WorldWideScience

Sample records for apertures

  1. Apertures

    CERN Document Server

    Hansen, R C

    2014-01-01

    Microwave Scanning Antennas, Volume I: Apertures is a comprehensive account of phased arrays, multiple beam arrays, time domain and synthetic apertures, and adaptive antennas. Advances in continuous apertures and near field theory are discussed. Low noise and monopulse apertures, optical scanners, and large radomes are also covered, along with radio astronomy instruments and associated theory.Comprised of five chapters, this volume begins with an overview of aperture theory as well as aperture distributions and near field theory. The second and third chapters deal with mechanically steered and

  2. Aperture optical antennas

    CERN Document Server

    Wenger, Jerome

    2014-01-01

    This contribution reviews the studies on subwavelength aperture antennas in the optical regime, paying attention to both the fundamental investigations and the applications. Section 2 reports on the enhancement of light-matter interaction using three main types of aperture antennas: single subwavelength aperture, single aperture surrounded by shallow surface corrugations, and subwavelength aperture arrays. A large fraction of nanoaperture applications is devoted to the field of biophotonics to improve molecular sensing, which are reviewed in Section 3. Lastly, the applications towards nano-optics (sources, detectors and filters) are discussed in Section 4.

  3. Variable-aperture screen

    Science.gov (United States)

    Savage, George M.

    1991-01-01

    Apparatus for separating material into first and second portions according to size including a plurality of shafts, a plurality of spaced disks radiating outwardly from each of the shafts to define apertures and linkage interconnecting the shafts for moving the shafts toward or away from one another to vary the size of the apertures while the apparatus is performing the separating function.

  4. Mastering Apple Aperture

    CERN Document Server

    Fitzgerald, Thomas

    2013-01-01

    Written in a conversational style, the author will share his knowledge on advanced Aperture topics with detailed discussions of advanced topics, the theory behind some of those topics and lots of hints and tips for ways to improve your workflow.Photographer's who have a basic understanding of Aperture

  5. Rotating Aperture System

    Science.gov (United States)

    Rusnak, Brian; Hall, James M.; Shen, Stewart; Wood, Richard L.

    2005-01-18

    A rotating aperture system includes a low-pressure vacuum pumping stage with apertures for passage of a deuterium beam. A stator assembly includes holes for passage of the beam. The rotor assembly includes a shaft connected to a deuterium gas cell or a crossflow venturi that has a single aperture on each side that together align with holes every rotation. The rotating apertures are synchronized with the firing of the deuterium beam such that the beam fires through a clear aperture and passes into the Xe gas beam stop. Portions of the rotor are lapped into the stator to improve the sealing surfaces, to prevent rapid escape of the deuterium gas from the gas cell.

  6. APT: Aperture Photometry Tool

    Science.gov (United States)

    Laher, Russ

    2012-08-01

    Aperture Photometry Tool (APT) is software for astronomers and students interested in manually exploring the photometric qualities of astronomical images. It has a graphical user interface (GUI) which allows the image data associated with aperture photometry calculations for point and extended sources to be visualized and, therefore, more effectively analyzed. Mouse-clicking on a source in the displayed image draws a circular or elliptical aperture and sky annulus around the source and computes the source intensity and its uncertainty, along with several commonly used measures of the local sky background and its variability. The results are displayed and can be optionally saved to an aperture-photometry-table file and plotted on graphs in various ways using functions available in the software. APT is geared toward processing sources in a small number of images and is not suitable for bulk processing a large number of images, unlike other aperture photometry packages (e.g., SExtractor). However, APT does have a convenient source-list tool that enables calculations for a large number of detections in a given image. The source-list tool can be run either in automatic mode to generate an aperture photometry table quickly or in manual mode to permit inspection and adjustment of the calculation for each individual detection. APT displays a variety of useful graphs, including image histogram, and aperture slices, source scatter plot, sky scatter plot, sky histogram, radial profile, curve of growth, and aperture-photometry-table scatter plots and histograms. APT has functions for customizing calculations, including outlier rejection, pixel “picking” and “zapping,” and a selection of source and sky models. The radial-profile-interpolation source model, accessed via the radial-profile-plot panel, allows recovery of source intensity from pixels with missing data and can be especially beneficial in crowded fields.

  7. Confocal coded aperture imaging

    Energy Technology Data Exchange (ETDEWEB)

    Tobin, Jr., Kenneth William (Harriman, TN); Thomas, Jr., Clarence E. (Knoxville, TN)

    2001-01-01

    A method for imaging a target volume comprises the steps of: radiating a small bandwidth of energy toward the target volume; focusing the small bandwidth of energy into a beam; moving the target volume through a plurality of positions within the focused beam; collecting a beam of energy scattered from the target volume with a non-diffractive confocal coded aperture; generating a shadow image of said aperture from every point source of radiation in the target volume; and, reconstructing the shadow image into a 3-dimensional image of the every point source by mathematically correlating the shadow image with a digital or analog version of the coded aperture. The method can comprise the step of collecting the beam of energy scattered from the target volume with a Fresnel zone plate.

  8. Synthetic Aperture Sequential Beamforming

    DEFF Research Database (Denmark)

    Kortbek, Jacob; Jensen, Jørgen Arendt; Gammelmark, Kim Løkke

    2008-01-01

    A synthetic aperture focusing (SAF) technique denoted Synthetic Aperture Sequential Beamforming (SASB) suitable for 2D and 3D imaging is presented. The technique differ from prior art of SAF in the sense that SAF is performed on pre-beamformed data contrary to channel data. The objective...... is stored. The second stage applies the focused image lines from the first stage as input data. The SASB method has been investigated using simulations in Field II and by off-line processing of data acquired with a commercial scanner. The performance of SASB with a static image object is compared with DRF...

  9. Aperture Photometry Tool

    Science.gov (United States)

    Laher, Russ R.; Gorjian, Varoujan; Rebull, Luisa M.; Masci, Frank J.; Fowler, John W.; Helou, George; Kulkarni, Shrinivas R.; Law, Nicholas M.

    2012-07-01

    Aperture Photometry Tool (APT) is software for astronomers and students interested in manually exploring the photometric qualities of astronomical images. It is a graphical user interface (GUI) designed to allow the image data associated with aperture photometry calculations for point and extended sources to be visualized and, therefore, more effectively analyzed. The finely tuned layout of the GUI, along with judicious use of color-coding and alerting, is intended to give maximal user utility and convenience. Simply mouse-clicking on a source in the displayed image will instantly draw a circular or elliptical aperture and sky annulus around the source and will compute the source intensity and its uncertainty, along with several commonly used measures of the local sky background and its variability. The results are displayed and can be optionally saved to an aperture-photometry-table file and plotted on graphs in various ways using functions available in the software. APT is geared toward processing sources in a small number of images and is not suitable for bulk processing a large number of images, unlike other aperture photometry packages (e.g., SExtractor). However, APT does have a convenient source-list tool that enables calculations for a large number of detections in a given image. The source-list tool can be run either in automatic mode to generate an aperture photometry table quickly or in manual mode to permit inspection and adjustment of the calculation for each individual detection. APT displays a variety of useful graphs with just the push of a button, including image histogram, x and y aperture slices, source scatter plot, sky scatter plot, sky histogram, radial profile, curve of growth, and aperture-photometry-table scatter plots and histograms. APT has many functions for customizing the calculations, including outlier rejection, pixel "picking" and "zapping," and a selection of source and sky models. The radial-profile-interpolation source model

  10. Synthetic Aperture Radar Interferometry

    Science.gov (United States)

    Rosen, P. A.; Hensley, S.; Joughin, I. R.; Li, F.; Madsen, S. N.; Rodriguez, E.; Goldstein, R. M.

    1998-01-01

    Synthetic aperture radar interferometry is an imaging technique for measuring the topography of a surface, its changes over time, and other changes in the detailed characteristics of the surface. This paper reviews the techniques of interferometry, systems and limitations, and applications in a rapidly growing area of science and engineering.

  11. Apodizer aperture for lasers

    Science.gov (United States)

    Jorna, Siebe; Siebert, Larry D.; Brueckner, Keith A.

    1976-11-09

    An aperture attenuator for use with high power lasers which includes glass windows shaped and assembled to form an annulus chamber which is filled with a dye solution. The annulus chamber is shaped such that the section in alignment with the axis of the incident beam follows a curve which is represented by the equation y = (r - r.sub.o).sup.n.

  12. Complex Aperture Networks

    CERN Document Server

    Owladeghaffari, Hamed

    2009-01-01

    A complex network approach on a rough fracture is developed. In this manner, some hidden metric spaces (similarity measurements) between apertures profiles are set up and a general evolutionary network in two directions (in parallel and perpendicular to the shear direction) is constructed. Evaluation of the emerged network shows the connectivity degree (distribution) of network, after a transition step; fall in to the stable states which are coincided with the Gaussian distribution. Based on this event and real observations of the complex network changes, an algorithm (COmplex Networks on Apertures: CONA) is proposed in which evolving of a network is accomplished using preferential detachments and attachments of edges (based on a competition and game manner) while the number of nodes is fixed. Also, evolving of clustering coefficients and number of edges display similar patterns as well as are appeared in shear stress, hydraulic conductivity and dilation changes, which can be engaged to estimate shear strengt...

  13. Configurable Aperture Space Telescope

    Science.gov (United States)

    Ennico, Kimberly; Bendek, Eduardo

    2015-01-01

    In December 2014, we were awarded Center Innovation Fund to evaluate an optical and mechanical concept for a novel implementation of a segmented telescope based on modular, interconnected small sats (satlets). The concept is called CAST, a Configurable Aperture Space Telescope. With a current TRL is 2 we will aim to reach TLR 3 in Sept 2015 by demonstrating a 2x2 mirror system to validate our optical model and error budget, provide straw man mechanical architecture and structural damping analyses, and derive future satlet-based observatory performance requirements. CAST provides an alternative access to visible and/or UV wavelength space telescope with 1-meter or larger aperture for NASA SMD Astrophysics and Planetary Science community after the retirement of HST

  14. Synthetic Aperture Radiometer Systems

    Science.gov (United States)

    LeVine, David M.

    1999-01-01

    Aperture synthesis is a new technology for passive microwave remote sensing from space which has the potential to overcome the limitations set in the past by antenna size. This is an interferometric technique in which pairs of small antennas and signal processing are used to obtain the resolution of a single large antenna. The technique has been demonstrated successfully at L-band with the aircraft prototype instrument, ESTAR. Proposals have been submitted to demonstrate this technology in space (HYDROSTAR and MIRAS).

  15. Compounding in synthetic aperture imaging.

    Science.gov (United States)

    Hansen, Jens Munk; Jensen, Jørgen Arendt

    2012-09-01

    A method for obtaining compound images using synthetic aperture data is investigated using a convex array transducer. The new approach allows spatial compounding to be performed for any number of angles without reducing the frame rate or temporal resolution. This important feature is an intrinsic property of how the compound images are constructed using synthetic aperture data and an improvement compared with how spatial compounding is obtained using conventional methods. The synthetic aperture compound images are created by exploiting the linearity of delay-and-sum beamformation for data collected from multiple spherical emissions to synthesize multiple transmit and receive apertures, corresponding to imaging the tissue from multiple directions. The many images are added incoherently, to produce a single compound image. Using a 192-element, 3.5-MHz, λ-pitch transducer, it is demonstrated from tissue-phantom measurements that the speckle is reduced and the contrast resolution improved when applying synthetic aperture compound imaging. At a depth of 4 cm, the size of the synthesized apertures is optimized for lesion detection based on the speckle information density. This is a performance measure for tissue contrast resolution which quantifies the tradeoff between resolution loss and speckle reduction. The speckle information density is improved by 25% when comparing synthetic aperture compounding to a similar setup for compounding using dynamic receive focusing. The cystic resolution and clutter levels are measured using a wire phantom setup and compared with conventional application of the array, as well as to synthetic aperture imaging without compounding. If the full aperture is used for synthetic aperture compounding, the cystic resolution is improved by 41% compared with conventional imaging, and is at least as good as what can be obtained using synthetic aperture imaging without compounding. PMID:23007781

  16. Synthetic Aperture Ultrasound Imaging

    DEFF Research Database (Denmark)

    Jensen, Jørgen Arendt; Nikolov, Svetoslav; Gammelmark, Kim Løkke;

    2006-01-01

    The paper describes the use of synthetic aperture (SA) imaging in medical ultrasound. SA imaging is a radical break with today's commercial systems, where the image is acquired sequentially one image line at a time. This puts a strict limit on the frame rate and the possibility of acquiring...... of SA imaging. Due to the complete data set, it is possible to have both dynamic transmit and receive focusing to improve contrast and resolution. It is also possible to improve penetration depth by employing codes during ultrasound transmission. Data sets for vector flow imaging can be acquired using...... short imaging sequences, whereby both the correct velocity magnitude and angle can be estimated. A number of examples of both phantom and in-vivo SA images will be presented measured by the experimental ultrasound scanner RASMUS to demonstrate the many benefits of SA imaging....

  17. Sequential Beamforming Synthetic Aperture Imaging

    DEFF Research Database (Denmark)

    Kortbek, Jacob; Jensen, Jørgen Arendt; Gammelmark, Kim Løkke

    2013-01-01

    Synthetic aperture sequential beamforming (SASB) is a novel technique which allows to implement synthetic aperture beamforming on a system with a restricted complexity, and without storing RF-data. The objective is to improve lateral resolution and obtain a more depth independent resolution...

  18. Sparse synthetic aperture radar imaging with optimized azimuthal aperture

    Institute of Scientific and Technical Information of China (English)

    ZENG Cao; WANG MinHang; LIAO GuiSheng; ZHU ShengQi

    2012-01-01

    To counter the problem of acquiring and processing huge amounts of data for synthetic aperture radar (SAR) using traditional sampling techniques,a method for sparse SAR imaging with an optimized azimuthal aperture is presented.The equivalence of an azimuthal match filter and synthetic array beamforming is shown so that optimization of the azimuthal sparse aperture can be converted to optimization of synthetic array beamforming.The azimuthal sparse aperture,which is composed of a middle aperture and symmetrical bilateral apertures,can be obtained by optimization algorithms (density weighting and simulated annealing algorithms,respectively).Furthermore,sparse imaging of spectrum analysis SAR based on the optimized sparse aperture is achieved by padding zeros at null samplings and using a non-uniform Taylor window. Compared with traditional sampling,this method has the advantages of reducing the amount of sampling and alleviating the computational burden with acceptable image quality.Unlike periodic sparse sampling,the proposed method exhibits no image ghosts.The results obtained from airborne measurements demonstrate the effectiveness and superiority of the proposed method.

  19. Tissue Harmonic Synthetic Aperture Imaging

    DEFF Research Database (Denmark)

    Rasmussen, Joachim

    The main purpose of this PhD project is to develop an ultrasonic method for tissue harmonic synthetic aperture imaging. The motivation is to advance the field of synthetic aperture imaging in ultrasound, which has shown great potentials in the clinic. Suggestions for synthetic aperture tissue....... Clinical scans were conducted in collaboration with medical professionals at Copenhagen University. In a series of double blinded trials, image quality and recognition of pathology using SASB with THI was compared with conventional THI. The results of the clinical trial documented, that SASB with THI...

  20. Optimizing Synthetic Aperture Compound Imaging

    DEFF Research Database (Denmark)

    Hansen, Jens Munk; Jensen, Jørgen Arendt

    2012-01-01

    Spatial compound images are constructed from synthetic aperture data acquired using a linear phased-array transducer. Compound images of wires, tissue, and cysts are created using a method, which allows both transmit and receive compounding without any loss in temporal resolution. Similarly to...... optimal for lesion detection. Synthetic aperture data are acquired from unfocused emissions and 154 compound images are constructed by synthesizing different aperture configurations with more or less compounding, all maintaining a constant resolution across depth corresponding to an f-number of 2.0 for...... transmit and receive. The same configurations are used for scanning a phantom with cysts, and it is demonstrated how an improved cysts contrast follows from an aperture configuration, which gives a higher value for the performance measure extracted from the phantom without cysts. A correlation value R = 0...

  1. Synthetic Aperture Radar - Hardware Development

    OpenAIRE

    Rosner, V.; Seller, R.; L. Dudas; Kazi, K.; Miko, G.

    2009-01-01

    Experimental real and synthetic aperture radar are developed from the base-band digital unit to the analogue RF parts, based on solid state units, using pulse compression for radar imaging. Proper QPSK code is found for matched filter.

  2. Compounding in synthetic aperture imaging

    DEFF Research Database (Denmark)

    Hansen, J. M.; Jensen, J. A.

    2012-01-01

    A method for obtaining compound images using synthetic aperture data is investigated using a convex array transducer. The new approach allows spatial compounding to be performed for any number of angles without reducing the frame rate or temporal resolution. This important feature is an intrinsic...... from multiple spherical emissions to synthesize multiple transmit and receive apertures, corresponding to imaging the tissue from multiple directions. The many images are added incoherently, to produce a single compound image. Using a 192-element, 3.5-MHz, λ-pitch transducer, it is demonstrated from...... tissue-phantom measurements that the speckle is reduced and the contrast resolution improved when applying synthetic aperture compound imaging. At a depth of 4 cm, the size of the synthesized apertures is optimized for lesion detection based on the speckle information density. This is a performance...

  3. Synthetic aperture controlled source electromagnetics

    OpenAIRE

    Fan, Y.; Snieder, R.; Slob, E.; Hunziker, J.W.; Singer, J.; Sheiman, J.; Rosenquist, M.

    2010-01-01

    Controlled‐source electromagnetics (CSEM) has been used as a de‐risking tool in the hydrocarbon exploration industry. Although there have been successful applications of CSEM, this technique is still not widely used in the industry because the limited types of hydrocarbon reservoirs CSEM can detect. In this paper, we apply the concept of synthetic aperture to CSEM data. Synthetic aperture allows us to design sources with specific radiation patterns for different purposes. The ability to detec...

  4. NPS high resolution synthetic aperture sonar

    OpenAIRE

    Welter, Joseph Donald

    1995-01-01

    This thesis investigated the use of synthetic aperture techniques to achieve a long effective aperture, high resolution, imaging sonar. The approach included a full simulation of the system using the MATLAB programming environment that provided a model for developing six data processing algorithms and a working 25KHz, 1 m baseline, air medium synthetic aperture sonar. The six azimuthal processing techniques included: (1) a normal, real aperture, (2) an unfocussed synthetic aperture, (3) a hyb...

  5. High resolution non-iterative aperture synthesis.

    Science.gov (United States)

    Kraczek, Jeffrey R; McManamon, Paul F; Watson, Edward A

    2016-03-21

    The maximum resolution of a multiple-input multiple-output (MIMO) imaging system is determined by the size of the synthetic aperture. The synthetic aperture is determined by a coordinate shift using the relative positions of the illuminators and receive apertures. Previous methods have shown non-iterative phasing for multiple illuminators with a single receive aperture for intra-aperture synthesis. This work shows non-iterative phasing with both multiple illuminators and multiple receive apertures for inter-aperture synthesis. Simulated results show that piston, tip, and tilt can be calculated using inter-aperture phasing after intra-aperture phasing has been performed. Use of a fourth illuminator for increased resolution is shown. The modulation transfer function (MTF) is used to quantitatively judge increased resolution. PMID:27136816

  6. Synthetic Aperture Radar - Hardware Development

    Directory of Open Access Journals (Sweden)

    V. Rosner

    2009-06-01

    Full Text Available Experimental real and synthetic aperture radar are developed from the base-band digital unit to the analogue RF parts, based on solid state units, using pulse compression for radar imaging. Proper QPSK code is found for matched filter.

  7. Ultrasound fields from triangular apertures

    DEFF Research Database (Denmark)

    Jensen, Jørgen Arendt

    1996-01-01

    The pulsed field from a triangular aperture mounted in an infinite, rigidbaffle is calculated. The approach of spatial impulse responses,as developed by Tupholme and Stepanishen, is used. By this both the emitted and received pulsed ultrasound field can be found for any transducerexcitation...

  8. The study on aperture configuration of optical synthetic aperture imaging system

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    A model based on Fourier domain consideration on aperture configuration of optical synthetic aperture imaging system is introduced in this paper. The derivation of the model is directly linked to the restoration error of the original object from the recorded image. The aperture configuration is a function of the maximum frequency of interest, and takes into account the diameter of the aperture. The simulative results of genetic algorithms illustrate the usefulness of this model for designing a synthetic aperture optical imaging system, and the aperture configuration of a good synthetic aperture optical imaging system should be non-redundant.

  9. Short term dynamic aperture with AC dipoles

    CERN Document Server

    Mönig, Saskia; Persson, Tobias Hakan Bjorn; Coello De Portugal, Jaime; Langner, Andy; Tomas, Rogelio; CERN. Geneva. ATS Department

    2015-01-01

    The dynamic aperture of an accelerator is determined by its non-linear components and errors. Control of the dynamic aperture is important for a good understanding and operation of the accelerator. The AC dipole, installed in the LHC for the diagnostic of linear and non-linear optics, could serve as a tool for the determination of the dynamic aperture. However, since the AC dipole itself modifies the non-linear dynamics, the dynamic aperture with and without AC dipole are expected to differ. The effect of the AC dipole on the dynamic aperture is studied within this note.

  10. Aperture scanning Fourier ptychographic microscopy

    Science.gov (United States)

    Ou, Xiaoze; Chung, Jaebum; Horstmeyer, Roarke; Yang, Changhuei

    2016-01-01

    Fourier ptychographic microscopy (FPM) is implemented through aperture scanning by an LCOS spatial light modulator at the back focal plane of the objective lens. This FPM configuration enables the capturing of the complex scattered field for a 3D sample both in the transmissive mode and the reflective mode. We further show that by combining with the compressive sensing theory, the reconstructed 2D complex scattered field can be used to recover the 3D sample scattering density. This implementation expands the scope of application for FPM and can be beneficial for areas such as tissue imaging and wafer inspection. PMID:27570705

  11. Ultrasonic large aperture imaging system

    International Nuclear Information System (INIS)

    A new ultrasonic large aperture imaging technique is described. This device combines a focussed transducer as a transmitter, producing a small ultrasonic beam, with N transducers as receivers. We show that is possible to considerably reduce the number of receivers if, on the one hand, we limit the reconstitution process to the emitter beam area and, on the other hand, we ensure that the artefacts, caused by the spatial sampling of the reception, are outside this area. Under these conditions, the result is a high resolution image which does not require large reconstitution processing times. Theoretical and experimental results are given

  12. The Large Aperture GRB Observatory

    CERN Document Server

    Allard, D; Asorey, H; Barros, H; Bertou, X; Castillo, M; Chirinos, J M; De Castro, A; Flores, S; González, J; Berisso, M Gomez; Grajales, J; Guada, C; Day, W R Guevara; Ishitsuka, J; López, J A; Martínez, O; Melfo, A; Meza, E; Loza, P Miranda; Barbosa, E Moreno; Murrugarra, C; Núñez, L A; Ormachea, L J Otiniano; Pérez, G; Perez, Y; Ponce, E; Quispe, J; Quintero, C; Rivera, H; Rosales, M; Rovero, A C; Saavedra, O; Salazar, H; Tello, J C; Peralda, R Ticona; Varela, E; Velarde, A; Villaseñor, L; Wahl, D; Zamalloa, M A

    2009-01-01

    The Large Aperture GRB Observatory (LAGO) is aiming at the detection of the high energy (around 100 GeV) component of Gamma Ray Bursts, using the single particle technique in arrays of Water Cherenkov Detectors (WCD) in high mountain sites (Chacaltaya, Bolivia, 5300 m a.s.l., Pico Espejo, Venezuela, 4750 m a.s.l., Sierra Negra, Mexico, 4650 m a.s.l). WCD at high altitude offer a unique possibility of detecting low gamma fluxes in the 10 GeV - 1 TeV range. The status of the Observatory and data collected from 2007 to date will be presented.

  13. Resonant Effects in Nanoscale Bowtie Apertures

    Science.gov (United States)

    Ding, Li; Qin, Jin; Guo, Songpo; Liu, Tao; Kinzel, Edward; Wang, Liang

    2016-06-01

    Nanoscale bowtie aperture antennas can be used to focus light well below the diffraction limit with extremely high transmission efficiencies. This paper studies the spectral dependence of the transmission through nanoscale bowtie apertures defined in a silver film. A realistic bowtie aperture is numerically modeled using the Finite Difference Time Domain (FDTD) method. Results show that the transmission spectrum is dominated by Fabry-Pérot (F-P) waveguide modes and plasmonic modes. The F-P resonance is sensitive to the thickness of the film and the plasmonic resonant mode is closely related to the gap distance of the bowtie aperture. Both characteristics significantly affect the transmission spectrum. To verify these numerical results, bowtie apertures are FIB milled in a silver film. Experimental transmission measurements agree with simulation data. Based on this result, nanoscale bowtie apertures can be optimized to realize deep sub-wavelength confinement with high transmission efficiency with applications to nanolithography, data storage, and bio-chemical sensing.

  14. Doppler synthetic aperture hitchhiker imaging

    International Nuclear Information System (INIS)

    In this paper we consider passive airborne receivers that use backscattered signals from sources of opportunity transmitting single-frequency or ultra-narrowband waveforms. Because of its combined passive synthetic aperture and the single-frequency nature of the transmitted waveforms, we refer to the system under consideration as Doppler synthetic aperture hitchhiker (DSAH). We present a novel image formation method for DSAH. Our method first correlates the windowed signal obtained from one receiver with the windowed, filtered, scaled and translated version of the received signal from another receiver. This processing removes the transmitter-related variables from the phase of the Fourier integral operator that maps the radiance of the scene to the correlated signal. Next, we use microlocal analysis to reconstruct the scene radiance by the weighted backprojection of the correlated signal. The image reconstruction method is applicable to both cooperative and non-cooperative sources of opportunity using one or more airborne receivers. It has the desirable property of preserving the visible edges of the scene radiance. Additionally, it is an analytic reconstruction technique that can be made computationally efficient. We present numerical simulations to demonstrate the performance of the image reconstruction method and to verify the theoretical results

  15. Advanced Multiple Aperture Seeing Profiler

    Science.gov (United States)

    Ren, Deqing; Zhao, Gang

    2016-10-01

    Measurements of the seeing profile of the atmospheric turbulence as a function of altitude are crucial for solar astronomical site characterization, as well as the optimized design and performance estimation of solar Multi-Conjugate Adaptive Optics (MCAO). Knowledge of the seeing distribution, up to 30 km, with a potential new solar observation site, is required for future solar MCAO developments. Current optical seeing profile measurement techniques are limited by the need to use a large facility solar telescope for such seeing profile measurements, which is a serious limitation on characterizing a site's seeing conditions in terms of the seeing profile. Based on our previous work, we propose a compact solar seeing profiler called the Advanced Multiple Aperture Seeing Profile (A-MASP). A-MASP consists of two small telescopes, each with a 100 mm aperture. The two small telescopes can be installed on a commercial computerized tripod to track solar granule structures for seeing profile measurement. A-MASP is extreme simple and portable, which makes it an ideal system to bring to a potential new site for seeing profile measurements.

  16. Advanced Optics Experiments Using Nonuniform Aperture Functions

    CERN Document Server

    Wood, Lowell T

    2012-01-01

    A method to create instructive, nonuniform aperture functions using spatial frequency filtering is described. The diffraction from a single slit in the Fresnel limit and the interference from a double slit in the Fraunhofer limit are spatially filtered to create electric field distributions across an aperture to produce apodization, inverse apodization or super-resolution, and apertures with phase shifts across their widths. The diffraction effects from these aperture functions are measured and calculated. The excellent agreement between the experimental results and the calculated results makes the experiment ideal for use in an advanced undergraduate or graduate optics laboratory to illustrate experimentally several effects in Fourier optics.

  17. Practical Applications of Synthetic Aperture Imaging

    OpenAIRE

    Nikolov, Svetoslav Ivanov; Kortbek, Jacob; Jensen, Jørgen Arendt

    2010-01-01

    Synthetic aperture imaging has been a focus of research for almost 3 decades. The research carried out at the Center for Fast Ultrasound Imaging has demonstrated that synthetic aperture focusing not only can be used in-vivo, but that it also yields superior B-mode and blood flow images. In the last years synthetic aperture focusing has moved from the lab to commercial products. The implementations vary in their scope and purpose. Some scanners use synthetic aperture imaging to improve the det...

  18. Ion mobility spectrometer with virtual aperture grid

    Science.gov (United States)

    Pfeifer, Kent B.; Rumpf, Arthur N.

    2010-11-23

    An ion mobility spectrometer does not require a physical aperture grid to prevent premature ion detector response. The last electrodes adjacent to the ion collector (typically the last four or five) have an electrode pitch that is less than the width of the ion swarm and each of the adjacent electrodes is connected to a source of free charge, thereby providing a virtual aperture grid at the end of the drift region that shields the ion collector from the mirror current of the approaching ion swarm. The virtual aperture grid is less complex in assembly and function and is less sensitive to vibrations than the physical aperture grid.

  19. Synthetic aperture interferometry: error analysis

    International Nuclear Information System (INIS)

    Synthetic aperture interferometry (SAI) is a novel way of testing aspherics and has a potential for in-process measurement of aspherics [Appl. Opt.42, 701 (2003)].APOPAI0003-693510.1364/AO.42.000701 A method to measure steep aspherics using the SAI technique has been previously reported [Appl. Opt.47, 1705 (2008)].APOPAI0003-693510.1364/AO.47.001705 Here we investigate the computation of surface form using the SAI technique in different configurations and discuss the computational errors. A two-pass measurement strategy is proposed to reduce the computational errors, and a detailed investigation is carried out to determine the effect of alignment errors on the measurement process.

  20. Synthetic aperture radar: principles and applications

    International Nuclear Information System (INIS)

    In this paper an introduction to synthetic aperture radar is presented. Synthetic aperture radar is a relatively new remote sensing platform and the technology has matured a lot in the last two decades. This paper introduces the concepts behind SAR principles as well as the major areas where this new technology has shown additional information. (author)

  1. Towards Very Large Aperture Massive MIMO

    DEFF Research Database (Denmark)

    Oliveras Martínez, Àlex; De Carvalho, Elisabeth; Nielsen, Jesper Ødum

    2014-01-01

    on the impact of the array aperture which is the main limiting factor in the degrees of freedom available in the multiple antenna channel. We find that performance is improved as the aperture increases, with an impact mostly visible in crowded scenarios where the users are closely spaced. We also test MIMO...

  2. Practical Applications of Synthetic Aperture Imaging

    DEFF Research Database (Denmark)

    Nikolov, Svetoslav Ivanov; Kortbek, Jacob; Jensen, Jørgen Arendt

    2010-01-01

    Synthetic aperture imaging has been a focus of research for almost 3 decades. The research carried out at the Center for Fast Ultrasound Imaging has demonstrated that synthetic aperture focusing not only can be used in-vivo, but that it also yields superior B-mode and blood flow images. In the last...

  3. Thermal emission by a subwavelength aperture

    Science.gov (United States)

    Joulain, Karl; Ezzahri, Younès; Carminati, Rémi

    2016-04-01

    We calculate, by means of fluctuational electrodynamics, the thermal emission of an aperture separating from the outside, vacuum or a material at temperature T. We show that thermal emission is very different whether the aperture size is large or small compared to the thermal wavelength. Subwavelength apertures separating vacuum from the outside have their thermal emission strongly decreased compared to classical blackbodies which have an aperture much larger than the wavelength. A simple expression of their emissivity can be calculated and their total emissive power scales as T8 instead of T4 for large apertures. Thermal emission of disk of materials with a size comparable to the wavelength is also discussed. It is shown in particular that emissivity of such a disk is increased when the material can support surface waves such as phonon polaritons.

  4. Directional synthetic aperture flow imaging

    DEFF Research Database (Denmark)

    Jensen, Jørgen Arendt; Nikolov, Svetoslav

    2004-01-01

    . A plastic tube with an internal diameter of 17 mm was used with an EcoWatt 1 pump generating a laminar, stationary flow. The velocity profile was measured for flow angles of 90 and 60 degrees. The RASMUS research scanner was used for acquiring RF data from 128 elements of the array using 8 emissions with 11...... elements in each emission. A 20 us chirp was used during emission. The RF data were subsequently beamformed off-line and stationary echo canceling was performed. The 60 degrees flow with a peak velocity of 0.15 m/s was determined using 16 groups of 8 emissions and the relative standard deviation was 0......A method for flow estimation using synthetic aperture imaging and focusing along the flow direction is presented. The method can find the correct velocity magnitude for any flow angle and full color flow images can be measured using only 32 to 128 pulse emissions. The approach uses spherical wave...

  5. Fast Parametric Beamformer for Synthetic Aperture Imaging

    DEFF Research Database (Denmark)

    Nikolov, Svetoslav; Jensen, Jørgen Arendt; Tomov, Borislav Gueorguiev

    2008-01-01

    This paper describes the design and implementation of a real-time delay-and-sum synthetic aperture beamformer. The beamforming delays and apodization coefficients are described parametrically. The image is viewed as a set of independent lines that are defined in 3-D by their origin, direction, and...... implementation of the beamformer is optimized with respect to the architecture of a novel synthetic aperture real-time ultrasound scanner (SARUS), in which 4 channels are processed by the same set of field-programmable gate arrays (FPGA). In synthetic transmit aperture imaging, low-resolution images are formed...

  6. Three dimensional digital holographic aperture synthesis.

    Science.gov (United States)

    Crouch, Stephen; Kaylor, Brant M; Barber, Zeb W; Reibel, Randy R

    2015-09-01

    Aperture synthesis techniques are applied to temporally and spatially diverse digital holograms recorded with a fast focal-plane array. Because the technique fully resolves the downrange dimension using wide-bandwidth FMCW linear-chirp waveforms, extremely high resolution three dimensional (3D) images can be obtained even at very long standoff ranges. This allows excellent 3D image formation even when targets have significant structure or discontinuities, which are typically poorly rendered with multi-baseline synthetic aperture ladar or multi-wavelength holographic aperture ladar approaches. The background for the system is described and system performance is demonstrated through both simulation and experiments. PMID:26368474

  7. Synthetic Aperture Radar Missions Study Report

    Science.gov (United States)

    Bard, S.

    2000-01-01

    This report reviews the history of the LightSAR project and summarizes actions the agency can undertake to support industry-led efforts to develop an operational synthetic aperture radar (SAR) capability in the United States.

  8. Beam Combination for Sparse Aperture Telescopes Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This proposal is for funding to continue development of an alternative beam combiner for Stellar Imager (SI), a 30-aperture, interferometric telescope chosen as one...

  9. Thermal Emission by a Subwavelength Aperture

    CERN Document Server

    Joulain, Karl; Carminati, Rémi

    2015-01-01

    We calculate, by means of fluctuational electrodynamics, the thermal emission of an aperture filled by vacuum or a material at temperature T. We show that thermal emission is very different whether the aperture size is large or small compared to the thermal wavelength. Subwavelength apertures filled with vacuum (subwavelength blackbody) have their thermal emission strongly decreased compared to classical blackbodies. A simple expression of their emissivity can be calculated and their total emittance scales as T 8 instead of T 4 for large apertures. Thermal emission of disk of materials with a size comparable to the wavelength is also discussed. It is shown in particular that emissivity of such a disk is increased when the material can support surface waves such as phonon polaritons.

  10. Synthetic Aperture Techniques for Sonar Systems

    OpenAIRE

    Silva, S&#;rgio Rui; Cunha, S&#;rgio; Matos, An&#;bal; Cruz, Nuno

    2009-01-01

    As demonstrated, synthetic aperture sonar is a technique that enables attainment of high quality, high resolution underwater images. Autonomous surface vehicles provides several advantages for synthetic aperture imagery. Not only it is possible to control the boat motion in this way, it is also possible to obtain navigation measurements with precisions in the order of the wavelength used in high resolution sonar systems. Furthermore unsupervised surveillance applications that combine the high...

  11. An autonomous boat based Synthetic Aperture Sonar

    OpenAIRE

    Sergio Rui Silva; Sergio Cunha; Anibal Matos; Nuno Cruz

    2007-01-01

    This paper describes a Synthetic Aperture Sonar (SAS) system being developed at the University of Porto to be used in a small autonomous boat for the survey of shallow water environments, such as rivers, deltas, estuaries and dams. Its purpose is to obtain high resolution echo reflectivity maps through synthetic aperture techniques, taking advantage of the high precision navigation system of the boat. In the future the production of bottom tomography maps is also considered through the use of...

  12. Biomineral repair of Abalone shell apertures

    OpenAIRE

    Cusack, M.; Guo, D.; Chung, P.; Kamenos, N. A.

    2013-01-01

    The shell of the gastropod mollusc, abalone, is comprised of nacre with an outer prismatic layer that is composed of either calcite or aragonite or both, depending on the species. A striking characteristic of the abalone shell is the row of apertures along the dorsal margin. As the organism and shell grow, new apertures are formed and the preceding ones are filled in. Detailed investigations, using electron backscatter diffraction, of the infill in three species of abalone: Haliotis asinina, ...

  13. Resonant Effects in Nanoscale Bowtie Apertures

    Science.gov (United States)

    Ding, Li; Qin, Jin; Guo, Songpo; Liu, Tao; Kinzel, Edward; Wang, Liang

    2016-01-01

    Nanoscale bowtie aperture antennas can be used to focus light well below the diffraction limit with extremely high transmission efficiencies. This paper studies the spectral dependence of the transmission through nanoscale bowtie apertures defined in a silver film. A realistic bowtie aperture is numerically modeled using the Finite Difference Time Domain (FDTD) method. Results show that the transmission spectrum is dominated by Fabry-Pérot (F-P) waveguide modes and plasmonic modes. The F-P resonance is sensitive to the thickness of the film and the plasmonic resonant mode is closely related to the gap distance of the bowtie aperture. Both characteristics significantly affect the transmission spectrum. To verify these numerical results, bowtie apertures are FIB milled in a silver film. Experimental transmission measurements agree with simulation data. Based on this result, nanoscale bowtie apertures can be optimized to realize deep sub-wavelength confinement with high transmission efficiency with applications to nanolithography, data storage, and bio-chemical sensing. PMID:27250995

  14. Aperture effects in squid jet propulsion.

    Science.gov (United States)

    Staaf, Danna J; Gilly, William F; Denny, Mark W

    2014-05-01

    Squid are the largest jet propellers in nature as adults, but as paralarvae they are some of the smallest, faced with the inherent inefficiency of jet propulsion at a low Reynolds number. In this study we describe the behavior and kinematics of locomotion in 1 mm paralarvae of Dosidicus gigas, the smallest squid yet studied. They swim with hop-and-sink behavior and can engage in fast jets by reducing the size of the mantle aperture during the contraction phase of a jetting cycle. We go on to explore the general effects of a variable mantle and funnel aperture in a theoretical model of jet propulsion scaled from the smallest (1 mm mantle length) to the largest (3 m) squid. Aperture reduction during mantle contraction increases propulsive efficiency at all squid sizes, although 1 mm squid still suffer from low efficiency (20%) because of a limited speed of contraction. Efficiency increases to a peak of 40% for 1 cm squid, then slowly declines. Squid larger than 6 cm must either reduce contraction speed or increase aperture size to maintain stress within maximal muscle tolerance. Ecological pressure to maintain maximum velocity may lead them to increase aperture size, which reduces efficiency. This effect might be ameliorated by nonaxial flow during the refill phase of the cycle. Our model's predictions highlight areas for future empirical work, and emphasize the existence of complex behavioral options for maximizing efficiency at both very small and large sizes. PMID:24501132

  15. Solar energy apparatus with apertured shield

    Science.gov (United States)

    Collings, Roger J. (Inventor); Bannon, David G. (Inventor)

    1989-01-01

    A protective apertured shield for use about an inlet to a solar apparatus which includesd a cavity receiver for absorbing concentrated solar energy. A rigid support truss assembly is fixed to the periphery of the inlet and projects radially inwardly therefrom to define a generally central aperture area through which solar radiation can pass into the cavity receiver. A non-structural, laminated blanket is spread over the rigid support truss in such a manner as to define an outer surface area and an inner surface area diverging radially outwardly from the central aperture area toward the periphery of the inlet. The outer surface area faces away from the inlet and the inner surface area faces toward the cavity receiver. The laminated blanket includes at least one layer of material, such as ceramic fiber fabric, having high infra-red emittance and low solar absorption properties, and another layer, such as metallic foil, of low infra-red emittance properties.

  16. A Method for Synthetic Aperture Compounding

    DEFF Research Database (Denmark)

    Hansen, Jens Munk; Jensen, Jørgen Arendt

    2010-01-01

    An approach to perform ultrasound spatial compounding using synthetic aperture data is proposed. The approach allows compounding to be performed for any number of directions without reducing the frame rate or temporal resolution. It is demonstrated how the contrast is improved by compounding and...... obtained when using 5 images. Using the same RF data, a synthetic aperture image without compounding reveals a CNR of -0.36, -0.93, -1.23, and -1.61 dB for the four cysts, respectively....

  17. Large aperture calorimeter for fusion laser measurements

    Energy Technology Data Exchange (ETDEWEB)

    Edwards, J.G.; Smith, P.A.

    The authors designed and constructed a large aperture calorimeter intended for laser fusion measurements on beams up to 20 cm diameter. The laser beam is absorbed in a glass disc backed by a disc carry a resistance wire. Although it performs essentially as expected with a noise equivalent energy of 20 mJ and a maximum energy of about 100 J, difficulties in construction give a 17% variation of sensitivity across the aperture. To overcome this problem it would probably be necessary to adopt an integral construction with the resistance bridge formed from an etched film on the back of the absorbing glass.

  18. Multi-antenna synthetic aperture radar

    CERN Document Server

    Wang, Wen-Qin

    2013-01-01

    Synthetic aperture radar (SAR) is a well-known remote sensing technique, but conventional single-antenna SAR is inherently limited by the minimum antenna area constraint. Although there are still technical issues to overcome, multi-antenna SAR offers many benefits, from improved system gain to increased degrees-of-freedom and system flexibility. Multi-Antenna Synthetic Aperture Radar explores the potential and challenges of using multi-antenna SAR in microwave remote sensing applications. These applications include high-resolution imaging, wide-swath remote sensing, ground moving target indica

  19. Synthetic aperture radar capabilities in development

    Energy Technology Data Exchange (ETDEWEB)

    Miller, M. [Lawrence Livermore National Lab., CA (United States)

    1994-11-15

    The Imaging and Detection Program (IDP) within the Laser Program is currently developing an X-band Synthetic Aperture Radar (SAR) to support the Joint US/UK Radar Ocean Imaging Program. The radar system will be mounted in the program`s Airborne Experimental Test-Bed (AETB), where the initial mission is to image ocean surfaces and better understand the physics of low grazing angle backscatter. The Synthetic Aperture Radar presentation will discuss its overall functionality and a brief discussion on the AETB`s capabilities. Vital subsystems including radar, computer, navigation, antenna stabilization, and SAR focusing algorithms will be examined in more detail.

  20. IMPROVED SYNTHETIC APERTURE SONAR MOTION COMPENSATION COMBINED DPCA WITH SUB-APERTURE IMAGE CORRELATION

    Institute of Scientific and Technical Information of China (English)

    Liu Wei; Zhang Chunhua; Liu Jiyuan

    2009-01-01

    Estimation precision of Displaced Phase Center Algorithm (DPCA) is affected by the number of displaced phase center pairs, the bandwidth of transmitting signal and many other factors. Detailed analysis is made on DPCA's estimation precision. Analysis results show that the directional vector estimation precision of DPCA is low, which will produce accumulating errors when phase centers' track is estimated. Because of this reason, DPCA suffers from accumulating errors seriously. To overcome this problem, a method combining DPCA with Sub Aperture Image Correlation (SAIC) is presented. Large synthetic aperture is divided into sub-apertures. Micro errors in sub-aperture are estimated by DPCA and compensated to raw echo data. Bulk errors between sub-apertures are estimated by SAIC and compensated directly to sub-aperture images. After that, sub-aperture images are directly used to generate ultimate SAS image. The method is applied to the lake-trial dataset of a 20 kHz SAS prototype system. Results show the method can successfully remove the accumulating error and produce a better SAS image.

  1. Analytic inversion in synthetic aperture radar.

    OpenAIRE

    Rothaus, O. S.

    1994-01-01

    A method of processing synthetic aperture radar signals that avoids some of the approximations currently in use that appear to be responsible for severe phase distortions is described. As a practical matter, this method requires N3 numerical operations, as opposed to the N2 ln N currently the case, but N3 is now easily managed, for N in the range of interest.

  2. Experiences on synthetic aperture focussing technique (SAFT)

    International Nuclear Information System (INIS)

    Imaging based on the synthetic aperture focussing technique (SAFT) improves the reliability of sizing and characterisation of structural discontinuities found in non-destructive testing of nuclear components. One of the main advantages of this technique is an improvement of signal-to-noise-ratio. The advantages are discussed in terms of practical applications and theory. (orig.)

  3. Compound imaging using Synthetic Aperture Sequential Beamformation

    DEFF Research Database (Denmark)

    Jensen, Casper Bo; Jensen, Jonas; Hemmsen, Martin Christian;

    2011-01-01

    Synthetic Aperture Sequential Beamforming (SASB) is a technique with low complexity and the ability to yield a more uniform lateral resolution with range. However, the presence of speckle artifacts in ultrasound images degrades the contrast. In conventional imaging speckle is reduced by using...

  4. Interferometric Synthetic Aperture Microwave Radiometers : an Overview

    Science.gov (United States)

    Colliander, Andreas; McKague, Darren

    2011-01-01

    This paper describes 1) the progress of the work of the IEEE Geoscience and Remote Sensing Society (GRSS) Instrumentation and Future Technologies Technical Committee (IFT-TC) Microwave Radiometer Working Group and 2) an overview of the development of interferometric synthetic aperture microwave radiometers as an introduction to a dedicated session.

  5. Parametric Beamformer for Synthetic Aperture Ultrasound Imaging

    DEFF Research Database (Denmark)

    Nikolov, Svetoslav; Tomov, Borislav Gueorguiev; Jensen, Jørgen Arendt

    2006-01-01

    In this paper a parametric beamformer, which can handle all imaging modalities including synthetic aperture imaging, is presented. The image lines and apodization coefficients are specified parametrically, and the lines can have arbitrary orientation and starting point in 3D coordinates. The beam...

  6. Parametric Transverse Patterns in Broad Aperture Lasers

    DEFF Research Database (Denmark)

    Grigorieva, E.V.; Kashchenko, S.A.; Mosekilde, Erik

    1998-01-01

    Parametrically generated optical patterns are investigated for finite and large-scale transverse aperture lasers. Standing and rotating patterns as well as periodic and chaotic pattern alternations are described in the framework of the amplitude equation formalism. Sensitive dependence on the...... geometrical size of the system is demonstrated even in the case of large-scale systems....

  7. A modular approach toward extremely large apertures

    Science.gov (United States)

    Woods, A. A., Jr.

    1981-02-01

    Modular antenna construction can provide a significant increase in reflector aperture size over deployable reflectors. The modular approach allows reflective mesh surfaces to be supported by a minimum of structure. The kinematics of the selected deployable design approach were validated by the subscale demonstration model. Further design refinements on the module structural/joints and design optimization on intermodule joints are needed.

  8. Optimization of Synthetic Aperture Image Quality

    DEFF Research Database (Denmark)

    Moshavegh, Ramin; Jensen, Jonas; Villagómez Hoyos, Carlos Armando;

    2016-01-01

    Synthetic Aperture (SA) imaging produces high-quality images and velocity estimates of both slow and fast flow at high frame rates. However, grating lobe artifacts can appear both in transmission and reception. These affect the image quality and the frame rate. Therefore optimization of parameter...

  9. Vowel Aperture and Syllable Segmentation in French

    Science.gov (United States)

    Goslin, Jeremy; Frauenfelder, Ulrich H.

    2008-01-01

    The theories of Pulgram (1970) suggest that if the vowel of a French syllable is open then it will induce syllable segmentation responses that result in the syllable being closed, and vice versa. After the empirical verification that our target French-speaking population was capable of distinguishing between mid-vowel aperture, we examined the…

  10. Dynamic metamaterial aperture for microwave imaging

    Science.gov (United States)

    Sleasman, Timothy; F. Imani, Mohammadreza; Gollub, Jonah N.; Smith, David R.

    2015-11-01

    We present a dynamic metamaterial aperture for use in computational imaging schemes at microwave frequencies. The aperture consists of an array of complementary, resonant metamaterial elements patterned into the upper conductor of a microstrip line. Each metamaterial element contains two diodes connected to an external control circuit such that the resonance of the metamaterial element can be damped by application of a bias voltage. Through applying different voltages to the control circuit, select subsets of the elements can be switched on to create unique radiation patterns that illuminate the scene. Spatial information of an imaging domain can thus be encoded onto this set of radiation patterns, or measurements, which can be processed to reconstruct the targets in the scene using compressive sensing algorithms. We discuss the design and operation of a metamaterial imaging system and demonstrate reconstructed images with a 10:1 compression ratio. Dynamic metamaterial apertures can potentially be of benefit in microwave or millimeter wave systems such as those used in security screening and through-wall imaging. In addition, feature-specific or adaptive imaging can be facilitated through the use of the dynamic aperture.

  11. Perceiving Affordances for Fitting through Apertures

    Science.gov (United States)

    Ishak, Shaziela; Adolph, Karen E.; Lin, Grace C.

    2008-01-01

    Affordances--possibilities for action--are constrained by the match between actors and their environments. For motor decisions to be adaptive, affordances must be detected accurately. Three experiments examined the correspondence between motor decisions and affordances as participants reached through apertures of varying size. A psychophysical…

  12. Optimization of Spatiotemporal Apertures in Channel Sounding

    DEFF Research Database (Denmark)

    Pedersen, Troels; Pedersen, Claus; Yin, Xuefeng;

    2008-01-01

    In this paper we investigate the impact of the spatio-temporal aperture of a channel sounding system equipped with antenna arrays at the transmitter and receiver on the accuracy of joint estimation of Doppler frequency and bi-direction. The contribution of this work is three-fold. Firstly, we sta...

  13. Interdisciplinary science with large aperture detectors

    Directory of Open Access Journals (Sweden)

    Wiencke Lawrence

    2013-06-01

    Full Text Available Large aperture detector systems to measure high energy cosmic rays also offer unique opportunities in other areas of science. Disciplines include geophysics such as seismic and volcanic activity, and atmospheric science ranging from clouds to lightning to aerosols to optical transients. This paper will discuss potential opportunities based on the ongoing experience of the Pierre Auger Observatory.

  14. Parametric Transverse Patterns in Broad Aperture Lasers

    DEFF Research Database (Denmark)

    Grigorieva, E.V.; Kashchenko, S.A.; Mosekilde, Erik

    1998-01-01

    Parametrically generated optical patterns are investigated for finite and large-scale transverse aperture lasers. Standing and rotating patterns as well as periodic and chaotic pattern alternations are described in the framework of the amplitude equation formalism. Sensitive dependence...... on the geometrical size of the system is demonstrated even in the case of large-scale systems....

  15. Dynamic metamaterial aperture for microwave imaging

    Energy Technology Data Exchange (ETDEWEB)

    Sleasman, Timothy; Imani, Mohammadreza F.; Gollub, Jonah N.; Smith, David R. [Center for Metamaterials and Integrated Plasmonics, Department of Electrical and Computer Engineering, Duke University, Durham, North Carolina, 27708 (United States)

    2015-11-16

    We present a dynamic metamaterial aperture for use in computational imaging schemes at microwave frequencies. The aperture consists of an array of complementary, resonant metamaterial elements patterned into the upper conductor of a microstrip line. Each metamaterial element contains two diodes connected to an external control circuit such that the resonance of the metamaterial element can be damped by application of a bias voltage. Through applying different voltages to the control circuit, select subsets of the elements can be switched on to create unique radiation patterns that illuminate the scene. Spatial information of an imaging domain can thus be encoded onto this set of radiation patterns, or measurements, which can be processed to reconstruct the targets in the scene using compressive sensing algorithms. We discuss the design and operation of a metamaterial imaging system and demonstrate reconstructed images with a 10:1 compression ratio. Dynamic metamaterial apertures can potentially be of benefit in microwave or millimeter wave systems such as those used in security screening and through-wall imaging. In addition, feature-specific or adaptive imaging can be facilitated through the use of the dynamic aperture.

  16. Sonar path correction in synthetic aperture processing

    NARCIS (Netherlands)

    Groen, J.; Hansen, R.E.; Sabel, J.C.

    2003-01-01

    In the next generation of mine hunting sonars, in particular on Autonomous Underwater Vehicles (AUVs), Synthetic Aperture Sonar (SAS) will play an important role. The benefit of SAS is to increase resolution and signal-tonoise ratio by coherent processing of successive pings. A challenge in SAS is t

  17. Diffraction contrast imaging using virtual apertures

    Energy Technology Data Exchange (ETDEWEB)

    Gammer, Christoph, E-mail: cgammer@lbl.gov [National Center for Electron Microscopy, Molecular Foundry, Lawrence Berkeley National Laboratory (United States); Department of Materials Science and Engineering, University of California, Berkeley (United States); Physics of Nanostructured Materials, Faculty of Physics, University of Vienna (Austria); Burak Ozdol, V. [National Center for Electron Microscopy, Molecular Foundry, Lawrence Berkeley National Laboratory (United States); Liebscher, Christian H.; Minor, Andrew M. [National Center for Electron Microscopy, Molecular Foundry, Lawrence Berkeley National Laboratory (United States); Department of Materials Science and Engineering, University of California, Berkeley (United States)

    2015-08-15

    Two methods on how to obtain the full diffraction information from a sample region and the associated reconstruction of images or diffraction patterns using virtual apertures are demonstrated. In a STEM-based approach, diffraction patterns are recorded for each beam position using a small probe convergence angle. Similarly, a tilt series of TEM dark-field images is acquired. The resulting datasets allow the reconstruction of either electron diffraction patterns, or bright-, dark- or annular dark-field images using virtual apertures. The experimental procedures of both methods are presented in the paper and are applied to a precipitation strengthened and creep deformed ferritic alloy with a complex microstructure. The reconstructed virtual images are compared with conventional TEM images. The major advantage is that arbitrarily shaped virtual apertures generated with image processing software can be designed without facing any physical limitations. In addition, any virtual detector that is specifically designed according to the underlying crystal structure can be created to optimize image contrast. - Highlights: • A dataset containing all structural information of a given position is recorded. • The dataset allows reconstruction of virtual diffraction patterns or images. • Specific virtual apertures are designed to image precipitates in a complex alloy. • Virtual diffraction patterns from arbitrarily small regions can be established. • Using STEM diffraction to record the dataset is more efficient than TEM dark-field.

  18. Cavity-excited Huygens' metasurface antennas: near-unity aperture efficiency from arbitrarily-large apertures

    CERN Document Server

    Epstein, Ariel; Eleftheriades, George V

    2015-01-01

    One of the long-standing problems in antenna engineering is the realization of highly-directive beams using low-profile devices. In this paper we provide a solution to this problem by means of Huygens' metasurfaces (HMSs), based on the equivalence principle. This principle states that a given excitation can be transformed to a desirable aperture field by inducing suitable electric and magnetic surface currents. Building on this concept, we propose and demonstrate cavity-excited HMS antennas, where the single-source cavity excitation is designed to optimize aperture illumination, while the HMS facilitates the current distribution that ensures phase purity of aperture fields. The HMS breaks the coupling between the excitation and radiation spectrum typical to standard partially-reflecting surfaces, allowing tailoring of the aperture properties to produce a desirable radiation pattern. As shown, a single semianalytical formalism can be followed to achieve control of a variety of radiation features, such as the d...

  19. Multi-static synthetic aperture radar and inverse scattering

    OpenAIRE

    Gustafsson, Mats

    2004-01-01

    In this paper synthetic aperture radar is analyzed from an inverse scattering perspective. It is shown that the classical point scattering model can be generalized to a dipole scattering model. The dipole scattering model reduces to the point scattering model for small aperture angles. For large aperture angles or multiple illumination apertures the dipole model gives an anisotropic reflectivity such that orthogonal scattering processes are separated. Moreover, it is shown th...

  20. Antenna-Aperture Synthesis for Hyperband SAR Antennas

    Science.gov (United States)

    Baum, C. E.

    This paper introduces an aperture synthesis procedure for producing a desired pulse shape, including the desired frequency spectrum of the pulse. This is accomplished by controlling the time-of-arrival of fields on the aperture plane, thereby synthesizing a delay as a function of radius for the arrival of a stop-function TEM-like wave on the aperture plane.

  1. High Gain, Very Low Areal Density, Scalable RF Apertures Enabled by Membrane Aperture Shell Technology (MAST) Project

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose that the Membrane Aperture Shell Technology (MAST) approach be expanded with a specific focus on space exploration orbiting comm network RF aperture...

  2. Performance limits for Synthetic Aperture Radar.

    Energy Technology Data Exchange (ETDEWEB)

    Doerry, Armin Walter

    2006-02-01

    The performance of a Synthetic Aperture Radar (SAR) system depends on a variety of factors, many which are interdependent in some manner. It is often difficult to ''get your arms around'' the problem of ascertaining achievable performance limits, and yet those limits exist and are dictated by physics, no matter how bright the engineer tasked to generate a system design. This report identifies and explores those limits, and how they depend on hardware system parameters and environmental conditions. Ultimately, this leads to a characterization of parameters that offer optimum performance for the overall SAR system. For example, there are definite optimum frequency bands that depend on weather conditions and range, and minimum radar PRF for a fixed real antenna aperture dimension is independent of frequency. While the information herein is not new to the literature, its collection into a single report hopes to offer some value in reducing the ''seek time''.

  3. Flame Reconstruction Using Synthetic Aperture Imaging

    CERN Document Server

    Murray, Preston; Tree, Dale; Truscott, Tadd

    2011-01-01

    Flames can be formed by burning methane (CH4). When oxygen is scarce, carbon particles nucleate into solid particles called soot. These particles emit photons, making the flame yellow. Later, methane is pre-mixed with air forming a blue flame; burning more efficiently, providing less soot and light. Imaging flames and knowing their temperature are vital to maximizing efficiency and validating numerical models. Most temperature probes disrupt the flame and create differences leading to an inaccurate measurement of the flame temperature. We seek to image the flame in three dimensions using synthetic aperture imaging. This technique has already successfully measured velocity fields of a vortex ring [1]. Synthetic aperture imaging is a technique that views one scene from multiple cameras set at different angles, allowing some cameras to view objects that are obscured by others. As the resulting images are overlapped different depths of the scene come into and out of focus, known as focal planes, similar to tomogr...

  4. IR aperture measurement at β*=40 cm

    CERN Document Server

    Bruce, Roderik; Hermes, Pascal Dominik; Kwee-Hinzmann, Regina; Mereghetti, Alessio; Mirarchi, Daniele; Redaelli, Stefano; Salvachua Ferrando, Belen Maria; Skowronski, Piotr Krzysztof; Valentino, Gianluca; Valloni, Alessandra; CERN. Geneva. ATS Department

    2015-01-01

    This note summarizes MD 307, performed on August 27 2015, during which we measured with beam the global apertures at 6.5 TeV with IR1 and IR5 squeezed to β* =40 cm and a half crossing angle of 205 rad. The measurement technique involved opening collimators in steps, while inducing beam losses at each step, until the main loss location moved from the collimators to the global bottleneck in one of the triplets. Measurements were performed in both beams and planes, and each measurement gave the minimum triplet aperture over IR1 and IR5. The results are in very good agreement with theoretical predictions. At the end of the MD, an asynchronous beam dump test was performed with all collimators moved in to so-called 2-σ retraction settings. This MD is one in a series meant to address various open points for the reach in β* in Run II.

  5. Synthetic aperture tissue and flow ultrasound imaging

    DEFF Research Database (Denmark)

    Nikolov, Svetoslav

    at every emission, which makes it possible to average over a large number of lines. This makes stationary echo canceling easier and significantly improves the velocity estimates. Only 8 emissions per plane are necessary to create the color flow map. Scanning 12 cm in depth, up to 800 planes can be obtained...... imaging applied to medical ultrasound. It is divided into two major parts: tissue and blood flow imaging. Tissue imaging using synthetic aperture algorithms has been investigated for about two decades, but has not been implemented in medical scanners yet. Among the other reasons, the conventional scanning...... and beamformation methods are adequate for the imaging modalities in clinical use - the B-mode imaging of tissue structures, and the color mapping of blood flow. The acquisition time, however, is too long, and these methods fail to perform real-time three-dimensional scans. The synthetic transmit aperture...

  6. Feasibility of Swept Synthetic Aperture Ultrasound Imaging.

    Science.gov (United States)

    Bottenus, Nick; Long, Will; Zhang, Haichong K; Jakovljevic, Marko; Bradway, David P; Boctor, Emad M; Trahey, Gregg E

    2016-07-01

    Ultrasound image quality is often inherently limited by the physical dimensions of the imaging transducer. We hypothesize that, by collecting synthetic aperture data sets over a range of aperture positions while precisely tracking the position and orientation of the transducer, we can synthesize large effective apertures to produce images with improved resolution and target detectability. We analyze the two largest limiting factors for coherent signal summation: aberration and mechanical uncertainty. Using an excised canine abdominal wall as a model phase screen, we experimentally observed an effective arrival time error ranging from 18.3 ns to 58 ns (root-mean-square error) across the swept positions. Through this clutter-generating tissue, we observed a 72.9% improvement in resolution with only a 3.75 dB increase in side lobe amplitude compared to the control case. We present a simulation model to study the effect of calibration and mechanical jitter errors on the synthesized point spread function. The relative effects of these errors in each imaging dimension are explored, showing the importance of orientation relative to the point spread function. We present a prototype device for performing swept synthetic aperture imaging using a conventional 1-D array transducer and ultrasound research scanner. Point target reconstruction error for a 44.2 degree sweep shows a reconstruction precision of 82.8 μm and 17.8 μm in the lateral and axial dimensions respectively, within the acceptable performance bounds of the simulation model. Improvements in resolution, contrast and contrast-to-noise ratio are demonstrated in vivo and in a fetal phantom. PMID:26863653

  7. Optimization of Synthetic Aperture Image Quality

    OpenAIRE

    Moshavegh, Ramin; Jensen, Jonas; Villagómez Hoyos, Carlos Armando; Stuart, Matthias Bo; Hemmsen, Martin Christian; Jensen, Jørgen Arendt

    2016-01-01

    Synthetic Aperture (SA) imaging produces high-quality images and velocity estimates of both slow and fast flow at high frame rates. However, grating lobe artifacts can appear both in transmission and reception. These affect the image quality and the frame rate. Therefore optimization of parameters effecting the image quality of SA is of great importance, and this paper proposes an advanced procedure for optimizing the parameters essential for acquiring an optimal image quality, while generati...

  8. Motion compensation of Synthetic Aperture Radar

    OpenAIRE

    Duncan, David; Long, David

    2003-01-01

    Synthetic aperture radar (SAR) is a digital signal processing technique which enhances the azimuth resolution of a radar image using the target doppler history created by the motion of the radar platform. If the platform deviates from a constant velocity, straight-line path then image quality is lost and image details become unfocused. Motion compensation (MOCO) is a technique in which the position and attitude of the platform is recorded or estimated and then used to correct the scene's dopp...

  9. Simultaneous Navigation and Synthetic Aperture Radar Focusing

    OpenAIRE

    Sjanic, Zoran; Gustafsson, Fredrik

    2015-01-01

    Synthetic aperture radar (SAR) equipment is a radar imaging system that can be used to create high-resolution images of a scene by utilizing the movement of a flying platform. Knowledge of the platforms trajectory is essential to get good and focused images. An emerging application field is real-time SAR imaging using small and cheap platforms where estimation errors in navigation systems imply unfocused images. This contribution investigates a joint estimation of the trajectory and SAR image...

  10. Outdoor synthetic aperture acoustic ground target measurements

    Science.gov (United States)

    Bishop, Steven; Ngaya, Therese-Ann; Vignola, Joe; Judge, John; Marble, Jay; Gugino, Peter; Soumekh, Mehrdad; Rosen, Erik

    2010-04-01

    A novel outdoor synthetic aperture acoustic (SAA) system consists of a microphone and loudspeaker traveling along a 6.3-meter rail system. This is an extension from a prior indoor laboratory measurement system in which selected targets were insonified while suspended in air. Here, the loudspeaker and microphone are aimed perpendicular to their direction of travel along the rail. The area next to the rail is insonified and the microphone records the reflected acoustic signal, while the travel of the transceiver along the rail creates a synthetic aperture allowing imaging of the scene. Ground surfaces consisted of weathered asphalt and short grass. Several surface-laid objects were arranged on the ground for SAA imaging. These included rocks, concrete masonry blocks, grout covered foam blocks; foliage obscured objects and several spherical canonical targets such as a bowling ball, and plastic and metal spheres. The measured data are processed and ground targets are further analyzed for characteristics and features amenable for discrimination. This paper includes a description of the measurement system, target descriptions, synthetic aperture processing approach and preliminary findings with respect to ground surface and target characteristics.

  11. Biomineral repair of abalone shell apertures.

    Science.gov (United States)

    Cusack, Maggie; Guo, Dujiao; Chung, Peter; Kamenos, Nicholas A

    2013-08-01

    The shell of the gastropod mollusc, abalone, is comprised of nacre with an outer prismatic layer that is composed of either calcite or aragonite or both, depending on the species. A striking characteristic of the abalone shell is the row of apertures along the dorsal margin. As the organism and shell grow, new apertures are formed and the preceding ones are filled in. Detailed investigations, using electron backscatter diffraction, of the infill in three species of abalone: Haliotis asinina, Haliotis gigantea and Haliotis rufescens reveals that, like the shell, the infill is composed mainly of nacre with an outer prismatic layer. The infill prismatic layer has identical mineralogy as the original shell prismatic layer. In H. asinina and H. gigantea, the prismatic layer of the shell and infill are made of aragonite while in H. rufescens both are composed of calcite. Abalone builds the infill material with the same high level of biological control, replicating the structure, mineralogy and crystallographic orientation as for the shell. The infill of abalone apertures presents us with insight into what is, effectively, shell repair.

  12. Coded-aperture imaging in nuclear medicine

    Science.gov (United States)

    Smith, Warren E.; Barrett, Harrison H.; Aarsvold, John N.

    1989-01-01

    Coded-aperture imaging is a technique for imaging sources that emit high-energy radiation. This type of imaging involves shadow casting and not reflection or refraction. High-energy sources exist in x ray and gamma-ray astronomy, nuclear reactor fuel-rod imaging, and nuclear medicine. Of these three areas nuclear medicine is perhaps the most challenging because of the limited amount of radiation available and because a three-dimensional source distribution is to be determined. In nuclear medicine a radioactive pharmaceutical is administered to a patient. The pharmaceutical is designed to be taken up by a particular organ of interest, and its distribution provides clinical information about the function of the organ, or the presence of lesions within the organ. This distribution is determined from spatial measurements of the radiation emitted by the radiopharmaceutical. The principles of imaging radiopharmaceutical distributions with coded apertures are reviewed. Included is a discussion of linear shift-variant projection operators and the associated inverse problem. A system developed at the University of Arizona in Tucson consisting of small modular gamma-ray cameras fitted with coded apertures is described.

  13. Calibration of the TUD Ku-band Synthetic Aperture Radiometer

    DEFF Research Database (Denmark)

    Laursen, Brian; Skou, Niels

    1995-01-01

    The TUD Synthetic Aperture Radiometer is a 2-channel demonstration model that can simulate a thinned aperture radiometer having an unfilled aperture consisting of several small antenna elements. Aperture synthesis obtained by interferometric measurements using the antenna elements in pairs......, followed by an image reconstruction based on an inverse Fourier transform, results in an imaging instrument without the need of mechanical scan. The thinned aperture and the non-scanning feature make the technique attractive for low frequency spaceborne radiometer systems, e.g. at L-band. Initial...

  14. Jacobi-Bessel Analysis Of Antennas With Elliptical Apertures.

    Science.gov (United States)

    Rahmat-Samii, Y.

    1989-01-01

    Coordinate transformation improves convergence pattern analysis of elliptical-aperture antennas. Modified version of Jacobi-Bessel expansion for vector diffraction analysis of reflector antennas uses coordinate transformation to improve convergence with elliptical apertures. Expansion converges rapidly for antennas with circular apertures, but less rapidly for elliptical apertures. Difference in convergence behavior between circular and elliptical Jacobi-Bessel algorithms indicated by highest values of indices m, n, and p required to achieve same accuracy in computed radiation pattern of offset paraboloidal antenna with elliptical aperture.

  15. Two-Dimensional Synthetic-Aperture Radiometer

    Science.gov (United States)

    LeVine, David M.

    2010-01-01

    A two-dimensional synthetic-aperture radiometer, now undergoing development, serves as a test bed for demonstrating the potential of aperture synthesis for remote sensing of the Earth, particularly for measuring spatial distributions of soil moisture and ocean-surface salinity. The goal is to use the technology for remote sensing aboard a spacecraft in orbit, but the basic principles of design and operation are applicable to remote sensing from aboard an aircraft, and the prototype of the system under development is designed for operation aboard an aircraft. In aperture synthesis, one utilizes several small antennas in combination with a signal processing in order to obtain resolution that otherwise would require the use of an antenna with a larger aperture (and, hence, potentially more difficult to deploy in space). The principle upon which this system is based is similar to that of Earth-rotation aperture synthesis employed in radio astronomy. In this technology the coherent products (correlations) of signals from pairs of antennas are obtained at different antenna-pair spacings (baselines). The correlation for each baseline yields a sample point in a Fourier transform of the brightness-temperature map of the scene. An image of the scene itself is then reconstructed by inverting the sampled transform. The predecessor of the present two-dimensional synthetic-aperture radiometer is a one-dimensional one, named the Electrically Scanned Thinned Array Radiometer (ESTAR). Operating in the L band, the ESTAR employs aperture synthesis in the cross-track dimension only, while using a conventional antenna for resolution in the along-track dimension. The two-dimensional instrument also operates in the L band to be precise, at a frequency of 1.413 GHz in the frequency band restricted for passive use (no transmission) only. The L band was chosen because (1) the L band represents the long-wavelength end of the remote- sensing spectrum, where the problem of achieving adequate

  16. Fast-neutron, coded-aperture imager

    Energy Technology Data Exchange (ETDEWEB)

    Woolf, Richard S., E-mail: richard.woolf@nrl.navy.mil; Phlips, Bernard F., E-mail: bernard.phlips@nrl.navy.mil; Hutcheson, Anthony L., E-mail: anthony.hutcheson@nrl.navy.mil; Wulf, Eric A., E-mail: eric.wulf@nrl.navy.mil

    2015-06-01

    This work discusses a large-scale, coded-aperture imager for fast neutrons, building off a proof-of concept instrument developed at the U.S. Naval Research Laboratory (NRL). The Space Science Division at the NRL has a heritage of developing large-scale, mobile systems, using coded-aperture imaging, for long-range γ-ray detection and localization. The fast-neutron, coded-aperture imaging instrument, designed for a mobile unit (20 ft. ISO container), consists of a 32-element array of 15 cm×15 cm×15 cm liquid scintillation detectors (EJ-309) mounted behind a 12×12 pseudorandom coded aperture. The elements of the aperture are composed of 15 cm×15 cm×10 cm blocks of high-density polyethylene (HDPE). The arrangement of the aperture elements produces a shadow pattern on the detector array behind the mask. By measuring of the number of neutron counts per masked and unmasked detector, and with knowledge of the mask pattern, a source image can be deconvolved to obtain a 2-d location. The number of neutrons per detector was obtained by processing the fast signal from each PMT in flash digitizing electronics. Digital pulse shape discrimination (PSD) was performed to filter out the fast-neutron signal from the γ background. The prototype instrument was tested at an indoor facility at the NRL with a 1.8-μCi and 13-μCi 252Cf neutron/γ source at three standoff distances of 9, 15 and 26 m (maximum allowed in the facility) over a 15-min integration time. The imaging and detection capabilities of the instrument were tested by moving the source in half- and one-pixel increments across the image plane. We show a representative sample of the results obtained at one-pixel increments for a standoff distance of 9 m. The 1.8-μCi source was not detected at the 26-m standoff. In order to increase the sensitivity of the instrument, we reduced the fastneutron background by shielding the top, sides and back of the detector array with 10-cm-thick HDPE. This shielding configuration led

  17. Optimization of synthetic aperture image quality

    Science.gov (United States)

    Moshavegh, Ramin; Jensen, Jonas; Villagomez-Hoyos, Carlos A.; Stuart, Matthias B.; Hemmsen, Martin Christian; Jensen, Jørgen Arendt

    2016-04-01

    Synthetic Aperture (SA) imaging produces high-quality images and velocity estimates of both slow and fast flow at high frame rates. However, grating lobe artifacts can appear both in transmission and reception. These affect the image quality and the frame rate. Therefore optimization of parameters effecting the image quality of SA is of great importance, and this paper proposes an advanced procedure for optimizing the parameters essential for acquiring an optimal image quality, while generating high resolution SA images. Optimization of the image quality is mainly performed based on measures such as F-number, number of emissions and the aperture size. They are considered to be the most contributing acquisition factors in the quality of the high resolution images in SA. Therefore, the performance of image quality is quantified in terms of full-width at half maximum (FWHM) and the cystic resolution (CTR). The results of the study showed that SA imaging with only 32 emissions and maximum sweep angle of 22 degrees yields a very good image quality compared with using 256 emissions and the full aperture size. Therefore the number of emissions and the maximum sweep angle in the SA can be optimized to reach a reasonably good performance, and to increase the frame rate by lowering the required number of emissions. All the measurements are performed using the experimental SARUS scanner connected to a λ/2-pitch transducer. A wire phantom and a tissue mimicking phantom containing anechoic cysts are scanned using the optimized parameters for the transducer. Measurements coincide with simulations.

  18. The Configurable Aperture Space Telescope (CAST)

    Science.gov (United States)

    Ennico, Kimberly; Bendek, Eduardo A.; Lynch, Dana H.; Vassigh, Kenny K.; Young, Zion

    2016-07-01

    The Configurable Aperture Space Telescope, CAST, is a concept that provides access to a UV/visible-infrared wavelength sub-arcsecond imaging platform from space, something that will be in high demand after the retirement of the astronomy workhorse, the 2.4 meter diameter Hubble Space Telescope. CAST allows building large aperture telescopes based on small, compatible and low-cost segments mounted on autonomous cube-sized satellites. The concept merges existing technology (segmented telescope architecture) with emerging technology (smartly interconnected modular spacecraft, active optics, deployable structures). Requiring identical mirror segments, CAST's optical design is a spherical primary and secondary mirror telescope with modular multi-mirror correctors placed at the system focal plane. The design enables wide fields of view, up to as much as three degrees, while maintaining aperture growth and image performance requirements. We present a point design for the CAST concept based on a 0.6 meter diameter (3 x 3 segments) growing to a 2.6 meter diameter (13 x 13 segments) primary, with a fixed Rp=13,000 and Rs=8,750 mm curvature, f/22.4 and f/5.6, respectively. Its diffraction limited design uses a two arcminute field of view corrector with a 7.4 arcsec/mm platescale, and can support a range of platescales as fine as 0.01 arcsec/mm. Our paper summarizes CAST, presents a strawman optical design and requirements for the underlying modular spacecraft, highlights design flexibilities, and illustrates applications enabled by this new method in building space observatories.

  19. Cancellation of singularities for synthetic aperture radar

    International Nuclear Information System (INIS)

    In a basic model for synthetic aperture radar (SAR) imaging, one wishes to recover a function or distribution f from line integrals over circles whose centers lie on a given curve γ. In this paper, we consider the problem of recovering the singularities (wavefront set) of f given its SAR data, and specifically whether it is possible to choose a singular f whose singularities are hidden from γ, meaning that its SAR data is smooth. We show that f 's singularities can be hidden to leading order if a certain discrete reflection map is the identity, and give examples where this is the case. Finally, numerical experiments illustrate the hiding of singularities. (paper)

  20. Multibeam synthetic aperture radar for global oceanography

    Science.gov (United States)

    Jain, A.

    1979-01-01

    A single-frequency multibeam synthetic aperture radar concept for large swath imaging desired for global oceanography is evaluated. Each beam iilluminates a separate range and azimuth interval, and images for different beams may be separated on the basis of the Doppler spectrum of the beams or their spatial azimuth separation in the image plane of the radar processor. The azimuth resolution of the radar system is selected so that the Doppler spectrum of each beam does not interfere with the Doppler foldover due to the finite pulse repetition frequency of the radar system.

  1. Cancellation of singularities for synthetic aperture radar

    Science.gov (United States)

    Caday, Peter

    2015-01-01

    In a basic model for synthetic aperture radar (SAR) imaging, one wishes to recover a function or distribution f from line integrals over circles whose centers lie on a given curve γ. In this paper, we consider the problem of recovering the singularities (wavefront set) of f given its SAR data, and specifically whether it is possible to choose a singular f whose singularities are hidden from γ, meaning that its SAR data is smooth. We show that f 's singularities can be hidden to leading order if a certain discrete reflection map is the identity, and give examples where this is the case. Finally, numerical experiments illustrate the hiding of singularities.

  2. Digital exploitation of synthetic aperture radar

    Science.gov (United States)

    Wagner, H. L.; Shuchman, R. A.

    1977-01-01

    A digital processing and analysis scheme for use with digitized synthetic aperture radar data was developed. Using data from a four channel system, the imagery is preprocessed using specially designed software and then analyzed using preexisting facilities originally intended for use with MSS type data. Geometric and radiometric correction may be performed if desired, as well as classification analysis, Fast Fourier transform, filtering and level slice and display functions. The system provides low cost output in real time, permitting interactive imagery analysis. System information flow diagrams as well as sample output products are shown.

  3. Tissue Harmonic Synthetic Aperture Ultrasound Imaging

    DEFF Research Database (Denmark)

    Hemmsen, Martin Christian; Rasmussen, Joachim; Jensen, Jørgen Arendt

    2014-01-01

    Synthetic aperture sequential beamforming (SASB) and tissue har- monic imaging (THI) are combined to improve the image quality of medical ultrasound imaging. The technique is evaluated in a compar- ative study against dynamic receive focusing (DRF). The objective is to investigate if SASB combined...... with THI improves the image qual- ity compared to DRF-THI. The major benet of SASB is a reduced bandwidth between the probe and processing unit. A BK Medical 2202 Ultraview ultrasound scanner was used to acquire beamformed RF data for oine evaluation. The acquisition was made interleaved between methods...

  4. Multi-mission, autonomous, synthetic aperture radar

    Science.gov (United States)

    Walls, Thomas J.; Wilson, Michael L.; Madsen, David; Jensen, Mark; Sullivan, Stephanie; Addario, Michael; Hally, Iain

    2014-05-01

    Unmanned aerial systems (UASs) have become a critical asset in current battlespaces and continue to play an increasing role for intelligence, surveillance and reconnaissance (ISR) missions. With the development of medium-to-low altitude, rapidly deployable aircraft platforms, the ISR community has seen an increasing push to develop ISR sensors and systems with real-time mission support capabilities. This paper describes recent flight demonstrations and test results of the RASAR (Real-time, Autonomous, Synthetic Aperture Radar) sensor system. RASAR is a modular, multi-band (L and X) synthetic aperture radar (SAR) imaging sensor designed for self-contained, autonomous, real-time operation with mission flexibility to support a wide range of ISR needs within the size, weight and power constraints of Group III UASs. The sensor command and control and real-time image formation processing are designed to allow integration of RASAR into a larger, multi-intelligence system of systems. The multi-intelligence architecture and a demonstration of real-time autonomous cross-cueing of a separate optical sensor will be presented.

  5. Sparse aperture mask wavefront sensor testbed results

    Science.gov (United States)

    Subedi, Hari; Zimmerman, Neil T.; Kasdin, N. Jeremy; Riggs, A. J. E.

    2016-07-01

    Coronagraphic exoplanet detection at very high contrast requires the estimation and control of low-order wave- front aberrations. At Princeton High Contrast Imaging Lab (PHCIL), we are working on a new technique that integrates a sparse-aperture mask (SAM) with a shaped pupil coronagraph (SPC) to make precise estimates of these low-order aberrations. We collect the starlight rejected from the coronagraphic image plane and interfere it using a sparse aperture mask (SAM) at the relay pupil to estimate the low-order aberrations. In our previous work we numerically demonstrated the efficacy of the technique, and proposed a method to sense and control these differential aberrations in broadband light. We also presented early testbed results in which the SAM was used to sense pointing errors. In this paper, we will briefly overview the SAM wavefront sensor technique, explain the design of the completed testbed, and report the experimental estimation results of the dominant low-order aberrations such as tip/tit, astigmatism and focus.

  6. Influence of circular aperture on high-order harmonic generation

    Institute of Scientific and Technical Information of China (English)

    Tingting Liu(刘婷婷); Weixin Lu(陆伟新); Dawei Wang(王大威); Hong Yang(杨宏); Qihuang Gong(龚旗煌)

    2003-01-01

    The influence of circular aperture on the intensity of high-order harmonic generation (HHG) with intense femtosecond laser pulse was studied both experimentally and theoretically. The intensity variety of HHG with the diameter of circular aperture was observed in pulsed Ar gas. The result was discussed and interpreted in terms of the theory of Hankel transform. It is found that using the Gaussian beam truncated by an aperture could enhance the conversion efficiency of HHG at certain conditions.

  7. Optical nanolithography with λ/15 resolution using bowtie aperture array

    Science.gov (United States)

    Wen, Xiaolei; Traverso, Luis M.; Srisungsitthisunti, Pornsak; Xu, Xianfan; Moon, Euclid E.

    2014-10-01

    We report optical parallel nanolithography using bowtie apertures with the help of the interferometric-spatial-phase-imaging (ISPI) technique. The ISPI system can detect and control the distance between the bowtie aperture, and photoresist with a resolution of sub-nanometer level. It overcomes the difficulties brought by the light divergence of bowtie apertures. Parallel nanolithography with feature size of 22 ± 5 nm is achieved. This technique combines high resolution, parallel throughput, and low cost, which is promising for practical applications.

  8. Magnetically tunable broadband transmission through a single small aperture

    OpenAIRE

    Ke Bi; Wenjun Liu; Yunsheng Guo; Guoyan Dong; Ming Lei

    2015-01-01

    Extraordinary transmission through a small aperture is of great interest. However, it faces a limitation that most of approaches can not realize the tunable transmission property, which is not benefit for the miniaturization of the microwave system. Here, we demonstrate a magnetically tunable broadband transmission through a small aperture. By placing two ferrite rods symmetrically on both sides of a single small aperture, the strongly localized electromagnetic fields are effectively coupled ...

  9. An Introduction of Aperture Coupled Microstrip Slot Antenna

    OpenAIRE

    Zarreen Aijaz; S.C Shrivastava

    2010-01-01

    A microstrip slot antenna is very small and lightweight still it has the problem of back radiation due to which power loss occurs and the SAR increases. To reduce the back lobe a technique introduces i.e. aperture coupled microstrip slot antenna which reduces the back lobe as well as increases the bandwidth of the antenna. Aperture coupled microstrip slot antenna couples the patch antenna with microstripline through an aperture.

  10. Jacobi-Bessel analysis of reflector antennas with elliptical apertures

    Science.gov (United States)

    Rahmat-Samii, Yahya

    1987-01-01

    Although many reflector antennas possess circular projected apertures, there are recent satellite and ground antenna applications for which it is desirable to employ reflectors with elliptical apertures. Here a modification of the Jacobi-Bessel expansion is presented for the diffraction analysis of reflectors with elliptical apertures. A comparative study is also performed between this modified Jacobi-Bessel algorithm and the one which uses the Jacobi-Bessel expansion over a circumscribing circular region. Numerical results are presented for offset reflectors with elliptical and circular apertures and the improved convergence properties of the modified algorithm are highlighted.

  11. A statistical model for the excitation of cavities through apertures

    CERN Document Server

    Gradoni, Gabriele; Anlage, Steven M; Ott, Edward

    2015-01-01

    In this paper, a statistical model for the coupling of electromagnetic radiation into enclosures through apertures is presented. The model gives a unified picture bridging deterministic theories of aperture radiation, and statistical models necessary for capturing the properties of irregular shaped enclosures. A Monte Carlo technique based on random matrix theory is used to predict and study the power transmitted through the aperture into the enclosure. Universal behavior of the net power entering the aperture is found. Results are of interest for predicting the coupling of external radiation through openings in irregular enclosures and reverberation chambers.

  12. Optical Phase Imaging Using Synthetic Aperture Illumination and Phase Retrieval

    CERN Document Server

    Lee, Dennis J

    2016-01-01

    We perform quantitative phase imaging using phase retrieval to implement synthetic aperture imaging. Compared to digital holography, the developed technique is simpler, less expensive, and more stable.

  13. Wind energy applications of synthetic aperture radar

    DEFF Research Database (Denmark)

    Badger, Merete

    planning as a supplement to on site measurements, which are costly and sparse, and model wind fields, which are not fully validated. Two applications of SAR measurements in offshore wind energy planning areaddressed here: the study of wind farm wake effects and the potential of using SAR winds in offshore......Synthetic aperture radars (SAR), mounted on satellites or aircraft, have proven useful for ocean wind mapping. Wind speeds at the height 10 m may be retrieved from measurements of radar backscatter using empirical model functions. The resulting windfields are valuable in offshore wind energy...... in offshore wind resource assessment isinvestigated. The resource assessment is made through Weibull fitting to frequency observations of wind speed and requires at least 100 satellite observations per year for a given site of interest. Predictions of the energy density are very sensitive tothe wind speed...

  14. Ultrasonic synthetic aperture imaging of defects

    International Nuclear Information System (INIS)

    Current reactor systems have been generally designed with limited facility for in-service inspection. Where ultrasonic crack detection and sizing techniques have been applied they appear to be functioning adequately. The purpose of this paper is to introduce a modification to conventional ultrasonic defect sizing which yields acoustic measurements of the dimensions of the defect in its plane parallel to the inspection surface. The technique retains the simplicity of a single probe to collect data, but achieves the effect of multidepth focussing by a particular signal processing procedure. The subject is discussed under the headings: ultrasonic focussing procedures; the basic principle of linear synthetic aperture focussing; the mechanics of the system; the capability of the system; comments and conclusion. (U.K.)

  15. Mathematical Problems in Synthetic Aperture Radar

    CERN Document Server

    Klein, Jens

    2010-01-01

    This thesis is concerned with problems related to Synthetic Aperture Radar (SAR). The thesis is structured as follows: The first chapter explains what SAR is, and the physical and mathematical background is illuminated. The following chapter points out a problem with a divergent integral in a common approach and proposes an improvement. Numerical comparisons are shown that indicate that the improvements allow for a superior image quality. Thereafter the problem of limited data is analyzed. In a realistic SAR-measurement the data gathered from the electromagnetic waves reflected from the surface can only be collected from a limited area. However the reconstruction formula requires data from an infinite distance. The chapter gives an analysis of the artifacts which can obscure the reconstructed images due to this problem. Additionally, some numerical examples are shown that point to the severity of the problem. In chapter 4 the fact that data is available only from a limited area is used to propose a new invers...

  16. Terahertz Imaging Systems With Aperture Synthesis Techniques

    DEFF Research Database (Denmark)

    Krozer, Viktor; Löffler, Torsten; Dall, Jørgen;

    2010-01-01

    This paper presents the research and development of two terahertz imaging systems based on photonic and electronic principles, respectively. As part of this study, a survey of ongoing research in the field of terahertz imaging is provided focusing on security applications. Existing terahertz...... imaging systems are reviewed in terms of the employed architecture and data processing strategies. Active multichannel measurement method is found to be promising for real-time applications among the various terahertz imaging techniques and is chosen as a basis for the imaging instruments presented...... in this paper. An active system operation allows for a wide dynamic range, which is important for image quality. The described instruments employ a multichannel high-sensitivity heterodyne architecture and aperture filling techniques, with close to real-time image acquisition time. In the case of the photonic...

  17. Light-Regulated Stomatal Aperture in Arabidopsis

    Institute of Scientific and Technical Information of China (English)

    Chen Chen; Yu-Guo Xiao; Xin Li; Min Ni

    2012-01-01

    The stomatal pores of plant leaves,situated in the epidermis and surrounded by a pair of guard cells,allow CO2 uptake for photosynthesis and water loss through transpiration.Blue light is one of the dominant environmental signals that control stomatal movements in leaves of plants in a natural environment.This blue light response is mediated by blue/UV A light-absorbing phototropins (phots) and cryptochromes (crys).Red/far-red light-absorbing phytochromes (phys) also play a role in the control of stomatal aperture.The signaling components that link the perception of light signals to the stomatal opening response are largely unknown.This review discusses a few newly discovered nuclear genes,their function with respect to the phot-,cry-,and phy-mediated signal transduction cascades,and possible involvement of circadian clock.

  18. Large aperture nanocomposite deformable mirror technology

    Science.gov (United States)

    Chen, Peter C.; Hale, Richard D.

    2007-12-01

    We report progress in the development of deformable mirrors (DM) using nanocomposite materials. For the extremely large telescopes (ELTs) currently being planned, a new generation of DMs with unprecedented performance is a critical path item. The DMs need to have large apertures (meters), continuous surfaces, and low microroughness. Most importantly, they must have excellent static optical figures and yet be sufficiently thin (1-2 mm) and flexible to function with small, low powered actuators. Carbon fiber reinforced plastics (CFRP) have the potential to fulfill these requirements. However, CFRP mirrors made using direct optical replication have encountered a number of problems. Firstly, it is difficult if not impossible for a CFRP mirror to maintain a good static optical figure if a small number of plies are used, but adding more plies to the laminate tends to make the substrate too thick and stiff. Secondly, direct optical replication requires precision mandrels, the costs of which become prohibitive at multi-meter apertures. We report development of a new approach. By using a combination of a novel support structure, selected fibers, and binding resins infused with nanoparticles, it is possible to make millimeter thick optical mirrors that can both maintain good static optical figures and yet still have the required flexibility for actuation. Development and refinement of a non-contact, deterministic process of fine figuring permits generation of accurate optical surfaces without the need for precision optical mandrels. We present data from tests that have been carried out to demonstrate these new processes. A number of flat DMs have been fabricated, as well as concave and convex DMs in spherical, parabolic, and other forms.

  19. Synthetic Aperture Sequential Beamformation applied to medical imaging

    DEFF Research Database (Denmark)

    Hemmsen, Martin Christian; Hansen, Jens Munk; Jensen, Jørgen Arendt

    2012-01-01

    Synthetic Aperture Sequential Beamforming (SASB) is applied to medical ultrasound imaging using a multi element convex array transducer. The main motivation for SASB is to apply synthetic aperture techniques without the need for storing RF-data for a number of elements and hereby devise a system...

  20. Apparatus and method for velocity estimation in synthetic aperture imaging

    DEFF Research Database (Denmark)

    2003-01-01

    The invention relates to an apparatus for flow estimation using synthetic aperture imaging. The method uses a Synthetic Transmit Aperture, but unlike previous approaches a new frame is created after every pulse emission. In receive mode parallel beam forming is implemented. The beam formed RF data...

  1. Second harmonic imaging using synthetic aperture sequential beamforming

    DEFF Research Database (Denmark)

    Du, Yigang; Rasmussen, Joachim; Jensen, Henrik;

    2011-01-01

    The paper investigates Second Harmonic Imaging (SHI) using Synthetic Aperture Sequential Beamforming (SASB). The investigation is made by an experimental Synthetic Aperture Real-time Ultrasound System (SARUS). A linear array transducer is used to scan 4 wires at the image depths of f22.5, 47.5, 72...

  2. Velocity estimation using synthetic aperture imaging [blood flow

    OpenAIRE

    Nikolov, Svetoslav; Jensen, Jørgen Arendt

    2001-01-01

    Presented an approach for synthetic aperture blood flow ultrasound imaging. Estimates with a low bias and standard deviation can be obtained with as few as eight emissions. The performance of the new estimator is verified using both simulations and measurements. The results demonstrate that a fully functioning synthetic aperture scanner can be made

  3. The sonar aperture and its neural representation in bats.

    Science.gov (United States)

    Heinrich, Melina; Warmbold, Alexander; Hoffmann, Susanne; Firzlaff, Uwe; Wiegrebe, Lutz

    2011-10-26

    As opposed to visual imaging, biosonar imaging of spatial object properties represents a challenge for the auditory system because its sensory epithelium is not arranged along space axes. For echolocating bats, object width is encoded by the amplitude of its echo (echo intensity) but also by the naturally covarying spread of angles of incidence from which the echoes impinge on the bat's ears (sonar aperture). It is unclear whether bats use the echo intensity and/or the sonar aperture to estimate an object's width. We addressed this question in a combined psychophysical and electrophysiological approach. In three virtual-object playback experiments, bats of the species Phyllostomus discolor had to discriminate simple reflections of their own echolocation calls differing in echo intensity, sonar aperture, or both. Discrimination performance for objects with physically correct covariation of sonar aperture and echo intensity ("object width") did not differ from discrimination performances when only the sonar aperture was varied. Thus, the bats were able to detect changes in object width in the absence of intensity cues. The psychophysical results are reflected in the responses of a population of units in the auditory midbrain and cortex that responded strongest to echoes from objects with a specific sonar aperture, regardless of variations in echo intensity. Neurometric functions obtained from cortical units encoding the sonar aperture are sufficient to explain the behavioral performance of the bats. These current data show that the sonar aperture is a behaviorally relevant and reliably encoded cue for object size in bat sonar.

  4. Shadow Enhancement in Synthetic Aperture Sonar Using Fixed Focusing

    NARCIS (Netherlands)

    Groen, J.; Hansen, R.E.; Callow, H.J.; Sabel, J.C.; Sæbø, T.O.

    2009-01-01

    Abstract—A shadow cast by an object on the seafloor is important information for target recognition in synthetic aperture sonar (SAS) images. Synthetic aperture imaging causes a fundamental limitation to shadow clarity because the illuminator is moved during the data collection. This leads to a blen

  5. SARUS: A Synthetic Aperture Real-Time Ultrasound System

    DEFF Research Database (Denmark)

    Jensen, Jørgen Arendt; Holten-Lund, Hans; Nilsson, Ronnie Thorup;

    2013-01-01

    The Synthetic Aperture Real-time Ultrasound System (SARUS) for acquiring and processing synthetic aperture (SA) data for research purposes is described. The specifications and design of the system are detailed, along with its performance for SA, nonlinear, and 3-D flow estimation imaging. SARUS...

  6. Characteristics of Electromagnetic Pulse Coupling into Annular Apertures

    Directory of Open Access Journals (Sweden)

    Yan-Peng Sun

    2013-11-01

    Full Text Available Electromagnetic pulse (EMP coupling into the annular apertures can disturb or damage much electronic equipment. To enhance electronic system’s  capability of anti-electromagnetic interference, the finite difference time domain method (FDTD was employed to study the characteristics of electromagnetic pulse coupling into the cavity enclosures with annular apertures. The coupling characteristics of annular apertures with different shapes (rectangle, square and circle were discussed. It shows that, in the case of the same aperture area, the coupling energy of electromagnetic pulse into the circular annular aperture is smaller than that into the rectangular and the square ones. To the rectangular annular aperture, while the polarization direction of the incident electromagnetic pulse is perpendicular to the long side of the rectangular annular aperture, the coupling energy is larger when the aspect ratio of the rectangular annular aperture is larger. The coupling effect of incident pulse with short pulse width is obviously better than the one with longer pulse width. The resonance phenomenon of the coupled waveform occurs in the cavity.

  7. Calculation on diffraction aperture of cube corner retroreflector

    Institute of Scientific and Technical Information of China (English)

    Song Li; Bei Tang; Hui Zhou

    2008-01-01

    On the basis of optical property of cube corner retroreflector (CCR), a new perception and calculation approach for diffraction aperture of CCR in two different forms is presented. The relationship between diffraction apertures and incident light with six different combinations of reflection order and incident angle is established. Far-field diffraction patterns of CCR under various incident conditions are also provided.

  8. Synthetic aperture radar imaging with motion estimation and autofocus

    International Nuclear Information System (INIS)

    We introduce from first principles a synthetic aperture radar (SAR) imaging and target motion estimation method that is combined with compensation for radar platform trajectory perturbations. The main steps of the method are (a) segmentation of the data into properly calibrated small apertures, (b) motion or platform trajectory perturbation estimation using the Wigner transform and the ambiguity function of the data in a complementary way and (c) combination of small aperture estimates and construction of high-resolution images over wide apertures. The analysis provides quantitative criteria for implementing the aperture segmentation and the parameter estimation process. X-band persistent surveillance SAR is a specific application that is covered by our analysis. Detailed numerical simulations illustrate the robust applicability of the theory and validate the theoretical resolution analysis. (paper)

  9. Microfabricated high-bandpass foucault aperture for electron microscopy

    Science.gov (United States)

    Glaeser, Robert; Cambie, Rossana; Jin, Jian

    2014-08-26

    A variant of the Foucault (knife-edge) aperture is disclosed that is designed to provide single-sideband (SSB) contrast at low spatial frequencies but retain conventional double-sideband (DSB) contrast at high spatial frequencies in transmission electron microscopy. The aperture includes a plate with an inner open area, a support extending from the plate at an edge of the open area, a half-circle feature mounted on the support and located at the center of the aperture open area. The radius of the half-circle portion of reciprocal space that is blocked by the aperture can be varied to suit the needs of electron microscopy investigation. The aperture is fabricated from conductive material which is preferably non-oxidizing, such as gold, for example.

  10. Coded Aperture Imaging for Fluorescent X-rays-Biomedical Applications

    Energy Technology Data Exchange (ETDEWEB)

    Haboub, Abdel; MacDowell, Alastair; Marchesini, Stefano; Parkinson, Dilworth

    2013-06-01

    Employing a coded aperture pattern in front of a charge couple device pixilated detector (CCD) allows for imaging of fluorescent x-rays (6-25KeV) being emitted from samples irradiated with x-rays. Coded apertures encode the angular direction of x-rays and allow for a large Numerical Aperture x- ray imaging system. The algorithm to develop the self-supported coded aperture pattern of the Non Two Holes Touching (NTHT) pattern was developed. The algorithms to reconstruct the x-ray image from the encoded pattern recorded were developed by means of modeling and confirmed by experiments. Samples were irradiated by monochromatic synchrotron x-ray radiation, and fluorescent x-rays from several different test metal samples were imaged through the newly developed coded aperture imaging system. By choice of the exciting energy the different metals were speciated.

  11. Fracture-aperture alteration induced by calcite precipitation

    Science.gov (United States)

    Jones, T.; Detwiler, R. L.

    2013-12-01

    Mineral precipitation significantly alters the transport properties of fractured rock. Chemical solubility gradients that favor precipitation induce mineral growth, which decreases the local aperture and alters preferential flow paths. Understanding the resulting development of spatial heterogeneities is necessary to predict the evolution of transport properties in the subsurface. We present experimental results that quantify the relationship between mineral precipitation and aperture alteration in a transparent analog fracture, 7.62cm x 7.62cm, with a uniform aperture of ~200 μm. Prior to flow experiments, a pump circulated a super-saturated calcite solution over the bottom glass, coating the glass surface with calcite. This method of seeding resulted in clusters of calcite crystals with large reactive surface area and provided micro-scale variability in the aperture field. A continuous flow syringe pump injected a reactive fluid into the fracture at 0.5 ml/min. The fluid was a mixture of sodium bicarbonate (NaHCO3, 0.02M) and calcium chloride (CaCl2 0.0004M) with a saturation index, Ω, of 8.51 with respect to calcite. A strobed LED panel backlit the fracture and a high-resolution CCD camera monitored changes in transmitted light intensity. Light transmission techniques provided a quantitative measurement of fracture aperture over the flow field. Results from these preliminary experiments showed growth near the inlet of the fracture, with decreasing precipitation rates in the flow direction. Over a period of two weeks, the fracture aperture decreased by 17% within the first 4mm of the inlet. Newly precipitated calcite bridged individual crystal clusters and smoothed the reacting surface. This observation is an interesting contradiction to the expectation of surface roughening induced by mineral growth. Additionally, the aperture decreased uniformly across the width of the fracture due to the initial aperture distribution. Future experiments of precipitation

  12. Stereoscopic full aperture imaging in nuclear medicine

    Directory of Open Access Journals (Sweden)

    Sergio G. Strocovsky

    2011-06-01

    Full Text Available Images of planar scintigraphy and single photon emission computerized tomography (SPECT used in nuclear medicine are often low quality. They usually appear to be blurred and noisy. This problem is due to the low spatial resolution and poor sensitivity of the acquisition technique with the gamma camera (GC. Other techniques, such as coded aperture imaging (CAI reach higher spatial resolutions than GC. However, CAI is not frequently used for imaging in nuclear medicine, due to the decoding complexity of some images and the difficulty in controlling the noise magnitude. Summing up, the images obtained through GC are low quality and it is still difficult to implement CAI technique. A novel technique, full aperture Imaging (FAI, also uses gamma ray-encoding to obtain images, but the coding system and the method of images reconstruction are simpler than those used in CAI. In addition, FAI also reaches higher spatial resolution than GC. In this work, the principles of FAI technique and the method of images reconstruction are explained in detail. The FAI technique is tested by means of Monte Carlo simulations with filiform and spherical sources. Spatial resolution tests of GC versus FAI were performed using two different source-detector distances. First, simulations were made without interposing any material between the sources and the detector. Then, other more realistic simulations were made. In these, the sources were placed in the centre of a rectangular prismatic region, filled with water. A rigorous comparison was made between GC and FAI images of the linear filiform sources, by means of two methods: mean fluence profile graphs and correlation tests. Finally, three-dimensional capacity of FAI was tested with two spherical sources. The results show that FAI technique has greater sensitivity (>100 times and greater spatial resolution (>2.6 times than that of GC with LEHR collimator, in both cases, with and without attenuating material and long and

  13. Detection of breast microcalcifications using synthetic-aperture ultrasound

    Science.gov (United States)

    Huang, Lianjie; Labyed, Yassin; Lin, Youzuo; Zhang, Zhigang; Pohl, Jennifer; Sandoval, Daniel; Williamson, Michael

    2012-03-01

    Ultrasound could be an attractive imaging modality for detecting breast microcalcifications, but it requires significant improvement in image resolution and quality. Recently, we have used tissue-equivalent phantoms to demonstrate that synthetic-aperture ultrasound has the potential to detect small targets. In this paper, we study the in vivo imaging capability of a real-time synthetic-aperture ultrasound system for detecting breast microcalcifications. This LANL's (Los Alamos National Laboratory's) custom built synthetic-aperture ultrasound system has a maximum frame rate of 25 Hz, and is one of the very first medical devices capable of acquiring synthetic-aperture ultrasound data and forming ultrasound images in real time, making the synthetic-aperture ultrasound feasible for clinical applications. We recruit patients whose screening mammograms show breast microcalcifications, and use LANL's synthetic-aperture ultrasound system to scan the regions with microcalcifications. Our preliminary in vivo patient imaging results demonstrate that synthetic-aperture ultrasound is a promising imaging modality for detecting breast microcalcifications.

  14. Preliminary comparison of 3D synthetic aperture imaging with Explososcan

    Science.gov (United States)

    Rasmussen, Morten Fischer; Hansen, Jens Munk; Férin, Guillaume; Dufait, Rémi; Jensen, Jørgen Arendt

    2012-03-01

    Explososcan is the 'gold standard' for real-time 3D medical ultrasound imaging. In this paper, 3D synthetic aperture imaging is compared to Explososcan by simulation of 3D point spread functions. The simulations mimic a 32×32 element prototype transducer. The transducer mimicked is a dense matrix phased array with a pitch of 300 μm, made by Vermon. For both imaging techniques, 289 emissions are used to image a volume spanning 60° in both the azimuth and elevation direction and 150mm in depth. This results for both techniques in a frame rate of 18 Hz. The implemented synthetic aperture technique reduces the number of transmit channels from 1024 to 256, compared to Explososcan. In terms of FWHM performance, was Explososcan and synthetic aperture found to perform similar. At 90mm depth is Explososcan's FWHM performance 7% better than that of synthetic aperture. Synthetic aperture improved the cystic resolution, which expresses the ability to detect anechoic cysts in a uniform scattering media, at all depths except at Explososcan's focus point. Synthetic aperture reduced the cyst radius, R20dB, at 90mm depth by 48%. Synthetic aperture imaging was shown to reduce the number of transmit channels by four and still, generally, improve the imaging quality.

  15. Synthetic aperture radar imaging exploiting multiple scattering

    International Nuclear Information System (INIS)

    In this paper, we consider an imaging scenario, where a bi-static synthetic aperture radar (SAR) system is used in a multiple scattering environment. We consider a ray-theoretic approximation to the Green function to model a multiple scattering environment. This allows us to incorporate the multiple paths followed by the transmitted signal, thereby providing different views of the object to be imaged. However, the received signal from the multiple paths and additive thermal noise may interfere and produce artifacts when standard backprojection-based reconstruction algorithms are used. We use microlocal analysis in a statistical setting to develop a novel filtered-backprojection type image reconstruction method that not only exploits the multi-paths leading to enhancement of the reconstructed image but also suppresses the artifacts due to interference. We assume a priori knowledge of the second-order statistics of the target and noise to suppress the artifacts due to interference in a mean-square error sense. We present numerical simulations to demonstrate the performance of our image reconstruction method. While the focus of this paper is on radar applications, our image formation method is also applicable to other problems arising in fields such as acoustic, geophysical and medical imaging

  16. Motion Measurement for Synthetic Aperture Radar.

    Energy Technology Data Exchange (ETDEWEB)

    Doerry, Armin W.

    2015-01-01

    Synthetic Aperture Radar (SAR) measures radar soundings from a set of locations typically along the flight path of a radar platform vehicle. Optimal focusing requires precise knowledge of the sounding source locations in 3 - D space with respect to the target scene. Even data driven focusing techniques (i.e. autofocus) requires some degree of initial fidelity in the measurements of the motion of the radar. These requirements may be quite stringent especially for fine resolution, long ranges, and low velocities. The principal instrument for measuring motion is typically an Inertial Measurement Unit (IMU), but these instruments have inherent limi ted precision and accuracy. The question is %22How good does an IMU need to be for a SAR across its performance space?%22 This report analytically relates IMU specifications to parametric requirements for SAR. - 4 - Acknowledgements Th e preparation of this report is the result of a n unfunded research and development activity . Although this report is an independent effort, it draws heavily from limited - release documentation generated under a CRADA with General Atomics - Aeronautical System, Inc. (GA - ASI), and under the Joint DoD/DOE Munitions Program Memorandum of Understanding. Sandia National Laboratories is a multi - program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of En ergy's National Nuclear Security Administration under contract DE - AC04 - 94AL85000.

  17. High numerical aperture multilayer Laue lenses.

    Science.gov (United States)

    Morgan, Andrew J; Prasciolu, Mauro; Andrejczuk, Andrzej; Krzywinski, Jacek; Meents, Alke; Pennicard, David; Graafsma, Heinz; Barty, Anton; Bean, Richard J; Barthelmess, Miriam; Oberthuer, Dominik; Yefanov, Oleksandr; Aquila, Andrew; Chapman, Henry N; Bajt, Saša

    2015-01-01

    The ever-increasing brightness of synchrotron radiation sources demands improved X-ray optics to utilise their capability for imaging and probing biological cells, nanodevices, and functional matter on the nanometer scale with chemical sensitivity. Here we demonstrate focusing a hard X-ray beam to an 8 nm focus using a volume zone plate (also referred to as a wedged multilayer Laue lens). This lens was constructed using a new deposition technique that enabled the independent control of the angle and thickness of diffracting layers to microradian and nanometer precision, respectively. This ensured that the Bragg condition is satisfied at each point along the lens, leading to a high numerical aperture that is limited only by its extent. We developed a phase-shifting interferometric method based on ptychography to characterise the lens focus. The precision of the fabrication and characterisation demonstrated here provides the path to efficient X-ray optics for imaging at 1 nm resolution. PMID:26030003

  18. Motion measurement for synthetic aperture radar

    Energy Technology Data Exchange (ETDEWEB)

    Doerry, Armin W. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-01-01

    Synthetic Aperture Radar (SAR) measures radar soundings from a set of locations typically along the flight path of a radar platform vehicle. Optimal focusing requires precise knowledge of the sounding source locations in 3-D space with respect to the target scene. Even data driven focusing techniques (i.e. autofocus) requires some degree of initial fidelity in the measurements of the motion of the radar. These requirements may be quite stringent especially for fine resolution, long ranges, and low velocities. The principal instrument for measuring motion is typically an Inertial Measurement Unit (IMU), but these instruments have inherent limi ted precision and accuracy. The question is %22How good does an IMU need to be for a SAR across its performance space?%22 This report analytically relates IMU specifications to parametric requirements for SAR. - 4 - Acknowledgements Th e preparation of this report is the result of a n unfunded research and development activity . Although this report is an independent effort, it draws heavily from limited - release documentation generated under a CRADA with General Atomics - Aeronautical System, Inc. (GA - ASI), and under the Joint DoD/DOE Munitions Program Memorandum of Understanding. Sandia National Laboratories is a multi - program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of En ergy's National Nuclear Security Administration under contract AC04-94AL85000.

  19. Oceanic eddies in synthetic aperture radar images

    Indian Academy of Sciences (India)

    Andrei Yu Ivanov; Anna I Ginzburg

    2002-09-01

    Continuous observations since 1991 by using synthetic aperture radar (SAR) on board the Almaz-1, ERS-1/2, JERS-1, and RADARSAT satellites support the well-known fact that oceanic eddies are distributed worldwide in the ocean. The paper is devoted to an evaluation of the potential of SAR for detection of eddies and vortical motions in the ocean. The classification of typical vortical features in the ocean detected in remote sensing images (visible, infrared, and SAR) is presented as well as available information on their spatial and temporal scales. Examples of the Almaz-1 and ERS-1/2 SAR images showing different eddy types, such as rings, spiral eddies of the open ocean, eddies behind islands and in bays, spin-off eddies and mushroom-like structures (vortex dipoles) are given and discussed. It is shown that a common feature for most of the eddies detected in the SAR images is a broad spectrum of spatial scales, spiral shape and shear nature. It is concluded that the spaceborne SARs give valuable information on ocean eddies, especially in combination with visible and infrared satellite data.

  20. Coherent processing for ISAR imaging with sparse apertures

    Institute of Scientific and Technical Information of China (English)

    SHENG JiaLian; ZHANG Lei; XU Gang; XING MengDao; BAO Zheng

    2012-01-01

    To implement target detection,tracking and imaging in a multifunctional radar system,the wideband measurements for inverse synthetic aperture radar (ISAR) imaging are usually sparsely recorded.Considering the incoherence problem in such sparse-aperture ISAR (SA-ISAR) systems,we concentrate on the study of a coherent processing method in this work.Based on an all-pole model,the incoherence parameters between abutting sub-apertures can be effectively estimated.After coherence compensation,an optimization-based SA-ISAR imaging approach is provided from the view of statistics.Simulation and real data experiments validate the feasibility and effectiveness of the proposals.

  1. Optical Transmission Properties of Dielectric Aperture Arrays

    Science.gov (United States)

    Yang, Tao

    Optical detection devices such as optical biosensors and optical spectrometers are widely used in many applications for the functions of measurements, inspections and analysis. Due to the large dimension of prisms and gratings, the traditional optical devices normally occupy a large space with complicated components. Since cheaper and smaller optical devices are always in demand, miniaturization has been kept going for years. Thanks to recent fabrication advances, nanophotonic devices such as semiconductor laser chips have been growing in number and diversity. However, the optical biosensor chips and the optical spectrometer chips are seldom reported in the literature. For the reason of improving system integration, the study of ultra-compact, low-cost, high-performance and easy-alignment optical biosensors and optical spectrometers are imperative. This thesis is an endeavor in these two subjects and will present our research work on studying the optical transmission properties of dielectric aperture arrays and developing new optical biosensors and optical spectrometers. The first half of the thesis demonstrates that the optical phase shift associated with the surface plasmon (SP) assisted extraordinary optical transmission (EOT) in nano-hole arrays fabricated in a metal film has a strong dependence on the material refractive index value in close proximity to the holes. A novel refractive index sensor based on detecting the EOT phase shift is proposed by building a model. This device readily provides a 2-D biosensor array platform for non-labeled real-time detection of a variety of organic and biological molecules in a sensor chip format, which leads to a high packing density, minimal analyte volumes, and a large number of parallel channels while facilitating high resolution imaging and supporting a large space-bandwidth product (SBP). Simulation (FDTD Solutions, Lumerical Solutions Inc) results indicate an achievable sensitivity limit of 4.37x10-9 refractive index

  2. RADARSAT-1 synthetic aperture radar analysis

    International Nuclear Information System (INIS)

    The M/V Selendang Ayu grounded off Unalaska Island in Alaska on December 8, 2004, and spilled over 1270 m3 of oil and an unknown quantity of soybeans. The freighter grounded nearshore in a high-wave energy zone along a remote and rugged coastline, a terrain which can cause difficulties for remote sensors in detecting oil slicks. In addition, guano, kelp beds, whale and fish sperm, and releases from fishing activities generated biogenic films on the sea surface that had a signature similar to that of petroleum films. RADARSAT-1 synthetic aperture radar (SAR) imagery was used as part of the response effort to assist in the pollution monitoring effort. This paper described the methodology and results of the RADARSAT-1 analysis. Detailed information on the spill response was reported daily, and provided an opportunity to compare field observations with RADARSAT-1 SAR imagery. Observers recorded observations onto electronic maps during 35 aerial surveillance flights. Fifty-seven incident reports describing the vessel status were also used for comparison. Using screening criteria for the favorable wind and wave conditions, 37 images were available for viewing the wreck, and 22 images were acceptable for oil slick viewing. Image analysis for the wreck suggested that the sensor has the resolution and capability to monitor a grounded freighter. Visual inspection of the images showed that SAR can capture changes in vessel status, such as the gradual sinking of the bow. However, SAR's oil slick detection capability was disappointing due to the significant number of biogenic films in the nearshore areas of Alaska. It was concluded that future work should concentrate on developing a ranking system to indicate analysis confidence that a particular image does in fact contain a petroleum pocket. 25 refs., 2 tabs., 10 figs

  3. Morphometric analysis of septal aperture of humerus

    Directory of Open Access Journals (Sweden)

    Raghavendra K, Anil kumar Reddy Y, Shirol VS, Daksha Dixit, Desai SP

    2014-04-01

    Full Text Available Introduction: Lower end of humerus shows olecranon and coronoid fossae separated by a thin bony septum, sometimes it may deficient and shows foramen which communicates both the fossae called Septal aperture, which is commonly referred as supratrochlear foramen (STF. Materials & Methods: We have studied 260 humeri (126 right side and 134 left side, measurements were taken by using vernier caliper, translucency septum was observed by keeping the lower end of humerus against the x-ray lobby. Results: A clear cut STF was observed in 19.2% bones, translucency septum was observed in 99 (91.6% humeri on the right side and 95 (93.1% humeri on the left sides respectively (Table – 1. Clinical significance: The presence of STF is always associated with the narrow medullary canal at the lower end of humerus, Supracondylar fracture of humerus is most common in paediatric age group, medullary nailing is done to treat the fractures in those cases the knowledge about the STF is very important for treating the fractures. It has been observed in x-ray of lower end of the humerus the STF is comparatively radiolucent, it is commonly seen as a type of ‘pseudolesions’ in an x-ray of the lower end of humerus and it may mistake for an osteolytic or cystic lesions. Conclusion: The present study can add data into anthropology and anatomy text books regarding STF and it gives knowledge of understanding anatomical variation of distal end of the humerus, which is significant for anthropologists, orthopaedic surgeons and radiologists in habitual clinical practice.

  4. Triangulation using synthetic aperture radar images

    Science.gov (United States)

    Wu, Sherman S. C.; Howington-Kraus, Annie E.

    1991-01-01

    For the extraction of topographic information about Venus from stereoradar images obtained from the Magellan Mission, a Synthetic Aperture Radar (SAR) compilation system was developed on analytical stereoplotters. The system software was extensively tested by using stereoradar images from various spacecraft and airborne radar systems, including Seasat, SIR-B, ERIM XCL, and STAR-1. Stereomodeling from radar images was proven feasible, and development is on a correct approach. During testing, the software was enhanced and modified to obtain more flexibility and better precision. Triangulation software for establishing control points by using SAR images was also developed through a joint effort with the Defense Mapping Agency. The SAR triangulation system comprises four main programs, TRIDATA, MODDATA, TRISAR, and SHEAR. The first two programs are used to sort and update the data; the third program, the main one, performs iterative statistical adjustment; and the fourth program analyzes the results. Also, input are flight data and data from the Global Positioning System and Inertial System (navigation information). The SAR triangulation system was tested with six strips of STAR-1 radar images on a VAX-750 computer. Each strip contains images of 10 minutes flight time (equivalent to a ground distance of 73.5 km); the images cover a ground width of 22.5 km. All images were collected from the same side. With an input of 44 primary control points, 441 ground control points were produced. The adjustment process converged after eight iterations. With a 6-m/pixel resolution of the radar images, the triangulation adjustment has an average standard elevation error of 81 m. Development of Magellan radargrammetry will be continued to convert both SAR compilation and triangulation systems into digital form.

  5. The LASS [Larger Aperture Superconducting Solenoid] spectrometer

    International Nuclear Information System (INIS)

    LASS is the acronym for the Large Aperture Superconducting Solenoid spectrometer which is located in an rf-separated hadron beam at the Stanford Linear Accelerator Center. This spectrometer was constructed in order to perform high statistics studies of multiparticle final states produced in hadron reactions. Such reactions are frequently characterized by events having complicated topologies and/or relatively high particle multiplicity. Their detailed study requires a spectrometer which can provide good resolution in momentum and position over almost the entire solid angle subtended by the production point. In addition, good final state particle identification must be available so that separation of the many kinematically-overlapping final states can be achieved. Precise analyses of the individual reaction channels require high statistics, so that the spectrometer must be capable of high data-taking rates in order that such samples can be acquired in a reasonable running time. Finally, the spectrometer must be complemented by a sophisticated off-line analysis package which efficiently finds tracks, recognizes and fits event topologies and correctly associates the available particle identification information. This, together with complicated programs which perform specific analysis tasks such as partial wave analysis, requires a great deal of software effort allied to a very large computing capacity. This paper describes the construction and performance of the LASS spectrometer, which is an attempt to realize the features just discussed. The configuration of the spectrometer corresponds to the data-taking on K+ and K- interactions in hydrogen at 11 GeV/c which took place in 1981 and 1982. This constitutes a major upgrade of the configuration used to acquire lower statistics data on 11 GeV/c K-p interactions during 1977 and 1978, which is also described briefly

  6. RADARSAT-1 synthetic aperture radar analysis

    Energy Technology Data Exchange (ETDEWEB)

    Simecek-Beatty, D. [National Oceanic and Atmospheric Adminstration, National Ocean Service, Seattle, WA (United States). Office of Response and Restoration; Pichel, W.G. [National Oceanic and Atmospheric Administration, National Environmental Satellite, Data and Information Service, Camp Springs, MD (United States). Office of Research and Applications

    2006-07-01

    The M/V Selendang Ayu grounded off Unalaska Island in Alaska on December 8, 2004, and spilled over 1270 m{sup 3} of oil and an unknown quantity of soybeans. The freighter grounded nearshore in a high-wave energy zone along a remote and rugged coastline, a terrain which can cause difficulties for remote sensors in detecting oil slicks. In addition, guano, kelp beds, whale and fish sperm, and releases from fishing activities generated biogenic films on the sea surface that had a signature similar to that of petroleum films. RADARSAT-1 synthetic aperture radar (SAR) imagery was used as part of the response effort to assist in the pollution monitoring effort. This paper described the methodology and results of the RADARSAT-1 analysis. Detailed information on the spill response was reported daily, and provided an opportunity to compare field observations with RADARSAT-1 SAR imagery. Observers recorded observations onto electronic maps during 35 aerial surveillance flights. Fifty-seven incident reports describing the vessel status were also used for comparison. Using screening criteria for the favorable wind and wave conditions, 37 images were available for viewing the wreck, and 22 images were acceptable for oil slick viewing. Image analysis for the wreck suggested that the sensor has the resolution and capability to monitor a grounded freighter. Visual inspection of the images showed that SAR can capture changes in vessel status, such as the gradual sinking of the bow. However, SAR's oil slick detection capability was disappointing due to the significant number of biogenic films in the nearshore areas of Alaska. It was concluded that future work should concentrate on developing a ranking system to indicate analysis confidence that a particular image does in fact contain a petroleum pocket. 25 refs., 2 tabs., 10 figs.

  7. Detection of small, slow ground targets using Synthetic Aperture Radar

    Science.gov (United States)

    Chen, Curtis; Chapin, Elaine; Rosen, Paul

    2005-01-01

    Synthetic aperture radar (SAR) along-track interferometry (ATI) is a technique for sensing Earth-surface motion. The technique involves interferometrically combining data from two radar images acquired from phase centers separated along the platform flight track.

  8. Synthetic aperture radar signal processing: Trends and technologies

    Science.gov (United States)

    Curlander, John C.

    1993-01-01

    An overview of synthetic aperture radar (SAR) technology is presented in vugraph form. The following topics are covered: an SAR ground data system; SAR signal processing algorithms; SAR correlator architectures; and current and future trends.

  9. Stellwagen Bank National Marine Sanctuary - Synthetic Aperture Radar (SAR) Imagery

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This geodatabase contains Synthetic Aperture Radar images (SAR), which consist of a fine resolution (12.5-50m), two-dimensional radar backscatter map of the...

  10. An Adaptive Homomorphic Aperture Photometry Algorithm for Merging Galaxies

    CERN Document Server

    Huang, Jen-Chao

    2016-01-01

    We present a novel automatic adaptive aperture photometry algorithm for measuring the total magnitudes of merging galaxies with irregular shapes. First, we use a morphological pattern recognition routine for identifying the shape of an irregular source in a background-subtracted image. Then, we extend the shape of the source by using the Dilation image operation to obtain an aperture that is quasi-homomorphic to the shape of the irregular source. The magnitude measured from the homomorphic aperture would thus have minimal contamination from the nearby background. As a test of our algorithm, we applied our technique to the merging galaxies observed by the Sloan Digital Sky Survey (SDSS) and the Canada-France-Hawaii Telescope (CFHT). Our results suggest that the adaptive homomorphic aperture algorithm can be very useful for investigating extended sources with irregular shapes and sources in crowded regions.

  11. Ultra-Lightweight Large Aperture Support Structures Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Ultra-lightweight membranes may prove to be very attractive for large aperture systems, but their value will be fully realized only if they are mated with equally...

  12. Aperture Arrays for the SKA: Dense or Sparse?

    CERN Document Server

    Braun, R; Braun, Robert; Cappellen, Wim van

    2006-01-01

    We briefly consider some design aspects of aperture arrays for use in radio astronomy, particularly contrasting the performance of dense and sparse aperture arrays. Recent insights have emerged in the final design phase of LOFAR which suggest that sparse aperture arrays have the best prospects for cost-effective performance at radio frequencies below about 500 MHz; exceeding those of both dense aperture arrays and parabolic reflectors by an order of magnitude. Very attractive performance, of 10,000 - 20,000 m2/K, can be achieved with a sparse design that covers the 70 - 700 MHz range with two antenna systems that share receiver resources. Cost-effective systems of this type represent only a modest increment in system complexity over that being deployed in LOFAR and are achievable with today's technology.

  13. Effect of bandwidth and numerical aperture in optical scatterometry

    Science.gov (United States)

    Germer, Thomas A.; Patrick, Heather J.

    2010-03-01

    We consider the effects of finite spectral bandwidth and numerical aperture in scatterometry measurements and discuss efficient integration methods based upon Gaussian quadrature in one dimension (for spectral bandwidth averaging) and two dimensions inside a circle (for numerical aperture averaging). Provided the wavelength is not near a Wood's anomaly for the grating, we find that the resulting methods converge very quickly to a level suitable for most measurement applications. In the vicinity of a Wood's anomaly, however, the methods provide rather poor behavior. We also describe a method that can be used to extract the effective spectral bandwidth and numerical aperture for a scatterometry tool. We find that accounting for spectral bandwidth and numerical aperture is necessary to obtain satisfactory results in scatterometry.

  14. Foamed Antenna Support for Very Large Apertures Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Large aperture antennas are of interest to NASA for applications in establishing high-speed communication relays for interplanetary missions. Design goals include...

  15. Photonic spin-controlled multifunctional shared-aperture antenna array

    Science.gov (United States)

    Maguid, Elhanan; Yulevich, Igor; Veksler, Dekel; Kleiner, Vladimir; Brongersma, Mark L.; Hasman, Erez

    2016-06-01

    The shared-aperture phased antenna array developed in the field of radar applications is a promising approach for increased functionality in photonics. The alliance between the shared-aperture concepts and the geometric phase phenomenon arising from spin-orbit interaction provides a route to implement photonic spin-control multifunctional metasurfaces. We adopted a thinning technique within the shared-aperture synthesis and investigated interleaved sparse nanoantenna matrices and the spin-enabled asymmetric harmonic response to achieve helicity-controlled multiple structured wavefronts such as vortex beams carrying orbital angular momentum. We used multiplexed geometric phase profiles to simultaneously measure spectrum characteristics and the polarization state of light, enabling integrated on-chip spectropolarimetric analysis. The shared-aperture metasurface platform opens a pathway to novel types of nanophotonic functionality.

  16. Stitching interferometry for cylindrical optics with large angular aperture

    International Nuclear Information System (INIS)

    Stitching interferometry is an attractive method for measuring optics with large apertures. However, existing stitching algorithms are not suitable for measuring cylindrical optics, because the misalignment aberrations in cylindrical interferometry are more complicated than those in plane, spherical and aspherical measurements. This paper presents a stitching algorithm for measuring cylindrical optics with large angular apertures. With it, we use five aberrations (i.e. piston, tilt, tip, defocus and twist) to describe the possible misalignments of the tested cylindrical surface and to build the cylindrical stitching model. Using this model allows us to calculate the relative misalignment aberrations of subapertures from their overlapped areas, so that the full aperture map of a cylindrical surface is obtained by compensating for these misalignment aberrations. In experiment, a cylindrical lens with an angular aperture over 150° is measured, thus demonstrating the feasibility and validity of the proposed method. (paper)

  17. Foamed Antenna Support for Very Large Apertures Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The proposed Phase I program will demonstrate the feasibility of the in-space production of large aperture antenna structures. The use of a novel open cell foam,...

  18. Electronic aperture control devised for solid state imaging system

    Science.gov (United States)

    Anders, R. A.; Callahan, D. E.; Mc Cann, D. H.

    1968-01-01

    Electronic means of performing the equivalent of automatic aperture control has been devised for the new class of television cameras that incorporates a solid state imaging device in the form of phototransistor mosaic sensors.

  19. Autofocus algorithm for synthetic aperture radar imaging with large curvilinear apertures

    International Nuclear Information System (INIS)

    An approach to autofocusing for large curved synthetic aperture radar (SAR) apertures is presented. Its essential feature is that phase corrections are being extracted not directly from SAR images, but rather from reconstructed SAR phase-history data representing windowed patches of the scene, of sizes sufficiently small to allow the linearization of the forward- and back-projection formulae. The algorithm processes data associated with each patch independently and in two steps. The first step employs a phase-gradient-type method in which phase correction compensating (possibly rapid) trajectory perturbations are estimated from the reconstructed phase history for the dominant scattering point on the patch. The second step uses phase-gradient-corrected data and extracts the absolute phase value, removing in this way phase ambiguities and reducing possible imperfections of the first stage, and providing the distances between the sensor and the scattering point with accuracy comparable to the wavelength. The features of the proposed autofocusing method are illustrated in its applications to intentionally corrupted small-scene 2006 Gotcha data. The examples include the extraction of absolute phases (ranges) for selected prominent point targets. They are then used to focus the scene and determine relative target–target distances. (paper)

  20. Shallow Water Height Mapping With Interferometric Synthetic Aperture Sonar

    OpenAIRE

    Sergio Rui Silva; Sergio Cunha; Anibal Matos; Nuno Cruz

    2008-01-01

    Height mapping of shallow water areas is an important task for many commercial and scientific applications like river navigability, infrastructure maintenance or natural resource monitoring. The use of an autonomous boat presents several advantages that case the use of synthetic aperture images to create three-dimensional topographic maps through interferometric techniques. Sample data obtained during test trials illustrate how synthetic aperture can be used to generate imagery and bathymetry...

  1. Synthetic aperture single-exposure on-axis digital holography

    OpenAIRE

    Martínez León, Lluís; Javidi, Bahram

    2008-01-01

    We present a system for reconstructing single-exposure on-line (SEOL) digital holograms with improved resolution using a synthetic aperture. Several recordings are made in order to compose the synthetic aperture, shifting the camera within the hologram plane. After processing the synthetic hologram, an inverse Fresnel transformation provides an enhanced resolution reconstruction. We show that recognition capacity for high frequency details is increased. Experimental results ...

  2. Radiometric resolution of motion-induced synthetic aperture radiometer

    OpenAIRE

    Hyuk, Park; Camps Carmona, Adriano José; Choi, Min Gyu; Kim, Yong-Hoon

    2011-01-01

    The radiometric resolution of a motion-induced synthetic aperture radiometer (MISAR) is analytically obtained from the standard deviation of a baseline response, an observation scenario, and the imaging method of the MISAR. The intrinsic long integration time given by the whole dwell time on moving platforms improves the radiometric resolution compared with the snapshot resolution of other nominal synthetic aperture radiometers. In addition, it is illustrated that the MISAR imaging hold...

  3. The synthetic aperture method in the environment microwave interferometer radiometry

    OpenAIRE

    Kutuza, B.G.; Zagorin, G. K.

    2003-01-01

    The basic principles of space-borne two dimensional synthetic aperture microwave polarimetric interferometer function are considered. The main advantages of these systems over the well-known systems ESMR, SMMR and SSM/I are: a high rate of the observation scene image construction; the finite angular resolution; besides, they have no movable onboard construction elements on the spacecraft board, like the scanning antenna, and etc. The advantages of the synthetic aperture systems with hexagonal...

  4. Transmission of High-Power Electron Beams Through Small Apertures

    CERN Document Server

    Tschalär, C; Balascuta, S.; Benson, S.V.; Bertozzi, W.; Boyce, J.R.; Cowan, R.; Douglas, D.; Evtushenko, P.; Fisher, P.; Ihloff, E.; Kalantarians, N.; Kelleher, A.; Legg, R.; Milner, R.G.; Neil, G.R.; Ou, L.; Schmookler, B.; Tennant, C.; Williams, G.P.; Zhang, S.

    2013-01-01

    Tests were performed to pass a 100 MeV, 430 kWatt c.w. electron beam from the energy-recovery linac at the Jefferson Laboratory's FEL facility through a set of small apertures in a 127 mm long aluminum block. Beam transmission losses of 3 p.p.m. through a 2 mm diameter aperture were maintained during a 7 hour continuous run.

  5. Dynamic Aperture Of The Heavy Ion Collider Nica

    International Nuclear Information System (INIS)

    Dynamic aperture of the heavy ion collider NICA which is under construction at the Joint Institute for Nuclear Research in Dubna has been studied. Both nonlinearities in the magnetic elements and beam-beam forces have been taken into account in the numerical simulations. The obtained values of the dynamic aperture and the nonlinear acceptance are close to those in other heavy ion accelerators. Key words: particle accelerators, collider, beam dynamics

  6. Transport of Particle Swarms Through Variable Aperture Fractures

    Science.gov (United States)

    Boomsma, E.; Pyrak-Nolte, L. J.

    2012-12-01

    Particle transport through fractured rock is a key concern with the increased use of micro- and nano-size particles in consumer products as well as from other activities in the sub- and near surface (e.g. mining, industrial waste, hydraulic fracturing, etc.). While particle transport is often studied as the transport of emulsions or dispersions, particles may also enter the subsurface from leaks or seepage that lead to particle swarms. Swarms are drop-like collections of millions of colloidal-sized particles that exhibit a number of unique characteristics when compared to dispersions and emulsions. Any contaminant or engineered particle that forms a swarm can be transported farther, faster, and more cohesively in fractures than would be expected from a traditional dispersion model. In this study, the effects of several variable aperture fractures on colloidal swarm cohesiveness and evolution were studied as a swarm fell under gravity and interacted with the fracture walls. Transparent acrylic was used to fabricate synthetic fracture samples with (1) a uniform aperture, (2) a converging region followed by a uniform region (funnel shaped), (3) a uniform region followed by a diverging region (inverted funnel), and (4) a cast of a an induced fracture from a carbonate rock. All of the samples consisted of two blocks that measured 100 x 100 x 50 mm. The minimum separation between these blocks determined the nominal aperture (0.5 mm to 20 mm). During experiments a fracture was fully submerged in water and swarms were released into it. The swarms consisted of a dilute suspension of 3 micron polystyrene fluorescent beads (1% by mass) with an initial volume of 5μL. The swarms were illuminated with a green (525 nm) LED array and imaged optically with a CCD camera. The variation in fracture aperture controlled swarm behavior. Diverging apertures caused a sudden loss of confinement that resulted in a rapid change in the swarm's shape as well as a sharp increase in its velocity

  7. Programmable Aperture with MEMS Microshutter Arrays

    Science.gov (United States)

    Moseley, Samuel; Li, Mary; Kutyrev, Alexander; Kletetschka, Gunther; Fettig, Rainer

    2011-01-01

    A microshutter array (MSA) has been developed for use as an aperture array for multi-object selections in James Webb Space Telescope (JWST) technology. Light shields, molybdenum nitride (MoN) coating on shutters, and aluminum/aluminum oxide coatings on interior walls are put on each shutter for light leak prevention, and to enhance optical contrast. Individual shutters are patterned with a torsion flexure that permits shutters to open 90 deg. with a minimized mechanical stress concentration. The shutters are actuated magnetically, latched, and addressed electrostatically. Also, micromechanical features are tailored onto individual shutters to prevent stiction. An individual shutter consists of a torsion hinge, a shutter blade, a front electrode that is coated on the shutter blade, a backside electrode that is coated on the interior walls, and a magnetic cobalt-iron coating. The magnetic coating is patterned into stripes on microshutters so that shutters can respond to an external magnetic field for the magnetic actuation. A set of column electrodes is placed on top of shutters, and a set of row electrodes on sidewalls is underneath the shutters so that they can be electrostatically latched open. A linear permanent magnet is aligned with the shutter rows and is positioned above a flipped upside-down array, and sweeps across the array in a direction parallel to shutter columns. As the magnet sweeps across the array, sequential rows of shutters are rotated from their natural horizontal orientation to a vertical open position, where they approach vertical electrodes on the sidewalls. When the electrodes are biased with a sufficient electrostatic force to overcome the mechanical restoring force of torsion bars, shutters remain latched to vertical electrodes in their open state. When the bias is removed, or is insufficient, the shutters return to their horizontal, closed positions. To release a shutter, both the electrode on the shutter and the one on the back wall where

  8. Oil Slick Characterization Using Synthetic Aperture Radar

    Science.gov (United States)

    Jones, C. E.; Breivik, O.; Brekke, C.; Skrunes, S.; Holt, B.

    2015-12-01

    Oil spills are a hazard worldwide with potential of causing high impact disasters, and require an active oil spill response capability to protect personnel, the ecosystem, and the energy supply. As the amount of oil in traditionally accessible reserves decline, there will be increasing oil extraction from the Arctic and deep-water wells, both new sources with high risk and high cost for monitoring and response. Although radar has long been used for mapping the spatial extent of oil slicks, it is only since the Deepwater Horizon spill that synthetic aperture radar (SAR) has been shown capable of characterizing oil properties within a slick, and therefore useful for directing response to the recoverable thicker slicks or emulsions. Here we discuss a 2015 Norwegian oil-on-water spill experiment in which emulsions of known quantity and water-to-oil ratio along with a look-alike slick of plant oil were released in the North Sea and imaged with polarimetric SAR (PolSAR) by NASA's UAVSAR instrument for several hours following release. During the experiment, extensive in situ measurements were made from ship or aircraft with meteorological instruments, released drift buoys, and optical/IR imagers. The experiment was designed to provide validation data for development of a physical model relating polarization-dependent electromagnetic scattering to the dielectric properties of oil mixed with ocean water, which is the basis for oil characterization with SAR. Data were acquired with X-, C-, and L-band satellite-based SARs to enable multi-frequency comparison of characterization capabilities. In addition, the data are used to develop methods to differentiate mineral slicks from biogenic look-alikes, and to better understand slick weathering and dispersion. The results will provide a basis for modeling oil-in-ice spills, currently a high priority for nations involved in Arctic oil exploration. Here we discuss the Norwegian experiment, the validation data, and the results of

  9. Deployable Wide-Aperture Array Antennas

    Science.gov (United States)

    Fink, Patrick W.; Dobbins, Justin A.; Lin, Greg Y.; Chu, Andrew; Scully, Robert C.

    2005-01-01

    Inexpensive, lightweight array antennas on flexible substrates are under development to satisfy a need for large-aperture antennas that can be stored compactly during transport and deployed to full size in the field. Conceived for use aboard spacecraft, antennas of this type also have potential terrestrial uses . most likely, as means to extend the ranges of cellular telephones in rural settings. Several simple deployment mechanisms are envisioned. One example is shown in the figure, where the deployment mechanism, a springlike material contained in a sleeve around the perimeter of a flexible membrane, is based on a common automobile window shade. The array can be formed of antenna elements that are printed on small sections of semi-flexible laminates, or preferably, elements that are constructed of conducting fabric. Likewise, a distribution network connecting the elements can be created from conventional technologies such as lightweight, flexible coaxial cable and a surface mount power divider, or preferably, from elements formed from conductive fabrics. Conventional technologies may be stitched onto a supporting flexible membrane or contained within pockets that are stitched onto a flexible membrane. Components created from conductive fabrics may be attached by stitching conductive strips to a nonconductive membrane, embroidering conductive threads into a nonconductive membrane, or weaving predetermined patterns directly into the membrane. The deployable antenna may comprise multiple types of antenna elements. For example, thin profile antenna elements above a ground plane, both attached to the supporting flexible membrane, can be used to create a unidirectional boresight radiation pattern. Or, antenna elements without a ground plane, such as bow-tie dipoles, can be attached to the membrane to create a bidirectional array such as that shown in the figure. For either type of antenna element, the dual configuration, i.e., elements formed of slots in a conductive

  10. Wind energy applications of synthetic aperture radar

    Energy Technology Data Exchange (ETDEWEB)

    Bruun Christiansen, M.

    2006-11-15

    Synthetic aperture radars (SAR), mounted on satellites or aircraft, have proven useful for ocean wind mapping. Wind speeds at the height 10 m may be retrieved from measurements of radar backscatter using empirical model functions. The resulting wind fields are valuable in offshore wind energy planning as a supplement to on site measurements, which are costly and sparse, and model wind fields, which are not fully validated. Two applications of SAR measurements in offshore wind energy planning are addressed here: the study of wind farm wake effects and the potential of using SAR winds in offshore wind resource assessment. Firstly, wind wakes behind two large offshore wind farms in Denmark Horns Rev and Nysted are identified. A region of reduced wind speed is found downstream of both wind farms from the SAR wind fields. The wake extent and magnitude depends on the wind speed, the atmospheric stability, and the fraction of turbines operating. Wind farm wake effects are detected up to 20 km downwind of the last turbine. This distance is longer than predicted by state-of-the art wake models. Wake losses are typically 10-20% near the wind farms. Secondly, the potential of using SAR wind maps in offshore wind resource assessment is investigated. The resource assessment is made through Weibull fitting to frequency observations of wind speed and requires at least 100 satellite observations per year for a given site of interest. Predictions of the energy density are very sensitive to the wind speed and the highest possible accuracy on SAR wind retrievals is therefore sought. A 1.1 m s{sup -1} deviation on the mean wind speed is found through comparison with mast measurements at Horns Rev. The accuracy on mean wind speeds and energy densities found from satellite measurements varies with different empirical model functions. Additional uncertainties are introduced by the infrequent satellite sampling at fixed times of the day. The accuracy on satellite based wind resource

  11. Cavity-excited Huygens' metasurface antennas for near-unity aperture illumination efficiency from arbitrarily large apertures.

    Science.gov (United States)

    Epstein, Ariel; Wong, Joseph P S; Eleftheriades, George V

    2016-01-21

    One of the long-standing problems in antenna engineering is the realization of highly directive beams using low-profile devices. In this paper, we provide a solution to this problem by means of Huygens' metasurfaces (HMSs), based on the equivalence principle. This principle states that a given excitation can be transformed to a desirable aperture field by inducing suitable electric and (equivalent) magnetic surface currents. Building on this concept, we propose and demonstrate cavity-excited HMS antennas, where the single-source-fed cavity is designed to optimize aperture illumination, while the HMS facilitates the current distribution that ensures phase purity of aperture fields. The HMS breaks the coupling between the excitation and radiation spectra typical to standard partially reflecting surfaces, allowing tailoring of the aperture properties to produce a desirable radiation pattern, without incurring edge-taper losses. The proposed low-profile design yields near-unity aperture illumination efficiencies from arbitrarily large apertures, offering new capabilities for microwave, terahertz and optical radiators.

  12. Cavity-excited Huygens' metasurface antennas for near-unity aperture illumination efficiency from arbitrarily large apertures

    Science.gov (United States)

    Epstein, Ariel; Wong, Joseph P. S.; Eleftheriades, George V.

    2016-01-01

    One of the long-standing problems in antenna engineering is the realization of highly directive beams using low-profile devices. In this paper, we provide a solution to this problem by means of Huygens' metasurfaces (HMSs), based on the equivalence principle. This principle states that a given excitation can be transformed to a desirable aperture field by inducing suitable electric and (equivalent) magnetic surface currents. Building on this concept, we propose and demonstrate cavity-excited HMS antennas, where the single-source-fed cavity is designed to optimize aperture illumination, while the HMS facilitates the current distribution that ensures phase purity of aperture fields. The HMS breaks the coupling between the excitation and radiation spectra typical to standard partially reflecting surfaces, allowing tailoring of the aperture properties to produce a desirable radiation pattern, without incurring edge-taper losses. The proposed low-profile design yields near-unity aperture illumination efficiencies from arbitrarily large apertures, offering new capabilities for microwave, terahertz and optical radiators.

  13. Cavity-excited Huygens' metasurface antennas for near-unity aperture illumination efficiency from arbitrarily large apertures.

    Science.gov (United States)

    Epstein, Ariel; Wong, Joseph P S; Eleftheriades, George V

    2016-01-01

    One of the long-standing problems in antenna engineering is the realization of highly directive beams using low-profile devices. In this paper, we provide a solution to this problem by means of Huygens' metasurfaces (HMSs), based on the equivalence principle. This principle states that a given excitation can be transformed to a desirable aperture field by inducing suitable electric and (equivalent) magnetic surface currents. Building on this concept, we propose and demonstrate cavity-excited HMS antennas, where the single-source-fed cavity is designed to optimize aperture illumination, while the HMS facilitates the current distribution that ensures phase purity of aperture fields. The HMS breaks the coupling between the excitation and radiation spectra typical to standard partially reflecting surfaces, allowing tailoring of the aperture properties to produce a desirable radiation pattern, without incurring edge-taper losses. The proposed low-profile design yields near-unity aperture illumination efficiencies from arbitrarily large apertures, offering new capabilities for microwave, terahertz and optical radiators. PMID:26790605

  14. Experimental Investigation of an L-Shaped Very-Small-Aperture Laser

    Institute of Scientific and Technical Information of China (English)

    XU Ji-Ying; WANG Jia; GAI Hong-Feng; TIAN Qian; WANG Bo-Xiong; HAO Zhi-Biao; HAN Shuo

    2006-01-01

    @@ An L-shaped very-small-aperture laser (VSAL) with high power output and field enhancement effect is fabricated and characterized. As a comparison, a conventional rectangular VSAL and a double-aperture VSAL containing one L-aperture and one rectangular aperture are also fabricated and measured.

  15. Common mathematical framework for real and synthetic aperture by interferometry radiometers

    OpenAIRE

    Bosch Lluís, Xavier; Ramos Pérez, Isaac; Camps Carmona, Adriano José; Rodríguez Álvarez, Nereida; Valencia Domènech, Enric; Hyuk, Park

    2014-01-01

    This work focuses on the relationship between real and synthetic aperture radiometers giving a general and common mathematical framework for both of them. It will be demonstrated that a real aperture radiometer array can be understood as a synthetic aperture one, with a high level of redundancy. Therefore, all the recent results from synthetic aperture radiometry can be translated to real aperture radiometer arrays. This fact can be used to create beamforming arrays in a ...

  16. Numerical Simulation of Transient Gauss pulse Coupling through Small Apertures

    Directory of Open Access Journals (Sweden)

    Jinshi Xiao

    2011-08-01

    Full Text Available Transient electromagnetic pulse (EMP can easily couple into equipments through small apertures in its shells. To study the coupling effects of transient Gauss pulse to a cubic cavity with openings, coupling course is simulated using sub-gridding finite difference in time domain (FDTD algorithm in this paper. A new grid partition approach is provided to simulate each kind of apertures with complex shapes. With this approach, the whole calculation space is modeled, and six kinds of aperture with different shapes are simulated. Coupling course is simulate in the whole time domain using sub-gridding FDTD approach. Selecting apertures with dimension of several millimeters to research, coupled electric field waveform, power density and coupling coefficient are calculated. The affect on coupling effects by varied incident angle and varied pulse width are also analyzed. The main conclusion includes interior resonance phenomenon, increase effect around rectangle aperture and several distributing rules of coupled electric field in the cavity. The correctness of these results is validated by comparing with other scholars’ results. These numerical results can help us to understand coupling mechanism of the transient Gauss pulse.

  17. Aperture referral in dioptric systems with stigmatic elements

    Directory of Open Access Journals (Sweden)

    W. F. Harris

    2012-12-01

    Full Text Available A previous paper develops the general theory of aperture referral in linear optics and shows how several ostensibly distinct concepts, including the blur patch on the retina, the effective cornealpatch, the projective field and the field of view, are now unified as particular applications of the general theory.  The theory allows for astigmatism and heterocentricity.  Symplecticity and the generality of the approach, however, make it difficult to gain insight and mean that the material is not accessible to readers unfamiliar with matrices and linear algebra. The purpose of this paper is to examine whatis, perhaps, the most important special case, that in which astigmatism is ignored.  Symplecticity and, hence, the mathematics become greatly simplified. The mathematics reduces largely to elementary vector algebra and, in some places, simple scalar algebra and yet retains the mathematical form of the general approach.  As a result the paper allows insight into and provides a stepping stone to the general theory.  Under referral an aperture under-goes simple scalar magnification and transverse translation.  The paper pays particular attention to referral to transverse planes in the neighbourhood of a focal point where the magnification may be positive, zero or negative.  Circular apertures are treated as special cases of elliptical apertures and the meaning of referred apertures of negative radius is explained briefly. (S Afr Optom 2012 71(1 3-11

  18. Apodized Pupil Lyot Coronagraphs for Arbitrary Telescope Apertures

    CERN Document Server

    Soummer, R

    2004-01-01

    In the context of high dynamic range imaging, this study presents a breakthrough for the understanding of Apodized Pupil Lyot Coronagraphs, making them available for arbitrary aperture shapes. These new solutions find immediate application in current, ground-based coronagraphic studies (Gemini, VLT) and in existing instruments (AEOS Lyot Project). They also offer the possiblity of a search for an on-axis design for TPF. The unobstructed aperture case has already been solved by Aime et al. (2002) and Soummer et al. (2003). Analytical solutions with identical properties exist in the general case and, in particular, for centrally obscured apertures. Chromatic effects can be mitigated with a numerical optimization. The combination of analytical and numerical solutions enables the study of the complete parameter space (central obstruction, apodization throughput, mask size, bandwidth, and Lyot stop size).

  19. Synthetic aperture integration (SAI) algorithm for SAR imaging

    Science.gov (United States)

    Chambers, David H; Mast, Jeffrey E; Paglieroni, David W; Beer, N. Reginald

    2013-07-09

    A method and system for detecting the presence of subsurface objects within a medium is provided. In some embodiments, the imaging and detection system operates in a multistatic mode to collect radar return signals generated by an array of transceiver antenna pairs that is positioned across the surface and that travels down the surface. The imaging and detection system pre-processes the return signal to suppress certain undesirable effects. The imaging and detection system then generates synthetic aperture radar images from real aperture radar images generated from the pre-processed return signal. The imaging and detection system then post-processes the synthetic aperture radar images to improve detection of subsurface objects. The imaging and detection system identifies peaks in the energy levels of the post-processed image frame, which indicates the presence of a subsurface object.

  20. Field of view for near-field aperture synthesis imaging

    CERN Document Server

    Buscher, David F

    2015-01-01

    Aperture synthesis techniques are increasingly being employed to provide high angular resolution images in situations where the object of interest is in the near field of the interferometric array. Previous work has showed that an aperture synthesis array can be refocused on an object in the near field of an array, provided that the object is smaller than the effective Fresnel zone size corresponding to the array-object range. We show here that, under paraxial conditions, standard interferometric techniques can be used to image objects which are substantially larger than this limit. We also note that interferometric self-calibration and phase-closure image reconstruction techniques can be used to achieve near-field refocussing without requiring accurate object range information. We use our results to show that the field of view for high-resolution aperture synthesis imaging of geosynchronous satellites from the ground can be considerably larger than the largest satellites in Earth orbit.

  1. Experimental investigation of synthetic aperture flow angle estimation

    DEFF Research Database (Denmark)

    Oddershede, Niels; Jensen, Jørgen Arendt

    2005-01-01

    Currently synthetic aperture flow methods can find the correct velocity magnitude, when the flow direction is known. To make a fully automatic system, the direction should also be estimated. Such an approach has been suggested by Jensen (2004) based on a search of the highest cross-correlation as......Currently synthetic aperture flow methods can find the correct velocity magnitude, when the flow direction is known. To make a fully automatic system, the direction should also be estimated. Such an approach has been suggested by Jensen (2004) based on a search of the highest cross......-correlation as a function of velocity and angle. This paper presents an experimental investigation of this velocity angle estimation method based on a set of synthetic aperture flow data measured using our RASMUS experimental ultrasound system. The measurements are performed for flow angles of 60, 75, and 90 deg...

  2. Smart antennas for space-borne synthetic aperture radars

    Science.gov (United States)

    Qin, F.; Gao, S.; Mao, C.; Wang, Z.; Patyuchenko, A.; Younis, M.; Krieger, G.

    2015-11-01

    This paper discusses smart antennas for space-borne synthetic aperture radar (SAR). First, some recent development in smart antennas for space-borne SAR is reviewed. Then, the paper presents a low-cost space-borne SAR system using digital beam forming on receive. The smart antenna system is also discussed, and some results are shown. The antenna system, consisting of a parabolic reflector and multi-feed array, is designed and optimized for dual-band dual-polarized digital beam-forming performance. The operating frequencies are at X and Ka bands with the center frequency of 9.6 and 35.75 GHz, respectively. The stacked dipoles and square patches with parasitic elements are employed as the feed elements at X and Ka bands. Dual-band antenna arrays are combined in the same aperture, which not only reduce the aperture of the feed array, but also coincide the center of dual-band feed arrays.

  3. An Aperture Photometry Pipeline for K2 Data

    Science.gov (United States)

    Buzasi, Derek L.; Carboneau, Lindsey; Lezcano, Andy; Vydra, Ekaterina

    2016-01-01

    As part of an ongoing research program with undergraduate students at Florida Gulf Coast University, we have constructed an aperture photometry pipeline for K2 data. The pipeline performs dynamic automated aperture mask definition for all targets in the K2 fields, followed by aperture photometry and detrending. Our pipeline is currently used to support a number of projects, including studies of stellar rotation and activity, red giant asteroseismology, gyrochronology, and exoplanet searches. In addition, output is used to support an undergraduate class on exoplanets aimed at a student audience of both majors and non-majors. The pipeline is designed for both batch and single-target use, and is easily extensible to data from other missions, and pipeline output is available to the community. This paper will describe our pipeline and its capabilities and illustrate the quality of the results, drawing on all of the applications for which it is currently used.

  4. Coronagraph-Integrated Wavefront Sensing with a Sparse Aperture Mask

    CERN Document Server

    Subedi, Hari; Kasdin, N Jeremy; Cavanagh, Kathleen; Riggs, A J Eldorado

    2015-01-01

    Stellar coronagraph performance is highly sensitive to optical aberrations. In order to effectively suppress starlight for exoplanet imaging applications, low-order wavefront aberrations entering a coronagraph such as tip-tilt, defocus and coma must be determined and compensated. Previous authors have established the utility of pupil-plane masks (both non-redundant/sparse-aperture and generally asymmetric aperture masks) for wavefront sensing. Here we show how a sparse aperture mask (SAM) can be integrated with a coronagraph to measure low-order, differential phase aberrations. Starlight rejected by the coronagraph's focal plane stop is collimated to a relay pupil, where the mask forms an interference fringe pattern on a subsequent detector. Our numerical Fourier propagation models show that the information encoded in the fringe intensity distortions is sufficient to accurately discriminate and estimate Zernike phase modes extending from tip-tilt up to radial degree $n=5$, with amplitude up to $\\lambda/20$ RM...

  5. A twin aperture resistive quadrupole for the LHC

    CERN Document Server

    Clark, G S; de Rijk, G; Racine, M

    2000-01-01

    The European Organization for Nuclear Research (CERN) is constructing the Large Hadron Collider (LHC). The LHC's cleaning insertions require 48 twin aperture resistive quadrupoles. These 3.1 m long magnets have a gradient of 35 T/m for an inscribed circle of 46 mm diameter and an aperture separation distance of 224 mm. This magnet project is part of the Canadian contribution to the LHC. A prototype magnet was delivered in May 1998 and measured at CERN. Design changes were made based on the results. Due to the small apertures and the complicated geometry, the mechanical precision of the laminations and stacks is the main issue in the production of these quadrupoles. Series production will start in October 1999. The design and the measurement results are described in this paper. (1 refs).

  6. Motion compensated beamforming in synthetic aperture vector flow imaging

    DEFF Research Database (Denmark)

    Oddershede, Niels; Jensen, Jørgen Arendt

    2006-01-01

    . Here the SNR is -10 dB compared to the stationary scatterer. A 2D motion compensation method for synthetic aperture vector flow imaging is proposed, where the former vector velocity estimate is used for compensating the beamforming of new data. This method is tested on data from an experimental flow......In synthetic aperture imaging the beamformed data from a number of emissions are summed to create dynamic focusing in transmit. This makes the method susceptible to motion, which is especially the case for the synthetic aperture flow estimation method, where large movements are expected......) of the beamformed response from the scatterer at all velocities is compared to that of a stationary scatterer. For lateral movement, the SNR drops almost linearly with velocity to -4 dB at I m/s, while for axial movement the SNR drop is largest, when the scatterer moves a quarter of a wavelength between emissions...

  7. A new method of aperture synthetizing in digital holography

    Institute of Scientific and Technical Information of China (English)

    Zhang Qing-Sheng; Lü Xiao-Xu; Yu Qing-Ting; Liu Gan-Yong

    2009-01-01

    This paper proposes a new method of aperture synthetizing in digital holography based on the principle of holography. In the new method aperture synthetizing is achieved by reconstructing each sub-hologram respectively, firstly,moving each reconstructed wave field referred to the benchmark reconstructed wave field according to the relationship between spacial motion and frequency shift, and finally splicing them by using superposition. Two different recording ways, using plane wave to record and using spherical wave to record, are analyzed, and their moving formula is deduced,too. Simulation and experiment are done. The results show that in comparison with the traditional method of aperture synthetizing in digital holography, the new method can decrease calculation and save reconstructed time obviously which has better applicability.

  8. X-ray lenses with large aperture; Roentgenlinsen mit grosser Apertur

    Energy Technology Data Exchange (ETDEWEB)

    Simon, Markus

    2010-07-01

    Up to now, most X-ray imaging setups are based on absorption contrast imaging. There is a demand for focused X-rays in many X-ray analysis applications, either to increase the resolution of an imaging system, or, to reduce the time effort of an experiment through higher photon flux. For photon energies higher than 15 keV refractive X-ray optics are more efficient in comparison to non-refractive X-ray optics. The aim of this work was to develop X-ray lenses with large apertures and high transparency. By increasing the number of refracting surfaces while removing unnecessary lens material such lenses have been developed. Utilizing this approach the overall beam deflection angle is large with respect to the lens material it propagates through and so the transparency of the lens is increased. Within this work, X-ray lenses consisting of several thousands of prisms with an edge length in the range of micrometers have been developed and fabricated by deep X-ray lithography. Deep X-ray lithography enables high precision microstrucures with smooth sidewalls and large aspect ratios. The aperture of high-transparency X-ray lenses made this way is greater than 1 mm. They are suitable for photon energies in the range of 8 keV to 24 keV and offer a focal width of smaller than 10 {mu}m at a transparency of around 40%. Furthermore, rolled X-ray lenses have been developed, that are made out of a microstructured polyimide film, which is cut according to the requirements regarding focal length and photon energy. The microstructured film is fabricated by molding, using an anisotropically etched silicon wafer as molding tool. Its mean roughness is in the range of nanometers. The film features prismatic structures, its surface topology is similar to an asparagus field. The measured diameter of the point focus was 18 {mu}m to 31 {mu}m, the calculated opticla efficiency was 37%. Future work will concentrate on increasing the aspect ratio of Prism Lenses and on increasing the rolling

  9. In-vivo evaluation of convex array synthetic aperture imaging

    DEFF Research Database (Denmark)

    Pedersen, Morten Høgholm; Gammelmark, Kim Løkke; Jensen, Jørgen Arendt

    2007-01-01

    This paper presents an in-vivo study of synthetic transmit aperture (STA) imaging in comparison to conventional imaging, evaluating whether STA imaging is feasible in-vivo, and whether the image quality obtained is comparable to traditional scanned imaging in terms of penetration depth, spatial...... element aperture was used in transmit and receive with a 1.5 cycle sinusoid excitation pulse. Conventional and STA images were acquired interleaved ensuring that the exact same anatomical location was scanned. Image sequences were recorded in real-time and processed off-line. Seven male volunteers were...

  10. Performance of Synthetic Aperture Compounding for in-vivo imaging

    DEFF Research Database (Denmark)

    Hansen, Jens Munk; Jensen, Jørgen Arendt

    2011-01-01

    A method for synthetic aperture compounding (SAC) is applied to data from water tank measurements, data from a tissue-mimicking phantom, and clinical data from the abdomen of a healthy 27 year old male. Further, using this method compounding can be obtained without any loss in temporal resolution....... The water tank measurements reveal an improved detail resolution of 45% when comparing SAC to conventional compounding and an improvement of 22%, when comparing to synthetic aperture (SA) imaging. The cystic resolution at 12 dB is improved by 50% and 12% when comparing SAC to conventional compounding...

  11. Synthetic Aperture Sequential Beamformation applied to medical imaging.

    OpenAIRE

    Hemmsen, Martin Christian; Hansen, Jens Munk; Jensen, Jørgen Arendt

    2012-01-01

    Synthetic Aperture Sequential Beamforming (SASB) is applied to medical ultrasound imaging using a multi element convex array transducer. The main motivation for SASB is to apply synthetic aperture techniques without the need for storing RF-data for a number of elements and hereby devise a system with a reduced system complexity. Using a 192 element, 3.5 MHz, λ-pitch transducer, it is demonstrated using tissue-phantom and wire-phantom measurements, how the speckle size and the detail resolutio...

  12. Radio Astronomy Transformed: Aperture Arrays - Past, Present & Future

    OpenAIRE

    Garrett, Michael A.

    2012-01-01

    I review the early development of Aperture Arrays and their role in radio astronomy. The demise of this technology at the end of the 1960's, and the reasons for the rise of parabolic dishes is also considered. The parallels with the Antikythera mechanism (see these proceedings) as a lost technology are briefly presented. Aperture Arrays re-entered the world of radio astronomy as the idea to build a huge radio telescope with a collecting area of one square kilometre (the Square Kilometre Array...

  13. Synthetic aperture radar system design for random field classification

    Science.gov (United States)

    Harger, R. O.

    1973-01-01

    An optimum design study is carried out for synthetic aperture radar systems intended for classifying randomly reflecting areas (such as agricultural fields) characterized by a reflectivity density spectral density. The problem solution is obtained, neglecting interfield interference and assuming areas of known configuration and location, as well as a certain Gaussian signal field property. The optimum processor is nonlinear, but includes conventional matched filter processing. A set of summary design curves is plotted, and is applied to the design of a satellite synthetic aperture radar system.

  14. The baffle aperture region of an ion thruster

    International Nuclear Information System (INIS)

    During the period of this research project, electron bombardment ion thrusters have passed from an advanced state of development to highly successful flight demonstrations (e.g. Deep Space 1). Such advances made by NASA have been quickly followed in the commercial sector (e.g. NSSK of communications satellites). In the next few years, these early successes will be followed by many new electric propulsion missions, planned by the world's space agencies and commercial space organisations. These early successes will spawn more ambitious and demanding missions, necessitating thrusters of different power demands, thrusts and sizes. Scaling of the UK series of electron bombardment ion thrusters has previously been carried out by semi- empirical scaling laws. These scaling laws have worked well within a certain range of thruster sizes with some iterative redesign necessary to produce acceptable efficiencies. However, when scaling beyond the ranges of the T5, T6 and UK25, the current scaling laws cannot be used due to the conflicting requirements of magnetic field strength in the discharge chamber and baffle aperture region. The baffle aperture region contains a plasma double layer that accelerates primary electrons into the discharge chamber and thus controls ionisation in the ion thruster. Previously, the baffle aperture region was poorly understood. An extensive and unique experimental investigation of the plasma properties around this critical baffle aperture region has been carried out using Langmuir probes. The externally applied magnetic field has been mapped and the Langmuir probe results have been validated using emissive probes. Results are presented on both argon and xenon propellant and high- resolution maps of an extensive range of plasma properties are plotted over a continuous area from the coupling plasma, through the baffle aperture and into the discharge plasma. Maps were taken over a unique and wide range of thruster operating conditions in which all

  15. Polarimetric synthetic aperture radar data and the complex Wishart distribution

    DEFF Research Database (Denmark)

    Nielsen, Allan Aasbjerg; Conradsen, Knut; Skriver, Henning

    2003-01-01

    When working with multi-look fully polarimetric synthetic aperture radar (SAR) data an appropriate way of representing the backscattered signal consists of the so-called covariance matrix. For each pixel this is a 3 by 3 Hermitian, positive definite matrix which follows a complex Wishart distribu......When working with multi-look fully polarimetric synthetic aperture radar (SAR) data an appropriate way of representing the backscattered signal consists of the so-called covariance matrix. For each pixel this is a 3 by 3 Hermitian, positive definite matrix which follows a complex Wishart...

  16. A fast autofocus algorithm for synthetic aperture radar processing

    DEFF Research Database (Denmark)

    Dall, Jørgen

    1992-01-01

    High-resolution synthetic aperture radar (SAR) imaging requires the motion of the radar platform to be known very accurately. Otherwise, phase errors are induced in the processing of the raw SAR data, and bad focusing results. In particular, a constant error in the measured along-track velocity...... or the cross-track acceleration leads to a phase error that varies quadratically over the synthetic aperture. The process of estimating this quadratic phase error directly from the radar data is termed autofocus. A novel autofocus algorithm with a computational complexity which is at least an order...

  17. Bistatic Synthetic Aperture Radar Point Spread Function Characteristic Analysis

    Institute of Scientific and Technical Information of China (English)

    HU Cheng; ZENG Tao; ZENG Hai-bin

    2007-01-01

    Based on the point spread function (PSF) theory, the side-lobe extension direction of the impulse response in bistatic synthetic aperture radar (BSAR) is analyzed in detail;in addition, the corresponding auto-focus in BSAR should be considered along iso-range direction, not the traditional azimuth resolution (AR) direction.The conclusion is verified by the computer simulation.

  18. Linear synthetic aperture focusing using ultrasonic contact transducers

    International Nuclear Information System (INIS)

    Synthetic aperture processing performed on linear scans with contact ultrasonic transducers can yield useful improvements in lateral resolution of deeply buried defects. Degradation in resolution caused by adverse surface conditions can be minimised by a simple pre-processing normalisation technique. (author)

  19. Synthetic Aperture Flow Imaging Using a Dual Stage Beamformer Approach

    DEFF Research Database (Denmark)

    Li, Ye; Jensen, Jørgen Arendt

    2010-01-01

    Synthetic aperture flow estimation has several advantages compared to the conventional flow estimation however this requires a high number of calculations. A dual beamformer approach is proposed to lower the number of calculations and maintain a beamforming quality sufficient for flow estimation...

  20. Synthetic tracked aperture ultrasound imaging: design, simulation, and experimental evaluation.

    Science.gov (United States)

    Zhang, Haichong K; Cheng, Alexis; Bottenus, Nick; Guo, Xiaoyu; Trahey, Gregg E; Boctor, Emad M

    2016-04-01

    Ultrasonography is a widely used imaging modality to visualize anatomical structures due to its low cost and ease of use; however, it is challenging to acquire acceptable image quality in deep tissue. Synthetic aperture (SA) is a technique used to increase image resolution by synthesizing information from multiple subapertures, but the resolution improvement is limited by the physical size of the array transducer. With a large F-number, it is difficult to achieve high resolution in deep regions without extending the effective aperture size. We propose a method to extend the available aperture size for SA-called synthetic tracked aperture ultrasound (STRATUS) imaging-by sweeping an ultrasound transducer while tracking its orientation and location. Tracking information of the ultrasound probe is used to synthesize the signals received at different positions. Considering the practical implementation, we estimated the effect of tracking and ultrasound calibration error to the quality of the final beamformed image through simulation. In addition, to experimentally validate this approach, a 6 degree-of-freedom robot arm was used as a mechanical tracker to hold an ultrasound transducer and to apply in-plane lateral translational motion. Results indicate that STRATUS imaging with robotic tracking has the potential to improve ultrasound image quality. PMID:27088108

  1. In Vivo Evaluation of Synthetic Aperture Sequential Beamforming

    DEFF Research Database (Denmark)

    Hemmsen, Martin Christian; Hansen, Peter Møller; Lange, Theis;

    2012-01-01

    Ultrasound in vivo imaging using synthetic aperture sequential beamformation (SASB) is compared with conventional imaging in a double blinded study using side-by-side comparisons. The objective is to evaluate if the image quality in terms of penetration depth, spatial resolution, contrast and...

  2. Implementation of Synthetic Aperture Imaging in Medical Ultrasound

    DEFF Research Database (Denmark)

    Jensen, Jørgen Arendt; Kortbek, Jacob; Nikolov, Svetoslav;

    2010-01-01

    The main advantage of medical ultrasound imaging is its real time capability, which makes it possible to visualize dynamic structures in the human body. Real time synthetic aperture imaging puts very high demands on the hardware, which currently cannot be met. A method for reducing the number of...

  3. Characterization of a dense aperture array for radio astronomy

    Science.gov (United States)

    Torchinsky, S. A.; Olofsson, A. O. H.; Censier, B.; Karastergiou, A.; Serylak, M.; Picard, P.; Renaud, P.; Taffoureau, C.

    2016-05-01

    EMBRACE@Nançay is a prototype instrument consisting of an array of 4608 densely packed antenna elements creating a fully sampled, unblocked aperture. This technology is proposed for the Square Kilometre Array and has the potential of providing an extremely large field of view making it the ideal survey instrument. We describe the system, calibration procedures, and results from the prototype.

  4. Characterization of a dense aperture array for radio astronomy

    CERN Document Server

    Torchinsky, S A; Censier, B; Karastergiou, A; Serylak, M; Picard, P; Renaud, P; Taffoureau, C

    2016-01-01

    EMBRACE@Nancay is a prototype instrument consisting of an array of 4608 densely packed antenna elements creating a fully sampled, unblocked aperture. This technology is proposed for the Square Kilometre Array and has the potential of providing an extremely large field of view making it the ideal survey instrument. We describe the system,calibration procedures, and results from the prototype.

  5. Data Collection via Synthetic Aperture Radiometry towards Global System

    Directory of Open Access Journals (Sweden)

    Ali. A. J.Al-Sabbagh

    2015-10-01

    Full Text Available Nowadays it is widely accepted that remote sensing is an efficient way of large data management philosophy. In this paper, we present a future view of the big data collection by synthetic aperture radiometry as a passive microwave remote sensing towards building a global monitoring system. Since the collected data may not have any value, it is mandatory to analyses these data in order to get valuable and beneficial information with respect to their base data. The collected data by synthetic aperture radiometry is one of the high resolution earth observation, these data will be an intensive problems, Meanwhile, Synthetic Aperture Radar able to work in several bands, X, C, S, L and P-band. The important role of synthetic aperture radiometry is how to collect data from areas with inadequate network infrastructures where the ground network facilities were destroyed. The future concern is to establish a new global data management system, which is supported by the groups of international teams working to develop technology based on international regulations. There is no doubt that the existing techniques are so limited to solve big data problems totally. There is a lot of work towards improving 2- D and 3-D SAR to get better resolution.

  6. Radio Astronomy Transformed: Aperture Arrays - Past, Present & Future

    CERN Document Server

    Garrett, Michael A

    2012-01-01

    I review the early development of Aperture Arrays and their role in radio astronomy. The demise of this technology at the end of the 1960's, and the reasons for the rise of parabolic dishes is also considered. The parallels with the Antikythera mechanism (see these proceedings) as a lost technology are briefly presented. Aperture Arrays re-entered the world of radio astronomy as the idea to build a huge radio telescope with a collecting area of one square kilometre (the Square Kilometre Array, SKA) arose. Huge ICT technology advances had transformed Aperture Arrays in terms of their capability, flexibility and reliability. In the mid-1990s, ASTRON started to develop and experiment with the first high frequency aperture array tiles for radio astronomy - AAD, OSMA, THEA & EMBRACE. In the slipstream of these efforts, Phased Array Feeds (PAFs) for radio astronomy were invented and LOFAR itself emerged as a next generation telescope and a major pathfinder for the SKA. Meanwhile, the same advantages that apertu...

  7. Multi element synthetic aperture transmission using a frequency division approach

    DEFF Research Database (Denmark)

    Gran, Fredrik; Jensen, Jørgen Arendt

    2003-01-01

    can therefore be used for flow imaging, unlike with Hadamard and Golay coding. The frequency division approach increases the SNR by a factor of N2 compared to conventional pulsed synthetic aperture imaging, provided that N transmission centers are used. Simulations and phantom measurements...

  8. [Enlargement of the buccal aperture via. Technical consideration (author's transl)].

    Science.gov (United States)

    Pons, J; Pasturel, A; Pochan, Y; Barbier, M

    1979-01-01

    For a long time we know that it is possible to take out from the mouth a part or all the mandibule which presents a local malignant tumour. When the tumour is too extensed, the buccal aperture can be enlarged. The authors describe a new surgical technique which resolves this problem with notable and faithful advantages.

  9. Wind retrieval from synthetic aperture radar - an overview

    DEFF Research Database (Denmark)

    Dagestad, Knut-Frode; Horstmann, Jochen; Mouche, Alexis;

    2013-01-01

    This paper represents a consensus on the state-of-the-art in wind retrieval using synthetic aperture radar (SAR), after the SEASAR 2012 workshop “Advances in SAR Oceanography” hosted by the European Space Agency (ESA) and the Norwegian Space Centre in Tromsø, Norway 18–22 June 2012. We document t...

  10. Aperture alignment in autocollimator-based deflectometric profilometers.

    Science.gov (United States)

    Geckeler, R D; Artemiev, N A; Barber, S K; Just, A; Lacey, I; Kranz, O; Smith, B V; Yashchuk, V V

    2016-05-01

    During the last ten years, deflectometric profilometers have become indispensable tools for the precision form measurement of optical surfaces. They have proven to be especially suitable for characterizing beam-shaping optical surfaces for x-ray beamline applications at synchrotrons and free electron lasers. Deflectometric profilometers use surface slope (angle) to assess topography and utilize commercial autocollimators for the contactless slope measurement. To this purpose, the autocollimator beam is deflected by a movable optical square (or pentaprism) towards the surface where a co-moving aperture limits and defines the beam footprint. In this paper, we focus on the precise and reproducible alignment of the aperture relative to the autocollimator's optical axis. Its alignment needs to be maintained while it is scanned across the surface under test. The reproducibility of the autocollimator's measuring conditions during calibration and during its use in the profilometer is of crucial importance to providing precise and traceable angle metrology. In the first part of the paper, we present the aperture alignment procedure developed at the Advanced Light Source, Lawrence Berkeley National Laboratory, USA, for the use of their deflectometric profilometers. In the second part, we investigate the topic further by providing extensive ray tracing simulations and calibrations of a commercial autocollimator performed at the Physikalisch-Technische Bundesanstalt, Germany, for evaluating the effects of the positioning of the aperture on the autocollimator's angle response. The investigations which we performed are crucial for reaching fundamental metrological limits in deflectometric profilometry. PMID:27250378

  11. Synthetic aperture ultrasound Fourier beamformation using virtual sources

    DEFF Research Database (Denmark)

    Moghimirad, Elahe; Villagómez Hoyos, Carlos Armando; Mahloojifar, Ali;

    2016-01-01

    An efficient Fourier beamformation algorithm is presented for multistatic synthetic aperture ultrasound imaging using virtual sources (FBV). The concept is based on the frequency domain wavenumber algorithm from radar and sonar and is extended to a multi-element transmit/receive configuration using...

  12. Fourier beamformation of multistatic synthetic aperture ultrasound imaging

    DEFF Research Database (Denmark)

    Moghimirad, Elahe; Villagómez Hoyos, Carlos Armando; Mahloojifar, Ali;

    2015-01-01

    A new Fourier beamformation (FB) algorithm is presented for multistatic synthetic aperture ultrasound imaging. It can reduce the number of computations by a factor of 20 compared to conventional Delay-and-Sum (DAS) beamformers. The concept is based on the wavenumber algorithm from radar and sonar...

  13. High numerical aperture all-dielectric metasurface micro-lenses

    NARCIS (Netherlands)

    Silvestri, F.; Gerini, G.; Pisano, E.; Galdi, V.

    2015-01-01

    In this paper, the design principles and the sensitivity analysis needed for the realization of a high numerical aperture metasurface micro-lens are presented. The metasurface micro-lens is realized defining a surface with spatially-variant dielectric resonators embedded in a dielectric bulk. The de

  14. Offshore Wind Potential in South India from Synthetic Aperture Radar

    DEFF Research Database (Denmark)

    Hasager, Charlotte Bay; Bingöl, Ferhat; Badger, Merete;

    The offshore wind energy potential for pre-feasibility in South India in the area from 77° to 80° Eastern longitude and 7° to 10° Northern latitude is observed from a total of 164 ENVISAT Advanced Synthetic Aperture Radar (ASAR) satellite images during the years 2002 to 2011. All satellite scenes...

  15. Millimeter-wave Imaging Systems with Aperture Synthesis Techniques

    DEFF Research Database (Denmark)

    Löffler, Torsten; Krozer, Viktor; Zhurbenko, Vitaliy;

    2010-01-01

    The paper describes development of a millimetre-wave imaging system using multi-element aperture filling techniques [1]. Such imaging systems are increasingly demonstrated for security applications and in particular standoff imaging of persons and bonding flaw and defect detection [2]. The major ...

  16. Velocity estimation using synthetic aperture imaging [blood flow

    DEFF Research Database (Denmark)

    Nikolov, Svetoslav; Jensen, Jørgen Arendt

    2001-01-01

    Presented an approach for synthetic aperture blood flow ultrasound imaging. Estimates with a low bias and standard deviation can be obtained with as few as eight emissions. The performance of the new estimator is verified using both simulations and measurements. The results demonstrate that a fully...

  17. Imaging blood’s velocity using synthetic aperture ultrasound

    DEFF Research Database (Denmark)

    Jensen, Jørgen Arendt; Li, Ye

    2012-01-01

    The blood velocity vector can be estimated using synthetic aperture techniques in medical ultrasound by using short emission sequences. The whole image region is insonified and the flow can be tracked in all directions continuously. This is a major advantage compared to commercial systems, since...

  18. Preliminary comparison of 3D synthetic aperture imaging with Explososcan

    DEFF Research Database (Denmark)

    Rasmussen, Morten Fischer; Hansen, Jens Munk; Ferin, Guillaume;

    2012-01-01

    phased array with a pitch of 300 μm, made by Vermon. For both imaging techniques, 289 emissions are used to image a volume spanning 60 in both the azimuth and elevation direction and 150mm in depth. This results for both techniques in a frame rate of 18 Hz. The implemented synthetic aperture technique...

  19. Does the transition to chaos determine the dynamic aperture?

    International Nuclear Information System (INIS)

    We review the important notion of the dynamic aperture of a storage ring with emphasis on its relation to general ideas of dynamical instability, notably the transition to chaos. Practical approaches to the problem are compared. We suggest a somewhat novel quantitative guide to the old problem of choosing machine tunes based on a heuristic blend of KAM theory and resonance selection rules

  20. A circular aperture array for ultrasonic tomography and quantitative NDE

    Energy Technology Data Exchange (ETDEWEB)

    Nielsen, S.A.

    1998-08-01

    The main topics of this thesis are ultrasonic tomography and ultrasonic determination of elastic stiffness constants. Both issues are based on a synthetic array with transducer elements distributed uniformly along a circular aperture, i.e., a circular aperture array. The issues are treated both theoretically and experimentally by broadband pulse techniques. Ultrasonic tomography, UCT, from a circular aperture is a relatively new imaging technique in Non-destructive Evaluation (NDE) to acquire cross sectional images in bulk materials. A filtered back-projection algorithm is used to reconstruct images in four different experiments and results of attenuation, velocity and reflection tomograms in Plexiglas of AlSi-alloy cylinders are presented. Two kinds of ultrasonic tomography are introduced: bistatic and monostatic imaging. Both techniques are verified experimentally by Plexiglas cylinders. Different reconstruction artifacts are discussed and theoretical resolution constraints are discussed for various configurations of the circular aperture array. The monostatic technique is used in volumetric imaging. In the experimental verification artificial and real discontinuities in a cylindrical AlSi-alloy are compared with similar discontinuities in a Plexiglas specimen. Finally, some limitations to UCT are discussed. The circular aperture array is used to determine five independent elastic stiffness constants of a unidirectional glass/PET (Poly Ethylene Teraphtalate) laminate. Energy flux propagation and attenuation of ultrasonic waves are considered and velocity surfaces are calculated for different planes of interest. Relations between elastic stiffness constants and engineering constants (i.e., Young`s moduli, shear moduli and Poisson`s ratios) are discussed for an orthotropic composite. Six micromechanical theories are reviewed, and expressions predicting the elastic engineering constants are evaluated. The micromechanical predicted elastic stiffness constants for the

  1. A Ploidy-Sensitive Mechanism Regulates Aperture Formation on the Arabidopsis Pollen Surface and Guides Localization of the Aperture Factor INP1.

    Directory of Open Access Journals (Sweden)

    Sarah H Reeder

    2016-05-01

    Full Text Available Pollen presents a powerful model for studying mechanisms of precise formation and deposition of extracellular structures. Deposition of the pollen wall exine leads to the generation of species-specific patterns on pollen surface. In most species, exine does not develop uniformly across the pollen surface, resulting in the formation of apertures-openings in the exine that are species-specific in number, morphology and location. A long time ago, it was proposed that number and positions of apertures might be determined by the geometry of tetrads of microspores-the precursors of pollen grains arising via meiotic cytokinesis, and by the number of last-contact points between sister microspores. We have tested this model by characterizing Arabidopsis mutants with ectopic apertures and/or abnormal geometry of meiotic products. Here we demonstrate that contact points per se do not act as aperture number determinants and that a correct geometric conformation of a tetrad is neither necessary nor sufficient to generate a correct number of apertures. A mechanism sensitive to pollen ploidy, however, is very important for aperture number and positions and for guiding the aperture factor INP1 to future aperture sites. In the mutants with ectopic apertures, the number and positions of INP1 localization sites change depending on ploidy or ploidy-related cell size and not on INP1 levels, suggesting that sites for aperture formation are specified before INP1 is brought to them.

  2. A Ploidy-Sensitive Mechanism Regulates Aperture Formation on the Arabidopsis Pollen Surface and Guides Localization of the Aperture Factor INP1.

    Science.gov (United States)

    Reeder, Sarah H; Lee, Byung Ha; Fox, Ronald; Dobritsa, Anna A

    2016-05-01

    Pollen presents a powerful model for studying mechanisms of precise formation and deposition of extracellular structures. Deposition of the pollen wall exine leads to the generation of species-specific patterns on pollen surface. In most species, exine does not develop uniformly across the pollen surface, resulting in the formation of apertures-openings in the exine that are species-specific in number, morphology and location. A long time ago, it was proposed that number and positions of apertures might be determined by the geometry of tetrads of microspores-the precursors of pollen grains arising via meiotic cytokinesis, and by the number of last-contact points between sister microspores. We have tested this model by characterizing Arabidopsis mutants with ectopic apertures and/or abnormal geometry of meiotic products. Here we demonstrate that contact points per se do not act as aperture number determinants and that a correct geometric conformation of a tetrad is neither necessary nor sufficient to generate a correct number of apertures. A mechanism sensitive to pollen ploidy, however, is very important for aperture number and positions and for guiding the aperture factor INP1 to future aperture sites. In the mutants with ectopic apertures, the number and positions of INP1 localization sites change depending on ploidy or ploidy-related cell size and not on INP1 levels, suggesting that sites for aperture formation are specified before INP1 is brought to them. PMID:27177036

  3. Millimeter-wave aperture synthesis for remote sensing of the Earth

    OpenAIRE

    Harvey, Andrew R.; Greenaway, Alain H.; Camps Carmona, Adriano José; Bará Temes, Francisco Javier; Torres Torres, Francisco; Corbella Sanahuja, Ignasi; Martín Neira, Manuel

    1998-01-01

    Millimetre-wave radiometry of the earth's surface from Low Earth Orbit (LEO) with a resolution of a few km requires antenna apertures several metres across and sub-second scanning times. Fulfilling these requirements with a mechanically scanned real-aperture antenna presents formidable mechanical challenges. An attractive alternative described here is to use synthetic aperture techniques employing a sparse-array of antennas that trade the mechanical complexity of real-aperture imaging for the...

  4. Aperture Effects on the Oxygen Abundance Determinations from CALIFA Data

    Science.gov (United States)

    Iglesias-Páramo, J.; Vílchez, J. M.; Rosales-Ortega, F. F.; Sánchez, S. F.; Duarte Puertas, S.; Petropoulou, V.; Gil de Paz, A.; Galbany, L.; Mollá, M.; Catalán-Torrecilla, C.; Castillo Morales, A.; Mast, D.; Husemann, B.; García-Benito, R.; Mendoza, M. A.; Kehrig, C.; Pérez-Montero, E.; Papaderos, P.; Gomes, J. M.; Walcher, C. J.; González Delgado, R. M.; Marino, R. A.; López-Sánchez, Á. R.; Ziegler, B.; Flores, H.; Alves, J.

    2016-07-01

    This paper aims to provide aperture corrections for emission lines in a sample of spiral galaxies from the Calar Alto Legacy Integral Field Area Survey (CALIFA) database. In particular, we explore the behavior of the log([O iii] λ5007/Hβ)/([N ii] λ6583/Hα) (O3N2) and log[N ii] λ6583/Hα (N2) flux ratios since they are closely connected to different empirical calibrations of the oxygen abundances in star-forming galaxies. We compute the median growth curves of Hα, Hα/Hβ, O3N2, and N2 up to 2.5R 50 and 1.5 disk {R}{{eff}}. These distances cover most of the optical spatial extent of the CALIFA galaxies. The growth curves simulate the effect of observing galaxies through apertures of varying radii. We split these growth curves by morphological types and stellar masses to check if there is any dependence on these properties. The median growth curve of the Hα flux shows a monotonous increase with radius with no strong dependence on galaxy inclination, morphological type, and stellar mass. The median growth curve of the Hα/Hβ ratio monotonically decreases from the center toward larger radii, showing for small apertures a maximum value of ≈10% larger than the integrated one. It does not show any dependence on inclination, morphological type, and stellar mass. The median growth curve of N2 shows a similar behavior, decreasing from the center toward larger radii. No strong dependence is seen on the inclination, morphological type, and stellar mass. Finally, the median growth curve of O3N2 increases monotonically with radius, and it does not show dependence on the inclination. However, at small radii it shows systematically higher values for galaxies of earlier morphological types and for high stellar mass galaxies. Applying our aperture corrections to a sample of galaxies from the SDSS survey at 0.02 ≤ z ≤ 0.3 shows that the average difference between fiber-based and aperture-corrected oxygen abundances, for different galaxy stellar mass and redshift ranges

  5. Initial Images of the Synthetic Aperture Radiometer 2D-STAR

    Science.gov (United States)

    Initial results obtained using a new synthetic aperture radiometer, 2D-STAR, a dual polarized, L-band radiometer that employs aperture synthesis in two dimensions are presented and analyzed. This airborne instrument is the natural evolution of a previous design that employed employs aperture synthes...

  6. Enhanced transmission of transverse electric waves through periodic arrays of structured subwavelength apertures

    DEFF Research Database (Denmark)

    Xiao, Sanshui; Peng, Liang; Mortensen, Asger

    2010-01-01

    Transmission through sub-wavelength apertures in perfect metals is expected to be strongly suppressed. However, by structural engineering of the apertures, we numerically demonstrate that the transmission of transverse electric waves through periodic arrays of subwavelength apertures in a thin...

  7. Materials identification synthetic aperture radar: progress toward a realized capability

    International Nuclear Information System (INIS)

    Most non-metallic materials have frequency-dependent reflectivity functions, that is, they reflect electromagnetic energy in a manner that depends on frequency. Pulsed-chirped synthetic aperture radar and other multispectral radar systems do not generally take into account the frequency dependence of material reflections in forming scenes or making other inferences. In this report, we introduce a simple mathematical approach to using existing pulsed chirp synthetic aperture systems in a manner which results in a determination of a frequency-dependent reflectivity function for each pixel in a computed scene. Our analysis of collected data suggests that the method may be useful to distinguish disturbed from non-disturbed earth, and to detect chemicals on the surface of the earth. The method we have developed provides the analyst with a vector above each pixel with each vector component referencing a frequency band. This additional information may be useful for considering surface texture, subsurface layering and materials identification. (paper)

  8. Reconstruction of defects by ultrasonic testing using synthetic aperture procedures

    International Nuclear Information System (INIS)

    The three methods ALOK (Amplitude Time Locus Curves), PHASED ARRAY and LSAFT (Line-Synthetic-Aperture-Focusing-Technique) use the method of synthesizing a large aperture by moving a probe. All methods are based on the time-of-flight or phase information and less to amplitude information. They differ in the state of development, in the complexity of data acquisition and reconstruction. The ALOK method is closest to those ultrasonic inspection methods used today in inservice inspection of nuclear pressure vessels. PHASED ARRAY combined with the compound scan synthesizes the divergent beam too and insonifies a reflector from many different insonification directions with high energy. LSAFT, like the others, reconstructs a B-scan image. For all three methods examples have been shown which demonstrate the state of development of these systems

  9. Synthetic aperture flow imaging using dual stage beamforming

    DEFF Research Database (Denmark)

    Li, Ye; Jensen, Jørgen Arendt

    2013-01-01

    continuous high frame rate flow images with lower calculation demands than the full synthetic aperture flow imaging. The performance of the approach was investigated using Field II simulations and measurements with the experimental scanner SARUS. A laminar flow with a parabolic profile was generated...... by a flow rig system. The flow data were acquired by a commercial 7 MHz linear array transducer. Four emissions were transmitted sequentially and repeated 12 times corresponding to 48 emissions. Flow with a peak velocity of 0.12 m/s was measured, the relative standard deviation was 6.4%, and the bias was 7......A method for synthetic aperture flow imaging using dual stage beamforming has been developed. The main motivation is to increase the frame rate and still maintain a beamforming quality sufficient for flow estimation that is possible to implement in a commercial scanner. This method can generate...

  10. Study of fractal aperture distribution and flow in fractures

    International Nuclear Information System (INIS)

    This study examines the roughness profiles and aperture distributions of fractures and faults by using concepts from fractal geometry. Simple models of flow of fluid in rough fractures are also discussed. A deterministic fractal representation of the roughness profile is presented which is shown to have many distinct advantages over other numerical methods, such as information compression, uniqueness and repeatability of surface simulation, retention of statistical information, and self-similarity over many scales. Also the fractal representation enables an isotropic surface and an aperture distribution to be simulated by examining a measured profile. Saturated fluid flow in fractures is then computed using a combined Navier-Stokes and Darcy equation. 14 refs., 5 figs

  11. Transmission of Megawatt Relativistic Electron Beams Through Millimeter Apertures

    CERN Document Server

    Alarcon, R; Benson, S V; Bertozzi, W; Boyce, J R; Cowan, R; Douglas, D; Evtushenko, P; Fisher, P; Ihloff, E; Kalantarians, N; Kelleher, A; Legg, R; Milner, R G; Neil, G R; Ou, L; Schmookler, B; Tennant, C; Tschalaer, C; Williams, G P; Zhang, S

    2013-01-01

    High power, relativistic electron beams from energy recovery linacs have great potential to realize new experimental paradigms for pioneering innovation in fundamental and applied research. A major design consideration for this new generation of experimental capabilities is the understanding of the halo associated with these bright, intense beams. In this Letter, we report on measurements performed using the 100 MeV, 430 kWatt CW electron beam from the energy recovery linac at the Jefferson Laboratory's Free Electron Laser facility as it traversed a set of small apertures in a 127 mm long aluminum block. Thermal measurements of the block together with neutron measurements near the beam-target interaction point yielded a consistent understanding of the beam losses. These were determined to be 3 ppm through a 2 mm diameter aperture and were maintained during a 7 hour continuous run.

  12. Apodized vortex coronagraph designs for segmented aperture telescopes

    CERN Document Server

    Ruane, Garreth; Mawet, Dimitri; Pueyo, Laurent; Shaklan, Stuart

    2016-01-01

    Current state-of-the-art high contrast imaging instruments take advantage of a number of elegant coronagraph designs to suppress starlight and image nearby faint objects, such as exoplanets and circumstellar disks. The ideal performance and complexity of the optical systems depends strongly on the shape of the telescope aperture. Unfortunately, large primary mirrors tend to be segmented and have various obstructions, which limit the performance of most conventional coronagraph designs. We present a new family of vortex coronagraphs with numerically-optimized gray-scale apodizers that provide the sensitivity needed to directly image faint exoplanets with large, segmented aperture telescopes, including the Thirty Meter Telescope (TMT) as well as potential next-generation space telescopes.

  13. Wide Aperture Vector magnet for neutron scattering studies

    CERN Document Server

    Lavie, P; Peugeot, A; Bredy, P; Berriaud, C; Daël, A; Riffet, J -M; Klimko, S; Meuriot, J -L; Robillard, T; Aubert, G

    2016-01-01

    We propose an innovative design for a vector magnet compatible with neutron scattering experiments. This would vastly expand the range of experimental possibilities since applying a magnetic field and orienting the sample in diffraction conditions will become completely independent. This Wide Aperture VEctor magnet is a setup made of 16 coils, all with a vertical axis. The vertical component of the field is produced by two pairs of coaxial coils carrying opposite currents for an active shielding of the stray field, while the horizontal components are generated by 3 sets of 4 coils each, two above and two below the diffraction plane. This innovative geometry allows a very wide aperture (220$\\,^{\\circ}$ horizontal, $\\pm$ 10$\\,^{\\circ}$ vertical), which is crucial for neutron diffraction and inelastic neutron scattering experiments. Moreover, the homogeneity of the field is far better than in the usual vertical coils, and the diameter of the sample bore is unusually large (10 cm). The concept has been developed ...

  14. Implementation of real-time duplex synthetic aperture ultrasonography

    DEFF Research Database (Denmark)

    Hemmsen, Martin Christian; Larsen, Lee; Kjeldsen, Thomas;

    2015-01-01

    in the TCP/IP protocol. Benchmarking of real-time imaging showed a total processing time of 25.7 ms (39 frames/s) which is less than the acquisition time (29.4 ms). In conclusion, the proposed implementation demonstrates that both B-mode and CFM can be executed in-time for real-time ultrasound imaging......This paper presents a real-time duplex synthetic aperture imaging system, implemented on a commercially available tablet. This includes real-time wireless reception of ultrasound signals and GPU processing for B-mode and Color Flow Imaging (CFM). The objective of the work is to investigate...... the implementation complexity and processing demands. The image processing is performed using the principle of Synthetic Aperture Sequential Beamforming (SASB) and the flow estimator is implemented using the cross-correlation estimator. Results are evaluated using a HTC Nexus 9 tablet and a BK Medical BK3000...

  15. Adaptive Matching of the Scanning Aperture of the Environment Parameter

    Science.gov (United States)

    Choni, Yu. I.; Yunusov, N. N.

    2016-04-01

    We analyze a matching system for the scanning aperture antenna radiating through a layer with unpredictably changing parameters. Improved matching has been achieved by adaptive motion of a dielectric plate in the gap between the aperture and the radome. The system is described within the framework of an infinite layered structure. The validity of the model has been confirmed by numerical simulation using CST Microwave Studio software and by an experiment. It is shown that the reflection coefficient at the input of some types of a matching device, which is due to the deviation of the load impedance from the nominal value, is determined by a compact and versatile formula. The potential efficiency of the proposed matching system is shown by a specific example, and its dependence on the choice of the starting position of the dielectric plate is demonstrated.

  16. An Algebraic Approach to Synthetic Aperture Sonar Image Reconstruction

    OpenAIRE

    Sergio Rui Silva; Sergio Cunha; Anibal Matos; Nuno Cruz

    2008-01-01

    A new approach for synthetic aperture image formation is presented in this paper. With the presented method image formation is regarded as a signal arrangement that can be described by a matrix. This method integrates the sonar platform motion in the image formation process but more importantly it acknowledges the non ideal data gathering process and implements means to mitigate these shortcomings. This method is illustrated with real data obtained in test mission in the Douro River, Portugal...

  17. Application of Linear Prediction Technique to Passive Synthetic Aperture Processing

    OpenAIRE

    Hou Yunshan; Huang Jianguo; Jiang Min; Jin Yong

    2010-01-01

    A method for the synthesis of an aperture with improved angular resolution and array gain is described. The proposed method explores the merit of linear prediction technique to improve the performance of conventional ETAM (extended towed array measurements) method. Previous efforts to improve the ETAM method generally focused on how to get more accurate estimation of overlap correlator, with an aim to reduce bearing estimation variance. In this paper, however, we discuss how to further impro...

  18. Digital Beamforming Synthetic Aperture Radar (DBSAR) Polarimetric Upgrade

    Science.gov (United States)

    Rincon, Rafael F.; Perrine, Martin; McLinden, Matthew; Valett, Susan

    2011-01-01

    The Digital Beamforming Synthetic Aperture Radar (DBSAR) is a state-of-the-art radar system developed at NASA/Goddard Space Flight Center for the development and implementation of digital beamforming radar techniques. DBSAR was recently upgraded to polarimetric operation in order to enhance its capability as a science instrument. Two polarimetric approaches were carried out which will be demonstrated in upcoming flight campaigns.

  19. Logarithmic Laplacian Prior Based Bayesian Inverse Synthetic Aperture Radar Imaging

    OpenAIRE

    Shuanghui Zhang; Yongxiang Liu; Xiang Li; Guoan Bi

    2016-01-01

    This paper presents a novel Inverse Synthetic Aperture Radar Imaging (ISAR) algorithm based on a new sparse prior, known as the logarithmic Laplacian prior. The newly proposed logarithmic Laplacian prior has a narrower main lobe with higher tail values than the Laplacian prior, which helps to achieve performance improvement on sparse representation. The logarithmic Laplacian prior is used for ISAR imaging within the Bayesian framework to achieve better focused radar image. In the proposed met...

  20. Seamless Synthetic Aperture Radar Archive for Interferometry Analysis

    OpenAIRE

    S. Baker; C. Baru; Bryson, G; Buechler, B.; Crosby, C.; Fielding, E.; Meertens, C.; Nicoll, J.; Youn, C.

    2014-01-01

    The NASA Advancing Collaborative Connections for Earth System Science (ACCESS) seamless synthetic aperture radar (SAR) archive (SSARA) project is a collaboration between UNAVCO, the Alaska Satellite Facility (ASF), the Jet Propulsion Laboratory (JPL), and OpenTopography at the San Diego Supercomputer Center (SDSC) to design and implement a seamless distributed access system for SAR data and derived interferometric SAR (InSAR) data products. A unified application programming interface...

  1. Dynamic aperture studies for the LHC high luminosity lattice

    Energy Technology Data Exchange (ETDEWEB)

    Maria, R. de [European Organization for Nuclear Research (CERN), Geneva (Switzerland); Giovannozzi, M. [European Organization for Nuclear Research (CERN), Geneva (Switzerland); McIntosh, E. [European Organization for Nuclear Research (CERN), Geneva (Switzerland); Nosochkov, Y. M. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Cai, Y. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Wang, M. -H. [SLAC National Accelerator Lab., Menlo Park, CA (United States)

    2015-07-14

    Since quite some time, dynamic aperture studies have been undertaken with the aim of specifying the required field quality of the new magnets that will be installed in the LHC ring in the framework of the high-luminosity upgrade. In this paper the latest results concerning the specification work will be presented, taking into account both injection and collision energies and the field quality contribution from all the magnets in the newly designed interaction regions.

  2. Inverse synthetic aperture radar imaging principles, algorithms and applications

    CERN Document Server

    Chen , Victor C

    2014-01-01

    Inverse Synthetic Aperture Radar Imaging: Principles, Algorithms and Applications is based on the latest research on ISAR imaging of moving targets and non-cooperative target recognition (NCTR). With a focus on the advances and applications, this book will provide readers with a working knowledge on various algorithms of ISAR imaging of targets and implementation with MATLAB. These MATLAB algorithms will prove useful in order to visualize and manipulate some simulated ISAR images.

  3. Imaging of Airborne Synthetic Aperture Ladar under Platform Vibration Condition

    OpenAIRE

    Ma Meng; Li Dao-jing; Du Jian-bo

    2014-01-01

    This study examines the imaging problems in airborne synthetic aperture ladar with single detector and dual detectors along tracks under platform vibration condition. Because platform vibrations affect imaging processing for short intervals negligibly, a method uniting the subaperture imaging and phase gradient autofocus is considered for single-detector ladar. To obtain long stripmap images in azimuth, the stripmap phase gradient autofocus method and the subaperture image mosaic process usin...

  4. Two-Dimensional Aperture Coding for Magnetic Sector Mass Spectrometry

    Science.gov (United States)

    Russell, Zachary E.; Chen, Evan X.; Amsden, Jason J.; Wolter, Scott D.; Danell, Ryan M.; Parker, Charles B.; Stoner, Brian R.; Gehm, Michael E.; Brady, David J.; Glass, Jeffrey T.

    2015-02-01

    In mass spectrometer design, there has been a historic belief that there exists a fundamental trade-off between instrument size, throughput, and resolution. When miniaturizing a traditional system, performance loss in either resolution or throughput would be expected. However, in optical spectroscopy, both one-dimensional (1D) and two-dimensional (2D) aperture coding have been used for many years to break a similar trade-off. To provide a viable path to miniaturization for harsh environment field applications, we are investigating similar concepts in sector mass spectrometry. Recently, we demonstrated the viability of 1D aperture coding and here we provide a first investigation of 2D coding. In coded optical spectroscopy, 2D coding is preferred because of increased measurement diversity for improved conditioning and robustness of the result. To investigate its viability in mass spectrometry, analytes of argon, acetone, and ethanol were detected using a custom 90-degree magnetic sector mass spectrometer incorporating 2D coded apertures. We developed a mathematical forward model and reconstruction algorithm to successfully reconstruct the mass spectra from the 2D spatially coded ion positions. This 2D coding enabled a 3.5× throughput increase with minimal decrease in resolution. Several challenges were overcome in the mass spectrometer design to enable this coding, including the need for large uniform ion flux, a wide gap magnetic sector that maintains field uniformity, and a high resolution 2D detection system for ion imaging. Furthermore, micro-fabricated 2D coded apertures incorporating support structures were developed to provide a viable design that allowed ion transmission through the open elements of the code.

  5. Nonlinear ocean internal waves observed by multifrequency synthetic aperture radar

    Institute of Scientific and Technical Information of China (English)

    YANG Jingsong; XIAO Qingmei; HUANG Weigen; FU Bin; CHEN Peng

    2008-01-01

    A numerical model which consists of the Korteweg-de Vries (KdV) equation, the action balance equation and the radar backscat- tering model is developed to simulate the frequency dependence of synthetic aperture radar (SAR) remote sensing of nonlinear o- cean internal waves. Muhifrequency data collected by NASA SIR - C SAR and NASA JPL AIRSAR are used as comparison. Case studies show that the results of simulation agree well with the results of SAR data.

  6. Dynamic Aperture Studies for the FCC-ee

    CERN Document Server

    Medina, L; Tomas, R; Zimmermann, F

    2015-01-01

    Dynamic aperture (DA) studies have been conducted on the latest Future Circular Collider – ee (FCC-ee) lattices as a function of momentum deviation.Two different schemes for the interaction region are used, which are connected to the main arcs: the crab waist approach, developed by BINP, and an update to the CERN design where the use of crab cavities is envisioned. The results presented show an improvement in the performance of both designs.

  7. Two-dimensional aperture coding for magnetic sector mass spectrometry.

    Science.gov (United States)

    Russell, Zachary E; Chen, Evan X; Amsden, Jason J; Wolter, Scott D; Danell, Ryan M; Parker, Charles B; Stoner, Brian R; Gehm, Michael E; Brady, David J; Glass, Jeffrey T

    2015-02-01

    In mass spectrometer design, there has been a historic belief that there exists a fundamental trade-off between instrument size, throughput, and resolution. When miniaturizing a traditional system, performance loss in either resolution or throughput would be expected. However, in optical spectroscopy, both one-dimensional (1D) and two-dimensional (2D) aperture coding have been used for many years to break a similar trade-off. To provide a viable path to miniaturization for harsh environment field applications, we are investigating similar concepts in sector mass spectrometry. Recently, we demonstrated the viability of 1D aperture coding and here we provide a first investigation of 2D coding. In coded optical spectroscopy, 2D coding is preferred because of increased measurement diversity for improved conditioning and robustness of the result. To investigate its viability in mass spectrometry, analytes of argon, acetone, and ethanol were detected using a custom 90-degree magnetic sector mass spectrometer incorporating 2D coded apertures. We developed a mathematical forward model and reconstruction algorithm to successfully reconstruct the mass spectra from the 2D spatially coded ion positions. This 2D coding enabled a 3.5× throughput increase with minimal decrease in resolution. Several challenges were overcome in the mass spectrometer design to enable this coding, including the need for large uniform ion flux, a wide gap magnetic sector that maintains field uniformity, and a high resolution 2D detection system for ion imaging. Furthermore, micro-fabricated 2D coded apertures incorporating support structures were developed to provide a viable design that allowed ion transmission through the open elements of the code. PMID:25510933

  8. Dirichlet eigenvalues of cones in the small aperture limit

    OpenAIRE

    Ourmières-Bonafos, Thomas

    2014-01-01

    We are interested in finite cones of fixed height 1 parametrized by their opening angle. We study the eigenpairs of the Dirichlet Laplacian in such domains when their apertures tend to 0. We provide multi-scale asymptotics for eigenpairs associated with the lowest eigenvalues of each fiber of the Dirichlet Laplacian. In order to do this, we investigate the family of their one-dimensional Born-Oppenheimer approximations. The eigenvalue asymptotics involves powers of the cube root of the apertu...

  9. Synthetic Aperture Sonar Imaging via One-Way Wave Equations

    CERN Document Server

    Huynh, Quyen

    2009-01-01

    We develop an efficient algorithm for Synthetic Aperture Sonar imaging based on the one-way wave equations. The algorithm utilizes the operator-splitting method to integrate the one-way wave equations. The well-posedness of the one-way wave equations and the proposed algorithm is shown. A computational result against real field data is reported and the resulting image is enhanced by the BV-like regularization.

  10. Range-instantaneous Doppler imaging of inverse synthetic aperture sonar

    Institute of Scientific and Technical Information of China (English)

    XU Jia; JIANG Xingzhou; TANG Jingsong

    2003-01-01

    Because the existing range-Doppler algorithm in inverse synthetic aperture sonar (ISAS) is based on target model of uniform motion, it may be invalidated for maneuvering targets due to the time-varying changes of both individual scatter′s Doppler and imaging projection plane. To resolve the problem, a new range-instantaneous Doppler imaging method is proposed for imaging maneuvering targets based on time-frequency analysis. The proposed approach is verified using real underwater acoustic data.

  11. Wide Aperture Vector magnet for neutron scattering studies

    OpenAIRE

    LAVIE, P.; Bataille, A. M.; Peugeot, A.; Bredy, P.; Berriaud, C.; Daël, A.; Riffet, J. -M.; Klimko, S.; Meuriot, J. -L.; Robillard, T.; Aubert, G.

    2016-01-01

    We propose an innovative design for a vector magnet compatible with neutron scattering experiments. This would vastly expand the range of experimental possibilities since applying a magnetic field and orienting the sample in diffraction conditions will become completely independent. This Wide Aperture VEctor magnet is a setup made of 16 coils, all with a vertical axis. The vertical component of the field is produced by two pairs of coaxial coils carrying opposite currents for an active shield...

  12. Limits to Clutter Cancellation in Multi-Aperture GMTI Data

    Energy Technology Data Exchange (ETDEWEB)

    Doerry, Armin W. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Bickel, Douglas L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-03-01

    Multi-aperture or multi-subaperture antennas are fundamental to Ground Moving Target Indicator (GMTI) radar systems in order to detect slow-moving targets with Doppler characteristics similar to clutter. Herein we examine the performance of several subaperture architectures for their clutter cancelling performance. Significantly, more antenna phase centers isn’t always better, and in fact is sometimes worse, for detecting targets.

  13. Aperture synthesis concepts in microwave remote sensing of the earth

    Science.gov (United States)

    Swift, Calvin T.; Le Vine, David M.; Ruf, Christopher S.

    1991-01-01

    The application of aperture synthesis concepts, used for many years in radio astronomy to achieve high image resolution at a reasonable cost, to remote sensing technology is discussed. The electronically scanned thinned array radiometer (ESTAR) is put forward as a viable alternative to improve spatial resolution by an order of magnitude over what is presently achieved by microwave imaging systems that are collecting data from earth orbit. Future developments in airborne sensor technology and potential spacecraft application are described.

  14. Passive Interferometric Ocean Currents Observation Synthetic Aperture Radar (PICOSAR)

    OpenAIRE

    Börner, Thomas; López-Dekker, Paco; Krieger, Gerhard; Bachmann, Markus; Moreira, Alberto; Müller, Hartmut

    2014-01-01

    This chapter describes PICOSAR (Passive Interferometric Ocean Currents Observation Synthetic Aperture Radar), a concept consisting of two small, low-cost and low power spacecraft carrying a passive, receive-only SAR payload. PICOSAR enhances the functionality of a full SAR system such as Sentinel-1 or TerraSAR-X by adding a unique along-track interferometer dedicated to ocean surface current measurements. The passive nature of this system and the focus on a single application and single opera...

  15. Asynchronous rotation scan for synthetic aperture interferometric radiometer

    Institute of Scientific and Technical Information of China (English)

    WU Ji; ZHANG Cheng; LIU Hao; SUN WeiYing

    2009-01-01

    Synthetic aperture interferometric technique has wide applications in optics, radio astronomy and mi-crowave remote sensing areas. With the increasing demands of high resolution imaging observation, a new time-sharing sampling scheme of asynchronous rotation scan is proposed to meet the technical challenge of achieving a large equivalent aperture and overcome the operating barriers of space borne application. This configuration is basically composed by two asynchronously and concentrically ro-tating antenna groups, whose revolving radii and speeds are different. The synthetic aperture system with asynchronous rotation scanning scheme can effectively solve the trade-off problem of system complexity, and greatly simplify the system hardware at the cost of sacrificing a certain time resolution. The basic rules and design methods of asynchronous rotation scan are investigated The Gridding method is introduced to inverse the spiral sampling data for image reconstruction. The potential ap-plications of geostationary orbit (GEO) earth observation and solar polar orbit (SPO) plasma cloud observation are explored with numerical simulations to validate the significance and feasibility of this new imaging configuration.

  16. Lyot coronagraph design study for large, segmented space telescope apertures

    Science.gov (United States)

    Zimmerman, Neil T.; N'Diaye, Mamadou; St. Laurent, Kathryn E.; Soummer, Rémi; Pueyo, Laurent; Stark, Christopher C.; Sivaramakrishnan, Anand; Perrin, Marshall; Vanderbei, Robert J.; Kasdin, N. J.; Shaklan, Stuart; Carlotti, Alexis

    2016-07-01

    Recent efforts combining the optimization techniques of apodized pupil Lyot coronagraphs (APLC) and shaped pupils have demonstrated the viability of a binary-transmission mask architecture for extremely high contrast (10-10) exoplanet imaging. We are now building on those innovations to carry out a survey of Lyot coronagraph performance for large, segmented telescope apertures. These apertures are of the same kind under considera- tion for NASA's Large UV/Optical/IR (LUVOIR) observatory concept. To map the multi-dimensional design parameter space, we have developed a software toolkit to manage large sets of mask optimization programs and execute them on a computing cluster. Here we summarize a preliminary survey of 500 APLC solutions for 4 reference hexagonal telescope apertures. Several promising designs produce annular, 10-10 contrast dark zones down to inner working angle 4λ0=D over a 15% bandpass, while delivering a half-max PSF core throughput of 18%. We also report our progress on devising solutions to the challenges of Lyot stop alignment/fabrication tolerance that arise in this contrast regime.

  17. Optimized baffle and aperture placement in neutral beamlines

    International Nuclear Information System (INIS)

    Most neutral beamlines contain an iron-core ion-bending magnet that requires shielding between the end of the neutralizer and this magnet. This shielding allows the gas pressure to drop prior to the beam entering the magnet and therefore reduces beam losses in this drift region. We have found that the beam losses can be reduced even further by eliminating the iron-core magnet and the magnetic shielding altogether. The required bending field can be supplied by current coils without the iron poles. In addition, placement of the baffles and apertures can affect the cold gas entering the plasma region and the losses in the neutral beam due to re-ionization. In our study we varied the placement of the baffles, which determine the amount of pumping in each chamber, and the apertures, which determine the beam loss. Our results indicate that a baffle/aperture configuration can be set for either minimum cold gas into the plasma region or minimum beam losses, but not both

  18. Aperture effects on the oxygen abundance determinations from CALIFA data

    CERN Document Server

    Iglesias-Páramo, J; Rosales-Ortega, F F; Sánchez, S F; Puertas, S Duarte; Petropoulou, V; de Paz, A Gil; Galbany, L; Mollá, M; Catalán-Torrecilla, C; Morales, A Castillo; Mast, D; Husemann, B; García-Benito, R; Mendoza, M A; Kehrig, C; Pérez-Montero, E; Papaderos, P; Gomes, J M; Walcher, C J; Delgado, R M González; Marino, R A; López-Sánchez, Á R; Ziegler, B; Flores, H; Alves, J

    2016-01-01

    This paper aims at providing aperture corrections for emission lines in a sample of spiral galaxies from the Calar Alto Legacy Integral Field Area Survey (CALIFA) database. In particular, we explore the behavior of the log([OIII]5007/Hbeta)/([NII]6583/Halpha) (O3N2) and log[NII]6583/Halpha (N2) flux ratios since they are closely connected to different empirical calibrations of the oxygen abundances in star forming galaxies. We compute median growth curves of Halpha, Halpha/Hbeta, O3N2 and N2 up to 2.5R_50 and 1.5 disk R_eff. The growth curves simulate the effect of observing galaxies through apertures of varying radii. The median growth curve of the Halpha/Hbeta ratio monotonically decreases from the center towards larger radii, showing for small apertures a maximum value of ~10% larger than the integrated one. The median growth curve of N2 shows a similar behavior, decreasing from the center towards larger radii. No strong dependence is seen with the inclination, morphological type and stellar mass for these...

  19. Colored coded-apertures for spectral image unmixing

    Science.gov (United States)

    Vargas, Hector M.; Arguello Fuentes, Henry

    2015-10-01

    Hyperspectral remote sensing technology provides detailed spectral information from every pixel in an image. Due to the low spatial resolution of hyperspectral image sensors, and the presence of multiple materials in a scene, each pixel can contain more than one spectral signature. Therefore, endmember extraction is used to determine the pure spectral signature of the mixed materials and its corresponding abundance map in a remotely sensed hyperspectral scene. Advanced endmember extraction algorithms have been proposed to solve this linear problem called spectral unmixing. However, such techniques require the acquisition of the complete hyperspectral data cube to perform the unmixing procedure. Researchers show that using colored coded-apertures improve the quality of reconstruction in compressive spectral imaging (CSI) systems under compressive sensing theory (CS). This work aims at developing a compressive supervised spectral unmixing scheme to estimate the endmembers and the abundance map from compressive measurements. The compressive measurements are acquired by using colored coded-apertures in a compressive spectral imaging system. Then a numerical procedure estimates the sparse vector representation in a 3D dictionary by solving a constrained sparse optimization problem. The 3D dictionary is formed by a 2-D wavelet basis and a known endmembers spectral library, where the Wavelet basis is used to exploit the spatial information. The colored coded-apertures are designed such that the sensing matrix satisfies the restricted isometry property with high probability. Simulations show that the proposed scheme attains comparable results to the full data cube unmixing technique, but using fewer measurements.

  20. Microstrip Yagi Antenna with Dual Aperture-Coupled Feed

    Science.gov (United States)

    Pogorzelski, Ronald; Venkatesan, Jaikrishna

    2008-01-01

    A proposed microstrip Yagi antenna would operate at a frequency of 8.4 GHz (which is in the X band) and would feature a mechanically simpler, more elegant design, relative to a prior L-band microstrip Yagi antenna. In general, the purpose of designing a microstrip Yagi antenna is to combine features of a Yagi antenna with those of a microstrip patch to obtain an antenna that can be manufactured at low cost, has a low profile, and radiates a directive beam that, as plotted on an elevation plane perpendicular to the antenna plane, appears tilted away from the broadside. Such antennas are suitable for flush mounting on surfaces of diverse objects, including spacecraft, aircraft, land vehicles, and computers. Stated somewhat more precisely, what has been proposed is a microstrip antenna comprising an array of three Yagi elements. Each element would include four microstrip-patch Yagi subelements: one reflector patch, one driven patch, and two director patches. To obtain circular polarization, each driven patch would be fed by use of a dual offset aperture-coupled feed featuring bow-tie-shaped apertures. The selection of the dual offset bow-tie aperture geometry is supported by results found in published literature that show that this geometry would enable matching of the impedances of the driven patches to the 50-Omega impedance of the microstrip feedline while maintaining a desirably large front-to-back lobe ratio.

  1. Coronagraph-integrated wavefront sensing with a sparse aperture mask

    Science.gov (United States)

    Subedi, Hari; Zimmerman, Neil T.; Kasdin, N. Jeremy; Cavanagh, Kathleen; Riggs, A. J. Eldorado

    2015-07-01

    Stellar coronagraph performance is highly sensitive to optical aberrations. In order to effectively suppress starlight for exoplanet imaging applications, low-order wavefront aberrations entering a coronagraph, such as tip-tilt, defocus, and coma, must be determined and compensated. Previous authors have established the utility of pupil-plane masks (both nonredundant/sparse-aperture and generally asymmetric aperture masks) for wavefront sensing (WFS). Here, we show how a sparse aperture mask (SAM) can be integrated with a coronagraph to measure low-order differential phase aberrations. Starlight rejected by the coronagraph's focal plane stop is collimated to a relay pupil, where the mask forms an interference fringe pattern on a subsequent detector. Our numerical Fourier propagation models show that the information encoded in the fringe intensity distortions is sufficient to accurately discriminate and estimate Zernike phase modes extending from tip-tilt up to radial degree n=5, with amplitude up to λ/20 RMS. The SAM sensor can be integrated with both Lyot and shaped pupil coronagraphs at no detriment to the science beam quality. We characterize the reconstruction accuracy and the performance under low flux/short exposure time conditions, and place it in context of other coronagraph WFS schemes.

  2. Asynchronous rotation scan for synthetic aperture interferometric radiometer

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Synthetic aperture interferometric technique has wide applications in optics,radio astronomy and mi-crowave remote sensing areas.With the increasing demands of high resolution imaging observation,a new time-sharing sampling scheme of asynchronous rotation scan is proposed to meet the technical challenge of achieving a large equivalent aperture and overcome the operating barriers of space borne application.This configuration is basically composed by two asynchronously and concentrically ro-tating antenna groups,whose revolving radii and speeds are different.The synthetic aperture system with asynchronous rotation scanning scheme can effectively solve the trade-off problem of system complexity,and greatly simplify the system hardware at the cost of sacrificing a certain time resolution.The basic rules and design methods of asynchronous rotation scan are investigated The Gridding method is introduced to inverse the spiral sampling data for image reconstruction.The potential ap-plications of geostationary orbit(GEO)earth observation and solar polar orbit(SPO)plasma cloud observation are explored with numerical simulations to validate the significance and feasibility of this new imaging configuration.

  3. Phase contrast microscopy with full numerical aperture illumination.

    Science.gov (United States)

    Maurer, Christian; Jesacher, Alexander; Bernet, Stefan; Ritsch-Marte, Monika

    2008-11-24

    A modification of the phase contrast method in microscopy is presented, which reduces inherent artifacts and improves the spatial resolution. In standard Zernike phase contrast microscopy the illumination is achieved through an annular ring aperture, and the phase filtering operation is performed by a corresponding phase ring in the back focal plane of the objective. The Zernike method increases the spatial resolution as compared to plane wave illumination, but it also produces artifacts, such as the halo- and the shade-off effect. Our modification consists in replacing the illumination ring by a set of point apertures which are randomly distributed over the whole aperture of the condenser, and in replacing the Zernike phase ring by a matched set of point-like phase shifters in the back focal plane of the objective. Experimentally this is done by illuminating the sample with light diffracted from a phase hologram displayed at a spatial light modulator (SLM). The subsequent filtering operation is then done with a second matched phase hologram displayed at another SLM in a Fourier plane of the imaging pathway. This method significantly reduces the halo- and shade-off artifacts whilst providing the full spatial resolution of the microscope. PMID:19030068

  4. Radio Astronomy transformed: Aperture Arrays - Past, Present and Future

    CERN Document Server

    Garrett, M A

    2013-01-01

    Aperture Arrays have played a major role in radio astronomy since the field emerged from the results of long-distance communication tests performed by Karl Jansky in the early 1930's. The roots of this technology extend back beyond Marconi, although the first electronically scanned instrument only appeared in the run-up to World War II. After the war, phased arrays had a major impact in many walks of life, including astronomy and astrophysics. Major progress was made in understanding the nature of the radio sky, including the discovery of Pulsars. Despite these early successes, parabolic dishes largely replaced aperture arrays through the 1960's, and right up until the end of the 20th century. Technological advances in areas such as signal processing, digital electronics, low-power/high performance super-computing and large capacity data storage systems have recently led to a substantial revival in the use of aperture arrays - especially at frequencies below 300 MHz. Composed of simple antennas with commercia...

  5. Synthetic Aperture Radiometry Evaluated by a Two-Channel Demonstration Model

    DEFF Research Database (Denmark)

    Laursen, Brian; Skou, Niels

    1998-01-01

    radiometer systems, especially at low frequencies. The TUD SARad demonstration model consists of a two-channel Ku-band correlation radiometer with two horn antennas and an antenna mounting structure enabling the horns to be mounted in relevant positions within a certain aperture. A total aperture synthesis......The Technical University of Denmark (TUD) Synthetic Aperture Radiometer (SARad) is a two-channel demonstration model that can simulate a two-dimensional (2D) thinned array radiometer having an unfilled aperture populated with several small antenna elements. Aperture synthesis obtained by...

  6. Optical aperture area determination for accurate illuminance and luminous efficacy measurements of LED lamps

    Science.gov (United States)

    Dönsberg, Timo; Mäntynen, Henrik; Ikonen, Erkki

    2016-06-01

    The measurement uncertainty of illuminance and, consequently, luminous flux and luminous efficacy of LED lamps can be reduced with a recently introduced method based on the predictable quantum efficient detector (PQED). One of the most critical factors affecting the measurement uncertainty with the PQED method is the determination of the aperture area. This paper describes an upgrade to an optical method for direct determination of aperture area where superposition of equally spaced Gaussian laser beams is used to form a uniform irradiance distribution. In practice, this is accomplished by scanning the aperture in front of an intensity-stabilized laser beam. In the upgraded method, the aperture is attached to the PQED and the whole package is transversely scanned relative to the laser beam. This has the benefit of having identical geometry in the laser scanning of the aperture area and in the actual photometric measurement. Further, the aperture and detector assembly does not have to be dismantled for the aperture calibration. However, due to small acceptance angle of the PQED, differences between the diffraction effects of an overfilling plane wave and of a combination of Gaussian laser beams at the circular aperture need to be taken into account. A numerical calculation method for studying these effects is discussed in this paper. The calculation utilizes the Rayleigh-Sommerfeld diffraction integral, which is applied to the geometry of the PQED and the aperture. Calculation results for various aperture diameters and two different aperture-to-detector distances are presented.

  7. Calculation Method and Distribution Characteristics of Fracture Hydraulic Aperture from Field Experiments in Fractured Granite Area

    Science.gov (United States)

    Cao, Yang-Bing; Feng, Xia-Ting; Yan, E.-Chuan; Chen, Gang; Lü, Fei-fei; Ji, Hui-bin; Song, Kuang-Yin

    2016-05-01

    Knowledge of the fracture hydraulic aperture and its relation to the mechanical aperture and normal stress is urgently needed in engineering construction and analytical research at the engineering field scale. A new method based on the in situ borehole camera measurement and borehole water-pressure test is proposed for the calculation of the fracture hydraulic aperture. This method comprises six steps. The first step is to obtain the equivalent hydraulic conductivity of the test section from borehole water-pressure tests. The second step is a tentative calculation to obtain the qualitative relation between the reduction coefficient and the mechanical aperture obtained from borehole camera measurements. The third step is to choose the preliminary reduction coefficient for obtaining the initial hydraulic aperture. The remaining three steps are to optimize, using the genetic algorithm, the hydraulic apertures of fractures with high uncertainty. The method is then applied to a fractured granite engineering area whose purpose is the construction of an underground water-sealed storage cavern for liquefied petroleum gas. The probability distribution characteristics of the hydraulic aperture, the relationship between the hydraulic aperture and the mechanical aperture, the hydraulic aperture and the normal stress, and the differences between altered fractures and fresh fractures are all analyzed. Based on the effects of the engineering applications, the method is proved to be feasible and reliable. More importantly, the results of the hydraulic aperture obtained in this paper are different from those results elicited from laboratory tests, and the reasons are discussed in the paper.

  8. Optical Field Measurement of Nano-Apertures with a Scanning Near-Field Optical Microscope

    Institute of Scientific and Technical Information of China (English)

    XU Tie-Jun; XU Ji-Ying; WANG Jia; TIAN Qian

    2004-01-01

    @@ We investigate optical near-field distributions of the unconventional C-apertures and the conventional square apertures in preliminary experiment with an aperture scanning near-field optical microscope. These nano-apertures are fabricated in Au film on a glass substrate with focused ion beam technology. The experimental results indicate the uptrend of output light intensity that a C-aperture enables the intensity maximum to increase at least 10times more than a square aperture with same unit length. The measured near-field light spot sizes of C-apertureand square aperture with 200-nm unit length are 439nm × 500nm and 245nm × 216nm, respectively.

  9. Thermal front propagation in variable aperture fracture-matrix system: A numerical study

    Indian Academy of Sciences (India)

    Nikhil Bagalkot; G Suresh Kumar

    2015-04-01

    A numerical study on the effect of complex fracture aperture geometry on propagation of thermal front in a coupled single fracture-matrix system has been carried out. Sinusoidal and logarithmic functions have been used to capture the variation in fracture aperture. Modifications have been made to existing coupled partial differential governing equations to consider the variation of fracture aperture. Effect of temperature on the thermal and physical properties of rock have been incorporated. A fully implicit finite difference scheme has been used to discretize the coupled governing equations. Thermal convection, dispersion and conduction are the major transport processes within fracture, while conduction is the major transport process within rock matrix. The results suggest that variation of fracture aperture increases the heat transfer rate at the fracture-matrix interface. Sensitivity analysis on rock thermal conductivity and fracture aperture have been carried out. The results suggest that the heat transfer from rock matrix to fracture for the case of the parallel plate model is greatly dependent on the rock thermal conductivity (m) as compared to variable aperture model. Further, the thermal front propagation for both parallel plate model and variable aperture model is sensitive to changes in fracture aperture. The heat transfer rate at the interface is greater at smaller fracture apertures and decreases with increase in aperture.

  10. Teaching and Research in Astronomy using Small Aperture Optical Telescopes

    Science.gov (United States)

    Pandey, S. K.

    2006-08-01

    Small aperture (Colleges/. On the basis of over a decade's experience in observing with small optical telescopes it has been amply demonstrated that such a facility, which any University department can hope to procure and maintain, can be effectively used for teaching as well quality research. The Physics Department of Pt Ravishankar Shukla University at Raipur, India offers Astronomy & Astrophysics (A&A) as one of the specialization as a part of M Sc program in Physics. A set of observational exercises has been incorporated with a view to provide training in observations, analysis and interpretation of the astronomical data to the students. Observing facilities available in the department include 8"-14" aperture telescopes (CGE series from Celestron) equipped with the new-state-of-the-art backend instrumentation like Photometer, CCD Camera and also a CCD spectrograph. Observing facility of this kind is ideally suited for continuous monitoring of a variety of variable stars, and thus can provide valuable data for understanding the physics of stellar variability. This is especially true for a class of variable stars known as chromospherically active stars. The stars belonging to this class have variable light curves, and the most puzzling feature is that their light curves change year after year in a rather queerer way. A large fraction of these active stars are bright ones and, hence, the importance of small aperture telescope for collecting the much needed photometric data. For over a decade the research activity using 14" optical telescope is focused on photometric monitoring of well known as well suspected active stars. This together with spectroscopic data using observing facility at Indian Observatories has led to identification of new chromosperically active stars. The talk is aimed at sharing our experiences quoting examples with professional colleagues on the usage of small optical telescopes for teaching and research in Colleges/Universities.

  11. Steering of H- ion beamlet by aperture displacement

    International Nuclear Information System (INIS)

    Focussing of multibeamlets produced from a large accelerator grid is a key issue of ion beam application to the neutral beam injector (NBI) of fusion devices. Another issue is highlighted in a case of negative ion based NBI to compensate beamlet deflection inside the extractor, where magnetic field is applied for suppression of electron extraction. Steering of H- beamlet was carried out by displacing apertures in an electrostatic extractor/accelerator composed of four grids, where the beam energy was in the range of ∼50 keV. Out of a few combination of grid displacement, displacement of ESG (3rd grid) and/or GRG (4th grid) was found to be successful: 1) The beamlet steering angle of 50 mrad was obtained by displacing the apertures of 9 mm dia. up to 3 mm. It was confirmed that the steering angle was proportional fairly well to the displacement. The characteristic of the steering, i.e., the steering angle as a function of displacement, agrees well with the analysis based on the linear optics theory. 2) Neither significant divergence growth nor the beam interception were observed in the steered beams over a wide range of operation. The H- beams, of which divergent angle was 5 mrad, was obtained even under the beamlet steering. Thus the steering by displacement is suitable for the focusing of negative ion beam generated from multi-aperture grids. 3) It was found that the steering angle was independent of the magnetic field direction in the present extractor structure. This is an advantage of the steering technique for compensation of the beam deflection inside the extractor by magnetic field. (author)

  12. Design of a hybrid double-sideband/single-sideband (schlieren) objective aperture suitable for electron microscopy

    International Nuclear Information System (INIS)

    A novel design is described for an aperture that blocks a half-plane of the electron diffraction pattern out to a desired scattering angle, and then – except for a narrow support beam – transmits all of the scattered electrons beyond that angle. Our proposed tulip-shaped design is thus a hybrid between the single-sideband (ssb) aperture, which blocks a full half-plane of the diffraction pattern, and the conventional (i.e. fully open) double-sideband (dsb) aperture. The benefits of this hybrid design include the fact that such an aperture allows one to obtain high-contrast images of weak-phase objects with the objective lens set to Scherzer defocus. We further demonstrate that such apertures can be fabricated from thin-foil materials by milling with a focused ion beam (FIB), and that such apertures are fully compatible with the requirements of imaging out to a resolution of at least 0.34 nm. As is known from earlier work with single-sideband apertures, however, the edge of such an aperture can introduce unwanted, electrostatic phase shifts due to charging. The principal requirement for using such an aperture in a routine data-collection mode is thus to discover appropriate materials, protocols for fabrication and processing and conditions of use such that the hybrid aperture remains free of charging over long periods of time. -- Highlights: ► New objective-aperture design is proposed for imaging weak-phase objects. ► Design produces single-sideband contrast at low spatial frequencies. ► Design also retains Scherzer-defocus phase contrast at higher resolution. ► Proof-of-concept results are presented for microfabricated apertures. ► Charging of such apertures during use remains an experimental challenge.

  13. Synthetic aperture radar images with composite azimuth resolution

    Energy Technology Data Exchange (ETDEWEB)

    Bielek, Timothy P; Bickel, Douglas L

    2015-03-31

    A synthetic aperture radar (SAR) image is produced by using all phase histories of a set of phase histories to produce a first pixel array having a first azimuth resolution, and using less than all phase histories of the set to produce a second pixel array having a second azimuth resolution that is coarser than the first azimuth resolution. The first and second pixel arrays are combined to produce a third pixel array defining a desired SAR image that shows distinct shadows of moving objects while preserving detail in stationary background clutter.

  14. Monitoring coastal inundation with Synthetic Aperture Radar satellite data

    Science.gov (United States)

    Suzuoki, Yukihiro; Rangoonwala, Amina; Ramsey, Elijah W., III

    2011-01-01

    Maps representing the presence and absence of surface inundation in the Louisiana coastal zone were created from available satellite scenes acquired by the Japanese Aerospace Exploration Agency's Advanced Land Observing Satellite and by the European Space Agency's Envisat from late 2006 through summer 2009. Detection of aboveground surface flooding relied on the well-documented and distinct signature of decreased backscatter in Synthetic Aperture Radar (SAR), which is indicative of inundated marsh in the Gulf of Mexico. Even though decreases in backscatter were distinctive, the multiplicity of possible interactions between changing flood depths and canopy height yielded complex SAR-based representations of the marshes.

  15. Preliminary comparison of 3D synthetic aperture imaging with Explososcan

    OpenAIRE

    Rasmussen, Morten Fischer; Hansen, Jens Munk; Ferin, Guillaume; Dufait, Remi; Jensen, Jørgen Arendt

    2012-01-01

    Explososcan is the 'gold standard' for real-time 3D medical ultrasound imaging. In this paper, 3D synthetic aperture imaging is compared to Explososcan by simulation of 3D point spread functions. The simulations mimic a 32x32 element prototype transducer. The transducer mimicked is a dense matrix phased array with a pitch of 300 μm, made by Vermon. For both imaging techniques, 289 emissions are used to image a volume spanning 60 in both the azimuth and elevation direction and 150mm in depth. ...

  16. Imaging frequency-dependent reflectivity from synthetic-aperture radar

    International Nuclear Information System (INIS)

    This paper develops a method for using a synthetic-aperture radar system to obtain not only a spatial image of a scene but also the localized frequency dependence of the scene reflectivity. In other words, for each image pixel, we also obtain a plot of the frequency dependence of the reflectivity in that pixel. We present a method for extracting this information from the data, and also a formula that characterizes the performance of this imaging system. We conclude with some simulations suggesting that the method may be promising. (paper)

  17. Synthetic Aperture Radar Raw Signals Simulation of Extended Scenes

    Institute of Scientific and Technical Information of China (English)

    Sun Jin-yao; Sun Hong

    2004-01-01

    A synthetic aperture radar (SAR) raw signal simulation algorithm for extended scenes is presented. This algorithm is based on the SAR two-dimensional system transform function (STF). To cope with range-variant nature of SAR STF and increase the speed of this algorithm, new formulas for range-variant phase corrections in range Doppler (RD) domain are developed. In this way, many azimuth lines can be simulated with the same SAR STF. It only needs twodimensional fast Fourier transform code and complex multiplications. Comparing with time-domain simulation algorithm, it is very simple and thus efficient. Simulation results have shown that this algorithm is accurate and efficient.

  18. Sensitivity of synthetic aperture laser optical feedback imaging

    CERN Document Server

    Glastre, Wilfried; Jacquin, Olivier; Hugon, Olivier; De Chatellus, Hugues Guillet

    2012-01-01

    In this paper we compare the sensitivity of two imaging configurations both based on Laser Optical Feedback Imaging (LOFI). The first one is direct imaging, which uses conventional optical focalisation on target and the second one is made by Synthetic Aperture (SA) Laser, which uses numerical focalisation. We show that SA configuration allows to obtain good resolutions with high working distance and that the drawback of SA imagery is that it has a worse photometric balance in comparison to conventional microscope. This drawback is partially compensated by the important sensitivity of LOFI. Another interest of SA relies on the capacity of getting a 3D information in a single x-y scan.

  19. Limitations of synthetic aperture laser optical feedback imaging

    CERN Document Server

    Glastre, Wilfried; Hugon, Olivier; De Chatellus, Hugues Guillet; Lacot, Eric

    2012-01-01

    In this paper we present the origin and the effect of amplitude and phase noise on Laser Optical Feedback Imaging (LOFI) associated with Synthetic Aperture (SA) imaging system. Amplitude noise corresponds to photon noise and acts as an additive noise, it can be reduced by increasing the global measurement time. Phase noise can be divided in three families: random, sinusoidal and drift phase noise; we show that it acts as a multiplicative noise. We explain how we can reduce it by making oversampling or multiple measurements depending on its type. This work can easily be extended to all SA systems (Radar, Laser or Terahertz), especially when raw holograms are acquired point by point.

  20. Imaging defects by one-dimensional synthetic aperture focussing technique

    International Nuclear Information System (INIS)

    The advantages of modern synthetic aperture focussing techniques versus conventional ultrasonic testing systems are explained. The LINE-SAFT method uses the complete RF-signal at each probe position and forms a B-scan image with an axial and lateral resolution of 1-2 wavelengths. Data have been processed in pulse-echo, tandem, pitch and catch with piezoelectric and with EMAT transducers on plane and curved specimens. SAFT has been applied with success in the laboratory to demonstrate the achievable lateral and axial resolution of 1 wavelength and in the field on tube sheet plate, on turbine rotor shaft, on pressure vessels and on nozzle inspection. 2 refs

  1. RFI at L-band in Synthetic Aperture Radiometers

    Science.gov (United States)

    LeVine, David M.; Haken, M.; Wang, James R. (Technical Monitor)

    2003-01-01

    The spectral window at 1.413 GHz (L-band), set aside for passive use only, is critical for passive remote sensing of the earth from space. It is the largest spectral window available in the long wavelength end of the microwave spectrum where measurements are needed to monitor parameters of the surface such as soil moisture and sea surface salinity. The sensitivity to these parameters is rapidly lost at higher frequencies and is compromised by the ionosphere and antenna size at lower frequencies. Instruments for remote sensing from space in this spectral window are being developed by NASA (Aquarius) and ESA (SMOS) and are expected to be in orbit in a few years (2006). Although the band at 1.413 GHz is protected for passive use, RFI is a common problem. For example, the synthetic aperture radiometer, ESTAR (L-band, Horizontal polarization), has frequently experienced problems with RFI. During the Southern Great Plains Experiments (1997 and 1999), ESTAR experienced RFI significant enough to warrant changes in flight lines. The largest sources of RFI were identified as originating in airports and a likely source is air traffic control radar. In experiments in the vicinity of Richmond, VA, RFI in the form of periodic spikes was recorded, again suggestive of radar. However, in most cases the sources of the RFI are unknown. RFI is a sufficiently common problem that the first step in processing ESTAR data is a screening for RFI (a filter is used to detect large, rapid changes in brightness). Recently, measurements have been made with a new synthetic aperture radiometer, 2D-STAR. Examples of RFI observed simultaneously with ESTAR and the new synthetic aperture radiometer will be presented. 2D-STAR is an airborne instrument designed to develop the technology of aperture synthesis in two dimensions. It employs dual polarized patch antennas arranged in a cross configuration (+). Synthesis in two dimensions offers the potential for optimal thinning, but because of the wide

  2. Imaging algorithms for synthetic aperture ultra-wideband radar

    International Nuclear Information System (INIS)

    Synthetic aperture ultra-wideband radar images is an important emerging technology with the potential to produce high-resolution images for a variety of applications, including the nondestructive evaluation of civil structures, minefield clearing, unexploded ordnance detection and removal, hazardous waste identification, and detection of miscellaneous buried objects. In FY-93, the authors developed imaging software for two- and three-dimensional problems for several geometries, and produced high-resolution images of a laboratory concrete test-bed and of a simulated mine field located at Lawrence Livermore National Laboratory's Nevada Test Site

  3. Probing the Martian Subsurface with Synthetic Aperture Radar

    Science.gov (United States)

    Campbell, B. A.; Maxwell, T. A.; Freeman, A.

    2005-01-01

    Many regions of the martian surface are covered by fine-grained materials emplaced by volcanic, fluvial, or aeolian processes. These mantling deposits likely hide ancient channel systems (particularly at smaller scale lengths) and volcanic, impact, glacial, or shoreline features. Synthetic aperture radar (SAR) offers the capability to probe meters below the surface, with imaging resolution in the 10 s of m range, to reveal the buried terrain and enhance our understanding of Mars geologic and climate history. This presentation focuses on the practical applications of a Mars orbital SAR, methods for polarimetric and interferometric radar studies, and examples of such techniques for Mars-analog sites on the Moon and Earth.

  4. Monitoring the formation of oxide apertures in micropillar cavities

    CERN Document Server

    Bakker, Morten P; Suntrup, Donald J; Truong, Tuan-Ahn; van Exter, Martin P; Bouwmeester, Dirk

    2013-01-01

    We present an imaging technique that enables us to monitor the wet thermal oxidation of a thin AlAs layer embedded between two distributed Bragg reflector (DBR) mirrors in a micropillar. Directly after oxidation, we confirm in situ, without any further fabrication steps, that high quality optical modes confined to a small volume are formed. The combination of these two optical techniques provides a reliable and efficient way of producing oxidation apertured micropillar cavities for which the wet thermal oxidation is a critical fabrication step.

  5. Convolutional neural networks for synthetic aperture radar classification

    Science.gov (United States)

    Profeta, Andrew; Rodriguez, Andres; Clouse, H. Scott

    2016-05-01

    For electro-optical object recognition, convolutional neural networks (CNNs) are the state-of-the-art. For large datasets, CNNs are able to learn meaningful features used for classification. However, their application to synthetic aperture radar (SAR) has been limited. In this work we experimented with various CNN architectures on the MSTAR SAR dataset. As the input to the CNN we used the magnitude and phase (2 channels) of the SAR imagery. We used the deep learning toolboxes CAFFE and Torch7. Our results show that we can achieve 93% accuracy on the MSTAR dataset using CNNs.

  6. Multi-aperture imaging of extrasolar planetary systems (invited review)

    OpenAIRE

    Absil, Olivier

    2009-01-01

    Space‐based nulling interferometry has been identified since 1978 as a promising technique to detect and characterize extrasolar Earth‐like planets. In this talk, I will review the evolution of the multi‐aperture concepts dedicated to Earth‐like planet imaging during the last 30 years, and discuss the future prospects in this field. In particular, I will describe the proposed architecture for the Darwin/TPF‐I mission, which has resulted from a common optimization effort by ESA and NASA and fr...

  7. Polarization degenerate micropillars fabricated by designing elliptical oxide apertures

    CERN Document Server

    Bakker, Morten P; Zhan, Alan; Coldren, Larry A; van Exter, Martin P; Bouwmeester, Dirk

    2014-01-01

    A method for fabrication of polarization degenerate oxide apertured micropillar cavities is demon- strated. Micropillars are etched such that the size and shape of the oxide front is controlled. The polarization splitting in the circular micropillar cavities due to the native and strain induced bire- fringence can be compensated by elongating the oxide front in the [110] direction, thereby reducing stress in this direction. By using this technique we fabricate a polarization degenerate cavity with a quality factor of 1.7*?10^4 and a mode volume of 2.7 u?m3, enabling a calculated maximum Purcell factor of 11.

  8. The Five-hundred-meter Aperture Spherical Radio Telescope Project

    Science.gov (United States)

    Li, Di; Pan, Zhichen

    2016-07-01

    The Five-hundred-meter Aperture Spherical Radio Telescope (FAST) is a Chinese megascience project funded by the National Development and Reform Commission (NDRC) of the People's Republic of China. The National Astronomical Observatories of China (NAOC) is in charge of its construction and subsequent operation. Upon its expected completion in September 2016, FAST will surpass the 305 m Arecibo Telescope and the 100 m Green Bank Telescope in terms of absolute sensitivity in the 70 MHz to 3 GHz bands. In this paper, we report on the project, its current status, the key science goals, and plans for early science.

  9. Laboratory determination of fracture aperture, permeability and stress repationships

    Institute of Scientific and Technical Information of China (English)

    WANG Jian-xue(王建学); ZHANG Jin-cai(张金才)

    2003-01-01

    It is well known that the formation permeability is not a constant but a function of the in-situ stress environment. This study has been primarily carried out numerically, and to a certain extent, in the field. However, since the rock properties are generally tested in the laboratory, this last situation needs to be modeled to maintain consistent scales in the analysis. In this paper, concepts and techniques of laboratory experiments are presented to determine relationships between fracture aperture and external loading in simulated rocks (concrete).

  10. MYRaf: An Easy Aperture Photometry GUI for IRAF

    Science.gov (United States)

    Niaei, M. S.; KiliÇ, Y.; Özeren, F. F.

    2015-07-01

    We describe the design and development of MYRaf, a GUI (Graphical User Interface) that aims to be completely open-source under General Public License (GPL). MYRaf is an easy to use, reliable, and a fast IRAF aperture photometry GUI tool for those who are conversant with text-based software and command-line procedures in GNU/Linux OSs. MYRaf uses IRAF, PyRAF, matplotlib, ginga, alipy, and SExtractor with the general-purpose and high-level programming language Python, and uses the Qt framework.

  11. Investigation of the feasability for 3D synthetic aperture imaging

    DEFF Research Database (Denmark)

    Nikolov, Svetoslav; Jensen, Jørgen Arendt

    2003-01-01

    This paper investigates the feasibility of implementing real-time synthetic aperture 3D imaging on the experimental system developed at the Center for Fast Ultrasound Imaging using a 2D transducer array. The target array is a fully populated 32 × 32 3 MHz array with a half wavelength pitch....... The elements of the array are grouped in blocks of 16 × 8, which can simultaneously be accessed by the 128 channels of the scanner. Using 8-to-1 high-voltage analog multiplexors, any group of 16 × 8 elements can be accessed. Simulations are done using Field II using parameters from a 32 x 32 elements...

  12. Mechanisms of abscisic acid-mediated control of stomatal aperture.

    Science.gov (United States)

    Munemasa, Shintaro; Hauser, Felix; Park, Jiyoung; Waadt, Rainer; Brandt, Benjamin; Schroeder, Julian I

    2015-12-01

    Drought stress triggers an increase in the level of the plant hormone abscisic acid (ABA), which initiates a signaling cascade to close stomata and reduce water loss. Recent studies have revealed that guard cells control cytosolic ABA concentration through the concerted actions of biosynthesis, catabolism as well as transport across membranes. Substantial progress has been made at understanding the molecular mechanisms of how the ABA signaling core module controls the activity of anion channels and thereby stomatal aperture. In this review, we focus on our current mechanistic understanding of ABA signaling in guard cells including the role of the second messenger Ca(2+) as well as crosstalk with biotic stress responses. PMID:26599955

  13. Wave front engineering from an array of thin aperture antennas.

    Science.gov (United States)

    Kang, Ming; Feng, Tianhua; Wang, Hui-Tian; Li, Jensen

    2012-07-01

    We propose an ultra-thin metamaterial constructed by an ensemble of the same type of anisotropic aperture antennas with phase discontinuity for wave front manipulation across the metamaterial. A circularly polarized light is completely converted to the cross-polarized light which can either be bent or focused tightly near the diffraction limit. It depends on a precise control of the optical-axis profile of the antennas on a subwavelength scale, in which the rotation angle of the optical axis has a simple linear relationship to the phase discontinuity. Such an approach enables effective wave front engineering within a subwavelength scale.

  14. Apodized RFI filtering of synthetic aperture radar images

    Energy Technology Data Exchange (ETDEWEB)

    Doerry, Armin Walter

    2014-02-01

    Fine resolution Synthetic Aperture Radar (SAR) systems necessarily require wide bandwidths that often overlap spectrum utilized by other wireless services. These other emitters pose a source of Radio Frequency Interference (RFI) to the SAR echo signals that degrades SAR image quality. Filtering, or excising, the offending spectral contaminants will mitigate the interference, but at a cost of often degrading the SAR image in other ways, notably by raising offensive sidelobe levels. This report proposes borrowing an idea from nonlinear sidelobe apodization techniques to suppress interference without the attendant increase in sidelobe levels. The simple post-processing technique is termed Apodized RFI Filtering (ARF).

  15. Duplex synthetic aperture imaging with tissue motion compensation

    DEFF Research Database (Denmark)

    Gammelmark, Kim; Jensen, Jørgen Arendt

    2003-01-01

    This paper investigates a method for tissue motion estimation and compensation in synthetic transmits aperture imaging. The approach finds the tissue velocity and the direction of the motion at very tissue region by cross-correlating high resolution lines beamformed along multiple directions...... at each image points. Compensation is applied in the beamformer by tracking the image points using the velocity and angle estimates from the closest estimation point. Simulation results using Field II show nearly perfect motion compensation with no appreciable difference in contrast resolution after...... compensation. Phantom measurements show similar performance with differences in contrast resolution of 29% and 0.61% before and after compensation, respectively....

  16. Aperture calculation of the Pierre Auger Observatory surface detector

    Energy Technology Data Exchange (ETDEWEB)

    Allard, D.; Allekotte, I.; Armengaud, E.; Aublin, J.; Bertou, Xavier; Chou, A.; Ghia, P.L.; Gomez Berisso, M.; Hamilton, J.C.; Lhenry-Yvon, I.; Medina, C.; Navarra, G.; Parizot, E.; Tripathi, A.

    2005-08-01

    We determine the instantaneous aperture and integrated exposure of the surface detector of the Pierre Auger Observatory, taking into account the trigger efficiency as a function of the energy, arrival direction (with zenith angle lower than 60 degrees) and nature of the primary cosmic-ray. We make use of the so-called Lateral Trigger Probability function (or LTP) associated with an extensive air shower, which summarizes all the relevant information about the physics of the shower, the water tank Cherenkov detector, and the triggers.

  17. Synthetic Aperture Radar : A Focus on Current Problems.

    Directory of Open Access Journals (Sweden)

    M.S. Ranga Rao

    1997-10-01

    Full Text Available Synthetic aperture radar (SAR is a powerful tool for mapping and remote sensing. The theory and operation of SAR have seen a period of intense activity in recent years. This paper attempts to review some of the more advanced topics studied in connection with madern SAR systems based on digital processing . Following a brief review of the principles involved in the operation of SAR, attention is focussed on special topics such as advanced SAR modelling and ffocussing techniques, in particular clutterlock and autofocus, Doppler centroid (DC estimation methods involving seismic migration technique, moving target, biststic radar imaging , effects of system nonlinearities,etc.

  18. Image formation for synthetic aperture radar using MATLAB

    OpenAIRE

    Cequiel Mir, Mireia

    2008-01-01

    The study of SAR (Synthetic Aperture Radar) image formation using MATLAB it is explained in the following project. The main to use MATLAB in this project was the most important thing to choose it. As MATLAB it is one of the most tools used by engineers, I considered really interesting the project, and moreover with the image treatment that it involved. The study of this field requires some background information to identify the steps which must be done to obtain some results. SAR images tr...

  19. Experimental Study of Convex Coded Synthetic Transmit Aperture Imaging

    DEFF Research Database (Denmark)

    Gammelmark, Kim; Jensen, Jørgen Arendt

    2002-01-01

    Synthetic transmit aperture imaging is investigated using a convex array transducer. To increase the signal-to-noise ratio, a multi-element subaperture is used to emulate the spherical wave transmission, and the conventional short excitation pulse is replaced by a linear FM signal. The approach...... resolution of about 30% throughout the image with lower near and far field sidelobe levels. Results from a cyst phantom show big improvements in contrast resolution, and an increase in penetration depth of about 2 cm. In-vivo images of the abdomen of a healthy 27 year old male show slight improvements...

  20. Equipment and methods for synthetic aperture anatomic and flow imaging

    DEFF Research Database (Denmark)

    Jensen, Jørgen Arendt; Nikolov, Svetoslav; Misaridis, Thanassis;

    2002-01-01

    problem is that each receiving transducer element must be connected to a receiver, which makes the expansion of the number of receive channels expensive. Synthetic aperture (SA) imaging is a radical change from the sequential image formation. Here ultrasound is emitted in all directions and the image...... for forming an image, and a novel approach of recursive ultrasound imaging can be used to give several thousand images a second. A commercial SA imaging system has, however, not yet been introduced due to a number of problems. The fundamental problems are primarily that the signal-to-noise ratio...

  1. Fabrication of bowtie aperture antennas for producing sub-20 nm optical spots.

    Science.gov (United States)

    Chen, Yang; Chen, Jianfeng; Xu, Xianfan; Chu, Jiaru

    2015-04-01

    Bowtie aperture antennas are known to generate sub-diffraction limited optical spots in the visible and near-infrared frequencies, which can be applied to many areas. Regular bowtie apertures fabricated by FIB suffer from tapered sidewall and rounded corner, which degrade its optical enhancement and localization. In this work, a new fabrication method is demonstrated to manufacture bowtie aperture antennas which can produce optical spots with lateral size smaller than 20 nm. We also employ numerical simulations to compute the near-field distribution on the surface of the bowtie aperture with topography extracted from the fabrication antennas. The near-field distribution measured by s-NSOM agrees well with the simulation and confirms the improved near-field localization of our bowtie aperture. This new fabrication method can be applied to other types of ridged apertures, which promises wide applications of deep sub-diffraction limited optical spots in many areas.

  2. Numerical Analysis of Nano-Aperture Light Source for High-Density Optical Data Storage

    Institute of Scientific and Technical Information of China (English)

    XU Ji-Ying; WANG Jia; TIAN Qian; WANG Bo-Xiong

    2007-01-01

    Two unconventional nano-aperture light sources, an L-shaped nano-aperture source and a 3D nano-aperture source for high-density optical data storage, are numerically investigated. With incidence of a Gaussian beam, the spot size of the Poynting vector coupled into the recording medium is 130 × 175 nm2 for the L-aperture and 120 × 135 nm2 for the 3D nano-aperture. The quantitative analyses indicate that the unconventional nanoaperture sources can provide enough power density to record marks in the commercial recording medium. It is feasible to use a laser diode with a nano-aperture as an active nanometer light source for high-density optical data storage.

  3. Multi-aperture digital coherent combining for free-space optical communication receivers.

    Science.gov (United States)

    Geisler, David J; Yarnall, Timothy M; Stevens, Mark L; Schieler, Curt M; Robinson, Bryan S; Hamilton, Scott A

    2016-06-13

    Space-to-ground optical communication systems can benefit from reducing the size, weight, and power profiles of space terminals. One way of reducing the required power-aperture product on a space platform is to implement effective, but costly, single-aperture ground terminals with large collection areas. In contrast, we present a ground terminal receiver architecture in which many small less-expensive apertures are efficiently combined to create a large effective aperture while maintaining excellent receiver sensitivity. This is accomplished via coherent detection behind each aperture followed by digitization. The digitized signals are then combined in a digital signal processing chain. Experimental results demonstrate lossless coherent combining of four lasercom signals, at power levels below 0.1 photons/bit/aperture.

  4. The SAMI Galaxy Survey: Can we trust aperture corrections to predict star formation?

    CERN Document Server

    Richards, Samuel Nathan; Croom, Scott; Hopkins, Andrew; Schaefer, Adam; Bland-Hawthorn, Joss; Allen, James; Brough, Sarah; Cecil, Gerald; Cortese, Luca; Fogarty, Lisa; Gunawardhana, Madusha; Goodwin, Michael; Green, Andrew; Ho, I-Ting; Kewley, Lisa; Konstantopoulos, Iraklis; Lawrence, Jon; Lorente, Nuria; Medling, Anne; Owers, Matt; Sharp, Rob; Sweet, Sarah; Taylor, Edward

    2015-01-01

    In the low redshift Universe (z<0.3), our view of galaxy evolution is primarily based on fibre optic spectroscopy surveys. Elaborate methods have been developed to address aperture effects when fixed aperture sizes only probe the inner regions for galaxies of ever decreasing redshift or increasing physical size. These aperture corrections rely on assumptions about the physical properties of galaxies. The adequacy of these aperture corrections can be tested with integral-field spectroscopic data. We use integral-field spectra drawn from 1212 galaxies observed as part of the SAMI Galaxy Survey to investigate the validity of two aperture correction methods that attempt to estimate a galaxy's total instantaneous star formation rate. We show that biases arise when assuming that instantaneous star formation is traced by broadband imaging, and when the aperture correction is built only from spectra of the nuclear region of galaxies. These biases may be significant depending on the selection criteria of a survey s...

  5. Pattern Synthesis of Dual-band Shared Aperture Interleaved Linear Antenna Arrays

    Directory of Open Access Journals (Sweden)

    H. Guo

    2014-09-01

    Full Text Available This paper presents an approach to improve the efficiency of an array aperture by interleaving two different arrays in the same aperture area. Two sub-arrays working at different frequencies are interleaved in the same linear aperture area. The available aperture area is efficiently used. The element positions of antenna array are optimized by using Invasive Weed Optimization (IWO to reduce the peak side lobe level (PSLL of the radiation pattern. To overcome the shortness of traditional methods which can only fulfill the design of shared aperture antenna array working at the same frequency, this method can achieve the design of dual-band antenna array with wide working frequency range. Simulation results show that the proposed method is feasible and efficient in the synthesis of dual-band shared aperture antenna array.

  6. Multi-aperture digital coherent combining for free-space optical communication receivers.

    Science.gov (United States)

    Geisler, David J; Yarnall, Timothy M; Stevens, Mark L; Schieler, Curt M; Robinson, Bryan S; Hamilton, Scott A

    2016-06-13

    Space-to-ground optical communication systems can benefit from reducing the size, weight, and power profiles of space terminals. One way of reducing the required power-aperture product on a space platform is to implement effective, but costly, single-aperture ground terminals with large collection areas. In contrast, we present a ground terminal receiver architecture in which many small less-expensive apertures are efficiently combined to create a large effective aperture while maintaining excellent receiver sensitivity. This is accomplished via coherent detection behind each aperture followed by digitization. The digitized signals are then combined in a digital signal processing chain. Experimental results demonstrate lossless coherent combining of four lasercom signals, at power levels below 0.1 photons/bit/aperture. PMID:27410287

  7. Study on Optical System Based on Synthetic Aperture Technology

    International Nuclear Information System (INIS)

    In order to theoretical and application research in depth on synthetic aperture technology, an optical imaging system was designed. This paper describes the optical system with emphasis on the primary mirror adjusting structure, system stiffness, and temperature effect. Using high precision adjusting structure, the primary mirror is synthesized by three segment mirrors. Angle adjusting structure of each segment mirror has 2 DOF, and is realized by flexible hinge, which not only ensures the simplicity, but the stability and precision as well. A virtual prototype of the angle adjusting structure, which was built by ADAMS and ANSYS, and was simulated, results show that the flexible hinge is reasonable. System stiffness is very important to high precision optical system, especially the flexible hinge, which would reduce system stiffness. Frequency analysis indicates that the primary mirror's frequency is 235.72 Hz, which is stable. The effect of environment temperature fluctuation on the system was studied. Suitable material can reduce thermal stress effect on the mirror. Temperature compensation is also used to solve position changes of mirrors. Prototype test shows that the system is reasonable, which successfully satisfies the requirement of the synthetic aperture technology

  8. Experiments on a Ground-Based Tomographic Synthetic Aperture Radar

    Directory of Open Access Journals (Sweden)

    Hoonyol Lee

    2016-08-01

    Full Text Available This paper presents the development and experiment of three-dimensional image formation by using a ground-based tomographic synthetic aperture radar (GB-TomoSAR system. GB-TomoSAR formulates two-dimensional synthetic aperture by the motion of antennae, both in azimuth and vertical directions. After range compression, three-dimensional image focusing is performed by applying Deramp-FFT (Fast Fourier Transform algorithms, both in azimuth and vertical directions. Geometric and radiometric calibrations were applied to make an image cube, which is then projected into range-azimuth and range-vertical cross-sections for visualization. An experiment with a C-band GB-TomoSAR system with a scan length of 2.49 m and 1.86 m in azimuth and vertical-direction, respectively, shows distinctive three-dimensional radar backscattering of stable buildings and roads with resolutions similar to the theoretical values. Unstable objects such as trees and moving cars generate severe noise due to decorrelation during the eight-hour image-acquisition time.

  9. Three-dimensional radiometric aperture synthesis microscopy for security screening

    Science.gov (United States)

    Salmon, Neil A.; Bowring, Nick

    2014-10-01

    The three dimensional (3D) aperture synthesis imaging technique investigated here is a generalisation of the classic twodimensional radio astronomy technique with refinements for the near-field so it can be applied a personnel security screening portal. This technique can be viewed as a novel form of diffraction emission tomography and extends previous 3D aperture synthesis imaging research using matrix inversion techniques [1]. Simulations using three-dimensional Fourier transforms to create three-dimensional images from simulated three-dimensional visibility functions illustrate the Abbe microscopy resolution should be achievable in three dimensions simultaneously in a single sensor. The field-of-view is demonstrated to be limited by Fresnel scale effects and a means to over coming this by processing sub-sets of local visibility functions with different phase centres throughout the imaging volume is presented. The applications of this technique to a full 3D imaging security screening portal is explored and a route to extending simulation software for market driven imaging scenarios is discussed.

  10. Dynamic Aperture and Resonance Correction for JPARC-RCS

    CERN Document Server

    Molodojentsev, Alexander Y; Hotchi, Hideaki; Ishi, Yoshihiro; Machida, Shinji; Noda, Fumiaki; Shirakata, Masashi; Shobuda, Yoshihiro; Suzuki, Hiromitu; Yamamoto, Kazami

    2005-01-01

    Main intrinsic field nonlinearities, which are common for synchrotrons with large aperture, are the nonlinear field of the bending magnets, the fringing field of the magnets and the sextupole field nonlinearity, used for the chromaticity correction. The particle motion in the ring bending magnets has been analyzed by two methods: (1) by direct integration of the particle motion equations in the 3D magnetic field (Tosca output), based on the 4th order Runge-Kutta integrator and (2) by determination the transfer 8th order map of the bending magnet by using the Gaussian wavelet in the 3D space. The second technique allows us to use powerful tools such as the normal form analysis, to define the resonance driving terms, which can be used for the resonance correction. As the result of this study it was shown that the main limitation of the RCS dynamic aperture can be caused by the structure normal sextupole-order resonance and the normal octupole-order resonance. Other high-order resonances have smaller effects on ...

  11. Interferometric synthetic aperture radar imagery of the Gulf Stream

    Science.gov (United States)

    Ainsworth, T. L.; Cannella, M. E.; Jansen, R. W.; Chubb, S. R.; Carande, R. E.; Foley, E. W.; Goldstein, R. M.; Valenzuela, G. R.

    1993-01-01

    The advent of interferometric synthetic aperture radar (INSAR) imagery brought to the ocean remote sensing field techniques used in radio astronomy. Whilst details of the interferometry differ between the two fields, the basic idea is the same: Use the phase information arising from positional differences of the radar receivers and/or transmitters to probe remote structures. The interferometric image is formed from two complex synthetic aperture radar (SAR) images. These two images are of the same area but separated in time. Typically the time between these images is very short -- approximately 50 msec for the L-band AIRSAR (Airborne SAR). During this short period the radar scatterers on the ocean surface do not have time to significantly decorrelate. Hence the two SAR images will have the same amplitude, since both obtain the radar backscatter from essentially the same object. Although the ocean surface structure does not significantly decorrelate in 50 msec, surface features do have time to move. It is precisely the translation of scattering features across the ocean surface which gives rise to phase differences between the two SAR images. This phase difference is directly proportional to the range velocity of surface scatterers. The constant of proportionality is dependent upon the interferometric mode of operation.

  12. Interferometric Synthetic Aperture Microscopy: Computed Imaging for Scanned Coherent Microscopy

    Directory of Open Access Journals (Sweden)

    Stephen A. Boppart

    2008-06-01

    Full Text Available Three-dimensional image formation in microscopy is greatly enhanced by the use of computed imaging techniques. In particular, Interferometric Synthetic Aperture Microscopy (ISAM allows the removal of out-of-focus blur in broadband, coherent microscopy. Earlier methods, such as optical coherence tomography (OCT, utilize interferometric ranging, but do not apply computed imaging methods and therefore must scan the focal depth to acquire extended volumetric images. ISAM removes the need to scan the focus by allowing volumetric image reconstruction from data collected at a single focal depth. ISAM signal processing techniques are similar to the Fourier migration methods of seismology and the Fourier reconstruction methods of Synthetic Aperture Radar (SAR. In this article ISAM is described and the close ties between ISAM and SAR are explored. ISAM and a simple strip-map SAR system are placed in a common mathematical framework and compared to OCT and radar respectively. This article is intended to serve as a review of ISAM, and will be especially useful to readers with a background in SAR.

  13. Correlated statistical uncertainties in coded-aperture imaging

    Science.gov (United States)

    Fleenor, Matthew C.; Blackston, Matthew A.; Ziock, Klaus P.

    2015-06-01

    In nuclear security applications, coded-aperture imagers can provide a wealth of information regarding the attributes of both the radioactive and nonradioactive components of the objects being imaged. However, for optimum benefit to the community, spatial attributes need to be determined in a quantitative and statistically meaningful manner. To address a deficiency of quantifiable errors in coded-aperture imaging, we present uncertainty matrices containing covariance terms between image pixels for MURA mask patterns. We calculated these correlated uncertainties as functions of variation in mask rank, mask pattern over-sampling, and whether or not anti-mask data are included. Utilizing simulated point source data, we found that correlations arose when two or more image pixels were summed. Furthermore, we found that the presence of correlations was heightened by the process of over-sampling, while correlations were suppressed by the inclusion of anti-mask data and with increased mask rank. As an application of this result, we explored how statistics-based alarming is impacted in a radiological search scenario.

  14. Sparse aperture mask for low order wavefront sensing

    Science.gov (United States)

    Subedi, Hari; Zimmerman, Neil T.; Kasdin, N. Jeremy; Cavanagh, Kathleen; Riggs, A. J. E.

    2015-09-01

    A high contrast is required for direct imaging of exoplanets. Ideally, the level of contrast required for direct imaging of exoplanets can be achieved by coronagraphic imaging, but in practice, the contrast is degraded by wavefront aberrations. To achieve the required contrast, low-order wavefront aberrations such as tip-tilt, defocus and coma must be determined and corrected. In this paper, we present a technique that integrates a sparse- aperture mask (SAM) with a shaped pupil coronagraph (SPC) to make precise estimates of these low-order aberrations. Starlight rejected by the coronagraph's focal plane stop is collimated to a relay pupil, where the mask forms an interference fringe pattern on a detector. Using numerical simulations, we show that the SAM can estimate rapidly varying tip-tilt errors in space telescopes arising from line-of-sight pointing oscillations as well as other higher-order modes. We also show that a Kalman filter can be used with the SAM to improve the estimation. At Princetons High Contrast Imaging Laboratory, we have recently created a testbed devoted to low-order wavefront sensing experiments. The testbed incorporates custom-fabricated masks (shaped pupil, focal plane, and sparse aperture) with a deformable mirror and a CCD camera to demonstrate the estimation and correction of low-order aberrations. Our first experiments aim to replicate the results of the SAM wavefront sensor (SAM WFS) Fourier propagation models.

  15. Passive synthetic aperture imaging with limited noise sources

    Science.gov (United States)

    Garnier, Josselin

    2016-09-01

    We consider a passive synthetic aperture imaging problem. A single moving receiver antenna records random signals generated by one or several distant noise sources and backscattered by one or several reflectors. The sources emit noise signals modeled by stationary random processes. The reflectors can be imaged by summing the autocorrelation functions of the received signals computed over successive time windows, corrected for Doppler factors and migrated by appropriate travel times. In particular, the Doppler effect plays an important role and it can be used for resolution enhancement. When the noise source positions are not known, the reflector can be localized with an accuracy proportional to the reciprocal of the noise bandwidth, even when only a very small number of sources are available. When the noise source positions are known, the reflector can be localized with a cross range resolution proportional to the carrier wavelength and inversely proportional to the length of the receiver trajectory (i.e. the synthetic aperture), and with a range resolution proportional to the reciprocal of the bandwidth, even with only one noise source.

  16. Super Unit Cells in Aperture-Based Metamaterials

    Directory of Open Access Journals (Sweden)

    Dragan Tanasković

    2015-01-01

    Full Text Available An important class of electromagnetic metamaterials are aperture-based metasurfaces. Examples include extraordinary optical transmission arrays and double fishnets with negative refractive index. We analyze a generalization of such metamaterials where a simple aperture is now replaced by a compound object formed by superposition of two or more primitive objects (e.g., rectangles, circles, and ellipses. Thus obtained “super unit cell” shows far richer behavior than the subobjects that comprise it. We show that nonlocalities introduced by overlapping simple subobjects can be used to produce large deviations of spectral dispersion even for small additive modifications of the basic geometry. Technologically, some super cells may be fabricated by simple spatial shifting of the existing photolithographic masks. In our investigation we applied analytical calculations and ab initio finite element modeling to prove the possibility to tailor the dispersion including resonances for plasmonic nanocomposites by adjusting the local geometry and exploiting localized interactions at a subwavelength level. Any desired form could be defined using simple primitive objects, making the situation a geometrical analog of the case of series expansion of a function. Thus an additional degree of tunability of metamaterials is obtained. The obtained designer structures can be applied in different fields like waveguiding and sensing.

  17. Novel multi-aperture approach for miniaturized imaging systems

    Science.gov (United States)

    Wippermann, F. C.; Brückner, A.; Oberdörster, A.; Reimann, A.

    2016-03-01

    The vast majority of cameras and imaging sensors relies on the identical single aperture optics principle with the human eye as natural antetype. Multi-aperture approaches - in natural systems so called compound eyes and in technology often referred to as array-cameras have advantages in terms of miniaturization, simplicity of the optics and additional features such as depth information and refocusing enabled by the computational manipulation of the systeḿs raw image data. The proposed imaging principle is based on a multitude of imaging channels transmitting different parts of the entire field of view. Adapted image processing algorithms are employed for the generation of the overall image by the stitching of the images of the different channels. The restriction of the individual channeĺs field of view leads to a less complex optical system targeting reduced fabrication cost. Due to a novel, linear morphology of the array camera setup, depth mapping with improved resolution can be achieved. We introduce a novel concept for miniaturized array-cameras with several mega pixel resolution targeting high volume applications in mobile and automotive imaging with improved depth mapping and explain design and fabrication aspects.

  18. Multi-Aperture CMOS Sun Sensor for Microsatellite Attitude Determination

    Directory of Open Access Journals (Sweden)

    Michele Grassi

    2009-06-01

    Full Text Available This paper describes the high precision digital sun sensor under development at the University of Naples. The sensor determines the sun line orientation in the sensor frame from the measurement of the sun position on the focal plane. It exploits CMOS technology and an original optical head design with multiple apertures. This allows simultaneous multiple acquisitions of the sun as spots on the focal plane. The sensor can be operated either with a fixed or a variable number of sun spots, depending on the required field of view and sun-line measurement precision. Multiple acquisitions are averaged by using techniques which minimize the computational load to extract the sun line orientation with high precision. Accuracy and computational efficiency are also improved thanks to an original design of the calibration function relying on neural networks. Extensive test campaigns are carried out using a laboratory test facility reproducing sun spectrum, apparent size and distance, and variable illumination directions. Test results validate the sensor concept, confirming the precision improvement achievable with multiple apertures, and sensor operation with a variable number of sun spots. Specifically, the sensor provides accuracy and precision in the order of 1 arcmin and 1 arcsec, respectively.

  19. Magnetic systems for wide-aperture neutron polarizers and analyzers

    Science.gov (United States)

    Gilev, A. G.; Pleshanov, N. K.; Bazarov, B. A.; Bulkin, A. P.; Schebetov, A. F.; Syromyatnikov, V. G.; Tarnavich, V. V.; Ulyanov, V. A.

    2016-10-01

    Requirements on the field uniformity in neutron polarizers are analyzed in view of the fact that neutron polarizing coatings have been improved during the past decade. The design of magnetic systems that meet new requirements is optimized by numerical simulations. Magnetic systems for wide-aperture multichannel polarizers and analyzers are represented, including (a) the polarizer to be built at channel 4-4‧ of the reactor PIK (Gatchina, Russia) for high-flux experiments with a 100×150 mm2 beam of polarized cold neutrons; (b) the fan analyzer covering a 150×100 mm2 window of the detector at the Magnetism Reflectometer (SNS, ORNL, USA); (c) the polarizer and (d) the fan analyzer covering a 220×110 mm2 window of the detector at the reflectometer NERO, which is transferred to PNPI (Russia) from HZG (Germany). Deviations of the field from the vertical did not exceed 2°. The polarizing efficiency of the analyzer at the Magnetism Reflectometer reached 99%, a record level for wide-aperture supermirror analyzers.

  20. Multi-Aperture Miniaturized Star Sensors, Modular Building Blocks for Small Satellite AOCS Systems

    OpenAIRE

    Rotteveel, Jeroen; Le Mair, Anita

    2009-01-01

    Accurate attitude determination is an important enabler for micro- and nanosatellite missions. For remote sensing applications and formation flying missions, the attitude of the spacecraft must be known and controlled with a high accuracy. ISIS introduces a modular and scalable attitude determination system based on a multi-aperture miniature star sensor. Based on a patented concept, the Multi-Aperture Baffled Starsensor, the attitude sensor integrates several apertures into a single star tra...

  1. Synthetic aperture laser optical feedback imaging using a translational scanning with galvanometric mirrors

    OpenAIRE

    Glastre, Wilfried; Jacquin, Olivier; Hugon, Olivier; de Chatellus, Hugues Guillet; Lacot, Eric

    2012-01-01

    In this paper we present an experimental setup based on Laser Optical Feedback Imaging (LOFI) and on Synthetic Aperture (SA) with translational scanning by galvanometric mirrors for the purpose of making deep and resolved images through scattering media. We provide real 2D optical synthetic-aperture image of a fixed scattering target with a moving aperture and an isotropic resolution. We demonstrate theoretically and experimentally that we can keep microscope resolution beyond the working dis...

  2. DETERMINATION OF TARGET LOCATION FOR BISTATIC SYNTHETIC APERTURE RADAR BY GENETIC ALGORITHM

    OpenAIRE

    Mesut KARTAL; KARGIN, Serdar; Kent, Sedef

    2012-01-01

    In this work, the problem of determining the target locations with minimum error is studied by means of the genetic optimization method for synthetic aperture radars. The measurements at each antenna location along the synthetic aperture are being used in the genetic algorithm for error minimization. To increase the amount of data, a second receiver positioned at a different location is used and bistatic synthetic aperture is formed. The additional phase information increases the error minimi...

  3. Focusing properties of Gaussian Schell-model beams by an astigmatic aperture lens

    Institute of Scientific and Technical Information of China (English)

    Pan Liu-Zhan; Ding Chao-Liang

    2007-01-01

    This paper studies the focusing properties of Gaussian Schell-model (GSM) beams by an astigmatic aperture lens.It is shown that the axial irradiance distribution, the maximum axial irradiance and its position of focused GSM beams by an astigmatic aperture lens depend upon the astigmatism of the lens, the coherence of partially coherent light, the truncation parameter of the aperture and Fresnel number. The numerical calculation results are given to illustrate how these parameters affect the focusing property.

  4. Increasing the sensitivity of controlled-source electromagnetics with synthetic aperture

    OpenAIRE

    Fan, Y. (Yujing); R. Snieder; Slob, E.C.; Hunziker, J.W.; Singer, J; Sheiman, J.; Rosenquist, M.

    2012-01-01

    Controlled-source electromagnetics (CSEM) has been used as a derisking tool in the hydrocarbon exploration industry. We apply the concept of synthetic aperture to the lowfrequency electromagnetic field in CSEM. Synthetic aperture sources have been used in radar imaging for many years. Using the synthetic aperture concept, big synthetic sources can be constructed by adding the response to small sources (building blocks) in different ways, and consequently, big sources with different radiation ...

  5. Multi-aperture optics as a universal platform for computational imaging

    Science.gov (United States)

    Tanida, Jun

    2016-08-01

    Computational imaging is a novel imaging framework based on optical encoding and computational decoding. To avoid a heuristic design that depends on the particular problem to be solved, multi-aperture optics is useful as a universal platform for optical encoding. In this paper, the fundamental properties of multi-aperture optics are summarized. Then some examples of interesting functions implemented by multi-aperture optics are explained, together with some effective applications.

  6. Development of the Synthetic Aperture Radiometer ESTAR and the Next Generation

    Science.gov (United States)

    LeVine, David M.; Haken, Michael; Swift, Calvin T.

    2004-01-01

    ESTAR is a research instrument built to develop the technology of aperture synthesis for passive remote sensing of Earth from space. Aperture synthesis is an interferometric technology that addresses the problem of putting large antenna apertures in space to achieve the spatial resolution needed for remote sensing at long wavelengths ESTAR was a first step (synthesis only across track and only at horizontal polarization). The development has progressed to a new generation instrument that is dual polarized and does aperture synthesis in two dimensions. Among the plans for the future is technology to combine active and passive remote sensing.

  7. Propagation of hermite-cosh-gaussian beams passing through ABCD optical system with an annular aperture

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    By using the expansion of the aperture function into a finte sum of complex Gaussian functions, the corresponding analytical expressions of Hermite-cosh-Gaussian beams passing through annular apertured paraxially and symmetrically optical systems written in terms of ABCD matrix were derived, and they could reduce to the cases with squared aperture. In a similar way, the corresponding analytical expressions of cosh-Gaussian beams through annular apertured ABCD matrix were also given. The method could save more calculation time than that by using the diffraction integral formula directly.

  8. A compact, large-aperture tunable lens with adaptive spherical correction

    CERN Document Server

    Wapler, Matthias C; Wallrabe, Ulrike

    2014-01-01

    In this paper, we present the proof of concept of a very fast adaptive glass membrane lens with a large aperture/diameter ratio, spherical aberration correction and integrated actuation. The membrane is directly deformed using two piezo actuators that can tune the focal length and the conical parameter. This operating principle allows for a usable aperture of the whole membrane diameter. Together with the efficient actuation mechanism, the aperture is around 2/3 of the total system diameter - at a thickness of less than 2mm. The response time is a few milliseconds at 12mm aperture, which is fast compared to similar systems.

  9. 11 T Twin-Aperture Nb$_3$Sn Dipole Development for LHC Upgrades

    Energy Technology Data Exchange (ETDEWEB)

    Zlobin, A. V. [Fermilab; Andreev, N. [Fermilab; Apollinari, G. [Fermilab; Auchmann, B. [CERN; Barzi, E. [Fermilab; Izquierdo Bermudez, S. [CERN; Bossert, R. [Fermilab; Buehler, M. [Fermilab; Chlachidze, G. [Fermilab; DiMarco, J. [Fermilab; Karppinen, M. [CERN; Nobrega, F. [Fermilab; Novitski, I. [CERN; Rossi, L. [CERN; Smekens, D. [CERN; Tartaglia, M. [Fermilab; Turrioni, D. [Fermilab; Velev, Genadi [Fermilab

    2015-01-01

    FNAL and CERN are developing a twin-aperture 11 T Nb3Sn dipole suitable for installation in the LHC. This paper describes the design and parameters of the 11 T dipole developed at FNAL for the LHC upgrades in both single-aperture and twin-aperture configurations, and presents details of the constructed dipole models. Results of studies of magnet quench performance, quench protection and magnetic measurements performed using short 1 m long coils in the dipole mirror and single-aperture configurations are reported and discussed.

  10. Analytical form of EM fields radiated by circular aperture antennas of various current distributions

    Institute of Scientific and Technical Information of China (English)

    Le-Wei Li; Qun Wu

    2005-01-01

    In this paper, the electromagnetic radiation by circular aperture antennas fed by circular waveguides is considered. Electromagnetic fields radiated by the aperture antennas are formulated in detail and two aperture field distributions are considered, one being the uniform distribution and the other being the TE11-mode distribution. Some mistakes existing in the literature are pointed out. The detailed derivations for the fields by the TE11-mode distribution aperture were not commonly available in the public literature, although the solution is available. The analytical results obtained here are useful for antenna designers and antenna engineering education.

  11. GNSS-based passive radar sensing using hybrid-aperture system

    Science.gov (United States)

    Silver, Randy; Zhang, Yan Rockee; Suarez, Hernan; Pan, Yu; Huang, Yih-Ru

    2013-05-01

    A hybrid-aperture radar system is being developed for passive, GNSS-based sensing and imaging missions. Different from previous work, the real aperture (RA) array has excellent cross-range resolution and electronic scanning capability, and synthetic aperture processing is applied for the dimension along the UAV/aircraft flight path. The hybrid aperture thus provides real-time, combined sensing capability and multiple functions. Multi-level signal synchronization and tracking is used to ensure the signal phase coherency and integrity. The advantages of covert radar sensing and reduced onboard computing complexity of this sensor are being demonstrated through experiments.

  12. Energy conserving coupling through small apertures in an infinite perfect conducting screen

    Science.gov (United States)

    Petzold, J.; Tkachenko, S.; Vick, R.

    2015-11-01

    Apertures in shielding enclosures are an important issue for determining shielding efficiencies. Various mathematical procedures and theories were employed to describe the coupling between the regions connected via an aperture in a well conducting plane. Bethe's theory describes the coupling via the equivalent problem of field excited dipole moments at the location of the aperture. This approach neglects the reaction of the dipole moments on the exciting field and therefore violates energy conservation. This work emphasizes an analytical approach for coupling between half-spaces through small apertures, inspired by the so called method of small antenna, which allows an understandable generalization of Bethe's theory.

  13. Quench Performance of the First Twin-aperture 11 T Dipole for LHC upgrades

    CERN Document Server

    Zlobin, A V; Apollinari, G; Barzi, E; Chlachidze, G; Nobrega, A; Novitski, I; Stoynev, S; Turrioni, D; Auchmann, B; Izquierdo Bermudez, S; Karppinen, M; Rossi, L; Savary, F; Smekens, D

    2015-01-01

    FNAL and CERN are developing a twin-aperture 11 T $Nb_{3}Sn$ dipole suitable for installation in the LHC. A single-aperture 2-m long dipole demonstrator and two 1-m long dipole models have been fabricated and tested at FNAL in 2012-2014. The two 1 m long collared coils were then assembled into the first twin-aperture $Nb_{3}Sn$ demonstrator dipole and tested. Test results of this twin-aperture $Nb_{3}Sn$ dipole model are reported and discussed.

  14. The electromagnetic modeling of thin apertures using the finite-difference time-domain technique

    Science.gov (United States)

    Demarest, Kenneth R.

    1987-01-01

    A technique which computes transient electromagnetic responses of narrow apertures in complex conducting scatterers was implemented as an extension of previously developed Finite-Difference Time-Domain (FDTD) computer codes. Although these apertures are narrow with respect to the wavelengths contained within the power spectrum of excitation, this technique does not require significantly more computer resources to attain the increased resolution at the apertures. In the report, an analytical technique which utilizes Babinet's principle to model the apertures is developed, and an FDTD computer code which utilizes this technique is described.

  15. Quench Performance of the First Twin-aperture 11 T Dipole for LHC upgrades

    Energy Technology Data Exchange (ETDEWEB)

    Zlobin, A. V. [Fermilab; Andreev, N. [Fermilab; Apollinari, G. [Fermilab; Barzi, E. [Fermilab; Chlachidze, G. [Fermilab; Nobrega, A. [Fermilab; Novitski, I. [Fermilab; Stoynev, S.; Turrioni, D. [Fermilab; Auchmann, B. [CERN; Izquierdo Bermudez, S. [CERN; Karppinen, M. [CERN; Rossi, L. [CERN; Savary, F. [CERN; Smekens, D. [CERN

    2015-06-01

    FNAL and CERN are developing a twin-aperture 11 T $Nb_{3}Sn$ dipole suitable for installation in the LHC. A single-aperture 2-m long dipole demonstrator and two 1-m long dipole models have been fabricated and tested at FNAL in 2012-2014. The two 1 m long collared coils were then assembled into the first twin-aperture $Nb_{3}Sn$ demonstrator dipole and tested. Test results of this twin-aperture $Nb_{3}Sn$ dipole model are reported and discussed.

  16. Enhanced terahertz transmission through a periodic array of tapered rectangular apertures

    CERN Document Server

    Devi, Koijam Monika; Kumar, Gagan

    2016-01-01

    We numerically analyse extraordinary terahertz transmission properties of an array of rectangular shaped apertures perforated periodically on a thin metal film. The apertures are tapered at different angles to achieve higher field concentration at the tapered end. The periodic sub-wavelength scale apertures ensure plasmonic behaviour giving rise to the enhanced transmission of a specific frequency mode decided by the periodicity. We compare results of transmission with the rectangular shaped apertures of same parameters and observe a significant increase in the transmission for the tapered case. We have compared results of our numerical simulations with theory and have found them consistent.

  17. Simultaneous beam sampling and aperture shape optimization for SPORT

    Energy Technology Data Exchange (ETDEWEB)

    Zarepisheh, Masoud; Li, Ruijiang; Xing, Lei, E-mail: Lei@stanford.edu [Department of Radiation Oncology, Stanford University, Stanford, California 94305 (United States); Ye, Yinyu [Department of Management Science and Engineering, Stanford University, Stanford, California 94305 (United States)

    2015-02-15

    Purpose: Station parameter optimized radiation therapy (SPORT) was recently proposed to fully utilize the technical capability of emerging digital linear accelerators, in which the station parameters of a delivery system, such as aperture shape and weight, couch position/angle, gantry/collimator angle, can be optimized simultaneously. SPORT promises to deliver remarkable radiation dose distributions in an efficient manner, yet there exists no optimization algorithm for its implementation. The purpose of this work is to develop an algorithm to simultaneously optimize the beam sampling and aperture shapes. Methods: The authors build a mathematical model with the fundamental station point parameters as the decision variables. To solve the resulting large-scale optimization problem, the authors devise an effective algorithm by integrating three advanced optimization techniques: column generation, subgradient method, and pattern search. Column generation adds the most beneficial stations sequentially until the plan quality improvement saturates and provides a good starting point for the subsequent optimization. It also adds the new stations during the algorithm if beneficial. For each update resulted from column generation, the subgradient method improves the selected stations locally by reshaping the apertures and updating the beam angles toward a descent subgradient direction. The algorithm continues to improve the selected stations locally and globally by a pattern search algorithm to explore the part of search space not reachable by the subgradient method. By combining these three techniques together, all plausible combinations of station parameters are searched efficiently to yield the optimal solution. Results: A SPORT optimization framework with seamlessly integration of three complementary algorithms, column generation, subgradient method, and pattern search, was established. The proposed technique was applied to two previously treated clinical cases: a head and

  18. Simultaneous beam sampling and aperture shape optimization for SPORT

    International Nuclear Information System (INIS)

    Purpose: Station parameter optimized radiation therapy (SPORT) was recently proposed to fully utilize the technical capability of emerging digital linear accelerators, in which the station parameters of a delivery system, such as aperture shape and weight, couch position/angle, gantry/collimator angle, can be optimized simultaneously. SPORT promises to deliver remarkable radiation dose distributions in an efficient manner, yet there exists no optimization algorithm for its implementation. The purpose of this work is to develop an algorithm to simultaneously optimize the beam sampling and aperture shapes. Methods: The authors build a mathematical model with the fundamental station point parameters as the decision variables. To solve the resulting large-scale optimization problem, the authors devise an effective algorithm by integrating three advanced optimization techniques: column generation, subgradient method, and pattern search. Column generation adds the most beneficial stations sequentially until the plan quality improvement saturates and provides a good starting point for the subsequent optimization. It also adds the new stations during the algorithm if beneficial. For each update resulted from column generation, the subgradient method improves the selected stations locally by reshaping the apertures and updating the beam angles toward a descent subgradient direction. The algorithm continues to improve the selected stations locally and globally by a pattern search algorithm to explore the part of search space not reachable by the subgradient method. By combining these three techniques together, all plausible combinations of station parameters are searched efficiently to yield the optimal solution. Results: A SPORT optimization framework with seamlessly integration of three complementary algorithms, column generation, subgradient method, and pattern search, was established. The proposed technique was applied to two previously treated clinical cases: a head and

  19. Synthetic aperture radar sensors : viable for marine oil spill response?

    International Nuclear Information System (INIS)

    The movement of marine oil spills has been observed and tracked for several years using space borne Synthetic Aperture Radars (SAR). The advantages of SAR for monitoring oil spills include wide field-of-view, foul weather independence, and day/night capabilities. However, SAR displays several shortcomings such as low spatial resolution, long revisit times, no positive means of oil detection, confusion with numerous false targets, and a limited wind speed window in which to observe the oil spill. The authors reviewed the history behind the use of SAR sensors in their capacity as marine oil spill response tools. They presented case studies to better illustrate the benefits of using SAR imagery, in light of the new generation of SAR sensors currently emerging. It is expected that the new SAR sensors coming on stream will enable oil response teams to use the information gathered in a tactical oil spill response. 20 refs., 3 tabs., 5 figs

  20. Ultrasonic weld defect sizing using the synthetic aperture focusing technique

    International Nuclear Information System (INIS)

    The synthetic aperture focusing technique (SAFT) has been shown to increase lateral resolution of appropriately acquired B-scan images. The requirements of very accurate transducer position information and a well understood divergent ultrasonic beam can make it difficult to incorporate the technique into conventional inspections or to use it on previously acquired data. By using a reference reflector and an echo locus matching procedure it is possible to ease the latter requirement so that data acquired using conventional focused or flat transducers can be enhanced using the SAFT process. One current application of the SAFT technique is the accurate sizing and monitoring of known defects in a nuclear generating station boiler manway weld. Testing on laboratory samples which duplicate the manway geometry indicate the potential for improved resolution using SAFT

  1. INTERFEROMETRIC SYNTHETIC APERTURE RADAR (INSAR TECHNOLOGY AND GEOMORPHOLOGY INTERPRETATION

    Directory of Open Access Journals (Sweden)

    M. Maghsoudi

    2013-09-01

    Full Text Available Geomorphology is briefly the study of landforms and their formative processes on the surface of the planet earth as human habitat. The landforms evolution and the formative processes can best be studied by technologies with main application in study of elevation. Interferometric Synthetic Aperture Radar (InSAR is the appropriate technology for this application. With phase differences calculations in radar waves, the results of this technology can extensively be interpreted for geomorphologic researches. The purpose of the study is to review the geomorphologic studies using InSAR and also the technical studies about InSAR with geomorphologic interpretations. This study states that the InSAR technology can be recommended to be employed as a fundamental for geomorphology researches.

  2. Large-aperture, high-damage-threshold optics for beamlet

    Energy Technology Data Exchange (ETDEWEB)

    Campbell, J.H.; Atherton, L.J.; DeYoreo, J.J. [and others

    1996-06-01

    Beamlet serves as a test bed for the proposed National Ignition Facility (NIF) laser design and components. Therefore, its optics are similar in size and quality to those proposed for the NIF. In general, the optics in the main laser cavity and transport section of Beamlet are larger and have higher damage thresholds than the optics manufactured for any of the previous laser systems. In addition, the quality of the Beamlet optical materials is higher, leading to better wavefront quality, higher optical transmission, and lower-intensity modulation of the output laser beam than, for example, that typically achieved on Nova. In this article, the authors discuss the properties and characteristics of the large-aperture optics used on Beamlet.

  3. Adaptive Multi-Lag for Synthetic Aperture Vector Flow Imaging

    DEFF Research Database (Denmark)

    Villagómez Hoyos, Carlos Armando; Stuart, Matthias Bo; Jensen, Jørgen Arendt

    2014-01-01

    ulti- lag method, which is performed in synthetic aperture vector flow data. Measurements are made on laminar and pulsatile, transverse flow profiles. A 7 MHz linear array is connected to t he SARUS research, and acquisitions are made on a vessel phanto m with recirculating blood mimicking fluid driven......The range of detectable velocities in ultrasound flow imaging is linked to the user selection of pulse repetiti on frequency. Whenever a region with large differences in velo city magnitude is visualized, a trade-off has to be made. This work suggests an adaptive spatio-temporaly independent, m...... by a softwar e controlled pump. A multi-lag velocity estimation is perfor med, and a lag is adaptively selected for every estimation point. Results from the constant flow compared to a true parabolic profile sho w an improvement in relative bias from 76.99% to 0.91% and standard deviation from 13.60% to 1...

  4. In-vivo synthetic aperture flow imaging in medical ultrasound

    DEFF Research Database (Denmark)

    Nikolov, Svetoslav; Jensen, Jørgen Arendt

    2003-01-01

    . Any type of filter can be used for discrimination between tissue and blood flow without initialization, and the number of lines used for velocity estimation is limited only by the nonstationarity of the flow. The new approach is investigated through both simulations and measurements. A flow rig...... is used for generating a parabolic laminar flow, and a research scanner is used for acquiring RF data from individual transducer elements. A reference profile is calculated from a mass flow meter. The parabolic velocity profile is estimated using the new approach with a relative standard deviation of 2......A new method for acquiring flow images using synthetic aperture techniques in medical ultrasound is presented. The new approach makes it possible to have a continuous acquisition of flow data throughout the whole image simultaneously, and this can significantly improve blood velocity estimation...

  5. Assessing collective affect recognition via the Emotional Aperture Measure.

    Science.gov (United States)

    Sanchez-Burks, Jeffrey; Bartel, Caroline A; Rees, Laura; Huy, Quy

    2016-01-01

    Curiosity about collective affect is undergoing a revival in many fields. This literature, tracing back to Le Bon's seminal work on crowd psychology, has established the veracity of collective affect and demonstrated its influence on a wide range of group dynamics. More recently, an interest in the perception of collective affect has emerged, revealing a need for a methodological approach for assessing collective emotion recognition to complement measures of individual emotion recognition. This article addresses this need by introducing the Emotional Aperture Measure (EAM). Three studies provide evidence that collective affect recognition requires a processing style distinct from individual emotion recognition and establishes the validity and reliability of the EAM. A sample of working managers further shows how the EAM provides unique insights into how individuals interact with collectives. We discuss how the EAM can advance several lines of research on collective affect.

  6. Time-frequency analysis of synthetic aperture radar signals

    Energy Technology Data Exchange (ETDEWEB)

    Johnston, B.

    1996-08-01

    Synthetic aperture radar (SAR) has become an important tool for remote sensing of the environment. SAR is a set of digital signal processing algorithms that are used to focus the signal returned to the radar because radar systems in themselves cannot produce the high resolution images required in remote sensing applications. To reconstruct an image, several parameters must be estimated and the quality of output image depends on the degree of accuracy of these parameters. In this thesis, we derive the fundamental SAR algorithms and concentrate on the estimation of one of its critical parameters. We show that the common technique for estimating this particular parameter can sometimes lead to erroneous results and reduced quality images. We also employ time-frequency analysis techniques to examine variations in the radar signals caused by platform motion and show how these results can be used to improve output image quality.

  7. Computational Investigation of Dynamic Glottal Aperture Effects on Respiratory Airflow

    Science.gov (United States)

    Xi, Jinxiang; Yan, Hong; Dong, Haibo

    2008-11-01

    The periodic movement of the glottal aperture (vocal folds) during tidal breathing has been long recognized as a factor in altering the airflow dynamics in the tracheobrnchial region. The potential influence from these altered flow structures on the transport and deposition of inhaled particles is not known. However, studies devoted to this dynamic physiological feature are scarce due to the complex anatomy in of the larynx and numerical challenges in simulating dynamic geometries. In this study, a high-fidelity immersed boundary solver is used to investigate this problem. A 3D human oral-larynx-lung model is firstly reconstructed from MRI data. The role of the vocal fold movement and associated airflow characteristics such as vortex shedding, Coanda effect etc. during inhalation and exhalation are then numerically studied.

  8. Wide Angular Aperture Circularly Polarized Low-Profile EBG Antenna

    Directory of Open Access Journals (Sweden)

    Moustapha Salah Toubet

    2012-01-01

    Full Text Available This paper describes the design of a compact and wide angular circularly polarized low-profile EBG antenna. Except at 3.7 GHz and for θ lower than −25° in the plane Φ equals to 0°, the modelized structure provides an axial ratio lower than 3 dB, over a wide angular aperture of 60° and over a bandwidth of 5.3% ([3.7 GHz–3.9 GHz]. It has a very low height of 11.9 mm (/7 at 3.8 GHz. A prototype has been manufactured, and the measured performances, considering the tolerance of the measurement base (±0.5 dB, are quite similar to the simulated ones.

  9. Wide Angular Aperture Circularly Polarized Low-Profile EBG Antenna

    OpenAIRE

    Moustapha Salah Toubet; Ahmad Elsayed Ahmad; Regis Chantalat; Mohamad Hajj; Eric Arnaud; Bernard Jecko; Thierry Monediere; Christelle Boustie; Baptiste Palacin

    2012-01-01

    This paper describes the design of a compact and wide angular circularly polarized low-profile EBG antenna. Except at 3.7 GHz and for θ lower than −25° in the plane Φ equals to 0°, the modelized structure provides an axial ratio lower than 3 dB, over a wide angular aperture of 60° and over a bandwidth of 5.3% ([3.7 GHz–3.9 GHz]). It has a very low height of 11.9 mm ( /7 at 3.8 GHz). A prototype has been manufactured, and the measured performances, considering the tolerance of the measuremen...

  10. Analytical Solutions for Beams Passing Apertures with Sharp Boundaries

    CERN Document Server

    Luz, Eitam; Malomed, Boris A

    2016-01-01

    An approximation is elaborated for the paraxial propagation of diffracted beams, with both one- and two-dimensional cross sections, which are released from apertures with sharp boundaries. The approximation applies to any beam under the condition that the thickness of its edges is much smaller than any other length scale in the beam's initial profile. The approximation can be easily generalized for any beam whose initial profile has several sharp features. Therefore, this method can be used as a tool to investigate the diffraction of beams on complex obstacles. The analytical results are compared to numerical solutions and experimental findings, which demonstrates high accuracy of the approximation. For an initially uniform field confined by sharp boundaries, this solution becomes exact for any propagation distance and any sharpness of the edges. Thus, it can be used as an efficient tool to represent the beams, produced by series of slits with a complex structure, by a simple but exact analytical solution.

  11. Oxide-apertured VCSEL with short period superlattice

    Institute of Scientific and Technical Information of China (English)

    Lin Li(李林); Jingchang Zhong(钟景昌); Yongming Zhang(张永明); Wei Su(苏伟); Yingjie Zhao(赵英杰); Changling Yan(晏长岭); Yongqin Hao(郝永琴); Xiaoguang Jiang(姜晓光)

    2004-01-01

    Novel distributed Bragg reflectors (DBRs) with 4.5 pairs of GaAs/AlAs short period superlattice (SPS)used in oxide-apertured vertical-cavity surface-emitting lasers (VCSELs) were designed. The structure of a 22-period Al0.9Ga0.1As (69.5 nm)/4.5-pair [GaAs (10 nm)-AlAs (1.9 nm)] DBR was grown on an n+ GaAs substrate (100) 2° off toward (111)A by molecular beam epitaxy. The emitting wavelength was 850 nm with low threshold current of about 2 mA, corresponding to the threshold current density of 2 kA/cm2. The maximum output power was more than 1 mW. The VCSEL device temperature was increased by heating ambient temperature from 20 to 100 ℃ and the threshold current increased slowly with the increase of temperature.

  12. Passive synthetic aperture radar imaging of ground moving targets

    Science.gov (United States)

    Wacks, Steven; Yazici, Birsen

    2012-05-01

    In this paper we present a method for imaging ground moving targets using passive synthetic aperture radar. A passive radar imaging system uses small, mobile receivers that do not radiate any energy. For these reasons, passive imaging systems result in signicant cost, manufacturing, and stealth advantages. The received signals are obtained by multiple airborne receivers collecting scattered waves due to illuminating sources of opportunity such as commercial television, radio, and cell phone towers. We describe a novel forward model and a corresponding ltered-backprojection type image reconstruction method combined with entropy optimization. Our method determines the location and velocity of multiple targets moving at dierent velocities. Furthermore, it can accommodate arbitrary imaging geometries. we present numerical simulations to verify the imaging method.

  13. Performance limits for maritime Inverse Synthetic Aperture Radar (ISAR).

    Energy Technology Data Exchange (ETDEWEB)

    Doerry, Armin Walter

    2013-11-01

    The performance of an Inverse Synthetic Aperture Radar (ISAR) system depends on a variety of factors, many which are interdependent in some manner. In this report we specifically examine ISAR as applied to maritime targets (e.g. ships). It is often difficult to get your arms around the problem of ascertaining achievable performance limits, and yet those limits exist and are dictated by physics. This report identifies and explores those limits, and how they depend on hardware system parameters and environmental conditions. Ultimately, this leads to a characterization of parameters that offer optimum performance for the overall ISAR system. While the information herein is not new to the literature, its collection into a single report hopes to offer some value in reducing the seek time.

  14. Estimation of velocity vectors in synthetic aperture ultrasound imaging

    DEFF Research Database (Denmark)

    Jensen, Jørgen Arendt; Oddershede, Niels

    2006-01-01

    A method for determining both velocity magnitude and angle in a synthetic aperture ultrasound system is described. The approach uses directional beamforming along the flow direction and cross-correlation to determine velocity magnitude. The angle of the flow is determined from the maximum...... of points within the region of flow. The velocity magnitude is determined with a precision of 0.36% (60 deg) and 1.2% (90 deg), respectively. The 60 deg angle is estimated with a bias of 0.54 deg and a standard deviation of 2.1 deg. For 90 deg the bias is 0.0003 deg and standard deviation 1.32 deg...... of the visually determined flow angle. The standard deviation of these estimates was below 2.7 deg. Full color flow maps from different parts of the cardiac cycle are presented, including vector arrows indicating both estimated flow direction and velocity magnitude....

  15. Cardiac In-vivo Measurements Using Synthetic Transmit Aperture Ultrasound

    DEFF Research Database (Denmark)

    Andresen, Henrik; Nikolov, Svetoslav; Hassager, Christian;

    2006-01-01

    This paper investigates the feasibility of acquiring cardiac images using synthetic transmit aperture (STA) ultrasound. Focusing in STA is done by beamforming all points in the image for every emission, creating a low-resolution image. The low-resolution images for each emission are summed......, effectively achieving dynamic transmit and receive focusing. The purpose of this paper is to acquire in-vivo cardiac images using STA to investigate image quality and the effect of tissue motion. For the in-vivo experiments, a 3 MHz and a 3.5 MHz transducers were used with 64 and 128 elements, respectively...... are attributed to be caused by tissue motion. The images created by the sparse sequence show a reduced contrast, but also a reduction of the distortion caused by tissue motion....

  16. Multi-Element Synthetic Transmit Aperture Imaging using Temporal Encoding

    DEFF Research Database (Denmark)

    Gammelmark, Kim; Jensen, Jørgen Arendt

    2002-01-01

    A new method to increase the signal-to-noise-ratio (SNR) of synthetic transmit aperture (STA) imaging is investigated. The new approach is called temporally Encoded Multi-Element STA imaging (EMESTA). It utilizes multiple elements to emulate a single transmit element, and the conventional short...... investigations show improvements of 4-12 dB. The depth performance is investigated using a multi-target phantom. Results show a 30 mm increase in penetration depth with improved spatial resolution.In conclusion, EMESTA imaging significantly increases the SNR of STA imaging, exceeding that of linear arrayimaging...... excitation pulsesare replaced by linear FM signals. Simulations using Field II and measurements are compared to linear array imaging.A theoretical analysis shows a possible improvement in SNR of 17 dB. Simulations are done using an 8.5 MHzlinear array transducer with 128 elements. Spatial resolution results...

  17. Aperture Synthesis Methods and Applications to Optical Astronomy

    CERN Document Server

    Saha, Swapan Kumar

    2011-01-01

    Over the years long baseline optical interferometry has slowly gained in importance and today it is a powerful tool. This timely book sets out to highlight the basic principles of long baseline optical interferometry. The book addresses the fundamentals of stellar interferometry with emphasis on aperture synthesis using an array of telescopes particularly at optical/IR wavelengths. It discusses the fundamentals of electromagnetic fields, wave optics, interference, diffraction, and imaging at length. There is a chapter dedicated to radio and intensity interferometry corroborating with basic mathematical steps. The basic principle of optical interferometry and its requirements, its limitations and the technical challenges it poses, are also covered in depth. Assisted by illustrations and footnotes, the book examines the basic tricks of the trade, current trends and methods, and it points to the potential of true interferometry both from the ground and space.

  18. In Vivo Real Time Volumetric Synthetic Aperture Ultrasound Imaging

    DEFF Research Database (Denmark)

    Bouzari, Hamed; Rasmussen, Morten Fischer; Brandt, Andreas Hjelm;

    2015-01-01

    Synthetic aperture (SA) imaging can be used to achieve real-time volumetric ultrasound imaging using 2-D array transducers. The sensitivity of SA imaging is improved by maximizing the acoustic output, but one must consider the limitations of an ultrasound system, both technical and biological....... This paper investigates the in vivo applicability and sensitivity of volumetric SA imaging. Utilizing the transmit events to generate a set of virtual point sources, a frame rate of 25 Hz for a 90° x 90° field-of-view was achieved. Data were obtained using a 3.5 MHz 32 x 32 elements 2-D phased array...... transducer connected to the experimental scanner (SARUS). Proper scaling is applied to the excitation signal such that intensity levels are in compliance with the U.S. Food and Drug Administration regulations for in vivo ultrasound imaging. The measured Mechanical Index and spatial-peak- temporal...

  19. Comparison between different encoding schemes for synthetic aperture imaging

    DEFF Research Database (Denmark)

    Nikolov, Svetoslav; Jensen, Jørgen Arendt

    2002-01-01

    Synthetic transmit aperture ultrasound (STAU) imaging can create images with as low as 2 emissions, making it attractive for 3D real-time imaging. Two are the major problems to be solved: (1) complexity of the hardware involved, and (2) poor image quality due to low signal to noise ratio (SNR). We...... have solved the first problem by building a scanner capable of acquiring data using STAU in real-time. The SNR is increased by using encoded signals, which make it possible to send more energy in the body, while reserving the spatial and contrast resolution. The performance of temporal, spatial...... and spatio-temporal encoding was investigated. Experiments on wire phantom in water were carried out to quantify the gain from the different encodings. The gain in SNR using an FM modulated pulse is 12 dB. The penetration depth of the images was studied using tissue mimicking phantom with frequency dependent...

  20. Wide-aperture electric-discharge nitrogen laser

    International Nuclear Information System (INIS)

    The parameters of a wide-aperture nitrogen laser pumped by a generator with the inductive energy storage and a SOS diode opening switch or a generator with the capacitive energy storage are studied. The gas preionisation was performed by soft X-rays. The size of the active volume of the laser was 10x6x100 cm. The output energy and power obtained at the 337.1-nm C 3Πu - B 3Πg transition are maximal for electric-discharge nitrogen lasers. The output energy in the second positive system of nitrogen in the N2-SF6 mixture achieved 110 mJ for a peak power of 6 MW. Due to an increase in voltage across the laser gap in nitrogen mixtures with NF3, the generation of ∼35-mJ, 100-ns pulses was obtained in the quasi-stationary stage of the discharge. (lasers)

  1. Synthetic Aperture Flow Imaging Using a Dual Beamformer Approach

    DEFF Research Database (Denmark)

    Li, Ye

    Color flow mapping systems have become widely used in clinical applications. It provides an opportunity to visualize the velocity profile over a large region in the vessel, which makes it possible to diagnose, e.g., occlusion of veins, heart valve deficiencies, and other hemodynamic problems....... However, while the conventional ultrasound imaging of making color flow mapping provides useful information in many circumstances, the spatial velocity resolution and frame rate are limited. The entire velocity distribution consists of image lines from different directions, and each image line...... is estimated using multiple emissions. Therefore, it is very difficult to acquire a full volume of data for the blood flow in the heart in real-time. A radical break with this has been the synthetic aperture technique. This technique makes it possible to increase the frame rate, and the reconstruction also...

  2. Synthetic Aperture Sequential Beamforming implemented on multi-core platforms

    DEFF Research Database (Denmark)

    Kjeldsen, Thomas; Lassen, Lee; Hemmsen, Martin Christian;

    2014-01-01

    This paper compares several computational ap- proaches to Synthetic Aperture Sequential Beamforming (SASB) targeting consumer level parallel processors such as multi-core CPUs and GPUs. The proposed implementations demonstrate that ultrasound imaging using SASB can be executed in real- time...... with a significant headroom for post-processing. The CPU implementations are optimized using Single Instruction Multiple Data (SIMD) instruction extensions and multithreading, and the GPU computations are performed using the APIs, OpenCL and OpenGL. The implementations include refocusing (dynamic focusing) of a set...... per second) on an Intel Core i7 2600 CPU with an AMD HD7850 and a NVIDIA GTX680 GPU. The fastest CPU and GPU implementations use 14% and 1.3% of the real-time budget of 62 ms/frame, respectively. The maximum achieved processing rate is 1265 frames/s....

  3. Theory of surface plasmon generation at nanoslit apertures

    CERN Document Server

    Lalanne, P; Rodier, J C

    2005-01-01

    In this letter, we study the scattering of light by a single subwavelength slit in a metal screen. In contrast to previous theoretical works, we provide a microscopic description of the scattering process by emphasizing the generation of surface plasmons at the slit apertures. The analysis is supported by a rigorous formalism based on a normal-mode-decomposition technique and by a semi-analytical model which provides accurate formulae for the plasmonic generation strengths. The generation is shown to be fairly efficient for metals with a low conductivity, like gold in the visible regime. Verification of the theory is also shown by comparison with recent experimental data [H.F. Schouten et al., Phys. Rev. Lett. 94, 053901 (2005)].

  4. Offshore wind potential in South India from synthetic aperture radar

    Energy Technology Data Exchange (ETDEWEB)

    Hasager, C.B.; Bingoel, F.; Badger, M.; Karagali, I.; Sreevalsan, E.

    2011-10-15

    The offshore wind energy potential for pre-feasibility in South India in the area from 77 deg. to 80 deg. Eastern longitude and 7 deg. to 10 deg. Northern latitude is observed from a total of 164 ENVISAT Advanced Synthetic Aperture Radar (ASAR) satellite images during the years 2002 to 2011. All satellite scenes are from Wide Swath Mode and each cover approximately 400 km by 400 km. The ocean wind speed maps are retrieved and processed at Risoe DTU. The results show wind energy density from 200 W/m2 to 500 W/m2 at 10 m height above sea level. QuikSCAT ocean winds are included as background information on the 10-year mean and a general description of the winds and climate with monsoons in India is presented. (Author)

  5. Signal based motion compensation for synthetic aperture radar

    Energy Technology Data Exchange (ETDEWEB)

    John Kirk

    1999-06-07

    The purpose of the Signal Based Motion Compensation (SBMC) for Synthetic Aperture Radar (SAR) effort is to develop a method to measure and compensate for both down range and cross range motion of the radar in order to provide high quality focused SAR imagery in the absence of precision measurements of the platform motion. Currently SAR systems require very precise navigation sensors for motion compensation. These sensors are very expensive and are often supplied in pairs for reliability. In the case of GPS they can be jammed, further degrading performance. This makes for a potentially very expensive and possibly vulnerable SAR system. SBMC can eliminate or reduce the need for these expensive navigation sensors thus reducing the cost of budget minded SAR systems. The results on this program demonstrated the capability of the SBMC approach.

  6. Transverse flow imaging using synthetic aperture directional beamforming

    DEFF Research Database (Denmark)

    Jensen, Jørgen Arendt; Nikolov, Svetoslav

    2002-01-01

    was used with an EcoWatt 1 pump generating a laminar, stationary flow. The velocity profile was measured for flow angles of 90 and 60 degrees. The RASMUS research scanner was used for acquiring RF data from 128 elements of the array using 8 emissions with 11 elements in each emission. A 20μs chirp was used...... during emission. The RF data were subsequently beamformed off-line and stationary echo canceling was performed. The 60 degrees flow was determined using 16 groups of 8 emissions and the relative standard deviation was 0.36 % (0.65 mm/s). Using the same setup for the purely transverse flow gave a std......Current ultrasound scanners only determine the velocity along the ultrasound beam, since data is only focused along the emitted beam. Synthetic aperture ultrasound systems have the capability of focusing simultaneously in all directions. This is used here to focus along the flow direction...

  7. Overview of Very Small Aperture Terminal for Television Transmission

    Directory of Open Access Journals (Sweden)

    Alumona T. L

    2014-11-01

    Full Text Available This paper provides an overview of very small aperture terminal (VSAT network systems for television transmission. In this context, “broadband” means that the application requires a data transfer rate greater than 100 kbps and should allow broadcast, multi and unicast, and interactive bi-directional services to fixed locations. The systems examined include digital broadcasting (e.g., DVB with IP encapsulation, and bidirectional VSAT star networks. Detailed comparisons of various transmission parameters and standards are provided to help evaluate currently available satellite and ground equipment capabilities. In recent times, file transfer application requires support of file broadcast or IP multicast. Typical applications include audio and video broadcast. A VSAT network is inherently broadcast in nature. Thus VSAT networks naturally and efficiently support these new broadcast applications.

  8. Real-time synthetic aperture imaging: opportunities and challenges

    DEFF Research Database (Denmark)

    Nikolov, Svetoslav; Tomov, Borislav Gueorguiev; Jensen, Jørgen Arendt

    2006-01-01

    Synthetic aperture (SA) ultrasound imaging has not been introduced in commercial scanners mainly due to the computational cost associated with the hardware implementation of this imaging modality. SA imaging redefines the term beamformed line. Since the acquired information comes from all points...... in the region of interest it is possible to beamform the signals along a desired path, thus, improving the estimation of blood flow. The transmission of coded excitations makes it possible to achieve higher contrast and larger penetration depth compared to "conventional" scanners. This paper presents...... the development and implementation of the signal processing stages employed in SA imaging: compression of received data acquired using codes, and beamforming. The goal was to implement the system using commercially available field programmable gate arrays. The compression filter operates on frequency modulated...

  9. Hybrid Compton camera/coded aperture imaging system

    Science.gov (United States)

    Mihailescu, Lucian; Vetter, Kai M.

    2012-04-10

    A system in one embodiment includes an array of radiation detectors; and an array of imagers positioned behind the array of detectors relative to an expected trajectory of incoming radiation. A method in another embodiment includes detecting incoming radiation with an array of radiation detectors; detecting the incoming radiation with an array of imagers positioned behind the array of detectors relative to a trajectory of the incoming radiation; and performing at least one of Compton imaging using at least the imagers and coded aperture imaging using at least the imagers. A method in yet another embodiment includes detecting incoming radiation with an array of imagers positioned behind an array of detectors relative to a trajectory of the incoming radiation; and performing Compton imaging using at least the imagers.

  10. Modified Microstrip Aperture Coupled Patch Antenna with Sierpinski Fractal Geometry

    Directory of Open Access Journals (Sweden)

    Hao Jiang

    2014-01-01

    Full Text Available A two-layer modified microstrip aperture coupled patch antenna with Sierpinski fractal geometry is presented in this paper. The effects of the two coupling slots and the parasitic patch are discussed. The proposed antenna can work on 956 MHz to 968 MHz, 3.654 GHz to 3.78 GHz, and 8.81 GHz to 9.28 GHz three frequency bands, and the maximum gain in each band is 4.64 dBi, 8.46 dBi, and 7.85 dBi, respectively. The simulated result reveals that the Sierpinski patch antenna we proposed in this paper performs better on radiation properties.

  11. A One-Dimensional Synthetic-Aperture Microwave Radiometer

    Science.gov (United States)

    Doiron, Terence; Piepmeier, Jeffrey

    2010-01-01

    A proposed one-dimensional synthetic- aperture microwave radiometer could serve as an alternative to either the two-dimensional synthetic-aperture radiometer described in the immediately preceding article or to a prior one-dimensional one, denoted the Electrically Scanned Thinned Array Radiometer (ESTAR), mentioned in that article. The proposed radiometer would operate in a pushbroom imaging mode, utilizing (1) interferometric cross-track scanning to obtain cross-track resolution and (2) the focusing property of a reflector for along-track resolution. The most novel aspect of the proposed system would be the antenna (see figure), which would include a cylindrical reflector of offset parabolic cross section. The reflector could be made of a lightweight, flexible material amenable to stowage and deployment. Other than a stowage/deployment mechanism, the antenna would not include moving parts, and cross-track scanning would not entail mechanical rotation of the antenna. During operation, the focal line, parallel to the cylindrical axis, would be oriented in the cross-track direction, so that placement of receiving/radiating elements at the focal line would afford the desired along-track resolution. The elements would be microwave feed horns sparsely arrayed along the focal line. The feed horns would be oriented with their short and long cross-sectional dimensions parallel and perpendicular, respectively, to the cylindrical axis to obtain fan-shaped beams having their broad and narrow cross-sectional dimensions parallel and perpendicular, respectively, to the cylindrical axis. The interference among the beams would be controlled in the same manner as in the ESTAR to obtain along-cylindrical- axis (cross-track) resolution and cross-track scanning.

  12. Factors affecting the performance of large-aperture microphone arrays

    Science.gov (United States)

    Silverman, Harvey F.; Patterson, William R.; Sachar, Joshua

    2002-05-01

    Large arrays of microphones have been proposed and studied as a possible means of acquiring data in offices, conference rooms, and auditoria without requiring close-talking microphones. When such an array essentially surrounds all possible sources, it is said to have a large aperture. Large-aperture arrays have attractive properties of spatial resolution and signal-to-noise enhancement. This paper presents a careful comparison of theoretical and measured performance for an array of 256 microphones using simple delay-and-sum beamforming. This is the largest currently functional, all digital-signal-processing array that we know of. The array is wall-mounted in the moderately adverse environment of a general-purpose laboratory (8 m×8 m×3 m). The room has a T60 reverberation time of 550 ms. Reverberation effects in this room severely impact the array's performance. However, the width of the main lobe remains comparable to that of a simplified prediction. Broadband spatial resolution shows a single central peak with 10 dB gain about 0.4 m in diameter at the -3 dB level. Away from that peak, the response is approximately flat over most of the room. Optimal weighting for signal-to-noise enhancement degrades the spatial resolution minimally. Experimentally, we verify that signal-to-noise gain is less than proportional to the square root of the number of microphones probably due to the partial correlation of the noise between channels, to variation of signal intensity with polar angle about the source, and to imperfect correlation of the signal over the array caused by reverberations. We show measurements of the relative importance of each effect in our environment.

  13. Design and performance of a cryogenic iris aperture mechanism

    Science.gov (United States)

    de Jonge, C.; Laauwen, W. M.; de Vries, E. A.; Smit, H. P.; Detrain, A.; Eggens, M. J.; Ferrari, L.; Dieleman, P.

    2014-07-01

    A cryogenic iris mechanism is under development as part of the ground calibration source for the SAFARI instrument. The iris mechanism is a variable aperture used as an optical shutter to fine-tune and modulate the absolute power output of the calibration source. It has 4 stainless steel blades that create a near-circular aperture in every position. The operating temperature is 4.5 Kelvin to provide a negligible background to the SAFARI detectors, and `hot spots' above 9K should be prevented. Cryogenic testing proved that the iris works at 4K. It can be used in a broad range of cryogenic optical instruments where optical throughput needs to be controlled. Challenges in the design include the low cooling power available (5mW) and low friction at cryogenic temperatures. The actuator is an `arc-type' rotary voice-coil motor. The use of flexural pivots creates a mono-stable mechanism with a resonance frequency at 26Hz. Accurate and fast position control with disturbance rejection is managed by a PID servo loop using a hall-sensor as input. At 4 Kelvin, the frequency is limited to 4Hz to avoid excess dissipation and heating. In this paper, the design and performance of the iris are discussed. The design was optimized using a thermal, magnetic and mechanical model made with COMSOL Finite Element Analysis software. The dynamical and state-space modeling of the mechanism and the concept of the electrical control are presented. The performance of the iris show good agreement to the analytical and COMSOL modeling.

  14. Factors affecting the performance of large-aperture microphone arrays.

    Science.gov (United States)

    Silverman, Harvey F; Patterson, William R; Sachar, Joshua

    2002-05-01

    Large arrays of microphones have been proposed and studied as a possible means of acquiring data in offices, conference rooms, and auditoria without requiring close-talking microphones. When such an array essentially surrounds all possible sources, it is said to have a large aperture. Large-aperture arrays have attractive properties of spatial resolution and signal-to-noise enhancement. This paper presents a careful comparison of theoretical and measured performance for an array of 256 microphones using simple delay-and-sum beamforming. This is the largest currently functional, all digital-signal-processing array that we know of. The array is wall-mounted in the moderately adverse environment of a general-purpose laboratory (8 m x 8 m x 3 m). The room has a T60 reverberation time of 550 ms. Reverberation effects in this room severely impact the array's performance. However, the width of the main lobe remains comparable to that of a simplified prediction. Broadband spatial resolution shows a single central peak with 10 dB gain about 0.4 m in diameter at the -3 dB level. Away from that peak, the response is approximately flat over most of the room. Optimal weighting for signal-to-noise enhancement degrades the spatial resolution minimally. Experimentally, we verify that signal-to-noise gain is less than proportional to the square root of the number of microphones probably due to the partial correlation of the noise between channels, to variation of signal intensity with polar angle about the source, and to imperfect correlation of the signal over the array caused by reverberations. We show measurements of the relative importance of each effect in our environment. PMID:12051434

  15. Enhanced-resolution using modified configuration of Fresnel incoherent holographic recorder with synthetic aperture

    OpenAIRE

    Kashter, Yuval; Rosen, Joseph

    2014-01-01

    Synthetic aperture methods are commonly-used techniques for providing images with super-resolution qualities. We propose an improved design of the system, coined “synthetic aperture with Fresnel elements”. The super-resolution capabilities of the proposed scheme are analyzed and experimentally demonstrated.

  16. Increasing the sensitivity of controlled-source electromagnetics with synthetic aperture

    NARCIS (Netherlands)

    Fan, Y.; Snieder, R.; Slob, E.C.; Hunziker, J.W.; Singer, J.; Sheiman, J.; Rosenquist, M.

    2012-01-01

    Controlled-source electromagnetics (CSEM) has been used as a derisking tool in the hydrocarbon exploration industry. We apply the concept of synthetic aperture to the lowfrequency electromagnetic field in CSEM. Synthetic aperture sources have been used in radar imaging for many years. Using the synt

  17. Large- and Small-Aperture Fixed-Point Cells of Cu, Pt C, and Re C

    Science.gov (United States)

    Anhalt, Klaus; Wang, Yunfen; Yamada, Yoshiro; Hartmann, Jürgen

    2008-06-01

    Extending the application of metal (carbide) carbon eutectic fixed-point cells to radiometry, e.g., for measurements in irradiance mode, requires fixed-point cells with large apertures. In order to make large-aperture cells more readily usable in furnace systems with smaller furnace tubes commonly used for small-aperture fixed-point cells, a novel cell design was developed. For each of Cu, Pt C, and Re C fixed points, two types of fixed-point cells were manufactured, the small- and large-aperture cell. For Pt C and Re C, the large-aperture cells were filled with a hyper-eutectic metal carbon mixture; for the small cells, a hypo-eutectic mixture was used for filling. For each material, the small and large cells were compared with respect to radiometric differences. Whereas plateau shape and melting temperature are in good agreement for the small- and large-aperture Cu cells, a larger difference was observed between small- and large-aperture cells of Pt C and Re C, respectively. The origin of these observations, attributed to the temperature distribution inside the furnace, ingot contamination during manufacture, and non-uniform ingot formation for the larger cells, is discussed. The comparison of measurements by a radiation thermometer and filter radiometer of the Re C and Pt C large-aperture cells showed large differences that could be explained only by a strong radiance distribution across the cavity bottom. Further investigations are envisaged to clarify the cause.

  18. Progress in dual-band dual-polarization shared-aperture SAR antennas

    Institute of Scientific and Technical Information of China (English)

    Shunshi ZHONG; Zhu SUN; Xiaorong TANG

    2009-01-01

    The progress in dual-band dual-polarization (DBDP) shared-aperture antennas for the synthetic aper-ture radar (SAR) application in the last decade is reviewed.Several designs of DBDP SAR antenna arrays are introduced with their main performances, then their comparison is summarized. In addition, some techniques enhancing DBDP antenna performances are presented.

  19. Spillage and flux density on a receiver aperture lip. [of solar thermal collector

    Science.gov (United States)

    Jaffe, L. D.

    1985-01-01

    In a dish-type point-focusing solar thermal collector, the spillage and the flux density on the receiver aperture lip are related in a very simple way, if the aperture is circular and centered on the optical axis. Specifically, the flux density on the lip is equal to the spillage times the peak flux density in the plane of the lip.

  20. Spaceborne L-band Radiometers: Push-broom or Synthetic Aperture?

    DEFF Research Database (Denmark)

    Skou, Niels

    2004-01-01

    L-band radiometers can measure ocean salinity and soil moisture from space. A synthetic aperture radiometer system, SMOS, is under development by ESA for launch in 2007. A real aperture push-broom system, Aquarius, has been approved by NASA for launch in 2008. Pros et cons of the two fundamentally...

  1. An examination of the number of required apertures for step-and-shoot IMRT

    Science.gov (United States)

    Jiang, Z.; Earl, M. A.; Zhang, G. W.; Yu, C. X.; Shepard, D. M.

    2005-12-01

    We have examined the degree to which step-and-shoot IMRT treatment plans can be simplified (using a small number of apertures) without sacrificing the dosimetric quality of the plans. A key element of this study was the use of direct aperture optimization (DAO), an inverse planning technique where all of the multi-leaf collimator constraints are incorporated into the optimization. For seven cases (1 phantom, 1 prostate, 3 head-and-neck and 2 lung), DAO was used to perform a series of optimizations where the number of apertures per beam direction varied from 1 to 15. In this work, we attempt to provide general guidelines for how many apertures per beam direction are sufficient for various clinical cases using DAO. Analysis of the optimized treatment plans reveals that for most cases, only modest improvements in the objective function and the corresponding DVHs are seen beyond 5 apertures per beam direction. However, for more complex cases, some dosimetric gain can be achieved by increasing the number of apertures per beam direction beyond 5. Even in these cases, however, only modest improvements are observed beyond 9 apertures per beam direction. In our clinical experience, 38 out of the first 40 patients treated using IMRT plans produced using DAO were treated with 9 or fewer apertures per beam direction. The results indicate that many step-and-shoot IMRT treatment plans delivered today are more complex than necessary and can be simplified without sacrificing plan quality.

  2. A novel approach to correct the coded aperture misalignment for fast neutron imaging

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, F. N.; Hu, H. S., E-mail: huasi-hu@mail.xjtu.edu.cn; Wang, D. M.; Jia, J. [School of Energy and Power Engineering, Xi’an Jiaotong University, Xi’an 710049 (China); Zhang, T. K. [Laser Fusion Research Center, CAEP, Mianyang, 621900 Sichuan (China); Jia, Q. G. [Institute of Applied Physics and Computational Mathematics, Beijing 100094 (China)

    2015-12-15

    Aperture alignment is crucial for the diagnosis of neutron imaging because it has significant impact on the coding imaging and the understanding of the neutron source. In our previous studies on the neutron imaging system with coded aperture for large field of view, “residual watermark,” certain extra information that overlies reconstructed image and has nothing to do with the source is discovered if the peak normalization is employed in genetic algorithms (GA) to reconstruct the source image. Some studies on basic properties of residual watermark indicate that the residual watermark can characterize coded aperture and can thus be used to determine the location of coded aperture relative to the system axis. In this paper, we have further analyzed the essential conditions for the existence of residual watermark and the requirements of the reconstruction algorithm for the emergence of residual watermark. A gamma coded imaging experiment has been performed to verify the existence of residual watermark. Based on the residual watermark, a correction method for the aperture misalignment has been studied. A multiple linear regression model of the position of coded aperture axis, the position of residual watermark center, and the gray barycenter of neutron source with twenty training samples has been set up. Using the regression model and verification samples, we have found the position of the coded aperture axis relative to the system axis with an accuracy of approximately 20 μm. Conclusively, a novel approach has been established to correct the coded aperture misalignment for fast neutron coded imaging.

  3. Method and apparatus for controlled manufacturing of nanometer-scale apertures

    NARCIS (Netherlands)

    Storm, A.J.; Zandbergen, H.W.

    2004-01-01

    The invention relates to a method for manufacturing nanometer-scale apertures, wherein, in an object, in a conventional manner, at least one aperture is provided with a nanometer-scale surface area, after which, by means of an electron beam, energy is supplied to at least the edge of said at least o

  4. A novel approach to correct the coded aperture misalignment for fast neutron imaging

    International Nuclear Information System (INIS)

    Aperture alignment is crucial for the diagnosis of neutron imaging because it has significant impact on the coding imaging and the understanding of the neutron source. In our previous studies on the neutron imaging system with coded aperture for large field of view, “residual watermark,” certain extra information that overlies reconstructed image and has nothing to do with the source is discovered if the peak normalization is employed in genetic algorithms (GA) to reconstruct the source image. Some studies on basic properties of residual watermark indicate that the residual watermark can characterize coded aperture and can thus be used to determine the location of coded aperture relative to the system axis. In this paper, we have further analyzed the essential conditions for the existence of residual watermark and the requirements of the reconstruction algorithm for the emergence of residual watermark. A gamma coded imaging experiment has been performed to verify the existence of residual watermark. Based on the residual watermark, a correction method for the aperture misalignment has been studied. A multiple linear regression model of the position of coded aperture axis, the position of residual watermark center, and the gray barycenter of neutron source with twenty training samples has been set up. Using the regression model and verification samples, we have found the position of the coded aperture axis relative to the system axis with an accuracy of approximately 20 μm. Conclusively, a novel approach has been established to correct the coded aperture misalignment for fast neutron coded imaging

  5. A novel approach to correct the coded aperture misalignment for fast neutron imaging.

    Science.gov (United States)

    Zhang, F N; Hu, H S; Zhang, T K; Jia, Q G; Wang, D M; Jia, J

    2015-12-01

    Aperture alignment is crucial for the diagnosis of neutron imaging because it has significant impact on the coding imaging and the understanding of the neutron source. In our previous studies on the neutron imaging system with coded aperture for large field of view, "residual watermark," certain extra information that overlies reconstructed image and has nothing to do with the source is discovered if the peak normalization is employed in genetic algorithms (GA) to reconstruct the source image. Some studies on basic properties of residual watermark indicate that the residual watermark can characterize coded aperture and can thus be used to determine the location of coded aperture relative to the system axis. In this paper, we have further analyzed the essential conditions for the existence of residual watermark and the requirements of the reconstruction algorithm for the emergence of residual watermark. A gamma coded imaging experiment has been performed to verify the existence of residual watermark. Based on the residual watermark, a correction method for the aperture misalignment has been studied. A multiple linear regression model of the position of coded aperture axis, the position of residual watermark center, and the gray barycenter of neutron source with twenty training samples has been set up. Using the regression model and verification samples, we have found the position of the coded aperture axis relative to the system axis with an accuracy of approximately 20 μm. Conclusively, a novel approach has been established to correct the coded aperture misalignment for fast neutron coded imaging. PMID:26724035

  6. Acoustic Source Localization via Subspace Based Method Using Small Aperture MEMS Arrays

    Directory of Open Access Journals (Sweden)

    Xin Zhang

    2014-01-01

    Full Text Available Small aperture microphone arrays provide many advantages for portable devices and hearing aid equipment. In this paper, a subspace based localization method is proposed for acoustic source using small aperture arrays. The effects of array aperture on localization are analyzed by using array response (array manifold. Besides array aperture, the frequency of acoustic source and the variance of signal power are simulated to demonstrate how to optimize localization performance, which is carried out by introducing frequency error with the proposed method. The proposed method for 5 mm array aperture is validated by simulations and experiments with MEMS microphone arrays. Different types of acoustic sources can be localized with the highest precision of 6 degrees even in the presence of wind noise and other noises. Furthermore, the proposed method reduces the computational complexity compared with other methods.

  7. Signal Modulation of Super Read Only Memory with Thermally Activated Aperture Model

    Science.gov (United States)

    Kim, June Seo; Kwak, Keumcheol; You, Chun-Yeol

    2008-07-01

    We describe the signal modulation of super read only memory (ROM) with thermally activated aperture model using a three-dimensional finite-difference time-domain method. The thermally activated aperture is modeled using a spatially varied refractive indices of the GeSbTe layer. No meaningful signal modulation is observed without thermally activated aperture below the resolution limit of 120 nm. When we open the thermally activated aperture by considering the temperature dependence of the refractive indices in the GeSbTe layer, the 2.8 and 1.7% signal modulations are observed for 120 and 80 nm pits, respectively. The experimentally observed signal modulation under the resolution limit can be explained using the thermally activated aperture model.

  8. Hydraulic transmissivity and heat exchange efficiency of open fractures: a model based on lowpass filtered apertures

    CERN Document Server

    Neuville, Amélie; Schmittbuhl, Jean; 10.1111/j.1365-246X.2011.05126.x

    2011-01-01

    Natural open joints in rocks commonly present multi-scale self-affine apertures. This geometrical complexity affects fluid transport and heat exchange between the flow- ing fluid and the surrounding rock. In particular, long range correlations of self-affine apertures induce strong channeling of the flow which influences both mass and heat advection. A key question is to find a geometrical model of the complex aperture that describes at best the macroscopic properties (hydraulic conductivity, heat exchange) with the smallest number of parameters. Solving numerically the Stokes and heat equa- tions with a lubrication approximation, we show that a low pass filtering of the aperture geometry provides efficient estimates of the effective hydraulic and thermal properties (apertures). A detailed study of the influence of the bandwidth of the lowpass filtering on these transport properties is also performed. For instance, keeping the information of amplitude only of the largest Fourier length scales allows us to rea...

  9. Second COS FUV Lifetime Position: Verification of Aperture and FUV Spectrum Placement (FENA2)

    Science.gov (United States)

    Proffitt, Charles R.; Penton, Steven V.; Sahnow, David J.; Oliveira, Cristina M.; Massa, Derck; Osten, Rachel A.; Osterman, Steven N.; Aloisi, Alessandra

    2013-02-01

    CAL/COS proposal 12795 was used to determine the exact updates for the Science Instrument Aperture File (SIAF) and for the COS aperture block positioning needed to implement routine science operations at COS FUV Lifetime Position 2. It also verified that the location of each grating's spectrum on the FUV XDL detector met the requirements to deliver good quality science data. The data obtained showed that a +3.5" offset in the cross-dispersion direction, which corresponds to a +41 pixel shift on the detector, would provide the desired positioning on the detector. To keep the COS aperture centered at this location requires shifting the aperture block by -73 steps in the cross-dispersion direction and adjusting the SIAF locations of the Primary Science Aperture (PSA) at the new position by +3.5" in the cross-dispersion direction and by -0.05" in the dispersion direction.

  10. An Analysis of Beamed Wireless Power Transfer in the Fresnel Zone Using a Dynamic, Metasurface Aperture

    CERN Document Server

    Smith, David R; Yurduseven, Okan; Larouche, Stephane; Lipworth, Guy; Urzhumov, Yaroslav; Reynolds, Matthew S

    2016-01-01

    Wireless power transfer (WPT) has been an active topic of research, with a number of WPT schemes implemented in the near-field (coupling) and far-field (radiation) regimes. Here, we consider a beamed WPT scheme based on a dynamically reconfigurable source aperture transferring power to receiving devices within the Fresnel (near-zone) region. In this context, the dynamic aperture resembles a reconfigurable lens capable of focusing power to a well-defined spot, whose dimension can be related to a point spread function (PSF). Near-zone focusing can be achieved by generating different amplitude or phase profiles over the aperture, which can be realized using traditional architectures, such as phased arrays. Alternatively, metasurface guided-wave apertures can achieve dynamic focusing, with potentially lower cost implementations. We present an initial tradeoff analysis of the near-zone WPT concept, relating key parameters such as spot size, aperture size, wavelength, focal distance, and availability of sources. We...

  11. Computational Investigation of Dipole Traps Formed by the Projection of Diffraction Patterns from a Circular Aperture

    Science.gov (United States)

    Gillen, Glen D.; Gillen-Christandl, Katharina

    2011-05-01

    Previously we have shown that laser light incident upon a circular diffracting aperture produces intensity distributions suitable for either red-detuned (RDT) or blue-detuned (BDT) optical dipole traps for cold neutral atoms. Typically, the calculated traps are located within a millimeter of the diffracting aperture, which requires the aperture to be located inside of the vacuum chamber. Using a combination of scalar diffraction theory and beam propagation techniques, a mathematical model has been developed to project the diffraction pattern away from the aperture. Projected intensity distributions allow for the diffracting aperture and optics to be located outside of the vacuum chamber. We will present calculations which show that the properties of the RDT and BDT sites are not only maintained through the projection, but also can be manipulated using a simple single-lens optical system. Work supported by the NSF Grant No. PHY-0855524.

  12. High-resolution imaging with a real-time synthetic aperture ultrasound system: a phantom study

    Science.gov (United States)

    Huang, Lianjie; Labyed, Yassin; Simonetti, Francesco; Williamson, Michael; Rosenberg, Robert; Heintz, Philip; Sandoval, Daniel

    2011-03-01

    It is difficult for ultrasound to image small targets such as breast microcalcifications. Synthetic aperture ultrasound imaging has recently developed as a promising tool to improve the capabilities of medical ultrasound. We use two different tissueequivalent phantoms to study the imaging capabilities of a real-time synthetic aperture ultrasound system for imaging small targets. The InnerVision ultrasound system DAS009 is an investigational system for real-time synthetic aperture ultrasound imaging. We use the system to image the two phantoms, and compare the images with those obtained from clinical scanners Acuson Sequoia 512 and Siemens S2000. Our results show that synthetic aperture ultrasound imaging produces images with higher resolution and less image artifacts than Acuson Sequoia 512 and Siemens S2000. In addition, we study the effects of sound speed on synthetic aperture ultrasound imaging and demonstrate that an accurate sound speed is very important for imaging small targets.

  13. Aperture-Tolerant, Chemical-Based Methods to Reduce Channeling

    Energy Technology Data Exchange (ETDEWEB)

    Randall S. Seright

    2007-09-30

    This final technical progress report describes work performed from October 1, 2004, through May 16, 2007, for the project, 'Aperture-Tolerant, Chemical-Based Methods to Reduce Channeling'. We explored the potential of pore-filling gels for reducing excess water production from both fractured and unfractured production wells. Several gel formulations were identified that met the requirements--i.e., providing water residual resistance factors greater than 2,000 and ultimate oil residual resistance factors (F{sub rro}) of 2 or less. Significant oil throughput was required to achieve low F{sub rro} values, suggesting that gelant penetration into porous rock must be small (a few feet or less) for existing pore-filling gels to provide effective disproportionate permeability reduction. Compared with adsorbed polymers and weak gels, strong pore-filling gels can provide greater reliability and behavior that is insensitive to the initial rock permeability. Guidance is provided on where relative-permeability-modification/disproportionate-permeability-reduction treatments can be successfully applied for use in either oil or gas production wells. When properly designed and executed, these treatments can be successfully applied to a limited range of oilfield excessive-water-production problems. We examined whether gel rheology can explain behavior during extrusion through fractures. The rheology behavior of the gels tested showed a strong parallel to the results obtained from previous gel extrusion experiments. However, for a given aperture (fracture width or plate-plate separation), the pressure gradients measured during the gel extrusion experiments were much higher than anticipated from rheology measurements. Extensive experiments established that wall slip and first normal stress difference were not responsible for the pressure gradient discrepancy. To explain the discrepancy, we noted that the aperture for gel flow (for mobile gel wormholing through concentrated

  14. Aperture-Coupled Thin-Membrane L-Band Antenna

    Science.gov (United States)

    Huang, John

    2007-01-01

    The upper part of the figure depicts an aperture-coupled L-band antenna comprising patterned metal conductor films supported on two thin polyimide membranes separated by an air gap. In this antenna, power is coupled from a microstrip line on the lower surface of the lower membrane, through a slot in a metal ground plane on the upper surface of the lower membrane, to a radiating metal patch on the upper surface of the upper membrane. The two-membrane configuration of this antenna stands in contrast to a three-membrane configuration heretofore considered as the basis for developing arrays of dual-polarization, wideband microwave antennas that could be thin and could be, variously, incorporated into, or supported on, thin structures, including inflatable structures. By reducing the number of membranes from three to two, the present design simplifies the problems of designing and fabricating such antennas or arrays of such antennas, including the problems of integrating such antennas or arrays with thin-membrane-mounted transmit/ receive modules. In addition, the use of aperture (slot) coupling eliminates the need for rigid coaxial feed pins and associated solder connections on thin membranes, making this antenna more mechanically reliable, relative to antennas that include coaxial feed pins. This antenna is designed for a nominal frequency of 1.26 GHz. The polyimide membranes are 0.05 mm thick and have a relative permittivity of 3.4. The radiating patch is square, 8.89 cm on each side. This radiating patch lies 1.27 cm above the ground plane. The feeding microstrip line is 0.12 mm wide and has a characteristic impedance of 50 . The aperture-coupling slot, etched in the ground plane, is 0.48 mm wide and 79.5 mm long. In order to maximize coupling, the microstrip line is extended beyond the middle of the slot by a length of 36 mm, which corresponds to a transmission- line electrical length of about a quarter wavelength. The other end of the microstrip line is

  15. Ka-Band Multibeam Aperture Phased Array Being Developed

    Science.gov (United States)

    Reinhart, Richard C.; Kacpura, Thomas J.

    2004-01-01

    Phased-array antenna systems offer many advantages to low-Earth-orbiting satellite systems. Their large scan angles and multibeam capabilities allow for vibration-free, rapid beam scanning and graceful degradation operation for high rate downlink of data to users on the ground. Technology advancements continue to reduce the power, weight, and cost of these systems to make phased arrays a competitive alternative in comparison to the gimbled reflector system commonly used in science missions. One effort to reduce the cost of phased arrays is the development of a Ka-band multibeam aperture (MBA) phased array by Boeing Corporation under a contract jointly by the NASA Glenn Research Center and the Office of Naval Research. The objective is to develop and demonstrate a space-qualifiable dual-beam Ka-band (26.5-GHz) phased-array antenna. The goals are to advance the state of the art in Ka-band active phased-array antennas and to develop and demonstrate multibeam transmission technology compatible with spacecraft in low Earth orbit to reduce the cost of future missions by retiring certain development risks. The frequency chosen is suitable for space-to-space and space-to-ground communication links. The phased-array antenna has a radiation pattern designed by combining a set of individual radiating elements, optimized with the type of radiating elements used, their positions in space, and the amplitude and phase of the currents feeding the elements. This arrangement produces a directional radiation pattern that is proportional to the number of individual radiating elements. The arrays of interest here can scan the main beam electronically with a computerized algorithm. The antenna is constructed using electronic components with no mechanical parts, and the steering is performed electronically, without any resulting vibration. The speed of the scanning is limited primarily by the control electronics. The radiation performance degrades gracefully if a portion of the elements

  16. Simultaneous displacement and slope measurement in electronic speckle pattern interferometry using adjustable aperture multiplexing.

    Science.gov (United States)

    Lu, Min; Wang, Shengjia; Aulbach, Laura; Koch, Alexander W

    2016-08-01

    This paper suggests the use of adjustable aperture multiplexing (AAM), a method which is able to introduce multiple tunable carrier frequencies into a three-beam electronic speckle pattern interferometer to measure the out-of-plane displacement and its first-order derivative simultaneously. In the optical arrangement, two single apertures are located in the object and reference light paths, respectively. In cooperation with two adjustable mirrors, virtual images of the single apertures construct three pairs of virtual double apertures with variable aperture opening sizes and aperture distances. By setting the aperture parameter properly, three tunable spatial carrier frequencies are produced within the speckle pattern and completely separate the information of three interferograms in the frequency domain. By applying the inverse Fourier transform to a selected spectrum, its corresponding phase difference distribution can thus be evaluated. Therefore, we can obtain the phase map due to the deformation as well as its slope of the test surface from two speckle patterns which are recorded at different loading events. By this means, simultaneous and dynamic measurements are realized. AAM has greatly simplified the measurement system, which contributes to improving the system stability and increasing the system flexibility and adaptability to various measurement requirements. This paper presents the AAM working principle, the phase retrieval using spatial carrier frequency, and preliminary experimental results. PMID:27505365

  17. Realization of a video-rate distributed aperture millimeter-wave imaging system using optical upconversion

    Science.gov (United States)

    Schuetz, Christopher; Martin, Richard; Dillon, Thomas; Yao, Peng; Mackrides, Daniel; Harrity, Charles; Zablocki, Alicia; Shreve, Kevin; Bonnett, James; Curt, Petersen; Prather, Dennis

    2013-05-01

    Passive imaging using millimeter waves (mmWs) has many advantages and applications in the defense and security markets. All terrestrial bodies emit mmW radiation and these wavelengths are able to penetrate smoke, fog/clouds/marine layers, and even clothing. One primary obstacle to imaging in this spectrum is that longer wavelengths require larger apertures to achieve the resolutions desired for many applications. Accordingly, lens-based focal plane systems and scanning systems tend to require large aperture optics, which increase the achievable size and weight of such systems to beyond what can be supported by many applications. To overcome this limitation, a distributed aperture detection scheme is used in which the effective aperture size can be increased without the associated volumetric increase in imager size. This distributed aperture system is realized through conversion of the received mmW energy into sidebands on an optical carrier. This conversion serves, in essence, to scale the mmW sparse aperture array signals onto a complementary optical array. The side bands are subsequently stripped from the optical carrier and recombined to provide a real time snapshot of the mmW signal. Using this technique, we have constructed a real-time, video-rate imager operating at 75 GHz. A distributed aperture consisting of 220 upconversion channels is used to realize 2.5k pixels with passive sensitivity. Details of the construction and operation of this imager as well as field testing results will be presented herein.

  18. Influence of the pressure on a fracture aperture controlling a fracture transmissivity

    Science.gov (United States)

    Ji, S.; Lee, M.; Koh, Y.; Choi, J.

    2011-12-01

    Groundwater flow through fractures is one of major pathways for radioactive contaminants from a subsurface repository to the biosphere. The cubic law introduces that a small change of the aperture can make a big change in the flow rate thus the transmissivity of a fracture. It is known that a sufficiently large water pressure during hydrofracturing makes a change in a fracture aperture thus a fracture transmissivity, and a small change in water pressure during the hydrogeologic characterization works maybe also affect a fracture aperture. In this study, we evaluate the influence of the water pressure on the fracture aperture with a series of field experiments. For the experiments, a borehole is installed in the KAERI underground research tunnel (KURT), and the test interval is determined through the analyses of borehole logging and hydraulic tests. Then, a double packer system, which is able to directly observe the change of an aperture, is developed and installed in the test borehole. Using the double packer system, the aperture of a fracture in the test interval and the flow rate are observed under various water pressures, and the relation between the water pressure and the aperture is quantified.

  19. Self characterization of a coded aperture array for neutron source imaging

    International Nuclear Information System (INIS)

    The neutron imaging system at the National Ignition Facility (NIF) is an important diagnostic tool for measuring the two-dimensional size and shape of the neutrons produced in the burning deuterium-tritium plasma during the stagnation stage of inertial confinement fusion implosions. Since the neutron source is small (∼100 μm) and neutrons are deeply penetrating (>3 cm) in all materials, the apertures used to achieve the desired 10-μm resolution are 20-cm long, triangular tapers machined in gold foils. These gold foils are stacked to form an array of 20 apertures for pinhole imaging and three apertures for penumbral imaging. These apertures must be precisely aligned to accurately place the field of view of each aperture at the design location, or the location of the field of view for each aperture must be measured. In this paper we present a new technique that has been developed for the measurement and characterization of the precise location of each aperture in the array. We present the detailed algorithms used for this characterization and the results of reconstructed sources from inertial confinement fusion implosion experiments at NIF

  20. Particle-in-Cell Modeling of Magnetized Argon Plasma Flow Through Small Mechanical Apertures

    Energy Technology Data Exchange (ETDEWEB)

    Adam B. Sefkow and Samuel A. Cohen

    2009-04-09

    Motivated by observations of supersonic argon-ion flow generated by linear helicon-heated plasma devices, a three-dimensional particle-in-cell (PIC) code is used to study whether stationary electrostatic layers form near mechanical apertures intersecting the flow of magnetized plasma. By self-consistently evaluating the temporal evolution of the plasma in the vicinity of the aperture, the PIC simulations characterize the roles of the imposed aperture and applied magnetic field on ion acceleration. The PIC model includes ionization of a background neutral-argon population by thermal and superthermal electrons, the latter found upstream of the aperture. Near the aperture, a transition from a collisional to a collisionless regime occurs. Perturbations of density and potential, with mm wavelengths and consistent with ion acoustic waves, propagate axially. An ion acceleration region of length ~ 200-300 λD,e forms at the location of the aperture and is found to be an electrostatic double layer, with axially-separated regions of net positive and negative charge. Reducing the aperture diameter or increasing its length increases the double layer strength.

  1. Performance limits of ion extraction systems with non-circular apertures

    Science.gov (United States)

    Shagayda, A.; Madeev, S.

    2016-04-01

    A three-dimensional computer simulation is used to determine the perveance limitations of ion extraction systems with non-circular apertures. The objective of the study is to analyze the possibilities to improve mechanical strength of the ion optics made of carbon-carbon composite materials. Non-circular grid apertures are better suited to the physical structure of carbon-carbon composite materials, than conventionally used circular holes in a hexagonal pattern, because they allow a fewer number of cut fibers. However, the slit-type accelerating systems, usually regarded as the main alternative to the conventional ion optics, have an intolerably narrow range of operating perveance values at which there is no direct ion impingement on the acceleration grid. This paper presents results of comparative analysis of a number of different ion optical systems with non-circular apertures and conventional ion optical systems with circular apertures. It has been revealed that a relatively wide perveance range without direct ion impingement may be obtained with apertures shaped as a square with rounded corners. Numerical simulations show that this geometry may have equivalent perveance range as the traditional geometry with circular apertures while being more mechanically robust. In addition, such important characteristics, as the effective transparency for both the ions and the neutral atoms, the height of the potential barrier reflecting the downstream plasma electrons and the angular divergence of the beamlet also can be very close to these parameters for the optics with circular apertures.

  2. Synthetic Aperture Focusing Technique 3D-CAD-SAFT

    International Nuclear Information System (INIS)

    Till the 80's ultrasonic holography has been used as an analyzing technique, a procedure which has been replaced by the Synthetic Aperture Focusing Technique 'SAFT'. This technique has been applied on metallic components in different power plants, mostly on pipe systems on pressure vessels or on specimen made of composite or concrete material. SAFT exists in different versions, either in 2D or 3D, for plane or arbitrarily shaped surfaces, for pulse echo or pitch- and catch arrangements. The defect sizes ranged from 100 μm in turbine shafts till fractures of meters in research pressure vessels. The paper covers the latest results of the SAFT-reconstruction technique under Windows NT which has been guided by the experience obtained in the field. It contributes to the currently discussed question of the possible benefit using TOFD-techniques versus pulse echo techniques; the target has been a fatigue crack in a pipe segment which was investigated by different insonification angles, wave modes and probe arrangements. The results are evaluated with respect to signal-to-noise ratio improvement; problems of TOFD are demonstrated using an animation procedure which allows to walk through the weld in three orthogonal directions. A special example will be shown from a bore hole inspection of water power station valves where the reconstruction procedure follows the radial axial insonification planes. The multi-line SAFT images can be cut according to the situation of the crack position and orientation

  3. The emerging technology of synthetic aperture focusing for ultrasonic testing

    International Nuclear Information System (INIS)

    The capabilities of synthetic aperture focusing techniques for ultrasonic testing (SAFT-UT) as a nondestructure testing technique are presented. SAFT-UT is a digital ultrasonic imaging method, which can be adapted to many different materials, specimen geometries, and wave propagation modes. The process allows each point within the inspected volume to be focused upon by mathematically simulating the action of a lens, specifically formed for imaging that point in the volume. All points are therefore imaged at the maximum available resolution. The PNL effort in SAFT-UT is a continuation of a program started earlier by the NRC at the University of Michigan. The objectives of the present program are: (1) to engineer and evaluate a real-time flaw detection and imaging system based on SAFT-UT for inservice inspection of all required LWR components, (2) to establish calibration and field test procedures, (3) to demonstrate and validate the system through field reactor inspections, and (4) to gain ASME Code acceptance of the real-time SAFT-UT technique. The following aspects of SAFT-UT are presented in this paper: (1) brief overview of SAFT imaging theory, (2) results demonstrating achievable lateral resolution, and (3) presentation of shear wave SAFT-UT images

  4. Logarithmic Laplacian Prior Based Bayesian Inverse Synthetic Aperture Radar Imaging.

    Science.gov (United States)

    Zhang, Shuanghui; Liu, Yongxiang; Li, Xiang; Bi, Guoan

    2016-01-01

    This paper presents a novel Inverse Synthetic Aperture Radar Imaging (ISAR) algorithm based on a new sparse prior, known as the logarithmic Laplacian prior. The newly proposed logarithmic Laplacian prior has a narrower main lobe with higher tail values than the Laplacian prior, which helps to achieve performance improvement on sparse representation. The logarithmic Laplacian prior is used for ISAR imaging within the Bayesian framework to achieve better focused radar image. In the proposed method of ISAR imaging, the phase errors are jointly estimated based on the minimum entropy criterion to accomplish autofocusing. The maximum a posterior (MAP) estimation and the maximum likelihood estimation (MLE) are utilized to estimate the model parameters to avoid manually tuning process. Additionally, the fast Fourier Transform (FFT) and Hadamard product are used to minimize the required computational efficiency. Experimental results based on both simulated and measured data validate that the proposed algorithm outperforms the traditional sparse ISAR imaging algorithms in terms of resolution improvement and noise suppression. PMID:27136551

  5. Synthetic-aperture radar imaging through dispersive media

    International Nuclear Information System (INIS)

    In this paper we develop a method for synthetic-aperture radar (SAR) imaging through a dispersive medium. We consider the case when the sensor and scatterers are embedded in a known homogeneous dispersive material, the scene to be imaged lies on a known surface and the radar antenna flight path is an arbitrary but known smooth curve. The scattering is modeled using a linearized (Born) scalar model. We assume that the measurements are polluted with additive noise. Furthermore, we assume that we have prior knowledge about the power-spectral densities of the scene and the noise. This leads us to formulate the problem in a statistical framework. We develop a filtered-back-projection imaging algorithm in which we choose the filter according to the statistical properties of the scene and noise. We present numerical simulations for a case where the scene consists of point-like scatterers located on the ground, and demonstrate how the ability to resolve the targets depends on a quantity which we call the noise-to-target ratio. In our simulations, the dispersive material is modeled with the Fung–Ulaby equations for leafy vegetation. However, the method is also applicable to other dielectric materials where the dispersion is considered relevant in the frequency range of the transmitted signals

  6. Three-dimensional subsurface imaging synthetic aperture radar

    International Nuclear Information System (INIS)

    The objective of this applied research and development project is to develop a system known as '3-D SISAR'. This system consists of a ground penetrating radar with software algorithms designed for the detection, location, and identification of buried objects in the underground hazardous waste environments found at DOE storage sites. Three-dimensional maps of the object locations will be produced which can assist the development of remediation strategies and the characterization of the digface during remediation operations. It is expected that the 3-D SISAR will also prove useful for monitoring hydrocarbon based contaminant migration after remediation. The underground imaging technique being developed under this contract utilizes a spotlight mode Synthetic Aperture Radar (SAR) approach which, due to its inherent stand-off capability, will permit the rapid survey of a site and achieve a high degree of productivity over large areas. When deployed from an airborne platform, the stand-off techniques is also seen as a way to overcome practical survey limitations encountered at vegetated sites

  7. Interferometric synthetic aperture radar: building tomorrow's tools today

    Science.gov (United States)

    Lu, Zhong

    2006-01-01

    A synthetic aperture radar (SAR) system transmits electromagnetic (EM) waves at a wavelength that can range from a few millimeters to tens of centimeters. The radar wave propagates through the atmosphere and interacts with the Earth’s surface. Part of the energy is reflected back to the SAR system and recorded. Using a sophisticated image processing technique, called SAR processing (Curlander and McDonough, 1991), both the intensity and phase of the reflected (or backscattered) signal of each ground resolution element (a few meters to tens of meters) can be calculated in the form of a complex-valued SAR image representing the reflectivity of the ground surface. The amplitude or intensity of the SAR image is determined primarily by terrain slope, surface roughness, and dielectric constants, whereas the phase of the SAR image is determined primarily by the distance between the satellite antenna and the ground targets, slowing of the signal by the atmosphere, and the interaction of EM waves with ground surface. Interferometric SAR (InSAR) imaging, a recently developed remote sensing technique, utilizes the interaction of EM waves, referred to as interference, to measure precise distances. Very simply, InSAR involves the use of two or more SAR images of the same area to extract landscape topography and its deformation patterns.

  8. Polarimetric synthetic-aperture inversion for extended targets in clutter

    International Nuclear Information System (INIS)

    This paper presents an analytic inversion method for a polarimetric synthetic-aperture radar (SAR) in the case of an extended target embedded in clutter. The measurements are also contaminated by thermal noise. We use microlocal analysis in a statistical setting to develop a filtered-backprojection-type reconstruction method. The inversion method accommodates arbitrary waveforms and arbitrary flight paths. We model the antennas and scatterers as dipoles; scatterers are thus characterized by a spatially varying scattering matrix. We include directional scattering assumptions to distinguish a curve-like extended target from clutter, which is assumed to scatter isotropically. For the inversion we choose the backprojection filter which minimizes the mean-square error between the reconstructed image and the actual target scattering matrix. Our work differs from standard polarimetric SAR imaging in that we do not perform channel-by-channel image reconstruction. We find that it is preferable to use a coupled reconstruction scheme in which we use all sets of collected data to form each element of the scattering matrix. We show in our numerical experiments that the coupled reconstruction not only minimizes the mean-square error but also improves the image target-to-clutter ratio in certain scenarios. (paper)

  9. Explosive hazard detection using synthetic aperture acoustic sensing

    Science.gov (United States)

    Brewster, E.; Keller, J. M.; Stone, K.; Popescu, M.

    2016-05-01

    In this paper, we develop an approach to detect explosive hazards designed to attack vehicles from the side of a road, using a side looking synthetic aperture acoustic (SAA) sensor. This is done by first processing the raw data using a back-projection algorithm to form images. Next, an RX prescreener creates a list of possible targets, each with a designated confidence. Initial experiments are performed on libraries of the highest confidence hits for both target and false alarm classes generated by the prescreener. Image chips are extracted using pixel locations derived from the target's easting and northing. Several feature types are calculated from each image chip, including: histogram of oriented gradients (HOG), and generalized column projection features where the column aggregator takes the form of the minimum, maximum, mean, median, mode, standard deviation, variance, and the one-dimensional fast Fourier transform (FFT). A support vector machine (SVM) classifier is then utilized to evaluate feature type performance during training and testing in order to determine whether the two classes are separable. This will be used to build an online detection system for road-side explosive hazards.

  10. Polarimetric Synthetic Aperture Radar Image Classification by a Hybrid Method

    Institute of Scientific and Technical Information of China (English)

    Kamran Ullah Khan; YANG Jian

    2007-01-01

    Different methods proposed so far for accurate classification of land cover types in polarimetric synthetic aperture radar (SAR) image are data specific and no general method is available. A novel hybrid framework for this classification was developed in this work. A set of effective features derived from the coherence matrix of polarimetric SARdata was proposed.Constituents of the feature set are wavelet,texture,and nonlinear features.The proposed feature set has a strong discrimination power. A neural network was used as the classification engine in a unique way. By exploiting the speed of the conjugate gradient method and the convergence rate of the Levenberg-Marquardt method (near the optimal point), an overall speed up of the classification procedure was achieved. Principal component analysis(PCA)was used to shrink the dimension of the feature vector without sacrificing much of the classification accuracy. The proposed approach is compared with the maximum likelihood estimator (MLE)based on the complex Wishart distribution and the results show the superiority of the proposed method,with the average classification accuracy by the proposed method(95.4%)higher than that of the MLE(93.77%). Use of PCA to reduce the dimensionality of the feature vector helps reduce the memory requirements and computational cost, thereby enhancing the speed of the process.

  11. The Keck Aperture Masking Experiment: Dust Enshrouded Red Giants

    CERN Document Server

    Blasius, T D; Tuthill, P G; Danchi, W C; Anderson, M

    2012-01-01

    While the importance of dusty asymptotic giant branch (AGB) stars to galactic chemical enrichment is widely recognised, a sophisticated understanding of the dust formation and wind-driving mechanisms has proven elusive due in part to the difficulty in spatially-resolving the dust formation regions themselves. We have observed twenty dust-enshrouded AGB stars as part of the Keck Aperture Masking Experiment, resolving all of them in multiple near-infrared bands between 1.5 microns and 3.1 microns. We find 45% of the targets to show measurable elongations that, when correcting for the greater distances of the targets, would correspond to significantly asymmetric dust shells on par with the well-known cases of IRC+10216 or CIT6. Using radiative transfer models, we find the sublimation temperature of 1130 +- 90 K and 1170 +- 60 K for silicates and amorphous carbon respectively, both somewhat lower than expected from laboratory measurements and vastly below temperatures inferred from the inner edge of YSO disks. Th...

  12. Feasibility of Using Synthetic Aperture Radar to Aid UAV Navigation.

    Science.gov (United States)

    Nitti, Davide O; Bovenga, Fabio; Chiaradia, Maria T; Greco, Mario; Pinelli, Gianpaolo

    2015-07-28

    This study explores the potential of Synthetic Aperture Radar (SAR) to aid Unmanned Aerial Vehicle (UAV) navigation when Inertial Navigation System (INS) measurements are not accurate enough to eliminate drifts from a planned trajectory. This problem can affect medium-altitude long-endurance (MALE) UAV class, which permits heavy and wide payloads (as required by SAR) and flights for thousands of kilometres accumulating large drifts. The basic idea is to infer position and attitude of an aerial platform by inspecting both amplitude and phase of SAR images acquired onboard. For the amplitude-based approach, the system navigation corrections are obtained by matching the actual coordinates of ground landmarks with those automatically extracted from the SAR image. When the use of SAR amplitude is unfeasible, the phase content can be exploited through SAR interferometry by using a reference Digital Terrain Model (DTM). A feasibility analysis was carried out to derive system requirements by exploring both radiometric and geometric parameters of the acquisition setting. We showed that MALE UAV, specific commercial navigation sensors and SAR systems, typical landmark position accuracy and classes, and available DTMs lead to estimated UAV coordinates with errors bounded within ±12 m, thus making feasible the proposed SAR-based backup system.

  13. Lynx: A High-Resolution Synthetic Aperture Radar

    Energy Technology Data Exchange (ETDEWEB)

    Doerry, A.W.; Hensley, W.H.; Pace, F.; Stence, J.; Tsunoda, S.I.; Walker, B.C.; Woodring, M.

    1999-03-08

    Lynx is a high resolution, synthetic aperture radar (SAR) that has been designed and built by Sandia National Laboratories in collaboration with General Atomics (GA). Although Lynx may be operated on a wide variety of manned and unmanned platforms, it is primarily intended to be fielded on unmanned aerial vehicles. In particular, it may be operated on the Predator, I-GNAT, or Prowler II platforms manufactured by GA Aeronautical Systems, Inc. The Lynx production weight is less than 120 lb. and has a slant range of 30 km (in 4 mm/hr rain). It has operator selectable resolution and is capable of 0.1 m resolution in spotlight mode and 0.3 m resolution in stripmap mode. In ground moving target indicator mode, the minimum detectable velocity is 6 knots with a minimum target cross-section of 10 dBsm. In coherent change detection mode, Lynx makes registered, complex image comparisons either of 0.1 m resolution (minimum) spotlight images or of 0.3 m resolution (minimum) strip images. The Lynx user interface features a view manager that allows it to pan and zoom like a video camera. Lynx was developed under corporate finding from GA and will be manufactured by GA for both military and commercial applications. The Lynx system architecture will be presented and some of its unique features will be described. Imagery at the finest resolutions in both spotlight and strip modes have been obtained and will also be presented.

  14. URA coded-aperture camera for ICF plasma diagnostics

    International Nuclear Information System (INIS)

    In the inertial confinement fusion (ICF) research, imaging for x-rays and high energy particles is regarded to be one of the most important techniques to solve the implosion dynamics. A single pinhole camera and a Fresnel zone plate (FZP) camera have been used as the imaging instrument so far. The single pinhole camera, however, has low SN ratio especially for a weak radiation source because of its small opening area. The FZP camera inevitably produces an artifact in the reconstructed image. The uniformly redundant arrays (URA) were predicted to be artifact-free and expected to superior to FZP. From the above consideration, the URA camera has been introduced to ICF research at Los Alamos National Laboratory. The authors have successfully applied the URA camera to x-ray imaging of a compressed core with a cannon ball target. The URA aperture consists of 2,046 square pinholes and was fabricated by a photo-etching method in a 10 μm thick nickel foil. Each pinhole size was 30 μm square that was made small compared to the center-to-center spacings of 50 μm for self-supporting. The pattern of pinhole arrays was based on a 31 x 33 element m-sequence URA

  15. Improved terahertz imaging with a sparse synthetic aperture array

    Science.gov (United States)

    Zhang, Zhuopeng; Buma, Takashi

    2010-02-01

    Sparse arrays are highly attractive for implementing two-dimensional arrays, but come at the cost of degraded image quality. We demonstrate significantly improved performance by exploiting the coherent ultrawideband nature of singlecycle THz pulses. We compute two weighting factors to each time-delayed signal before final summation to form the reconstructed image. The first factor employs cross-correlation analysis to measure the degree of walk-off between timedelayed signals of neighboring elements. The second factor measures the spatial coherence of the time-delayed delayed signals. Synthetic aperture imaging experiments are performed with a THz time-domain system employing a mechanically scanned single transceiver element. Cross-sectional imaging of wire targets is performed with a onedimensional sparse array with an inter-element spacing of 1.36 mm (over four λ at 1 THz). The proposed image reconstruction technique improves image contrast by 15 dB, which is impressive considering the relatively few elements in the array. En-face imaging of a razor blade is also demonstrated with a 56 x 56 element two-dimensional array, showing reduced image artifacts with adaptive reconstruction. These encouraging results suggest that the proposed image reconstruction technique can be highly beneficial to the development of large area two-dimensional THz arrays.

  16. Saturation Adaptive Quantizer Design for Synthetic Aperture Radar Data Compression

    Directory of Open Access Journals (Sweden)

    Navneet Agrawal

    2010-01-01

    Full Text Available The essence of remote sensing resides in the acquisition of information about remote targets for further processing. As a high resolution microwave remote sensing instrument, the Synthetic Aperture Radar (SAR has been more and more widely used. The data compression is one of the most important digital signal processing stage in remote sensing. The traditional compression algorithm is the Block adaptive quantization (BAQ due to its simplicity in implementation and results. The theoretical foundation of BAQ is the distribution of raw SAR data but in fact, the raw data is not Gaussian distributed especially when there is some saturation with the receiver. In order to overcome this drawback, the authors have studied the correlation between the mean value of the signal and its standard deviation. We also evaluated the correlation between the mean input signal and standard deviation of the output signal from the A/D. Monte-Carlo experiment shows that none of the above two correlations are optimal in the whole data set . Thus, we propose a new algorithm which gives optimum results irrespective of the degree of saturation in whole range of data. Results obtained from simulated data and real data show that the performance of new algorithm is better than conventional BAQ especially when raw data is heavily saturated. The authors have used data received from Indian satellite Chandrayaan-1 and European Space Agency (ESA in order to carry out the experimental results.

  17. Synthetic aperture radar and interferometry development at Sandia National Laboratories

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1993-04-01

    Environmental monitoring, earth-resource mapping, and military systems require broad-area imaging at high resolutions. Many times the imagery must be acquired in inclement weather or during night as well as day. Synthetic aperture radar (SAR) provides such a capability. SAR systems take advantage of the long-range propagation characteristics of radar signals and the complex information processing capability of modern digital electronics to provide high resolution imagery. SAR complements photographic and other optical imaging capabilities because of the minimum constrains on time-of-day and atmospheric conditions and because of the unique responses of terrain and cultural targets to radar frequencies. Interferometry is a method for generating a three-dimensional image of terrain. The height projection is obtained by acquiring two SAR images from two slightly differing locations. It is different from the common method of stereoscopic imaging for topography. The latter relies on differing geometric projections for triangulation to define the surface geometry whereas interferometry relies on differences in radar propagation times between the two SAR locations. This paper presents the capabilities of SAR, explains how SAR works, describes a few SAR applications, provides an overview of SAR development at Sandia, and briefly describes the motion compensation subsystem.

  18. Experiment in Onboard Synthetic Aperture Radar Data Processing

    Science.gov (United States)

    Holland, Matthew

    2011-01-01

    Single event upsets (SEUs) are a threat to any computing system running on hardware that has not been physically radiation hardened. In addition to mandating the use of performance-limited, hardened heritage equipment, prior techniques for dealing with the SEU problem often involved hardware-based error detection and correction (EDAC). With limited computing resources, software- based EDAC, or any more elaborate recovery methods, were often not feasible. Synthetic aperture radars (SARs), when operated in the space environment, are interesting due to their relevance to NASAs objectives, but problematic in the sense of producing prodigious amounts of raw data. Prior implementations of the SAR data processing algorithm have been too slow, too computationally intensive, and require too much application memory for onboard execution to be a realistic option when using the type of heritage processing technology described above. This standard C-language implementation of SAR data processing is distributed over many cores of a Tilera Multicore Processor, and employs novel Radiation Hardening by Software (RHBS) techniques designed to protect the component processes (one per core) and their shared application memory from the sort of SEUs expected in the space environment. The source code includes calls to Tilera APIs, and a specialized Tilera compiler is required to produce a Tilera executable. The compiled application reads input data describing the position and orientation of a radar platform, as well as its radar-burst data, over time and writes out processed data in a form that is useful for analysis of the radar observations.

  19. The effect of controlled photopigment excitations on pupil aperture.

    Science.gov (United States)

    Viénot, Françoise; Bailacq, Solenne; Rohellec, Jean Le

    2010-09-01

    In addition to rods and cones, the human retina contains melanopsin which has been identified recently in the body and dendrites of a few ganglion cells. The intrinsically photosensitive retinal ganglion cells (ipRGCs) are good candidates for controlling the tonic pupil aperture but their spectral sensitivity is close to those of rods and S-cones which are other candidates. Our study aims at identifying the stimulus for the pupil response when the luminance is constant and the spectrum of the light changes. A light booth was equipped with five types of coloured light emitting diodes (LEDs): Blue, Cyan, Green, Orange and Red. The intensity of each LED type could be adjusted to control the light spectrum. Illumination pairs were prepared ensuring the exclusive variation of excitation of one receptor type and silent substitution for others. Because the range of the possible controlled changes of excitation was narrow, we also prepared illumination pairs ensuring silent substitution for luminance rather than for L-cones and M-cones independently. Photographs of the observer's eyes were taken following one minute of adaptation to each illumination and the ratio of pupil to iris diameter was measured. No differential pupillary response was observed with a variation of rod, melanopsin or S-cone excitation alone. A differential pupillary response could only be obtained with a variation of the melanopsin stimulus of sufficient high contrast with or without a concurrent variation of rods. PMID:20883331

  20. Statistically normalized coherent change detection for synthetic aperture sonar imagery

    Science.gov (United States)

    G-Michael, Tesfaye; Tucker, J. D.; Roberts, Rodney G.

    2016-05-01

    Coherent Change Detection (CCD) is a process of highlighting an area of activity in scenes (seafloor) under survey and generated from pairs of synthetic aperture sonar (SAS) images of approximately the same location observed at two different time instances. The problem of CCD and subsequent anomaly feature extraction/detection is complicated due to several factors such as the presence of random speckle pattern in the images, changing environmental conditions, and platform instabilities. These complications make the detection of weak target activities even more difficult. Typically, the degree of similarity between two images measured at each pixel locations is the coherence between the complex pixel values in the two images. Higher coherence indicates little change in the scene represented by the pixel and lower coherence indicates change activity in the scene. Such coherence estimation scheme based on the pixel intensity correlation is an ad-hoc procedure where the effectiveness of the change detection is determined by the choice of threshold which can lead to high false alarm rates. In this paper, we propose a novel approach for anomalous change pattern detection using the statistical normalized coherence and multi-pass coherent processing. This method may be used to mitigate shadows by reducing the false alarms resulting in the coherent map due to speckles and shadows. Test results of the proposed methods on a data set of SAS images will be presented, illustrating the effectiveness of the normalized coherence in terms statistics from multi-pass survey of the same scene.

  1. Predicting polarization performance of high-numerical aperture inspection lenses

    Science.gov (United States)

    Fahr, Stephan; Werschnik, Jan; Bening, Matthias; Uhlendorf, Kristina

    2015-09-01

    Along the course of increasing through-put and improving signal to noise ratio in optical wafer and mask inspection, demands on wave front aberrations and polarization characteristics are ever increasing. The system engineers and optical designers involved in the development of such optical systems will be responsible for specifying the quality of the optical material and the mechanical tolerances. Among optical designers it is well established how to estimate the wave front error of assembled and adjusted optical devices via sensitivity or Monte-Carlo analysis. However, when compared with the scalar problem of wave front estimation, the field of polarization control deems to pose a more complex problem due to its vectorial nature. Here we show our latest results in how to model polarization affecting aspects. In the realm of high numerical aperture (NA) inspection optics we will focus on the impact of coatings, stress induced birefringence due to non-perfect lens mounting, and finally the birefringence of the optical material. With all these tools at hand, we have a more complete understanding of the optical performance of our assembled optical systems. Moreover, we are able to coherently develop optical systems meeting demanding wave front criteria as well as high end polarization specifications.

  2. LAGOVirtual: A Collaborative Environment for the Large Aperture GRB Observatory

    CERN Document Server

    Camacho, R; Diaz, G; Guada, C; Hamar, V; Hoeger, H; Melfo, A; Nunez, L A; Perez, Y; Quintero, C; Rosales, M; Torrens, R

    2009-01-01

    We present the LAGOVirtual Project: an ongoing project to develop platform to collaborate in the Large Aperture GRB Observatory (LAGO). This continental-wide observatory is devised to detect high energy (around 100 GeV) component of Gamma Ray Bursts, by using the single particle technique in arrays of Water Cherenkov Detectors (WCD) at high mountain sites (Chacaltaya, Bolivia, 5300 m a.s.l., Pico Espejo, Venezuela, 4750 m a.s.l., Sierra Negra, Mexico, 4650 m a.s.l). This platform will allow LAGO collaboration to share data, and computer resources through its different sites. This environment has the possibility to generate synthetic data by simulating the showers through AIRES application and to store/preserve distributed data files collected by the WCD at the LAGO sites. The present article concerns the implementation of a prototype of LAGO-DR adapting DSpace, with a hierarchical structure (i.e. country, institution, followed by collections that contain the metadata and data files), for the captured/simulate...

  3. Design Challenges for a Wide-Aperture Insertion Quadrupole Magnet

    CERN Document Server

    Russenschuck, S; Perez, J C; Ramos, D; Fessia, P; Karppinen, M; Kirby, G; Sahner, T; Schwerg, N

    2011-01-01

    The design and development of a superconducting (Nb-Ti) quadrupole with 120 mm aperture, for an upgrade of the LHC insertion region, faces challenges arising from the LHC beam optics requirements and the heat-deposition. The first triggered extensive studies of coil alternatives with four and six coil-blocks in view of field quality and operation margins. The latter requires more porous insulation schemes for both the cables and the ground-plane. This in turn necessitates extensive heatpropagation and quench-velocity studies, as well as more efficient quench heaters. The engineering design of the magnet includes innovative features such as self-locking collars, which will enable the collaring to be performed with the coils on a horizontal assembly bench, a spring-loaded and collapsible assembly mandrel, tuning-shims for field quality, porous collaring-shoes, and coil end-spacer design based on differential geometry methods. The project also initiated code extensions in the quench-simulation and CAD/CAM module...

  4. In-vivo synthetic aperture flow imaging in medical ultrasound.

    Science.gov (United States)

    Nikolov, Svetoslav Ivanov; Jensen, Jørgen Arendt

    2003-07-01

    A new method for acquiring flow images using synthetic aperture techniques in medical ultrasound is presented. The new approach makes it possible to have a continuous acquisition of flow data throughout the whole image simultaneously, and this can significantly improve blood velocity estimation. Any type of filter can be used for discrimination between tissue and blood flow without initialization, and the number of lines used for velocity estimation is limited only by the nonstationarity of the flow. The new approach is investigated through both simulations and measurements. A flow rig is used for generating a parabolic laminar flow, and a research scanner is used for acquiring RF data from individual transducer elements. A reference profile is calculated from a mass flow meter. The parabolic velocity profile is estimated using the new approach with a relative standard deviation of 2.2% and a mean relative bias of 3.4% using 24 pulse emissions at a flow angle of 45 degrees. The 24 emissions can be used for making a full-color flow map image. An in-vivo image of flow in the carotid artery for a 29-year-old male also is presented. The full image is acquired using 24 emissions.

  5. Five hundred meter aperture spherical radio telescope (FAST)

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Five hundred meter aperture spherical radio telescope (FAST) will be the largest radio telescope in the world. The innovative engineering concept and design pave a new road to realizing a huge single dish in the most effective way. Three outstanding features of the telescope are the unique karst depressions as the sites, the active main reflector which corrects spherical aberration on the ground to achieve full polarization and a wide band without involving a complex feed system, and the light focus cabin driven by cables and servomechanism plus a parallel robot as secondary adjustable system to carry the most precise parts of the receivers. Being the most sensitive radio telescope, FAST will enable astronomers to jumpstart many of the science goals, for example, the neutral hydrogen line surveying in distant galaxies out to very large redshifts, looking for the first shining star, detecting thousands of new pulsars, etc. Extremely interesting and exotic objects may yet await discovery by FAST. As a multi-science platform, the telescope will provide treasures to astronomers, as well as bring prosperity to other research, e.g. space weather study, deep space exploration and national security. The construction of FAST itself is expected to promote the development in high technology of relevant fields.

  6. In-vivo synthetic aperture flow imaging in medical ultrasound.

    Science.gov (United States)

    Nikolov, Svetoslav Ivanov; Jensen, Jørgen Arendt

    2003-07-01

    A new method for acquiring flow images using synthetic aperture techniques in medical ultrasound is presented. The new approach makes it possible to have a continuous acquisition of flow data throughout the whole image simultaneously, and this can significantly improve blood velocity estimation. Any type of filter can be used for discrimination between tissue and blood flow without initialization, and the number of lines used for velocity estimation is limited only by the nonstationarity of the flow. The new approach is investigated through both simulations and measurements. A flow rig is used for generating a parabolic laminar flow, and a research scanner is used for acquiring RF data from individual transducer elements. A reference profile is calculated from a mass flow meter. The parabolic velocity profile is estimated using the new approach with a relative standard deviation of 2.2% and a mean relative bias of 3.4% using 24 pulse emissions at a flow angle of 45 degrees. The 24 emissions can be used for making a full-color flow map image. An in-vivo image of flow in the carotid artery for a 29-year-old male also is presented. The full image is acquired using 24 emissions. PMID:12894918

  7. The Balloon-borne Large Aperture Submillimeter Telescope: BLAST

    CERN Document Server

    Pascale, E; Bock, J J; Chapin, E L; Chung, J; Devlin, M J; Dicker, S; Griffin, M; Gundersen, J O; Halpern, M; Hargrave, P C; Hughes, D H; Klein, J; MacTavish, C J; Marsden, G; Martin, P G; Martin, T G; Mauskopf, P; Netterfield, C B; Olmi, L; Patanchon, G; Rex, M; Scott, D; Semisch, C; Thomas, N; Truch, M D P; Tucker, C; Tucker, G S; Viero, M P; Wiebe, D V

    2007-01-01

    The Balloon-borne Large Aperture Submillimeter Telescope (BLAST) is a sub-orbital survey-experiment designed to study the evolutionary history and processes of star formation in local galaxies (including the Milky Way) and galaxies at cosmological distances. The BLAST continuum camera, which consists of 270 detectors distributed between 3 arrays, observes simultaneously in broad-band (30%) spectral-windows at 250, 350, and 500 micron. The optical design is based on a 2m diameter Cassegrain telescope, providing a diffraction-limited resolution of 30" at 250 micron. The gondola pointing system enables raster-like maps of arbitrary geometry, with a repeatable positional accuracy of ~30" post-flight pointing reconstruction to ~<5" rms is also achieved. The on-board telescope control software permits autonomous execution of a pre-selected set of maps, with the option of manual intervention. In this paper we describe the primary characteristics and measured in-flight performance of BLAST. Since a test-flight in ...

  8. Feasibility of Using Synthetic Aperture Radar to Aid UAV Navigation.

    Science.gov (United States)

    Nitti, Davide O; Bovenga, Fabio; Chiaradia, Maria T; Greco, Mario; Pinelli, Gianpaolo

    2015-01-01

    This study explores the potential of Synthetic Aperture Radar (SAR) to aid Unmanned Aerial Vehicle (UAV) navigation when Inertial Navigation System (INS) measurements are not accurate enough to eliminate drifts from a planned trajectory. This problem can affect medium-altitude long-endurance (MALE) UAV class, which permits heavy and wide payloads (as required by SAR) and flights for thousands of kilometres accumulating large drifts. The basic idea is to infer position and attitude of an aerial platform by inspecting both amplitude and phase of SAR images acquired onboard. For the amplitude-based approach, the system navigation corrections are obtained by matching the actual coordinates of ground landmarks with those automatically extracted from the SAR image. When the use of SAR amplitude is unfeasible, the phase content can be exploited through SAR interferometry by using a reference Digital Terrain Model (DTM). A feasibility analysis was carried out to derive system requirements by exploring both radiometric and geometric parameters of the acquisition setting. We showed that MALE UAV, specific commercial navigation sensors and SAR systems, typical landmark position accuracy and classes, and available DTMs lead to estimated UAV coordinates with errors bounded within ±12 m, thus making feasible the proposed SAR-based backup system. PMID:26225977

  9. Feasibility of Using Synthetic Aperture Radar to Aid UAV Navigation

    Directory of Open Access Journals (Sweden)

    Davide O. Nitti

    2015-07-01

    Full Text Available This study explores the potential of Synthetic Aperture Radar (SAR to aid Unmanned Aerial Vehicle (UAV navigation when Inertial Navigation System (INS measurements are not accurate enough to eliminate drifts from a planned trajectory. This problem can affect medium-altitude long-endurance (MALE UAV class, which permits heavy and wide payloads (as required by SAR and flights for thousands of kilometres accumulating large drifts. The basic idea is to infer position and attitude of an aerial platform by inspecting both amplitude and phase of SAR images acquired onboard. For the amplitude-based approach, the system navigation corrections are obtained by matching the actual coordinates of ground landmarks with those automatically extracted from the SAR image. When the use of SAR amplitude is unfeasible, the phase content can be exploited through SAR interferometry by using a reference Digital Terrain Model (DTM. A feasibility analysis was carried out to derive system requirements by exploring both radiometric and geometric parameters of the acquisition setting. We showed that MALE UAV, specific commercial navigation sensors and SAR systems, typical landmark position accuracy and classes, and available DTMs lead to estimated UAV coordinates with errors bounded within ±12 m, thus making feasible the proposed SAR-based backup system.

  10. Novel compact asymmetrical fractal aperture Notch band antenna

    Directory of Open Access Journals (Sweden)

    Duvuri S. RAMKIRAN

    2015-12-01

    Full Text Available A compact novel fractal aperture co-planar waveguide fed monopole antenna for multiband applications is proposed in this paper. The structure is asymmetric along the principle axis and seems to be like amoeba shape of radiating element. A band notch characteristic also achieved through this design for communication band applications. The antenna parameters were investigated to fully understand the behaviour and later for the optimisation process. The simulated results through HFSS tool are giving satisfactory results to notch particular band of frequencies and which is giving motivation for the fabrication of the proposed model. All the antenna parameters including S parameters and radiation patterns and current distributions are studied through simulation and experimental validation is done through the proto type modelling on FR4 substrate. Except the Notch band, the proposed antenna model giving excellent radiation characteristics with VSWR less than 2. The prototyped antenna model is occupying a compact size of 18 X 14 X 1.6 mm on FR4 dielectric substrate material with dielectric constant 4.4.

  11. Adaptive uniform grayscale coded aperture design for high dynamic range compressive spectral imaging

    Science.gov (United States)

    Diaz, Nelson; Rueda, Hoover; Arguello, Henry

    2016-05-01

    Imaging spectroscopy is an important area with many applications in surveillance, agriculture and medicine. The disadvantage of conventional spectroscopy techniques is that they collect the whole datacube. In contrast, compressive spectral imaging systems capture snapshot compressive projections, which are the input of reconstruction algorithms to yield the underlying datacube. Common compressive spectral imagers use coded apertures to perform the coded projections. The coded apertures are the key elements in these imagers since they define the sensing matrix of the system. The proper design of the coded aperture entries leads to a good quality in the reconstruction. In addition, the compressive measurements are prone to saturation due to the limited dynamic range of the sensor, hence the design of coded apertures must consider saturation. The saturation errors in compressive measurements are unbounded and compressive sensing recovery algorithms only provide solutions for bounded noise or bounded with high probability. In this paper it is proposed the design of uniform adaptive grayscale coded apertures (UAGCA) to improve the dynamic range of the estimated spectral images by reducing the saturation levels. The saturation is attenuated between snapshots using an adaptive filter which updates the entries of the grayscale coded aperture based on the previous snapshots. The coded apertures are optimized in terms of transmittance and number of grayscale levels. The advantage of the proposed method is the efficient use of the dynamic range of the image sensor. Extensive simulations show improvements in the image reconstruction of the proposed method compared with grayscale coded apertures (UGCA) and adaptive block-unblock coded apertures (ABCA) in up to 10 dB.

  12. Design and analysis of high-numerical-aperture beam shaping systems; Design und Analyse von Strahlformungssystemen hoher numerischer Apertur

    Energy Technology Data Exchange (ETDEWEB)

    Schweitzer, Hagen

    2009-11-24

    The generation of light tailored to measure stands today in the center of many innovative applications. A possibility of the flexible manipulation of light is the laser-beam shaping.Aim is thereby to transform the intensity profile of a laser beam to a wanted profile. The main topic of this thesis is the modeling and propagation of laser light in paraxial and non-paraxial beam-shaping systems as well as the optimization of these systems by means of a generalized projection algorithm. This algorithm is applied for the optimization by means of aspherical formula or polynomials point-by-point parametrized beam shaping surfaces. It is shown that during the optimization a regardment of diffraction, interference, and abberations is possible. The latter can not only be regarded, but directly used for the beam shaping. Finally it is shown that the aberrations of spherical catalogue lenses are already sufficient for some beam-shaping applications. The efficiency of the developed optimization algorithms is demonstrated both on paraxial and on non-paraxial beam-shaping examples with a numerical aperture of up to 0.62. Finally in the present thesis concepts for the achromatization and for the wave-length multiplexing are introduced, which are based on the application of diverse surfaces and materials with different dispersion. While the achromatization aims to make the optical function of a beam-shaping system wave-length independent, the wavelength multiplexing tries directly to realize different optical functions for diverse design wavelengths. [German] Die Erzeugung massgeschneiderten Lichts steht heute im Mittelpunkt vieler innovativer Anwendungen. Eine Moeglichkeit der flexiblen Manipulation von Licht ist die Laserstrahlformung. Ziel ist es dabei, das Intensitaetsprofil eines Laserstrahls in ein gewuenschtes Profil umzuformen. Schwerpunkt dieser Arbeit ist die Modellierung und Ausbreitung von Laserlicht in paraxialen und nicht-paraxialen Strahlformungssystemen sowie die

  13. High contrast imaging with an arbitrary aperture: active correction of aperture discontinuities: fundamental limits and practical trades offs

    Science.gov (United States)

    Pueyo, Laurent; Norman, Colin Arthur; Soummer, Remi; Perrin, Marshall D.; N'Diaye, Mamadou; Choquet, Elodie

    2015-01-01

    In a recent paper we discussed a new method to achieve high-contrast images using segmented and/or on-axis telescopes. Our approach, named Active Compensation of Aperture Discontinuities (ACAD) relies on two sequential Deformable Mirrors to compensate for the large amplitude excursions in the telescope aperture due to secondary support structures and/or segment gaps. In this configuration the parameter landscape of Deformable Mirror Surfaces that yield high contrast Point Spread Functions is not linear, and non-linear methods are needed to find the true minimum. In particular we showed that broadband high contrast solutions can be achieved using realistic surface deformations that are accessible using existing technologies for a variety of telescope pupil geometries. In this paper we first focus on the fundamental limits and practical trade-offs associated with ACAD. In a first part we will study the fundamental limits and practical tradeoffs associated with ACAD, regardless of the downstream coronagraphic architecture. The mathematical techniques to finding ACAD DM shapes require to solve a complex differential equation. We will first discuss the scaling laws underlying this non-linear solution and their impact of DM placement and geometry wishing the optical design of an instrument. We will then consider the sensitivity to low order aberrations: in principle an ACAD solution that comprises large strokes will be more sensitive to these aberrations than one with smaller strokes. As a consequence, we will quantify this sensitive both using analytical models and numerical simulations. We will present diffractive end to end simulations and quantify the ultimate contrast and bandwidth achievable with ACAD, which can be reached by superposing using a classical linear wavefront control algorithms on top of the Monge Ampere solution. Finally, recent work has shown that coronagraph designs can also accommodate for secondary support structures and/or segments gaps, at a

  14. Synthetic aperture laser optical feedback imaging using a translational scanning with galvanometric mirrors

    CERN Document Server

    Glastre, Wilfried; Hugon, Olivier; De Chatellus, Hugues Guillet; Lacot, Eric

    2012-01-01

    In this paper we present an experimental setup based on Laser Optical Feedback Imaging (LOFI) and on Synthetic Aperture (SA) with translational scanning by galvanometric mirrors for the purpose of making deep and resolved images through scattering media. We provide real 2D optical synthetic-aperture image of a fixed scattering target with a moving aperture and an isotropic resolution. We demonstrate theoretically and experimentally that we can keep microscope resolution beyond the working distance. A photometric balance is made and we show that the number of photons participating in the final image decreases with the square of the reconstruction distance. This degradation is partially compensated by the high sensitivity of LOFI.

  15. Characteristic Impedance of a Microstrip-Like Interconnect Line in Presence of Ground Plane Aperture

    Directory of Open Access Journals (Sweden)

    Rohit Sharma

    2007-01-01

    Full Text Available We propose new empirical expressions for the characteristic impedance of a microstrip-like interconnect line in presence of ground plane aperture. The existing characteristic impedance expressions are modified so as to include the effect of the ground plane aperture. The variation in the characteristic impedance vis-à-vis the aperture size is established. The proposed expressions are general and valid for a range of dielectric materials concerning MICs, RFICs, and PCBs. The results are validated by measurements performed on a vector network analyzer.

  16. Far field 3D localization of radioactive hot spots using a coded aperture camera.

    Science.gov (United States)

    Shifeng, Sun; Zhiming, Zhang; Lei, Shuai; Daowu, Li; Yingjie, Wang; Yantao, Liu; Xianchao, Huang; Haohui, Tang; Ting, Li; Pei, Chai; Yiwen, Zhang; Wei, Zhou; Mingjie, Yang; Cunfeng, Wei; Chuangxin, Ma; Long, Wei

    2016-01-01

    This paper presents a coded aperture method to remotely estimate the radioactivity of a source. The activity is estimated from the detected counts and the estimated source location, which is extracted by factoring the effect of aperture magnification. A 6mm thick tungsten-copper alloy coded aperture mask is used to modulate the incoming gamma-rays. The location of point and line sources in all three dimensions was estimated with an accuracy of less than 10% when the source-camera distance was about 4 m. The estimated activities were 17.6% smaller and 50.4% larger than the actual activities for the point and line sources, respectively.

  17. Effects of Microlens Array Lens Size on Sub-Aperture Images in Light Field Cameras

    Directory of Open Access Journals (Sweden)

    Pei-Chuen Chiou

    2013-05-01

    Full Text Available The effects of microlens aperture size on 3D imaging quality for a 5 x 5 microlens array in a light field camera are studied by Fourier optics in consideration of pupil sizes and the locations of main lens and each lens in a microlens array. The larger size of the lenses in the microlens array provides higher sub-aperture image resolution. The techniques demonstrated in this paper can be useful to evaluate sub-aperture image performance in a light field camera without requiring large computations.

  18. A Simple Low-Cost Shared-Aperture Dual-Band Dual-Polarized High Gain Antenna for Synthetic Aperture Radars

    OpenAIRE

    Qin, Fan; Gao, Steven; Qi, Luo; Mao, Chunxu; Gu, Chao; Wei, Gao; Xu, Jiadong; Li, Jianzhou; Wu, Changying; Zheng, Kuisong; Zheng, Shufeng

    2016-01-01

    This paper presents a novel shared-aperture dual-band dual-polarized high-gain antenna for potential applications in synthetic aperture radars (SAR). To reduce the complexity of SAR antennas, a dual-band dual-polarized high gain antenna based on the concept of Fabry-Perot resonant cavity is designed. This antenna operates in both C and X bands with a frequency ratio of 1:1.8. To form two separate resonant cavities, two frequency selective surface (FSS) layers are employed, leading to high fle...

  19. Synthetic aperture radar interferometry of Okmok volcano, Alaska: radar observations

    Science.gov (United States)

    Lu, Zhong; Mann, Dörte; Freymueller, Jeffrey T.; Meyer, David

    2000-01-01

    ERS-1/ERS-2 synthetic aperture radar interferometry was used to study the 1997 eruption of Okmok volcano in Alaska. First, we derived an accurate digital elevation model (DEM) using a tandem ERS-1/ERS-2 image pair and the preexisting DEM. Second, by studying changes in interferometric coherence we found that the newly erupted lava lost radar coherence for 5-17 months after the eruption. This suggests changes in the surface backscattering characteristics and was probably related to cooling and compaction processes. Third, the atmospheric delay anomalies in the deformation interferograms were quantitatively assessed. Atmospheric delay anomalies in some of the interferograms were significant and consistently smaller than one to two fringes in magnitude. For this reason, repeat observations are important to confidently interpret small geophysical signals related to volcanic activities. Finally, using two-pass differential interferometry, we analyzed the preemptive inflation, coeruptive deflation, and posteruptive inflation and confirmed the observations using independent image pairs. We observed more than 140 cm of subsidence associated with the 1997 eruption. This subsidence occurred between 16 months before the eruption and 5 months after the eruption, was preceded by ∼18 cm of uplift between 1992 and 1995 centered in the same location, and was followed by ∼10 cm of uplift between September 1997 and 1998. The best fitting model suggests the magma reservoir resided at 2.7 km depth beneath the center of the caldera, which was ∼5 km from the eruptive vent. We estimated the volume of the erupted material to be 0.055 km3 and the average thickness of the erupted lava to be ∼7.4 m. Copyright 2000 by the American Geophysical Union.

  20. Imaging of concrete specimens using inverse synthetic aperture radar

    International Nuclear Information System (INIS)

    Radar Measurement results of laboratory size concrete specimens are presented in this paper. The purpose of this research work is to study various aspects of the radar method in an effort to develop an improved radar system for nondestructive testing of concrete structures. The radar system used for the study is an Inverse Synthetic Aperture Radar (ISAR), which is capable of transmitting microwaves at three different frequency ranges of 2-3.4, 3.4-5.8, and 8-12 GHz. Radar measurement setup is such that the radar is locates 14.4 m away from a concrete target to satisfy a far-field criterion. The concrete target is rotated for 20 degrees during the measurements for the generation of two-dimensional (cross-range) imagery. Concrete targets used for the measurements have the dimensions of 305 mm (width)x305 mm (height)x92 mm (thickness) with different inside configurations. Comparisons are made for dry and wet specimens, specimens with and without inclusions. Each specimen is made to model various situations that a concrete structure can have in reality. Results show that center frequency, frequency bandwidth, and polarization of the incident wave have different effects on identifying the thickness or inclusions inside concrete specimens. Results also suggest that a certain combination of measurement parameters is suitable for a specific application area. Thus, measurement parameters can be optimized for a specific problem. The findings are presented and discussed in details in the paper. Signal processing schemes implemented for imaging of the specimens are also discussed

  1. Three-dimensional synthetic aperture particle image velocimetry

    International Nuclear Information System (INIS)

    We present a new method for resolving three-dimensional (3D) fluid velocity fields using a technique called synthetic aperture particle image velocimetry (SAPIV). By fusing methods from the imaging community pertaining to light field imaging with concepts that drive experimental fluid mechanics, SAPIV overcomes many of the inherent challenges of 3D particle image velocimetry (3D PIV). This method offers the ability to digitally refocus a 3D flow field at arbitrary focal planes throughout a volume. The viewable out-of-plane dimension (Z) can be on the same order as the viewable in-plane dimensions (X–Y), and these dimensions can be scaled from tens to hundreds of millimeters. Furthermore, the digital refocusing provides the ability to 'see-through' partial occlusions, enabling measurements in densely seeded volumes. The advantages are achieved using a camera array (typically at least five cameras) to image the seeded fluid volume. The theoretical limits on refocused plane spacing and viewable depth are derived and explored as a function of camera optics and spacing of the array. A geometric optics model and simulated PIV images are used to investigate system performance for various camera layouts, measurement volume sizes and seeding density; performance is quantified by the ability to reconstruct the 3D intensity field, and resolve 3D vector fields in densely seeded simulated flows. SAPIV shows the ability to reconstruct fields with high seeding density and large volume size. Finally, results from an experimental implementation of SAPIV using a low cost eight-camera array to study a vortex ring in a 65 × 40 × 32 mm3 volume are presented. The 3D PIV results are compared with 2D PIV data to demonstrate the capability of the 3D SAPIV technique

  2. Operational Ship Monitoring System Based on Synthetic Aperture Radar Processing

    Directory of Open Access Journals (Sweden)

    Antonio Tabasco

    2009-08-01

    Full Text Available This paper presents a Ship Monitoring System (SIMONS working with Synthetic Aperture Radar (SAR images. It is able to infer ship detection and classification information, and merge the results with other input channels, such as polls from the Automatic Identification System (AIS. Two main stages can be identified, namely: SAR processing and data dissemination. The former has three independent modules, which are related to Coastline Detection (CD, Ship Detection (SD and Ship Classification (SC. The later is solved via an advanced web interface, which is compliant with the OpenSource standards fixed by the Open Geospatial Consortium (OGC. SIMONS has been designed to be a modular, unsupervised and reliable system that meets Near-Real Time (NRT delivery requirements. From data ingestion to product delivery, the processing chain is fully automatic accepting ERS and ENVISAT formats. SIMONS has been developed by GMV Aerospace, S.A. with three main goals, namely: 1 To limit the dependence on the ancillary information provided by systems such as AIS. 2 To achieve the maximum level of automatism and restrict human manipulation. 3 To limit the error sources and their propagation. Spanish authorities have validated SIMONS. The results have been satisfactory and have confirmed that the system is useful for improving decision making. For single-polarimetric images with a resolution of 30 m, SIMONS permits the location of ships larger than 40 m with a classification ratio around 50% of positive matches. These values are expected to be improved with SAR data from new sensors. In the paper, the performance of SD and SC modules is assessed by cross-check of SAR data with AIS reports.

  3. Non-breaking swell dissipation from synthethic aperture radar

    Science.gov (United States)

    Stopa, Justin; Husson, Romain; Ardhuin, Fabrice; Collard, Fabrice; Chapron, Bertrand

    2015-04-01

    Swells have the unique ability to propagate away from their generation region with very little attenuation. Only one study exists in the ocean wave literature that measures the decay rate by following a swell with in-situ measurements along its great circle route. More recently used space-borne synthetic aperture radar (SAR) to measure the attenuation. They estimated the dissipation rate from SAR with a limited number of cases: 11 storms with 22 total events. The present work extrapolates their technique to more events since ENVISAT has collected SAR data from 2002-2012. The dissipation rate is then determined in a two step process. First swell sources are identified from density maps of back-propagated waves at their group velocity along great circles. Next a "point-source" model is assumed and the waves from all directions and frequencies are propagated forward to find matching SAR observations. Relatively small directional bins are used to group observations creating transects from a given swell event. This ensemble of tracks is the basic dataset used to calculate a more statistically robust measure of the dissipation rate. Individual tracks and the swell behavior are explored through this dataset. Our results are in agreement with previous findings and it is verified that swells are very persistent with e-folding scales larger than 20,000 km and they behave nonlinearly as a function of wave frequency. The results are discussed in terms of their implications in spectral wave models as well as identify limitations of the remotely sensed wave spectra. The wind's role on the dissipation rate cannot be determined from this analysis stressing the need for concurrent wind and wave observations.

  4. NASA-ISRO synthetic aperture radar: science and applications

    Science.gov (United States)

    Kumar, Raj; Rosen, Paul; Misra, Tapan

    2016-05-01

    NASA-ISRO Synthetic Aperture Radar (NISAR), a novel SAR concept will be utilized to image wide swath at high resolution of stripmap SAR. It will have observations in L- and S-bands to understand highly spatial and temporally complex processes such as ecosystem disturbances, ice sheet changes, and natural hazards including earthquakes, tsunamis, volcanoes, and landslides. NISAR with several advanced features such as 12 days interferometric orbit, achievement of high resolution and wide swath images through SweepSAR technology and simultaneous data acquisition in dual frequency would support a host of applications. The primary objectives of NISAR are to monitor ecosystems including monitoring changes in ecosystem structure and biomass estimation, carbon flux monitoring; mangroves and wetlands characterization; alpine forest characterization and delineation of tree-line ecotone, land surface deformation including measurement of deformation due to co-seismic and inter-seismic activities; landslides; land subsidence and volcanic deformation, cryosphere studies including measurements of dynamics of polar ice sheet, ice discharge to the ocean, Himalayan snow and glacier dynamics, deep and coastal ocean studies including retrieval of ocean parameters, mapping of coastal erosion and shore-line change; demarcation of high tide line (HTL) and low tide line (LTL) for coastal regulation zones (CRZ) mapping, geological studies including mapping of structural and lithological features; lineaments and paleo-channels; geo-morphological mapping, natural disaster response including mapping and monitoring of floods, forest fires, oil spills, earthquake damage and monitoring of extreme weather events such as cyclones. In addition to the above, NISAR would support various other applications such as enhanced crop monitoring, soil moisture estimation, urban area development, weather and hydrological forecasting.

  5. Large-pitch steerable synthetic transmit aperture imaging (LPSSTA)

    Science.gov (United States)

    Li, Ying; Kolios, Michael C.; Xu, Yuan

    2016-04-01

    A linear ultrasound array system usually has a larger pitch and is less costly than a phased array system, but loses the ability to fully steer the ultrasound beam. In this paper, we propose a system whose hardware is similar to a large-pitch linear array system, but whose ability to steer the beam is similar to a phased array system. The motivation is to reduce the total number of measurement channels M (the product of the number of transmissions, nT, and the number of the receive channels in each transmission, nR), while maintaining reasonable image quality. We combined adjacent elements (with proper delays introduced) into groups that would be used in both the transmit and receive processes of synthetic transmit aperture imaging. After the M channels of RF data were acquired, a pseudo-inversion was applied to estimate the equivalent signal in traditional STA to reconstruct a STA image. Even with the similar M, different choices of nT and nR will produce different image quality. The images produced with M=N2/15 in the selected regions of interest (ROI) were demonstrated to be comparable with a full phased array, where N is the number of the array elements. The disadvantage of the proposed system is that its field of view in one delay-configuration is smaller than a standard full phased array. However, by adjusting the delay for each element within each group, the beam can be steered to cover the same field of view as the standard fully-filled phased array. The LPSSTA system might be useful for 3D ultrasound imaging.

  6. Numerical aperture characteristics of angle-ended plastic optical fiber

    Science.gov (United States)

    Gao, Cheng; Farrell, Gerard

    2003-03-01

    With the increasing information rates demanded in consumer, automotive and aeronautical applications, a low cost and high performance physical transmission medium is required. Compared with Silica Optical Fiber, Plastic Optical Fiber (POF) offers an economic solution for a range of high-capacity, short-haul applications in industrial and military environments. Recently, a new type of POF, the perfluorinated graded-index plastic optical fiber (PF GI-POF), has been introduced that has low losses and high bandwidth at the communication wavelengths 850 nm and 1300nm. POF is normally terminated perpendicular to the fiber axis. We propose an angle-ended POF, which is terminated at non-perpendicular angles to the fiber axis. The aim of the research is to investigate the numerical aperture (NA) characteristics of angle-ended POF along the major axis of the elliptical endface. A theoretical model indicates that the NA of the angle-ended POF will increase nonlinearly with tilt-angle and the acceptance cone will be deflected with the angle of the deflection increasing nonlinearly with tilt-angle. We present results for the measured NA and the measured deflection angle using the far-field radiation method. Results are presented for 13 angle-ended SI-POF tilt-angles. We also present results for theoretical value of NA and deflection angle as a function of tilt-angle. The agreement between the measured and theoretical value is good up to tilt-angles of about 15 degrees, beyond which deviation occurs.

  7. The Five-Hundred Aperture Spherical Radio Telescope (fast) Project

    Science.gov (United States)

    Nan, Rendong; Li, Di; Jin, Chengjin; Wang, Qiming; Zhu, Lichun; Zhu, Wenbai; Zhang, Haiyan; Yue, Youling; Qian, Lei

    Five-hundred-meter Aperture Spherical radio Telescope (FAST) is a Chinese mega-science project to build the largest single dish radio telescope in the world. Its innovative engineering concept and design pave a new road to realize a huge single dish in the most effective way. FAST also represents Chinese contribution in the international efforts to build the square kilometer array (SKA). Being the most sensitive single dish radio telescope, FAST will enable astronomers to jump-start many science goals, such as surveying the neutral hydrogen in the Milky Way and other galaxies, detecting faint pulsars, looking for the first shining stars, hearing the possible signals from other civilizations, etc. The idea of sitting a large spherical dish in a karst depression is rooted in Arecibo telescope. FAST is an Arecibo-type antenna with three outstanding aspects: the karst depression used as the site, which is large to host the 500-meter telescope and deep to allow a zenith angle of 40 degrees; the active main reflector correcting for spherical aberration on the ground to achieve a full polarization and a wide band without involving complex feed systems; and the light-weight feed cabin driven by cables and servomechanism plus a parallel robot as a secondary adjustable system to move with high precision. The feasibility studies for FAST have been carried out for 14 years, supported by Chinese and world astronomical communities. Funding for FAST has been approved by the National Development and Reform Commission in July of 2007 with a capital budget ~ 700 million RMB. The project time is 5.5 years from the commencement of work in March of 2011 and the first light is expected to be in 2016. This review intends to introduce the project of FAST with emphasis on the recent progress since 2006. In this paper, the subsystems of FAST are described in modest details followed by discussions of the fundamental science goals and examples of early science projects.

  8. Multipinhole collimator with 20 apertures for a brain SPECT application

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Tzu-Cheng; Ellin, Justin R.; Shrestha, Uttam; Seo, Youngho, E-mail: youngho.seo@ucsf.edu [Physics Research Laboratory, Department of Radiology and Biomedical Imaging, University of California, San Francisco, California 94107 (United States); Huang, Qiu [School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030 (China); Gullberg, Grant T. [Department of Radiotracer Development and Imaging Technology, Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94702 (United States)

    2014-11-01

    Purpose: Several new technologies for single photon emission computed tomography (SPECT) instrumentation with parallel-hole collimation have been proposed to improve detector sensitivity and signal collection efficiency. Benefits from improved signal efficiency include shorter acquisition times and lower dose requirements. In this paper, the authors show a possibility of over an order of magnitude enhancement in photon detection efficiency (from 7.6 × 10{sup −5} to 1.6 × 10{sup −3}) for dopamine transporter (DaT) imaging of the striatum over the conventional SPECT parallel-hole collimators by use of custom-designed 20 multipinhole (20-MPH) collimators with apertures of 0.75 cm diameter. Methods: Quantifying specific binding ratio (SBR) of {sup 123}I-ioflupane or {sup 123}I-iometopane’s signal at the striatal region is a common brain imaging method to confirm the diagnosis of the Parkinson’s disease. The authors performed imaging of a striatal phantom filled with aqueous solution of I-123 and compared camera recovery ratios of SBR acquired between low-energy high-resolution (LEHR) parallel-hole collimators and 20-MPH collimators. Results: With only two-thirds of total acquisition time (20 min against 30 min), a comparable camera recovery ratio of SBR was achieved using 20-MPH collimators in comparison to that from the LEHR collimator study. Conclusions: Their systematic analyses showed that the 20-MPH collimator could be a promising alternative for the DaT SPECT imaging for brain over the traditional LEHR collimator, which could give both shorter scan time and improved diagnostic accuracy.

  9. A dual-sided coded-aperture radiation detection system

    Science.gov (United States)

    Penny, R. D.; Hood, W. E.; Polichar, R. M.; Cardone, F. H.; Chavez, L. G.; Grubbs, S. G.; Huntley, B. P.; Kuharski, R. A.; Shyffer, R. T.; Fabris, L.; Ziock, K. P.; Labov, S. E.; Nelson, K.

    2011-10-01

    We report the development of a large-area, mobile, coded-aperture radiation imaging system for localizing compact radioactive sources in three dimensions while rejecting distributed background. The 3D Stand-Off Radiation Detection System (SORDS-3D) has been tested at speeds up to 95 km/h and has detected and located sources in the millicurie range at distances of over 100 m. Radiation data are imaged to a geospatially mapped world grid with a nominal 1.25- to 2.5-m pixel pitch at distances out to 120 m on either side of the platform. Source elevation is also extracted. Imaged radiation alarms are superimposed on a side-facing video log that can be played back for direct localization of sources in buildings in urban environments. The system utilizes a 37-element array of 5×5×50 cm 3 cesium-iodide (sodium) detectors. Scintillation light is collected by a pair of photomultiplier tubes placed at either end of each detector, with the detectors achieving an energy resolution of 6.15% FWHM (662 keV) and a position resolution along their length of 5 cm FWHM. The imaging system generates a dual-sided two-dimensional image allowing users to efficiently survey a large area. Imaged radiation data and raw spectra are forwarded to the RadioNuclide Analysis Kit (RNAK), developed by our collaborators, for isotope ID. An intuitive real-time display aids users in performing searches. Detector calibration is dynamically maintained by monitoring the potassium-40 peak and digitally adjusting individual detector gains. We have recently realized improvements, both in isotope identification and in distinguishing compact sources from background, through the installation of optimal-filter reconstruction kernels.

  10. Millimeter Wave Synthetic Aperture Imaging System with a Unique Rotary Scanning System

    Science.gov (United States)

    Ghasr, M. T.; Case, J. T.; McClanahan, A. D.; Abou-Khousa, M.; Guinn, K.; Kharkovsky, S.; Zoughi, R.; Afaki-Beni, A.; DePaulis, F.; Pommerenke, D.

    2008-01-01

    This is the video that accompanies the "Millimeter Wave Synthetic Aperture Imaging System with a Unique Rotary Scanning System" presentation. It shows the operation of the scanning system, and reviews the results of the scanning of a sample.

  11. Dual frequency Synthetic Aperture Radar (SAR) mission for monitoring our dynamic planet

    Science.gov (United States)

    Hilland, J.; Bard, S.; Key, R.; Kim, Y.; Vaze, P.; Huneycutt, B.

    2000-01-01

    Advances in spaceborne Synthetic Aperture Radar (SAR) remote sensing technology make it possible to acquire global-scale data sets that provide unique information about the Earth's continually changing surface characteristics.

  12. Integrated High-Speed Digital Optical True-Time-Delay Modules for Synthetic Aperture Radars Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Crystal Research, Inc. proposes an integrated high-speed digital optical true-time-delay module for advanced synthetic aperture radars. The unique feature of this...

  13. High numerical aperture imaging by using multimode fibers with micro-fabricated optics

    KAUST Repository

    Bianchi, Silvio

    2014-01-01

    Controlling light propagation into multimode optical fibers through spatial light modulators provides highly miniaturized endoscopes and optical micromanipulation probes. We increase the numerical aperture up to nearly 1 by micro-optics fabricated on the fiber-end.

  14. Method and apparatus for shadow aperture backscatter radiography (SABR) system and protocol

    Science.gov (United States)

    Shedlock, Daniel (Inventor); Jacobs, Alan M. (Inventor); Jacobs, Sharon Auerback (Inventor); Dugan, Edward (Inventor)

    2010-01-01

    A shadow aperture backscatter radiography (SABR) system includes at least one penetrating radiation source for providing a penetrating radiation field, and at least one partially transmissive radiation detector, wherein the partially transmissive radiation detector is interposed between an object region to be interrogated and the radiation source. The partially transmissive radiation detector transmits a portion of the illumination radiation field. A shadow aperture having a plurality of radiation attenuating regions having apertures therebetween is disposed between the radiation source and the detector. The apertures provide illumination regions for the illumination radiation field to reach the object region, wherein backscattered radiation from the object is detected and generates an image by the detector in regions of the detector that are shadowed by the radiation attenuation regions.

  15. The Slow-Moving Ground Targets Detecting and Imaging of Three-aperture Interferometric SAR

    Institute of Scientific and Technical Information of China (English)

    LIJingwen; ZHOUYinqing

    2004-01-01

    This paper studies the detecting and imaging processing technique of the slow-moving ground targets based on three-aperture interferometic synthetic aperture radar. It uses three-aperture interferometric SAR processing technique to cancel ground clutter, then to detect the moving ground targets, simultaneously determine their true azimuth location and radial ground speed, and finally to form the focused moving ground targets' images. This paper describes in detail the principle of clutter suppression based on three-aperture interferometric SAR. It gives an approach to detect the slow-moving ground targets and to determine their true azimuth location and radial ground speed, and presents a method to get slow-moving ground targets' focused image. Finally, some typical computer simulation results are presented, which illustrate this technique's availability.

  16. Extraordinary terahertz transmission through a copper film perforated with circular and rectangular apertures

    Science.gov (United States)

    Hu, Dan; Chen, Bing

    2015-11-01

    The extraordinary transmission (ET) due to localized surface plasmon (LSP) and propagating surface plasmon (PSP) resonances of terahertz wave through a copper film perforated with circular and rectangular apertures is investigated theoretically and experimentally. Considering that the field distributions of LSP and PSP resonances are determined by the shape and periods of the apertures on the film, the relations between extraordinary and the geometrical parameters of the apertures are investigated. The intensities of the ETs induced by the PSP resonances mode [1, 1] are much stronger than the fundamental ones [1, 0] and [0, 1]. Our finds provide another effective method to tailor the extraordinary THz transmission in sub-wavelength metallic aperture structures.

  17. Flexible T/R Modules for Large-Aperture, Space-Based SAR Project

    Data.gov (United States)

    National Aeronautics and Space Administration — SI2 Technologies, Inc (SI2) proposes to develop membrane compatible transmit/receive (T/R) modules for flexible, space-deployable synthetic aperture radar (SAR)...

  18. Direct Numerical Calculation of X-Ray and Neutron Imaging Using Apertures

    Science.gov (United States)

    Christensen, C. R.; Murphy, T. J.

    2001-10-01

    The ICF program makes extensive use of X-ray imaging utilizing apertures. Pinhole, penumbral, and ring aperture imaging have all been demonstrated. For neutrons, pinhole and penumbral aperture imaging are being developed for applications to National Ignition Facility and Laser Megajoule. Previous analysis techniques have used approximations using Fourier transforms to reconstruct a source from the measured image. We proceed in a more straightforward manner: integration of the probability distribution over the areas of the square pixels followed by matrix inversion. Penetration of and scattering within the aperture substrate are explicitly calculated. Consideration of noise and matrix conditioning allow optimal choices for system geometry. Noise reduction is perfomed using constrained singular value decomposition. Using simulated ICF implosions, a noise-reduction algorithm will be demonstrated. Reconstructions will be shown for simulated and real data at different neutron yields. Work performed at LANL under DOE contract No. W-7405-Eng-36

  19. Studies on the High Resolution DOA Estimation for UUV Based on Synthetic Aperture Technique

    Institute of Scientific and Technical Information of China (English)

    YANG Xu-dong; HUANG Jian-guo; FENG Xi-an

    2009-01-01

    To increase the limited spatial processing gain of physical aperture of UUV (unmanned underwater vehicle) linear array and satisfy the demand of long distance target detection, a flank array based on the synthetic aperture technique is introduced into UUV, and a modified beam domain passive synthetic aperture processing algorithm (BDPSA) suitable for the flank array is proposed concurrently, which sums the beamforming of linear array coherently for successive measurement after phase compensation to make the beam output peak corresponding to the expected target bearing, expand the array aperture effectively and improve the resolution. The simulation of detection probability and distinguishing probability for double targets within 1, 1/2, 1/3 and 1/4 beam-width shows that the method of BDPSA has lower SNR threshold for target distinguishing, improves the detection probability and distinguishing probability under low SNR, and realizes the long-distance and high resolution bearing estimation because of the obvious improvement of the spatial array gain.

  20. Investigation on the effect of aperture sizes and receiver positions in coupled rooms.

    Science.gov (United States)

    Xiang, Ning; Escolano, Jose; Navarro, Juan M; Jing, Yun

    2013-06-01

    Some recent concert hall designs have incorporated coupled reverberation chambers to the main hall that have stimulated a range of research activities in architectural acoustics. The coupling apertures between two or more coupled-volume systems are of central importance for sound propagation and sound energy decays throughout the coupled-volume systems. In addition, positions of sound sources and receivers relative to the aperture also have a profound influence on the sound energy distributions and decays. This work investigates the effect of aperture size on the behavior of coupled-volume systems using both acoustic scale-models and diffusion equation models. In these physical and numerical models, the sound source and receiver positions relative to the aperture are also investigated. Through systematic comparisons between results achieved from both physical scale models and numerical models, this work reveals valid ranges and limitations of the diffusion equation model for room-acoustic modeling. PMID:23742351

  1. The Effect of Apertures Position on Shielding Effectiveness of Metallic Enclosures based on Modal Method of Moments

    Directory of Open Access Journals (Sweden)

    Chao Zhou

    2013-09-01

    Full Text Available In this study, an effective numerical method suitable for determination of electric field Shielding Effectiveness (SE of rectangular enclosure with multiple rectangular apertures is presented. Assuming appropriate electric field distribution on the aperture, Electromagnetic fields inside the enclosure are determined using rectangular cavity Green’s function. Electromagnetic fields outside the enclosure and scattered due to the aperture are obtained using the free space Green’s function. Matching the tangential magnetic field across the apertures, the integral equation with aperture fields as unknown variables is obtained. The integral equation is solved for unknown aperture fields using the Method of Moments. From the aperture fields the electromagnetic SE of the rectangular enclosure is determined. The numerical results of the proposed technique are in very good agreement with data available in the literature and experimental results. It is shown that apertures’ position and shape, aperture’ number, polarization have noticeable effect on the electric field SE.

  2. Effects of surface-mapping corrections and synthetic-aperture focusing techniques on ultrasonic imaging

    International Nuclear Information System (INIS)

    Improvements in ultrasonic imaging that can be obtained using algorithms that map the surface of targets are evaluated. This information is incorporated in the application of synthetic-aperture focusing techniques which also have the potential to improve image resolution. Images obtained using directed-beam (flat) transducers and the focused transducers normally used for synthetic-aperture processing are quantitatively compared by using no processing, synthetic-aperture processing with no corrections for surface variations, and synthetic-aperture processing with surface mapping. The unprocessed images have relatively poor lateral resolutions because echoes from two adjacent reflectors show interference effects which prevent their identification even if the spacing is larger than the single-hole resolution. The synthetic-aperture-processed images show at least a twofold improvement in lateral resolution and greatly reduced interference effects in multiple-hole images compared to directed-beam images. Perhaps more importantly, in images of test blocks with substantial surface variations portions of the image are displaced from their actual positions by several wavelengths. To correct for this effect an algorithm has been developed for calculating the surface variations. The corrected images produced using this algorithm are accurate within the experimental error. In addition, the same algorithm, when applied to the directed-beam data, produced images that are not only accurately positioned, but that also have a resolution comparable to conventional synthetic-aperture-processed images obtained from focused-transducer data. This suggests that using synthetic-aperture processing on the type of data normally collected during directed-beam ultrasonic inspections would eliminate the need to rescan for synthetic-aperture enhancement

  3. Finite-Element Simulations of Light Propagation through Circular Subwavelength Apertures

    CERN Document Server

    Burger, S; Zschiedrich, L; Schmidt, F; 10.1117/12.822828

    2009-01-01

    Light transmission through circular subwavelength apertures in metallic films with surrounding nanostructures is investigated numerically. Numerical results are obtained with a frequency-domain finite-element method. Convergence of the obtained observables to very low levels of numerical error is demonstrated. Very good agreement to experimental results from the literature is reached, and the utility of the method is demonstrated in the investigation of the influence of geometrical parameters on enhanced transmission through the apertures.

  4. Transmission properties of terahertz waves through asymmetric rectangular aperture arrays on carbon nanotube films

    OpenAIRE

    Yue Wang; Yijing Tong; Xin Zhang

    2016-01-01

    Transmission spectra of terahertz waves through a two-dimensional array of asymmetric rectangular apertures on super-aligned multi-walled carbon nanotube films were obtained experimentally. In this way, the anisotropic transmission phenomena of carbon nanotube films were observed. For a terahertz wave polarization parallel to the orientation of the carbon nanotubes and along the aperture short axis, sharp resonances were observed and the resonance frequencies coincided well with the surface p...

  5. A Circular aperture-array structure optical system for digital sun sensor

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Based on the first type of Rayleigh Sommerfeld diffraction formula, an imaging model of circular aperture-array structure digital sun sensor optical system is developed. Then a 6×6 circular aperture-array structure optical system is designed. The results of numerical simulation show that the optical system is designed well and is conformed to the requirements of miniaturization and high accuracy of sun sensor.

  6. Dynamic gain aperture modelocking in picosecond regime based on cascaded second-order nonlinearity.

    Science.gov (United States)

    Mondal, Shyamal; Mukherjee, Shouvik; Singh, Satya Pratap; Rand, Stephen C; Bhattacharya, Sayantan; Das, Amit C; Datta, Prasanta Kumar

    2016-07-11

    The operation of a cascaded second-order mode-locked Nd:YVO4 laser has been investigated considering it as a soft-aperture Kerr lens type and using complex beam parameters. A self consistent complex beam propagation method is used to incorporate the effect of cascaded Kerr nonlinearity on radially varying gain aperturing. The analysis deduces a stable pulsewidth of ~9.5 ps which agrees well with the experimental value of 10.3 ps. PMID:27410804

  7. Ultrawideband-Ultrawidebeam Synthetic Aperture Radar – Signal Processing and Applications

    OpenAIRE

    Vu, Viet Thuy

    2011-01-01

    This dissertation presents practical issues in Ultrawideband – Ultrawidebeam (UWB) Synthetic Aperture Radar (SAR) signal processing and crucial applications developed on UWB SAR. In the context of this dissertation, UWB SAR refers to the SAR systems utilizing large fractional bandwidth signals and synthesizing long apertures associated with wide antenna beamwidths. On one hand, such specific systems give us opportunities to develop unique applications. One the other hand, signal processing fo...

  8. Dynamic gain aperture modelocking in picosecond regime based on cascaded second-order nonlinearity.

    Science.gov (United States)

    Mondal, Shyamal; Mukherjee, Shouvik; Singh, Satya Pratap; Rand, Stephen C; Bhattacharya, Sayantan; Das, Amit C; Datta, Prasanta Kumar

    2016-07-11

    The operation of a cascaded second-order mode-locked Nd:YVO4 laser has been investigated considering it as a soft-aperture Kerr lens type and using complex beam parameters. A self consistent complex beam propagation method is used to incorporate the effect of cascaded Kerr nonlinearity on radially varying gain aperturing. The analysis deduces a stable pulsewidth of ~9.5 ps which agrees well with the experimental value of 10.3 ps.

  9. Reduction in Edge-Ringing in Aberrated Images of Coherent Edge Objects by Multishaded Aperture

    OpenAIRE

    Venkanna Mekala; Karuna Sagar Dasari

    2014-01-01

    The images of a straight edge in coherent illumination produced by an optical system with circular aperture and apodized with multiple filters have been studied. The most common problem encountered in the coherent-imaging techniques is the edge-ringing. To minimize the edge-ringing, multishaded aperture method has been proposed. Image intensity distribution curves are drawn and edge-ringing values are evaluated. The results are compared to that of the airy case with the use of single, double ...

  10. Power Transmittance of a Laterally Shifted Gaussian Beam through a Circular Aperture

    OpenAIRE

    Khwaja, Tariq Shamim; Reza, Syed Azer

    2016-01-01

    Gaussian beams are often used in optical systems. The fundamental Gaussian TEM00 mode is the most common of the Gaussian modes present in various optical devices, systems and equipment. Within an optical system, it is common that this Gaussian TEM00 beam passes through a circular aperture of a finite diameter. Such circular apertures include irises, spatial filters, circular Photo-Detectors (PDs) and optical mounts with circular rims. The magnitude of optical power passing through a finite-si...

  11. DESIGN OF MULTILAYER APERTURE COUPLED STACKED MICROSTRIP PATCH ANTENNA FOR WLAN APPLICATIONS

    Directory of Open Access Journals (Sweden)

    P. Jothilakshmi

    2015-10-01

    Full Text Available One of the major drawbacks of microstrip patch antenna is its narrow bandwidth. The solution of this problem is to use aperture coupled stacked micro strip patch antenna. The antenna uses a combination of aperture coupled feeding technique and multi- layer radiating patch in order for the radiating elements are increase the gain bandwidth. The ‘I’ and ‘H’ shaped aperture slots are etched onto the ground plane. It is used to transfer the energy from feed line to stacked patch. A variation of the feed line length controls the selected aperture slots to be active. The waves from the selected activated aperture slots will radiate to particular radiating patch and achieve the desired resonant frequency. The air gap is used to avoid coupling loss between the aperture slots and stacked patches. The observed simulated and measured results show that the proposed antenna structure resonated at 2.51 GHz frequency with reduced return loss and optimum voltage standing wave ratio.

  12. Role of the aperture in Z-scan experiments:A parametric study

    Institute of Scientific and Technical Information of China (English)

    M. R. Rashidian Vaziri

    2015-01-01

    In close-aperture Z-scan experiments, a small aperture is conventionally located in the far-field thereby enabling the detection of slight changes in the laser beam profile due to the Kerr-lensing effect. In this work, by numerically solving the Fresnel–Kirchhoff diffraction integrals, the amount of transmitted power through apertures has been evaluated and a parametric study on the role of the various parameters that can infl uence this transmitted power has been done. In order to perform a comprehensive analysis, we have used a nonlinear phase shift optimized for nonlocal nonlinear media in our calculations. Our results show that apertures will result in the formation of symmetrical fl uctuations on the wings of Z-scan transmittance curves. It is further shown that the appearance of these fl uctuations can be ascribed to the natural diffraction of the Gaussian beam as it propagates up to the aperture plane. Our calculations reveal that the nonlocal parameter variations can shift the position of fl uctuations along the optical axis, whereas their magnitude depends on the largeness of the induced nonlinear phase shift. It is concluded that since the mentioned fl uctuations are produced by the natural diffraction of the Gaussian beam itself, one must take care not to mistakenly interpret them as noise and should not expect to eliminate them from experimental Z-scan transmittance curves by using apertures with different sizes.

  13. Design of the polar neutron-imaging aperture for use at the National Ignition Facility

    Science.gov (United States)

    Fatherley, V. E.; Barker, D. A.; Fittinghoff, D. N.; Hibbard, R. L.; Martinez, J. I.; Merrill, F. E.; Oertel, J. A.; Schmidt, D. W.; Volegov, P. L.; Wilde, C. H.

    2016-11-01

    The installation of a neutron imaging diagnostic with a polar view at the National Ignition Facility (NIF) required design of a new aperture, an extended pinhole array (PHA). This PHA is different from the pinhole array for the existing equatorial system due to significant changes in the alignment and recording systems. The complex set of component requirements, as well as significant space constraints in its intended location, makes the design of this aperture challenging. In addition, lessons learned from development of prior apertures mandate careful aperture metrology prior to first use. This paper discusses the PHA requirements, constraints, and the final design. The PHA design is complex due to size constraints, machining precision, assembly tolerances, and design requirements. When fully assembled, the aperture is a 15 mm × 15 mm × 200 mm tungsten and gold assembly. The PHA body is made from 2 layers of tungsten and 11 layers of gold. The gold layers include 4 layers containing penumbral openings, 4 layers containing pinholes and 3 spacer layers. In total, there are 64 individual, triangular pinholes with a field of view (FOV) of 200 μm and 6 penumbral apertures. Each pinhole is pointed to a slightly different location in the target plane, making the effective FOV of this PHA a 700 μm square in the target plane. The large FOV of the PHA reduces the alignment requirements both for the PHA and the target, allowing for alignment with a laser tracking system at NIF.

  14. Autofocusing circular synthetic aperture sonar imagery using phase corrections modeled as generalized cones.

    Science.gov (United States)

    Marston, Timothy M; Kennedy, Jermaine L; Marston, Philip L

    2014-08-01

    Circular synthetic aperture sonar (CSAS) is a coherent aperture synthesis technique that utilizes backscattered acoustic information from an encircled scene to generate information rich, high-resolution imagery. The aperture length required for image synthesis is much longer than in its linear synthetic aperture sonar counterpart and can result in challenging phase delay and navigation estimation constraints. Residual uncorrected phase errors manifest as focus aberrations in reconstructed CSAS imagery. This paper demonstrates that phase error in image patches can be approximated as an aspect variant linear phase shift representable as a generalized cone in wave-number space. If the geometry of the generalized cone is known, it can be applied as the spectral phase of an inverse filter for aberration correction. A method is derived for reconstructing the error cone geometry from independent estimates of its local curvatures, which are found via a series of one-dimensional line searches that maximize the focus of CSAS sub-aperture images. This approach is applied to real and simulated CSAS data containing aperture distortions, and the results successfully demonstrate estimation and correction of the underlying focus aberrations.

  15. Deliverable navigation for multicriteria IMRT treatment planning by combining shared and individual apertures

    Science.gov (United States)

    Fredriksson, Albin; Bokrantz, Rasmus

    2013-11-01

    We consider the problem of deliverable Pareto surface navigation for step-and-shoot intensity-modulated radiation therapy. This problem amounts to calculation of a collection of treatment plans with the property that convex combinations of plans are directly deliverable. Previous methods for deliverable navigation impose restrictions on the number of apertures of the individual plans, or require that all treatment plans have identical apertures. We introduce simultaneous direct step-and-shoot optimization of multiple plans subject to constraints that some of the apertures must be identical across all plans. This method generalizes previous methods for deliverable navigation to allow for treatment plans with some apertures from a collective pool and some apertures that are individual. The method can also be used as a post-processing step to previous methods for deliverable navigation in order to improve upon their plans. By applying the method to subsets of plans in the collection representing the Pareto set, we show how it can enable convergence toward the unrestricted (non-navigable) Pareto set where all apertures are individual.

  16. F-k Domain Imaging for Synthetic Aperture Sequential Beamforming.

    Science.gov (United States)

    Vos, Hendrik J; van Neer, Paul L M J; Mota, Mariana Melo; Verweij, Martin D; van der Steen, Antonius F W; Volker, Arno W F

    2016-01-01

    Spatial resolution in medical ultrasound images is a key component in image quality and an important factor for clinical diagnosis. In early systems, the lateral resolution was optimal in the focus but rapidly decreased outside the focal region. Improvements have been found in, e.g., dynamic-receive beamforming, in which the entire image is focused in receive, but this requires complex processing of element data and is not applicable for mechanical scanning of single-element images. This paper exploits the concept of two-stage beamforming based on virtual source-receivers, which reduces the front-end computational load while maintaining a similar data rate and frame rate compared to dynamic-receive beamforming. We introduce frequency-wavenumber domain data processing to obtain fast second-stage data processing while having similarly high lateral resolution as dynamic-receive beamforming and processing in time-space domain. The technique is very suitable in combination with emerging technologies such as application-specific integrated circuits (ASICs), hand-held devices, and wireless data transfer. The suggested method consists of three steps. In the first step, single-focused RF line data are shifted in time to relocate the focal point to a new origin t' = 0, z' = 0. This new origin is considered as an array of virtual source/receiver pairs, as has been suggested previously in literature. In the second step, the dataset is efficiently processed in the wavenumber-frequency domain to form an image that is in focus throughout its entire depth. In the third step, the data shift is undone to obtain a correct depth axis in the image. The method has been tested first with a single-element scanning system and second in a tissue-mimicking phantom using a linear array. In both setups, the method resulted in a −6-dB lateral point spread function (PSF) which was constant over the entire depth range, and similar to dynamic-receive beamforming and synthetic aperture sequential

  17. Water Level Detection Using Synthetic Aperture Radar Imagery

    International Nuclear Information System (INIS)

    Reservoir water levels are of interest for international safeguards and domestic monitoring because they can be used as indicators of processing activity, uranium mine tailings protection status, or power generation for clandestine operation. Monitoring of water levels using satellite technology, especially civilian synthetic aperture radar (SAR) for remote or restricted-access sites worldwide has the potential to be a valuable tool for national/international safeguards as well as environmental monitoring applications. Unlike optical sensors, SAR is capable of reliable repeat monitoring regardless of cloud cover or solar illumination, i.e. it can image the target through clouds and darkness. Because of this ability, quick turn around for a SAR image is almost always guaranteed. SAR is very sensitive to the land/water interface and can be used to extract detailed elevation models. SAR is also sensitive to metallic structures or objects and can thus be useful in detection of heavy equipment or undeclared construction at decommissioned facilities. Although spaceborne SAR cannot match the resolution of optical satellites, future SAR satellites will offer much better resolution (e.g., approximately 3 metres for RADARSAT-2). Furthermore, future SAR satellites will offer different polarization and frequency channels to provide terrain and vegetation classification. The objective is to investigate the use of SAR for water level detection using Canada's RADARSAT-1 imagery. Three Canadian sites were chosen for our study: Niagara Area Hydro Reservoir; Quirke Lake uranium tailings management facility (TMF); and JEB Pit TMF. Initial results, using RADARSAT-1 data acquired over a three year period, show dramatic changes in both the total water surface area and markers (natural or man-made) becoming visible as the water level decreases. These very promising results indicated that SAR imagery can be used as an excellent tool for mapping remote location (which is useful for

  18. Improving land vehicle situational awareness using a distributed aperture system

    Science.gov (United States)

    Fortin, Jean; Bias, Jason; Wells, Ashley; Riddle, Larry; van der Wal, Gooitzen; Piacentino, Mike; Mandelbaum, Robert

    2005-05-01

    U.S. Army Research, Development, and Engineering Command (RDECOM) Communications Electronics Research, Development and Engineering Center (CERDEC) Night Vision and Electronic Sensors Directorate (NVESD) has performed early work to develop a Distributed Aperture System (DAS). The DAS aims at improving the situational awareness of armored fighting vehicle crews under closed-hatch conditions. The concept is based on a plurality of sensors configured to create a day and night dome of surveillance coupled with heads up displays slaved to the operator's head to give a "glass turret" feel. State-of-the-art image processing is used to produce multiple seamless hemispherical views simultaneously available to the vehicle commander, crew members and dismounting infantry. On-the-move automatic cueing of multiple moving/pop-up low silhouette threats is also done with the possibility to save/revisit/share past events. As a first step in this development program, a contract was awarded to United Defense to further develop the Eagle VisionTM system. The second-generation prototype features two camera heads, each comprising four high-resolution (2048x1536) color sensors, and each covering a field of view of 270°hx150°v. High-bandwidth digital links interface the camera heads with a field programmable gate array (FPGA) based custom processor developed by Sarnoff Corporation. The processor computes the hemispherical stitch and warp functions required for real-time, low latency, immersive viewing (360°hx120°v, 30° down) and generates up to six simultaneous extended graphics array (XGA) video outputs for independent display either on a helmet-mounted display (with associated head tracking device) or a flat panel display (and joystick). The prototype is currently in its last stage of development and will be integrated on a vehicle for user evaluation and testing. Near-term improvements include the replacement of the color camera heads with a pixel-level fused combination of

  19. Coastal wind field retrieval from polarimetric synthetic aperture radar

    Institute of Scientific and Technical Information of China (English)

    ZHANG Yi; JIANG Xingwei; SONG Qingtao; LIN Mingsen; XIE Xuetong

    2014-01-01

    Coastal winds are strongly influenced by topology and discontinuity between land and sea surfaces. Wind assessment from remote sensing in such a complex area remains a challenge. Space-borne scatterometer does not provide any information about the coastal wind field, as the coarse spatial resolution hampers the radar backscattering. Synthetic aperture radar (SAR) with a high spatial resolution and all-weather observa-tion abilities has become one of the most important tools for ocean wind retrieval, especially in the coastal area. Conventional methods of wind field retrieval from SAR, however, require wind direction as initial infor-mation, such as the wind direction from numerical weather prediction models (NWP), which may not match the time of SAR image acquiring. Fortunately, the polarimetric observations of SAR enable independent wind retrieval from SAR images alone. In order to accurately measure coastal wind fields, this paper propos-es a new method of using co-polarization backscattering coefficients from polarimetric SAR observations up to polarimetric correlation backscattering coefficients, which are acquired from the conjugate product of co-polarization backscatter and cross-polarization backscatter. Co-polarization backscattering coefficients and polarimetric correlation backscattering coefficients are obtained form Radarsat-2 single-look complex (SLC) data.The maximum likelihood estimation is used to gain the initial results followed by the coarse spa-tial filtering and fine spatial filtering. Wind direction accuracy of the final inversion results is 10.67 with a wind speed accuracy of 0.32 m/s. Unlike previous methods, the methods described in this article utilize the SAR data itself to obtain the wind vectors and do not need external wind directional information. High spatial resolution and high accuracy are the most important features of the method described herein since the use of full polarimetric observations contains more information about the

  20. The balloon-borne large aperture submillimeter telescope

    Science.gov (United States)

    Truch, Matthew David Patey

    The Balloon-borne Large Aperture Submillimeter Telescope (BLAST) is designed to produce large (1-100 deg 2 ) maps of the sky at 250, 350, and 500 pm. The balloon platform lifts BLAST above most of the atmosphere, which is nearly opaque in the submillimeter, making BLAST significantly more sensitive than existing ground-based submillimeter telescopes. BLAST has had three successful flights on a high-altitude balloon. This thesis is in three parts. In the first part, the design, construction, and operation of BLAST is described in detail. Specifically, the submillimeter telescope and receiver, the cryogenic system, the various pointing sensors, and the command and control systems are covered. The processes of launching and landing the gondola are also discussed. In the second part, the analysis of BLAST data is discussed, and specifically data from the BLAST05 flight. The process of cleaning and preparing bolometer time-streams for map-making is discussed. The process of calibrating the data, flat-fielding the bolometer responsivity, removing time-varying changes in bolometer responsivity, and absolute flux calibration based on the fluxes of a known astronomical submillimeter source is detailed. Reconstructing the pointing solution from the data from the in-flight pointing sensors is discussed. Finally, combining the calibrated bolometer data with the reconstructed pointing solution to generate maps is described. In the third part, BLAST05 flight data and results are presented. Several compact sources were mapped, including solar system, Galactic, and extragalactic targets. These included Pallas and Saturn in the solar system, K3-50, W 75N, IRAS 20126+4104, CRL 2688, IRAS 21078+5211, LDN 1014, IRAS 21307+5049, IRAS 22134+5834, and IRAS 23011+6126 in the Galaxy, and the galaxies NGC 4565, Mrk 231, and Arp 220. Fluxes and spectral energy distributions (SEDs) of each of these sources at the BLAST wavelengths are presented, and these are compared with previous

  1. Registered particles onboard identification in the various apertures of GAMMA-400 space gamma-telescope

    Science.gov (United States)

    Arkhangelskaja, Irene

    2016-07-01

    GAMMA-400 (Gamma Astronomical Multifunctional Modular Apparatus) will be the gamma-telescope onboard international satellite gamma-observatory designed for particle registration in the wide energy band. Its parameters are optimized for detection of gamma-quanta with the energy ˜ 100 GeV in the main aperture. The main scientific goals of GAMMA-400 are to investigate fluxes of γ-rays and the electron-positron cosmic ray component possibly generated by dark matter particles decay or annihilation and to search for and study in detail discrete γ-ray sources, to investigate the energy spectra of Galactic and extragalactic diffuse γ-rays, and to study γ-ray bursts and γ-emission from the active Sun. This article presents analysis of detected events identification procedures and energy resolution in three apertures provide particles registration both from upper and lateral directions based on GAMMA-400 modeling due special designed software. Time and segmentation methods are used to reject backsplash (backscattering particles created when high energy γ-rays interact with the calorimeter's matter and move in the opposite direction) in the main aperture while only energy deposition analysis allows to reject this effect in the additional and lateral ones. The main aperture provides the best angular (all strip layers information analysis) and energy (energy deposition in the all detectors studying) resolution in the energy range 0.1 - 3 × 10^{3} GeV. The energy resolution in this band is 1%. Triggers in the main aperture will be formed using information about particle direction provided by time of flight system and presence of charged particle or backsplash signal formed according to analysis of energy deposition in combination of all two-layers anticoincidence systems individual detectors. In the additional aperture gamma-telescope allows to register events in the energy band 10 × 10^{-3} - 3 × 10^{3} GeV. The additional aperture energy resolution provides due to

  2. The impact of different aperture distribution models and critical stress criteria on equivalent permeability in fractured rocks

    Science.gov (United States)

    Bisdom, Kevin; Bertotti, Giovanni; Nick, Hamidreza M.

    2016-05-01

    Predicting equivalent permeability in fractured reservoirs requires an understanding of the fracture network geometry and apertures. There are different methods for defining aperture, based on outcrop observations (power law scaling), fundamental mechanics (sublinear length-aperture scaling), and experiments (Barton-Bandis conductive shearing). Each method predicts heterogeneous apertures, even along single fractures (i.e., intrafracture variations), but most fractured reservoir models imply constant apertures for single fractures. We compare the relative differences in aperture and permeability predicted by three aperture methods, where permeability is modeled in explicit fracture networks with coupled fracture-matrix flow. Aperture varies along single fractures, and geomechanical relations are used to identify which fractures are critically stressed. The aperture models are applied to real-world large-scale fracture networks. (Sub)linear length scaling predicts the largest average aperture and equivalent permeability. Barton-Bandis aperture is smaller, predicting on average a sixfold increase compared to matrix permeability. Application of critical stress criteria results in a decrease in the fraction of open fractures. For the applied stress conditions, Coulomb predicts that 50% of the network is critically stressed, compared to 80% for Barton-Bandis peak shear. The impact of the fracture network on equivalent permeability depends on the matrix hydraulic properties, as in a low-permeable matrix, intrafracture connectivity, i.e., the opening along a single fracture, controls equivalent permeability, whereas for a more permeable matrix, absolute apertures have a larger impact. Quantification of fracture flow regimes using only the ratio of fracture versus matrix permeability is insufficient, as these regimes also depend on aperture variations within fractures.

  3. Design and performance of a distributed aperture millimeter-wave imaging system using optical upconversion

    Science.gov (United States)

    Martin, Richard; Schuetz, Christopher A.; Dillon, Thomas E.; Chen, Caihua; Samluk, Jesse; Stein, E. Lee, Jr.; Mirotznik, Mark; Prather, Dennis W.

    2009-05-01

    Passive imaging using millimeter waves (mmWs) has many advantages and applications in the defense and security markets. All terrestrial bodies emit mmW radiation and these wavelengths are able to penetrate smoke, blowing dust or sand, fog/clouds/marine layers, and even clothing. One primary obstacle to imaging in this spectrum is that longer wavelengths require larger apertures to achieve the resolutions typically desired in surveillance applications. As a result, lens-based focal plane systems tend to require large aperture optics, which severely limit the minimum achievable volume and weight of such systems. To overcome this limitation, a distributed aperture detection scheme is used in which the effective aperture size can be increased without the associated volumetric increase in imager size. However, such systems typically require high frequency (~ 30 - 300 GHz) signal routing and down conversion as well as large correlator banks. Herein, we describe an alternate approach to distributed aperture mmW imaging using optical upconversion of the mmW signal onto an optical carrier. This conversion serves, in essence, to scale the mmW sparse aperture array signals onto a complementary optical array. The optical side bands are subsequently stripped from the optical carrier and optically recombined to provide a real-time snapshot of the mmW signal. In this paper, the design tradeoffs of resolution, bandwidth, number of elements, and field of view inherent in this type of system will be discussed. We also will present the performance of a 30 element distributed aperture proof of concept imaging system operating at 35 GHz.

  4. High Resolution Ionospheric Mapping Using Spaceborne Synthetic Aperture Radars

    Science.gov (United States)

    Meyer, F. J.; Chotoo, K.; Roth, A. P.

    2012-12-01

    Spaceborne Synthetic Aperture Radars (SARs) are imaging radar systems that utilize the Doppler history of signals acquired during satellite flyby to produce high resolution images of the Earth. With modern sensors, operating at frequencies between about 1 GHz (L-band) and 10 GHz (X-band), radar images with resolutions in the meter to sub-meter range can be produced. The presence of the ionosphere is significantly affecting the propagation properties of the microwave signals transmitted by these systems, causing distortions of signal polarization and phase. These distortions can lead to a wide range of imaging artifacts including image range shifts, interferometric phase biases, loss of image focus, change of image geometry, and Faraday rotation. While these artifacts are particularly pronounced at L-band, they are still observable in data acquired at C- or even X-band. In recent years, a wealth of methods for measuring and correcting ionospheric influence were developed. These methods are self-calibration procedures that measure ionosphere-induced distortions to infer the two-dimensional TEC maps that affected the data. These TEC maps are then removed from the data to produce high performance SAR images. Besides being effective in correcting SAR observations, these self-calibration methods are producing high quality TEC information with sub-TECU sensitivity and sub-kilometer spatial resolution. The intent of this paper is to utilize SAR-derived ionospheric information and make the case for SAR as a data source for ionospheric research. After a short summary of ionosphere-induced distortions, the concept of TEC estimation from SAR is introduced. Here, the current state-of-the-art of ionospheric TEC estimation is presented, including Faraday rotation-based, interferometric, correlation-based, and autofocus-based techniques. For every approach, performance numbers are given that quantify the achievable TEC estimation accuracy as a function of system parameters, scene

  5. Improved Modeling of Open Waveguide Aperture Radiators for use in Conformal Antenna Arrays

    Science.gov (United States)

    Nelson, Gregory James

    Open waveguide apertures have been used as radiating elements in conformal arrays. Individual radiating element model patterns are used in constructing overall array models. The existing models for these aperture radiating elements may not accurately predict the array pattern for TEM waves which are not on boresight for each radiating element. In particular, surrounding structures can affect the far field patterns of these apertures, which ultimately affects the overall array pattern. New models of open waveguide apertures are developed here with the goal of accounting for the surrounding structure effects on the aperture far field patterns such that the new models make accurate pattern predictions. These aperture patterns (both E plane and H plane) are measured in an anechoic chamber and the manner in which they deviate from existing model patterns are studied. Using these measurements as a basis, existing models for both E and H planes are updated with new factors and terms which allow the prediction of far field open waveguide aperture patterns with improved accuracy. These new and improved individual radiator models are then used to predict overall conformal array patterns. Arrays of open waveguide apertures are constructed and measured in a similar fashion to the individual aperture measurements. These measured array patterns are compared with the newly modeled array patterns to verify the improved accuracy of the new models as compared with the performance of existing models in making array far field pattern predictions. The array pattern lobe characteristics are then studied for predicting fully circularly conformal arrays of varying radii. The lobe metrics that are tracked are angular location and magnitude as the radii of the conformal arrays are varied. A constructed, measured array that is close to conforming to a circular surface is compared with a fully circularly conformal modeled array pattern prediction, with the predicted lobe angular locations and

  6. Influence of initial heterogeneities and recharge limitations on the evolution of aperture distributions in carbonate aquifers

    Directory of Open Access Journals (Sweden)

    B. Hubinger

    2011-12-01

    Full Text Available Karst aquifers evolve where the dissolution of soluble rocks causes the enlargement of discrete pathways along fractures or bedding planes, thus creating highly conductive solution conduits. To identify general interrelations between hydrogeological conditions and the properties of the evolving conduit systems the aperture-size frequency distributions resulting from generic models of conduit evolution are analysed. For this purpose, a process-based numerical model coupling flow and rock dissolution is employed. Initial protoconduits are represented by tubes with log-normally distributed aperture sizes with a mean μ0 = 0.5 mm for the logarithm of the diameters. Apertures are spatially uncorrelated and widen up to the metre range due to dissolution by chemically aggressive waters. Several examples of conduit development are examined focussing on influences of the initial heterogeneity and the available amount of recharge. If the available recharge is sufficiently high the evolving conduits compete for flow and those with large apertures and high hydraulic gradients attract more and more water. As a consequence, the positive feedback between increasing flow and dissolution causes the breakthrough of a conduit pathway connecting the recharge and discharge sides of the modelling domain. Under these competitive flow conditions dynamically stable bimodal aperture distributions are found to evolve, i.e. a certain percentage of tubes continues to be enlarged while the remaining tubes stay small-sized. The percentage of strongly widened tubes is found to be independent of the breakthrough time and decreases with increasing heterogeneity of the initial apertures and decreasing amount of available water. If the competition for flow is suppressed because the availability of water is strongly limited breakthrough of a conduit pathway is inhibited and the conduit pathways widen very slowly. The resulting aperture distributions are found to be

  7. An exact approach to direct aperture optimization in IMRT treatment planning

    Energy Technology Data Exchange (ETDEWEB)

    Men Chunhua [Department of Industrial and Systems Engineering, University of Florida, Gainesville, Florida 32611-6595 (United States); Romeijn, H Edwin [Department of Industrial and Systems Engineering, University of Florida, Gainesville, Florida 32611-6595 (United States); Taskin, Z Caner [Department of Industrial and Systems Engineering, University of Florida, Gainesville, Florida 32611-6595 (United States); Dempsey, James F [Department of Radiation Oncology, University of Florida, Gainesville, Florida 32610-0385 (United States)

    2007-12-21

    We consider the problem of intensity-modulated radiation therapy (IMRT) treatment planning using direct aperture optimization. While this problem has been relatively well studied in recent years, most approaches employ a heuristic approach to the generation of apertures. In contrast, we use an exact approach that explicitly formulates the fluence map optimization (FMO) problem as a convex optimization problem in terms of all multileaf collimator (MLC) deliverable apertures and their associated intensities. However, the number of deliverable apertures, and therefore the number of decision variables and constraints in the new problem formulation, is typically enormous. To overcome this, we use an iterative approach that employs a subproblem whose optimal solution either provides a suitable aperture to add to a given pool of allowable apertures or concludes that the current solution is optimal. We are able to handle standard consecutiveness, interdigitation and connectedness constraints that may be imposed by the particular MLC system used, as well as jaws-only delivery. Our approach has the additional advantage that it can explicitly account for transmission of dose through the part of an aperture that is blocked by the MLC system, yielding a more precise assessment of the treatment plan than what is possible using a traditional beamlet-based FMO problem. Finally, we develop and test two stopping rules that can be used to identify treatment plans of high clinical quality that are deliverable very efficiently. Tests on clinical head-and-neck cancer cases showed the efficacy of our approach, yielding treatment plans comparable in quality to plans obtained by the traditional method with a reduction of more than 75% in the number of apertures and a reduction of more than 50% in beam-on time, with only a modest increase in computational effort. The results also show that delivery efficiency is very insensitive to the addition of traditional MLC constraints; however, jaws

  8. Effect of speed manipulation on the control of aperture closure during reach-to-grasp movements.

    Science.gov (United States)

    Rand, Miya K; Squire, Linda M; Stelmach, George E

    2006-09-01

    This study investigates coordination between hand transport and grasp movement components by examining a hypothesis that the hand location, relative to the object, in which aperture closure is initiated remains relatively constant under a wide range of transport speed. Subjects made reach-to-grasp movements to a dowel under four speed conditions: slow, comfortable, fast but comfortable, and maximum (i.e., as fast as possible). The distance traveled by the wrist after aperture reached its maximum (aperture closure distance) increased with an increase of transport speed across the speed conditions. This finding rejected the hypothesis and suggests that the speed of hand transport is taken into account in aperture closure initiation. Within each speed condition, however, the closure distance exhibited relatively small variability across trials, even though the total distance traveled by the wrist during the entire transport movement varied from trial to trial. The observed stability in aperture closure distance across trials implies that the hand distance to the object plays an important role in the control law governing the initiation of aperture closure. Further analysis showed that the aperture closure distance depended on the amplitude of peak aperture as well as hand velocity and acceleration. To clarify the form of the above control law, we analyzed four different mathematical models, in which a decision to initiate grasp closure is made as soon as a specific movement parameter (wrist distance to target or transport time) crosses a threshold that is either a constant value or a function of the above-mentioned other movement-related parameters. Statistical analysis performed across all movement conditions revealed that the control law model (according to which grasp initiation is made when hand distance to target becomes less than a certain linear function of aperture amplitude, hand velocity, and hand acceleration) produced significantly smaller residual errors

  9. Optical design through optimization using freeform orthogonal polynomials for rectangular apertures

    Science.gov (United States)

    Nikolic, Milena; Benítez, P.; Miñano, Juan C.; Grabovickic, D.; Liu, Jiayao; Narasimhan, B.; Buljan, M.

    2015-09-01

    With the increasing interest in using freeform surfaces in optical systems due to the novel application opportunities and manufacturing techniques, new challenges are constantly emerging. Optical systems have traditionally been using circular apertures, but new types of freeform systems call for different aperture shapes. First non-circular aperture shape that one can be interested in due to tessellation or various folds systems is the rectangular one. This paper covers the comparative analysis of a simple local optimization of one design example using different orthogonalized representations of our freeform surface for the rectangular aperture. A very simple single surface off-axis mirror is chosen as a starting system. The surface is fitted to the desired polynomial representation, and the whole system is then optimized with the only constraint being the effective focal length. The process is repeated for different surface representations, amongst which there are some defined inside a circle, like Forbes freeform polynomials, and others that can be defined inside a rectangle like a new calculated Legendre type polynomials orthogonal in the gradient. It can be observed that with this new calculated polynomial type there is a faster convergence to a deeper minimum compared to "defined inside a circle" polynomials. The average MTF values across 17 field points also show clear benefits in using the polynomials that adapted more accurately to the aperture used in the system.

  10. Co-aperture arrangement of dual antennas for orientation and telemetry in a conformal cavity

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The feasibility of making two antennas work within a shared aperture conformal to a platform like an aircraft or a missile is investigated. The shared aperture is enclosed by a deep cavity, which is covered by a columniform dielectric radome. A modified quadrifilar helix antenna (QHA) with extended volute arms and a vertical monopole with a ring shaped ground are arranged in this co-aperture for global position system (GPS) orientation and telemetry, respectively. The effects of the cavity on these two antennas and the mutual coupling between these two antennas are studied through large numbers of experiments. The results show that the QHA has a strong influence on the monopole; however, these two antennas of the overall arrangement can perform simultaneously well within the aperture. The QHA has a right hand circular polarization (RHCP) and a broad beam normal to the radome topside, meanwhile the monopole can be used to produce a main lobe in the grazing direction above the aperture in some certain cases of the vertical location of the QHA in the cavity.

  11. Effects of heat extraction on fracture aperture. A poro-thermoelastic analysis

    Energy Technology Data Exchange (ETDEWEB)

    Ghassemi, Ahmad [Department of Petroleum Engineering, Texas A and M University, 3116 TAMU - 401E Richardson Building, College Station, TX 77843 (United States); Nygren, Andrew [North Dakota State Water Commission, Bismarck, ND 58505 (United States); Cheng, Alexander [Department of Civil and Environmental Engineering, The University of Mississippi, University, MS 38677 (United States)

    2008-10-15

    Poroelastic and thermoelastic effects of cold-water injection in an enhanced (or engineered) geothermal system (EGS) are investigated by considering flow in a pre-existing fracture in a hot, rock matrix that could be permeable or impermeable. Assuming plane fracture geometry, expressions are derived for changes in fracture aperture caused by cooling and fluid leak-off into the matrix. The corresponding induced pressure profile is also calculated. The problem is analytically solved for the cases pertaining to a constant fluid injection rate with a constant leak-off rate. Results show that although fluid loss from the fracture into the matrix reduces the pressure in the crack, the poroelastic stress associated with fluid leak-off tends to reduce the aperture and increase the pressure in the fracture. High rock stiffness and low fluid diffusivity cause the poroelastic contraction of the fracture opening to slowly develop in time. The maximum reduction of aperture occurs at the injection point and become negligible near the extraction point. The solution also shows that thermally induced stress increases the fracture aperture near the injection point and, as a result, the fluid pressure at this point is greatly reduced. The thermoelastic effects are particularly dominant near the inlet compared to those of poroelasticity, but are pronounced everywhere along the fracture for large times. Although poroelasticity associated with leak-off does not change the fracture aperture significantly for low permeability rocks, it can lead to pore pressure increase and cause nearby fractures to slip. (author)

  12. A column-generation-based method for multi-criteria direct aperture optimization.

    Science.gov (United States)

    Salari, Ehsan; Unkelbach, Jan

    2013-02-01

    Navigation-based multi-criteria optimization has been introduced to radiotherapy planning in order to allow the interactive exploration of trade-offs between conflicting clinical goals. However, this has been mainly applied to fluence map optimization. The subsequent leaf sequencing step may cause dose discrepancy, leading to human iteration loops in the treatment planning process that multi-criteria methods were meant to avoid. To circumvent this issue, this paper investigates the application of direct aperture optimization methods in the context of multi-criteria optimization. We develop a solution method to directly obtain a collection of apertures that can adequately span the entire Pareto surface. To that end, we extend the column generation method for direct aperture optimization to a multi-criteria setting in which apertures that can improve the entire Pareto surface are sequentially identified and added to the treatment plan. Our proposed solution method can be embedded in a navigation-based multi-criteria optimization framework, in which the treatment planner explores the trade-off between treatment objectives directly in the space of deliverable apertures. Our solution method is demonstrated for a paraspinal case where the trade-off between target coverage and spinal-cord sparing is studied. The computational results validate that our proposed method obtains a balanced approximation of the Pareto surface over a wide range of clinically relevant plans.

  13. Analyzing effects of aperture size and applied voltage on the response time

    Science.gov (United States)

    Kim, YooKwang; Lee, Jin Su; Won, Yong Hyub

    2016-03-01

    Electrowetting lens is a promising technique for non-mechanical vari-focal lens, because of fast response time, wide expressible diopter, and etc. Although electrowetting related papers are actively published, no one did not clearly define the relationship among electrowetting parameters, especially in AC driven case. Analysis for AC voltage driving is needed because AC electrowetting has many advantages like low hysteresis and short settling time. In this experiment we confirmed that the response time depends on aperture size and applied voltage. Response time measurement for lens aperture of 200-1000um and applied voltage of 0-70V with 1kHz frequency was conducted. Experimental data was compared with simulation result by COMSOL Multiphysics program with the same condition, and they correspond with each other well. As voltage increases, the overshoot height becomes higher, so it has longer oscillation and settling time. On the other hand if aperture size decreases, the surface tension of lens wall could be delivered effectively to the center region of meniscus, so it has less oscillation and shorter settling time. The result was that in 500um aperture no more than 30V should be applied to ensure 1ms response time. In 200um aperture, the voltage limit is disappeared.

  14. Polarization measurement and vertical aperture optimization for obtaining circularly polarized bend-magnet radiation

    International Nuclear Information System (INIS)

    Using multilayer linear polarizers, we have characterized the polarization state of radiation from bend-magnet beamline 9.3.2 at the Advanced Light Source as a function of vertical opening angle at photon energies of 367 and 722 eV. Both a fine slit and a coarse semi-aperture were stepped across the beam to accept different portions of the vertical radiation fan. Polarimetry yields the degree of linear polarization directly and the degree of circular polarization indirectly assuming an immeasurably small amount of unpolarized radiation based on the close agreement of the theoretical and experimental results for linear polarization. The results are in good agreement with theoretical calculations, with departures from theory resulting from uncertainty in the effective aperture of the measured beam. The narrow 0.037-mrad aperture on the orbit plane transmits a beam whose degree of linear polarization exceeds 0.99 at these energies. The wide semi-aperture blocking the beam from above and below transmits a beam with a maximum figure of merit, given by the square root of flux times the degree of circular polarization, when the aperture edge is on the orbit plane thus blocking only half of the total available flux. copyright 1996 American Institute of Physics

  15. Polarization measurement and vertical aperture optimization for obtaining circularly polarized bend-magnet radiation

    International Nuclear Information System (INIS)

    Using multilayer linear polarizers, we have studied the polarization state of radiation from bend magnet beamline 9.3.2 at Advanced Light Source as function of vertical oping angle at photon energies 367 and 722 eV. Both a fine slit and a coarse semi-aperture were stepped across the beam to accept different parts of the vertical radiation fan. Polarimetry yields the degree of linear polarization directly and the degree of circular polarization indirectly assuming an immeasurably small amount of unpolarized radiation based on close agreement of theory and experiment for linear polarization. Results are in good agreement with theoretical calculations, with departures from theory owing to uncertainty in effective aperture of the measured beam. The narrow 0.037 mrad aperture on the orbit plane transmits a beam whose degree of linear polarization exceeds 0.99 at these energies. The wide semi-aperture blocking the beam from above and below transmits a beam with a max figure of merit, given by the square root of flux times degree of circular polarization, when the aperture edge is on the orbit plane thus blocking only half of the total available flux

  16. Power Transmittance of a Laterally Shifted Gaussian Beam through a Circular Aperture

    CERN Document Server

    Khwaja, Tariq Shamim

    2016-01-01

    Gaussian beams are often used in optical systems. The fundamental Gaussian TEM00 mode is the most common of the Gaussian modes present in various optical devices, systems and equipment. Within an optical system, it is common that this Gaussian TEM00 beam passes through a circular aperture of a finite diameter. Such circular apertures include irises, spatial filters, circular Photo-Detectors (PDs) and optical mounts with circular rims. The magnitude of optical power passing through a finite-sized circular aperture is well-documented for cases where the Gaussian beam passes through the center of the clear circular aperture, and is chopped off symmetrically in all radial directions on a given plane. More often than not, a non-axial incident Gaussian Beam is not blocked in a radially uniform manner by a circular aperture. Such situations arise due to a lateral displacement of the beam from tilted glass blocks, manufacturing errors and imperfect surface flatness or parallelness of surfaces. The fraction of optical...

  17. Searching for galaxy clusters using the aperture mass statistics in 50 VLT fields

    CERN Document Server

    Hetterscheidt, M; Schneider, P; Maoli, R; Van Waerbeke, L; Mellier, Y

    2005-01-01

    Application of the aperture mass (Map-) statistics provides a weak lensing method for the detection of cluster-sized dark matter halos. We present a new aperture filter function and maximise the effectiveness of the Map-statistics to detect cluster-sized halos using analytical models. We then use weak lensing mock catalogues generated from ray-tracing through N-body simulations, to analyse the effect of PSF correction on the expected number density of halos. Using the Map-statistics, the aperture radius is typically several arcminutes, hence the aperture often lies partly outside a data field, consequently the signal-to-noise ratio of a halo detection decreases. We study these border effects analytically and by using mock catalogues. We find that the expected number density of halos decreases by a factor of two if the size of a field is comparable to the diameter of the aperture used. We finally report on the results of a weak lensing cluster search applying the Map-statistics to 50 randomly selected fields w...

  18. Comparison of binocular through-focus visual acuity with monovision and a small aperture inlay.

    Science.gov (United States)

    Schwarz, Christina; Manzanera, Silvestre; Prieto, Pedro M; Fernández, Enrique J; Artal, Pablo

    2014-10-01

    Corneal small aperture inlays provide extended depth of focus as a solution to presbyopia. As this procedure is becoming more popular, it is interesting to compare its performance with traditional approaches, such as monovision. Here, binocular visual acuity was measured as a function of object vergence in three subjects by using a binocular adaptive optics vision analyzer. Visual acuity was measured at two luminance levels (photopic and mesopic) under several optical conditions: 1) natural vision (4 mm pupils, best corrected distance vision), 2) pure-defocus monovision ( + 1.25 D add in the nondominant eye), 3) small aperture monovision (1.6 mm pupil in the nondominant eye), and 4) combined small aperture and defocus monovision (1.6 mm pupil and a + 0.75 D add in the nondominant eye). Visual simulations of a small aperture corneal inlay suggest that the device extends DOF as effectively as traditional monovision in photopic light, in both cases at the cost of binocular summation. However, individual factors, such as aperture centration or sensitivity to mesopic conditions should be considered to assure adequate visual outcomes. PMID:25360355

  19. A case of solitary median maxillary central incisor (SMMCI) syndrome with bilateral pyriform aperture stenosis and choanal atresia.

    Science.gov (United States)

    Blackmore, Kate; Wynne, David M

    2010-08-01

    Solitary median maxillary central incisor syndrome is a rare disorder involving midline abnormalities. It may present with life threatening respiratory distress in the neonate secondary to nasal malformations. These include pyriform aperture stenosis and choanal atresia. We present the first reported case of simultaneous choanal atresia and pyriform aperture stenosis in a neonate with solitary median maxillary central incisor syndrome. The clinical presentation and the management of congenital pyriform aperture stenosis are discussed. PMID:20627328

  20. Exo-planet Direct Imaging with On-Axis and/or Segmented Apertures in Space: Adaptive Compensation of Aperture Discontinuities

    Science.gov (United States)

    Soummer, Remi

    Capitalizing on a recent breakthrough in wavefront control theory for obscured apertures made by our group, we propose to demonstrate a method to achieve high contrast exoplanet imaging with on-axis obscured apertures. Our new algorithm, which we named Adaptive Compensation of Aperture Discontinuities (ACAD), provides the ability to compensate for aperture discontinuities (segment gaps and/or secondary mirror supports) by controlling deformable mirrors in a nonlinear wavefront control regime not utilized before but conceptually similar to the beam reshaping used in PIAA coronagraphy. We propose here an in-air demonstration at 1E- 7 contrast, enabled by adding a second deformable mirror to our current test-bed. This expansion of the scope of our current efforts in exoplanet imaging technologies will enabling us to demonstrate an integrated solution for wavefront control and starlight suppression on complex aperture geometries. It is directly applicable at scales from moderate-cost exoplanet probe missions to the 2.4 m AFTA telescopes to future flagship UVOIR observatories with apertures potentially 16-20 m. Searching for nearby habitable worlds with direct imaging is one of the top scientific priorities established by the Astro2010 Decadal Survey. Achieving this ambitious goal will require 1e-10 contrast on a telescope large enough to provide angular resolution and sensitivity to planets around a significant sample of nearby stars. Such a mission must of course also be realized at an achievable cost. Lightweight segmented mirror technology allows larger diameter optics to fit in any given launch vehicle as compared to monolithic mirrors, and lowers total life-cycle costs from construction through integration & test, making it a compelling option for future large space telescopes. At smaller scales, on-axis designs with secondary obscurations and supports are less challenging to fabricate and thus more affordable than the off-axis unobscured primary mirror designs