WorldWideScience

Sample records for apd light readout

  1. Scintillation counter with MRS APD light readout

    International Nuclear Information System (INIS)

    Akindinov, A.; Bondarenko, G.; Golovin, V.; Grigoriev, E.; Grishuk, Yu.; Mal'kevich, D.; Martemiyanov, A.; Ryabinin, M.; Smirnitskiy, A.; Voloshin, K.

    2005-01-01

    START, a high-efficiency and low-noise scintillation detector for ionizing particles, was developed for the purpose of creating a high-granular system for triggering cosmic muons. Scintillation light in START is detected by MRS APDs (Avalanche Photo-Diodes with Metal-Resistance-Semiconductor Structure), operated in the Geiger mode, which have 1mm 2 sensitive areas. START is assembled from a 15x15x1cm 3 scintillating plastic plate, two MRS APDs and two pieces of wavelength-shifting optical fiber stacked in circular coils inside the plastic. The front-end electronic card is mounted directly on the detector. Tests with START have confirmed its operational consistency, over 99% efficiency of MIP registration and good homogeneity. START demonstrates a low intrinsic noise of about 10 -2 Hz. If these detectors are to be mass-produced, the cost of a mosaic array of STARTs is estimated at a moderate level of 2-3kUSD/m 2

  2. Long-term operation of a multi-channel cosmic muon system based on scintillation counters with MRS APD light readout

    CERN Document Server

    Akindinov, A.; Grigoriev, E.; Grishuk, Yu.; Kuleshov, S.; Mal'kevich, D.; Martemiyanov, A.; Nedosekin, A.; Ryabinin, M.; Voloshin, K.

    2009-01-01

    A Cosmic Ray Test Facility (CRTF) is the first large-scale implementation of a scintillation triggering system based on a new scintillation technique known as START. In START, the scintillation light is collected and transported by WLS optical fibers, while light detection is performed by pairs of avalanche photodiodes with the Metal-Resistor-Semiconductor structure operated in the Geiger mode (MRS APD). START delivers 100% efficiency of cosmic muon detection, while its intrinsic noise level is less than 10^{-2} Hz. CRTF, consisting of 160 START channels, has been continuously operated by the ALICE TOF collaboration for more than 25 000 hours, and has demonstrated a high level of stability. Fewer than 10% of MRS APDs had to be replaced during this period.

  3. A high granularity plastic scintillator tile hadronic calorimeter with APD readout for a linear collider detector

    Czech Academy of Sciences Publication Activity Database

    Andreev, V.; Cvach, Jaroslav; Danilov, M.; Devitsin, E.; Dodonov, V.; Eigen, G.; Garutti, E.; Gilitzky, Yu.; Groll, M.; Heuer, R.D.; Janata, Milan; Kacl, Ivan; Korbel, V.; Kozlov, V. Yu; Meyer, H.; Morgunov, V.; Němeček, Stanislav; Pöschl, R.; Polák, Ivo; Raspereza, A.; Reiche, S.; Rusinov, V.; Sefkow, F.; Smirnov, P.; Terkulov, A.; Valkár, Š.; Weichert, Jan; Zálešák, Jaroslav

    2006-01-01

    Roč. 564, - (2006), s. 144-154 ISSN 0168-9002 R&D Projects: GA MŠk(CZ) LC527; GA MŠk(CZ) 1P05LA259; GA ČR(CZ) GA202/05/0653 Institutional research plan: CEZ:AV0Z10100502 Keywords : hadronic calorimeter * plastic scintillator tile * APD readout * linear collider detector Subject RIV: BF - Elementary Particles and High Energy Physics Impact factor: 1.185, year: 2006

  4. Design and implementation of Gm-APD array readout integrated circuit for infrared 3D imaging

    Science.gov (United States)

    Zheng, Li-xia; Yang, Jun-hao; Liu, Zhao; Dong, Huai-peng; Wu, Jin; Sun, Wei-feng

    2013-09-01

    A single-photon detecting array of readout integrated circuit (ROIC) capable of infrared 3D imaging by photon detection and time-of-flight measurement is presented in this paper. The InGaAs avalanche photon diodes (APD) dynamic biased under Geiger operation mode by gate controlled active quenching circuit (AQC) are used here. The time-of-flight is accurately measured by a high accurate time-to-digital converter (TDC) integrated in the ROIC. For 3D imaging, frame rate controlling technique is utilized to the pixel's detection, so that the APD related to each pixel should be controlled by individual AQC to sense and quench the avalanche current, providing a digital CMOS-compatible voltage pulse. After each first sense, the detector is reset to wait for next frame operation. We employ counters of a two-segmental coarse-fine architecture, where the coarse conversion is achieved by a 10-bit pseudo-random linear feedback shift register (LFSR) in each pixel and a 3-bit fine conversion is realized by a ring delay line shared by all pixels. The reference clock driving the LFSR counter can be generated within the ring delay line Oscillator or provided by an external clock source. The circuit is designed and implemented by CSMC 0.5μm standard CMOS technology and the total chip area is around 2mm×2mm for 8×8 format ROIC with 150μm pixel pitch. The simulation results indicate that the relative time resolution of the proposed ROIC can achieve less than 1ns, and the preliminary test results show that the circuit function is correct.

  5. A Novel Time-Based Readout Scheme for a Combined PET-CT Detector Using APDs

    CERN Document Server

    Powolny, F; Hillemanns, H; Jarron, P; Lecoq, P; Meyer, T C; Moraes, D

    2008-01-01

    This paper summarizes CERN R&D work done in the framework of the European Commission's FP6 BioCare Project. The objective was to develop a novel "time-based" signal processing technique to read out LSO-APD photodetectors for medical imaging. An important aspect was to employ the technique in a combined scenario for both computer tomography (CT) and positron emission tomography (PET) with effectively no tradeoffs in efficiency and resolution compared to traditional single mode machines. This made the use of low noise and yet very high-speed monolithic front-end electronics essential so as to assure the required timing characteristics together with a high signal-to-noise ratio. Using APDs for photon detection, two chips, traditionally employed for particle physics, could be identified to meet the above criteria. Although both were not optimized for their intended new medical application, excellent performance in conjunction with LSO-APD sensors could be derived. Whereas a measured energy resolution of 16% (...

  6. Novel Single Photon Counting Readout Circuits and APD Arrays with Capability from UV to IR Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The overall goal of the proposed Phase I SBIR project is to develop and demonstrate 256x256 segmented readout integrated circuits (ROICs) that can read, digitize and...

  7. Study of a pure CsI crystal readout by APD for Belle II end cap ECL upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Y., E-mail: jin@hep.phys.s.u-tokyo.ac.jp [Department of Physics, the University of Tokyo, 7-3-1 Hongo Bunkyo-ku, Tokyo 113-0033 (Japan); Aihara, H. [Department of Physics, the University of Tokyo, 7-3-1 Hongo Bunkyo-ku, Tokyo 113-0033 (Japan); Borshchev, O.V. [Enikolopov Institute of Synthetic Polymeric Materials of the Russian Academy of Sciences, Profsoyuznaya st. 70, Moscow 117393 (Russian Federation); Epifanov, D.A. [Department of Physics, the University of Tokyo, 7-3-1 Hongo Bunkyo-ku, Tokyo 113-0033 (Japan); Ponomarenko, S.A.; Surin, N.M. [Enikolopov Institute of Synthetic Polymeric Materials of the Russian Academy of Sciences, Profsoyuznaya st. 70, Moscow 117393 (Russian Federation)

    2016-07-11

    A scintillation counter consisting of a pure CsI crystal and avalanche photodiodes (Hamamatsu APD S8664-55 and S8664-1010) has been studied for the upgrade of the end cap electromagnetic calorimeter of Belle II detector. An essential increase of the light output was achieved with wavelength shifters based on nanostructured organosilicon luminophores. - Highlights: • A scintillation counter consisting of a pure CsI crystal and avalanche photodiodes has been studied. • The equivalent noise charge and equivalent noise energy of the counter have been measured. • An essential increase of the light output was achieved with wavelength shifters.

  8. AX-PET: A novel PET concept with G-APD readout

    CERN Document Server

    Heller, M; Casella, C; Chesi, E; De Leo, R; Dissertori, G; Fanti, V; Gillam, J E; Joram, C; Lustermann, W; Nappi, E; Oliver, J F; Pauss, F; Rafecas, M; Rudge, A; Ruotsalainen, U; Schinzel, D; Schneider, T; Seguinot, J; Solevi, P; Stapnes, S; Tuna, U; Weilhammer, P

    2012-01-01

    The AX-PET collaboration has developed a novel concept for high resolution PET imaging to overcome some of the performance limitations of classical PET cameras, in particular the compromise between spatial resolution and sensitivity introduced by the parallax error. The detector consists of an arrangement of long LYSO scintillating crystals axially oriented around the field of view together with arrays of wave length shifter strips orthogonal to the crystals. This matrix allows a precise 3D measurement of the photon interaction point. This is valid both for photoelectric absorption at 511 key and for Compton scattering down to deposited energies of about 100 keV. Crystals and WLS strips are individually read out using Geiger-mode Avalanche Photo Diodes (G-APDs). The sensitivity of such a detector can be adjusted by changing the number of layers and the resolution is defined by the crystal and strip dimensions. Two AX-PET modules were built and fully characterized in dedicated test set-ups at CERN, with point-...

  9. Experimental characterization of the 192 channel Clear-PEM frontend ASIC coupled to a multi-pixel APD readout of LYSO:Ce crystals

    Energy Technology Data Exchange (ETDEWEB)

    Albuquerque, Edgar; Bexiga, Vasco [INESC-ID, Rua Alves Redol 9, 1000-129 Lisboa (Portugal); Bugalho, Ricardo; Carrico, Bruno; Ferreira, Claudia S.; Ferreira, Miguel [LIP, Avenida Elias Garcia 14-1, 1000-149 Lisboa (Portugal); Godinho, Joaquim [INOV, Rua Alves Redol 9, 1000-129 Lisboa (Portugal); Goncalves, Fernando; Leong, Carlos [INESC-ID, Rua Alves Redol 9, 1000-129 Lisboa (Portugal); Lousa, Pedro [INOV, Rua Alves Redol 9, 1000-129 Lisboa (Portugal); Machado, Pedro [INESC-ID, Rua Alves Redol 9, 1000-129 Lisboa (Portugal); Moura, Rui [LIP, Avenida Elias Garcia 14-1, 1000-149 Lisboa (Portugal); Neves, Pedro [INOV, Rua Alves Redol 9, 1000-129 Lisboa (Portugal); Ortigao, Catarina [LIP, Avenida Elias Garcia 14-1, 1000-149 Lisboa (Portugal); Piedade, Fernando [INOV, Rua Alves Redol 9, 1000-129 Lisboa (Portugal); Pinheiro, Joao F. [LIP, Avenida Elias Garcia 14-1, 1000-149 Lisboa (Portugal); Rego, Joel [INOV, Rua Alves Redol 9, 1000-129 Lisboa (Portugal); Rivetti, Angelo [INFN, Torino (Italy); Rodrigues, Pedro [LIP, Avenida Elias Garcia 14-1, 1000-149 Lisboa (Portugal)], E-mail: psilva@lip.pt; Silva, Jose C. [LIP, Avenida Elias Garcia 14-1, 1000-149 Lisboa (Portugal)] (and others)

    2009-01-21

    In the framework of the Clear-PEM project for the construction of a high-resolution scanner for breast cancer imaging, a very compact and dense frontend electronics system has been developed for readout of multi-pixel S8550 Hamamatsu APDs. The frontend electronics are instrumented with a mixed-signal Application-Specific Integrated Circuit (ASIC), which incorporates 192 low-noise charge pre-amplifiers, shapers, analog memory cells and digital control blocks. Pulses are continuously stored in memory cells at clock frequency. Channels above a common threshold voltage are readout for digitization by off-chip free-sampling ADCs. The ASIC has a size of 7.3x9.8mm{sup 2} and was implemented in a AMS 0.35{mu}m CMOS technology. In this paper the experimental characterization of the Clear-PEM frontend ASIC, reading out multi-pixel APDs coupled to LYSO:Ce crystal matrices, is presented. The chips were mounted on a custom test board connected to six APD arrays and to the data acquisition system. Six 32-pixel LYSO:Ce crystal matrices coupled on both sides to APD arrays were readout by two test boards. All 384 channels were operational. The chip power consumption is 660 mW (3.4 mW per channel). A very stable behavior of the chip was observed, with an estimated ENC of 1200-1300e{sup -} at APD gain 100. The inter-channel noise dispersion and mean baseline variation is less than 8% and 0.5%, respectively. The spread in the gain between different channels is found to be 1.5%. Energy resolution of 16.5% at 511 keV and 12.8% at 662 keV has been measured. Timing measurements between the two APDs that readout the same crystal is extracted and compared with detailed Monte Carlo simulations. At 511 keV the measured single photon time RMS resolution is 1.30 ns, in very good agreement with the expected value of 1.34 ns.

  10. Detection sensitivity and light collection studies of an APD-based high packing-fraction LYSO:Ce matrix for PET applications

    Energy Technology Data Exchange (ETDEWEB)

    Veckalns, Viesturs, E-mail: viesturs@lip.pt [Laboratório de Instrumentação e Física Experimental de Particulas, Avenida Elias Garcia 14-1, 1000 – 149 Lisboa (Portugal); Instituto Superior Técnico, Av. Rovisco Pais, 1 1049-001 Lisboa (Portugal); Bugalho, Ricardo [Laboratório de Instrumentação e Física Experimental de Particulas, Avenida Elias Garcia 14-1, 1000 – 149 Lisboa (Portugal); Instituto Superior Técnico, Av. Rovisco Pais, 1 1049-001 Lisboa (Portugal); Silva, Rui [Laboratório de Instrumentação e Física Experimental de Particulas, Avenida Elias Garcia 14-1, 1000 – 149 Lisboa (Portugal); Neves, Jorge A. [Laboratório de Instrumentação e Física Experimental de Particulas, Avenida Elias Garcia 14-1, 1000 – 149 Lisboa (Portugal); Instituto Superior Técnico, Av. Rovisco Pais, 1 1049-001 Lisboa (Portugal); Ecole Polytechnique Fédérale Lausanne, Station 1, CH-1015 Lausanne (Switzerland); Tavernier, Stefaan [Vrije Universiteit Brussel, Pleinlaan 2, 1050 Elsene (Belgium); Zorraquino, Carlos; Ortigão, Catarina; Rolo, Manuel; Silva, José C. [Laboratório de Instrumentação e Física Experimental de Particulas, Avenida Elias Garcia 14-1, 1000 – 149 Lisboa (Portugal); and others

    2013-12-21

    The ClearPEM is a dedicated APD-based PET detector for high-resolution breast cancer imaging. The detector module is composed of 12 LYSO:Ce crystal matrices, each with 4×8 individual crystals (2×2×20 mm{sup 3}) optically coupled on both ends to S8550 Hamamatsu APD arrays for the scintillation light readout. Only 46% of the sensitive area of the detector is constituted by LYSO crystals. The inactive area is due to gaps between APD matrices, encapsulation and BaSO{sub 4} reflective walls. To improve the overall sensitivity of the system, a new compact crystal matrix geometry was designed to minimise these inactive parts. In the new crystal matrix geometry, 76% of the sensitive area of the detector is constituted by LYSO:Ce crystals and crystals with three different dimensions are needed. The different matching factors of cross-section between the APDs and the crystals require a study on the effects on the energy and time resolution, optical cross-talk and on depth-of-interaction capability. In this paper, we present an experimental study on the improvement of the sensitivity with this new compact matrix, and a characterisation of its effects on the overall detector performance.

  11. Ultraviolet Light Curves of Gaia16apd in Superluminous Supernova Models

    Energy Technology Data Exchange (ETDEWEB)

    Tolstov, Alexey; Zhiglo, Andrey; Nomoto, Ken’ichi; Blinnikov, Sergei [Kavli Institute for the Physics and Mathematics of the Universe (WPI), The University of Tokyo Institutes for Advanced Study, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8583 (Japan); Sorokina, Elena [Sternberg Astronomical Institute, M.V.Lomonosov Moscow State University, 119234 Moscow (Russian Federation); Kozyreva, Alexandra, E-mail: alexey.tolstov@ipmu.jp [The Raymond and Beverly Sackler School of Physics and Astronomy, Tel Aviv University, Tel Aviv 69978 (Israel)

    2017-08-10

    Observations of Gaia16apd revealed extremely luminous ultraviolet emission among superluminous supernovae (SLSNe). Using radiation hydrodynamics simulations, we perform a comparison of UV light curves, color temperatures, and photospheric velocities between the most popular SLSN models: pair-instability supernova, magnetar, and interaction with circumstellar medium. We find that the interaction model is the most promising to explain the extreme UV luminosity of Gaia16apd. The differences in late-time UV emission and in color evolution found between the models can be used to link an observed SLSN event to the most appropriate model. Observations at UV wavelengths can be used to clarify the nature of SLSNe and more attention should be paid to them in future follow-up observations.

  12. Wavelength shifter strips and G-APD arrays for the read-out of the z-coordinate in axial PET modules

    CERN Document Server

    Braem, André; Joram, C; Rudge, A; Séguinot, Jacques; Weilhammer, P; De Leo, R; Nappi, E; Lustermann, W; Schinzel, D; Johnson, I; Renker, D; Albrecht, S

    2008-01-01

    The measurements presented in this paper are related to the development of a PET camera based on a 3-D axial geometry with excellent 3-D spatial, timing and energy resolution. The detector modules consist of matrices of long axially oriented scintillation crystal bars, which are individually coupled to photodetectors. The axial coordinate is derived from wavelength shifting (WLS) plastic strips orthogonally interleaved between the crystal bars and readout by G-APD arrays. We report on results from measurements with two LYSO crystal bars, read with PMTs, and two WLS strips readout with G-APD devices from Hamamatsu (called MPPC). The WLS strips are positioned orthogonally underneath the LYSO bars. Yields of about 80 photoelectrons from the WLS strips for an energy deposition in the LYSO crystals equivalent to the absorption of 511 keV photons are observed. The axial coordinate in the LYSO bars is reconstructed with a precision of about 1.9 mm (FWHM) using a digital reconstruction method. The resolution of an an...

  13. A positron emission tomograph based on LSO-APD modules with a sampling ADC read-out system for a students' advanced laboratory course.

    Science.gov (United States)

    Schneider, Florian R; Mann, Alexander B; Konorov, Igor; Delso, Gaspar; Paul, Stephan; Ziegler, Sibylle I

    2012-06-01

    A one-day laboratory course on positron emission tomography (PET) for the education of physics students and PhD students in medical physics has been set up. In the course, the physical background and the principles of a PET scanner are introduced. Course attendees set the system in operation, calibrate it using a (22)Na point source and reconstruct different source geometries filled with (18)F. The PET scanner features an individual channel read-out of 96 lutetium oxyorthosilicate (LSO) scintillator crystals coupled to avalanche photodiodes (APD). The analog data of each APD are digitized by fast sampling analog to digital converters (SADC) and processed within field programmable gate arrays (FPGA) to extract amplitudes and time stamps. All SADCs are continuously sampling with a precise rate of 80MHz, which is synchronous for the whole system. The data is transmitted via USB to a Linux PC, where further processing and the image reconstruction are performed. The course attendees get an insight into detector techniques, modern read-out electronics, data acquisition and PET image reconstruction. In addition, a short introduction to some common software applications used in particle and high energy physics is part of the course. Copyright © 2011. Published by Elsevier GmbH.

  14. APD detector electronics for the NSTX Thomson scattering system

    International Nuclear Information System (INIS)

    Johnson, D.W.; LeBlanc, B.P.; Long, D.L.; Renda, G.

    2000-01-01

    An electronics system has been installed and tested for the readout of APD detectors for the NSTX Thomson scattering system. Similar to previous designs, it features preamps with a fast and a slow output. The fast output uses pulse shaping to optimize sensitivity for the 8 nsec scattered light pulse while rejecting noise in the intrinsic plasma background. A low readout noise of approximately25 photoelectrons is achieved at an APD gain of 75. The design incorporates a number of features to provide flexibility for various modes of calibration

  15. APD performance in a luminosity monitor at LEP

    CERN Document Server

    Bartolomé, E; Casado, M P; Chmeissani, M; Clemente, S; Fernández, E; Garrido, L; Lorenz, E; Martínez, M; Merino, G; Riu, I; Sánchez, F; Wright, A

    2000-01-01

    Avalanche photo-diodes (APDs) are being used as optical readout elements in a sampling electromagnetic calorimeter made of alternate layers of tungsten and plastic scintillators. The calorimeter serves as a small-angle luminosity monitor in the stray magnetic field of the ALEPH detector at LEP (CERN). Its scintillators are coupled both to APDs and conventional PMTs simultaneously via wavelength shifter fibres. In this paper we present results on the overall performance of the APDs, including gain and stability versus time and energy, based on the direct comparison of the two photosensitive devices. (6 refs).

  16. Light yield from a scintillator tile with embedded readout fibers

    Energy Technology Data Exchange (ETDEWEB)

    Trost, H.J. [Argonne National Lab., IL (United States); Tonnison, J.I.; Barnes, V.E. [Purdue Univ., Lafayette, IN (United States). Dept. of Physics

    1991-07-15

    We have studied the light yield in two straight fibers embedded in a square scintillator tile by means of computer simulation. The tile and fiber dimensions are taken in the ballpark of interest for the SDC main calorimeter. A fairly flat total response across the tile can be obtained. Important parameters to be controlled are identified.

  17. Studies of avalanche photodiodes for scintillating fibre tracking readout

    International Nuclear Information System (INIS)

    Fenker, H.; Thomas, J.

    1993-01-01

    Avalanche Photodiodes (APDs) operating in ''Geiger Mode'' have been studied in a fibre tracking readout environment. A fast recharge circuit has been developed for high rate data taking, and results obtained from a model fibre tracker in the test beam at Brookhaven National Laboratory are presented. A high rate calibrated light source has been developed using a commercially available laser diode and has been used to measure the efficiency of the devices. The transmission of the light from a 1mm fibre onto a 0.5mm diameter APD surface has been identified as the main problem in the use of these particular devices for scintillating fibre tracking in the Superconducting Supercollider environment. Solutions to this problem are proposed

  18. Application of avalanche photodiodes as a readout for scintillator tile-fiber systems

    CERN Document Server

    Cheshkov, C V; Gouchtchine, E; Litov, L; Mandjoukov, I; Spassov, V

    1999-01-01

    The application of reach-through avalanche photodiodes (R'APD) as a photodetector for scintillator tiles has been investigated. The light collected by WLS fibers (0.84mm and 1mm diameter) embedded in the scintillator has been transmited to the 0.5mm2 active surface of APD by clear optical fibers and optical connectors. A low noise charge sensitive preamplifier (approximately 400 electrons equivalent noise charge) has been used to gain the photodiode signal. Various configurations of tile-fibre systems, suitable for CMS and LHCb experiments at LHC have been studied using cosmic muons and muon beam at SPS at CERN. In order to optimize the performance of APD, measurments in the temperature range from -10C to +25C have been done. The MIP detection efficiency and electron/MIP separation have been estimated in order to determine applicability of the readout for LHCb preshower.

  19. APD Properties and Recovery from Radiation Damage

    CERN Document Server

    Baccaro, Stefania; Caruso, S; Cavallari, Francesca; Dafinei, Ioan; Diemoz, Marcella; Emeliantchik, Igor; Festinesi, Armando; Longo, Egidio; Montecchi, Marco; Organtini, Giovanni; Rosi, G

    1997-01-01

    Avalanche photodiodes will be used to detect scintillation light from PWO crystals in the CMS electromagnetic calorimeter. Properties of Hamamatsu APD are reported special attention has been devoted to the study of radiation hardness and room temperature annealing. We found a fast recovery with a time constant of 1.3 days a medium fast recovery with a lifetime of the order of 10 days and indication of a third component with very long time constant of the order of 300 days.

  20. Experimental Characterization of Monolithic-Crystal Small Animal PET Detectors Read Out by APD Arrays

    Science.gov (United States)

    Maas, M. C.; van der Laan, D. J.; Schaart, D. R.; Huizenga, J.; Brouwer, J. C.; Bruyndonckx, P.; Leonard, S.; Lemaitre, C.; van Eijk, C. W. E.

    2006-06-01

    Minimizing dead space is one way to increase the detection efficiency of small-animal PET scanners. By using monolithic scintillator crystals (e.g., 20 mm/spl times/10 mm/spl times/10 mm LSO), loss of efficiency due to inter-crystal reflective material is minimized. Readout of such crystals can be performed by means of one or more avalanche photo-diode (APD) arrays optically coupled to the crystal. The entry point of a gamma photon on the crystal surface can be estimated from the measured distribution of the scintillation light over the APD array(s). By estimating the entry point, correction for the depth-of-interaction (DOI) is automatically provided. We are studying the feasibility of such detector modules. To this end, a 64-channel test setup has been developed. Experiments to determine the effect on the spatial resolution of crystal surface finish and detector geometry have been carried out. The first results of these experiments are presented and compared to simulation results. The crystal surface finish has only a small influence on the spatial resolution. The spatial resolution of 20 mm/spl times/10 mm/spl times/10 mm detectors is significantly better when read out on the front side than when read out on the back side. With a 20 mm/spl times/10 mm/spl times/20 mm crystal coupled to two APD arrays, a very small resolution degradation of only /spl sim/0.2 mm is observed for an incidence angle of 30/spl deg/ compared to normal incidence.

  1. Developments of large-area APD arrays for future applications to PET technology

    International Nuclear Information System (INIS)

    Kataoka, Jun

    2010-01-01

    Silicon avalanche photodiodes (APD) are solid-state devices which have internal gain. Since the good features of both photodiodes (PDs) and photomultiplier tubes (PMTs) are shared in a single device, APD offers new design for physics experiments and devices for nuclear medicine. In particular, thanks to its high quantum efficiency (QE) and low noise, reverse-type APDs generally show much better energy resolution than traditional PMTs when coupled to various scintillators. Most recently, we have developed various large area reverse-type APDs with Hamamatsu Photonics, up to 32 x 32 mm 2 square area. Such large dimensions have been awaited by researchers world-wide, and further extend the potential of APDs for various application such as in space science and nuclear medicine. For example, the use of APDs in space experiments is now validated thanks to successful launch of the Cute 1.7+APD II, which has measured both electron/proton distributions in Low Earth Orbit at E >9 keV. Moreover, the mission successfully demonstrated an active gain control system to keep the APD gain stable under moderate temperature variations. In other aspects, an APD is a compact, high performance light sensor that could be used in the strong magnetic field MRIs. An ultimate spatial resolution as better as sub-mm will be possible by adopting small pixel, high density APD pixels. Future PET detectors with time-of-flight (TOF) capability may be expected thanks to very fast time response of the APD devices. As a first step, we have developed a versatile APD-based positron emission tomography (PET) modules for future applications in high resolution, fast medical imaging. We will also discuss future use of digital (Geiger-mode) APDs, such as multi-pixel photon counter (MPPCs) in similar medical imaging applications. (author)

  2. On-Chip Quantum-Dot Light Source for Quantum-Device Readout

    Science.gov (United States)

    Liu, Y.-Y.; Stehlik, J.; Mi, X.; Hartke, T. R.; Gullans, M. J.; Petta, J. R.

    2018-01-01

    We use microwave radiation generated by a semiconductor double-quantum-dot (DQD) micromaser for charge-state detection. A cavity is populated with nc˜6000 photons by driving a current through an emitter DQD. These photons are used to sense the charge state of a target DQD that is located at the opposite end of the cavity. The charge dynamics in the target DQD influences the output power and emission frequency of the maser. Three different readout mechanisms are compared. The detection scheme requires no cavity input field and may potentially be used to improve the scalability of semiconductor and superconducting qubit readout technologies.

  3. "DNA Origami Traffic Lights" with a Split Aptamer Sensor for a Bicolor Fluorescence Readout.

    Science.gov (United States)

    Walter, Heidi-Kristin; Bauer, Jens; Steinmeyer, Jeannine; Kuzuya, Akinori; Niemeyer, Christof M; Wagenknecht, Hans-Achim

    2017-04-12

    A split aptamer for adenosine triphosphate (ATP) was embedded as a recognition unit into two levers of a nanomechanical DNA origami construct by extension and modification of selected staple strands. An additional optical module in the stem of the split aptamer comprised two different cyanine-styryl dyes that underwent an energy transfer from green (donor) to red (acceptor) emission if two ATP molecules were bound as target molecule to the recognition module and thereby brought the dyes in close proximity. As a result, the ATP as a target triggered the DNA origami shape transition and yielded a fluorescence color change from green to red as readout. Conventional atomic force microscopy (AFM) images confirmed the topology change from the open form of the DNA origami in the absence of ATP into the closed form in the presence of the target molecule. The obtained closed/open ratios in the absence and presence of target molecules tracked well with the fluorescence color ratios and thereby validated the bicolor fluorescence readout. The correct positioning of the split aptamer as the functional unit farthest away from the fulcrum of the DNA origami was crucial for the aptasensing by fluorescence readout. The fluorescence color change allowed additionally to follow the topology change of the DNA origami aptasensor in real time in solution. The concepts of fluorescence energy transfer for bicolor readout in a split aptamer in solution, and AFM on surfaces, were successfully combined in a single DNA origami construct to obtain a bimodal readout. These results are important for future custom DNA devices for chemical-biological and bioanalytical purposes because they are not only working as simple aptamers but are also visible by AFM on the single-molecule level.

  4. Electronics for the camera of the First G-APD Cherenkov Telescope (FACT) for ground based gamma-ray astronomy

    Science.gov (United States)

    Anderhub, H.; Backes, M.; Biland, A.; Boller, A.; Braun, I.; Bretz, T.; Commichau, V.; Djambazov, L.; Dorner, D.; Farnier, C.; Gendotti, A.; Grimm, O.; von Gunten, H. P.; Hildebrand, D.; Horisberger, U.; Huber, B.; Kim, K.-S.; Köhne, J.-H.; Krähenbühl, T.; Krumm, B.; Lee, M.; Lenain, J.-P.; Lorenz, E.; Lustermann, W.; Lyard, E.; Mannheim, K.; Meharga, M.; Neise, D.; Nessi-Tedaldi, F.; Overkemping, A.-K.; Pauss, F.; Renker, D.; Rhode, W.; Ribordy, M.; Rohlfs, R.; Röser, U.; Stucki, J.-P.; Thaele, J.; Tibolla, O.; Viertel, G.; Vogler, P.; Walter, R.; Warda, K.; Weitzel, Q.

    2012-01-01

    Within the FACT project, we construct a new type of camera based on Geiger-mode avalanche photodiodes (G-APDs). Compared to photomultipliers, G-APDs are more robust, need a lower operation voltage and have the potential of higher photon-detection efficiency and lower cost, but were never fully tested in the harsh environments of Cherenkov telescopes. The FACT camera consists of 1440 G-APD pixels and readout channels, based on the DRS4 (Domino Ring Sampler) analog pipeline chip and commercial Ethernet components. Preamplifiers, trigger system, digitization, slow control and power converters are integrated into the camera.

  5. Extensive studies of MRS APDs for plastic scintillator muon veto detectors of cryogenic experiments

    Science.gov (United States)

    Falkenstein, R.; Bezrukov, L. B.; Freund, K.; Golovin, A. V.; Golovin, V. M.; Grabmayr, P.; Jochum, J.; Lubsandorzhiev, B. K.; Lubsandorzhiev, N. B.; Poleshuk, R. V.; Polyansky, I. N.; Ritter, F.; Sailer, C.; Shaibonov, B. A. M.

    2012-12-01

    Low background experiments need active muon veto detectors to shield them from cosmic muons. Plastic scintillator panels with WLS fiber and multi-pixel Geiger-mode avalanche photodiodes readout are widely used in such experiments due to their compactness and robustness. In this paper, results from the study of the basic MRS APD parameters, such as breakdown voltages, quenching resistors, internal gain and dark count rates are presented, as well as temperature dependencies of some of these parameters. In a small fraction of the MRS APDs, some strange dips in the I-V curves just preceding the breakdown voltage point have been observed.

  6. A portable smart phone-based plasmonic nanosensor readout platform that measures transmitted light intensities of nanosubstrates using an ambient light sensor.

    Science.gov (United States)

    Fu, Qiangqiang; Wu, Ze; Xu, Fangxiang; Li, Xiuqing; Yao, Cuize; Xu, Meng; Sheng, Liangrong; Yu, Shiting; Tang, Yong

    2016-05-21

    Plasmonic nanosensors may be used as tools for diagnostic testing in the field of medicine. However, quantification of plasmonic nanosensors often requires complex and bulky readout instruments. Here, we report the development of a portable smart phone-based plasmonic nanosensor readout platform (PNRP) for accurate quantification of plasmonic nanosensors. This device operates by transmitting excitation light from a LED through a nanosubstrate and measuring the intensity of the transmitted light using the ambient light sensor of a smart phone. The device is a cylinder with a diameter of 14 mm, a length of 38 mm, and a gross weight of 3.5 g. We demonstrated the utility of this smart phone-based PNRP by measuring two well-established plasmonic nanosensors with this system. In the first experiment, the device measured the morphology changes of triangular silver nanoprisms (AgNPRs) in an immunoassay for the detection of carcinoembryonic antigen (CEA). In the second experiment, the device measured the aggregation of gold nanoparticles (AuNPs) in an aptamer-based assay for the detection of adenosine triphosphate (ATP). The results from the smart phone-based PNRP were consistent with those from commercial spectrophotometers, demonstrating that the smart phone-based PNRP enables accurate quantification of plasmonic nanosensors.

  7. CALIFA at R3B: Development of quality assurance system for APD

    Energy Technology Data Exchange (ETDEWEB)

    Rhee, Han-Bum; Ignatov, Alexander; Ilieva, Stoyanka; Kroell, Thorsten; Schmid, Mirko von [Technische Universitaet, Darmstadt (Germany); Collaboration: R3B-Collaboration

    2014-07-01

    CALIFA is a calorimeter and spectrometer that aims to detect gamma-rays and light charged particles. It is a part of the R{sup 3}B experiment at the future FAIR facility. The CALIFA barrel consists of CsI(Tl) scintillating crystals, which are individually read out with Avalanche Photodiodes. While APDs are insensitive to magnet fields, its gain depends with temperature and voltage. Therefore, we have developed and built the quality assurance testing system for double APDs. In order to control the temperature, we made a water circulation system. We use a light signal from a pulsed LED,which is distributed to the active area of the APDs, to measure the gain variation of APD. In this presentation, we explain the concept of the QA testing system and report the results of the QA test.

  8. Monolithic Time Delay Integrated APD Arrays Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The overall goal of the proposed program by Epitaxial Technologies is to develop monolithic time delay integrated avalanche photodiode (APD) arrays with sensitivity...

  9. Scintillation light read-out by thin photodiodes in silicon wells

    CERN Document Server

    Allier, C P; Sarro, P M; Eijk, C W E

    2000-01-01

    Several applications of X-ray and gamma ray imaging detectors, e.g. in medical diagnostics, require millimeter or sub-millimeter spatial resolution and good energy resolution. In order to achieve such features we have proposed a new type of camera, which takes advantage of micromachining technology. It consists of an array of scintillator crystals encapsulated in silicon wells with photodiodes at the bottom. Several parameters of the photodiode need to be optimised: uniformity and efficiency of the light detection, gain, electronic noise and breakdown voltage. In order to evaluate these parameters we have processed 3x3 arrays of 1.8 mm sup 2 , approx 10 mu m thick photodiodes using (1 0 0) wafers etched in a KOH solution. Their optical response at 675 nm wavelength is comparable to that of a 500 mu m thick silicon PIN diode. Their low light detection efficiency is compensated by internal amplification. Several scintillator materials have been positioned in the wells on top of the thin photodiodes, i.e. a 200 ...

  10. Light Readout for a 1 ton Liquid Argon Dark Matter Detector

    CERN Document Server

    Boccone, Vittorio; Baudis, Laura; Otyugova, Polina; Regenfus, Christian

    2010-01-01

    Evidence for dark matter (DM) has been reported using astronomical observations in systems such as the Bullet cluster. Weakly interactive massive particles (WIMPs), in particular the lightest neutralino, are the most popular DM candidates within the Minimal Supersymmetric Standard Model (MSSM). Many groups in the world are focussing their attention on the direct detection of DM in the laboratory. The detectors should have large target masses and excellent noise rejection capabilities because of the small cross section between DM and ordinary matter (σWIMP−nucleon < 4 · 10−8 pb). Noble liquids are today considered to be one of the best options for large-size DM experiments, as they have a relatively low ionization energy, good scintillation properties and long electron lifetime. Moreover noble liquid detectors are easily scalable to large masses. This thesis deals with the development of a large (1 ton) LAr WIMP detector (ArDM) which could measure simultaneously light and charge from the scintilla...

  11. A depth-encoding PET detector that uses light sharing and single-ended readout with silicon photomultipliers.

    Science.gov (United States)

    Kuang, Zhonghua; Yang, Qian; Wang, Xiaohui; Fu, Xin; Ren, Ning; Sang, Ziru; Wu, San; Zheng, Yunfei; Zhang, Xianming; Hu, Zhanli; Du, Junwei; Liang, Dong; Liu, Xin; Zheng, Hairong; Yang, Yongfeng

    2018-02-13

    Detectors with depth-encoding capability and good timing resolution are required to develop high-performance whole-body or total-body PET scanners. In this work, depth-encoding PET detectors that use light sharing between two discrete crystals and single-ended readout with silicon photomultipliers (SiPMs) were manufactured and evaluated. The detectors consisted of two unpolished 3  ×  3  ×  20 mm 3 LYSO crystals with different coupling materials between them and were read out by Hamamatsu 3  ×  3 mm 2 SiPMs with one-to-one coupling. The ratio of the energy of one SiPM to the total energy of two SiPMs was used to measure the depth of interaction (DOI). Detectors with different coupling materials in-between the crystals were measured in the singles mode in an effort to obtain detectors that can provide good DOI resolution. The DOI resolution and energy resolution of three types of detector were measured and the timing resolution was measured for the detector with the best DOI and energy resolution. The optimum detector, with 5 mm optical glue, a 9 mm triangular ESR and a 6 mm rectangular ESR in-between the unpolished crystals, provides a DOI resolution of 2.65 mm, an energy resolution of 10.0% and a timing resolution of 427 ps for events of E  >  400 keV. The detectors simultaneously provide good DOI and timing resolution, and show great promise for the development of high-performance whole-body and total-body PET scanners.

  12. A depth-encoding PET detector that uses light sharing and single-ended readout with silicon photomultipliers

    Science.gov (United States)

    Kuang, Zhonghua; Yang, Qian; Wang, Xiaohui; Fu, Xin; Ren, Ning; Sang, Ziru; Wu, San; Zheng, Yunfei; Zhang, Xianming; Hu, Zhanli; Du, Junwei; Liang, Dong; Liu, Xin; Zheng, Hairong; Yang, Yongfeng

    2018-02-01

    Detectors with depth-encoding capability and good timing resolution are required to develop high-performance whole-body or total-body PET scanners. In this work, depth-encoding PET detectors that use light sharing between two discrete crystals and single-ended readout with silicon photomultipliers (SiPMs) were manufactured and evaluated. The detectors consisted of two unpolished 3  ×  3  ×  20 mm3 LYSO crystals with different coupling materials between them and were read out by Hamamatsu 3  ×  3 mm2 SiPMs with one-to-one coupling. The ratio of the energy of one SiPM to the total energy of two SiPMs was used to measure the depth of interaction (DOI). Detectors with different coupling materials in-between the crystals were measured in the singles mode in an effort to obtain detectors that can provide good DOI resolution. The DOI resolution and energy resolution of three types of detector were measured and the timing resolution was measured for the detector with the best DOI and energy resolution. The optimum detector, with 5 mm optical glue, a 9 mm triangular ESR and a 6 mm rectangular ESR in-between the unpolished crystals, provides a DOI resolution of 2.65 mm, an energy resolution of 10.0% and a timing resolution of 427 ps for events of E  >  400 keV. The detectors simultaneously provide good DOI and timing resolution, and show great promise for the development of high-performance whole-body and total-body PET scanners.

  13. APD detectors for biological fluorescence spectroscopy

    International Nuclear Information System (INIS)

    Mazeres, S.; Borrel, V.; Magenc, C.; Courrech, J.L.; Bazer-Bachi, R.

    2006-01-01

    Fluorescence spectroscopy is a very convenient and widely used method for studying the molecular background of biological processes [L. Salome, J.L. Cazeil, A. Lopez, J.F. Tocanne, Eur. Biophys. J. 27 (1998) 391-402]. Chromophores are included in the structure under study and a flash of laser light induces fluorescence (Fluorescence Recovery After Photo-bleaching), the decay of which yields information on the polarity, the speed of rotation, and the speed of diffusion as well as on the temporal and spatial evolution of interactions between molecular species. The method can even be used to study living cells [J.F. Tocanne, L. Cezanne, A. Lopez, Prog. Lipid Res. 33 (1994) 203-237, L. Cezanne, A. Lopez, F. Loste, G. Parnaud, O. Saurel, P. Demange, J.F. Tocanne, Biochemistry 38 (1999) 2779-2786]. This is classically performed with a PM-based system. For biological reasons a decrease of the excitation of the cells is highly desirable. Because the fluorescence response then becomes fainter a significant improvement in detector capability would be welcome. We present here results obtained with an Avalanche Photo Diode (APD)-based system. The small sensitive area of detection allows a very significant improvement in signal/noise ratio, improvement in gain, and the opening-up of a new parameter space. With these new detectors we can begin the study of information transmission between cells through morphine receptors. This work involves both electronics engineers and biophysicists, so results and techniques in both fields will be presented here

  14. Temperature dependence of APD-based PET scanners

    International Nuclear Information System (INIS)

    Keereman, Vincent; Van Holen, Roel; Vandenberghe, Stefaan; Vanhove, Christian

    2013-01-01

    Purpose: Solid state detectors such as avalanche photodiodes (APDs) are increasingly being used in PET detectors. One of the disadvantages of APDs is the strong decrease of their gain factor with increasing ambient temperature. The light yield of most scintillation crystals also decreases when ambient temperature is increased. Both effects lead to considerable temperature dependence of the performance of APD-based PET scanners. In this paper, the authors propose a model for this dependence and the performance of the LabPET8 APD-based small animal PET scanner is evaluated at different temperatures.Methods: The model proposes that the effect of increasing temperature on the energy histogram of an APD-based PET scanner is a compression of the histogram along the energy axis. The energy histogram of the LabPET system was acquired at 21 °C and 25 °C to verify the validity of this model. Using the proposed model, the effect of temperature on system sensitivity was simulated for different detector temperature coefficients and temperatures. Subsequently, the effect of short term and long term temperature changes on the peak sensitivity of the LabPET system was measured. The axial sensitivity profile was measured at 21 °C and 24 °C following the NEMA NU 4-2008 standard. System spatial resolution was also evaluated. Furthermore, scatter fraction, count losses and random coincidences were evaluated at different temperatures. Image quality was also investigated.Results: As predicted by the model, the photopeak energy at 25 °C is lower than at 21 °C with a shift of approximately 6% per °C. Simulations showed that this results in an approximately linear decrease of sensitivity when temperature is increased from 21 °C to 24 °C and energy thresholds are constant. Experimental evaluation of the peak sensitivity at different temperatures showed a strong linear correlation for short term (2.32 kcps/MBq/°C = 12%/°C, R = −0.95) and long term (1.92 kcps/MBq/°C = 10%/

  15. APD arrays and large-area APDs via a new planar process

    CERN Document Server

    Farrell, R; Vanderpuye, K; Grazioso, R; Myers, R; Entine, G

    2000-01-01

    A fabrication process has been developed which allows the beveled-edge-type of avalanche photodiode (APD) to be made without the need for the artful bevel formation steps. This new process, applicable to both APD arrays and to discrete detectors, greatly simplifies manufacture and should lead to significant cost reduction for such photodetectors. This is achieved through a simple innovation that allows isolation around the device or array pixel to be brought into the plane of the surface of the silicon wafer, hence a planar process. A description of the new process is presented along with performance data for a variety of APD device and array configurations. APD array pixel gains in excess of 10 000 have been measured. Array pixel coincidence timing resolution of less than 5 ns has been demonstrated. An energy resolution of 6% for 662 keV gamma-rays using a CsI(T1) scintillator on a planar processed large-area APD has been recorded. Discrete APDs with active areas up to 13 cm sup 2 have been operated.

  16. CLASSiC: Cherenkov light detection with silicon carbide

    Energy Technology Data Exchange (ETDEWEB)

    Adriani, Oscar [Physics Dept., University of Florence, Via Sansone 1, 50019, Sesto Fiorentino (Italy); INFN dep. of Florence, Via Bruno Rossi 1, 50019 Sesto Fiorentino (Italy); Albergo, Sebastiano [Physics Dept., University of Catania, Via Santa Sofia 64, 95123 Catania (Italy); INFN dep. of Catania, Via Santa Sofia 64, 95123 Catania (Italy); D' Alessandro, Raffaello [Physics Dept., University of Florence, Via Sansone 1, 50019, Sesto Fiorentino (Italy); INFN dep. of Florence, Via Bruno Rossi 1, 50019 Sesto Fiorentino (Italy); Lenzi, Piergiulio [INFN dep. of Florence, Via Bruno Rossi 1, 50019 Sesto Fiorentino (Italy); Sciuto, Antonella [CNR-IMM, VIII Strada 5, Zona Industriale, Catania (Italy); INFN dep. of Catania, Via Santa Sofia 64, 95123 Catania (Italy); Starodubtsev, Oleksandr [INFN dep. of Florence, Via Bruno Rossi 1, 50019 Sesto Fiorentino (Italy); Tricomi, Alessia [Physics Dept., University of Catania, Via Santa Sofia 64, 95123 Catania (Italy); INFN dep. of Catania, Via Santa Sofia 64, 95123 Catania (Italy)

    2017-02-11

    We present the CLASSiC R&D for the development of a silicon carbide (SiC) based avalanche photodiode for the detection of Cherenkov light. SiC is a wide-bandgap semiconductor material, which can be used to make photodetectors that are insensitive to visible light. A SiC based light detection device has a peak sensitivity in the deep UV, making it ideal for Cherenkov light. Moreover, the visible blindness allows such a device to disentangle Cherenkov light and scintillation light in all those materials that scintillate above 400 nm. Within CLASSiC, we aim at developing a device with single photon sensitivity, having in mind two main applications. One is the use of the SiC APD in a new generation ToF PET scanner concept, using the Cherenov light emitted by the electrons following 511 keV gamma ray absorption as a time-stamp. Cherenkov is intrinsically faster than scintillation and could provide an unprecedentedly precise time-stamp. The second application concerns the use of SiC APD in a dual readout crystal based hadronic calorimeter, where the Cherenkov component is used to measure the electromagnetic fraction on an event by event basis. We will report on our progress towards the realization of the SiC APD devices, the strategies that are being pursued toward the realization of these devices and the preliminary results on prototypes in terms of spectral response, quantum efficiency, noise figures and multiplication.

  17. C-RED One and C-RED2: SWIR high-performance cameras using Saphira e-APD and Snake InGaAs detectors

    Science.gov (United States)

    Gach, Jean-Luc; Feautrier, Philippe; Stadler, Eric; Clop, Fabien; Lemarchand, Stephane; Carmignani, Thomas; Wanwanscappel, Yann; Boutolleau, David

    2018-02-01

    After the development of the OCAM2 EMCCD fast visible camera dedicated to advanced adaptive optics wavefront sensing, First Light Imaging moved to the SWIR fast cameras with the development of the C-RED One and the C-RED 2 cameras. First Light Imaging's C-RED One infrared camera is capable of capturing up to 3500 full frames per second with a subelectron readout noise and very low background. C-RED One is based on the last version of the SAPHIRA detector developed by Leonardo UK. This breakthrough has been made possible thanks to the use of an e-APD infrared focal plane array which is a real disruptive technology in imagery. C-RED One is an autonomous system with an integrated cooling system and a vacuum regeneration system. It operates its sensor with a wide variety of read out techniques and processes video on-board thanks to an FPGA. We will show its performances and expose its main features. In addition to this project, First Light Imaging developed an InGaAs 640x512 fast camera with unprecedented performances in terms of noise, dark and readout speed based on the SNAKE SWIR detector from Sofradir. The camera was called C-RED 2. The C-RED 2 characteristics and performances will be described. The C-RED One project has received funding from the European Union's Horizon 2020 research and innovation program under grant agreement N° 673944. The C-RED 2 development is supported by the "Investments for the future" program and the Provence Alpes Côte d'Azur Region, in the frame of the CPER.

  18. Performance tests of novel scintillator materials and readout devices for the CALIFA rate at R{sup 3}B

    Energy Technology Data Exchange (ETDEWEB)

    Suerder, Christian; Fernandez Martinez, Guillermo; Homm, Ilja; Ignatov, Alexander; Ilieva, Tania; Kroell, Thorsten; Rhee, Han-Bum; Schmid, Mirko von [Institut fuer Kernphysik, Technische Universitaet Darmstadt (Germany)

    2014-07-01

    CALIFA (CALorimeter for the In Flight detection of γ-rays and light charged p Articles) is part of the R{sup 3}B project. It will be realized at FAIR (Facility for Antiproton and Ion Research), which is built at the GSI Helmholtzzentrum fuer Schwerionenforschung GmbH. The CALIFA consists of the Barrel part, covering central angles and the EndCap part for the forward angles. The requirement to detect high energy gamma rays with good efficiency and the presence of a magnetic field lead to numerous implications on the detector technology. In this work we investigate the possibility to use novel scintillating materials, namely LaBr{sub 3}:(Ce) and CeBr{sub 3} with APDs (Avalanche Photo Diode) and SiPM (Silicon Photo Multiplier) readout.

  19. Simulation study of light transport in laser-processed LYSO:Ce detectors with single-side readout.

    Science.gov (United States)

    Bläckberg, L; El Fakhri, G; Sabet, H

    2017-10-19

    A tightly focused pulsed laser beam can locally modify the crystal structure inside the bulk of a scintillator. The result is incorporation of so-called optical barriers with a refractive index different from that of the crystal bulk, that can be used to redirect the scintillation light and control the light spread in the detector. We here systematically study the scintillation light transport in detectors fabricated using the laser induced optical barrier technique, and objectively compare their potential performance characteristics with those of the two mainstream detector types: monolithic and mechanically pixelated arrays. Among countless optical barrier patterns, we explore barriers arranged in a pixel-like pattern extending all-the-way or half-way through a 20 mm thick LYSO:Ce crystal. We analyze the performance of the detectors coupled to MPPC arrays, in terms of light response functions, flood maps, line profiles, and light collection efficiency. Our results show that laser-processed detectors with both barrier patterns constitute a new detector category with a behavior between that of the two standard detector types. Results show that when the barrier-crystal interface is smooth, no DOI information can be obtained regardless of barrier refractive index (RI). However, with a rough barrier-crystal interface we can extract multiple levels of DOI. Lower barrier RI results in larger light confinement, leading to better transverse resolution. Furthermore we see that the laser-processed crystals have the potential to increase the light collection efficiency, which could lead to improved energy resolution and potentially better timing resolution due to higher signals. For a laser-processed detector with smooth barrier-crystal interfaces the light collection efficiency is simulated to  >42%, and for rough interfaces  >73%. The corresponding numbers for a monolithic crystal is 39% with polished surfaces, and 71% with rough surfaces, and for a mechanically

  20. Study on APD real time compensation methods of laser Detection system

    Science.gov (United States)

    Ying, Feng; He, Zhang; Xiangjin, Zhang; Kun, Liu

    2011-02-01

    their operating principles. The constant false alarm rate compensation can't detect the pulse signal which comes randomly. Therefore real-time performance can't be realized. The noise compensation can meet the request of real-time performance. If it is used in the environment where background light is intense or changes acutely, there is a better effect. The temperature compensation can also achieve the real-time performance request. If it is used in the environment where temperature changes acutely, there is also a better effect. Aim at such problems, this paper presents that different APD real-time compensations should be adopt to adapt to different environments. The exiting temperature compensation adjusts output voltage by using variable resistance to regulate input voltage. Its structure is complex; the real-time performance is worse. In order to remedy these defects, a real-time temperature compensation which is based on switch on-off time of switching power supply is designed. Its feasibility and operating stability are confirmed by plate making and experiment. At last, the comparison experiments between the real-time noise compensation and the real-time temperature compensation is carried out in the environments where temperature is almost invariant and background light acutely changes from5lux to150lux . The result shows that the operating effect of the real-time noise compensation is better here, the noise minifies to a sixth of original noise. The comparison experiments between the real-time noise compensation and the real-time temperature compensation is carried out in darkroom where background light is 5lux and temperature almost rapidly changes from -20°C to 80°C. The result shows that the operating effect of the real-time temperature compensation is better here, the noise minifies to a seventh of original noise. Moreover, these methods can be applied to other type detection systems of weak photoelectric signal; they have high actual application value.

  1. [Selected performances in speech perception in children with APD].

    Science.gov (United States)

    Kiese-Himmel, C

    2009-08-01

    The ability to detect phonemes in spoken language (phonological processing) is equally important for first and secondary language acquisition (reading, spelling, orthography). Nevertheless, it is a subject of some controversy whether psychometric tests of auditory verbal stimuli (linguistic load) are to take in account in the diagnostics of (central) auditory processing disorders (C)APD. Data in phonological synthesis and in verbal auditory closure, obtained from a research database of children who were audiologically and psychologically diagnosed as with auditory processing deficits, were analyzed retrospectively. These data were collected by a clinical psychologist in the diagnostic setting, who administered the subtests Sound Blending and Auditory Closure out of the German version of the Illinois Test of Psycholinguistic Abilities. Three clinical groups: n=51 with monosymptomatic APD; n=33 with APD+developmental language impairment; n=15 with APD and developmental dyslexia and one control group (typically developing children without clinical developmental disorders). normal hearing status and nonverbal intelligence, monolingual German-speaking, no suspicion of attention deficit hyperactivity disorders and visual perception disorders and scoring > or = 2 SDs below the reference mean in at least 2 auditory symptoms. The controls showed the best performance in "Sound Blending" (T-score 49.2; SD 8.8), followed by children with monosymptomatic APD (T-score 48.0; SD 9.5) and children with co-morbid conditions (APD+developmental dyslexia: T-score 45.9; SD 6.0; APD+language impairment: T-score 44.4; SD 8.7). The differences between the groups did not reach statistical significance. Test scores in "Auditory Closure" were consistently poorer in the APD-groups (children with monosymptomatic APD: T-score 50.9; SD 8.8; children with APD+developmental dyslexia: T-score 49.6; SD 7.7; children with APD+developmental language impairment: T-score 47.1; SD 10.5) than for the

  2. The technology on noise reduction of the APD detection circuit

    Science.gov (United States)

    Wu, Xue-ying; Zheng, Yong-chao; Cui, Jian-yong

    2013-09-01

    The laser pulse detection is widely used in the field of laser range finders, laser communications, laser radar, laser Identification Friend or Foe, et al, for the laser pulse detection has the advantage of high accuracy, high sensitivity and strong anti-interference. The avalanche photodiodes (APD) has the advantage of high quantum efficiency, high response speed and huge gain. The APD is particularly suitable for weak signal detection. The technology that APD acts as the photodetector for weak signal reception and amplification is widely used in laser pulse detection. The APD will convert the laser signal to weak electrical signal. The weak signal is amplified, processed and exported by the circuit. In the circuit design, the optimal signal detection is one key point in photoelectric detection system. The issue discusses how to reduce the noise of the photoelectric signal detection circuit and how to improve the signal-to-noise ratio, related analysis and practice included. The essay analyzes the mathematical model of the signal-to-noise ratio for photoelectric conversion and the noise of the APD photoelectric detection system. By analysis the bandwidth of the detection system is determined, and the circuit devices are selected that match the APD. In the circuit design separated devices with low noise are combined with integrated operational amplifier for the purpose of noise reduction. The methods can effectively suppress the noise, and improve the detection sensitivity.

  3. Pixel detector readout chip

    CERN Multimedia

    1991-01-01

    Close-up of a pixel detector readout chip. The photograph shows an aera of 1 mm x 2 mm containing 12 separate readout channels. The entire chip contains 1000 readout channels (around 80 000 transistors) covering a sensitive area of 8 mm x 5 mm. The chip has been mounted on a silicon detector to detect high energy particles.

  4. HgCdTe APDs for time-resolved space applications

    Science.gov (United States)

    Rothman, J.; Lasfargues, G.; Delacourt, B.; Dumas, A.; Gibert, F.; Bardoux, A.; Boutillier, M.

    2017-12-01

    The use of HgCdTe avalanche photodiodes (APDs) for resolving the temporal variation of faint light level signals is analyzed. The analysis is based on the performance characteristics such as the gain, the response time, and dark currents in the APDs, measured as a function of operating temperature and Cd composition, and on recently developed detector demonstrator modules. The choice of Cd composition in the APDs is strongly dependent on the application needs in terms of electrical bandwidth and signal-to-noise ratio. A performance model has been developed and used to predict the performance of the future detector modules for different applications such as high bandwidth and/or deep space free space optical telecommunications and lidar, associated with sensitivities down to single photon level at low operating temperature and close to single-photon operation at bandwidth of 10 GHz at room temperature. The predictions are corroborated by the results obtained on detector modules that have been developed and used in lidar and deep space optical communications. In a first lidar prototype, integrating a 200 µm APD, we obtained a maximum sensitivity of 25 fW/√Hz at T = 190 K operating temperature. The detector has been used for differential absorption lidar estimations of the absorption due to presence of CO2 in the atmosphere. A random error of 3-10% was obtained for the estimation of the optical thickness at a distance of 100-3000 m, for a range resolution of 100 m and using and averaging time of 4 s. The pursuit of this development is pending on the space qualification of the technology. Results from first proton and irradiation tests are reported that shows on a close to constant performance during and after the irradiation and endurance tests.

  5. Testing limits to airflow perturbation device (APD measurements

    Directory of Open Access Journals (Sweden)

    Jamshidi Shaya

    2008-10-01

    Full Text Available Abstract Background The Airflow Perturbation Device (APD is a lightweight, portable device that can be used to measure total respiratory resistance as well as inhalation and exhalation resistances. There is a need to determine limits to the accuracy of APD measurements for different conditions likely to occur: leaks around the mouthpiece, use of an oronasal mask, and the addition of resistance in the respiratory system. Also, there is a need for resistance measurements in patients who are ventilated. Method Ten subjects between the ages of 18 and 35 were tested for each station in the experiment. The first station involved testing the effects of leaks of known sizes on APD measurements. The second station tested the use of an oronasal mask used in conjunction with the APD during nose and mouth breathing. The third station tested the effects of two different resistances added in series with the APD mouthpiece. The fourth station tested the usage of a flexible ventilator tube in conjunction with the APD. Results All leaks reduced APD resistance measurement values. Leaks represented by two 3.2 mm diameter tubes reduced measured resistance by about 10% (4.2 cmH2O·sec/L for control and 3.9 cm H2O·sec/L for the leak. This was not statistically significant. Larger leaks given by 4.8 and 6.4 mm tubes reduced measurements significantly (3.4 and 3.0 cm cmH2O·sec/L, respectively. Mouth resistance measured with a cardboard mouthpiece gave an APD measurement of 4.2 cm H2O·sec/L and mouth resistance measured with an oronasal mask was 4.5 cm H2O·sec/L; the two were not significantly different. Nose resistance measured with the oronasal mask was 7.6 cm H2O·sec/L. Adding airflow resistances of 1.12 and 2.10 cm H2O·sec/L to the breathing circuit between the mouth and APD yielded respiratory resistance values higher than the control by 0.7 and 2.0 cm H2O·sec/L. Although breathing through a 52 cm length of flexible ventilator tubing reduced the APD

  6. Evaluation of Light Collection System for Pion and Kaon Experiments in Hall C at Jefferson Lab

    Science.gov (United States)

    Roustom, Salim

    2017-09-01

    The neutral pion and the kaon are opportune to study the hadron structure through General Parton Distributions, which can be viewed as spatial densities at different momenta of the quarks inside the proton. To study hadron structure with pion or kaon experiments in Hall C at 12 GeV Jefferson Lab, one must analyze the final state neutral pions and kaons and their decay products. For the analysis of these particles, dedicated detectors based on the Cherenkov or scintillation mechanism are used, e.g. the HMS and SHMS aerogel detectors and the PbWO4-based Neutral Particle Spectrometer. A critical part of these detectors is the light collection system. Photomultiplier Tubes (PMTs) have many advantages, however, they are sensitive to magnetic fields and can get damaged by elevated helium levels in the atmosphere. An alternative to PMTs are Avalanche Photodiodes (APDs). APDs are sensitive to background noise, temperature, and radiation. It is thus important to evaluate the benefits of each light collection system and optimize operating conditions to ensure performance over a reasonably long time. I will present a performance study of PMTs exposed to elevated levels of helium and a comparison of APDs as alternatives, as well as new, compact readout methods. Supported in part by NSF Grants PHY-1714133, PHY-1530874, PHY-1306227 and PHY-1306418.

  7. A Hybrid Readout Solution for GaN-Based Detectors Using CMOS Technology

    Directory of Open Access Journals (Sweden)

    Preethi Padmanabhan

    2018-02-01

    Full Text Available Gallium nitride (GaN and its alloys are becoming preferred materials for ultraviolet (UV detectors due to their wide bandgap and tailorable out-of-band cutoff from 3.4 eV to 6.2 eV. GaN based avalanche photodiodes (APDs are particularly suitable for their high photon sensitivity and quantum efficiency in the UV region and for their inherent insensitivity to visible wavelengths. Challenges exist however for practical utilization. With growing interests in such photodetectors, hybrid readout solutions are becoming prevalent with CMOS technology being adopted for its maturity, scalability, and reliability. In this paper, we describe our approach to combine GaN APDs with a CMOS readout circuit, comprising of a linear array of 1 × 8 capacitive transimpedance amplifiers (CTIAs, implemented in a 0.35 µm high voltage CMOS technology. Further, we present a simple, yet sustainable circuit technique to allow operation of APDs under high reverse biases, up to ≈80 V with verified measurement results. The readout offers a conversion gain of 0.43 µV/e−, obtaining avalanche gains up to 103. Several parameters of the CTIA are discussed followed by a perspective on possible hybridization, exploiting the advantages of a 3D-stacked technology.

  8. A Hybrid Readout Solution for GaN-Based Detectors Using CMOS Technology †

    Science.gov (United States)

    Hancock, Bruce; Nikzad, Shouleh; Bell, L. Douglas; Kroep, Kees; Charbon, Edoardo

    2018-01-01

    Gallium nitride (GaN) and its alloys are becoming preferred materials for ultraviolet (UV) detectors due to their wide bandgap and tailorable out-of-band cutoff from 3.4 eV to 6.2 eV. GaN based avalanche photodiodes (APDs) are particularly suitable for their high photon sensitivity and quantum efficiency in the UV region and for their inherent insensitivity to visible wavelengths. Challenges exist however for practical utilization. With growing interests in such photodetectors, hybrid readout solutions are becoming prevalent with CMOS technology being adopted for its maturity, scalability, and reliability. In this paper, we describe our approach to combine GaN APDs with a CMOS readout circuit, comprising of a linear array of 1 × 8 capacitive transimpedance amplifiers (CTIAs), implemented in a 0.35 µm high voltage CMOS technology. Further, we present a simple, yet sustainable circuit technique to allow operation of APDs under high reverse biases, up to ≈80 V with verified measurement results. The readout offers a conversion gain of 0.43 µV/e−, obtaining avalanche gains up to 103. Several parameters of the CTIA are discussed followed by a perspective on possible hybridization, exploiting the advantages of a 3D-stacked technology. PMID:29401655

  9. Readout Architecture for Hybrid Pixel Readout Chips

    CERN Document Server

    AUTHOR|(SzGeCERN)694170; Westerlund, Tomi; Wyllie, Ken

    The original contribution of this thesis to knowledge are novel digital readout architectures for hybrid pixel readout chips. The thesis presents asynchronous bus-based architecture, a data-node based column architecture and a network-based pixel matrix architecture for data transportation. It is shown that the data-node architecture achieves readout efficiency 99 % with half the output rate as a bus-based system. The network-based solution avoids ``broken'' columns due to some manufacturing errors, and it distributes internal data traffic more evenly across the pixel matrix than column-based architectures. An improvement of $>$ 10 % to the efficiency is achieved with uniform and non-uniform hit occupancies. Architectural design has been done using transaction level modeling ($TLM$) and sequential high-level design techniques for reducing the design and simulation time. It has been possible to simulate tens of column and full chip architectures using the high-level techniques. A decrease of $>$ 10 in run-time...

  10. An analog signal processing ASIC for a small animal LSO-APD PET tomograph

    International Nuclear Information System (INIS)

    Spanoudaki, V.Ch.; McElroy, D.P.; Ziegler, S.I.

    2006-01-01

    MADPET-II is a small animal PET scanner currently under development that provides individual readout for each one of its 1152 LSO-APD electronic channels. In order to process such a large number of channels individually, the analog signal processing electronics are fully integrated into monolithic chips. Each chip contains four independent differential receivers, shaping amplifiers, peak hold detectors and non-delay line constant-fraction discriminators (CFDs). The CFDs use a high-pass CR circuit rather than the conventional delay line to generate a bipolar pulse. The performance of the chip has been tested for walk, jitter and pulse height linearity by studying the peak detector and the CFD signals, and has been optimized by adjusting the corresponding bias currents so as to maximize the signal-to-noise ratio and to minimize the walk of the CFD output (trigger). The response of the peak detector to different input signal amplitudes is linear (R 2 =0.99945+/-0.00002). The walk performance of the CFD can be adjusted by changing the offset of the CR high-pass filter output signal, and can be minimized to approximately 2ns over a 5:1 input amplitude dynamic range

  11. Detectors for proton counting. Si-APD and scintillation detectors

    International Nuclear Information System (INIS)

    Kishimoto, Shunji

    2008-01-01

    Increased intensity of synchrotron radiation requests users to prepare photon pulse detectors having higher counting rates. As detectors for photon counting, silicon-avalanche photodiode (Si-APD) and scintillation detectors were chosen for the fifth series of detectors. Principle of photon detection by pulse and need of amplification function of the detector were described. Structure and working principle, high counting rate measurement system, bunch of electrons vs. counting rate, application example of NMR time spectroscopy measurement and comments for users were described for the Si-APD detector. Structure of scintillator and photomultiplier tube, characteristics of scintillator and performance of detector were shown for the NaI detector. Future development of photon pulse detectors was discussed. (T. Tanaka)

  12. A prospective, randomized multicenter study comparing APD and CAPD treatment

    DEFF Research Database (Denmark)

    Bro, S; Bjorner, J B; Tofte-Jensen, P

    2000-01-01

    ) treatment with respect to quality of life and clinical outcomes in relation to therapy costs. DESIGN: A prospective, randomized multicenter study. SETTING: Three Danish CAPD units. PATIENTS: Thirty-four adequately dialyzed patients with high or high-average peritoneal transport characteristics were included....... With larger patient samples, it is possible, however, that a significant difference might have been achieved. The running costs for APD treatment were US $75 per day and for CAPD treatment US $61 per day. CONCLUSION: If APD treatment can help to keep selected patients vocationally or socially active, paying...... were assessed at baseline and after 6 months by the self-administered short-form SF-36 generic health survey questionnaire supplemented with disease- and treatment-specific questions. Therapy costs were compared by evaluating dialysis-related expenses. MAIN OUTCOME MEASURES: Quality-of-life parameters...

  13. The Philosophy and Feasibility of Dual Readout Calorimetry

    International Nuclear Information System (INIS)

    Hauptman, John

    2006-01-01

    I will discuss the general physical ideas behind dual-readout calorimetry, their implementation in DREAM (Dual REAdout Module) with exact separation of scintillation and Cerenkov light, implementation with mixed light in DREAM fibers, anticipated implementation in PbWO4 crystals with applications to the 4th Concept detector and to CMS, use in high energy gamma-ray and cosmic ray astrophysics with Cerenkov and N2 fluorescent light, and implementation in the 4th Concept detector for muon identification

  14. Characterization of irradiated APDs for picosecond time measurements

    Science.gov (United States)

    Centis Vignali, M.; Dalal, R.; Gallinaro, M.; Harrop, B.; Jain, G.; Lu, C.; McClish, M.; McDonald, K. T.; Moll, M.; Newcomer, F. M.; Ugobono, S. Otero; White, S.

    2018-01-01

    For their operation at the CERN High Luminosity Large Hadron Collider (HL-LHC), the ATLAS and CMS experiments are planning to implement dedicated systems to measure the time of arrival of minimum ionizing particles with an accuracy of about 30 ps. The timing detectors will be subjected to radiation levels corresponding up to a 1-MeV neutrons fluence (Φeq) of 1015 cm-2 for the goal integrated luminosity of HL-LHC of 3000 fb-1. In this paper, deep-diffused Avalanche Photo Diodes (APDs) produced by Radiation Monitoring Devices are examined as candidate timing detectors for HL-LHC applications. These APDs are operated at 1.8 kV, resulting in a gain of up to 500. The timing performance of the detectors is evaluated using a pulsed laser. The effects of radiation damage on current, signal amplitude, noise, and timing performance of the APDs are evaluated using detectors irradiated with neutrons up to Φeq = 1015 cm-2.

  15. An Ultraviolet Excess in the Superluminous Supernova Gaia16apd Reveals a Powerful Central Engine

    Energy Technology Data Exchange (ETDEWEB)

    Nicholl, M.; Berger, E.; Blanchard, P. K.; Milisavljevic, D.; Challis, P. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, Massachusetts 02138 (United States); Margutti, R. [Center for Interdisciplinary Exploration and Research in Astrophysics (CIERA) and Department of Physics and Astronomy, Northwestern University, Evanston, IL 60208 (United States); Metzger, B. D. [Columbia Astrophysics Laboratory, Columbia University, New York, NY 10027 (United States); Chornock, R., E-mail: matt.nicholl@cfa.harvard.edu [Astrophysical Institute, Department of Physics and Astronomy, 251B Clippinger Lab, Ohio University, Athens, OH 45701 (United States)

    2017-01-20

    Since the discovery of superluminous supernovae (SLSNe) in the last decade, it has been known that these events exhibit bluer spectral energy distributions than other supernova subtypes, with significant output in the ultraviolet. However, the event Gaia16apd seems to outshine even the other SLSNe at rest-frame wavelengths below ∼3000 Å. Yan et al. have recently presented HST UV spectra and attributed the UV flux to low iron-group abundance in the outer ejecta, and hence reduced line blanketing. Here, we present UV and optical light curves over a longer baseline in time, revealing a rapid decline at UV wavelengths despite a typical optical evolution. Combining the published UV spectra with our own optical data, we demonstrate that Gaia16apd has a much hotter continuum than virtually any SLSN at maximum light, but it cools rapidly thereafter and is indistinguishable from the others by ∼10–15 days after peak. Comparing the equivalent widths of UV absorption lines with those of other events, we show that the excess UV continuum is a result of a more powerful central power source, rather than a lack of UV absorption relative to other SLSNe or an additional component from interaction with the surrounding medium. These findings strongly support the central-engine hypothesis for hydrogen-poor SLSNe. An explosion ejecting M {sub ej} = 4.8(0.2/ κ ) M {sub ⊙}, where κ is the opacity in cm{sup 2} g{sup −1}, and forming a magnetar with spin period P = 2 ms, and B = 2 × 10{sup 14} G (lower than other SLSNe with comparable rise times) can consistently explain the light curve evolution and high temperature at peak. The host metallicity, Z = 0.18 Z {sub ⊙}, is comparable to other SLSNe.

  16. Flight Model Development of Tokyo Tech Nano-Satellite Cute-1.7 + APD II

    Science.gov (United States)

    Ashida, Hiroki; Nishida, Junichi; Omagari, Kuniyuki; Fujiwara, Ken; Konda, Yasumi; Yamanaka, Tomio; Tanaka, Yohei; Maeno, Masaki; Fujihashi, Kota; Inagawa, Shinichi; Miura, Yoshiyuki; Matunaga, Saburo

    The Laboratory for Space Systems at the Tokyo Institute of Technology has developed the nano-satellite Cute-1.7+APD. The satellite was launched by JAXA M-V-8 rocket on February 22, 2006 and operated for about a month. A successor to the Cute-1.7+APD was developed and is named Cute-1.7+APD II. This new satellite is based on its predecessor but has some modifications. In this paper an overview of the Cute-1.7 series and flight model development of Cute-1.7+APD II are introduced.

  17. Readout electronic for multichannel detectors

    CERN Document Server

    Kulibaba, V I; Naumov, S V

    2001-01-01

    Readout electronics based on the 128-channel chip 'Viking' (IDE AS inc., Norway) is considered. The chip 'Viking' integrates 128 low noise charge-sensitive preamplifiers with tunable CR-(RC) sup 2 shapers,analog memory and multiplexed readout to one output. All modules of readout electronics were designed and produced in KIPT taking into account the published recommendations of IDE AS inc.

  18. Evaluation of a HgCdTe e-APD based detector for 2  μm CO2DIAL application.

    Science.gov (United States)

    Dumas, Arnaud; Rothman, Johan; Gibert, Fabien; Édouart, Dimitri; Lasfargues, Gilles; Cénac, Claire; Mounier, Florian Le; Pellegrino, Jessica; Zanatta, Jean-Paul; Bardoux, Alain; Tinto, Francesc; Flamant, Pierre

    2017-09-20

    Benefiting from close to ideal amplification properties (high gain, low dark current, and low excess noise factor), HgCdTe electron initiated avalanche photodiode (e-APD) technology exhibits state of the art sensitivity, thus being especially relevant for applications relying on low light level detection, such as LIDAR (Light Detection And Ranging). In addition, the tunable gap of the Hg 1-x Cd x Te alloy enables coverage of the short wavelength infrared (SWIR) and especially the 2 μm spectral range. For these two reasons, a HgCdTe e-APD based detector is a promising candidate for future differential absorption LIDAR missions targeting greenhouse gas absorption bands in SWIR. In this study, we report on the design and evaluation of such a HgCdTe e-APD based detector. The first part focuses on detector architecture and performance. Key figures of merit are: 2.8 μm cutoff wavelength, 200 μm diameter almost circular sensitive area, 185 K operating temperature (thermo-electric cooling), 22 APD gain (at 12 V reverse bias), 360  kΩ transimpedance gain, and 60  fWHz -0.5 noise equivalent power (at 12 V reverse bias). The second part presents an analysis of atmospheric LIDAR signals obtained by mounting the HgCdTe e-APD based detector on the 2 μm differential absorption LIDAR developed at the Laboratoire de Météorologie Dynamique and dedicated to CO 2 monitoring. Discussion emphasizes random and systematic errors in LIDAR measurements regarding breadboard detector characterization. In particular, we investigate the influence of parasitic tails in detector impulse response on short range DIAL measurements.

  19. Optical Communications With A Geiger Mode APD Array

    Science.gov (United States)

    2016-02-09

    this state trigger a chain reaction, resulting in a large sudden spike in voltage which can be read out as a digital pulse. This pulse can be timed to...detector array is backed by a custom readout integrated circuit , or ROIC, which takes care of resetting each of the detectors after they are triggered...during readout to build up a complete time- and position-stamped map of all pixel fires. 2.1 ROIC Clocking The major unit of time for the ROIC is the

  20. Sensor readout detector circuit

    Science.gov (United States)

    Chu, D.D.; Thelen, D.C. Jr.

    1998-08-11

    A sensor readout detector circuit is disclosed that is capable of detecting sensor signals down to a few nanoamperes or less in a high (microampere) background noise level. The circuit operates at a very low standby power level and is triggerable by a sensor event signal that is above a predetermined threshold level. A plurality of sensor readout detector circuits can be formed on a substrate as an integrated circuit (IC). These circuits can operate to process data from an array of sensors in parallel, with only data from active sensors being processed for digitization and analysis. This allows the IC to operate at a low power level with a high data throughput for the active sensors. The circuit may be used with many different types of sensors, including photodetectors, capacitance sensors, chemically-sensitive sensors or combinations thereof to provide a capability for recording transient events or for recording data for a predetermined period of time following an event trigger. The sensor readout detector circuit has applications for portable or satellite-based sensor systems. 6 figs.

  1. A prospective, randomized multicenter study comparing APD and CAPD treatment

    DEFF Research Database (Denmark)

    Bro, S; Bjorner, J B; Tofte-Jensen, P

    2000-01-01

    OBJECTIVE: The goals for maintenance dialysis treatment are to improve patient survival, reduce patient morbidity, and improve patient quality of life. This is the first randomized prospective study comparing automated peritoneal dialysis (APD) and continuous ambulatory peritoneal dialysis (CAPD......) treatment with respect to quality of life and clinical outcomes in relation to therapy costs. DESIGN: A prospective, randomized multicenter study. SETTING: Three Danish CAPD units. PATIENTS: Thirty-four adequately dialyzed patients with high or high-average peritoneal transport characteristics were included...... were assessed at baseline and after 6 months by the self-administered short-form SF-36 generic health survey questionnaire supplemented with disease- and treatment-specific questions. Therapy costs were compared by evaluating dialysis-related expenses. MAIN OUTCOME MEASURES: Quality-of-life parameters...

  2. SiC 10um-Pitch UV Imaging Array and APD with Active Pixel Readout, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — CoolCAD Electronics, LLC, proposes to design and fabricate a SiC UV detector array with a 10μm pixel pitch, sensitive to EUV, VUV and Deep UV. SiC is a visible-blind...

  3. Automatic readout micrometer

    Science.gov (United States)

    Lauritzen, T.

    A measuring system is described for surveying and very accurately positioning objects with respect to a reference line. A principle use of this surveying system is for accurately aligning the electromagnets which direct a particle beam emitted from a particle accelerator. Prior art surveying systems require highly skilled surveyors. Prior art systems include, for example, optical surveying systems which are susceptible to operator reading errors, and celestial navigation-type surveying systems, with their inherent complexities. The present invention provides an automatic readout micrometer which can very accurately measure distances. The invention has a simplicity of operation which practically eliminates the possibilities of operator optical reading error, owning to the elimination of traditional optical alignments for making measurements. The invention has an extendable arm which carries a laser surveying target. The extendable arm can be continuously positioned over its entire length of travel by either a coarse of fine adjustment without having the fine adjustment outrun the coarse adjustment until a reference laser beam is centered on the target as indicated by a digital readout. The length of the micrometer can then be accurately and automatically read by a computer and compared with a standardized set of alignment measurements. Due to its construction, the micrometer eliminates any errors due to temperature changes when the system is operated within a standard operating temperature range.

  4. Advances in UV sensitive visible blind GaN-based APDs

    Science.gov (United States)

    Ulmer, Melville P.; McClintock, Ryan; Razeghi, Manijeh

    2011-01-01

    In this paper, we describe our current state-of-the-art process of making visible-blind APDs based on GaN. We have grown our material on both conventional sapphire and low dislocation density free-standing c- and m-plane GaN substrates. Leakage current, gain, and single photon detection efficiency (SPDE) of these APDs are compared. The spectral response and Geiger-mode photon counting performance of UV APDs are studied under low photon fluxes. Single photon detection capabilities with over 30% are demonstrated. We show how with pulse height discrimination the Geiger-mode operation conditions can be optimized for enhanced SPDE versus dark counts.

  5. Readout of silicon strip detectors

    CERN Document Server

    Dabrowski, W

    2003-01-01

    Various architectural and technological options of readout electronics for silicon strip detectors in vertex and tracking applications are discussed briefly. The ABCD3T ASIC for the readout of silicon strip detectors in the ATLAS semiconductor tracker is presented. The architecture of the chip, some design issues and radiation effects are discussed.

  6. Compensated digital readout family

    Science.gov (United States)

    Ludwig, David E.; Skow, Michael

    1991-11-01

    ISC has completed test on an IC which has 32 channels of amplifiers, low pass anti-aliasing filters, 13-bit analog-to-digital (A/D) converters with non-uniformity correction per channel and a digital multiplexer. The single slope class of A/D conversion is described, as are the unique variations required for incorporation of this technique for use with on-focal plane detector readout electronics. This paper describes the architecture used to implement the digital on-focal plane signal processing functions. Results from measured data on a test IC are presented for a circuit containing these functions operating at a sensor frame rate of 1000 hertz.

  7. Design of Tokyo Tech nano-satellite Cute-1.7+APD II and its operation

    Science.gov (United States)

    Ashida, Hiroki; Fujihashi, Kota; Inagawa, Shinichi; Miura, Yoshiyuki; Omagari, Kuniyuki; Miyashita, Naoki; Matunaga, Saburo; Toizumi, Takahiro; Kataoka, Jun; Kawai, Nobuyuki

    2010-05-01

    Cute-1.7+APD II is the 3rd satellite developed by the Laboratory for Space Systems at the Tokyo Institute of Technology. Cute-1.7+APD II is the current successor to Cute-1.7+APD. This new satellite is based on its predecessor but has some modifications to increase its reliability and robustness against radiation effects, electrical power shortage and so on. The satellite was launched by an ISRO PSLV-C9 rocket on April 28, 2008 and has operated for more than 9 months. Throughout its operation, many missions such as attitude determination and control experiments, scientific observations, photographing and communication experiments have been conducted. In this paper an overview of the Cute-1.7 series and configurations, modifications and operation results of Cute-1.7+APD II are introduced.

  8. Ultra-low Noise, High Bandwidth, 1550nm HgCdTe APD, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Voxtel Inc. proposes to optimize the design of a large area, 1.55?m sensitive HgCdTe avalanche photodiode (APD) that achieves high gain with nearly no excess noise....

  9. A four-layer attenuation compensated PET detector based on APD arrays without discrete crystal elements

    International Nuclear Information System (INIS)

    McCallum, Stephen; Clowes, Peter; Welch, Andrew

    2005-01-01

    Scintillation detectors developed for PET traditionally use relatively thick crystals coupled to photomultiplier tubes. To ensure good efficiency the crystals typically measure between 10 and 30 mm thick. Detectors also require good spatial resolution so the scintillator is normally made up of a densely packed array of long thin crystals. In this paper, we present a novel design in which the detection crystal is divided into a number of layers along its length with an avalanche photo diode (APD) inserted between each layer. With thin layers of crystal, it is possible to use a continuous rather than a pixelated crystal. The potential advantages of this design over a conventional PMT-based detector are: (i) improved light collection efficiency, (ii) reduced dependency on dense crystal to achieve good stopping power, (iii) ease of crystal manufacture, (iv) reduced detector dead-time and increased count rate, and (v) inherent depth of interaction. We have built a four-layer detector to test this design concept using Hamamatsu S8550 APD arrays and LYSO crystals. We used the centre 16 pixels of each of the arrays to give an active area of 9.5 mm x 9.5 mm. Four crystals 9.5 mm x 9.5 mm were used with thickness increasing from 2 mm at the front to 2.5 mm, 3.1 mm and 4.3 mm at the back, to ensure a similar count rate in each layer. Calculations for the thickness of the four layers were initially made using the linear attenuation coefficient for photons at 511 keV of LYSO. Experimental results and further simulation demonstrated that a correction to the thickness of each layer should be considered to take into account the scattered events. The energy resolution for each of the layers at 511 keV was around 15%, coincidence-timing resolution was 2.2 ns and the special resolution was less than 2 mm using a statistical-based positioning algorithm

  10. XAMPS Detectors Readout ASIC for LCLS

    Energy Technology Data Exchange (ETDEWEB)

    Dragone, A; /SLAC; Pratte, J.F.; Rehak, P.; /Brookhaven; Carini, G.A.; /BNL, NSLS; Herbst, R.; /SLAC; O' Connor, P.; /Brookhaven; Siddons, D.P.; /BNL, NSLS

    2008-12-18

    An ASIC for the readout of signals from X-ray Active Matrix Pixel Sensor (XAMPS) detectors to be used at the Linac Coherent Light Source (LCLS) is presented. The X-ray Pump Probe (XPP) instrument, for which the ASIC has been designed, requires a large input dynamic range on the order of 104 photons at 8 keV with a resolution of half a photon FWHM. Due to the size of the pixel and the length of the readout line, large input capacitance is expected, leading to stringent requirement on the noise optimization. Furthermore, the large number of pixels needed for a good position resolution and the fixed LCLS beam period impose limitations on the time available for the single pixel readout. Considering the periodic nature of the LCLS beam, the ASIC developed for this application is a time-variant system providing low-noise charge integration, filtering and correlated double sampling. In order to cope with the large input dynamic range a charge pump scheme implementing a zero-balance measurement method has been introduced. It provides an on chip 3-bit coarse digital conversion of the integrated charge. The residual charge is sampled using correlated double sampling into analog memory and measured with the required resolution. The first 64 channel prototype of the ASIC has been fabricated in TSMC CMOS 0.25 {micro}m technology. In this paper, the ASIC architecture and performances are presented.

  11. Timing and Readout Contorl in the LHCb Upgraded Readout System

    CERN Document Server

    Alessio, Federico

    2016-01-01

    In 2019, the LHCb experiment at CERN will undergo a major upgrade where its detectors electronics and entire readout system will be changed to read-out events at the full LHC rate of 40 MHz. In this paper, the new timing, trigger and readout control system for such upgrade is reviewed. Particular attention is given to the distribution of the clock, timing and synchronization information across the entire readout system using generic FTTH technology like Passive Optical Networks. Moreover the system will be responsible to generically control the Front-End electronics by transmitting configuration data and receiving monitoring data, offloading the software control system from the heavy task of manipulating complex protocols of thousands of Front-End electronics devices. The way in which this was implemented is here reviewed with a description of results from first implementations of the system, including usages in test-benches, implementation of techniques for timing distribution and latency control."

  12. Thermopile Area Array Readout Project

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA/JPL thermopile detector linear arrays, wire bonded to Black Forest Engineering (BFE) CMOS readout integrated circuits (ROICs), have been utilized in NASA...

  13. Extruded plastic counters with WLS fiber readout

    CERN Document Server

    Kudenko, Yu G; Mayatski, V A; Mineev, O V; Yershov, N V

    2001-01-01

    Extruded plastic scintillation counters with WLS fiber readout are described. For a 7 mm thick counter with 4.3 m long double-clad fibers spaced at 7 mm a light yield of 18.7 photoelectrons/MeV and a time resolution of 0.71 ns (sigma) were obtained. A prototype photon veto module consisting of 10 layers of 7 mm thick grooved plastic slabs interleaved with 1 mm lead sheets was also tested, which yielded 122 photoelectrons per minimum ionizing particle and time resolution of 360 ps.

  14. A review of lyoluminescence dosimetry and a new readout method using liquid scintillation techniques

    International Nuclear Information System (INIS)

    Ziemer, P.L.; Hanig, R.; Fayerman, L.K.

    1978-01-01

    Lyoluminescence dosimetry is useful as a personnel monitor and also as a neutron dosimeter. A review of lyoluminescence is given including readout systems, the machanisms of light emission, radiometric characteristics of lyoluminescence dosimeters, factor affecting response and liquid scintillation lyoluminscence readout

  15. Epstein–Barr Virus Susceptibility in Activated PI3Kδ Syndrome (APDS Immunodeficiency

    Directory of Open Access Journals (Sweden)

    Jean-Marie Carpier

    2018-01-01

    Full Text Available Activated PI3Kδ Syndrome (APDS is an inherited immune disorder caused by heterozygous, gain-of-function mutations in the genes encoding the phosphoinositide 3-kinase delta (PI3Kδ subunits p110δ or p85δ. This recently described primary immunodeficiency disease (PID is characterized by recurrent sinopulmonary infections, lymphoproliferation, and susceptibility to herpesviruses, with Epstein–Barr virus (EBV infection being most notable. A broad range of PIDs having disparate, molecularly defined genetic etiology can cause susceptibility to EBV, lymphoproliferative disease, and lymphoma. Historically, PID patients with loss-of-function mutations causing defective cell-mediated cytotoxicity or antigen receptor signaling were found to be highly susceptible to pathological EBV infection. By contrast, the gain of function in PI3K signaling observed in APDS patients paradoxically renders these patients susceptible to EBV, though the underlying mechanisms are incompletely understood. At a cellular level, APDS patients exhibit deranged B lymphocyte development and defects in class switch recombination, which generally lead to defective immunoglobulin production. Moreover, APDS patients also demonstrate an abnormal skewing of T cells toward terminal effectors with short telomeres and senescence markers. Here, we review APDS with a particular focus on how the altered lymphocyte biology in these patients may confer EBV susceptibility.

  16. Development of a 32-channel ASIC for an X-ray APD detector onboard the ISS

    Science.gov (United States)

    Arimoto, Makoto; Harita, Shohei; Sugita, Satoshi; Yatsu, Yoichi; Kawai, Nobuyuki; Ikeda, Hirokazu; Tomida, Hiroshi; Isobe, Naoki; Ueno, Shiro; Mihara, Tatehiro; Serino, Motoko; Kohmura, Takayoshi; Sakamoto, Takanori; Yoshida, Atsumasa; Tsunemi, Hiroshi; Hatori, Satoshi; Kume, Kyo; Hasegawa, Takashi

    2018-02-01

    We report on the design and performance of a mixed-signal application specific integrated circuit (ASIC) dedicated to avalanche photodiodes (APDs) in order to detect hard X-ray emissions in a wide energy band onboard the International Space Station. To realize wide-band detection from 20 keV to 1 MeV, we use Ce:GAGG scintillators, each coupled to an APD, with low-noise front-end electronics capable of achieving a minimum energy detection threshold of 20 keV. The developed ASIC has the ability to read out 32-channel APD signals using 0.35 μm CMOS technology, and an analog amplifier at the input stage is designed to suppress the capacitive noise primarily arising from the large detector capacitance of the APDs. The ASIC achieves a performance of 2099 e- + 1.5 e-/pF at root mean square (RMS) with a wide 300 fC dynamic range. Coupling a reverse-type APD with a Ce:GAGG scintillator, we obtain an energy resolution of 6.7% (FWHM) at 662 keV and a minimum detectable energy of 20 keV at room temperature (20 °C). Furthermore, we examine the radiation tolerance for space applications by using a 90 MeV proton beam, confirming that the ASIC is free of single-event effects and can operate properly without serious degradation in analog and digital processing.

  17. Characterization and performance of monolithic detector blocks with a dedicated ASIC front-end readout for PET imaging of the human brain

    International Nuclear Information System (INIS)

    Rato Mendes, Pedro; Sarasola Martin, Iciar; Canadas, Mario; Garcia de Acilu, Paz; Cuypers, Robin; Perez, Jose Manuel; Willmott, Carlos

    2011-01-01

    We are developing a human brain PET scanner prototype compatible with MRI based on monolithic scintillator crystals, APD matrices and a dedicated ASIC front-end readout. In this work we report on the performance of individual detector modules and on the operation of such modules in PET coincidence. Results will be presented on the individual characterization of detector blocks and its ASIC front-end readout, with measured energy resolutions of 13% full-width half-maximum (FWHM) at 511 keV and spatial resolutions of the order of 2 mm FWHM. First results on PET coincidence performance indicate spatial resolutions as good as 2.1 mm FWHM for SSRB/FBP reconstruction of tomographic data obtained using a simple PET demonstrator based on a pair of monolithic detector blocks with ASIC readout.

  18. Dual-Readout Calorimetry with Lead Tungstate Crystals

    OpenAIRE

    Akchurin, N.

    2007-01-01

    Results are presented of beam tests in which a small electromagnetic calorimeter consisting of lead tungstate crystals was exposed to 50 GeV electrons and pions. This calorimeter was backed up by the DREAM Dual-Readout calorimeter, which measures the scintillation and \\v{C}erenkov light produced in the shower development, using two different media. The signals from the crystal calorimeter were analyzed in great detail in an attempt to determine the contributions from these two types of light ...

  19. DAQ architecture and read-out protocole

    CERN Document Server

    Harris, F; Jost, B; Mato, P; Mato, Pere

    1998-01-01

    The proposed LHCb readout architecture is overviewed, followed by discussion and comparison of two candidate readout protocols, namely the 'Full Readout' and'Phased Readout' protocols.The philosophy of the Full Readout protocol is to send all of the event data to a processor before commencing the high level trigger algorithms.This results in simplicity in the protocol at the cost of the bandwidth requirement for the readout network. This is our preferred approach if the network costs are not prohibitive. Using the Phased Readout protocol the event data is sent in portions according to the demands of the trigger algorithms. This results in a more complex protocol, but in a reduction on the readout network bandwidth requirement.The effect of transmission errors on the behaviour of the system, and the implementation of system partitioning, are also discussed.1

  20. GPC-enhanced read-out of holograms

    DEFF Research Database (Denmark)

    Villangca, Mark Jayson; Bañas, Andrew Rafael; Palima, Darwin

    2015-01-01

    The Generalized Phase Contrast (GPC) method has been demonstrated to reshape light efficiently to match the input beam profile requirement of different illumination targets. A spatially coherent beam can be GPC-shaped into a variety of static and dynamic profiles to match e.g. fixed commercially...... available modulation systems or for more irregular and dynamic shapes such as found in advanced optogenetic light-excitations of neurons. In this work, we integrate a static GPC light shaper to illuminate a phase-only spatial light modulator encoding dynamic phase holograms. The GPC-enhanced phase...... truncation. The phase flatness of the GPC-enhanced readout beam has also been investigated....

  1. Single-photon-sensitive linear-mode APD ladar receiver developments

    Science.gov (United States)

    Williams, George M.; Compton, Madison A.; Huntington, Andrew S.

    2008-04-01

    New measurements are presented for multi-stage InGaAs avalanche photodiodes (APDs) which have the potential to perform GHz-rate single photon counting in linear mode. No increase in dark current was measured for an 11-device sample of 5-stage APDs following 717 hours of accelerated aging under bias at 50°C, during an initial lifetime study. Impulse response times of 0.45 ns, 0.9 ns, and 1.1 ns were measured directly for 6-, 8-, and 10-stage APDs, respectively, operated at a nominal gain of M=10. To assess the suitability of the technology for a NASA optical communications application, separate samples of 5-stage APDs were irradiated by 1- and 2-MeV protons at the University of Washington's Center for Experimental Nuclear Physics and Astrophysics (UW CENPA) and by 63.5-MeV protons at the University of California Davis, Crocker Nuclear Laboratory (UCD CNL). Good agreement between calculated non-ionizing energy loss (NIEL) and observed damage was found for the low-energy protons at fluences of 10 10 and 10 11 cm -2. A NIEL calculation successfully predicted the damage observed following a 5×10 10 cm -2 dose of 63.5-MeV protons by extrapolating from 2 MeV data, which suggests that displacement damage is the dominant mechanism.

  2. High counting rates of x-ray photon detection using APD detectors on synchrotron machines

    Energy Technology Data Exchange (ETDEWEB)

    Kakuno, E. M.; Giacomolli, B. A.; Scorzato, C. R. [Universidade Federal do Pampa - UNIPAMPA-Bage, 96413-170 (Brazil); Laboratorio Nacional de Luz Sincrotron - LNLS, 13086-100 (Brazil)

    2012-05-17

    In this work we show the results of 10 x 10 mm{sup 2} Si-APD detector's test with guard ring detecting x-rays. The result of mapping surface is also exhibited. We show and discuss the difficulty of single photon detection in high counting rate experiments in synchrotrons machines.

  3. Importance Sampling Simulation of Free-Space Optical Apd Pulse Position Modulation Receivers

    Science.gov (United States)

    Baker, Kenneth Robert

    Free-space optical communication technology has many advantages over RF/microwave in satellite and other spacecraft applications where reductions in size, weight and prime power requirements are combined with increased data transfer capability over long distances. Ultimately, the design and implementation of free-space optical communication systems is dependent on suitable analysis of the link. The analysis of these systems is difficult due to the complicated time-varying propagation of optical energy over the free -space channel. This difficulty is combined with a shortage of suitable analytical expressions for adequately determining the performance of free-space optical receivers. As the link must be modeled and analyzed, simulation of the free -space optical communication link can initiate the process of exploring the application of lightwave technology to the free-space channel. A prohibitive amount of time is required to simulate receiver bit error rate (BER) performance at the low error rates of interest. This dissertation presents the results achieved in reducing the amount of time required to simulate, to a given accuracy, the bit error rate performance of an APD based free-space optical receiver. An improved technique for the importance sampling simulation of direct detection APD receivers has been developed. Two methods for efficiently simulating and biasing the probability distribution function of the APD process are presented and discussed. This is the first use the Webb, McIntyre, Conradi statistics in importance sampling simulation of an APD. The general procedure for applying importance sampling to the optical communication system simulation problem is presented in detail. The technique of importance sampling has been extended to include the simulation of maximum likelihood optical M-ary PPM receivers, an optical receiver relevant to free-space applications. The use of importance sampling is shown to reduce the time required to simulate M-PPM APD

  4. Digital column readout architectures for hybrid pixel detector readout chips

    International Nuclear Information System (INIS)

    Poikela, T; Plosila, J; Westerlund, T; Buytaert, J; Campbell, M; Gaspari, M De; Llopart, X; Wyllie, K; Gromov, V; Kluit, R; Beuzekom, M van; Zappon, F; Zivkovic, V; Brezina, C; Desch, K; Fu, Y; Kruth, A

    2014-01-01

    In this paper, two digital column architectures suitable for sparse readout of data from a pixel matrix in trigger-less applications are presented. Each architecture reads out a pixel matrix of 256 x 256 pixels with a pixel pitch of 55 μm. The first architecture has been implemented in the Timepix3 chip, and this is presented together with initial measurements. Simulation results and measured data are compared. The second architecture has been designed for Velopix, a readout chip planned for the LHCb VELO upgrade. Unlike Timepix3, this has to be tolerant to radiation-induced single-event effects. Results from post-layout simulations are shown with the circuit architectures

  5. Transputer-based readout controller

    International Nuclear Information System (INIS)

    Belusevic, R.; Nixon, G.

    1989-01-01

    A bus-oriented readout controller is described that uses a transputer both as a direct memory access (DMA) device and a crate processor. It achieves data transfer rates of up to 13 Mbytes/s, yet is very simple in design. Data transfer is reduced to moving arrays within memory, which eliminates the need for bus arbitration and interfacing logic. A trivial extension of the basic design results in a twofold increase in the maximum data transfer speed, to 27 Mbytes/s. A second transputer, added to the crate controller for extra flexibility and processing power, enables it to form part of a second level data acquisition system, with a total of 8 links (maximum link speed 20 Mbits/s) available for intercrate communications. This design was developed for the readout system of the ZEUS Central Tracking Detector. (orig.)

  6. Transputer-based readout controller

    Energy Technology Data Exchange (ETDEWEB)

    Belusevic, R.; Nixon, G.

    1989-05-01

    A bus-oriented readout controller is described that uses a transputer both as a direct memory access (DMA) device and a crate processor. It achieves data transfer rates of up to 13 Mbytes/s, yet is very simple in design. Data transfer is reduced to moving arrays within memory, which eliminates the need for bus arbitration and interfacing logic. A trivial extension of the basic design results in a twofold increase in the maximum data transfer speed, to 27 Mbytes/s. A second transputer, added to the crate controller for extra flexibility and processing power, enables it to form part of a second level data acquisition system, with a total of 8 links (maximum link speed 20 Mbits/s) available for intercrate communications. This design was developed for the readout system of the ZEUS Central Tracking Detector.

  7. CCD readout of GEM-based neutron detectors

    CERN Document Server

    Fraga, F A F; Fetal, S T G; Fraga, M; Guérard, B; Manzini, G; Margato, L M S; Oed, A; Policarpo, Armando; Vuure, T V

    2002-01-01

    We report on the optical readout of the gas electron multiplier (GEM) operated with a gaseous mixture suitable for the detection of thermal neutrons: sup 3 He-CF sub 4. A CCD system operating in the 400-1000 nm band was used to collect the light. Spectroscopic data on the visible and NIR scintillation of He-CF sub 4 are presented. Images of the tracks of the proton and triton recorded with a triple GEM detector are also shown.

  8. Radiological manifestations of biphosphonate treatment with APD in a child suffering from osteogenesis imperfecta

    Energy Technology Data Exchange (ETDEWEB)

    Devogelaer, J.P.; Deuxchaisnes, C.N. de; Malghem, J.; Maldague, B.

    1987-07-01

    A 12-year-old female suffering fromosteogenesis imperfecta (OI) was treated with 3-amino-1-hydroxypropylidene-1,1-bisphosphonate (APD) orally, 250 mg daily, for periods of 2 months, alternating with periods of 2 months of abstinence. Total duration of therapy was 1 year. Radiological and clinical improvement was striking. Furthermore, X-rays of the bones showed large, parallel radio-opaque striae, corresponding exactly to the periods of therapy. These were present in all metaphyses.

  9. Performance Analysis of OCDMA Based on AND Detection in FTTH Access Network Using PIN & APD Photodiodes

    Science.gov (United States)

    Aldouri, Muthana; Aljunid, S. A.; Ahmad, R. Badlishah; Fadhil, Hilal A.

    2011-06-01

    In order to comprise between PIN photo detector and avalanche photodiodes in a system used double weight (DW) code to be a performance of the optical spectrum CDMA in FTTH network with point-to-multi-point (P2MP) application. The performance of PIN against APD is compared through simulation by using opt system software version 7. In this paper we used two networks designed as follows one used PIN photo detector and the second using APD photo diode, both two system using with and without erbium doped fiber amplifier (EDFA). It is found that APD photo diode in this system is better than PIN photo detector for all simulation results. The conversion used a Mach-Zehnder interferometer (MZI) wavelength converter. Also we are study, the proposing a detection scheme known as AND subtraction detection technique implemented with fiber Bragg Grating (FBG) act as encoder and decoder. This FBG is used to encode and decode the spectral amplitude coding namely double weight (DW) code in Optical Code Division Multiple Access (OCDMA). The performances are characterized through bit error rate (BER) and bit rate (BR) also the received power at various bit rate.

  10. Quantitative thermal imaging using single-pixel Si APD and MEMS mirror.

    Science.gov (United States)

    Hobbs, Matthew J; Grainger, Matthew P; Zhu, Chengxi; Tan, Chee Hing; Willmott, Jonathan R

    2018-02-05

    Accurate quantitative temperature measurements are difficult to achieve using focal-plane array sensors. This is due to reflections inside the instrument and the difficulty of calibrating a matrix of pixels as identical radiation thermometers. Size-of-source effect (SSE), which is the dependence of an infrared temperature measurement on the area surrounding the target area, is a major contributor to this problem and cannot be reduced using glare stops. Measurements are affected by power received from outside the field-of-view (FOV), leading to increased measurement uncertainty. In this work, we present a micromechanical systems (MEMS) mirror based scanning thermal imaging camera with reduced measurement uncertainty compared to focal-plane array based systems. We demonstrate our flexible imaging approach using a Si avalanche photodiode (APD), which utilises high internal gain to enable the measurement of lower target temperatures with an effective wavelength of 1 µm and compare results with a Si photodiode. We compare measurements from our APD thermal imaging instrument against a commercial bolometer based focal-plane array camera. Our scanning approach results in a reduction in SSE related temperature error by 66 °C for the measurement of a spatially uniform 800 °C target when the target aperture diameter is increased from 10 to 20 mm. We also find that our APD instrument is capable of measuring target temperatures below 700 °C, over these near infrared wavelengths, with D* related measurement uncertainty of ± 0.5 °C.

  11. Synthesis of disodium-3-amino-1-hydroxypropane-1, 1-diphosphonate-1-/sup 14/C. (APD. 2Na)

    Energy Technology Data Exchange (ETDEWEB)

    Magnien, E.; Shaikh, M.; Suh, J.T.; Jones, H. (Revlon Health Care Group, Tuckahoe, New York (USA))

    1982-10-01

    Disodium-3-amino-1-hydroxy-1, 1-diphosphonate-1-/sup 14/C (APD 2Na), a powerful calcium binding agent and potential drug for the treatment of Paget's Disease was synthesized. The reaction was carried out by reacting ..beta..-alanine (1-/sup 14/C) with phosphorus acid and phosphorus trichloride in chlorobenzene. Treatment of the resultant APD with two equivalents of sodium hydroxide gave the title compound.

  12. Communication, listening, cognitive and speech perception skills in children with auditory processing disorder (APD) or Specific Language Impairment (SLI).

    Science.gov (United States)

    Ferguson, Melanie A; Hall, Rebecca L; Riley, Alison; Moore, David R

    2011-02-01

    Parental reports of communication, listening, and behavior in children receiving a clinical diagnosis of specific language impairment (SLI) or auditory processing disorder (APD) were compared with direct tests of intelligence, memory, language, phonology, literacy, and speech intelligibility. The primary aim was to identify whether there were differences between these characteristics in children with SLI or APD. Normally hearing children who were clinically diagnosed with SLI (n = 22) or APD (n = 19), and a quasirandom sample of mainstream school (MS) children (n = 47) aged 6-13 years, underwent tests of verbal and nonverbal IQ, digit span, nonsense word repetition, Spoonerisms, reading, grammar, and sentence and VCV nonword intelligibility. Parents completed questionnaires on the children's communication, listening, and behavior. There was generally no difference between the performance of the children with SLI and the children with APD on the questionnaire and test measures, and both groups consistently and significantly underperformed compared with the children in the MS group. Speech intelligibility in both noise and quiet was unimpaired in the SLI and APD groups. Despite clinical diagnoses of SLI or APD, the 2 groups of children had very similar behavioral and parental report profiles, suggesting that the children were differentially diagnosed based on their referral route rather than on actual differences.

  13. Lighting

    Data.gov (United States)

    Federal Laboratory Consortium — Lighting Systems Test Facilities aid research that improves the energy efficiency of lighting systems. • Gonio-Photometer: Measures illuminance from each portion of...

  14. Development of high performance readout ASICs for silicon photomultipliers (SiPMs)

    International Nuclear Information System (INIS)

    Shen, Wei

    2012-01-01

    Silicon Photomultipliers (SiPMs) are novel kind of solid state photon detectors with extremely high photon detection resolution. They are composed of hundreds or thousands of avalanche photon diode pixels connected in parallel. These avalanche photon diodes are operated in Geiger Mode. SiPMs have the same magnitude of multiplication gain compared to the conventional photomultipliers (PMTs). Moreover, they have a lot of advantages such as compactness, relatively low bias voltage and magnetic field immunity etc. Special readout electronics are required to preserve the high performance of the detector. KLauS and STiC are two CMOS ASIC chips designed in particular for SiPMs. KLauS is used for SiPM charge readout applications. Since SiPMs have a much larger detector capacitance compared to other solid state photon detectors such as PIN diodes and APDs, a few special techniques are used inside the chip to make sure a descent signal to noise ratio for pixel charge signal can be obtained. STiC is a chip dedicated to SiPM time-of-flight applications. High bandwidth and low jitter design schemes are mandatory for such applications where time jitter less than tens of picoseconds is required. Design schemes and error analysis as well as measurement results are presented in the thesis.

  15. Dual-Readout Calorimetry with Lead Tungstate Crystals

    CERN Document Server

    Akchurin, N; Cardini, A; Ferrari, R; Gaudio, G; Hauptman, J; Kim, H; La Rotonda, L; Livan, M; Meoni, E; Paar, H; Penzo, Aldo L; Pinci, D; Policicchio, Antonio; Popescu, S; Susinno, G; Roh, Y; Vandelli, W; Wigmans, R

    2008-01-01

    Results are presented of beam tests in which a small electromagnetic calorimeter consisting of lead tungstate crystals was exposed to 50 GeV electrons and pions. This calorimeter was backed up by the DREAM Dual-Readout calorimeter, which measures the scintillation and \\v{C}erenkov light produced in the shower development, using two different media. The signals from the crystal calorimeter were analyzed in great detail in an attempt to determine the contributions from these two types of light to the signals, event by event. This information makes it possible to eliminate the dominating source of fluctuations and thus achieve an important improvement in hadronic calorimeter performance.

  16. Light

    DEFF Research Database (Denmark)

    Prescott, N.B.; Kristensen, Helle Halkjær; Wathes, C.M.

    2004-01-01

    This chapter presents the effect of artificial light environments (light levels, colour, photoperiod and flicker) on the welfare of broilers in terms of vision, behaviour, lameness and mortality......This chapter presents the effect of artificial light environments (light levels, colour, photoperiod and flicker) on the welfare of broilers in terms of vision, behaviour, lameness and mortality...

  17. GEM scintillation readout with avalanche photodiodes

    CERN Document Server

    Conceição, A S; Fernandes, L M P; Monteiro, C M B; Coelho, L C C; Azevedo, C D R; Veloso, J F C A; Lopesac, J A M; dos Santosa, J M F

    2007-01-01

    The use of the scintillation produced in the charge avalanches in GEM holes as signal amplification and readout is investigated for xenon. A VUV-sensitive avalanche photodiode has been used as photosensor. Detector gains of about 4 × 104 are achieved in scintillation readout mode, for GEM voltages of 490 V and for a photosensor gain of 150. Those gains are more than one order of magnitude larger than what is obtained using charge readout. In addition, the energy resolutions achieved with the scintillation readout are lower than those achieved with charge readout. The GEM scintillation yield in xenon was measured as a function of GEM voltage, presenting values that are about a half of those achieved for the charge yield, and reach about 730 photons per primary electron at GEM voltages of 490 V.

  18. Common Readout System in ALICE

    CERN Document Server

    Jubin, Mitra

    2016-01-01

    The ALICE experiment at the CERN Large Hadron Collider is going for a major physics upgrade in 2018. This upgrade is necessary for getting high statistics and high precision measurement for probing into rare physics channels needed to understand the dynamics of the condensed phase of QCD. The high interaction rate and the large event size in the upgraded detectors will result in an experimental data flow traffic of about 1 TB/s from the detectors to the on-line computing system. A dedicated Common Readout Unit (CRU) is proposed for data concentration, multiplexing, and trigger distribution. CRU, as common interface unit, handles timing, data and control signals between on-detector systems and online-offline computing system. An overview of the CRU architecture is presented in this manuscript.

  19. Automatic Channel Fault Detection on a Small Animal APD-Based Digital PET Scanner

    Science.gov (United States)

    Charest, Jonathan; Beaudoin, Jean-François; Cadorette, Jules; Lecomte, Roger; Brunet, Charles-Antoine; Fontaine, Réjean

    2014-10-01

    Avalanche photodiode (APD) based positron emission tomography (PET) scanners show enhanced imaging capabilities in terms of spatial resolution and contrast due to the one to one coupling and size of individual crystal-APD detectors. However, to ensure the maximal performance, these PET scanners require proper calibration by qualified scanner operators, which can become a cumbersome task because of the huge number of channels they are made of. An intelligent system (IS) intends to alleviate this workload by enabling a diagnosis of the observational errors of the scanner. The IS can be broken down into four hierarchical blocks: parameter extraction, channel fault detection, prioritization and diagnosis. One of the main activities of the IS consists in analyzing available channel data such as: normalization coincidence counts and single count rates, crystal identification classification data, energy histograms, APD bias and noise thresholds to establish the channel health status that will be used to detect channel faults. This paper focuses on the first two blocks of the IS: parameter extraction and channel fault detection. The purpose of the parameter extraction block is to process available data on individual channels into parameters that are subsequently used by the fault detection block to generate the channel health status. To ensure extensibility, the channel fault detection block is divided into indicators representing different aspects of PET scanner performance: sensitivity, timing, crystal identification and energy. Some experiments on a 8 cm axial length LabPET scanner located at the Sherbrooke Molecular Imaging Center demonstrated an erroneous channel fault detection rate of 10% (with a 95% confidence interval (CI) of [9, 11]) which is considered tolerable. Globally, the IS achieves a channel fault detection efficiency of 96% (CI: [95, 97]), which proves that many faults can be detected automatically. Increased fault detection efficiency would be

  20. FSO channel estimation for OOK modulation with APD receiver over atmospheric turbulence and pointing errors

    Science.gov (United States)

    Dabiri, Mohammad Taghi; Sadough, Seyed Mohammad Sajad; Khalighi, Mohammad Ali

    2017-11-01

    In the free-space optical (FSO) links, atmospheric turbulence and pointing errors lead to scintillation in the received signal. Due to its ease of implementation, intensity modulation with direct detection (IM/DD) based on ON-OFF-keying(OOK) is a popular signaling scheme in these systems. For long-haul FSO links, avalanche photo diodes (APDs) are commonly used, which provide an internal gain in photo-detection, allowing larger transmission ranges, as compared with PIN photo-detector (PD) counterparts. Since optimal OOK detection at the receiver requires the knowledge of the instantaneous channel fading coefficient, channel estimation is an important task that can considerably impact the link performance. In this paper, we investigate the channel estimation issue when using an APD at the receiver. Here, optimal signal detection is quite more delicate than in the case of using a PIN PD. In fact, given that APD-based receivers are usually shot-noise limited, the receiver noise will have a different distribution depending on whether the transmitted bit is '0' or '1', and moreover, its statistics are further affected by the scintillation. To deal with this, we first consider minimum mean-square-error (MMSE), maximum a posteriori probability (MAP) and maximum likelihood (ML) channel estimation over an observation window encompassing several consecutive received OOK symbols. Due to the high computational complexity of these methods, in a second step, we propose an ML channel estimator based on the expectation-maximization (EM) algorithm which has a low implementation complexity, making it suitable for high data-rate FSO communications. Numerical results show that for a sufficiently large observation window, by using the proposed EM channel estimator, we can achieve bit error rate performance very close to that with perfect channel state information. We also derive the Cramer-Rao lower bound (CRLB) of MSE of estimation errors and show that for a large enough observation

  1. High Precision Axial Coordinate Readout for an Axial 3-D PET Detector Module using a Wave Length Shifter Strip Matrix

    CERN Document Server

    Braem, André; Joram, C; Séguinot, Jacques; Weilhammer, P; De Leo, R; Nappi, E; Lustermann, W; Schinzel, D; Johnson, I; Renker, D; Albrecht, S

    2007-01-01

    We describe a novel method to extract the axial coordinate from a matrix of long axially oriented crystals, which is based on wavelength shifting plastic strips. The method allows building compact 3-D axial gamma detector modules for PET scanners with excellent 3-dimensional spatial, timing and energy resolution while keeping the number of readout channels reasonably low. A voxel resolution of about 10 mm3 is expected. We assess the performance of the method in two independent ways, using classical PMTs and G-APDs to read out the LYSO (LSO) scintillation crystals and the wavelength shifting strips. We observe yields in excess of 35 photoelectrons from the strips for a 511 keV gamma and reconstruct the axial coordinate with a precision of about 2.5 mm (FWHM).

  2. Very forward calorimeters readout and machine interface

    Indian Academy of Sciences (India)

    Abstract. The paper describes the requirements for the readout electronics and DAQ for the instrumentation of the forward region of the future detector at the international linear collider. The preliminary design is discussed.

  3. Very forward calorimeters readout and machine interface

    Indian Academy of Sciences (India)

    . Abstract. The paper describes the requirements for the readout electronics and DAQ for the instrumentation of the forward region of the future detector at the international linear collider. The preliminary design is discussed. Keywords. LumiCal ...

  4. Readout control for high luminosity accelerators

    International Nuclear Information System (INIS)

    Belusevic, R.; Nixon, G.

    1991-01-01

    In this article we discuss some aspects of data acquisition at high luminosities and offer a set of design principles concerning readout control electronics and related software. As an example we include a brief description of a data transfer and processing system for future hadron colliders, featuring a transputer-based crate controller and a set of readout cards. This is a simplified and more efficient version of our design recently published in Nuclear Instruments and Methods. (orig.)

  5. Readout control for high luminosity accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Belusevic, R.; Nixon, G. (University Coll., London (UK). Dept. of Physics and Astronomy)

    1991-09-15

    In this article we discuss some aspects of data acquisition at high luminosities and offer a set of design principles concerning readout control electronics and related software. As an example we include a brief description of a data transfer and processing system for future hadron colliders, featuring a transputer-based crate controller and a set of readout cards. This is a simplified and more efficient version of our design recently published in Nuclear Instruments and Methods. (orig.).

  6. Readout control for high luminosity accelerators

    Science.gov (United States)

    Belusevic, R.; Nixon, G.

    1991-09-01

    In this article we discuss some aspects of data acquisition at high luminosities and offer a set of design principles concerning readout control electronics and related software. As an example we include a brief description of a data transfer and processing system for future hadron colliders, featuring a transputer-based crate controller and a set of readout cards. This is a simplified and more efficient version of our design recently published in Nuclear Instruments and Methods. [A295 (1991) 391].

  7. Light

    CERN Document Server

    Robertson, William C

    2003-01-01

    Why is left right and right left in the mirror? Baffled by the basics of reflection and refraction? Wondering just how the eye works? If you have trouble teaching concepts about light that you don t fully grasp yourself, get help from a book that s both scientifically accurate and entertaining with Light. By combining clear explanations, clever drawings, and activities that use easy-to-find materials, this book covers what science teachers and parents need to know to teach about light with confidence. It uses ray, wave, and particle models of light to explain the basics of reflection and refraction, optical instruments, polarization of light, and interference and diffraction. There s also an entire chapter on how the eye works. Each chapter ends with a Summary and Applications section that reinforces concepts with everyday examples. Whether you need a deeper understanding of how light bends or a good explanation of why the sky is blue, you ll find Light more illuminating and accessible than a college textbook...

  8. Experimental evaluation of penetration capabilities of a Geiger-mode APD array laser radar system

    Science.gov (United States)

    Jonsson, Per; Tulldahl, Michael; Hedborg, Julia; Henriksson, Markus; Sjöqvist, Lars

    2017-10-01

    Laser radar 3D imaging has the potential to improve target recognition in many scenarios. One case that is challenging for most optical sensors is to recognize targets hidden in vegetation or behind camouflage. The range resolution of timeof- flight 3D sensors allows segmentation of obscuration and target if the surfaces are separated far enough so that they can be resolved as two distances. Systems based on time-correlated single-photon counting (TCSPC) have the potential to resolve surfaces closer to each other compared to laser radar systems based on proportional mode detection technologies and is therefore especially interesting. Photon counting detection is commonly performed with Geigermode Avalanche Photodiodes (GmAPD) that have the disadvantage that they can only detect one photon per laser pulse per pixel. A strong return from an obscuring object may saturate the detector and thus limit the possibility to detect the hidden target even if photons from the target reach the detector. The operational range where good foliage penetration is observed is therefore relatively narrow for GmAPD systems. In this paper we investigate the penetration capability through semi-transparent surfaces for a laser radar with a 128×32 pixel GmAPD array and a 1542 nm wavelength laser operating at a pulse repetition frequency of 90 kHz. In the evaluation a screen was placed behind different canvases with varying transmissions and the detected signals from the surfaces for different laser intensities were measured. The maximum return from the second surface occurs when the total detection probability is around 0.65-0.75 per pulse. At higher laser excitation power the signal from the second surface decreases. To optimize the foliage penetration capability it is thus necessary to adaptively control the laser power to keep the returned signal within this region. In addition to the experimental results, simulations to study the influence of the pulse energy on penetration through

  9. Light

    CERN Document Server

    Rivera, Andrea

    2017-01-01

    Light is all around us. Learn how it is used in art, technology, and engineering. Five easy-to-read chapters explain the science behind light, as well as its real-world applications. Vibrant, full-color photos, bolded glossary words, and a key stats section let readers zoom in even deeper. Aligned to Common Core Standards and correlated to state standards. Abdo Zoom is a division of ABDO.

  10. Limits on the spatial resolution of monolithic scintillators read out by APD arrays

    NARCIS (Netherlands)

    van der Laan, D.J.J.; Maas, M.C.; Bruyndonckx, P.; Schaart, D.R.

    2012-01-01

    Cramér-Rao theory can be used to derive the lower bound on the spatial resolution achievable with position-sensitive scintillation detectors as a function of the detector geometry and the pertinent physical properties of the scintillator, the photosensor and the readout electronics. Knowledge of the

  11. Integrated optical readout for miniaturization of cantilever-based sensor system

    DEFF Research Database (Denmark)

    Nordström, Maria; Zauner, Dan; Calleja, Montserrat

    2007-01-01

    The authors present the fabrication and characterization of an integrated optical readout scheme based on single-mode waveguides for cantilever-based sensors. The cantilever bending is read out by monitoring changes in the optical intensity of light transmitted through the cantilever that also acts...

  12. Communication, Listening, Cognitive and Speech Perception Skills in Children with Auditory Processing Disorder (APD) or Specific Language Impairment (SLI)

    Science.gov (United States)

    Ferguson, Melanie A.; Hall, Rebecca L.; Riley, Alison; Moore, David R.

    2011-01-01

    Purpose: Parental reports of communication, listening, and behavior in children receiving a clinical diagnosis of specific language impairment (SLI) or auditory processing disorder (APD) were compared with direct tests of intelligence, memory, language, phonology, literacy, and speech intelligibility. The primary aim was to identify whether there…

  13. Penyusunan Perencanaan Keberlangsungan Bisnis PT PLN (Persero APD Jateng dan DIY dengan ISO 22301 dan Metode OCTAVE

    Directory of Open Access Journals (Sweden)

    Azmi Afifah Zahra

    2017-01-01

    Full Text Available Abstrak— Penelitian dalam tugas akhir ini adalah melakukan penyusunan perencanaan keberlangsungan bisnis teknologi informasi pada PT PLN (Persero APD Jateng dan DIY dengan berbasis risiko sebagai bentuk kesiapan perusahaan dalam menangani risiko dan dampak bisnis yang mengancam perusahaan. PT PLN (Persero APD Jateng dan DIY menggunakan sistem dan layanan TI sebagai daya dukung perusahaan dalam mencapai tujuannya. Penggunaan sistem dan layanan TI tersebut tidak terlepas dari adanya ancaman pada risiko sistem dan layanan TI serta dampak dari proses bisnis yang dijalankan oleh tiap fungsi bisnis perusahaan. Dalam proses penyusunan untuk perencanaan keberlangsungan bisnis akan dibuat terlebih dahulu alur kerja untuk kegiatan pengelolaan keberlangsungan bisnis (Business Continuity Management untuk PT PLN (Persero APD Jateng dan DIY dengan menggunakan acuan ISO 22301: 2012 dan alur kerja yang telah diterapkan oleh perusahaan lain yaitu dari Perusahaan Chubu Electric Power Company Group dan DHS Electricity dengan tetap memberikan prosedur praktis yang dapat disesuaikan oleh PT PLN (Persero APD Jateng dan DIY. Hasil akhir dari penelitian ini adalah berupa rekomendasi penerapan alur kerja dan strategi keberlangsungan bisnis untuk PT PLN (Persero berdasarkan pada risiko aset TI yang menjadi tanggung jawab tim SCADA dan Telekomunikasi.

  14. FACT - Status and experience from five years of operation of the first G-APD Cherenkov Telescope

    Science.gov (United States)

    Neise, D.; Adam, J.; Ahnen, M. L.; Baack, D.; Balbo, M.; Bergmann, M.; Biland, A.; Blank, M.; Bretz, T.; Brügge, K. A.; Buss, J.; Dmytriiev, A.; Dorner, D.; Einecke, S.; Hempfling, C.; Hildebrand, D.; Hughes, G.; Linhoff, L.; Mannheim, K.; Müller, S.; Neronov, A.; Nöthe, M.; Paravac, A.; Pauss, F.; Rhode, W.; Shukla, A.; Temme, F.; Thaele, J.; Walter, R.

    2017-12-01

    The First G-APD Cherenkov Telescope (FACT) demonstrates the usability of novel Geiger-mode operated Avalanche Photo Diodes (G-APD, often called SiPM) for Imaging Atmospheric Cherenkov Telescopes (IACT). The camera consists of 1440 pixels with dedicated electronics operating at 2 Giga samples per second. It is installed on the refurbished HEGRA telescope with a mirror area of ≈ 9.5m2 on the Canary Island La Palma. FACT is taking data almost every night since the camera was installed in October 2011. It was possible to improve the data taking efficiency to very high values due to the very stable and reliable operation. This also allows to operate FACT remotely without any need for operators on site. Even remote human intervention became less and less frequent over the years, allowing operation to become mostly automatic. FACT is monitoring the long-term behavior of some very-high energy variable extra-galactic sources with unparalleled sampling density as well as testing the behavior of the sensors under severe weather conditions. Due to the long exposure of FACT's G-APDs under strong moonlight conditions it was possible to evaluate the aging effects of G-APDs due to collected charge. No indication of aging was found. No external calibration device is needed to operate FACT since the properties of the sensors themselves allow for a high precision self-calibration of the camera.

  15. Geiger-mode APD camera system for single-photon 3D LADAR imaging

    Science.gov (United States)

    Entwistle, Mark; Itzler, Mark A.; Chen, Jim; Owens, Mark; Patel, Ketan; Jiang, Xudong; Slomkowski, Krystyna; Rangwala, Sabbir

    2012-06-01

    The unparalleled sensitivity of 3D LADAR imaging sensors based on single photon detection provides substantial benefits for imaging at long stand-off distances and minimizing laser pulse energy requirements. To obtain 3D LADAR images with single photon sensitivity, we have demonstrated focal plane arrays (FPAs) based on InGaAsP Geiger-mode avalanche photodiodes (GmAPDs) optimized for use at either 1.06 μm or 1.55 μm. These state-of-the-art FPAs exhibit excellent pixel-level performance and the capability for 100% pixel yield on a 32 x 32 format. To realize the full potential of these FPAs, we have recently developed an integrated camera system providing turnkey operation based on FPGA control. This system implementation enables the extremely high frame-rate capability of the GmAPD FPA, and frame rates in excess of 250 kHz (for 0.4 μs range gates) can be accommodated using an industry-standard CameraLink interface in full configuration. Real-time data streaming for continuous acquisition of 2 μs range gate point cloud data with 13-bit time-stamp resolution at 186 kHz frame rates has been established using multiple solid-state storage drives. Range gate durations spanning 4 ns to 10 μs provide broad operational flexibility. The camera also provides real-time signal processing in the form of multi-frame gray-scale contrast images and single-frame time-stamp histograms, and automated bias control has been implemented to maintain a constant photon detection efficiency in the presence of ambient temperature changes. A comprehensive graphical user interface has been developed to provide complete camera control using a simple serial command set, and this command set supports highly flexible end-user customization.

  16. [Evaluation of Image Quality of Readout Segmented EPI with Readout Partial Fourier Technique].

    Science.gov (United States)

    Yoshimura, Yuuki; Suzuki, Daisuke; Miyahara, Kanae

    Readout segmented EPI (readout segmentation of long variable echo-trains: RESOLVE) segmented k-space in the readout direction. By using the partial Fourier method in the readout direction, the imaging time was shortened. However, the influence on image quality due to insufficient data sampling is concerned. The setting of the partial Fourier method in the readout direction in each segment was changed. Then, we examined signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR), and distortion ratio for changes in image quality due to differences in data sampling. As the number of sampling segments decreased, SNR and CNR showed a low value. In addition, the distortion ratio did not change. The image quality of minimum sampling segments is greatly different from full data sampling, and caution is required when using it.

  17. LHCb: Fast Readout Control for the upgraded readout architecture of the LHCb experiment at CERN

    CERN Document Server

    Alessio, F

    2013-01-01

    The LHCb experiment at CERN has proposed an upgrade towards a full 40 MHz readout system in order to run between five and ten times its initial design luminosity with an upgraded LHCb detector. As a consequence, the various LHCb sub-systems in the readout architecture will be upgraded to cope with higher sub-detector occupancies, higher rate, and higher readout load. The new architecture, new functionalities, and the first hardware implementation of a new LHCb Readout Control system (commonly referred to as S-TFC) for the upgraded LHCb experiment is here presented. Our attention is focused in describing solutions for the distribution of clock and timing information to control the entire upgraded readout architecture by profiting of a bidirectional optical network and powerful FPGAs, including a real-time mechanism to synchronize the entire system. Solutions and implementations are presented, together with first results on the simulation and the validation of the system.

  18. Light

    CERN Document Server

    Ditchburn, R W

    1963-01-01

    This classic study, available for the first time in paperback, clearly demonstrates how quantum theory is a natural development of wave theory, and how these two theories, once thought to be irreconcilable, together comprise a single valid theory of light. Aimed at students with an intermediate-level knowledge of physics, the book first offers a historical introduction to the subject, then covers topics such as wave theory, interference, diffraction, Huygens' Principle, Fermat's Principle, and the accuracy of optical measurements. Additional topics include the velocity of light, relativistic o

  19. High-speed crystal detection and characterization using a fast-readout detector.

    Science.gov (United States)

    Aishima, Jun; Owen, Robin L; Axford, Danny; Shepherd, Emma; Winter, Graeme; Levik, Karl; Gibbons, Paul; Ashton, Alun; Evans, Gwyndaf

    2010-09-01

    A novel raster-scanning method combining continuous sample translation with the fast readout of a Pilatus P6M detector has been developed on microfocus beamline I24 at Diamond Light Source. This fast grid-scan tool allows the rapid evaluation of large sample volumes without the need to increase the beam size at the sample through changes in beamline hardware. A slow version is available for slow-readout detectors. Examples of grid-scan use in centring optically invisible samples and in detecting and characterizing numerous microcrystals on a mesh-like holder illustrate the most common applications of the grid scan now in routine use on I24.

  20. Dual Readout With PWO Crystals and LuAG Crystal Scintillating Fibers

    CERN Document Server

    Auffray, E; Mavromanolakis, G; Abler, D

    2010-01-01

    One of the main challenges for detectors at future high-energy collider experiments is high-precision measurement of hadrons and jet energy and momentum. Such measurement can be provided by the particle flow approach (PFA) that requires a complex highly segmented calorimeter system to identify and to track all particles in a jet. An alternative so-called dual-readout approach consists of simultaneously recording, in an active medium, scintillation light that is proportional to total energy deposit and Cerenkov light that is proportional to the electromagnetic part only, thus allowing extracting the electromagnetic fraction of the total shower energy on an event-by-event basis. The dual-readout method approach can be implemented using several techniques. The first method proposed uses a copper absorber structure containing two types of fibers: quartz fibers that produce Cerenkov light and plastic scintillating fibers that produce scintillation light. A second method proposed is based on the separation of scint...

  1. Scintillating glasses for total absorption dual readout calorimetry

    Energy Technology Data Exchange (ETDEWEB)

    Bonvicini, V. [INFN, Trieste; Driutti, A. [Udine U.; Cauz, D. [Udine U.; Pauletta, G. [Udine U.; Rubinov, P. [Fermilab; Santi, L. [Udine U.; Wenzel, H. [Fermilab

    2012-01-01

    Scintillating glasses are a potentially cheaper alternative to crystal - based calorimetry with common problems related to light collection, detection and processing. As such, their use and development are part of more extensive R&D aimed at investigating the potential of total absorption, combined with the readout (DR) technique, for hadron calorimetry. A recent series of measurements, using cosmic and particle beams from the Fermilab test beam facility and scintillating glass with the characteristics required for application of the DR technique, serve to illustrate the problems addressed and the progress achieved by this R&D. Alternative solutions for light collection (conventional and silicon photomultipliers) and signal processing are compared, the separate contributions of scintillation and Cherenkov processes to the signal are evaluated and results are compared to simulation.

  2. D-Zero muon readout electronics design

    International Nuclear Information System (INIS)

    Baldin, B.; Hansen, S.; Los, S.; Matveev, M.; Vaniev, V.

    1996-11-01

    The readout electronics designed for the D null Muon Upgrade are described. These electronics serve three detector subsystems and one trigger system. The front-ends and readout hardware are synchronized by means of timing signals broadcast from the D null Trigger Framework. The front-end electronics have continuously running digitizers and two levels of buffering resulting in nearly deadtimeless operation. The raw data is corrected and formatted by 16- bit fixed point DSP processors. These processors also perform control of the data buffering. The data transfer from the front-end electronics located on the detector platform is performed by serial links running at 160 Mbit/s. The design and test results of the subsystem readout electronics and system interface are discussed

  3. A readout system for plastic scintillating fibers

    Science.gov (United States)

    Akbari, H.; Bao, J.; Chien, C.-Y.; Fenker, H.; Fitzgerald, R.; Fisher, P.; Glaubman, M.; Grimes, A.; Hofer, H.; Horvath, I.; Kaplan, D.; Lanius, K.; Leedom, I.; Macdermott, M.; Mnich, J.; Newman, D.; Orndorff, J.; Pevsner, A.; Reucroft, S.; Rose, J.; Spangler, J.; Spartiotis, C.; Tonisch, F.; Viertel, G.; Waldmeier, S.; Zehnder, L.

    1991-05-01

    A readout system for plastic scintillating fibers has been developed using a multi-anode microchannel photomultiplier tube operated in a 5 kG magnetic field and the CMOS MX4 microplexer chip. The microchannel photomultiplier tube with an anode array of 10×10 is coupled to an array of fibers using a precise alignment procedure. Each readout unit is capable of sampling signals from 100 fibers simultaneously and multiplexing the analog signals serially with rates of up to 5 MHz. The analog signals are subsequently digitized and subtracted from the pedestals previously stored using a specially designed analog to digital VME module. Such a readout system has many applications in high energy physics, solid state physics, and other fields where a large number of fibers must be read out in short times and at relatively high rates.

  4. Integrated optical read-out for polymeric cantilever-based sensors

    DEFF Research Database (Denmark)

    Tenje, Maria

    2007-01-01

    This thesis presents a novel read-out method developed for cantilever-based sensors. Cantilevers are thin beams clamped at one end and during the last 10 years they have emerged as an interesting new type of bio/chemical sensor. The specific recognition of a chemical manifests itself as a bending...... of the cantilever from the generated surface stress. Conventionally the read-out used for this type of sensors is external and thereby very bulky. It is beneficial to fabricate a miniaturised system. Moreover, improved sensitivity is obtained by fabricating the cantilever in a polymeric material that has a low...... Young’s modulus instead of the conventional materials Si and Si3N4. Here, a novel read-out method is presented where optical waveguides are used to integrate the light into the cantilever. It is an all-polymer device where both the cantilever and the waveguides are fabricated in the negative resist SU-8...

  5. Muon detection with scintillation detectors using indirect SiPM readout

    CERN Document Server

    Struth, Janina

    2010-01-01

    In the scope of this thesis prototypes of silicon photomultipliers with wavelength shifting fibres were measured for muon detection. This indirect readout happens with silizium photomultipliers (SiPM), which are coupled with the fibre. The scintillator was wrapped with different reflective materials to optimise the light amplification. Furthermore two different thicknesses of the scintillator were used to have a comparison between the different light yield. Consequently different scintillator thicknesses were combinded and measured with different wrapping materials to compare their efficiency.

  6. Use of Fall-Risk Inducing Drugs in Patients Using Anti-Parkinson Drugs (APD: A Swedish Register-Based Study.

    Directory of Open Access Journals (Sweden)

    Ylva Haasum

    Full Text Available Many drugs increase the risk of falls in old age. Although persons with Parkinson's disease (PD are at increased risk of experiencing falls and fractures, the use of fall-risk inducing drugs (FRIDs in this population has not previously been investigated. The objective of this study was to investigate the burden of use of FRIDs in older persons treated with anti-Parkinson drugs (APD; used as a proxy for PD, compared to persons without APD.We analyzed individual data on age, sex, type of housing and drug use in 1 346 709 persons aged ≥ 65 years in the Swedish Prescribed Drug Register on the date of 30 September 2008. Main outcome measure was the use of FRIDs.FRIDs were used by 79% of persons with APD and 75% of persons without APD. Persons with APD were more likely to use ≥ 1 FRIDs compared to persons without APD (adjusted OR: 1.09; 95% CI: 1.06-1-12. The association was stronger for concomitant use of ≥ 5 FRIDS (adjusted OR: 1.49; 95% CI: 1.44-1.55.The high use of FRIDs among persons with APD indicates that these patients may be at increased risk of drug-induced falls. Further studies are needed to investigate how these drugs affect the risk of falling in persons with PD.

  7. A novel readout integrated circuit for ferroelectric FPA detector

    Science.gov (United States)

    Bai, Piji; Li, Lihua; Ji, Yulong; Zhang, Jia; Li, Min; Liang, Yan; Hu, Yanbo; Li, Songying

    2017-11-01

    Uncooled infrared detectors haves some advantages such as low cost light weight low power consumption, and superior reliability, compared with cryogenically cooled ones Ferroelectric uncooled focal plane array(FPA) are being developed for its AC response and its high reliability As a key part of the ferroelectric assembly the ROIC determines the performance of the assembly. A top-down design model for uncooled ferroelectric readout integrated circuit(ROIC) has been developed. Based on the optical thermal and electrical properties of the ferroelectric detector the RTIA readout integrated circuit is designed. The noise bandwidth of RTIA readout circuit has been developed and analyzed. A novel high gain amplifier, a high pass filter and a low pass filter circuits are designed on the ROIC. In order to improve the ferroelectric FPA package performance and decrease of package cost a temperature sensor is designed on the ROIC chip At last the novel RTIA ROIC is implemented on 0.6μm 2P3M CMOS silicon techniques. According to the experimental chip test results the temporal root mean square(RMS)noise voltage is about 1.4mV the sensitivity of the on chip temperature sensor is 0.6 mV/K from -40°C to 60°C the linearity performance of the ROIC chip is better than 99% Based on the 320×240 RTIA ROIC, a 320×240 infrared ferroelectric FPA is fabricated and tested. Test results shows that the 320×240 RTIA ROIC meets the demand of infrared ferroelectric FPA.

  8. Development of a Timepix3 readout system based on the Merlin readout system

    International Nuclear Information System (INIS)

    Crevatin, G.; Carrato, S.; Horswell, I.; Omar, D.; Tartoni, N.; Cautero, G.

    2015-01-01

    Timepix3 chip is a new ASIC specifically designed to readout hybrid pixel detectors. The main purpose of Timepix3 is to measure the time of arrival of events. This characteristic can be exploited very effectively to develop detectors for time resolved experiments at synchrotron radiation facilities. In order to investigate how the ASIC can be applied to synchrotron experiments the Merlin readout system, developed at Diamond for the Medipix3 ASIC, has been adapted to readout the Timepix3 ASIC. The first tests of the ASIC with pulse injection and with alpha particles show that its behaviour is consistent with its nominal characteristics

  9. Comparison between two possible CMS Barrel Muon Readout Architectures

    International Nuclear Information System (INIS)

    Aguayo, P.; Barcala, J.M.; Molinero, A.; Pablos, J.L.; Willmott, C.; Alberdi, J.; Marin, J.; Navarrete, J.; Romero, L.

    1997-01-01

    A comparison between two possible readout arquitectures for the CMS muon barrel readout electronics is presented, including various aspects like costs, reliability, installation, staging and maintenance. A review of the present baseline architecture is given in the appendix. (Author)

  10. PANDA straw tube detectors and readout

    Science.gov (United States)

    Strzempek, P.; PANDA Collaboration

    2016-07-01

    PANDA is a detector under construction dedicated to studies of production and interaction of particles in the charmonium mass range using antiproton beams in the momentum range of 1.5 - 15 GeV/c at the Facility for Antiproton and Ion Research (FAIR) in Darmstadt. PANDA consists of two spectrometers: a Target Spectrometer with a superconducting solenoid and a Forward Spectrometer using a large dipole magnet and covering the most forward angles (Θ < 10 °). In both spectrometers, the particle's trajectories in the magnetic field are measured using self-supporting straw tube detectors. The expected high count rates, reaching up to 1 MHz/straw, are one of the main challenges for the detectors and associated readout electronics. The paper presents the readout chain of the tracking system and the results of tests performed with realistic prototype setups. The readout chain consists of a newly developed ASIC chip (PASTTREC 〈 PANDASTTReadoutChip 〉) with amplification, signal shaping, tail cancellation, discriminator stages and Time Readout Boards as digitizer boards.

  11. Very forward calorimeters readout and machine interface

    Indian Academy of Sciences (India)

    The paper describes the requirements for the readout electronics and DAQ for the instrumentation of the forward region of the future detector at the international linear collider. The preliminary design is discussed. Author Affiliations. Wojciech Wierba1 on behalf of the FCAL Collaboration. The Henryk Niewodniczański ...

  12. Evolution of the dual-readout calorimeter

    Indian Academy of Sciences (India)

    Measuring the energy of hadronic jets with high precision is essential at present and future colliders, in particular at ILC. The 4th concept design is built upon calorimetry criteria that result in the DREAM prototype, read-out via two different types of longitudinal fibers, scintillator and quartz respectively, and therefore capable ...

  13. Very forward calorimeters readout and machine interface

    Indian Academy of Sciences (India)

    group of channels (probably every 10 channels will have one ADC) is foreseen. The digital link based on LVDS chips will transmit data to the DAQ. Proposed solution is shown in figure 2. For the BeamCal a similar readout scheme will be needed. LumiCal has to provide a raw luminosity measurement every minute. The MC.

  14. Evolution of the dual-readout calorimeter

    Indian Academy of Sciences (India)

    Measuring the energy of hadronic jets with high precision is essential at present and future colliders, ... binding energy losses in nuclear break-up (measuring neutrons of few MeV energy). Keywords. International ... demonstration that a dual readout calorimeter is feasible and offers several benefits. 3. DREAM performance.

  15. Latest generation of ASICs for photodetector readout

    International Nuclear Information System (INIS)

    Seguin-Moreau, N.

    2013-01-01

    The OMEGA microelectronics group has designed a new generation of multichannel integrated circuits, the “ROC” family, in AustrianMicroSystem (AMS) SiGe 0.35 μm technology to read out signals from various families of photodetectors. The chip named MAROC (standing for Multi Anode ReadOut Chip) has been designed to read out MultiAnode Photomultipliers (MAPMT), Photomultiplier ARray In SiGe ReadOut Chip (PARISROC) to read out Photomultipliers (PMTs) and SiPM Integrated ReadOut Chip (SPIROC) to readout Silicon PhotoMultiplier (SiPM) detectors and which was the first ASIC to do so. The three of them fulfill the stringent requirements of the future photodetectors, in particular in terms of low noise, radiation hardness, large dynamic range, high density and high speed while keeping low power thanks to the SiGe technology. These multi-channel ASICs are real System on Chip (SoC) as they provide charge, time and photon-counting information which are digitized internally. Their complexity and versatility enable innovative frontier detectors and also cover spin off of these detectors in adjacent fields such as medical or material imaging as well as smart detectors. In this presentation, the three ASIC architectures and test results will be described to give a general panorama of the “ROC” chips

  16. Rutherford X-ray spectrometer readout

    International Nuclear Information System (INIS)

    Bateman, J.E.

    1978-07-01

    Rutherford electronic X-ray spectrometer readout is based on the combination of two established techniques (a) the detection and location of soft X-rays by means of multichannel electron multiplier arrays (MCP's), and (b) the electronic readout of charge distributions (generally in multi-wire proportional counters) by means of the delay line techniques. In order for the latter device to function well a charge signal of approximately 10 6 electrons must be available to the delay line wand. This is achieved in the present device by means of two cascaded MCP's which can produce electron gains up to approximately 10 8 , and so operate the delay line from the single electron pulses generated at the front face of an MCP by a soft X-ray. The delay line readout technique was chosen because of its simplicity (both in terms of the necessary hardware and the associated electronics), robustness, and ease of implementation. In order to achieve the target spatial resolution of 50 μm (fwhm) or 20 μm (standard deviation) it was necessary to adapt the charge collection system so that the readout takes place from a length of delay line 200 mm long. The general layout of the system and the functions of the electronic circuits are described. Performance testing, setting up procedures and trouble shooting of the system are discussed. (U.K.)

  17. Evolution of the dual-readout calorimeter

    Indian Academy of Sciences (India)

    The 4th concept design is built upon calorimetry criteria that result in the DREAM prototype, read-out via two different types of longitudinal fibers, scintillator and quartz respectively, and therefore capable of determining for each shower the corresponding electromagnetic fraction, thus eliminating the strong effect of ...

  18. A readout unit for high rate applications

    CERN Document Server

    Toledo, J; Domínguez, D; Guirao-Elias, A; Müller, H

    2002-01-01

    The LHCb readout unit (RU) is a custom entry stage to the readout network of a data-acquisition or trigger system. It performs subevent building from multiple link inputs toward a readout network via a PCI network interface or alternatively toward a high-speed link, via an S-link interface. Incoming event fragments are derandomized, buffered and assembled into single subevents. This process is based on a low- overhead framing convention and matching of equal event numbers. Programmable logic is used both in the input and output stages of the RU module, which may be configured either as a data-link multiplexer or as entry stage to a readout or trigger network. All FPGAs are interconnected via the PCI bus, which is hosted by a networked microprocessor card. Its main tasks are remote FPGA configuration and initialization of the PCI cards. The RU hardware architecture has been optimized for a throughput of up to 200 MB/s at a 1 MHz trigger rate, as required by the most demanding application, the LHCb level-1 trig...

  19. Microwave multiplex readout for superconducting sensors

    Energy Technology Data Exchange (ETDEWEB)

    Ferri, E., E-mail: elena.ferri@mib.infn.it [Università Milano-Bicocca, Milan (Italy); INFN Sez. di Milano-Bicocca, Milan (Italy); Becker, D.; Bennett, D. [NIST, Boulder, CO (United States); Faverzani, M. [Università Milano-Bicocca, Milan (Italy); INFN Sez. di Milano-Bicocca, Milan (Italy); Fowler, J.; Gard, J. [NIST, Boulder, CO (United States); Giachero, A. [Università Milano-Bicocca, Milan (Italy); INFN Sez. di Milano-Bicocca, Milan (Italy); Hays-Wehle, J.; Hilton, G. [NIST, Boulder, CO (United States); Maino, M. [Università Milano-Bicocca, Milan (Italy); INFN Sez. di Milano-Bicocca, Milan (Italy); Mates, J. [NIST, Boulder, CO (United States); Puiu, A.; Nucciotti, A. [Università Milano-Bicocca, Milan (Italy); INFN Sez. di Milano-Bicocca, Milan (Italy); Reintsema, C.; Schmidt, D.; Swetz, D.; Ullom, J.; Vale, L. [NIST, Boulder, CO (United States)

    2016-07-11

    The absolute neutrino mass scale is still an outstanding challenge in both particle physics and cosmology. The calorimetric measurement of the energy released in a nuclear beta decay is a powerful tool to determine the effective electron-neutrino mass. In the last years, the progress on low temperature detector technologies has allowed to design large scale experiments aiming at pushing down the sensitivity on the neutrino mass below 1 eV. Even with outstanding performances in both energy (~ eV on keV) and time resolution (~ 1 μs) on the single channel, a large number of detectors working in parallel is required to reach a sub-eV sensitivity. Microwave frequency domain readout is the best available technique to readout large array of low temperature detectors, such as Transition Edge Sensors (TESs) or Microwave Kinetic Inductance Detectors (MKIDs). In this way a multiplex factor of the order of thousands can be reached, limited only by the bandwidth of the available commercial fast digitizers. This microwave multiplexing system will be used to readout the HOLMES detectors, an array of 1000 microcalorimeters based on TES sensors in which the {sup 163}Ho will be implanted. HOLMES is a new experiment for measuring the electron neutrino mass by means of the electron capture (EC) decay of {sup 163}Ho. We present here the microwave frequency multiplex which will be used in the HOLMES experiment and the microwave frequency multiplex used to readout the MKID detectors developed in Milan as well.

  20. SPAD array chips with full frame readout for crystal characterization

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, Peter; Blanco, Roberto; Sacco, Ilaria; Ritzert, Michael [Heidelberg University (Germany); Weyers, Sascha [Fraunhofer Institute for Microelectronic Circuits and Systems (Germany)

    2015-05-18

    We present single photon sensitive 2D camera chips containing 88x88 avalanche photo diodes which can be read out in full frame mode with up to 400.000 frames per second. The sensors have an imaging area of ~5mm x 5mm covered by square pixels of ~56µm x 56µm with a ~55% fill factor in the latest chip generation. The chips contain a self triggering logic with selectable (column) multiplicities of up to >=4 hits within an adjustable coincidence time window. The photon accumulation time window is programmable as well. First prototypes have demonstrated low dark count rates of <50kHz/mm2 (SPAD area) at 10 degree C for 10% masked pixels. One chip version contains an automated readout of the photon cluster position. The readout of the detailed photon distribution for single events allows the characterization of light sharing, optical crosstalk etc., in crystals or crystal arrays as they are used in PET instrumentation. This knowledge could lead to improvements in spatial or temporal resolution.

  1. Tests of CMS Hadron Forward Calorimeter Upgrade Readout Box Prototype

    CERN Document Server

    Chatrchyan, Sergey; Sirunyan, Albert; Tumasyan, Armen; Mossolov, Vladimir; Shumeiko, Nikolai; Cornelis, Tom; Ochesanu, Silvia; Roland, Benoit Florent; Staykova, Zlatka; Van Haevermaet, Hans; Van Mechelen, Pierre; Van Spilbeeck, Alex; Alves, Gilvan Augusto; Martins, Thiago Dos Reis; Pol, Maria Elena; Vaz Da Silva Filho, Mario; Alda Junior, Walter Luiz; Carvalho, Wagner De Paula; Chinellato, Jose Augusto; De Oliveira Martins, Carley Pedro; Figueiredo, Diego Matos; Tonelli Manganote, Edmilson Jose; Molina Insfran, Jorge Andres; Mundim, Luiz; Nogima, Helio; Prado Da Silva, Wanda Lucia; Santoro, Alberto; Rosa Lopes Zachi, Alessandro; Finger, Miroslav; Finger, Michael; Tsamalaidze, Zviad; Borras, Kerstin; Gunnellini, Paolo; Jung, Hannes; Knutsson, Albert Hans; Lutz, Benjamin; Ribeiro Cipriano, Pedro Miguel; Sen, Niladri; Baus, Colin; Katkov, Igor; Ulrich, Ralf Matthias; Wohrmann, H; Panagiotou, Apostolos; Bencze, Gyorgy; Horvath, D; Bala, Suman; Gupta, Ruchi; Jindal, M; Lal, Manjit Kaur; Nishu, Nishu; Saini, Lovedeep Kaur; Banerjee, Sunanda; Bhattacharya, S; Gomber, Bhawna; Jain, Shilpi; Khurana, Raman; Sharan, Manoj Kumar; Aziz, Tariq; Maity, Manas; Majumder, Gobinda; Mazumdar, Kajari; Mohanty, Gagan Bihari; Katta, Sudhakar; Banerjee, Sudeshna; Dugad, Shashikant Raichand; Etesami, Seyed Mohsen; Fahim, Ali; Jafari, Abideh; Paktinat Mehdiabadi, Saeid; Zeinali, Maryam; Penzo, Aldo; Afanasyev, A; Bunin, Pavel; Ershov, Yuri; Fedoseev, Oleg; Gavrilenko, Mikhail; Golutvin, Igor; Gorbunov, Ilya; Konoplynikov, V; Malakhov, Alexander; Moisenz, Petr; Smirnov, Vitaly; Volodko, Anton; Zarubin, Anatoly; Andreev, Yuri; Dermenev, Alexander; Krasnikov, Nikolay; Pashenkov, Anatoli; Tlisov, Danila; Toropin, A; Epshteyn, Vladimir; Erofeeva, Maria; Gavrilov, Vladimir; Kosov, Mikhail Vladimirovich; Kudinov, Ilya; Lychkovskaya, Natalia; Popov, V; Safronov, Grigory; Semenov, Sergey; Stolin, Viatcheslav; Vlassov, Evgueni; Zhokin, Alexander; Belyaev, A; Boos, Eduard; Dubinin, Mikhail; Dudko, Lev; Ershov, Alexander; Gribushin, Andrey; Klyukhin, Vyacheslav; Kodolova, Olga; Korotkikh, Vladimir; Lokhtin, Igor; Markina, Anastasia; Obraztsov, Stepan; Perfilov, Maxim; Petrushanko, Sergey; Popov, Andrey; Savrin, Victor; Snigirev, Alexander; Vardanyan, Irina; Andreev, V; Azarkin, Maksim; Dremin, Igor; Kirakosyan, Martin; Leonidov, Andrey; Mesyats, Gennady; Vinogradov, Alexey; Bayshev, Igor; Bityukov, Sergey; Grishin, Viatcheslav; Kryshkin, Victor; Petrov, V; Ryutin, Roman; Sobol, Andrey; Turchanovich, Leonid; Troshin, Sergey; Uzunyan, Andrey; Volkov, Alexey; Santanastasio, Francesco; Adiguzel, Aytul; Bakirci, Numan Mustafa; Cerci, Salim; Dozen, Candan; Dumanoglu, Isa; Eskut, Eda; Girgis, Semiray; G�kbulut, Gul; Gurpinar, Emine; Hos, Ilknur; Kangal, Evrim Ersin; Karapinar, Guler; Kayis Topaksu, Aysel; Onengut, Gulsen; Ozdemir, Kadri; Ozturk, Sertac; Polatoz, Ayse; Sogut, Kenan; Sunar Cerci, Deniz; Tali, Bayram; Topakli, Huseyin; Vergili, Latife Nukhet; Vergili, Mehmet; Aliyev, Takhmasib; Deniz, Muhammed; Guler, Ali Murat; Ozpineci, Altug; Serin, Meltem; Sever, Ramazan; Zeyrek, Mehmet; Deliomeroglu, Mehmet; Gulmez, Erhan; Isildak, Bora; Kaya, Mithat; Kaya, Ozlem; Ozkorucuklu, Suat; Sonmez, Nasuf; Cankocak, Kerem; Levchuk, Leonid; Hatakeyama, Kenichi; Liu, H; Scarborough, Tara Ann; Rumerio, Paolo; Heister, Arno; Hill, C; Lawson, Philip Daniel; Lazic, Dragoslav; Rohlf, James; St. John, Jason; Sulak, Lawrence; Gennadiy, G; Laird, Edward; Landsberg, Greg; Narain, Meenakshi; Sinthuprasith, Tutanon; Tsang, Ka Vang; Long, Owen Rosser; Nguyen, Harold; Paramesvaran, Sudarshan; Sturdy, Jared; Stuart, David; To, Wing; West, Christopher Alan; Apresyan, Artur; Chen, Y; Mott, Alexander Robert; Spiropulu, Maria; Winn, David; Abdoulline, Salavat; Anderson, J; Chlebana, Frank; Freeman, James; Green, Daniel; Hanlon, J; Hirschauer, James Francis; Joshi, Umeshwar; Kunori, Shuichi; Musienko, Yuri; Sharma, Seema; Spalding, William Jeffrey; Tkaczyk, Slawomir; Vidal, Richard; Whitmore, Juliana; Wu, W; Gaultney, Vanessa; Linn, Stephan; Markowitz, Pete Edward; Martinez, German Ruben; Gleyzer, Sergei; Hagopian, Sharon Lee; Hagopian, Vasken; Jenkins, Charles Merrill; Baarmand, Marc M; Dorney, Brian L; Vodopiyanov, Igor; Akgun, Ugur; Albayrak, Elif Asli; Bilki, Burak; Clarida, Warren James; Duru, Firdevs; Merlo, Jean-Pierre; Mermerkaya, Hamit; Mestvirishvili, Alexi; Moeller, Anthony Richard; Nachtman, Jane; Newsom, Charles Ray; Norbeck, John Edwin; Olson, Jonathan Edward; Onel, Yasar; Ozok, Ferhat; Sen, Sercan; Schmidt, Ianos; Tiras, Emrah; Yetkin, Taylan; Yi, Kai; Kenny, Raymond Patrick; Murray, Michael Joseph; Wood, Jeffrey Scott; Baden, Andrew; Calvert, Brian Michael; Eno, Sarah Catherine; Gomez, Jaime Arturo; Grassi, Tullio; Hadley, Nicholas John; Kellogg, Richard; Kolberg, Ted; Lu, Y; Marionneau, Matthieu; Mignerey, Alice Louise Cox; Peterman, Alison Marie; Skuja, Andris; Temple, Jeffrey; Tonjes, Marguerite Belt; Kao, Shih-Chuan; Klapoetke, Kevin Humphrey; Mans, Jeremiah Michael; Pastika, Nathaniel Joseph; Kroeger, Robert; Rahmat, Rahmat; Sanders, David; Cremaldi, Lucien Marcus; Jain, S; Anastassov, Anton; Velasco, Mayda Marie; Won, Steven; Heering, Adriaan; Karmgard, Daniel; Pearson, Tessa Jae; Ruchti, Randal; Berry, Edmund A; Halyo, Valerie; Hebda, Philip; Hunt, Adam Paul; Lujan, Paul Joseph; Marlow, Daniel; Medvedeva, Tatiana; Saka, Halil; Tully, Christopher; Zuranski, Andrzej Maciej; Barnes, Virgil Everett; Laasanen, Alvin; Bodek, Arie; Chung, Yeon Sei; de Barbaro, Pawel Jan; Eshaq, Yossof; Garcia-bellido, Aran Angel; Goldenzweig, Pablo David; Han, Ji Yeon; Harel, Amnon; Miner, Daniel Carl; Vishnevskiy, Dmitry; Zielinski, Marek; Bhatti, Anwar; Ciesielski, Robert Adam; Flanagan, Will Hogan; Kamon, Teruki; Montalvo, Roy Joaquin; Sakuma, Tai; Akchurin, Nural; Damgov, Jordan; Dudero, Phillip Russell; Kovitanggoon, Kittikul; Lee, Sung Won; Libeiro, Terence; Volobouev, Igor; Gurrola, Alfredo; Milstene, Caroline

    2012-01-01

    A readout box prototype for CMS Hadron Forward calorimeter upgrade is built and tested in CERN H2 beamline. The prototype is designed to enable simultaneous tests of different readout options for the four anode upgrade PMTs, new front-end electronics design and new cabling. The response of the PMTs with different readout options is uniform and the background response is minimal. Multi-channel readout options further enhance the background elimination. Passing all the electronics, mechanical and physics tests, the readout box proves to be capable of providing the forward hadron calorimeter operations requirements in the upgrade era.

  2. Dual-Readout Calorimetry for High-Quality Energy Measurements

    CERN Document Server

    Wigmans, R

    2010-01-01

    During the past seven years, the DREAM Collaboration has systematically investigated all factors that determine and limit the precision with which the properties of hadrons and jets can be measured in calorimeters. Using simultaneous detection of the deposited energy and the Cerenkov light produced in hadronic shower development (dual readout), the fluctuations in the electromagnetic shower fraction could be measured event by event and their effects on signal linearity, response function and energy resolution eliminated. Detailed measurement of the time structure of the signals made it possible to measure the contributions of nuclear evaporation to the signals and thus reduce the effects of fluctuations in “invisible energy”. We are now embarking on the construction of a full-scale calorimeter which incorporates all these elements and which should make it possible to measure the four-vectors of both electrons, hadrons and jets with very high precision, in an instrument that can be simply calibrated with e...

  3. Dual-Readout Calorimetry for High-Quality Energy

    CERN Multimedia

    During the past seven years, the DREAM collaboration has systematically investigated all factors that determine and limit the precision with which the properties of hadrons and jets can be measured in calorimeters. Using simultaneous detection of the deposited energy and the Cerenkov light produced in hadronic shower development ${(dual}$ ${readout}$), the fluctuations in the electromagnetic shower fraction could be measured event by event their effects on signal linearity, response function and energy resolution eliminated. Detailed measurement of the time structure of the signals made it possible to measure the contirbutions of nuclear evaporation neutrons to the signals and thus reduce the effects of fluctuations in "invisible energy". We are now embarking on the construction of a full-scale calorimeter which incorporates all these elements and which should make it possible to measure the four-vectors of both electrons, hadrons and jets with very high precision, in an instrument that can be simply calibrat...

  4. Measurement of Light Collection of CMS PbWO4 Crystals Comparison with the Cristal Monte Carlo Simulation Program and Further Evaluation

    CERN Document Server

    Drobychev, Gleb; Peigneux, Jean-Pierre; Rivoalan, P

    1998-01-01

    The measurement of the signal for light collection limited by the effective area of the present APD detectors has been evaluated using a photomultiplier and co60 source. Comparison of the methods and experimental results for simple geometrical situations has been made with the results of the CRISTAL Monte Carlo program which is also used to evaluate more complicated geometries including evaluation of a wavelength shifter used with an APD as a photodetector.

  5. LYSO crystal calorimeter readout with silicon photomultipliers

    Energy Technology Data Exchange (ETDEWEB)

    Berra, A., E-mail: alessandro.berra@gmail.com [Università degli Studi dell' Insubria (Italy); INFN sezione di Milano Bicocca (Italy); Bonvicini, V. [INFN sezione di Trieste (Italy); Cecchi, C.; Germani, S. [INFN sezione di Perugia (Italy); Guffanti, D. [Università degli Studi dell' Insubria (Italy); Lietti, D. [Università degli Studi dell' Insubria (Italy); INFN sezione di Milano Bicocca (Italy); Lubrano, P.; Manoni, E. [INFN sezione di Perugia (Italy); Prest, M. [Università degli Studi dell' Insubria (Italy); INFN sezione di Milano Bicocca (Italy); Rossi, A. [INFN sezione di Perugia (Italy); Vallazza, E. [INFN sezione di Trieste (Italy)

    2014-11-01

    Large area Silicon PhotoMultipliers (SiPMs) are the new frontier of the development of readout systems for scintillating detectors. A SiPM consists of a matrix of parallel-connected silicon micropixels operating in limited Geiger–Muller avalanche mode, and thus working as independent photon counters with a very high gain (∼10{sup 6}). This contribution presents the performance in terms of linearity and energy resolution of an electromagnetic homogeneous calorimeter composed of 9∼18X{sub 0} LYSO crystals. The crystals were readout by 36 4×4 mm{sup 2} SiPMs (4 for each crystal) produced by FBK-irst. This calorimeter was tested at the Beam Test Facility at the INFN laboratories in Frascati with a single- and multi-particle electron beam in the 100–500 MeV energy range.

  6. Detector Readout of Analog Quantum Simulators

    Science.gov (United States)

    Schwenk, Iris; Tian, Lin; Marthaler, Michael

    An important step in quantum simulation is to measure the many-body correlations of the simulated model. For a practical quantum simulator composed of a finite number of qubits and cavities, in contrast to many-body systems in the thermodynamic limit, a measurement device can generate strong backaction on the simulator, which could prevent the accurate readout of the correlation functions. Here we calculate the readout of a detector coupled to analog quantum simulators. We show that reliable characterization of the many-body correlations of the simulators can be achieved when the coupling operators obey the Wick's theorem. Our results are illustrated with two examples: a simulator for an harmonic oscillator and a simulator for the free electron gas. We also present a method, which under certain constraints, allows for the reconstruction of the ideal correlators from the measurements on a perturbed quantum simulator. This work is in part supported by the National Science Foundation under Award Number 0956064.

  7. The pipelined readout for the ZEUS calorimeter

    International Nuclear Information System (INIS)

    Hervas, L.

    1991-01-01

    The electron-proton storage ring complex HERA under construction at DESY in Hamburg is the first machine of a new generation of colliders. Since physics to be studied at HERA (covered in chapter 2) base on the precise measurement of kinematic variables over a very large range of energies, a foremost emphasis is set in calorimetry. After long studies and an ambitious test program, the ZEUS collaboration has built a high resolution depleted uranium-scintillator calorimeter with photomultiplier readout, the state of the art in detectors of this type. In chapter 3 the principles of calorimetry are reviewed and the construction of the ZEUS calorimeter is described. Mainly due to the large dynamic range and the short bunch crossing times a novel concept for the readout in an analog pipelined fashion had to be designed. This concept is explained in chapter 4. The solid state implementation of the pipeline required two integrated circuits which were developed specially for the ZEUS calorimeter in collaboration with an electronics research institute and produced by industry. The design and construction of these devices and the detailed testing which has been performed for properties critical in the readout is covered in chapters 5 and 6. The whole pipelined readout is a complicated setup with many steps and collaborating systems. Its implementation and the information to operate it are covered in chapter 7. Finally the concepts presented and the applications discussed have been installed and tested on a test beam calibration experiment. There, the modules of the calorimeter have been calibrated. Chapter 8 presents results from these measurements which show excellent performance of the electronics as well as optimal properties of the calorimeter modules. (orig./HSI)

  8. LSST camera readout chip ASPIC: test tools

    Science.gov (United States)

    Antilogus, P.; Bailly, Ph; Jeglot, J.; Juramy, C.; Lebbolo, H.; Martin, D.; Moniez, M.; Tocut, V.; Wicek, F.

    2012-02-01

    The LSST camera will have more than 3000 video-processing channels. The readout of this large focal plane requires a very compact readout chain. The correlated ''Double Sampling technique'', which is generally used for the signal readout of CCDs, is also adopted for this application and implemented with the so called ''Dual Slope integrator'' method. We have designed and implemented an ASIC for LSST: the Analog Signal Processing asIC (ASPIC). The goal is to amplify the signal close to the output, in order to maximize signal to noise ratio, and to send differential outputs to the digitization. Others requirements are that each chip should process the output of half a CCD, that is 8 channels and should operate at 173 K. A specific Back End board has been designed especially for lab test purposes. It manages the clock signals, digitizes the analog differentials outputs of ASPIC and stores data into a memory. It contains 8 ADCs (18 bits), 512 kwords memory and an USB interface. An FPGA manages all signals from/to all components on board and generates the timing sequence for ASPIC. Its firmware is written in Verilog and VHDL languages. Internals registers permit to define various tests parameters of the ASPIC. A Labview GUI allows to load or update these registers and to check a proper operation. Several series of tests, including linearity, noise and crosstalk, have been performed over the past year to characterize the ASPIC at room and cold temperature. At present, the ASPIC, Back-End board and CCD detectors are being integrated to perform a characterization of the whole readout chain.

  9. Preliminary Assessment of Microwave Readout Multiplexing Factor

    Energy Technology Data Exchange (ETDEWEB)

    Croce, Mark Philip [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Koehler, Katrina Elizabeth [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Rabin, Michael W. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Bennett, D. A. [National Inst. of Standards and Technology (NIST), Boulder, CO (United States); Mates, J. A. B. [National Inst. of Standards and Technology (NIST), Boulder, CO (United States); Gard, J. D. [National Inst. of Standards and Technology (NIST), Boulder, CO (United States); Becker, D. [National Inst. of Standards and Technology (NIST), Boulder, CO (United States); Schmidt, D. R. [National Inst. of Standards and Technology (NIST), Boulder, CO (United States); Ullom, J. N. [National Inst. of Standards and Technology (NIST), Boulder, CO (United States)

    2017-01-23

    Ultra-high resolution microcalorimeter gamma spectroscopy is a new non-destructive assay technology for measurement of plutonium isotopic composition, with the potential to reduce total measurement uncertainty to a level competitive with destructive analysis methods [1-4]. Achieving this level of performance in practical applications requires not only the energy resolution now routinely achieved with transition-edge sensor microcalorimeter arrays (an order of magnitude better than for germanium detectors) but also high throughput. Microcalorimeter gamma spectrometers have not yet achieved detection efficiency and count rate capability that is comparable to germanium detectors, largely because of limits from existing readout technology. Microcalorimeter detectors must be operated at low temperature to achieve their exceptional energy resolution. Although the typical 100 mK operating temperatures can be achieved with reliable, cryogen-free systems, the cryogenic complexity and heat load from individual readout channels for large sensor arrays is prohibitive. Multiplexing is required for practical systems. The most mature multiplexing technology at present is time-division multiplexing (TDM) [3, 5-6]. In TDM, the sensor outputs are switched by applying bias current to one SQUID amplifier at a time. Transition-edge sensor (TES) microcalorimeter arrays as large as 256 pixels have been developed for X-ray and gamma-ray spectroscopy using TDM technology. Due to bandwidth limits and noise scaling, TDM is limited to a maximum multiplexing factor of approximately 32-40 sensors on one readout line [8]. Increasing the size of microcalorimeter arrays above the kilopixel scale, required to match the throughput of germanium detectors, requires the development of a new readout technology with a much higher multiplexing factor.

  10. Performance of MSGC with analog pipeline readout

    Energy Technology Data Exchange (ETDEWEB)

    Gomez, F. [Universidad de Santiago de Compostela (Spain); Adeva, B. [Universidad de Santiago de Compostela (Spain); Gracia, G. [Universidad de Santiago de Compostela (Spain); Lopez, M.A. [Universidad de Santiago de Compostela (Spain); Nunez, T. [Universidad de Santiago de Compostela (Spain); Pazos, A. [Universidad de Santiago de Compostela (Spain); Plo, M. [Universidad de Santiago de Compostela (Spain); Rodriguez, A. [Universidad de Santiago de Compostela (Spain); Santamarina, C. [Universidad de Santiago de Compostela (Spain); Vazquez, P. [Universidad de Santiago de Compostela (Spain)

    1997-01-01

    We analyse some of the performance characteristics of a chromium MSGC operated with Ar-DME 50%-50% in a test beam at CERN. Excellent signal-to-noise ratio and efficiency has been achieved with this gas mixture using cathode analog pipeline readout. We also determine optimal parameters for the sampling algorithm in order to work in a random trigger experiment (fixed target). (orig.).

  11. Performance of MSGC with analog pipeline readout

    International Nuclear Information System (INIS)

    Gomez, F.; Adeva, B.; Gracia, G.; Lopez, M.A.; Nunez, T.; Pazos, A.; Plo, M.; Rodriguez, A.; Santamarina, C.; Vazquez, P.

    1997-01-01

    We analyse some of the performance characteristics of a chromium MSGC operated with Ar-DME 50%-50% in a test beam at CERN. Excellent signal-to-noise ratio and efficiency has been achieved with this gas mixture using cathode analog pipeline readout. We also determine optimal parameters for the sampling algorithm in order to work in a random trigger experiment (fixed target). (orig.)

  12. Signal processing for distributed readout using TESs

    International Nuclear Information System (INIS)

    Smith, Stephen J.; Whitford, Chris H.; Fraser, George W.

    2006-01-01

    We describe optimal filtering algorithms for determining energy and position resolution in position-sensitive Transition Edge Sensor (TES) Distributed Read-Out Imaging Devices (DROIDs). Improved algorithms, developed using a small-signal finite-element model, are based on least-squares minimisation of the total noise power in the correlated dual TES DROID. Through numerical simulations we show that significant improvements in energy and position resolution are theoretically possible over existing methods

  13. Towards wireless data readout of particle detectors

    Energy Technology Data Exchange (ETDEWEB)

    Dittmeier, Sebastian; Schoening, Andre; Wiedner, Dirk; Berger, Niklaus; Petersen, Jens; Hugle, Thomas [Physikalisches Institut, Universitaet Heidelberg (Germany)

    2013-07-01

    Today's high energy physics experiments produce large amounts of data in a short time. The fast readout of this data is a big challenge. The license-free 60 GHz band allows for short distance applications with high data rates of the order of several Gb/s. The transceivers can be produced in SiGe HBT BiCMOS technology. As we are dealing with mm-waves, even antennas, which increase the directivity of the transmission, can be built in small structures. So, this technique seems very promising for the readout of particle detectors. For example, it can be used for the readout of the upgraded ATLAS silicon micro-strip tracker and make a first level track trigger feasible. We present first results of our tests with semi-commercially available 60 GHz transceivers regarding the usage in a high energy physics experiment. We examined the intensity of the carrier signal regarding reflectivity and absorption using graphite foam. Moreover, we tested the directivity of a horn antenna made from Kapton. We furthermore investigated the quality of a modulated signal with respect to bit errors using pseudo-random data as well as real data files.

  14. Embedded controller for GEM detector readout system

    Science.gov (United States)

    Zabołotny, Wojciech M.; Byszuk, Adrian; Chernyshova, Maryna; Cieszewski, Radosław; Czarski, Tomasz; Dominik, Wojciech; Jakubowska, Katarzyna L.; Kasprowicz, Grzegorz; Poźniak, Krzysztof; Rzadkiewicz, Jacek; Scholz, Marek

    2013-10-01

    This paper describes the embedded controller used for the multichannel readout system for the GEM detector. The controller is based on the embedded Mini ITX mainboard, running the GNU/Linux operating system. The controller offers two interfaces to communicate with the FPGA based readout system. FPGA configuration and diagnostics is controlled via low speed USB based interface, while high-speed setup of the readout parameters and reception of the measured data is handled by the PCI Express (PCIe) interface. Hardware access is synchronized by the dedicated server written in C. Multiple clients may connect to this server via TCP/IP network, and different priority is assigned to individual clients. Specialized protocols have been implemented both for low level access on register level and for high level access with transfer of structured data with "msgpack" protocol. High level functionalities have been split between multiple TCP/IP servers for parallel operation. Status of the system may be checked, and basic maintenance may be performed via web interface, while the expert access is possible via SSH server. System was designed with reliability and flexibility in mind.

  15. Sensitivity improvement of a laser interferometer limited by inelastic back-scattering, employing dual readout

    International Nuclear Information System (INIS)

    Meinders, Melanie; Schnabel, Roman

    2015-01-01

    Inelastic back-scattering of stray light is a long-standing and fundamental problem in high-sensitivity interferometric measurements and a potential limitation for advanced gravitational-wave (GW) detectors. The emerging parasitic interferences cannot be distinguished from a scientific signal via conventional single readout. In this work, we propose the subtraction of inelastic back-scatter signals by employing dual homodyne detection on the output light, and demonstrate it for a table-top Michelson interferometer. The additional readout contains solely parasitic signals and is used to model the scatter source. Subtraction of the scatter signal reduces the noise spectral density and thus improves the measurement sensitivity. Our scheme is qualitatively different from the previously demonstrated vetoing of scatter signals and opens a new path for improving the sensitivity of future GW detectors and other back-scatter limited devices. (paper)

  16. Development of microwave kinetic inductance detectors and their readout system for LiteBIRD

    Energy Technology Data Exchange (ETDEWEB)

    Hattori, K.; Hazumi, M. [High Energy Accelerator Research Organization, Tsukuba, Ibaraki 305-0801 (Japan); Ishino, H.; Kibayashi, A. [Okayama University, Okayama 700-8530 (Japan); Kibe, Y., E-mail: kibe@fphy.hep.okayama-u.ac.jp [Okayama University, Okayama 700-8530 (Japan); Mima, S. [Terahertz-wave Research Group, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Okamura, T.; Sato, N.; Tomaru, T. [High Energy Accelerator Research Organization, Tsukuba, Ibaraki 305-0801 (Japan); Yamada, Y. [Okayama University, Okayama 700-8530 (Japan); Yoshida, M. [High Energy Accelerator Research Organization, Tsukuba, Ibaraki 305-0801 (Japan); Yuasa, T. [Okayama University, Okayama 700-8530 (Japan); Watanabe, H. [SOKENDAI, Tsukuba, Ibaraki 305-0801 (Japan)

    2013-12-21

    Primordial gravitational waves generated by inflation have produced an odd-parity pattern B-mode in the cosmic microwave background (CMB) polarization. LiteBIRD (Light satellite for the studies of B-mode polarization and Inflation from cosmic background Radiation Detection) aims at detecting this B-mode polarization precisely. It requires about 2000 detectors capable of detecting a frequency range from 50 GHz to 250 GHz with ultra low noise. Superconducting detectors are suitable for this requirement. We have fabricated and tested microwave kinetic inductance detectors (MKIDs) and developed a new readout system. We have designed antenna-coupled MKIDs. Quasi-particles are created by incident radiation and are detected as a change of the surface impedance of a superconductor strip. This change of the surface impedance is translated into the change of the resonant frequency of a microwave signal transmitted through the resonator. We also have developed a new readout system for MKIDs. The newly developed readout system is not only able to read out the amplitude and the phase data with the homodyne detection for multi-channels, but also provides a unique feature of tracking the resonant frequency of the target resonator. This mechanism enables us to detect signals with a large dynamic range. We report on the recent R and D status of the developing MKIDs and on the read-out system for LiteBIRD.

  17. A position- and time-sensitive photon-counting detector with delay- line read-out

    Science.gov (United States)

    Jagutzki, Ottmar; Dangendorf, Volker; Lauck, Ronald; Czasch, Achim; Milnes, James

    2007-05-01

    We have developed image intensifier tubes with delay-anode read-out for time- and position-sensitive photon counting. The timing precision is better than 1 ns with 1000x1000 pixels position resolution and up to one megacounts/s processing rate. Large format detectors of 40 and 75 mm active diameter with internal helical-wire delay-line anodes have been produced and specified. A different type of 40 and 25 mm tubes with semi-conducting screen for image charge read-out allow for an economic and robust tube design and for placing the read-out anodes outside the sealed housing. Two types of external delay-line anodes, i.e. pick-up electrodes for the image charge, have been tested. We present tests of the detector and anode performance. Due to the low background this technique is well suited for applications with very low light intensity and especially if a precise time tagging for each photon is required. As an example we present the application of scintillator read-out in time-of-flight (TOF) neutron radiography. Further applications so far are Fluorescence Life-time Microscopy (FLIM) and Astronomy.

  18. Performances of a HGCDTE APD Based Detector with Electric Cooling for 2-μm DIAL/IPDA Applications

    Science.gov (United States)

    Dumas, A.; Rothman, J.; Gibert, F.; Lasfargues, G.; Zanatta, J.-P.; Edouart, D.

    2016-06-01

    In this work we report on design and testing of an HgCdTe Avalanche Photodiode (APD) detector assembly for lidar applications in the Short Wavelength Infrared Region (SWIR : 1,5 - 2 μm). This detector consists in a set of diodes set in parallel -making a 200 μm large sensitive area- and connected to a custom high gain TransImpedance Amplifier (TIA). A commercial four stages Peltier cooler is used to reach an operating temperature of 185K. Crucial performances for lidar use are investigated : linearity, dynamic range, spatial homogeneity, noise and resistance to intense illumination.

  19. Performances of a HGCDTE APD Based Detector with Electric Cooling for 2-μm DIAL/IPDA Applications

    Directory of Open Access Journals (Sweden)

    Dumas A.

    2016-01-01

    Full Text Available In this work we report on design and testing of an HgCdTe Avalanche Photodiode (APD detector assembly for lidar applications in the Short Wavelength Infrared Region (SWIR : 1,5 - 2 μm. This detector consists in a set of diodes set in parallel -making a 200 μm large sensitive area- and connected to a custom high gain TransImpedance Amplifier (TIA. A commercial four stages Peltier cooler is used to reach an operating temperature of 185K. Crucial performances for lidar use are investigated : linearity, dynamic range, spatial homogeneity, noise and resistance to intense illumination.

  20. AVME readout module for multichannel ASIC characterization

    International Nuclear Information System (INIS)

    Borkar, S.P.; Lalwani, S.K.; Ghodgaonkar, M.D.; Kataria, S.K.; Reynaud, Serge; )

    2004-01-01

    Electronics Division, BARC has been working on the development of multi-channel ASIC, called SPAIR (Silicon-strip Pulse Amplifier Integrated Readout). It contains 8 channels of preamplifier, shaper and track-and-hold circuitry. Electronics Division has also actively participated in development of test setup for the front-end ASIC, called PACE, for the preshower detector of the Compact Muon Solenoid (CMS) Experiment at CERN, Geneva. PACE is a 32 channel ASIC for silicon strip detector, containing preamplifier, shaper, calibration circuitry, switched capacitor array, readout amplifier per channel and an analog multiplexer. A VME Readout Module, (VRM) is developed which can be utilized in data acquisition from ASICs like PACE and SPAIR. The VRM can also be used as the Detector Dependent Unit for digitally processing the data received from the front-end electronics on the 16-bit LVDS port. The processed, data can be read by the VME system. Thus the VRM is very useful in building an ASIC characterization system and/or the automated ASIC production testing system. It can be used also to build the applications using such ASICs. To cater to various requirements arising in future, variety of VME modules are to be developed like ADCs, DACs and D 1/0. VME interface remains a common part to all these modules. The different functional blocks of these modules can be designed and fabricated on small piggyback boards (called Test Boards) and mounted on the VRM, which provides the common VME interface. The design details and uses of VRM are presented here. (author)

  1. Pixel readout electronics for LHC and biomedical applications

    CERN Document Server

    Blanquart, L; Comes, G; Delpierre, P A; Fischer, P; Hausmann, J C; Keil, M; Lindner, Manfred; Meuser, S; Wermes, N

    2000-01-01

    The demanding requirements for pixel readout electronics for high- energy physics experiments and biomedical applications are reviewed. Some examples of the measured analog performance of prototype chips are given. The readout architectures of the PIxel readout for the ATlas experiment (PIRATE) chip suited for LHC experiments and of the multi-picture element counter (MPEC) counting chip targeted for biomedical applications are presented. First results with complete chip-sensor assemblies are also shown. (12 refs).

  2. Authenticated communication from quantum readout of PUFs

    Science.gov (United States)

    Škorić, Boris; Pinkse, Pepijn W. H.; Mosk, Allard P.

    2017-08-01

    Quantum readout of physical unclonable functions (PUFs) is a recently introduced method for remote authentication of objects. We present an extension of the protocol to enable the authentication of data: A verifier can check if received classical data were sent by the PUF holder. We call this modification QR-d or, in the case of the optical-PUF implementation, QSA-d. We discuss how QSA-d can be operated in a parallel way. We also present a protocol for authenticating quantum states.

  3. Test vehicles for CMS HGCAL readout ASIC

    CERN Document Server

    Thienpont, Damien

    2017-01-01

    This paper presents first measurement results of two test vehicles ASIC embedding some building blocks for the future CMS High Granularity CALorimeter (HGCAL) read-out ASIC. They were fabricated in CMOS 130 nm, in order to first design the Analog and Mixed-Signal blocks before going to a complete and complex chip. Such a circuit needs to achieve low noise high dynamic range charge measurement and 20 ps resolution timing capability. The results show good analog performance but with higher noise levels compared to simulations. We present the results of the preamplifiers, shapers and ADCs.

  4. A multiball read-out for the spherical proportional counter

    Science.gov (United States)

    Giganon, A.; Giomataris, I.; Gros, M.; Katsioulas, I.; Navick, X. F.; Tsiledakis, G.; Savvidis, I.; Dastgheibi-Fard, A.; Brossard, A.

    2017-12-01

    We present a novel concept of proportional gas amplification for the read-out of the spherical proportional counter. The standard single-ball read-out presents limitations for large diameter spherical detectors and high-pressure operations. We have developed a multi-ball read-out system which consists of several balls placed at a fixed distance from the center of the spherical vessel. Such a module can tune the volume electric field at the desired value and can also provide detector segmentation with individual ball read-out. In the latter case, the large volume of the vessel becomes a spherical time projection chamber with 3D capabilities.

  5. Dependence of transmon qubit relaxation rate on readout drive power

    Science.gov (United States)

    Mundhada, S. O.; Shankar, S.; Narla, A.; Zalys-Geller, E.; Girvin, S. M.; Devoret, M. H.

    In circuit QED experiments, microwave drives are applied to the readout mode for qubit measurement, control and to realize various multi-photon processes. These microwave drives have been observed to detrimentally affect the qubit mode by increasing the qubit relaxation rates for both upward and downward transitions. These transitions demolish the qubit state during a measurement, limiting the maximum measurement strength and thus the readout fidelity and speed. Here, we experimentally investigate this effect for transmon qubits coupled to different realizations of the readout mode: 3-dimensional microwave cavities, strip-line resonators and nonlinear readout modes in a waveguide. Work supported by: NSF, ARO, AFOSR and YINQE.

  6. LHCb: A new Readout Control system for the LHCb Upgrade

    CERN Multimedia

    Alessio, F

    2012-01-01

    The LHCb experiment has proposed an upgrade towards a full 40 MHz readout system in order to run between five and ten times its initial design luminosity. The entire readout architecture will be upgraded in order to cope with higher sub-detector occupancies, higher rate and higher network load. In this paper, we describe the architecture, functionalities and the first hardware implementation of a new Readout Control system for the LHCb upgrade. The system is based on FPGAs and bi-directional links for the control of the entire readout architecture. First results on the validation of the system are also given.

  7. Intensity-based readout of resonant-waveguide grating biosensors: Systems and nanostructures

    Science.gov (United States)

    Paulsen, Moritz; Jahns, Sabrina; Gerken, Martina

    2017-09-01

    Resonant waveguide gratings (RWG) - also called photonic crystal slabs (PCS) - have been established as reliable optical transducers for label-free biochemical assays as well as for cell-based assays. Current readout systems are based on mechanical scanning and spectrometric measurements with system sizes suitable for laboratory equipment. Here, we review recent progress in compact intensity-based readout systems for point-of-care (POC) applications. We briefly introduce PCSs as sensitive optical transducers and introduce different approaches for intensity-based readout systems. Photometric measurements have been realized with a simple combination of a light source and a photodetector. Recently a 96-channel, intensity-based readout system for both biochemical interaction analyses as well as cellular assays was presented employing the intensity change of a near cut-off mode. As an alternative for multiparametric detection, a camera system for imaging detection has been implemented. A portable, camera-based system of size 13 cm × 4.9 cm × 3.5 cm with six detection areas on an RWG surface area of 11 mm × 7 mm has been demonstrated for the parallel detection of six protein binding kinetics. The signal-to-noise ratio of this system corresponds to a limit of detection of 168 M (24 ng/ml). To further improve the signal-to-noise ratio advanced nanostructure designs are investigated for RWGs. Here, results on multiperiodic and deterministic aperiodic nanostructures are presented. These advanced nanostructures allow for the design of the number and wavelengths of the RWG resonances. In the context of intensity-based readout systems they are particularly interesting for the realization of multi-LED systems. These recent trends suggest that compact point-of-care systems employing disposable test chips with RWG functional areas may reach market in the near future.

  8. Results from a prototype MAPS sensor telescope and readout system with zero suppression for the heavy flavor tracker at STAR

    International Nuclear Information System (INIS)

    Greiner, L.; Matis, H.S.; Ritter, H.G.; Rose, A.; Stezelberger, T.; Sun, X.; Szelezniak, M.; Thomas, J.; Vu, C.; Wieman, H.

    2008-01-01

    We describe a three Mimostar-2 Monolithic Active Pixel Sensor (MAPS) sensor telescope prototype with an accompanying readout system incorporating on-the-fly data sparsification. The system has been characterized and we report on the measured performance of the sensor telescope and readout system in beam tests conducted both at the Advanced Light Source (ALS) at Lawrence Berkeley National Laboratory (LBNL) and in the STAR experiment at the Relativistic Heavy Ion Collider (RHIC). This effort is part of the development and prototyping work that will lead to a vertex detector for the STAR experiment

  9. Time over threshold readout method of SiPM based small animal PET detector

    International Nuclear Information System (INIS)

    Valastyan, I.; Gal, J.; Hegyesi, G.; Kalinka, G.; Nagy, F.; Kiraly, B.; Imrek, J.; Molnar, J.

    2012-01-01

    Complete text of publication follows. The aim of the work was to design a readout concept for silicon photomultiplier (SiPM) sensor array used in small animal PET scanner. The detector module consist of LYSO 35x35 scintillation crystals, 324 SiPM sensors (arranged in 2x2 blocks and those quads in a 9x9 configuration) and FPGA based readout electronics. The dimensions of the SiPM matrix are area: 48x48 mm 2 and the size of one SiPM sensor is 1.95x2.2 mm 2 . Due to the high dark current of the SiPM, conventional Anger based readout method does not provide sufficient crystal position maps. Digitizing the 324 SiPM channels is a straightforward way to obtain proper crystal position maps. However handling hundreds of analogue input channels and the required DSP resources cause large racks of data acquisition electronics. Therefore coding of the readout channels is required. Proposed readout method: The coding of the 324 SiPMs consists two steps: Step 1) Reduction of the channels from 324 to 36: Row column readout, SiPMs are connected to each other in column by column and row-by row, thus the required channels are 36. The dark current of 18 connected SiPMs is small in off for identifying pulses coming from scintillating events. Step 2) Reduction of the 18 rows and columns to 4 channels: Comparators were connected to each rows and columns, and the level was set above the level of dark noise. Therefore only few comparators are active when scintillation light enters in the tile. The output of the comparator rows and columns are divided to two parts using resistor chains. Then the outputs of the resistor chains are digitized by a 4 channel ADC. However instead of the Anger method, time over threshold (ToT) was used. Figure 1 shows the readout concept of the SiPM matrix. In order to validate the new method and optimize the front-end electronics of the detector, the analogue signals were digitized before the comparators using a CAEN DT5740 32 channel digitizer, then the

  10. MKID digital readout tuning with deep learning

    Science.gov (United States)

    Dodkins, R.; Mahashabde, S.; O'Brien, K.; Thatte, N.; Fruitwala, N.; Walter, A. B.; Meeker, S. R.; Szypryt, P.; Mazin, B. A.

    2018-04-01

    Microwave Kinetic Inductance Detector (MKID) devices offer inherent spectral resolution, simultaneous read out of thousands of pixels, and photon-limited sensitivity at optical wavelengths. Before taking observations the readout power and frequency of each pixel must be individually tuned, and if the equilibrium state of the pixels change, then the readout must be retuned. This process has previously been performed through manual inspection, and typically takes one hour per 500 resonators (20 h for a ten-kilo-pixel array). We present an algorithm based on a deep convolution neural network (CNN) architecture to determine the optimal bias power for each resonator. The bias point classifications from this CNN model, and those from alternative automated methods, are compared to those from human decisions, and the accuracy of each method is assessed. On a test feed-line dataset, the CNN achieves an accuracy of 90% within 1 dB of the designated optimal value, which is equivalent accuracy to a randomly selected human operator, and superior to the highest scoring alternative automated method by 10%. On a full ten-kilopixel array, the CNN performs the characterization in a matter of minutes - paving the way for future mega-pixel MKID arrays.

  11. Semiconductor detectors with proximity signal readout

    International Nuclear Information System (INIS)

    Asztalos, Stephen J.

    2012-01-01

    Semiconductor-based radiation detectors are routinely used for the detection, imaging, and spectroscopy of x-rays, gamma rays, and charged particles for applications in the areas of nuclear and medical physics, astrophysics, environmental remediation, nuclear nonproliferation, and homeland security. Detectors used for imaging and particle tracking are more complex in that they typically must also measure the location of the radiation interaction in addition to the deposited energy. In such detectors, the position measurement is often achieved by dividing or segmenting the electrodes into many strips or pixels and then reading out the signals from all of the electrode segments. Fine electrode segmentation is problematic for many of the standard semiconductor detector technologies. Clearly there is a need for a semiconductor-based radiation detector technology that can achieve fine position resolution while maintaining the excellent energy resolution intrinsic to semiconductor detectors, can be fabricated through simple processes, does not require complex electrical interconnections to the detector, and can reduce the number of required channels of readout electronics. Proximity electrode signal readout (PESR), in which the electrodes are not in physical contact with the detector surface, satisfies this need

  12. Percent improvement in renal pelvis antero-posterior diameter (PI-APD): Prospective validation and further exploration of cut-off values that predict success after pediatric pyeloplasty supporting safe monitoring with ultrasound alone.

    Science.gov (United States)

    Rickard, M; Braga, L H; Oliveria, J-P; Romao, R; Demaria, J; Lorenzo, A J

    2016-08-01

    Renograms are frequently obtained post-pyeloplasty in patients with residual hydronephrosis to confirm adequate drainage. Recent evidence suggests that percent improvement in antero-posterior diameter (PI-APD) ≥38 is predictive of success. We sought to further explore PI-APD ranges that would allow identification of patients who would benefit from ultrasound (US) monitoring alone vs. post-operative renal scan, and those more likely to develop recurrent ureteropelvic junction obstruction (rUPJO). A single-center prospectively-collected pyeloplasty database (2008-2015) was queried (n = 151). Only patients with both pre- and post-operative APD measurements were included (n = 138). PI-APD was divided into 3 categories: PI-APD. Of 54 patients with renogram and US 46 (85%; p PI-APD. Of the 6 patients who developed rUPJO, all were in the PI-APD group (100%; p 40% PI-APD group. ≥40% PI-APD at the first post-operative visit strongly predicts pyeloplasty success, as up to 82% of these patients showed resolved hydronephrosis and 61% underwent non-invasive monitoring by US alone. Our data suggests that up to 85% of renograms may have been unnecessary. Finally, PI-APD permitted identification of all rUPJO cases. Stratification of patients based in PI-APD is a promising strategy for further minimizing radiation exposure while safely detecting children at risk for rUPJO. Copyright © 2016 Journal of Pediatric Urology Company. Published by Elsevier Ltd. All rights reserved.

  13. Hodoscope read-out with space-time mapping through an optical pipeline

    International Nuclear Information System (INIS)

    Bamberger, A.; Boehler, E.; Kroeger, W.; Soeldner-Rembold, S.

    1993-09-01

    This note describes a new read-out scheme for fine grained hodoscopes with possible applications for a Small Angle Rear Tracking Detector (SRTD) or a pre-sampler in front of the ZEUS Uranium Calorimeter. Several hodoscope strips are read out by one phototube using optical fibres of different lengths. Optical delays of equal increments ensure a linear mapping of the space coordinate onto the time coordinate. A first prototype has been built and first test measurements are being presented. In addition, Monte Carlo simulations were performed to study the effects of showering electrons on the position resolution of the detector. The results of the test measurements, especially those related to the properties of the light guides, and the results of the simulation are of general importance for the SRTD design beyond the optical delay read-out scheme presented here. (orig.)

  14. The Omega Ring Imaging Cerenkov Detector readout system user's guide

    International Nuclear Information System (INIS)

    Hallewell, G.

    1984-11-01

    The manual describes the electronic readout system of the Ring Imaging Cerenkov Detector at the CERN Omega Spectrometer. The system is described in its configuration of September 1984 after the Rich readout system had been used in two Omega experiments. (U.K.)

  15. Direct readout of gaseous detectors with tiled CMOS circuits

    International Nuclear Information System (INIS)

    Visschers, J.L.; Blanco Carballo, V.; Chefdeville, M.; Colas, P.; Graaf, H. van der; Schmitz, J.; Smits, S.; Timmermans, J.

    2007-01-01

    A coordinated design effort is underway, exploring the three-dimensional direct readout of gaseous detectors by an anode plate equipped with a tiled array of many CMOS pixel readout ASICs, having amplification grids integrated on their topsides and being contacted on their backside

  16. A Triggerless readout system for the ANDA electromagnetic calorimeter

    NARCIS (Netherlands)

    Tiemens, M.

    2015-01-01

    One of the physics goals of the future ANDA experiment at FAIR is to research newly discovered exotic states. Because the detector response created by these particles is very similar to the background channels, a new type of data readout had to be developed, called "triggerless" readout. In this

  17. A Fastbus-based silicon strip readout system

    International Nuclear Information System (INIS)

    Neoustroev, P.; Stepanov, V.; Svoiski, M.; Uvarov, L.; Matthew, P.; Russ, J.; Cooper, P.

    1995-01-01

    The readout system we describe here is built specifically to work with the LBL-designed SVX chip. It is typical of systems using a master sequencer module to direct the trigger and readout cycles of the sparse data source and to push data into a digitization and storage module. (orig.)

  18. Performance study of large area encoding readout MRPC

    Science.gov (United States)

    Chen, X. L.; Wang, Y.; Chen, G.; Han, D.; Wang, X.; Zeng, M.; Zeng, Z.; Zhao, Z.; Guo, B.

    2018-02-01

    Muon tomography system built by the 2-D readout high spatial resolution Multi-gap Resistive Plate Chamber (MRPC) detector is a project of Tsinghua University. An encoding readout method based on the fine-fine configuration has been used to minimize the number of the readout electronic channels resulting in reducing the complexity and the cost of the system. In this paper, we provide a systematic comparison of the MRPC detector performance with and without fine-fine encoding readout. Our results suggest that the application of the fine-fine encoding readout leads us to achieve a detecting system with slightly worse spatial resolution but dramatically reduce the number of electronic channels.

  19. Architecture of PAU survey camera readout electronics

    Science.gov (United States)

    Castilla, Javier; Cardiel-Sas, Laia; De Vicente, Juan; Illa, Joseph; Jimenez, Jorge; Maiorino, Marino; Martinez, Gustavo

    2012-07-01

    PAUCam is a new camera for studying the physics of the accelerating universe. The camera will consist of eighteen 2Kx4K HPK CCDs: sixteen for science and two for guiding. The camera will be installed at the prime focus of the WHT (William Herschel Telescope). In this contribution, the architecture of the readout electronics system is presented. Back- End and Front-End electronics are described. Back-End consists of clock, bias and video processing boards, mounted on Monsoon crates. The Front-End is based on patch panel boards. These boards are plugged outside the camera feed-through panel for signal distribution. Inside the camera, individual preamplifier boards plus kapton cable completes the path to connect to each CCD. The overall signal distribution and grounding scheme is shown in this paper.

  20. Online readout and control unit for high-speed / high resolution readout of silicon tracking detectors

    International Nuclear Information System (INIS)

    Buerger, J.; Hansen, K.; Lange, W.; Nowak, T.; Prell, S.; Zimmermann, W.

    1996-09-01

    We are describing a high speed VME readout and control module developed and presently working at the H1 experiment at DESY in Hamburg. It has the capability to read out 4 x 2048 analogue data channels at sampling rates up to 10 MHz with a dynamic input range of 1 V. The nominal resolution of the A/D converters can be adjusted between 8 and 12 bit. At the latter resolution we obtain signal-to-noise ratio better than 61.4 dB at a conversion rate of 5 MSps. At this data rate all 8192 detector channels can be read out to the internal raw data memory and VME interface within about 410 μs and 510 μs, respectively. The pedestal subtracted signals can be analyzed on-line. At a raw data hit occupation of 10%, the VME readout time is 50 μs per module. Each module provides four complementary CMOS signals to control the front-end electronics and four independent sets of power supplies for analogue and digital voltages (10 V, 100 mA) to drive the front-end electronics and for the bias voltage (100 V, 1.2 mA) to assure the full functionality of the detectors and the readout. (orig.)

  1. Pulse oximeter using a gain-modulated avalanche photodiode operated in a pseudo lock-in light detection mode

    Science.gov (United States)

    Miyata, Tsuyoshi; Iwata, Tetsuo; Araki, Tsutomu

    2006-01-01

    We propose a reflection-type pulse oximeter, which employs two pairs of a light-emitting diode (LED) and a gated avalanche photodiode (APD). One LED is a red one with an emission wavelength λ = 635 nm and the other is a near-infrared one with that λ = 945 nm, which are both driven with a pulse mode at a frequency f (=10 kHz). Superposition of a transistor-transistor-logic (TTL) gate pulse on a direct-current (dc) bias, which is set so as not exceeding the breakdown voltage of each APD, makes the APD work in a gain-enhanced operation mode. Each APD is gated at a frequency 2f (=20 kHz) and its output signal is fed into a laboratory-made lock-in amplifier that works in synchronous with the pulse modulation signal of each LED at a frequency f (=10 kHz). A combination of the gated APD and the lock-in like signal detection scheme is useful for the reflection-type pulse oximeter thanks to the capability of detecting a weak signal against a large background (BG) light.

  2. A High-Speed, Event-Driven, Active Pixel Sensor Readout for Photon-Counting Microchannel Plate Detectors

    Science.gov (United States)

    Kimble, Randy A.; Pain, Bedabrata; Norton, Timothy J.; Haas, J. Patrick; Oegerle, William R. (Technical Monitor)

    2002-01-01

    Silicon array readouts for microchannel plate intensifiers offer several attractive features. In this class of detector, the electron cloud output of the MCP intensifier is converted to visible light by a phosphor; that light is then fiber-optically coupled to the silicon array. In photon-counting mode, the resulting light splashes on the silicon array are recognized and centroided to fractional pixel accuracy by off-chip electronics. This process can result in very high (MCP-limited) spatial resolution while operating at a modest MCP gain (desirable for dynamic range and long term stability). The principal limitation of intensified CCD systems of this type is their severely limited local dynamic range, as accurate photon counting is achieved only if there are not overlapping event splashes within the frame time of the device. This problem can be ameliorated somewhat by processing events only in pre-selected windows of interest of by using an addressable charge injection device (CID) for the readout array. We are currently pursuing the development of an intriguing alternative readout concept based on using an event-driven CMOS Active Pixel Sensor. APS technology permits the incorporation of discriminator circuitry within each pixel. When coupled with suitable CMOS logic outside the array area, the discriminator circuitry can be used to trigger the readout of small sub-array windows only when and where an event splash has been detected, completely eliminating the local dynamic range problem, while achieving a high global count rate capability and maintaining high spatial resolution. We elaborate on this concept and present our progress toward implementing an event-driven APS readout.

  3. A prototype optical-CT system for PRESAGE 3D dosimeter readout

    Science.gov (United States)

    Miles, Devin; Yoon, Paul; Kodra, Jacob; Adamovics, John; Oldham, Mark

    2017-05-01

    This work introduces the Duke Integrated-lens Optical Scanner (DIOS), a prototype optical-CT system designed for convenient and low-cost readout of PRESAGE 3D dosimeters. A key novelty of the DIOS is the incorporation of a multi-purpose light-collimating tank (the LC-tank). The LC-tank collimates light from a point source, maintains parallel ray geometry through a dosimeter mounted inside the tank, and refocuses emergent light onto a CCD detector. A second purpose is to dramatically reduce the amount of refractive matched fluid required in prior optical-CT scanners. This is achieved by substituting large quantities of refractive-matched fluid with solid RI-matched polyurethane. The advantages of DIOS include eliminating the need for expensive telecentric lenses, and eliminating the impracticality of large volumes of RI matched fluid. The DIOS is potentially more susceptible to stray-light artifacts. Preliminary phantom testing shows promising agreement between PRESAGE/DIOS readout and prior commissioned optical-CT scanners, as well as with Eclipse dose calculations.

  4. Accounting for Readout Dark in ACS/WFC Superbiases

    Science.gov (United States)

    Ryon, J. E.; Grogin, N. A.; Coe, D.

    2017-12-01

    We investigate the properties of excess dark current accumulated during the 100-second full-frame readout of the Advanced Camera for Surveys (ACS) Wide Field Channel (WFC) detectors. This excess dark current, called "readout dark", gives rise to ambient background gradients and hot columns in each ACS/WFC image. We present an analysis of simulated readout dark images developed in ACS ISR 2014-02, and find that the results from the simulated data cannot be fully reconciled with the results from observed bias images. We develop a new method to estimate the readout dark noise properties in ACS/WFC observations instead of using simulated images. While readout dark signal is removed from science images during the bias correction step in CALACS, the additional noise from the readout dark is currently not taken into account. We will update the ERR extensions of superbias images to include the appropriate noise from the ambient readout dark gradient and stable hot columns. We will also flag unstable hot columns in the DQ extensions of the superbiases. A new reference file pipeline for ACS/WFC that will implement these changes is currently under construction.

  5. Generalization of optical, energy, and excess-noise parameters to compare capabilities of lidar with PMT/APD/SiPM

    Science.gov (United States)

    Agishev, Ravil; Comeron, Adolfo

    2017-10-01

    Further developments of the comparative analysis methodology applied to capabilities of various lidar systems, from micro-lidars to systems employing the high power lasers, which use different receiving systems are conducted. Following the dimensionless parameterization approach and in order to simplify the capabilities prediction and systems comparison, to improve its clarity and expand applicability, we propose specific ways to generalize optical, energy and excess-noise parameters inherent to lidar atmospheric monitoring, taking into account their possible high-scale variability. The generalized approach is used as an example to compare lidars with PMT/APD/SiPM detectors. Features of the pro-posed approach in different conditions and applications are discussed.

  6. Merlin: a fast versatile readout system for Medipix3

    International Nuclear Information System (INIS)

    Plackett, R; Horswell, I; Gimenez, E N; Marchal, J; Omar, D; Tartoni, N

    2013-01-01

    This contribution reports on the development of a new high rate readout system for the Medipix3 hybrid pixel ASIC developed by the Detector Group at Diamond Light Source. It details the current functionality of the system and initial results from tests on Diamond's B16 beamline. The Merlin system is based on a National Instruments PXI/FlexRIO system running a Xilinx Virtex5 FPGA. It is capable of recording Medipix3 256 by 256 by 12 bit data frames at over 1 kHz in bursts of 1200 frames and running at over 100 Hz continuously to disk or over a TCP/IP link. It is compatible with the standard Medipix3 single chipboards developed at CERN and is capable of driving them over cable lengths of up to 10 m depending on the data rate required. In addition to a standalone graphical interface, a system of remote TCP/IP control and data transfer has been developed to allow easy integration with third party control systems and scripting languages. Two Merlin systems are being deployed on the B16 and I16 beamlines at Diamond and the system has been integrated with the EPICS/GDA control systems used. Results from trigger synchronisation, fast burst and high rate tests made on B16 in March are reported and demonstrate an encouraging reliability and timing accuracy. In addition to normal high resolution imaging applications of Medipix3, the results indicate the system could profitably be used in 'pump and probe' style experiments, where a very accurate, high frame rate is especially beneficial. In addition to these two systems, Merlin is being used by the Detector Group to test the Excalibur 16 chip hybrid modules, and by the LHCb VELO Pixel Upgrade group in their forthcoming testbeams. Additionally the contribution looks forward to further developments and improvements in the system, including full rate quad chip readout capability, multi-FPGA support, long distance optical communication and further functionality enhancements built on the capabilities of the Medipix3 chips.

  7. Merlin: a fast versatile readout system for Medipix3

    Science.gov (United States)

    Plackett, R.; Horswell, I.; Gimenez, E. N.; Marchal, J.; Omar, D.; Tartoni, N.

    2013-01-01

    This contribution reports on the development of a new high rate readout system for the Medipix3 hybrid pixel ASIC developed by the Detector Group at Diamond Light Source. It details the current functionality of the system and initial results from tests on Diamond's B16 beamline. The Merlin system is based on a National Instruments PXI/FlexRIO system running a Xilinx Virtex5 FPGA. It is capable of recording Medipix3 256 by 256 by 12 bit data frames at over 1 kHz in bursts of 1200 frames and running at over 100 Hz continuously to disk or over a TCP/IP link. It is compatible with the standard Medipix3 single chipboards developed at CERN and is capable of driving them over cable lengths of up to 10 m depending on the data rate required. In addition to a standalone graphical interface, a system of remote TCP/IP control and data transfer has been developed to allow easy integration with third party control systems and scripting languages. Two Merlin systems are being deployed on the B16 and I16 beamlines at Diamond and the system has been integrated with the EPICS/GDA control systems used. Results from trigger synchronisation, fast burst and high rate tests made on B16 in March are reported and demonstrate an encouraging reliability and timing accuracy. In addition to normal high resolution imaging applications of Medipix3, the results indicate the system could profitably be used in `pump and probe' style experiments, where a very accurate, high frame rate is especially beneficial. In addition to these two systems, Merlin is being used by the Detector Group to test the Excalibur 16 chip hybrid modules, and by the LHCb VELO Pixel Upgrade group in their forthcoming testbeams. Additionally the contribution looks forward to further developments and improvements in the system, including full rate quad chip readout capability, multi-FPGA support, long distance optical communication and further functionality enhancements built on the capabilities of the Medipix3 chips.

  8. Detecting highly entangled states with a joint qubit readout

    Science.gov (United States)

    Chow, J. M.; Dicarlo, L.; Gambetta, J. M.; Nunnenkamp, A.; Bishop, Lev S.; Frunzio, L.; Devoret, M. H.; Girvin, S. M.; Schoelkopf, R. J.

    2010-06-01

    A single-channel joint readout is used to analyze highly entangled two-qubit states in a circuit quantum electrodynamics architecture. The measurement model for the readout is fully characterized, demonstrating a large sensitivity to two-qubit correlations. We quantify the high degree of entanglement by measuring a violation of the Clauser-Horne-Shimony-Holt inequality with a value of 2.61±0.04, without optimizing the preparation of the two-qubit state. In its present form, this joint readout can resolve improvements to the fidelity of two-qubit operations and be extended to three or four qubits.

  9. FASTBUS readout system for the CDF DAQ upgrade

    International Nuclear Information System (INIS)

    Andresen, J.; Areti, H.; Black, D.

    1993-11-01

    The Data Acquisition System (DAQ) at the Collider Detector at Fermilab is currently being upgraded to handle a minimum of 100 events/sec for an aggregate bandwidth that is at least 25 Mbytes/sec. The DAQ System is based on a commercial switching network that has interfaces to VME bus. The modules that readout the front end crates (FASTBUS and RABBIT) have to deliver the data to the VME bus based host adapters of the switch. This paper describes a readout system that has the required bandwidth while keeping the experiment dead time due to the readout to a minimum

  10. Superconducting tunable flux qubit with direct readout scheme

    International Nuclear Information System (INIS)

    Chiarello, Fabio; Castellano, Maria Gabriella; Leoni, Roberto; Torrioli, Guido; Carelli, Pasquale; Cosmelli, Carlo; Gangemi, Lorenzo; Poletto, Stefano; Simeone, Daniela

    2005-01-01

    We describe a simple and efficient scheme for the readout of a tunable flux qubit, and present preliminary experimental tests for the preparation, manipulation and final readout of the qubit state, performed in the incoherent regime at liquid helium temperature. The tunable flux qubit is realized by a double SQUID with an extra Josephson junction inserted in the large superconducting loop, and the readout is performed by applying a current ramp to the junction and recording the value for which there is a voltage response, depending on the qubit state. This preliminary work indicates the feasibility and efficiency of the scheme

  11. Development of a multiplexed readout with high position resolution for positron emission tomography

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sangwon; Choi, Yong [Molecular Imaging Research & Education (MiRe) Laboratory, Department of Electronic Engineering, Sogang University, Seoul 04107 (Korea, Republic of); Kang, Jihoon [Department of Biomedical Engineering, Chonnam National University, Yeosu 550-749 (Korea, Republic of); Jung, Jin Ho [Molecular Imaging Research & Education (MiRe) Laboratory, Department of Electronic Engineering, Sogang University, Seoul 04107 (Korea, Republic of)

    2017-04-01

    Detector signals for positron emission tomography (PET) are commonly multiplexed to reduce the number of digital processing channels so that the system can remain cost effective while also maintaining imaging performance. In this work, a multiplexed readout combining Anger position estimation algorithm and position decoder circuit (PDC) was developed to reduce the number of readout channels by a factor of 24, 96-to-4. The data acquisition module consisted of a TDC (50 ps resolution), 4-channel ADCs (12 bit, 105 MHz sampling rate), 2 GB SDRAM and USB3.0. The performance of the multiplexed readout was assessed with a high-resolution PET detector block composed of 2×3 detector modules, each consisting of an 8×8 array of 1.52×1.52×6 mm{sup 3} LYSO, a 4×4 array of 3×3 mm{sup 2} silicon photomultiplier (SiPM) and 13.4×13.4 mm{sup 2} light guide with 0.7 mm thickness. The acquired flood histogram showed that all 384 crystals could be resolved. The average energy resolution at 511 keV was 13.7±1.6% full-width-at-half-maximum (FWHM) and the peak-to-valley ratios of the flood histogram on the horizontal and vertical lines were 18.8±0.8 and 22.8±1.3, respectively. The coincidence resolving time of a pair of detector blocks was 6.2 ns FWHM. The reconstructed phantom image showed that rods down to a diameter of 1.6 mm could be resolved. The results of this study indicate that the multiplexed readout would be useful in developing a PET with a spatial resolution less than the pixel size of the photosensor, such as a SiPM array.

  12. Readout of the atomtronic quantum interference device

    Science.gov (United States)

    Haug, Tobias; Tan, Joel; Theng, Mark; Dumke, Rainer; Kwek, Leong-Chuan; Amico, Luigi

    2018-01-01

    A Bose-Einstein condensate confined in ring shaped lattices interrupted by a weak link and pierced by an effective magnetic flux defines the atomic counterpart of the superconducting quantum interference device: the atomtronic quantum interference device (AQUID). In this paper, we report on the detection of current states in the system through a self-heterodyne protocol. Following the original proposal of the NIST and Paris groups, the ring-condensate many-body wave function interferes with a reference condensate expanding from the center of the ring. We focus on the rf AQUID which realizes effective qubit dynamics. Both the Bose-Hubbard and Gross-Pitaevskii dynamics are studied. For the Bose-Hubbard dynamics, we demonstrate that the self-heterodyne protocol can be applied, but higher-order correlations in the evolution of the interfering condensates are measured to readout of the current states of the system. We study how states with macroscopic quantum coherence can be told apart analyzing the noise in the time of flight of the ring condensate.

  13. The Belle II SVD data readout system

    Energy Technology Data Exchange (ETDEWEB)

    Thalmeier, R., E-mail: Richard.Thalmeier@oeaw.ac.at [Institute of High Energy Physics, Austrian Academy of Sciences, 1050 Vienna (Austria); Adamczyk, K. [H. Niewodniczanski Institute of Nuclear Physics, Krakow 31-342 (Poland); Aihara, H. [Department of Physics, University of Tokyo, Tokyo 113-0033 (Japan); Angelini, C. [Dipartimento di Fisica, Universita’ di Pisa, I-56127 Pisa (Italy); INFN Sezione di Pisa, I-56127 Pisa (Italy); Aziz, T.; Babu, V. [Tata Institute of Fundamental Research, Mumbai 400005 (India); Bacher, S. [H. Niewodniczanski Institute of Nuclear Physics, Krakow 31-342 (Poland); Bahinipati, S. [Indian Institute of Technology Bhubaneswar, Satya Nagar (India); Barberio, E.; Baroncelli, Ti.; Baroncelli, To. [School of Physics, University of Melbourne, Melbourne, Victoria 3010 (Australia); Basith, A.K. [Indian Institute of Technology Madras, Chennai 600036 (India); Batignani, G. [Dipartimento di Fisica, Universita’ di Pisa, I-56127 Pisa (Italy); INFN Sezione di Pisa, I-56127 Pisa (Italy); Bauer, A. [Institute of High Energy Physics, Austrian Academy of Sciences, 1050 Vienna (Austria); Behera, P.K. [Indian Institute of Technology Madras, Chennai 600036 (India); Bergauer, T. [Institute of High Energy Physics, Austrian Academy of Sciences, 1050 Vienna (Austria); Bettarini, S. [Dipartimento di Fisica, Universita’ di Pisa, I-56127 Pisa (Italy); INFN Sezione di Pisa, I-56127 Pisa (Italy); Bhuyan, B. [Indian Institute of Technolog y Guwahati, Assam 781039 (India); Bilka, T. [Faculty of Mathematics and Physics, Charles University, 12116 Prague (Czech Republic); Bosi, F. [INFN Sezione di Pisa, I-56127 Pisa (Italy); and others

    2017-02-11

    The Belle II Experiment at the High Energy Accelerator Research Organization (KEK) in Tsukuba, Japan, will explore the asymmetry between matter and antimatter and search for new physics beyond the standard model. 172 double-sided silicon strip detectors are arranged cylindrically in four layers around the collision point to be part of a system which measures the tracks of the collision products of electrons and positrons. A total of 1748 radiation-hard APV25 chips read out 128 silicon strips each and send the analog signals by time-division multiplexing out of the radiation zone to 48 Flash Analog Digital Converter Modules (FADC). Each of them applies processing to the data; for example, it uses a digital finite impulse response filter to compensate line signal distortions, and it extracts the peak timing and amplitude from a set of several data points for each hit, using a neural network. We present an overview of the SVD data readout system, along with front-end electronics, cabling, power supplies and data processing.

  14. Readout scheme for the Baby-MIND detector

    CERN Document Server

    Noah, Etam; Cadoux, F; Favre, Y; Martinez, B; Nicola, L; Parsa, S; Rayner, M; Antonova, M; Fedotov, S; Izmaylov, A; Kleymenova, A; Khabibullin, M; Khotyantsev, A; Kudenko, Y; Likhacheva, V; Mefodiev, A; Mineev, O; Ovsiannikova, T; Shaykhiev, A; Suvorov, S; Yershov, N; Tsenov, R

    2016-01-01

    A readout scheme has been designed for the plastic scintillator bars of the Baby-MIND detector modules. This spectrometer will measure momentum and identify the charge of 1 GeV/c muons with magnetized iron plates interleaved with detector modules. One challenge the detector aims to address is that of keeping high charge identification efficiencies for momenta below 1 GeV/c where multiple scattering in the iron plates degrades momentum resolution. A front-end board has been developed, with 3 CITIROC readout chips per board and up to 96 channels. Hamamatsu MPPCs type S12571-025C photosensors were chosen for readout of wavelength shifting fibers embedded in plastic scintillators. Procurement of the MPPCs has been carried out to instrument 3000 channels in total. Design choices and first results of this readout scheme are presented.

  15. Production of readout boards for H1 liquid argon calorimeter

    International Nuclear Information System (INIS)

    Antos, J.; Ban, J.; Ferencei, J.; Kurca, T.; Murin, P.; Seman, M.; Spalek, J.; Stefan, P.

    1990-03-01

    Technical details of the technology used by the Institute of Experimental Physics in Kosice for the production of readout boards for the H1 liquid argon calorimeter are described. (author). 2 figs., 2 refs

  16. Readout ASIC of pair-monitor for international linear collider

    International Nuclear Information System (INIS)

    Sato, Yutaro; Ikeda, Hirokazu; Ito, Kazutoshi; Miyamoto, Akiya; Nagamine, Tadashi; Sasaki, Rei; Takubo, Yosuke; Tauchi, Toshiaki; Yamamoto, Hitoshi

    2010-01-01

    The pair-monitor is a beam profile monitor at the interaction point of the international linear collider. A prototype of the readout ASIC for the pair-monitor has been designed and tested. Since the pair-monitor uses the hit distribution of electrons and positrons generated by the beam-crossing to measure the beam profile, the readout ASIC is designed to count the number of hits. In a prototype ASIC, 36 readout cells were implemented by TSMC 0.25-μm CMOS process. Each readout cell is equipped with an amplifier, comparator, 8-bit counter and 16 count-registers. By the operation test, all the ASIC component were confirmed to work correctly. As the next step, we develop the prototype ASIC with the silicon on insulator technology. It is produced with OKI 0.2-μm FD-SOI CMOS process.

  17. Single-Readout High-Density Memristor Crossbar

    KAUST Repository

    Zidan, M. A.

    2016-01-07

    High-density memristor-crossbar architecture is a very promising technology for future computing systems. The simplicity of the gateless-crossbar structure is both its principal advantage and the source of undesired sneak-paths of current. This parasitic current could consume an enormous amount of energy and ruin the readout process. We introduce new adaptive-threshold readout techniques that utilize the locality and hierarchy properties of the computer-memory system to address the sneak-paths problem. The proposed methods require a single memory access per pixel for an array readout. Besides, the memristive crossbar consumes an order of magnitude less power than state-of-the-art readout techniques.

  18. FAIR: A new fast trigger and readout bus system

    International Nuclear Information System (INIS)

    Ordine, A.; Boiano, A.; Zaghi, A.

    1998-01-01

    FAIR (FAst Intercrate Readout) is a synchronous ECL bus system dedicated to readout. It is based on a new trigger and readout hardware level protocol and on a new control system that learns how to setup and control modules. The hardware protocol along with the data structure allow both readout and event building at the same time at the rate of 22 ns/longword (1.44 Gbit/s) without the need of CPUs. It performs trigger management and full pipelining by using a multilevel FIFO structure. FAIR provides for a multi-crate front-end environment and uses an embedded serial network to accomplish front-end control and setup. The data transfer measured performances and the control system are presented in some detail

  19. Photo-assisted non-destructive readout of thin-film ferroelectric memories

    International Nuclear Information System (INIS)

    Gu Junxing; Jin Kuijuan

    2015-01-01

    By combining piezoelectric force microscopy with scanning surface potential microscopy and introducing a laser beam, we have demonstrated that the surface potential contrast of BiFeO 3 films can be recovered by light illumination. The recovering mechanism is understood based on the redistribution of the photo-induced charges driven by the internal electric field. Furthermore, we have created a 12-cell memory pattern based on a BiFeO 3 film to show the feasibility of such photo-assisted non-volatile and non-destructive readout of the ferroelectric memory. (authors)

  20. Bier and Pastis, a pixel readout prototype chip for LHC

    CERN Document Server

    Berg, C; Bonzom, V; Delpierre, P A; Desch, Klaus; Fischer, P; Keil, M; Meuser, S; Raith, B A; Wermes, N

    2000-01-01

    The 12*63 pixel readout prototype chip Bieu&Pastis, designed to cope with the environment imposed on a pixel detector by high-energy proton-proton collisions as expected at the Large Hadron Collider (LHC), is described. The chip contains the full pixel cell functionality, but not yet the full peripheral architecture for data transfer and readout with LHC speed. Design considerations and lab tests to characterize the performance as well as some test beam results are described. (7 refs).

  1. FPIX2, the BTeV pixel readout chip

    CERN Document Server

    Christian, D C; Chiodini, G; Hoff, J; Kwan, S; Mekkaoui, A; Yarema, R; 10.1016/j.nima.2005.04.046

    2005-01-01

    A radiation tolerant pixel readout chip, FPIX2, has been developed at Fermilab for use by BTeV. Some of the requirements of the BTeV pixel readout chip are reviewed and contrasted with requirements for similar devices in LHC experiments. A description of the FPIX2 is given, and results of initial tests of its performance are presented, as is a summary of measurements planned for the coming year.

  2. A pixelated charge readout for Liquid Argon Time Projection Chambers

    Science.gov (United States)

    Asaadi, J.; Auger, M.; Ereditato, A.; Goeldi, D.; Hänni, R.; Kose, U.; Kreslo, I.; Lorca, D.; Luethi, M.; von Rohr, C. Rudolf; Sinclair, J.; Stocker, F.; Tognina, C.; Weber, M.

    2018-02-01

    Liquid Argon Time Projection Chambers (LArTPCs) are ideally suited to perform long-baseline neutrino experiments aiming to measure CP violation in the lepton sector, and determine the ordering of the three neutrino mass eigenstates. LArTPCs have used projective wire readouts for charge detection since their conception in 1977. However, wire readouts are notoriously fragile and therefore a limiting factor in the design of any large mass detectors. Furthermore, a wire readout also introduces intrinsic ambiguities in event reconstruction. Within the ArgonCube concept—the liquid argon component of the DUNE near detector—we are developing a pixelated charge readout for LArTPCs. Pixelated charge readout systems represent the single largest advancement in the sensitivity of LArTPCs. They are mechanically robust and provide direct 3D readout, serving to minimise reconstruction ambiguities, enabling more advanced triggers, further reducing event pile-up and improving background rejection. This article presents first results from a pixelated LArTPC prototype built and operated in Bern.

  3. Alibava : A portable readout system for silicon microstrip sensors

    CERN Document Server

    Marco-Hernández, Ricardo; Casse, G; García, C; Greenall, A; Lacasta, C; Lozano, M; Martí i García, S; Martínez, R; Miñano, M; Pellegrini, G; Smith, N A; Ullán, M

    2007-01-01

    A portable readout system for silicon microstrip sensors is currently being developed. This system uses a front-end readout chip, which was developed for the LHC experiments. The system will be used to investigate the main properties of this type of sensors and their future applications. The system is divided in two parts: a daughter board and a mother board. The first one is a small board which contains two readout chips and has fan-ins and sensor support to interface the sensors. The last one is intended to process the analogue data that comes from the readout chips and from external trigger signals, to control the whole system and to communicate with a PC via USB. The core of this board is a FPGA that controls the readout chips, a 10 bit ADC, an integrated TDC and an USB controller. This board also contains the analogue electronics to process the data that comes from the readout chips. There is also provision for an external trigger input (e.g. scintillator trigger) and a 'synchronised' trigger output for ...

  4. Common Readout Unit (CRU) - A new readout architecture for the ALICE experiment

    Science.gov (United States)

    Mitra, J.; Khan, S. A.; Mukherjee, S.; Paul, R.

    2016-03-01

    The ALICE experiment at the CERN Large Hadron Collider (LHC) is presently going for a major upgrade in order to fully exploit the scientific potential of the upcoming high luminosity run, scheduled to start in the year 2021. The high interaction rate and the large event size will result in an experimental data flow of about 1 TB/s from the detectors, which need to be processed before sending to the online computing system and data storage. This processing is done in a dedicated Common Readout Unit (CRU), proposed for data aggregation, trigger and timing distribution and control moderation. It act as common interface between sub-detector electronic systems, computing system and trigger processors. The interface links include GBT, TTC-PON and PCIe. GBT (Gigabit transceiver) is used for detector data payload transmission and fixed latency path for trigger distribution between CRU and detector readout electronics. TTC-PON (Timing, Trigger and Control via Passive Optical Network) is employed for time multiplex trigger distribution between CRU and Central Trigger Processor (CTP). PCIe (Peripheral Component Interconnect Express) is the high-speed serial computer expansion bus standard for bulk data transport between CRU boards and processors. In this article, we give an overview of CRU architecture in ALICE, discuss the different interfaces, along with the firmware design and implementation of CRU on the LHCb PCIe40 board.

  5. Measurements of a detector prototype with direct SiPM read-out and comparison with simulated data

    CERN Document Server

    Scheuch, Florian

    2010-01-01

    This thesis outlines measurements of a detector prototype for muon detection with direct SiPM readout. Special attention has been turned on the reflectors around the scintillator. Therefore cosmic muons have been measured with four different reflectors. Also a thinner scintillator module was measured to determine whether the light yield of smaller modules is sufficient. The data of the different reflectors has been evaluated and is compared to GEANT4 simulations of the setup.

  6. A generic readout system for astrophysical detectors

    Science.gov (United States)

    Doumayrou, E.; Lortholary, M.

    2012-09-01

    We have developed a generic digital platform to fulfill the needs for the development of new detectors in astrophysics, which is used in lab, for ground-based telescopes instruments and also in prototype versions for space instruments development. This system is based on hardware FPGA electronic board (called MISE) together with software on a PC computer (called BEAR). The MISE board generates the fast clocking which reads the detectors thanks to a programmable digital sequencer and performs data acquisition, buffering of digitalized pixels outputs and interfaces with others boards. The data are then sent to the PC via a SpaceWire or Usb link. The BEAR software sets the MISE board up, makes data acquisition and enables the visualization, processing and the storage of data in line. These software tools are made of C++ and Labview (NI) on a Linux OS. MISE and BEAR make a generic acquisition architecture, on which dedicated analog boards are plugged, so that to accommodate with detectors specificity: number of pixels, the readout channels and frequency, analog bias and clock interfaces. We have used this concept to build a camera for the P-ARTEMIS project including a 256 pixels sub-millimeter bolometer detector at 10Kpixel/s (SPIE 7741-12 (2010)). For the EUCLID project, a lab camera is now working for the test of CCDs 4Mpixels at 4*200Kpixel/s. Another is working for the testing of new near infrared detectors (NIR LFSA for the ESA TRP program) 110Kpixels at 2*100Kpixels/s. Other projects are in progress for the space missions PLATO and SPICA.

  7. Characterization of the Hamamatsu S8664 avalanche photodiode for X-ray and VUV-light detection

    Energy Technology Data Exchange (ETDEWEB)

    Lux, T., E-mail: Thorsten.Lux@ifae.es [Institut de Fisica d' Altes Energies (IFAE), 08193 Bellaterra (Barcelona) (Spain); Freitas, E.D.C.; Amaro, F.D. [Centro de Instrumentracao, Departamento de Fisica, Universidade de Coimbra, Coimbra (Portugal); Ballester, O.; Jover-Manas, G.V.; Martin, C. [Institut de Fisica d' Altes Energies (IFAE), 08193 Bellaterra (Barcelona) (Spain); Monteiro, C.M.B. [Centro de Instrumentracao, Departamento de Fisica, Universidade de Coimbra, Coimbra (Portugal); Sanchez, F. [Institut de Fisica d' Altes Energies (IFAE), 08193 Bellaterra (Barcelona) (Spain); Rico, J. [Institut de Fisica d' Altes Energies (IFAE), 08193 Bellaterra (Barcelona) (Spain); Institucio Catalana de Recerca i Estudis Avancats (ICREA), 08010 Barcelona (Spain)

    2012-09-01

    We present the first operation of the VUV-sensitive avalanche photodiode (APD) from Hamamatsu to xenon scintillation light and to direct X-rays of 22.1 keV and 5.9 keV. A large non-linear response was observed for the direct X-ray detection. At 415 V APD bias voltage it was of about 30% for 22.1 keV and about 45% for 5.9 keV. The quantum efficiency for 172 nm photons has been measured to be 69{+-}15%.

  8. Optical readout of displacements of nanowires along two mutually perpendicular directions

    Directory of Open Access Journals (Sweden)

    Chenghua Fu

    2017-05-01

    Full Text Available Nanowires are good force transducers due to their low mass. The singleness of the direction of the motion detection in a certain system is an existing limitation, and to overcome the limitation is the key point in this article. Optical methods, such as polarized light interferometry and light scattering, are generally used for detecting the displacement of nanowires. Typically, either light interference or light scattering is considered when relating the displacement of a nanowire with the photodetector’s measurements. In this work, we consider both the light interference along the optical axis and light scattering perpendicular to the optical axis of a micro-lens fiber optic interferometer. Identifying the displacement along the two directions and the corresponding vibration conversion efficiency coefficients for the nanowire is a significant part of our study. Our analysis shows that the optimal working point of the micro-lens fiber optic interferometer can realize the detection of displacement along the optical axis without the disturbance coming from the motion perpendicular to the optical axis, and vice versa. We use Mie scattering theory to calculate the scattering light for the reason that the size of the nanowire is comparable to the wavelength of light. Our results could provide a guide for optical readout experiments of the displacement of nanowires.

  9. ROIC with on-chip sigma-delta AD converter for HgCdTe e-APD FPA

    Science.gov (United States)

    Chen, Guoqiang; Zhang, Junling; Wang, Pan; Zhou, Jie; Gao, Lei; Ding, Ruijun

    2013-10-01

    HgCdTe electron injection avalanche photodiodes (e-APDs) work at linear mode. A weak optical current signal is amplified orders of magnitude due to the internal avalanche mechanism and it has been demonstrated to be one of the most promising methods to focal-plane arrays (FPAs) for low-flux like hyper-spectral imaging and high-speed applications such as active imaging. This paper presents the design of a column-shared ADC for cooled e-APDs FPA. Designing a digital FPA requires fulfilling very stringent requirements in terms of power consumption, silicon area and speed. Among the various ADC architectures sigma-delta conversion is a promising solution for high-performance and medium size FPA such as 128×128. The performance of Sigma-delta ADC rather relies on the modulator structure which set over-sampling and noise shaping characteristics than on critical analog circuits. This makes them quite robust and flexible. A multistage noise shaping (MASH) 2-1 single bit architecture sigma-delta conversion with switched-capacitor circuits is designed for column-shared ADC, which is implanted in the GLOBALFOUNDRIES 0.35um CMOS process with 4-poly and 4-metal on the basis of a 100um pixel pitch. It operates under 3.3V supply and the output range of the quantizer is 2V. A quantization noise subtraction circuit in modulator is designed to subtract the quantization noise of first-stage modulator. The quantization noise of the modulator is shaped by a high-pass filter. The silicon area and power consumption are mainly determined by the decimation low pass filter. A cascaded integrator-comb (CIC) filter is designed as the digital decimator filter. CIC filter requires no multipliers and use limited storage thereby leading to more economical hardware implementation. The register word length of the filter in each stage is carefully dimensioned in order to minimize the required hardware. Furthermore, the digital filters operate with a reduced supply voltage to 1.5V. Simulation

  10. An ultrafast front-end ASIC for APD array detectors in X-ray time-resolved experiments

    Science.gov (United States)

    Zhou, Yang-Fan; Li, Qiu-Ju; Liu, Peng; Fan, Lei; Xu, Wei; Tao, Ye; Li, Zhen-Jie

    2017-06-01

    An ultrafast front-end ASIC chip has been developed for APD array detectors in X-ray time-resolved experiments. The chip has five channels: four complete channels and one test channel with an analog output. Each complete channel consists of a preamplifier, a voltage discriminator and an open-drain output driver. A prototype chip has been designed and fabricated using 0.13 μm CMOS technology with a chip size of 1.3 mm × 1.9 mm. The electrical characterizations of the circuit demonstrate a very good intrinsic time resolution (rms) on the output pulse leading edge, with the test result better than 30 ps for high input signal charges (> 75 fC) and better than 100 ps for low input signal charges (30-75 fC), while keeping a low power consumption of 5 mW per complete channel. Supported by the National Natural Science Foundation of China (11605227), High Energy Photon Source-Test Facility Project, and the State Key Laboratory of Particle Detection and Electronics. This research used resources of the BSRF.

  11. CARE-HHH-APD Workshop on Finalizing the Roadmap for the Upgrade of the CERN and GSI Accelerator Complex

    CERN Document Server

    Zimmermann, Frank; BEAM'07; BEAM 2007; Finalizing the Roadmap for the Upgrade of the LHC and GSI Accelerator Complex

    2008-01-01

    This report contains the Proceedings of the CARE-HHH-APD Event BEAM’07, “Finalizing the Roadmap for the Upgrade of the CERN & GSI Accelerator Complex,” which was held at CERN in Geneva, Switzerland, from 1 to 5 October 2007. BEAM’07 was primarily devoted to beam dynamics limitations for the two, or three, alternative baseline scenarios of the LHC luminosity upgrade and to critical design choices for the upgrade of the LHC injector complex at CERN and for the FAIR complex at GSI. It comprised five parts: (1) a Mini-Workshop on LHC+ Beam Performance, (2) a CERN-GSI Meeting on Collective Effects, (3) the Francesco Ruggiero Memorial Symposium, (4) a Mini-Workshop on the LHC Injectors Upgrade, and (5) the BEAM’07 Summaries. Topics addressed in the first mini-workshop of BEAM’07 ranged from the luminosity performance reach of the upgraded LHC in different scenarios, over the generation and stability of the future LHC beams, the turnaround time, beam–beam effects, luminosity levelling methods, and ...

  12. A synthetic biological secondary metabolite, Lycogen™, produced and extracted from Rhodobacter sphaeroides WL-APD911 in an optimizatioal scale-up strategy

    Directory of Open Access Journals (Sweden)

    Cheng-Chin Wang

    2017-12-01

    Full Text Available The optimization of fermentation medium is important for synthetic biological secondary metabolite productions. The effect of rotation speed, inoculum amount, and medium supplements on the cell growth and Lycogen™ secretion of photobacterium Rhodobacter sphaeroides WL-APD911 was evaluated. The results reveal that a higher rotational speed exhibit a higher cell density, and the increasing in the amount of inoculum amount show a slight augment on the growth of R. sphaeroides WL-APD911.In the case of nitrogen sources adding, Lycogen™ production was achieved with a 0.5 mM l-lysine supplementation. Moreover, the attention of Tween 80 presented a tremendous increase in the secondary metabolite. Response surface methodology (RSM exhibited the optimization of medium supplements for Lycogen™ invention is accomplished at molasses concentration of 10 g/L, yeast extract concentration of 40 g/L, 0.3% Tween 80 and NaCl concentration of 5 g/L, respectively. Further, the batch fermentation is carried out in both 5 L and 20 L fermentors to study the scale-up process factors to be adopted. At a 20 L fermentor, Lycogen™ yields under the optimal culture condition are over 2 times than in the shake flask. The present results provide the Lycogen™ optimal culture mediums, scale-up procedures and efficient extractions from R. sphaeroides WL-APD911. Keywords: Rhodobacter sphaeroides WL-APD911, Lycogen™, Response surface methodology (RSM, Ferementation

  13. Dc-SQUIDs for the readout of magnetic microcalorimeters

    Energy Technology Data Exchange (ETDEWEB)

    Ferring, Anna; Fleischmann, Andreas; Wegner, Mathias; Kempf, Sebastian; Enss, Christian [Kirchhoff-Institute for Physics, Heidelberg University, Heidelberg (Germany)

    2016-07-01

    Two-stage current-sensing dc-SQUIDs are presently the devices of choice to read out single-channel magnetic microcalorimeters (MMCs) since they provide quantum-limited noise performance, large system bandwidth and are compatible with operation temperatures well below 100 mK. However, it is very well known that parasitic inductances in the SQUID input circuitry lead to a reduction of the signal size of the detector and that SQUID noise often sets a limit to the energy resolution. In order to minimize these effects, we develop two-stage current-sensing dc-SQUIDs optimized for MMC readout as well as dc-SQUIDs suited for direct temperature sensor readout. In this contribution we discuss our SQUID designs including single second-order gradiometric SQUIDs, N-SQUID series arrays as well as SQUIDs with meander-shaped SQUID inductance that are eligible for direct temperature sensor readout. We show that our SQUIDs exhibit exceptional small low-frequency excess flux noise and are hence very well suited for MMC readout. We further present an integrated setup in which detector and SQUID are located on the same chip to maximize the coupling efficiency of the superconducting flux transformer. Finally, we discuss experimental data of a detector setup with direct temperature sensor readout and prove that this strategy should allow for reaching a sub-eV energy resolution.

  14. FASTBUS Readout Controller card for high speed data acquisition

    International Nuclear Information System (INIS)

    Zimmermann, S.

    1991-10-01

    This article describes a FASTBUS Readout Controller (FRC) for high speed data acquisition in FASTBUS based systems. The controller has two main interfaces: to FASTBUS and to a Readout Port. The FASTBUS interface performs FASTBUS master and slave operations at a maximum transfer rate exceeding 40 MBytes/s. The Readout Port can be adapted for a variety of protocols. Currently, it will be interfaced to a VME bus based processor with a VSB port. The on-board LR33000 embedded processor controls the readout, executing a list of operations download into its memory. It scans the FASTBUS modules and stores the data in a triple port DRAM (TPDRAM), through one of the Serial Access Memory (SAM) ports of the (TPDRAM). Later, it transfers this data to the readout port using the other SAM. The FRC also supports serial communication via RS232 and Ethernet interfaces. This device is intended for use in the data acquisition system at the Collider Detector at Fermilab. 5 refs., 3 figs

  15. Multi-Anode Photomultplier (MAPMT) readout for High Granularity Calorimeters

    CERN Document Server

    Mkrtchyan, Tigran; The ATLAS collaboration

    2017-01-01

    Hadron calorimeter high performance in jet sub-structure measurements can be achieved for objects with $p_{T}$ greater than 1 TeV if the readout geometry is finely segmented in $\\Delta\\eta \\times \\Delta\\phi$. A feasibility study to increase the readout granularity of TileCal, the central hadron calorimeter of the ATLAS detector, is presented. We show a preliminary study exploring the possibility to increase by a factor 4 the present readout granularity of the inner layer cells of TileCal (0.1->0.025 in $\\Delta\\eta$) and to split into two layers the intermediate section of TileCal. The proposed solution is designed to cope with mechanical and readout bandwidth and power constraints. Assuming that the mechanics of the Tile modules cannot be changed, Multi-Anode PMTs with same boundary geometry of the present single-anode PMTs are considered to readout WLS bers, ideally one per pixel, carrying the signals from the individual scintillating tiles of each detector cells. The discussed challenges of the design are: ...

  16. Novel concept of TDI readout circuit for LWIR detector

    Science.gov (United States)

    Kim, Byunghyuck; Yoon, Nanyoung; Lee, Hee Chul; Kim, Choong-Ki

    2000-07-01

    Noise property is the prime consideration in readout circuit design. The output noise caused by the photon noise, which dominates total noise in BLIP detectors, is limited by the integration time that an element looks at a specific point in the scene. Large integration time leads to a low noise performance. Time-delay integration (TDI) is used to effectively increase the integration time and reduce the photon noise. However, it increases the number of dead pixels and requires large integration capacitors and low noise output stage of the readout circuit. In this paper, to solve these problems, we propose a new concept of readout circuit, which performs background suppression, cell-to-cell background current non-uniformity compensation, and dead pixel correction using memory, ADC, DAC, and current copier cell. In simulation results, comparing with the conventional TDI readout circuit, the integration capacitor size can be reduced to 1/5 and trans-impedance gain can be increased by five times. Therefore, the new TDI readout circuit does not require large area and low noise output stage. And the error of skimming current is less than 2%, and the fixed pattern noise induced by cell-to-cell background current variation is reduced to less than 1%.

  17. New crystals for dual-readout calorimetry

    Czech Academy of Sciences Publication Activity Database

    Akchurin, N.; Bedeschi, F.; Cardini, A.; Carosi, R.; Ciapetti, G.; Ferrari, R.; Franchino, S.; Fraternali, M.; Gaudio, G.; Hauptman, J.; Incagli, M.; Korzhik, M.; Lacava, F.; La Rotonda, L.; Livan, M.; Meoni, E.; Nikl, Martin; Pinci, D.; Policicchio, A.; Popescu, S.; Scuri, F.; Sill, A.; Vandelli, W.; Vedda, A.; Venturelli, T.; Voena, C.; Volobouev, I.; Wigmans, R.

    2009-01-01

    Roč. 604, č. 3 (2009), s. 512-526 ISSN 0168-9002 Institutional research plan: CEZ:AV0Z10100521 Keywords : calorimetry * Cherenkov light * high-Z scintillating crystals Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.317, year: 2009

  18. Status of readout integrated circuits for radiation detector

    International Nuclear Information System (INIS)

    Moon, B. S.; Hong, S. B.; Cheng, J. E. and others

    2001-09-01

    In this report, we describe the current status of readout integrated circuits developed for radiation detectors, along with new technologies being applied to this field. The current status of ASCIC chip development related to the readout electronics is also included in this report. Major sources of this report are from product catalogs and web sites of the related industries. In the field of semiconductor process technology in Korea, the current status of the multi-project wafer(MPW) of IDEC, the multi-project chip(MPC) of ISRC and other domestic semiconductor process industries is described. In the case of other countries, the status of the MPW of MOSIS in USA and the MPW of EUROPRACTICE in Europe is studied. This report also describes the technologies and products of readout integrated circuits of industries worldwide

  19. Upgrade of the ALICE-TPC read-out electronics

    CERN Document Server

    Junique, A; Musa , L; Rehman , A U

    2010-01-01

    The ALICE experiment at CERN LHC employs a large volume time projection chamber (TPC) as its main tracking device. Instigated by analyses indicating that the high level trigger is capable of sifting events with rare physics probes, it is endeavoured to read out the TPC an order of magnitude faster then was reckoned during the design of its read-out electronics. Based on an analysis of the read-out performance of the current system, an upgrade of the front-end read-out network is proposed. The performance of the foreseen architecture is simulated with raw data from real 7 TeV pp collisions. Events are superimposed in order to emulate the future ALICE running conditions: high multiplicity events generated either by PbPb collisions or by the superposition (pile-up) of a large number of pp collisions. The first prototype of the main building block has been produced and characterised, demonstrating the feasibility of the approach

  20. Upgrade of the ALICE-TPC read-out electronics

    Energy Technology Data Exchange (ETDEWEB)

    Junique, A; Mager, M; Musa, L; Rehman, A Ur, E-mail: Magnus.Mager@cern.ch [CERN, Geneva (Switzerland)

    2010-12-15

    The ALICE experiment at CERN LHC employs a large volume time projection chamber (TPC) as its main tracking device. Instigated by analyses indicating that the high level trigger is capable of sifting events with rare physics probes, it is endeavoured to read out the TPC an order of magnitude faster then was reckoned during the design of its read-out electronics. Based on an analysis of the read-out performance of the current system, an upgrade of the front-end read-out network is proposed. The performance of the foreseen architecture is simulated with raw data from real 7 TeV pp collisions. Events are superimposed in order to emulate the future ALICE running conditions: high multiplicity events generated either by PbPb collisions or by the superposition (pile-up) of a large number of pp collisions. The first prototype of the main building block has been produced and characterised, demonstrating the feasibility of the approach.

  1. CASAGEM: a readout ASIC for micro pattern gas detectors

    International Nuclear Information System (INIS)

    He Li; Deng Zhi; Liu Yinong

    2012-01-01

    A readout ASIC for micro pattern gas detectors has been designed This ASIC integrates 16 channels for anode readout and 1 channel for cathode readout which can make use of the signal of detector's cathode to generate a trigger Every channel can provide amplification and shaping of detector signals. The ASIC can also provide adjustable gain which can be adjusted from 2 mV/fC to 40 mV/fC, and adjustable shaping time which can be adjusted from 20 ns to 80 ns; so this ASIC can be applied to detectors with wide range output signal and different counting rate. The ASIC is fabricated with Chartered 0.35 μm CMOS process More circuit design Details and test results will be presented. (authors)

  2. The New Readout System of the NA62 LKr Calorimeter

    CERN Document Server

    Ceccucci, A; Farthouat, P; Lamanna, G; Rouet, J; Ryjov, V; Venditti, S

    2015-01-01

    The NA62 experiment [1] at CERN SPS (Super Proton Synchrotron) accelerator aims at studying Kaon decays with high precision. The high resolution Liquid Krypton (LKr) calorimeter, built for the NA48 [2] experiment, is a crucial part of the photon-veto system; to cope with the demanding NA62 re- quirements,itsback-endelectron icshadtobecompletelyrenewed. The new readout system is based on the Calorimeter REAdout Module (CREAM) [3], a 6U VME board whose design and pro- duction was sub-contracted to CAEN [4], with CERN NA62 group continuously supervising the de velopment and production phase. The first version of the board was delivered by the manufacturer in March 2013 and, as of June 2014, the full board production is ongoing. In addition to describing the CREAM board, all aspects of the new LKr readout system, including its integration within the NA62 TDAQ scheme, will be treated.

  3. Sub-10ps monolithic and low-power photodetector readout

    International Nuclear Information System (INIS)

    Varner, Gary S.; Ruckman, Larry L.

    2009-01-01

    Recent advances in photon detectors have resulted in high-density imaging arrays that offer many performance and cost advantages. In particular, the excellent transit time spread of certain devices show promise to provide tangible benefits in applications such as Positron Emission Tomography (PET). Meanwhile, high-density, high-performance readout techniques have not kept on pace for exploiting these developments. Photodetector readout for next generation high event rate particle identification and time-resolved PET requires a highly-integrated, low-power, and cost-effective readout technique. We propose fast waveform sampling as a method that meets these criteria and demonstrate that sub-10ps resolution can be obtained for an existing device

  4. A time projection chamber with GEM-based readout

    Science.gov (United States)

    Attié, David; Behnke, Ties; Bellerive, Alain; Bezshyyko, Oleg; Bhattacharya, Deb Sankar; Bhattacharya, Purba; Bhattacharya, Sudeb; Caiazza, Stefano; Colas, Paul; Lentdecker, Gilles De; Dehmelt, Klaus; Desch, Klaus; Diener, Ralf; Dixit, Madhu; Fleck, Ivor; Fujii, Keisuke; Fusayasu, Takahiro; Ganjour, Serguei; Gao, Yuanning; Gros, Philippe; Hayman, Peter; Hedberg, Vincent; Ikematsu, Katsumasa; Jönsson, Leif; Kaminski, Jochen; Kato, Yukihiro; Kawada, Shin-ichi; Killenberg, Martin; Kleinwort, Claus; Kobayashi, Makoto; Krylov, Vladyslav; Li, Bo; Li, Yulan; Lundberg, Björn; Lupberger, Michael; Majumdar, Nayana; Matsuda, Takeshi; Mehdiyev, Rashid; Mjörnmark, Ulf; Müller, Felix; Münnich, Astrid; Mukhopadhyay, Supratik; Ogawa, Tomohisa; Oskarsson, Anders; Österman, Lennart; Peterson, Daniel; Riallot, Marc; Rosemann, Christoph; Roth, Stefan; Schade, Peter; Schäfer, Oliver; Settles, Ronald Dean; Shirazi, Amir Noori; Smirnova, Oxana; Sugiyama, Akira; Takahashi, Tohru; Tian, Junping; Timmermans, Jan; Titov, Maksym; Tsionou, Dimitra; Vauth, Annika; Wang, Wenxin; Watanabe, Takashi; Werthenbach, Ulrich; Yang, Yifan; Yang, Zhenwei; Yonamine, Ryo; Zenker, Klaus; Zhang, Fan

    2017-06-01

    For the International Large Detector concept at the planned International Linear Collider, the use of time projection chambers (TPC) with micro-pattern gas detector readout as the main tracking detector is investigated. In this paper, results from a prototype TPC, placed in a 1 T solenoidal field and read out with three independent Gas Electron Multiplier (GEM) based readout modules, are reported. The TPC was exposed to a 6 GeV electron beam at the DESY II synchrotron. The efficiency for reconstructing hits, the measurement of the drift velocity, the space point resolution and the control of field inhomogeneities are presented.

  5. The Retinal Readout System: a status report A Status Report

    CERN Document Server

    Litke, A M

    1999-01-01

    The 'Retinal Readout System' is being developed to study the language the eye uses to send information about the visual world to the brain. Its architecture is based on that of silicon microstrip detectors. An array of 512 microscopic electrodes picks up the signals generated by the output neurons of live retinal tissue in response to a dynamic image focused on the input neurons. These signals are amplified, filtered and multiplexed by a set of eight custom-designed VLSI readout chips, and digitized and recorded by a data acquisition system. This report describes the goals, design, and status of the system. (author)

  6. SVX3: A deadtimeless readout chip for silicon strip detectors

    International Nuclear Information System (INIS)

    Zimmerman, T.; Huffman, T.; Srage, J.; Stroehmer, R.; Yarema, R.; Garcia-Sciveras, M.; Luo, L.; Milgrome, O.

    1997-12-01

    A new silicon strip readout chip called the SVX3 has been designed for the 720,000 channel CDF silicon upgrade at Fermilab. SVX3 incorporates an integrator, analog delay pipeline, ADC, and data sparsification for each of 128 identical channels. Many of the operating parameters are programmable via a serial bit stream, which allows the chip to be used under a variety of conditions. Distinct features of SVX3 include use of a backside substrate contact for optimal ground referencing, and the capability of simultaneous signal acquisition and digital readout allowing deadtimeless operation in the Fermilab Tevatron

  7. The readout performance evaluation of PowerPC

    International Nuclear Information System (INIS)

    Chu Yuanping; Zhang Hongyu; Zhao Jingwei; Ye Mei; Tao Ning; Zhu Kejun; Tang Suqiu; Guo Yanan

    2003-01-01

    PowerPC, as a powerful low-cost embedded computer, is one of the very important research objects in recent years in the project of BESIII data acquisition system. The researches on the embedded system and embedded computer have achieved many important results in the field of High Energy Physics especially in the data acquisition system. The one of the key points to design an acquisition system using PowerPC is to evaluate the readout ability of PowerPC correctly. The paper introduce some tests for the PowerPC readout performance. (authors)

  8. The readout system for the LHCb Outer Tracker

    CERN Document Server

    Wiedner, D; Apeldorn, G; Bachmann, S; Bagaturia, Yu S; Bauer, T; Berkien, A; Blouw, J; Bos, E; Deisenroth, M; Dubitzki, R; Eisele, F; Guz, Yu; Haas, T; Hommels, B; Ketel, T; Knopf, J; Merk, M; Nardulli, J; Nedos, M; Pellegrino, A; Rausch, A; Rusnyak, R; Schwemmer, R; Simoni, E; Sluijk, T; Spaan, B; Spelt, J; Stange, U; Van Tilburg, J; Trunk, U; Tuning, N; Uwer, U; Vankow, P; Warda, K

    2007-01-01

    The LHCb Outer Tracker is composed of 55 000 straw drift tubes. The requirements for the OT electronics are the precise (1 ns) drift time measurement at 6 % occupancy and 1 MHz readout. Charge signals from the straw detector are amplified, shaped and discriminated by ATLAS ASDBLR chips. Drift-times are determined and stored in the OTIS TDC and put out to a GOL serializer at L0 accept. Optical fibres carry the data 90 m to the TELL1 acquisition board. The full readout chain performed well in an e- test beam.

  9. A Readout System for the LHCb Outer Tracker

    CERN Document Server

    Wiedner, D; Apeldorn , G; Bachmann, S; Bagaturi , I; Bauer, T; Berkien, A; Blouw, J; Bos, E; Deisenroth, M; Dubitzki, R; Eisele, F; Guz , Y; Haas, T; Hommels, B; Ketel, T; Knopf , J; Merk , M; Nardulli , J; Nedos, M; Pellegrino, A; Rausch, A; Rusnyak, R; Schwemmer, R; Simoni, E; Sluijk , T; Spaan, B; Spelt , J; Stange, U; van Tilburg, J; Trunk , U; Tuning , N; Uwer, U; Vankow , P; Warda, K

    2006-01-01

    The LHCb Outer Tracker is composed of 55 000 straw drift tubes. The requirements for the OT electronics are the precise (1 ns) drift time measurement at 6 % occupancy and 1 MHz readout. Charge signals from the straw detector are amplified, shaped and discriminated by ATLAS ASDBLR chips. Drift-times are determined and stored in the OTIS TDC and put out to a GOL serializer at L0 accept. Optical fibres carry the data 90 m to the TELL1 acquisition board. The full readout chain performed well in an e- test beam.

  10. DRM2: the readout board for the ALICE TOF upgrade

    CERN Document Server

    Falchieri, Davide

    2018-01-01

    For the upgrade of the ALICE TOF electronics, we have designed a new version of the readout board, named DRM2, a card able to read the data coming from the TDC Readout Module boards via VME. A Microsemi Igloo2 FPGA acts as the VME master and interfaces the GBTx link for transmitting data and receiving triggers and a low-jitter clock. Compared to the old board, the DRM2 is able to cope with faster trigger rates and provides a larger data bandwidth towards the DAQ. The results of the measurements on the received clock jitter and data transmission performances in a full crate are given.

  11. Common read-out receiver card for ALICE Run2

    Science.gov (United States)

    Engel, H.; Kebschull, U.

    2013-12-01

    ALICE at CERN LHC uses custom FPGA-based computer plug-in cards as interface between the optical detector read-out link and the PC clusters of Data Acquisition (DAQ) and High-Level Trigger (HLT). The cards used at DAQ and HLT during Run1 have been developed as independent projects and are now facing similar problems with obsolete major interfaces and limited link speeds and processing capabilities. A new common card has been developed to enable the upgrade of the read-out chain towards higher link rates while providing backward compatibility with the current architecture. First prototypes could be tested successfully and raised interest from other collaborations.

  12. A New Readout Electronics for the LHCb Muon Detector Upgrade

    CERN Multimedia

    Cadeddu, Sandro

    2016-01-01

    The 2018/2019 upgrade of LHCb Muon System foresees a 40 MHz readout scheme and requires the development of a new Off Detector Electronics (nODE) board that will be based on the nSYNC, a radiation tolerant custom ASIC developed in UMC 130 nm technology. Each nODE board has 192 input channels processed by 4 nSYNCs. The nSYNC is equipped with fully digital TDCs and it implements all the required functionalities for the readout: bunch crossing alignment, data zero suppression, time measurements. Optical interfaces, based on GBT and Versatile link components, are used to communicate with DAQ, TFC and ECS systems.

  13. 3D position readout from thick scintillators

    CERN Document Server

    Antich, P; Parkey, R; Slavin, N V; Tsyganov, E N

    2002-01-01

    A novel technique has been developed and tested for the three-dimensional measurement of position in SPECT-PET detectors. Results are presented for 2 and 20 mm thick NaI(Tl) planar crystals. In a plane of crystal, a coordinate resolution of about 1 mm (rms error) is demonstrated. The depth of interaction (DOI) is measured with an rms error of about 2 mm using light cone parameters.

  14. Imaging differential polarization microscope with electronic readout

    International Nuclear Information System (INIS)

    Mickols, W.; Tinoco, I.; Katz, J.E.; Maestre, M.F.; Bustamante, C.

    1985-01-01

    A differential polarization microscope forms two images: one of the transmitted intensity and the other due to the change in intensity between images formed when different polarizations of light are used. The interpretation of these images for linear dichroism and circular dichroism are described. The design constraints on the data acquisition systems and the polarization modulation are described. The advantage of imaging several biological systems which contain optically anisotropic structures are described

  15. A 4k-Pixel CTIA Readout for Far IR Photodetector Arrays Project

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose to design a low noise, two-side buttable, 64x64 readout multiplexer with the following key design features: 1- By far the largest readout array developed...

  16. The Readout Control Unit of the ALICE TPC

    CERN Document Server

    Lien, J A; Musa, L

    2004-01-01

    The ALICE Time Projection Chamber (TPC) is the main tracking detector of the central barrel of the ALICE (A Large Ion Collider) Experiment at the Large Hadron Collider (LHC), being constructed at CERN, Geneva. It is a 88 m$^{3}$ cylinder filled with gas and divided into two drift regions by the central electrode located at its axial center. The readout chambers of the TPC are multi-wire proportional chambers with cathode pad readout. About 570 000 pads are read-out by an electronics chain of amplification, digitalization and pre-processing. One of the challenges in designing the TPC for ALICE is the design of Front End Electronics (FEE) to cope with the data rates and the channel occupancy. The Readout Control Unit (RCU), which is presented in this work, is designed to control and monitor the Front End Electronics, and to collect and ship data to the High Level Trigger and the Data Acquisition System, via the Detector Data Link (DDL - optical fibre). The RCU must be capable of reading out up to 200 Mbytes/s f...

  17. Optimised cantilever biosensor with piezoresistive read-out

    DEFF Research Database (Denmark)

    Rasmussen, Peter; Thaysen, J.; Hansen, Ole

    2003-01-01

    We present a cantilever-based biochemical sensor with piezoresistive read-out which has been optimised for measuring surface stress. The resistors and the electrical wiring on the chip are encapsulated in low-pressure chemical vapor deposition (LPCVD) silicon nitride, so that the chip is well...

  18. ALIBAVA A portable readout system for silicon microstrip sensors

    CERN Document Server

    Marco-Hernández, R; Casse, G; García, C; Greenall, A; Lacasta, C; Lozano, M; Martí i García, S; Martínez, R; Miñano, M; Pellegrini, G; Smith, N A; Ullán, M

    2007-01-01

    A portable readout system for micro-strip silicon sensors has been developed. The system uses an analogue pipelined readout chip, which was developed for the LHC experiments. The system will be used to characterise the properties of both non-irradiated and irradiated micro-strip sensors. Heavily irradiated sensors will be operated at the Super LHC (SLHC). The system hardware has two main parts: a daughter board and a mother board. The daughter board contains two readout chips, analogue data buffering, power supply regulation and chip-to-sensor fan-in structures. The mother board is intended to process the analogue data that comes from the readout chips and from external trigger signals, to control the whole system and to communicate with a PC via USB. There is provision for an external trigger input (e.g. scintillator trigger) and a synchronised trigger output for pulsing an external excitation source (e.g. laser system). A prototype of the system will be presented.

  19. Compact, Low-power and Precision Timing Photodetector Readout

    International Nuclear Information System (INIS)

    Varner, Gary S.; Ruckman, Larry L.; Schwiening, Jochen; Vavra, Jaroslav

    2011-01-01

    Photodetector readout for next generation high event rate particle identification and single-photon detection requires a digitizer capable of integrated recording of dense arrays of sensor elements with high analog bandwidth (precision timing) and large record depth, in a cost-effective, compact and low-power way. Simply stated, one cannot do better than having a high-fidelity 'oscilloscope on a chip' for every sensor channel. A firs version of the Buffered Large Analog Bandwidth (BLAB1) ASIC has been designed based upon the lessons learned from the development of the Large Analog Bandwidth Recorder and Digitizer with Ordered Readout (LABRADOR) ASIC. While this LABRADOR ASIC has been very successful and forms the readout basis of a generation of new, large-scale radio neutrino detectors, its limited sampling depth is a major drawback. To address this shortcoming, a prototype intended for photodetector readout has been designed and fabricated with 64k deep sampling at multi-GSa/s operation. An evaluation system has been constructed for instrumentation of Time-Of-Propagation (TOP) and focusing DIRC prototypes and test results will be reported.

  20. READOUT ELECTRONICS FOR A HIGH-RATE CSC DETECTOR

    International Nuclear Information System (INIS)

    OCONNOR, P.; GRATCHEV, V.; KANDASAMY, A.; POLYCHRONAKOS, V.; TCHERNIATINE, V.; PARSONS, J.; SIPPACH, W.

    1999-01-01

    A readout system for a high-rate muon Cathode Strip Chamber (CSC) is described. The system, planned for use in the forward region of the ATLAS muon spectrometer, uses two custom CMOS integrated circuits to achieve good position resolution at a flux of up to 2,500 tracks/cm 2 /s

  1. DOSIMO - an interactive web service of the GSF Readout Center

    International Nuclear Information System (INIS)

    Huebner, S.; Lempart, R.

    2002-01-01

    Under the Radiation Protection and X-ray Ordinances, official personnel dosimetry centers are charged with measuring, documenting, and monitoring personnel doses as independent agencies. The GSF Readout Center (AWST) for Personnel Dosimeters and Area Monitors is responsible for monitoring persons occupationally exposed to radiation in the federal states of Baden-Wuerttemberg, Bavaria, Hesse, and Schleswig-Holstein. The largest German readout center uses new media in personnel dosimetry in order to simplify and speed up data transfer. In October 1998, AWST in cooperation with ADANAT ENTIRE SYSTEMS implemented an Internet interface. As a result, AWST is the first European readout center to offer not only a possibility to disseminate information through the Internet by means of the DOSIMO (DOSIMETRY On-line) Internet Service, but also enabling the interactive data exchange by electronic means with authorized customers. DOSIMO users enjoy the decisive advantage of having the results of readout of their dosimeters ready for use as soon as they have become available. (orig.) [de

  2. DS read-out transcription in transgenic tomato plants

    NARCIS (Netherlands)

    Rudenko, George N.; Nijkamp, H. John J.; Hille, Jacques

    1994-01-01

    To select for Ds transposition in transgenic tomato plants a phenotypic excision assay, based on restoration of hygromycin phosphotransferase (HPT II) gene expression, was employed. Some tomato plants, however, expressed the marker gene even though the Ds had not excised. Read-out transcriptional

  3. Design and prototyping of a readout aggregation ASIC

    Energy Technology Data Exchange (ETDEWEB)

    Lemke, Frank; Schatral, Sven; Bruening, Ulrich [ZITI, Universitaet Heidelberg (Germany); Som, Indranil; Bhattacharyya, Tarun [Indian Institute of Technology, Kharagpur (India); Collaboration: CBM-Collaboration

    2015-07-01

    In close collaboration between the Indian Institute of Technology Kharagpur (IITKGP) and the Institute for Computer Engineering (ZITI) at the University of Heidelberg a readout aggregation ASIC was designed. This happened in the context of the Compressed Baryonic Matter (CBM) experiment at the Facility for Antiproton and Ion Research (FAIR). The ASIC is designed in 65nm TSMC technology. Its miniASIC tapeout to verify the analog and high-speed components is scheduled to the first quarter of 2015. This mixed-signal ASIC consists of a full-custom 5Gb/s serializer/deserializer, designed by the IITKGP including design elements such as phase-locked loop, bandgap reference, and clock data recovery, and a digital designed network communication and aggregation part designed by the ZITI. In addition, there are test structures and an I2C readout integrated to ease bring up and monitoring. A specialty of this test ASIC is the aggregation of links featuring different data rates, running with bundles of 500 MB/s LVDS. This enables flexible readout setups of mixed detectors respectively readout of various chips. As communication protocol, a unified link protocol is used including control messages, data messages, and synchronization messages on an identical lane. The design has been simulated, verified, and hardware emulated using Spartan 6 FPGAs.

  4. Parallel optical readout of cantilever arrays in dynamic mode

    NARCIS (Netherlands)

    Koelmans, W.W.; van Honschoten, J.W.; de Vries, Jeroen; Vettiger, P.; Abelmann, Leon; Elwenspoek, Michael Curt

    2010-01-01

    Parallel frequency readout of an array of cantilevers is demonstrated using optical beam deflection with a single laser–diode pair. Multi-frequency addressing makes the individual nanomechanical response of each cantilever distinguishable within the received signal. Addressing is accomplished by

  5. Programmable System-on-Chip (PSoC) Embedded Readout Designs for Liquid Helium Level Sensors.

    Science.gov (United States)

    Parasakthi, C; Gireesan, K; Usha Rani, R; Sheela, O K; Janawadkar, M P

    2014-08-01

    This article reports the development of programmable system-on-chip (PSoC)-based embedded readout designs for liquid helium level sensors using resistive liquid vapor discriminators. The system has been built for the measurement of liquid helium level in a concave-bottomed, helmet-shaped, fiber-reinforced plastic cryostat for magnetoencephalography. This design incorporates three carbon resistors as cost-effective sensors, which are mounted at desired heights inside the cryostat and were used to infer the liquid helium level by measuring their temperature-dependent resistance. Localized electrical heating of the carbon resistors was used to discriminate whether the resistor is immersed in liquid helium or its vapor by exploiting the difference in the heat transfer rates in the two environments. This report describes a single PSoC chip for the design and development of a constant current source to drive the three carbon resistors, a multiplexer to route the sensor outputs to the analog-to-digital converter (ADC), a buffer to avoid loading of the sensors, an ADC for digitizing the data, and a display using liquid crystal display cum light-emitting diode modules. The level sensor readout designed with a single PSoC chip enables cost-effective and reliable measurement system design. © 2014 Society for Laboratory Automation and Screening.

  6. SiPM arrays and miniaturized readout electronics for compact gamma camera

    Energy Technology Data Exchange (ETDEWEB)

    Dinu, N., E-mail: dinu@lal.in2p3.fr [Laboratory of Linear Accelerator, IN2P3, CNRS, Orsay (France); Imando, T. Ait; Nagai, A. [Laboratory of Linear Accelerator, IN2P3, CNRS, Orsay (France); Pinot, L. [Laboratory of Imaging and Modelisation in Neurobiology and Cancerology, IN2P3, CNRS, Orsay (France); Puill, V. [Laboratory of Linear Accelerator, IN2P3, CNRS, Orsay (France); Callier, S. [Omega Microelectronics Group, CNRS, Palaiseau (France); Janvier, B.; Esnault, C.; Verdier, M.-A. [Laboratory of Imaging and Modelisation in Neurobiology and Cancerology, IN2P3, CNRS, Orsay (France); Raux, L. [Omega Microelectronics Group, CNRS, Palaiseau (France); Vandenbussche, V.; Charon, Y.; Menard, L. [Laboratory of Imaging and Modelisation in Neurobiology and Cancerology, IN2P3, CNRS, Orsay (France)

    2015-07-01

    This article reports on the design and features of a very compact and light gamma camera based on SiPM arrays and miniaturized readout electronics dedicated to tumor localization during radio-guided cancer surgery. This gamma camera, called MAGICS, is composed of four (2×2) photo-detection elementary modules coupled to an inorganic scintillator. The 256 channels photo-detection system covers a sensitive area of 54×53 m{sup 2}. Each elementary module is based on four (2×2) SiPM monolithic arrays, each array consisting of 16 SiPM photo-sensors (4×4) with 3×3 mm{sup 2} sensitive area, coupled to a miniaturized readout electronics and a dedicated ASIC. The overall dimensions of the electronics fit the size of the detector, enabling to assemble side-by-side several elementary modules in a close-packed arrangement. The preliminary performances of the system are very encouraging, showing an energy resolution of 9.8% and a spatial resolution of less than 1 mm at 122 keV.

  7. First performance results of the ALICE TPC Readout Control Unit 2

    OpenAIRE

    Zhao, Chengxin; Alme, Johan; Alt, Torsten; Appelshäuser, Harald; Bratrud, Lars Karlot Stubberud; Castro, Andrew; Costa, Filippo; David, Ernö; Gunji, Tako; Kirsch, S; Kiss, Tivadar; Langøy, Rune; Lien, Jørgen; Lippmann, C; Oskarsson, Anders

    2016-01-01

    - This paper presents the first performance results of the ALICE TPC Readout Control Unit 2 (RCU2). With the upgraded hardware typology and the new readout scheme in FPGA design, the RCU2 is designed to achieve twice the readout speed of the present Readout Control Unit. Design choices such as using the flash-based Microsemi Smartfusion2 FPGA and applying mitigation techniques in interfaces and FPGA design ensure a high degree of radiation tolerance. This paper presents the system level ir...

  8. Position readout by charge division in large two-dimensional detectors

    International Nuclear Information System (INIS)

    Alberi, J.L.

    1976-10-01

    The improvement in readout spatial resolution for charge division systems with subdivided readout electrodes has been analyzed. This readout forms the position and sum signals by a linear, unambiguous analogue summation technique. It is shown that the readout resolution is a function of only electrode capacitance and shaping parameters. The line width improves as 1/N/sup 1 / 2 /, where N is the number of electrode subdivisions

  9. O-space with high resolution readouts outperforms radial imaging.

    Science.gov (United States)

    Wang, Haifeng; Tam, Leo; Kopanoglu, Emre; Peters, Dana C; Constable, R Todd; Galiana, Gigi

    2017-04-01

    While O-Space imaging is well known to accelerate image acquisition beyond traditional Cartesian sampling, its advantages compared to undersampled radial imaging, the linear trajectory most akin to O-Space imaging, have not been detailed. In addition, previous studies have focused on ultrafast imaging with very high acceleration factors and relatively low resolution. The purpose of this work is to directly compare O-Space and radial imaging in their potential to deliver highly undersampled images of high resolution and minimal artifacts, as needed for diagnostic applications. We report that the greatest advantages to O-Space imaging are observed with extended data acquisition readouts. A sampling strategy that uses high resolution readouts is presented and applied to compare the potential of radial and O-Space sequences to generate high resolution images at high undersampling factors. Simulations and phantom studies were performed to investigate whether use of extended readout windows in O-Space imaging would increase k-space sampling and improve image quality, compared to radial imaging. Experimental O-Space images acquired with high resolution readouts show fewer artifacts and greater sharpness than radial imaging with equivalent scan parameters. Radial images taken with longer readouts show stronger undersampling artifacts, which can cause small or subtle image features to disappear. These features are preserved in a comparable O-Space image. High resolution O-Space imaging yields highly undersampled images of high resolution and minimal artifacts. The additional nonlinear gradient field improves image quality beyond conventional radial imaging. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Evaluation of silicon micro strip detectors with large read-out pitch

    International Nuclear Information System (INIS)

    Senyo, K.; Yamamura, K.; Tsuboyama, T.; Avrillon, S.; Asano, Y.; Bozek, A.; Natkaniec, Z.; Palka, H.; Rozanska, M.; Rybicki, K.

    1996-01-01

    For the development of the silicon micro-strip detector with the pitch of the readout strips as large as 250 μm on the ohmic side, we made samples with different structures. Charge collection was evaluated to optimize the width of implant strips, aluminum read-out strips, and/or the read-out scheme among strips. (orig.)

  11. First operation of a hybrid photon detector prototype with electrostatic cross-focussing and integrated silicon pixel readout

    CERN Document Server

    Alemi, M; Gys, Thierry; Mikulec, B; Piedigrossi, D; Puertolas, D; Rosso, E; Schomaker, R; Snoeys, W; Wyllie, Ken H

    2000-01-01

    We report on the first operation of a hybrid photon detector prototype with integrated silicon pixel readout for the ring imaging Cherenkov detectors of the LHCb experiment. The photon detector is based on a cross-focussed image intensifier tube geometry where the image is de-magnified by a factor of 4. The anode consists of a silicon pixel array, bump-bonded to a binary readout chip with matching pixel electronics. The prototype has been characterized using a low-intensity light-emitting diode operated in pulsed mode. Its performance in terms of single-photoelectron detection efficiency and imaging properties is presented. A model of photoelectron detection is proposed, and is shown to be in good agreement with the experimental data. It includes an estimate of the charge signal generated in the silicon detector, and the combined effects of the comparator threshold spread of the pixel readout chip, charge sharing at the pixel boundaries and back-scattering of the photoelectrons at the silicon detector surface...

  12. First operation of a hybrid photon detector prototype with electrostatic cross-focussing and integrated silicon pixel readout

    International Nuclear Information System (INIS)

    Alemi, M.; Campbell, M.; Gys, T.; Mikulec, B.; Piedigrossi, D.; Puertolas, D.; Rosso, E.; Schomaker, R.; Snoeys, W.; Wyllie, K.

    2000-01-01

    We report on the first operation of a hybrid photon detector prototype with integrated silicon pixel readout for the ring imaging Cherenkov detectors of the LHCb experiment. The photon detector is based on a cross-focussed image intensifier tube geometry where the image is de-magnified by a factor of 4. The anode consists of a silicon pixel array, bump-bonded to a binary readout chip with matching pixel electronics. The prototype has been characterized using a low-intensity light-emitting diode operated in pulsed mode. Its performance in terms of single-photoelectron detection efficiency and imaging properties is presented. A model of photoelectron detection is proposed, and is shown to be in good agreement with the experimental data. It includes an estimate of the charge signal generated in the silicon detector, and the combined effects of the comparator threshold spread of the pixel readout chip, charge sharing at the pixel boundaries and back-scattering of the photoelectrons at the silicon detector surface

  13. First operation of a hybrid photon detector prototype with electrostatic cross-focussing and integrated silicon pixel readout

    Energy Technology Data Exchange (ETDEWEB)

    Alemi, M.; Campbell, M.; Gys, T. E-mail: thierry.gys@cern.ch; Mikulec, B.; Piedigrossi, D.; Puertolas, D.; Rosso, E.; Schomaker, R.; Snoeys, W.; Wyllie, K

    2000-07-11

    We report on the first operation of a hybrid photon detector prototype with integrated silicon pixel readout for the ring imaging Cherenkov detectors of the LHCb experiment. The photon detector is based on a cross-focussed image intensifier tube geometry where the image is de-magnified by a factor of 4. The anode consists of a silicon pixel array, bump-bonded to a binary readout chip with matching pixel electronics. The prototype has been characterized using a low-intensity light-emitting diode operated in pulsed mode. Its performance in terms of single-photoelectron detection efficiency and imaging properties is presented. A model of photoelectron detection is proposed, and is shown to be in good agreement with the experimental data. It includes an estimate of the charge signal generated in the silicon detector, and the combined effects of the comparator threshold spread of the pixel readout chip, charge sharing at the pixel boundaries and back-scattering of the photoelectrons at the silicon detector surface.

  14. The ANTARES Detector: Electronics and Readout

    Science.gov (United States)

    Circella, M.

    The ANTARES collaboration is building an underwater neutrino telescope at 2500 m depth in the Mediterranean Sea. The experiment aims to detect high- energy cosmic neutrinos using a 3D array of 900 photomultipliers distributed along 12 lines. 5 such lines have been operational since January 2007. The PMTs collect the Cherenkov light induced by neutrino-produced charged particles in the water. In this contribution, we will illustrate the electronics and the data acquisition system of the apparatus and discuss their performance. The PMT signals are digitized and time-stamped offshore. The front-end electronics, based on the ASIC Analogue Ring Sampler, is located inside electronics modules which collect data from PMT triplets and control the various calibration/monitoring devices. Bidirectional data communication is maintained between the shore station and the apparatus over a network of optical fibres with a DWDM technique. This is a convenient solution to allow control of the detector from the shore and to guarantee a high-bandwidth for data transport to shore. Common clock signals, GPS-synchronized onshore, are delivered to the whole apparatus on dedicated optical fibres. An onshore computer farm performs the data filtering and, depending on selectable trigger conditions, writes data to disk. Results from the current 5-line apparatus will be shown.

  15. A custom readout electronics for the BESIII CGEM detector

    Science.gov (United States)

    Da Rocha Rolo, M.; Alexeev, M.; Amoroso, A.; Baldini Ferroli, R.; Bertani, M.; Bettoni, D.; Bianchi, F.; Bugalho, R.; Calcaterra, A.; Canale, N.; Capodiferro, M.; Carassiti, V.; Cerioni, S.; Chai, J. Y.; Chiozzi, S.; Cibinetto, G.; Cossio, F.; Cotta Ramusino, A.; De Mori, F.; Destefanis, M.; Di Francesco, A.; Dong, J.; Evangelisti, F.; Farinelli, R.; Fava, L.; Felici, G.; Fioravanti, E.; Garzia, I.; Gatta, M.; Greco, M.; Lavezzi, L.; Leng, C. Y.; Li, H.; Maggiora, M.; Malaguti, R.; Marcello, S.; Marciniewski, P.; Melchiorri, M.; Mezzadri, G.; Mignone, M.; Morello, G.; Pacetti, S.; Patteri, P.; Pellegrino, J.; Pelosi, A.; Rivetti, A.; Savrié, M.; Scodeggio, M.; Soldani, E.; Sosio, S.; Spataro, S.; Tskhadadze, E.; Varela, J.; Verma, S.; Wheadon, R.; Yan, L.

    2017-07-01

    For the upgrade of the inner tracker of the BESIII spectrometer, planned for 2018, a lightweight tracker based on an innovative Cylindrical Gas Electron Multiplier (CGEM) detector is now under development. The analogue readout of the CGEM enables the use of a charge centroid algorithm to improve the spatial resolution to better than 130 μm while loosening the pitch strip to 650 μm, which allows to reduce the total number of channels to about 10 000. The channels are readout by 160 dedicated integrated 64-channel front-end ASICs, providing a time and charge measurement and featuring a fully-digital output. The energy measurement is extracted either from the time-over-threshold (ToT) or the 10-bit digitisation of the peak amplitude of the signal. The time of the event is generated by quad-buffered low-power TDCs, allowing for rates in excess of 60 kHz per channel. The TDCs are based on analogue interpolation techniques and produce a time stamp (or two, if working in ToT mode) of the event with a time resolution better than 50 ps. The front-end noise, based on a CSA and a two-stage complex conjugated pole shapers, dominate the channel intrinsic time jitter, which is less than 5 ns r.m.s. The time information of the hit can be used to reconstruct the track path, operating the detector as a small TPC and hence improving the position resolution when the distribution of the cloud, due to large incident angle or magnetic field, is very broad. Event data is collected by an off-detector motherboard, where each GEM-ROC readout card handles 4 ASIC carrier FEBs (512 channels). Configuration upload and data readout between the off-detector electronics and the VME-based data collector cards are managed by bi-directional fibre optical links. This paper covers the design of a custom front-end electronics for the readout of the new inner tracker of the BESIII experiment, addressing the relevant design aspects of the detector electronics and the front-end ASIC for the CGEM readout

  16. Three-dimensional cross point readout detector design for including depth information

    Science.gov (United States)

    Lee, Seung-Jae; Baek, Cheol-Ha

    2018-04-01

    We designed a depth-encoding positron emission tomography (PET) detector using a cross point readout method with wavelength-shifting (WLS) fibers. To evaluate the characteristics of the novel detector module and the PET system, we used the DETECT2000 to perform optical photon transport in the crystal array. The GATE was also used. The detector module is made up of four layers of scintillator arrays, the five layers of WLS fiber arrays, and two sensor arrays. The WLS fiber arrays in each layer cross each other to transport light to each sensor array. The two sensor arrays are coupled to the forward and left sides of the WLS fiber array, respectively. The identification of three-dimensional pixels was determined using a digital positioning algorithm. All pixels were well decoded, with the system resolution ranging from 2.11 mm to 2.29 mm at full width at half maximum (FWHM).

  17. Performance of a large scale scintillating fiber tracker using VLPC readout

    International Nuclear Information System (INIS)

    1994-09-01

    The authors report on results of a cosmic-ray test of a 3,072 channel scintillating fiber tracker using VLPC readout. This system is a prototype for the D0 detector tracking upgrade, and represents a configuration that is similar to that planned for the final detector. A detailed description of the cosmic ray test, including trigger, fiber configuration, lightguides, VLPC cassettes and cryogenics, calibration system, and DAQ is given. Tracking results with a muon momentum cutoff of 2.5 GeV/c include R-φ and R-Z resolution studies, light yield/mip, and efficiency measurements. Preliminary analysis gives a most probable value of 19.2 photoelectrons/mip per fiber doublet, an R-φ resolution of 163 microns (before corrections for fiber position survey), and an efficiency of nearly 100% after accounting for known dead channels in the system

  18. Lessons from Monte Carlo simulations of the performance of a dual-readout fiber calorimeter

    CERN Document Server

    Akchurin, N; Cardini, A; Cascella, M; De Pedis, D; Ferrari, R; Fracchia, S; Franchino, S; Fraternali, M; Gaudio, G; Genova, P; Hauptman, J; La Rotonda, L; Lee, S; Livan, M; Meoni, E; Pinci, D; Policicchio, A; Saraiva, J G; Scuri, F; Sill, A; Venturelli, T; Wigmans, R

    2014-01-01

    The RD52 calorimeter uses the dual-readout principle to detect both electromagnetic and hadronic showers, as well as muons. Scintillation and Cherenkov light provide the two signals which, in combination, allow for superior hadronic performance. In this paper, we report on detailed, GEANT4 based Monte Carlo simulations of the performance of this instrument. The results of these simulations are compared in great detail to measurements that have been carried out and published by the DREAM Collaboration. This comparison makes it possible to understand subtle details of the shower development in this unusual particle detector. It also allows for predictions of the improvement in the performance that may be expected for larger detectors of this type. These studies also revealed some inadequacies in the GEANT4 simulation packages, especially for hadronic showers, but also for the Cherenkov signals from electromagnetic showers.

  19. Position and time sensitive photon counting detector with image charge delay-line readout

    Science.gov (United States)

    Czasch, Achim; Dangendorf, Volker; Milnes, James; Schössler, Sven; Lauck, Ronald; Spillmann, Uwe; Howorth, Jon; Jagutzki, Ottmar

    2007-09-01

    We have developed single photon counting image intensifier tubes combining position and time information read-out with at least 500x500 pixels and sub-nanosecond time resolution. This image intensifier type uses a resistive screen instead of a phosphor screen and the image charge pickup anode is placed outside the sealed tube. We present a novel delay-line anode design which allows for instance detecting simultaneously arriving pairs of photons. Due to the very low background this technique is suited for applications with very low light intensity and especially if a precise time tagging for each photon is required. We show results obtained with several anode types on a 25 mm image intensifier tube and a 40 mm open-face MCP detector and discuss the performance in neutron radiography, e.g. for homeland security, and the prospects for applications like Fluorescence Life-time Imaging Microscopy (FLIM), astronomy and X-ray polarimetry.

  20. High-QE fast-readout wavefront sensor with analog phase reconstruction

    Science.gov (United States)

    Baker, Jeffrey T.; Loos, Gary C.; Restaino, Sergio R.; Percheron, Isabelle; Finkner, Lyle G.

    1998-09-01

    The contradiction inherent in high temporal bandwidth adaptive optics wavefront sensing at low-light-levels (LLL) has driven many researchers to consider the use of high bandwidth high quantum efficiency (QE) CCD cameras with the lowest possible readout noise levels. Unfortunately, the performance of these relatively expensive and low production volume devices in the photon counting regime is inevitably limited by readout noise, no matter how arbitrarily close to zero that specification may be reduced. Our alternative approach is to optically couple a new and relatively inexpensive Ultra Blue Gen III image intensifier to an also relatively inexpensive high bandwidth CCD camera with only moderate QE and high rad noise. The result is a high bandwidth broad spectral response image intensifier with a gain of 55,000 at 560 nm. Use of an appropriately selected lenslet array together with coupling optics generates 16 X 16 Shack-Hartmann type subapertures on the image intensifier photocathode, which is imaged onto the fast CCD camera. An integral A/D converter in the camera sends the image data pixel by pixel to a computer data acquisition system for analysis, storage and display. Timing signals are used to decode which pixel is being rad out and the wavefront is calculated in an analog fashion using a least square fit to both x and y tilt data for all wavefront sensor subapertures. Finally, we present system level performance comparisons of these new concept wavefront sensors versus the more standard low noise CCD camera based designs in the low-light-level limit.

  1. Towards a new generation of pixel detector readout chips

    CERN Document Server

    Campbell, M; Ballabriga, R.; Frojdh, E.; Heijne, E.; Llopart, X.; Poikela, T.; Tlustos, L.; Valerio, P.; Wong, W.

    2016-01-01

    The Medipix3 Collaboration has broken new ground in spectroscopic X-ray imaging and in single particle detection and tracking. This paper will review briefly the performance and limitations of the present generation of pixel detector readout chips developed by the Collaboration. Through Silicon Via technology has the potential to provide a significant improvement in the tile- ability and more flexibility in the choice of readout architecture. This has been explored in the context of 3 projects with CEA-LETI using Medipix3 and Timepix3 wafers. The next generation of chips will aim to provide improved spectroscopic imaging performance at rates compatible with human CT. It will also aim to provide full spectroscopic images with unprecedented energy and spatial resolution. Some of the opportunities and challenges posed by moving to a more dense CMOS process will be discussed.

  2. Optical readout and control systems for the CMS tracker

    CERN Document Server

    Troska, Jan K; Faccio, F; Gill, K; Grabit, R; Jareno, R M; Sandvik, A M; Vasey, F

    2003-01-01

    The Compact Muon Solenoid (CMS) Experiment will be installed at the CERN Large Hadron Collider (LHC) in 2007. The readout system for the CMS Tracker consists of 10000000 individual detector channels that are time-multiplexed onto 40000 unidirectional analogue (40 MSample /s) optical links for transmission between the detector and the 65 m distant counting room. The corresponding control system consists of 2500 bi-directional digital (40 Mb/s) optical links based as far as possible upon the same components. The on-detector elements (lasers and photodiodes) of both readout and control links will be distributed throughout the detector volume in close proximity to the silicon detector elements. For this reason, strict requirements are placed on minimal package size, mass, power dissipation, immunity to magnetic field, and radiation hardness. It has been possible to meet the requirements with the extensive use of commercially available components with a minimum of customization. The project has now entered its vol...

  3. Readout Circuits for Noise Compensation in ISFET Sensory System

    Science.gov (United States)

    Das, M. P.; Bhuyan, M.; Talukdar, C.

    2015-12-01

    This paper presents two different noise reduction techniques for ion sensitive field effect transistor (ISFET) readout configuration and their comparison. The proposed circuit configurations are immune to the noise generated from the ISFET sensory system and particularly to the low frequency pH dependent 1/ f electrochemical noise. The methods used under this study are compensation of noise by differential OPAMP based and Wheatstone bridge circuit, where two identical commercial ISFET sensors were used. The statistical and frequency analysis of the data generated by this two methods were compared for different pH value ranging from pH 2 to 10 at room temperature, and it is found that the readout circuits are able to compensate the noise to a great extent.

  4. Digital Power Consumption Estimations for CHIPIX65 Pixel Readout Chip

    CERN Document Server

    Marcotulli, Andrea

    2016-01-01

    New hybrid pixel detectors with improved resolution capable of dealing with hit rates up to 3 GHz/cm2 will be required for future High Energy Physics experiments in the Large Hadron Collider (LHC) at CERN. Given this, the RD53 collaboration works on the design of the next generation pixel readout chip needed for both the ATLAS and CMS detector phase 2 pixel upgrades. For the RD53 demonstrator chip in 65nm CMOS technology, different architectures are considered. In particular the purpose of this work is estimating the power consumption of the digital architecture of the readout ASIC developed by CHIPIX65 project of the INFN National Scientific Committee. This has been done with modern chip design tools integrated with the VEPIX53 simulation framework that has been developed within the RD53 collaboration in order to assess the performance of the system in very high rate, high energy physics experiments.

  5. High bandwidth deflection readout for atomic force microscopes.

    Science.gov (United States)

    Steininger, Juergen; Bibl, Matthias; Yoo, Han Woong; Schitter, Georg

    2015-10-01

    This contribution presents the systematic design of a high bandwidth deflection readout mechanism for atomic force microscopes. The widely used optical beam deflection method is revised by adding a focusing lens between the cantilever and the quadrant photodetector (QPD). This allows the utilization of QPDs with a small active area resulting in an increased detection bandwidth due to the reduced junction capacitance. Furthermore the additional lens can compensate a cross talk between a compensating z-movement of the cantilever and the deflection readout. Scaling effects are analyzed to get the optimal spot size for the given geometry of the QPD. The laser power is tuned to maximize the signal to noise ratio without limiting the bandwidth by local saturation effects. The systematic approach results in a measured -3 dB detection bandwidth of 64.5 MHz at a deflection noise density of 62fm/√Hz.

  6. A modular electronic readout system for the OPAL electromagnetic presampler

    International Nuclear Information System (INIS)

    Hobbs, J.D.; Anderson, K.J.; Gensler, S.W.; Kroll, J.; Merritt, F.S.; Nguyen, H.H.; Oreglia, M.J.; Pilcher, J.E.; Roney, J.M.; Redmond, M.W.; Sanders, H.; Schappert, W.S.; Strom, D.

    1993-01-01

    The readout system used to sample and digitize the 21 504 channels of the OPAL electromagnetic barrel presampler is described. The system consists of semi-custom analog electronics mounted directly on the detector to provide integrate-and-hold capability and custom VME boards to implement the digitization functions. The data from one event is digitized completely in under 7 ms. This meets the OPAL requirement of a sustained 10 Hz trigger rate with less than 10% dead time. A minimum ionizing particle deposits 2.7 pC in a single layer of the presampler, and the largest signal commonly seen in 200 pC. The dynamic range of the readout system is 0.032 to 1000 pC. The noise on a single channel is typically 0.2 pC. A linear analog calibration is automatically applied on a channel-by-channel basis. Programmable logic is used extensively. (orig.)

  7. Evaluation of Cryogenic Readout Electronics for ASTRO-F

    Science.gov (United States)

    Watabe, Toyoki; Hirao, Takanori; Shibai, Hiroshi; Kawada, Mitsunobu; Nagata, Hiroshi; Hibi, Yasunori; Noda, Manabu

    Cryogenic readout electronics have been developed for the far-infrared detectors onboard ASTRO-F, the first Japanese infrared astronomical satellite. This cryogenic readout circuit should be mounted near the detector array at the liquid helium temperature in order to achieve high sensitivity. We succeeded in developing the cryogenic p-MOS transistor by a standard Bi-CMOS process with a slight modification. By using the new p-MOS transistor, we have made several types of cryogenic electronics, (OP-AMP and CTIA), and evaluated their performances in the liquid helium temperature. The results are: 1. Open loop gain of OP-AMP ~300 2. Input equivalence noise ~3μV/Hz1/2 3. Power consumption ~10μW/ch More details will be shown on the poster.

  8. The OPERA global readout and GPS distribution system

    Science.gov (United States)

    Marteau, J.; Opera Collaboration

    2010-05-01

    OPERA is an experiment dedicated to the observation of νμ into ντ oscillations in appearance mode using a pure νμ beam (CNGS) produced at CERN and detected at Gran Sasso. The experiment exploits a hybrid technology with emulsions and electronics detectors. The OPERA readout is performed through a triggerless, continuously running, distributed and highly available system. Its global architecture is based on Ethernet-capable smart sensors with microprocessing and network interface directly at the front-end stage. A unique interface board is used for the full detector reading out ADC-, TDC- or Controller-boards. All the readout channels are synchronized through a GPS-locked common bidirectional clock distribution system developed on purpose in a PCI format. It offers a second line to address all channels and the off-line synchronization with the CNGS to select the events.

  9. The OPERA global readout and GPS distribution system

    International Nuclear Information System (INIS)

    Marteau, J.

    2010-01-01

    OPERA is an experiment dedicated to the observation of ν μ into ν τ oscillations in appearance mode using a pure ν μ beam (CNGS) produced at CERN and detected at Gran Sasso. The experiment exploits a hybrid technology with emulsions and electronics detectors. The OPERA readout is performed through a triggerless, continuously running, distributed and highly available system. Its global architecture is based on Ethernet-capable smart sensors with microprocessing and network interface directly at the front-end stage. A unique interface board is used for the full detector reading out ADC-, TDC- or Controller-boards. All the readout channels are synchronized through a GPS-locked common bidirectional clock distribution system developed on purpose in a PCI format. It offers a second line to address all channels and the off-line synchronization with the CNGS to select the events.

  10. Development of TORCH readout electronics for customised MCPs

    Science.gov (United States)

    Gao, R.; Brook, N.; Castillo García, L.; Cussans, D.; Fohl, K.; Forty, R.; Frei, C.; Gys, T.; Harnew, N.; Piedigrossi, D.; Rademacker, J.; Ros García, A.; Van Dijk, M.

    2016-04-01

    The TORCH detector is being developed for low-momentum particle identification, combining time-of-flight and Cherenkov techniques to achieve charged particle pi/K/p separation up to 10 GeV/c over a flight distance of 10m. This requires a timing resolution of 70 ps for single photons. Based on an existing scalable design, production and testing of a TORCH readout system has been undertaken over the past year, and a novel customized Micro Channel Plate (MCP) photomultiplier device with 128-channels has been instrumented. This paper will report on the development of the readout system which is being used to measure time-of-flight in a test-beam, and its performance. We will also discuss the communication and data alignment between the TORCH system and the TimePix3 telescope in order to provide track reconstruction.

  11. The GOTTHARD charge integrating readout detector: design and characterization

    International Nuclear Information System (INIS)

    Mozzanica, A; Bergamaschi, A; Dinapoli, R; Greiffenberg, D; Henrich, B; Johnson, I; Valeria, R; Schmitt, B; Xintian, S; Graafsma, H; Lohmann, M

    2012-01-01

    A charge integrating readout ASIC (Application Specific Integrated Circuit) for silicon strip sensors has been developed at PSI in collaboration with DESY. The goal of the project is to provide a charge integrating readout system able to cope with the pulsed beam of XFEL machines and at the same time to retain the high dynamic range and single photon resolution performances typical for photon counting systems. The ASIC, designed in IBM 130 nm CMOS technology, takes advantage of its three gain stages with automatic stage selection to achieve a dynamic range of 10000 12 keV photons and a noise better than 300 e.n.c.. The 4 analog outputs of the ASIC are optimized for speed, allowing frame rates higher than 1 MHz, without compromises on linearity and noise performances. This work presents the design features of the ASIC, and reports the characterization results of the chip itself.

  12. Readout of TPC Tracking Chambers with GEMs and Pixel Chip

    Energy Technology Data Exchange (ETDEWEB)

    Kadyk, John; Kim, T.; Freytsis, M.; Button-Shafer, J.; Kadyk, J.; Vahsen, S.E.; Wenzel, W.A.

    2007-12-21

    Two layers of GEMs and the ATLAS Pixel Chip, FEI3, have been combined and tested as a prototype for Time Projection Chamber (TPC) readout at the International Linear Collider (ILC). The double-layer GEM system amplifies charge with gain sufficient to detect all track ionization. The suitability of three gas mixtures for this application was investigated, and gain measurements are presented. A large sample of cosmic ray tracks was reconstructed in 3D by using the simultaneous timing and 2D spatial information from the pixel chip. The chip provides pixel charge measurement as well as timing. These results demonstrate that a double GEM and pixel combination, with a suitably modified pixel ASIC, could meet the stringent readout requirements of the ILC.

  13. Sensor Development and Readout Prototyping for the STAR Pixel Detector

    Energy Technology Data Exchange (ETDEWEB)

    Greiner, L.; Anderssen, E.; Matis, H.S.; Ritter, H.G.; Stezelberger, T.; Szelezniak, M.; Sun, X.; Vu, C.; Wieman, H.

    2009-01-14

    The STAR experiment at the Relativistic Heavy Ion Collider (RHIC) is designing a new vertex detector. The purpose of this upgrade detector is to provide high resolution pointing to allow for the direct topological reconstruction of heavy flavor decays such as the D{sup 0} by finding vertices displaced from the collision vertex by greater than 60 microns. We are using Monolithic Active Pixel Sensor (MAPS) as the sensor technology and have a coupled sensor development and readout system plan that leads to a final detector with a <200 {micro}s integration time, 400 M pixels and a coverage of -1 < {eta} < 1. We present our coupled sensor and readout development plan and the status of the prototyping work that has been accomplished.

  14. Tests of the CBM Rich readout and Daq prototype

    Science.gov (United States)

    Adamczewski-Musch, J.; Akishin, P.; Becker, K.-H.; Belogurov, S.; Bendarouach, J.; Boldyreva, N.; Deveaux, C.; Dobyrn, V.; Dürr, M.; Eschke, J.; Förtsch, J.; Heep, J.; Höhne, C.; Kampert, K.-H.; Khanzadeev, A.; Kochenda, L.; Kopfer, J.; Kravtsov, P.; Kres, I.; Lebedev, S.; Lebedeva, E.; Leonova, E.; Linev, S.; Mahmoud, T.; Michel, J.; Niebur, W.; Ovcharenko, E.; Patel, V.; Pauly, C.; Pfeifer, D.; Querchfeld, S.; Rautenberg, J.; Reinecke, S.; Riabov, Y.; Roshchin, E.; Samsonov, V.; Schetinin, V.; Tarasenkova, O.; Traxler, M.; Ugur, C.; Vznuzdaev, M.

    2017-11-01

    The CBM RICH detector is an integral component of the future CBM experiment at FAIR, providing efficient electron identification and pion suppression necessary for the measurement of rare dileptonic probes in heavy ion collisions. An overview of the CBM RICH readout and DAQ system prototype is given, consisting of the PADIWA preamplifier-discriminator board, the TDC-HUB board TRBv3, and DAQ and analysis code in the CbmRoot framework. The laboratory setup built for studying the timing characteristics of the readout chain and the analysis results obtained using the laboratory measurements are presented. The fine time calibration and inter-channel delay correction techniques and their implementation and effect are discussed.

  15. Ultrasensitive proximity Josephson sensor with kinetic inductance readout

    OpenAIRE

    Giazotto, Francesco; Heikkilä, Tero T.; Pepe, Giovanni Piero; Helistö, Panu; Luukanen, Arttu; Pekola, Jukka P.

    2008-01-01

    We propose a mesoscopic kinetic-inductance radiation detector based on a long superconductor-normal metal-superconductor Josephson junction. The operation of this proximity Josephson sensor relies on large kinetic inductance variations under irradiation due to the exponential temperature dependence of the critical current. Coupled with a dc superconducting quantum interference device readout, the PJS is able to provide a signal to noise (S/N) ratio up to ∼103 in the terahertz regime if operat...

  16. Hexagonal pixel detector with time encoded binary readout

    International Nuclear Information System (INIS)

    Hoedlmoser, H.; Varner, G.; Cooney, M.

    2009-01-01

    The University of Hawaii is developing continuous acquisition pixel (CAP) detectors for vertexing applications in lepton colliding experiments such as SuperBelle or ILC. In parallel to the investigation of different technology options such as MAPS or SOI, both analog and binary readout concepts have been tested. First results with a binary readout scheme in which the hit information is time encoded by means of a signal shifting mechanism have recently been published. This paper explains the hit reconstruction for such a binary detector with an emphasis on fake hit reconstruction probabilities in order to evaluate the rate capability in a high background environment such as the planned SuperB factory at KEK. The results show that the binary concept is at least comparable to any analog readout strategy if not better in terms of occupancy. Furthermore, we present a completely new binary readout strategy in which the pixel cells are arranged in a hexagonal grid allowing the use of three independent output directions to reduce reconstruction ambiguities. The new concept uses the same signal shifting mechanism for time encoding, however, in dedicated transfer lines on the periphery of the detector, which enables higher shifting frequencies. Detailed Monte Carlo simulations of full size pixel matrices including hit and BG generation, signal generation, and data reconstruction show that by means of multiple signal transfer lines on the periphery the pixel can be made smaller (higher resolution), the number of output channels and the data volume per triggered event can be reduced dramatically, fake hit reconstruction is lowered to a minimum and the resulting effective occupancies are less than 10 -4 . A prototype detector has been designed in the AMS 0.35μm Opto process and is currently under fabrication.

  17. 3D, Flash, Induced Current Readout for Silicon Sensors

    Energy Technology Data Exchange (ETDEWEB)

    Parker, Sherwood I. [Univ. of Hawaii, Honolulu, HI (United States)

    2014-06-07

    A new method for silicon microstrip and pixel detector readout using (1) 65 nm-technology current amplifers which can, for the first time with silicon microstrop and pixel detectors, have response times far shorter than the charge collection time (2) 3D trench electrodes large enough to subtend a reasonable solid angle at most track locations and so have adequate sensitivity over a substantial volume of pixel, (3) induced signals in addition to, or in place of, collected charge

  18. Performance of an optical readout GEM-based TPC

    International Nuclear Information System (INIS)

    Margato, L.M.S.; Fraga, F.A.F.; Fetal, S.T.G.; Fraga, M.M.F.R.; Balau, E.F.S.; Blanco, A.; Marques, R. Ferreira; Policarpo, A.J.P.L

    2004-01-01

    We report on the operation of a GEM-based small TPC using an optical readout. The detector was operated with a mixture of Ar+CF 4 using 5.48 MeV alpha particles obtained from a 241 Am source and the GEM scintillation was concurrently read by a CCD camera and a photomultiplier. Precision collimators were used to define the track orientation. Qualitative results on the accuracy of the track angle, length and charge deposition measurements are presented

  19. Results from a Prototype MAPS Sensor Telescope and Readout Systemwith Zero Suppression for the Heavy Flavor Tracker at STAR

    Energy Technology Data Exchange (ETDEWEB)

    Greiner, Leo C.; Matis, Howard S.; Ritter, Hans G.; Rose, AndrewA.; Stezelberger, Thorsten; Sun, Xiangming; Szelezniak, Michal A.; Thomas, James H.; Vu, Chinh Q.; Wieman, Howard H.

    2008-02-11

    We describe a three Mimostar-2 Monolithic Active PixelSensor (MAPS) sensor telescope prototype with an accompanying readoutsystem incorporating on-the-fly data sparsification. The system has beencharacterized and we report on the measured performance of the sensortelescope and readout system in beam tests conducted both at the AdvancedLight Source (ALS) at Lawrence Berkeley National Laboratory (LBNL) and inthe STAR experiment at the Relativistic Heavy Ion Collider (RHIC). Thiseffort is part of the development and prototyping work that will lead toa vertex detector for the STAR experiment.

  20. Testing and simulation of silicon photomultiplier readouts for scintillators in high-energy astronomy and solar physics

    Science.gov (United States)

    Bloser, P. F.; Legere, J. S.; Bancroft, C. M.; Jablonski, L. F.; Wurtz, J. R.; Ertley, C. D.; McConnell, M. L.; Ryan, J. M.

    2014-11-01

    Space-based gamma-ray detectors for high-energy astronomy and solar physics face severe constraints on mass, volume, and power, and must endure harsh launch conditions and operating environments. Historically, such instruments have usually been based on scintillator materials due to their relatively low cost, inherent ruggedness, high stopping power, and radiation hardness. New scintillator materials, such as LaBr3:Ce, feature improved energy and timing performance, making them attractive for future astronomy and solar physics space missions in an era of tightly constrained budgets. Despite this promise, the use of scintillators in space remains constrained by the volume, mass, power, and fragility of the associated light readout device, typically a vacuum photomultiplier tube (PMT). In recent years, silicon photomultipliers (SiPMs) have emerged as promising alternative light readout devices that offer gains and quantum efficiencies similar to those of PMTs, but with greatly reduced mass and volume, high ruggedness, low voltage requirements, and no sensitivity to magnetic fields. In order for SiPMs to replace PMTs in space-based instruments, however, it must be shown that they can provide comparable performance, and that their inherent temperature sensitivity can be corrected for. To this end, we have performed extensive testing and modeling of a small gamma-ray spectrometer composed of a 6 mm×6 mm SiPM coupled to a 6 mm×6 mm ×10 mm LaBr3:Ce crystal. A custom readout board monitors the temperature and adjusts the bias voltage to compensate for gain variations. We record an energy resolution of 5.7% (FWHM) at 662 keV at room temperature. We have also performed simulations of the scintillation process and optical light collection using Geant4, and of the SiPM response using the GosSiP package. The simulated energy resolution is in good agreement with the data from 22 keV to 662 keV. Above ~1 MeV, however, the measured energy resolution is systematically worse than

  1. Performance of hybrid photon detector prototypes with encapsulated silicon pixel detector and readout for the RICH counters of LHCb

    International Nuclear Information System (INIS)

    Campbell, M.; George, K.A.; Girone, M.; Gys, T.; Jolly, S.; Piedigrossi, D.; Riedler, P.; Rozema, P.; Snoeys, W.; Wyllie, K.

    2003-01-01

    These proceedings report on the performance of the latest prototype pixel hybrid photon detector in preparation for the LHCb Ring Imaging Cherenkov detectors. The prototype encapsulates a silicon pixel detector bump-bonded to a binary read-out chip with short (25 ns) peaking time and low ( - ) detection threshold. A brief description of the prototype is given, followed by the preliminary results of the characterisation of the prototype behaviour when tested using a low intensity pulsed light emitting diode. The results obtained are in good agreement with those obtained using previous prototypes. The proceedings conclude with a summary of the current status and future plans

  2. SQUIDs for the readout of metallic magnetic calorimeters

    Energy Technology Data Exchange (ETDEWEB)

    Ferring, Anna; Wegner, Mathias; Fleischmann, Andreas; Gastaldo, Loredana; Kempf, Sebastian; Enss, Christian [Kirchhoff-Institute for Physics, Heidelberg University (Germany)

    2015-07-01

    Superconducting quantum interference devices (SQUIDs) are the devices of choice to read out metallic magnetic calorimeters (MMCs). Here, the temperature change of the detector upon the absorption of an energetic particle is measured as a magnetization change of a paramagnetic temperature sensor that is situated in a weak magnetic field. Driven by the need for devices that allow for the readout of large-scale detector arrays with hundreds or even thousands of individual detectors as well as of single channel detectors with sub-eV energy resolution, we have recently started the development of low-T{sub c} current-sensing SQUIDs. In particular, we are developing cryogenic frequency-domain multiplexers based on non-hysteretic rf-SQUIDs for detector array readout as well as dc-SQUIDs for single channel detector readout. We discuss our SQUID designs and the performance of prototype SQUIDs. We particularly focus on the frequency and temperature dependence of the SQUID noise as well as the reliability of our SQUID fabrication process for Nb/Al-AlO{sub x}/Nb Josephson junctions. Additionally, we demonstrate experimentally that state-of-the-art MMCs can successfully be read out with our current devices. Finally, we discuss different strategies to improve the SQUID and detector performance aiming to reach sub-eV energy resolution for individual detectors as well as for detector arrays.

  3. High throughput testing and characterization of IR readouts and hybrids

    Science.gov (United States)

    Mandl, William J.; Bui, Khang X.; Patel, Manilal J.

    1992-07-01

    A program to upgrade the test capability for IR focal plane arrays and readouts is in progress at Aerojet. The objective of the development is to reduce the number and complexity of the steps in the test process, reduce in socket test time and provide a simplified set up procedure for production testing. There are two areas of study in the program. One is concerned with examining multiple fabrication sources for readout circuits. The application of a commercially available automated test system for production testing and engineering characterization of readouts and focal plane arrays is discussed. The Sentry Series 80 mixed signal tester is being fixtured for low noise measurements and interfacing to dewars for cryogenic testing. The multiuser foreground/background operating system software has the advantage of allowing noise and other statistical calculations to be performed in the background without impeding test measurements. It also has the advantage in production of requiring no manual instrumentation set up or interconnect. The improvements in test throughput and analysis capability will be shown in adapting this class of tester as opposed to assembling test instruments in a custom made computer controlled test approach.

  4. Global Trigger and Readout System for the AGATA Experiment

    Science.gov (United States)

    Bellato, M.; Berti, L.; Bortolato, D.; Coleman-Smith, P. J.; Edelbruck, P.; Grave, X.; Isocrate, R.; Lazarus, I.; Linget, D.; Medina, P.; Oziol, C.; Rampazzo, G.; Santos, C.; Travers, B.; Triossi, A.

    2008-02-01

    AGATA is a 4-pi array of high purity Ge detectors for in-beam gamma-ray spectroscopy based on the novel concepts of pulse shape analysis (PSA) and gamma-ray tracking. Tracking and PSA require the concurrent digitization-at a sampling rate of 100 Msamples/s-of preamplifier signals of the 36-fold segmented Ge crystals composing the array. Locally digitized data are optically transferred to remote pre-processing nodes for pulse energy computation. The design of the front-end readout and level-1 (L1) trigger in AGATA follows a synchronous pipeline model: the detector data are stored in pipeline buffers at the global AGATA frequency, waiting the global L1 decision. A global timing system provides a reference clock and time tag to the digitizers and the pre-processing units by means of a tree of optically connected timing units. Pre-processing nodes are integrated in advanced TCA-based carrier cards with full mesh connectivity in the backplane and read-out through pci-express based optical links. The front-end data readout and its integration in the global trigger and synchronization system will be described.

  5. Composite readouts with TDI and dead elements deselection

    Science.gov (United States)

    Sizov, Fiodor F.; Reva, Vladimir P.; Derkach, Yuri P.; Golenkov, Alexandr G.; Zabudsky, Vyacheslav V.; Korinets, Sergey V.

    2003-09-01

    For 288x4 mercury-cadmium telluride (MCT) diode array silicon readouts with deselection function, the "composite" technology approach, which simplifies the technology of their manufacturing, is considered. Both technology of n-channel CCD devices and the CMOS technology are applied, which allow to weaken considerably the technological requirements for realization of 288x4 readouts with deselection of "dead" elements (generally the 0.8 micron design rules technology is applied). It is shown that the design rules 2.5 μm for CCD technology and 2.0 design rules for CMOS technology are sufficient to realize most of functions needed for 288x4 MCT array design and manufacture. All analog functions (including TDI as the most complex function for realization in CMOS basis) are realized by CCD elements. Four-phase TDI register was realized using semi-buried channel by phosphorus ion implantation. An amplification of the output signals is realized by CMOS buffer amplifier. Decoding and deselection code storing functions are realized by digital CMOS elements. The parameters of the 288x4 silicon readout device: direct injection input circuits, 4 elements TDI function, 4 outputs; 4 MHz maximum information output frequency; 2 MHz maximum clock frequency; 3 V swing output voltage; not less than 1.6 pC maximum charge capacity per each input; 3.0 pC maximum charge capacity at multiplexor input; 75 dB dynamic band; 28 output pins.

  6. The ALICE Time of Flight Readout System AFRO

    CERN Document Server

    Kluge, A

    1999-01-01

    The ALICE Time of Flight Detector system comprises more than 100.000 channels and covers an area of more than 100 m2. The timing resolution should be better than 150 ps. This combination of requirements poses a major challenge to the readout system. All detector timing measurements are referenced to a unique start signal t0. This signal is generated at the time an event occurs. Timing measurements are performed using a multichannel TDC chip which requires a 40 MHz reference clock signal. The general concept of the readout system is based on a modular architecture. Detector cells are combined to modules of 1024 channels. Each of these modules can be read out and calibrated independently from each other. By distributing a reference signal, a timing relationship between the modules is established. This reference signal can either be the start signal t0 or the TDC-reference clock. The readout architecture is divided into three steps; the TDC controller, the module controller, and the time of flight controller. Th...

  7. BAW sensor readout circuit based on Pierce oscillator architecture

    Science.gov (United States)

    Gao, Yang; Yin, Xi-Yang; Han, Bin; Wang, Yu-Hang

    2017-10-01

    Bulk Acoustic Wave Resonators (BAWRs) have been well developed both as filters and as high sensitivity sensors in recent years. In contrast to traditional megahertz quartz resonators, BAWRs offer significant increases in resonant frequency, typically operating in gigahertz regimes. This translates into a potential sensitivity increase of more than three orders of magnitude over traditional QCM (Quartz Crystal Microbalance) devices. Given the micrometer-scale size of BAW sensor-head, read-out circuitry can monolithic integrated with this GHz transducer is urgently needed to produce small, robust, and inexpensive sensor systems. A BAW sensor read-out circuit prototype based on Pierce oscillator architecture is fulfilled in this paper. Based on the differential measurement scheme, two uniform BAWRs are used to constitute two BAW oscillators as a reference and a measurement branch respectively. The resonant frequency shift caused by the measurand is obtained by mixing and filtering the two oscillator signals. Then, the intermediate signal is amplified, shaped and converted to a digital one. And a FPGA is used for frequency detection. Taking 2 GHz BAW mass sensor as a case study, deign procedure are given in details. Simulation and experimental results reveal a 0-99 MHz frequency shift measurement range. Main factors affecting phase noise of the BAW oscillator (i.e. mainly frequency stability of the BAW sensor readout circuit) are also discussed for further optimizations.

  8. SPIDR, a general-purpose readout system for pixel ASICs

    International Nuclear Information System (INIS)

    Heijden, B. van der; Visser, J.; Beuzekom, M. van; Boterenbrood, H.; Munneke, B.; Schreuder, F.; Kulis, S.

    2017-01-01

    The SPIDR (Speedy PIxel Detector Readout) system is a flexible general-purpose readout platform that can be easily adapted to test and characterize new and existing detector readout ASICs. It is originally designed for the readout of pixel ASICs from the Medipix/Timepix family, but other types of ASICs or front-end circuits can be read out as well. The SPIDR system consists of an FPGA board with memory and various communication interfaces, FPGA firmware, CPU subsystem and an API library on the PC . The FPGA firmware can be adapted to read out other ASICs by re-using IP blocks. The available IP blocks include a UDP packet builder, 1 and 10 Gigabit Ethernet MAC's and a 'soft core' CPU . Currently the firmware is targeted at the Xilinx VC707 development board and at a custom board called Compact-SPIDR . The firmware can easily be ported to other Xilinx 7 series and ultra scale FPGAs. The gap between an ASIC and the data acquisition back-end is bridged by the SPIDR system. Using the high pin count VITA 57 FPGA Mezzanine Card (FMC) connector only a simple chip carrier PCB is required. A 1 and a 10 Gigabit Ethernet interface handle the connection to the back-end. These can be used simultaneously for high-speed data and configuration over separate channels. In addition to the FMC connector, configurable inputs and outputs are available for synchronization with other detectors. A high resolution (≈ 27 ps bin size) Time to Digital converter is provided for time stamping events in the detector. The SPIDR system is frequently used as readout for the Medipix3 and Timepix3 ASICs. Using the 10 Gigabit Ethernet interface it is possible to read out a single chip at full bandwidth or up to 12 chips at a reduced rate. Another recent application is the test-bed for the VeloPix ASIC, which is developed for the Vertex Detector of the LHCb experiment. In this case the SPIDR system processes the 20 Gbps scrambled data stream from the VeloPix and distributes it over four

  9. SPIDR, a general-purpose readout system for pixel ASICs

    Science.gov (United States)

    van der Heijden, B.; Visser, J.; van Beuzekom, M.; Boterenbrood, H.; Kulis, S.; Munneke, B.; Schreuder, F.

    2017-02-01

    The SPIDR (Speedy PIxel Detector Readout) system is a flexible general-purpose readout platform that can be easily adapted to test and characterize new and existing detector readout ASICs. It is originally designed for the readout of pixel ASICs from the Medipix/Timepix family, but other types of ASICs or front-end circuits can be read out as well. The SPIDR system consists of an FPGA board with memory and various communication interfaces, FPGA firmware, CPU subsystem and an API library on the PC . The FPGA firmware can be adapted to read out other ASICs by re-using IP blocks. The available IP blocks include a UDP packet builder, 1 and 10 Gigabit Ethernet MAC's and a "soft core" CPU . Currently the firmware is targeted at the Xilinx VC707 development board and at a custom board called Compact-SPIDR . The firmware can easily be ported to other Xilinx 7 series and ultra scale FPGAs. The gap between an ASIC and the data acquisition back-end is bridged by the SPIDR system. Using the high pin count VITA 57 FPGA Mezzanine Card (FMC) connector only a simple chip carrier PCB is required. A 1 and a 10 Gigabit Ethernet interface handle the connection to the back-end. These can be used simultaneously for high-speed data and configuration over separate channels. In addition to the FMC connector, configurable inputs and outputs are available for synchronization with other detectors. A high resolution (≈ 27 ps bin size) Time to Digital converter is provided for time stamping events in the detector. The SPIDR system is frequently used as readout for the Medipix3 and Timepix3 ASICs. Using the 10 Gigabit Ethernet interface it is possible to read out a single chip at full bandwidth or up to 12 chips at a reduced rate. Another recent application is the test-bed for the VeloPix ASIC, which is developed for the Vertex Detector of the LHCb experiment. In this case the SPIDR system processes the 20 Gbps scrambled data stream from the VeloPix and distributes it over four 10 Gigabit

  10. Development of an integrated four-channel fast avalanche-photodiode detector system with nanosecond time resolution

    Science.gov (United States)

    Li, Zhenjie; Li, Qiuju; Chang, Jinfan; Ma, Yichao; Liu, Peng; Wang, Zheng; Hu, Michael Y.; Zhao, Jiyong; Alp, E. E.; Xu, Wei; Tao, Ye; Wu, Chaoqun; Zhou, Yangfan

    2017-10-01

    A four-channel nanosecond time-resolved avalanche-photodiode (APD) detector system is developed at Beijing Synchrotron Radiation. It uses a single module for signal processing and readout. This integrated system provides better reliability and flexibility for custom improvement. The detector system consists of three parts: (i) four APD sensors, (ii) four fast preamplifiers and (iii) a time-digital-converter (TDC) readout electronics. The C30703FH silicon APD chips fabricated by Excelitas are used as the sensors of the detectors. It has an effective light-sensitive area of 10 × 10 mm2 and an absorption layer thickness of 110 μm. A fast preamplifier with a gain of 59 dB and bandwidth of 2 GHz is designed to readout of the weak signal from the C30703FH APD. The TDC is realized by a Spartan-6 field-programmable-gate-array (FPGA) with multiphase method in a resolution of 1ns. The arrival time of all scattering events between two start triggers can be recorded by the TDC. The detector has been used for nuclear resonant scattering study at both Advanced Photon Source and also at Beijing Synchrotron Radiation Facility. For the X-ray energy of 14.4 keV, the time resolution, the full width of half maximum (FWHM) of the detector (APD sensor + fast amplifier) is 0.86 ns, and the whole detector system (APD sensors + fast amplifiers + TDC readout electronics) achieves a time resolution of 1.4 ns.

  11. Infrared readout electronics; Proceedings of the Meeting, Orlando, FL, Apr. 21, 22, 1992

    Science.gov (United States)

    Fossum, Eric R.

    The present volume on IR readout electronics discusses cryogenic readout using silicon devices, cryogenic readout using III-V and LTS devices, multiplexers for higher temperatures, and focal-plane signal processing electronics. Attention is given to the optimization of cryogenic CMOS processes for sub-10-K applications, cryogenic measurements of aerojet GaAs n-JFETs, inP-based heterostructure device technology for ultracold readout applications, and a three-terminal semiconductor-superconductor transimpedance amplifier. Topics addressed include unfulfilled needs in IR astronomy focal-plane readout electronics, IR readout integrated circuit technology for tactical missile systems, and radiation-hardened 10-bit A/D for FPA signal processing. Also discussed are the implementation of a noise reduction circuit for spaceflight IR spectrometers, a real-time processor for staring receivers, and a fiber-optic link design for INMOS transputers.

  12. A combined crystalloid and colloid pd solution as a glucose-sparing strategy for volume control in high-transport apd patients: a prospective multicenter study.

    Science.gov (United States)

    Freida, Philippe; Issad, Belkacem; Dratwa, Max; Lobbedez, Thierry; Wu, Lieling; Leypoldt, John K; Divino-Filho, Jose Carolino

    2009-01-01

    Evidence is accumulating that the continuous exposure to high glucose concentrations during peritoneal dialysis (PD) is an important cause of ultrafiltration (UF) failure. The cornerstone of prevention and treatment of UF failure is reduction of glucose exposure, which will also alleviate the systemic impact of significant free glucose absorption. The challenge for the future is to discover new therapeutic strategies to enhance fluid and sodium removal while diminishing glucose load and exposure using combinations of available osmotic agents. To investigate in patients on automated PD (APD) with a fast transport pattern whether there is a glucose-sparing advantage to replacing 7.5% icodextrin (ICO) during the long dwell with a mixed crystalloid and colloid PD fluid (bimodal UF) in an attempt to promote daytime UF and sodium removal while diminishing the glucose strength of the dialysate at night. A 2 parallel arm, 4 month, prospective nonrandomized study. PD units or university hospitals in 4 French and Belgian districts. During the 4-month intervention period, net UF and peritoneal sodium removal during the long dwell when treated by bimodal UF was about 2-fold higher than baseline (with ICO). The estimated percent change (95% confidence interval) from baseline in net daytime UF for the bimodal solution was 150% (106% - 193%), versus 18% (-7% - 43%) for ICO (p < 0.001). The estimated percent change from baseline in peritoneal sodium removal for the bimodal solution was 147% (112% - 183%), versus 23% (-2% - 48%) for ICO (p < 0.001). The estimated percent change from baseline in UF efficiency (24-hour net UF divided by the amount of glucose absorbed) was significantly higher (p < 0.001) when using the bimodal solution was 71%, versus -5% for ICO. Prescription of bimodal UF during the day in APD patients offers the opportunity to optimize the long dwell exchange in a complete 24-hour APD cycle. The current study demonstrated that a bimodal solution based on the

  13. Performance of the CAMEX64 silicon strip readout chip

    International Nuclear Information System (INIS)

    Yarema, R.J.

    1989-06-01

    The CAMEX64 is a 64 channel full custom CMOS chip designed specifically for the readout of silicon strip detectors. CAMEX which stands for CMOS Multichannel Analog MultiplEXer for Silicon Strip Detectors was designed by members of the Franhofer Institute for Microelectronic Circuits and Systems and the Max Planck Institute for Physics and Astrophysics. Each CAMEX channel has a switched capacitor charge sensitive amplifier with 4 sampling capacitors and a multiplexing scheme for reading out each of the channels on an analog bus. The device uses multiple sampling capacitors to filter and reduce input noise. Filtering is controlled through sampling techniques using external clocks. The device operates in a double correlated sampling mode and therefore cannot separate detector leakage current from a charge input. Normal operation of this device is similar to all other silicon readout chips designed and built thus far in that there is a data acquisition cycle during which charge is simultaneously accepted on all channels for a short period of time from a detector array, followed by a readout cycle where that charge or hit information is read out. This device works especially well for colliding beam experiments where the time of charge arrival is accurately known. However it can be used in fixed target or asynchronous mode where the time of charge arrival is not well known. In the asynchronous mode it appears that gain is somewhat dependent on the time interval required to decide whether or not to accept charge input information and thus the maximum signal to noise performance found with the synchronous mode may not be achieved in the asynchronous mode. 18 figs., 5 tabs

  14. Read-out and calibration of a tile calorimeter for ATLAS

    International Nuclear Information System (INIS)

    Tardell, S.

    1997-06-01

    The read-out and calibration of scintillating tiles hadronic calorimeter for ATLAS is discussed. Tests with prototypes of FERMI, a system of read-out electronics based on a dynamic range compressor reducing the dynamic range from 16 to 10 bits and a 40 MHz 10 bits sampling ADC, are presented. In comparison with a standard charge integrating read-out improvements in the resolution of 1% in the constant term are obtained

  15. A Portable Smart-Phone Readout Device for the Detection of Mercury Contamination Based on an Aptamer-Assay Nanosensor

    Directory of Open Access Journals (Sweden)

    Wei Xiao

    2016-11-01

    Full Text Available The detection of environmental mercury (Hg contamination requires complex and expensive instruments and professional technicians. We present a simple, sensitive, and portable Hg2+ detection system based on a smartphone and colorimetric aptamer nanosensor. A smartphone equipped with a light meter app was used to detect, record, and process signals from a smartphone-based microwell reader (MR S-phone, which is composed of a simple light source and a miniaturized assay platform. The colorimetric readout of the aptamer nanosensor is based on a specific interaction between the selected aptamer and Hg2+, which leads to a color change in the reaction solution due to an aggregation of gold nanoparticles (AuNPs. The MR S-phone-based AuNPs-aptamer colorimetric sensor system could reliably detect Hg2+ in both tap water and Pearl River water samples and produced a linear colorimetric readout of Hg2+ concentration in the range of 1 ng/mL–32 ng/mL with a correlation of 0.991, and a limit of detection (LOD of 0.28 ng/mL for Hg2+. The detection could be quickly completed in only 20 min. Our novel mercury detection assay is simple, rapid, and sensitive, and it provides new strategies for the on-site detection of mercury contamination in any environment.

  16. A Portable Smart-Phone Readout Device for the Detection of Mercury Contamination Based on an Aptamer-Assay Nanosensor.

    Science.gov (United States)

    Xiao, Wei; Xiao, Meng; Fu, Qiangqiang; Yu, Shiting; Shen, Haicong; Bian, Hongfen; Tang, Yong

    2016-11-08

    The detection of environmental mercury (Hg) contamination requires complex and expensive instruments and professional technicians. We present a simple, sensitive, and portable Hg 2+ detection system based on a smartphone and colorimetric aptamer nanosensor. A smartphone equipped with a light meter app was used to detect, record, and process signals from a smartphone-based microwell reader (MR S-phone), which is composed of a simple light source and a miniaturized assay platform. The colorimetric readout of the aptamer nanosensor is based on a specific interaction between the selected aptamer and Hg 2+ , which leads to a color change in the reaction solution due to an aggregation of gold nanoparticles (AuNPs). The MR S-phone-based AuNPs-aptamer colorimetric sensor system could reliably detect Hg 2+ in both tap water and Pearl River water samples and produced a linear colorimetric readout of Hg 2+ concentration in the range of 1 ng/mL-32 ng/mL with a correlation of 0.991, and a limit of detection (LOD) of 0.28 ng/mL for Hg 2+ . The detection could be quickly completed in only 20 min. Our novel mercury detection assay is simple, rapid, and sensitive, and it provides new strategies for the on-site detection of mercury contamination in any environment.

  17. A new electronic read-out for the YAPPET scanner

    CERN Document Server

    Damiani, C; Malaguti, R; Guerra, A D; Domenico, G D; Zavattini, G

    2002-01-01

    A small animal PET-SPECT scanner (YAPPET) prototype was built at the Physics Department of the Ferrara University and is presently being used at the Nuclear Medicine Department for radiopharmaceutical studies on rats. The first YAPPET prototype shows very good performances, but needs some improvements before it can be fully used for intensive radiopharmaceutical research. The main problem of the actual prototype is its heavy electronics, based on NIM and CAMAC standard modules. For this reason a new, compact read-out electronics was developed and tested. The results of a first series of tests made on the first prototype will be presented in the paper.

  18. The STAR Heavy Flavor Tracker PXL detector readout electronics

    International Nuclear Information System (INIS)

    Schambach, J.; Contin, G.; Greiner, L.; Stezelberger, T.; Vu, C.; Sun, X.; Szelezniak, M.

    2016-01-01

    The Heavy Flavor Tracker (HFT) is a recently installed micro-vertex detector upgrade to the STAR experiment at RHIC, consisting of three subsystems with various technologies of silicon sensors arranged in 4 concentric cylinders. The two innermost layers of the HFT close to the beam pipe, the Pixel ('PXL') subsystem, employ CMOS Monolithic Active Pixel Sensor (MAPS) technology that integrate the sensor, front-end electronics, and zero-suppression circuitry in one silicon die. This paper presents selected characteristics of the PXL detector part of the HFT and the hardware, firmware and software associated with the readout system for this detector

  19. Drift chamber readout system of the DIRAC experiment

    CERN Document Server

    Afanasiev, L G

    2002-01-01

    A drift chamber readout system of the DIRAC experiment at CERN is presented. The system is intended to read out the signals from planar chambers operating in a high current mode. The sense wire signals are digitized in the 16-channel time-to-digital converter boards which are plugged in the signal plane connectors. This design results in a reduced number of modules, a small number of cables and high noise immunity. The system has been successfully operating in the experiment since 1999.

  20. Position Sensitive Proximity Charge Sensing Readout of HPGe Detectors

    Science.gov (United States)

    Priest, Anders Peterson

    Electrode segmentation is a necessity to achieve position sensitivity in semicon- ductor radiation detectors. Traditional segmentation requires decreasing electrode sizes while increasing channel numbers to achieve very fine position resolution. These electrodes can be complicated to fabricate, and many electrodes with individual electronic channels are required to instrument large detector areas. To simplify the fabrication process, we have moved the readout electrodes onto a printed circuit board that is positioned above the ionization type detection material. In this scheme, charge from radiation interactions will be shared amongst several electrodes, allowing for position interpolation. Because events can be reconstructed in between electrodes, fewer electrodes are needed to instrument large detector areas. The proximity charge sensing method of readout promises to simplify detector fabrication while maintaining the position resolution that is required by fields such as homeland security, astrophysics, environmental remediation, nuclear physics, and medical imaging. We performed scanning measurements on a proof of principle detector that we fabricated at Lawrence Berkeley National Laboratory (LBNL). These measurements showed that position resolution much finer than the strip pitch was achievable using the proximity charge readout method. We performed analytic calculations and Monte Carlo modeling to optimize the readout electrode geometry for a larger detector to test the limits of this technology. We achieved an average position resolution of 288 microm with eight proximity electrodes at a 5 mm pitch and 1 mm strip width, set 100 microm away from the detector surface by a Kapton spacer. To achieve this resolution using standard technologies, 300 microm pitch strips are necessary, and would require 100 channels to instrument the same area. Through our optimization calculations, we found that there is a trade-off between position resolution and energy resolution

  1. Drift chamber and pulse height readout systems using analog multiplexing

    International Nuclear Information System (INIS)

    Cisneros, E.L; Kang, H.K.; Hall, J.N.; Larsen, R.S.

    1976-11-01

    Drift chamber and pulse-height readout systems are being developed for use in a new large scale detector at the SPEAR colliding beam facility. The systems are based upon 32 channels of sample-and-hold together with an analog multiplexer in a single-width CAMAC module. The modules within each crate are scanned by an autonomous controller containing a single ADC and memory plus arithmetic capability for offset, gain and linearity corrections. The drift chamber module has a facility for extracting hit wire information for use in trigger decision circuitry

  2. Prototype readout electronics for the upgraded ALICE Inner Tracking System

    Czech Academy of Sciences Publication Activity Database

    Sielewicz, K. M.; Rinella, G. A.; Bonora, M.; Ferencei, Jozef; Giubilato, P.; Rossewij, M. J.; Schambach, J.; Vaňát, Tomáš

    2017-01-01

    Roč. 12, JAN (2017), č. článku C01008. ISSN 1748-0221. [Topical Workshop on Electronics for Particle Physics. Karlsruhe, 26.09.2016-30.09.2016] R&D Projects: GA MŠk LM2015056; GA MŠk(CZ) LG15052; GA MŠk LM2015058 Institutional support: RVO:61389005 Keywords : digital electronic circuits * electronic detector readout concepts * modlar electronics * radiation-hard electronics Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders OBOR OECD: Nuclear physics Impact factor: 1.220, year: 2016

  3. FELIX: the detector readout upgrade of the ATLAS experiment

    CERN Document Server

    Ryu, Soo; The ATLAS collaboration

    2015-01-01

    After the Phase-I upgrade and onward, the Front-End Link eXchange(FELIX) system will be the interface between the readout system and the detector front-end electronics and trigger electronics at the ATLAS experiment. FELIX will function as a gateway to a commodity switched network which will use standard technologies (Ethernet or Infiniband) to communicate with data collecting and processing components. In this talk the system architecture of FELIX will be described and the testing results of the FELIX demonstrator will be presented

  4. RCU2-The ALICE TPC readout electronics consolidation for Run2

    CERN Document Server

    Alme, J; Christiansen, P; Yang, S; Lien, J; Velure, A; Rehman, A Ur; Torgersen, C; David, E; Gunji, T; Osterman, L; Ullaland, K; Roed, K; Tarantola, A; Langoy, R; Appelshaeuser, H; Oskarsson, A; Alt, T; Costa, F; Bratrud, L; Zhao, C; Lippmann, C; Torsvik, I Nikolai; Kiss, T

    2013-01-01

    This paper presents the solution for optimization of the ALICE TPC readout for running at full energy in the Run2 period after 2014. For the data taking with heavy ion beams an event readout rate of 400 Hz with a low dead time is envisaged for the ALICE central barrel detectors during these three years. A new component, the Readout Control Unit 2 (RCU2), is being designed to increase the present readout rate by a factor of up to 2.6. The immunity to radiation induced errors will also be significantly improved by the new design.

  5. Study of preamplifier, shaper and peak detector in readout ASIC for particle detector

    International Nuclear Information System (INIS)

    Wang Ke; Zhang Shengjun; Fan Lei; Li Xian

    2014-01-01

    Recently, kinds of particle detectors have used Application Specific Integrated Circuits (ASIC) in their electronics readout system and ASICs have been designed in China now. This project designed a multi-channel readout ASIC for general detector. The chip has Preamplifier, Shaper and Peak Detector embedded for easy readout. For each channel, signal which is preprocessed by a low-noise preamplifier is sent to the shaper to form a quasi-Gaussian pulse and keep its peak for readout. This chip and modules of individual Preamplifier, Shaper and Peak Detector have been manufactured, results will be reported in time. (authors)

  6. Bacterial diversity in soil samples from two uranium waste piles as determined by rep-APD, RISA and 16S rDNA retrieval.

    Science.gov (United States)

    Selenska-Pobell, S; Kampf, G; Hemming, K; Radeva, G; Satchanska, G

    2001-06-01

    The bacterial diversity in two uranium waste piles was studied. Total DNA was recovered from a large number of soil samples collected from different sites and depths in the piles using two procedures for direct lysis. Significant differences in the bacterial composition of the samples were revealed by the use of rep-APD, RISA and 16S ARDREA. The 16S rDNA analyses showed that the uranium wastes were dominated by Acidithiobacillusferrooxidans and by several Pseudomonas species classified in the gamma-subdivision of the Proteobacteria. The three kinds of A. ferrooxidans 16S and IGS rDNA specific fragments that were found corresponded to the three phylogenetic groups recognised in this species. This microdiversity probably reflects the genetic adaptation of the uranium waste strains to different concentrations of heavy metals.

  7. Design Issues of GaAs and AlGaAs Delta-Doped p-i-n Quantum-Well APD's

    Science.gov (United States)

    Wang, Yang

    1994-01-01

    We examine the basic design issues in the optimization of GaAs delta-doped and AlGAs delta-doped quantum-well avalanche photodiode (APD) structures using a theoretical analysis based on an ensemble Monte Carlo simulation. The devices are variations of the p-i-n doped quantum-well structure previously described in the literature. They have the same low-noise, high-gain and high-bandwidth features as the p-i-n doped quantum-well device. However, the use of delta doping provides far greater control or the doping concentrations within each stage possibly enhancing the extent to which the device can be depleted. As a result, it is expected that the proposed devices will operate at higher gain levels (at very low noise) than devices previously developed.

  8. Readout of plastic scintillators with cooled large-area avalanche photodiodes

    Energy Technology Data Exchange (ETDEWEB)

    Mykulyak, A.; Kapusta, M.; Lynen, U.; Moszynski, M.; Mueller, W.F.J.; Orth, H.; Schwarz, C.; Szawlowski, M.; Trautmann, W.; Trzcinski, A.; Wolski, D.; Zwieglinski, B. E-mail: bzw@fuw.edu.pl

    2004-05-11

    Time-of-flight measurements in multifragmentation of heavy, relativistic projectiles require very good time resolution and at the same time the detecting system must cope with a dynamic range of up to 8000:1. We look into the possibility of application of large-area avalanche photodiodes (LAAPDs) as alternative light sensors to meet the above requirements. The paper presents the results of our amplitude and time response studies of a plastic scintillator BC-408 readout with a phi16 mm LAAPD using radioactive sources. The measurements were performed using two different setups. The best time resolution has been obtained by exploiting LAAPD cooling to increase its gain beyond that accessible at room temperature. We reach 610 ps (FWHM) at -26 deg. C for the corresponding LAAPD gain of {approx}900 and the {sup 90}Sr/{sup 90}Y {beta}-ray source. We hope to reach below the desired 400 ps with the latter setup at the higher light levels available with multifragmentation products.

  9. Development of depth encoding small animal PET detectors using dual-ended readout of pixelated scintillator arrays with SiPMs.

    Science.gov (United States)

    Kuang, Zhonghua; Sang, Ziru; Wang, Xiaohui; Fu, Xin; Ren, Ning; Zhang, Xianming; Zheng, Yunfei; Yang, Qian; Hu, Zhanli; Du, Junwei; Liang, Dong; Liu, Xin; Zheng, Hairong; Yang, Yongfeng

    2018-02-01

    The performance of current small animal PET scanners is mainly limited by the detector performance and depth encoding detectors are required to develop PET scanner to simultaneously achieve high spatial resolution and high sensitivity. Among all depth encoding PET detector approaches, dual-ended readout detector has the advantage to achieve the highest depth of interaction (DOI) resolution and spatial resolution. Silicon photomultiplier (SiPM) is believed to be the photodetector of the future for PET detector due to its excellent properties as compared to the traditional photodetectors such as photomultiplier tube (PMT) and avalanche photodiode (APD). The purpose of this work is to develop high resolution depth encoding small animal PET detector using dual-ended readout of finely pixelated scintillator arrays with SiPMs. Four lutetium-yttrium oxyorthosilicate (LYSO) arrays with 11 × 11 crystals and 11.6 × 11.6 × 20 mm 3 outside dimension were made using ESR, Toray and BaSO 4 reflectors. The LYSO arrays were read out with Hamamatsu 4 × 4 SiPM arrays from both ends. The SiPM array has a pixel size of 3 × 3 mm 2 , 0.2 mm gap in between the pixels and a total active area of 12.6 × 12.6 mm 2 . The flood histograms, DOI resolution, energy resolution and timing resolution of the four detector modules were measured and compared. All crystals can be clearly resolved from the measured flood histograms of all four arrays. The BaSO 4 arrays provide the best and the ESR array provides the worst flood histograms. The DOI resolution obtained from the DOI profiles of the individual crystals of the four array is from 2.1 to 2.35 mm for events with E > 350 keV. The DOI ratio variation among crystals is bigger for the BaSO 4 arrays as compared to both the ESR and Toray arrays. The BaSO 4 arrays provide worse detector based DOI resolution. The photopeak amplitude of the Toray array had the maximum change with depth, it provides the worst energy resolution of

  10. Low Background Signal Readout Electronics for the MAJORANA DEMONSTRATOR

    Energy Technology Data Exchange (ETDEWEB)

    Guinn, I. [University of Washington, Seattle; Abgrall, N. [Lawrence Berkeley National Laboratory (LBNL); Arnquist, I. J. [Pacific Northwest National Laboratory (PNNL); Avignone, III, F. T. [University of South Carolina/Oak Ridge National Laboratory (ORNL); Baldenegro-Barrera, C. X. [Oak Ridge National Laboratory (ORNL); Barabash, A.S. [Institute of Theoretical & Experimental Physics (ITEP), Moscow, Russia; Bertrand, F. E. [Oak Ridge National Laboratory (ORNL); Bradley, A. W. [Lawrence Berkeley National Laboratory (LBNL); Brudanin, V. [Joint Institute for Nuclear Research, Dubna, Russia; Busch, M. [Duke University/TUNL; Buuck, M. [University of Washington, Seattle; Byram, D. [University of South Dakota; Caldwell, A. S. [South Dakota School of Mines and Technology; Chan, Y-D [Lawrence Berkeley National Laboratory (LBNL); Christofferson, C. D. [South Dakota School of Mines and Technology; Cuesta, C [University of Washington, Seattle; Detwiler, J. A. [University of Washington, Seattle; Efremenko, M. [University of Tennessee, Knoxville (UTK); Ejiri, H. [Osaka University, Japan; Elliott, S. R. [Los Alamos National Laboratory (LANL); Galindo-Uribarri, A. [Oak Ridge National Laboratory (ORNL); Gilliss, T. [Univ. North Carolina-Chapel Hill/Triangle Univ. Nucl. Lab., Durham, NC; Giovanetti, G. K. [University of North Carolina / Triangle Universities Nuclear Lababoratory, Durham; Goett, J [Los Alamos National Laboratory (LANL); Green, M. P. [Oak Ridge National Laboratory (ORNL); Gruszko, J [University of Washington, Seattle; Guiseppe, V E [University of South Carolina, Columbia; Henning, R. [University of North Carolina / Triangle Universities Nuclear Lababoratory, Durham; Hoppe, E.W. [Pacific Northwest National Laboratory (PNNL); Howard, S. [South Dakota School of Mines and Technology; Howe, M. A. [University of North Carolina / Triangle Universities Nuclear Lababoratory, Durham; Jasinski, B R [University of South Dakota; Keeter, K.J. [Black Hills State University, Spearfish, South Dakota; Kidd, M. F. [Tennessee Technological University (TTU); Konovalov, S.I. [Institute of Theoretical & Experimental Physics (ITEP), Moscow, Russia; Kouzes, R. T. [Pacific Northwest National Laboratory (PNNL); LaFerriere, B. D. [Pacific Northwest National Laboratory (PNNL); Leon, J. [University of Washington, Seattle; MacMullin, J. [University of North Carolina / Triangle Universities Nuclear Lababoratory, Durham; Martin, R. D. [University of South Dakota; Meijer, S. J. [University of North Carolina / Triangle Universities Nuclear Lababoratory, Durham; Mertens, S. [Lawrence Berkeley National Laboratory (LBNL); Orrell, J. L. [Pacific Northwest National Laboratory (PNNL); O' Shaughnessy, C. [Univ. North Carolina-Chapel Hill/Triangle Univ. Nucl. Lab., Durham, NC; Poon, A.W.P. [Lawrence Berkeley National Laboratory (LBNL); Radford, D. C. [Oak Ridge National Laboratory (ORNL); Rager, J. [Univ. North Carolina-Chapel Hill/Triangle Univ. Nucl. Lab., Durham, NC; Rielage, K. [Los Alamos National Laboratory (LANL); Robertson, R.G.H. [University of Washington, Seattle; Romero-Romero, E. [University of Tennessee, Knoxville, (UTK)/Oak Ridge National Lab (ORNL); Shanks, B. [Univ. North Carolina-Chapel Hill/Triangle Univ. Nucl. Lab., Durham, NC; Shirchenko, M. [Joint Institute for Nuclear Research, Dubna, Russia; Snyder, N [University of South Dakota; Suriano, A. M. [South Dakota School of Mines and Technology; Tedeschi, D [University of South Carolina, Columbia; Trimble, J. [Univ. North Carolina-Chapel Hill/Triangle Univ. Nucl. Lab., Durham, NC; Varner, R. L. [Oak Ridge National Laboratory (ORNL); Vasilyev, S. [Joint Institute for Nuclear Research, Dubna, Russia; Vetter, K. [University of California/Lawrence Berkeley National Laboratory (LBNL); Vorren, K. [University of North Carolina / Triangle Universities Nuclear Lababoratory, Durham; et al.

    2015-01-01

    The MAJORANA Collaboration will seek neutrinoless double beta decay (0 nu beta beta) in Ge-76 using isotopically enriched p-type point contact (PPC) high purity Germanium (HPGe) detectors. A tonne-scale array of HPGe detectors would require background levels below 1 count/ROI-tonne-year in the 4 keV region of interest (ROI) around the 2039 keV Q-value of the decay. In order to demonstrate the feasibility of such an experiment, the MAJORANA DEMONSTRATOR, a 40 kg HPGe detector array, is being constructed with a background goal of <3 counts/ROI-tonne-year, which is expected to scale down to <1 count/ROI-tonne-year for a tonne-scale experiment. The signal readout electronics, which must be placed in close proximity to the detectors, present a challenge toward reaching this background goal. This talk will discuss the materials and design used to construct signal readout electronics with low enough backgrounds for the MAJORANA DEMONSTRATOR.

  11. New Approach for 2D Readout of GEM Detectors

    International Nuclear Information System (INIS)

    Hasell, Douglas K.

    2011-01-01

    Detectors based on Gas Electron Multiplication (GEM) technology are becoming more and more widely used in nuclear and high energy physics and are being applied in astronomy, medical physics, industry, and homeland security. GEM detectors are thin, low mass, insensitive to magnetic fields, and can currently provide position resolutions down to ∼50 microns. However, the designs for reconstructing the position, in two dimensions (2D), of the charged particles striking a GEM detector are often complicated to fabricate and expensive. The objective of this proposal is to investigate a simpler procedure for producing the two dimensional readout layer of GEM detectors using readily available printed circuit board technology which can be tailored to the detector requirements. We will use the established GEM laboratory and facilities at M.I.T. currently employed in developing GEM detectors for the STAR forward tracking upgrade to simplify the testing and evaluation of the new 2D readout designs. If this new design proves successful it will benefit future nuclear and high energy physics experiments already being planned and will similarly extend and simplify the application of GEM technology to other branches of science, medicine, and industry. These benefits would be not only in lower costs for fabrication but also it increased flexibility for design and application.

  12. The CMS silicon strip tracker and its electronic readout

    CERN Document Server

    Friedl, M

    2001-01-01

    The Large Hadron Collider (LHC) at CERN (Geneva, CH) will be the world's biggest accelerator machine when operation starts in 2006. One of its four detector experiments is the Compact Muon Solenoid (CMS), consisting of a large-scale silicon tracker and electromagnetic and hadron calorimeters, all embedded in a solenoidal magnetic field of 4T, and a muon system surrounding the magnet coil. The Silicon Strip Tracker has a sensitive area of 206m sup 2 with 10 million analog channels which are read out at the collider frequency of 40 MHz. The building blocks of the CMS Tracker are the silicon sensors, APV amplifier ASICs, supporting front-end ASICs, analog and digital optical links as well as data processors and control units in the back-end. Radiation tolerance, readout speed and the huge data volume are challenging requirements. I have modeled the charge collection in silicon detectors which is discussed as well as the concepts of readout amplifiers with respect to the LHC requirements, including the deconvolut...

  13. The TOTEM DAQ based on the Scalable Readout System (SRS)

    Science.gov (United States)

    Quinto, Michele; Cafagna, Francesco S.; Fiergolski, Adrian; Radicioni, Emilio

    2018-02-01

    The TOTEM (TOTal cross section, Elastic scattering and diffraction dissociation Measurement at the LHC) experiment at LHC, has been designed to measure the total proton-proton cross-section and study the elastic and diffractive scattering at the LHC energies. In order to cope with the increased machine luminosity and the higher statistic required by the extension of the TOTEM physics program, approved for the LHC's Run Two phase, the previous VME based data acquisition system has been replaced with a new one based on the Scalable Readout System. The system features an aggregated data throughput of 2GB / s towards the online storage system. This makes it possible to sustain a maximum trigger rate of ˜ 24kHz, to be compared with the 1KHz rate of the previous system. The trigger rate is further improved by implementing zero-suppression and second-level hardware algorithms in the Scalable Readout System. The new system fulfils the requirements for an increased efficiency, providing higher bandwidth, and increasing the purity of the data recorded. Moreover full compatibility has been guaranteed with the legacy front-end hardware, as well as with the DAQ interface of the CMS experiment and with the LHC's Timing, Trigger and Control distribution system. In this contribution we describe in detail the architecture of full system and its performance measured during the commissioning phase at the LHC Interaction Point.

  14. The digital readout system for the CMS electromagnetic calorimeter

    International Nuclear Information System (INIS)

    Lofstedt, Bo

    2000-01-01

    The CMS Electromagnetic Calorimeter is a high-precision detector demanding innovative solutions in order to cope with the high dynamic range and the extreme high resolution of the detector as well as with the harsh environment created by the high level of radiation and the 4 T magnetic field. The readout system is partly placed within the detector and partly in the adjacent counting room. As the on-detector electronics must cope with the harsh environment the use of standard components is excluded for this part of the system. This paper describes the solutions adopted for the high-precision analogue stages, the A-D conversion, the optical transfer of the raw data from the on-detector part to the so-called Upper Level Readout, placed in the counting room, and the functionality of the latter. The ECAL is instrumental in providing information to the first-level trigger process and the generation of this information will be described. Also, the problem of reducing the raw data volume (6x10 12 bytes/s) to a level that can be handled by the central DAQ system (10 5 bytes/s) without degrading the physics performance will be discussed

  15. JPSS Science Data Services for the Direct Readout Community

    Science.gov (United States)

    Chander, Gyanesh; Lutz, Bob

    2014-01-01

    The Suomi National Polar-orbiting Partnership (S-NPP) and Joint Polar Satellite System (JPSS) High Rate Data (HRD) link provides Direct Broadcast data to users in real-time, utilizing their own remote field terminals. The Field Terminal Support (FTS) provides the resources needed to support the Direct Readout communities by providing software, documentation, and periodic updates to enable them to produce data products from SNPP and JPSS. The FTS distribution server will also provide the necessary ancillary and auxiliary data needed for processing the broadcasts, as well as making orbital data available to assist in locating the satellites of interest. In addition, the FTS provides development support for the algorithm and software through GSFC Direct Readout Laboratory (DRL) International Polar Orbiter Processing Package (IPOPP) and University of Wisconsin (UWISC) Community Satellite Processing Package (CSPP), to enable users to integrate the algorithms into their remote terminals. The support the JPSS Program provides to the institutions developing and maintaining these two software packages, will demonstrate the ability to produce ready-to-use products from the HRD link and provide risk reduction effort at a minimal cost. This paper discusses the key functions and system architecture of FTS.

  16. Fast optical readout for Mu3e experiment

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Qinhua [Institut fuer Kernphysik, Universitaet Mainz, Mainz (Germany); Collaboration: Mu3e-Collaboration

    2016-07-01

    Charged lepton flavour violation is highly suppressed in the Standard Model, which results in a prediction for the branching ratio of μ{sup +}→e{sup +}e{sup +}e{sup -} below O(10{sup -54}). The Mu3e experiment will search for this rare decay with a sensitivity of 10{sup -16}. An observation would be a clear sign for new physics. A high muon stopping rate of 2.10{sup 9} Hz is required so that sufficient statistics can be accumulated in about one year of data taking. The high event rate and the requirement of a full online track reconstruction demand a fast readout system which should provide a bandwidth above 1 Tbit/s. Reconfigurable devices, namely FPGAs, can easily parallelise the data processing, so it becomes possible to sort, merge, pack and route the data with low latency at high throughput. Optical fibres are the only option for the interconnection between different FPGA-based boards. The fibres also reduce the crosstalk and signal attenuation, especially over long distance links. As part of the readout system prototyping, firmware for synchronous merging of different data streams is being developed. In addition, the optical links have been tested and show a bit error rate below O(10{sup -16}) at 6.4 Gbit/s for a single fibre.

  17. Front end readout electronics for the CMS hadron calorimeter

    CERN Document Server

    Shaw, Terri M

    2002-01-01

    The front-end electronics for the CMS Hadron Calorimeter provides digitized data at the beam interaction rate of 40 MHz. Analog signals provided by hybrid photodiodes (HPDs) or photomultiplier tubes (PMTs) are digitized and the data is sent off board through serialized fiber optic links running at 1600 Mbps. In order to maximize the input signal, the front-end electronics are housed on the detector in close proximity to the scintillating fibers or phototubes. To fit the electronics into available space, custom crates, backplanes and cooling methods have had to be developed. During the expected ten-year lifetime, the front-end readout electronics will exist in an environment where radiation levels approach 330 rads and the neutron fluence will be 1.3E11 n/cm sup 2. For this reason, the design approach relies heavily upon custom radiation tolerant ASICs. This paper will present the system architecture of the front-end readout crates and describe their results with early prototypes.

  18. Development of radiation hard readout electronics for LHCb

    CERN Document Server

    Sexauer, Edgar; Lindenstruth, Volker

    2001-01-01

    The experiment LHCb is under development at CERN and aims to measure CP-violation in the B-Meson system at very high precision. The experiment makes use of a vertex detector that is equipped with silicon microstrip detectors. A chip suitable for the readout of this detector has been developed in a working group at the ASIC-laboratory Heidelberg. This readout chip 'Beetle-1.0' contains 128 analog input stages of a charge sensitive preamplifier, a pulse shaper and a buffer. The analog signal is fed into a comparator, from which a fast trigger signal can be derived. The following pipeline, realized as an array of gate capacitances, can be used to either store the analog output of the input amplifiers or to store the digital comparator output. External trigger signals mark events that have to be read out and the according pipeline location is stored in a derandomizing buffer. Pending events are read out from the pipeline via a charge-sensitive, resetable amplifier and an analog multiplexer, which serializes the s...

  19. Performance of a hybrid photon detector prototype with electrostatic cross-focussing and integrated silicon Pixel readout for Cherenkov ring detection

    CERN Document Server

    Alemi, M; Bibby, J H; Campbell, M; Duane, A; Easo, S; Gys, Thierry; Halley, A W; Piedigrossi, D; Puertolas, D; Rosso, E; Simmons, B; Snoeys, W; Websdale, David M; Wotton, S A; Wyllie, Ken H

    1999-01-01

    We report on the first test beam performance of a hybrid photon detector prototype, using binary readout electronics, intended for use in the ring imaging Cherenkov detectors of the LHCb experiment at the CERN Large Hadron Collider. The photon detector is based on a cross-focussed image intensifier tube geometry. The anode consists of a silicon pixel array bump-bonded to a binary readout chip with matching pixel electronics. The detector has been installed in a quarter-scale prototype vessel of the LHCb ring imaging Cherenkov system. Focussed ring images produced by 120 GeV/c negative pions traversing an air radiator have been recorded. The observed light yield and Cherenkov angle resolution are discussed.

  20. Alpha-particle detection based on the BJT detector and simple, IC-based readout electronics

    Energy Technology Data Exchange (ETDEWEB)

    Rovati, L; Bonaiuti, M [Dipartimento di Ingegneria dell' Informazione, Universita di Modena e Reggio Emilia, Modena (Italy); Bettarini, S [Dipartimento di Fisica, Universita di Pisa and INFN Pisa, Pisa (Italy); Bosisio, L [Dipartimento di Fisica, Universita di Trieste and INFN Trieste, Trieste (Italy); Dalla Betta, G-F; Tyzhnevyi, V [Dipartimento di Ingegneria e Scienza dell' Informazione, Universita di Trento e INFN Trento, Trento (Italy); Verzellesi, G [Dipartimento di Scienze e Metodi dell' Ingegneria, Universita di Modena e Reggio Emilia and INFN Trento, Reggio Emilia (Italy); Zorzi, N, E-mail: giovanni.verzellesi@unimore.i [Fondazione Bruno Kessler (FBK), Trento (Italy)

    2009-11-15

    In this paper we propose a portable instrument for alpha-particle detection based on a previously-developed BJT detector and a simple, IC-based readout electronics. Experimental tests of the BJT detector and readout electronics are reported. Numerical simulations are adopted to predict the performance enhancement achievable with optimized BJT detectors.

  1. Alpha-particle detection based on the BJT detector and simple, IC-based readout electronics

    International Nuclear Information System (INIS)

    Rovati, L; Bonaiuti, M; Bettarini, S; Bosisio, L; Dalla Betta, G-F; Tyzhnevyi, V; Verzellesi, G; Zorzi, N

    2009-01-01

    In this paper we propose a portable instrument for alpha-particle detection based on a previously-developed BJT detector and a simple, IC-based readout electronics. Experimental tests of the BJT detector and readout electronics are reported. Numerical simulations are adopted to predict the performance enhancement achievable with optimized BJT detectors.

  2. Occupancy in the CLIC ILD Time Projection Chamber using Pixelised Readout

    CERN Document Server

    Killenberg, Martin

    2013-01-01

    The occupancy in the CLIC ILD TPC caused by the beam induced background from gamma gamma -> hadrons, e+e- pairs and beam halo muons is very high for conventional pad readout. We show that the occupancy for a pixelised TPC readout is moderate and might be a viable solution to operate a TPC at CLIC.

  3. Trigger readout electronics upgrade for the ATLAS Liquid Argon Calorimeters

    Science.gov (United States)

    Dinkespiler, B.

    2017-09-01

    The upgrade of the Large Hadron Collider (LHC) scheduled for the 2019-2020 shut-down period, referred to as Phase-I upgrade, will increase the instantaneous luminosity to about three times the design value. Since the current ATLAS trigger system does not allow sufficient increase of the trigger rate, an improvement of the trigger system is required. The Liquid Argon (LAr) Calorimeter read-out will therefore be modified to deliver digital trigger signals with a higher spatial granularity in order to improve the identification efficiencies of electrons, photons, tau, jets and missing energy, at high background rejection rates at the Level-1 trigger. The new trigger signals will be arranged in 34000 so-called Super Cells which achieves 5-10 times better granularity than the trigger towers currently used and allows an improved background rejection. The readout of the trigger signals will process the signal of the Super Cells at every LHC bunch-crossing at 12-bit precision and a frequency of 40 MHz. The data will be transmitted to the Back End using a custom serializer and optical converter and 5.12 Gb/s optical links. In order to verify the full functionality of the future Liquid Argon trigger system, a demonstrator set-up has been installed on the ATLAS detector and is operated in parallel to the regular ATLAS data taking during the LHC Run-2 in 2015 and 2016. Noise level and linearity on the energy measurement have been verified to be within our requirements. In addition, we have collected data from 13 TeV proton collisions during the LHC 2015 and 2016 runs, and have observed real pulses from the detector through the demonstrator system. The talk will give an overview of the Phase-I Upgrade of the ATLAS Liquid Argon Calorimeter readout and present the custom developed hardware including their role in real-time data processing and fast data transfer. This contribution will also report on the performance of the newly developed ASICs including their radiation tolerance

  4. A digital Front-End and Readout MIcrosystem for calorimetry at LHC

    CERN Multimedia

    2002-01-01

    % RD-16 A Digital Front-End and Readout Microsystem for Calorimetry at LHC \\\\ \\\\Front-end signal processing for calorimetric detectors is essential in order to achieve adequate selectivity in the trigger function of an LHC experiment, with data identification and compaction before readout being required in the harsh, high rate environment of a high luminosity hadron machine. Other crucial considerations are the extremely wide dynamic range and bandwidth requirements, as well as the volume of data to be transferred to following stages of the trigger and readout system. These requirements are best met by an early digitalization of the detector information, followed by integrated digital signal processing and buffering functions covering the trigger latencies.\\\\ \\\\The FERMI (Front-End Readout MIcrosystem) is a digital implementation of the front-end and readout electronic chain for calorimeters. It is based on dynamic range compression, high speed A to D converters, a fully programmable pipeline/digital filter c...

  5. Readout board upgrade for the Pixel Detectors: reasons, status and results in ATLAS

    CERN Document Server

    Giangiacomi, Nico; The ATLAS collaboration

    2017-01-01

    The increase of luminosity in the LHC accelerator at CERN constitutes a challenge for the data readout since the rate of data to be transmitted depends on both pileup and trigger frequency. In the ATLAS experiment, the effect of the increased luminosity is most evident in the Pixel Detector, which is the detector closest to the beam pipe. In order to face the difficult experimental challenges, the readout system was upgraded during the last few years. The main purpose of the upgrade was to provide a higher bandwidth by exploiting more recent technologies. The new readout system is composed by two paired electronic boards named Back Of Crate (BOC) and ReadOut Driver (ROD). In this work the main readout limitation related to increased luminosity will be discussed as well as the strategy and the technological solutions adopted in order to cope with the future operational challenges. In addition the general progresses and achievements will be presented.

  6. 3 ns single-shot read-out in a quantum dot-based memory structure

    International Nuclear Information System (INIS)

    Nowozin, T.; Bimberg, D.; Beckel, A.; Lorke, A.; Geller, M.

    2014-01-01

    Fast read-out of two to six charges per dot from the ground and first excited state in a quantum dot (QD)-based memory is demonstrated using a two-dimensional electron gas. Single-shot measurements on modulation-doped field-effect transistor structures with embedded InAs/GaAs QDs show read-out times as short as 3 ns. At low temperature (T = 4.2 K) this read-out time is still limited by the parasitics of the setup and the device structure. Faster read-out times and a larger read-out signal are expected for an improved setup and device structure

  7. Small-Scale Readout Systems Prototype for the STAR PIXEL Detector

    Energy Technology Data Exchange (ETDEWEB)

    Szelezniak, Michal A.; Besson, Auguste; Colledani, Claude; Dorokhov, Andrei; Dulinski, Wojciech; Greiner, Leo C.; Himmi, Abdelkader; Hu, Christine; Matis, Howard S.; Ritter, Hans Georg; Rose, Andrew; Shabetai, Alexandre; Stezelberger, Thorsten; Sun, Xiangming; Thomas, Jim H.; Valin, Isabelle; Vu, Chinh Q.; Wieman, Howard H.; Winter, Marc

    2008-10-01

    A prototype readout system for the STAR PIXEL detector in the Heavy Flavor Tracker (HFT) vertex detector upgrade is presented. The PIXEL detector is a Monolithic Active Pixel Sensor (MAPS) based silicon pixel vertex detector fabricated in a commercial CMOS process that integrates the detector and front-end electronics layers in one silicon die. Two generations ofMAPS prototypes designed specifically for the PIXEL are discussed. We have constructed a prototype telescope system consisting of three small MAPS sensors arranged in three parallel and coaxial planes with a readout system based on the readout architecture for PIXEL. This proposed readout architecture is simple and scales to the size required to readout the final detector. The real-time hit finding algorithm necessary for data rate reduction in the 400 million pixel detector is described, and aspects of the PIXEL system integration into the existing STAR framework are addressed. The complete system has been recently tested and shown to be fully functional.

  8. Development of a read out driver for ATLAS micromegas based on the Scalable Readout System

    International Nuclear Information System (INIS)

    Zibell, A

    2014-01-01

    With future LHC luminosity upgrades, part of the ATLAS muon spectrometer has to be changed, to cope with the increased flux of uncorrelated neutron and gamma particles. Micromegas detectors were chosen as precision tracker for the New Small Wheels, that will replace the current Small Wheel muon detector stations during the LHC shutdown foreseen for 2018. To read out these detectors together with all other ATLAS subsystems, a readout driver was developed to integrate these micromegas detectors into the ATLAS data acquisition infrastructure. The readout driver is based on the Scalable Readout System, and its tasks include trigger handling, slow control, event building and data transmission to the high-level readout systems. This article describes the layout and functionalities of this readout driver and its components, as well as a test of its functionalities in the cosmic ray facility of Ludwig-Maximilians University Munich

  9. Feasibility studies for a wireless 60 GHz tracking detector readout

    CERN Document Server

    Dittmeier, Sebastian; Soltveit, Hans Kristian; Wiedner, Dirk

    2016-01-01

    The amount of data produced by highly granular silicon tracking detectors in high energy physics experiments poses a major challenge to readout systems. At high collision rates, e.g. at LHC experiments, only a small fraction of data can be read out with currently used technologies. To cope with the requirements of future or upgraded experiments new data transfer techniques are required which offer high data rates at low power and low material budget. Wireless technologies operating in the 60 GHz band or at higher frequencies offer high data rates and are thus a promising upcoming alternative to conventional data transmission via electrical cables or optical fibers. Using wireless technology, the amount of cables and connectors in detectors can be significantly reduced. Tracking detectors profit most from a reduced material budget as fewer secondary particle interactions (multiple Coulomb scattering, energy loss, etc.) improve the tracking performance in general. We present feasibility studies regarding the in...

  10. The ATLAS liquid Argon calorimeters read-out system

    CERN Document Server

    Blondel, A; Fayard, L; La Marra, D; Léger, A; Matricon, P; Perrot, G; Poggioli, L; Prast, J; Riu, I; Simion, S

    2004-01-01

    The calorimetry of the ATLAS experiment takes advantage of different detectors based on the liquid Argon (LAr) technology. Signals from the LAr calorimeters are processed by various stages before being delivered to the Data Acquisition system. The calorimeter cell signals are received by the front-end boards, which digitize a predetermined number of samples of the bipolar waveform and sends them to the Read-Out Driver (ROD) boards. The ROD board receives triggered data from 1028 calorimeter cells, and determines the precise energy and timing of the signals by processing the discrete samplings of the pulse. In addition, it formats the digital stream for the following elements of the DAQ chain, and performs monitoring. The architecture and functionality of the ATLAS LAr ROD board are discussed, along with the final design of the Processing Unit boards housing the Digital Signal Processors (DSP). (9 refs).

  11. TPC cathode read-out with C-pads

    International Nuclear Information System (INIS)

    Janik, R.; Pikna, M.; Sitar, B.; Strmen, P.; Szarka, I.

    2009-01-01

    A Time Projection Chamber with 'C' like shaped cathode pads was built and tested. It offers a low gas gain operation, a good pulse shape and a lightweight construction. The Pad Response Function (PRF), the cathode to anode pulse height ratios and the pad pulse shapes of the C-pad structure were measured and compared with planar cathode structures in two different wire geometries. The cathode to anode signal ratio was improved from between 0.2 and 0.4 up to 0.7. The PRF was considerably improved, it has a Gaussian shape and is narrower than in the case of the planar pads. The pulse shape from the C-pad read-out is similar to the pulse shape from a detector with a cylindrical shape of electrodes. A method for aluminum pad mass production based on a precise cold forging was developed and tested.

  12. Multi-path interferometric Josephson directional amplifier for qubit readout

    Science.gov (United States)

    Abdo, Baleegh; Bronn, Nicholas T.; Jinka, Oblesh; Olivadese, Salvatore; Brink, Markus; Chow, Jerry M.

    2018-04-01

    We realize and characterize a quantum-limited, directional Josephson amplifier suitable for qubit readout. The device consists of two nondegenerate, three-wave-mixing amplifiers that are coupled together in an interferometric scheme, embedded in a printed circuit board. Nonreciprocity is generated by applying a phase gradient between the same-frequency pumps feeding the device, which plays the role of the magnetic field in a Faraday medium. Directional amplification and reflection-gain elimination are induced via wave interference between multiple paths in the system. We measure and discuss the main figures of merit of the device and show that the experimental results are in good agreement with theory. An improved version of this directional amplifier is expected to eliminate the need for bulky, off-chip isolation stages that generally separate quantum systems and preamplifiers in high-fidelity, quantum-nondemolition measurement setups.

  13. Method of multi-channel data readout and acquisition

    Science.gov (United States)

    Degtiarenko, Pavel V.; Popov, Vladimir E.

    2010-06-15

    A method for dealing with the problem of simultaneous continuous readout of large number of data channels from the set of multiple sensors in instances where the use of multiple amplitude-to-digital converters is not practical or causes undesirable extra noise and distortion in the data. The new method uses sensor front-end s and subsequent electronics to transform the analog input signals and encode them into a series of short pulses that can be transmitted to a long distance via a high frequency transmission line without information loss. Upon arrival at a destination data decoder and analyzer device, the series of short pulses can be decoded and transformed back, to obtain, store, and utilize the sensor information with the required accuracy.

  14. The 'KATOD-1' strip readout ASIC for cathode strip chamber

    International Nuclear Information System (INIS)

    Golutvin, I.A.; Gorbunov, N.V.; Karzhavin, V.Yu.; Khabarov, V.S.; Movchan, S.A.; Smolin, D.A.; Dvornikov, O.V.; Shumejko, N.M.; Chekhovskij, V.A.

    2001-01-01

    The 'KATOD-1', a 16-channels readout ASIC, has been designed to perform tests of P3 and P4 full-scale prototypes of the cathode strip chamber for the ME1/1 forward muon station of the Compact Muon Solenoid (CMS) experiment. The ASIC channel consists of two charge-sensitive preamplifiers, a three-stage shaper with cancellation, and an output driver. The ASIC is instrumented with control of gain, in the range of (-4.2 : +5.0) mV/fC, and control of output pulse-shape. The equivalent input noise is equal to 2400 e with the slope of 12 e/pF for detector capacity up to 200 pF. The peaking time is 100 ns for the chamber signal. The ASIC has been produced by a microwave Bi-jFET technology

  15. A prototype pixel readout chip for asynchronous detection applications

    International Nuclear Information System (INIS)

    Raymond, D.M.; Hall, G.; Lewis, A.J.; Sharp, P.H.

    1991-01-01

    A two-dimensional array of amplifier cells has been fabricated as a prototype readout system for a matching array of silicon diode detectors. Each cell contains a preamplifier, shaping amplifier, comparator and analogue signal storage in an area of 300 μmx320 μm using 3 μm CMOS technology. Full size chips will be bump bonded to pixel detector arrays. Low noise and asynchronous operation are novel design features. With noise levels of less than 250 rms electrons for input capacitances up to 600 fF, pixel detectors will be suitable for autoradiography, synchrotron X-ray and high energy particle detection applications. The design of the prototype chip is presented and future developments and prospects for applications are discussed. (orig.)

  16. Performance of a liquid argon Accordion calorimeter with fast readout

    International Nuclear Information System (INIS)

    Aubert, B.; Bazan, A.; Beaugiraud, B.; Colas, J.; Leflour, T.; Maire, M.; Vialle, J.P.; Wingerter-Seez, I.; Zolnierowski, Y.P.; Gordon, H.A.; Radeka, V.; Rahm, D.; Stephani, D.; Chevalley, J.L.; Fabjan, C.W.; Fournier, D.; Franz, A.; Gildemeister, O.; Jenni, P.; Nessi, M.; Nessi-Tedaldi, F.; Pepe, M.; Richter, W.; Soderqvist, J.; Baze, J.M.; Gosset, L.; Lavocat, P.; Lottin, J.P.; Mansoulie, B.; Meyer, J.F.; Renardy, J.F.; Teiger, J.; Zaccone, H.; Battistoni, G.; Camin, D.V.; Cavalli, D.; Costa, G.; Cravero, A.; Ferrari, A.; Gianotti, F.; Mandelli, L.; Mazzanti, M.; Perini, L.; Pessina, G.; Sala, P.; Sciamanna, M.; Auge, E.; Chase, R.; Chollet, J.C.; La Taille, C. de; Fayard, L.; Jean, P.; Iconomidou-Fayard, L.; Merkel, B.; Noppe, J.M.; Parrour, G.; Petroff, P.; Repellin, J.P.; Schaffer, A.; Seguin, N.; Unal, G.; Fuglesang, C.; Lefebvre, M.; Towers, S.

    1992-01-01

    A prototype lead-liquid-argon electromagnetic calorimeter with parallel plates and Accordion geometry has been equipped with high speed readout electronics and tested with electron and muon beams at the CERN SPS. For a response peaking time of about 35 ns, fast enough for operation at the future hadron colliders, the energy resolution for electrons is 9.6%/√E[GeV] with a local constant term of 0.3% and a noise contribution of 0.33/E[GeV]. The spatial accuracy achieved with a detector granularity of 2.7 cm is 3.7 mm/√E[GeV] and the angular resolution 12 mrad at 60 GeV. (orig.)

  17. The readout driver (ROD) for the ATLAS liquid argon calorimeters

    CERN Document Server

    Efthymiopoulos, I

    2001-01-01

    The Readout Driver (ROD) for the Liquid Argon calorimeter of the ATLAS detector is described. Each ROD module receives triggered data from 256 calorimeter cells via two fiber-optics 1.28 Gbit/s links with a 100 kHz event rate (25 kbit/event). Its principal function is to determine the precise energy and timing of the signal from discrete samples of the waveform, taken each period of the LHC clock (25 ns). In addition, it checks, histograms, and formats the digital data stream. A demonstrator system, consisting of a motherboard and several daughter-board processing units (PUs) was constructed and is currently used for tests in the lab. The design of this prototype board is presented here. The board offers maximum modularity and allows the development and testing of different PU designs based on today's leading integer and floating point DSPs. (3 refs).

  18. The Readout Tests of Freiburg Hybrids using ABCD chips

    CERN Document Server

    Dolezal, Z; Ketterer, C; Ludwig, J; Rieth, G; Rogalla, M; Runge, K; Unno, N

    1999-01-01

    New SCT forward hybrids have been completed in Freiburg. Their performance, based on readout tests using batches of ABCD chips is presented in this note. A so called Kapton hybrid (K1) was equipped with 6 n-type ABCD-2 chips and a 6 cm n-in-n forward detector. A subset of the 768 strips were ganged together to simulate 12 cm long strips. After careful grounding no oscillations were observed. The noise values measured are about 0.3 fC (1900 electrons) for 12 cm strips, 0.18 fC (1200 electrons) for 6 cm strips and below 0.09 fC (550 electrons) for unbonded channels. The gain, extracted with a 3 point response curve fit, was rather high (100 -140) and almost independent of FE-Bias current.

  19. Microwave Readout Techniques for Very Large Arrays of Nuclear Sensors

    Energy Technology Data Exchange (ETDEWEB)

    Ullom, Joel [Univ. of Colorado, Boulder, CO (United States). Dept. of Physics

    2017-05-17

    During this project, we transformed the use of microwave readout techniques for nuclear sensors from a speculative idea to reality. The core of the project consisted of the development of a set of microwave electronics able to generate and process large numbers of microwave tones. The tones can be used to probe a circuit containing a series of electrical resonances whose frequency locations and widths depend on the state of a network of sensors, with one sensor per resonance. The amplitude and phase of the tones emerging from the circuit are processed by the same electronics and are reduced to the sensor signals after two demodulation steps. This approach allows a large number of sensors to be interrogated using a single pair of coaxial cables. We successfully developed hardware, firmware, and software to complete a scalable implementation of these microwave control electronics and demonstrated their use in two areas. First, we showed that the electronics can be used at room temperature to read out a network of diverse sensor types relevant to safeguards or process monitoring. Second, we showed that the electronics can be used to measure large numbers of ultrasensitive cryogenic sensors such as gamma-ray microcalorimeters. In particular, we demonstrated the undegraded readout of up to 128 channels and established a path to even higher multiplexing factors. These results have transformed the prospects for gamma-ray spectrometers based on cryogenic microcalorimeter arrays by enabling spectrometers whose collecting areas and count rates can be competitive with high purity germanium but with 10x better spectral resolution.

  20. The CMS silicon strip tracker and its electronic readout

    International Nuclear Information System (INIS)

    Friedl, M.

    2001-05-01

    The Large Hadron Collider (LHC) at CERN (Geneva, CH) will be the world's biggest accelerator machine when operation starts in 2006. One of its four detector experiments is the Compact Muon Solenoid (CMS), consisting of a large-scale silicon tracker and electromagnetic and hadron calorimeters, all embedded in a solenoidal magnetic field of 4 T, and a muon system surrounding the magnet coil. The Silicon Strip Tracker has a sensitive area of 206m 2 with 10 million analog channels which are read out at the collider frequency of 40 MHz. The building blocks of the CMS Tracker are the silicon sensors, APV amplifier ASICs, supporting front-end ASICs, analog and digital optical links as well as data processors and control units in the back-end. Radiation tolerance, readout speed and the huge data volume are challenging requirements. The charge collection in silicon detectors was modeled, which is discussed as well as the concepts of readout amplifiers with respect to the LHC requirements, including the deconvolution method of fast pulse shaping, electronic noise constraints and radiation effects. Moreover, extensive measurements on prototype components of the CMS Tracker and different versions of the APV chip in particular were performed. There was a significant contribution to the construction of several detector modules, characterized them in particle beam tests and quantified radiation induced effects on the APV chip and on silicon detectors. In addition, a prototype of the analog optical link and the analog performance of the back-end digitization unit were evaluated. The results are very encouraging, demonstrating the feasibility of the CMS Silicon Strip Tracker system and motivating progress towards the construction phase. (author)

  1. Katherine: Ethernet Embedded Readout Interface for Timepix3

    Science.gov (United States)

    Burian, P.; Broulím, P.; Jára, M.; Georgiev, V.; Bergmann, B.

    2017-11-01

    The Timepix3—the latest generation of hybrid particle pixel detectors of Medipix family—yields a lot of new possibilities, i.e. a high hit-rate, a time resolution of 1.56 ns, event data-driven readout mode, and the capability of measuring the Time-over-Threshold (ToT - energy) and the Time-of-Arrival (ToA) simultaneously. This paper introduces a newly developed readout device for the Timepix3, called "Katherine", featuring a Gigabit Ethernet interface. The primary benefit of the Katherine is the operation of Timepix3 at long distance (up to 100 m) from computer or server, which is advantageous for the installation at beam lines, where the access is difficult or where radiation levels are too high for human interventions. The maximal hit-rate is limited by the bandwidth of the Ethernet connection (peer-to-peer connection; up to 16 Mhit/s). Since the Katherine interface is equipped with a processor of high computational power (ARM Cortex-A9 dual-core processor), it permits the use as a stand-alone (autonomous) radiation detector. The key features of the device are described in detail. These are the implemented high voltage power supply offering both polarities of bias voltage (up to ± 300 V), the automatic data sending to a sever via SSH, the automatic compensation of ToA values from columns with shifted matrix clock, etc. A dedicated control software was developed, which can be used for the detector preparation (sensor equalization, the DACs dependency scan, and the THL scan) and measurement control. Measured energy spectra from photon fields are shown.

  2. On the comparison of analog and digital SiPM readout in terms of expected timing performance

    Energy Technology Data Exchange (ETDEWEB)

    Gundacker, S., E-mail: stefan.gundacker@cern.ch; Auffray, E.; Jarron, P.; Meyer, T.; Lecoq, P.

    2015-07-01

    In time of flight positron emission tomography (TOF-PET) and in particular for the EndoTOFPET-US Project (Frisch, 2013 [1]), and other applications for high energy physics, the multi-digital silicon photomultiplier (MD-SiPM) was recently proposed (Mandai and Charbon, 2012 [2]), in which the time of every single photoelectron is being recorded. If such a photodetector is coupled to a scintillator, the largest and most accurate timing information can be extracted from the cascade of the scintillation photons, and the most probable time of positron emission determined. The readout concept of the MD-SiPM is very different from that of the analog SiPM, where the individual photoelectrons are merely summed up and the output signal fed into the readout electronics. We have developed a comprehensive Monte Carlo (MC) simulation tool that describes the timing properties of the photodetector and electronics, the scintillation properties of the crystal and the light transfer within the crystal. In previous studies we have compared MC simulations with coincidence time resolution (CTR) measurements and found good agreement within less than 10% for crystals of different lengths (from 3 mm to 20 mm) coupled to SiPMs from Hamamatsu. In this work we will use the developed MC tool to directly compare the highest possible time resolution for both the analog and digital readout of SiPMs with different scintillator lengths. The presented studies reveal that the analog readout of SiPMs with microcell signal pile-up and leading edge discrimination can lead to nearly the same time resolution as compared to the maximum likelihood time estimation applied to MD-SiPMs. Consequently there is no real preference for either a digital or analog SiPM for the sake of achieving highest time resolution. However, the best CTR in the analog SiPM is observed for a rather small range of optimal threshold values, whereas the MD-SiPM provides stable CTR after roughly 20 registered photoelectron timestamps in

  3. A tower structured scintillator-lead photon calorimeter using a novel fiber optics readout system

    International Nuclear Information System (INIS)

    Fessler, H.; Freund, P.; Gebauer, J.; Glas, K.M.; Pretzl, K.P.; Seyboth, P.; Seyerlein, J.; Thevenin, J.C.

    1984-06-01

    Described is the construction and the performance of a tower structured scintillator-lead photon calorimeter using a novel fiber optics readout system. The calorimeter is divided into 9 individual towers. Each tower has a cross section of 5x5 cm 2 and consists of 60 layers of 2 mm lead plus 5 mm thick scintillator. The four sides of each tower are covered by thin acrylic sheets (1.5 mm thick) doped with a wavelength shifting material. The light produced in each scintillator plate is first converted in these sheets, then converted a second time in a set of polystyrene optical fibers (diameter 2 mm) which run longitudinally through the calorimeter along the corners of each tower. A small diameter photomultiplier was attached to the fibers at the back end of the calorimeter. The obtained energy resolution with incident electrons in the range of 0.25 - 5.0 GeV/c is sigma/E = 0.10/√E. The uniformity of response across the front face of each tower was measured. (orig.)

  4. Muon Identification with the ATLAS Tile Calorimeter Read-Out Driver for Level-2 Trigger Purposes

    CERN Document Server

    Ruiz-Martinez, A

    2008-01-01

    The Hadronic Tile Calorimeter (TileCal) at the ATLAS experiment is a detector made out of iron as passive medium and plastic scintillating tiles as active medium. The light produced by the particles is converted to electrical signals which are digitized in the front-end electronics and sent to the back-end system. The main element of the back-end electronics are the VME 9U Read-Out Driver (ROD) boards, responsible of data management, processing and transmission. A total of 32 ROD boards, placed in the data acquisition chain between Level-1 and Level-2 trigger, are needed to read out the whole calorimeter. They are equipped with fixed-point Digital Signal Processors (DSPs) that apply online algorithms on the incoming raw data. Although the main purpose of TileCal is to measure the energy and direction of the hadronic jets, taking advantage of its projective segmentation soft muons not triggered at Level-1 (with pT<5 GeV) can be recovered. A TileCal standalone muon identification algorithm is presented and i...

  5. Upgrade for the ATLAS Tile Calorimeter Readout Electronics at the High Luminosity LHC

    CERN Document Server

    Cerqueira, A; The ATLAS collaboration

    2012-01-01

    The Tile Calalorimeter (TileCal) is the hadronic calorimeter covering the most central region of the ATLAS experiment at LHC. It is a sampling calorimeter with iron plates as absorber and plastic scintillating tiles as the active material. The scintillation light produced by the passage of charged particles is transmitted by wavelength shifting fibers to photomultiplier tubes (PMTs). The TileCal readout consists of about 10000 channels. The main upgrade will occur for the High Luminosity LHC phase (phase 2) which is scheduled around 2022. The upgrade aims at replacing the majority of the on- and off-detector electronics so that all calorimeter signals are directly digitized and sent to the off-detector electronics in the counting room. This will be done with minimum latency and maximum robustness. It will provide maximum TileCal information to the first level of the calorimeter trigger (probably called level 0) to improve the trigger efficiency as required to cope with the increased luminosity. An ambitious u...

  6. Fast Imaging Detector Readout Circuits with In-Pixel ADCs for Fourier Transform Imaging Spectrometers

    Science.gov (United States)

    Rider, D.; Blavier, J-F.; Cunningham, T.; Hancock, B.; Key, R.; Pannell, Z.; Sander, S.; Seshadri, S.; Sun, C.; Wrigley, C.

    2011-01-01

    Focal plane arrays (FPAs) with high frame rates and many pixels benefit several upcoming Earth science missions including GEO-CAPE, GACM, and ACE by enabling broader spatial coverage and higher spectral resolution. FPAs for the PanFTS, a high spatial resolution Fourier transform spectrometer and a candidate instrument for the GEO-CAPE mission are the focus of the developments reported here, but this FPA technology has the potential to enable a variety of future measurements and instruments. The ESTO ACT Program funded the developed of a fast readout integrated circuit (ROIC) based on an innovative in-pixel analog-to-digital converter (ADC). The 128 X 128 pixel ROIC features 60 ?m pixels, a 14-bit ADC in each pixel and operates at a continuous frame rate of 14 kHz consuming only 1.1 W of power. The ROIC outputs digitized data completely eliminating the bulky, power consuming signal chains needed by conventional FPAs. The 128 X 128 pixel ROIC has been fabricated in CMOS and tested at the Jet Propulsion Laboratory. The current version is designed to be hybridized with PIN photodiode arrays via indium bump bonding for light detection in the visible and ultraviolet spectral regions. However, the ROIC design incorporates a small photodiode in each cell to permit detailed characterization of the ROICperformance without the need for hybridization. We will describe the essential features of the ROIC design and present results of ROIC performance measurements.

  7. Design and test of a high resolution plastic scintillating fiber detector with intensified CCD readout

    International Nuclear Information System (INIS)

    Rebourgeard, P.

    1991-01-01

    We present the design of a particle detector involving a coherent array of 100 000 plastic scintillating microfibers, with an individual core diameter around 50 micrometers, and an intensified bidimensional CCD array. We investigate both theoretically and experimentally the use of polystyrene based scintillators in optical multimodal fibers. The isotropic excitation of modes and the characteristics of energy transfers between the polystyrene matrix and the added fluorescent dyes are of particular interest. An experimental approach is proposed and applied to the development of a new binary scintillator. In order to study the transmission of the signal from the interaction area to the output face, we specify the loss factors, the resolution and the signal to noise ratio within the fiber array. The low light level at the output face of the detector leads us to use image intensifiers in photon counting mode. This requires a detailed analysis of resolutions, gain, noise and detectivity concepts. We propose to describe these strongly correlated notions by the moment generation formalism. Thus, a previous modelisation of the photoelectronic devices allows us to evaluate the performance of the readout chain. A complete detector has been assembled and tested on a high energy hadron beam; the measurements are in good agreement with the modelisation [fr

  8. Technique for positioning hologram for balancing large data capacity with fast readout

    Science.gov (United States)

    Shimada, Ken-ichi; Hosaka, Makoto; Yamazaki, Kazuyoshi; Onoe, Shinsuke; Ide, Tatsuro

    2017-09-01

    The technical difficulty of balancing large data capacity with a high data transfer rate in holographic data storage systems (HDSSs) is significantly high because of tight tolerances for physical perturbation. From a system margin perspective in terabyte-class HDSSs, the positioning error of a holographic disc should be within about 10 µm to ensure high readout quality. Furthermore, fine control of the positioning should be accomplished within a time frame of about 10 ms for a high data transfer rate of the Gbps class, while a conventional method based on servo control of spindle or sled motors can rarely satisfy the requirement. In this study, a new compensation method for the effect of positioning error, which precisely controls the positioning of a Nyquist aperture instead of a holographic disc, has been developed. The method relaxes the markedly low positional tolerance of a holographic disc. Moreover, owing to the markedly light weight of the aperture, positioning control within the required time frame becomes feasible.

  9. Coherent multi-dimensional spectroscopy at optical frequencies in a single beam with optical readout

    Science.gov (United States)

    Seiler, Hélène; Palato, Samuel; Kambhampati, Patanjali

    2017-09-01

    Ultrafast coherent multi-dimensional spectroscopies form a powerful set of techniques to unravel complex processes, ranging from light-harvesting, chemical exchange in biological systems to many-body interactions in quantum-confined materials. Yet these spectroscopies remain complex to implement at the high frequencies of vibrational and electronic transitions, thereby limiting their widespread use. Here we demonstrate the feasibility of two-dimensional spectroscopy at optical frequencies in a single beam. Femtosecond optical pulses are spectrally broadened to a relevant bandwidth and subsequently shaped into phase coherent pulse trains. By suitably modulating the phases of the pulses within the beam, we show that it is possible to directly read out the relevant optical signals. This work shows that one needs neither complex beam geometries nor complex detection schemes in order to measure two-dimensional spectra at optical frequencies. Our setup provides not only a simplified experimental design over standard two-dimensional spectrometers but its optical readout also enables novel applications in microscopy.

  10. A segmented scintillator-lead photon calorimeter using a double wavelength shifter optical readout system

    Science.gov (United States)

    Fent, J.; Fessler, H.; Freund, P.; Gebauer, H. J.; Polakos, P.; Pretzl, K. P.; Schouten, T.; Seyboth, P.; Seyerlein, J.

    1984-09-01

    The construction and performance of a prototype scintillator lead photon calorimeter using a double wavelength shifter optical readout is described. The calorimeter is divided into 4 individual cells, each consisting of 44 layers of 3 mm lead plus 1 cm thick scintillator. The edges of each scintillator plate are covered by acrylic bars doped with a wavelength shifting material. The light produced in each scintillator plate is first converted in these bars and then converted a second time in a set of acrylic rods, which run longitudinally through the calorimeter along the corners of each calorimeter cell. A photomultiplier is attached to each of these rods at the back end of the calorimeter. The energy resolution obtained with incident electrons in the energy range of 2-30 GeV is σ/ E = 0.12/√ E. The uniformity of response across the front face of each cell was measured. Showers within each cell can be localised with an accuracy of better than σ = 7 mm.

  11. A tower structured scintillator-lead photon calorimeter using a novel fiber optics readout system

    Science.gov (United States)

    Fessler, H.; Freund, P.; Gebauer, J.; Glas, J. M.; Pretzl, K. P.; Seyboth, P.; Seyerlein, J.; Thevenin, J. C.

    1985-01-01

    Described is the construction and the performance of a tower-structured scintillator-lead photon calorimeter using a novel fiber optics readout system. The calorimeter is divided into 9 individual towers. Each tower has a cross section of 5 × 5 cm 2 and consists of 60 layers of 2 mm lead plus 5 mm thick scintillator. The four sides of each tower are covered by thin acrylic sheets (1.5 mm thick) doped with a wavelength shifting material. The light produced in each scintillator plate is first converted in these sheets, then converted a second time in a set of polystyrene optical fibers (diameter 2 mm) which run longitudinally through the calorimeter along the corners of each tower. A small diameter photomultiplier was attached to the fibers at the back end of the calorimeter. The obtained energy resolution with incident electrons in the range of 0.25-5.0 {GeV}/{c} is {σ}/{E} = {0.10}/{√E}. The uniformity of response across the front face of each tower was measured.

  12. A segmented scintillator-lead photon calorimeter using a double wavelength shifter optical readout system

    International Nuclear Information System (INIS)

    Fent, J.; Fessler, H.; Freund, P.; Gebauer, H.J.; Polakos, P.; Pretzl, K.P.; Schouten, T.; Seyboth, P.; Seyerlein, J.

    1982-11-01

    The construction and performance of a prototype scintillator-lead photon calorimeter using a double wavelength shifter optical readout is described. The calorimeter is divided into 4 individual cells each consisting of 44 layers of 3 mm lead plus 1 cm thick scintillator. The edges of each scintillator plate are covered by acrylic bars doped with a wavelength shifting material. The light produced in each scintillator plate is first converted in these bars, then converted a second time in a set of acrylic rods which run longitudinally through the calorimeter along the corners of each calorimeter cell. A photomultiplier is attached to each of these rods at the back end of the calorimeter. The energy resolution obtained with incident electrons in the energy range of 2-30 GeV is sigma/E = 0.12/√E. The uniformity of response across the front face of each cell was measured. Showers within each cell can be localised with an accuracy of better than sigma = 7 mm. (orig.)

  13. Readout of scintillator light with avalanche photodiodes for positron emission tomography

    International Nuclear Information System (INIS)

    Chen, Ruru; Fremout, A.; Tavernier, S.; Bruyndonckx, P.; Clement, D.; Loude, J.-F.; Morel, C.

    1999-01-01

    The noise properties and other relevant characteristics of avalanche photodiodes have been investigated with the perspective of replacing photomultiplier tubes in positron emission tomography. It is clearly demonstrated that they are a valid alternative to photomultiplier tubes in this application

  14. Optimization of MKID noise performance via readout technique for astronomical applications

    Science.gov (United States)

    Czakon, Nicole G.; Schlaerth, James A.; Day, Peter K.; Downes, Thomas P.; Duan, Ran P.; Gao, Jiansong; Glenn, Jason; Golwala, Sunil R.; Hollister, Matt I.; LeDuc, Henry G.; Mazin, Benjamin A.; Maloney, Philip R.; Noroozian, Omid; Nguyen, Hien T.; Sayers, Jack; Siegel, Seth; Vaillancourt, John E.; Vayonakis, Anastasios; Wilson, Philip R.; Zmuidzinas, Jonas

    2010-07-01

    Detectors employing superconducting microwave kinetic inductance detectors (MKIDs) can be read out by measuring changes in either the resonator frequency or dissipation. We will discuss the pros and cons of both methods, in particular, the readout method strategies being explored for the Multiwavelength Sub/millimeter Inductance Camera (MUSIC) to be commissioned at the CSO in 2010. As predicted theoretically and observed experimentally, the frequency responsivity is larger than the dissipation responsivity, by a factor of 2-4 under typical conditions. In the absence of any other noise contributions, it should be easier to overcome amplifier noise by simply using frequency readout. The resonators, however, exhibit excess frequency noise which has been ascribed to a surface distribution of two-level fluctuators sensitive to specific device geometries and fabrication techniques. Impressive dark noise performance has been achieved using modified resonator geometries employing interdigitated capacitors (IDCs). To date, our noise measurement and modeling efforts have assumed an onresonance readout, with the carrier power set well below the nonlinear regime. Several experimental indicators suggested to us that the optimal readout technique may in fact require a higher readout power, with the carrier tuned somewhat off resonance, and that a careful systematic study of the optimal readout conditions was needed. We will present the results of such a study, and discuss the optimum readout conditions as well as the performance that can be achieved relative to BLIP.

  15. Nonproportionality in the scintillation light yield of bismuth germanate

    Science.gov (United States)

    Gentile, T. R.; Bales, M. J.; Breuer, H.; Chupp, T. E.; Coakley, K. J.; Cooper, R. L.; Nico, J. S.; O`Neill, B.

    2015-06-01

    We present measurements of nonproportionality in the scintillation light yield of bismuth germanate (BGO) for gamma-rays with energies between 6 keV and 662 keV. The scintillation light was read out by avalanche photodiodes (APDs) with both the BGO crystals and APDs operated at a temperature of ≈ 90 K. Data were obtained using radioisotope sources to illuminate both a single BGO crystal in a small test cryostat and a 12-element detector in a neutron radiative beta-decay experiment. In addition one datum was obtained in a 4.6 T magnetic field based on the bismuth K x-ray escape peak produced by a continuum of background gamma rays in this apparatus. These measurements and comparison to prior results were motivated by an experiment to study the radiative decay mode of the free neutron. The combination of data taken under different conditions yields a reasonably consistent picture for BGO nonproportionality that should be useful for researchers employing BGO detectors at low gamma ray energies.

  16. LHCb : Clock and timing distribution in the LHCb upgraded detector and readout system

    CERN Multimedia

    Alessio, Federico; Barros Marin, M; Cachemiche, JP; Hachon, F; Jacobsson, Richard; Wyllie, Ken

    2014-01-01

    The LHCb experiment is upgrading part of its detector and the entire readout system towards a full 40 MHz readout system in order to run between five and ten times its initial design luminosity and increase its trigger efficiency. In this paper, the new timing, trigger and control distribution system for such an upgrade is reviewed with particular attention given to the distribution of the clock and timing information across the entire readout system, up to the FE and the on-detector electronics. Current ideas are here presented in terms of reliability, jitter, complexity and implementation.

  17. A new read-out architecture for the ATLAS Tile Calorimeter Phase-II Upgrade

    CERN Document Server

    Valero, Alberto; The ATLAS collaboration

    2015-01-01

    TileCal is the Tile hadronic calorimeter of the ATLAS experiment at the LHC. The LHC has planned a series of upgrades culminating in the High Luminosity LHC (HL-LHC) which will increase of order five to seven times the LHC nominal instantaneous luminosity. TileCal will undergo an upgrade to accommodate to the HL-LHC parameters. The TileCal read-out electronics will be redesigned introducing a new read-out strategy. The new TileCal read-out architecture is presented including a description of the main electronics modules and some preliminary results obtained with the first demonstrator system.

  18. The Trigger Readout Electronics for the Phase-I Upgrade of the ATLAS Liquid Argon Calorimeters

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00389433; The ATLAS collaboration

    2016-01-01

    For the Phase-I luminosity upgrade of the LHC a higher granularity trigger readout of the ATLAS Liquid Argon (LAr) Calorimeters is foreseen to enhance the trigger feature extraction and background rejection. The new readout system digitizes the detector signals, grouped into 34000 so-called Super Cells, with 12bit precision at 40MHz and transfers the data on optical links to the digital processing system, which computes the Super Cell transverse energies. In this paper, development and test results of the new readout system are presented.

  19. Fast Quantum Nondemolition Readout by Parametric Modulation of Longitudinal Qubit-Oscillator Interaction.

    Science.gov (United States)

    Didier, Nicolas; Bourassa, Jérôme; Blais, Alexandre

    2015-11-13

    We show how to realize fast and high-fidelity quantum nondemolition qubit readout using longitudinal qubit-oscillator interaction. This is accomplished by modulating the longitudinal coupling at the cavity frequency. The qubit-oscillator interaction then acts as a qubit-state dependent drive on the cavity, a situation that is fundamentally different from the standard dispersive case. Single-mode squeezing can be exploited to exponentially increase the signal-to-noise ratio of this readout protocol. We present an implementation of this longitudinal parametric readout in circuit quantum electrodynamics and a possible multiqubit architecture.

  20. Clock and timing distribution in the LHCb upgraded detector and readout system

    CERN Document Server

    Alessio, F; Barros Marin, M; Cachemiche, JP; Hachon, F; Jacobsson, R; Wyllie, K

    2015-01-01

    The LHCb experiment is upgrading part of its detector and the entire readout system towards a full 40 MHz readout system in order to run between five and ten times its initial design luminosity and increase its trigger efficiency. In this paper, the new timing, trigger and control distribution system for such an upgrade is reviewed with particular attention given to the distribution of the clock and timing information across the entire readout system, up to the FE and the on-detector electronics. Current ideas are here presented in terms of reliability, jitter, complexity and implementation.

  1. Environmental sensors based on micromachined cantilevers with integrated read-out

    DEFF Research Database (Denmark)

    Boisen, Anja; Thaysen, Jacob; Jensenius, Henriette

    2000-01-01

    An AFM probe with integrated piezoresistive read-out has been developed and applied as a cantilever-based environmental sensor. The probe has a built-in reference cantilever, which makes it possible to subtract background drift directly in the measurement. Moreover, the integrated read-out facili......An AFM probe with integrated piezoresistive read-out has been developed and applied as a cantilever-based environmental sensor. The probe has a built-in reference cantilever, which makes it possible to subtract background drift directly in the measurement. Moreover, the integrated read...

  2. Evaluation of Fermi Read-out of the ATLAS Tilecal Prototype

    CERN Document Server

    Agnvall, S; Albiol, F; Alifanov, A; Amaral, P; Amelin, D V; Amorim, A; Anderson, K J; Angelini, C; Antola, A; Astesan, F; Astvatsaturov, A R; Autiero, D; Badaud, F; Barreira, G; Benetta, R; Berglund, S R; Blanchot, G; Blucher, E; Blaj, C; Bodö, P; Bogush, A A; Bohm, C; Boldea, V; Borisov, O N; Bosman, M; Bouhemaid, N; Brette, P; Breveglieri, L; Bromberg, C; Brossard, M; Budagov, Yu A; Calôba, L P; Carvalho, J; Casado, M P; Castera, A; Cattaneo, Paolo Walter; Cavalli-Sforza, M; Cavasinni, V; Chadelas, R; Chevaleyre, J C; Chirikov-Zorin, I E; Chlachidze, G; Cobal, M; Cogswell, F; Colaço, F; Constantinescu, S; Costanzo, D; Crouau, M; Dadda, L; Daudon, F; David, J; David, M; Davidek, T; Dawson, J; De, K; Del Prete, T; De Santo, A; Di Girolamo, B; Dita, S; Dolejsi, J; Dolezal, Z; Downing, R; Dugne, J J; Efthymiopoulos, I; Engström, M; Errede, D; Errede, S; Evans, H; Fenyuk, A; Ferrer, A; Flaminio, Vincenzo; Fristedt, A; Gallas, E J; Gaspar, M; Gildemeister, O; Givoletto, M; Glagolev, V V; Goggi, Giorgio V; Gómez, A; Gong, S; Guz, Yu; Grabskii, V; Grieco, M; Hakopian, H H; Haney, M W; Hansen, M; Hellman, S; Henriques, A; Hentzell, H; Holmberg, T; Holmgren, S O; Honoré, P F; Huston, J; Ivanyushenkov, Yu M; Jon-And, K; Juste, A; Kakurin, S; Karapetian, G V; Karyukhin, A N; Kérek, A; Khokhlov, Yu A; Kopikov, S V; Kostrikov, M E; Kostyukhin, V; Kukhtin, V V; Kulchitskii, Yu A; Kurzbauer, W; Lami, S; Landi, G; Lapin, V; Lazzeroni, C; Lebedev, A; Leitner, R; Li, J; Lippi, M; Le Dortz, O; Löfstedt, B; Lomakin, Yu F; Lomakina, O V; Lokajícek, M; Lund-Jensen, B; Maio, A; Malyukov, S N; Mariani, R; Marroquin, F; Martins, J P; Mazzoni, E; Merritt, F S; Michel, B; Miller, R; Minashvili, I A; Miralles, L; Mnatzakanian, E A; Montarou, G; Motto, S; Muanza, G S; Némécek, S; Nessi, Marzio; Ödmark, A; Onofre, A; Orteu, S; Padilla, C; Pallin, D; Pantea, D; Patriarca, J; Pereira, A; Perlas, J A; Persson, S T; Petit, P; Pilcher, J E; Pinhão, J; Poggioli, Luc; Poirot, S; Polesello, G; Price, L E; Proudfoot, J; Pukhov, O; Reinmuth, G; Renzoni, G; Richards, R; Riu, I; Romanov, V; Ronceux, B; Rumyantsev, V; Rusakovitch, N A; Sami, M; Sanders, H; Santos, J; Savoy-Navarro, Aurore; Sawyer, L; Says, L P; Schwemling, P; Seixas, J M; Selldén, B; Semenov, A A; Shchelchkov, A S; Shochet, M J; Simaitis, V J; Sissakian, A N; Solodkov, A A; Solovyanov, O; Sonderegger, P; Soustruznik, K; Stanek, R; Starchenko, E A; Stefanelli, R; Stephens, R; Suk, M; Sundblad, R; Svensson, C; Tang, F; Tardell, S; Tas, P; Teubert, F; Thaler, J J; Tokár, S; Topilin, N D; Trka, Z; Turcot, A S; Turcotte, M; Valkár, S; Varanda, M J; Vartapetian, A H; Vazeille, F; Vinogradov, V; Vivaldi, F; Vorozhtsov, S B; Wagner, D; White, A; Wolters, H; Yamdagni, N; Yarygin, G; Yosef, C; Yuan, J; Zaitsev, A; Zdrazil, M

    1998-01-01

    Prototypes of the \\fermi{} system have been used to read out a prototype of the \\atlas{} hadron calorimeter in a beam test at the CERN SPS. The \\fermi{} read-out system, using a compressor and a 40 MHz sampling ADC, is compared to a standard charge integrating read-out by measuring the energy resolution of the calorimeter separately with the two systems on the same events. Signal processing techniques have been designed to optimize the treatment of \\fermi{} data. The resulting energy resolution is better than the one obtained with the standard read-out.

  3. Development of an ASIC for CCD readout at the vertex detectors of the intrenational linear collider

    CERN Document Server

    Murray, P; Stefanov, K D; Woolliscroft, T

    2007-01-01

    The Linear Collider Flavour Identification Collaboration is developing sensors and readout electronics suitable for the International Linear Collider vertex detector. In order to achieve high data rates the proposed detector utilises column parallel CCDs, each read out by a custom designed ASIC. The prototype chip (CPR2) has 250 channels of electronics, each with a preamplifier, 5-bit flash ADC, data sparsification logic for identification of significant data clusters, and local memory for storage of data awaiting readout. CPR2 also has hierarchical 2-level data multiplexing and intermediate data memory, enabling readout of the sparsified data via the 5-bit data output bus.

  4. arXiv Application of large area SiPMs for the readout of a plastic scintillator based timing detector

    CERN Document Server

    Betancourt, C.; Brundler, R.; Dätwyler, A.; Favre, Y.; Gascon, D.; Gomez, S.; Korzenev, Alexander; Mermod, P.; Noah, E.; Serra, N.; Sgalaberna, D.; Storaci, B.

    2017-11-27

    In this study an array of eight 6 mm × 6 mm area SiPMs was coupled to the end of a long plastic scintillator counter which was exposed to a 2.5 GeV/c muon beam at the CERN PS. Timing characteristics of bars with dimensions 150 cm × 6 cm × 1 cm and 120 cm × 11 cm × 2.5 cm have been studied. An 8-channel SiPM anode readout ASIC (MUSIC R1) based on a novel low input impedance current conveyor has been used to read out and amplify SiPMs independently and sum the signals at the end. Prospects for applications in large-scale particle physics detectors with timing resolution below 100 ps are provided in light of the results.

  5. Analysis of de-noising methods to improve the precision of the ILSF BPM electronic readout system

    Science.gov (United States)

    Shafiee, M.; Feghhi, S. A. H.; Rahighi, J.

    2016-12-01

    In order to have optimum operation and precise control system at particle accelerators, it is required to measure the beam position with the precision of sub-μm. We developed a BPM electronic readout system at Iranian Light Source Facility and it has been experimentally tested at ALBA accelerator facility. The results show the precision of 0.54 μm in beam position measurements. To improve the precision of this beam position monitoring system to sub-μm level, we have studied different de-noising methods such as principal component analysis, wavelet transforms, filtering by FIR, and direct averaging method. An evaluation of the noise reduction was given to testify the ability of these methods. The results show that the noise reduction based on Daubechies wavelet transform is better than other algorithms, and the method is suitable for signal noise reduction in beam position monitoring system.

  6. Application of large area SiPMs for the readout of a plastic scintillator based timing detector

    Science.gov (United States)

    Betancourt, C.; Blondel, A.; Brundler, R.; Dätwyler, A.; Favre, Y.; Gascon, D.; Gomez, S.; Korzenev, A.; Mermod, P.; Noah, E.; Serra, N.; Sgalaberna, D.; Storaci, B.

    2017-11-01

    In this study an array of eight 6 mm × 6 mm area SiPMs was coupled to the end of a long plastic scintillator counter which was exposed to a 2.5 GeV/c muon beam at the CERN PS. Timing characteristics of bars with dimensions 150 cm × 6 cm × 1 cm and 120 cm × 11 cm × 2.5 cm have been studied. An 8-channel SiPM anode readout ASIC (MUSIC R1) based on a novel low input impedance current conveyor has been used to read out and amplify SiPMs independently and sum the signals at the end. Prospects for applications in large-scale particle physics detectors with timing resolution below 100 ps are provided in light of the results.

  7. C.C.D. Readout Of A Picosecond Streak Camera With An Intensified C.C.D.

    Science.gov (United States)

    Lemonier, M.; Richard, J. C.; Cavailler, C.; Mens, A.; Raze, G.

    1985-02-01

    This paper deals with a digital streak camera readout device. The device consists in a low light level television camera made of a solid state C.C.D. array coupled to an image intensifier associated to a video-digitizer coupled to a micro-computer system. The streak camera images are picked-up as a video signal, digitized and stored. This system allows the fast recording and the automatic processing of the data provided by the streak tube. Starting from the output screen of the streak camera, the constitutive elements are : - A fiber optic taper (A.O. Scientific Instruments) set in contact with the fiber optic output window of the streak tube achieves the image demagnification ; - A double proximity focused image intensifier (RTC - XX1410 SP) achieves the bright-ness amplification without any distortion ; - A second fiber optic taper achieves the dimensional matching between intensifier output and C.C.D. sensitive area ;

  8. {sup 6}LiF:ZnS(Ag) Neutrons Scintillator Detector Configuration for Optimal Readout

    Energy Technology Data Exchange (ETDEWEB)

    Osovizky, A. [NIST Center for Neutron Research, Gaithersburg, Maryland (United States); Rotem Industries Ltd, Rotem Industrial Park (Israel); University of Maryland, College park, Maryland (United States); Yehuda-Zada, Y.; Ghelman, M.; Tsai, P.; Thompson, A.K. [Nuclear Research Center Negev, Beer-Sheva (Israel); Pritchard, K.; Ziegler, J.B.; Ibberson, R.M.; Majkrzak, C.F.; Maliszewskyj, N.C. [NIST Center for Neutron Research, Gaithersburg, Maryland (United States)

    2015-07-01

    WLS fibers; therefore the diode area should ideally be only minimally larger than fiber bundle area. - Low dark noise - it is desirable to minimize the dark noise during the pulse integration period so as to minimize the background for pulse shape discrimination. - Photon Detection Efficiency - it is desirable to increase the SiPM PDE in order to enhance light collection. This will increase the likelihood of detecting neutron events with lower light production and will present a cleaner raw signal for pulse shape discrimination. We will present the SiPM optimization process and studies of dark noise and gamma and neutron sensitivity as a function of bias voltage and operating temperature that have enabled us to optimize the detector sensitivity and gamma rejection. The gamma rejection performance goal requires to overcome the challenge of discriminating between the light signature accepted by neutron event to the one received by the noise. In addition there is a huge variation between the number of light photons that reaching the WLS fibers for different neutron events caused by the heavy ions energy losses prior to ionizing the ZnS(Ag) and the high light attenuation of the scintillation mixture. This variation in the light signal along with the long decay time of the ZnS(Ag) (tens of microseconds) can cause double counting of the same neutron event in the case of high light output signature or preventing the detection of low sequential light output signature neutron event. We will presents the algorithm developed for {sup 6}LiF:ZnS(Ag) sensor readout and the results achieved by an off-line analysis by Matlab software code that successfully achieved both the high gamma rejection with a sensitive and accurate neutron event detection. (authors)

  9. Resistive graphene humidity sensors with rapid and direct electrical readout

    Science.gov (United States)

    Smith, Anderson D.; Elgammal, Karim; Niklaus, Frank; Delin, Anna; Fischer, Andreas C.; Vaziri, Sam; Forsberg, Fredrik; Råsander, Mikael; Hugosson, Håkan; Bergqvist, Lars; Schröder, Stephan; Kataria, Satender; Östling, Mikael; Lemme, Max C.

    2015-11-01

    We demonstrate humidity sensing using a change of the electrical resistance of single-layer chemical vapor deposited (CVD) graphene that is placed on top of a SiO2 layer on a Si wafer. To investigate the selectivity of the sensor towards the most common constituents in air, its signal response was characterized individually for water vapor (H2O), nitrogen (N2), oxygen (O2), and argon (Ar). In order to assess the humidity sensing effect for a range from 1% relative humidity (RH) to 96% RH, the devices were characterized both in a vacuum chamber and in a humidity chamber at atmospheric pressure. The measured response and recovery times of the graphene humidity sensors are on the order of several hundred milliseconds. Density functional theory simulations are employed to further investigate the sensitivity of the graphene devices towards water vapor. The interaction between the electrostatic dipole moment of the water and the impurity bands in the SiO2 substrate leads to electrostatic doping of the graphene layer. The proposed graphene sensor provides rapid response direct electrical readout and is compatible with back end of the line (BEOL) integration on top of CMOS-based integrated circuits.We demonstrate humidity sensing using a change of the electrical resistance of single-layer chemical vapor deposited (CVD) graphene that is placed on top of a SiO2 layer on a Si wafer. To investigate the selectivity of the sensor towards the most common constituents in air, its signal response was characterized individually for water vapor (H2O), nitrogen (N2), oxygen (O2), and argon (Ar). In order to assess the humidity sensing effect for a range from 1% relative humidity (RH) to 96% RH, the devices were characterized both in a vacuum chamber and in a humidity chamber at atmospheric pressure. The measured response and recovery times of the graphene humidity sensors are on the order of several hundred milliseconds. Density functional theory simulations are employed to further

  10. The readout system for the ArTeMis camera

    Science.gov (United States)

    Doumayrou, E.; Lortholary, M.; Dumaye, L.; Hamon, G.

    2014-07-01

    During ArTeMiS observations at the APEX telescope (Chajnantor, Chile), 5760 bolometric pixels from 20 arrays at 300mK, corresponding to 3 submillimeter focal planes at 450μm, 350μm and 200μm, have to be read out simultaneously at 40Hz. The read out system, made of electronics and software, is the full chain from the cryostat to the telescope. The readout electronics consists of cryogenic buffers at 4K (NABU), based on CMOS technology, and of warm electronic acquisition systems called BOLERO. The bolometric signal given by each pixel has to be amplified, sampled, converted, time stamped and formatted in data packets by the BOLERO electronics. The time stamping is obtained by the decoding of an IRIG-B signal given by APEX and is key to ensure the synchronization of the data with the telescope. Specifically developed for ArTeMiS, BOLERO is an assembly of analogue and digital FPGA boards connected directly on the top of the cryostat. Two detectors arrays (18*16 pixels), one NABU and one BOLERO interconnected by ribbon cables constitute the unit of the electronic architecture of ArTeMiS. In total, the 20 detectors for the tree focal planes are read by 10 BOLEROs. The software is working on a Linux operating system, it runs on 2 back-end computers (called BEAR) which are small and robust PCs with solid state disks. They gather the 10 BOLEROs data fluxes, and reconstruct the focal planes images. When the telescope scans the sky, the acquisitions are triggered thanks to a specific network protocol. This interface with APEX enables to synchronize the acquisition with the observations on sky: the time stamped data packets are sent during the scans to the APEX software that builds the observation FITS files. A graphical user interface enables the setting of the camera and the real time display of the focal plane images, which is essential in laboratory and commissioning phases. The software is a set of C++, Labview and Python, the qualities of which are respectively used

  11. A CMOS smart temperature and humidity sensor with combined readout.

    Science.gov (United States)

    Eder, Clemens; Valente, Virgilio; Donaldson, Nick; Demosthenous, Andreas

    2014-09-16

    A fully-integrated complementary metal-oxide semiconductor (CMOS) sensor for combined temperature and humidity measurements is presented. The main purpose of the device is to monitor the hermeticity of micro-packages for implanted integrated circuits and to ensure their safe operation by monitoring the operating temperature and humidity on-chip. The smart sensor has two modes of operation, in which either the temperature or humidity is converted into a digital code representing a frequency ratio between two oscillators. This ratio is determined by the ratios of the timing capacitances and bias currents in both oscillators. The reference oscillator is biased by a current whose temperature dependency is complementary to the proportional to absolute temperature (PTAT) current. For the temperature measurement, this results in an exceptional normalized sensitivity of about 0.77%/°C at the accepted expense of reduced linearity. The humidity sensor is a capacitor, whose value varies linearly with relative humidity (RH) with a normalized sensitivity of 0.055%/% RH. For comparison, two versions of the humidity sensor with an area of either 0.2 mm2 or 1.2 mm2 were fabricated in a commercial 0.18 μm CMOS process. The on-chip readout electronics operate from a 5 V power supply and consume a current of approximately 85 µA.

  12. Four-channel readout ASIC for silicon pad detectors

    CERN Document Server

    Baturitsky, M A

    2000-01-01

    A custom front-end readout ASIC has been designed for silicon calorimeters supposed to be used in high-energy physics experiments. The ASIC was produced using BJT-JFET technology. It contains four channels of a fast low-noise charge-sensitive preamplifier (CSP) with inverting outputs summed by a linear adder (LA) followed by an RC-CR shaping amplifier (SA) with 30 ns peaking time. Availability of separate outputs of the CSPs and the LA makes it possible to join any number of silicon detector layers to obtain the longitudinal and transversal resolution required using only this ASIC in any silicon calorimeter minitower configuration. Noise performance is ENC=1800e sup - +18e sup - /pF at 30 ns peaking time for detector capacitance up to C sub d =400 pF. Rise time is 8 ns at input capacitance C sub d =100 pF. Power dissipation is less than 50 mW/ chip at voltage supply 5 V.

  13. Four-channel readout ASIC for silicon pad detectors

    Energy Technology Data Exchange (ETDEWEB)

    Baturitsky, M.A. E-mail: batur@inp.minsk.by; Zamiatin, N.I

    2000-02-01

    A custom front-end readout ASIC has been designed for silicon calorimeters supposed to be used in high-energy physics experiments. The ASIC was produced using BJT-JFET technology. It contains four channels of a fast low-noise charge-sensitive preamplifier (CSP) with inverting outputs summed by a linear adder (LA) followed by an RC-CR shaping amplifier (SA) with 30 ns peaking time. Availability of separate outputs of the CSPs and the LA makes it possible to join any number of silicon detector layers to obtain the longitudinal and transversal resolution required using only this ASIC in any silicon calorimeter minitower configuration. Noise performance is ENC=1800e{sup -}+18e{sup -}/pF at 30 ns peaking time for detector capacitance up to C{sub d}=400 pF. Rise time is 8 ns at input capacitance C{sub d}=100 pF. Power dissipation is less than 50 mW/ chip at voltage supply 5 V.

  14. Toward a Reduced-Wire Readout System for Ultrasound Imaging

    Science.gov (United States)

    Lim, Jaemyung; Arkan, Evren F.; Degertekin, F. Levent; Ghovanloo, Maysam

    2015-01-01

    We present a system-on-a-chip (SoC) for use in high-frequency capacitive micromachined ultrasonic transducer (CMUT) imaging systems. This SoC consists of trans-impedance amplifiers (TIA), delay locked loop (DLL) based clock multiplier, quadrature sampler, and pulse width modulator (PWM). The SoC down converts RF echo signal to baseband by quadrature sampling which facilitates modulation. To send data through a 1.6 m wire in the catheter which has limited bandwidth and is vulnerable to noise, the SoC creates a pseudo-digital PWM signal which can be used for back telemetry or wireless readout of the RF data. In this implementation, using a 0.35-μm std. CMOS process, the TIA and single-to-differential (STD) converter had 45 MHz bandwidth, the quadrature sampler had 10.1 dB conversion gain, and the PWM had 5-bit ENoB. Preliminary results verified front-end functionality, and the power consumption of a TIA, STD, quadrature sampler, PWM, and clock multiplier was 26 mW from a 3 V supply. PMID:25571135

  15. Monolithic pixels on moderate resistivity substrate and sparsifying readout architecture

    International Nuclear Information System (INIS)

    Giubilato, P.; Battaglia, M.; Bisello, D.; Caselle, M.; Chalmet, P.; Demaria, L.; Ikemoto, Y.; Kloukinas, K.; Mansuy, S.C.; Mattiazzo, S.; Marchioro, A.; Mugnier, H.; Pantano, D.; Potenza, A.; Rivetti, A.; Rousset, J.; Silvestrin, L.; Snoeys, W.

    2013-01-01

    The LePix projects aim realizing a new generation monolithic pixel detectors with improved performances at lesser cost with respect to both current state of the art monolithic and hybrid pixel sensors. The detector is built in a 90 nm CMOS process on a substrate of moderate resistivity. This allows charge collection by drift while maintaining the other advantages usually offered by MAPS, like having a single piece detector and using a standard CMOS production line. The collection by drift mechanism, coupled to the low capacitance design of the collecting node made possible by the monolithic approach, provides an excellent signal to noise ratio straight at the pixel cell together with a radiation tolerance far superior to conventional un-depleted MAPS. The excellent signal-to-noise performance is demonstrated by the device ability to separate the 6 keV 55 Fe double peak at room temperature. To achieve high granularity (10–20 µm pitch pixels) over large detector areas maintaining high readout speed, a completely new compressing architecture has been devised. This architecture departs from the mainstream hybrid pixel sparsification approach, which uses in-pixel logic to reduce data, by using topological compression to minimize pixel area and power consumption

  16. Electron spin manipulation and readout through an optical fiber

    Science.gov (United States)

    Fedotov, I. V.; Doronina-Amitonova, L. V.; Voronin, A. A.; Levchenko, A. O.; Zibrov, S. A.; Sidorov-Biryukov, D. A.; Fedotov, A. B.; Velichansky, V. L.; Zheltikov, A. M.

    2014-07-01

    The electron spin of nitrogen--vacancy (NV) centers in diamond offers a solid-state quantum bit and enables high-precision magnetic-field sensing on the nanoscale. Implementation of these approaches in a fiber format would offer unique opportunities for a broad range of technologies ranging from quantum information to neuroscience and bioimaging. Here, we demonstrate an ultracompact fiber-optic probe where a diamond microcrystal with a well-defined orientation of spin quantization NV axes is attached to the fiber tip, allowing the electron spins of NV centers to be manipulated, polarized, and read out through a fiber-optic waveguide integrated with a two-wire microwave transmission line. The microwave field transmitted through this line is used to manipulate the orientation of electron spins in NV centers through the electron-spin resonance tuned by an external magnetic field. The electron spin is then optically initialized and read out, with the initializing laser radiation and the photoluminescence spin-readout return from NV centers delivered by the same optical fiber.

  17. A new multi-grid type MSGC with pad readout

    CERN Document Server

    Takahashi, H; Yano, K; Fukuda, D; Nakazawa, M; Hasegawa, K

    2001-01-01

    Recently, a new multi-grid type MSGC has been proposed. Between the anode and the cathode, additional grid strips are placed in this new type of MSGC. Gaps between these strips are chosen to be around 10 mu m which assure efficient removal of surface charges which even do not need the lower surface resistivity and bare glass can be used up to 10 sup 6 cps/mm sup 2. Another feature of the MSGC is its high gain capability. Owing to the existence of other strips of lower potentials, the field strength around the opposing grid to the anode strip is not so high as conventional small gap detectors. Furthermore, the contribution of the surface streamer is greatly suppressed because the electric field parallel to the surface is screened by the intermediate grid electrodes. However, the existence of additional electrodes also screens all the electric field upper than the substrate and we cannot observe induced signals from backside of the substrate. To overcome the difficulty, we propose another signal readout method ...

  18. Four-channel readout ASIC for silicon pad detectors

    International Nuclear Information System (INIS)

    Baturitsky, M.A.; Zamiatin, N.I.

    2000-01-01

    A custom front-end readout ASIC has been designed for silicon calorimeters supposed to be used in high-energy physics experiments. The ASIC was produced using BJT-JFET technology. It contains four channels of a fast low-noise charge-sensitive preamplifier (CSP) with inverting outputs summed by a linear adder (LA) followed by an RC-CR shaping amplifier (SA) with 30 ns peaking time. Availability of separate outputs of the CSPs and the LA makes it possible to join any number of silicon detector layers to obtain the longitudinal and transversal resolution required using only this ASIC in any silicon calorimeter minitower configuration. Noise performance is ENC=1800e - +18e - /pF at 30 ns peaking time for detector capacitance up to C d =400 pF. Rise time is 8 ns at input capacitance C d =100 pF. Power dissipation is less than 50 mW/ chip at voltage supply 5 V

  19. ASIC Readout Circuit Architecture for Large Geiger Photodiode Arrays

    Science.gov (United States)

    Vasile, Stefan; Lipson, Jerold

    2012-01-01

    The objective of this work was to develop a new class of readout integrated circuit (ROIC) arrays to be operated with Geiger avalanche photodiode (GPD) arrays, by integrating multiple functions at the pixel level (smart-pixel or active pixel technology) in 250-nm CMOS (complementary metal oxide semiconductor) processes. In order to pack a maximum of functions within a minimum pixel size, the ROIC array is a full, custom application-specific integrated circuit (ASIC) design using a mixed-signal CMOS process with compact primitive layout cells. The ROIC array was processed to allow assembly in bump-bonding technology with photon-counting infrared detector arrays into 3-D imaging cameras (LADAR). The ROIC architecture was designed to work with either common- anode Si GPD arrays or common-cathode InGaAs GPD arrays. The current ROIC pixel design is hardwired prior to processing one of the two GPD array configurations, and it has the provision to allow soft reconfiguration to either array (to be implemented into the next ROIC array generation). The ROIC pixel architecture implements the Geiger avalanche quenching, bias, reset, and time to digital conversion (TDC) functions in full-digital design, and uses time domain over-sampling (vernier) to allow high temporal resolution at low clock rates, increased data yield, and improved utilization of the laser beam.

  20. A Radiation Hardened by Design CMOS ASIC for Thermopile Readouts

    Science.gov (United States)

    Quilligan, G.; Aslam, S.; DuMonthier, J.

    2012-01-01

    A radiation hardened by design (RHBD) mixed-signal application specific integrated circuit (ASIC) has been designed for a thermopile readout for operation in the harsh Jovian orbital environment. The multi-channel digitizer (MCD) ASIC includes 18 low noise amplifier channels which have tunable gain/filtering coefficients, a 16-bit sigma-delta analog-digital converter (SDADC) and an on-chip controller. The 18 channels, SDADC and controller were designed to operate with immunity to single event latchup (SEL) and to at least 10 Mrad total ionizing dose (TID). The ASIC also contains a radiation tolerant 16-bit 20 MHz Nyquist ADC for general purpose instrumentation digitizer needs. The ASIC is currently undergoing fabrication in a commercial 180 nm CMOS process. Although this ASIC was designed specifically for the harsh radiation environment of the NASA led JEO mission it is suitable for integration into instrumentation payloads 011 the ESA JUICE mission where the radiation hardness requirements are slightly less stringent.

  1. Monolithic pixels on moderate resistivity substrate and sparsifying readout architecture

    CERN Document Server

    Giubilato, P; Snoeys, W; Bisello, D; Marchioro, A; Battaglia, M; Demaria, L; Mansuy, S C; Pantano, D; Rousset, J; Mattiazzo, S; Kloukinas, K; Potenza, A; Ikemoto, Y; Rivetti, A; Chalmet, P; Mugnier, H; Silvestrin, L

    2013-01-01

    The LePix projects aim realizing a new generation monolithic pixel detectors with improved performances at lesser cost with respect to both current state of the art monolithic and hybrid pixel sensors. The detector is built in a 90 nm CMOS process on a substrate of moderate resistivity. This allows charge collection by drift while maintaining the other advantages usually offered by MAPS, like having a single piece detector and using a standard CMOS production line. The collection by drift mechanism, coupled to the low capacitance design of the collecting node made possible by the monolithic approach, provides an excellent signal to noise ratio straight at the pixel cell together with a radiation tolerance far superior to conventional un-depleted MAPS. The excellent signal-to-noise performance is demonstrated by the device ability to separate the 6 keV Fe-55 double peak at room temperature. To achieve high granularity (10-20 mu m pitch pixels) over large detector areas maintaining high readout speed, a complet...

  2. The COMPASS RICH-1 read-out system

    CERN Document Server

    Baum, G; Bradamante, Franco; Bressan, A; Chapiro, A; Cicuttin, A; Ciliberti, P; Colavita, A A; Costa, S; Crespo, M; Cristaudo, P; Dalla Torre, S; Díaz, V; Fauland, P; Fratnik, F

    2003-01-01

    This paper describes the reconfigurable read-out system for the 82944 RICH-1 channels of the COMPASS experiment (NA58) at CERN. The system is based on 192 identical large front-end boards (BORA board). BORA was designed for acquiring, digitizing, threshold subtracting and transmitting event data. The overall operation of the board is controlled and supervised by a DSP tightly interacting with an FPGA that acts as a parallel co-processor. The DSP allows characterizing each analog channel by locally calculating noise and pedestal. Each BORA communicates with the outside world through two optical fibers and through a dedicated DSP network. One optical fiber is used to receive event triggers, and the other one is used to transmit event data to subsequent processing stages of the acquisition system. The DSP network allows reconfiguring and reprogramming the DSPs and FPGAs as well as acquiring sample events to visualize the overall operation of the system. The whole RICH has eight DSP networks working in parallel. ...

  3. Development of Digital Readout Electronics for the CMS Tracker

    CERN Document Server

    Corrin, E P

    2002-01-01

    The Compact Muon Solenoid (CMS) is a general-purpose detector, based at CERN in Switzerland, designed to look for new physics in high-energy protonproton collisions provided by the Large Hadron Collider. The CMS tracker has 10 million readout channels being sampled at a rate of 40 MHz, then read out at up to 100 kHz, generating huge volumes of data; it is essential that the system can handle these rates without any of the data being lost or corrupted. The CMS tracker FED processes the data, removing pedestal and common mode-noise, and then performing hit and cluster finding. Strips below threshold are discarded, resulting in a significant reduction in data size. These zero suppressed data are stored in a buffer before being sent to the DAQ. The processing on the FEDs is done using FPGAs. Programmable logic was chosen over custom ASICs because of the lower cost, faster design and verification process, and the ability to easily upgrade the firmware at a later date. This thesis is concerned with the digital read...

  4. A Low Power Rad-Hard ADC for the KID Readout Electronics, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The proposal aims to develop a radiation hardened analog-to-digital converter (ADC) required for the Kinetic Inductance Detector (KID) readout electronics. KIDs are...

  5. Performance of a thermal imager employing a hybrid pyroelectric detector array with MOSFET readout

    International Nuclear Information System (INIS)

    Watton, R.; Mansi, M.V.

    1988-01-01

    A thermal imager employing a two-dimensional hybrid array of pyroelectric detectors with MOSFET readout has been built. The design and theoretical performance of the detector are discussed, and the results of performance measurements are presented. 8 references

  6. A Front-End Readout Architecture for the CMS Barrel Muon Detector: A Feasibility Study

    International Nuclear Information System (INIS)

    Aguayo, P.; Alberdi, J.; Barcala, J.M.; Marin, J.; Molinero, A.; Navarrete, J.; Pablos, J.L. de; Romero, L.; Willmot, C.

    1995-01-01

    A feasibility study of a possible architecture for the CMS barrel muon detector readout electronics is presented. some aspects of system reliability are discussed. Values for the required FIFO's to store data during the first level trigger latency are given

  7. Ligands, cell-based models, and readouts required for Toll-like receptor action.

    LENUS (Irish Health Repository)

    Dellacasagrande, Jerome

    2012-02-01

    This chapter details the tools that are available to study Toll-like receptor (TLR) biology in vitro. This includes ligands, host cells, and readouts. The use of modified TLRs to circumvent some technical problems is also discussed.

  8. Front-end module readout and control electronics for the PHENIX Multiplicity Vertex Detector

    International Nuclear Information System (INIS)

    Ericson, M.N.; Allen, M.D.; Boissevain, J.

    1997-11-01

    Front-end module (FEM) readout and control are implemented as modular, high-density, reprogrammable functions in the PHENIX Multiplicity Vertex Detector. FEM control is performed by the heap manager, an FPGA-based circuit in the FEM unit. Each FEM has 256 channels of front-end electronics, readout, and control, all located on an MCM. Data readout, formatting, and control are performed by the heap manager along with 4 interface units that reside outside the MVD detector cylinder. This paper discusses the application of a generic heap manager and the addition of 4 interface module types to meet the specific control and data readout needs of the MVD. Unit functioning, interfaces, timing, data format, and communication rates will be discussed in detail. In addition, subsystem issues regarding mode control, serial architecture and functions, error handling, and FPGA implementation and programming will be presented

  9. Fast Nondestructive Parallel Readout of Neutral Atom Registers in Optical Potentials

    Science.gov (United States)

    Martinez-Dorantes, M.; Alt, W.; Gallego, J.; Ghosh, S.; Ratschbacher, L.; Völzke, Y.; Meschede, D.

    2017-11-01

    We demonstrate the parallel and nondestructive readout of the hyperfine state for optically trapped 87Rb atoms. The scheme is based on state-selective fluorescence imaging and achieves detection fidelities >98 % within 10 ms, while keeping 99% of the atoms trapped. For the readout of dense arrays of neutral atoms in optical lattices, where the fluorescence images of neighboring atoms overlap, we apply a novel image analysis technique using Bayesian inference to determine the internal state of multiple atoms. Our method is scalable to large neutral atom registers relevant for future quantum information processing tasks requiring fast and nondestructive readout and can also be used for the simultaneous readout of quantum information stored in internal qubit states and in the atoms' positions.

  10. Readout Unit-FPGA version for link multipexers, DAQ and VELO trigger

    CERN Document Server

    Müller, H; Guirao, A; Bal, F

    2003-01-01

    The FPGA-based Readout Unit (RU) was designed as entry stage to the readout networks of the LHCb data acquisition and L1-VELO topology trigger systems. The RU performs subevent building from up to 16 custom S-link inputs towards a commercial readout network via a PCI interface card. For output to custom links, as required in datalink multiplexer applications, an output S-link transmitter interface is alternatively available. Baseline readout networks for the RU are intelligent Gbit-ethernet NIC cards for the DAQ system and SCI shared memory network for the L1-VELO system. Any new protocols, like 10Gbit ethernet or Infiniband may be adopted as far as proper PCI interfaces and Linux device drivers will become available. The two baseline RU modes of operation are: 1.) link-multiplexer with N*Slink to single-Slink 2.) eventbuilder interface with quad Slink-to-PCI network interface.

  11. A 4k-Pixel CTIA Readout for Far IR Photodetector Arrays, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose to investigate the feasibility of developing a low noise, two-side buttable, 64x64 readout multiplexer with the following key design features: 1- By far...

  12. Proposal for a readout driver card for the ATLAS Insertable B-Layer

    CERN Document Server

    Falchieri, D; The ATLAS collaboration; Bruschi, M; D'Antone, I; Dopke, J; Flick, T; Gabrielli, A; Grosse-Knetter, J; Joseph, J; Krieger, N; Kugel, A; Morettini, P; Polini, A; Rizzi, M; Schroer, N C; Travaglini, R; Zannoli, S; Zoccoli, A

    2010-01-01

    An additional inner layer for the existing ATLAS Pixel Detector, called Insertable B-Layer (IBL), is under design and it will be installed by LHC-PHASE1. New front-end readout ASICs fabrication (FE-I4) will replace the previous chips in this layer. The new system features higher readout speed - 160Mb/s per ASIC - and simplified control. The current data acquisition chains are composed of front-end detectors, readout chips, Back-Of-Crate (BOCs) cards and ReadOut Driver cards (RODs). The poster presents a proposal for the new ROD board, which implements modern FPGAs and high-speed links with the detector and with the ATLAS TDAQ system.

  13. ATLAS IBL: Integration of new HW/SW readout features for the additional layer of pixels

    CERN Document Server

    Gabrielli, A; The ATLAS collaboration; Bruschi, M; D’Antone, I; Dopke, J; Falchieri, D; Flick, T; Gross-Kettner, J; Joseph, J; Krieger, N; Kugel, A; Morettini, P; Polini, A; Rizzi, M; Christian Schroer, N; Travaglini, R; Zannoli, S; Zoccoli, A

    2010-01-01

    An additional inner layer for the existing ATLAS pixel detector, called Insertable B-Layer (IBL), is under design and it will be installed by LHCPHASE1. New front-end readout ASICs fabrication is ongoing and will replace the previous chips in this layer. The new system features higher readout speed - 160Mbit/s per ASIC - and simplified control. The current data acquisition chains are composed of front-end detectors, readout chips, Back-Of-Crate (BOCs) cards and ReadOut Driver cards (RODs). The paper presents a proposal for the new ROD board, which implements modern FPGAs and high-speed links with the detector and with the ATLAS DAQ system.

  14. Proposal for a readout driver card for the ATLAS Insertable B-Layer

    CERN Document Server

    Falchieri, D; The ATLAS collaboration; Bruschi, M; D'Antone, I; Dopke, J; Flick, T; Gabrielli, A; Grosse-Knetter, J; Joseph, J; Krieger, N; Kugel, A; Morettini, P; Polini, A; Rizzi, M; Schroer, N; Travaglini, R; Zannoli, S; Zoccoli, A

    2010-01-01

    An additional inner layer for the existing ATLAS Pixel Detector, called Insertable B-Layer (IBL), is under design and it will be installed by Phase 1. New front-end readout ASICs fabrication (FE-I4) will replace the previous chips in this layer. The new system features higher readout speed - 160Mb/s per ASIC - and simplified control. The current data acquisition chains are composed of front-end detectors, readout chips, Back-Of-Crate (BOCs) cards and ReadOut Driver cards (RODs). This paper presents a proposal for the new ROD board, which implements modern FPGAs and high-speed links with the detector and with the ATLAS TDAQ system.

  15. Simplification of the DREAM collaboration's “Q/S method” in dual readout calorimetry analysis

    International Nuclear Information System (INIS)

    Groom, Donald E.

    2013-01-01

    The DREAM collaboration has introduced the “Q/S Method” for obtaining the energy estimator from simultaneous Cherenkov and scintillator readouts of individual hadronic events. I show that the algorithm is equivalent to an elementary method.

  16. Development of pixel readout integrated circuits for extreme rate and radiation

    CERN Document Server

    Garcia-Sciveres, M; CERN. Geneva. The LHC experiments Committee; LHCC

    2013-01-01

    Letter of Intent for RD Collaboration Proposal focused on development of a next generation pixel readout integrated circuits needed for high luminosity LHC detector upgrades. Brings together ATLAS and CMS pixel chip design communities.

  17. Characteristics of a delay-line readout in a cylindrical drift chamber system

    International Nuclear Information System (INIS)

    Barber, R.; Ahmed, M.W.; Dzemidzic, M.; Empl, A.; Hungerford, E.V.; Lan, K.J.; Wilson, J.; Cooper, M.D.; Gagliardi, C.A.; Haim, D.; Kim, G.J.; Koetke, D.D.; Tribble, R.E.; Van Ausdeln, L.A.

    2002-01-01

    This paper reports on the design, construction, and operational characteristics of a delay-line readout implemented on the cathode foils of a cylindrical drift chamber system. The readout was used to determine the position of an event along the length of the 1.74 m drift wires in the MEGA detectors used at the Los Alamos Meson Physics Facility. The performance of the system is interpreted by comparison to a PSPICE simulation, and to simple analytical models

  18. Single-Shot Readout of a Superconducting Qubit using a Josephson Parametric Oscillator

    Science.gov (United States)

    2016-01-11

    Single-shot Readout of a Superconducting Qubit using a Josephson Parametric Oscillator Philip Kranz1, Andreas Bengtsson1, Michaël Simoen1, Simon...Josephson Parametric Oscillator Philip Krantz1, Andreas Bengtsson1, Michaël Simoen1, Simon Gustavsson2, Vitaly Shumeiko1, W. D. Oliver2,3, C. M...2016) We propose and demonstrate a new read-out technique for a superconducting qubit by dispersively coupling it to a Josephson parametric

  19. Compensated readout for high-density MOS-gated memristor crossbar array

    KAUST Repository

    Zidan, Mohammed A.

    2015-01-01

    Leakage current is one of the main challenges facing high-density MOS-gated memristor arrays. In this study, we show that leakage current ruins the memory readout process for high-density arrays, and analyze the tradeoff between the array density and its power consumption. We propose a novel readout technique and its underlying circuitry, which is able to compensate for the transistor leakage-current effect in the high-density gated memristor array.

  20. A two-dimensional detector with delay line readout for slow neutron fields measurements

    International Nuclear Information System (INIS)

    Cheremukhina, G.A.; Chernenko, S.P.; Ivanov, A.B.

    1992-01-01

    This article presents the description of a two-dimensional detector of slow neutrons together with its readout and data acquisition electronics based on a PC/AT> The detector with a sensitive area of 260x140 mm 2 is based on a high pressure multiwire proportional chamber with delay line readout and gas filling of 3.0 atm. 3 He + propane. 25 refs.; 10 figs.; 2 tabs

  1. The Data Merger Readout Controller for the NA48 experiment data acquisition electronics

    International Nuclear Information System (INIS)

    Galagedera, S.B.; Brierton, B.; Halsall, R.

    1996-01-01

    The NA48 experiment at the CERN SPS offers a four fold improvement in statistical and systematic error over earlier measurements of the magnitude of the direct CP (Charge-Parity) violation of the neutral Kaon system. This requires maximum event readout efficiency, controlled event building and fast monitoring of run time errors. The event data flow in particular must be sustained at 100 Mbyte/s. The Data Merger Readout Controller presented in this paper offers this facility at minimal production cost

  2. Toward Paper-Based Sensors: Turning Electrical Signals into an Optical Readout System.

    Science.gov (United States)

    Liana, Devi D; Raguse, Burkhard; Gooding, J Justin; Chow, Edith

    2015-09-02

    Paper-based sensors are gaining increasing attention for their potential applications in resource-limited settings and for point-of-care analysis. However, chemical analysis of paper-based electronic sensors is frequently interpreted using complex software and electronic displays which compromise the advantages of using paper. In this work, we present two semiquantitative paper-based readout systems that can visually measure a change in resistance of a resistive-based sensor. The readout systems use electrochromic Prussian blue/polyaniline as an electrochromic indicator on a resistive gold nanoparticle film that is fabricated on paper. When the readout system is integrated with a resistive sensor in an electrical circuit, and a voltage is applied, the voltage drop along the readout system varies depending on the sensor's resistance. Due to the voltage gradient formed along the gold nanoparticle film, the overlaying Prussian blue/polyaniline will change color at voltages greater than its reduction voltage (green/blue for oxidized state and transparent for reduced state). Thus, the changes in resistances of a sensor can be semiquantified through color visualization by either measuring the length of the transparent film (analog readout system) or by counting the number of transparent segments (digital readout system). The work presented herein can potentially serve as an alternative paper-based display system for resistive sensors in instances where cost and weight is a premium.

  3. Readout Distance Enhancement of the Passive Wireless Multi-Parameter Sensing System Using a Repeater Coil

    Directory of Open Access Journals (Sweden)

    Lifeng Wang

    2018-01-01

    Full Text Available A repeater coil is used to extend the detection distance of a passive wireless multi-parameter sensing system. The passive wireless sensing system has the ability of simultaneously monitoring three parameters by using backscatter modulation together with channel multiplexing. Two different repeater coils are designed and fabricated for readout distance enhancement of the sensing system: one is a PCB (printed circuit board repeater coil, and the other is a copper wire repeater coil. Under the conditions of fixed voltage and adjustable voltage, the maximum readout distance of the sensing system with and without a repeater coil is measured. Experimental results show that larger power supply voltage can help further increase the readout distance. The maximum readout distance of the sensing system with a PCB repeater coil has been extended 2.3 times, and the one with a copper wire repeater coil has been extended 3 times. Theoretical analysis and experimental results both indicate that the high Q factor repeater coil can extend the readout distance more. With the copper wire repeater coil as well as a higher power supply voltage, the passive wireless multi-parameter sensing system finally achieves a maximum readout distance of 13.5 cm.

  4. General-purpose readout electronics for white neutron source at China Spallation Neutron Source.

    Science.gov (United States)

    Wang, Q; Cao, P; Qi, X; Yu, T; Ji, X; Xie, L; An, Q

    2018-01-01

    The under-construction White Neutron Source (WNS) at China Spallation Neutron Source is a facility for accurate measurements of neutron-induced cross section. Seven spectrometers are planned at WNS. As the physical objectives of each spectrometer are different, the requirements for readout electronics are not the same. In order to simplify the development of the readout electronics, this paper presents a general method for detector signal readout. This method has advantages of expansibility and flexibility, which makes it adaptable to most detectors at WNS. In the WNS general-purpose readout electronics, signals from any kinds of detectors are conditioned by a dedicated signal conditioning module corresponding to this detector, and then digitized by a common waveform digitizer with high speed and high precision (1 GSPS at 12-bit) to obtain the full waveform data. The waveform digitizer uses a field programmable gate array chip to process the data stream and trigger information in real time. PXI Express platform is used to support the functionalities of data readout, clock distribution, and trigger information exchange between digitizers and trigger modules. Test results show that the performance of the WNS general-purpose readout electronics can meet the requirements of the WNS spectrometers.

  5. Central FPGA-based Destination and Load Control in the LHCb MHz Event Readout

    CERN Document Server

    Jacobsson, Richard

    2012-01-01

    The readout strategy of the LHCb experiment [1] is based on complete event readout at 1 MHz [2]. Over 300 sub-detector readout boards transmit event fragments at 1 MHz over a commercial 70 Gigabyte/s switching network to a distributed event building and trigger processing farm with 1470 individual multi-core computer nodes [3]. In the original specifications, the readout was based on a pure push protocol. This paper describes the proposal, implementation, and experience of a powerful non-conventional mixture of a push and a pull protocol, akin to credit-based flow control. A high-speed FPGA-based central master module controls the event fragment packing in the readout boards, the assignment of the farm node destination for each event, and controls the farm load based on an asynchronous pull mechanism from each farm node. This dynamic readout scheme relies on generic event requests and the concept of node credit allowing load balancing and trigger rate regulation as a function of the global farm load. It also ...

  6. A new readout control system for the LHCb upgrade at CERN

    International Nuclear Information System (INIS)

    Alessio, F; Jacobsson, R

    2012-01-01

    The LHCb experiment has proposed an upgrade towards a full 40 MHz readout system in order to run between five and ten times its initial design luminosity. The entire readout architecture will be upgraded in order to cope with higher sub-detector occupancies, higher rate and higher network load. In this paper, we describe the architecture, functionalities and a first hardware implementation of a new fast Readout Control system for the LHCb upgrade, which will be entirely based on FPGAs and bi-directional links. We also outline the real-time implementations of the new Readout Control system, together with solutions on how to handle the synchronous distribution of timing and synchronous information to the complex upgraded LHCb readout architecture. One section will also be dedicated to the control and usage of the newly developed CERN GBT chipset to transmit fast and slow control commands to the upgraded LHCb Front-End electronics. At the end, we outline the plans for the deployment of the system in the global LHCb upgrade readout architecture.

  7. Rapid High-Fidelity Single-Shot Dispersive Readout of Superconducting Qubits

    Science.gov (United States)

    Walter, T.; Kurpiers, P.; Gasparinetti, S.; Magnard, P.; Potočnik, A.; Salathé, Y.; Pechal, M.; Mondal, M.; Oppliger, M.; Eichler, C.; Wallraff, A.

    2017-05-01

    The speed of quantum gates and measurements is a decisive factor for the overall fidelity of quantum protocols when performed on physical qubits with a finite coherence time. Reducing the time required to distinguish qubit states with high fidelity is, therefore, a critical goal in quantum-information science. The state-of-the-art readout of superconducting qubits is based on the dispersive interaction with a readout resonator. Here, we bring this technique to its current limit and demonstrate how the careful design of system parameters leads to fast and high-fidelity measurements without affecting qubit coherence. We achieve this result by increasing the dispersive-interaction strength, by choosing an optimal linewidth of the readout resonator, by employing a Purcell filter, and by utilizing phase-sensitive parametric amplification. In our experiment, we measure 98.25% readout fidelity in only 48 ns, when minimizing readout time, and 99.2% in 88 ns, when maximizing the fidelity, limited predominantly by the qubit lifetime of 7.6 μ s . The presented scheme is also expected to be suitable for integration into a multiplexed readout architecture.

  8. General-purpose readout electronics for white neutron source at China Spallation Neutron Source

    Science.gov (United States)

    Wang, Q.; Cao, P.; Qi, X.; Yu, T.; Ji, X.; Xie, L.; An, Q.

    2018-01-01

    The under-construction White Neutron Source (WNS) at China Spallation Neutron Source is a facility for accurate measurements of neutron-induced cross section. Seven spectrometers are planned at WNS. As the physical objectives of each spectrometer are different, the requirements for readout electronics are not the same. In order to simplify the development of the readout electronics, this paper presents a general method for detector signal readout. This method has advantages of expansibility and flexibility, which makes it adaptable to most detectors at WNS. In the WNS general-purpose readout electronics, signals from any kinds of detectors are conditioned by a dedicated signal conditioning module corresponding to this detector, and then digitized by a common waveform digitizer with high speed and high precision (1 GSPS at 12-bit) to obtain the full waveform data. The waveform digitizer uses a field programmable gate array chip to process the data stream and trigger information in real time. PXI Express platform is used to support the functionalities of data readout, clock distribution, and trigger information exchange between digitizers and trigger modules. Test results show that the performance of the WNS general-purpose readout electronics can meet the requirements of the WNS spectrometers.

  9. Challenges of arbitrary waveform signal detection by Silicon Photomultipliers as readout for Cherenkov fibre based beam loss monitoring systems

    CERN Document Server

    Vinogradov, Sergey; Nebot del Busto, Eduardo; Kastriotou, Maria; Welsch, Carsten P

    2016-01-01

    Silicon Photomultipliers (SiPMs) are well recognised as very competitive photodetectors due to their exceptional photon number and time resolution, room-temperature low-voltage operation, insensitivity to magnetic fields, compactness, and robustness. Detection of weak light pulses of nanosecond time scale appears to be the best area for SiPM applications because in this case most of the SiPM drawbacks have a rather limited effect on its performance. In contrast to the more typical scintillation and Cherenkov detection applications, which demand information on the number of photons and/or the arrival time of the light pulse only, beam loss monitoring (BLM) systems utilising Cherenkov fibres with photodetector readout have to precisely reconstruct the temporal profile of the light pulse. This is a rather challenging task for any photon detector especially taking into account the high dynamic range of incident signals (100K – 1M) from a few photons to a few percents of destructive losses in a beam line and pre...

  10. Automatic readout for nuclear emulsions in muon radiography of volcanoes

    Science.gov (United States)

    Aleksandrov, A.; Bozza, C.; Consiglio, L.; D'Ambrosio, N.; De Lellis, G.; Di Crescenzo, A.; Di Marco, N.; Kose, U.; Lauria, A.; Medinaceli, E.; Miyamoto, S.; Montesi, C.; Pupilli, F.; Rescigno, R.; Russo, A.; Sirignano, C.; Stellacci, S. M.; Strolin, P.; Tioukov, V.

    2012-04-01

    Nuclear emulsions are an effective choice in many scenarios of volcano radiography by cosmic-ray muons. They are cheap and emulsion-based detectors require no on-site power supply. Nuclear emulsion films provide sub-micrometric tracking precision and intrinsic angular accuracy better than 1 mrad. Imaging the inner structure of a volcano requires that the cosmic-ray absorption map be measured on wide angular range. High-absorption directions can be probed by allowing for large statistics, which implies a large overall flux, i.e. wide surface for the detector. A total area of the order of a few m2 is nowadays typical, thanks to the automatic readout tools originally developed for high-energy physics experiments such as CHORUS, PEANUT, OPERA. The European Scanning System is now being used to read out nuclear emulsion films exposed to cosmic rays on the side of volcanoes. The structure of the system is described in detail with respect to both hardware and software. Its present scanning speed of 20 cm2/h/side/microscope is suitable to fulfil the needs of the current exposures of nuclear emulsion films for muon radiograph, but it is worth to notice that applications in volcano imaging are among the driving forces pushing to increase the performances of the system. Preliminary results for the Unzen volcano of a joint effort by research groups in Italy and Japan show that the current system is already able to provide signal/background ratio in the range 100÷10000:1, depending on the quality cuts set in the off-line data analysis. The size of the smallest detectable structures in that experimental setup is constrained by the available statistics in the region of highest absorption to about 50 mrad, or 22 m under the top of the mountain. Another exposure is currently taking data at the Stromboli volcano. Readout of the exposed films is expected to begin in March 2012, and preliminary results will be available soon after. An effort by several universities and INFN has

  11. The PCIe-based readout system for the LHCb experiment

    Science.gov (United States)

    Cachemiche, J. P.; Duval, P. Y.; Hachon, F.; Le Gac, R.; Réthoré, F.

    2016-02-01

    The LHCb experiment is designed to study differences between particles and anti-particles as well as very rare decays in the beauty and charm sector at the LHC. The detector will be upgraded in 2019 in order to significantly increase its efficiency, by removing the first-level hardware trigger. The upgrade experiment will implement a trigger-less readout system in which all the data from every LHC bunch-crossing are transported to the computing farm over 12000 optical links without hardware filtering. The event building and event selection are carried out entirely in the farm. Another original feature of the system is that data transmitted through these fibres arrive directly to computers through a specially designed PCIe card called PCIe40. The same board handles the data acquisition flow and the distribution of fast and slow controls to the detector front-end electronics. It embeds one of the most powerful FPGAs currently available on the market with 1.2 million logic cells. The board has a bandwidth of 480 Gbits/s in both input and output over optical links and 100 Gbits/s over the PCI Express bus to the CPU. We will present how data circulate through the board and in the PC server for achieving the event building. We will focus on specific issues regarding the design of such a board with a very large FPGA, in particular in terms of power supply dimensioning and thermal simulations. The features of the board will be detailed and we will finally present the first performance measurements.

  12. The PCIe-based readout system for the LHCb experiment

    International Nuclear Information System (INIS)

    Cachemiche, J.P.; Duval, P.Y.; Hachon, F.; Gac, R. Le; Réthoré, F.

    2016-01-01

    The LHCb experiment is designed to study differences between particles and anti-particles as well as very rare decays in the beauty and charm sector at the LHC. The detector will be upgraded in 2019 in order to significantly increase its efficiency, by removing the first-level hardware trigger. The upgrade experiment will implement a trigger-less readout system in which all the data from every LHC bunch-crossing are transported to the computing farm over 12000 optical links without hardware filtering. The event building and event selection are carried out entirely in the farm. Another original feature of the system is that data transmitted through these fibres arrive directly to computers through a specially designed PCIe card called PCIe40. The same board handles the data acquisition flow and the distribution of fast and slow controls to the detector front-end electronics. It embeds one of the most powerful FPGAs currently available on the market with 1.2 million logic cells. The board has a bandwidth of 480 Gbits/s in both input and output over optical links and 100 Gbits/s over the PCI Express bus to the CPU. We will present how data circulate through the board and in the PC server for achieving the event building. We will focus on specific issues regarding the design of such a board with a very large FPGA, in particular in terms of power supply dimensioning and thermal simulations. The features of the board will be detailed and we will finally present the first performance measurements

  13. Local readout enhancement for detuned signal-recycling interferometers

    International Nuclear Information System (INIS)

    Rehbein, Henning; Mueller-Ebhardt, Helge; Schnabel, Roman; Danzmann, Karsten; Somiya, Kentaro; Chen Yanbei; Li Chao

    2007-01-01

    High power detuned signal-recycling interferometers currently planned for second-generation interferometric gravitational-wave detectors (for example Advanced LIGO) are characterized by two resonances in the detection band, an optical resonance and an optomechanical resonance which is upshifted from the suspension pendulum frequency due to the so-called optical-spring effect. The detector's sensitivity is enhanced around these two resonances. However, at frequencies below the optomechanical resonance frequency, the sensitivity of such interferometers is significantly lower than non-optical-spring configurations with comparable circulating power; such a drawback can also compromise high-frequency sensitivity, when an optimization is performed on the overall sensitivity of the interferometer to a class of sources. In this paper, we clarify the reason for such a low sensitivity, and propose a way to fix this problem. Motivated by the optical-bar scheme of Braginsky, Gorodetsky, and Khalili, we propose to add a local readout scheme which measures the motion of the arm-cavity front mirror, which at low frequencies moves together with the arm-cavity end mirror, under the influence of gravitational waves. This scheme improves the low-frequency quantum-noise-limited sensitivity of optical-spring interferometers significantly and can be considered as an incorporation of the optical-bar scheme into currently planned second-generation interferometers. On the other hand it can be regarded as an extension of the optical-bar scheme. Taking compact binary inspiral signals as an example, we illustrate how this scheme can be used to improve the sensitivity of the planned Advanced LIGO interferometer, in various scenarios, using a realistic classical-noise budget. We also discuss how this scheme can be implemented in Advanced LIGO with relative ease

  14. A large-area scintillation detector with matrix readout for experiments at COSY

    International Nuclear Information System (INIS)

    Wolke, M.

    1993-12-01

    For the requirement of a time-of-flight measurement in the framework of the experiment E5 at the proton synchrotron COSY Juelich by means of a Monte-Carlo simulation the geometrical parameters of a large-area scintillator plane with matrix-arrangement of the read-out photomultipliers could be optimized. A system for the monitoring of the tube amplifications, basing on short light pulses emitted by luminescence diodes, was modificatedly transeferred to this application and successfully tested. For the time resolution of the detector values could be determined, which lie in the mean by about 30 % above the theoretical expectations. For minimally ionizing particles an accuracy of the time-of-flight information from the combination of start and stop scintillator of the experiment E5 in a range σ tof ∼240-260 ps dependent on the incident position of the particle to be analyzed, was measured. On the base of this measurement for protons of a momentum of 1 GeV/c at application of the detector in its second construction stage an upper limit of the time-of-flight resolution of correspondingly σ tof ∼195-220 ps is to be expected. From this a crude upper estimation of the momentum resolution of σ p /p∼1.0-1.2 % results. A position reconstruction by means of the c. m. method showed qualitatively an expected behaviour of the systematic deviations between reconstructed and real incidence positions. Quantitativeley a mean fluctuation of the reconstructed positions of 1.3 respectively 0.8 cm for the horizontal respectively vertical direction is reached

  15. Development of a new readout system for the near-infrared detector of HONIR

    Science.gov (United States)

    Ui, Takahiro; Sako, Shigeyuki; Yamashita, Takuya; Akitaya, Hiroshi; Kawabata, Koji S.; Nakaya, Hidehiko; Moritani, Yuki; Itoh, Ryosuke; Takaki, Katsutoshi; Urano, Takeshi; Ueno, Issei; Ohsugi, Takashi; Yoshida, Michitoshi; Nakao, Hikaru; Hashiba, Yasuhito

    2014-08-01

    We developed a new readout system for the near-infrared detector VIRGO-2K (2kx2k HgCdTe array) installed in the optical-infrared simultaneous camera, HONIR, for the 1.5 m Kanata telescope at Higashi-Hiroshima observatory. The main goal of this development is to read out one frame within ~ 1 second through 16 output readout mode of the detector, in order to reduce the overhead time per exposure. The system is based on a CCD controller, Kiso Array Controller (KAC). We redesigned the analog part of KAC to fit VIRGO-2K. We employed a fully differential input circuit and a third order Bessel low-pass filter for noise reduction and a constant current system to improve the linearity of the detector. We set the cutoff frequency of the Bessel low-pass filter at the readout clock rate (120 kHz). We also set the constant current at 200 μA according to the data sheet of VIRGO-2K. We tested the new readout system at room temperature and confirmed that the low-pass filter works well as designed. The fluctuation of the current level of the constant current system is less than 2% for the typical output voltage range of VIRGO-2K (3.2-4.4 V). We measured the readout noise caused by the new readout system (connected to cooled multiplexer) and found that it is 30-40 μV rms, being comparable to or slightly higher than the typical readout noise of VIRGO-2K, ˜ 37 μV rms.

  16. Single-shot readout of a superconducting flux qubit with a flux-driven Josephson parametric amplifier

    Science.gov (United States)

    Lin, Z. R.; Inomata, K.; Oliver, W. D.; Koshino, K.; Nakamura, Y.; Tsai, J. S.; Yamamoto, T.

    2013-09-01

    We report single-shot readout of a superconducting flux qubit by using a flux-driven Josephson parametric amplifier (JPA). After optimizing the readout power, gain of the JPA, and timing of the data acquisition, we observe the Rabi oscillations with a contrast of 74%, which is mainly limited by the bandwidth of the JPA and the energy relaxation of the qubit. The observation of quantum jumps between the qubit eigenstates under continuous monitoring indicates the nondestructiveness of the readout scheme.

  17. Readout of the UFFO Slewing Mirror Telescope to detect UV/optical photons from Gamma-Ray Bursts

    DEFF Research Database (Denmark)

    Kim, J. E.; Lim, H.; Nam, J. W.

    2013-01-01

    interline CCD sensor and a CCD Signal Processor with 10-bit Analog-to-Digital Converter. Various control clocks for CCD readout are implemented using a Field Programmable Gate Array (FPGA). The SMT readout is in charge of not only data acquisition, storage and transfer, but also control of the slewing...... and vacuum, respectively. In this paper, we present the SMT readout electronics: the design, construction, and performance, as well as the results of space environment test....

  18. One-Transistor-One-Transistor (1T1T) Optoelectronic Nonvolatile MoS2Memory Cell with Nondestructive Read-Out.

    Science.gov (United States)

    Lee, Dain; Kim, Seongchan; Kim, Yeontae; Cho, Jeong Ho

    2017-08-09

    Taking advantage of the superlative optoelectronic properties of single-layer MoS 2 , we developed a one-transistor-one-transistor (1T1T)-type MoS 2 optoelectronic nonvolatile memory cell. The 1T1T memory cell consisted of a control transistor (CT) and a memory transistor (MT), in which the drain electrode of the MT was connected electrically to the gate electrode of the CT, whereas the source electrode of the CT was connected electrically to the gate electrode of the MT. Single-layer MoS 2 films were utilized as the channel materials in both transistors, and gold nanoparticles acted as the floating gates in the MT. This 1T1T device architecture allowed for a nondestructive read-out operation in the memory because the writing (programming or erasing) and read-out processes were operated separately. The switching of the CT could be controlled by light illumination as well as the applied gate voltage due to the strong light absorption induced by the direct band gap of single-layer MoS 2 (∼1.8 eV). The resulting MoS 2 1T1T memory cell exhibited excellent memory performance, including a large programming/erasing current ratio (over 10 6 ), multilevel data storage (over 6 levels), cyclic endurance (200 cycles), and stable retention (10 3 s).

  19. Improved quality of intrafraction kilovoltage images by triggered readout of unexposed frames

    Energy Technology Data Exchange (ETDEWEB)

    Poulsen, Per Rugaard, E-mail: per.poulsen@rm.dk [Department of Oncology, Aarhus University Hospital, 8000 Aarhus C, Denmark and Department of Clinical Medicine, Aarhus University, 8000 Aarhus C (Denmark); Jonassen, Johnny; Jensen, Carsten [Department of Medical Physics, Aarhus University Hospital, 8000 Aarhus C (Denmark); Schmidt, Mai Lykkegaard [Department of Oncology, Aarhus University Hospital, 8000 Aarhus C (Denmark)

    2015-11-15

    Purpose: The gantry-mounted kilovoltage (kV) imager of modern linear accelerators can be used for real-time tumor localization during radiation treatment delivery. However, the kV image quality often suffers from cross-scatter from the megavoltage (MV) treatment beam. This study investigates readout of unexposed kV frames as a means to improve the kV image quality in a series of experiments and a theoretical model of the observed image quality improvements. Methods: A series of fluoroscopic images were acquired of a solid water phantom with an embedded gold marker and an air cavity with and without simultaneous radiation of the phantom with a 6 MV beam delivered perpendicular to the kV beam with 300 and 600 monitor units per minute (MU/min). An in-house built device triggered readout of zero, one, or multiple unexposed frames between the kV exposures. The unexposed frames contained part of the MV scatter, consequently reducing the amount of MV scatter accumulated in the exposed frames. The image quality with and without unexposed frame readout was quantified as the contrast-to-noise ratio (CNR) of the gold marker and air cavity for a range of imaging frequencies from 1 to 15 Hz. To gain more insight into the observed CNR changes, the image lag of the kV imager was measured and used as input in a simple model that describes the CNR with unexposed frame readout in terms of the contrast, kV noise, and MV noise measured without readout of unexposed frames. Results: Without readout of unexposed kV frames, the quality of intratreatment kV images decreased dramatically with reduced kV frequencies due to MV scatter. The gold marker was only visible for imaging frequencies ≥3 Hz at 300 MU/min and ≥5 Hz for 600 MU/min. Visibility of the air cavity required even higher imaging frequencies. Readout of multiple unexposed frames ensured visibility of both structures at all imaging frequencies and a CNR that was independent of the kV frame rate. The image lag was 12.2%, 2

  20. The ALICE TPC Readout Electronics Design, performance optimization and verification of the DAQ circuit

    CERN Document Server

    Attiq, urRehman; Dieter, Røhrich

    2012-12-03

    ALICE (A Large Ion Collider Experiment) is a dedicated heavy-ion experiment at CERN’s LHC (Large Hadron Collider). It is designed to study the physics of strongly interacting matter and the quark-gluon plasma in heavy-ion collisions. It contains a large volume Time Projection Chamber (TPC) as its main tracking device. The ALICE TPC is the largest ever built gaseous TPC, both in terms of dimensions and number of read-out channels (557,578). A total number of 128 channels are packed in one TPC Front End Card (FEC) and 4,356 FECs are distributed over 216 independent readout partitions. Each readout partition steered by a single Readout Control Unit (RCU) functions as an independent unit in the data acquisition system of the TPC. The RCU functions as an interface between the FECs, Data AcQuisition system (DAQ), the Trigger and Timing Circuit (TTC) and the Detector Control System (DCS). The ALICE TPC readout electronics is in operation since the start of the LHC in November 2009. The primary objectives of the wo...

  1. Control of virulence gene transcription by indirect readout in Vibrio cholerae and Salmonella enterica serovar Typhimurium.

    Science.gov (United States)

    Dorman, Charles J; Dorman, Matthew J

    2017-10-01

    Indirect readout mechanisms of transcription control rely on the recognition of DNA shape by transcription factors (TFs). TFs may also employ a direct readout mechanism that involves the reading of the base sequence in the DNA major groove at the binding site. TFs with winged helix-turn-helix (wHTH) motifs use an alpha helix to read the base sequence in the major groove while inserting a beta sheet 'wing' into the adjacent minor groove. Such wHTH proteins are important regulators of virulence gene transcription in many pathogens; they also control housekeeping genes. This article considers the cases of the non-invasive Gram-negative pathogen Vibrio cholerae and the invasive pathogen Salmonella enterica serovar Typhimurium. Both possess clusters of A + T-rich horizontally acquired virulence genes that are silenced by the nucleoid-associated protein H-NS and regulated positively or negatively by wHTH TFs: for example, ToxR and LeuO in V. cholerae; HilA, LeuO, SlyA and OmpR in S. Typhimurium. Because of their relatively relaxed base sequence requirements for target recognition, indirect readout mechanisms have the potential to engage regulatory proteins with many more targets than might be the case using direct readout, making indirect readout an important, yet often ignored, contributor to the expression of pathogenic phenotypes. © 2017 The Authors. Environmental Microbiology published by Society for Applied Microbiology and John Wiley & Sons Ltd.

  2. Readout of two-kilopixel transition-edge sensor arrays for Advanced ACTPol

    Science.gov (United States)

    Henderson, Shawn W.; Stevens, Jason R.; Amiri, Mandana; Austermann, Jason; Beall, James A.; Chaudhuri, Saptarshi; Cho, Hsiao-Mei; Choi, Steve K.; Cothard, Nicholas F.; Crowley, Kevin T.; Duff, Shannon M.; Fitzgerald, Colin P.; Gallardo, Patricio A.; Halpern, Mark; Hasselfield, Matthew; Hilton, Gene; Ho, Shuay-Pwu Patty; Hubmayr, Johannes; Irwin, Kent D.; Koopman, Brian J.; Li, Dale; Li, Yaqiong; McMahon, Jeff; Nati, Federico; Niemack, Michael; Reintsema, Carl D.; Salatino, Maria; Schillaci, Alessandro; Schmitt, Benjamin L.; Simon, Sara M.; Staggs, Suzanne T.; Vavagiakis, Eve M.; Ward, Jonathan T.

    2016-07-01

    Advanced ACTPol is an instrument upgrade for the six-meter Atacama Cosmology Telescope (ACT) designed to measure the cosmic microwave background (CMB) temperature and polarization with arcminute-scale angular resolution. To achieve its science goals, Advanced ACTPol utilizes a larger readout multiplexing factor than any previous CMB experiment to measure detector arrays with approximately two thousand transition-edge sensor (TES) bolometers in each 150 mm detector wafer. We present the implementation and testing of the Advanced ACTPol time-division multiplexing readout architecture with a 64-row multiplexing factor. This includes testing of individual multichroic detector pixels and superconducting quantum interference device (SQUID) multiplexing chips as well as testing and optimizing of the integrated readout electronics. In particular, we describe the new automated multiplexing SQUID tuning procedure developed to select and optimize the thousands of SQUID parameters required to readout each Advanced ACTPol array. The multichroic detector pixels in each array use separate channels for each polarization and each of the two frequencies, such that four TESes must be read out per pixel. Challenges addressed include doubling the number of detectors per multiplexed readout channel compared to ACTPol and optimizing the Nyquist inductance to minimize detector and SQUID noise aliasing.

  3. Readout board upgrade for the Pixel Detectors: reasons, status and results in ATLAS

    CERN Document Server

    Giangiacomi, Nico; The ATLAS collaboration

    2017-01-01

    At LHC the design luminosity, 1034 cm -2 s -1 , has already been reached during Summer 2016. LHC is planning, in the short term future, to further enhance the luminosity, resulting in a higher trigger frequency and an increased pileup. These factors constitute a challenge for the data readout since the rate of data to be transmitted depends on both pileup and trigger frequency. In the ATLAS experiment, the effect of the increased luminosity is most evident in the Pixel Detector, which is the detector closest to the beam pipe. In order to face the difficult experimental challenges, the readout system was upgraded during the last few years. The main purpose of the upgrade was to provide a higher bandwidth by exploiting recent technologies. The new readout system is composed by two paired electronic boards, Back Of Crate (BOC) and ReadOut Driver (ROD). In this presentation the main readout limitation related to increased luminosity will be discussed as well as the strategy and the technological solutions adopted...

  4. Coupling Influence on Signal Readout of a Dual-Parameter LC Resonant System

    Directory of Open Access Journals (Sweden)

    Jijun Xiong

    2015-01-01

    Full Text Available Dual-parameter inductive-capacitive (LC resonant sensor is gradually becoming the measurement trend in complex harsh environments; however, the coupling between inductors greatly affects the readout signal, which becomes very difficult to resolve by means of simple mathematical tools. By changing the values of specific variables in a MATLAB code, the influence of coupling between coils on the readout signal is analyzed. Our preliminary conclusions underline that changing the coupling to antenna greatly affects the readout signal, but it simultaneously influences the other signal. When f01=f02, it is better to broaden the difference between the two coupling coefficients k1 and k2. On the other side, when f01 is smaller than f02, it is better to decrease the coupling between sensor inductors k12, in order to obtain two readout signals averaged in strength. Finally, a test system including a discrete capacitor soldered to a printed circuit board (PCB based planar spiral coil is built, and the readout signals under different relative inductors positions are analyzed. All experimental results are in good agreement with the results of the MATLAB simulation.

  5. Development of telescope readout system based on FELIX for testbeam experiments

    CERN Document Server

    Wu, Weihao; Chen, Hucheng; Chen, Kai; Lacobucci, Giuseppe; Lanni, Francessco; Liu, Hongbin; Barrero Pinto, Mateus Vicente; Xu, Lailin

    2017-01-01

    The High Voltage CMOS (HV-CMOS) sensors are extensively investigated by the ATLAS collaboration in the High-Luminosity LHC (HL-LHC) upgrade of the Inner Tracker (ITk) detector. A testbeam telescope, based on the ATLAS IBL (Insertable B-Layer) silicon pixel modules, has been built to characterize the HV-CMOS sensor prototypes. The Front-End LInk eXchange (FELIX) system is a new approach to function as the gateway between front-ends and the commodity switched network in the different detectors of the ATLAS upgrade. A FELIX based readout system has been developed for the readout of the testbeam telescope, which includes a Telescope Readout FMC Card as interface between the IBL DC (double-chip) modules and a Xilinx ZC706 evaluation board. The test results show that the FELIX based telescope readout system is capable of sensor calibration and readout of a high-density pixel detector in test beam experiments in an effective way.

  6. R and D of MPGD-readout TPC for the International Linear Collider experiment

    International Nuclear Information System (INIS)

    Yonamine, R

    2012-01-01

    A Time Projection Chamber (TPC) is chosen for the central tracker of the ILD detector, one of two detector concepts planned for the International Linear Collider (ILC). Physics goals at the ILC will require a TPC with a position resolution of 100 μm and superior track separation, which are not achievable with a conventional Multi-Wire Proportional Chamber (MWPC) readout. A MPGD readout offers improved position resolution and track separation due to measuring the signal at the anode and minimization of E × B effect. For several years, the LC TPC collaboration has been developing a MPGD readout using various small TPC prototypes and the Large Prototype TPC that is operated in a test beam at DESY. The MPGD technologies being tested are GEM and Micromegas with resistive charge broadening, with both traditional pad and CMOS pixel readout. Readout modules with both GEM and Micromegas gas amplification have achieved a position resolution on the order of 100 μm at B = 1 T. In this paper we report on the recent R and D toward the ILD TPC.

  7. A frame simulator for data produced by 'multi-accumulation' readout detectors

    Science.gov (United States)

    Bonoli, Carlotta; Bortoletto, Favio; Giro, Enrico; Corcione, Leonardo; Ligori, Sebastiano; Nicastro, Luciano

    2010-07-01

    A simulator of data frames produced by 'multi-accumulation' readout detectors has been developed during the feasibility study for the NIS spectrograph, part of the European Euclid mission. The software can emulate various readout strategies, allowing to compare the efficiency of different sampling techniques. Special care is given to two crucial aspects: the minimization of the noise and the effects produced by cosmic hits. The resulting readout noise is analyzed as a function of the background sources, detector native characteristics and readout strategy, while the image deterioration by cosmic rays covers the simulation of hits and their correction efficiency varying the readout modalities. Simulated "multi-accumulation" frames, typical of multiplexer based detectors, are an ideal tool for testing the efficiency of cosmic ray rejection techniques. In the present case cosmic rays are added to each raw frame conforming to the rates and energy expected in the operational L2 region and in the chosen exposure time. Procedures efficiency for cosmic ray identification and correction can also be easily tested in terms of memory occupancy and telemetry rates.

  8. Readout architecture for the Pixel-Strip module of the CMS Outer Tracker Phase-2 upgrade

    CERN Document Server

    Caratelli, Alessandro; Jan Kaplon; Kloukinas, Konstantinos; Simone Scarfi

    2016-01-01

    The Outer Tracker upgrade of the Compact Muon Solenoid (CMS) experiment at CERN introduces new challenges for the front-end readout electronics. In particular, the capability of identifying particles with high transverse momentum using modules with double sensor layers requires high speed real time interconnects between readout ASICs. The Pixel-Strip module combines a pixelated silicon layer with a silicon-strip layer. Consequently, it needs two different readout ASICs, namely the Short Strip ASIC (SSA) for the strip sensor and the Macro Pixel ASIC (MPA) for the pixelated sensor. The architecture proposed in this paper allows for a total data flow between readout ASICs of $\\sim$100\\,Gbps and reduces the output data flow from 1.3\\,Tbps to 30\\,Gbps per module while limiting the total power density to below 100\\,mW/cm$^2$. In addition a system-level simulation framework of all the front-end readout ASICs is developed in order to verify the data processing algorithm and the hardware implementation allowing mult...

  9. Test of the HAPD light sensor for the Belle II Aerogel RICH

    Science.gov (United States)

    Yusa, Y.; Adachi, I.; Dolenec, R.; Hayata, K.; Iori, S.; Iwata, S.; Kakuno, H.; Kataura, R.; Kawai, H.; Kindo, H.; Kobayashi, T.; Korpar, S.; Krizan, P.; Kumita, T.; Mrvar, M.; Nishida, S.; Ogawa, K.; Pestotnik, R.; Santelj, L.; Sumiyoshi, T.; Tabata, M.; Yonenaga, M.

    2017-12-01

    The Aerogel Ring-Imaging Cherenkov detector (ARICH) is being installed in the endcap region of Belle II spectrometer to identify particles from B meson decays by detecting the Cherenkov ring image from aerogel radiators. To detect single photons, high-sensitive photon detector which has wide effective area (∼70 mm × 70 mm), a Hybrid Avalanche Photo Detector (HAPD), has been developed in a collaboration with Hamamatsu K.K. The HAPD consists of hybrid structure of a vacuum tube and an avalanche photodiode (APD). It can be operated in 1.5 T magnetic field of the spectrometer and withstands the radiation levels expected in the Belle II experiment. There are two steps of electric pulse amplification: acceleration of photo-electron in electric field in the vacuum tube part and electron avalanche in the APD part resulting in total gain of order 105. For the ARICH, we use 420 HAPDs in total. Before installing them, we performed quality assessment studies such as measurements of dark current, noise level, signal-to-noise ratio and two-dimensional scan with laser illumination. We also measured quantum efficiency of the photocathode. During the HAPD performance tests in the magnetic field, we observed very large signal pulses which cause long dead time of the readout electronics in some of the HAPDs. We have carried out a number of studies to understand this phenomenon, and have found a way to mitigate it and suppress the degradation of the ARICH performance. In this report, we will show a summary of the HAPD performance and quality assessment measurements including validation in the magnetic field for all of the HAPDs manufactured for the ARICH in the Belle II.

  10. Optimization of crystals for applications in dual-readout calorimetry

    Czech Academy of Sciences Publication Activity Database

    Akchurin, N.; Bedeschi, F.; Cardini, A.; Carosi, R.; Ciapetti, G.; Fasoli, M.; Ferrari, R.; Franchino, S.; Fraternali, M.; Gaudio, G.; Hauptman, J.; Incagli, M.; Lacava, F.; La Rotonda, L.; Lee, S.; Livan, M.; Meoni, E.; Nikl, Martin; Pinci, D.; Policicchio, A.; Popescu, S.; Scuri, F.; Sill, A.; Susinno, G.; Vandelli, W.; Vedda, A.; Venturelli, T.; Voena, C.; Volobouev, I.; Wigmans, R.

    2010-01-01

    Roč. 621, 1-3 (2010), 212-221 ISSN 0168-9002 Institutional research plan: CEZ:AV0Z10100521 Keywords : calorimetry * Cherenkov light * High-Z scintillating crystals Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.142, year: 2010

  11. Development of hybrid photon detectors with integrated silicon pixel readout for the RICH counters of LHCb

    CERN Document Server

    Alemi, M; Formenti, F; Gys, Thierry; Piedigrossi, D; Puertolas, D; Rosso, E; Snoeys, W; Wyllie, Ken H

    1999-01-01

    We report on the ongoing work towards a hybrid photon detector with integrated silicon pixel readout for the ring imaging Cherenkov detectors of the LHCb experiment at the Large Hadron Collider at CERN. The photon detector is based $9 on a cross-focussed image intensifier tube geometry where the image is de-magnified by a factor of 4. The anode consists of a silicon pixel array, bump-bonded to a fast, binary readout chip with matching pixel electronics. The $9 performance of a half-scale prototype is presented, together with the developments and tests of a full-scale tube with large active area. Specific requirements for pixel front-end and readout electronics in LHCb are outlined, and $9 recent results obtained from pixel chips applicable to hybrid photon detector design are summarized.

  12. Dead-time free pixel readout architecture for ATLAS front-end IC

    CERN Document Server

    Einsweiler, Kevin F; Kleinfelder, S A; Luo, L; Marchesini, R; Milgrome, O; Pengg, F X

    1999-01-01

    A low power sparse scan readout architecture has been developed for the ATLAS pixel front-end IC. The architecture supports a dual discriminator and extracts the time over threshold (TOT) information along with a 2-D spatial address $9 of the hits associating them with a unique 7-bit beam crossing number. The IC implements level-1 trigger filtering along with event building (grouping together all hits in a beam crossing) in the end of column (EOC) buffer. The $9 events are transmitted over a 40 MHz serial data link with the protocol supporting buffer overflow handling by appending error flags to events. This mixed-mode full custom IC is implemented in 0.8 mu HP process to meet the $9 requirements for the pixel readout in the ATLAS inner detector. The circuits have been tested and the IC provides dead-time-less ambiguity free readout at 40 MHz data rate.

  13. Digital column readout architecture for the ATLAS pixel 025 mum front end IC

    CERN Document Server

    Mandelli, E; Blanquart, L; Comes, G; Denes, P; Einsweiler, Kevin F; Fischer, P; Marchesini, R; Meddeler, G; Peric, I

    2002-01-01

    A fast low noise, limited power, radiation-hard front-end chip was developed for reading out the Atlas Pixel Silicon Detector. As in the past prototypes, every chip is used to digitize and read out charge and time information from hits on each one of its 2880 inputs. The basic column readout architecture idea was adopted and modified to allow a safe transition to quarter micron technology. Each pixel cell, organized in a 160 multiplied by 18 matrix, can be independently enabled and configured in order to optimize the analog signal response and to prevent defective pixels from saturating the readout. The digital readout organizes hit data coming from each column, with respect to time, and output them on a low-level serial interface. A considerable effort was made to design state machines free of undefined states, where single-point defects and charge deposited by heavy ions in the silicon could have led to unpredicted forbidden states. 7 Refs.

  14. Contributions to noise in the data readout for Trigger Tracker in the LHCb Experiment

    CERN Document Server

    Bieler, Ueli

    This thesis reports the analysis of contributions to noise in the data readout for Trigger Tracker in the LHCb experiment. Measurements have shown that some specific data channels have more noise than the others. This additional contributions to noise cannot be explained by basic electronic noise principles of the detector but by noise sources in the readout chain. The focus is on the channels near the header. Because of a crosstalk effect in the readout electronics the pseudo- digital header affects the close-by analog data channels. Therefore the correlation between the header and the data channels is studied precisely by self-made analysis tools in order to develop an algorithm that cancels the crosstalk contribution to noise. Thanks the algorithm the noise can be reduced efficiently.

  15. MEMS capacitive pressure sensor monolithically integrated with CMOS readout circuit by using post CMOS processes

    Science.gov (United States)

    Jang, Munseon; Yun, Kwang-Seok

    2017-12-01

    In this paper, we presents a MEMS pressure sensor integrated with a readout circuit on a chip for an on-chip signal processing. The capacitive pressure sensor is formed on a CMOS chip by using a post-CMOS MEMS processes. The proposed device consists of a sensing capacitor that is square in shape, a reference capacitor and a readout circuitry based on a switched-capacitor scheme to detect capacitance change at various environmental pressures. The readout circuit was implemented by using a commercial 0.35 μm CMOS process with 2 polysilicon and 4 metal layers. Then, the pressure sensor was formed by wet etching of metal 2 layer through via hole structures. Experimental results show that the MEMS pressure sensor has a sensitivity of 11 mV/100 kPa at the pressure range of 100-400 kPa.

  16. Evaluation of charge-integrating amplifier with silicon MOSFETs for cryogenic readout

    Science.gov (United States)

    Noda, Manabu; Shibai, Hiroshi; Watabe, Toyoki; Hirao, Takanori; Yoda, Hiroyuki; Nagata, Hirohisa; Nakagawa, Takao; Kawada, Mitsunobu

    1998-08-01

    Low-noise and low-power cryogenic readout electronics are developed for a focal plane instrument of the IR Imaging Surveyor. We measured the static characteristics and the noise spectra of several types of silicon MOSFETs at the cryogenic temperature where silicon JFETs do not work well due to the carrier freeze-out. The 'kink' behavior of n- channel MOSFETs was observed below the carrier freeze-out temperature, but it was not obvious for the p-channel MOSFET. It was demonstrated the p-channel MOSFETs can be used for the cryogenic readout electronics of the IRIS's far-IR array with an acceptable performance. The amplifier integrated with these MOSFETs showed low-noise at 2K under a low power consumption of 1 (mu) W per MOSFET. We now design and evaluate several circuits that are fabricated by the CMOS process for cryogenic readout.

  17. Development of a hadron blind detector using a finely segmented pad readout

    Energy Technology Data Exchange (ETDEWEB)

    Kanno, Koki, E-mail: kkanno@post.kek.jp [Department of Physics, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan); RIKEN Nishina Center for Accelerator-Based Science, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Aoki, Kazuya [High Energy Accelerator Research Organization (KEK), 1-1 Oho, Tsukuba-shi, Ibaraki 305-0801 (Japan); Aramaki, Yoki; En' yo, Hideto; Kawama, Daisuke [RIKEN Nishina Center for Accelerator-Based Science, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Komatsu, Yusuke; Masumoto, Shinichi [Department of Physics, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan); Nakai, Wataru [Department of Physics, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan); RIKEN Nishina Center for Accelerator-Based Science, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Obara, Yuki [Department of Physics, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan); Ozawa, Kyoichiro; Sekimoto, Michiko [High Energy Accelerator Research Organization (KEK), 1-1 Oho, Tsukuba-shi, Ibaraki 305-0801 (Japan); Shibukawa, Takuya [Department of Physics, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan); Takahashi, Tomonori [Research Center for Nuclear Physics (RCNP), Osaka University, 10-1 Mihogaoka, Ibaraki, Osaka 567-0047 (Japan); Watanabe, Yosuke [Department of Physics, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan); Yokkaichi, Satoshi [RIKEN Nishina Center for Accelerator-Based Science, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan)

    2016-05-21

    We constructed a hadron blind detector (HBD) using a finely segmented pad readout. The finely segmented pad readout enabled us to adopt an advanced particle identification method which applies a threshold to the number of pad hits in addition to the total amount of collected charge. The responses of the detector to electrons and pions were evaluated using a negatively charged secondary beam at 1.0 GeV/c containing 20% electrons at the J-PARC K1.1BR beam line. We observed 7.3 photoelectrons per incident electron. Using the advanced particle identification method, an electron detection efficiency of 83% was achieved with a pion rejection factor of 120. The method improved the pion rejection by approximately a factor of five, compared to the one which just applies a threshold to the amount of collected charge. The newly introduced finely segmented pad readout was found to be effective in rejecting pions.

  18. The front-end data conversion and readout electronics for the CMS ECAL upgrade

    CERN Document Server

    Mazza, Gianni

    2017-01-01

    The High Luminosity LHC (HL-LHC) will require a significant upgrade of the readout electronics for the CMS Electromagnetic Calorimeter (ECAL). The Very Front-End (VFE) output signal will be sampled at 160 MS/s (i.e. four times the current sampling rate) with 13 bit resolution. Therefore, a high-speed, high-resolution ADC is required. Moreover, each readout channel will produce 2.08 Gb/s, thus requiring fast data transmission circuitry. A new readout architecture, based on two 12 bit, 160 MS/s ADCs, lossless data compression algorithms and fast serial links have been developed for the ECAL upgrade. These functions will be integrated in a single ASIC which is currently under design in a commercial CMOS 65 nm technology using radiation damage mitigation techniques.

  19. A readout system for a cosmic ray telescope using Resistive Plate Chambers

    International Nuclear Information System (INIS)

    Cussans, D; Baesso, P; Thomay, C; Velthuis, J; Burns, J; Quillin, S; Steer, C

    2013-01-01

    Resistive Plate Chambers (RPCs) are widely used in high energy physics for both tracking and triggering purposes. They have good time resolution and with finely segmented readout can also give a spatial resolution of better than 1 mm. RPCs can be produced cost-effectively on large scales, are of rugged build, and have excellent detection efficiency for charged particles. Our group has successfully built a Muon Scattering Tomography (MST) prototype, using 12 RPCs to obtain tracking information of muons going through a target volume of ∼ 50 cm × 50 cm × 70 cm, reconstructing both the incoming and outgoing muon tracks. We describe a readout system for fine-pitch RPCs using MAROC3 readout chips capable of scaling to a large system.

  20. Readout circuit design of the retina-like CMOS image sensor

    Science.gov (United States)

    Cao, Fengmei; Song, Shengyu; Bai, Tingzhu; Cao, Nan

    2015-02-01

    Readout circuit is designed for a special retina-like CMOS image sensor. To realize the pixels timing drive and readout of the sensor, the Altera's Cyclone II FPGA is used as a control chip. The voltage of the sensor is supported by a voltage chip initialized by SPI with AVR MCU system. The analog image signal outputted by the sensor is converted to digital image data by 12-bits A/D converter ADS807 and the digital data is memorized in the SRAM. Using the Camera-link image grabber, the data stored in SRAM is transformed to image shown on PC. Experimental results show the circuit works well on retina-like CMOS timing drive and image readout and images can be displayed properly on the PC.

  1. R&D proposal for LHC crystal calorimeter readout by gaseous (and liquid) detectors with photocathodes

    CERN Document Server

    Charpak, Georges; Scigocki, David; Zichichi, Antonino; Borovik-Romanov, A S; Imrie, D C; Marques, R F; Policarpo, Armando; Miné, P; Schmidt, W; CERN. Geneva. Detector Research and Development Committee

    1990-01-01

    We propose to develop fast and radiation hard electromagnetic calorimetry at the LHC using BaF2 crystals (or similar scintillators) preceded by layers of low density VUV scintillators (such as KCaF3) to separate e/gamma, and by BaF2 preshower counters for a good e/pi rejection and precise position measurements. The readout of the preshower counter and of the low density VUV scintillators is done with parallel plate avalanche chambers combined with photocathodes. For the BaF2 calorimeter, gaseous ionization chambers with photocathodes are good readout candidates due to their high stability, energy resolution and radiation hardness. Another approach for the calorimeter readout could be photosensitive liquid ionization chambers, having good optical coupling with the BaF2. A systematic study of new photocathodes and new scintillators is also proposed.

  2. A microfabricated fringing field capacitive pH sensor with an integrated readout circuit

    Energy Technology Data Exchange (ETDEWEB)

    Arefin, Md Shamsul, E-mail: md.arefin@monash.edu; Redoute, Jean-Michel; Rasit Yuce, Mehmet [Electrical and Computer Systems Engineering, Monash University, Melbourne (Australia); Bulut Coskun, M.; Alan, Tuncay; Neild, Adrian [Mechanical and Aerospace Engineering, Monash University, Melbourne (Australia)

    2014-06-02

    This work presents a microfabricated fringe-field capacitive pH sensor using interdigitated electrodes and an integrated modulation-based readout circuit. The changes in capacitance of the sensor result from the permittivity changes due to pH variations and are converted to frequency shifts using a crossed-coupled voltage controlled oscillator readout circuit. The shift in resonant frequency of the readout circuit is 30.96 MHz for a change in pH of 1.0–5.0. The sensor can be used for the measurement of low pH levels, such as gastric acid, and can be integrated with electronic pills. The measurement results show high repeatability, low noise, and a stable output.

  3. A microfabricated fringing field capacitive pH sensor with an integrated readout circuit

    International Nuclear Information System (INIS)

    Arefin, Md Shamsul; Redoute, Jean-Michel; Rasit Yuce, Mehmet; Bulut Coskun, M.; Alan, Tuncay; Neild, Adrian

    2014-01-01

    This work presents a microfabricated fringe-field capacitive pH sensor using interdigitated electrodes and an integrated modulation-based readout circuit. The changes in capacitance of the sensor result from the permittivity changes due to pH variations and are converted to frequency shifts using a crossed-coupled voltage controlled oscillator readout circuit. The shift in resonant frequency of the readout circuit is 30.96 MHz for a change in pH of 1.0–5.0. The sensor can be used for the measurement of low pH levels, such as gastric acid, and can be integrated with electronic pills. The measurement results show high repeatability, low noise, and a stable output.

  4. A microfabricated fringing field capacitive pH sensor with an integrated readout circuit

    Science.gov (United States)

    Arefin, Md Shamsul; Bulut Coskun, M.; Alan, Tuncay; Redoute, Jean-Michel; Neild, Adrian; Rasit Yuce, Mehmet

    2014-06-01

    This work presents a microfabricated fringe-field capacitive pH sensor using interdigitated electrodes and an integrated modulation-based readout circuit. The changes in capacitance of the sensor result from the permittivity changes due to pH variations and are converted to frequency shifts using a crossed-coupled voltage controlled oscillator readout circuit. The shift in resonant frequency of the readout circuit is 30.96 MHz for a change in pH of 1.0-5.0. The sensor can be used for the measurement of low pH levels, such as gastric acid, and can be integrated with electronic pills. The measurement results show high repeatability, low noise, and a stable output.

  5. Test of CMS tracker silicon detector modules with the ARC readout system

    CERN Document Server

    Axer, M; Flügge, G; Franke, T; Hegner, B; Hermanns, T; Kasselmann, S T; Mnich, J; Nowack, A; Pooth, O; Pottgens, M

    2004-01-01

    The CMS tracker will be equipped with 16,000 silicon microstrip detector modules covering a surface of approximately 220 m**2. For quality control, a compact and inexpensive DAQ system is needed to monitor the mass production in industry and in the CMS production centres. To meet these requirements a set-up called APV Readout Controller (ARC) system was developed and distributed among all collaborating institutes to perform full readout tests of hybrids and modules at each production step. The system consists of all necessary hardware components, C++ based readout software using LabVIEW **1 Lab VIEW is a product of National Instruments, Austin, USA. as graphical user interface and provides full database connection to track every single module component during the production phase. Two preseries of Tracker End Cap (TEC) silicon detector modules have been produced by the TEC community and tested with the ARC system at Aachen. The results of the second series are presented.

  6. Development of ATLAS Liquid Argon Calorimeters Readout Electronics for HL-LHC

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00388354; The ATLAS collaboration

    2016-01-01

    The high-luminosity phase of the Large Hadron Collider will provide 5-7 times greater instantaneous and total luminosities than assumed in the original design of the ATLAS Liquid Argon Calorimeters and their readout system. An improved trigger system with a higher acceptance rate of 1 MHz and a longer latency of up to 60 micro-seconds together with a better radiation tolerance require an upgrade of the readout electronics. Concepts for the future readout of the 182,500 calorimeter channels at 40/80 MHz and 16 bit dynamic range, and the development of low-noise, low-power and high-bandwidth electronic components will be presented. These include ASIC developments towards radiation-tolerant low-noise pre-amplifiers, analog-to-digital converters up to 14 bits and low-power optical links providing transfer rates of at least 10 Gb/s per fiber.

  7. Rapid Newcastle Disease Virus Detection Based on Loop-Mediated Isothermal Amplification and Optomagnetic Readout

    DEFF Research Database (Denmark)

    Tian, Bo; Ma, Jing; Zardán Gómez de la Torre, Teresa

    2016-01-01

    Rapid and sensitive diagnostic methods based on isothermal amplification are ideal substitutes for PCR in out-of-lab settings. However, there are bottlenecks in terms of establishing low-cost and user-friendly readout methods for isothermal amplification schemes. Combining the high amplification...... efficiency of loop-mediated isothermal amplification (LAMP) with an optomagnetic nanoparticle-based readout system, we demonstrate ultrasensitive and rapid detection of Newcastle disease virus RNA. Biotinylated amplicons of LAMP and reverse transcription LAMP (RT-LAMP) bind to streptavidin-coated magnetic...... nanoparticles (MNPs) resulting in a dramatical increase in the hydrodynamic size of the MNPs. This increase was measured by an optomagnetic readout system and provided quantitative information on the amount of LAMP target sequence. Our assay resulted in a limit of detection of 10 aM of target sequence...

  8. Maximising position resolution for near-simultaneous events with charge division readouts

    CERN Document Server

    Lapington, J S

    2002-01-01

    The maximum count rate of charge division readouts is fundamentally limited by the signal-to-noise ratio (SNR) required from the charge measurement electronics. The traditional charge measurement solution comprises a charge sensitive preamplifier, shaping amplifier and digitizer. The pulse processing time is limited by the shaping time constant required for a given SNR. We present a technique to measure event pulse heights from each readout channel using waveforms captured directly from the preamplifier output. This method uses signal analysis techniques, for example waveform fitting, to measure the charge collected by each readout channel, from several, almost simultaneous events. Given the signal processing requirements, this technique is suitable for applications where near-simultaneous events occur at relatively low-repetition rates. We discuss the signal analysis methods used and measure the achievable SNR ratio. We describe the preliminary experimental set-up, which uses a digital scope for waveform cap...

  9. Resolution studies of cosmic-ray tracks in a TPC with GEM readout

    International Nuclear Information System (INIS)

    Carnegie, R.K.; Dixit, M.S.; Dubeau, J.; Karlen, D.; Martin, J.-P.; Mes, H.; Sachs, K.

    2005-01-01

    A large volume time projection chamber (TPC) is a leading candidate for the central tracking detector at a future high energy linear collider. To improve the resolution a new readout based on micro-pattern gas detectors is being developed. Measurements of the spatial resolution of cosmic-ray tracks in a GEM TPC are presented. We find that the resolution suffers if the readout pads are too wide with respect to the charge distribution at the readout plane due to insufficient charge sharing. For narrow pads of 2x6mm2 we measure a resolution of 100μm at short drift distances in the absence of an axial magnetic field. The dependence of the spatial resolution as a function of drift distance allows the determination of the underlying electron statistics. Our results show that the present technique uses about half the statistical power available from the number of primary electrons. The track angle effect is observed as expected

  10. AREUS - a software framework for the ATLAS Readout Electronics Upgrade Simulation

    CERN Document Server

    Horn, Philipp; The ATLAS collaboration

    2018-01-01

    The design of readout electronics for the LAr calorimeters of the ATLAS detector to be operated at the future High-Luminosity LHC (HL-LHC) requires a detailed simulation of the full readout chain in order to find optimal solutions for the analog and digital processing of the detector signals. Due to the long duration of the LAr calorimeter pulses relative to the LHC bunch crossing time, out-of-time signal pile-up needs to be taken intoaccountandrealisticpulsesequencesmustbesimulatedtogetherwiththeresponseoftheelectronics. For this purpose, the ATLAS Readout Electronics Upgrade Simulation framework (AREUS) has been developed based on the Observer design pattern to provide a fast and flexible simulation tool. Energy deposits in the LAr calorimeters from fully simulated HL-LHC collision events are taken as input. Simulated and measured analog pulse shapes proportional to these energies are then combined in discrete time series with proper representation of electronics noise. Analog-to-digital conversion, gain se...

  11. New smart readout technique performing edge detection designed to control vision sensors dataflow

    Science.gov (United States)

    Amhaz, Hawraa; Sicard, Gilles

    2012-03-01

    In this paper, a new readout strategy for CMOS image sensors is presented. It aims to overcome the excessive output dataflow bottleneck; this challenge is becoming more and more crucial along with the technology miniaturization. This strategy is based on the spatial redundancies suppression. It leads the sensor to perform edge detection and eventually provide binary image. One of the main advantages of this readout technique compared to other techniques, existing in the literature, is that it does not affect the in-pixel circuitry. This means that all the analogue processing circuitry is implemented outside the pixel, which keeps the pixel area and Fill Factor unchanged. The main analogue block used in this technique is an event detector developed and designed in the CMOS 0.35μm technology from Austria Micro Systems. The simulation results of this block as well as the simulation results of a test bench composed of several pixels and column amplifiers using this readout mode show the capability of this readout mode to reduce dataflow by controlling the ADCs. We must mention that this readout strategy is applicable on sensors that use a linear operating pixel element as well as for those based on logarithmic operating pixels. This readout technique is emulated by a MATLAB model which gives an idea about the expected functionalities and dataflow reduction rates (DRR). Emulation results are shown lately by giving the pre and post processed images as well as the DRR. This last cited does not have a fix value since it depends on the spatial frequency of the filmed scenes and the chosen threshold value.

  12. Implementation and assessment of diffusion-weighted partial Fourier readout-segmented echo-planar imaging.

    Science.gov (United States)

    Frost, Robert; Porter, David A; Miller, Karla L; Jezzard, Peter

    2012-08-01

    Single-shot echo-planar imaging has been used widely in diffusion magnetic resonance imaging due to the difficulties in correcting motion-induced phase corruption in multishot data. Readout-segmented EPI has addressed the multishot problem by introducing a two-dimensional nonlinear navigator correction with online reacquisition of uncorrectable data to enable acquisition of high-resolution diffusion data with reduced susceptibility artifact and T*(2) blurring. The primary shortcoming of readout-segmented EPI in its current form is its long acquisition time (longer than similar resolution single-shot echo-planar imaging protocols by approximately the number of readout segments), which limits the number of diffusion directions. By omitting readout segments at one side of k-space and using partial Fourier reconstruction, readout-segmented EPI imaging times could be reduced. In this study, the effects of homodyne and projection onto convex sets reconstructions on estimates of the fractional anisotropy, mean diffusivity, and diffusion orientation in fiber tracts and raw T(2)- and trace-weighted signal are compared, along with signal-to-noise ratio results. It is found that projections onto convex sets reconstruction with 3/5 segments in a 2 mm isotropic diffusion tensor image acquisition and 9/13 segments in a 0.9 × 0.9 × 4.0 mm(3) diffusion-weighted image acquisition provide good fidelity relative to the full k-space parameters. This allows application of readout-segmented EPI to tractography studies, and clinical stroke and oncology protocols. Copyright © 2011 Wiley-Liss, Inc.

  13. Upgrade Analog Readout and Digitizing System for ATLAS TileCal Demonstrator

    CERN Document Server

    Tang, F; The ATLAS collaboration; Akerstedt, H; Biot, A; Bohm, C; Carrio, F; Drake, G; Hildebrand, K; Muschter, S; Oreglia, M; Paramonov, A

    2013-01-01

    A potential upgrade for the front-end electronics and signal digitization and data acquisition system of the ATLAS hadron calorimeter for the high luminosity Large Hadron Collider (HL-LHC) is described. A Demonstrator is being built to readout a slice of the TileCal detector. The on-detector electronics includes up to 48 Analog Front-end Boards for PMT analog signal processing, 4 Main Boards for data digitization and slow controls, 4 Daughter Boards with high speed optical links to interface the on-detector and off-detector electronics. Two super readout driver boards are used for off-detector data acquisition and fulfilling digital trigger.\

  14. Results from a test of a Cu-scintillator calorimeter module with photodiode readout

    International Nuclear Information System (INIS)

    Fischer, F.; Kiesling, C.; Lorenz, E.; Mageras, G.; Scholz, S.

    1986-05-01

    A calorimeter module of 17 radiation lengths depth has been built. Wavelength shifter (WLS) bars coupled to rectangular silicon photodiodes (PD's) are use as readout. Considerations in the design of the WLS bars, with particular emphasis on optimising the efficiency for PD readout, are discussed. The energy resolution for electrons has been determined to be about 9%/√E between 2 and 50 GeV. The response to hadrons is presented and the prospects for the construction of a full-sized hadron calorimeter are discussed. (orig.)

  15. An X-ray imaging device based on a GEM detector with delay-line readout

    Science.gov (United States)

    Zhou, Yi; Li, Cheng; Sun, Yong-Jie; Shao, Ming

    2010-01-01

    An X-ray imaging device based on a triple-GEM (Gas Electron Multiplier) detector, a fast delay-line circuit with 700 MHz cut-off frequency and two dimensional readout strips with 150 μm width on the top and 250 μm width on the bottom, is designed and tested. The localization information is derived from the propagation time of the induced signals on the readout strips. This device has a good spatial resolution of 150 μm and works stably at an intensity of 105 Hz/mm2 with 8 keV X-rays.

  16. Added value of IP-10 as a read-out of Mycobacterium tuberculosis

    DEFF Research Database (Denmark)

    Jenum, Synne; Dhanasekaran, Sivmakumaran; Ritz, Christian

    2016-01-01

    , suggest a potential for fewer missed cases with a combined IFNγ/IP-10 read-out in a 4 generation IGRA.This is an open-access article distributed under the terms of the Creative Commons Attribution-Non Commercial-No Derivatives License 4.0 (CCBY-NC-ND), where it is permissible to download and share......We have explored the added value of IFNγ-inducible protein 10 as a read-out of Mycobacterium tuberculosis specific immunity in young Indian children where the sensitivity of the IGRA for tuberculosis (TB) is poor. Reduced frequency of indeterminate results and an increased sensitivity for TB...

  17. Readout electronics validation and target detector assessment for the Neutrinos Angra experiment

    Energy Technology Data Exchange (ETDEWEB)

    Alvarenga, T.A. [Federal University of Juiz de Fora, Juiz de Fora-MG (Brazil); Anjos, J.C.; Azzi, G. [Brazilian Center for Research in Physics, Rio de Janeiro-RJ (Brazil); Cerqueira, A.S. [Federal University of Juiz de Fora, Juiz de Fora-MG (Brazil); Chimenti, P. [Federal University of ABC, Santo André-SP (Brazil); Costa, J.A.; Dornelas, T.I. [Federal University of Juiz de Fora, Juiz de Fora-MG (Brazil); Farias, P.C.M.A. [Federal University of Bahia, Salvador-BA (Brazil); Guedes, G.P. [State University of Feira de Santana, Feira de Santana-BA (Brazil); Gonzalez, L.F.G.; Kemp, E. [State University of Campinas, Campinas-SP (Brazil); Lima, H.P.; Machado, R. [Brazilian Center for Research in Physics, Rio de Janeiro-RJ (Brazil); Nóbrega, R.A., E-mail: rafael.nobrega@ufjf.edu.br [Federal University of Juiz de Fora, Juiz de Fora-MG (Brazil); Pepe, I.M. [Federal University of Bahia, Salvador-BA (Brazil); Ribeiro, D.B.S. [Federal University of Juiz de Fora, Juiz de Fora-MG (Brazil); Simas Filho, E.F. [Federal University of Bahia, Salvador-BA (Brazil); Valdiviesso, G.A. [Federal University of Alfenas, Poços de Caldas-MG (Brazil); Wagner, S. [Pontifical Catholic University of Rio de Janeiro, Rio de Janeiro-RJ (Brazil)

    2016-09-11

    A compact surface detector designed to identify the inverse beta decay interaction produced by anti-neutrinos coming from near operating nuclear reactors is being developed by the Neutrinos Angra Collaboration. In this document we describe and test the detector and its readout system by means of cosmic rays acquisition. In this measurement campaign, the target detector has been equipped with 16 8-in PMTs and two scintillator paddles have been used to trigger cosmic ray events. The achieved results disclosed the main operational characteristics of the Neutrinos Angra system and have been used to assess the detector and to validate its readout system.

  18. Performance of the Electronic Readout of the ATLAS Liquid Argon Calorimeters

    CERN Document Server

    Abreu, H; Aleksa, M; Aperio Bella, L; Archambault, JP; Arfaoui, S; Arnaez, O; Auge, E; Aurousseau, M; Bahinipati, S; Ban, J; Banfi, D; Barajas, A; Barillari, T; Bazan, A; Bellachia, F; Beloborodova, O; Benchekroun, D; Benslama, K; Berger, N; Berghaus, F; Bernat, P; Bernier, R; Besson, N; Binet, S; Blanchard, JB; Blondel, A; Bobrovnikov, V; Bohner, O; Boonekamp, M; Bordoni, S; Bouchel, M; Bourdarios, C; Bozzone, A; Braun, HM; Breton, D; Brettel, H; Brooijmans, G; Caputo, R; Carli, T; Carminati, L; Caughron, S; Cavalleri, P; Cavalli, D; Chareyre, E; Chase, RL; Chekulaev, SV; Chen, H; Cheplakov, A; Chiche, R; Citterio, M; Cojocaru, C; Colas, J; Collard, C; Collot, J; Consonni, M; Cooke, M; Copic, K; Costa, GC; Courneyea, L; Cuisy, D; Cwienk, WD; Damazio, D; Dannheim, D; De Cecco, S; De La Broise, X; De La Taille, C; de Vivie, JB; Debennerot, B; Delagnes, E; Delmastro, M; Derue, F; Dhaliwal, S; Di Ciaccio, L; Doan, O; Dudziak, F; Duflot, L; Dumont-Dayot, N; Dzahini, D; Elles, S; Ertel, E; Escalier, M; Etienvre, AI; Falleau, I; Fanti, M; Farooque, T; Favre, P; Fayard, Louis; Fent, J; Ferencei, J; Fischer, A; Fournier, D; Fournier, L; Fras, M; Froeschl, R; Gadfort, T; Gallin-Martel, ML; Gibson, A; Gillberg, D; Gingrich, DM; Göpfert, T; Goodson, J; Gouighri, M; Goy, C; Grassi, V; Gray, J; Guillemin, T; Guo, B; Habring, J; Handel, C; Heelan, L; Heintz, H; Helary, L; Henrot-Versille, S; Hervas, L; Hobbs, J; Hoffman, J; Hostachy, JY; Hoummada, A; Hrivnac, J; Hrynova, T; Hubaut, F; Huber, J; Iconomidou-Fayard, L; Iengo, P; Imbert, P; Ishmukhametov, R; Jantsch, A; Javadov, N; Jezequel, S; Jimenez Belenguer, M; Ju, XY; Kado, M; Kalinowski, A; Kar, D; Karev, A; Katsanos, I; Kazarinov, M; Kerschen, N; Kierstead, J; Kim, MS; Kiryunin, A; Kladiva, E; Knecht, N; Kobel, M; Koletsou, I; König, S; Krieger, P; Kukhtin, V; Kuna, M; Kurchaninov, L; Labbe, J; Lacour, D; Ladygin, E; Lafaye, R; Laforge, B; Lamarra, D; Lampl, W; Lanni, F; Laplace, S; Laskus, H; Le Coguie, A; Le Dortz, O; Le Maner, C; Lechowski, M; Lee, SC; Lefebvre, M; Leonhardt, K; Lethiec, L; Leveque, J; Liang, Z; Liu, C; Liu, T; Liu, Y; Loch, P; Lu, J; Ma, H; Mader, W; Majewski, S; Makovec, N; Makowiecki, D; Mandelli, L; Mangeard, PS; Mansoulie, B; Marchand, JF; Marchiori, G; Martin, D; Martin-Chassard, G; Martin dit Latour, B; Marzin, A; Maslennikov, A; Massol, N; Matricon, P; Maximov, D; Mazzanti, M; McCarthy, T; McPherson, R; Menke, S; Meyer, JP; Ming, Y; Monnier, E; Mooshofer, P; Neganov, A; Niedercorn, F; Nikolic-Audit, I; Nugent, IM; Oakham, G; Oberlack, H; Ocariz, J; Odier, J; Oram, CJ; Orlov, I; Orr, R; Parsons, JA; Peleganchuk, S; Penson, A; Perini, L; Perrodo, P; Perrot, G; Perus, A; Petit, E; Pisarev, I; Plamondon, M; Poffenberger, P; Poggioli, L; Pospelov, G; Pralavorio, P; Prast, J; Prudent, X; Przysiezniak, H; Puzo, P; Quentin, M; Radeka, V; Rajagopalan, S; Rauter, E; Reimann, O; Rescia, S; Resende, B; Richer, JP; Ridel, M; Rios, R; Roos, L; Rosenbaum, G; Rosenzweig, H; Rossetto, O; Roudil, W; Rousseau, D; Ruan, X; Rudert, A; Rusakovich, N; Rusquart, P; Rutherfoord, J; Sauvage, G; Savine, A; Schaarschmidt, J; Schacht, P; Schaffer, A; Schram, M; Schwemling, P; Seguin Moreau, N; Seifert, F; Serin, L; Seuster, R; Shalyugin, A; Shupe, M; Simion, S; Sinervo, P; Sippach, W; Skovpen, K; Sliwa, R; Soukharev, A; Spano, F; Stavina, P; Straessner, A; Strizenec, P; Stroynowski, R; Talyshev, A; Tapprogge, S; Tarrade, F; Tartarelli, GF; Teuscher, R; Tikhonov, Yu; Tocut, V; Tompkins, D; Thompson, P; Tisserant, S; Todorov, T; Tomasz, F; Trincaz-Duvoid, S; Trinh, Thi N; Trochet, S; Trocme, B; Tschann-Grimm, K; Tsionou, D; Ueno, R; Unal, G; Urbaniec, D; Usov, Y; Voss, K; Veillet, JJ; Vincter, M; Vogt, S; Weng, Z; Whalen, K; Wicek, F; Wilkens, H; Wingerter-Seez, I; Wulf, E; Yang, Z; Ye, J; Yuan, L; Yurkewicz, A; Zarzhitsky, P; Zerwas, D; Zhang, H; Zhang, L; Zhou, N; Zimmer, J; Zitoun, R; Zivkovic, L

    2010-01-01

    The ATLAS detector has been designed for operation at the Large Hadron Collider at CERN. ATLAS includes electromagnetic and hadronic liquid argon calorimeters, with almost 200,000 channels of data that must be sampled at the LHC bunch crossing frequency of 40 MHz. The calorimeter electronics calibration and readout are performed by custom electronics developed specifically for these purposes. This paper describes the system performance of the ATLAS liquid argon calibration and readout electronics, including noise, energy and time resolution, and long term stability, with data taken mainly from full-system calibration runs performed after installation of the system in the ATLAS detector hall at CERN.

  19. Design of the CMS-CASTOR subdetector readout system by reusing existing designs

    CERN Document Server

    Beaumont, W

    2009-01-01

    CASTOR is a cylindrical calorimeter with a length of 1.5m and a diameter of 60cm located at 14.3 meters from the CMS interaction point and covering the range in pseudorapidity corresponding to 5.1 < | eta | < 6.6. The CASTOR project was approved in the middle of 2007. Given the limited resources and time, developing a readout system from scratch was excluded. Here the final implementations of the readout chain, the considerations for the different choices as well as the performance of the installed equipment are discussed.

  20. Design of the CMS-CASTOR sub detector readout system by reusing existing designs

    CERN Document Server

    Beaumont, Willem

    2009-01-01

    CASTOR is a cylindrical calorimeter with a length of 1.5m and a diameter of 60cm located at 14.3 meters from the CMS interaction point and covering the range in pseudo-rapidity corresponding to 5.1 ~\\textless~ \\textbar~ eta~ \\textbar ~ \\textless ~ 6.6. The CASTOR project was approved in the middle of 2007. Given the limited resources and time, developing a readout system from scratch was excluded. Here the final implementations of the readout chain, the considerations for the different choices as well as the performance of the installed equipment are discussed.

  1. Test and improvement of readout system based on APV25 chip for GEM detector

    International Nuclear Information System (INIS)

    Hu Shouyang; Jian Siyu; Zhou Jing; Shan Chao; Li Xinglong; Li Xia; Li Xiaomei; Zhou Yi

    2014-01-01

    Gas electron multiplier (GEM) is the most promising position sensitive gas detector. The new generation of readout electronics system includes APV25 front-end card, multi-purpose digitizer (MPD), VME controller and Linux-based acquisition software DAQ. The construction and preliminary test of this readout system were finished, and the ideal data with the system working frequency of 40 MHz and 20 MHz were obtained. The long time running test shows that the system has a very good time-stable ability. Through optimizing the software configuration and improving hardware quality, the noise level was reduced, and the signal noise ratio was improved. (authors)

  2. Grain-A Java data analysis system for Total Data Readout

    International Nuclear Information System (INIS)

    Rahkila, P.

    2008-01-01

    Grain is a data analysis system developed to be used with the novel Total Data Readout data acquisition system. In Total Data Readout all the electronics channels are read out asynchronously in singles mode and each data item is timestamped. Event building and analysis has to be done entirely in the software post-processing the data stream. A flexible and efficient event parser and the accompanying software system have been written entirely in Java. The design and implementation of the software are discussed along with experiences gained in running real-life experiments

  3. Pulse mode actuation-readout system based on MEMS resonator for liquid sensing

    DEFF Research Database (Denmark)

    Tang, Meng; Cagliani, Alberto; Davis, Zachary James

    2014-01-01

    A MEMS (Micro-Electro-Mechanical Systems) bulk disk resonator is applied for mass sensing under its dynamic mode. The classical readout circuitry involves sophisticated feedback loop and feedthrough compensation. We propose a simple straightforward non-loop pulse mode actuation and capacitive...... readout scheme. In order to verify its feasibility in liquid bio-chemical sensing environment, an experimental measurement is conducted with humidity sensing application. The measured resonant frequency changes 60kHz of 67.7MHz with a humidity change of 0~80%....

  4. Ultralow-noise readout circuit with an avalanche photodiode: toward a photon-number-resolving detector.

    Science.gov (United States)

    Tsujino, Kenji; Akiba, Makoto; Sasaki, Masahide

    2007-03-01

    The charge-integration readout circuit was fabricated to achieve an ultralow-noise preamplifier for photoelectrons generated in an avalanche photodiode with linear mode operation at 77 K. To reduce the various kinds of noise, the capacitive transimpedance amplifier was used and consisted of low-capacitance circuit elements that were cooled with liquid nitrogen. As a result, the readout noise is equal to 3.0 electrons averaged for a period of 40 ms. We discuss the requirements for avalanche photodiodes to achieve photon-number-resolving detectors below this noise level.

  5. Design and characterization of the readout ASIC for the BESIII CGEM detector

    CERN Document Server

    Cossio, Fabio; Bugalho, Ricardo; Chai, Junying; Cheng, Weishuai; Da Rocha Rolo, Manuel Dionisio; Di Francesco, Agostino; Greco, Michela; Leng, Chongyang; Li, Huaishen; Maggiora, Marco; Marcello, Simonetta; Mignone, Marco; Rivetti, Angelo; Varela, Joao; Wheadon, Richard

    2018-01-01

    TIGER (Turin Integrated Gem Electronics for Readout) is a mixed-mode ASIC for the readout of signals from CGEM (Cylindrical Gas Electron Multiplier) detector in the upgraded inner tracker of the BESIII experiment, carried out at BEPCII in Beijing. The ASIC includes 64 channels, each of which features a dual-branch architecture optimized for timing and energy measurement. The input signal time-of-arrival and charge measurement is provided by low-power TDCs, based on analogue interpolation techniques, and Wilkinson ADCs, with a fully-digital output. The silicon results of TIGER first prototype are presented showing its full functionality.

  6. A 40 GByte/s read-out system for GEM

    International Nuclear Information System (INIS)

    Bowden, M.; Carrel, J.; Dorenbosch, J.; Kapoor, V.

    1994-04-01

    The preliminary design of the read-out system for the GEM (Gammas, Electrons, Muons) detector at the Superconducting Super Collider is presented. The system reads all digitized data from the detector data sources at a Level 1 trigger rate of up to 100 kHz. A total read-out bandwidth of 40 GBytes/s is available. Data are stored in buffers that are accessible for further event filtering by an on-line, processor farm. Data are transported to the farm only as they are needed by the higher-level trigger algorithms, leading to a reduced bandwidth requirement in the Data Acquisition System

  7. Visible and near UV light-induced scattering of LiNbO3:Fe crystals and material characterization

    Science.gov (United States)

    Ellabban, Mostafa A.

    2015-01-01

    We present an experimental study of reconstructing parasitic gratings that produce simultaneous wide-angle polarization-anisotropic and -isotropic light induced scattering. The gratings were recorded in lithium niobate crystals doped with iron (LiNbO3:Fe) using an ordinary-polarized pump beam in the visible and the near UV spectral ranges. The reconstruction was performed at different readout angles, wavelengths and linear polarization states. The main features of reconstructing the parasitic gratings at different readout conditions are qualitatively explained by a simple phenomenological model based on the Ewald sphere construction. The obtained results and the scattering pattern were applied to determine the birefringence, its sign and further to estimate the relative contribution of diffusion and bulk photovoltaic effect to the photorefractive effect, as well as the ratios of product of the Pockels and the photovoltaic tensors components that contribute to the readout of the gratings at different readout polarizations.

  8. Rodent model choice has major impact on variability of standard preclinical readouts associated with diabetes and obesity research

    DEFF Research Database (Denmark)

    Jensen, Victoria Svop; Porsgaard, Trine; Lykkesfeldt, Jens

    2016-01-01

    was to compare the phenotypic variation in commonly used experimental readouts within obesity and diabetes research, for four of the most frequently used mouse strains: inbred C57BL/6 and BALB/c and outbred NMRI and CD-1 mice. The variation for all readouts was examined by calculating the coefficient...

  9. Light Pollution

    Science.gov (United States)

    Riegel, Kurt W.

    1973-01-01

    Outdoor lighting is light pollution which handicaps certain astronomical programs. Protective measures must be adopted by the government to aid observational astronomy without sacrificing legitimate outdoor lighting needs. (PS)

  10. Development of a dual-ended readout detector with segmented crystal bars made using a subsurface laser engraving technique

    Science.gov (United States)

    Mohammadi, Akram; Yoshida, Eiji; Nishikido, Fumihiko; Nitta, Munetaka; Shimizu, Keiji; Sakai, Toshiaki; Yamaya, Taiga

    2018-01-01

    identified very clearly when there was air between the crystal bars, as each crystal bar was coupled to one channel of the MPPCs; however, it was necessary to optimize optical conditions between crystal bars for the 8  ×  8 array because of light sharing between crystal bars coupled to one channel of the MPPCs. The optimization was performed for the 8  ×  8 array by inserting reflectors fully or partially between the crystal bars and the best crystal identification performance was obtained with the partial reflectors between the crystal bars. The mean energy resolutions at the 511 keV photo peak for the 4  ×  4 array with air between the crystal bars and for the 8  ×  8 array with partial reflectors between the crystal bars were 10.1%  ±  0.3% and 10.8%  ±  0.8%, respectively. Timing resolutions of 783  ±  36 ps and 1.14  ±  0.22 ns were obtained for the detectors composed of the 4  ×  4 array and the 8  ×  8 array with partial reflectors, respectively. These values correspond to single photon timing resolutions. Practical X’tal cubes with 3 mm and 1.5 mm DOI resolutions and two-sided readout were developed.

  11. Direct photon-counting scintillation detector readout using an SSPM

    International Nuclear Information System (INIS)

    Stapels, Christopher J.; Squillante, Michael R.; Lawrence, William G.; Augustine, Frank L.; Christian, James F.

    2007-01-01

    Gamma-ray detector technologies, capable of providing adequate energy information, use photomultiplier tubes (PMTs) or silicon avalanche photodiodes to detect the light pulse from a scintillation crystal. A new approach to detect the light from scintillation materials is to use an array of small photon counting detectors, or a 'detector-on-a-chip' based on a novel 'Solid-state Photomultiplier' (SSPM) concept. A CMOS SSPM coupled to a scintillation crystal uses an array of CMOS Geiger photodiode (GPD) pixels to collect light and produce a signal proportional to the energy of the radiation. Each pixel acts as a binary photon detector, but the summed output is an analog representation of the total photon intensity. We have successfully fabricated arrays of GPD pixels in a CMOS environment, which makes possible the production of miniaturized arrays integrated with the detector electronics in a small silicon chip. This detector technology allows for a substantial cost reduction while preserving the energy resolution needed for radiological measurements. In this work, we compare designs for the SSPM detector. One pixel design achieves maximum detection efficiency (DE) for 632-nm photons approaching 30% with a room temperature dark count rate (DCR) of less than 1 kHz for a 30-μm-diameter pixel. We characterize after pulsing and optical cross talk and discuss their effects on the performance of the SSPM. For 30-μm diameter, passively quenched CMOS GPD pixels, modeling suggests that a pixel spacing of approximately 90 μm optimizes the SSPM performance with respect to DE and cross talk

  12. The development of a high-resolution scintillating fiber tracker with silicon photomultiplier readout

    International Nuclear Information System (INIS)

    Roper Yearwood, Gregorio

    2013-01-01

    In this work I present the design and test results for a novel, modular tracking detector from scintillating fibers which are read out by silicon photomultiplier (SiPM) arrays. The detector modules consist of 0.25 mm thin scintillating fibers which are closely packed in five-layer ribbons. Two ribbons are fixed to both sides of a carbon-fiber composite structure. Custom made SiPM arrays with a photo-detection efficiency of about 50% read out the fibers. Several 860 mm long and 32 mm wide tracker modules were tested in a secondary 12 GeV/c beam at the PS facilities, CERN in November of 2009. During this test a spatial resolution better than 0.05 mm at an average light yield of about 20 photons for a minimum ionizing particle was determined. This work details the characterization of scintillating fibers and silicon photomultipliers of different make and model. It gives an overview of the production of scintillating fiber modules. The behavior of detector modules during the test-beam is analyzed in detail and different options for the front-end electronics are compared. Furthermore, the implementation of the proposed tracking detector from scintillating fibers within the scope of the PERDaix experiment is discussed. The PERDaix detector is a permanent magnet spectrometer with a weight of 40 kg. It consists of 8 tracking detector layers from scintillating fibers, a time-of-flight detector from plastic scintillator bars with silicon photomultiplier readout and a transition radiation detector from an irregular fleece radiator and Xe/CO 2 filled proportional counting tubes. The PERDaix detector was launched with a helium balloon within the scope of the ''Balloon-Experiments for University Students'' (BEXUS) program from Kiruna, Sweden in November 2010. For a few hours PERDaix reached an altitude of 33 km and measured cosmic rays. In May 2011, the PERDaix detector was characterized during a test-beam at the PS-facilities at CERN. This work introduces methods for event

  13. Quantum Memory as Light Pulses Quantum States Transformer

    Directory of Open Access Journals (Sweden)

    Vetlugin A.N.

    2015-01-01

    Full Text Available Quantum memory can operate not only as a write-in/readout device [1] for quantum light pulses and non-classical states generation [2] device but also as a quantum states of light transformer. Here the addressable parallel quantum memory [3] possibilities for this type of transformation are researched. Quantum memory operates as a conventional N-port interferometer with N equals to the number of the involved spin waves. As example we consider the ability to transform quantum states of two light pulses – in this case the quantum memory works as a mirror with a controlled transmission factor.

  14. Security of Quantum-Readout PUFs against quadrature based challenge estimation attacks

    NARCIS (Netherlands)

    Skoric, B.; Mosk, Allard; Pinkse, Pepijn Willemszoon Harry

    2013-01-01

    The concept of quantum-secure readout of Physical Unclonable Functions (PUFs) has recently been realized experimentally in an optical PUF system. We analyze the security of this system under the strongest type of classical attack: the challenge estimation attack. The adversary performs a measurement

  15. Controlling and Monitoring the Data Flow of the LHCb Read-out and DAQ Network

    CERN Multimedia

    Schwemmer, R; Neufeld, N; Svantesson, D

    2011-01-01

    The LHCb readout uses a set of 320 FPGA based boards as interface between the on-detector hardware and the GBE DAQ network. The boards are the logical Level 1 (L1) read-out electronics and aggregate the experiment's raw data into event fragments that are sent to the DAQ network. To control the many parameters of the read-out boards, an embedded PC is included on each board, connecting to the boards ICs and FPGAs. The data from the L1 boards is sent through an aggregation network into the High Level Trigger farm. The farm comprises approximately 1500 PCs which at first assemble the fragments from the L1 boards and then do a partial reconstruction and selection of the events. In total there are approximately 3500 network connections. Data is pushed through the network and there is no mechanism for resending packets. Loss of data on a small scale is acceptable but care has to be taken to avoid data loss if possible. To monitor and debug losses, different probes are inserted throughout the entire read-out chain t...

  16. Sensor Systems with Magnetic and Optomagnetic Readout of Rolling Circle Amplification Products

    DEFF Research Database (Denmark)

    Hansen, Mikkel Fougt; Donolato, Marco; Fock, Jeppe

    2016-01-01

    We are developing robust biosensors for homogeneous detection of rolling cirle amplification (RCA) products with magnetic and/or optomagnetic readouts based on surface-functionalized magnetic nanoparticles. Binding of RCA amplicons to nanoparticles modifies their ability to rotate in response to ...

  17. Performance and calibration of the CHORUS scintillating fiber tracker and opto-electronics readout system

    International Nuclear Information System (INIS)

    Annis, P.; Aoki, S.; Brunner, J.; De Jong, M.; Fabre, J.P.; Ferreira, R.; Flegel, W.; Frekers, D.; Gregoire, G.; Herin, J.; Kobayashi, M.; Konijn, J.; Lemaitre, V.; Macina, D.; Meijer Drees, R.; Meinhard, H.; Michel, L.; Mommaert, C.; Nakamura, K.; Nakamura, M.; Nakano, T.; Niwa, K.; Niu, E.; Panman, J.; Riccardi, F.; Rondeshagen, D.; Sato, O.; Stefanini, G.; Vander Donckt, M.; Vilain, P.; Wilquet, G.; Winter, K.; Wong, H.T.

    1995-01-01

    An essential component of the CERN WA95/CHORUS experiment is a scintillating fiber tracker system for precise track reconstruction of particles. The tracker design, its opto-electronics readout and calibration system are discussed. Performances of the detector are presented. (orig.)

  18. Lithographed Superconducting Resonator Development for Next-Generation Frequency Multiplexing Readout of Transition-Edge Sensors

    Science.gov (United States)

    Faramarzi, F.; De Haan, T.; Kusaka, A.; Lee, A.; Neuhauser, B.; Plambeck, R.; Raum, C.; Suzuki, A.; Westbrook, B.

    2018-03-01

    Ground-based cosmic microwave background (CMB) experiments are undergoing a period of exponential growth. Current experiments are observing with 1000-10,000 detectors, and the next-generation experiment (CMB stage 4) is proposing to deploy approximately 500,000 detectors. This order of magnitude increase in detector count will require a new approach for readout electronics. We have developed superconducting resonators for next-generation frequency-domain multiplexing (fMUX) readout architecture. Our goal is to reduce the physical size of resonators, such that resonators and detectors can eventually be integrated on a single wafer. To reduce the size of these resonators, we have designed spiral inductors and interdigitated capacitors that resonate around 10-100 MHz, an order of magnitude higher frequency compared to current fMUX readout systems. The higher frequency leads to a wider bandwidth and would enable higher multiplexing factor than the current ˜ 50 detectors per readout channel. We will report on the simulation, fabrication method, characterization technique, and measurement of quality factor of these resonators.

  19. Transmission-Line Readout with Good Time and Space Resolutions for Planacon MCP-PMTs

    CERN Document Server

    Tang, F; Byrum, K; Drake, G; Ertley, C; Frisch, H; Genat, J-F; May, E

    2008-01-01

    With commercially-available multi-anode microchannel plate photomultiplier tubes (MCP-PMT) and electronics, resolutions significantly better than 10 psec have been achieved in small systems with a few readout channels[1,2]. For large-scale time-of-flight systems used in particle physics, which may cover tens of square meters, a solution must be found with a manageable number of electronics channels and low total power consumption on the readout electronics without degrading the system timing resolution. We present here the design of a transmission-line readout for a Photonis Planacon MCP-PMT that has these characteristics. The tube, which is 5 cm square, is characterized by signal pulse rise times in the order of 200 psec and transit time spreads (TTS) in the order of 25 psec[1, 2]. The model 85011-011 MCP has 1024 anode pads laid out in an array of 32 by 32 on the back of the tube. The proposed readout is implemented on a Rogers 4350B printed circuit board with 32 parallel 50-ohm transmission lines on 1.6 mm...

  20. Reliable and redundant FPGA based read-out design in the ATLAS TileCal Demonstrator

    CERN Document Server

    Åkerstedt, Henrik; The ATLAS collaboration; Drake, Gary; Anderson, Kelby; Bohm, Christian; Oreglia, Mark; Tang, Fukun

    2015-01-01

    The Tile Calorimeter at ATLAS is a hadron calorimeter based on steel plates and scintillating tiles read out by PMTs. The current read-out system uses standard ADCs and custom ASICs to digitize and temporarily store the data on the detector. However, only a subset of the data is actually read out to the counting room. The on-detector electronics will be replaced around 2023. To achieve the required reliability the upgraded system will be highly redundant. Here the ASICs will be replaced with Kintex-7 FPGAs from Xilinx. This, in addition to the use of multiple 10 Gbps optical read-out links, will allow a full read-out of all detector data. Due to the higher radiation levels expected when the beam luminosity is increased, opportunities for repairs will be less frequent. The circuitry and firmware must therefore be designed for sufficiently high reliability using redundancy and radiation tolerant components. Within a year, a hybrid demonstrator including the new read-out system will be installed in one slice of ...

  1. Two methods to estimate the position resolution for straw chambers with strip readouts

    International Nuclear Information System (INIS)

    Golutvin, I.A.; Movchan, S.A.; Peshekhonov, V.D.; Preda, T.

    1993-01-01

    The centroid and charge-ratio methods are used to investigate the position resolutions of a new kind of gas detector: A straw chamber with a strip readout. The methods are simple and give the same resolution. The charge-ratio method is not sensitive to the pedestal subtraction and cross talks between the strips. (orig.)

  2. A Gigabit per second read-out system for Medipix Quads

    International Nuclear Information System (INIS)

    Visser, Jan; Heijden, B. van der; Weijers, S.J.A.; Vries, R. de; Visschers, J.L.

    2011-01-01

    A system to read-out images from four photon-counting Medipix chips at one Gigabit per second has been constructed in a bilateral collaboration between Nikhef and PANalytical. The system consists of two printed circuit boards. One board supports the four Medipix readout ASICs, flip-chipped to a single pixellized semiconducting sensor on top. This board is mounted perpendicular on the Relaxd read-out board. This Relaxd board supplies the necessary voltages to the Medipix readout ASICs, controls all signals to and from these chips via a low-power Field Programmable Gate Array (FPGA, Lattice SC series) and communicates with a PC through a standard one Gigabit per second Ethernet connection (GbE). The T-shaped mechanical topology allows multiple modules to be mounted adjacent to each other in all directions (2D tiling) and to minimise the insensitive area between separate Relaxd modules. An overview of the system layout and the functionality is presented as well as the first test results.

  3. A Gigabit per second read-out system for Medipix Quads

    Energy Technology Data Exchange (ETDEWEB)

    Visser, Jan, E-mail: jan.visser@nikhef.nl [Netherlands Institute for Subatomic Physics, Nikhef, Science Park 103, 1098XG Amsterdam (Netherlands); Heijden, B. van der [Netherlands Institute for Subatomic Physics, Nikhef, Science Park 103, 1098XG Amsterdam (Netherlands); Weijers, S.J.A.; Vries, R. de [PANalytical, Lelyweg 1, 7602EA Almelo (Netherlands); Visschers, J.L. [Netherlands Institute for Subatomic Physics, Nikhef, Science Park 103, 1098XG Amsterdam (Netherlands)

    2011-05-15

    A system to read-out images from four photon-counting Medipix chips at one Gigabit per second has been constructed in a bilateral collaboration between Nikhef and PANalytical. The system consists of two printed circuit boards. One board supports the four Medipix readout ASICs, flip-chipped to a single pixellized semiconducting sensor on top. This board is mounted perpendicular on the Relaxd read-out board. This Relaxd board supplies the necessary voltages to the Medipix readout ASICs, controls all signals to and from these chips via a low-power Field Programmable Gate Array (FPGA, Lattice SC series) and communicates with a PC through a standard one Gigabit per second Ethernet connection (GbE). The T-shaped mechanical topology allows multiple modules to be mounted adjacent to each other in all directions (2D tiling) and to minimise the insensitive area between separate Relaxd modules. An overview of the system layout and the functionality is presented as well as the first test results.

  4. Upgrade Design of TileCal Front-end Readout Electronics and Radiation Hardness Studies

    CERN Document Server

    Anderson, K; The ATLAS collaboration; Drake, G; Eriksson, D; Muschter, S; Oreglia, M; Pilcher, J; Price, L; Tang, F

    2011-01-01

    The ATLAS Tile Calorimeter (TileCal) is essential for measuring the energy and direction of hadrons and taus produced in LHC collisions. The TileCal consists of "tiles" of plastic scintillator dispersed in a fine-grained steel matrix . Optical fibers from the tiles are sent to ~10,000 photomultiplier tubes (PMT) and associated readout electronics. The TileCal front-end analog readout electronics process the signals from ~10,000 PMTs. Signals from each PMT are shaped with a 7-pole passive LC shaper and split it to two channels amplified by a pair of clamping amplifiers with a gain ratio of 32. Incorporated with two 40Msps 12-bit ADCs, the readout electronics provide a combined dynamic range of 17-bits. With this dynamic range, the readout system is capable of measuring the energy deposition in the calorimeter cells from ~220MeV to 1.3TeV with the least signal-to-noise ratio of greater than 20. The digitized data from each PMT are transmitted off-detector optically, where the data are further processed with ded...

  5. High-speed readout of high-Z pixel detectors with the LAMBDA detector

    International Nuclear Information System (INIS)

    Pennicard, D.; Smoljanin, S.; Sheviakov, I.; Xia, Q.; Rothkirch, A.; Yu, Y.; Struth, B.; Hirsemann, H.; Graafsma, H.

    2014-01-01

    High-frame-rate X-ray pixel detectors make it possible to perform time-resolved experiments at synchrotron beamlines, and to make better use of these sources by shortening experiment times. LAMBDA is a photon-counting hybrid pixel detector based on the Medipix3 chip, designed to combine a small pixel size of 55 μm, a large tileable module design, high speed, and compatibility with ''high-Z'' sensors for hard X-ray detection. This technical paper focuses on LAMBDA's high-speed-readout functionality, which allows a frame rate of 2000 frames per second with no deadtime between successive images. This takes advantage of the Medipix3 chip's ''continuous read-write'' function and highly parallelised readout. The readout electronics serialise this data and send it back to a server PC over two 10 Gigabit Ethernet links. The server PC controls the detector and receives, processes and stores the data using software designed for the Tango control system. As a demonstration of high-speed readout of a high-Z sensor, a GaAs LAMBDA detector was used to make a high-speed X-ray video of a computer fan

  6. Fast Readout Architectures for Large Arrays of Digital Pixels: Examples and Applications

    Directory of Open Access Journals (Sweden)

    A. Gabrielli

    2014-01-01

    Full Text Available Modern pixel detectors, particularly those designed and constructed for applications and experiments for high-energy physics, are commonly built implementing general readout architectures, not specifically optimized in terms of speed. High-energy physics experiments use bidimensional matrices of sensitive elements located on a silicon die. Sensors are read out via other integrated circuits bump bonded over the sensor dies. The speed of the readout electronics can significantly increase the overall performance of the system, and so here novel forms of readout architectures are studied and described. These circuits have been investigated in terms of speed and are particularly suited for large monolithic, low-pitch pixel detectors. The idea is to have a small simple structure that may be expanded to fit large matrices without affecting the layout complexity of the chip, while maintaining a reasonably high readout speed. The solutions might be applied to devices for applications not only in physics but also to general-purpose pixel detectors whenever online fast data sparsification is required. The paper presents also simulations on the efficiencies of the systems as proof of concept for the proposed ideas.

  7. Cool Timepix - Electronic noise of the Timepix readout chip down to -125 sub o C

    NARCIS (Netherlands)

    Schön, R.; Alfonsi, M.; van Bakel, N.; van Beuzekom, M.; Koffeman, E.

    2015-01-01

    The Timepix readout chip with its 65k pixels on a sensitive area of 14 mm×14 mm provides a fine spatial resolution for particle tracking or medical imaging. We explore the operation of Timepix in a dual-phase xenon environment (around −110 °C). Used in dual-phase xenon time projection chambers, e.g.

  8. Radio frequency single electron transistors: readout for a solid state quantum computer

    International Nuclear Information System (INIS)

    Buehler, T.M.; Reilly, D.J.; Starrett, R.P.; Brenner, R.; Hamilton, A.R.; Clark, R.G.; Court, N.A.; Dzurak, A.S.

    2002-01-01

    Full text: Quantum computers promise unprecedented computational power if they can be scaled to a large number of qubits. Essential to the operation of such a machine is readout: the determination of the final quantum state of the system. In the case of the silicon based solid state architecture proposed by Kane, readout is achieved by determining the direction of a single electron spin via the detection of a spin dependent tunneling event. This requires a highly sensitive electrometer that can detect the motion of a single electron in a timescale less than the spin relaxation time. The Radio Frequency Single Electron Transistor (RF-SET) is a device that possesses both the charge sensitivity (oq ∼ 10 -6 / √Hz), approaching the quantum limit) and fast response required to perform readout in such a system. Here we describe the fabrication and operation of transmission mode RF-SETs and discuss the application of these novel electrometers in the readout of a solid state quantum computer

  9. Readout electronics for CBM-TOF super module quality evaluation based on 10 Gbps ethernet

    Science.gov (United States)

    Jiang, D.; Cao, P.; Huang, X.; Zheng, J.; Wang, Q.; Li, B.; Li, J.; Liu, S.; An, Q.

    2017-07-01

    The Compressed Baryonic Matter-Time of Flight (CBM-TOF) wall uses high performance of Multi-gap Resistive Plate Chambers (MRPC) assembled in super modules to identify charged particles with high channel density and high measurement precision at high event rate. Electronics meet the challenge for reading data out from a super module at high speed of about 6 Gbps in real time. In this paper, the readout electronics for CBM-TOF super module quality evaluation is proposed based on 10 Gigabit Ethernet. The digitized TOF data from one super module will be concentrated at the front-end electronics residing on the side of the super module and transmitted to an extreme speed readout module (XSRM) housed in the backend crate through the PCI Express (PCIe) protocol via optic channels. Eventually, the XSRM transmits data to the data acquisition (DAQ) system through four 10 Gbps Ethernet ports in real time. This readout structure has advantages of high performance and expansibility. Furthermore, it is easy to operate. Test results on the prototype show that the overall data readout performance for each XSRM can reach up to 28.8 Gbps, which means XSRM can meet the requirement of reading data out from 4 super modules with 1280 channels in real time.

  10. Proteopedia: 3D Visualization and Annotation of Transcription Factor-DNA Readout Modes

    Science.gov (United States)

    Dantas Machado, Ana Carolina; Saleebyan, Skyler B.; Holmes, Bailey T.; Karelina, Maria; Tam, Julia; Kim, Sharon Y.; Kim, Keziah H.; Dror, Iris; Hodis, Eran; Martz, Eric; Compeau, Patricia A.; Rohs, Remo

    2012-01-01

    3D visualization assists in identifying diverse mechanisms of protein-DNA recognition that can be observed for transcription factors and other DNA binding proteins. We used Proteopedia to illustrate transcription factor-DNA readout modes with a focus on DNA shape, which can be a function of either nucleotide sequence (Hox proteins) or base pairing…

  11. A new read-out architecture for the ATLAS Tile Calorimeter Phase-II Upgrade

    CERN Document Server

    Valero, Alberto; The ATLAS collaboration

    2015-01-01

    TileCal is the Tile hadronic calorimeter of the ATLAS experiment at the LHC. The LHC has planned a series of upgrades culminating in the High Luminosity LHC (HL-LHC) which will increase of order five times the LHC nominal instantaneous luminosity. TileCal will undergo an upgrade to accommodate to the HL-LHC parameters. The TileCal read-out electronics will be redesigned introducing a new read-out strategy. The data generated in the detector will be transferred to the new Read-Out Drivers (sRODs) located in off-detector for every bunch crossing before any event selection is applied. Furthermore, the sROD will be responsible of providing preprocessed trigger information to the ATLAS first level of trigger. It will implement pipeline memories to cope with the latencies and rates specified in the new trigger schema and in overall it will represent the interface between the data acquisition, trigger and control systems and the on-detector electronics. The new TileCal read-out architecture will be presented includi...

  12. Studies on sampling and homogeneous dual readout calorimetry with meta-crystals

    CERN Document Server

    Mavromanolakis, G; Lecoq, P

    2011-01-01

    The meta-crystals concept is an approach that consists of using both undoped and properly doped heavy crystal fibers of identical material as the active medium of a calorimeter. The undoped fibers behave as Cherenkov radiators while the doped ones behave as scintillators. A dual readout calorimeter can be built with its sensitive volume composed of a mixture of both types of crystals. In addition if the calorimeter is adequately finely segmented it can also function as a particle flow calorimeter at the same time. In this way one could possibly combine the advantages of both the particle flow concept and the dual readout scheme. We discuss the approach of dual readout calorimetry with meta-crystals made of Lutetium Aluminium Garnet (LuAG). We brie fly present studies on the material development and first testbeam activities and then focus on performance expectation studies based on simulation. We discuss in more detail the results from generic systematic scannings of the design parameters of a dual readout ca...

  13. A Readout Chip for a 64 x 64 Pixel Matrix with 15-bit Single Photon Counting

    CERN Document Server

    Campbell, M; Meddeler, G; Pernigotti, E; Snoeys, W

    1998-01-01

    A single Photon Counting pixel detector readout Chip (PCC) has been derived from previous work in the CERN RD19 collaboration for particle physics tracking devices, recently developed for high energy physics experiments. The readout chip is a 64 x 64 matrix of identical 170mm x 170mm cells. It is to be bump-bonded to an equally segmented 1 cm2 matrix of semiconductor sensors, e.g. Si or GaAs. Each readout cell comprises a preamplifier, a discriminator and a 15-bit counter. The input noise is 170 e- rms. At the lowest nominal threshold of 1 400 e- (5.1 keV in Si) the cells exhibit a threshold di stribution with a spread before adjustment of 350 e- rms. Each cell has a 5-bit register which allows masking, test-enable and 3-bit individual threshold adjust. After adjustment the threshold spread is reduced to 80 e- rms. Absolute calibration of the electrically measured equivalent charge can be done once the readout chip is bump-bonded to a detector.

  14. Choosing the number of readout systems of a photoelectric angle converter

    Energy Technology Data Exchange (ETDEWEB)

    Latyev, S.M.; Mitrofanov, S.S. [Institute of Precision Mechanics and Optics, St. Petersburg (Russian Federation)

    1994-09-01

    This paper discusses certain errors of photoelectric angle converters whose effect can be lessened by making the best choice of the number of readout systems and of their definite mutual placement. Recommendations are given for compensating the systematic and random errors of a converter. 4 refs.

  15. Choosing the number of readout systems of a photoelectric angle converter

    Science.gov (United States)

    Latyev, S. M.; Mitrofanov, S. S.

    1994-09-01

    This paper discusses certain errors of photoelectric angle converters whose effect can be lessened by making the best choice of the number of readout systems and of their definite mutual placement. Recommendations are given for compensating the systematic and random errors of a converter.

  16. The electronic readout system used on the Mk II R.A.L. positron camera

    International Nuclear Information System (INIS)

    Stephenson, R.

    1984-06-01

    The paper describes the operating principles of the electronic readout system as used on the Mk II R.A.L. positron camera. The individual modules are described in detail, and the specifications and the performance figures for the individual units, and of the complete system are given. Some early results obtained with the full system are presented. (author)

  17. Improved quality of intrafraction kilovoltage images by triggered readout of unexposed frames

    DEFF Research Database (Denmark)

    Poulsen, Per Rugaard; Jonassen, Johnny; Schmidt, Mai Lykkegaard

    2015-01-01

    absolute error of 2.0% for the gold marker. Conclusions: A device that triggers readout of unexposed frames during kV fluoroscopy was built and shown to greatly improve the quality of intratreatment kV images. A simple theoretical model successfully described the CNR improvements with the device....

  18. arXiv From gated to continuous readout - the GEM upgrade of the ALICE TPC

    CERN Document Server

    Mathis, Andreas

    The ALICE Collaboration is planning a major upgrade of its central barrel detectors to be able to cope with the increased LHC luminosity beyond 2020. In order to record at an increased interaction rate of up to 50$\\,$kHz in Pb$-$Pb collisions, the TPC will be operated in an ungated mode with continuous readout. This demands for a replacement of the currently employed gated Multi-Wire Proportional Chambers by GEM-based (Gas Electron Multiplier) readout chambers, while retaining the performance in particular in terms of particle identification capabilities via the measurement of the specific energy loss. Prior to the beginning of the full mass production of the readout chambers for the upgrade, a so-called pre-production was launched in order to characterize and verify the performance of the first fully assembled readout chambers of the final design. This phase was concluded in March 2017 with the formal acceptance of the production readiness and hence the beginning of the mass production.

  19. Fast readout of the COMPASS RICH CsI-MWPC photon chambers

    International Nuclear Information System (INIS)

    Abbon, P.; Delagnes, E.; Deschamps, H.; Kunne, F.; Gerasimov, S.; Ketzer, B.; Konorov, I.; Kravtchuk, N.; Magnon, A.; Neyret, D.; Panebianco, S.; Paul, S.; Rebourgeard, P.; Tessaroto, F.

    2006-01-01

    A new readout system for CsI-coated MWPCs, used in the COMPASS RICH detector, has been proposed and tested in nominal high-rate conditions. It is based on the APV25-S1 analog sampling chip, and will replace the Gassiplex chip readout used up to now. The APV chip, originally designed for silicon microstrip detectors, is shown to perform well even with 'slow' signals from a MWPC, keeping a signal-to-noise ratio of 9. For every trigger the system reads three consecutive in-time samples, thus allowing to extract information on the signal shape and its timing. The effective time window is reduced from ∼3 μs for the Gassiplex to below 400 ns for the APV25-S1 chip, reducing pile-up events at high particle rate. A significant improvement of the signal-to-background ratio by a factor 5-6 with respect to the original readout has been measured in the central region of the RICH detector. Due to its pipelined architecture, the new readout system also considerably reduces the dead time per event, allowing efficient data taking at higher trigger rate

  20. GaAs Multiplexers for VLWIR Detector Readout Below 10 Kelvin

    Science.gov (United States)

    Cunningham, T.; Fitzsimmons, M. J.

    1997-01-01

    A multiplexer and buffer based on GaAs JFET technology is presented. This multiplexer operates normally from room temperature down to 4 Kelvin and is suitable for the readout of Very Long Wavelength Infrared Detectors that must be cooled to below 10 Kelvin.