel.

  14. Resistance to lettuce aphid (Nasonovia ribisnigri) biotype 0 in wild lettuce accessions PI 491093 and PI 274378

    Science.gov (United States)

    Lettuce aphid, Nasonovia ribisnigri Mosley (Homoptera : Aphididae), is a major insect pest of lettuce, Lactuca sativa L, in many commercial lettuce productions areas around the world. Resistance to lettuce aphid was first reported in Lactuca virosa L. accession IVT 280 and characterized as complete,...

  15. Resistance to a new biotype of the lettuce aphid Nasonovia ribisnigri in Lactuca virosa accession IVT280

    NARCIS (Netherlands)

    Broeke, ten C.J.M.; Dicke, M.; Loon, van J.J.A.

    2013-01-01

    Host plant resistance is an effective protection strategy to control aphids in many crops. However, the evolution of insensitive aphid biotypes necessitates the search for new resistance sources. Wild relatives of crop plants can be important sources for resistance genes to be introgressed into new

  16. Role of syrphid larvae and other predators in suppressing aphid infestations in organic lettuce on California's Central Coast.

    Science.gov (United States)

    Smith, Hugh A; Chaney, William E; Bensen, Tiffany A

    2008-10-01

    Organic lettuce, Lactuca sativa L., growers on the Central Coast of California rely on conservation biological control to manage Nasonovia ribisnigri Mosley (Hemiptera: Aphididae) and other aphid pests of lettuce. In 2006, we carried out five replicated field trials to determine the importance of syrphid larvae in the suppression of N. ribisnigri and other aphids infesting organic romaine lettuce. We used Entrust, a spinosad-based insecticide approved for use on organic farms, to suppress syrphid larvae in aphid-infested romaine. Romaine treated with Entrust was unmarketable at harvest because of aphid infestation, whereas insecticide-free romaine was marketable. Syrphid larvae composed 85% or more of total predators in most trials, and they were the only predators consistently recovered from romaine that was infested with aphids early and largely aphid-free by harvest. The species mix of nonsyrphid predators varied from site to site. Applications of Entrust suppressed nonsyrphid predators in two trials, and so was an imperfect tool for selectively suppressing syrphid larvae. The relative importance of syrphid larvae and other predators in the conservation biological control of aphids in organic romaine is discussed. We conclude that syrphid larvae are primarily responsible for the suppression of aphids in organic romaine on California's Central Coast.

  17. Modulation of Legume Defense Signaling Pathways by Native and Non-native Pea Aphid Clones

    Science.gov (United States)

    Sanchez-Arcos, Carlos; Reichelt, Michael; Gershenzon, Jonathan; Kunert, Grit

    2016-01-01

    The pea aphid (Acyrthosiphon pisum) is a complex of at least 15 genetically different host races that are native to specific legume plants, but can all develop on the universal host plant Vicia faba. Despite much research, it is still unclear why pea aphid host races (biotypes) are able to colonize their native hosts while other host races are not. All aphids penetrate the plant and salivate into plant cells when they test plant suitability. Thus plants might react differently to the various pea