WorldWideScience

Sample records for ap1000 fuel assembly

  1. Optimization of plutonium and minor actinide transmutation in an AP1000 fuel assembly via a genetic search algorithm

    Energy Technology Data Exchange (ETDEWEB)

    Washington, J., E-mail: jwashing@gmail.com; King, J., E-mail: kingjc@mines.edu

    2017-01-15

    Highlights: • We model a modified AP1000 fuel assembly in SCALE6.1. • We couple the NEWT module of SCALE to the MOGA module of DAKOTA. • Transmutation is optimized based on choice of coating and fuel. • Greatest transmutation achieved with PuZrO{sub 2}MgO fuel pins coated with Lu{sub 2}O{sub 3}. - Abstract: The average nuclear power plant produces twenty metric tons of used nuclear fuel per year, which contains approximately 95 wt% uranium, 1 wt% plutonium, and 4 wt% fission products and transuranic elements. Fast reactors are the preferred option for the transmutation of plutonium and minor actinides; however, an optimistic deployment time of at least 20 years indicates a need for a near-term solution. Previous simulation work demonstrated the potential to transmute transuranic elements in a modified light water reactor fuel pin. This study optimizes a quarter-assembly containing target fuels coated with spectral shift absorbers for the transmutation of plutonium and minor actinides in light water reactors. The spectral shift absorber coating on the target fuel pin tunes the neutron energy spectrum experienced by the target fuel. A coupled model developed using the NEWT module from SCALE 6.1 and a genetic algorithm module from the DAKOTA optimization toolbox provided performance data for the burnup of the target fuel pins in the present study. The optimization with the coupled NEWT/DAKOTA model proceeded in three stages. The first stage optimized a single-target fuel pin per quarter-assembly adjacent to the central instrumentation channel. The second stage evaluated a variety of quarter-assemblies with multiple target fuel pins from the first stage and the third stage re-optimized the pins in the optimal second stage quarter-assembly. An 8 wt% PuZrO{sub 2}MgO inert matrix fuel pin with a 1.44 mm radius and a 0.06 mm Lu{sub 2}O{sub 3} coating in a five target fuel pin per quarter-assembly configuration represents the optimal combination for the

  2. Fuel burn-up distribution and transuranic nuclide contents produced at the first cycle operation of AP1000

    International Nuclear Information System (INIS)

    Jati Susilo; Jupiter Sitorus Pane

    2016-01-01

    AP1000 reactor core was designed with nominal power of 1154 MWe (3415 MWth), operated within life time of 60 years and cycle length of 18 months. For the first cycle, the AP1000 core uses three kinds of UO 2 enrichment, they are 2.35 w/o, 3.40 w/o and 4.45 w/o. Absorber materials such as ZrB 2 , Pyrex and Boron solution are used to compensate the excess reactivity at the beginning of cycle. In the core, U-235 fuels are burned by fission reaction and produce energy, fission products and new neutron. Because of the U-238 neutron absorption reaction, the high level radioactive waste of heavy nuclide transuranic such as Pu, Am, Cm and Np are also generated. They have a very long half life. The purpose of this study is to evaluate the result of fuel burn-up distribution and heavy nuclide transuranic contents produced by AP1000 at the end of first cycle operation (EOFC). Calculation of ¼ part of the AP1000 core in the 2 dimensional model has been done using SRAC2006 code with the module of COREBN/HIST. The input data called the table of macroscopic cross section, is calculated using module of PIJ. The result shows that the maximum fuel assembly (FA) burn-up is 27.04 GWD/MTU, that is still lower than allowed maximum burn-up of 62 GWD/MTU. Fuel loading position at the center/middle of the core will produce bigger burn-up and transuranic nuclide than one at the edges the of the core. The use of IFBA fuel just give a small effect to lessen the fuel burn-up and transuranic nuclide production. (author)

  3. AP1000{sup R} nuclear power plant safety overview for spent fuel cooling

    Energy Technology Data Exchange (ETDEWEB)

    Gorgemans, J.; Mulhollem, L.; Glavin, J.; Pfister, A.; Conway, L.; Schulz, T.; Oriani, L.; Cummins, E.; Winters, J. [Westinghouse Electric Company LLC, 1000 Westinghouse Drive, Cranberry Township, PA 16066 (United States)

    2012-07-01

    The AP1000{sup R} plant is an 1100-MWe class pressurized water reactor with passive safety features and extensive plant simplifications that enhance construction, operation, maintenance, safety and costs. The AP1000 design uses passive features to mitigate design basis accidents. The passive safety systems are designed to function without safety-grade support systems such as AC power, component cooling water, service water or HVAC. Furthermore, these passive features 'fail safe' during a non-LOCA event such that DC power and instrumentation are not required. The AP1000 also has simple, active, defense-in-depth systems to support normal plant operations. These active systems provide the first level of defense against more probable events and they provide investment protection, reduce the demands on the passive features and support the probabilistic risk assessment. The AP1000 passive safety approach allows the plant to achieve and maintain safe shutdown in case of an accident for 72 hours without operator action, meeting the expectations provided in the U.S. Utility Requirement Document and the European Utility Requirements for passive plants. Limited operator actions are required to maintain safe conditions in the spent fuel pool via passive means. In line with the AP1000 approach to safety described above, the AP1000 plant design features multiple, diverse lines of defense to ensure spent fuel cooling can be maintained for design-basis events and beyond design-basis accidents. During normal and abnormal conditions, defense-in-depth and other systems provide highly reliable spent fuel pool cooling. They rely on off-site AC power or the on-site standby diesel generators. For unlikely design basis events with an extended loss of AC power (i.e., station blackout) or loss of heat sink or both, spent fuel cooling can still be provided indefinitely: - Passive systems, requiring minimal or no operator actions, are sufficient for at least 72 hours under all

  4. Spent fuel pool spray cooling system for the AP1000 {sup registered}

    Energy Technology Data Exchange (ETDEWEB)

    Vujic, Zoran; Sassen, Felix; Tietsch, Wolfgang [Westinghouse Electric Germany GmbH, Mannheim (Germany)

    2013-07-01

    The AP1000 {sup registered} plant design features multiple, diverse lines of defense to ensure spent fuel cooling can be maintained for Design Basis Events and Beyond Design Basis Accidents (BDBA). The AP1000 {sup registered} plant lines of defense with respect to Spent Fuel Pool (SFP) cooling are as follows: 1. During normal and abnormal conditions, defense-in-depth and duty systems provide highly reliable SFP cooling, supplied by offsite AC power or the onsite Standby Diesel Generators. 2. For unlikely events with extended loss of AC power (i.e. station black-out) and/or loss of heat sink, spent fuel cooling can be still provided indefinitely by: 2a. Passive systems, requiring minimal or no operator actions, sufficient for at least 72 hours under all possible loading conditions. 2b. After 3 days, several different means are provided to continue SFP cooling using installed plant equipment as well as off-site equipment with built-in connections. 3. Even for BDBA with postulated SFP damage and multiple failures in the passive safety-related systems and in the defense-in-depth active systems, the AP1000 {sup registered} SFP Spray System provides an additional line of defense to prevent spent fuel damage. (orig.)

  5. AP1000 core design with 50% MOX loading

    International Nuclear Information System (INIS)

    Fetterman, Robert J.

    2009-01-01

    The European uility requirements (EUR) document states that the next generation European passive plant (EPP) reactor core design shall be optimized for UO 2 fuel assemblies, with provisions made to allow for up to 50% mixed-oxide (MOX) fuel assemblies. The use of MOX in the core design will have significant impacts on key physics parameters and safety analysis assumptions. Furthermore, the MOX fuel rod design must also consider fuel performance criterion important to maintaining the integrity of the fuel rod over its intended lifetime. The purpose of this paper is to demonstrate that the AP1000 is capable of complying with the EUR requirement for MOX utilization without significant changes to the design of the plant. The analyses documented within will compare a 100% UO 2 core design and a mixed MOX/UO 2 core design, discussing relevant results related to reactivity management, power margin and fuel rod performance

  6. AP1000 core design with 50% MOX loading

    International Nuclear Information System (INIS)

    Fetterman, Robert J.

    2008-01-01

    The European Utility Requirements (EUR) document states that the next generation European Passive Plant (EPP) reactor core design shall be optimized for UO 2 fuel assemblies, with provisions made to allow for up to 50% mixed-oxide (MOX) fuel assemblies. The use of MOX in the core design will have significant impacts on key physics parameters and safety analysis assumptions. Furthermore, the MOX fuel rod design must also consider fuel performance criterion important to maintaining the integrity of the fuel rod over its intended lifetime. The purpose of this paper is to demonstrate that the AP1000 is capable of complying with the EUR requirement for MOX utilization without significant changes to the design of the plant. The analyses documented within will compare a 100% UO 2 core and a mixed MOX / UO 2 core design, discussing relevant results related to reactivity management, power margin and fuel rod performance. (authors)

  7. Operational indices of WWER-1000 fuel assemblies and their improvements

    Energy Technology Data Exchange (ETDEWEB)

    Vasilchenko, I; Demin, E [Opytno-Konstruktorskoe Byuro Gidropress, Podol` sk (Russian Federation)

    1994-12-31

    The most general design features of WWER-1000 fuel assembly are discussed. The following advantages of design are stated as well as their operational confirmation and occurrences: (1) `packing` density (tight-lattice) of fuel rods within the fuel assemblies; (2) simple handling of fuel assemblies and its small vulnerability; (3) good conditions for coolant mixing; (4) protection of the absorber rods against coolant effect; (5) adaptability to manufacture that provides stable quality. The main operational indices gathered during a ten-year period (1982-1992) at 17 WWER-1000 units in Russia and Ukraine are outlined. Provisions for emergency protection reliability are described. Future directions to improve fuel economy and control rod operability are discussed. 1 fig.

  8. Operational indices of WWER-1000 fuel assemblies and their improvements

    International Nuclear Information System (INIS)

    Vasilchenko, I.; Demin, E.

    1994-01-01

    The most general design features of WWER-1000 fuel assembly are discussed. The following advantages of design are stated as well as their operational confirmation and occurrences: 1) 'packing' density (tight-lattice) of fuel rods within the fuel assemblies; 2) simple handling of fuel assemblies and its small vulnerability; 3) good conditions for coolant mixing; 4) protection of the absorber rods against coolant effect; 5) adaptability to manufacture that provides stable quality. The main operational indices gathered during a ten-year period (1982-1992) at 17 WWER-1000 units in Russia and Ukraine are outlined. Provisions for emergency protection reliability are described. Future directions to improve fuel economy and control rod operability are discussed. 1 fig

  9. AP1000 core design with 50% MOX loading

    Energy Technology Data Exchange (ETDEWEB)

    Fetterman, Robert J. [Westinghouse Electric Company, LLC, Pittsburgh, PA (United States)

    2008-07-01

    The European Utility Requirements (EUR) document states that the next generation European Passive Plant (EPP) reactor core design shall be optimized for UO{sub 2} fuel assemblies, with provisions made to allow for up to 50% mixed-oxide (MOX) fuel assemblies. The use of MOX in the core design will have significant impacts on key physics parameters and safety analysis assumptions. Furthermore, the MOX fuel rod design must also consider fuel performance criterion important to maintaining the integrity of the fuel rod over its intended lifetime. The purpose of this paper is to demonstrate that the AP1000 is capable of complying with the EUR requirement for MOX utilization without significant changes to the design of the plant. The analyses documented within will compare a 100% UO{sub 2} core and a mixed MOX / UO{sub 2} core design, discussing relevant results related to reactivity management, power margin and fuel rod performance. (authors)

  10. AP1000 core design with 50% MOX loading

    Energy Technology Data Exchange (ETDEWEB)

    Fetterman, Robert J. [Westinghouse Electric Company, LLC, Pittsburgh, PA (United States)], E-mail: fetterrj@westinghouse.com

    2009-04-15

    The European uility requirements (EUR) document states that the next generation European passive plant (EPP) reactor core design shall be optimized for UO{sub 2} fuel assemblies, with provisions made to allow for up to 50% mixed-oxide (MOX) fuel assemblies. The use of MOX in the core design will have significant impacts on key physics parameters and safety analysis assumptions. Furthermore, the MOX fuel rod design must also consider fuel performance criterion important to maintaining the integrity of the fuel rod over its intended lifetime. The purpose of this paper is to demonstrate that the AP1000 is capable of complying with the EUR requirement for MOX utilization without significant changes to the design of the plant. The analyses documented within will compare a 100% UO{sub 2} core design and a mixed MOX/UO{sub 2} core design, discussing relevant results related to reactivity management, power margin and fuel rod performance.

  11. AP1000 station blackout study with and without depressurization using RELAP5/SCDAPSIM

    Energy Technology Data Exchange (ETDEWEB)

    Trivedi, A.K. [Nuclear Engineering and Technology Program, Indian Institute of Technology, Kanpur 208016 (India); Allison, C. [Innovative Systems Software Idaho Falls, ID 83406 (United States); Khanna, A., E-mail: akhanna@iitk.ac.in [Nuclear Engineering and Technology Program, Indian Institute of Technology, Kanpur 208016 (India); Munshi, P. [Nuclear Engineering and Technology Program, Indian Institute of Technology, Kanpur 208016 (India)

    2016-10-15

    Highlights: • A representative RELAP5/SCDAPSIM model of AP1000 has been developed. • Core is modeled using SCDAP. • A SBO for the AP1000 has been simulated for high pressure (no depressurization) and low pressure (depressurization). • Significant differences in the damage progression have been observed for the two cases. • Results also reinforced the fact that surge line fails before vessel failure in case of high pressure scenario. - Abstract: Severe accidents like TMI-2, Chernobyl, Fukushima made it inevitable to analyze station blackout (SBO) for all the old as well as new designs although it is not a regulatory requirement in most of the countries. For such improbable accidents, a SBO for the AP1000 using RELAP5/SCDAPSIM has been simulated. Many improvements have been made in fuel damage progression models of SCDAP after the Fukushima accident which are now being tested for the new reactor designs. AP1000 is a 2-loop pressurized water reactor (PWR) with all the emergency core cooling systems based on natural circulation. Its core design is very similar to 3-loop PWR with 157 fuel assemblies. The primary circuit pumps, pressurizer and steam generators (with necessary secondary side) are modeled using RELAP5. The core has been divided into 20 axial nodes and 6 radial rings; the corresponding six groups of assemblies have been modeled as six pipe components with proportionate flow area. Fuel assemblies are modeled using SCDAP fuel and control components. SCDAP has 2d-heat conduction and radiative heat transfer, oxidation and complete severe fuel damage progression models. The final input deck achieved all the steady state thermal hydraulic conditions comparable to the design control document of AP1000. To quantify the core behavior, under unavailability of all safety systems, various time profiles for SBO simulations @ high pressure and low pressure have been compared. This analysis has been performed for 102% (3468 MWt) of the rated core power. The

  12. Development of Fuel ROd Behavior Analysis code (FROBA) and its application to AP1000

    International Nuclear Information System (INIS)

    Yu, Hongxing; Tian, Wenxi; Yang, Zhen; SU, G.H.; Qiu, Suizheng

    2012-01-01

    Highlights: ► A Fuel ROd Behavior Analysis code (FROBA) has been developed. ► The effects irradiation and burnup has been considered in FROBA. ► The comparison with INL’s results shows a good agreement. ► The FROBA code was applied to AP1000. ► Peak fuel temperature, gap width, hoop strain, etc. were obtained. -- Abstract: The reliable prediction of nuclear fuel rod behavior is of great importance for safety evaluation of nuclear reactors. In the present study, a thermo-mechanical coupling code FROBA (Fuel ROd Behavior Analysis) has been independently developed with consideration of irradiation and burnup effects. The thermodynamic, geometrical and mechanical behaviors have been predicted and were compared with the results obtained by Idaho National Laboratory to validate the reliability and accuracy of the FROBA code. The validated code was applied to analyze the fuel behavior of AP1000 at different burnup levels. The thermal results show that the predicted peak fuel temperature experiences three stages in the fuel lifetime. The mechanical results indicate that hoop strain at high power is greater than that at low power, which means that gap closure phenomenon will occur earlier at high power rates. The maximum cladding stress meets the requirement of yield strength limitation in the entire fuel lifetime. All results show that there are enough safety margins for fuel rod behavior of AP1000 at rated operation conditions. The FROBA code is expected to be applied to deal with more complicated fuel rod scenarios after some modifications.

  13. Main results of post-irradiation examinations of new-generation fuel assemblies VVER-1000

    International Nuclear Information System (INIS)

    Zvir, E.; Markov, D.; Polenok, V.; Zhitelev, V.; Kobylyansky, G.

    2009-01-01

    To increase the competitiveness of Russian nuclear fuel at the foreign market and to improve its technical and economic performance in order to provide a necessary level of safety, it is necessary to solve certain important tasks: Increase of fuel burn-up; Extension of operational lifetime of fuel assemblies and operational reliability of nuclear fuel; Introduction of cost-beneficial and flexible fuel cycles. Alternative fuel assemblies TVSA VVER-1000 and TVS-2 are used as a basis to optimize the nuclear fuel and develop advanced fuel cycles for nuclear power plants with VVER-1000 reactor types. Four fuel assemblies TVSA operated during 1 and up to 6 reactor cycles, reference fuel assembly TVS-2 operated during three reactor cycles and achieved an average fuel burnup of 48MW·day/kgU as well as failed fuel assembly TVS-2 operated during one cycle were examined at RIAR in recent years. The main objectives of these examinations were to obtain experimental data in support of operational integrity of products or to find out reasons of their failure. The performed post-irradiation examinations confirmed the operational integrity of alternative fuel assemblies TVSA including their geometrical stability up to the average fuel burnup of 55 MW·day/kgU over the fuel assembly (FA) (up to the maximal fuel burnup of ∼73 MW·day/kgU in fuel rods) and of TVS-2 up to the average fuel burnup of 48 MW·day/kgU over the fuel assembly. The changes introduced in the design of VVER-1000 fuel assembly during the development of alternative fuel assembly TVSA and TVS-2 did not make any negative effect on fuel rods. It was proved that causes of fuel rod failure were not related to design features of fuel assemblies. The design features and operating conditions of fuel assemblies under examinations are briefly described. Post-irradiation examinations proved the geometrical stability of fuel assemblies TVSA and TVS-2 under operation up to the fuel burnup of ∼50 MW day/kgU, as for the

  14. AP1000 design and construction integration

    International Nuclear Information System (INIS)

    Winters, James W.; Clelland, Jill A.

    2004-01-01

    Construction costs of commercial nuclear generating plants must be reduced in order to expand the future use of nuclear energy. Two of the drivers of plant construction costs are the cost of financing during the construction duration and the substantial amount of skilled craft labor hours needed on site during construction. The application of information technology (IT) has been used to understand and reduce both of these drivers by establishing parallel construction paths using modules and integrating construction sequence review into the design process. In a program sponsored by EPRI, Westinghouse has modeled the construction of AP1000 in '4D' to show its viability, to improve its logic, to improve the plant design for constructibility and overall to reduce time and risk in the construction schedule. The design of most of AP1000 was constrained to be a duplicate of AP600 except where components required expansion for the higher power level. As a result, the construction schedule for AP1000 is as mature and as robust as that for AP600. Two areas important to the construction of AP1000 did require some design work because they could not remain the same as AP1000. First, the turbine building had to be redesigned to accommodate the larger turbine and its support systems. Again, as much of the AP600 design and philosophy as possible was retained. The building required enlargement and the basemat, foundations, steel structure and structural modules required modification. As concrete, steel, and equipment were defined by the designers, they were matched to the original AP600 turbine building schedule. This forced designers to assemble files to be consistent with building assembly activities and to think about constructibility as they defined the final design. Second, the reinforcement structure within the concrete under and supporting the containment vessel required detail design. Westinghouse was fortunate to have the constructor Obayashi of Japan recommend a detailed

  15. Fuel cycles of WWER-1000 based on assemblies with increased fuel mass

    International Nuclear Information System (INIS)

    Kosourov, E.; Pavlovichev, A.; Shcherenko, A.

    2011-01-01

    Modern WWER-1000 fuel cycles are based on FAs with the fuel column height of 3680 mm, diameters of the fuel pellet and its central hole of 7.6 and 1.2 mm respectively. The highest possible fuel enrichment has reached its license limit that is 4.95 %. Research in the field of modernization, safety justification and licensing of equipment for fuel manufacture, storage and transportation are required for further fuel enrichment increase (above 5 %). So in the nearest future an improvement of technical and economic characteristics of fuel cycles is possible if assembly fuel mass is increased. The available technology of the cladding thinning makes it possible. If the fuel rod outer diameter is constant and the clad inner diameter is increased to 7.93 mm, the diameter of the fuel pellet can be increased to 7.8 mm. So the suppression of the pellet central hole allows increasing assembly fuel weight by about 8 %. In this paper we analyze how technical and economic characteristics of WWER-1000 fuel cycle change when an advanced FA is applied instead of standard one. Comparison is made between FAs with equal time interval between refueling. This method of comparison makes it possible to eliminate the parameters that constitute the operation component of electricity generation cost, taking into account only the following technical and economic characteristics: 1)cycle length; 2) average burnup of spent FAs; 3) specific natural uranium consumption; 4)specific quantity of separative work units; 5) specific enriched uranium consumption; 6) specific assembly consumption. Collected data allow estimating the efficiency of assembly fuel weight increase and verifying fuel cycle characteristics that may be obtained in the advanced FAs. (authors)

  16. Post-accident cooling capacity analysis of the AP1000 passive spent fuel pool cooling system

    International Nuclear Information System (INIS)

    Su Xia

    2013-01-01

    The passive design is used in AP1000 spent fuel pool cooling system. The decay heat of the spent fuel is removed by heating-boiling method, and makeup water is provided passively and continuously to ensure the safety of the spent fuel. Based on the analysis of the post-accident cooling capacity of the spent fuel cooling system, it is found that post-accident first 72-hour cooling under normal refueling condition and emergency full-core offload condition can be maintained by passive makeup from safety water source; 56 hours have to be waited under full core refueling condition to ensure the safety of the core and the spent fuel pool. Long-term cooling could be conducted through reserved safety interface. Makeup measure is available after accident and limited operation is needed. Makeup under control could maintain the spent fuel at sub-critical condition. Compared with traditional spent fuel pool cooling system design, the AP1000 design respond more effectively to LOCA accidents. (authors)

  17. The change of radial power factor distribution due to RCCA insertion at the first cycle core of AP1000

    Science.gov (United States)

    Susilo, J.; Suparlina, L.; Deswandri; Sunaryo, G. R.

    2018-02-01

    The using of a computer program for the PWR type core neutronic design parameters analysis has been carried out in some previous studies. These studies included a computer code validation on the neutronic parameters data values resulted from measurements and benchmarking calculation. In this study, the AP1000 first cycle core radial power peaking factor validation and analysis were performed using CITATION module of the SRAC2006 computer code. The computer code has been also validated with a good result to the criticality values of VERA benchmark core. The AP1000 core power distribution calculation has been done in two-dimensional X-Y geometry through ¼ section modeling. The purpose of this research is to determine the accuracy of the SRAC2006 code, and also the safety performance of the AP1000 core first cycle operating. The core calculations were carried out with the several conditions, those are without Rod Cluster Control Assembly (RCCA), by insertion of a single RCCA (AO, M1, M2, MA, MB, MC, MD) and multiple insertion RCCA (MA + MB, MA + MB + MC, MA + MB + MC + MD, and MA + MB + MC + MD + M1). The maximum power factor of the fuel rods value in the fuel assembly assumedapproximately 1.406. The calculation results analysis showed that the 2-dimensional CITATION module of SRAC2006 code is accurate in AP1000 power distribution calculation without RCCA and with MA+MB RCCA insertion.The power peaking factor on the first operating cycle of the AP1000 core without RCCA, as well as with single and multiple RCCA are still below in the safety limit values (less then about 1.798). So in terms of thermal power generated by the fuel assembly, then it can be considered that the AP100 core at the first operating cycle is safe.

  18. Study on modular construction management in AP1000 nuclear plant project

    International Nuclear Information System (INIS)

    Fang Xiaopeng; Shen Wenrong; Sun Kebin; Wei Zhong

    2010-01-01

    The construction of AP1000 Nuclear Power Plant (NPP) has commenced in China. The AP1000 NPP features a passive design concept and modular construction technology. Based on the management of the construction of current AP1000 NNP, this paper describes the effects on Nuclear Island (NI) construction project management resulting from modular construction technology, as well as new construction techniques and methods. This paper puts forward new requirements for construction schedule management of the nuclear island construction at different levels. The AP1000 NI construction logic features the parallel construction of civil and structural erection as the main approach, with the integrated schedule of module fabrication, assembly and installation as support. The structural modules of AP1000 project are prefabricated in shop, delivered to site as sub-modules and assembled to integrated structural module. The assembled module is transported to the construction site, hoisted and finally set in NI. This paper illustrates how to ensure the construction quality of structural modules by analyzing the interface process and key links in the quality control program, and introduces how to ensure the safety of heavy structural components during various construction phases by evaluating and analyzing the construction safety process. This paper also makes an analysis of the safe environment for the assembly and installation of Containment Vessel, the management of product protection and personnel safety inside the Containment Building during 'Open Top' construction, raises to implement effective protection for the numerous pre-set mechanical modules and equipments, as well as personnel safety protection programs and measures. The modular construction feature of AP1000 NPP design requires technique improvement and management innovation during the NI construction. This paper makes a study and research on the control management of schedule, quality and safety of AP1000 NPP NI

  19. A neutronic feasibility study of the AP1000 design loaded with fully ceramic micro-encapsulated fuel

    International Nuclear Information System (INIS)

    Liang, C.; Ji, W.

    2013-01-01

    A neutronic feasibility study is performed to evaluate the utilization of fully ceramic microencapsulated (FCM) fuel in the AP1000 reactor design. The widely used Monte Carlo code MCNP is employed to perform the full core analysis at the beginning of cycle (BOC). Both the original AP1000 design and the modified design with the replacement of uranium dioxide fuel pellets with FCM fuel compacts are modeled and simulated for comparison. To retain the original excess reactivity, ranges of fuel particle packing fraction and fuel enrichment in the FCM fuel design are first determined. Within the determined ranges, the reactor control mechanism employed by the original design is directly used in the modified design and the utilization feasibility is evaluated. The worth of control of each type of fuel burnable absorber (discrete/integral fuel burnable absorbers and soluble boron in primary coolant) is calculated for each design and significant differences between the two designs are observed. Those differences are interpreted by the fundamental difference of the fuel form used in each design. Due to the usage of silicon carbide as the matrix material and the fuel particles fuel form in FCM fuel design, neutron slowing down capability is increased in the new design, leading to a much higher thermal spectrum than the original design. This results in different reactivity and fission power density distributions in each design. We conclude that a direct replacement of fuel pellets by the FCM fuel in the AP1000 cannot retain the original optimum reactor core performance. Necessary modifications of the core design should be done and the original control mechanism needs to be re-designed. (authors)

  20. Methodology of thermalhydraulic tests of fuel assemblies for WWER-1000

    International Nuclear Information System (INIS)

    Archipov, A.; Kolochko, V.N.

    2001-01-01

    At present 11 units with WWER-1000 are in operation in Ukraine. The NPPs are provided with nuclear fuel from Russia. The fuel assemblies are fabricated and delivered to Ukrainian NPPs from Russia. However the contemporary tendencies of nuclear energy development in the world assume a diversification of nuclear fuel vendors. Therefore the creation of the own nuclear fuel cycle of Ukraine is in mind in the strategy of nuclear energy development of Ukraine. As a part of the fuel assemblies fabrication process complex of the thermalhydraulic tests should be carried out to confirm design characteristics of the fuel assemblies before they are loaded in the reactor facility. The experimental basis and scientific infrastructure for the thermalhydraulic tests arrangement and realization of the programs and procedures for the core equipment examination are under consideration. (author)

  1. Essence and characteristics of the Westinghouse technology AP1000

    International Nuclear Information System (INIS)

    Llovet, Ricardo

    2014-01-01

    The AP1000 nuclear power plant can place the reactor in a Safe Shutdown Condition within the first 72 hours of a Station Blackout, without the use of AC power or operator action •With some operator action after 3 days, the AP1000 nuclear power plant continues to maintain reactor core cooling and Spent Fuel Pool cooling indefinitely •The AP1000 nuclear power plant has superior coping capabilities as well as significantly reduced risk for core damage

  2. Study of impact of the AP1000{sup Registered-Sign} reactor vessel upper internals design on fuel performance

    Energy Technology Data Exchange (ETDEWEB)

    Xu Yiban; Conner, Michael; Yuan Kun; Dzodzo, Milorad B.; Karoutas, Zeses; Beltz, Steven A.; Ray, Sumit; Bissett, Teresa A. [Westinghouse Electric Company, Cranberry Township, PA 16066 (United States); Chieng, Ching-Chang, E-mail: cchieng@ess.nthu.edu.tw [National Tsing Hua University, Hsinchu 30043, Taiwan (China); Kao, Min-Tsung; Wu, Chung-Yun [National Tsing Hua University, Hsinchu 30043, Taiwan (China)

    2012-11-15

    One aspect of the AP1000{sup Registered-Sign} reactor design is the reduction in the number of major components and simplification in manufacturing. One design change relative to current Westinghouse reactors of similar size is the reduction in the number of reactor vessel outlet nozzles/hot legs leaving the upper plenum from three to two. With regard to fuel performance, this design difference creates a different flow field in the AP1000 reactor vessel upper plenum (the region above the core). The flow exiting core and entering the upper plenum must turn 90 Degree-Sign , flow laterally through the upper plenum around support structures, and exit through one of the two outlet nozzles. While the flow in the top of the core is mostly axial, there is some lateral flow component as the core flow reacts to the flow field and pressure distribution in the upper plenum. The pressure distribution in the upper plenum varies laterally depending upon various factors including the proximity to the outlet nozzles. To determine how the lateral flow in the top of the AP1000 core compares to current Westinghouse reactors, a computational fluid dynamics (CFD) model of the flow in the upper portion of the AP1000 reactor vessel including the top region of the core, the upper plenum, the reactor vessel outlet nozzles, and a portion of the hot legs was created. Due to geometric symmetry, the computational domain was reduced to a quarter (from the top view) that includes Vulgar-Fraction-One-Quarter of the top of the core, Vulgar-Fraction-One-Quarter of the upper plenum, and Vulgar-Fraction-One-Half of an outlet nozzle. Results from this model include predicted velocity fields and pressure distributions throughout the model domain. The flow patterns inside and around guide tubes clearly demonstrate the influence of lateral flow due to the presence of the outlet nozzles. From these results, comparisons of AP1000 flow versus current Westinghouse plants were performed. Field performance

  3. AP1000 - the new standard for nuclear power

    International Nuclear Information System (INIS)

    Lipman, Daniel S.

    2006-01-01

    Full text of publication follows: The AP1000 is the only Generation III+ reactor to receive Final Design Approval (FDA) from the Nuclear Regulatory Commission, and is expected to receive its Design Certification by the end of the year. Building on the proven features of current generation nuclear plants, the AP1000 combines experience with innovation into a design that surpasses current standards of safety and reliability. Use of passive safety features results in a simpler and more compact design that enhances safety, simplifies O and M requirements, and reduces capital and operating costs. At 1117 Mwe, the AP1000 is well suited for almost any grid system and will be fully competitive with combined-cycle gas and comparable fossil fuel plants. The AP1000 is ready to help launch a renaissance in new nuclear plant construction throughout the world. Maturity of Design: In excess of 1300 man-years and $400 million in development funding have been expended on the AP1000. It has undergone extensive, part scale testing at the system, sub-system and component level, in addition to a series of part scale integrated tests. The AP1000 is the most analyzed of the next generation reactors. Simplicity of Design/Economics: The AP1000 uses simplified and innovative passive safety systems to an unprecedented extent. Simplified passive safety systems provide reliable operation, reduced capital costs, and enhanced plant safety with large plant operating margins. The AP1000 features improved reliability through simplicity rather than addition of redundant safety trains. This simpler design is easier and less costly to operate and maintain than larger, more complex plants, while less equipment and smaller buildings translate into lower capital costs and shorter construction durations. After construction, economic benefit will be found in reduced operating and maintenance costs, largely due to reduced operating and maintenance staffing requirements. Construction aspects

  4. Westinghouse AP1000 licensing maturity

    International Nuclear Information System (INIS)

    Schulz, T.; Vijuk, R.P.

    2005-01-01

    The Westinghouse AP1000 Program is aimed at making available a nuclear power plant that is economical in the U.S deregulated electrical power industry in the near-term. The AP1000 is two-loop 1000 MWe pressurizer water reactor (PWR). It is an up rated version of the AP600. The AP1000 uses passive safety systems to provide significant and measurable improvements in plant simplification, safety, reliability, investment protection and plant costs. The AP1000 uses proven technology, which builds on over 35 years of operating PWR experience. The AP1000 received Final Design Approval by the United States Nuclear Regulatory Commission (U.S. NRC) in September 2004. The AP1000 meets the US utility requirements. The AP1000 and its sister plant the AP600 have gone through a very through and complete licensing review. This paper describes the U.S. NRC review efforts of both the AP600 and the AP1000. The detail of the review and the independent calculations, evaluations and testing is discussed. The AP600 licensing documentation was submitted in 1992. The U.S. NRC granted Final Design Approval in 1999. During the intervening 7 years, the U.S. NRC asked thousands of questions, performed independent safety analysis, audited Westinghouse calculations and analysis, and performed independent testing. The more significant areas of discussion will be described. For the AP1000 Westinghouse first engaged the U.S. NRC in pre-certification discussions to define the extent of the review required, since the design is so similar to the AP600. The AP1000 licensing documentation was submitted in March 2002. The U.S. NRC granted Final Design Approval in September 2004. During the intervening 2 1/2 years, the U.S. NRC asked hundreds of questions, performed independent safety analysis, audited Westinghouse calculations and analysis, and performed independent testing. The more significant areas of discussion will be described. The implications of this review and approval on AP1000 applications in

  5. Enhancing AP1000 reactor accident management capabilities for long term accidents

    International Nuclear Information System (INIS)

    Jiang Pingting; Liu Mengying; Duan Chengjie; Liao Yehong

    2015-01-01

    Passive safety actions are considered as main measures under severe accident in AP1000 power plant. However, risk is still existed. According to PSA, several probable scenarios for AP1000 nuclear power plant are analyzed in this paper with MAAP the severe accident analysis code. According to the analysis results, several deficiencies of AP1000 severe accident management are found. The long term cooling and containment depressurization capability for AP1000 power plant appear to be most important factors under such accidents. Then, several temporary strategies for AP1000 power plant are suggested, including PCCWST temporary water supply strategy after 72h, temporary injection strategy for IRWST, hydrogen relief action in fuel building, which would improve the safety of AP1000 power plant. At last, assessments of effectiveness for these strategies are performed, and the results are compared with analysis without these strategies. The comparisons showed that correct actions of these strategies would effectively prevent the accident process of AP1000 power plant. (author)

  6. AP1000 Design for Security

    International Nuclear Information System (INIS)

    Long, L.B.; Cummins, W.E.; Winters, J.W.

    2006-01-01

    Nuclear power plants are protected from potential security threats through a combination of robust structures around the primary system and other vital equipment, security systems and equipment, and defensive strategy. The overall objective for nuclear power plant security is to protect public health and safety by ensuring that attacks or sabotage do not challenge the ability to safely shutdown the plant or protect from radiological releases. In addition, plants have systems, features and operational strategies to cope with external conditions, such as loss of offsite power, which could be created as part of an attack. Westinghouse considered potential security threats during design of the AP1000 PWR. The differences in plant configuration, safety system design, and safe shutdown equipment between existing plants and AP1000 affect potential vulnerabilities. This paper provides an evaluation of AP1000 with respect to vulnerabilities to security threats. The AP1000 design differs from the design of operating PWRs in the US in the configuration and the functional requirements for safety systems. These differences are intentional departures from conventional PWR designs which simplify plant design and enhance overall safety. The differences between the AP1000 PWR and conventional PWRs can impact vulnerabilities to security threats. The NRC addressed security concerns as part of their reviews for AP1000 Design Certification, and did not identify any security issues of concern. However, much of the detailed security design information for the AP1000 was deferred to the combined Construction and Operating License (COL) phase as many of the security issues are site-specific. Therefore, NRC review of security issues related to the AP1000 is not necessarily complete. Further, since the AP1000 plant design differs from existing PWRs, it is not obvious that the analyses and assessments prepared for existing plants also apply to the AP1000. We conclude that, overall, the AP1000

  7. Westinghouse AP1000® PWR: Meeting Customer Commitments and Market Needs

    International Nuclear Information System (INIS)

    Shulyak, Nick

    2014-01-01

    Westinghouse Electric Company once again sets a new industry standard with the AP1000 reactor. Historically, Westinghouse plant designs and technology have forged the cutting edge of worldwide nuclear technology. Today, about 50 percent of the world's 440 nuclear plants are based on Westinghouse technology. The AP1000 is the safest and most economical nuclear power plant available in the worldwide commercial marketplace, and is the only Generation III+ reactor to receive Design Certification from the U.S. Nuclear Regulatory Commission (NRC). The AP1000 features proven technology, innovative passive safety systems and offers: Unequalled safety, Economic competitiveness, Improved and more efficient operations. The AP1000 builds and improves upon the established technology of major components used in current Westinghouse-designed plants with proven, reliable operating experience over the past 50 years. These components include: Steam generators, Digital instrumentation and controls, Fuel, Pressurizers, Reactor vessels. Simplification was a major design objective for the AP1000. The simplified plant design includes overall safely systems, normal operating systems, the control room, construction techniques, and instrumentation and control systems. The result is a plant that is easier and less expensive to build, operate and maintain. The AP1000 design saves money and time with an accelerated construction time period of approximately 36 months, from the pouring of first concrete to the loading of fuel. Also, the innovative AP1000 features: 50% fewer safety-related valves, 80% less safety-related piping, 85% less control cable, 35% fewer pumps , 45% less seismic building volume. Eight AP1000 units under construction worldwide-Four units in China-Four units in the United States. (author)

  8. RELAP5/SCDAPSIM model development for AP1000 and verification for large break LOCA

    Energy Technology Data Exchange (ETDEWEB)

    Trivedi, A.K. [Nuclear Engineering and Technology Program, Indian Institute of Technology, Kanpur 208016 (India); Allison, C. [Innovative Systems Software, Idaho Falls, ID 83406 (United States); Khanna, A., E-mail: akhanna@iitk.ac.in [Nuclear Engineering and Technology Program, Indian Institute of Technology, Kanpur 208016 (India); Munshi, P. [Nuclear Engineering and Technology Program, Indian Institute of Technology, Kanpur 208016 (India)

    2016-08-15

    Highlights: • RELAP5/SCDAPSIM model of AP1000 has been developed. • Analysis involves a LBLOCA (double ended guillotine break) study in cold leg. • Results are compared with those of WCOBRA–TRAC and TRACE. • Concluded that PCT does not violate the safety criteria of 1477 K. - Abstract: The AP1000 is a Westinghouse 2-loop pressurized water reactor (PWR) with all emergency core cooling systems based on natural circulation. Its core design is very similar to a 3-loop PWR with 157 fuel assemblies. Westinghouse has reported their results of the safety analysis in its design control document (DCD) for a large break loss of coolant accident (LOCA) using WCOBRA/TRAC and for a small break LOCA using NOTRUMP. The current study involves the development of a representative RELAP5/SCDASIM model for AP1000 based on publically available data and its verification for a double ended cold leg (DECL) break in one of the cold legs in the loop containing core makeup tanks (CMT). The calculated RELAP5/SCDAPSIM results have been compared to publically available WCOBRA–TRAC and TRACE results of DECL break in AP1000. The objective of this study is to benchmark thermal hydraulic model for later severe accident analyses using the 2D SCDAP fuel rod component in place of the RELAP5 heat structures which currently represent the fuel rods. Results from this comparison provides sufficient confidence in the model which will be used for further studies such as a station blackout. The primary circuit pumps, pressurizer and steam generators (including the necessary secondary side) are modeled using RELAP5 components following all the necessary recommendations for nodalization. The core has been divided into 6 radial rings and 10 axial nodes. For the RELAP5 thermal hydraulic calculation, the six groups of fuel assemblies have been modeled as pipe components with equivalent flow areas. The fuel including the gap and cladding is modeled as a 1d heat structure. The final input deck achieved

  9. Experimental studies of resistance fretting-wear of fuel rods for VVER-1000 and TVS-KVADRAT fuel assemblies

    International Nuclear Information System (INIS)

    Makarov, V.; Afanasiev, A.; Egorov, Yu.; Matvienko, I.

    2015-01-01

    The paper covers the results of the studies performed to justify the wear resistance of fuel rods in contact with the spacer grids of TVS VVER-1000 fuel assembly and TVS-KVADRAT square fuel assembly of Russian design for PWR-900 reactor. The presented results of three testing stages comprise: Testing of mockup fuel rods of VVER TVS fuel assembly for fretting wear under the conditions of the water chemistry of VVER reactor; Testing models of different design embodiments of the fuel rods for VVER TVS fuel assembly for fretting wear in still cold water; Testing mockup fuel rods of TVS-KVADRAT square fuel assembly for PWR reactor for frettingwear under the conditions of PWR water chemistry. The effect of structural and operational factors was determined (amplitudes, fuel rod vibration frequencies, values of cladding-to-spacer grid cell gap for the depth of fuel rod cladding wear etc.), an assessment was made of the threshold values of fuel rod vibration parameters, which, if not exceeded, provide the absence of the fuel rod cladding fretting wear in the fuel rod-to spacer grid contact area. Key words: fretting wear, fuel rod, spacer grid, VVER, PWR (author)

  10. The Westinghouse Advanced Passive Pressurized Water Reactor, AP1000

    International Nuclear Information System (INIS)

    Schene, R.

    2009-01-01

    Featuring proven technology and innovative passive safety systems, the Westinghouse AP1000 pressurized water reactor can achieve competitive generation costs in the current electricity market without emitting harmful greenhouse gases and further harming the environment. Westinghouse Electric Company, the pioneer in nuclear energy once again sets a new industry standard with the AP1000. The AP1000 is a two-loop pressurized water reactor that uses simplified, innovative and effective approach to safety. With a gross power rating of 3415 megawatt thermal and a nominal net electrical output of 1117 megawatt electric, the AP1000 is ideal for new base load generation. The AP1000 is the safest and most economical nuclear power plant available in the worldwide commercial marketplace, and is the only Generation III+ reactor to receive a design certification from the U.S. Nuclear Regulatory Commission (NRC). Based on nearly 20 years of research and development, the AP1000 builds and improves upon the established technology of major components used in current Westinghouse designed plants. These components, including steam generators, digital instrumentation and controls, fuel, pressurizers, and reactor vessels, are currently in use around the world and have years of proven, reliable operating experience. Historically, Westinghouse plant designs and technology have forged the cutting edge technology of nuclear plant around the world. Today, nearly 50 percent of the world's 440 nuclear plants are based on Westinghouse technology. Westinghouse continues to be the nuclear industry's global leader. (author)

  11. AP1000. The PWR revisited

    International Nuclear Information System (INIS)

    Gaio, P.

    2006-01-01

    The distinguishing features of Westinghouse's AP1000 advanced passive pressurized water reactor are highlighted. In particular, the AP1000's passive safety features are described as well as their implications for simplifying the design, construction, and operation of this design compared to currently operating plants, and significantly increasing safety margins over current plants as well. The AP1000 design specifically incorporates the knowledge acquired from the substantial accumulation of power reactor operating experience and benefits from the application of the Probabilistic Risk Assessment in the design process itself. The AP1000 design has been certified by the US Nuclear Regulatory Commission under its new rules for licensing new nuclear plants, 10 CFR Part 52, and is the subject of six combined Construction and Operating License applications now being developed. Currently the AP1000 design is being assessed against the EUR Rev C requirements for new nuclear power plants in Europe. (author)

  12. AP1000: Meeting economic goals in a competitive world. Annex 7

    International Nuclear Information System (INIS)

    Davis, G.; Cummins, E.; Winters, J.

    2002-01-01

    In the U.S., conditions are becoming more favorable for considering the nuclear option again for new baseload generation. While oil and natural gas prices have risen, the cost of operating the existing fleet of nuclear plants has decreased. Furthermore, an advanced 1000 MWe nuclear plant that will be even more cost-competitive with fossil fuels and natural gas will be available by 2005. Westinghouse, in an effort to further improve on the AP600's cost competitiveness, has developed the AP1000, a two-loop, 1000 MWe, advanced pressurized water reactor (PWR) with passive safety features and extensive plant simplifications to enhance the construction, operation, and maintenance. Like the AP600, the AP1000 uses proven technology that builds on over 30 years of operating PWR experience. Westinghouse has completed design studies that demonstrate that it is feasible to increase the power output of the AP600 to at least 1000 MWe, maintaining its current design configuration and licensing basis. To maximize the cost savings, the AP1000 has been designed within the space constraints of the AP600, while retaining the credibility of proven components and substantial safety margins. The affect on the plant's overnight cost of the increased major components that is required to uprate the AP600 to 1000 MWe is small. This overall cost addition is on the order of 11 percent, while the overall power increase is almost 80 percent. This paper describes the changes made to uprate the AP600 and gives an overview of the plant design. (author)

  13. AP1000, a nuclear central of advanced design; AP1000, una central nuclear de diseno avanzado

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez M, N.; Viais J, J. [ININ, 52045 Ocoyoacac, Estado de Mexico (Mexico)]. e-mail: nhm@nuclear.inin.mx

    2005-07-01

    The AP1000 is a design of a nuclear reactor of pressurized water (PWR) of 1000 M We with characteristic of safety in a passive way; besides presenting simplifications in the systems of the plant, the construction, the maintenance and the safety, the AP1000 is a design that uses technology endorsed by those but of 30 years of operational experience of the PWR reactors. The program AP1000 of Westinghouse is focused to the implementation of the plant to provide improvements in the economy of the same one and it is a design that is derived directly of the AP600 designs. On September 13, 2004 the US-NRC (for their initials in United States- Nuclear Regulatory Commission) approved the final design of the AP1000, now Westinghouse and the US-NRC are working on the whole in a complete program for the certification. (Author)

  14. Feasibility of fully ceramic microencapsulated (FCM) replacement fuel assembly for OPR-1000 core fully loaded with FCM fuel assemblies

    Energy Technology Data Exchange (ETDEWEB)

    Lee, W.J.; Lee, K.H.; Kwon, H.; Chun, J.H.; Kim, Y.M. [Korea Atomic Energy Research Inst., Daejeon (Korea, Republic of); Venneri, F. [Ultra Safe Nuclear Corp., Los Alamos, NM (United States)

    2014-07-01

    The feasibility of replacing conventional UO{sub 2} fuel assemblies (FAs) of light water reactors with accident-tolerant fully ceramic microencapsulated (FCM) FAs has been explored referencing OPR-1000, 1000MW{sub e} PWR. An optimum FCM FA design, 16x16 FCM FA with Silicon Carbide-coated Zircaloy cladding, was selected based on core-level scoping analysis for five FCM FA design candidates screened from FA-level study. For the selected FCM FA design, detailed core following analysis from initial to equilibrium cores, initially fully loaded with the FCM FAs, was carried out to quantify core physics parameters. Using these parameters, the core thermal-hydraulics and coated fuel particle performance of the FCM core was assessed, and the safety margin and accident-tolerance of the FCM core was evaluated for limiting design- and beyond design-basis-accidents. From the study, it has been demonstrated that the FCM fuel is a viable option in replacing the OPR-1000 core with enhanced safety and accident tolerance while maintaining the core neutronics, thermal-hydraulics and mechanical compatibility. (author)

  15. AP1000{sup R} severe accident features and post-Fukushima considerations

    Energy Technology Data Exchange (ETDEWEB)

    Scobel, J. H.; Schulz, T. L.; Williams, M. G. [Westinghouse Electric Company, LLC, 1000 Westinghouse Dr., Cranberry Township, PA 16066 (United States)

    2012-07-01

    The AP1000{sup R} passive nuclear power plant is uniquely equipped to withstand an extended station blackout scenario such as the events following the earthquake and tsunami at Fukushima without compromising core and containment integrity. The AP1000 plant shuts down the reactor, cools the core, containment and spent fuel pool for more than 3 days using passive systems that do not require AC or DC power or operator actions. Following this passive coping period, minimal operator actions are needed to extend the operation of the passive features to 7 days using installed equipment. To provide defense-in-depth for design extension conditions, the AP1000 plant has engineered features that mitigate the effects of core damage. Engineered features retain damaged core debris within the reactor vessel as a key feature. Other aspects of the design protect containment integrity during severe accidents, including unique features of the AP1000 design relative to passive containment cooling with water and air, and hydrogen management. (authors)

  16. Westinghouse AP 1000 program status

    International Nuclear Information System (INIS)

    Doehnert, B.

    2002-01-01

    The project 1000 is presented and features are discussed in the paper. Design maturity is characterized by 1300 man-year / $400 million design and testing effort, more than 12 000 design documents completed; 3D computer model developed. It includes structures, equipment, small / large pipe, cable trays, ducts etc. Licensing Maturity is determined by a very thorough and complete NRC review of AP600; 110 man-year effort (NRC) over 6 years, $30 million; independent, confirmatory plant analysis; independent, confirmatory plant testing (ROSA, OSU); over 7400 questions answered, no open items; over 380 meeting with NRC, 43 meetings with ACRS. NRC Design Certification is issued in December 1999. Reasons for developing AP 1000 and design changes are presented. Economic analysis shows an expectation for payback within 20 years. AP1000 provides 75% power uprate for 15% increment in capital cost. AP1000 meets new plant economic targets in the near term

  17. AP1000{sup TM} plant modularization

    Energy Technology Data Exchange (ETDEWEB)

    Cantarero L, C.; Demetri, K. J. [Westinghouse Electric Co., 1000 Westinghouse Drive, Cranberry Township, PA 16066 (United States); Quintero C, F. P., E-mail: cantarc@westinghouse.com [Westinghouse Electric Spain, Padilla 17, 28006 Madrid (Spain)

    2016-09-15

    The AP1000{sup TM} plant is an 1100 M We pressurized water reactor (PWR) with passive safety features and extensive plant simplifications that enhance construction, operation, maintenance and safety. Modules are used extensively in the design of the AP1000 plant nuclear island. The AP1000 plant uses modern, modular-construction techniques for plant construction. The design incorporates vendor-designed skids and equipment packages, as well as large, multi-ton structural modules and special equipment modules. Modularization allows traditionally sequential construction tasks to be completed simultaneously. Factory-built modules can be installed at the site in a planned construction schedule. The modularized AP1000 plant allows many more construction activities to proceed in parallel. This reduces plant construction calendar time, thus lowering the costs of plant financing. Furthermore, performing less work onsite significantly reduces the amount of skilled field-craft labor, which costs more than shop labor. In addition to labor cost savings, doing more welding and fabrication in a factory environment raises the quality of work, allowing more scheduling flexibility and reducing the amount of specialized tools required onsite. The site layout for the AP1000 plant has been established to support modular construction and efficient operations during construction. The plant layout is compact, using less space than previous conventional plant layouts. This paper provides and overview of the AP1000 plant modules with an emphasis on structural modules. Currently the Westinghouse AP1000 plant has four units under construction in China and four units under construction in the United States. All have shown successful fabrication and installation of various AP1000 plant modules. (Author)

  18. AP1000"T"M plant modularization

    International Nuclear Information System (INIS)

    Cantarero L, C.; Demetri, K. J.; Quintero C, F. P.

    2016-09-01

    The AP1000"T"M plant is an 1100 M We pressurized water reactor (PWR) with passive safety features and extensive plant simplifications that enhance construction, operation, maintenance and safety. Modules are used extensively in the design of the AP1000 plant nuclear island. The AP1000 plant uses modern, modular-construction techniques for plant construction. The design incorporates vendor-designed skids and equipment packages, as well as large, multi-ton structural modules and special equipment modules. Modularization allows traditionally sequential construction tasks to be completed simultaneously. Factory-built modules can be installed at the site in a planned construction schedule. The modularized AP1000 plant allows many more construction activities to proceed in parallel. This reduces plant construction calendar time, thus lowering the costs of plant financing. Furthermore, performing less work onsite significantly reduces the amount of skilled field-craft labor, which costs more than shop labor. In addition to labor cost savings, doing more welding and fabrication in a factory environment raises the quality of work, allowing more scheduling flexibility and reducing the amount of specialized tools required onsite. The site layout for the AP1000 plant has been established to support modular construction and efficient operations during construction. The plant layout is compact, using less space than previous conventional plant layouts. This paper provides and overview of the AP1000 plant modules with an emphasis on structural modules. Currently the Westinghouse AP1000 plant has four units under construction in China and four units under construction in the United States. All have shown successful fabrication and installation of various AP1000 plant modules. (Author)

  19. Difference of reactor core nuclear instrument between AP1000 and CPR1000

    International Nuclear Information System (INIS)

    Zhang Shidong; Zhou Can; Deng Tian

    2014-01-01

    As a typical generation Ⅲ reactor technique, the AP1000 applies many advanced design concepts, simplifies the design, reduces equipment quantities, and thus enhances systematic reliability. The comparison of reactor core measurement instrument differences between AP1000 and CPR1000 from several aspects was involved in the paper. Through analysis and comparison of these differences, passive design concepts and characteristics of AP1000 are familiarized, and conveniences for staffs engaged in CPR1000 to learn and grasp AP1000 technique are provided. It is useful in reactor start up, operation and maintenance. (authors)

  20. Comparison of CPR1000 and AP1000 rod position indication systems

    International Nuclear Information System (INIS)

    Lei Qing

    2009-01-01

    This paper introduces the structure, the function, the digital detection principle of reactor control rod position and monitoring systems in CPR1000 and AP1000, comparing with the characteristics of the system design. The results show that the operation mode and function of AP1000 Rod position indication system are similar to that of CPR1000, but AP1000 rod position system provides higher reliability, and reduces the numbers of containment electrical penetrations and is with better characteristics than that of CPR1000, since it incorporated the redundancy design and data communication. (authors)

  1. Neutronic and thermal-hydraulic calculations for the AP-1000 NPP with the MCNP6 and SERPENT codes

    International Nuclear Information System (INIS)

    Stefani, Giovanni Laranjo; Maiorino, Jose R.; Santos, Thiago A.

    2015-01-01

    The AP-1000 is an evolutionary PWR reactor designed as an evolution of the AP-600 project. The reactor is already pre-licensed by NRC, and is considered to have achieved high standards of safety, possible short construction time and good economic competitiveness. The core is a 17x17 typical assembly using Zirlo as cladding, 3 different enrichment regions, and is controlled by boron, control banks, and burnable poison. The expected fuel final burnup is 62 MWD/ton U and a cycle of 18 months. In this paper we present results for neutronic and thermal-hydraulic calculations for the AP-1000. We use the MCNP6 and SERPENT codes to calculate the first cycle of operation. The calculated parameters are K eff at BOL and EOL and its variation with burnup and neutron flux, and reactivity coefficients. The production of transuranic elements such as Pu-239 and Pu-241, and burning fuel are calculated over time. In the work a complete reactor was burned for 450 days with no control elements, boron or burnable poison were considered, these results were compared with data provided by the Westinghouse. The results are compared with those reported in the literature. A simple thermal hydraulic analysis allows verification of thermal limits such as fuel and cladding temperatures, and MDNB. (author)

  2. Neutronic and thermal-hydraulic calculations for the AP-1000 NPP with the MCNP6 and SERPENT codes

    Energy Technology Data Exchange (ETDEWEB)

    Stefani, Giovanni Laranjo; Maiorino, Jose R.; Santos, Thiago A., E-mail: giovanni.laranjo@ufabc.edu.br, E-mail: joserubens.maiorino@ufabc.edu.br, E-mail: thiago.santos@ufabc.edu.br [Universidade Federal do ABC (CECS/UFABC), Santo Andre, SP (Brazil). Centro de Engenharia, Modelagem e Ciencias Sociais; Rossi, Pedro R., E-mail: pedro.russorossi@gmail.com [FERMIUM - Tecnologia Nuclear, Sao Paulo, SP (Brazil)

    2015-07-01

    The AP-1000 is an evolutionary PWR reactor designed as an evolution of the AP-600 project. The reactor is already pre-licensed by NRC, and is considered to have achieved high standards of safety, possible short construction time and good economic competitiveness. The core is a 17x17 typical assembly using Zirlo as cladding, 3 different enrichment regions, and is controlled by boron, control banks, and burnable poison. The expected fuel final burnup is 62 MWD/ton U and a cycle of 18 months. In this paper we present results for neutronic and thermal-hydraulic calculations for the AP-1000. We use the MCNP6 and SERPENT codes to calculate the first cycle of operation. The calculated parameters are K{sub eff} at BOL and EOL and its variation with burnup and neutron flux, and reactivity coefficients. The production of transuranic elements such as Pu-239 and Pu-241, and burning fuel are calculated over time. In the work a complete reactor was burned for 450 days with no control elements, boron or burnable poison were considered, these results were compared with data provided by the Westinghouse. The results are compared with those reported in the literature. A simple thermal hydraulic analysis allows verification of thermal limits such as fuel and cladding temperatures, and MDNB. (author)

  3. MDEP AP1000WG Design-Specific Common Position CP-AP1000WG-02. Common position addressing Fukushima Daiichi NPP accident-related issues

    International Nuclear Information System (INIS)

    2016-09-01

    A severe accident involving several units took place in Japan at Fukushima Daiichi nuclear power plant (NPP) in March 2011. The immediate cause of the accident was an earthquake followed by a tsunami coupled with inadequate provisions against the consequences of such events in the design. Opportunities to improve protection against a realistic design basis tsunami had not been taken. As a consequence of the tsunami, safety equipment and the related safety functions were lost at the plant, leading to core damage in three units and subsequently to large radioactive release. Several studies have already been performed to better understand the accident progression and detailed technical studies are still in progress in Japan and elsewhere. In the meantime, on-going studies on the behaviour of nuclear power plants in very severe situations, similar to Fukushima Daiichi, seek to identify potential vulnerabilities in plant design and operation; to suggest reasonably practicable upgrades; or to recommend enhanced regulatory requirements and guidance to address such situations. Likewise, agencies around the world that are responsible for regulating the design, construction and operation of AP1000 R plants are engaged in similar activities. The MDEP AP1000 R Working Group (AP1000 WG) members consist of members from Canada, China, the United Kingdom and the United States. Since the regulatory review of their AP1000 R applications have not been completed by all of these Countries yet, this paper identifies common preliminary approaches to address potential safety improvements for AP1000 R plants as related to lessons learned from the Fukushima Daiichi accident or Fukushima Daiichi-related issues. In seeking common position, regulators will provide input to this paper to reflect their safety conclusions regarding the AP1000 R design and how the design could be enhanced to address Fukushima Daiichi issues. The common preliminary approaches are organized into five sections

  4. The choice of the fuel assembly for VVER-1000 in a closed fuel cycle based on REMIX-technology

    International Nuclear Information System (INIS)

    Bobrov, E.; Alekseev, P.; Chibinyaev, A.; Teplov, P.; Dudnikov, A.

    2016-01-01

    REMIX (Regenerated Mixture) fuel is produced directly from a non-separated mix of recycled uranium and plutonium from reprocessed used fuel and the fabrication technology of such fuel is called REMIX-technology. This paper shows basic features of different fuel assembly (FA) application for VVER-1000 in a closed fuel cycle based on REMIX-technology. This investigation shows how the change in the water-fuel ratio in the VVER FA affects the fuel characteristics produced by REMIX technology during multiple recycling. It is shown that for for the traditional REMIX-fuel it does not make sense to change anything in the design of VVER FA, because there are no advantages in the fuel feed consumption. The natural uranium economy by the fifth cycle reached about 29%. In the case of the REMIX fuel based on uranium-plutonium from SNF MOX fuel, it would be appropriate to use fuel assemblies with a water-fuel ratio of 1.5

  5. ANALISIS KONDISI TERAS REAKTOR DAYA MAJU AP1000 PADA KECELAKAAN SMALL BREAK LOCA

    Directory of Open Access Journals (Sweden)

    Andi Sofrany Ekariansyah

    2015-06-01

    , mixture level, temperatur kelongsong, small break LOCA, RELAP5.   ABSTRACT ANALYSIS ON THE CORE CONDITION OF AP1000 ADVANCED POWER REACTOR DURING SMALL BREAK LOCA. Accident due to the loss of coolant from the reactor boundary is an anticipated design basis event in the design of power reactor adopting the Generation II up to IV technology. Small break LOCA leads to more significant impact on safety compared to the large break LOCA as shown in the Three-Mile Island (TMI. The focus of this paper is the small break LOCA analysis on the Generation III+ advanced power reactor of AP1000 by simulating three different initiating events, which are inadvertent opening of Automatic Depressurization System (ADS, double-ended break on one of Direct Vessel Injection (DVI pipe, and 10 inch diameter split break on one of cold leg pipe. Methodology used is by simulating the events on the AP1000 model developed using RELAP5/SCDAP/Mod3.4. The impact analyzed is the core condition during the small break LOCA consisting of the mixture level occurrence and the fuel cladding temperature transient. The results show that the mixture level for all small break LOCA events are above the active core height, which indicates no core uncovery event. The development of the mixture level affect the fuel cladding temperature transient, which shows a decreasingly trend after the break, and the effectifeness of core cooling. Those results are identical with the results of other code of NOTRUMP. The resulted core cooling is also due to the function of coolant injection from passive safety feature, which is unique in the AP1000 design. In overall, the result of analysis shows that the AP1000 model developed by the RELAP5 can be used for analysis of design basis accident considered in the AP1000 advanced power reactor. Keywords: analysis, mixture level, fuel cladding temperature, small break LOCA, RELAP5.

  6. Improvement of operation efficiency for WWER-440 and WWER-1000 for TRIGON fuel assembly design features

    Energy Technology Data Exchange (ETDEWEB)

    Silberstein, A [European WWER Fuels GmbH, Lyon (France)

    1994-12-31

    TRIGON 440 and TRIGON 1000 fuel assemblies and their assembly matching counterparts are described. Their role in increasing the efficiency of WWER reactors is stressed. Special attention is paid to their design features as well as calibrated means of predicting behaviour under irradiation from light water reactor core operation. They reduce the fuel cycle cost as a result of the reduced need for natural uranium which have to be enriched and of the smaller number of fuel assemblies which have to be fabricated, stored or reprocessed. The improved control assemblies bring comfort to the plant operator due to intrinsic progress in safety with respect to accidental situation, trouble-free behaviour and long time utilization in the reactor. 14 figs.

  7. Development of TVSA VVER-1000 fuel

    International Nuclear Information System (INIS)

    Samoilov, O.; Kaydalov, V.; Romanov, A.; Falkov, A.; Morozkin, O.; Sholin, E.

    2013-01-01

    The TVSA fuel assemblies with a rigid angle-piece skeleton operate at 21 VVER-1000 units of Kalinin NPP, and Ukrainian, and Czech and Bulgarian NPPs. The total of more than 6,000 TVSA fuel assemblies have been fabricated. High lifetime performance has been achieved, namely, the maximum FA burnup is 65 MW∙day/kgU; maximum fuel rod burnup is 72 MW∙day/kgU; the lifetime is 50,000 EFPH. The TVSA fuel assembly is being improved to enhance its technical and economic performance and competitiveness of the Russian fuel for the VVER-1000 reactor: 1) Reliability and safety are being enhanced; repairability is being ensured. 2) High burnup levels in fuel are being ensured. 3) The uranium content in FAs is being increased. 4) The operational life is being extended. 5) Thermal-technical characteristics of FAs are being improved. The basic TVSA fuel assembly design evolved into the TVSA-PLUS with the fuel column elongated by 150 mm. The TVSA-PLUS fuel assembly has been in operation since 2010 at Kalinin NPP power units; an eighteen-month cycle is implemented at the uprated power of 104%. The TVSA-12PLUS fuel assembly has been developed with an elongated fuel column, optimized spacer grid positions (the spacer grid pitch is 340 mm) and with ensuring higher rigidity for the skeleton. It is provided for that fuel rods with the elevated uranium content and mixing intensifier grids will be used. The TVSA-T is developed for VVER-1000 reactor cores at the Temelin NPP. The TVSA-T is characterized by a load-carrying skeleton formed with angle-pieces and combined spacer grids that incorporate mixer grids. The TVSA-T design won the international tender to supply fuel to the Temelin NPP in the Czech Republic, and currently Temelin NPP Unit 1 and 2 are operating with the cores fully loaded with TVSA-Ts

  8. Performance of the Westinghouse WWER-1000 fuel design

    International Nuclear Information System (INIS)

    Hoglund, J.; Riznychenko, O.; Latorre, R.; Lashevych, P.

    2011-01-01

    In 2005 six (6) Westinghouse WWER-1000 Lead Test Assemblies (LTAs) were loaded in the South Ukraine Unit 3. This design has demonstrated full compatibility with resident fuel designs and all associated fuel handling and reactor components. Operations have further demonstrated adequacy of performance margins and the reliability requirements for multiple cycles of operation. The LTA's have now been discharged after completing the planned four cycles of operation and having reached an average assembly burnup in excess of 43 MWd/kgU. Post Irradiation Examinations were performed after completion of each cycle. The final LTA inspection program at end of Cycle 20 in 2010 yielded satisfactory results on all counts, and it was concluded that the 6 Westinghouse LTA's performed as expected during their operational regimes. Very good performance was demonstrated in the WWER-1000 reactor environment for the Zr-1%Nb as grid material, and ZIRLO fuel cladding and structural components. Control Rod Assemblies drop times and drag forces were all within the accepted values. The LTA program demonstrated that this fuel design is suitable for full core applications. However, the topic of fuel assembly distortion resistance was re-visited and Westinghouse therefore considered operational experience and design features from multiple development programs to enhance the basic Westinghouse WWER-1000 fuel design for Ukrainian reactors. The design now includes features that further mitigate assembly bow while at the same time improving the fuel cycle economy. This paper describes briefly the development of the Westinghouse WWER-1000 fuel design and how test results and operational experiences from multiple sources have been utilized to produce a most suitable fuel design. Early in 2011 a full region of the Westinghouse WWER-1000 design completed another full cycle of operation at South Ukraine Unit 3, all with excellent results. All 42 fuel assemblies were examined for visible damage or non

  9. The procedure for determination of special margin factors to account for a bow of the WWER-1000 fuel assemblies

    International Nuclear Information System (INIS)

    Tsyganov, S. V.; Marin, S. V.; Shishkov, L. K.

    2008-01-01

    Starting from 1980s, the problem of bow of the WWER-1000 reactor fuel assemblies and the effect of that on the operational safety is being discussed. At the initial period of time, the extension of time for dropping control rods of the control and protection system associated with this bow posed the highest threat. Later on, new more rigid structures were developed for fuel assemblies that eliminated the problems of control rods. However, bow of the WWER-1000 reactor fuel assemblies is observed up to now. The scale of this bow reduced significantly but it still effects safety. Even a minor bow available may lead to the noticeable increase of power of individual fuel pins associated with the local variation of the coolant amount. This effect must be taken into account on designing fuel loadings to eliminate the exceeding of set limitations. The introduction of additional special margins is the standard method for taking this effect into account. The present paper describes the conservative technique for the assessment of additional margins for bow of fuel assemblies of state-of-the-art designs. This technique is employed in the WWER-1000 reactor designing. The chosen conservatism degree is discussed as well as the method for its assurance and acceptable ways for its slackening. The example of the margin evaluation for the up-to-date fuel loading is given. (authors)

  10. Basket criticality design of a dual purpose cask for VVER 1000 spent fuel assemblies

    Energy Technology Data Exchange (ETDEWEB)

    Rezaeian, Mahdi [Nuclear Science and Technology Research Institute, Tehran (Iran, Islamic Republic of); Kamali, Jamshid [Atomic Energy Organization of Iran (AEOI), Tehran (Iran, Islamic Republic of)

    2016-12-15

    Dual purpose cask technology is one of the most prominent options for interim storage of spent fuels following their removal from reactors. Criticality safety of the spent fuel assemblies are ensured by design of the basket within these casks. In this study, a set of criticality design calculations of a dual purpose cask for 12 VVER 1000 spent fuel assemblies of Bushehr nuclear power plant were carried out. The basket material of borated stainless steel with 0.5 to 2.5 wt% of boron and Boral (Al-B{sub 4}C) with 1.5 to 40 wt% of boron carbide, were investigated and the minimum required receptacle pitch of the basket was determined. Using the calculated receptacle pitch of the basket, the minimum required diameter of the cavity could be established.

  11. Application of MSHIM core control strategy for westinghouse AP1000 nuclear power plant

    International Nuclear Information System (INIS)

    Onoue, Masaaki; Kawanishi, Tomohiro; Carlson, William R.; Morita, Toshio

    2003-01-01

    Westinghouse has developed a new core control strategy, in which two independently moving Rod Cluster Control Assembly (RCCA) groups are utilized for core control; one group for reactivity/temperature control, the other for axial power distribution (Axial Offset) control. This control procedure eliminates the need for Chemical Shim adjustments during power maneuvers, such as load follow, and is designated MSHIM (Mechanical Shim). This core control strategy is utilized in the AP1000. In the AP1000, it is possible to perform MSHIM load follow maneuvers for up to 95% of cycle life without changing the soluble boron concentration in the moderator. This core control strategy has been evaluated, via computer simulations, to provide appropriate margins to core and fuel design limits during normal operation maneuvers (including load follow operations) and also during anticipated Condition II accident transients. The primary benefits of MSHIM as a control strategy are as follows; Power change operation can be totally automated due to the elimination of boron concentration adjustments. Full load follow capability is achievable for up to more than 95% of cycle life. Load follow operations performed solely by mechanical devices results in a significant reduction in the boron system requirements and a significant reduction in daily effluent to be processed. (author)

  12. WWER-1000 nuclear fuel manufacturing process at PJSC MSZ

    International Nuclear Information System (INIS)

    Morylev, A.; Bagdatyeva, E.; Aksenov, P.

    2015-01-01

    In this report a brief description of WWER-1000 fuel manufacturing process steps at PJSC MSZ as: uranium dioxide powder fabrication; fuel pellet manufacture fuel rod manufacture working assembly and fuel assembly manufacture is given. The implemented innovations are also presented

  13. AP1000, a nuclear central of advanced design

    International Nuclear Information System (INIS)

    Hernandez M, N.; Viais J, J.

    2005-01-01

    The AP1000 is a design of a nuclear reactor of pressurized water (PWR) of 1000 M We with characteristic of safety in a passive way; besides presenting simplifications in the systems of the plant, the construction, the maintenance and the safety, the AP1000 is a design that uses technology endorsed by those but of 30 years of operational experience of the PWR reactors. The program AP1000 of Westinghouse is focused to the implementation of the plant to provide improvements in the economy of the same one and it is a design that is derived directly of the AP600 designs. On September 13, 2004 the US-NRC (for their initials in United States- Nuclear Regulatory Commission) approved the final design of the AP1000, now Westinghouse and the US-NRC are working on the whole in a complete program for the certification. (Author)

  14. Data base and postirradiation examination results of spent WWER-1000 fuel elements and assemblies

    International Nuclear Information System (INIS)

    Kanashov, B.A.; Polenok, V.S.; Smirnov, A.V.; Zhitelev, V.A.

    1995-01-01

    The report presents the results of the postirradiation shape change examination of standard fuel elements and fuel assemblies irradiated in standard conditions in Russian power reactors of the WWER-1000 type. The information is based on the results obtained at the Fuel Research Department of the Federal Scientific Centre Research Institute of Atomic Reactors (FSC RIAR, Dimitrovgrad, Russian Federation) within the period from 1987 to 1994. Emphasis is placed on such experimental and calculational data as: length, cross-section dimensions and shape of FAs with wrapper; change of standard FA skeleton members dimensions; fuel bundle elongation; change of the fuel cladding outer diameter; and elongation and change of the fuel stack outer diameter. (author)

  15. Calculational modeling of fuel assemblies of WWER-1000 type with the use of burnable absorber Gadolinum; comparative analysis

    International Nuclear Information System (INIS)

    Yeremenko, M.L.; Kovbasenko, Yu.P.; Loetsch, T.

    2001-01-01

    In connection with the beginning of the use of fuel assemblies with burnable absorbers by integration of Gadolinum into the nuclear fuel at Ukrainian NPP the task of testing the code systems and the pertinent neutron cross section libraries for the new fuel arose. Taking into account the long term experience of German experts with calculations and evaluation of nuclear fuel containing Gadolinum it was decided to carry out a series of test calculations for fuel assembly lattices of PWR, WWER-440 and WWER-1000 types using the NESSEL/PYTHIA and CASMO/SIMULATE code systems (Authors)

  16. Westinghouse AP1000 advanced passive plant: design features and benefits

    International Nuclear Information System (INIS)

    Walls, S.J.; Cummins, W.E.

    2003-01-01

    The Westinghouse AP1000 Program is aimed at implementing the AP1000 plant to provide a further major improvement in plant economics while maintaining the passive safety advantages established by the AP600. An objective is to retain to the maximum extent possible the plant design of the AP600 so as to retain the licensing basis, cost estimate, construction schedule, modularization scheme, and the detailed design from the AP600 program. Westinghouse and the US Nuclear Regulatory Commission staff have embarked on a program to complete Design Certification for the AP1000 by 2004. A pre-certification review phase was completed in March 2002 and was successful in establishing the applicability of the AP600 test program and AP600 safety analysis codes to the AP1000 Design Certification. On March 28, 2002, Westinghouse submitted to US NRC the AP1000 Design Control Document and Probabilistic Risk Assessment, thereby initiating the formal design certification review process. The results presented in these documents verify the safety performance of the API 000 and conformance with US NRC licensing requirements. Plans are being developed for implementation of a series of AP1000 plants in the US. Key factors in this planning are the economics of AP1000, and the associated business model for licensing, constructing and operating these new plants. Similarly plans are being developed to get the AP1000 design reviewed for use in the UK. Part of this planning has been to examine the AP1000 design relative to anticipated UK safety and licensing issues. (author)

  17. Comparison of hydrogen generation for TVSM and TVSA fuel assemblies for water water energy reactor (VVER)-1000

    International Nuclear Information System (INIS)

    Stefanova, A.E.; Groudev, P.P.; Atanasova, B.P.

    2009-01-01

    This paper presents the results received during investigation of hydrogen generation for both types fuel assemblies-the old modernistic type of fuel assemblies (TVSM) and recently installed new one alternative type of fuel assemblies (TVSA) in case of severe accident. There are some differences between both types FAs. They have different geometry as well as different burnable poisons. To investigate behavior of new fuel assemblies during the severe conditions it have been performed comparison of fuel behavior of old type TVSM fuel assembly to new one TVSA. To perform this investigation it has been used MELCOR 'input model' for Kozloduy Nuclear Power Plant (KNPP) VVER 1000. The model was developed by Institute for Nuclear Research and Nuclear Energy-Bulgarian Academy of Sciences (INRNE-BAS) for investigation of severe accident scenarios and Probabilistic Safety Analyses (PSA) level 2. The model provides a significant analytical capability for the Bulgarian technical specialists, working in the field of the NPP safety, for analysis of core and containment damaged states and the estimation of radionuclides release outside fuel cladding. It was accepted criteria for vessel integrity about hydrogen concentration to be 8%. This criterion was based on the decision of RSK (Germany commission for reactor safety). Generally based on the received results it was made conclusion that using both types of fuel assemblies it was not disturbance safety conditions of NPP

  18. AP1000 Containment Design and Safety Assessment

    International Nuclear Information System (INIS)

    Wright, Richard F.; Ofstun, Richard P.; Bachere, Sebastien

    2002-01-01

    The AP1000 is an up-rated version of the AP600 passive plant design that recently received final design certification from the US NRC. Like AP600, the AP1000 is a two-loop, pressurized water reactor featuring passive core cooling and passive containment safety systems. One key safety feature of the AP1000 is the passive containment cooling system which maintains containment integrity in the event of a design basis accident. This system utilizes a high strength, steel containment vessel inside a concrete shield building. In the event of a pipe break inside containment, a high pressure signal actuates valves which allow water to drain from a storage tank atop the shield building. Water is applied to the top of the containment shell, and evaporates, thereby removing heat. An air flow path is formed between the shield building and the containment to aid in the evaporation and is exhausted through a chimney at the top of the shield building. Extensive testing and analysis of this system was performed as part of the AP600 design certification process. The AP1000 containment has been designed to provide increased safety margin despite the increased reactor power. The containment volume was increased to accommodate the larger steam generators, and to provide increased margin for containment pressure response to design basis events. The containment design pressure was increased from AP600 by increasing the shell thickness and by utilizing high strength steel. The passive containment cooling system water capacity has been increased and the water application rate has been scaled to the higher decay heat level. The net result is higher margins to the containment design pressure limit than were calculated for AP600 for all design basis events. (authors)

  19. AP1000 - update on projects in US and China

    Energy Technology Data Exchange (ETDEWEB)

    Godfrey, M. [Westinghouse Electric Company, Cranberry Township, Pennsy lvania (United States)

    2012-07-01

    Westinghouse is the only company solely focused on commercial nuclear technology. Westinghouse business is based on four product lines regionally divided: nuclear power plants, nuclear fuel, nuclear services and nuclear automation. The AP1000 is the technology of choice for more than half of the new plants identified in the US. Westinghouse has the only certified Generation III+ technology by the US Nuclear Regulatory Commission (NRC). The first Generation III+ plants are under construction in China and the US.

  20. AP1000 - update on projects in US and China

    International Nuclear Information System (INIS)

    Godfrey, M.

    2012-01-01

    Westinghouse is the only company solely focused on commercial nuclear technology. Westinghouse business is based on four product lines regionally divided: nuclear power plants, nuclear fuel, nuclear services and nuclear automation. The AP1000 is the technology of choice for more than half of the new plants identified in the US. Westinghouse has the only certified Generation III+ technology by the US Nuclear Regulatory Commission (NRC). The first Generation III+ plants are under construction in China and the US.

  1. Fuel improvement and WWER-1000 FA main operational results

    International Nuclear Information System (INIS)

    Rozhkov, V.; Enin, A.; Bezborodov, Y.; Petrov, V.

    2003-01-01

    The JSC NCCP experience of WWER-1000 Fuel Assemblies (FAs) fabrication and operation confirms the adequate feasibility and efficiency of fuel operation in 3-4-x fuel cycles, high operating reliability and competitive capacity as compared with foreign analogues. The work on fuel improvement is aimed at an improvement of the operating reliability and an enhancement of the fuel use efficiency in WWER-1000 advanced FAs

  2. AP1000R licensing and deployment in the United States

    International Nuclear Information System (INIS)

    Jordan, R. P.; Russ, P. A.; Filiak, P. P.; Castiglione, L. L.

    2012-01-01

    In recent years, both domestic and foreign utilities have turned to the standardized Westinghouse AP1000 plant design in satisfying their near - and long-term - sustainable energy needs. As direct support to these actions, licensing the AP1000 design has played a significant role by providing one of the fundamental bases in clearing regulatory hurdles leading to the start of new plant construction. Within the U.S. alone, Westinghouse AP1000 licensing activities have reached unprecedented milestones with the approvals of both AP1000 Design Certification and Southern Company's combined construction permit and operating license (COL) application directly supporting the construction of two new nuclear plants in Georgia. Further COL application approvals are immediately pending for an additional two AP1000 plants in South Carolina. And, across the U.S. nuclear industry spectrum, there are 10 other COL applications under regulatory review representing some 16 new plants at 10 sites. In total, these actions represent the first wave of new plant licensing under the regulatory approval process since 1978. Fundamental to the Nuclear Regulatory Commission's AP1000 Design Certification is the formal recognition of the AP1000 passive safety design through regulatory acceptance rulemaking. Through recognition and deployment of the AP1000 Design Certification, the utility licensee / operator of this reactor design are now offered an opportunity to use a simplified 'one-step' combined license process, thereby managing substantial back-end construction schedule risk from regulatory and intervention delays. Application of this regulatory philosophy represents both acceptance and encouragement of standardized reactor designs like the AP1000. With the recent AP1000 Design Certification and utility COL acceptances, the fundamental licensing processes of this philosophy have successfully proven the attainment of significant milestones with the next stage licensing actions directed

  3. AP1000 plant construction in China: Ansaldo Nucleare contribution

    International Nuclear Information System (INIS)

    Frogheri, Monica; Saiu, Gianfranco

    2009-01-01

    On 24th of July 2007 Westinghouse Electric Co. signed landmark contracts with China's State Nuclear Power Technology Corporation (SNPTC), to provide four AP1000 nuclear power plants in China. The AP1000 is a two-loop 1117 MWe Pressurized Water Reactor (PWR). It is based on proven technology, but with an emphasis on safety features that rely on natural driving forces, such as pressurized gas, gravity flow, natural circulation flow and convection. Ansaldo Nucleare has provided a significant support to the passive plant technology development and, starting from 2000, is cooperating with Westinghouse to development of the AP1000 Plant. In the frame of the AP1000 Chinese agreement, Ansaldo Nucleare, in Joint Venture with Mangiarotti Nuclear, has signed a contract with Westinghouse for the design and the supply of innovative components to be installed in the first AP1000 unit to be constructed at the Sanmen site. The contract includes: the design of the steel containment vessel, preparation of construction and fabrication, specifications, design and supply of SCV mechanical penetrations, air locks and equipment hatches. Moreover, Ansaldo Nucleare is in charge of the final design of the AP1000 PRHR-HX and together with Mangiarotti Nuclear will supply the component for the Sanmen Unit 1 NPP. The paper presents an overview of the design and manufacturing activities performed by Ansaldo Nucleare and its partners for the AP1000 plant in China. (authors)

  4. Experimental study of new generation WWER-1000 fuel assemblies at JSC NCCP

    International Nuclear Information System (INIS)

    Enin, A.; Rozhkov, V.; Sinikov, Y.; Ustimenko, A.; Shustov, M.

    2003-01-01

    An experimental program for the study of fuel assembly thermomechanical stability has been established together with RF SSC IPPE and Russian Scientific Center Kurchatov Institute. Assembly fragments and small dummy models of fuel assembly skeletons and fuel rod bundles have been used for the tests. The test results are used for the design selection, verification of the design codes and substantiation of operating capacity of fuel assemblies with a rigid skeleton. The mechanical characteristics of units make it possible to perform fuel assembly strength and rigidity calculations, including the cases of abnormal operation. The mechanical characteristics of the skeleton and fuel rod bundle dummy models make it possible to check for the adequacy of the fuel assembly design model. The mechanical characteristics obtained during fuel rods bundle push through experiments make it possible to substantiate the fuel assembly serviceability under the conditions of fuel rods bundle and skeleton interaction

  5. Advanced fuel cycles for WWER-1000 reactors

    International Nuclear Information System (INIS)

    Semchenkov, Y. M.; Pavlovichev, A. M.; Pavlov, V. I.; Spirkin, E. I.; Styrin, Y. A.; Kosourov, E. K.

    2007-01-01

    Main stages of Russian uranium fuel development regarding improvement of safety and economics of fuel load operation are presented. Intervals of possible changes in fuel cycle duration have been demonstrated for the use of current and perspective fuel. Examples of equilibrium fuel load patterns have been demonstrated and main core neutronics parameters have been presented. Problems on the use of axial blankets with reduced enrichment in WWER-1000 fuel assemblies are considered. Some results are presented regarding core neutronic characteristics of WWER-1000 at the use of regenerated uranium and uranium-plutonium fuel. Examples of equilibrium fuel cycles for the core partially loaded with MOX fuel from weapon-grade plutonium are also considered (Authors)

  6. AP1000R pressurised water reactor project in china advances toward completion

    International Nuclear Information System (INIS)

    Harrop, G.

    2014-01-01

    The AP1000 R pressurised water reactor (PWR) project in China is the first deployment of its first-of-a-kind Generation III+ technology, making it one of most internationally important and industry-significant new build projects. The innovative AP1000 PWR design contains advanced passive safety and performance features that involve fewer active safety components than a traditional plant, thereby reducing the site footprint. The AP1000 reactor is the first and only Generation III+ nuclear power plant to be granted design certification by the United States Nuclear Regulatory Commission, and it has received an Interim Design Acceptance Confirmation from the Office for Nuclear Regulation and an Interim Statement of Design Acceptability from the Environment Agency in the United Kingdom. Construction and testing of dual AP1000 PWR units is currently in progress in each of two coastal sites in the People's Republic of China: Sanmen (Zhejiang Province) and Haiyang (Shandong Province). Since the initial contract award in 2007, the Westinghouse Consortium has worked in concert with the owners to construct the plants using innovative structural and mechanical modules. Uniquely designed plant components and essential instrumentation and control systems have been manufactured, delivered, and installed at the plants. Numerous personnel, including future reactor operators, have been trained at both the Sanmen and Haiyang sites, and technology transfer of technical documents and computer codes is well underway. The commercial operation dates are now nearing for Sanmen Unit 1 and Haiyang Unit 1, the first two units scheduled for completion. Consequently, these units are now in advanced stages of completion and present activities include planning and preparation for pre-operational testing, system turnover, and commissioning leading to fuel load, and eventual commercial operation. These activities are pioneering, in that they have never before been performed for a new build of

  7. AP1000 will meet the challenges of near-term deployment

    International Nuclear Information System (INIS)

    Matzie, Regis A.

    2008-01-01

    The world demand for energy is growing rapidly, particularly in developing countries that are trying to raise the standard of living for billions of people, many of whom do not have access to electricity or clean water. Climate change and the concern for increased emissions of green house gases have brought into question the future primary reliance of fossil fuels. With the projected worldwide increase in energy demand, concern for the environmental impact of carbon emissions, and the recent price volatility of fossil fuels, nuclear energy is undergoing a rapid resurgence. This 'nuclear renaissance' is broad based, reaching across Asia, North America, Europe, as well as selected countries in Africa and South America. Many countries have publicly expressed their intentions to pursue the construction of new nuclear energy plants. Some countries that have previously turned away from commercial nuclear energy are reconsidering the advisability of this decision. This renaissance is facilitated by the availability of more advanced reactor designs than are operating today, with improved safety, economy, and operations. One such design, the Westinghouse AP1000 advanced passive plant, has been a long time in the making! The development of this passive technology started over two decades ago from an embryonic belief that a new approach to design was needed to spawn a nuclear renaissance. The principal challenges were seen as ensuring reactor safety by requiring less reliance on operator actions and overcoming the high plant capital cost of nuclear energy. The AP1000 design is based on the use of innovative passive technology and modular construction, which require significantly less equipment and commodities that facilitate a more rapid construction schedule. Because Westinghouse had the vision and the perseverance to continue the development of this passive technology, the AP1000 design is ready to meet today's challenge of near-term deployment

  8. European utility requirements (EUR) volume 3 assessment for AP1000

    International Nuclear Information System (INIS)

    Saiu, G.; Demetri, K.J.

    2005-01-01

    The EUR (European Utility Requirements) Volume 3 is intended to report the Plant Description, the Compliance Assessment to EUR Volumes 1 and 2, and finally, the Specific Requirements for each specific Nuclear Power Plant Design considered by the EUR. Five subsets of EUR Volume 3, based on EUR Revision B, are already published; all of which are next generation plant designs being developed for Europe beyond 2000. They include : 1) EP1000 - Passive Pressurized Light Water Reactor (3-Loop, 1000 MWe) 2) EPR - Evolutionary Pressurized Light Water Reactor (1500 MWe) 3) BWR90/90+ - Evolutionary Boiling Water Reactor (1400 MWe) 4) ABWR - Evolutionary Boiling Water Reactor (1400 MWe) 5) SWR 1000 - Boiling Water Reactor With Passive Features (1000 MWe) In addition, the following subsets are currently being developed: 1) AP1000 - Passive Pressurized Light Water Reactor (2-Loop, 1117 MWe) 2) VVER AES 92 - Pressurized Water Reactor With Passive Features (1000 MWe) The purpose of this paper is to provide an overview of the program, which started in January 2004 with the EUR group to prepare an EUR Volume 3 Subset for the AP1000 nuclear plant design. The AP1000 EUR compliance assessment, to be performed against EUR Revision C requirements, is an important step for the evaluation of the AP1000 design for application in Europe. The AP1000 compliance assessment is making full use of AP1000 licensing documentation, EPP Phase 2 design activities and EP1000 EUR detailed compliance assessment. As of today, nearly all of the EUR Chapters have been discussed within the EUR Coordination Group. Based on the results of the compliance assessment, it can be stated that the AP1000 design shows a good level of compliance with the EUR Revision C requirements. Nevertheless, the compliance assessment has highlighted areas for where the AP1000 plant deviates from the EUR. The EPP design group has selected the most significant ones for performing detailed studies to quantify the degree of compliance

  9. Learning through delivery, Westinghouse AP1000 plant construction

    International Nuclear Information System (INIS)

    Gorgemans, J.; Hinman, R.D.; Steuck, C.M.; Greco, P.L.

    2014-01-01

    The AP1000 plant, which is a 1100 MWe class pressurized water reactor with passive safety features, is designed around a conventional 2 loop, 2 steam generator primary system configuration with 2 hot legs, 4 reactor coolant pumps directly mounted in the steam generator lower head and 4 cold legs. A particular feature of AP1000 is its modular construction to minimize the time and cost of construction. Modular construction allows activities to be run in parallel, it allows more activities to be performed in a controlled factory instead of in the field, and it provides a better level of quality. The AP1000 plant design includes 106 structural modules and 52 mechanical modules. Structural modules include all penetrations for piping, cable trays, HVAC duct runs, and all reinforcement for pipe, equipment hangers, and supports. Structural modules are shipped in sub-modules to support transportation by rail or truck or barge. Mechanical modules contain equipment such as pumps, tanks, heat exchangers, air-handling units, and filters along with interconnecting pipes, valves, instruments, wiring and support services. Modular construction requires strong coordination between engineering, supply chain and construction. A total of 8 AP1000 units are currently under construction in China and in the United States. The lessons learned and best practices of each new AP1000 construction are systematically incorporated into the standard design. (A.C.)

  10. Westinghouse plans global new builds for AP1000

    International Nuclear Information System (INIS)

    Mitev, Lubomir

    2014-01-01

    Interview with Danny Roderick, Westinghouse Electric Company, President and Chief Executive Officer since September 2012, about perspectives and future plans for AP1000 new build worldwide. Within three to four years there wille be 'shovels in the ground' for three new AP1000 reactors in the UK, as well as new units in China and Bulgaria. Four AP1000 reactors are under construction in the United States at Vogtle and VC Summer, and soon at Turkey Point. Additionally Danny Roderick spoke about the acquisition of NuGen, technology transfer, the influence of the Ukraine crises on the nuclear market in East Europe and the future need for more nuclear worldwide and in the UK and Bulgaria.

  11. Westinghouse plans global new builds for AP1000

    Energy Technology Data Exchange (ETDEWEB)

    Mitev, Lubomir [NucNet, Brussels (Belgium)

    2014-10-15

    Interview with Danny Roderick, Westinghouse Electric Company, President and Chief Executive Officer since September 2012, about perspectives and future plans for AP1000 new build worldwide. Within three to four years there wille be 'shovels in the ground' for three new AP1000 reactors in the UK, as well as new units in China and Bulgaria. Four AP1000 reactors are under construction in the United States at Vogtle and VC Summer, and soon at Turkey Point. Additionally Danny Roderick spoke about the acquisition of NuGen, technology transfer, the influence of the Ukraine crises on the nuclear market in East Europe and the future need for more nuclear worldwide and in the UK and Bulgaria.

  12. Performance of the Westinghouse WWER-1000 fuel design

    International Nuclear Information System (INIS)

    Höglund, J.; Jansson, A.; Latorre, R.; Davis, D.

    2015-01-01

    In 2005, six (6) Westinghouse WWER-1000 Lead Test Assemblies (LTAs) were loaded in South Ukraine Unit 3 (SU3). The LTAs completed the planned four cycles of operation and reached an average assembly burnup in excess of 43 MWd/ kgU. Post Irradiation Examination (PIE) inspections were performed after completion of each cycle and it was concluded that the 6 Westinghouse LTAs performed as expected during their operational regimes. In 2010, a full region of 42 assemblies of an enhanced WWER-1000 fuel design for Ukrainian reactors, designated WFA, was loaded in SU3. The WFA includes features that further mitigate assembly bow while at the same time improving the fuel cycle economy. In 2015, 26 WFAs completed their planned four cycles of operation reaching an average assembly burnup in excess of 42 MWd/ kgU. Currently 36 WFAs continue operating their fourth cycle in SU3. In addition, South Ukraine Unit 2 (SU2) has been loaded with WFAs and 27 assemblies have completed two cycles of operation reaching an average assembly burnup above 24 MWd/kgU. PIE for the WFAs has been completed after each cycle of operation. All assemblies have been examined for visible damage or non-standard position of fuel assembly components during unloading and reloading. All WFAs have also been subject to the standard leak testing process, with all fuel rods found to be hermetically sealed and non-leaking. Each outage, six WFAs have been subject to a more extensive inspection program. In 2012, 2013, and 2015, the Westinghouse Fuel Inspection and Repair Equipment (FIRE) workstation were used for the SU3 inspections. Excellent irradiation fuel performance has been observed and measured on all WFAs. The fuel assembly growth, rod cluster control assembly (RCCA) drag forces, oxide thickness, total fuel rod-to-nozzle gap channel closure, and fuel assembly bow data were within the bounds of the Westinghouse experience database. Results and concluding remarks from the PIEs are provided in this paper. In

  13. AP1000{sup R} licensing and deployment in the United States

    Energy Technology Data Exchange (ETDEWEB)

    Jordan, R. P.; Russ, P. A.; Filiak, P. P.; Castiglione, L. L. [Westinghouse Electric Company LLC, 1000 Westinghouse Drive, Cranberry Township, PA 16066 (United States)

    2012-07-01

    In recent years, both domestic and foreign utilities have turned to the standardized Westinghouse AP1000 plant design in satisfying their near - and long-term - sustainable energy needs. As direct support to these actions, licensing the AP1000 design has played a significant role by providing one of the fundamental bases in clearing regulatory hurdles leading to the start of new plant construction. Within the U.S. alone, Westinghouse AP1000 licensing activities have reached unprecedented milestones with the approvals of both AP1000 Design Certification and Southern Company's combined construction permit and operating license (COL) application directly supporting the construction of two new nuclear plants in Georgia. Further COL application approvals are immediately pending for an additional two AP1000 plants in South Carolina. And, across the U.S. nuclear industry spectrum, there are 10 other COL applications under regulatory review representing some 16 new plants at 10 sites. In total, these actions represent the first wave of new plant licensing under the regulatory approval process since 1978. Fundamental to the Nuclear Regulatory Commission's AP1000 Design Certification is the formal recognition of the AP1000 passive safety design through regulatory acceptance rulemaking. Through recognition and deployment of the AP1000 Design Certification, the utility licensee / operator of this reactor design are now offered an opportunity to use a simplified 'one-step' combined license process, thereby managing substantial back-end construction schedule risk from regulatory and intervention delays. Application of this regulatory philosophy represents both acceptance and encouragement of standardized reactor designs like the AP1000. With the recent AP1000 Design Certification and utility COL acceptances, the fundamental licensing processes of this philosophy have successfully proven the attainment of significant milestones with the next stage licensing

  14. Comparison of problems and experience of core operation with distorted fuel element assemblies in VVER-1000 and PWR reactors

    International Nuclear Information System (INIS)

    Afanas'ev, A.

    1999-01-01

    The main reactors leading to distortion of fuel element assemblies during reactor operation were studied. A series of actions which compensate this effect was proposed. Criteria of operation limitation in VVER-1000 and PWR reactors are described

  15. Enhanced Westinghouse WWER-1000 fuel design for Ukraine reactors

    International Nuclear Information System (INIS)

    Dye, M.; Shah, H.

    2015-01-01

    Westinghouse has completed design, development, and region quantity delivery of an enhanced Westinghouse fuel assembly for WWER-1000 reactors to support continued safe reactor operations. The enhanced design builds on the successful performance of an earlier generation design which has operated in the South Ukraine 3 reactor for multiple cycles without any fuel rod failures. Incorporated design enhancements include a thicker spacer grid outer strap, an enhanced spacer grid outer strap profile to limit the risk for, and impact of, mechanical interaction/interference with coresident fuel, an all Alloy 718 grid structure for improved stability and strength, and improvements to the top and bottom nozzles. Capable of meeting increased lateral loads generated from using a higher axial trip limit for the refueling machine crane, the design was verified by extensive mechanical and thermalhydraulic testing, which included a newly developed fuel assembly-to-fuel assembly handling test rig to assess performance during bounding core loading and unloading conditions. Through these extensive design enhancements and comprehensive testing program, the enhanced WWER-1000 design provides additional performance, handling, and reliability margins for safe reactor operation. (authors)

  16. Discussion of QA grading for AP1000 NP plant

    International Nuclear Information System (INIS)

    Luo Shuiyun; Zhang Qingchuan

    2012-01-01

    The grading method of quality assurance for the following AP1000 project is presented based on the Westinghouse classification principle, referring to the classification method of the AP1000 self-reliance supporting project and considering the factors of classification, which can meet the requirements of domestic nuclear safety regulation and standard of the QA classification. (authors)

  17. The influence of changes in the VVER-1000 fuel assembly shape during operation on the power density distribution

    Energy Technology Data Exchange (ETDEWEB)

    Shishkov, L. K., E-mail: Shishkov-LK@nrcki.ru; Gorodkov, S. S.; Mikailov, E. F.; Sukhino-Homenko, E. A.; Sumarokova, A. S., E-mail: Sumarokova-AS@nrcki.ru [National Research Center Kurchatov Institute (Russian Federation)

    2016-12-15

    A new approach to calculation of the coefficients of sensitivity of the fuel pin power to deviations in gap sizes between fuel assemblies of the VVER-1000 reactor during its operation is proposed. It is shown that the calculations by the MCU code should be performed for a full-size model of the core to take the interference of the gap influence into account. In order to reduce the conservatism of calculations, the coolant density and coolant temperature feedbacks should be taken into account, as well as the fuel burnup.

  18. Performance Analysis of AP1000 Passive Systems during Direct Vessel Injection (DVI Line Break

    Directory of Open Access Journals (Sweden)

    A.S. Ekariansyah

    2016-08-01

    Full Text Available Generation II Nuclear Power Plants (NPPs have a design weakness as shown by the Fukushima accident. Therefore, Generation III+ NPPs are developed with focus on improvements of fuel technology and thermal efficiency, standardized design, and the use of passive safety system. One type of Generation III+ NPP is the AP1000 that is a pressurized water reactor (PWR type that has received the final design acceptance from US-NRC and is already under construction at several sites in China as of 2015. The aim of this study is to investigate the behavior and performance of the passive safety system in the AP1000 and to verify the safety margin during the direct vessel injection (DVI line break as selected event. This event was simulated using RELAP5/SCDAP/Mod3.4 as a best-estimate code developed for transient simulation of light water reactors during postulated accidents. This event is also described in the AP1000 design control document as one of several postulated accidents simulated using the NOTRUMP code. The results obtained from RELAP5 calculation was then compared with the results of simulations using the NOTRUMP code. The results show relatively good agreements in terms of time sequences and characteristics of some injected flow from the passive safety system. The simulation results show that the break of one of the two available DVI lines can be mitigated by the injected coolant flowing, which is operated effectively by gravity and density difference in the cooling system and does not lead to core uncovery. Despite the substantial effort to obtain an apropriate AP1000 model due to lack of detailed geometrical data, the present model can be used as a platform model for other initiating event considered in the AP1000 accident analysis.

  19. Numerical simulation of AP1000 LBLOCA with SCDAP/RELAP 4.0 code

    International Nuclear Information System (INIS)

    Xie Heng

    2017-01-01

    The risk of large-break loss of coolant accident (LBLOCA) is that core will be exposed once the accident occurs, and may cause core damages. New phenomena may occur in LBLOCA due to passive safety injection adopted by AP1000. This paper used SCDAP/RELAP5 4.0 to build the numerical model of AP1000 and double-end guillotine of cold leg is simulated. Reactor coolant system and passive core cooling system were modeled by RELAP5 modular. HEAT STRUCTURE component of RELAP5 was used to simulate the fuel rod. The reflood option in RELAP5 was chosen to be activated or not to study the effect of axial heat conduction. Results show that the axial heat conduction plays an important role in the reflooding phase and can effectively shorten reflood process. An alternative core model is built by SCDAP modular. It is found that the SCDAP model predicts higher maximum peak cladding temperature and longer reflood process than RELAP5 model. Analysis shows that clad oxidation heat plays a key role in the reflood. From the simulation results, it can be concluded that the cladding will keep intact and fission product will not be released from fuel to coolant in LBLOCA. (author)

  20. Investigation of a wire wrapped fuel assembly with the anisotropic Coarse-Grid-CFD (AP-CGCFD)

    Energy Technology Data Exchange (ETDEWEB)

    Viellieber, Mathias; Dietrich, Philipp; Class, Andreas [Karlsruhe Institute of Technology (KIT), Eggenstein-Leopoldshafen (Germany). AREVA Nuclear Professional School (ANPS)

    2013-07-01

    Within this work we demonstrated the ability of the AP-CGCFD method to deal with complex geometries like wire wrapped spacer grid fuel assemblies. Both qualitative and quantitative values like the pressure profile and velocity structures could be reproduced from the detailed RANS CFD simulation. Furthermore we introduced a novel mathematical formulation of the method. Compared to state-of-the-art subchannel analyses, neither parameter tuning is needed, nor empirical or experimental input, to adjust the solvers for a specific geometry. Certainly, this method requires the user making educated decisions on the representative geometry segments and a suitable parameter space for the initial fine CFD simulations needed to extract the volumetric source terms. Since similar flow conditions repeat many times, the costs of the representative CFD simulations needed to extract the volumetric forces are much lower than a full simulation. Thus AP-CGCFD simulations are suitable for simulations of geometries where flow situations are repeating many times. (orig.)

  1. Finite element modeling of AP1000 nuclear island

    International Nuclear Information System (INIS)

    Tinic, S.; Orr, R.

    2003-01-01

    The AP1000 is a standard design developed by Westinghouse and its partners for an advanced nuclear power plant utilizing passive safety features. It is based on the certified design of the AP600 and has been uprated to 1000 MWe. The plant has five principal building structures; the nuclear island, the turbine building; the annex building; the diesel generator building and the radwaste building. The nuclear island consists of the containment building (the steel containment vessel and the containment internal structures), the shield building, and the auxiliary building. These structures are founded on a common basemat and are collectively known as the nuclear island. This paper describes use of the general purpose finite element program ANSYS [2] in structural analyses and qualification of the AP1000 nuclear island buildings. It describes the modeling of the shield building and the auxiliary building and the series of analyses and the flow of information from the global analyses to the detailed analyses and building qualification. (author)

  2. AP1000R design robustness against extreme external events - Seismic, flooding, and aircraft crash

    International Nuclear Information System (INIS)

    Pfister, A.; Goossen, C.; Coogler, K.; Gorgemans, J.

    2012-01-01

    Both the International Atomic Energy Agency (IAEA) and the U.S. Nuclear Regulatory Commission (NRC) require existing and new nuclear power plants to conduct plant assessments to demonstrate the unit's ability to withstand external hazards. The events that occurred at the Fukushima-Dai-ichi nuclear power station demonstrated the importance of designing a nuclear power plant with the ability to protect the plant against extreme external hazards. The innovative design of the AP1000 R nuclear power plant provides unparalleled protection against catastrophic external events which can lead to extensive infrastructure damage and place the plant in an extended abnormal situation. The AP1000 plant is an 1100-MWe pressurized water reactor with passive safety features and extensive plant simplifications that enhance construction, operation, maintenance and safety. The plant's compact safety related footprint and protection provided by its robust nuclear island structures prevent significant damage to systems, structures, and components required to safely shutdown the plant and maintain core and spent fuel pool cooling and containment integrity following extreme external events. The AP1000 nuclear power plant has been extensively analyzed and reviewed to demonstrate that it's nuclear island design and plant layout provide protection against both design basis and extreme beyond design basis external hazards such as extreme seismic events, external flooding that exceeds the maximum probable flood limit, and malicious aircraft impact. The AP1000 nuclear power plant uses fail safe passive features to mitigate design basis accidents. The passive safety systems are designed to function without safety-grade support systems (such as AC power, component cooling water, service water, compressed air or HVAC). The plant has been designed to protect systems, structures, and components critical to placing the reactor in a safe shutdown condition within the steel containment vessel which is

  3. The AP1000R nuclear power plant innovative features for extended station blackout mitigation

    International Nuclear Information System (INIS)

    Vereb, F.; Winters, J.; Schulz, T.; Cummins, E.; Oriani, L.

    2012-01-01

    Station Blackout (SBO) is defined as 'a condition wherein a nuclear power plant sustains a loss of all offsite electric power system concurrent with turbine trip and unavailability of all onsite emergency alternating current (AC) power system. Station blackout does not include the loss of available AC power to buses fed by station batteries through inverters or by alternate AC sources as defined in this section, nor does it assume a concurrent single failure or design basis accident...' in accordance with Reference 1. In this paper, the innovative features of the AP1000 plant design are described with their operation in the scenario of an extended station blackout event. General operation of the passive safety systems are described as well as the unique features which allow the AP1000 plant to cope for at least 7 days during station blackout. Points of emphasis will include: - Passive safety system operation during SBO - 'Fail-safe' nature of key passive safety system valves; automatically places the valve in a conservatively safe alignment even in case of multiple failures in all power supply systems, including normal AC and battery backup - Passive Spent Fuel Pool cooling and makeup water supply during SBO - Robustness of AP1000 plant due to the location of key systems, structures and components required for Safe Shutdown - Diverse means of supplying makeup water to the Passive Containment Cooling System (PCS) and the Spent Fuel Pool (SFP) through use of an engineered, safety-related piping interface and portable equipment, as well as with permanently installed onsite ancillary equipment. (authors)

  4. Advanced fuel cycles of WWER-1000 reactors

    International Nuclear Information System (INIS)

    Lunin, G.; Novikov, A.; Pavlov, V.; Pavlovichev, A.

    2003-01-01

    The present paper considers characteristics of fuel cycles for the WWER-1000 reactor satisfying the following conditions: duration of the campaign at the nominal power is extended from 250 EFPD up to 470 and more ones; fuel enrichment does not exceed 5 wt.%; fuel assemblies maximum burnup does not exceed 55 MWd/kgHM. Along with uranium fuel, the use of mixed Uranium-Plutonium fuel is considered. Calculations were conducted by codes TVS-M, BIPR-7A and PERMAK-A developed in the RRC Kurchatov Institute, verified for the calculations of uranium fuel and certified by GAN RF

  5. HSE management for AP1000 nuclear plant construction in EPC mode

    International Nuclear Information System (INIS)

    He Xiaogang; Wei Zhong

    2010-01-01

    As a new nuclear type, AP1000 will become the development direction of Chinese nuclear project. EPC General Contract mode is favored by nuclear owners both at home and abroad. Therefore, there is necessity for studying HSE management system and method suitable for AP1000 nuclear plant construction (ANPC) based on combination of AP1000 construction characters in EPC mode. This can not only ensure safety for ANPC but also positively promote national nuclear power development. For this reason, based on site HSE management of the first AP1000 nuclear plant under construction, HSE management system and method for ANPC in EPC mode was proposed after analysis of the character of EPC mode and ANPC character. It is hoped that it will be helpful for safe construction for ANPC. (authors)

  6. Neutronics feasibility of using Gd2O3 particles in VVER-1000 fuel assembly

    International Nuclear Information System (INIS)

    Hoang Van Khanh; Hoang Thanh Phi Hung; Tran Hoai Nam

    2016-01-01

    Neutronics feasibility of using Gd 2 O 3 particles for controlling excess reactivity of VVER-1000 fuel assembly has been investigated. The motivation is that the use of Gd 2 O 3 particles would increase the thermal conductivity of the UO 2 +Gd 2 O 3 fuel pellet which is one of the desirable characteristics for designing future high burnup fuel. The calculation results show that the Gd 2 O 3 particles with the diameter of 60 µm could control the reactivity similarly to that of homogeneous mixture with the same amount of Gd 2 O 3 . The power densities at the fuel pin with Gd 2 O 3 particles increase by about 10-11%, leading to the decrease of the power peak and a slightly flatter power distribution. The power peak appears at the periphery pins at the beginning of burnup process which is decreased by 0.9 % when using Gd 2 O 3 particles. Further work and improvement are being planned to optimize the high power peaking at the beginning of burnup. (author)

  7. The modularization construction of piping system installation in AP1000 plant

    International Nuclear Information System (INIS)

    Lu Song; Wang Yuan; Wei Junming

    2012-01-01

    Modularization construction is the main technique used in AP1000 plants, the piping Modularization installation will impact directly to the module construction as the important part of the Modularization construction. After the piping system has took the modularization design in AP1000 plants, some installation works of piping system has moved from the site to fabrication shop. With improving the construction quality and minimizing the time frame of project, the critical paths can be optimized. This paper has analyzed the risk and challenge that met during the modularization construction period of piping systems though introducing the characteristic of modularization construction for AP1000 piping systems, and get construction experiences from the First AP1000 plants in the world, then it will be the firmly basics for the wide application of modularization construction in the future. (authors)

  8. Dynamic Analysis of AP1000 Shield Building Considering Fluid and Structure Interaction Effects

    Directory of Open Access Journals (Sweden)

    Qiang Xu

    2016-02-01

    Full Text Available The shield building of AP1000 was designed to protect the steel containment vessel of the nuclear reactor. Therefore, the safety and integrity must be ensured during the plant life in any conditions such as an earthquake. The aim of this paper is to study the effect of water in the water tank on the response of the AP1000 shield building when subjected to three-dimensional seismic ground acceleration. The smoothed particle hydrodynamics method (SPH and finite element method (FEM coupling method is used to numerically simulate the fluid and structure interaction (FSI between water in the water tank and the AP1000 shield building. Then the grid convergence of FEM and SPH for the AP1000 shield building is analyzed. Next the modal analysis of the AP1000 shield building with various water levels (WLs in the water tank is taken. Meanwhile, the pressure due to sloshing and oscillation of the water in the gravity drain water tank is studied. The influences of the height of water in the water tank on the time history of acceleration of the AP1000 shield building are discussed, as well as the distributions of amplification, acceleration, displacement, and stresses of the AP1000 shield building. Research on the relationship between the WLs in the water tank and the response spectrums of the structure are also taken. The results show that the high WL in the water tank can limit the vibration of the AP1000 shield building and can more efficiently dissipate the kinetic energy of the AP1000 shield building by fluid-structure interaction.

  9. Introduction to sump screen downstream effect analysis of AP1000 nuclear power plant

    International Nuclear Information System (INIS)

    Zhang Qinghua; Liu Yu; Chai Guohan

    2010-01-01

    The design of AP1000 takes into account the potential impact of debris clogging on sump screen. In this article, the technical background of sump screen issue and the design characteristics of AP1000 to address the sump screen blockage issue are introduced. The article focuses on the 'downstream effect' analysis method, acceptance criteria and analysis result of AP1000 sump screen. Although the design of AP1000 is different with traditional PWR, the author expects to bring some reference to advance the downstream effect analysis in China through the introduction. (authors)

  10. Comparison and analysis for item classifications between AP1000 and traditional PWR

    International Nuclear Information System (INIS)

    Luo Shuiyun; Liu Xiaoyan

    2012-01-01

    The comparison and analysis for the safety classification, seismic category, code classification and QA classification between AP1000 and traditional PWR were presented. The safety could be guaranteed and the construction and manufacture costs could be cut down since all sorts of AP1000 classifications. It is suggested that the QA classification and the QA requirements correspond to the national conditions should be drafted in the process of AP1000 domestication. (authors)

  11. Research and design calculation of multipurpose critical assembly using moderated light water and low enriched fuel from 1.6 to 5.0% U-235

    International Nuclear Information System (INIS)

    Nguyen Kien Cuong; Vo Doan Hai Dang; Luong Ba Vien; Le Vinh Vinh; Huynh Ton Nghiem; Nguyen Minh Tuan; Nguyen Manh Hung; Pham Quang Huy; Tran Quoc Duong; Tran Tri Vien

    2015-01-01

    Basing on the idea in ??using fuel of nuclear power plants such as PWR (AP-1000) and VVER-1000 with light water as moderation, design calculation of critical assembly was performed to confirm the possibility of using these fuels. Designed critical assembly has simple structure consisting of low enriched fuel from 1.6% to 5% U-235; water has functions as cooling, biological protection and control. Critical assembly is operated at nominal power 100 W with fuel pitch about 2.0 cm. Applications of the critical assembly are quite abundant in basic research, education and training with low investment cost compare with research reactor and easy in operation. So critical assembly can be used for university or training centre for nuclear engineering training. Main objectives of the project are: design calculation in neutronics, thermal hydraulics and safety analysis for critical configuration benchmarks using low enriched fuel; design in mechanical and auxiliary systems for critical assembly; determine technical specifications and estimate construction, installation cost of critical assembly. The process of design, fabrication, installation and construction of critical assembly will be considered with different implementation phases and localization capabilities in installation of critical assembly is highly feasibility. Cost estimation of construction and installation of critical assembly was implemented and showed that investment cost for critical assembly is much lower than research reactor and most of components, systems of critical assembly can be localized with current technique quality of the country. (author)

  12. The AP1000{sup R} nuclear power plant innovative features for extended station blackout mitigation

    Energy Technology Data Exchange (ETDEWEB)

    Vereb, F.; Winters, J.; Schulz, T.; Cummins, E.; Oriani, L. [Westinghouse Electric Company LLC, 1000 Westinghouse Drive, Cranberry Township, PA 16066 (United States)

    2012-07-01

    Station Blackout (SBO) is defined as 'a condition wherein a nuclear power plant sustains a loss of all offsite electric power system concurrent with turbine trip and unavailability of all onsite emergency alternating current (AC) power system. Station blackout does not include the loss of available AC power to buses fed by station batteries through inverters or by alternate AC sources as defined in this section, nor does it assume a concurrent single failure or design basis accident...' in accordance with Reference 1. In this paper, the innovative features of the AP1000 plant design are described with their operation in the scenario of an extended station blackout event. General operation of the passive safety systems are described as well as the unique features which allow the AP1000 plant to cope for at least 7 days during station blackout. Points of emphasis will include: - Passive safety system operation during SBO - 'Fail-safe' nature of key passive safety system valves; automatically places the valve in a conservatively safe alignment even in case of multiple failures in all power supply systems, including normal AC and battery backup - Passive Spent Fuel Pool cooling and makeup water supply during SBO - Robustness of AP1000 plant due to the location of key systems, structures and components required for Safe Shutdown - Diverse means of supplying makeup water to the Passive Containment Cooling System (PCS) and the Spent Fuel Pool (SFP) through use of an engineered, safety-related piping interface and portable equipment, as well as with permanently installed onsite ancillary equipment. (authors)

  13. Influence of performance improvement of AP1000 nuclear island main equipment forging on manufacturing

    International Nuclear Information System (INIS)

    Liu Zhiying

    2013-01-01

    In order to comply with the 60-year design life of an AP1000 nuclear power station, higher strength and ductility requirements have been made on AP1000 nuclear island SG forgings than on CPR1000 nuclear island main equipment. In addition, bigger size of AP1000 nuclear island SG forgings increases the difficulty of manufacturing them. Insufficient recognition of these changes may cause unstable quality of forgings and possible quality problems in follow-up welding procedure. On the basis of comparison and analysis of AP1000 nuclear island SG forgings and CPR1000 nuclear island forgings, this thesis suggests clear directions for the actions we need to take. (author)

  14. AP1000{sup R} design robustness against extreme external events - Seismic, flooding, and aircraft crash

    Energy Technology Data Exchange (ETDEWEB)

    Pfister, A.; Goossen, C.; Coogler, K.; Gorgemans, J. [Westinghouse Electric Company LLC, 1000 Westinghouse Drive, Cranberry Township, PA 16066 (United States)

    2012-07-01

    Both the International Atomic Energy Agency (IAEA) and the U.S. Nuclear Regulatory Commission (NRC) require existing and new nuclear power plants to conduct plant assessments to demonstrate the unit's ability to withstand external hazards. The events that occurred at the Fukushima-Dai-ichi nuclear power station demonstrated the importance of designing a nuclear power plant with the ability to protect the plant against extreme external hazards. The innovative design of the AP1000{sup R} nuclear power plant provides unparalleled protection against catastrophic external events which can lead to extensive infrastructure damage and place the plant in an extended abnormal situation. The AP1000 plant is an 1100-MWe pressurized water reactor with passive safety features and extensive plant simplifications that enhance construction, operation, maintenance and safety. The plant's compact safety related footprint and protection provided by its robust nuclear island structures prevent significant damage to systems, structures, and components required to safely shutdown the plant and maintain core and spent fuel pool cooling and containment integrity following extreme external events. The AP1000 nuclear power plant has been extensively analyzed and reviewed to demonstrate that it's nuclear island design and plant layout provide protection against both design basis and extreme beyond design basis external hazards such as extreme seismic events, external flooding that exceeds the maximum probable flood limit, and malicious aircraft impact. The AP1000 nuclear power plant uses fail safe passive features to mitigate design basis accidents. The passive safety systems are designed to function without safety-grade support systems (such as AC power, component cooling water, service water, compressed air or HVAC). The plant has been designed to protect systems, structures, and components critical to placing the reactor in a safe shutdown condition within the steel

  15. Control parameter optimization for AP1000 reactor using Particle Swarm Optimization

    International Nuclear Information System (INIS)

    Wang, Pengfei; Wan, Jiashuang; Luo, Run; Zhao, Fuyu; Wei, Xinyu

    2016-01-01

    Highlights: • The PSO algorithm is applied for control parameter optimization of AP1000 reactor. • Key parameters of the MSHIM control system are optimized. • Optimization results are evaluated though simulations and quantitative analysis. - Abstract: The advanced mechanical shim (MSHIM) core control strategy is implemented in the AP1000 reactor for core reactivity and axial power distribution control simultaneously. The MSHIM core control system can provide superior reactor control capabilities via automatic rod control only. This enables the AP1000 to perform power change operations automatically without the soluble boron concentration adjustments. In this paper, the Particle Swarm Optimization (PSO) algorithm has been applied for the parameter optimization of the MSHIM control system to acquire better reactor control performance for AP1000. System requirements such as power control performance, control bank movement and AO control constraints are reflected in the objective function. Dynamic simulations are performed based on an AP1000 reactor simulation platform in each iteration of the optimization process to calculate the fitness values of particles in the swarm. The simulation platform is developed in Matlab/Simulink environment with implementation of a nodal core model and the MSHIM control strategy. Based on the simulation platform, the typical 10% step load decrease transient from 100% to 90% full power is simulated and the objective function used for control parameter tuning is directly incorporated in the simulation results. With successful implementation of the PSO algorithm in the control parameter optimization of AP1000 reactor, four key parameters of the MSHIM control system are optimized. It has been demonstrated by the calculation results that the optimized MSHIM control system parameters can improve the reactor power control capability and reduce the control rod movement without compromising AO control. Therefore, the PSO based optimization

  16. Fuel assembly leak tightness control on WWER-1000 reactor

    International Nuclear Information System (INIS)

    Ivanova, R.; Gerchev, N.; Mateev, A.

    2001-01-01

    The main index for integrity of the fuel rods cladding is the specific activity value of the primary coolant. This value determines the safe operation of the reactor. The limit for safe operation of WWER-1000 reactor is the value of the total activity of Iodine isotopes in the primary coolant 5.0x10 -3 Ci/l. The paper briefly describes the methodology for performing a fuel tightness test (sipping test) and shows the results from these tests performed during the period 1987 -1999 in units 5 and 6 at the Kozloduy NPP. An additional index related to the safe operation is defined to characterize the fuel cladding integrity Fuel Reliability Index (FRI). The FRI is defined as value of the average activity of 131 I in the primary coolant, corrected with a part of precipitated 235 U migration and fixed to the general permanent purification frequency. Two criteria (quantitative and statistic) are determined to qualify the fuel cladding integrity. The results from sipping tests show good reliability of the fuel irradiated in unit 5 and 6 at the Kozloduy NPP

  17. The summary of WWER-1000 fuel utilization in Ukraine

    Energy Technology Data Exchange (ETDEWEB)

    Afanasyev, A [Ukrainian State Committee on Nuclear Power Utilization, Kiev (Ukraine)

    1997-12-01

    The report discusses the status of the fuel and fuel cycles of WWER-1000 reactors in Ukraine. The major reasons that caused the Ukrainian utilities to overcome the conservative design solutions in order to improve fuel utilization and extend fuel burnup are shown. At the same time the sufficient fuel reliability and fuel cycle flexibility are ensured. The burnup distribution in the unloaded fuel assemblies and average fuel rod failure rate are presented. The questions of reactor core operation safety and the economical problems of the front end of the fuel cycle are also considered. (author). 2 refs, 3 figs, 4 tabs.

  18. Standardized safety management of AP1000 nuclear power plant

    International Nuclear Information System (INIS)

    Li Xingwen; Cao Zhiqiang; Cong Jiuyuan

    2011-01-01

    In 2002, China published and implemented the Law of the People's Republic of China on Work Safety and promulgated a series of guidelines and policies, which strengthened the safety management supervision. Standardization of safety, as another important step on safety supervision, comes after safety assesment and safety production licensing system, is also a permanent solution. Standardization of safety is a strategic, long term and fundamental work, which is also the basic access to achieving scientific safety management and increasing the inherent safety of an enterprise. Haiyang AP1000 nuclear power plant, adopting the modularized, 'open-top' and parallel construction means, overturned the traditional construction theory of installation work comes after the civil work and greatly shorten the construction period. At the same time, the notable increase of oversize module transportation and lifting and parallel construction raises higher demands for safety management. This article combines the characteristics and difficulties of safety management for Haiyang AP1000 nuclear power plant, puts forward ideas and methods for standardized safety management, and could also serve as reference to the safety management for other AP1000 projects. (authors)

  19. Characteristics and application study of AP1000 NPPs equipment reliability classification method

    International Nuclear Information System (INIS)

    Guan Gao

    2013-01-01

    AP1000 nuclear power plant applies an integrated approach to establish equipment reliability classification, which includes probabilistic risk assessment technique, maintenance rule administrative, power production reliability classification and functional equipment group bounding method, and eventually classify equipment reliability into 4 levels. This classification process and result are very different from classical RCM and streamlined RCM. It studied the characteristic of AP1000 equipment reliability classification approach, considered that equipment reliability classification should effectively support maintenance strategy development and work process control, recommended to use a combined RCM method to establish the future equipment reliability program of AP1000 nuclear power plants. (authors)

  20. The Westinghouse AP1000 plant design: a generation III+ reactor with unique proven passive safety technology

    International Nuclear Information System (INIS)

    Demetri, K. J.; Leipner, C. I.; Marshall, M. L.

    2015-09-01

    The AP1000 plant is an 1100-M We pressurized water reactor with passive safety features and extensive plant simplifications and standardization that simplify construction, operation, maintenance, safety, and cost. The AP1000 plant is based on proven pressurized water reactor (PWR) technology, with an emphasis on safety features that rely solely on natural forces. These passive safety features are combined with simple, active, defense-in-depth systems used during normal plant operations which also provide the first level of defense against more probable events. This paper focuses on specific safety and licensing topics: the AP1000 plant robustness to be prepared for extreme events that may lead to catastrophic loss of infrastructure, such as the Fukushima Dai-ichi event, and the AP1000 plant compliance with the safety objectives for new plants. The first deployment of the AP1000 plant formally began in July 2007 when Westinghouse Electric Company and its consortium partner, the Shaw Group, signed contracts for four AP1000 units on coastal sites of Sanmen and Haiyang, China. Both sites have the planned ability to accommodate at least six AP1000 units; construction is largely concurrent for all four units. Additionally, the United States (U.S.) Nuclear Regulatory Commission (NRC) issued combined licenses (COLs) to allow Southern Nuclear Operating Company (SNC) and South Carolina Electric and Gas Company (SCE and G) to construct and operate AP1000 plants. Within this paper, the various factors that contribute to an unparalleled level of design, construction, delivery, and licensing certainty for any new AP1000 plant projects are described. These include: 1) How the AP1000 plant design development and reviews undertaken in the United States, China and Europe increase licensing certainty. 2) How the AP1000 passive plant robustness against extreme events that result in large loss of infrastructure further contributes to the licensing certainty in a post

  1. The Westinghouse AP1000 plant design: a generation III+ reactor with unique proven passive safety technology

    Energy Technology Data Exchange (ETDEWEB)

    Demetri, K. J.; Leipner, C. I.; Marshall, M. L., E-mail: demetrkj@westinghouse.com [Westinghouse Electric Company, 1000 Westinghouse Drive, Cranberry Township, PA 16066 (United States)

    2015-09-15

    The AP1000 plant is an 1100-M We pressurized water reactor with passive safety features and extensive plant simplifications and standardization that simplify construction, operation, maintenance, safety, and cost. The AP1000 plant is based on proven pressurized water reactor (PWR) technology, with an emphasis on safety features that rely solely on natural forces. These passive safety features are combined with simple, active, defense-in-depth systems used during normal plant operations which also provide the first level of defense against more probable events. This paper focuses on specific safety and licensing topics: the AP1000 plant robustness to be prepared for extreme events that may lead to catastrophic loss of infrastructure, such as the Fukushima Dai-ichi event, and the AP1000 plant compliance with the safety objectives for new plants. The first deployment of the AP1000 plant formally began in July 2007 when Westinghouse Electric Company and its consortium partner, the Shaw Group, signed contracts for four AP1000 units on coastal sites of Sanmen and Haiyang, China. Both sites have the planned ability to accommodate at least six AP1000 units; construction is largely concurrent for all four units. Additionally, the United States (U.S.) Nuclear Regulatory Commission (NRC) issued combined licenses (COLs) to allow Southern Nuclear Operating Company (SNC) and South Carolina Electric and Gas Company (SCE and G) to construct and operate AP1000 plants. Within this paper, the various factors that contribute to an unparalleled level of design, construction, delivery, and licensing certainty for any new AP1000 plant projects are described. These include: 1) How the AP1000 plant design development and reviews undertaken in the United States, China and Europe increase licensing certainty. 2) How the AP1000 passive plant robustness against extreme events that result in large loss of infrastructure further contributes to the licensing certainty in a post

  2. Analysis of neutronic parameters of AP1000 core for 18 month and 16/20 month cycle schemes using CASMO4E and SIMULATE-3 codes

    International Nuclear Information System (INIS)

    Nawaz Amjad; Yoshikawa, Hidekazu; Ming Yang

    2015-01-01

    AP1000 reactor is designed for 18 month of operating cycle. The core can also be used for 16/20 months of operating cycle. This study is performed to analyze and compare the neutronic parameters of typical AP1000 reactor core for 18 month and 16/20 month alternate cycle lengths. CASMO4E and SIMULATE-3 code package is used for the analysis of initial and equilibrium cores. The key reactor physics safety parameters were analyzed including power peaking factors, core radial and axial power distribution and core reactivity feedback coefficients. Moreover, the analysis of fuel depletion, fission product buildup and burnable poison behaviour with burnup is also analyzed. Full 2-D fuel assembly model in CASMO4E and full 3-D core model in SIMULATE-3 is employed to examine core performance and safety parameters. In order to evaluate the equilibrium core neutronic parameters, the equilibrium core model is attained by performing burnup analysis from initial to equilibrium cycle, where optimized transition core design is obtained so that the power peaking factors remain within designed limits. The MTC for higher concentration of critical boron concentrations is slightly positive at lower moderator temperatures. However, it remains negative at operating temperature ranges. The radial core relative power distribution indicates that low leakage capability of initial and equilibrium cores is reduced at EOC. (author)

  3. Structural modules in AP1000 plant design

    International Nuclear Information System (INIS)

    Prasad, N.; Tunon-Sanjur, L.

    2007-01-01

    Structural modules are extensively used in AP1000 plant design. The shop manufacturing of modules components improves the quality and reliability of plant structures. The application of modules has a positive impact on construction schedules, and results in substantial savings in the construction cost. This paper describes various types of structural modules used for AP1000 plant structures. CA structural wall modules are steel plate modules with concrete placed, on or within the module, after module installation. The layout and design of the largest CA wall modules, CA01 and CA20, is described in detail. General discussion of structural floor modules, such as the composite and finned floors, is also included. Steel form CB modules (liners) consist of plate reinforced with angle stiffeners and tee sections. The angles and the tee sections are on the concrete side of the plate. Design of CB20 has been included as an example of CB type modules. Design codes and structural concepts related to module designs are discussed. (authors)

  4. OLP embedment design method research for AP1000 nuclear plant

    International Nuclear Information System (INIS)

    Li Cheng; Li Shaoping; Liu Jianwei

    2013-01-01

    Background: One of the most advanced nuclear power technology, the first AP1000 reactor is under construction in China. Modularization is one of the main characteristics for AP1000 nuclear plant building. Module wall with steel face plate is used instead of reinforced concrete structure wall. A number of OLP embedments need to be installed into the module wall to connect other structures such as pipes, equipment, operation platforms and any other component attached to the module wall. Therefore, the design of embedment is very important in AP1000 structural design. Purpose: A finite element analysis method and tool for embedment design is needed for convenience. Methods: This paper applies the self-developed GTStrudl command template and VBA macro program for embedment capacity calculation and evaluation based on Microsoft Excel to the embedment design. Results: A Microsoft Excel template for embedment design is developed. Conclusions: The analysis method and template brings reasonable results and may provide some help and use for reference for the engineering practice. (authors)

  5. The study on neutron and photon distribution of AP1000 reactor by MCNP code

    International Nuclear Information System (INIS)

    Chen Defeng; Shen Mingqi

    2014-01-01

    The core and reactor structural of AP1000 was modeled by the MCNP calculation program which is based on the Monte Carlo method in this paper, the neutron and photon distribution of AP1000 reactor core was calculated by the conditions of reactor critical. The results show that the AP1000 reactor neutron and photon distribution is in accordance with the critical design of PWR. (authors)

  6. Three-dimensional analysis of the coolant flow characteristics in the fuel assemblies of VVER-1000 reactors

    International Nuclear Information System (INIS)

    Dinh Van Thin; Tran Thi Nhan

    2015-01-01

    Computational Fluid Dynamics (CFD) is a widely used method around the world for complex flow and heat industrial problems. In this paper, the coolant flow parameters were investigated in subchannels of VVER-1000 reactor’s fuel assemblies by ANSYS V14.5 programme. The different mesh solutions and turbulence models were carried out to deal with the water flow problems such as velocity distribution, streamline, temperature and pressure change as well as the hydraulic resistances of the spacer grids. The obtained results are good agreement with the measured values and the published reports from other authors. (author)

  7. Study on the operation mode for indigenization and standardization of AP1000 technology

    International Nuclear Information System (INIS)

    Gao Zhihu; Cheng Huiping

    2014-01-01

    This paper describes the importance and necessity of developing standardized AP1000 technology, and analyzes the problems faced and measures to be taken. The operation mode, known as the Committee of AP1000 Standardized Design and Innovation Management, was first put forward in China. And the paper also discusses how to arouse the enthusiasm of the owners, designers, manufactures, as well as construction, installation, regulation and other parties, how to exploit the advantage of whole industry to promote the localization and standardization of AP1000 technology. (authors)

  8. Fuzzy uncertainty modeling applied to AP1000 nuclear power plant LOCA

    International Nuclear Information System (INIS)

    Ferreira Guimaraes, Antonio Cesar; Franklin Lapa, Celso Marcelo; Lamego Simoes Filho, Francisco Fernando; Cabral, Denise Cunha

    2011-01-01

    Research highlights: → This article presents an uncertainty modelling study using a fuzzy approach. → The AP1000 Westinghouse NPP was used and it is provided of passive safety systems. → The use of advanced passive safety systems in NPP has limited operational experience. → Failure rates and basic events probabilities used on the fault tree analysis. → Fuzzy uncertainty approach was employed to reliability of the AP1000 large LOCA. - Abstract: This article presents an uncertainty modeling study using a fuzzy approach applied to the Westinghouse advanced nuclear reactor. The AP1000 Westinghouse Nuclear Power Plant (NPP) is provided of passive safety systems, based on thermo physics phenomenon, that require no operating actions, soon after an incident has been detected. The use of advanced passive safety systems in NPP has limited operational experience. As it occurs in any reliability study, statistically non-significant events report introduces a significant uncertainty level about the failure rates and basic events probabilities used on the fault tree analysis (FTA). In order to model this uncertainty, a fuzzy approach was employed to reliability analysis of the AP1000 large break Loss of Coolant Accident (LOCA). The final results have revealed that the proposed approach may be successfully applied to modeling of uncertainties in safety studies.

  9. Main examination results of WWER-1000 fuel after its irradiation in power reactors

    Energy Technology Data Exchange (ETDEWEB)

    Bibiliashvili, Yu [Vsesoyuznyj Nauchno-Issledovatel` skij Inst. Neorganicheskikh Materialov, Moscow (Russian Federation); Dubrovin, K [Russian Research Centre Kurchatov Inst., Moscow (Russian Federation); Vasilchenko, I [Opytno-Konstruktorskoe Byuro Gidropress, Podol` sk (Russian Federation); Yenin, A; Kushmanov, A [AO Novosibirskij Zavod Khimcontsentratov, Novosibirsk (Russian Federation); Smirnov, A; Smirnov, V [Nauchno-Issledovatel` skij Inst. Atomnykh Reaktorov, Dimitrovgrad (Russian Federation)

    1994-12-31

    WWER-1000 fuel examination has been undertaken to specify the properties of fuel assembly members by defining the parameters of their materials and their interconnection in power reactor operation conditions. Nine fuel assemblies are examined. The examination program includes: visual inspection, measurement of overall dimensions, eddy-current test, gamma-scanning, X-ray and neutron radiography, analysis of gas pressure and composition inside fuel rods, ceramography/metallography, mass spectrometry, microanalysis and electron microscopy of fuel and fuel claddings. The examination results suggest that WWER-1000 fuel spent at steady-state operation conditions up to 50 Mwd/kg U of burnup is in satisfactory condition. The examination of all types of fuel cladding failures indicates that the reason lies in the interaction of cladding with coolant solid impurities. The nodular cladding corrosion of fuel assembly discharged from the South-Ukrainian NPP is caused by the graphite compounds deposited on the fuel rod. Those deposits are a result of the circulating pump damage and had accidental, non-typical character. Some of the rods were found to have a small cladding `fretting` of the spacer grid cell material. The values of the majority of parameters determining the fuel efficiency allow to assume that there is a potential for further extension of fuel burnup and operation length. 1 tab., 11 figs.

  10. Main examination results of WWER-1000 fuel after its irradiation in power reactors

    International Nuclear Information System (INIS)

    Bibiliashvili, Yu.; Dubrovin, K.; Vasilchenko, I.; Yenin, A.; Kushmanov, A.; Smirnov, A.; Smirnov, V.

    1994-01-01

    WWER-1000 fuel examination has been undertaken to specify the properties of fuel assembly members by defining the parameters of their materials and their interconnection in power reactor operation conditions. Nine fuel assemblies are examined. The examination program includes: visual inspection, measurement of overall dimensions, eddy-current test, gamma-scanning, X-ray and neutron radiography, analysis of gas pressure and composition inside fuel rods, ceramography/metallography, mass spectrometry, microanalysis and electron microscopy of fuel and fuel claddings. The examination results suggest that WWER-1000 fuel spent at steady-state operation conditions up to 50 Mwd/kg U of burnup is in satisfactory condition. The examination of all types of fuel cladding failures indicates that the reason lies in the interaction of cladding with coolant solid impurities. The nodular cladding corrosion of fuel assembly discharged from the South-Ukrainian NPP is caused by the graphite compounds deposited on the fuel rod. Those deposits are a result of the circulating pump damage and had accidental, non-typical character. Some of the rods were found to have a small cladding 'fretting' of the spacer grid cell material. The values of the majority of parameters determining the fuel efficiency allow to assume that there is a potential for further extension of fuel burnup and operation length. 1 tab., 11 figs

  11. Effect of a dual-purpose cask payload increment of spent fuel assemblies from VVER 1000 Bushehr Nuclear Power Plant on basket criticality

    International Nuclear Information System (INIS)

    Rezaeian, M.; Kamali, J.

    2017-01-01

    Dual-purpose casks can be utilized for dry interim storage and transportation of the highly radioactive spent fuel assemblies (SFAs) of Bushehr Nuclear Power Plant (NPP). Criticality safety analysis was carried out using the MCNP code for the cask containing 12, 18, or 19 SFAs. The basket materials of borated stainless steel and Boral (Al-B_4C) were investigated, and the minimum required receptacle pitch of the basket was determined. - Highlights: • Criticality safety analysis for a dual purpose cask was carried out. • The basket material of borated stainless steel and Boral were investigated. • Minimum receptacle pitch was determined for 12, 18, or 19 VVER 1000 spent fuel assemblies.

  12. Research on quality assurance classification methodology for domestic AP1000 nuclear power projects

    International Nuclear Information System (INIS)

    Bai Jinhua; Jiang Huijie; Li Jingyan

    2012-01-01

    To meet the quality assurance classification requirements of domestic nuclear safety codes and standards, this paper analyzes the quality assurance classification methodology of domestic AP1000 nuclear power projects at present, and proposes the quality assurance classification methodology for subsequent AP1000 nuclear power projects. (authors)

  13. VVANTAGE 6 - an advanced fuel assembly design for VVER reactors

    International Nuclear Information System (INIS)

    Doshi, P.K.; DeMario, E.E.; Knott, R.P.

    1993-01-01

    Over the last 25 years, Westinghouse fuel assemblies for pressurized water reactors (PWR's) have undergone significant changes to the current VANTAGE 5. VANTAGE 5 PWR fuel includes features such as removable top nozzles, debris filter bottom nozzles, low-pressure-drop zircaloy grids, zircaloy intermediate flow mixing grids, optimized fuel rods, in-fuel burnable absorbers, and increased burnup capability to region average values of 48000 MWD/MTU. These features have now been adopted to the VVER reactors. Westinghouse has completed conceptual designs for an advanced fuel assembly and other core components for VVER-1000 reactors known as VANTAGE 6. This report describes the VVANTAGE 6 fuel assembly design

  14. The power of simplification: Operator interface with the AP1000R during design-basis and beyond design-basis events

    International Nuclear Information System (INIS)

    Williams, M. G.; Mouser, M. R.; Simon, J. B.

    2012-01-01

    The AP1000 R plant is an 1100-MWe pressurized water reactor with passive safety features and extensive plant simplifications that enhance construction, operation, maintenance, safety and cost. The passive safety features are designed to function without safety-grade support systems such as component cooling water, service water, compressed air or HVAC. The AP1000 passive safety features achieve and maintain safe shutdown in case of a design-basis accident for 72 hours without need for operator action, meeting the expectations provided in the European Utility Requirements and the Utility Requirement Document for passive plants. Limited operator actions may be required to maintain safe conditions in the spent fuel pool (SFP) via passive means. This safety approach therefore minimizes the reliance on operator action for accident mitigation, and this paper examines the operator interaction with the Human-System Interface (HSI) as the severity of an accident increases from an anticipated transient to a design basis accident and finally, to a beyond-design-basis event. The AP1000 Control Room design provides an extremely effective environment for addressing the first 72 hours of design-basis events and transients, providing ease of information dissemination and minimal reliance upon operator actions. Symptom-based procedures including Emergency Operating Procedures (EOPs), Abnormal Operating Procedures (AOPs) and Alarm Response Procedures (ARPs) are used to mitigate design basis transients and accidents. Use of the Computerized Procedure System (CPS) aids the operators during mitigation of the event. The CPS provides cues and direction to the operators as the event progresses. If the event becomes progressively worse or lasts longer than 72 hours, and depending upon the nature of failures that may have occurred, minimal operator actions may be required outside of the control room in areas that have been designed to be accessible using components that have been designed

  15. Nuclear safety analysis for transport cask TK-6 (for WWER-440) and cover for fresh assemblies (for WWER-1000) in implementation of new fuel types at Ukrainian NPP

    International Nuclear Information System (INIS)

    Bilodid, Y.; Kovbasenko, Iu; Dudka, Olena

    2006-01-01

    According to the fresh fuel management procedure, fuel assemblies - after nuclear fuel delivery to the NPP fresh fuel unit - are vertically loaded into a cover intended for the delivery of fuel assemblies into the containment of the NPP reactor compartment. The cover is placed into an universal jack in the cooling and refueling pond, and then the fresh fuel assemblies are loaded into the reactor core. Based on the nuclear safety analysis carried out by the Russian Research Center 'Kurchatov Institute' for contemporary WWER-1000 fuel, it has become necessary to limit the number of fuel assemblies loaded into a cover below its designed capacity (12 FA instead of 18 FA as originally designed). Such a decision leads to worse economic performances in fuel transportation. The paper considers potential ways to overcome this restriction. Transport container TK-6 for spent fuel assemblies was designed quite a long time ago and, as shown in this paper, the requirement on the maximally permissible neutron multiplication factor of the loaded container for individual states to be analyzed in compliance with Ukrainian regulations is not met. First of all, this concerns the container criticality analysis in optimal neutron slow-down (container filling with water-air mixture with optimal density). The paper shows potential ways for TK-6 burnup-credit loading with the maximum number of fuel assemblies and partial container loading (Authors)

  16. Application of computerized procedure system for AP1000

    International Nuclear Information System (INIS)

    Wen Fang

    2012-01-01

    With the tendency of digitalisation in instrumentation and control system of nuclear power plants, AP1000, as well as other advanced PWRs, is provided with the technical basis for the application of CPS (computerized procedure system). This paper makes a brief introduction on CPS construction and function. CPS, as an advanced procedure system, does not only have the function of electronic indication for operation procedures, but also have the ability to monitor plant data, process the data and then present the status of the procedure steps to the reactor operator. In addition, advantages of CPS compared with paper-based procedures and comparison with digital operating system of one M310 plus advanced nuclear power plant are described. Moreover, based on current situation, this paper offers several suggestions on CPS localization for Sanmen AP1000 nuclear power project. Besides, the last part of this paper discusses problems we might meet during the process of CPS localization. (author)

  17. Analysis of risk management during AP1000 equipment technology transfer and localization

    International Nuclear Information System (INIS)

    Gao Yongjun; Guan Rui

    2009-01-01

    This article analyzes the risk factors existing in AP1000 equipment technology transfer and localization process by describing the invitation for bid, tender evaluation and contract negotiation process of the third-generation nuclear power plant technology introduction project of China and discusses the classification, evaluation and analysis methods of risks, and puts forward some referential suggestions for the successful introduction of equipment technology for AP1000 nuclear project. (authors)

  18. AP1000 shield building: a constructability challenge

    International Nuclear Information System (INIS)

    Di Giuseppe, Giovanni; Bonanno, Domenico

    2010-01-01

    The AP1000 Shield Building, an enhanced structure which surrounds the containment vessel, consists of standard Reinforced Concrete (RC) and composite Steel and Concrete (SC) construction. In the SC module the surface steel plates, (with attached shear studs and angles) filled with concrete, act as the steel reinforcement in concrete. This is a relatively new design technology that required the appropriate use of structural codes, supplemented with information from applicable tests on similar composite steel and concrete construction. Being a newer design concept, existing codes do not provide explicit guidance on SC construction so a review of literature and test data on composite structures similar to AP1000 shield building was done in order to confirm the technical basis for the design. The SC walls, air inlet structure and roof of the Shield Building will be constructed using modular construction practices and then transported to site and lifted into place. These modules, working also as permanent form-work, will be filled with high strength Self- Consolidating Concrete. (SCC) This paper provides a focused and integrated presentation of the enhanced shield building design methodology, testing, constructability and inspection. (authors)

  19. Inter-assembly gap deviations in VVER-1000: Accounting for effects on engineering margin factors

    Energy Technology Data Exchange (ETDEWEB)

    Shishkov, Lev; Gorodkov, Sergey; Mikailov, Eldar; Sukhino-Khomenko, Evgenia [Nuclear Research Centre ' ' Kurchatov Institute' ' , Moscow (Russian Federation)

    2015-09-15

    Jacketless fuel assemblies change their form in the course of operation. Often they bow lengthwise. Primarily, these fuel assembly (FA) bows threaten to reduce the control rods' fall rate, but at the same time they change (e.g. increase) the amount of moderator in inter-assembly gaps, thus producing additional power surges. Gap sizes vary randomly and their impact is accounted for with the help of engineering margin factors. For VVER-1000, this account of engineering margin factors increases the fuel component of electricity generation cost by 3 - 5 %, and a half of this increase is due to inter- assembly gap variations. This paper discusses the technique used to account for the impact produced by these gaps on fuel rod power; gives numerical values of sensitivity factors for power variations vs. gap sizes depending on the computational model assumed; and discusses the interference of gap effects and the account of power and coolant temperature feedbacks.

  20. The power of simplification: Operator interface with the AP1000{sup R} during design-basis and beyond design-basis events

    Energy Technology Data Exchange (ETDEWEB)

    Williams, M. G.; Mouser, M. R.; Simon, J. B. [Westinghouse Electric Company, 1000 Westinghouse Drive, Cranberry Township, PA 16066 (United States)

    2012-07-01

    The AP1000{sup R} plant is an 1100-MWe pressurized water reactor with passive safety features and extensive plant simplifications that enhance construction, operation, maintenance, safety and cost. The passive safety features are designed to function without safety-grade support systems such as component cooling water, service water, compressed air or HVAC. The AP1000 passive safety features achieve and maintain safe shutdown in case of a design-basis accident for 72 hours without need for operator action, meeting the expectations provided in the European Utility Requirements and the Utility Requirement Document for passive plants. Limited operator actions may be required to maintain safe conditions in the spent fuel pool (SFP) via passive means. This safety approach therefore minimizes the reliance on operator action for accident mitigation, and this paper examines the operator interaction with the Human-System Interface (HSI) as the severity of an accident increases from an anticipated transient to a design basis accident and finally, to a beyond-design-basis event. The AP1000 Control Room design provides an extremely effective environment for addressing the first 72 hours of design-basis events and transients, providing ease of information dissemination and minimal reliance upon operator actions. Symptom-based procedures including Emergency Operating Procedures (EOPs), Abnormal Operating Procedures (AOPs) and Alarm Response Procedures (ARPs) are used to mitigate design basis transients and accidents. Use of the Computerized Procedure System (CPS) aids the operators during mitigation of the event. The CPS provides cues and direction to the operators as the event progresses. If the event becomes progressively worse or lasts longer than 72 hours, and depending upon the nature of failures that may have occurred, minimal operator actions may be required outside of the control room in areas that have been designed to be accessible using components that have been

  1. Shut-down margin study for the next generation VVER-1000 reactor including 13 x 13 hexagonal annular assemblies

    International Nuclear Information System (INIS)

    Faghihi, Farshad; Mirvakili, S. Mohammad

    2011-01-01

    Highlights: → Shut-Down Margin (SDM) for the next generation annular fuel core of typical VVER-1000, 13 x 13 assemblies are calculated. → The MCNP-5 code is run for many cases with different core burn up at various core temperatures. → There is a substantial drop in SDM in the case of annular fuel for the same power level. → SDM for our proposed VVER-1000 annular pins is calculated for specific average fuel burn up values at the BOC, MOC, and EOC. - Abstract: Shut-Down Margin (SDM) for the next generation annular fuel core of typical VVER-1000, 13 x 13 assemblies are calculated as the main aim of the present research. We have applied the MCNP-5 code for many cases with different values of core burn up at various core temperatures, and therefore their corresponding coolant densities and boric acid concentrations. There is a substantial drop in SDM in the case of annular fuel for the same power level. Specifically, SDM for our proposed VVER-1000 annular pins is calculated when the average fuel burn up values at the BOC, MOC, and EOC are 0.531, 11.5, and 43 MW-days/kg-U, respectively.

  2. Results of trial operation of the WWER advanced fuel assemblies

    International Nuclear Information System (INIS)

    Vasilchenko, I.; Dragunov, Y.; Mikhalchuk, A.

    2001-01-01

    The paper describes results from experimental operation of advanced WWER-1000 fuel assemblies (AFA) at five units in Balakovo NPP. Advanced fuel is developed according to the concept of standard WWER-1000 fuel assembly (jacket-free). The new features includes: 1) zirconium guiding channels (alloy E-635 and E-110) and spacer grids (alloy E-110); 2) integrated burnable absorber gadolinium; 3) extended service life of fuel assemblies (FA) and absorber rods (possibility of repair of FA); 4) improved adoption to reactor conditions. Some results of AFA pilot operation of a three year operation are presented and analyses of effectiveness of improvements are made concerning application of zirconium channels and grids; application of integrated burnable absorbers; extension of FA and absorbing rods service life and FA repairability. These new features of WWER-1000 fuel design allow: 1) to reduce the average fuel enrichment to the 3.77% instead of 4.31% in U-235; 2) to reduce the FA axial load in reactor hot state by 40%,; 3) increasing of fuel operation in reactor to the 30000 effective days with possibility to have a 5-year residence time in the reactor. The design of new generation FA for WWER-440 reactors involves few key changes. Fuel inventory in new fuel design is increased due to elongation of fuel stack and reducing the diameter of the central hole. Vibration stability is enhanced as a result of: no-play junction of the fuel rod with the lower grid; change of SG arrangements; strengthening of the lower grid unit; secure of the central tube in the gap. Water-uranium ration is increased. Introduction of all these kinds of modernization in a 5-year fuel cycle reduces fuel component in the energy cost to the 7%

  3. Characterization of liquid entrainment in the AP1000 automatic depressurization system from APEX tests

    International Nuclear Information System (INIS)

    Richard F Wright; Terry L Schulz; Jose N Reyes; John Groome

    2005-01-01

    Full text of publication follows: The AP1000 is a 1000 MWe advanced nuclear power plant that uses passive safety features to enhance plant safety and to provide significant and measurable improvements in plant simplification, reliability, investment protection and plant costs. The AP1000 relies heavily on the 600 MWe AP600 which received design certification in 1999. A critical part of the AP600 design certification process involved the testing of the passive safety systems. A one-fourth height, one-fourth pressure test facility, APEX-600, was constructed at the Oregon State University to study design basis events, and to provide a body of data to be used to validate the computer models used to analyze the AP600. This facility was extensively modified to reflect the design changes for AP1000 including higher power in the electrically heated rods representing the reactor core, and changes in the size of the pressurizer, core makeup tanks and automatic depressurization system. The APEX-1000 test facility was used to perform design basis accident simulations and separate effects tests to support the AP1000 design certification process. In the event of a LOCA, the AP1000 passive core cooling system provides sources of core makeup water along with an automatic depressurization system (ADS) consisting of several stages of valves which reduce the reactor coolant system pressure in a controlled manner. The final stage of this system, ADS-4, consists of four large valves that open off the hot legs, reducing the pressure to allow gravity injection from the in-containment refueling water storage tank (IRWST) and eventually the containment sump. The 67% increase in power from AP600 to AP1000 results in proportionally larger steam velocities exiting the core. Higher steam velocities could increases the potential for significant liquid entrainment out the ADS-4 lines, affecting the liquid inventory in the reactor. Tests were performed in APEX-1000 to characterize the two

  4. On integration and innovation of sino-foreign safety culture in Haiyang AP1000 Project

    International Nuclear Information System (INIS)

    Li Ruipu; Song Fengwei

    2010-01-01

    The undergoing Haiyang Nuclear Power Plant is not only introducing the top-advanced AP1000 nuclear technology, but also the mature HSE management system from U.S.A. It's very important for both sides to communicate, comprehend and acculturation of both different culture. After over 1 year discussion and practice, the experts of Westinghouse Consortium and Chinese HSE engineers have established an distinctive safety culture of AP1000 Project initially, demonstrating the followings: Exemplary actions of the expat experts and the SNPTC leaders, the high level standard HSE procedures, HSE audit, various training, HSE inspection all-around, the safety performance assessment for prospective index, JHA/JSA , emergency system, humanism rewards and punishment etc.. Haiyang SPMO has made Three-Step master plan for AP1000 project HSE Routine by analysis the site problems and the difference between Chinese and American, that is, from 2008 to 2020, when nuclear power achieve to independent, safety culture of Haiyang AP1000 will change from 'dependent' to 'independent', until the last 'interdependent'. (authors)

  5. The Design of Cooling System Model on The AP1000 Containment

    International Nuclear Information System (INIS)

    Daddy Setyawan; Yerri Noer Kartiko; Aryadi Suwono; Ari Darmawan Pasek; Nathanael P Tandian; Efrizon Umar

    2009-01-01

    The policy of national energy leads to the utilization of new energy as nuclear energy, and also contains some efforts to increase reactor safety and optimizing in the design of safety system component such as passive cooling system on reactor containment tank. Because of this, the assessment of safety level to passive safety system needs to be made. To increase the understanding it, the design of cooling system model on containment tank should be done to get safety level on cooling system in the AP1000 containment. To reach the similar model with reality and inexpensive cost, we should make assessment about similarity and dimensionless number. While the heat transfer of air natural circulation and water spray cooling system are a result of gravity approach, we can calculate Grashof modification number and Reynolds number respectively. By this approach, we have a factor of forty for laboratory model. From this model, we hope that we get characteristic correlation to heat transfer on the containment of AP1000 for both air natural circulation and water spray result from gravity. Finally, we can assess the safety level of passive cooling system on the AP1000 containment. (author)

  6. Significant advantages of the safety-first concept in construction, operation, and maintenance of the Westinghosue AP1000 reactor

    International Nuclear Information System (INIS)

    Cummins, E.; Benitz, K.

    2004-01-01

    In June 2003, the U.S. Nuclear Regulatory Commission (USNRC) published a draft opinion about safety of the AP1000 Westinghouse pressurized water reactor with 'passive safety' features. The report constitutes an important milestone in the development of the next generation of safe and cost-efficient nuclear power plants. A new AP1000 can be absolutely competitive with fossil fired power plants and may be able to revive the construction of new nuclear power plants worldwide. The reason for designing the AP1000 were safety considerations. The use of passive safety systems at the same time entails a considerable reduction in the costs of design, maintenance, and operation of an AP1000 plant. Independent experts confirmed that an AP1000 can be erected within three years or even less. The estimated electricity generating costs of an AP1000 plant in the United States amount to US Cent 3.2 to 3.6 per kilowatthour. (orig.)

  7. Fuel assembly

    International Nuclear Information System (INIS)

    Gjertsen, R.K.; Bassler, E.A.; Huckestein, E.A.; Salton, R.B.; Tower, S.N.

    1988-01-01

    A fuel assembly adapted for use with a pressurized water nuclear reactor having capabilities for fluid moderator spectral shift control is described comprising: parallel arranged elongated nuclear fuel elements; means for providing for axial support of the fuel elements and for arranging the fuel elements in a spaced array; thimbles interspersed among the fuel elements adapted for insertion of a rod control cluster therewithin; means for structurally joining the fuel elements and the guide thimbles; fluid moderator control means for providing a volume of low neutron absorbing fluid within the fuel assembly and for removing a substantially equivalent volume of reactor coolant water therefrom, a first flow manifold at one end of the fuel assembly sealingly connected to a first end of the moderator control tubes whereby the first ends are commonly flow connected; and a second flow manifold, having an inlet passage and an outlet passage therein, sealingly connected to a second end of the moderator control tubes at a second end of the fuel assembly

  8. Westinghouse and nuclear renaissance. The Westinghouse AP1000 - a technology solution for Slovakia

    International Nuclear Information System (INIS)

    Kirst, M.

    2009-01-01

    The Westinghouse AP1000 nuclear reactor design has been chosen by both China and the United States as the preferred technology in their new reactor programs. With four reactors in China and six in the United States under contract, in addition to the only Generation III+ design with NRC certification as well as the European Utility Requirements certification, the AP1000 has both a strong global customer base and regulatory certainty to facilitate its adoption in the Slovak Republic. (author)

  9. Confirmatory analysis of the AP1000 passive residual heat removal heat exchanger with 3-D computational fluid dynamic analysis

    International Nuclear Information System (INIS)

    Schwall, James R.; Karim, Naeem U.; Thakkar, Jivan G.; Taylor, Creed; Schulz, Terry; Wright, Richard F.

    2006-01-01

    The AP1000 is an 1100 MWe advanced nuclear power plant that uses passive safety features to enhance plant safety and to provide significant and measurable improvements in plant simplification, reliability, investment protection and plant costs. The AP1000 received final design approval from the US-NRC in 2004. The AP1000 design is based on the AP600 design that received final design approval in 1999. Wherever possible, the AP1000 plant configuration and layout was kept the same as AP600 to take advantage of the maturity of the design and to minimize new design efforts. As a result, the two-loop configuration was maintained for AP1000, and the containment vessel diameter was kept the same. It was determined that this significant power up-rate was well within the capability of the passive safety features, and that the safety margins for AP1000 were greater than those of operating PWRs. A key feature of the passive core cooling system is the passive residual heat removal heat exchanger (PRHR HX) that provides decay heat removal for postulated LOCA and non-LOCA events. The PRHR HX is a C-tube heat exchanger located in the in-containment refueling water storage tank (IRWST) above the core promoting natural circulation heat removal between the reactor cooling system and the tank. Component testing was performed for the AP600 PRHR HX to determine the heat transfer characteristics and to develop correlations to be used for the AP1000 safety analysis codes. The data from these tests were confirmed by subsequent integral tests at three separate facilities including the ROSA facility in Japan. Owing to the importance of this component, an independent analysis has been performed using the ATHOS-based computational fluid dynamics computer code PRHRCFD. Two separate models of the PRHR HX and IRWST have been developed representing the ROSA test geometry and the AP1000 plant geometry. Confirmation of the ROSA test results were used to validate PRHRCFD, and the AP1000 plant model

  10. Estimation of the nuclear fuel assembly eigenfrequencies in the probability sense

    Directory of Open Access Journals (Sweden)

    Zeman V.

    2014-12-01

    Full Text Available The paper deals with upper and lower limits estimation of the nuclear fuel assembly eigenfrequencies, whose design and operation parameters are random variables. Each parameter is defined by its mean value and standard deviation or by a range of values. The gradient and three sigma criterion approach is applied to the calculation of the upper and lower limits of fuel assembly eigenfrequencies in the probability sense. Presented analytical approach used for the calculation of eigenfrequencies sensitivity is based on the modal synthesis method and the fuel assembly decomposition into six identical revolved fuel rod segments, centre tube and load-bearing skeleton linked by spacer grids. The method is applied for the Russian TVSA-T fuel assembly in the WWER1000/320 type reactor core in the Czech nuclear power plant Temelín.

  11. In-core nuclear fuel management optimization of VVER1000 using perturbation theory

    International Nuclear Information System (INIS)

    Hosseini, Mohammad; Vosoughi, Naser

    2011-01-01

    In-core nuclear fuel management is one of the most important concerns in the design of nuclear reactors. The two main goals in core fuel loading pattern design optimization are maximizing the core effective multiplication factor in order to extract the maximum energy, and keeping the local power peaking factor lower than a predetermined value to maintain fuel integrity. Because of the numerous possible patterns of the fuel assemblies in the reactor core, finding the best configuration is so important and complex. Different methods for optimization of fuel loading pattern in the core have been introduced so far. In this study, a software is programmed in C ⧣ language to find an order of the fuel loading pattern of the VVER-1000 reactor core using the perturbation theory. Our optimization method is based on minimizing the radial power peaking factor. The optimization process lunches by considering the initial loading pattern and the specifications of the fuel assemblies which are given as the input of the software. It shall be noticed that the designed algorithm is performed by just shuffling the fuel assemblies. The obtained results by employing the mentioned method on a typical reactor reveal that this method has a high precision in achieving a pattern with an allowable radial power peaking factor. (author)

  12. Fuel assemblies

    International Nuclear Information System (INIS)

    Nakatsuka, Masafumi.

    1979-01-01

    Purpose: To prevent scattering of gaseous fission products released from fuel assemblies stored in an fbr type reactor. Constitution; A cap provided with means capable of storing gas is adapted to amount to the assembly handling head, for example, by way of threading in a storage rack of spent fuel assemblies consisting of a bottom plate, a top plate and an assembly support mechanism. By previously eliminating the gas inside of the assembly and the cap in the storage rack, gaseous fission products upon loading, if released from fuel rods during storage, are stored in the cap and do not scatter in the storage rack. (Horiuchi, T.)

  13. Fuel Assembly Damping Summary

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Kanghee; Kang, Heungseok; Oh, Dongseok; Yoon, Kyungho; Kim, Hyungkyu; Kim, Jaeyong [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2013-10-15

    This paper summary the fuel assembly damping data in air/in still water/under flow, released from foreign fuel vendors, compared our data with the published data. Some technical issues in fuel assembly damping measurement testing are also briefly discussed. Understanding of each fuel assembly damping mechanisms according to the surrounding medium and flow velocity can support the fuel design improvement in fuel assembly dynamics and structural integrity aspect. Because the upgraded requirements of the newly-developed advanced reactor system will demands to minimize fuel design margin in integrity evaluation, reduction in conservatism of fuel assembly damping can contribute to alleviate the fuel design margin for sure. Damping is an energy dissipation mechanism in a vibrating mechanical structure and prevents a resonant structure from having infinite vibration amplitudes. The sources of fuel assembly damping are various from support friction to flow contribution, and it can be increased by the viscosity or drag of surrounding fluid medium or the average velocity of water flowing. Fuel licensing requires fuel design evaluation in transient or accidental condition. Dynamic response analysis of fuel assembly is to show fuel integrity and requires information on assembly-wise damping in dry condition and under wet or water flowing condition. However, damping measurement test for the full-scale fuel assembly prototype is not easy to carry out because of the scale (fuel prototype, test facility), unsteadiness of test data (scattering, random sampling and processing), instrumentation under water flowing (water-proof response measurement), and noise. LWR fuel technology division in KAERI is preparing the infra structure for damping measurement test of full-scale fuel assembly, to support fuel industries and related research activities. Here is a preliminary summary of fuel assembly damping, published in the literature. Some technical issues in fuel assembly damping

  14. Experience and prospects of WWER-1000 reactor spent fuel transport

    International Nuclear Information System (INIS)

    Kondratyev, A.N.; Yershov, V.N.; Kozlov, Yu.V.; Kosarev, Yu.A.; Ilyin, Yu.V.; Pavlov, M.S.

    1989-01-01

    The paper deals with the USSR experience in shipping the commercial WWER-1000 reactor spent fuel in TK-10 and TK-13 casks. The cask designs, their basic characteristics and the WWER-1000 spent fuel features are described. An example of calculational/experimental approach in the design of a basket (one of the most important components) for spent fuel assembly (SFA) accommodation in a cask is given. The main problems of future development works are presented in brief. A concept of development of nuclear power industry with the closed fuel cycle is assumed in the Soviet Union, hence the spent nuclear fuel is to be transported from NPPs to reprocessing plants. To transport WWER-1000 spent fuel, the casks of two types were developed. These are: a pilot TK-10 cask of 3t capacity in fuel; a commercial TK-13 cask of ∼6t capacity in fuel. The pilot TK-10 cask is thick-walled (360mm) cylindrical vessel manufactured of steel shells and a bottom welded to each other. The material of the body is carbon steel. There is a steel jacket on the outer side of the cask body and at 120 mm distance off the bottom. On its cylindrical part between the jacket and the body there are T-shaped circular ribs acting as shock-absorbers. The space between the jacket and the body is filled with ethylene glycol solution of 65 degree C crystallization temperature, which functions as a neutron shielding. The TK-10 cask coolant is water or air (nitrogen) at minor excess pressure resulted from FA heatup after the cask sealing

  15. ANALISIS SKENARIO KEGAGALAN SISTEM UNTUK MENENTUKAN PROBABILITAS KECELAKAAN PARAH AP1000

    Directory of Open Access Journals (Sweden)

    D.T. Sony Tjahyani

    2014-03-01

    Full Text Available Kejadian Fukushima telah menunjukkan bahwa kecelakaan parah dapat terjadi, maka dari itu sangatlah penting untuk menganalisis tingkat keselamatan pada reaktor daya. Berdasarkan rekomendasi expert mission IAEA setelah kejadian Fukushima, perlu dilakukan upaya untuk meminimalisasi terjadinya kecelakaan parah yaitu dengan melakukan proses pendinginan yang maksimal. Dalam konsep keselamatan fasilitas nuklir, khususnya reaktor daya telah diterapkan konsep keselamatan berlapis (Defence in Depth, DiD. Konsep keselamatan tersebut terdiri atas 5 level pertahanan yang bertujuan mencegah dan mengurangi lepasan produk fisi ke masyarakat dan lingkungan pada saat reaktor daya mengalami kecelakaan. Dalam reaktor telah didesain sistem atau tindakan yang mempunyai fungsi untuk mengatasi setiap level tersebut. Tujuan dari analisis ini adalah menentukan probabilitas kecelakaan parah dengan melakukan skenario kegagalan sistem dalam proses pendinginan di reaktor. Sebagai obyek analisis adalah reaktor daya AP1000, karena jenis reaktor ini sedang banyak dibangun saat ini. Skenario dilakukan dengan mengasumsikan beberapa kombinasi kegagalan sistem yang termasuk dalam DiD level 2 dan 3. Kegagalan sistem kemudian dianalisis dengan menggunakan analisis pohon kegagalan berdasarkan perangkat lunak SAPHIRE ver. 6.76. Dari analisis didapatkan probabilitas gagal dari kelompok sistem DiD level 2 dan 3 pada AP1000 masih di bawah batas kriteria dari IAEA yaitu lebih kecil dari 10-2, serta probabilitas kecelakaan parah didapatkan sebesar 6,17 x 10-10. Berdasarkan analisis ini disimpulkan bahwa AP1000 mempunyai tingkat keselamatan yang cukup tinggi, karena melalui skenario kegagalan sistem didapatkan probabilitas kecelakaan parah yang sangat kecil.   ABSTRACT Fukushima accident has shown that severe accident could be occurred, therefore it is important to analyze safety level of nuclear power plants. Based on the recommendations of IAEA expert mission after the Fukushima accident

  16. Oregon state university's advanced plant experiment (APEX) AP1000 integral facility test program

    International Nuclear Information System (INIS)

    Reyes, J.N.; Groome, J.T.; Woods, B.G.; Young, E.; Abel, K.; Wu, Q.

    2005-01-01

    Oregon State University (OSU) has recently completed a three year study of the thermal hydraulic behavior of the Westinghouse AP1000 passive safety systems. Eleven Design Basis Accident (DBA) scenarios, sponsored by the U.S. Department of Energy (DOE) with technical support from Westinghouse Electric, were simulated in OSU's Advanced Plant Experiment (APEX)-1000. The OSU test program was conducted within the purview of the requirements of 10CFR50 Appendix B, NQA-1 and 10 CFR 21 and the test data was used to provide benchmarks for computer codes used in the final design approval of the AP1000. In addition to the DOE certification testing, OSU conducted eleven confirmatory tests for the U.S. Nuclear Regulatory Commission. This paper presents the test program objectives, a description of the APEX-1000 test facility and an overview of the test matrix that was conducted in support of plant certification. (authors)

  17. Fuel assembly reconstitution

    International Nuclear Information System (INIS)

    Morgado, Mario M.; Oliveira, Monica G.N.; Ferreira Junior, Decio B.M.; Santos, Barbara O. dos; Santos, Jorge E. dos

    2009-01-01

    Fuel failures have been happened in Nuclear Power Plants worldwide, without lost of integrity and safety, mainly for the public, environment and power plants workers. The most common causes of these events are corrosion (CRUD), fretting and pellet cladding interaction. These failures are identified by increasing the activity of fission products, verified by chemical analyses of reactor coolant. Through these analyses, during the fourth operation cycle of Angra 2 Nuclear Power Plant, was possible to observe fuel failure indication. This indication was confirmed in the end of the cycle during the unloading of reactor core through leakage tests of fuel assembly, using the equipment called 'In Mast Sipping' and 'Box Sipping'. After confirmed, the fuel assembly reconstitution was scheduled, and happened in April, 2007, where was identified the cause and the fuel rod failure, which was substitute by dummy rods (zircaloy). The cause was fretting by 'debris'. The actions to avoid and prevent fuel assemblies failures are important. The goals of this work are to describe the methodology of fuel assembly reconstitution using the FARE (Fuel Assembly Reconstitution Equipment) system, to describe the results of this task in economic and security factors of the company and show how the fuel assembly failures are identified during operation and during the outage. (author)

  18. Addressing the fundamental issues in reliability evaluation of passive safety of AP1000 for a comparison with active safety of PWR

    International Nuclear Information System (INIS)

    Hashim Muhammad; Yoshikawa, Hidekazu; Yang Ming

    2013-01-01

    Passive safety systems adopted in advanced Pressurized Water Reactor (PWR), such as AP1000 and EPR, should attain higher reliability than the existing active safety systems of the conventional PWR. The objective of this study is to discuss the fundamental issues relating to the reliability evaluation of AP1000 passive safety systems for a comparison with the active safety systems of conventional PWR, based on several aspects. First, comparisons between conventional PWR and AP1000 are made from the both aspects of safety design and cost reduction. The main differences between these PWR plants exist in the configurations of safety systems: AP1000 employs the passive safety system while reducing the number of active systems. Second, the safety of AP1000 is discussed from the aspect of severe accident prevention in the event of large break loss of coolant accidents (LOCA). Third, detailed fundamental issues on reliability evaluation of AP1000 passive safety systems are discussed qualitatively by using single loop models of safety systems of both PWRs plants. Lastly, methodology to conduct quantitative estimation of dynamic reliability for AP1000 passive safety systems in LOCA condition is discussed, in order to evaluate the reliability of AP1000 in future by a success-path-based reliability analysis method (i.e., GO-FLOW). (author)

  19. Fuel assemblies

    International Nuclear Information System (INIS)

    Nagano, Mamoru; Yoshioka, Ritsuo

    1983-01-01

    Purpose: To effectively utilize nuclear fuels by increasing the reactivity of a fuel assembly and reduce the concentration at the central region thereof upon completion of the burning. Constitution: A fuel assembly is bisected into a central region and a peripheral region by disposing an inner channel box within a channel box. The flow rate of coolants passing through the central region is made greater than that in the peripheral region. The concentration of uranium 235 of the fuel rods in the central region is made higher. In such a structure, since the moderating effect in the central region is improved, the reactivity of the fuel assembly is increased and the uranium concentration in the central region upon completion of the burning can be reduced, fuel economy and effective utilization of uranium can be attained. (Kamimura, M.)

  20. Fuel assembly

    International Nuclear Information System (INIS)

    Nakatsuka, Masafumi; Matsuzuka, Ryuji.

    1976-01-01

    Object: To provide a fuel assembly which can decrease pressure loss of coolant to uniform temperature. Structure: A sectional area of a flow passage in the vicinity of an inner peripheral surface of a wrapper tube is limited over the entire length to prevent the temperature of a fuel element in the outermost peripheral portion from being excessively decreased to thereby flatten temperature distribution. To this end, a plurality of pincture-frame-like sheet metals constituting a spacer for supporting a fuel assembly, which has a plurality of fuel elements planted lengthwise and in given spaced relation within the wrapper tube, is disposed in longitudinal grooves and in stacked fashion to form a substantially honeycomb-like space in cross section. The fuel elements are inserted and supported in the space to form a fuel assembly. (Kamimura, M.)

  1. Study on time management of FCD concrete pouring AP1000 NPP and its application

    International Nuclear Information System (INIS)

    Wu Jie; Yang Ming; Cong Jiuyuan

    2010-01-01

    Haiyang nuclear power plant adopts the advanced third-generation nuclear power technology, AP1000, the design concept of passive system and the methods of modularization and 'open-top' construction greatly shortens the construction period. At the same time, higher requirements are put forward to the management of construction, quality and progress control. This paper will apply the statistical process control theory and method to the time management of FCD (First Concrete Day) to Unit 1 of Haiyang AP1000 nuclear power plant, and it brings up the mathematical model of time management based on verification through modeling, data analysis, model optimization and the actual construction work. The theory and method studied in this paper can not be only applied to the FCD concrete pouring for Unit 1 of Haiyang AP1000 nuclear power plant, but also have great referential and guiding significance to the continuous concreting of the mass concrete of the follow-up similar construction. (authors)

  2. Application case study of AP1000 automatic depressurization system (ADS) for reliability evaluation by GO-FLOW methodology

    Energy Technology Data Exchange (ETDEWEB)

    Hashim, Muhammad, E-mail: hashimsajid@yahoo.com; Hidekazu, Yoshikawa, E-mail: yosikawa@kib.biglobe.ne.jp; Takeshi, Matsuoka, E-mail: mats@cc.utsunomiya-u.ac.jp; Ming, Yang, E-mail: myang.heu@gmail.com

    2014-10-15

    Highlights: • Discussion on reasons why AP1000 equipped with ADS system comparatively to PWR. • Clarification of full and partial depressurization of reactor coolant system by ADS system. • Application case study of four stages ADS system for reliability evaluation in LBLOCA. • GO-FLOW tool is capable to evaluate dynamic reliability of passive safety systems. • Calculated ADS reliability result significantly increased dynamic reliability of PXS. - Abstract: AP1000 nuclear power plant (NPP) utilized passive means for the safety systems to ensure its safety in events of transient or severe accidents. One of the unique safety systems of AP1000 to be compared with conventional PWR is the “four stages Automatic Depressurization System (ADS)”, and ADS system originally works as an active safety system. In the present study, authors first discussed the reasons of why four stages ADS system is added in AP1000 plant to be compared with conventional PWR in the aspect of reliability. And then explained the full and partial depressurization of RCS system by four stages ADS in events of transient and loss of coolant accidents (LOCAs). Lastly, the application case study of four stages ADS system of AP1000 has been conducted in the aspect of reliability evaluation of ADS system under postulated conditions of full RCS depressurization during large break loss of a coolant accident (LBLOCA) in one of the RCS cold legs. In this case study, the reliability evaluation is made by GO-FLOW methodology to determinate the influence of ADS system in dynamic reliability of passive core cooling system (PXS) of AP1000, i.e. what will happen if ADS system fails or successfully actuate. The GO-FLOW is success-oriented reliability analysis tool and is capable to evaluating the systems reliability/unavailability alternatively to Fault Tree Analysis (FTA) and Event Tree Analysis (ETA) tools. Under these specific conditions of LBLOCA, the GO-FLOW calculated reliability results indicated

  3. Burnup credit calculations for criticality safety justification for RBMK-1000 spent fuel of transport and storage systems

    Directory of Open Access Journals (Sweden)

    V. V. Galchenko

    2010-12-01

    Full Text Available In present paper the burnup credit calculations for TK-8 transport container and SVJP-1 spent fuel storage fa-cility of pool type with RBMK-1000 spent fuel during 100-years of cooling time were performed for criticality safety analysis purpose using MCNP and SCALE codes. Only actinides were taken into account for these critical systems. Two approaches were analyzed with isotopes distribution calculations along fuel assembly height and without it. The results show that subcriticality margin is increased considerably using burnup credit and isotopes distribution along fuel assembly height made this value more reasonable.

  4. Fuel assembly

    International Nuclear Information System (INIS)

    Abe, Hideaki; Sakai, Takao; Ishida, Tomio; Yokota, Norikatsu.

    1992-01-01

    The lower ends of a plurality of plate-like shape memory alloys are secured at the periphery of the upper inside of the handling head of a fuel assembly. As the shape memory alloy, a Cu-Zn alloy, a Ti-Pd alloy or a Fe-Ni alloy is used. When high temperature coolants flow out to the handling head, the shape memory alloy deforms by warping to the outer side more greatly toward the upper portion thereof with the temperature increase of the coolants. As the result, the shape of the flow channel of the coolants is changed so as to enlarge at the exit of the upper end of the fuel assembly. Then, the pressure loss of the coolants in the fuel assembly is decreased by the enlargement. Accordingly, the flow rate of the coolants in the fuel assembly is increased to lower the temperature of the coolants. Further, high temperature coolants and low temperature coolants are mixed sufficiently just above the fuel assembly. This can suppress the temperature fluctuation of the mixed coolants in the upper portion of the reactor core, thereby enabling to decrease a fatigue and failures of the structural components in the upper portion of the reactor core. (I.N.)

  5. Calculated and experimental research of WWER-1000 assembly vibration and fretting damage

    International Nuclear Information System (INIS)

    Drozdov, Y.; Afanasyev, A.; Makarov, V.; Tutnov, A.; Tutnov, A.; Alekseev, E.

    2008-01-01

    The report covers the methods and results of the latest analytical and experimental studies of fretting corrosion and natural vibrations of a WWER-1000 reactor fuel assemblies (FA). The process of fretting-corrosion was investigated using a multi-specimen facility that simulated fragments of fuel rod-to-spacer grid and lower support grid mating units. A computational model was developed for vibrations in the mechanical system of a fuel rod fragment and a spacer grid fragment. A calculational and experimental modal analysis of a FA was performed. Natural frequencies, modes and decrements of FA vibrations were determined and a satisfactory coincidence of analytical and experimental results was obtained. The assessment of fretting-corrosion process dynamics was made and its dependences on operational factors were obtained. (authors)

  6. Stress analysis of fuel assemblies under seismic load

    International Nuclear Information System (INIS)

    Kiselev, A.; Krutko, E.; Kiselev, I.; Tutnov, A.

    2011-01-01

    One of the important parts of fuel assemblies (FA) safety validation is their strength estimation under the dynamic loads, such as the vibration effects caused by the work of reactor units and the seismic exposure of an earthquake, leading to extreme inertia loads on all elements of the NPP. Taking into account structural features of FA and a very large mass, the exposure of seismic loads can lead to significant deformation of fuel assemblies. It is necessary to assess the magnitude of the force interaction between the FA in case of an earthquake to estimate the strength and performance of fuel assemblies. It is also necessary to compute FA bending forms and maximum values for further RPS control rods inserting time estimation, and for disassembly possibility justification of the core and individual FA after the earthquake. The problem of WWER-1000 core dynamic behavior modeling with TVS-2M fuel assemblies under the seismic loads exposure using the finite element method is described. Each fuel assembly is represented by equivalent rod finite element model. The reactor core is simulated by 163 fuel assemblies in accordance with the reactor core construction. Stiffness characteristics of fuel assemblies are determined on the results of a series of static and dynamic TVS-2M FA field tests. The special algorithm was developed to consider the fuel rod slippage effect during deformation. The special contact elements are introduced into the model of the core to take into account the interaction of fuel assemblies with their neighbors and with core barrel. Solution of the dynamic equilibrium equations system of finite element model is implemented by direct integration using the explicit scheme. Parallel algorithms for numerical integration on multiprocessor computers with graphics processing unit is developed to improve the efficiency of calculations. Values of nodes displacement in finite element model of reactor core as a function of seismic excitation time are obtained

  7. Nuclear fuel assembly

    International Nuclear Information System (INIS)

    Betten, P.R.

    1976-01-01

    Under the invention the fuel assembly is particularly suitable for liquid metal cooled fast neutron breeder reactors. Hence, according to the invention a fuel assembly cladding includes inward corrugations with respect to the remainder of the cladding according to a recurring pattern determined by the pitch of the metal wire helically wound round the fuel rods of the assembly. The parts of the cladding pressed inwards correspond to the areas in which the wire encircling the peripheral fuel rods is generally located apart from the cladding, thereby reducing the play between the cladding and the peripheral fuel rods situated in these areas. The reduction in the play in turn improves the coolant flow in the internal secondary channels of the fuel assembly to the detriment of the flow in the peripheral secondary channels and thereby establishes a better coolant fluid temperature profile [fr

  8. 77 FR 74696 - Advisory Committee on Reactor Safeguards (ACRS); Meeting of the ACRS Subcommittee on AP-1000...

    Science.gov (United States)

    2012-12-17

    ... NUCLEAR REGULATORY COMMISSION Advisory Committee on Reactor Safeguards (ACRS); Meeting of the ACRS Subcommittee on AP-1000; Notice of Meeting The ACRS Subcommittee on AP-1000 will hold a meeting on January 18, 2013, Room T-2B1, 11545 Rockville Pike, Rockville, Maryland. The entire meeting will be open to public...

  9. Mixed PWR core loadings with inert matrix Pu-fuel assemblies

    International Nuclear Information System (INIS)

    Stanculescu, A.; Kasemeyer, U.; Paratte, J.-M.; Chawla, R.

    1999-01-01

    The most efficient way to enhance plutonium consumption in light water reactors is to eliminate the production of plutonium all together. This requirement leads to fuel concepts in which the uranium is replaced by an inert matrix. At PSI, studies have focused on employing ZrO 2 as inert matrix. Adding a burnable poison to such a fuel proves to be necessary. As a result of scoping studies, Er 2 O 3 was identified as the most suitable burnable poison material. The results of whole-core three-dimensional neutronics analyses indicated, for a present-day 1000 MW e pressurised water reactor, the feasibility of an asymptotic equilibrium four-batch cycle fuelled solely with the proposed PuO 2 -Er 2 O 3 -ZrO 2 inert matrix fuel (IMF). The present paper presents the results of more recent investigations related to 'real-life' situations, which call for transition configurations in which mixed IMF and UO 2 assembly loadings must be considered. To determine the influence of the introduction of IMF assemblies on the characteristics of a UO 2 -fuelled core, three-dimensional full-core calculations have been performed for a present-day 1000 MW e PWR containing up to 12 optimised IMF assemblies. (author)

  10. Nuclear fuel assembly

    International Nuclear Information System (INIS)

    Hayashi, Hiroshi; Watari, Yoshio; Hizahara, Hiroshi; Masuoka, Ryuzo.

    1970-01-01

    When exchanging nuclear fuel assemblies during the operation of a nuclear reactor, melting of fuel bodies, and severence of tubular claddings is halted at the time of insertion by furnishing a neutron absorbing material such as B 10 , Cd, Gd or the like at the forward end of the fuel assembly to thereby lower the power peak at the forward ends of the fuel elements to within tolerable levels and thus prevent both fuel liquification and excessive expansion. The neutron absorbing material may be attached in the form of a plate to the fuel assembly forward tie plate, or may be inserted as a pellet into the front end of the tubular cladding. (Owens, K.J.)

  11. Quantitative dynamic reliability evaluation of AP1000 passive safety systems by using FMEA and GO-FLOW methodology

    International Nuclear Information System (INIS)

    Hashim Muhammad; Yoshikawa, Hidekazu; Matsuoka, Takeshi; Yang Ming

    2014-01-01

    The passive safety systems utilized in advanced pressurized water reactor (PWR) design such as AP1000 should be more reliable than that of active safety systems of conventional PWR by less possible opportunities of hardware failures and human errors (less human intervention). The objectives of present study are to evaluate the dynamic reliability of AP1000 plant in order to check the effectiveness of passive safety systems by comparing the reliability-related issues with that of active safety systems in the event of the big accidents. How should the dynamic reliability of passive safety systems properly evaluated? And then what will be the comparison of reliability results of AP1000 passive safety systems with the active safety systems of conventional PWR. For this purpose, a single loop model of AP1000 passive core cooling system (PXS) and passive containment cooling system (PCCS) are assumed separately for quantitative reliability evaluation. The transient behaviors of these passive safety systems are taken under the large break loss-of-coolant accident in the cold leg. The analysis is made by utilizing the qualitative method failure mode and effect analysis in order to identify the potential failure mode and success-oriented reliability analysis tool called GO-FLOW for quantitative reliability evaluation. The GO-FLOW analysis has been conducted separately for PXS and PCCS systems under the same accident. The analysis results show that reliability of AP1000 passive safety systems (PXS and PCCS) is increased due to redundancies and diversity of passive safety subsystems and components, and four stages automatic depressurization system is the key subsystem for successful actuation of PXS and PCCS system. The reliability results of PCCS system of AP1000 are more reliable than that of the containment spray system of conventional PWR. And also GO-FLOW method can be utilized for reliability evaluation of passive safety systems. (author)

  12. Nuclear fuel string assembly

    International Nuclear Information System (INIS)

    Ip, A.K.; Koyanagi, K.; Tarasuk, W.R.

    1976-01-01

    A method of fabricating rodded fuels suitable for use in pressure tube type reactors and in pressure vessel type reactors is described. Fuel rods are secured as an inner and an outer sub-assembly, each rod attached between mounting rings secured to the rod ends. The two sub-assemblies are telescoped together and positioned by spaced thimbles located between them to provide precise positioning while permittng differential axial movement between the sub-assemblies. Such sub-assemblies are particularly suited for mounting as bundle strings. The method provides particular advantages in the assembly of annular-section fuel pins, which includes booster fuel containing enriched fuel material. (LL)

  13. A Hold-down Margin Assessment using Statistical Method for the PWR Fuel Assembly

    International Nuclear Information System (INIS)

    Jeon, S. Y.; Park, N. K.; Lee, K. S.; Kim, H. K.

    2007-01-01

    The hold-down springs provide an acceptable hold down force against hydraulic uplift force absorbing the length change of the fuel assembly relative to the space between the upper and lower core plates in PWR. These length changes are mainly due to the thermal expansion, irradiation growth and creep down of the fuel assemblies. There are two kinds of hold-down springs depending on the different design concept of the reactor internals of the PWR in Korea, one is a leaf-type hold down spring for Westinghouse type plants and the other is a coil-type hold-down spring for OPR1000 (Optimized Power Reactor 1000). There are four sets of hold-down springs in each fuel assembly for leaf type hold-down spring and each set of the hold-down springs consists of multiple tapered leaves to form a cantilever leaf spring set. The length, width and thickness of the spring leaves are selected to provide the desired spring constant, deflection range, and hold down force. There are four coil springs in each fuel assembly for coil-type hold-down spring. In this study, the hold-down forces and margins were calculated for the leaf-type and coil-type hold-down springs considering geometrical data of the fuel assembly and its components, length changes of the fuel assembly due to thermal expansion, irradiation growth, creep, and irradiation relaxation. The hold-down spring forces were calculated deterministically and statistically to investigate the benefit of the statistical calculation method in view of hold-down margin. The Monte-Carlo simulation method was used for the statistical hold down force calculation

  14. Nuclear fuel assembly

    International Nuclear Information System (INIS)

    Anthony, A.J.

    1980-01-01

    A bimetallic spacer means is cooperatively associated with a nuclear fuel assembly and operative to resist the occurrence of in-reactor bowing of the nuclear fuel assembly. The bimetallic spacer means in one embodiment of the invention includes a space grid formed, at least principally, of zircaloy to the external surface of which are attached a plurality of stainless steel strips. In another embodiment the strips are attached to fuel pins. In each of the embodiments, the stainless steel strips during power production expand outwardly to a greater extent than do the members to which the stainless steel strips are attached, thereby forming stiff springs which abut against like bimetallic spacer means with which the other nuclear fuel assemblies are provided in a given nuclear reactor core to thus prevent the occurrence of in-reactor bowing of the nuclear fuel assemblies. (author)

  15. Fuel assembly spacer

    International Nuclear Information System (INIS)

    Shirakawa, Ken-etsu.

    1988-01-01

    Purpose: To reduce the pressure loss of coolants by fuel assembly spacers. Constitution: Spacers for supporting a fuel assembly are attached by means of a plurality of wires to an outer frame. The outer frame is made of shape memory alloy such that the wires are caused to slacken at normal temperature and the slacking of the wires is eliminated in excess of the transition temperature. Since the wires slacken at the normal temperature, fuel rods can be inserted easily. After the insertion of the fuel rods, when the entire portion or the outer frame is heated by water or gas at a predetermined temperature, the outer frame resumes its previously memorized shape to tighten the wires and, accordingly, the fuel rods can be supported firmly. In this way, since the fuel rods are inserted in the slacken state of the wires and, after the assembling, the outer frame resumes its memorized shape, the assembling work can be conducted efficiently. (Kamimura, M.)

  16. Ambition to reach zero level failure in VVER 1000 with russian fuel

    International Nuclear Information System (INIS)

    Mečíř, V.

    2015-01-01

    The purpose of “The Zero Failure Level Project” is to bring to real operation of VVER 1000 units the dream of all utilities such as problem free and cost effective operation. This essentially turns into requirement on failure free fuel operation. At the same time the general requirements such as safety, cost effectiveness, operational flexibility, fuel cycle and fuel flexibility need to be satisfied. Several specific tasks were performed and many of them are still in process. Specific failure tree was developed in a format, which allows step by step failure tree improvement. Fuel types and its modifications, taking into account manufacturing conditions, were specified. In parallel with fuel types classification, real operational conditions were evaluated based on approximately 280 parameters by fuel assembly design features, operational procedures and practices and about 250 reactor unit parameters. As a result of this stage, groups of units with similar fuel operational conditions should be revealed and experience sharing database created. It is also recognized a need for consistent methods of operational data and data from pool side fuel assembly inspection. In the area of Foreign Material Exclusion activities closer cooperation between utility and supplier should be established including foreign material classification and improvement in root cause investigation

  17. Characteristics and design improvement of AP1000 automatic depressurization system

    International Nuclear Information System (INIS)

    Jin Fei

    2012-01-01

    Automatic depressurization system, as a specialty of AP1000 Design, enhances capability of mitigating design basis accidents for plant. Advancement of the system is discussed by comparing with traditional PWR design and analyzing system functions, such as depressurizing and venting. System design improvement during China Project performance is also described. At the end, suggestions for the system in China Project are listed. (author)

  18. Analysis of an accident type sbloca in reactor contention AP1000 with 8.0 Gothic code; Analisis de un accidente tipo Sbloca en la contencion del reactor AP1000 con el codigo Gothic 8.0

    Energy Technology Data Exchange (ETDEWEB)

    Goni, Z.; Jimenez Varas, G.; Fernandez, K.; Queral, C.; Montero, J.

    2016-08-01

    The analysis is based on the simulation of a Small Break Loss-of-Coolant-Accident in the AP1000 nuclear reactor using a Gothic 8.0 tri dimensional model created in the Science and Technology Group of Nuclear Fision Advanced Systems of the UPM. The SBLOCA has been simulated with TRACE 5.0 code. The main purpose of this work is the study of the thermo-hydraulic behaviour of the AP1000 containment during a SBLOCA. The transients simulated reveal close results to the realistic behaviour in case of an accident with similar characteristics. The pressure and temperature evolution enables the identification of the accident phases from the RCS point of view. Compared to the licensing calculations included in the AP1000 Safety Analysis, it has been proved that the average pressure and temperature evolution is similar, yet lower than the licensing calculations. However, the temperature and inventory distribution are significantly heterogeneous. (Author)

  19. Reactivity Coefficient Calculation for AP1000 Reactor Using the NODAL3 Code

    Science.gov (United States)

    Pinem, Surian; Malem Sembiring, Tagor; Tukiran; Deswandri; Sunaryo, Geni Rina

    2018-02-01

    The reactivity coefficient is a very important parameter for inherent safety and stability of nuclear reactors operation. To provide the safety analysis of the reactor, the calculation of changes in reactivity caused by temperature is necessary because it is related to the reactor operation. In this paper, the temperature reactivity coefficients of fuel and moderator of the AP1000 core are calculated, as well as the moderator density and boron concentration. All of these coefficients are calculated at the hot full power condition (HFP). All neutron diffusion constant as a function of temperature, water density and boron concentration were generated by the SRAC2006 code. The core calculations for determination of the reactivity coefficient parameter are done by using NODAL3 code. The calculation results show that the fuel temperature, moderator temperature and boron reactivity coefficients are in the range between -2.613 pcm/°C to -4.657pcm/°C, -1.00518 pcm/°C to 1.00649 pcm/°C and -9.11361 pcm/ppm to -8.0751 pcm/ppm, respectively. For the water density reactivity coefficients, the positive reactivity occurs at the water temperature less than 190 °C. The calculation results show that the reactivity coefficients are accurate because the results have a very good agreement with the design value.

  20. Current status of generation III nuclear power and assessment of AP1000 developed by Westinghouse

    International Nuclear Information System (INIS)

    Zhang Mingchang

    2005-01-01

    In order to make greater contributions to the environment, new nuclear power systems will be needed to meet the increase of electricity demand and to replace plants to be decommissioned. A series of new designs, so called Generation III and Generation III +, are being developed to ensure their deployment in a Near-Term Deployment Road-map in US by 2010 and in Europe by 2015. The AP1000, developed by Westinghouse, is a two-loop 1000 MWe PWR with passive safety features and extensive simplifications to enhance its competitiveness in cost and tariff. It is the first Generation III + plant receiving the Final Design Approval by the US NRC. This paper briefly describes AP1000 design features and technical specifications, and presents a more detailed design evaluation with reference to relevant literatures. Both the opportunity and challenges for nuclear power development in China during the first decade of the 21 st century in a historic transition from Gen II to Gen III are analyzed. The key is to balance risks and benefits if the first AP1000 to be settled down in China. (author)

  1. WWER identification and analysis of dominant factors affecting the fuel failure rates in WWER-1000 units in Czech Republic, Bulgaria, Ukraine and Russia

    International Nuclear Information System (INIS)

    Evdokimov, I.; Likhanskii, V.; Afanasieva, E.; Kanukova, V.; Kozhakin, A.; Maslova, L.; Chernetskiy, M.; Zborovskii, V.; Sorokin, A.

    2015-01-01

    The paper reviews the major findings of the study in the frame of the “Zero Failure Rate” project for WWER. The study included analysis and systematization of available data on leaking fuel assemblies found in 2003 through 2014 in WWER-1000 nuclear units in Russia, Ukraine, Czech Republic and Bulgaria. The study was intended to be used in preparation of recommendations and elaboration of corrective measures for enhancement of reliability and decrease of the failure rates for the WWER-1000 fuel. One of the key areas in successful implementation of the industry ‘zero failure’ goal is a challenge of significant increase of inspections of WWER-1000 fuel assemblies. It may be reasonable (with account taken for international experience) to think of development of more effective equipment for prompt fuel inspections & repair in WWER-1000 spent fuel pool. Another challenge is the elaboration of unified fuel inspection guidelines to ensure that limited industry resources are spent in the most productive way. In the frame of this work it may be helpful to implement in practice the criteria for safe removal of defective fuel rods from the leaking FA under repair

  2. Fuel assembly

    International Nuclear Information System (INIS)

    Chaki, Masao; Nishida, Koji; Karasawa, Hidetoshi; Kanazawa, Toru; Orii, Akihito; Nagayoshi, Takuji; Kashiwai, Shin-ichi; Masuhara, Yasuhiro

    1998-01-01

    The present invention concerns a fuel assembly, for a BWR type nuclear reactor, comprising fuel rods in 9 x 9 matrix. The inner width of the channel box is about 132mm and the length of the fuel rods which are not short fuel rods is about 4m. Two water rods having a circular cross section are arranged on a diagonal line in a portion of 3 x 3 matrix at the center of the fuel assembly, and two fuel rods are disposed at vacant spaces, and the number of fuel rods is 74. Eight fuel rods are determined as short fuel rods among 74 fuel rods. Assuming the fuel inventory in the short fuel rod as X(kg), and the fuel inventory in the fuel rods other than the short fuel rods as Y(kg), X and Y satisfy the relation: X + Y ≥ 173m, Y ≤ - 9.7X + 292, Y ≤ - 0.3X + 203 and X > 0. Then, even when the short fuel rods are used, the fuel inventory is increased and fuel economy can be improved. (I.N.)

  3. Fuel assembly

    International Nuclear Information System (INIS)

    Watanabe, Shoichi; Hirano, Yasushi.

    1998-01-01

    A one-half or more of entire fuel rods in a fuel assembly comprises MOX fuel rods containing less than 1wt% of burnable poisons, and at least a portion of the burnable poisons comprises gadolinium. Then, surplus reactivity at an initial stage of operation cycle is controlled to eliminate burnable poisons remained unburnt at a final stage, as well as increase thermal reactivity. In addition, the content of fission plutonium is determined to greater than the content of uranium 235, and fuel rods at corner portions are made not to incorporate burnable poisons. Fuel rods not containing burnable poisons are disposed at positions in adjacent with fuel rods facing to a water rod at one or two directions. Local power at radial center of the fuel assembly is increased to flatten the distortion of radial power distribution. (N.H.)

  4. Fuel assembly

    International Nuclear Information System (INIS)

    Nomata, Terumitsu.

    1993-01-01

    Among fuel pellets to be loaded to fuel cans of a fuel assembly, fuel pellets having a small thermal power are charged in a region from the end of each of spacers up to about 50mm on the upstream of coolants that flow vertically at the periphery of fuel rods. Coolants at the periphery of fuel rods are heated by the heat generation, to result in voids. However, since cooling effect on the upstream of the spacers is low due to influences of the spacers. Further, since the fuel pellets disposed in the upstream region have small thermal power, a void coefficient is not increased. Even if a thermal power exceeding cooling performance should be generated, there is no worry of causing burnout in the upstream region. Even if burnout should be caused, safety margin and reliability relative to burnout are improved, to increase an allowable thermal power, thereby enabling to improve integrity and reliability of fuel rods and fuel assemblies. (N.H.)

  5. Nuclear fuel assemblies and fuel pins usable in such assemblies

    International Nuclear Information System (INIS)

    Jolly, R.

    1982-01-01

    A novel end cap for a nuclear fuel assembly is described in detail. It consists of a trisection arrangement which is received within a cell of a cellular grid. The cell contains abutment means with which the trisection comes into abutment. The grid also contains an abutment means for preventing the trisections from being inserted into the cell in an incorrect orientation. The present design allows fuel pins to be securely held in a hold-down grid of a sub-assembly. The design also allows easier dis-assembly of the swollen and embrittled fuel pins prior to reprocessing. (U.K.)

  6. State of the VVER-1000 spent U-Gd fuel rods based on the results of post-irradiation examinations

    International Nuclear Information System (INIS)

    Shevlyakov, G.; Zvir, E.; Strozhuk, A.; Polenok, V.; Sidorenko, O.; Volkova, I.; Nikitin, O.

    2015-01-01

    The present paper is devoted to post-irradiation examinations (PIE) of U-Gd fuel rods with different geometry of the fuel pellets irradiated as part of the VVER-1000 fuel assembly. As evidenced by their PIE data, they did not exhaust their service life based on the main parameters (geometrical dimensions, corrosion state, and release of fission product gases). (author)

  7. An Evaluation on the Fluid Elastic Instability of the Fuel Rod for OPR1000 Plants

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyeong Koo; Jeon, Sang Yoon; Lee, Kyu Seok; Kim, Jeong Ha; Lee, Sang Jong [Reactor Core Technology Department, Korea Nuclear Fuel, 493, Deogjin, Yuseong, Daejeon, 305-353 (Korea, Republic of)

    2009-06-15

    The fuel assembly for a typical PWR (Pressurized Water Reactor) plant suffers severe operating conditions during its lifetime such as high temperature, high pressure and massive coolant passing through the fuel assembly with high speed. Moreover, recently nuclear fuel is requested not only to operate under more severe operation conditions for example high burnup, longer cycle and power up-rate, but also to maintain its integrity in spite of the operation severity. Lots of vendors, therefore, have poured their endeavor to develop an advanced fuel in order to meet these requirements. However, the fuel failures are still reported from time to time. In general, fuel failure mechanisms known as significant causes of PWR fuel failure are grid to rod fretting, corrosion of the cladding, pellet cladding interaction and debris induced fretting. Especially, since the fuel assembly is very tall and flexible structure and the flow velocity of reactor coolant is pretty high, flow induced vibration (FIV) of fuel rod is an inevitable phenomenon in PWR fuel and the energy vibrating fuel rod continually provided by coolant flow can become a root cause of the fuel failure like grid to rod fretting. Moreover, the cross flow of the coolant is highly susceptible to cause the fluid elastic instability (FEI) which produces extraordinarily big amplitudes of the fuel rod suddenly and is eventually ended up fuel failure within very short-term. The FIV problem, therefore, has to be evaluated carefully to avoid unexpected fuel failure. At present, the susceptibility to vibration damage of the fuel rod for OPR1000 plants has been estimated by the comparison of natural frequencies of every fuel rod span with recognized external excitation frequencies like coolant pump blade passing frequencies, vortex shedding frequencies and lower support structure vibration frequencies. That is, in order to prevent fuel failure due to the external excitation, the natural frequencies of unsupported lengths of

  8. Integral nuclear fuel element assembly

    International Nuclear Information System (INIS)

    Schluderberg, D. C.

    1985-01-01

    An integral nuclear fuel element assembly utilizes longitudinally finned fuel pins. The continuous or interrupted fins of the fuel pins are brazed to fins of juxtaposed fuel pins or directly to the juxtaposed fuel pins or both. The integrally brazed fuel assembly is designed to satisfy the thermal and hydraulic requirements of a fuel assembly lattice having moderator to fuel atom ratios required to achieve high conversion and breeding ratios

  9. Nuclear reactor fuel assembly

    International Nuclear Information System (INIS)

    Sasaki, Y.; Tashima, J.

    1975-01-01

    A description is given of nuclear reactor fuel assemblies arranged in the form of a lattice wherein there is attached to the interface of one of two adjacent fuel assemblies a plate spring having a concave portion curved toward said interface and to the interface of the other fuel assembly a plate spring having a convex portion curved away from said interface

  10. Fuel assembly

    International Nuclear Information System (INIS)

    Ueda, Sei; Ando, Ryohei; Mitsutake, Toru.

    1995-01-01

    The present invention concerns a fuel assembly suitable to a BWR-type reactor and improved especially with the nuclear characteristic, heat performance, hydraulic performance, dismantling or assembling performance and economical property. A part of poison rods are formed as a large-diameter/multi-region poison rods having a larger diameter than a fuel rod. A large number of fuel rods are disposed surrounding a large diameter water rod and a group of the large-diameter/multi-region poison rods in adjacent with the water rod. The large-diameter water rod has a burnable poison at the tube wall portion. At least a portion of the large-diameter poison rods has a coolant circulation portion allowing coolants to circulate therethrough. Since the large-diameter poison rods are disposed at a position of high neutron fluxes, a large neutron multiplication factor suppression effect can be provided, thereby enabling to reduce the number of burnable poison rods relative to fuels. As a result, power peaking in the fuel assembly is moderated and a greater amount of plutonium can be loaded. In addition the flow of cooling water which tends to gather around the large diameter water rod can be controlled to improve cooling performance of fuels. (N.H.)

  11. Judgement on the data for fuel assembly outlet temperatures of WWER fuel assemblies in power reactors based on measurements with experimental fuel assemblies

    International Nuclear Information System (INIS)

    Krause, F.

    1986-01-01

    In the period from 1980 to 1985, in the Rheinsberg nuclear power plant experimental fuel assemblies were used on lattices at the periphery of the core. These particular fuel assemblies dispose of an extensive in-core instrumentation with different sensors. Besides this, they are fit out with a device to systematically thottle the coolant flow. The large power gradient present at the core position of the experimental fuel assembly causes a temperature profile along the fuel assemblies which is well provable at the measuring points of the outlet temperature. Along the direction of flow this temperature profile in the coolant degrades only slowly. This effect is to be taken into account when measuring the fuel assembly outlet temperature of WWER fuel assemblies. Besides this, the results of the measurements hinted both at a γ-heating of the temperature measuring points and at tolerances in the calculation of the micro power density distribution. (author)

  12. Reactor coolant system hydrostatic test and risk analysis for the first AP1000 unit

    International Nuclear Information System (INIS)

    Cao Hongjun; Yan Xiuping

    2013-01-01

    The cold hydrostatic test scheme of the primary coolant circuit, of the first AP1000 unit was described. Based on the up-stream design documents, standard specifications and design technical requirements, the select principle of test boundary was identified. The design requirements for water quality, pressure, temperature and temporary hydro-test pump were proposed. A reasonable argument for heating and pressurization rate, and cooling and depressurization rate was proposed. The possible problems and risks during the hydrostatic test were analyzed. This test scheme can provide guidance for the revisions and implementations of the follow-up test procedures. It is a good reference for hydrostatic tests of AP1000 units in the future in China. (authors)

  13. The AP1000{sup R} China projects move forward to construction completion and equipment installation

    Energy Technology Data Exchange (ETDEWEB)

    Harrop, G. [Westinghouse Electric Company LLC, 1000 Westinghouse Drive, Cranberry Township, PA 16066 (United States)

    2012-07-01

    The AP1000 design is the only Generation III+ technology to receive design certification from the U.S. Nuclear Regulatory Commission. This evolutionary design provides the highest safety and performance standards and has several distinct advantages over other designs, including improved operations and reduced construction schedule risks through the use of modern, modular, engineering principles that allow construction and fabrication tasks traditionally performed in sequence to be undertaken in parallel. Since the first granting of Design Certification in 2005 by the NRC, the AP1000 design has been modified to meet emergent NRC requirements such as those requiring the design to withstand the impact of an aircraft crash. Both domestic and foreign utilities have turned to the Westinghouse AP1000 plant design to meet their near - and long-term sustainable energy needs. The first ever deployment of this advanced U.S. nuclear power technology began in China in 2007 with the award of a contract to build four AP1000 units, constructed in pairs at the coastal sites of Sanmen (Zhejiang Province) and Haiyang (Shandong Province). Currently, all four units are at an advanced stage of construction. The commercial operation date for Sanmen Unit 1 is November 2013 followed by Haiyang Unit 1 being operational in May 2014. Construction and equipment manufacture is at an advanced stage. Sanmen Unit 1 equipment that has been delivered includes the reactor vessel, the reactor vessel closure head, the passive residual heat removal heat exchanger, the integrated head package, the polar crane, and the refueling machine. The steam generators are also completed. The RV was installed within the containment vessel building in September 2011. The installation of this major equipment will allow the setting of the containment vessel top head. Haiyang Unit 1 is also achieving significant progress. Significant benefits continue to be realized as a result of lessons learned and experience gained

  14. Fuel cell sub-assembly

    Science.gov (United States)

    Chi, Chang V.

    1983-01-01

    A fuel cell sub-assembly comprising a plurality of fuel cells, a first section of a cooling means disposed at an end of the assembly and means for connecting the fuel cells and first section together to form a unitary structure.

  15. Fuel assembly inspection device

    International Nuclear Information System (INIS)

    Yaginuma, Yoshitaka

    1998-01-01

    The present invention provides a device suitable to inspect appearance of fuel assemblies by photographing the appearance of fuel assemblies. Namely, the inspection device of the present invention measures bowing of fuel assembly or each of fuel rods or both of them based on the partially photographed images of fuel assembly. In this case, there is disposed a means which flashily projects images in the form of horizontal line from a direction intersecting obliquely relative to a horizontal cross section of the fuel assembly. A first image processing means separates the projected image pictures including projected images and calculates bowing. A second image processing means replaces the projected image pictures of the projected images based on projected images just before and after the photographing. Then, images for the measurement of bowing and images for inspection can be obtained simultaneously. As a result, the time required for the photographing can be shortened, the time for inspection can be shortened and an effect of preventing deterioration of photographing means by radiation rays can be provided. (I.S.)

  16. Method of transporting fuel assemblies

    International Nuclear Information System (INIS)

    Okada, Katsutoshi.

    1979-01-01

    Purpose: To enable safety transportation of fuel assemblies for FBR type reactors by surrounding each of fuel elements in a wrapper tube by a rubbery, hollow cylindrical container and by sealing medium such as air to the inside of the container. Method: A fuel element is contained in a hollow cylindrical rubber-like tube. The fuel element has an upper end plug, a lower end plug and a wire spirally wound around the outer periphery. Upon transportation of the fuel assemblies, each of the fuel elements is covered with the container and arranged in the wrapper tube and then the fuel assemblies are assembled. Then, medium such as air is sealed for each of the fuel elements by way of an opening and then the opening is tightly closed. Before loading the transported fuel assemblies in the reactor, the medium is discharged through the opening and the container is completely extracted and removed from the inside of the wrapper tube. (Seki, T.)

  17. Fuel assembly storage pool

    International Nuclear Information System (INIS)

    Hiranuma, Hiroshi.

    1976-01-01

    Object: To remove limitation of the number of storage of fuel assemblies to increase the number of storage thereof so as to relatively reduce the water depth required for shielding radioactive rays. Structure: Fuel assembly storage rack containers for receiving a plurality of spent fuel assembly racks are stacked in multi-layer fashion within a storage pool filled with water for shielding radioactive rays and removing heat. (Furukawa, Y.)

  18. Nuclear reactor fuel assembly

    International Nuclear Information System (INIS)

    Sakurai, Shungo; Ogiya, Shunsuke.

    1990-01-01

    In a fuel assembly, if the entire fuels comprise mixed oxide fuels, reactivity change in cold temperature-power operation is increased to worsen the reactor shutdown margin. The reactor shutdown margin has been improved by increasing the burnable poison concentration thereby reducing the reactivity of the fuel assembly. However, since unburnt poisons are present at the completion of the reactor operation, the reactivity can not be utilized effectively to bring about economical disadvantage. In view of the above, the reactivity change between lower temperature-power operations is reduced by providing a non-boiling range with more than 9.1% of cross sectional area at the inside of a channel at the central portion of the fuel assembly. As a result, the amount of the unburnt burnable poisons is decreased, the economy of fuel assembly is improved and the reactor shutdown margin can be increase. (N.H.)

  19. Fuel assembly

    International Nuclear Information System (INIS)

    Yokota, Tokunobu.

    1990-01-01

    A fuel assembly used in a FBR type nuclear reactor comprises a plurality of fuel rods and a moderator guide member (water rod). A moderator exit opening/closing mechanism is formed at the upper portion of the moderator guide member for opening and closing a moderator exit. In the initial fuel charging operation cycle to the reactor, the moderator exit is closed by the moderator exit opening/closing mechanism. Then, voids are accumulated at the inner upper portion of the moderator guide member to harden spectrum and a great amount of plutonium is generated and accumulated in the fuel assembly. Further, in the fuel re-charging operation cycle, the moderator guide member is used having the moderator exit opened. In this case, voids are discharged from the moderator guide member to decrease the ratio, and the plutonium accumulated in the initial charging operation cycle is burnt. In this way, the fuel economy can be improved. (I.N.)

  20. Effect of air condition on AP-1000 containment cooling performance in station black out accident

    International Nuclear Information System (INIS)

    Hendro Tjahjono

    2015-01-01

    AP1000 reactor is a nuclear power plant generation III+ 1000 MWe which apply passive cooling concept to anticipate accidents triggered by the extinction of the entire supply of electrical power or Station Black Out (SBO). In the AP1000 reactor, decay heat disposal mechanism conducted passively through the PRHR-IRWST and subsequently forwarded to the reactor containment. Containment externally cooled through natural convection in the air gap and through evaporation cooling water poured on the outer surface of the containment wall. The mechanism of evaporation of water into the air outside is strongly influenced by the conditions of humidity and air temperature. The purpose of this study was to determine the extent of the influence of the air condition on cooling capabilities of the AP1000 containment. The method used is to perform simulations using Matlab-based analytical calculation model capable of estimating the power of heat transferred. The simulation results showed a decrease in power up to 5% for relative humidity rose from 10% to 95%, while the variation of air temperature of 10°C to 40°C, the power will decrease up to 15%. It can be concluded that the effect of air temperature increase is much more significant in lowering the containment cooling ability compared with the increase of humidity. (author)

  1. Fuel assembly and reactor core

    International Nuclear Information System (INIS)

    Aoyama, Motoo; Koyama, Jun-ichi; Uchikawa, Sadao; Bessho, Yasunori; Nakajima, Akiyoshi; Maruyama, Hiromi; Ozawa, Michihiro; Nakamura, Mitsuya.

    1990-01-01

    The present invention concerns fuel assemblies charged in a BWR type reactor and the reactor core. The fuel assembly comprises fuel rods containing burnable poisons and fuel rods not containing burnable poisons. Both of the highest and the lowest gadolinia concentrations of the fuel rods containing gadolinia as burnable poisons are present in the lower region of the fuel assembly. This can increase the spectral shift effect without increasing the maximum linear power density. (I.N.)

  2. Nuclear fuel assembly seismic amplitude limiter

    International Nuclear Information System (INIS)

    Anthony, A.J.

    1977-01-01

    The ability of a nuclear reactor to withstand high seismic loading is enhanced by including, on each fuel assembly, at least one seismic grid which reduces the magnitude of the possible lateral deflection of the individual fuel elements and the entire fuel assembly. The reduction in possible deflection minimizes the possibility of impact of the spacer grids of one fuel assembly on those of an adjacent fuel assembly and reduces the magnitude of forces associated with any such impact thereby minimizing the possibility of fuel assembly damage as a result of high seismic loading. The seismic grid is mounted from the fuel assembly guide tubes, has greater external dimensions when compared to the fuel assembly spacer grids and normally does not support or otherwise contact the fuel elements. The reduction in possible deflection is achieved through reduction of the clearance between adjacent fuel assemblies made possible by the use in the seismic grid of a high strength material characterized by favorable thermal expansion characteristics and minimal irradiation induced expansion

  3. Nuclear reactor fuel assembly

    International Nuclear Information System (INIS)

    Vikhorev, Yu.V.; Biryukov, G.I.; Kirilyuk, N.A.; Lobanov, V.N.

    1977-01-01

    A fuel assembly is proposed for nuclear reactors allowing remote replacement of control rod bundles or their shifting from one assembly to another, i.e., their multipurpose use. This leads to a significant increase in fuel assembly usability. In the fuel assembly the control rod bundle is placed in guide tube channels to which baffles are attached for fuel element spacing. The remote handling of control rods is provided by a hollow cylinder with openings in its lower bottom through which the control rods pass. All control rods in a bundle are mounted to a cross beam which in turn is mounted in the cylinder and is designed for grasping the whole rod bundle by a remotely controlled telescopic mechanism in bundle replacement or shifting. (Z.M.)

  4. Comparison calculations of WWER-1000 fuel assemblies by using the MCNP 4.2 a KASSETA codes

    International Nuclear Information System (INIS)

    Trgina, M.

    1993-12-01

    The power multiplication and distribution factors are compared for various geometries and material configurations of WWER-1000 fuel assemblies. The calculations were performed in 2 ways: (i) using nuclear data, employing older and current data collections, and (ii) using the author's own model based on the KASSETA code. The comparison code MCNP 4.2 is described, intended for computerized simulation of the transport of neutrons, photons and electrons. This code uses its own cross section library. The methodology is outlined and a specification of the Monte Carlo method employed is given. The use of the refined data library gave rise to appreciable deviations of the multiplication factors in all variants. The use of the older data library led to identical criticality results for the variant with water holes. For inserted absorbers the discrepancies in criticality and in power distribution data are appreciable. The marked disagreement between the results of application of the MCNP 4.2 and KASSETA codes for the variants with inserted control elements is indicative of inappropriateness of the approximation procedure in the latter code. (J.B.). 2 tabs., 11 figs., 11 refs

  5. Fuel nozzle assembly

    Science.gov (United States)

    Johnson, Thomas Edward [Greer, SC; Ziminsky, Willy Steve [Simpsonville, SC; Lacey, Benjamin Paul [Greer, SC; York, William David [Greer, SC; Stevenson, Christian Xavier [Inman, SC

    2011-08-30

    A fuel nozzle assembly is provided. The assembly includes an outer nozzle body having a first end and a second end and at least one inner nozzle tube having a first end and a second end. One of the nozzle body or nozzle tube includes a fuel plenum and a fuel passage extending therefrom, while the other of the nozzle body or nozzle tube includes a fuel injection hole slidably aligned with the fuel passage to form a fuel flow path therebetween at an interface between the body and the tube. The nozzle body and the nozzle tube are fixed against relative movement at the first ends of the nozzle body and nozzle tube, enabling the fuel flow path to close at the interface due to thermal growth after a flame enters the nozzle tube.

  6. Fuel assemblies

    International Nuclear Information System (INIS)

    Echigoya, Hironori; Nomata, Terumitsu.

    1983-01-01

    Purpose: To render the axial distribution relatively flat. Constitution: First nuclear element comprises a fuel can made of zircalloy i.e., the metal with less neutron absorption, which is filled with a plurality of UO 2 pellets and sealed by using a lower end plug, a plenum spring and an upper end plug by means of welding. Second fuel element is formed by substituting a part of the UO 2 pellets with a water tube which is sealed with water and has a space for allowing the heat expansion. The nuclear fuel assembly is constituted by using the first and second fuel elements together. In such a structure, since water reflects neutrons and decrease their leakage to increase the temperature, reactivity is added at the upper portion of the fuel assembly to thereby flatten the axial power distribution. Accordingly, stable operation is possible only by means of deep control rods while requiring no shallow control rods. (Sekiya, K.)

  7. The feasibility of express in situ measurement of the isotopic composition of uranium in fresh WWER-1000 fuel

    International Nuclear Information System (INIS)

    Christoskov, I.; Tsankov, L.; Ivanov, N.

    2011-01-01

    A study of the feasibility and accuracy of measurement of the enrichment of fresh VVER-1000 fuel assemblies using a miniature CdZnTe probe is performed.The possibilities of improvement of the analytical procedure are briefly discussed. (authors)

  8. Fuel element cladding state change mathematical model for a WWER-1000 plant operated in the mode of varying loading

    Directory of Open Access Journals (Sweden)

    S. N. Pelykh

    2010-09-01

    Full Text Available Main features of a fuel element cladding state change mathematical model for a WWER-1000 reactor plant operated in the mode of varying loading are listed. The integrated model is based on the energy creep theory, uses the finite element method for imultaneous solution of the fuel element heat conduction and mechanical deformation equa-tions. Proposed mathematical model allows us to determine the influence of the WWER-1000 regime parameters and fuel assembly design characteristics on the change of cladding properties under different loading conditions of normal operation, as well as the cladding limiting state at variable loading depending on the length, depth and number of cycles.

  9. Fuel assembly guide tube

    International Nuclear Information System (INIS)

    Jabsen, F.S.

    1979-01-01

    This invention is directed toward a nuclear fuel assembly guide tube arrangement which restrains spacer grid movement due to coolant flow and which offers secondary means for supporting a fuel assembly during handling and transfer operations

  10. Study of accelerated unit unloading mode initiated by turbine feed pump trip with TVSA fuel assemblies operation in WWER-1000

    International Nuclear Information System (INIS)

    Borysenko, V.I.; Kadenko, I.N.; Samoilenko, D.V.

    2012-01-01

    This paper provides the study results of accelerated unit unloading mode (AUU) initiated at WWER-1000 unit operated at 100 % power and its expediency in the event of single Turbo Feed Pump (TFP) failure. Modeling was performed using an advanced calculation code RELAP/SCDAPSIM/Mod3.4 and relevant model for KhNPP Unit No. 2. As the study shows, SCRAM cannot be prevented in case of failure of 3 main circulation pumps due to steam generators (SG) level drop. Based on the results obtained, it is reasonably justified to allow SCRAM signal instead of AUU activation in case of single TFP failure at power level more than 90 % of N n om. This will provide more sparing temperature modes for fuel assemblies and equipment, as well as prevent additional thermal cycling loads and violation of safe operation limits as SG water levels

  11. Feasibility analysis of AP1000 wireless communication system and selection of technical solutions

    International Nuclear Information System (INIS)

    Zhao Xin

    2012-01-01

    This article expatiates the rationality and feasibility of AP1000 nuclear power plant adopts wireless communication system as the first choice in routine and emergency operations, compares and analysed. 5 major wireless communication technology solutions, and introduces the Wi-Fi based wireless communication system architecture. (author)

  12. Storage method for spent fuel assembly

    International Nuclear Information System (INIS)

    Tajiri, Hiroshi.

    1992-01-01

    In the present invention, spent fuel assemblies are arranged at a dense pitch in a storage rack by suppressing the reactivity of the assemblies, to increase storage capacity for the spent fuel assemblies. That is, neutron absorbers are filled in the cladding tube of an absorbing rod, and the diameter thereof is substantially equal with that of a fuel rod. A great amount of the absorbing rods are arranged at the outer circumference of the fuel assembly. Then, they are fixed integrally to the fuel assembly and stored in a storage rack. In this case, the storage rack may be constituted only with angle materials which are inexpensive and installed simply. With such a constitution, in the fuel assembly having absorbing rods wound therearound, neutrons are absorbed by absorbing rods and the reactivity is lowered. Accordingly, the assembly arrangement pitch in the storage rack can be made dense. As a result, the storage capacity for the assemblies is increased. (I.S.)

  13. Dynamic Response of AP1000 Nuclear Island Due to Safe Shutdown Earthquake Loading

    Directory of Open Access Journals (Sweden)

    Gan Buntara S.

    2017-01-01

    Full Text Available AP1000 is a standard nuclear power plant developed by Westinghouse and its partners by using an advanced passive safety feature. Among the five principle building structures, namely the nuclear island, turbine building, annex building, diesel generator building and radwaste building, the safety of the nuclear island building is the most concerned. This paper investigates the dynamic response of the nuclear island building of the AP1000 plant subjected to safe shutdown earthquake loadings. A finite element model for the building, which is assumed to be built in a hard-rock base, is developed and its dynamic response is computed with the aid of the commercial finite element package ANSYS. The dynamic characteristics, including the natural frequencies, the vibration modes, and the time histories for displacements, velocities, and accelerations of the building are obtained for two typical safe shutdown earthquakes, El Centro and Kobe earthquakes. The dynamic behavior of the building due to the earthquakes and its safety is examined and highlighted.

  14. Fuel assembly

    International Nuclear Information System (INIS)

    Fujibayashi, Toru.

    1970-01-01

    Herein disclosed is a fuel assembly in which a fuel rod bundle is easily detachable by rotating a fuel rod fastener rotatably mounted to the upper surface of an upper tie-plate supporting a fuel bundle therebelow. A locking portion at the leading end of each fuel rod protrudes through the upper tie-plate and is engaged with or separated from the tie-plate by the rotation of the fastener. The removal of a desired fuel rod can therefore be remotely accomplished without the necessity of handling pawls, locking washers and nuts. (Owens, K.J.)

  15. New requirements for the WWER fuel and their consideration in designing the fuel assemblies

    International Nuclear Information System (INIS)

    Vasilchenko, I.; Ananyev, Y.

    2003-01-01

    In 2001-2002 the base designs of the new generation fuel assemblies for the WWER-440 and WWER-1000 reactors were developed. The ways of their further modernisation were defined. The present report deals with the urgent requirements and how they have been implemented in these designs. The assessment of the efficiency of new designs is carried out on the basis of the existing data of the world market on the cost of: Uranium concentrate; dividing operations; fabrication. It is additionally possible also to take into account the cost of transportation, storage and processing of the irradiated fuel including burial of wastes

  16. Experimental research of liquid entrainment through ADS-4 in AP1000

    International Nuclear Information System (INIS)

    Meng, Zhaoming; Dong, Bo; Wang, Laishun; Fu, Xiaoliang; Tian, Wenxi; Yang, Yanhua; Su, Guanghui

    2014-01-01

    Highlights: • We performed experimental research of liquid entrainment through ADS-4 in AP1000. • Effect of various factors on entrainment at T-junction was conducted. • Visualization research was conducted to make entrainment mechanism clear. - Abstract: In this study, based on a T-junction that consists of Automatic Depressurization System Stage Four (ADS-4) and hot leg in an AP1000 plant, a small-scale experimental research on entrainment at a T-junction was performed. This study mainly focused on the effect of various factors on entrainment, such as the effect of branch size, branch shape and liquid crossflow. The flow pattern map was plotted from the experimental data, and the visualization research indicated that the entrainment phenomena through a large size branch were apparently different from that through a small branch. Three entrainment phenomena were observed in the studies, two entrainment mechanisms could be found in the stratified flow regime entrainment area, the existence of branch contributed to generating intermittent flow in the horizontal main pipe, and the backflow region was observable in the vicinity of a large size branch inlet. Also, experimental research showed that downstream of the branch of T-junction had an important effect on the onset entrainment, and liquid crossflow did not seem to affect the onset entrainment

  17. Nuclear fuel assemblies

    International Nuclear Information System (INIS)

    Butterfield, R.S.; Garner, D.L.M.

    1977-01-01

    Reference is made to nuclear fuel assemblies designed for cooling on the 'tube-in-shell' principle in which the fuel is contained by a shell and is cooled by coolant passed through tubes extending through the shell. It has been proposed to employ coated particle fuel as a porous bed on the tube side and the bleed coolant from the tubes into direct contact with the fuel particles. In this way heat is extracted both by direct contact with the fuel and by heat transfer through the coolant tube walls. The system described aims to provide an improved structure of tube and shell for a fuel assembly of this kind and is particularly suitable for use in a gas cooled fast reactor, being able to withstand the neutron flux and high temperature conditions in these reactors. Constructional details are given. (U.K.)

  18. Nuclear fuel assemblies

    International Nuclear Information System (INIS)

    Natori, Hisahide; Kurihara, Kunitoshi.

    1982-01-01

    Purpose: To increase the fuel safety by decreasing the gap conductance between fuels and cladding tubes, as well as improve the reactor core controllability by rendering the void coefficient negative. Constitution: Fuel assemblies in a pressure tube comprise a tie-rod, fuel rods in a central region, and fuel rods with burnable poison in the outer circumference region. Here, B 4 C is used as the burnable poison by 1.17 % by weight ratio. The degrees of enrichment for the fissile plutonium as PuO 2 -UO 2 fuel used in the assemblies are 2.7 %, 2.7 % and 1.5 % respectively in the innermost layer, the intermediate layer and the outermost layer. This increases the burn-up degree to improve the plant utilizability, whereby the void coefficient is rendered negative to improve the reactor core controllability. (Horiuchi, T.)

  19. Pattern fuel assembly loading system

    International Nuclear Information System (INIS)

    Ahmed, H.J.; Gerkey, K.S.; Miller, T.W.; Wylie, M.E.

    1986-01-01

    This patent describes an interactive system for facilitating preloading of fuel rods into magazines, which comprises: an operator work station adapted for positioning between a supply of fuel rods of predetermined types, and the magazine defining grid locations for a predetermined fuel assembly; display means associated with the work station; scanner means associated with the work station and adapted for reading predetermined information accompanying the fuel rods; a rectangular frame adapted for attachment to one end of the fuel assembly loading magazine; prompter/detector means associated with the frame for detecting insertion of a fuel rod into the magazine; and processing means responsive to the scanner means and the sensing means for prompting the operator via the display means to pre-load the fuel rods into desired grid locations in the magazine. An apparatus is described for facilitating pre-loading of fuel rods in predetermined grid locations of a fuel assembly loading magazine, comprising: a rectangular frame adapted for attachment to one end of the fuel assembly loading magazine; and means associated with the frame for detecting insertion of fuel rods into the magazine

  20. Seismic behaviour of fuel assembly

    Energy Technology Data Exchange (ETDEWEB)

    Song, Heuy Gap; Jhung, Myung Jo [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1993-11-01

    A general approach for the dynamic time-history analysis of the reactor core is presented in this paper as a part of the fuel assembly qualification program. Several detailed core models are set up to reflect the placement of the fuel assemblies within the core shroud. Peak horizontal responses are obtained for each model for the motions induced from earthquake. The dynamic responses such as fuel assembly shear force, bending moment and displacement, and spacer grid impact loads are carefully investigated. Also, the sensitivity responses are obtained for the earthquake motions and the fuel assembly non-linear response characteristics are discussed. (Author) 9 refs., 24 figs., 1 tab.

  1. Fuel assembly in a reactor

    International Nuclear Information System (INIS)

    Saito, Shozo; Kawahara, Akira.

    1975-01-01

    Object: To provide a fuel assembly in a reactor which can effectively prevent damage of the clad tube caused by mutual interference between pellets and the clad tube. Structure: A clad tube for a fuel element, which is located in the outer peripheral portion, among the fuel elements constituting fuel assemblies arranged in assembled and lattice fashion within a channel box, is increased in thickness by reducing the inside diameter thereof to be smaller than that of fuel elements internally located, thereby preventing damage of the clad tube resulting from rapid rise in output produced when control rods are removed. (Kamimura, M.)

  2. Using of the Serpent code based on the Monte-Carlo method for calculation of the VVER-1000 fuel assembly characteristics

    Directory of Open Access Journals (Sweden)

    V. V. Galchenko

    2016-12-01

    Full Text Available The description of calculation scheme of fuel assembly for preparation of few-group characteristics is considered with help of Serpent code. This code uses the Monte-Carlo method and energy continuous microscopic data libraries. Serpent code is devoted for calculation of fuel assembly characteristics, burnup calculations and preparation of few-group homogenized macroscopic cross-sections. The results of verification simulations in comparison with other codes (WIMS, HELIOS, NESSEL etc., which are used for neutron-physical analysis of VVER type fuel, are presented.

  3. Effects of the Application of the New Nuclear Data Library ENDF/B to the Criticality Analysis of AP1000

    Science.gov (United States)

    Kuntoro, Iman; Sembiring, T. M.; Susilo, Jati; Deswandri; Sunaryo, G. R.

    2018-02-01

    Calculations of criticality of the AP1000 core due to the use of new edition of nuclear data library namely ENDF/B-VII and ENDF/B-VII.1 have been done. This work is aimed to know the accuracy of ENDF/B-VII.1 compared to ENDF/B-VII and ENDF/B-VI.8. in determining the criticality parameter of AP1000. Analysis ws imposed to core at cold zero power (CZP) conditions. The calculations have been carried out by means of MCNP computer code for 3 dimension geometry. The results show that criticality parameter namely effective multiplication factor of the AP1000 core are higher than that ones resulted from ENDF/B-VI.8 with relative differences of 0.39% for application of ENDF/B-VII and of 0.34% for application of ENDF/B-VII.1.

  4. The main conditions ensured problemless implementation of 235U high enriched fuel in Kozloduy NPP (Bulgaria) - WWER-1000 Units

    International Nuclear Information System (INIS)

    Dobrevski, I.; Zaharieva, N.; Minkova, K.; Michaylov, G.; Penev, P.; Gerchev, N.

    2009-01-01

    The collected water chemistry and radiochemistry data during the operation of the Kozloduy NPP Unit 5 for the period 2006-2009 (12-th, 13-th 14-th and 15-th fuel cycles) undoubtedly indicate for WWER-1000 Units (whose specific features are: Steam generators with austenitic stainless steel 08Cr18N10T tubing; Steam generators are with horizontal straight tubing and Fuel elements cladding material is Zr-1%Nb (Zr1Nb) alloy), that one realistic way for problemless implementation of 235 U high enriched fuel have been found. The main feature characteristics of this way are: Implementation of solid neutron burnable absorbers together with the dissolved in coolant neutron absorber - natural boric acid; Application of fuel cladding materials with enough corrosion resistance by the specific fuel cladding environment created by presence of SNB; Keeping of suitable coolant water chemistry which ensures low corrosion rates of core- and out-of-core- materials and limits in core (cladding) depositions and restricts out-of-core radioactivity buildup. The realization of this way in WWER-1000 Units in Kozloduy NPP was practically carried out through: 1) Implementation of Russian fuel assemblies TVSA which have as fuel cladding material E-110 alloy (Zr1Nb) with enough high corrosion resistance by presence of sub-cooled nucleate boiling (SNB) and use burnable absorber (Gd) integrated in the uranium-gadolinium (U-Gd 2 O 3 ) fuel (fuel rod with 5.0% Gd 2 O 3 ); 2) Development and implementation of water chemistry primary circuit guidelines, which require the relation between boric acid concentration and total alkalising agent concentrations to ensure coolant pH 300 = 7.0 - 7.2 values during the whole operation period. The above mentioned conditions by the passing of WWER-1000 Units in NPP Kozloduy to uranium fuel with 4.4% 235 U (TVSA fuel assemblies) practically ensured avoidance of the creation of the necessary conditions for AOA onset. The operational experience (2006-2009) of the

  5. Fuel assemblies for use in nuclear reactors

    International Nuclear Information System (INIS)

    Mochida, Takaaki.

    1987-01-01

    Purpose: To increase the plutonium utilization amount and improve the uranium-saving effect in the fuel assemblies of PWR type reactor using mixed uranium-plutonium oxides. Constitution: MOX fuel rods comprising mixed plutonium-uranium oxides are disposed to the outer circumference of a fuel assembly and uranium fuel rods only composed of uranium oxides are disposed to the central portion thereof. In such a fuel assembly, since the uranium fuel rods are present at the periphery of the control rod, the control rod worth is the same as that of the uranium fuel assembly in the prior art. Further, since about 25 % of the entire fuel rods is composed of the MOX fuel rods, the plutonium utilization amount is increased. Further, since the MOX fuel rods at low enrichment degree are present at the outer circumferential portion, mismatching at the boundary to the adjacent MOX fuel assembly is reduced and the problem of local power peaking increase in the MOX fuel assembly is neither present. (Kamimura, M.)

  6. Operating experience review for the AP1000 plant

    International Nuclear Information System (INIS)

    Chaney, T. E.; Lipner, M. H.

    2006-01-01

    Westinghouse is performing an update to the Operating Experience Review (OER) Report for the AP1000 project to account for operating experience since December 1996. Significant Operating Experience Reports, Significant Event Reports, Significant Event Notifications, Operations and Maintenance Reminders, Topical Reports, Event Analysis Reports and Licensee Event Reports were researched for pertinent input to the update. As a part of the OER, Westinghouse has also conducted operator interviews and observations during simulated plant operations and after operating events. The main purpose of the OER is to identify Human Factors Engineering (HFE) related safety issues from existing operating plant experience and to ensure that these issues are addressed in the new design. The issues and lessons learned regarding operating experience provide a basis for improving the plant design. (authors)

  7. System for assembling nuclear fuel elements

    International Nuclear Information System (INIS)

    1980-01-01

    An automatic system is described for assembling nuclear fuel elements, in particular those employing mixed oxide fuels. The system includes a sealing mechanism which allows movement during the assembling of the fuel element along the assembly stations without excessive release of contaminants. (U.K.)

  8. Transfer of fuel assemblies

    International Nuclear Information System (INIS)

    Vuckovich, M.; Burkett, J. P.; Sallustio, J.

    1984-01-01

    Fuel assemblies of a nuclear reactor are transferred during fueling or refueling or the like by a crane. The work-engaging fixture of the crane picks up an assembly, removes it from this slot, transfers it to the deposit site and deposits it in its slot at the deposit site. The control for the crane includes a strain gauge connected to the crane line which raises and lowers the load. The strain gauge senses the load on the crane. The signal from the strain gauge is compared with setpoints; a high-level setpoint, a low-level setpoint and a slack-line setpoint. If the strain gauge signal exceeds the high-level setpoint, the line drive is disabled. This event may occur during raising of a fuel assembly which encounters resistance. The high-level setpoint may be overridden under proper precautions. The line drive is also disabled if the strain gauge signal is less than the low-level setpoint. This event occurs when a fuel assembly being deposited contacts the bottom of its slot or an obstruction in, or at the entry to the slot. To preclude lateral movement and possible damage to a fuel assembly suspended from the crane line, the traverse drive of the crane is disabled once the strain-gauge exceets the lov-level setpoint. The traverse drive can only be enabled after the strain-gauge signal is less than the slack-line set-point. This occurs when the lines has been set in slack-line setting. When the line is tensioned after slack-li ne setting, the traverse drive remains enabled only if the line has been disconnected from the fuel assembly

  9. Fuel Management of WWER-1000 Reactors of Kudankulam Nuclear Power Plant, India

    International Nuclear Information System (INIS)

    Pandey, Y.; Chauhan, A.

    2008-01-01

    Two units of WWER-1000 reactors of Russian design are under construction at Kudankulam site in India. These reactors are expected to be commissioned in 2008. The fuel management services for these reactors shall be carried out using Russian Computer codes. This paper includes a brief description of the core, fuel assembly lattice and physics modeling of the lattice and core for these reactors. Presented in this paper are the salient features of the core load pattern designs and fuel performance for 8 operating cycles of these reactors. The paper describes key improvements in the core load pattern designs to enhance the fuel utilization and its thermal behaviour. Presented in the paper are also the on site fuel management strategies with regard to fuel inventory and nuclear material accounting. A computer code for Fuel Inventory and Nuclear Material Accounting (FINMAC) has been developed for this purpose. The code FINMAC takes care of receipt of fresh fuel, flow between various accounting sub areas (ASAs), burnup or production of nuclear isotopes in the reactor cores and discharge from the reactor core. The code generates Material Balance Reports (MBRs) and Composition of Ending Inventory Reports (COEIs) as per the IAEA standards. (authors)

  10. Storage arrangement for nuclear reactor fuel assemblies

    International Nuclear Information System (INIS)

    Wade, E.E.

    1977-01-01

    Said invention is intended for providing an arrangement of spent fuel assembly storage inside which the space is efficiently used without accumulating a critical mass. The storage is provided for long fuel assemblies having along their longitudinal axis an active part containing the fuel and an inactive part empty of fuel. Said storage arrangement comprises a framework constituting some long-shaped cells designed so as each of them can receive a fuel assembly. Means of axial positioning of said assembly in a cell make it possible to support the fuel assemblies inside the framework according to a spacing ratio, along the cell axis, such as the active part of an assembly is adjacent to the inactive part of the adjacent assemblies [fr

  11. Multiple recycle of REMIX fuel at VVER-1000 operation in closed fuel cycle

    Energy Technology Data Exchange (ETDEWEB)

    Alekseev, P. N.; Bobrov, E. A., E-mail: evgeniybobrov89@rambler.ru; Chibinyaev, A. V.; Teplov, P. S.; Dudnikov, A. A. [National Research Center Kurchatov Institute (Russian Federation)

    2015-12-15

    The basic features of loading the VVER-1000 core with a new variant of REMIX fuel (REgenerated MIXture of U–Pu oxides) are considered during its multiple recycle in a closed nuclear fuel cycle. The fuel composition is produced on the basis of the uranium–plutonium regenerate extracted at processing the spent nuclear fuel (SNF) from a VVER-1000, depleted uranium, and the fissionable material: {sup 235}U as a part of highly enriched uranium (HEU) from warheads superfluous for defense purposes or {sup 233}U accumulated in thorium blankets of fusion (electronuclear) neutron sources or fast reactors. Production of such a fuel assumes no use of natural uranium in addition. When converting a part of the VVER-1000 reactors to the closed fuel cycle based on the REMIX technology, the consumption of natural uranium decreases considerably, and there is no substantial degradation of the isotopic composition of plutonium or change in the reactor-safety characteristics at the passage from recycle to recycle.

  12. Apparatus for lifting spent fuel assembly

    International Nuclear Information System (INIS)

    Hirasawa, Yoshinari; Sato, Isao; Yoneda, Yoshiyuki.

    1976-01-01

    Object: To increase the efficiency of cooling of a used fuel assembly being moved within a guide tube in the axial direction thereof by directly cooling the assembly with cooling gas fed into the guide tube, thus facilitating the handling of the spent fuel assembly. Structure: An end of a lock portion is inserted into the top portion of a spent fuel assembly, the assembly being hooked on the lock portion. The lock portion is provided on its outer periphery with a seal member and a centering member and at its tip with a pawl capable of being projected and retracted in the radial direction. Thus, when the lock portion is moved along the guide tube, the used fuel assembly can be moved along the guide tube by maintaining the concentric relation thereto. Meanwhile, when cooling gas is fed into the guide tube, it is blown into the used fuel assembly to directly cool the same. Thus, the cooling efficiency can be increased. (Moriyama, M.)

  13. Upgrading of WWER-1000 NPP safety on spent fuel transportation

    International Nuclear Information System (INIS)

    Kostarev, V.; Shchukin, A.; Petrenya, Yu.; Nikitin, V.; Romanovskij-Romanko, A.; Shevchenko, V.

    2003-01-01

    Transportation process for the WWER-1000 spent fuel assemblies consists of three main steps: (i) lifting of unloaded cask on the elevation of +38.05 m; (ii) loading of spent fuel assemblies into the cask; (iii) loaded cask lowering to the conveyer located in the transport corridor on the elevation 0.00 m. The most hazardous situation within described process for the cask itself and reactor building structures is an accidental drop of the cask from the height of 38.05 m to the transport corridor floor due to failure of traverse or crane's cable break. According to international practice and standards' requirements the cask shall be designed for the drop from 9 meters height to a rigid plate. However, preliminary analyses have shown that in case of 38 m drop the value of g-loads are several times larger than allowable limits. Additionally, strength capacity of the foundation slab of the reactor building is not guaranteed. Using of special damping device that is capable to bring dynamic loads to allowable limits could mitigate the catastrophic consequences of cask's 38.05 meters drop. The paper presents a basic design of the special damping platform and discusses results of analyses of different modes of cask drops and efficiency of the proposed solution. (author)

  14. Grain size control method for the nozzles of AP1000 primary coolant pipes

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Shenglong [State Key Laboratory for Advanced Metals and Materials, University of Science & Technology Beijing, Beijing 100083 (China); Sun, Yanhui [Collaborative Innovation Center of Steel Technology, University of Science & Technology Beijing, Beijing 100083 (China); Yang, Bin, E-mail: byang@ustb.edu.cn [State Key Laboratory for Advanced Metals and Materials, University of Science & Technology Beijing, Beijing 100083 (China); Collaborative Innovation Center of Steel Technology, University of Science & Technology Beijing, Beijing 100083 (China); Zhang, Mingxian [State Key Laboratory for Advanced Metals and Materials, University of Science & Technology Beijing, Beijing 100083 (China)

    2017-04-01

    Highlights: • Design a new forging technology for AP1000 primary coolant pipe. • Method combining FEM and scale-down experiments is adopted. • The grain size and distribution in simulation and experiment are consistent. • Get optimal forging parameters for production guiding. - Abstract: AP1000 primary coolant pipe is made of 316LN austenitic stainless steel. It is a large special-shaped pipe manufactured by integral forging technology. Owing to non-uniform temperature and deformation during forging, coarse grains often occur in the boss sections of the pipe especially in the nozzles’ parts. In the present study, a new forging technology was proposed to control the grain size. The finite element method was used to optimize the forging speed and friction coefficient, then the scale-down experiments were performed for comparison. The forging speed is suggested to be less than 20 mm/s, and effective lubricants should be used to decrease the friction coefficient. The errors of the grain size between the experiment and simulation are less than 20%.

  15. Grain size control method for the nozzles of AP1000 primary coolant pipes

    International Nuclear Information System (INIS)

    Wang, Shenglong; Sun, Yanhui; Yang, Bin; Zhang, Mingxian

    2017-01-01

    Highlights: • Design a new forging technology for AP1000 primary coolant pipe. • Method combining FEM and scale-down experiments is adopted. • The grain size and distribution in simulation and experiment are consistent. • Get optimal forging parameters for production guiding. - Abstract: AP1000 primary coolant pipe is made of 316LN austenitic stainless steel. It is a large special-shaped pipe manufactured by integral forging technology. Owing to non-uniform temperature and deformation during forging, coarse grains often occur in the boss sections of the pipe especially in the nozzles’ parts. In the present study, a new forging technology was proposed to control the grain size. The finite element method was used to optimize the forging speed and friction coefficient, then the scale-down experiments were performed for comparison. The forging speed is suggested to be less than 20 mm/s, and effective lubricants should be used to decrease the friction coefficient. The errors of the grain size between the experiment and simulation are less than 20%.

  16. Cleaning device for fuel assemblies

    International Nuclear Information System (INIS)

    Kita, Kaoru.

    1986-01-01

    Purpose: To completely remove obstacles deposited to the lower sides of supporting lattices for fuel assemblies by utilizing water within a pit before reloading of the fuel assemblies. Constitution: A cylindrical can, to which a fuel assembly is inserted through the upper end opening thereof, is vertically disposed within water of a pit and the bottom of the can is communicated with a pump by way of a suction pipe and a filter device disposed out of the pit. While on the other hand, a fuel assembly is suspended downwardly by a crane and inserted to the inside of the can through the upper end of the opening thereof and supported therein followed by starting the pump. As a result, water in the pit is circulated through the inside of the can, suction pipe, filtering device, pump, discharge pipe and to the inside of the pit thereby enabling to completely eliminate obstacles deposited to the lower surface, etc. of supporting lattices for the fuel assembly supported within the can. (Takahashi, M.)

  17. Fuel assembly

    International Nuclear Information System (INIS)

    Fushimi, Atsushi; Shimada, Hidemitsu; Aoyama, Motoo; Nakajima, Junjiro

    1998-01-01

    In a fuel assembly for an n x n lattice-like BWR type reactor, n is determined to 9 or greater, and the enrichment degree of plutonium is determined to 4.4% by weight or less. Alternatively, n is determined to 10 or greater, and the enrichment degree of plutonium is determined to 5.2% by weight or less. An average take-out burnup degree is determined to 39GWd/t or less, and the matrix is determined to 9 x 9 or more, or the average take-out burnup degree is determined to 51GWd/t, and the matrix is determined to 10 x 10 or more and the increase of the margin of the maximum power density obtained thereby is utilized for the compensation of the increase of distortion of power distribution due to decrease of the kinds of plutonium enrichment degree, thereby enabling to reduce the kind of the enrichment degree of MOX fuel rods to one. As a result, the manufacturing step for fuel pellets can be simplified to reduce the manufacturing cost for MOX fuel assemblies. (N.H.)

  18. Fuel assembly

    International Nuclear Information System (INIS)

    Kurihara, Kunitoshi; Azekura, Kazuo.

    1992-01-01

    In a reactor core of a heavy water moderated light water cooled pressure tube type reactor, no sufficient effects have been obtained for the transfer width to a negative side of void reactivity change in a region of a great void coefficient. Then, a moderation region divided into upper and lower two regions is disposed at the central portion of a fuel assembly. Coolants flown into the lower region can be discharged to the cooling region from an opening disposed at the upper end portion of the lower region. Light water flows from the lower region of the moderator region to the cooling region of the reactor core upper portion, to lower the void coefficient. As a result, the reactivity performance at low void coefficient, i.e., a void reaction rate is transferred to the negative side. Thus, this flattens the power distribution in the fuel assembly, increases the thermal margin and enables rapid operaiton and control of the reactor core, as well as contributes to the increase of fuel burnup ratio and reduction of the fuel cycle cost. (N.H.)

  19. WWER-1000 fuel cycles: current situation and outlook

    International Nuclear Information System (INIS)

    Kosourov, E.; Pavlov, V.; Pavlovichev, A.; Spirkin, E.; Shcherenko, A.

    2013-01-01

    Usage mode of nuclear fuel in WWER type reactor has been changed significantly till the moment of the first WWER-1000 commissioning. There are a lot of improvements, having an impact on the fuel cycle, have been implemented for units with WWER-1000. FA design and its constructional materials, FA fuel weight, burnable poison, usage mode of units and etc have been modified. As the result of development it has been designed a modern FA with rigid skeleton. As a whole it allows to use more efficient configurations of the core, to extend range of fuel cycle lengths and to provide good flexibility in the operation. In recent years there were in progress works on increasing FA uranium capacity. As the result there were developed two designs of the fuel rod: 1) the fuel column height of 3680 mm, diameters of the fuel pellet and its central hole of 7.6 and 1.2 mm respectively and 2) the fuel column height of 3530 mm, the fuel pellet diameter of 7.8 mm without the central hole. Such fuel rods have operating experience as a part of different FA designs. Positive operating experience was a base of new FA (TVS-4) development with the fuel column height of 3680 mm and the fuel pellet diameter of 7.8 mm without the central hole. The paper presents the overview of WWER-1000, AES-2006 and WWER-TOI fuel cycles based on FAs with fuel rod designs described above. There are demonstrated fuel cycle possibilities and its technical and economic characteristics. There are discussed problems of further fuel cycle improvements (fuel enrichment increase above 5 %, use of erbium as alternative burnable poison) and their impact on neutronics characteristics. (authors)

  20. Fuel assembly for a nuclear reactor

    International Nuclear Information System (INIS)

    Gjertsen, R.K.

    1982-01-01

    A fuel assembly in a nuclear reactor comprises a locking mechanism that is capable of locking the fuel assembly to the core plate of a nuclear reactor to prevent inadvertent movement of the fuel assembly. The locking mechanism comprises a ratchet mechanism 108 that allows the fuel assembly to be easily locked to the core plate but prevents unlocking except when the ratchet is disengaged. The ratchet mechanism is coupled to the locking mechanism by a rotatable guide tube for a control rod or water displacer rod. (author)

  1. Comparison Study of Water Demineralization System for the OPR 1000 and AP 1000 Nuclear Power Plant

    International Nuclear Information System (INIS)

    Dedy Priambodo; Siti Alimah; Erlan Dewita

    2009-01-01

    OPR 1000 adopts demineralization method based on ion exchanger resin and AP 1000 adopt the method that based on Reverse Osmosis (RO)-Electrodeionization (EDI). The Ion exchange process is a reversible chemical reaction of a solution and an insoluble solid. Ion exchanger use resin as polluter ions capture and will be regenerated after its saturated. RO is method using pressure to force a solution through a membrane, retaining the solute on one side and allowing the pure solvent to pass to the other side. Whereas, EDI is a combination of ion exchange and electrodialysis. The ions is taken by ion exchange resin, and then it is discharged utilizing electric potential difference. Due to water splitting phenomena in EDI, make resin will never be saturated, so the RO-EDI process is water demineralization system that use little chemical, more simple installation, capable to maintain demineralization water product quality and environmental friendly. Thereby, The RO-EDI water demineralization system is more advance then ion exchange technology. (author)

  2. Comparative study on aerosol removal by natural processes in containment in severe accident for AP1000 reactor

    International Nuclear Information System (INIS)

    Sun, Xiaohui; Cao, Xinrong; Shi, Xingwei; Yan, Jin

    2017-01-01

    Highlights: • Characteristics of aerosol distribution in containment are obtained. • Aerosol removal by natural processes is comparative studied by two methods. • Traditional rapid assessment method is conservative and can be applied in AP1000 reactor. - Abstract: Focusing on aerosol removal by naturally occurring processes in containment in severe accident for AP1000, integral severe accident code MELCOR and rapid assessment method mentioned in NUREG/CR-6189 are utilized to study aerosol removal by natural processes, respectively. Three typical severe accidents, induced by large break loss of coolant accident (LBLOCA), small break loss of coolant accident (SBLOCA) and steam generator tube rupture (SGTR), respectively, are selected for the study. The results obtained by two methods were further compared in the following several aspects: efficiency of aerosol removal by natural processes, peak time of aerosol suspended in containment atmosphere, peak amount of aerosol suspended in containment atmosphere, time when aerosol removal efficiency by natural processes is up to 99.9%. It was further concluded that results obtained by rapid assessment with shorter calculation process are more conservative. The analysis results provide reference to assessment method selection of severe accident source term for AP1000 nuclear emergency.

  3. Impact Analysis for Fuel Assemblies in Spent Fuel Storage Rack

    International Nuclear Information System (INIS)

    Oh, Jinho

    2013-01-01

    The design and structural integrity evaluation of a spent fuel storage rack (SFSR) utilized for storing and protecting the spent fuel assemblies generated during the operation of a reactor are very important in terms of nuclear safety and waste management. The objective of this study is to show the validity of the SFSR design as well as fuel assembly through a structural integrity evaluation based on a numerical analysis. In particular, a dynamic time history analysis considering the gaps between the fuel assemblies and the walls of the storage cell pipes in the SFSR was performed to check the structural integrity of the fuel assembly and storage cell pipe

  4. Impact Analysis for Fuel Assemblies in Spent Fuel Storage Rack

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Jinho [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2013-07-01

    The design and structural integrity evaluation of a spent fuel storage rack (SFSR) utilized for storing and protecting the spent fuel assemblies generated during the operation of a reactor are very important in terms of nuclear safety and waste management. The objective of this study is to show the validity of the SFSR design as well as fuel assembly through a structural integrity evaluation based on a numerical analysis. In particular, a dynamic time history analysis considering the gaps between the fuel assemblies and the walls of the storage cell pipes in the SFSR was performed to check the structural integrity of the fuel assembly and storage cell pipe.

  5. Modular fuel-cell stack assembly

    Science.gov (United States)

    Patel, Pinakin

    2010-07-13

    A fuel cell assembly having a plurality of fuel cells arranged in a stack. An end plate assembly abuts the fuel cell at an end of said stack. The end plate assembly has an inlet area adapted to receive an exhaust gas from the stack, an outlet area and a passage connecting the inlet area and outlet area and adapted to carry the exhaust gas received at the inlet area from the inlet area to the outlet area. A further end plate assembly abuts the fuel cell at a further opposing end of the stack. The further end plate assembly has a further inlet area adapted to receive a further exhaust gas from the stack, a further outlet area and a further passage connecting the further inlet area and further outlet area and adapted to carry the further exhaust gas received at the further inlet area from the further inlet area to the further outlet area.

  6. Results of operation of VVER-1000 FAs manufactured at PJSC NCCP

    International Nuclear Information System (INIS)

    Davidov, D.; Brovkin, O.; Bezborodov, Y.

    2015-01-01

    Fuel Assemblies manufactured at PJSC NCCP are in operation at 27 VVER-1000 power units at 11 NPPs in Russia, Ukraine, Bulgaria, China, Iran and India. Basic results of operation of PJSC NCCP VVER-1000 FAs during 2007-2014 are presented. The operation results confirm the design characteristics of fuel, i.e.: average fuel burnup up to 55 MW*day/kgU in FAs; safe and reliable FA operation, with low leaking rate (in the order of 10-6). The achieved operation characteristics of TVSA and TVS-2M Fuel Assemblies prove the quality, reliability and competitiveness of FAs manufactured at PJSC NCCP

  7. AP1000 Shield Building Dynamic Response for Different Water Levels of PCCWST Subjected to Seismic Loading considering FSI

    Directory of Open Access Journals (Sweden)

    Daogang Lu

    2015-01-01

    Full Text Available Huge water storage tank on the top of many buildings may affect the safety of the structure caused by fluid-structure interaction (FSI under the earthquake. AP1000 passive containment cooling system water storage tank (PCCWST placed at the top of shield building is a key component to ensure the safety of nuclear facilities. Under seismic loading, water will impact the wall of PCCWST, which may pose a threat to the integrity of the shield building. In the present study, an FE model of AP1000 shield building is built for the modal and transient seismic analysis considering the FSI. Six different water levels in PCCWST were discussed by comparing the modal frequency, seismic acceleration response, and von Mises stress distribution. The results show the maximum von Mises stress emerges at the joint of shield building roof and water around the air inlet. However, the maximum von Mises stress is below the yield strength of reinforced concrete. The results may provide a reference for design of the AP1000 and CAP1400 in the future.

  8. Fuel assemblies for nuclear reactor

    International Nuclear Information System (INIS)

    Nishi, Akihito.

    1987-01-01

    Purpose: To control power-up rate at the initial burning stage of new fuel assemblies due to fuel exchange in a pressure tube type power reactor. Constitution: Burnable poisons are disposed to a most portion of fuel pellets in a fuel assembly to such a low concentration as the burn-up rate changes with time at the initial stage of the burning. The most portion means substantially more than one-half part of the pellets and gadolinia is used as burn-up poisons to be dispersed and the concentration is set to less than about 0.2 %. Upon elapse of about 15 days after the charging, the burnable poisons are eliminated and the infinite multiplication factors are about at 1.2 to attain a predetermined power state. Since the power-up rate of the nuclear reactor fuel assembly is about 0.1 % power/hour and the power-up rate of the fuel assembly around the exchanged channel is lower than that, it can be lowered sufficiently than the limit for the power-up rate practiced upon reactor start-up thereby enabling to replace fuels during power operation. (Horiuchi, T.)

  9. Nuclear fuel assembly

    International Nuclear Information System (INIS)

    Takeda, Tadashi; Sato, Kenji; Goto, Masakazu.

    1984-01-01

    Purpose: To facilitate identification of a fuel assembly upon fuel exchange in BWR type reactors. Constitution: Fluorescent material is coated or metal plating is applied to the impressed portion of a upper tie plate handle of a fuel assembly, and the fluorescent material or the metal plating surface is covered with a protective membrane made of transparent material. This enables to distinguish the impressed surface from a distant place and chemical reaction between the impressed surface and the reactor water can be prevented. Furthermore, since the protective membrane is formed such that it protrudes toward the upper side relative to the impressed surface, there is no risk of depositions of claddings thereover. (Moriyama, K.)

  10. Nuclear reactor seismic fuel assembly grid

    International Nuclear Information System (INIS)

    Anthony, A.J.

    1977-01-01

    The strength of a nuclear reactor fuel assembly is enhanced by increasing the crush strength of the zircaloy spacer grids which locate and support the fuel elements in the fuel assembly. Increased resistance to deformation as a result of laterally directed forces is achieved by increasing the section modulus of the perimeter strip through bending the upper and lower edges thereof inwardly. The perimeter strip is further rigidized by forming, in the central portion thereof, dimples which extend inwardly with respect to the fuel assembly. The integrity of the spacer grid may also be enhanced by providing back-up arches for some or all of the integral fuel element locating springs and the strength of the fuel assembly may be further enhanced by providing, intermediate its ends, a steel seismic grid. 13 claims, 6 figures

  11. Field test and evaluation of the IAEA coincidence collar for the measurement of unirradiated BWR fuel assemblies

    International Nuclear Information System (INIS)

    Menlove, H.O.; Keddar, A.

    1982-12-01

    The neutron coincidence counter has been field tested and evaluated for the measurement of boiling-water-reactor (BWR) fuel assemblies at the ASEA-ATOM Fuel Fabrication Facility. The system measures the 235 U content per unit length of full fuel assemblies using neutron interrogation and coincidence counting. The 238 U content is measured in the passive mode without the AmLi neutron interrogatioin source. The field tests included both standard production movable fuel rods to investigate enrichment and absorber variations. Results gave a response standard deviation of 0.9% for the active case and 2.1% for the passive case in 1000-s measurement times. 10 figures, 2 tables

  12. BRET fuel assembly dismantling machine

    International Nuclear Information System (INIS)

    Titzler, P.A.; Bennett, K.L.; Kelley, R.S. Jr.; Stringer, J.L.

    1984-08-01

    An automated remote nuclear fuel assembly milling and dismantling machine has been designed, developed, and demonstrated at the Hanford Engineering Development Laboratory (HEDL) in Richland, Washington. The machine can be used to dismantle irradiated breeder fuel assemblies from the Fast Flux Test Facility prior to fuel reprocessing. It can be installed in an existing remotely operated shielded hot cell facility, the Fuels and Materials Examination Facility (FMEF), at the Hanford Site in Richland, Washington

  13. Study on radioactive release of gaseous and liquid effluents during normal operation of AP1000

    International Nuclear Information System (INIS)

    Gong Quan; Zhou Jing; Liu Yu

    2014-01-01

    The gaseous and liquid radioactive releases of pressurized water reactors plant during normal operation are an important content of environmental impact assessment and play a significant role in the design of nuclear power plant. According to the design characters of AP1OOO radioactive waste management system and the study on the calculation method and the release pathways, the calculation model of the gaseous and liquid radioactive releases during normal operation for AP1OOO are established. Base on the established calculation model and the design parameters of AP1000, the expected value of gaseous and liquid radioactive releases of AP1OOO is calculated. The results of calculation are compared with the limits in GB 6249-2011 and explain the adder that is included tu account for anticipated operational occurrences, providing a reference for environmental impact assessment of pressurized water reactor. (authors)

  14. Peripheral pin alignment system for fuel assemblies

    International Nuclear Information System (INIS)

    Anthony, A.J.

    1981-01-01

    An alignment system is provided for nuclear fuel assemblies in a nuclear core. The core support structure of the nuclear reactor includes upwardly pointing alignment pins arranged in a square grid and engage peripheral depressions formed in the lateral periphery of the lower ends of each of the fuel assemblies of the core. In a preferred embodiment, the depressions are located at the corners of the fuel assemblies so that each depression includes one-quarter of a cylindrical void. Accordingly, each fuel assembly is positioned and aligned by one-quarter of four separate alignment pins which engage the fuel assemblies at their lower exterior corners. (author)

  15. NUPEC proves reliability of LWR fuel assemblies

    International Nuclear Information System (INIS)

    Anon.

    1987-01-01

    It is very important in assuring the safety of nuclear reactors to confirm the reliability of fuel assemblies. The test program of the Nuclear Power Engineering Center on the reliability of fuel assemblies has verified the high performance and reliability of Japanese LWR fuels, and confirmed the propriety of their design and fabrication. This claim is based on the data obtained from the fuel assemblies irradiated in commercial reactors. The NUPEC program includes irradiation test which has been conducted for 11 years since fiscal 1976, and the maximum thermal loading test using the out of pile test facilities simulating a real reactor which has been continued since fiscal 1978. The irradiation test on BWR fuel assemblies in No.3 reactor in Fukushima No.1 Nuclear Power Station, Tokyo Electric Power Co., Inc., and on PWR fuel assemblies in No.3 reactor in Mihama Power Station, Kansai Electric Power Co., Inc., and the maximum thermal loading test on BWR and PWR fuel assemblies are reported. The series of postirradiation examination of the fuel assemblies used for commercial reactors was conducted for the first time in Japan, and the highly systematic data on 27 items were obtained. (Kako, I.)

  16. Fuel assembly for a nuclear reactor

    International Nuclear Information System (INIS)

    Gjertsen, R.K.; Tower, S.N.; Huckestein, E.A.

    1982-01-01

    A fuel assembly for a nuclear reactor comprises a 5x5 array of guide tubes in a generally 20x20 array of fuel elements, the guide tubes being arranged to accommodate either control rods or water displacer rods. The fuel assembly has top and bottom Inconel (Registered Trade Mark) grids and intermediate Zircaloy grids in engagement with the guide tubes and supporting the fuel elements and guide tubes while allowing flow of reactor coolant through the assembly. (author)

  17. Paired replacement fuel assemblies for BWR-type reactor

    International Nuclear Information System (INIS)

    Oguchi, Kazushige.

    1997-01-01

    There are disposed a large-diameter water rod constituting a non-boiling region at a central portion and paired replacement fuel assemblies for two streams having the same average enrichment degree and different amount of burnable poisons. The paired replacement fuel assemblies comprise a first fuel assembly having a less amount of burnable poisons and a second fuel assembly having a larger amount of burnable poisons. A number of burnable poison-containing fuel rods in adjacent with the large diameter water rod is increased in the second fuel assembly than the first fuel assembly. Then, the poison of the paired replacement fuel assemblies for the BWR type reactor can be annihilated simultaneously at the final stage of the cycle. Accordingly, fuels for a BWR type reactor excellent in economical property and safety and facilitating the design of the replacement reactor core can be obtained. (N.H.)

  18. 76 FR 73720 - Knowledge and Abilities Catalog for Nuclear Power Plant Operators: Westinghouse AP1000...

    Science.gov (United States)

    2011-11-29

    ... NUCLEAR REGULATORY COMMISSION [NRC-2011-0272] Knowledge and Abilities Catalog for Nuclear Power...) is issuing for public comment a draft NUREG, NUREG-2103, Revision 0, ``Knowledge and Abilities Catalog for Nuclear Power Plant Operators: Westinghouse AP1000 Pressurized-Water Reactors. DATES: Submit...

  19. Modelling of WWER-1000 fuel: state and prospects

    International Nuclear Information System (INIS)

    Medvedev, A.; Bibilashvili, Yu.; Bogatyr, S.; Khvostov, G.

    1994-01-01

    The role of START-3 code in studying and computerized modelling of post-irradiation behaviour of standard fuel rods in real operation conditions of WWER-1000 reactors is described. The models used in the code are based on experimental study of material properties, processes and post irradiation research on standard and experimental fuel pins. The code capability is verified by comparison with data from experiments on WWER test rods performed in MR reactor, the Russia-Finland tests SOFIT and the international program FUMEX. The comparison performed and the results thus obtained demonstrate the satisfactory ability of START-3 code to simulate fuel rod behaviour in normal operation condition. The calculations confirm the experimentally observed evidence of an essential margin on serviceability of WWER-1000 fuel pin with three year operation cycle permitting an increase in design fuel burnup. 2 tabs., 18 figs

  20. Modelling of WWER-1000 fuel: state and prospects

    Energy Technology Data Exchange (ETDEWEB)

    Medvedev, A; Bibilashvili, Yu; Bogatyr, S; Khvostov, G [Vsesoyuznyj Nauchno-Issledovatel` skij Inst. Neorganicheskikh Materialov, Moscow (Russian Federation)

    1994-12-31

    The role of START-3 code in studying and computerized modelling of post-irradiation behaviour of standard fuel rods in real operation conditions of WWER-1000 reactors is described. The models used in the code are based on experimental study of material properties, processes and post irradiation research on standard and experimental fuel pins. The code capability is verified by comparison with data from experiments on WWER test rods performed in MR reactor, the Russia-Finland tests SOFIT and the international program FUMEX. The comparison performed and the results thus obtained demonstrate the satisfactory ability of START-3 code to simulate fuel rod behaviour in normal operation condition. The calculations confirm the experimentally observed evidence of an essential margin on serviceability of WWER-1000 fuel pin with three year operation cycle permitting an increase in design fuel burnup. 2 tabs., 18 figs.

  1. Fuel injection assembly for use in turbine engines and method of assembling same

    Science.gov (United States)

    Berry, Jonathan Dwight; Johnson, Thomas Edward; York, William David; Uhm, Jong Ho

    2015-12-15

    A fuel injection assembly for use in a turbine engine is provided. The fuel injection assembly includes an end cover, an endcap assembly, a fluid supply chamber, and a plurality of tube assemblies positioned at the endcap assembly. Each of the tube assemblies includes housing having a fuel plenum and a cooling fluid plenum. The cooling fluid plenum is positioned downstream from the fuel plenum and separated from the fuel plenum by an intermediate wall. The plurality of tube assemblies also include a plurality of tubes that extends through the housing. Each of the plurality of tubes is coupled in flow communication with the fluid supply chamber and a combustion chamber positioned downstream from the tube assembly. The plurality of tube assemblies further includes an aft plate at a downstream end of the cooling fluid plenum. The plate includes at least one aperture.

  2. Nuclear fuel assembly

    International Nuclear Information System (INIS)

    Ueda, Tomihiro.

    1970-01-01

    The present invention relates to fuel assemblies employing wire wrap spacers for retaining uniform spatial distribution between fuel elements. Clad fuel elements are helically wound in the oxial direction with a wave-formed wire strand. The strand is therefore provided with spring action which permits the fuel elements to expand freely in the axial and radial directions so as to retain proper spacing and reduce stresses due to thermal deformation. (Ownes, K.J.)

  3. Alignment of 1000 Genomes Project reads to reference assembly GRCh38.

    Science.gov (United States)

    Zheng-Bradley, Xiangqun; Streeter, Ian; Fairley, Susan; Richardson, David; Clarke, Laura; Flicek, Paul

    2017-07-01

    The 1000 Genomes Project produced more than 100 trillion basepairs of short read sequence from more than 2600 samples in 26 populations over a period of five years. In its final phase, the project released over 85 million genotyped and phased variants on human reference genome assembly GRCh37. An updated reference assembly, GRCh38, was released in late 2013, but there was insufficient time for the final phase of the project analysis to change to the new assembly. Although it is possible to lift the coordinates of the 1000 Genomes Project variants to the new assembly, this is a potentially error-prone process as coordinate remapping is most appropriate only for non-repetitive regions of the genome and those that did not see significant change between the two assemblies. It will also miss variants in any region that was newly added to GRCh38. Thus, to produce the highest quality variants and genotypes on GRCh38, the best strategy is to realign the reads and recall the variants based on the new alignment. As the first step of variant calling for the 1000 Genomes Project data, we have finished remapping all of the 1000 Genomes sequence reads to GRCh38 with alternative scaffold-aware BWA-MEM. The resulting alignments are available as CRAM, a reference-based sequence compression format. The data have been released on our FTP site and are also available from European Nucleotide Archive to facilitate researchers discovering variants on the primary sequences and alternative contigs of GRCh38. © The Authors 2017. Published by Oxford University Press.

  4. Fuel assembly

    International Nuclear Information System (INIS)

    Bando, Masaru.

    1993-01-01

    As neutron irradiation progresses on a fuel assembly of an FBR type reactor, a strong force is exerted to cause ruptures if the arrangement of fuel elements is not displaced, whereas the fuel elements may be brought into direct contact with each other not by way of spacers to cause burning damages if the arrangement is displaced. In the present invention, the circumference of fuel elements arranged in a normal triangle lattice is surrounded by a wrapper tube having a hexagonal cross section, wire spacers are wound therearound, and deformable spacers are distributed to optional positions for fuel elements in the wrapper tube. Interaction between the fuel elements caused by irradiation is effectively absorbed, thereby enabling to delay the occurrence of the rupture and burning damages of the elements. (N.H.)

  5. The Westinghouse AP1000®: Passive, Proven Technology to Meet European Energy Demands

    International Nuclear Information System (INIS)

    Haspel, N.

    2015-01-01

    Even though several years ago nuclear power was merely considered to be an “optimistic future assessment”, the world-wide renaissance of nuclear power has become reality! The economical and climate-friendly nuclear power generation is internationally regarded to be in an evident upturn. The 435 nuclear power plants in operation worldwide are being modernized and the capacity is increased continuously. Furthermore, to date, 42 power plants are under construction, another 81 are already being applied for and or definitely planned. The global total net capacity out of nuclear power will increase accordingly in the upcoming years from currently 372 to more than 500 GWe, which presents an increase of more than one third. Westinghouse’s contribution hereto is considerable: At the present time, 4 power plants of the series AP1000 ® are under construction. To begin with, 2 units each are under construction at the Chinese sites Sanmen and Haiyang, another 4 per site are being planned. In the USA, Westinghouse has been contracted with a Engineering, Procurement and Construction (EPC) project for a total of 4 power plant units at the Vogtle and V.C. Summer. Also in Europe, the plans to construct new plants are meanwhile very specific and many countries have formally established the marginal conditions for new nuclear projects. The AP1000 ® , with its medium output capacity, is ideally positioned for many markets and can – as a twin unit – also cover large capacity demands. At the present time, Westinghouse, with its AP1000 ® , participates in the so-called GDA (Generic Design Assessment) process in Great Britain, where the British regulatory authorities conduct an assessment and evaluation of the safety aspects of this plant design in a defined multilevel process. The successful conclusion of this process ultimately leads to a “Design Acceptance Confirmation”, which will basically make the construction of the plant in Great Britain possible. (author)

  6. Parameters calculation of fuel assembly with complex geometry

    International Nuclear Information System (INIS)

    Wu Hongchun; Ju Haitao; Yao Dong

    2006-01-01

    The code DRAGON was developed for CANDU reactor by Ecole Polytechnique de Montreal of Canada. In order to validate the DRAGON code's applicability for complex geometry fuel assembly calculation, the rod shape fuel assembly of PWR benchmark problem and the plate shape fuel assembly of MTR benchmark problem were analyzed by DRAGON code. Some other shape fuel assemblies were also discussed simply. Calculation results show that the DRAGON code can be used to calculate variform fuel assembly and the precision is high. (authors)

  7. Shock absorbing structure for nuclear fuel assemblies

    International Nuclear Information System (INIS)

    Jabsen, F.S.

    1981-01-01

    A hydraulic apparatus is described that absorbs shocks that may be applied to fuel assemblies. Spring pads mounted on the upper end fittings of the fuel assemblies have plungers that move within hollow guide posts attached to the upper grids of the fuel assemblies. (L.L.)

  8. Nuclear fuel assembly

    International Nuclear Information System (INIS)

    Ito, Arata; Wakamatsu, Mitsuo.

    1976-01-01

    Object: To permit the coolant in an FBR type reactor to enter from the entrance nozzle into a nuclear fuel assembly without causing cavitation. Structure: In a nuclear fuel assembly, which comprises a number of thin fuel pines bundled together at a uniform spacing and enclosed within an outer cylinder, with a handling head connected to an upper portion of the outer cylinder and an entrance nozzle connected to a lower portion of the cylinder, the inner surface of the entrance nozzle is provided with a buffer member and an orifice successively in the direction of flow of the coolant. The coolant entering from a low pressure coolant chamber into the entrance nozzle strikes the buffer member and is attenuated, and thereafter flows through an orifice into the outer cylinder. (Horiuchi, T.)

  9. WWER-440 fuel cycles possibilities using improved fuel assemblies design

    International Nuclear Information System (INIS)

    Mikolas, P.; Svarny, J.

    2008-01-01

    Practically five years cycle has been achieved in the last years at NPP Dukovany. There are two principal means how it could be achieved. First, it is necessary to use fuel assemblies with higher fuel enrichment and second, to use fuel loading with very low leakage. Both these conditions are fulfilled at NPP Dukovany at this time. It is known, that the fuel cycle economy can be improved by increasing the fuel residence time in the core up to six years. There are at least two ways how this goal could be achieved. The simplest way is to increase enrichment in fuel. There exists a limit, which is 5.0 w % of 235 U. Taking into account some uncertainty, the calculation maximum is 4.95 w % of 235 U. The second way is to change fuel assembly design. There are several possibilities, which seem to be suitable from the neutron - physical point of view. The first one is higher mass content of uranium in a fuel assembly. The next possibility is to enlarge pin pitch. The last possibility is to 'omit' FA shroud. This is practically unrealistic; anyway, some other structural parts must be introduced. The basic neutron physical characteristics of these cycles for up-rated power are presented showing that the possibilities of fuel assemblies with this improved design in enlargement of fuel cycles are very promising. In the end, on the basis of neutron physical characteristics and necessary economical input parameters, a preliminary evaluation of economic contribution of proposals of advanced fuel assemblies on fuel cycle economy is presented (Authors)

  10. System for manipulating radioactive fuel rods within a nuclear fuel assembly

    International Nuclear Information System (INIS)

    Tolino, R.W.; King, W.E.; Blickenderfer, J.L.; Roth, C.H. Jr.

    1987-01-01

    A tool is described for manipulating the peripherally located fuel rods of a fuel assembly so that the rods can be visually inspected. The fuel assembly includes top and bottom nozzles, each of which is connected to a support skeleton, as well as grids, and wherein the rods are retained within the grids and confined between the top and bottom nozzles thereof. It consists of: (a) a fixture that is detachably connectable to one of the nozzles of the fuel assembly. The fixture having holes therein, (b) rotating means pivotally mountable within the holes of the fixture for selectively gripping and rotating the rod, and (c) a displacing means mounted on the fixture for reciprocably displacing the rods within the fuel assembly, including a lifting assembly and a push-down assembly for lifting and pushing down a selected one of the rods, respectively, whereby the rods can be selectively rotated, lifted, and pushed down in order to expose portions of the rods which are normally hidden to visual inspection while the nozzles stay connected to the support skeleton and the rods stay confined between the top and bottom nozzles of the fuel assembly

  11. Fuel assembly

    International Nuclear Information System (INIS)

    Ueda, Makoto; Ogiya, Shunsuke.

    1989-01-01

    For improving the economy of a BWR type reactor by making the operation cycle longer, the fuel enrichment degree has to be increased further. However, this makes the subcriticality shallower in the upper portion of the reactor core, to bring about a possibility that the reactor shutdown becomes impossible. In the present invention, a portion of fuel rod is constituted as partial length fuel rods (P-fuel rods) in which the entire stack length in the effective portion is made shorter by reducing the concentration of fissionable materials in the axial portion. A plurality of moderator rods are disposed at least on one diagonal line of a fuel assembly and P-fuel rods are arranged at a position put between the moderator rods. This makes it possible to reactor shutdown and makes the axial power distribution satisfactory even if the fuel enrichment degree is increased. (T.M.)

  12. Container for spent fuel assembly

    International Nuclear Information System (INIS)

    Sawai, Takeshi.

    1996-01-01

    The container of the present invention comprises a container main body having a body portion which can contain spent fuel assemblies and a lid, and heat pipes having an evaporation portion disposed along the outer surface of the spent fuel assemblies to be contained and a condensation portion exposed to the outside of the container main body. Further, the heat pipe is formed spirally at the evaporation portions so as to surround the outer circumference of the spent fuel assemblies, branched into a plurality of portions at the condensation portion, each of the branched portion of the condensation portion being exposed to the outside of the container main body, and is tightly in contact with the periphery of the slit portions disposed to the container main body. Then, since released after heat is transferred to the outside of the container main body from the evaporation portion of the heat pipe along the outer surface of the spent fuel assemblies by way of the condensation portion of the heat pipes exposed to the outside of the container main body, the efficiency of the heat transfer is extremely improved to enhance the effect of removing heat of spent fuel assemblies. Further, cooling effect is enhanced by the spiral form of the evaporation portion and the branched condensation portion. (N.H.)

  13. Fuel assembly

    International Nuclear Information System (INIS)

    Yamazaki, Hajime.

    1995-01-01

    In a fuel assembly having fuel rods of different length, fuel pellets of mixed oxides of uranium and plutonium are loaded to a short fuel rod. The volume ratio of a pellet-loaded portion to a plenum portion of the short fuel rod is made greater than the volume ratio of a fuel rod to which uranium fuel pellets are loaded. In addition, the volume of the plenum portion of the short fuel rod is set greater depending on the plutonium content in the loaded fuel pellets. MOX fuel pellets are loaded on the short fuel rods having a greater degree of freedom relevant to the setting for the volume of the plenum portion compared with that of a long rod fuel, and the volume of the plenum portion is ensured greater depending on the plutonium content. Even if a large amount of FP gas and He gas are discharged from the MOX fuels compared with that from the uranium fuels, the internal pressure of the MOX fuel rod during operation is maintained substantially identical with that of the uranium fuel rod, so that a risk of generating excess stresses applied to the fuel cladding tubes and rupture of fuels are greatly reduced. (N.H.)

  14. Handling apparatus for a nuclear reactor fuel assembly

    International Nuclear Information System (INIS)

    Shallenberger, J.M.; Hornak, L.P.; Desmarchais, W.E.

    1978-01-01

    An apparatus is disclosed for handling radioactive fuel assembly during transfer operations. The radioactive fuel assembly is drawn up into a shielding sleeve which substantially reduces the level of radioactivity immediately surrounding the sleeve thereby permitting direct access by operating personnel. The lifting assembly which draws the fuel assembly up within the shielding sleeve is mounted to and forms an integral part of the handling apparatus. The shielding sleeve accompanies the fuel assembly during all of the transfer operations

  15. The Procedure for Determination of Special Margin Factors to Account for a Bow of the VVER-1000 Fuel Assemblies

    International Nuclear Information System (INIS)

    Tsyganov, Sergey V.; Marin, Stanislav V.; Shishkov, Lev K.

    2008-01-01

    Starting from 1980's, the problem of bow of the VVER-1000 reactor FAs and the effect of that on the operational safety is being discussed. At the initial period of time, the extension of time for dropping control rods of the control and protection system associated with this bow posed the highest threat. Later on, new more rigid structures were developed for FAs that eliminated the problems of control rods. However, bow of the VVER-1000 reactor FAs is observed up to now. The scale of this bow reduced significantly but it still effects safety. Even a minor bow available may lead to the noticeable increase of power of individual fuel pins associated with the local variation of the coolant amount. This effect must be taken into account on designing fuel loadings to eliminate the exceeding of set limitations. The introduction of additional special margins is the standard method for taking this effect into account. The present paper describes the conservative technique for the assessment of additional margins for bow of FAs of state-of-the-art designs. This technique is employed in the VVER-1000 reactor designing. The chosen conservatism degree is discussed as well as the method for its assurance and acceptable ways for its slackening. The example of the margin evaluation for the up-to-date fuel loading is given. (authors)

  16. The Procedure for Determination of Special Margin Factors to Account for a Bow of the VVER-1000 Fuel Assemblies

    Energy Technology Data Exchange (ETDEWEB)

    Tsyganov, Sergey V.; Marin, Stanislav V.; Shishkov, Lev K. [Russian Research Center ' Kurchatov Institute' , 1., Kurchatov sq., 123182 Moscow (Russian Federation)

    2008-07-01

    Starting from 1980's, the problem of bow of the VVER-1000 reactor FAs and the effect of that on the operational safety is being discussed. At the initial period of time, the extension of time for dropping control rods of the control and protection system associated with this bow posed the highest threat. Later on, new more rigid structures were developed for FAs that eliminated the problems of control rods. However, bow of the VVER-1000 reactor FAs is observed up to now. The scale of this bow reduced significantly but it still effects safety. Even a minor bow available may lead to the noticeable increase of power of individual fuel pins associated with the local variation of the coolant amount. This effect must be taken into account on designing fuel loadings to eliminate the exceeding of set limitations. The introduction of additional special margins is the standard method for taking this effect into account. The present paper describes the conservative technique for the assessment of additional margins for bow of FAs of state-of-the-art designs. This technique is employed in the VVER-1000 reactor designing. The chosen conservatism degree is discussed as well as the method for its assurance and acceptable ways for its slackening. The example of the margin evaluation for the up-to-date fuel loading is given. (authors)

  17. Nuclear fuel assembly

    International Nuclear Information System (INIS)

    Delafosse, Jacques.

    1977-01-01

    This invention relates to a nuclear fuel assembly for a light or heavy water reactor, or for a fast reactor of the kind with a bundle of cladded pins, maintained parallel to each other in a regular network by an assembly of separate supporting grids, fitted with elastic bearing surfaces on these pins [fr

  18. Fuel assembly

    International Nuclear Information System (INIS)

    Kawai, Mitsuo.

    1988-01-01

    Purpose: To reduce the corrosion rate and suppress the increase of radioactive corrosion products in reactor water of nuclear fuel assemblies for use in BWR type reactors having spacer springs made of nickel based deposition reinforced type alloys. Constitution: Spacer rings made of nickel based deposition reinforced type alloy are incorporated and used as fuel assemblies after applying treatment of dipping and maintaining at high temperature water followed by heating in steams. Since this can remove the nickel leaching into reactor water at the initial stage, Co-58 as the radioactive corrosion products in the reactor water can be reduced, and the operation at in-service inspection or repairement can be facilitated to improve the working efficiency of the nuclear power plant. The dipping time is desirably more than 10 hours and more desirably more than 30 hours. (Horiuchi, T. )

  19. Static analytical and experimental research of shock absorber to safeguard the nuclear fuel assemblies

    Energy Technology Data Exchange (ETDEWEB)

    Dundulis, Gintautas [Laboratory of Nuclear Installation Safety, Lithuanian Energy Institute, Breslaujos Street 3, LT-44403 Kaunas (Lithuania)], E-mail: gintas@mail.lei.lt; Grybenas, Albertas [Laboratory of Materials Research and Testing, Lithuanian Energy Institute, Breslaujos Street 3, LT-44403 Kaunas (Lithuania); Karalevicius, Renatas [Laboratory of Nuclear Installation Safety, Lithuanian Energy Institute, Breslaujos Street 3, LT-44403 Kaunas (Lithuania); Makarevicius, Vidas [Laboratory of Materials Research and Testing, Lithuanian Energy Institute, Breslaujos Street 3, LT-44403 Kaunas (Lithuania); Rimkevicius, Sigitas; Uspuras, Eugenijus [Laboratory of Nuclear Installation Safety, Lithuanian Energy Institute, Breslaujos Street 3, LT-44403 Kaunas (Lithuania)

    2009-01-15

    The Ignalina Nuclear Power Plant (NPP) has two RBMK-1500 graphite-moderated boiling water multi-channel reactors. The Ignalina NPP Unit 1 was shutdown at the end of 2004, while Unit 2 is foreseen to be shutdown at the end of 2009. At the Ignalina NPP Unit 1 remains approximately 1000 spent fuel assemblies with low burn-up depth. A special set of equipment was developed to reuse these assemblies in the reactor of Unit 2. One of most important items of this set is a container, which is used for the transportation of spent fuel assemblies between the reactors of Unit 1 and Unit 2. A special shock absorber was designed to avoid failure of fuel assemblies in case of hypothetical spent fuel assemblies drop accident during uploading/unloading of spent fuel assemblies to/from container. This shock absorber was examined by using scaled experiments. The objective of this article is the estimation whether the proposed design of shock absorber fulfils the function of the absorber and the optimization of its geometrical parameters using the results of the performed investigations. Static analytical and experimental investigations are presented in the article. The finite element code BRIGADE/Plus was used for the analytical analysis. The calculation model was verified by comparing the experimental investigation and simulation results for further employment of this finite element model in the development of an optimum design of shock absorber. Static simulation was used to perform primary optimization of design and dimension of the shock absorber.

  20. Apparatus for integrated fuel assembly inspection system

    International Nuclear Information System (INIS)

    Ahmed, H.J.; Burchill, S.R.

    1988-01-01

    In a fuel assembly inspection apparatus, the combination is described comprising: (a) an elongated fixture mounted in a stationary upright position; (b) upper means mounted to an upper portion of the fixture and lower means mounted adjacent to a lower portion of the fixture, the upper and lower means being disposed outwardly from a side of the fixture for supporting a nuclear fuel assembly therebetween and extending along the side of the fixture; (c) a bottom carriage having a central opening adapted to receive the fuel assembly therethrough when supported between the upper and lower means such that the bottom carriage being connected only to, and extending in cantilever fashion outwardly from, the side of the fixture for generally vertical movement along the side of the fixture and along the fuel assembly extending along the side of the fixture; (d) drive means for selectively moving the bottom carriage; and (e) means disposed on the bottom carriage for measuring the envelop, of the fuel assembly when the bottom carriage is moved to and stationed at selected axial positions along the fuel assembly

  1. LEU WWR-M2 fuel assemblies burnable test

    International Nuclear Information System (INIS)

    Kirsanov, G.A.; Konoplev, K.A.; Pikulik, R.G.; Sajkov, Yu. P.; Tchmshkyan, D.V.; Tedoradze, L.V.; Zakharov, A.S.

    2000-01-01

    The results of in-pile irradiation tests of LEU WWR-M2 fuel assemblies with reduced enrichment of fuel are submitted in the report. The tests are made according to the Russian Program on Reduced Enrichment for Research and Test Reactors (RERTR). United States Department of Energy and the Ministry of Atomic Energy of Russian Federation jointly fund this Program. The irradiation tests of 5 WWR-M2 experimental assemblies are carried out at WWR-M reactor of the Petersburg Nuclear Physics Institute (PNPI). The information on assembly design and technique of irradiation tests is presented. In the irradiation tests the integrity of fuel assemblies is periodically measured. The report presents the data for the integrity maintained during the burnup of 5 fuel assemblies up to 45%. These results demonstrate the high reliability of the experimental fuel assemblies within the guaranteed burnup limits specified by the manufacturer. The tests are still in progress; it is planned to test and analyze the change in integrity for burnup of up to 70% - 75% or more. LEU WWR-M2 fuel assemblies are to be offered for export by their Novosibirsk manufacturer. Currently, HEU WWR-M2 fuel assemblies are used in Hungary, Ukraine and Vietnam. LEU WWR-M2 fuel assemblies were designed as a possible replacement for the HEU WWR-M2 fuel assemblies in those countries, but their use can be extended to other research reactors. (author)

  2. Reactor and fuel assembly

    International Nuclear Information System (INIS)

    Ishii, Yoshihiko; Bessho, Yasunori; Sano, Hiroki; Yokomizo, Osamu; Yamashita, Jun-ichi.

    1990-01-01

    The present invention realizes an effective spectral operation by applying an optimum pressure loss coefficient while taking the characteristics of a lower tie plate into consideration. That is, the pressure loss coefficient of the lower tie plate is optimized by varying the cross sectional area of a fuel assembly flow channel in the lower tie plate or varying the surface roughness of a coolant flow channel in the lower tie plate. Since there is a pressure loss coefficient to optimize the moderator density over a flow rate change region, the effect of spectral shift rods can be improved by setting the optimum pressure loss coefficient of the lower tie plate. According to the present invention, existent fuel assemblies can easily be changed successively to fuel assemblies having spectral shift rods of a great spectral shift effect by using existent reactor facilities as they are. (I.S.)

  3. Optimization of seed-blanket type fuel assembly for reduced-moderation water reactor

    Energy Technology Data Exchange (ETDEWEB)

    Shelley, Afroza; Shimada, Shoichiro; Kugo, Teruhiko; Okubo, Tsutomu E-mail: okubo@hems.jaeri.go.jp; Iwamura, Takamichi

    2003-10-01

    Parametric studies have been performed for a PWR-type reduced-moderation water reactor (RMWR) with the seed-blanket type fuel assembles to achieve a high conversion ratio, negative void reactivity coefficient and a high burnup by using MOX fuel. From the viewpoint of reactor safety analysis, the fuel temperature coefficients were also studied. From the result of the burnup calculation, it has been seen that ratio of 40-50% of outer blanket in a seed-blanket assembly gives higher conversion ratio compared to the other combination of seed-blanket assembly. And the recommended number of (seed+blanket) layers is 20, in which the number of seed (S) layers is 15 (S15) and blanket (B) layers is 5 (B5). It was found that the conversion ratio of seed-blanket assembly decreases, when they are arranged looks like a flower shape (Hanagara). By the optimization of different parameters, S15B5 fuel assembly with the height of seed of 1000 mmx2, internal blanket of 150 mm and axial blanket of 400 mmx2 is recommended for a reactor of high conversion ratio. In this assembly, the gap of seed fuel rod is 1.0 mm and blanket fuel rod is 0.4 mm. In S15B5 assembly, the conversion ratio is 1.0 and the burnup is 38.18 GWd/t in (seed+internal blanket+outer blanket) region. However, the burnup is 57.45 GWd/t in (seed+internal blanket) region. The cycle length of the core is 16.46 effective full power in month (EFPM) by six batches and the enrichment of fissile Pu is 14.64 wt.%. The void coefficient is +21.82 pcm/%void, however, it is expected that the void coefficient will be negative if the radial neutron leakage is taken into account in the calculation. It is also possible to use S15B5 fuel assembly as a high burnup reactor 45 GWd/t in (seed+internal blanket+outer blanket) region, however, it is necessary to decrease the height of seed to 500 mmx2 to improve the void coefficient. In this reactor, the conversion ratio is 0.97 and void coefficient is +20.81 pcm/%void. The fuel temperature

  4. Nuclear fuel assembly

    International Nuclear Information System (INIS)

    1975-01-01

    The nuclear fuel assembly described includes a cluster of fuel elements supported at a distance from each other so that their axes are parallel in order to establish secondary channels between them reserved for the coolant. Several ducts for an auxiliary cooling fluid are arranged in the cluster. The wall of each duct is pierced with coolant ejection holes which are placed circumferentially to a pre-determined pattern established according to the position of the duct in the cluster and by the axial distance of the ejection hole along the duct. This assembly is intended for reactors cooled by light or heavy water [fr

  5. Reconstitutable fuel assembly for a nuclear reactor

    International Nuclear Information System (INIS)

    Ferlan, S.J.; Kmonk, S.; Schallenberger, J.M.

    1982-01-01

    A reconstitutable fuel assembly for a nuclear reactor which includes a mechanical, rather than metallurgical, arrangement for connecting control rod guide thimbles to the top and bottom nozzles of a fuel assembly. Multiple sleeves enclosing control rod guide thimbles interconnect the top nozzle to the fuel assembly upper grid. Each sleeve is secured to the top nozzle by retaining rings disposed on opposite sides of the nozzle. Similar sleeves enclose the lower end of control rod guide thimbles and interconnect the bottom nozzle with the lowermost grid on the assembly. An end plug fitted in the bottom end of each sleeve extends through the bottom nozzle and is secured thereto by a retaining ring. Should it be necessary to remove a fuel rod from the assembly, the retaining rings in either the top or bottom nozzles may be removed to release the nozzle from the control rod guide thimbles and thus expose either the top or bottom ends of the fuel rods to fuel rod removing mechanisms

  6. Magnetic scanning of LWR fuel assemblies

    International Nuclear Information System (INIS)

    Fiarman, S.; Moodenbaugh, A.

    1980-01-01

    Nondestructive assay (NDA) techniques are available both for fresh and spent fuel, but generally are too time consuming and do not uniquely identify an assembly. A new method is reported to obtain a signature from a magnetic scan of each assembly. This scan is an NDA technique that detects magnetic inclusions. It is potentially fast (5 min/assembly), and may provide a unique signature from the magnetic properties of each fuel assembly

  7. Core fuel management using TVS-2M fuel assembly and economic analysis

    International Nuclear Information System (INIS)

    Xu Min; Wang Hongxia; Li Youyi

    2014-01-01

    To improve the economic efficiency, TVS-2M fuel assembly was considered to apply in Tianwan Nuclear Power Plant units 3, 4. Using KASKAD program package, a preliminary research and design was carried out for the Tianwan Nuclear Power Plant loading TVS-2M fuel assembly from the first cycle to equilibrium cycle. An improved fuel management program was obtained, and the economic analysis of the two fuel management programs with or without TVS-2M assembly was studied. The analysis results show that TVS-2M fuel assembly can improve the economic efficiency of the plant remarkably. (authors)

  8. Modal analysis of spent fuel cask for WWER-1000 reactors

    International Nuclear Information System (INIS)

    Azimfar, S. A.; Kazemi, A.

    2011-01-01

    The Spent Fuel Assemblies of WWER-1000 reactors are planned to be transported by special containers which are supposed to be designed in a manner to stand against vibrations and impacts in order to protect the spent fuel from any possible damage. The vibration opposition of these containers shall be far beyond the critical resonance, because the resonances about the natural frequency of the structure will cause the enhancement of its oscillation range and may end with its disintegration. Determination of the amounts of natural frequencies and their mode shape can be achieved by vibration analyzing methods. The amount of the natural frequency of any structure crucially depends on its shape, material and lean points as well as the amount of the loads and the type of these loads. Due to the fact that the Spent Fuel Casks used for transportation in nuclear power plants in Russian Federation are TK-13 type and the pieces of information released are negligible, the scientists in Russia are working on the design and analysis of a new type made up of composite Material. In the presented paper the cask of spent fuel of TK-13 is modeled by ANSYS at 10.0 and ten natural frequency modes have been calculated, followed by the comparison of this result with the composite cask.

  9. Fuel assembly identification by magnetic scanning

    International Nuclear Information System (INIS)

    Badurek, G.

    1986-09-01

    In order to identify individual fuel assemblies by a magnetic fingerprint, investigations were made on iron inclusions in fuel elements and a method was developed to measure these by magnetically scanning the element. The fuel assembly is drawn with constant speed through a homogeneous magnetic field to magnetize iron inclusions. Resulting inhomogeneous magnetic dipole fields induce a voltage difference in pick up coils which is proportional to the mass of the inclusion. Using lock-in technique 3 mg pieces of steel wire on the surface of the fuel element were detected while the lower limit for the center of an assembly for ferromagnetic spheres was 50 mg. In single rods ferromagnetic samples of 1 mg were detected regardless of geometric form or location. With minor modifications of the measuring procedure the sensitivity limit can be improved to about 10 mg at the center of an assembly. In the KWU-fuel at Zwentendorf no iron inclusions were found

  10. AP fuels and the potential of renewable diesel

    Energy Technology Data Exchange (ETDEWEB)

    Berkley, Mark; Seifkar, Navid; O' Shea, Michael; Peters, Christopher

    2010-09-15

    The decrease in demand for forestry products has been detrimental to the Province of Quebec's industrial base. With increasing energy security and environmental concerns the promotion of innovative technologies is adamant. AP Fuels Inc. has undertaken the development of a biomass-to-liquids facility proposed herein as a hybrid design, combining biomass and natural gas capable of producing diesel and other liquid fuels. The facility would consume 2,200,000 tonnewet per year of biomass and produce 10,600 bbl/day of liquid fuels. Forestry-derived F-T fuels have notable advantages including: improved performance; ultra-low sulphur content; reduced emissions, particulates and fouling; and production of fewer by-products.

  11. Analysis of the passive heat removal enhancement for AP1000 containment due to the partially wetted coverage

    Energy Technology Data Exchange (ETDEWEB)

    Li, Cheng, E-mail: 510395453@qq.com [State Nuclear Power Technology Research & Development Center, 102209 Beijing (China); Li, Le [Tsinghua University, Institute of Nuclear and New Energy Technology, 100084 Beijing (China); Li, Junming [Tsinghua University, Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Department of Thermal Engineering, Beijing 100084 (China); Zhang, Yajun [Tsinghua University, Institute of Nuclear and New Energy Technology, 100084 Beijing (China); Li, Zhihui [State Nuclear Power Technology Research & Development Center, 102209 Beijing (China)

    2017-03-15

    Highlights: • Heat removal by steam condensation, thermal conduction and evaporation is the most important scheme for AP1000 PCCS. Traditionally, studies on containment wall condensation and evaporation have been widely made, while it lacks studies on the shell two-dimension (2-D) thermal conduction. Currently, based on the known heat and mass transfer correlations and the phenomenon from water wetted coverage test, the physical model for 2-D thermal conduction is given and numerical simulation is then made. By discussions, it forms the following highlights. • The partially wetted surface can enhance the whole heat transfer process (including inner condensation, wall thermal conduction and outside cooling) and the maximum enhancement factor can be as large as 63%. There is an enhancement peak at around dry strip fraction a = 90%. When L is less than 0.03 m, its influence on heat transfer is small and the enhancement is mainly affected by dry coverage. However, for larger L, both α and L contribute much to larger enhancement. • Location at the spring line is often used for safety analysis and the dry strip fraction there for AP1000 is mainly at 10%–80%. Accordingly, further analysis is made on L (0.03 < L < 0.3) and a fitting expression is given for α = 10%–80%. It could be used to improve the corresponding software and it could also be used for containment scaling-down criteria analysis. - Abstract: AP1000 containment uses the water film evaporation, coupled with containment inner condensation, to remove the core decay heat. However, water film cannot fully cover heat transfer surface and dry-wetted strips appear. As a result, heat transfer within the containment shell is a two-dimension thermal conduction. Current work numerically studied the AP1000 heat removal enhancement due to the partially wetted coverage phenomenon. It used the evaporation and condensation boundary conditions and Fluent software to calculate the local heat fluxes and their

  12. Analysis of the passive heat removal enhancement for AP1000 containment due to the partially wetted coverage

    International Nuclear Information System (INIS)

    Li, Cheng; Li, Le; Li, Junming; Zhang, Yajun; Li, Zhihui

    2017-01-01

    Highlights: • Heat removal by steam condensation, thermal conduction and evaporation is the most important scheme for AP1000 PCCS. Traditionally, studies on containment wall condensation and evaporation have been widely made, while it lacks studies on the shell two-dimension (2-D) thermal conduction. Currently, based on the known heat and mass transfer correlations and the phenomenon from water wetted coverage test, the physical model for 2-D thermal conduction is given and numerical simulation is then made. By discussions, it forms the following highlights. • The partially wetted surface can enhance the whole heat transfer process (including inner condensation, wall thermal conduction and outside cooling) and the maximum enhancement factor can be as large as 63%. There is an enhancement peak at around dry strip fraction a = 90%. When L is less than 0.03 m, its influence on heat transfer is small and the enhancement is mainly affected by dry coverage. However, for larger L, both α and L contribute much to larger enhancement. • Location at the spring line is often used for safety analysis and the dry strip fraction there for AP1000 is mainly at 10%–80%. Accordingly, further analysis is made on L (0.03 < L < 0.3) and a fitting expression is given for α = 10%–80%. It could be used to improve the corresponding software and it could also be used for containment scaling-down criteria analysis. - Abstract: AP1000 containment uses the water film evaporation, coupled with containment inner condensation, to remove the core decay heat. However, water film cannot fully cover heat transfer surface and dry-wetted strips appear. As a result, heat transfer within the containment shell is a two-dimension thermal conduction. Current work numerically studied the AP1000 heat removal enhancement due to the partially wetted coverage phenomenon. It used the evaporation and condensation boundary conditions and Fluent software to calculate the local heat fluxes and their

  13. Verification of the enrichment of fresh VVER-440 fuel assemblies at NPP Paks

    Energy Technology Data Exchange (ETDEWEB)

    Almasia, I.; Hlavathya, Z.; Nguyena, C. T. [Institute of Isotopes, Hungarian Academy of Sciences, Budapest, (Hungary); others, and

    2012-06-15

    A Non Destructive Analysis (NDA) method was developed for the verification of {sup 235}U enrichment of both homogeneous and profiled VVER-440 reactor fresh fuel assemblies by means of gamma spectrometry. A total of ca. 30 assemblies were tested, five of which were homogeneous, with {sup 235}U enrichment in the range 1,6% to 3,6%, while the others were profiled with pins of 3,3% to 4,4% enrichment. Two types of gamma detectors were used for the test measurements: 2 coaxial HPGe detectors and a miniature CdZnTe (CZT) detector fitting into the central tube of the assemblies. It was therefore possible to obtain information from both the inside and the outside of the assemblies. It was shown that it is possible to distinguish between different types of assemblies within a reasonable measurement time (about 1000 sec). For the HPGe measurements the assemblies had to be lifted out from their storage rack, while for the CZT detector measurements the assemblies could be left at their storage position, as it was shown that the neighbouring assemblies do not affect measurement inside the assemblies' central tube. The measured values were compared to Monte Carlo simulations carried out using the MCNP code, and a recommendation for the optimal approach to verify the {sup 235}U enrichment of fresh VVER-440 reactor fuel assemblies is suggested.

  14. Overview of neutronic fuel assembly design and in-core fuel management

    International Nuclear Information System (INIS)

    Porsch, D.; Charlier, A.; Meier, G.; Mougniot, J.C.; Tsuda, K.

    2000-01-01

    The civil and military utilization of nuclear power results in stockpiles of spent fuel and separated plutonium. Recycling of the recovered plutonium in Light Water Reactors (LWR) is currently practiced in Belgium, France, Germany, and Switzerland, in Japan it is in preparation. Modern MOX fuel, with its optimized irradiation and reprocessing behavior, was introduced in 1981. Since then, about 1700 MOX fuel assemblies of different mechanical and neutronic design were irradiated in commercial LWRs and reached fuel assembly averaged exposures of up to 51.000 MWd/t HM. MOX fuel assemblies reloaded in PWR have an average fissile plutonium content of up to 4.8 w/o. For BWR, the average fissile plutonium content in actual reloads is 3.0 w/o. Targets for the MOX fuel assembly design are the compatibility to uranium fuel assemblies with respect to their mechanical fuel rod and fuel assembly design, they should have no impact on the flexibility of the reactor operation, and its reload should be economically feasible. In either cycle independent safety analyses or individually for each designed core it has to be demonstrated that recycling cores meet the same safety criteria as uranium cores. The safety criteria are determined for normal operation and for operational as well as design basis transients. Experience with realized MOX core loadings confirms the reliability of the applied modern design codes. Studies for reloads of advanced MOX assemblies in LWRs demonstrate the feasibility of a future development of the thermal plutonium recycling. New concepts for the utilization of plutonium are under consideration and reveal an attractive potential for further developments on the plutonium exploitation sector. (author)

  15. Debris removal system for a nuclear fuel assembly

    International Nuclear Information System (INIS)

    Cooper, F.W. Jr.; Dailey, G.F.

    1987-01-01

    A system is described for working on an elongated nuclear fuel assembly suspended vertically and submerged in a spent fuel pool having fuel assembly racks at the bottom. The system comprises a work platform disposable in the pool and adapted to be supported on the fuel assembly racks. The platform has an opening disposed in registry with a selected one of the underlying racks; guide means carried by the platform for guiding the suspended fuel assembly into the opening and the selected rack to accommodate vertical movement of the fuel assembly into and out of the rack to make different portions of the fuel assembly accessible from the platform; and tool manipulating apparatus disposable on the platform adjacent to the opening, the tool manipulating apparatus including a tool carriage. Tool holders for respectively holding associated tools. Each of the tool holders is mounted on the tool carriage for reciprocating movement with respect along a predetermined axis between extended and retracted conditions

  16. Fuel sub-assembly

    International Nuclear Information System (INIS)

    Jolly, R.

    1982-01-01

    A fuel sub-assembly for a liquid metal cooled nuclear reactor is described in which the bundle of fuel pins are braced apart by a series of spaced grids. The grids at the lower end are capable of yielding, thus allowing pins swollen by irradiation to be withdrawn with a reduced risk of damage. (U.K.)

  17. A classification scheme for LWR fuel assemblies

    Energy Technology Data Exchange (ETDEWEB)

    Moore, R.S.; Williamson, D.A.; Notz, K.J.

    1988-11-01

    With over 100 light water nuclear reactors operating nationwide, representing designs by four primary vendors, and with reload fuel manufactured by these vendors and additional suppliers, a wide variety of fuel assembly types are in existence. At Oak Ridge National Laboratory, both the Systems Integration Program and the Characteristics Data Base project required a classification scheme for these fuels. This scheme can be applied to other areas and is expected to be of value to many Office of Civilian Radioactive Waste Management programs. To develop the classification scheme, extensive information on the fuel assemblies that have been and are being manufactured by the various nuclear fuel vendors was compiled, reviewed, and evaluated. It was determined that it is possible to characterize assemblies in a systematic manner, using a combination of physical factors. A two-stage scheme was developed consisting of 79 assembly types, which are grouped into 22 assembly classes. The assembly classes are determined by the general design of the reactor cores in which the assemblies are, or were, used. The general BWR and PWR classes are divided differently but both are based on reactor core configuration. 2 refs., 15 tabs.

  18. A classification scheme for LWR fuel assemblies

    International Nuclear Information System (INIS)

    Moore, R.S.; Williamson, D.A.; Notz, K.J.

    1988-11-01

    With over 100 light water nuclear reactors operating nationwide, representing designs by four primary vendors, and with reload fuel manufactured by these vendors and additional suppliers, a wide variety of fuel assembly types are in existence. At Oak Ridge National Laboratory, both the Systems Integration Program and the Characteristics Data Base project required a classification scheme for these fuels. This scheme can be applied to other areas and is expected to be of value to many Office of Civilian Radioactive Waste Management programs. To develop the classification scheme, extensive information on the fuel assemblies that have been and are being manufactured by the various nuclear fuel vendors was compiled, reviewed, and evaluated. It was determined that it is possible to characterize assemblies in a systematic manner, using a combination of physical factors. A two-stage scheme was developed consisting of 79 assembly types, which are grouped into 22 assembly classes. The assembly classes are determined by the general design of the reactor cores in which the assemblies are, or were, used. The general BWR and PWR classes are divided differently but both are based on reactor core configuration. 2 refs., 15 tabs

  19. Vibration characteristics analysis for HANARO fuel assembly

    International Nuclear Information System (INIS)

    Ryu, Jeong Soo; Yoon, Doo Byung

    2001-06-01

    For investigating the vibration characteristics of HANARO fuel assembly, the finite element models of the in-air fuel assemblies and flow tubes were developed. By calculating the hydrodynamic mass and distributing it on the in-air models, the in-water models of the flow tubes and the fuel assemblies were developed. Then, modal analysis of the developed models was carried out. The analysis results show that the fundamental vibration modes of the in-air 18-element and 36-element fuel assemblies are lateral bending modes and its corresponding natural frequencies are 26.4Hz and 27.7Hz, respectively. The fundamental natural frequency of the in-water 18-element and 36-element fuel assemblies were obtained as 16.1Hz and 16.5Hz. For the verification of the developed finite element models, modal analysis results were compared with those obtained from the modal test. These results demonstrate that the natural frequencies of lower order modes obtained from finite element analysis agree well with those of the modal test and the estimation of the hydrodynamic mass is appropriate. It is expected that the analysis results will be applied as a basic data for the operation and management of the HANARO. In addition, when it is necessary to improve the design of the fuel assembly, the developed finite element models will be utilized as a base model for the vibration characteristic analysis of the modified fuel assembly

  20. Fuel assembly and reactor core

    International Nuclear Information System (INIS)

    Ishibashi, Yoko; Aoyama, Motoo; Oyama, Jun-ichi; Masumi, Ryoji; Soneda, Hideo.

    1994-01-01

    A fuel assembly comprises a plurality of fuel rods filled with nuclear fuels, a plurality of burnable poison rods incorporated with burnable poisons, and water rods which can vary the height in the tube depending on the coolant flow rate flown into the assembly. The amount of entire burnable poisons of the burnable poison-containing rods in adjacent with the water rods is smaller than the amount of entire burnable poisons in the burnable poison containing rods not in adjacent with the water rods. Then the average concentration of burnable poisons in the axial upper half region is made smaller than the average concentration of the burnable poisons at the axial lower half region. Further, a burnable poison concentration at the upper half region of at least one of burnable poison-containing rods in adjacent with the water rods is made lower than the burnable poison concentration in the lower half region. Since this can fasten the combustion of the burnable poisons, a fuel assembly having good fuel economy can be attained. (I.N.)

  1. Most advanced HTP fuel assembly design for EPR

    International Nuclear Information System (INIS)

    Francillon, Eric; Kiehlmann, Horst-Dieter

    2006-01-01

    End 2003, the Finnish electricity utility Teollisuuden Voima Oy (TVO) signed the contract for building an EPR in Olkiluoto (Finland). Mid 2004, the French electricity utility EDF selected an EPR to be built in France. In 2005, Framatome ANP, an AREVA and Siemens company, announced that they will be pursuing a design certification in the U.S. The EPR development is based on the latest PWR product lines of former Framatome (N4) and Siemens Nuklear (Konvoi). As an introductory part, different aspects of the EPR core characteristics connected to fuel assembly design are presented. It includes means of ensuring reactivity control like hybrid AIC/B4C control rod absorbers and gadolinium as burnable absorber integrated in fuel rods, and specific options for in-core instrumentation, such as Aeroball type instrumentation. Then the design requirements for the EPR fuel assembly are presented in term of very high burnup capacity, rod cladding and fuel assembly reliability. Framatome ANP fuel assembly product characteristics meeting these requirements are then described. EPR fuel assembly design characteristics benefit from the experience feedback of the latest fuel assembly products designed within Framatome ANP, leading to resistance to assembly deformation, high fuel rod restraint and prevention of handling hazards. EPR fuel assembly design features the best components composing the cornerstones of the upgraded family of fuel assemblies that FRAMATOME ANP proposes today. This family is based on a set of common characteristics and associated features, which include the HMP grid as bottom end spacer, the MONOBLOC guide tube and the Robust FUELGUARD as lower tie plate, the use of the M5 Alloy, as cladding and structure material. This fully re-crystallized, ternary Zr-Nb-O alloy produces radically improved in-reactor corrosion, very low hydrogen uptake and growth and an excellent creep behavior, which are described there. EPR fuel assembly description also includes fuel rod

  2. Fuel assembly and fuel cladding tube

    International Nuclear Information System (INIS)

    Tsutsumi, Shinro; Ito, Ken-ichi; Inagaki, Masatoshi; Nakajima, Junjiro.

    1996-01-01

    A fuel cladding tube is a zirconium liner tube formed by lining a pure zirconium layer on the inner side of a zirconium alloy tube. The fuel cladding tube is formed by extrusion molding of a composite billet formed by inserting a pure zirconium billet into a zirconium alloy billet. Accordingly, the pure zirconium layer and the zirconium alloy tube are strongly joined by metal bond. The fuel cladding tube has an external oxide film on the outer surface of the zirconium alloy tube and an internal oxide film on the inner side of the pure zirconium layer. The external oxide film has a thickness preferably of about 1μm. The internal oxide film has a thickness of not more than 10μm, preferably, from 1 to 5μm. With such a constitution, flaws to be formed on both inner and outer surfaces of the cladding tube upon assembling a fuel assembly can be reduced thereby enabling to reduce the amount of hydrogen absorbed to the cladding tube. (I.N.)

  3. Study and practice on NI design management of the first AP1000 plant

    International Nuclear Information System (INIS)

    Jiang Feizhou

    2014-01-01

    For difficulties on NI design management during the construction of the world's first AP1000 unit, Sanmen Nuclear Power Corporation has established the effective method to improve the management of the NI design and the project construction based on the practice and improvement. This paper introduces difficulties on NI design management, and analyzes the causes of problems, and put forward recommended measures, to provide help and reference for the construction of similar nuclear power plants. (authors)

  4. The preliminary analysis of establishing the cost control system of AP1000 for the Haiyang nuclear power project

    International Nuclear Information System (INIS)

    Li Jing; Li Xiaobing

    2012-01-01

    The AP1000 technology has been first applied to Nuclear Power Plant construction in China. Haiyang Project is the second plant which applies the new technology, and it is the key to the success of the project, that how to control the cost. The cost control of AP1000 is to manage and monitor all the cost of the project, including the cost of project management, design, procurement, construction, and startup/commissioning. For the Haiyang Project, the cost control system should be established to ensure that the evaluation of the procurement order should be covered in the original budget, and all potential commitments are evaluated and approved within the confinement of cost control, and reduce the risk of the first reactor and get the most profit. (authors)

  5. A drying system for spent fuel assemblies

    International Nuclear Information System (INIS)

    Suikki, M.; Warinowski, M.; Nieminen, J.

    2007-06-01

    The report presents a proposed drying apparatus for spent fuel assemblies. The apparatus is used for removing the moisture left in fuel assemblies during intermediate storage and transport. The apparatus shall be installed in connection with the fuel handling cell of an encapsulation plant. The report presents basic requirements for and implementation of the drying system, calculation of the drying process, operation, service and maintenance of the equipment, as well as a cost estimate. Some aspects of the apparatus design are quite specified, but the actual detailed planning and final selection of components have not been included. The report also describes actions for possible malfunction and fault conditions. An objective of the drying system for fuel assemblies is to remove moisture from the assemblies prior to placing the same in a disposal canister for spent nuclear fuel. Drying is performed as a vacuum drying process for vaporizing and draining the moisture present on the surface of the assemblies. The apparatus comprises two pieces of drying equipment. One of the chambers is equipped to take up Lo1-2 fuel assemblies and the other OL1-2 fuel assemblies. The chambers have an internal space sufficient to accommodate also OL3 fuel assemblies, but this requires replacing the internal chamber structure for laying down the assemblies to be dried. The drying chambers can be closed with hatches facing the fuel handling cell. Water vapour pumped out of the chamber is collected in a controlled manner, first by condensing with a heat exchanger and further by freezing in a cold trap. For reasons of safety, the exhaust air of vacuum pumps is further delivered into the ventilation outlet duct of a controlled area. The adequate drying result is ascertained by a low final pressure of about 100 Pa, as well as by a sufficient holding time. The chamber is built for making its cleaning as easy as possible in the event of a fuel rod breaking during a drying, loading or unloading

  6. AP1000 passive core cooling system pre-operational tests procedure definition and simulation by means of Relap5 Mod. 3.3 computer code

    International Nuclear Information System (INIS)

    Lioce, D.; Asztalos, M.; Alemberti, A.; Barucca, L.; Frogheri, M.; Saiu, G.

    2012-01-01

    Highlights: ► Two AP1000 Core Make-up Tanks pre-operational tests procedures have been defined. ► The two tests have been simulated by means of the Relap5 computer code. ► Results show the tests can be successfully performed with the selected procedures. - Abstract: The AP1000 ® plant is an advanced Pressurized Water Reactor designed and developed by Westinghouse Electric Company which relies on passive safety systems for core cooling, containment isolation and containment cooling, and maintenance of main control room emergency habitability. The AP1000 design obtained the Design Certification by NRC in January 2006, as Appendix D of 10 CFR Part 52, and it is being built in two locations in China. The AP1000 plant will be the first commercial nuclear power plant to rely on completely passive safety systems for core cooling and its licensing process requires the proper operation of these systems to be demonstrated through some pre-operational tests to be conducted on the real plant. The overall objective of the test program is to demonstrate that the plant has been constructed as designed, that the systems perform consistently with the plant design, and that activities culminating in operation at full licensed power including initial fuel load, initial criticality, and power increase to full load are performed in a controlled and safe manner. Within this framework, Westinghouse Electric Company and its partner Ansaldo Nucleare S.p.A. have strictly collaborated, being Ansaldo Nucleare S.p.A. in charge of the simulation of some pre-operational tests and supporting Westinghouse in the definition of tests procedures. This paper summarizes the work performed at Ansaldo Nucleare S.p.A. in collaboration with Westinghouse Electric Company for the Core Makeup Tank (CMT) tests, i.e. the CMTs hot recirculation test and the CMTs draindown test. The test procedure for the two selected tests has been defined and, in order to perform the pre-operational tests simulations, a

  7. AP1000 passive core cooling system pre-operational tests procedure definition and simulation by means of Relap5 Mod. 3.3 computer code

    Energy Technology Data Exchange (ETDEWEB)

    Lioce, D., E-mail: donato.lioce@aen.ansaldo.it [Ansaldo Nucleare S.p.A., Corso F. M. Perrone 25, 16161, Genova (Italy); Asztalos, M., E-mail: asztalmj@westinghouse.com [Westinghouse Electric Company, Cranberry Twp, PA 16066 (United States); Alemberti, A., E-mail: alessandro.alemberti@aen.ansaldo.it [Ansaldo Nucleare S.p.A., Corso F. M. Perrone 25, 16161, Genova (Italy); Barucca, L. [Ansaldo Nucleare S.p.A., Corso F. M. Perrone 25, 16161, Genova (Italy); Frogheri, M., E-mail: monicalinda.frogheri@aen.ansaldo.it [Ansaldo Nucleare S.p.A., Corso F. M. Perrone 25, 16161, Genova (Italy); Saiu, G., E-mail: gianfranco.saiu@aen.ansaldo.it [Ansaldo Nucleare S.p.A., Corso F. M. Perrone 25, 16161, Genova (Italy)

    2012-09-15

    Highlights: Black-Right-Pointing-Pointer Two AP1000 Core Make-up Tanks pre-operational tests procedures have been defined. Black-Right-Pointing-Pointer The two tests have been simulated by means of the Relap5 computer code. Black-Right-Pointing-Pointer Results show the tests can be successfully performed with the selected procedures. - Abstract: The AP1000{sup Registered-Sign} plant is an advanced Pressurized Water Reactor designed and developed by Westinghouse Electric Company which relies on passive safety systems for core cooling, containment isolation and containment cooling, and maintenance of main control room emergency habitability. The AP1000 design obtained the Design Certification by NRC in January 2006, as Appendix D of 10 CFR Part 52, and it is being built in two locations in China. The AP1000 plant will be the first commercial nuclear power plant to rely on completely passive safety systems for core cooling and its licensing process requires the proper operation of these systems to be demonstrated through some pre-operational tests to be conducted on the real plant. The overall objective of the test program is to demonstrate that the plant has been constructed as designed, that the systems perform consistently with the plant design, and that activities culminating in operation at full licensed power including initial fuel load, initial criticality, and power increase to full load are performed in a controlled and safe manner. Within this framework, Westinghouse Electric Company and its partner Ansaldo Nucleare S.p.A. have strictly collaborated, being Ansaldo Nucleare S.p.A. in charge of the simulation of some pre-operational tests and supporting Westinghouse in the definition of tests procedures. This paper summarizes the work performed at Ansaldo Nucleare S.p.A. in collaboration with Westinghouse Electric Company for the Core Makeup Tank (CMT) tests, i.e. the CMTs hot recirculation test and the CMTs draindown test. The test procedure for the two

  8. Computer simulation of variform fuel assemblies using Dragon code

    International Nuclear Information System (INIS)

    Ju Haitao; Wu Hongchun; Yao Dong

    2005-01-01

    The DRAGON is a cell code that developed for the CANDU reactor by the Ecole Polytechnique de Montreal of CANADA. Although, the DRAGON is mainly used to simulate the CANDU super-cell fuel assembly, it has an ability to simulate other geometries of the fuel assembly. However, only NEACRP benchmark problem of the BWR lattice cell was analyzed until now except for the CANDU reactor. We also need to develop the code to simulate the variform fuel assemblies, especially, for design of the advanced reactor. We validated that the cell code DRAGON is useful for simulating various kinds of the fuel assembly by analyzing the rod-shape fuel assembly of the PWR and the MTR plate-shape fuel assembly. Some other kinds of geometry of geometry were computed. Computational results show that the DRAGON is able to analyze variform fuel assembly problems and the precision is high. (authors)

  9. Method for the detection of defective nuclear fuel assemblies

    International Nuclear Information System (INIS)

    Lawrie, W.E.; Womack, R.E.; White, N.W. Jr.

    1978-01-01

    There is applied an ultrasonic transmitter on a tape carrier by means of which the ultrasonic transmitter can be guided underwater between the fuel assemblies. If a fuel assembly is defective, i.e. filled with water, the reflection coefficient at the front interface between cladding and inner space of the fuel assembly will decrease. Essential parts of the ultrasonic signal will move through the liquid and will not be reflected until the backward liquid/metal interface of the fuel assembly. This impulse echo is different from that of the gas-filled fuel assembly. (DG) [de

  10. Impact analysis of spent fuel jacket assemblies

    International Nuclear Information System (INIS)

    Aramayo, G.A.

    1994-01-01

    As part of the analyses performed in support of the reracking of the High Flux Isotope Reactor pool, it became necessary to prove the structural integrity of the spent fuel jacket assemblies subjected to gravity drop that result from postulated accidents associated with the handling of these assemblies while submerged in the pool. The spent fuel jacket assemblies are an integral part of the reracking project, and serve to house fuel assemblies. The structure integrity of the jacket assemblies from loads that result from impact from a height of 10 feet onto specified targets has been performed analytically using the computer program LS-DYNA3D. Nine attitudes of the assembly at the time of impact have been considered. Results of the analyses show that there is no failure of the assemblies as a result of the impact scenarios considered

  11. Nuclear fuel assembly

    International Nuclear Information System (INIS)

    Borrman, B.; Nylund, O.

    1984-01-01

    A fuel assembly with a fuel channel which surrounds a plurality of fuel rods and which is divided, by means of a stiffening device of cruciform cross-section and four wings, into four sub-channels each of which comprises a bundle of fuel rods. Each fuel channel side has a plurality of stamped, inwardly-directed projections, arranged vertically one after the other, aid projections being welded to one and the same stiffening wing. Each one of the wall portions located between the projections defines, together with two adjacently positioned projections and a portion of the stiffening wing, a communiation opening between two bundles located on on one side each of the stiffening wing. (Author)

  12. Analyses for inserting fresh LEU fuel assemblies instead of fresh HEU fuel assemblies in the Dalat Nuclear Research Reactor in Vietnam

    International Nuclear Information System (INIS)

    Hanan, N. A.; Deen, J.R.; Matos, J.E.

    2005-01-01

    Analyses were performed by the RERTR Program to replace 36 burned HEU (36%) fuel assemblies in the Dalat Nuclear Research Reactor in Vietnam with either 36 fresh fuel assemblies currently on-hand at the reactor or with LEU fuel assemblies to be procured. The study concludes that the current HEU (36%) WWR-M2 fuel assemblies can be replaced with LEU WWR-M2 fuel assemblies that are fully-qualified and have been commercially available since 2001 from the Novosibirsk Chemical Concentrates Plant in Russia. The current reactor configuration using re-shuffled HEU fuel began in June 2004 and is expected to allow normal operation until around August 2006. If 36 HEU assemblies each with 40.2 g 235 U are inserted without fuel shuffling over the next five operating cycles, the core could operate for an additional 10 years until June 2016. Alternatively, inserting 36 LEU fuel assemblies each containing 49.7 g 235 U without fuel shuffling over five operating cycles would allow normal operation for about 14 years from August 2006 until October 2020. The main reason for the longer service life of the LEU fuel is that its 235 U content is higher than the 235 U content needed simply to match the service life of the HEU fuel. Fast neutron fluxes in the experiment regions would be very nearly the same in both the HEU and LEU cores. Thermal neutron fluxes in the experiment regions would be lower by 1-5%, depending on the experiment type and location. (author)

  13. Fuel assembly and reactor core

    International Nuclear Information System (INIS)

    Moriwaki, Masanao; Aoyama, Motoo; Masumi, Ryoji; Ishibashi, Yoko.

    1995-01-01

    A fuel assembly comprises a plurality of fuel rods filled with nuclear fuels, a plurality of burnable poison-incorporated fuel rods and a spectral shift-type water rod. As the burnable poison for the burnable poison-incorporated fuel rod, a plurality of burnable poison elements each having a different neutron absorption cross section are used. A burnable poison element such as boron having a relatively small neutron absorbing cross section is disposed more in the upper half region than the lower half region of the burnable poison-incorporated fuel rods. In addition, a burnable poison element such as gadolinium having a relatively large neutron absorbing cross section is disposed more in the lower half-region than the upper half region thereof. This can flatten the power distribution in the vertical direction of the fuel assembly and the power distribution in the horizontal direction at the final stage of the operation cycle. (I.N.)

  14. GAIA: AREVAs New PWR fuel assembly design

    Energy Technology Data Exchange (ETDEWEB)

    Vollmert, N.; Gentet, G.; Louf, P.H.; Mindt, M.; O' Brian, J.; Peucker, J.

    2015-07-01

    GAIA is the label of a new PWR Fuel Assembly design developed by AREVA with the objective to provide its customers an advanced fuel assembly design regarding both robustness and performance. Since 2012 GAIA lead fuel assemblies are under irradiation in a Swedish reactor and since 2015 in a U.S. reactor. Visual inspections and examinations carried out so far during the outages confirmed the intended reliability, robustness and the performance enhancement of the design. (Author)

  15. Inlet for fuel assembly having finger control rods

    International Nuclear Information System (INIS)

    Berglund, A.; Suvanto, A.; Tornblom, L.

    1975-01-01

    A nuclear reactor with vertically arranged fuel assemblies positioned on supporting members and with control rods displaceably arranged in guide tubes between the fuel rods inside the fuel assemblies is described. The supporting plate is provided with a transverse end piece with throttling means for the liquid flow which passes from below up through the supporting member and past the fuel rods in the fuel assembly. The inlets for the guide tubes for the control rods are located below the end piece and the throttling means. In this way a higher pressure prevails at the inlet to the guide tubes than above the end piece, so that a stronger flow of coolant is produced through guide tubes than through the fuel assembly. (U.S.)

  16. Results of TVSA fuel assemblies development and 10-years operation in WWER-1000 reactors cores. Development trends

    International Nuclear Information System (INIS)

    Molchanov, V.; Sharikov, A.; Samoilov, O.; Kaidalov, V.; Falkov, A.; Romanov, A.; Shishkin, A.

    2009-01-01

    The basic TVSA design is now operating successfully in 17 VVER-1000 power units of Russia, Ukraine and Bulgaria. TVSA design is characterized by reliability and validity of designs and resource characteristics. TVSA possesses light hydraulics and peak ratio for implementation of effective fuel cycles. Unique parameters on time of maintenance and burnup are achieved. The basic design - TVSA-5M - has been introduced into commercial operation. It is necessary to expand heading TVSA with debris filter and temperature control tubes. Two directions of evolution of a design - TVSA-ALPHA and TVSAPLUS are realized. Evolution is directed on increasing uranium content and realization of 5x1 and 3x1.5 fuel cycles with operation at raised power. The TVSA design offers a great optimization potential based on a series of proven (reference) technical solutions. TVSA is competitive and cost effective and ensures the market advantages of Russian nuclear fuel

  17. Nuclear reactor fuel assembly

    International Nuclear Information System (INIS)

    Marmonier, Pierre; Mesnage, Bernard; Nervi, J.C.

    1975-01-01

    This invention refers to fuel assemblies for a liquid metal cooled fast neutron reactor. Each assembly is composed of a hollow vertical casing, of regular polygonal section, containing a bundle of clad pins filled with a fissile or fertile substance. The casing is open at its upper end and has a cylindrical foot at its lower end for positioning the assembly in a housing provided in the horizontal diagrid, on which the core assembly rests. A set of flat bars located on the external surface of the casing enables it to be correctly orientated in its housing among the other core assemblies [fr

  18. Management number identification method for nuclear fuel assembly

    International Nuclear Information System (INIS)

    Furuya, Nobuo; Mori, Kazuma.

    1995-01-01

    In the present invention, a management number indicated to appropriate portions of a fuel assembly can be read with no error for the management of nuclear fuel materials in the nuclear fuel assembly (counting management) and physical protection: PP. Namely, bar codes as a management number are printed by electrolytic polishing to one or more portions of a side surface of an upper nozzle of the assembly, an upper surface of a clamp and a side surface of a lower nozzle. The bar codes are read by a reader at one or more portions in a transporting path for transporting the fuel assembly and at a fuel detection device disposed in a fuel storage pool. The read signals are inputted to a computer. With such procedures, the nuclear fuel assembly can be identified with no error by reading the bar codes and without applying no danger to a human body. Since the reader is disposed in the course of the transportation and test for the assembly, and the read signals are inputted to the computer, the management for the counting number and PP is facilitated. (I.S.)

  19. Fabrication of PWR fuel assembly and CANDU fuel bundle

    International Nuclear Information System (INIS)

    Lee, G.S.; Suh, K.S.; Chang, H.I.; Chung, S.H.

    1980-01-01

    For the project of localization of nuclear fuel fabrication, the R and D to establish the fabrication technology of CANDU fuel bundle as well as PWR fuel assembly was carried out. The suitable boss height and the prober Beryllium coating thickness to get good brazing condition of appendage were studied in the fabrication process of CANDU fuel rod. Basic Studies on CANLUB coating method also were performed. Problems in each fabrication process step and process flow between steps were reviewed and modified. The welding conditions for top and bottom nozzles, guide tube, seal and thimble screw pin were established in the fabrication processes of PWR fuel assembly. Additionally, some researches for a part of PWR grid brazing problems are also carried out

  20. Neutronics assessment of thorium-based fuel assembly in SCWR

    International Nuclear Information System (INIS)

    Liu, Shichang; Cai, Jiejin

    2013-01-01

    Highlights: • A novel thorium-based fuel assembly for SCWR has been introduced and investigated. • Neutronic properties of three thorium fuels have been studied, compared with UO 2 fuel. • The thorium-based fuel has advantages on fuel utilization and lower MAs generation. -- Abstract: Aiming to take advantage of neutron spectrum of SCWR, a novel thorium-based fuel assembly for SCWR is introduced in this paper. The neutronic characteristics of the introduced fuel assembly with three different thorium fuel types have been investigated using the “dragon” codes. The parameters in different working conditions, such as infinite multiplication factors, radial power peaking factor, temperature coefficient of reactivity and their relation with the operation period have been assessed by comparing with conventional uranium assembly. Moreover, the moderator-to-fuel ratio (MFR) was changed in order to investigate its influence on the neutronic characteristics of fuel assembly. Results show that the thorium-based fuel has advantages on both efficient fuel utilization and lower minor actinide generation, with some similar neutronic properties to the uranium fuel

  1. Nuclear reactor fuel assembly

    International Nuclear Information System (INIS)

    1975-01-01

    A description is given of a nuclear reactor fuel assembly comprising a cluster of fuel elements supported by transversal grids so that their axes are parallel to and at a distance from each other, in order to establish interstices for the axial flow of a coolant. At least one of the interstices is occupied by an axial duct reserved for an auxiliary cooling fluid and is fitted with side holes through which the auxiliary cooling fluid is sprayed into the cluster. Deflectors extend as from a transversal grid in a position opposite the holes to deflect the cooling fluid jet towards those parts of the fuel elements that are not accessible to the auxiliary coolant. This assembly is intended for reactors cooled by light or heavy water [fr

  2. A study on 80 fuel assemblies core for HFETR

    International Nuclear Information System (INIS)

    Sun Shouhua; Wu Yinghua; Bu Yongxi; Liu Shuiqing; Duan Tianyuan; Zhang Liangwan; Lin Jisen

    1996-12-01

    The performance of 80 and 60 fuel assemblies cores for High Flux Engineering Test Reactor (HFETR) has been compared with theoretical analysis and operating results. These results show that the core performance of 80 fuel assemblies is the same as that of 60 fuel assemblies in the following aspects: the permission power of core, the irradiation test of materials, the transmutation doping of single crystalline silicon, the production of Mo-Tc isotopes, etc. The core of 80 fuel assemblies is more convenient in operation after 500 kw test loop installed, and in greatly raising the production of 60 Co source with high specific radioactivity and the usage of fuel. As compared to the production of 60 Co source of 60 fuel assemblies core, the benefit of 80 fuel assemblies core can increase more than 3.8 millions RMB yuan per year. (2 refs., 2 tabs.)

  3. Safety for fuel assembly handling in the nuclear ship Mutsu

    International Nuclear Information System (INIS)

    Ando, Yoshio

    1978-01-01

    The safety for fuel assembly handling in the nuclear ship Mutsu is deliberated by the committee of general inspection and repair technique examination for Mutsu. The result of deliberation for both cases of removing fuel assemblies and keeping them in the reactor is outlined. The specification of fuel assemblies, and the nuclides and designed radioactivity of fission products of fuel are described. The possibility of shielding repair work and general safety inspection keeping the fuel assemblies in the reactor, the safety consideration when the fuel assemblies are removed at a quay, in a dry dock and on the ocean, the safety of fuel transport in special casks and fuel storage are explained. It is concluded finally that the safety of shielding repair work and general inspection work is secured when the fuel assemblies are kept in the reactor and also when the fuel assemblies are removed from the reactor by cautious working. (Nakai, Y.)

  4. Calculations of 3D full-scale VVER fuel assembly and core models using MCU and BIPR-7A codes

    Energy Technology Data Exchange (ETDEWEB)

    Aleshin, Sergey S.; Bikeev, Artem S.; Bolshagin, Sergey N.; Kalugin, Mikhail A.; Kosourov, Evgeniy K.; Pavlovichev, Aleksandr M.; Pryanichnikov, Aleksandr V.; Sukhino-Khomenko, Evgenia A.; Shcherenko, Anna I.; Shcherenko, Anastasia I.; Shkarovskiy, Denis A. [Nuclear Research Centre ' ' Kurchatov Institute' ' , Moscow (Russian Federation)

    2015-09-15

    Two types of calculations were made to compare BIPR-7A and MCU results for 3D full-scale models. First EPS (emergency protection system) efficiency and in-core power distributions were analyzed for an equilibrium fuel load of VVER-1000 assuming its operation within an 18-month cycle. Computations were performed without feedbacks and with fuel burnup distributed over the core. After 3D infinite lattices of full-scale VVER-1000 fuel assemblies (A's) with uranium fuel 4.4% enrichment and uranium-erbium fuel 4.4% enrichment and Er{sub 2}O{sub 3} 1 % wt were considered. Computations were performed with feedbacks and fuel burnup at the constant power level. For different time moments effective multiplication factor and power distribution were obtained. EPS efficiency and reactivity effects at chosen time moments were analyzed.

  5. Design requirement on HYPER blanket fuel assembly

    International Nuclear Information System (INIS)

    Hwang, Woan; Lee, B. O.; Nam, C.; Ryu, W. S.; Lee, B. S.; Park, W. S.

    2000-07-01

    This document describes design requirements which are needed for designing the blanket assembly of the HYPER as design guidance. The blanket assembly of the HYPER consists of blanket fuel rods, mounting rail, spacer, upper nozzle with handling socket, bottom nozzle with mounting rail and skeleton structure. The blanket fuel rod consists of top end plug, bottom end plug with key way, blanket fuel slug, and cladding. In the assembly, the rods are in a triangular pitch array. This report contains functional requirements, performance and operational requirements, interfacing systems requirements, core restraint and interface requirements, design limits and strength requirements, system configuration and essential feature requirements, seismic requirements, structural requirements, environmental requirements, reliability and safety requirements, standard and codes, QA programs, and other requirements for the blanket fuel assembly of the HYPER

  6. Modular nuclear fuel assembly rack

    International Nuclear Information System (INIS)

    Davis, C.J.

    1982-01-01

    A modular nuclear fuel assembly rack constructed of an array of identical cells, each cell constructed of a plurality of identical flanged plates. The unique assembly of the plates into a rigid rack provides a cellular compartment for nuclear fuel assemblies and a cavity between the cells for accepting neutron absorbing materials thus allowing a closely spaced array. The modular rack size can be easily adapted to conform with available storage space. U-shaped flanges at the edges of the plates are nested together at the intersection of four cells in the array. A bar is placed at the intersection to lock the cells together

  7. Express diagnostics of WWER fuel rods at nuclear power plants

    International Nuclear Information System (INIS)

    Pavlov, S.; Amosov, S.; Sagalov, S.; Kostyuchenko, A.

    2009-01-01

    Higher safety and economical efficiency of nuclear power plants (NPP) call for a continuous design modification and technological development of fuel assemblies and fuel rods as well as optimization of their operating conditions. In doing so the efficiency of new fuel introduction depends on the completeness of irradiated fuel data in many respects as well as on the rapidity and cost of such data obtaining. Standard examination techniques of fuel assemblies (FA) and fuel rods (FR) intended for their use in hot cell conditions do not satisfy these requirements in full extent because fuel assemblies require preliminary cooling at NPP to provide their shipment to the research center. Expenditures for FA transportation, capacity of hot cells and expenditures for the examined fuel handling do not make it possible to obtain important information about the condition of fuel assemblies and fuel rods after their operation. In order to increase the comprehensiveness of primary data on fuel assemblies and fuel rods immediately after their removal from the reactor, inspection test facilities are widely used for these purposes. The inspection test facilities make it possible to perform nondestructive inspection of fuel in the NPP cooling pools. Moreover these test facilities can be used to repair failed fuel assemblies. The ultrasonic testing of failed fuel rods inside the fuel assembly was developed for stands of inspection and repair of TVSA WWER-1000 for the Kalinin NPP and Temelin NPP. This method was tested for eight leaking fuel assemblies WWER-440 and WWER-1000 with a burnup of ∼14 up to 38 MW·day/kgU. The ultrasonic testing proved its high degree of reliability and efficiency. The defectoscopy by means of the pulsed eddy-current method was adapted for the stand of inspection and repair of TVSA WWER-1000 for the Kalinin NPP. This method has been used at RIAR as an express testing method of FR claddings during the post-irradiation examinations of fuel assemblies WWER

  8. Fuel assembly

    International Nuclear Information System (INIS)

    Nakajima, Akiyoshi; Bessho, Yasunori; Aoyama, Motoo; Koyama, Jun-ichi; Hirakawa, Hiromasa; Yamashita, Jun-ichi; Hayashi, Tatsuo

    1998-01-01

    In a fuel assembly of a BWR type reactor in which a water rod of a large diameter is disposed at the central portion, the cross sectional area perpendicular to the axial direction comprises a region a of a fuel rod group facing to a wide gap water region to which a control rod is inserted, a region b of a fuel rod group disposed on the side of the wide gap water region other than the region a, a region d of a fuel rod group facing to a narrow gap water region and a region c of a fuel rod group disposed on the side of the narrow gap water region other than the region d. When comparing an amount of fission products contained in the four regions relative to that in the entire regions and average enrichment degrees of fuel rods for the four regions, the relative amount and the average enrichment degree of the fuel rod group of the region a is minimized, and the relative amount and the average enrichment degree of the fuel rod group in the region b is maximized. Then, reactor shut down margin during cold operation can be improved while flattening the power in the cross section perpendicular to the axial direction. (N.H.)

  9. Maximum thermal loading test of BWR fuel assembly

    International Nuclear Information System (INIS)

    Nakajima, Yoshitaka; Yoshimura, Kunihiro; Nakamura, Satoshi; Ishizuka, Takao.

    1987-01-01

    Various proving tests on the reliability of nuclear power plants have been conducted at the Nuclear Power Engineering Test Center and at the Japan Power Plant Engineering and Inspection Corporation. The tests were initiated at the request of the Ministry of International Trade and Industry (MITI). Toshiba undertook one of the proving tests on the reliability of nuclear fuel assembly; the maximum thermal loading test of BWR fuel assembly from the Nuclear Power Engineering Test Center. These tests are part of the proving tests mentioned above, and their purpose is to confirm the reliability of the thermal hydraulic engineering techniques. Toshiba has been engaged for the past nine years in the design, fabrication and testing of the equipment. For the project, a test model fuel assembly was used to measure the critical power of the BWR fuel assembly and the void and fluidity of the coolant. From the test results, it has been confirmed that the heat is transferred safely from the fuel assembly to the coolant in the BWR nuclear power plant. In addition, the propriety and reliability of the thermal hydraulic engineering techniques for the fuel assembly have been proved. (author)

  10. Fuel assembly, channel box of fuel assembly, fuel spacer of fuel assembly and method of manufacturing channel box

    International Nuclear Information System (INIS)

    Chaki, Masao; Kanazawa, Toru; Orii, Akihito; Nagayoshi, Takuji; Nishida, Koji; Kawasaki, Terufumi.

    1997-01-01

    In a fuel assembly of a BWR type reactor, fuel rods disposed at corners of side walls of a channel box or in the periphery of the side walls are partially removed, and recessed portions are formed on the side walls of the channel box from which the fuel rods are removed. Spaces closed at the sides are formed in the inner side of the corner portions. Openings are formed for communicating the closed space with the outside of the channel box. Then, the channel area of the outer side of the channel box is increased, through which much water flows to increase the amount of water in the reactor core thereby promoting the moderation of neutrons and providing thermal neutrons suitable to nuclear fission. The degree of freedom for distribution of the spaces in the reactor core is increased to improve neutron economy thereby enabling to utilize reactor fuels effectively. (N.H.)

  11. Investigation of the Stress Intensity Limits of ASME Section III Div.5 for Structure Design Criteria of SFR Fuel Assembly

    Energy Technology Data Exchange (ETDEWEB)

    Choo, Jin-Yup; Kim, Hyung-Kyu; Cheon, Jin-Sik [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    These affect the mechanical design of the fuel assembly components. And thus, appropriate structural design criteria should also be chosen to incorporate the specific design conditions of the SFR fuel assemblies. Among them, the temperature is one of the most crucial conditions to be concerned because the sodium coolant temperature is normally more than 500ºC which is much higher than that of the LWR (< 350ºC). This implies that a thermal creep should be significantly considered in the SFR fuel assembly mechanical design. In addition to the high temperature condition, an irradiation swelling is also an important behavior that the SFR fuel assembly material should accommodate. To incorporate the temperature and irradiation impacts, the material of the fuel assembly components is presently determined to be made of HT-9, the ferriticmartensitic steel. In this paper, the ASME Sec. III Div. 5 (referred to as ‘Div. 5’ hereinafter), which was developed for a ‘high temperature reactor’, is considered as one of the structural design criteria for the mechanical design of SFR fuel assemblies. In this paper, the stress intensity limits, S{sub m} and S{sub t} of HT-9 were built for the structural criteria of an SFR fuel assembly. S{sub m} is obtained from the ultimate strength. As for S{sub t}, it is more complicated because of its dependency of time duration in addition to temperature. Following the definition of S{sub mt}, the method in the ASME Sec. III Div. 1, Subsec. NH was consulted. We found that the Sm is adopted as S{sub mt} under the temperature about 470ºC which is relatively low temperature range and over 470ºC with relatively short time duration as 1000 hours. And the S{sub t} is adopted as Smt at over 470ºC and long time duration over 34800 hours, and over 520ºC and 10{sup 4} hours too. And at over 570ºC and 1000 hours, and at over 630ºC and 100 hours, S{sub t} is also adopted for S{sub mt}.

  12. Holddown device for nuclear fuel assembly

    International Nuclear Information System (INIS)

    Anthony, A.J.

    1978-01-01

    An apparatus for preventing ''floating'' of nuclear-reactor fuel assemblies due to hydraulic forces is disclosed. The apparatus uses a holddown column made of the same material as the core barrel. The column is positioned in a center guide-tube location in the fuel assembly in such a manner as to enable it either to slide within the center guide tube or, if the center guide tube is replaced by the column, to slide through openings in the spacer grids. The lower end of the holddown column engages the lower end fitting of the fuel assembly, and the upper end of the column engages a flow plate to which holddown force is applied. As a consequence of this arrangement, holddown force is transmitted from the flow plate through the holddown column to the lower end fitting. Movement of the fuel assembly is thereby prevented without a compression load being applied to the fuel-assemb1ly structure. In addition, variations due to thermal expansion in the distance between the lower core plate and the upper core plate are largely made up for by corresponding variations in the holddown column because the holddown column and the core barrel can be made of the same material

  13. Improvements in nuclear fuel assembly cages

    Energy Technology Data Exchange (ETDEWEB)

    Eaton, C.W.; Seeley, T.A.; Ince, G.; Speakman, W.T.

    1986-03-12

    The fuel pin/guide tube supporting grids of an assembly cage for a multi pin fuel element or a reflector element for a stringer are mounted in the moderator sleeve by way of mounting assemblies engaged in grooves machined into the interior surface of the sleeve, each mounting assembly including a split ring which is assembled into its groove by being radially contracted, pushed along the sleeve into registry with the groove and allowed to radially expand. The split ring may carry burnable neutron absorber. The region of the sleeve between two adjacent grids may be of smaller internal diameter than the remainder of the sleeve.

  14. Fuel assembly

    International Nuclear Information System (INIS)

    Ishibashi, Yoko; Aoyama, Motoo; Oyama, Jun-ichi.

    1995-01-01

    Burnable poison-incorporating fuel rods of a first group are disposed in a region in adjacent with a water rod having a large diameter (neutron moderator rod) disposed to the central portion of a fuel assembly. Burnable poison-incorporating fuel rods of a second group are disposed to a region other than peripheral zone in adjacent with a channel box and corners positioned at an inner zone, in adjacent with the channel box. The average concentration of burnable poisons of the burnable poison-incorporating fuel rods of the first group is made greater than that of the second group. With such a constitution, when the burnable poisons of the first group are burnt out, the burnable poisons of the second group are also burnt out at the same time. Accordingly, an amount of burnable poisons left unburnt at the final stage of the operation cycle is reduced, to improve the reactivity. This can improve the economical property. (I.N.)

  15. Mixed Reload Design Using MOX and UOX Fuel Assemblies

    International Nuclear Information System (INIS)

    Ramon, Ramirez Sanchez J.; Perry, R.T.

    2002-01-01

    As part of the studies involved in plutonium utilization assessment for a Boiling Water Reactor, a conceptual design of MOX fuel was developed, this design is mechanically the same design of 10 X 10 BWR fuel assemblies but different fissile material. Several plutonium and gadolinium concentrations were tested to match the 18 months cycle length which is the current cycle length of LVNPP, a reference UO 2 assembly was modeled to have a full cycle length to compare results, an effective value of 0.97 for the multiplication factor was set as target for 470 Effective Full Power days for both cycles, here the gadolinium concentration was a key to find an average fissile plutonium content of 6.55% in the assembly. A reload of 124 fuel assemblies was assumed to simulate the complete core, several load fractions of MOX fuel mixed with UO 2 fresh fuel were tested to verify the shutdown margin, the UO 2 fuel meets the shutdown margin when 124 fuel assemblies are loaded into the core, but it does not happen when those 124 assemblies are replaced with MOX fuel assemblies, so the fraction of MOX was reduced step by step up to find a mixed load that meets both length cycle and shutdown margin. Finally the conclusion is that control rods losses some of their worth in presence of plutonium due to a more hardened neutron spectrum in MOX fuel and this fact limits the load of MOX fuel assemblies in the core, this results are shown in this paper. (authors)

  16. Device for identifying fuel assembly

    International Nuclear Information System (INIS)

    Imai, Tetsuo; Miyazawa, Tatsuo.

    1982-01-01

    Purpose: To accurately identify a symbol printed on a hanging tool at the upper part of a fuel assembly. Constitution: Optical fibers are bundled to prepare a detector which is disposed at a predetermined position on a hanging tool. This position is set by a guide. Thus, the light emitted from an illumination lamp arrives at the bottom of a groove printed on the upper surface of the tool, and is divided into a weak light reflected upwardly and a strong light reflected on the surface lower than the groove. When these lights are received by the optical fibers, the fibers corresponding to the grooved position become dark, and the fibers corresponding to the ungrooved position become bright. Since the fuel assembly is identified by the dark and bright of the optical fibers as symbols, different machining can be performed every fuel assembly on the upper surface of the tool. (Yoshihara, H.)

  17. Fuel assemblies for nuclear reactors

    International Nuclear Information System (INIS)

    Jabsen, F.S.

    1979-01-01

    In a nuclear fuel assembly, hollow guide posts protrude into a fuel assembly and fitting grill from a biased spring pad with a plunger that moves with the spring pad plugging one end of each of the guide posts. A plate on the end fitting grill that has a hole for fluid discharge partially plugs the other end of the guide post. Pressurized water coolant that fills the guide post volume acts as a shock absorber and should the reactor core receive a major seismic or other shock, the fuel assembly is compelled to move towards a pad depending from a transversely disposed support grid. The pad bears against the spring pad and the plunger progressively blocks the orifices provided by slots in the guide posts thus gradually absorbing the applied shock. After the orifice has been completely blocked, controlled fluid discharge continues through a hole coil spring cooperating in the attenuation of the shock. (author)

  18. Tools for LWR spent fuel characterization: Assembly classes and fuel designs

    International Nuclear Information System (INIS)

    Moore, R.S.; Notz, K.J.

    1991-01-01

    The Characteristics Data Base (CDB) is sponsored by the DOE's Office of Civilian Radioactive Waste Management (OCRWM). The CDB provides a single, comprehensive source of data pertaining to radioactive wastes that will or may require geologic disposal, including detailed data describing the physical, quantitative, and radiological characteristics of light-water reactor (LWR) spent fuel. In developing the CDB, tools for the classification of fuel assembly types have been developed. The assembly class scheme is particularly useful for size- and handling-based describes these tools and presents results of their applications in the areas of fuel assembly type identification, characterization of projected discharges, cask accommodation analyses, and defective fuel analyses. Suggestions for additional applications are also made. 7 refs., 1 fig., 2 tabs

  19. Framatome experience in fuel assembly repair and reconstitution

    International Nuclear Information System (INIS)

    Leroy, G.

    1998-01-01

    Since 1985, FRAMATOME has build up extensive experience in the poolside replacement of fuel rods for repair or R and D purposes and the reconstitution of fuel assemblies (i.e. replacement of a damaged structure to enable reuse of the fuel rod bundle). This experience feedback enables FRAMATOME to improve in steps the technical process and the equipment used for the above operations in order to enhance their performance in terms of setup, flexibility, operating time and safety. In parallel, the fuel assembly and fuel rod designs have been modified to meet the same goals. The paper will describe: - the overall experience of FRAMATOME with UO 2 fuel as well as MOX fuel; the usual technical process used for fuel replacement and the corresponding equipment set; - the usual technical process for fuel assembly reconstitution and the corresponding equipment set. This process is rather unique since it takes profit of the specific FRAMATOME fuel assembly design with removable top and bottom nozzles, so that fuel rods insertion by pulling through in the new structure is similar to what is done in the manufacturing plant; - the usual inspections done on the fuel rods and/or the fuel assembly; - the design of the new reconstitution equipment (STAR) compared with the previous one as well as their comparative performance. The final section will be a description of the alternative reconstitution process and equipment used by FRAMATOME in reactors in which the process cannot be used for several reasons such as compatibility or administrative authorization. This process involves the pushing of fuel rods into the new structure, requiring further precautions. (author)

  20. Bimetallic spacer means for a nuclear fuel assembly

    International Nuclear Information System (INIS)

    Anthony, A.J.

    1981-01-01

    A bimetallic spacer means designed to be cooperatively associated with a nuclear fuel assembly and operative to resist the occurrence of in-reactor bowing of the nuclear fuel assembly. The subject bimetallic spacer means in accord with one embodiment of the invention includes a member formed, at least principally, of Zircaloy to which are attached a plurality of stainless steel strips. The latter stainless steel strips are located on the external surface of the Zircaloy member and with the major axis of each of the plurality of stainless steel strips extending substantially perpendicular to the major axis of the Zircaloy member. In accord with another embodiment of the invention, the subject bimetallic spacer means includes a member formed at least principally of Zircaloy to which a plurality of stainless steel strips are attached so as to be positioned thereon externally thereof and with the major axis of each of the plurality of stainless steel strips extending substantially parallel to the major axis of the Zircaloy member. In accord with a further embodiment of the invention, the stainless steel strips are attached to preselected members, each embodying at least a cladding of Zircaloy, which are located in the rows of fuel rods that define the perimeter of the fuel matrix of the nuclear fuel assembly. In each of the embodiments, the stainless steel strips during power production expand outwardly to a greater extent than do the members to which the stainless steel strips are attached, thereby forming stiff springs which abut against like bimetallic spacer means with which the other nuclear fuel assemblies are provided in a given nuclear reactor core to thus prevent the occurrence of in-reactor bowing of the nuclear fuel assemblies. Namely, the stainless steel strips expand laterally relative to the fuel assembly and thereby occupy the space adjacent to the external surface of the fuel assembly

  1. Appearance detection device for fuel assembly

    International Nuclear Information System (INIS)

    Matsuoka, Toshihiro

    1998-01-01

    The prevent invention provides an appearance detection device which improves accuracy of images on a display and facilitates editing and selection of images upon detection of appearance of a reactor fuel assembly. Namely, the device of the present invention comprises (1) television cameras movable along fuel assemblies of a reactor, (2) a detection means for detecting the positions of the television cameras, (3) a convertor for converting analog image signals of the television cameras to digital image signals, (4) a memory means for sampling a predetermined portion of the images of the television camera and storing it together with the position signal obtained by the detection means and (5) a computer for selecting a plurality of images and positions from the above-mentioned means and joining them to one or a plurality of static images of the fuel assembly. At least two television cameras are disposed oppositely with each other. Then, position signals of the television cameras are designated by the stored sampling signals, and the fuel assembly at the position can be displayed quickly. It is scrolled, compressed or enlarged and formed into images. (I.S.)

  2. Experience of TVSA fuel implementation at Kozloduy NPP

    International Nuclear Information System (INIS)

    Kamenov, K.; Kamenov, AI.; Hristov, D.

    2011-01-01

    The base design of the Russian fuel assemblies TVSA have been under operation at Kozloduy NPP WWER-1000 reactors since 2004. The old type fuel assemblies TVS-M were gradually substituted till 2008. The TVSA assembly distinguishes itself with much stronger construction. As a burnable absorber it has a mixture of uranium and uniformly distributed Gd in 6 or more fuel rods. This enables to increase the safety and effectiveness of fuel cycles. The experience gained during TVSA fuel implementation on units 5 and 6 and KASKAD code package validation was presented at the eightieth International conference on WWER 'Fuel performance, modelling and experimental support in 2009'. Additional information about TVSA fuel implementation at Kozloduy NPP WWER-1000 units in a 4-year fuel cycle with 42 and 48 fresh fuel assemblies reloading scheme is presented in the paper. (Authors)

  3. A partial grid for a nuclear reactor fuel assembly

    International Nuclear Information System (INIS)

    Demario, E.E.

    1985-01-01

    The invention relates to a nuclear-reactor fuel assembly including fuel-rod supporting transverse grids. The fuel assembly includes at least one additional transverse grid which is disposed between two fuel-rod supporting grids and consists of at least one partial grid structure extending across only a portion of the fuel assembly and having fuel rods and control-rod guide thimbles of only said portion extending therethrough. The partial grid structure includes means for providing lateral support of the fuel rods and/or means for laterally deflecting coolant flow, and it is formed of inter-leaved inner straps and border straps, the interleaved inner straps preferably being of substantially smaller height than the border straps to reduce the amount of material capable of parasitically absorbing neutrons. The additional transverse grid may comprise several partial grid structures associated with different groups of fuel rods of the fuel assembly

  4. Reactor fuel assembly

    International Nuclear Information System (INIS)

    Anthony, A.J.; Groves, M.D.

    1980-01-01

    A nuclear reactor fuel assembly having a lower end fitting and actuating means interacting therewith for holding the assembly down on the core support stand against the upward flow of coolant. Locking means for interacting with projections on the support stand are carried by the lower end fitting and are actuated by the movement of an actuating rod operated from above the top of the assembly. In one embodiment of the invention the downward movement of the actuating rod forces a latched spring to move outward into locking engagement with a shoulder on the support stand projections. In another embodiment, the actuating rod is rotated to effect the locking between the end fitting and the projection. (author)

  5. FAMREC, PWR Lateral Mechanical Fuel Rod Assembly Response

    International Nuclear Information System (INIS)

    Guenzler, R.C.

    1995-01-01

    1 - Description of program or function: The Fuel Assembly Mechanical Response Code (FAMREC) calculates the lateral mechanical response of a row of fuel assemblies while allowing for two types of nonlinearities. The first type is a geometric nonlinearity in the form of gaps between individual assemblies and between peripheral assemblies and a boundary wall. Impacting is monitored across the gaps. The second nonlinearity is the permanent deformation of the fuel assembly spacer grid to compressive loading. 2 - Method of solution: The response is calculated in the modal plane. The coupled differential equations are solved in closed form using Laplace transformations. The discrete displacements and velocities are then calculated and the gaps in the system monitored at each axial elevation for impacting. These impact forces are then applied statistically at a given time-step, and equilibrium is found using a Gaussian elimination technique. Three impact force calculation methods are available: 1- a linear impact force and crushing load audit calculation, 2- a more detailed linear impact force and crushing load calculation, and 3- a non-linear grid calculation which allows for plastic deformation of the fuel assembly spacer grids. 3 - Restrictions on the complexity of the problem: Maxima of: 3601 time-steps and forces; 80 modes; 30 applied forces; 15 fuel assemblies; and 5 impact grids per assembly

  6. Remote technology in RBMK-1000 spent fuel management at NPP site

    International Nuclear Information System (INIS)

    Makarchuk, T.F.; Kozlov, Y.V.; Tikhonov, N.S.; Tokarenko, A.I.; Spichev, V.V.; Kaljazin, N.N.

    1999-01-01

    The report describes the remote technologies employed in the nuclear power plant with RBMK-1000 type. Spent fuel transfer and handling operations at reactor (AR) and away from reactor (AFR) on reactor site (RS) facilities are illustrated by the example of the Leningradskaya NPP and are typical for all NPPs with RBMK-1000. The current approach to spent fuel management at NPP sites is also presented. (author)

  7. Nuclear fuel assembly

    International Nuclear Information System (INIS)

    Hirano, Yasushi; Hirukawa, Koji; Sakurada, Koichi.

    1994-01-01

    A bundle of fuel rods is divided into four fuel rod group regions of small fuel rod bundles by a cross-shaped partitioning structure consisting of paired plate-like structures which connect two opposing surfaces of a channel box. A water removing material with less neutron absorption (for example, Zr or a Zr alloy) or a solid moderator is inserted and secured to a portion of a non-boiling water region interposed between the paired plate-like structure. It has a structure that light water flows to the region in the plate-like structure. The volume, density or composition of the water removing material is controlled depending on the composition of the fuels, to change the moderating characteristics of neutrons in the non-boiling water region. This can easily moderate the difference of nuclear characteristics between each of fuel assemblies using fuel materials of different fuel compositions. Further, the reactivity control effect of the burnable poisons can be enhanced without worsening fuel economy or linear power density. (I.N.)

  8. Fuel assembly and reactor core

    International Nuclear Information System (INIS)

    Yuchi, Yoko; Aoyama, Motoo; Haikawa, Katsumasa; Yamanaka, Akihiro; Koyama, Jun-ichi.

    1996-01-01

    In a fuel assembly of a BWR type reactor, a region substantially containing burnable poison is divided into an upper region and a lower region having different average concentrations of burnable poison along a transverse cross section perpendicular to the axial direction. The ratio of burnable poison contents of both regions is determined to not more than 80%, and the average concentration of the burnable poison in the lower region is determined to not less than 9% by weight. An infinite multiplication factor at an initial stage of the burning of the fuel assembly is controlled effectively by the burnable poisons. Namely, the ratio of the axial power can be controlled by the distribution of the enrichment degree of uranium fuels and the distribution of the burnable poison concentration in the axial direction. Since the average enrichment degree of the reactor core has to be increased in order to provide an initially loaded reactor core at high burnup degree. Distortion of the power distribution in the axial direction of the reactor core to which fuel assemblies at high enrichment degree are loaded is flattened to improve thermal margin, to extend continuous operation period and increase a burnup degree upon take-out thereby improving fuel economy without worsening the reactor core characteristics of the initially loaded reactor core. (N.H.)

  9. Design improvement for fretting-wear reduction of HANARO fuel assembly

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Yeong Garp; Chae, H. T.; Ryu, J. S.; Kim, H. R

    2000-06-01

    In the course of the visual inspection of the fuel assemblies un-loaded from the reactor core in December 1996, it was observed that many of fuel assemblies had mechanical damages on some components. The major damage was the freting-wear on spacer plates and endplates due to the flow induced vibration of the fuel assembly in the flow tube. Since the reactor is activated and the system modification for complete removal of the driving factors of the vibration of fuel assemblies is practically very difficult, the focus has been on the design change of the fuel assemblies. Consequently, various design changes were proposed to strengthen the wear resistance of the components based on the evaluation of the visual inspection results. The validity of the proposals was verified through the performance tests for the modified components, and the vibration test and endurance test for the fuel assemblies using the single-channel test rig(SCTR) in AECL.The subsequent design changes were additionally proposed based on the visual inspections for the fuel assemblies that had been fabricated according to the first design change and loaded in the core. As the effects of the first design change, the fretting-wear of spacer plates was remarkably reduced and the period until fretting-wear damage was extended by 60% for the first modified 36-rod fuel assembly. It is too early to say the endurance life time for the first modified 18-rod fuel assembly because of insufficient statistical data of only two bundles damaged, but the fretting-wear at the bottom endplate slot was reduced to about 50%. The second modified fuel assemblies, that were not loaded into the core yet, are expected to meet the design requirements for the core residence time due to strengthening the weak parts from the fretting-wear point of view. This report describes design changes and tests for fuel assemblies of HANARO to reduce the fretting-wear, and estimates the effects of design improvement quantitatively compared

  10. Design improvement for fretting-wear reduction of HANARO fuel assembly

    International Nuclear Information System (INIS)

    Cho, Yeong Garp; Chae, H. T.; Ryu, J. S.; Kim, H. R.

    2000-06-01

    In the course of the visual inspection of the fuel assemblies un-loaded from the reactor core in December 1996, it was observed that many of fuel assemblies had mechanical damages on some components. The major damage was the freting-wear on spacer plates and endplates due to the flow induced vibration of the fuel assembly in the flow tube. Since the reactor is activated and the system modification for complete removal of the driving factors of the vibration of fuel assemblies is practically very difficult, the focus has been on the design change of the fuel assemblies. Consequently, various design changes were proposed to strengthen the wear resistance of the components based on the evaluation of the visual inspection results. The validity of the proposals was verified through the performance tests for the modified components, and the vibration test and endurance test for the fuel assemblies using the single-channel test rig(SCTR) in AECL.The subsequent design changes were additionally proposed based on the visual inspections for the fuel assemblies that had been fabricated according to the first design change and loaded in the core. As the effects of the first design change, the fretting-wear of spacer plates was remarkably reduced and the period until fretting-wear damage was extended by 60% for the first modified 36-rod fuel assembly. It is too early to say the endurance life time for the first modified 18-rod fuel assembly because of insufficient statistical data of only two bundles damaged, but the fretting-wear at the bottom endplate slot was reduced to about 50%. The second modified fuel assemblies, that were not loaded into the core yet, are expected to meet the design requirements for the core residence time due to strengthening the weak parts from the fretting-wear point of view. This report describes design changes and tests for fuel assemblies of HANARO to reduce the fretting-wear, and estimates the effects of design improvement quantitatively compared

  11. Fuel assembly supporting structure

    International Nuclear Information System (INIS)

    Aisch, F.W.; Fuchs, H.P.; Knoedler, D.; Steinke, A.; Steven, J.

    1976-01-01

    For use in forming the core of a pressurized-water reactor, a fuel assembly supporting structure for holding a bundle of interspaced fuel rods, is formed by interspaced end pieces having holes in which the end portions of control rod guide tubes are inserted, fuel rod spacer grids being positioned by these guide tubes between the end pieces. The end pieces are fastened to the end portions of the guide tubes, to integrate the supporting structure, and in the case of at least one of the end pieces, this is done by means which releases that end piece from the guide tubes when the end pieces receive an abnormal thrust force directed towards each other and which would otherwise place the guide tubes under a compressive stress that would cause them to buckle. The spacer grids normally hold the fuel rods interspaced by distances determined by nuclear physics, and buckling of the control rod guide tubes can distort the fuel rod spacer grids with consequent dearrangement of the fuel rod interspacing. A sudden loss of pressure in a pressurized-water reactor pressure vessel can result in the pressurized coolant in the vessel discharging from the vessel at such high velocity as to result in the abnormal thrust force on the end pieces of each fuel assembly, which could cause buckling of the control rod guide tubes when the end pieces are fixed to them in the normal rigid and unyielding manner

  12. 76 FR 44377 - Advisory Committee on Reactor Safeguards (ACRS), Meeting of the ACRS Subcommittee on AP1000...

    Science.gov (United States)

    2011-07-25

    ..., 2011-1 p.m. until 5 p.m. The Subcommittee will review technical updates in Revision 19 to the AP1000 Design Control Document (DCD). The Subcommittee will hear presentations by and hold discussions with the... statements can be obtained from the website cited above or by contacting the identified DFO. Moreover, in...

  13. Mechanical design issues and resolutions of a dual cooled fuel for the OPR-1000

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyung-Kyu, E-mail: hkkim1@kaeri.re.kr [Innovative Nuclear Fuel Division, Korea Atomic Energy Research Institute, 1045 Daedeokdaero, Yuseong, Daejeon, 305-353 (Korea, Republic of); Kim, Jae-Yong; Yoon, Kyung-Ho [Innovative Nuclear Fuel Division, Korea Atomic Energy Research Institute, 1045 Daedeokdaero, Yuseong, Daejeon, 305-353 (Korea, Republic of)

    2011-06-15

    Highlights: > Thickness of outer cladding tube is determined by using the elastic buckling criterion. > Growth difference of the inner and outer claddings will not cause fuel rod bowing. > Structural components are designed without a drastic change of the conventional ones. - Abstract: A dual cooled fuel is recently brought into focus due to its potential of considerable power uprating. The purpose of present work is to realize the innovative concept of a dual cooled fuel to be a fuel assembly structure compatible with the OPR-1000 system. Under the framework, the critical issues such as the outer cladding thickness and the growth difference of the inner and outer cladding tubes are dealt with in this paper. We designed the thickness of outer cladding tube by using the elastic buckling criterion and safety factor analysis. From the concern of the inner cladding's bowing during irradiation, it was suggested that the outer cladding would grow more than the inner one by applying different microstructures to the inner and outer cladding tubes. It was noted that the gap between fuel rods would not be narrowed further during the different irradiation growth. The structural components such as fuel rod supporting structure, top and bottom end pieces and guide tubes could be designed without a drastic change of those of the conventional fuel. Candidate designs of the components are also presented.

  14. TVSA-T fuel assembly for 'Temelin' NPP. Main results of design and safety analyses. Trends of development

    International Nuclear Information System (INIS)

    Samojlov, O.B.; Kajdalov, V.B.; Falkov, A.A.; Bolnov, V.A.; Morozkin, O.N.; Molchanov, V.L.; Ugryumov, A.V.

    2010-01-01

    TVSA is a fuel assembly with rigid skeleton formed by 6 angle pieces and SG is successfully operated at 17 VVER-1000 power units of Kalinin NPP, as well as at Ukrainian and Bulgarian NPPs. Based on a contract for fuel supply to the Temelin NPP, the TVSA-T fuel assembly was developed, building on proven solutions confirmed by operation of TVSA modifications during 4-6 years and by the results of post-irradiation examination. The TVSA-T design includes combined spacer grids (SG+MG) and by fuel column elongation by 150 mm. A set of analyses and experiments was performed to validate the design, including thermal hydraulic tests, validation of critical heat flux correlation for TVSA-T, integrated mechanical, vibration and lifetime tests. A licence to use the fuel has been granted by the Czech State Office for Nuclear Safety. The TVSA-T core is currently in operation at the Temelin-1 reactor unit. The presentation is concluded as follows: TVSA-T fuel assembly for Temelin has been validated. The TVSA-T design is based on approved technical decisions and meets the current requirements for lifetime, operational maneuverability and safety. The results of post-irradiation examination of TVSA-T operated at the Kalinin-1 unit for 4 years confirm the assembly operability, skeleton stiffness, geometric stability and normal fuel rod cladding condition. The properties of the TVSA fuel with MG allow the core power to be increased up to 3300 MW to match the envisaged future VVER (MIR-1200) design, providing allowable fuel rod power FΔh =1.63 (to implement effective fuel cycles). (P.A.)

  15. Experience in WWER fuel assemblies vibration analysis

    International Nuclear Information System (INIS)

    Ovtcharov, O.; Pavelko, V.; Usanov, A.; Arkadov, G.; Dolgov, A.; Molchanov, V.

    2003-01-01

    It is stated that the vibration studies of internals and the fuel assemblies should be conducted during the reactor designing, commissioning and commercial operation stages and the analysis methods being used should complement each other. The present paper describes the methods and main results of the vibration noise studies of internals and the fuel assemblies of the operating NPPs with WWER reactors, as an example of the implementation of the comprehensive approach to the analysis on equipment flow-induced vibration. At that, the characteristics of internals and fuel assemblies vibration loading were dealt jointly as they are elements of the same compound oscillating system and their vibrations have the interrelated nature

  16. Fuel assembly for BWR type reactor

    International Nuclear Information System (INIS)

    Kato, Shigeru.

    1993-01-01

    In the fuel assembly of the present invention, a means for mounting and securing short fuel rods is improved. Not only long fuel rods but also short fuel rods are disposed in channel of the fuel assembly to improve reactor safety. The short fuel rods are supported by a screw means only at the lower end plug. The present invention prevents the support for the short fuel rod from being unreliable due to the slack of the screw by the pressure of inflowing coolants. That is, coolant abutting portions such as protrusions or concave grooves are disposed at a portion in the channel box where coolants flowing from the lower tie plate, as an uprising stream, cause collision. With such a constitution, a component caused by the pressure of the flowing coolants is formed. The component acts as a rotational moment in the direction of screwing the male threads of the short fuel rod into the end plug screw hole. Accordingly, the screw is not slackened, and the short fuel rods are mounted and secured certainly. (I.S.)

  17. Nuclear fuel assembly

    International Nuclear Information System (INIS)

    Domoto, Noboru; Masuda, Hiroyuki

    1989-01-01

    In a nuclear fuel assembly loaded with a plurality of fuel rods, the inside of a fuel rod disposed at a high neutron flux region is divided into an inner region and an outer region, and more burnable poisons are mixed in the inner region than in the outer region. Alternatively, the central portion of a pellet disposed in a high neutron flux region is made hollow, in which burnable poisons are charged. This can prevent neutron infinite multiplication factor from decreasing extremely at the initial burning stage. Further, the burnable poisons are not rapidly burnt completely and local peaking coefficient can be controlled. Accordingly, in a case of suppressing a predetermined excess reactivity by using a fuel rod incorporated with the burnable poison, the fuel economy can be improved more and the reactor core controllability can also be improved as compared with the usual case. (T.M.)

  18. Radial power distribution shaping within a PWR fuel assembly utilizing asymmetrically loaded gadolinia-bearing fuel pins

    International Nuclear Information System (INIS)

    Stone, I.Z.

    1992-01-01

    As in-core fuel management designs evolve to meet the demands of increasing energy output, more innovative methods are developed to maintain power peaking within acceptable thermal margin limits. In-core fuel management staff must utilize various loading pattern strategies such as cross-core movement of fuel assemblies, multibatch enrichment schemes, and burnable absorbers as the primary means of controlling the radial power distribution. The utilization of fresh asymmetrically loaded gadolinia-bearing assemblies as a fuel management tool provides an additional means of controlling the radial power distribution. At Siemens Nuclear Power Corporation (SNP), fresh fuel assemblies fabricated with asymmetrically loaded gadolinia-bearing fuel rods have been used successfully for several cycles of reactor operation. Asymmetric assemblies are neutronically modeled using the same tools and models that SNP uses to model symmetrically loaded gadolinia-bearing fuel assemblies. The CASMO-2E code is used to produce the homogenized macroscopic assembly cross sections for the nodal core simulator. Optimum fuel pin locations within the asymmetrical assembly are determined using the pin-by-pin PDQ7 assembly core model for each new assembly design. The optimum pin location is determined by the rod loading that minimizes the peak-to-average pin power

  19. Fuel assembly

    International Nuclear Information System (INIS)

    Ueda, Makoto.

    1991-01-01

    In a fuel assembly in which spectral shift type moderator guide members are arranged, the moderator guide member has a flow channel resistance member, that provides flow resistance against the moderators, in the upstream of a moderator flowing channel, by which the ratio of removing coolants is set greater at the upstream than downstream. With such a constitution, the void distribution increasing upward in the channel box except for the portion of the moderator guide member is moderated by the increase of the area of the void region that expands downward in the guide member. Accordingly, the axial power distribution is flattened throughout the operation cycle and excess distortion is eliminated to improve the fuel integrity. (T.M.)

  20. Nuclear fuel bundle disassembly and assembly tool

    International Nuclear Information System (INIS)

    Yates, J.; Long, J.W.

    1975-01-01

    A nuclear power reactor fuel bundle is described which has a plurality of tubular fuel rods disposed in parallel array between two transverse tie plates. It is secured against disassembly by one or more locking forks which engage slots in tie rods which position the transverse plates. Springs mounted on the fuel and tie rods are compressed when the bundle is assembled thereby maintaining a continual pressure against the locking forks. Force applied in opposition to the springs permits withdrawal of the locking forks so that one tie plate may be removed, giving access to the fuel rods. An assembly and disassembly tool facilitates removal of the locking forks when the bundle is to be disassembled and the placing of the forks during assembly of the bundle. (U.S.)

  1. Fuel assembly for a nuclear reactor

    Energy Technology Data Exchange (ETDEWEB)

    Ferrari, H M; Miller, D L; Tong, L S

    1973-09-06

    The subject of the patent is a spacer design applicable, primarily, to LWR, and especially, though not specifically PWR, fuel assemblies. The spacer consists of an egg-box type of assembly formed of interlocking pressed plates giving a square lattice whose openings accommodate fuel pins or regulating rods. The pressed plates are formed to provide pressed-out spring-like flanges which hold the fuel pins in position and guide the regulating rods. Additional pressed-out flanges ensure the correct configuration of the spacer structure. The spacer is designed to present as little resistance as possible to coolant flow.

  2. The single SNR fuel assembly container (ESBB) to transport unirradiated SNR 300 fuel assemblies

    International Nuclear Information System (INIS)

    Hilbert, F.; Hottenrott, G.

    1998-01-01

    In this paper a new type B(U) package design is presented. The Single SNR Fuel Assembly Container (ESBB) is designed for the transport and storage of a single SNR 300 fuel assembly. This package is the main component for the future interim storage of the fuel assemblies in heavy storage casks. Its benefits are that it is compatible with the Category I transport system of Nuclear Cargo + Service NCS) used in Germany and that it can be easily handled at the current storage locations as well as in an interim storage facility. In total 205 fuel assemblies are currently stored in Hanau, Germany and Dounreay, U.K. Former studies have shown, that heavy transport and storage casks can be handled there only with considerable efforts. But the required category I transport to an interim storage is not reasonably feasible. To overcome these problems the ESBB was designed. It consists of a stainless steel tube with welded bottom, a welded plug as closure system and shock absorbers 26 packages at maximum can be transported in one batch with the NCS security vehicle. The safety analysis shows that the package complies with IAEA 1996. Standard calculations methods and computer codes like HEATING 7.2 (Childs 1993) have been used for the analysis. Criticality safety assessment is based on conservative assumptions as required in IAEA 1996. Drop tests carried out by BAM will be used to verify the design. These tests are scheduled for mid 1998. For the validation of the design prototypes have already been manufactured. Handling tests show that the design complies with the requirements. Preliminary drop tests show that the certification drop tests will be passed positively. (authors)

  3. Fuel sub-assembly

    International Nuclear Information System (INIS)

    Jolly, R.

    1988-01-01

    A nuclear fuel sub-assembly includes a hexagonal bundle of parallel, spaced apart fuel pins coupled at one end to an end-holding grid comprising a number of transverse spaced apart rails to each of which is connected a series of pin-receiving cells which render the pins axially captive with the rails. The series of cells are defined by a pair of metal strips each of which has a series of pocket formations such that when the pocket formations are in registry they define cylindrical shaped cells provided with internal projections which engage annular recesses in the end caps of the fuel pins to effect axial constraint of the pins. (author)

  4. Combined fuel assembly and thimble plug gripper for a nuclear reactor

    International Nuclear Information System (INIS)

    Meuschke, R.E.; Satterlee, A.E.

    1978-01-01

    A combined fuel assembly and thimble plug gripper for raising and lowering a fuel assembly into a nuclear reactor core, and for lifting and lowering a thimble plug assembly into the fuel assembly is described. It includes a vertically movable mast housing a mechanism which causes pivotally mounted fingers on the bottom of the mast to be moved into and out of latching engagement with the nozzle of a fuel assembly when the mast is resting on the assembly. The mast includes a second mechanism which supports second fingers pivotally mounted thereon and actuable by a third mechanism into and out of engagement with a thimble plug assembly supporting plugs adapted to be inserted in control rod guide thimbles in the fuel assembly. The second mechanism further includes an arrangement for lowering or raising the plug assembly respectively into or out of the guide thimbles in the fuel assembly. The apparatus includes control and interlock systems which preclude operation of the mechanisms under certain prescribed conditions

  5. ABB. CASE's GUARDIANTM Debris Resistant Fuel Assembly Design

    International Nuclear Information System (INIS)

    Dixon, D. J.; Wohlsen, W. D.

    1992-01-01

    ABB CE's experience, that 72% of all recent fuel-rod failures are caused by debris fretting, is typical. In response to this problem, ABB Combustion Engineering began supplying in the late 1980s fuel assemblies with a variety of debris resistant features, including both long-end caps and small flow holes. Now ABB CAE has developed an advanced debris resistant design concept, GUARDIAN TM , which has the advantage of capturing and retaining more debris than other designs, while displacing less plenum or active fuel volume than the long end-cap design. GUARDIAN TM design features have now been implemented into four different assembly designs. ABB CASE's GUARDIAN TM fuel assembly is an advanced debris-resistant design which has both superior filtering performance and uniquely, excellent debris retention, Retention effectively removes the debris from circulation in the coolant so that it is not able to threaten the fuel again. GUARDIAN TM features have been incorporated into four ABB. CAE fuel assembly designs. These assemblies are all fully compatible with the NSLS, and full-batch operation with GUARDIAN TM began in 1992. The number of plants of both CAE and non-CAE design which accept GUARDIAN TM for debris protection is expected to grow significantly during the next few years

  6. Parallel processing of neutron transport in fuel assembly calculation

    International Nuclear Information System (INIS)

    Song, Jae Seung

    1992-02-01

    Group constants, which are used for reactor analyses by nodal method, are generated by fuel assembly calculations based on the neutron transport theory, since one or a quarter of the fuel assembly corresponds to a unit mesh in the current nodal calculation. The group constant calculation for a fuel assembly is performed through spectrum calculations, a two-dimensional fuel assembly calculation, and depletion calculations. The purpose of this study is to develop a parallel algorithm to be used in a parallel processor for the fuel assembly calculation and the depletion calculations of the group constant generation. A serial program, which solves the neutron integral transport equation using the transmission probability method and the linear depletion equation, was prepared and verified by a benchmark calculation. Small changes from the serial program was enough to parallelize the depletion calculation which has inherent parallel characteristics. In the fuel assembly calculation, however, efficient parallelization is not simple and easy because of the many coupling parameters in the calculation and data communications among CPU's. In this study, the group distribution method is introduced for the parallel processing of the fuel assembly calculation to minimize the data communications. The parallel processing was performed on Quadputer with 4 CPU's operating in NURAD Lab. at KAIST. Efficiencies of 54.3 % and 78.0 % were obtained in the fuel assembly calculation and depletion calculation, respectively, which lead to the overall speedup of about 2.5. As a result, it is concluded that the computing time consumed for the group constant generation can be easily reduced by parallel processing on the parallel computer with small size CPU's

  7. Application of fault tree methodology to modeling of the AP1000 plant digital reactor protection system

    International Nuclear Information System (INIS)

    Teolis, D.S.; Zarewczynski, S.A.; Detar, H.L.

    2012-01-01

    The reactor trip system (RTS) and engineered safety features actuation system (ESFAS) in nuclear power plants utilizes instrumentation and control (IC) to provide automatic protection against unsafe and improper reactor operation during steady-state and transient power operations. During normal operating conditions, various plant parameters are continuously monitored to assure that the plant is operating in a safe state. In response to deviations of these parameters from pre-determined set points, the protection system will initiate actions required to maintain the reactor in a safe state. These actions may include shutting down the reactor by opening the reactor trip breakers and actuation of safety equipment based on the situation. The RTS and ESFAS are represented in probabilistic risk assessments (PRAs) to reflect the impact of their contribution to core damage frequency (CDF). The reactor protection systems (RPS) in existing nuclear power plants are generally analog based and there is general consensus within the PRA community on fault tree modeling of these systems. In new plants, such as AP1000 plant, the RPS is based on digital technology. Digital systems are more complex combinations of hardware components and software. This combination of complex hardware and software can result in the presence of faults and failure modes unique to a digital RPS. The United States Nuclear Regulatory Commission (NRC) is currently performing research on the development of probabilistic models for digital systems for inclusion in PRAs; however, no consensus methodology exists at this time. Westinghouse is currently updating the AP1000 plant PRA to support initial operation of plants currently under construction in the United States. The digital RPS is modeled using fault tree methodology similar to that used for analog based systems. This paper presents high level descriptions of a typical analog based RPS and of the AP1000 plant digital RPS. Application of current fault

  8. Thermal-hydraulic and neutron-physical characteristics of a new SCWR fuel assembly

    International Nuclear Information System (INIS)

    Liu, X.J.; Cheng, X.

    2009-01-01

    A new fuel assembly design for a thermal supercritical water cooled reactor (SCWR) core is proposed. Compared to the existing fuel assemblies, the present fuel assembly has two-rows of fuel rods between the moderator channels, to achieve a more uniform moderation for all fuel rod cells, and subsequently, a more uniform radial power distribution. In addition, a neutron-kinetics/thermal-hydraulics coupling method is developed, to analyze the neutron-physical and thermal-hydraulic behavior of the fuel assembly designs. This coupling method is based on the sub-channel analysis code COBRA-IV for thermal-hydraulics and the neutron-kinetics code SKETCH-N for neutron-physics. Both the COBRA-IV code and the SKETCH-N code are accordingly modified. An interface is established for the data transfer between these two codes. This coupling method is applied to both the one-row fuel assemblies (previous design) and the two-row fuel assemblies (present design). The performance of the two types of fuel assemblies is compared. The results show clearly that the two-row fuel assembly has more favorable neutron-physical and thermal-hydraulic characteristics than the one-row fuel assembly. The effect of various parameters on the fuel assembly performance is discussed. The coupling method is proven to be well suitable for further applications to SCWR fuel assembly design analysis

  9. Nuclear reactor fuel sub-assemblies

    International Nuclear Information System (INIS)

    Dodd, J.A.

    1981-01-01

    An improved fuel sub-assembly for a liquid metal cooled fast breeder reactor, is described, in which fatigue damage due to buffeting by cross-current flows is reduced and protection is provided against damage by contact with other reactor structures during loading and unloading of the sub-assembly. (U.K.)

  10. On numerical simulation of fuel assembly bow in pressurized water reactors

    Energy Technology Data Exchange (ETDEWEB)

    Horváth, Ákos, E-mail: akoshorvath@t-online.hu [AREVA, AREVA NP GmbH, Paul-Gossen-Str. 100, 91052 Erlangen (Germany); Budapest University of Technology and Economics, Department of Aircraft and Ships, Stoczek Street 6, Building J, H-1111 Budapest (Hungary); Dressel, Bernd [AREVA, AREVA NP GmbH, Paul-Gossen-Str. 100, 91052 Erlangen (Germany)

    2013-12-15

    Highlights: • Simulation of fuel assembly bow by coupled CFD and finite element method. • Comparison of calculated and experimentally measured bow shapes. • Investigation of boundary condition effect on bow pattern of a fuel assembly row. • Highlighting importance of consideration of fluid–structure interaction. • Assessment of flow redistribution within the fuel assembly row model. - Abstract: Fuel assembly bow in pressurized water reactor cores is largely triggered by lateral hydraulic forces together with creep processes generated by neutron flux. A detailed understanding of the flow induced bow behaviour is, therefore, an important issue. The experimental feedbacks and laboratory tests on fuel assembly bow show that it is characterized to a high degree by fluid–structure interaction (FSI) effects, therefore, consideration of FSI is essential and indispensable in full comprehension of the bow mechanism. In the present study, coupled computational fluid dynamics (CFD) and finite element simulations are introduced, calculating fuel assembly deformation under different conditions as a quasi-stationary phenomenon. The aim has been, on the one hand, to develop such a simplified fuel assembly CFD model, which allows set up of fuel assembly rows without loosing its main hydraulic characteristic; on the other hand, to investigate the bow pattern of a given fuel assembly row under different boundary conditions. The former one has been achieved by comparing bow shapes obtained with different fuel assembly (spacer grid) modelling approaches and mesh resolutions with experimental data. In the second part of the paper a row model containing 7.5 fuel assemblies is introduced, investigating the effect of flow distribution at inlet and outlet boundary regions on fuel assembly bow behaviour. The post processing has been focused on the bow pattern, lateral hydraulic forces, and horizontal flow distribution. The results have revealed importance of consideration of

  11. Establishment of China Nuclear Fuel Assembly Database

    International Nuclear Information System (INIS)

    Chen Peng; Jin Yongli; Zhang Yingchao; Lu Huaquan; Chen Jianxin

    2009-01-01

    China Nuclear Fuel Assembly Database (CNFAD) is developed based on Oracle system. It contains the information of fuel assemblies in the stages of its design, fabrication and post irradiation (PIE). The structure of Browser Sever is adopted in the development of the software, which supports the HTTP protocol. It uses Java interface to transfer the codes from server to clients and make the sources of server and clients be utilized reasonably and sufficiently, so it can perform complicated tasks. Data in various stages of the fuel assemblies in Pressure Water Reactor (PWR), such as the design,fabrication, operation, and post irradiation examination, can be stored in this database. Data can be shared by multi users and communicated within long distances. By using CNFAD, the problem of decentralization of fuel data in China nuclear power plants will be solved. (authors)

  12. Measurements of subchannel velocity and pressure drop for HANARO fuel assembly

    International Nuclear Information System (INIS)

    Yang, Sun Kyu; Jeong, Heung Jun; Cho, Suk; Min, Kyung Ho; Jeong, Moon Ki

    1996-07-01

    This report presents the hydraulic test results for HANARO fuel assemblies, which are performed to obtain the axial velocity and pressure drop data to be used to validate the code calculation model. For both 18 and 36-element fuel assemblies axial velocities of the entrance and exit regions are obtained, and developing axial velocity profiles along the flow direction for the fuel region of 18-element fuel assembly are also obtained. Varying the pressure tap locations, pressure drop data for each component of fuel assembly are obtained for various flow conditions. From the pressure drop test results it is noted that the pressure drops across the fuel assembly are 214 kPa and 205 kPa for the 18-element and 36-element fuel assembly respectively. 39 tabs., 12 figs., 5 refs. (Author)

  13. Shadow management applied in the first AP1000 project under the islands contract condition

    International Nuclear Information System (INIS)

    Liu Xiao

    2010-01-01

    As the global first AP1000 nuclear project, Sanmen phase I nuclear project itself has many challenges from design, procurement to construction managements for non practical nuclear project and experience can be referenced. Islands contract pattern was adopted by this project and this contract pattern has its own strength and weakness. Considering the negative influence result from the first unit, this project has the great postpone risk. Shadow management here tries to reduce these risks and enhance the project surveillance and control by the owner to promote the final goal of this project. (authors)

  14. Reliability analysis on passive residual heat removal of AP1000 based on Grey model

    Energy Technology Data Exchange (ETDEWEB)

    Qi, Shi; Zhou, Tao; Shahzad, Muhammad Ali; Li, Yu [North China Electric Power Univ., Beijing (China). School of Nuclear Science and Engineering; Beijing Key Laboratory of Passive Safety Technology for Nuclear Energy, Beijing (China); Jiang, Guangming [Nuclear Power Institute of China, Chengdu (China). Science and Technology on Reactor System Design Technology Laboratory

    2017-06-15

    It is common to base the design of passive systems on the natural laws of physics, such as gravity, heat conduction, inertia. For AP1000, a generation-III reactor, such systems have an inherent safety associated with them due to the simplicity of their structures. However, there is a fairly large amount of uncertainty in the operating conditions of these passive safety systems. In some cases, a small deviation in the design or operating conditions can affect the function of the system. The reliability of the passive residual heat removal is analysed.

  15. Detection of failed fuel rods in shrouded BWR fuel assemblies

    International Nuclear Information System (INIS)

    Baero, G.; Boehm, W.; Goor, B.; Donnelly, T.

    1988-01-01

    A manipulator and an ultrasonic testing (UT) technique were developed to identify defective fuel rods in shrouded BWR fuel assemblies. The manipulator drives a UT probe axially through the bottom tie plate into the water channels between the fuel rods. The rotating UT probe locates defective fuel rods by ingressed water which attenuates the UT-signal. (author)

  16. Developing Spent Fuel Assembly for Advanced NDA Instrument Calibration - NGSI Spent Fuel Project

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Jianwei [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Gauld, Ian C. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Banfield, James [GE Hitachi Nuclear Energy, Wilmington, NC (United States); Skutnik, Steven [Univ. of Tennessee, Knoxville, TN (United States)

    2014-02-01

    This report summarizes the work by Oak Ridge National Laboratory to investigate the application of modeling and simulation to support the performance assessment and calibration of the advanced nondestructive assay (NDA) instruments developed under the Next Generation Safeguards Initiative Spent Fuel (NGSI-SF) Project. Advanced NDA instrument calibration will likely require reference spent fuel assemblies with well-characterized nuclide compositions that can serve as working standards. Because no reference spent fuel standard currently exists, and the practical ability to obtain direct measurement of nuclide compositions using destructive assay (DA) measurements of an entire fuel assembly is prohibitive in the near term due to the complexity and cost of spent fuel experiments, modeling and simulation will be required to construct such reference fuel assemblies. These calculations will be used to support instrument field tests at the Swedish Interim Storage Facility (Clab) for Spent Nuclear Fuel.

  17. Fuel assemblies

    International Nuclear Information System (INIS)

    Yoshioka, Ritsuo.

    1983-01-01

    Purpose: To improve the operation performance of a BWR type reactor by improving the distribution of the uranium enrichment and the incorporation amount of burnable poisons in fuel assemblies. Constitution: The average enrichment of uranium 235 is increased in the upper portion as compared with that in the lower portion, while the incorporation amount of burnable poisons is increased in an upper portion as compared with that in the lower portion. The difference in the incorporation amount of the burnable poisons between the upper and lower portions is attained by charging two kinds of fuel rods; the ones incorporated with the burnable poisons over the entire length and the others incorporated with the burnable poisons only in the upper portions. (Seki, T.)

  18. Analysis of irradiation temperature in fuel rods of OGL-1 fuel assembly

    International Nuclear Information System (INIS)

    Fukuda, Kousaku; Kobayashi, Fumiaki; Minato, Kazuo; Ikawa, Katsuichi; Iwamoto, Kazumi

    1984-10-01

    Irradiation temperature in the fuel rods of 5th OGL-1 fuel assembly was analysed by the system composed by STPDSP2 and TRUMP codes. As the measured input-data, following parameters were allowed for; circumferential heating distribution around the fuel rod, which was measured in the JMTR critical assembly, axial heating distribution through the fuel rod, ratio of peak heatings of three fuel rods, and pre- and post-irradiation outer radii of the fuel compacts and inner radii of the graphite sleeves, which had been measured in PIE of the 5th OGL-1 fuel assembly. In computation the axial distributions of helium coolant temperature through the fuel rod and the heating value of each fuel rod were, firstly, calculated as input data for TRUMP. The TRUMP calculation yielded the temperatures which were fitted in those measured by all of the thermo-couples installed in the fuel rods, by adjusting only the value of the surface heat transfer coefficient, and consequently, the temperatures in all portions of the fuel rod were obtained. The apparent heat transfer coefficient changed to 60% of the initial values in the middle period of irradiation. For this reduction it was deduced that shoot had covered the surface of the fuel rod during irradiation, which was confirmed in PIE. Beside it, several things were found in this analysis. (author)

  19. A Study on the Fuel Assembly Seismic Analysis without Holddown Springs

    International Nuclear Information System (INIS)

    Kwon, O Cheol; Ha, Dong Geun; Lee, Kyou Seok; Jeon, Sang Yoon; Suh, Jung Min

    2013-01-01

    In this study, the effect for the fuel assembly removed holddown spring under seismic event has been evaluated through the comparison with the seismic analysis result of fuel assembly with holddown spring. In order to compare each design, the simplified fuel assembly seismic analysis models have been established according to reference. The mid grid impact force, natural frequency, and top nozzle displacement for each fuel assembly model has been analyzed using ANSYS. The fuel assembly seismic analyses without holddown springs are performed and compared to the model with holddown springs. The grid impact forces of CPM 1 and CPM 2 are almost doubled in comparison with CPM 3 and almost tripled in comparison with CPM 4 so the grid impact forces depend on CPM types. The grid impact forces of the fuel assembly model without holddown springs have similar tendencies in comparison with fuel assembly with holddown springs. Moreover, the model without holddown springs analysis time is much longer than the model with holddown springs. Consequently, it is moderate that the fuel assembly analysis model with holddown springs would be used for effective analysis even though the actual model has no holddown springs

  20. A Study on the Fuel Assembly Seismic Analysis without Holddown Springs

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, O Cheol; Ha, Dong Geun; Lee, Kyou Seok; Jeon, Sang Yoon; Suh, Jung Min [KEPCO Nuclear Fuel, Daejeon (Korea, Republic of)

    2013-10-15

    In this study, the effect for the fuel assembly removed holddown spring under seismic event has been evaluated through the comparison with the seismic analysis result of fuel assembly with holddown spring. In order to compare each design, the simplified fuel assembly seismic analysis models have been established according to reference. The mid grid impact force, natural frequency, and top nozzle displacement for each fuel assembly model has been analyzed using ANSYS. The fuel assembly seismic analyses without holddown springs are performed and compared to the model with holddown springs. The grid impact forces of CPM{sub 1} and CPM{sub 2} are almost doubled in comparison with CPM{sub 3} and almost tripled in comparison with CPM{sub 4} so the grid impact forces depend on CPM types. The grid impact forces of the fuel assembly model without holddown springs have similar tendencies in comparison with fuel assembly with holddown springs. Moreover, the model without holddown springs analysis time is much longer than the model with holddown springs. Consequently, it is moderate that the fuel assembly analysis model with holddown springs would be used for effective analysis even though the actual model has no holddown springs.

  1. In-core sipping method for the identification of failed fuel assemblies

    International Nuclear Information System (INIS)

    Wu Zhongwang; Zhang Yajun

    2000-01-01

    The failed fuel assembly identification system is an important safety system which ensures safe operations of reactor and immediate treatment of failed fuel rod cladding. The system uses an internationally recognized method to identify failed fuel assemblies in a reactor with fuel element cases. The in-core sipping method is customary used to identify failed fuel assemblies during refueling or after fuel rod cladding failure accidents. The test is usually performed after reactor shutdown by taking samples from each fuel element case while the cases are still in their original core positions. The sample activity is then measured to identify failed fuel assemblies. A failed fuel assembly identification system was designed for the NHR-200 based on the properties of the NHR-200 and national requirements. the design provides an internationally recognized level of safety to ensure the safety of NHR-200

  2. Fuel assembly gripping device using self-locking mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Lee, G. M.; Choi, S.; Kim, K. S.; Kim, T. W.; Jeong, K. H.; Park, K. B.; Chang, M. H

    1999-07-01

    This report presents an actuating principles and structure for two kind of the fuel assembly gripping devices (Gripper-A, B) developed for SMART. The main components of these grippers are push bundle, rotation bundle, upper guide tube and chuck assembly. The rope attached to winch system on moving cask hangs gripper's push bundle. Due to a down-and-up operation of winch system, the push bundle pushes crown teeth shaped rotation bundle and then it is pushed down and rotated counter clockwise. The push-and-pull sequential operation of push bundle makes the rotation bundle is pushed, rotated and returned, moreover it makes the chuck assembly is expanded or shrunk. The expansion and shrinkage motion of chuck assembly makes the gripper latch and release the fuel assembly. Gripper-A suits for the handling of the fuel assembly with square shaped latching hole. Otherwise Gripper-B suits for a circular shaped latching hole. (author). 5 refs., 20 figs.

  3. Fuel assembly gripping device using self-locking mechanism

    International Nuclear Information System (INIS)

    Lee, G. M.; Choi, S.; Kim, K. S.; Kim, T. W.; Jeong, K. H.; Park, K. B.; Chang, M. H.

    1999-07-01

    This report presents an actuating principles and structure for two kind of the fuel assembly gripping devices (Gripper-A, B) developed for SMART. The main components of these grippers are push bundle, rotation bundle, upper guide tube and chuck assembly. The rope attached to winch system on moving cask hangs gripper's push bundle. Due to a down-and-up operation of winch system, the push bundle pushes crown teeth shaped rotation bundle and then it is pushed down and rotated counter clockwise. The push-and-pull sequential operation of push bundle makes the rotation bundle is pushed, rotated and returned, moreover it makes the chuck assembly is expanded or shrunk. The expansion and shrinkage motion of chuck assembly makes the gripper latch and release the fuel assembly. Gripper-A suits for the handling of the fuel assembly with square shaped latching hole. Otherwise Gripper-B suits for a circular shaped latching hole. (author). 5 refs., 20 figs

  4. Support a nuclear fuel assembly in a reactor

    International Nuclear Information System (INIS)

    Leclercq, J.

    1985-01-01

    The device has to maintain the assemblies with regard to a horizontal plate of the core. The assemblies, having the same section, are arranged side by side in a regular polygonal lattice and each asssembly is, either equipped with at least two zones to receive the rods which are vertically inserted and maintained during the reactor operation, or beside an assembly which is equipped. The device has two sets comprising each one at least one deformable locking element and a rigid element which raches with it, one fixed to the fuel assembly and the other fixed to a horizontal plate attached to the reactor core, positioned so that inserting a fuel rod into an emplacement in the fuel assembly deforms the bolt transversally to lock it with the rigid piece. The invention can be applied to water moderated reactors [fr

  5. Nuclear fuel assembly for fast neutron reactors

    International Nuclear Information System (INIS)

    Ilyunin, V.G.; Murogov, V.M.; Troyanov, M.F.; Rinejskij, A.A.; Ustinov, G.G.; Shmelev, A.N.

    1982-01-01

    The fuel assembly of a fast reactor consists of fuel elements comprising sections with fissionable and breeding material and tubes with hollows designed for entrapping gaseous fission products. Tubes joining up to the said sections are divided in a middle and a peripheral group such that at least one of the tube groups is placed in the space behind the coolant inlet ports. The configuration above allows reducing internal overpressure in the fuel assembly, thus reducing the volume of necessary structural elements in the core. (J.B.)

  6. Fuel cycle and waste management. 2. Design of a BWR Core with Over-moderated MOX Fuel Assemblies

    International Nuclear Information System (INIS)

    Francois, J.L.; Del Campo, C. Martin

    2001-01-01

    The use of uranium-plutonium mixed-oxide (MOX) fuel in light water reactors is a current practice in several countries. Generally one-third of the reactor core is loaded with MOX fuel assemblies, and the other two-thirds is loaded with uranium assemblies. Nevertheless, the plutonium utilization could be more effective if the full core could be loaded with MOX fuel. In this work, the design of a boiling water reactor (BWR) core fully loaded with over-moderated MOX fuel designs was investigated. In previous work, the design of over-moderated BWR MOX fuel assemblies based on a 10 x 10 lattice was presented; these designs improve the neutron spectrum and the plutonium consumption rate, compared with standard MOX assemblies. To increase the moderator-to-fuel ratio (MFR), two approaches were followed. In the first approach, 8 or 12 fuel rods were replaced by water rods in the 10x10 assembly, which increased the MFR from 1.9 to 2.2 and 2.4, respectively. These designs are called MOX-8WR and MOX-12WR, respectively, in this paper. In the second approach, an 11 x 11 lattice with 24 water rods (11 x 11-24WR) was designed, which is a design with a number of active fuel rods (88) very close to the standard MOX assembly (91). The fuel rod diameter is smaller to preserve the assembly dimensions, and in this last case, the MFR is 2.4. The calculations were performed with the CM-PRESTO three-dimensional steady-state simulator. The nuclear data banks were generated with the HELIOS system, and they were processed by TABGEN to produce tables of nuclear cross sections depending on burnup, void, and exposure weighted void (void history), which are used by CM-PRESTO. One base reload pattern was designed for a BWR/5 rated at 1931 MW(thermal), to be used with the different over-moderated assembly designs. The reload pattern has 112 fresh fuel assemblies (FFAs) out of a total of 444 fuel assemblies and was simulated during 20 cycles with the Haling strategy, until an equilibrium cycle of

  7. Calculation of Permeability inside the Basket including one Fuel Assembly

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Seung Hwan; Bang, Kyung Sik; Lee, Ju an; Choi, Woo Seok [KAERI, Daejeon (Korea, Republic of)

    2016-05-15

    In general, the porous media model and the effective thermal conductivity were used to simply the fuel assembly. The methods of calculating permeability were compared considering the flow inside a basket which includes a nuclear fuel. Detailed fuel assembly was a computational modeling and the flow characteristics were investigated. The flow inside the basket which included a fuel assembly is analyzed by CFD. As the height of the fuel assembly increases, the pressure drop linearly increased. The inertia resistance could be neglected. Three methods to calculate the permeability were compared. The permeability by the friction factor is 50% less than the permeability by wall shear stress and pressure drop.

  8. Design requirement on KALIMER blanket fuel assembly duct

    International Nuclear Information System (INIS)

    Hwang, Woan; Kang, H. Y.; Nam, C.; Kim, J. O.

    1998-03-01

    This document describes design requirements which are needed for designing the blanket fuel assembly duct of the KALIMER as design guidance. The blanket fuel assembly duct of the KALIMER consists of fuel rods, mounting rail, nosepiece, duct with pad, handling socket with pad. Blanket fuel rod consists of top end plug, bottom end plug with solid ferritic-martensitic steel rod and key way blanket fuel slug, cladding, and wire wrap. In the assembly, the rods are in a triangular pitch array, and the rod bundle is attached to the nosepiece with mounting rails. The bottom end of the assembly duct is formed by a long nosepiece which provides the lower restraint function and the paths for coolant inlet. This report contains functional requirements, performance and operational requirements, interfacing systems requirements, core restraint and interface requirements, design limits and strength requirements, system configuration and essential feature requirements, seismic requirements, structural requirements, environmental requirements, reliability and safety requirements, standard and codes, QA programs, and other requirements. (author). 20 refs., 4 figs

  9. Apparatus and method for assembling fuel elements

    International Nuclear Information System (INIS)

    Arya, S.P.

    1978-01-01

    A nuclear fuel element assembling method and apparatus is preferably operable under programmed control unit to receive fuel rods from storage, arrange them into axially aligned stacks of closely monitored length, and transfer the stacks of fuel rods to a loading device for insertion into longitudinal passages in the fuel elements. In order to handle large numbers of one or more classifications of fuel rods or other cylindrical parts, the assembling apparatus includes at least two feed troughs each formed by a pair of screw members with a movable table having a plurality of stacking troughs for alignment with the feed troughs and with a conveyor for delivering the stacks to the loading device, the fuel rods being moved along the stacking troughs upon a fluid cushion. 23 claims, 6 figures

  10. Discussion on the re-irradiated fuel assembly with damaged guide vanes

    International Nuclear Information System (INIS)

    Li Ligang

    2013-01-01

    In January 2011, during the second plant of CNNC Nuclear Power Operations Management Co., Ltd.(hereinafter referred to as the second plant) refueling outage, the visual inspection found the guide vanes of fuel assembly A had felling off. After the National Nuclear Safety Administration (NNSA) estimated and approved, the fuel assembly A was reloaded in the specified location of reactor core. During the refueling outage in March 2012, the fuel assembly A was removed again from the reactor core. Visual inspection confirmed that the fuel assembly A was complete and without abnormal changes. The practice provides reference for re-irradiated of fuel assembly with the same type of damaged guide vanes, and provides case support for standard development for the same type of re-irradiated fuel assembly with damaged guide vanes. (author)

  11. Nuclear fuel sub-assemblies

    International Nuclear Information System (INIS)

    Dodd, J.A.; Butterfield, C.E.; Waite, E.

    1979-01-01

    A fast reactor fuel sub-assembly has honeycomb grids for laterally supporting the fuel pins. The grids are of two series and are arranged alternately along the bundle. The grids of a first series provide a discrete cell for each pin but the grids of the second series have a peripheral group of cells only. The grids of the second series provide intermediate support of the edge pins to restrain bow. (author)

  12. The Technology Trend of Japanese Patent for the Nuclear Fuel Assembly Inspection

    International Nuclear Information System (INIS)

    Cho, Jai Wan; Choi, Young Soo; Lee, Nam Ho; Jeong, Kyung Min; Suh, Yong Chil; Kim, Chang Hoi; Shin, Jung Cheol

    2008-06-01

    Japanese technology patents for the nuclear fuel assembly inspection unit, from the year 1993 to the year 2006, were investigated. The fuel rods which contain fissile material are grouped together in a closely-spaced array within the fuel assembly. Various kinds of reactor including the PWR reactor are being operated in Japan. There are many kinds of nuclear fuel assemblies in Japan, and the shape and the size of these nuclear fuel assemblies are various also. As the structure of these various fuel assemblies is a regular square as the same as the Korean one, the inspection method described in Japanese technology patent can be applied to the inspection of the nuclear fuel assembly of the Korea. This report focuses on advances in VIT(visual inspection test) of nuclear fuel assembly using the state-of-the-art CCD camera system

  13. The Technology Trend of Japanese Patent for the Nuclear Fuel Assembly Inspection

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Jai Wan; Choi, Young Soo; Lee, Nam Ho; Jeong, Kyung Min; Suh, Yong Chil; Kim, Chang Hoi; Shin, Jung Cheol

    2008-06-15

    Japanese technology patents for the nuclear fuel assembly inspection unit, from the year 1993 to the year 2006, were investigated. The fuel rods which contain fissile material are grouped together in a closely-spaced array within the fuel assembly. Various kinds of reactor including the PWR reactor are being operated in Japan. There are many kinds of nuclear fuel assemblies in Japan, and the shape and the size of these nuclear fuel assemblies are various also. As the structure of these various fuel assemblies is a regular square as the same as the Korean one, the inspection method described in Japanese technology patent can be applied to the inspection of the nuclear fuel assembly of the Korea. This report focuses on advances in VIT(visual inspection test) of nuclear fuel assembly using the state-of-the-art CCD camera system.

  14. Detailed channel thermal-hydraulic calculation of nuclear reactor fuel assemblies

    International Nuclear Information System (INIS)

    Zhukov, A.V.; Sorokin, A.P.; Ushakov, P.A.; Yur'ev, Yu.S.

    1981-01-01

    The system of equations of mass balance, quantity of motion and energy used in calculation of nuclear reactor fuel assemblies is obtained. The equation system is obtained on the base of integral equations of hydrodynamics interaction in assemblies of smooth fuel elements and fuel elements with wire packing. The calculation results of coolant heating distributions by the fast reactor assembly channels are presented. The analysis of the results obtained shows that interchannel exchange essentially uniforms the coolant heating distribution in the peripheral range of the assembly but it does not remove non-uniformity caused by power distribution non-uniformity in the cross section. Geometry of the peripheral assembly range plays an essential role in the heating distribution. Change of the calculation gap between the peripheral fuel elements and assembly shells can result either in superheating or in subcooling in the peripheral channels relatively to joint internal channels of the assembly. Heat supply to the coolant passing through interassembly gaps decreases temperature in the assembly periphery and results in the increase of temperature non-uniformity by the perimeter of peripheral fuel elements. It is concluded that the applied method of the channel-by-channel calculation is ef-- fective in thermal-physical calculation of nuclear reactor fuel assemblies and it permits to solve a wide range of problems [ru

  15. Retrofitting a spent fuel pool spray system for alternative cooling as a strategy for beyond design basis events

    Energy Technology Data Exchange (ETDEWEB)

    Hartmann, Christoph; Vujic, Zoran [Westinghouse Electric Germany GmbH, Mannheim (Germany)

    2017-06-15

    Due to requirements for nuclear power plants to withstand beyond design basis accidents, including events such as happened in 2011 in the Fukushima Daiichi Nuclear Power Plant in Japan, alternative cooling of spent fuel is needed. Alternative spent fuel cooling can be provided by a retrofitted spent fuel pool spray system based on the AP1000 plant design. As part of Krsko Nuclear Power Plant's Safety Upgrade Program, Krsko Nuclear Power Plant decided on, and Westinghouse successfully designed a retrofit of the AP1000 {sup registered} plant spent fuel pool spray system to provide alternative spent fuel cooling.

  16. Measuring method for effective neutron multiplication factor upon containing irradiated fuel assembly

    International Nuclear Information System (INIS)

    Ueda, Makoto; Mitsuhashi, Ishi; Sasaki, Tomoharu.

    1993-01-01

    A portion of irradiated fuel assemblies at a place where a reactivity effect is high, that is, at a place where neutron importance is high is replaced with standard fuel assemblies having a known composition to measure neutron fluxes at each of the places. An effective composition at the periphery of the standard fuel assemblies is determined by utilizing a calibration curve determined separately based on the composition and neutron flux values of the standard assemblies. By using the calibration curve determined separately based on this composition and the known composition of the standard fuel assemblies, an effective neutron multiplication factor for the fuel containing portion containing the irradiated fuel assemblies is recognized. Then, subcriticality is ensured and critical safety upon containing the fuel assemblies can be secured quantitatively. (N.H.)

  17. Informational system to assist decision making at spent nuclear fuel transportation from VVER-440, VVER-1000 and RBMK-1000 nuclear power plants

    International Nuclear Information System (INIS)

    Kuryndin, A.V.; Kirkin, A.M.; Stroganov, A.A.

    2012-01-01

    The developed informational system provides an automated estimations of nuclear and radiation safety parameters during spent nuclear fuel transportation from WWER-440 and WWER-1000 and RBMK-1000 nuclear power plants to the nuclear fuel cycle facilities, and allows us to determine the optimum cask loading from the dose rates distribution outside of protection point of view [ru

  18. Fuel assembly manufacturing device

    International Nuclear Information System (INIS)

    Picard, P.; Villaeys, R.

    1995-01-01

    The device comprises a central support on which the frame is mounted, a magazine which supports the fuel rods in passages aligned with those in the frame and a traction assembly on the opposite side of the magazine and including an array of pull rods designed to be advanced through the passages in the frame, to grip respective fuel rods in magazine and to pull those rods into the passages on the return stroke. 13 figs

  19. Fuel assemblies for FBR type reactor

    International Nuclear Information System (INIS)

    Ikeda, Kiyoshi.

    1981-01-01

    Purpose: To decrease errors in the flow rate distribution of coolants by resiliently inserting a flow regulation rod having a variable flow regulation element formed at the upper portion along the axial direction in the entrance nozzle of a fuel assembly. Constitution: A plurality of orifice aperture are formed to the entrance nozzle of a fuel assembly and an aperture for inserting a flow regulation rod is formed to the top end of the entrance nozzle. A fixed flow regulation element A and a variable flow regulation element B supported coaxially with the nozzle by a support ring are disposed to the inside of the nozzle. The element B is urged by the resilient urging spring to the element A and connected by way of support lever to the flow regulation rod. While on the other hand, the top end of the nozzle is inserted through the partition wall between a high pressure coolant chamber and a low pressure coolant chamber. An aperture for hydrodynamically supporting the fuel assembly is provided by way of a frame and a flow regulation rod that stands vertically from the low pressure coolant chamber is disposed to the center of the frame. In the fuel assembly, the flow regulation rod inserted from the aperture at the top end of the nozzle pushes the element B upwardly to thereby maintain a flow passage of the coolant between the elements A and B. (Seki, T.)

  20. Nuclear fuel assembly

    International Nuclear Information System (INIS)

    Wakamatsu, Mitsuo.

    1974-01-01

    Object: To improve a circulating flow passage of coolant so as to be able to accurately detect the temperature of coolant, rare gases contained, and the like. Structure: A fuel assembly comprising a flow regulating lattice provided with a plurality of communication holes in an axial direction, said lattice being positioned at the upper end of an outer tube in which nuclear fuel elements are received, and a neutron shielding body having a plurality of spiral coolant flow passages disposed between the lattice and the nuclear fuel elements, whereby a coolant comprised of liquid sodium or the like, which moves up passing through the coolant flow passages and the flow regulating passage, is regulated and passed through a detector mounted at the upper part of the flow regulating lattice to detect coolant temperature, flow rate, and rare gases or the like as the origin of nuclear fission contained in the coolant due to breakage of fuel elements. (Kamimura, M.)

  1. Criticality safety evaluation report for FFTF 42% fuel assemblies

    International Nuclear Information System (INIS)

    Richard, R.F.

    1997-01-01

    An FFTF tritium/isotope production mission will require a new fuel supply. The reference design core will use a mixed oxide fuel nominally enriched to 40 wt% Pu. This enrichment is significantly higher than that of the standard Driver Fuel Assemblies used in past operations. Consequently, criticality safety for handling and storage of this fuel must be addressed. The purpose of this document is to begin the process by determining the minimum critical number for these new fuel assemblies in water, sodium and air. This analysis is preliminary and further work can be done to refine the results reported here. Analysis was initially done using 45 wt 5 PuO. Additionally, a preliminary assessment is done concerning storage of these fuel assemblies in Interim Decay Storage (IDS), Fuel Storage Facility (FSF), and Core Component Containers/Interim Storage Casks (CCC/ISC)

  2. An improved assembly for the transport of fuel elements

    International Nuclear Information System (INIS)

    Myers, G.

    1979-01-01

    An improved assembly for the transport and storage of radioactive nuclear fuel elements is described. The fuel element transport canister is of the type in which the fuel elements are submerged in liquid with a self regulating ullage system, so that the fuel elements are always submerged in the liquid even when the assembly is used in one orientation during loading and another orientation during transportation. (UK)

  3. Evaluation of the applicability of cladding deformation model in RELAP5/MOD3.2 code for VVER-1000 fuel

    International Nuclear Information System (INIS)

    Vorob'ev, Yu.; Zhabin, O.

    2015-01-01

    Applicability of cladding deformation model in RELAP5/MOD3.2 code is analyzed for VVER-1000 fuel cladding from Zr+1%Nb alloy. Experimental data and calculation model of fuel assembly channel of the core are used for this purpose. The model applicability is tested for the cladding temperature range from 600 to 1200 deg C and pressure range from 1 to 12 MPa. Evaluation results demonstrate limited applicability of built-in RELAP5/MOD3.2 cladding deformation model to the estimation of Zr+1%Nb cladding rupture conditions. The limitations found shall be considered in application of RELAP5/MOD3.2 cladding deformation model in the design-basis accident analysis of VVER reactors

  4. Statistical methods in the mechanical design of fuel assemblies

    Energy Technology Data Exchange (ETDEWEB)

    Radsak, C.; Streit, D.; Muench, C.J. [AREVA NP GmbH, Erlangen (Germany)

    2013-07-01

    The mechanical design of a fuel assembly is still being mainly performed in a de terministic way. This conservative approach is however not suitable to provide a realistic quantification of the design margins with respect to licensing criter ia for more and more demanding operating conditions (power upgrades, burnup increase,..). This quantification can be provided by statistical methods utilizing all available information (e.g. from manufacturing, experience feedback etc.) of the topic under consideration. During optimization e.g. of the holddown system certain objectives in the mechanical design of a fuel assembly (FA) can contradict each other, such as sufficient holddown forces enough to prevent fuel assembly lift-off and reducing the holddown forces to minimize axial loads on the fuel assembly structure to ensure no negative effect on the control rod movement.By u sing a statistical method the fuel assembly design can be optimized much better with respect to these objectives than it would be possible based on a deterministic approach. This leads to a more realistic assessment and safer way of operating fuel assemblies. Statistical models are defined on the one hand by the quanti le that has to be maintained concerning the design limit requirements (e.g. one FA quantile) and on the other hand by the confidence level which has to be met. Using the above example of the holddown force, a feasible quantile can be define d based on the requirement that less than one fuel assembly (quantile > 192/19 3 [%] = 99.5 %) in the core violates the holddown force limit w ith a confidence of 95%. (orig.)

  5. Fuel assembly for use in BWR type reactor

    International Nuclear Information System (INIS)

    Inaba, Yuzo.

    1988-01-01

    Purpose: To attain the reduction of neutron irradiation amount to control rods by the improvement in the reactor shutdown margin and the improvement of the control rod worth, by enhancing the arrangement of burnable poisons. Constitution: The number of burnable poison-incorporated fuel rods present in the outer two rows along the sides in adjacent with a control rod among the square lattice arrangement in a fuel assembly is decreased to less than 1/4 for that of total burnable poison-incorporated fuel rods, while the remaining burnable posion-incorporated fuel rods are arranged in the region other than above (that is, those regions not nearer to the control rod). Thus, even if a sufficient number of burnable poison to prolong the controlling effect for the reactivity with the burnable contents as the fuel assembly are disposed, only the burnable poison -incorporated fuel rods by the number less than 1/4 for that of the total burnable poison-incorporated fuel rods are present near the control rod of the fuel assembly. Accordingly, the control rod worth at the initial stage of the burning is increased at both high and normal temperatures. (Kawakami, Y.)

  6. Fluid flow test for KMRR fuel assemblies

    International Nuclear Information System (INIS)

    Chung, Moon Ki; Yang, Sun Kyu; Chung, Chang Hwan; Chun, See Young; Song, Chul Hha; Jun, Hyung Gil; Chung, Heung Joon; Won, Soon Yeun; Cho, Young Rho; Kim, Bok Deuk

    1991-01-01

    Hydraulic and velocity measurment tests were carried out for the KMRR fuel assembly. Two types of the KMRR fuel assembly are consist of longitudinally finned rods. Experimental data of the pressure drops and friction factors for the KMRR fuel assemlby were produced. The measurement technique for the turbulent flow structure in subchannels using the LDV was obtained. The measurement of the experimental constant of the thermal hydraulic analysis code was investigated. The results in this study are used as the basic data for the development of an analysis code. The measurement technique acquired in this study can be applied to the KMRR thermal hydraulic commissioning test and development of the domestic KMRR fuel fabrication. (Author)

  7. Casette for storage of spent fuel assemblies

    International Nuclear Information System (INIS)

    Ericsson, S.

    1992-01-01

    Describes a design of a casette for spent fuel storage in a fuelstorage pool. The new design, based on flexible spacers, allows the fuel assemblies to be packed more compact and the fuel storage pool used in a more economic way

  8. Characteristics of WWER-1000 fuel rod claddings and FA components from E635 alloy at burnups up to 72 MWd/kgU

    International Nuclear Information System (INIS)

    Nikulin, A.; Novikov, A.; Peregud, M.; Shishov, V.; Shevyakov, A.; Volkova, I.; Novoselov, A.; Kobylyansky, G.

    2011-01-01

    In this paper operation experience, results of investigated E365 alloy components of Balakovo NPP Unit 1 and Kalinin NPP unit 1 fuel assemblies are presented. Appearance, shape changes and geometric size, corrosion state of guide thimbles, angles and fuel rods, corrosion of fuel claddings are studied. At the end authors concluded that: I) E635 alloy corroborated its high operation reliability as fuel claddings and WWER-1000 FA components during 6 year service to the fuel burnup of 72MWd/kgU; II) Based on the results from the post-irradiation investigations of the fuel rods and other structural elements of WWER-1000 FAA, fabricated from E635 alloy, in terms of the basic operational characteristics, their resources after the 6 year operation cycle have not been exhausted; III) The geometrical parameters, corrosion states, tensile properties of items fabricated from fuel alloy did not attain the values that would prevent their further operation: 1) the elongations of the fuel rods at the mean burnups up to 66.2 MWd/kgU do not exceed 15 mm or 4.9%; 8) the amount of the oxide coat at surface of GT and CT does not exceed 45 μm, the hydrogen content is <0.03% mass; 9) the oxide coat at the surfaces of the frame angles does not exceed 50 μm, the hydrogen content is <0.04% mass

  9. Westinghouse AP1000 Electrical Generation Costs - Meeting Marketplace Requirements

    International Nuclear Information System (INIS)

    Paulson, C. Keith

    2002-01-01

    completion. These plants are the Westinghouse advanced passive designs - AP600 and AP1000 - both of which have verifiable engineering design packages that are more than 50 percent complete. (author)

  10. Nuclear Fuel Assembly Assessment Project and Image Categorization

    Energy Technology Data Exchange (ETDEWEB)

    Lindsey, C.S.; Lindblad, T.; Waldemark, K. [Royal Inst. of Tech., Stockholm (Sweden); Hildingsson, Lars [Swedish Nuclear Power Inspectorate, Stockholm (Sweden)

    1998-07-01

    A project has been underway to add digital imaging and processing to the inspection of nuclear fuel by the International Atomic Energy Agency. The ultimate goals are to provide the inspector not only with the advantages of Ccd imaging, such as high sensitivity and digital image enhancements, but also with an intelligent agent that can analyze the images and provide useful information about the fuel assemblies in real time. The project is still in the early stages and several interesting sub-projects have been inspired. Here we give first a review of the work on the fuel assembly image analysis and then give a brief status report on one of these sub-projects that concerns automatic categorization of fuel assembly images. The technique could be of benefit to the general challenge of image categorization

  11. Design of a PWR for long cycle and direct recycling of spent fuel

    Energy Technology Data Exchange (ETDEWEB)

    Mohamed, Nader M.A., E-mail: mnader73@yahoo.com

    2015-12-15

    assembly, 58 or 54 MWd/kgU burnup of the fuel can be achieved, respectively. Comparing this fuel cycle strategy with that of the advanced pressurized water reactors such as AP-1000 and EPR, we find that almost the same burnup can be achieved with longer core cycle: 36 months versus 18 months for these reactors. Recycling these fuel bundles in CANDU-6 reactors requires minimizing the lattice pitch to 22 cm. In order to keep the coolant void reactivity of the ACR-700 slightly negative, the calandria tube should be increased from 7.8 cm to 8.2 cm to decrease the moderator to fuel volume ratio.

  12. Fast Neutron Emission Tomography of Used Nuclear Fuel Assemblies

    Science.gov (United States)

    Hausladen, Paul; Iyengar, Anagha; Fabris, Lorenzo; Yang, Jinan; Hu, Jianwei; Blackston, Matthew

    2017-09-01

    Oak Ridge National Laboratory is developing a new capability to perform passive fast neutron emission tomography of spent nuclear fuel assemblies for the purpose of verifying their integrity for international safeguards applications. Most of the world's plutonium is contained in spent nuclear fuel, so it is desirable to detect the diversion of irradiated fuel rods from an assembly prior to its transfer to ``difficult to access'' storage, such as a dry cask or permanent repository, where re-verification is practically impossible. Nuclear fuel assemblies typically consist of an array of fuel rods that, depending on exposure in the reactor and consequent ingrowth of 244Cm, are spontaneous sources of as many as 109 neutrons s-1. Neutron emission tomography uses collimation to isolate neutron activity along ``lines of response'' through the assembly and, by combining many collimated views through the object, mathematically extracts the neutron emission from each fuel rod. This technique, by combining the use of fast neutrons -which can penetrate the entire fuel assembly -and computed tomography, is capable of detecting vacancies or substitutions of individual fuel rods. This paper will report on the physics design and component testing of the imaging system. This material is based upon work supported by the U.S. Department of Energy, Office of Defense Nuclear Nonproliferation Research and Development within the National Nuclear Security Administration, under Contract Number DE-AC05-00OR22725.

  13. Nuclear reactor fuel assembly spacer grids

    International Nuclear Information System (INIS)

    Jabsen, F.S.

    1977-01-01

    Designs of nuclear reactor fuel assembly spacer grids for supporting and spacing fuel elements are described which do not utilize resilient grid plate protrusions in the peripheral band but retain the advantages inherent in the combination resilient and rigid protrusion cells. (U.K.)

  14. Perspective decisions of WWER nuclear fuel: Implementation at Russian NPPs

    International Nuclear Information System (INIS)

    Molchanov, V.

    2003-01-01

    The scientific and technical policy pursued by JSC TVEL has managed to create a new generation of fuel assembly design on the basis of solutions tested at various units of Russian NPPs - Kola NPP, Kalinin NPP, Unit 1, Balakovo NPP Unit 1. The requirements set for the new generation nuclear fuel for WWER are: 1) High fuel burnup - up to 70 MWxdays/kgU; 2) Extended operation cycle - up to 6 years; 3) Increase of uranium charge to the core; 4) Increased lateral stability - bow not more than 7 mm; 5) High level of operating reliability - fuel rod leakage not worse than 10-5 1/year; 6) Demountable fuel assembly design. Post-irradiation examination results of fuel assemblies discharged from WWER-1000 reactors demonstrate that fuel rods have substantial reserve in general characteristics including that of dealing with planned burnup. In order to meet the requirements, trials are started for: implementation of rigid skeleton (WWER-1000); fuel column length extension (WWER-1000 and WWER-440); increase of UO 2 charge (WWER-1000 and WWER-440); enhancing of operational reliability and demountable design. It is concluded that the Russian nuclear fuel for WWER-type reactors is competitive and enables the implementation of state-of-the-art cost effective fuel cycles

  15. The FARC fuel archive of WWER

    International Nuclear Information System (INIS)

    Zizin, M.N.; Parfenova, N.A.; Proselkov, V.N.; Shishkov, L.K.

    1998-01-01

    The principles of organisation are explained and the structure of the FARC fuel archive for WWER reactors is circumscribed. The objective of archive is accumulation of fuel data, data storage and obtaining of fuel using characteristics. The working version of fuel archive on 01 July 1998 is realised, in which the data tables for fuel assemblies for 169 WWER-440 cycles and 35 WWER-1000 cycles are stored. There are two different versions of fuel archive - for WWER-440 (FARC) and for WWER-1000 (FARC1000). A structure of some tables and the texts of programs for them differ. (Authors)

  16. Equations of macrotransport in reactor fuel assemblies

    International Nuclear Information System (INIS)

    Sorokin, A.P.; Zhukov, A.V.; Kornienko, Yu.N.; Ushakov, P.A.

    1986-01-01

    The rigorous statement of equations of macrotransport is obtained. These equations are bases for channel-by-channel methods of thermohydraulic calculations of reactor fuel assemblies within the scope of the model of discontinuous multiphase coolant flow (including chemical reactions); they also describe a wide range of problems on thermo-physical reactor fuel assembly justification. It has been carried out by smoothing equations of mass, momentum and enthalpy transfer in cross section of each phase of the elementary fuel assembly subchannel. The equation for cross section flows is obtaind by smoothing the equation of momentum transfer on the interphase. Interaction of phases on the channel boundary is described using the Stanton number. The conclusion is performed using the generalized equation of substance transfer. The statement of channel-by-channel method without the scope of homogeneous flow model is given

  17. Evolution of fuel rod support under irradiation impact on the mechanical behaviour of fuel assemblies

    International Nuclear Information System (INIS)

    Billerey, Antoine; Waeckel, Nicolas

    2005-01-01

    New fuel management targets imply to increase fuel assembly discharge burnup. Therefore, the prediction of the mechanical behaviour of the irradiated fuel assembly is essential such as excessive fuel assembly distortion induce incomplete Rod Cluster Control Assembly insertion problems (safety issue) or fuel rod vibration induced wear leading to leaking rods (plant operation problems). Within this framework, one of the most important parameter is the knowledge of the fuel rod support in the grid cell because it directly governs the mechanical behaviour of the fuel assembly and consequently allows to predict the behaviour of irradiated structures in terms of (1) axial and lateral deformation (global behaviour of the assembly) and (2) rod vibration induced wear (local behaviour of the rod). Generally, fuel rod support is provided by a spring-dimple system fixed to the grid. During irradiation, the spring force decreases and a gap between the rod and the spring may occur. This phenomenon is due to (1) stress relieving in the spring and in the dimples, (2) grid growth and (3) reduction of the rod diameter. Two models have been developed to predict the behaviour of the rod in the cell. The first model is dedicated to the evaluation of the spring force relaxation during irradiation. The second one can assess the rotation characteristic of the fuel rod in the cell, function of the spring force. The main input parameters are (1) the creep laws of the grid materials, (2) the growth law of the grid, (3) the evolution of rod diameter and (4) the design of the fuel rod support. The aim of this paper is to: (1) evaluate the consequences of grid support design modifications on the rod vibration sensitivity in terms of predicted rod to grid maximum gap during irradiation and time in operation with an open rod to grid gap, (2) evaluate, using a linear or non-linear Finite Element assembly model, the impact of the evolution of grid support under irradiation on the overall mechanical

  18. Nuclear fuel: modelling the advanced plutonium assembly

    International Nuclear Information System (INIS)

    Kaoua, Th.; Lenain, R.

    2004-01-01

    The benefits of modeling in the nuclear sector are illustrated by the example of the design study for a new plutonium fuel assembly, APA, capable of ensuring maximum consumption of this fuel in pressurized-water reactors. Beyond the physical design of the assembly and its integration into the reactor, this serves for the working out of a complete materials flow and assists in modeling production from the entire inventory of nuclear power stations. (authors)

  19. Nuclear fuel: modelling the advanced plutonium assembly

    International Nuclear Information System (INIS)

    N'kaoua, Th.; Lenain, R.

    2002-01-01

    The benefits of modeling in the nuclear sector are illustrated by the example of the design study for a new plutonium fuel assembly, APA, capable of ensuring maximum consumption of this fuel in pressurized-water reactors. Beyond the physical design of the assembly and its integration into the reactor, this serves for the working out of a complete materials flow and assists in modeling production from the entire inventory of nuclear power stations. (authors)

  20. Reusable fuel test assembly for the FFTF

    International Nuclear Information System (INIS)

    Pitner, A.L.; Dittmer, J.O.

    1992-01-01

    A fuel test assembly that provides re-irradiation capability after interim discharge and reconstitution of the test pin bundle has been developed for use in the Fast Flux Test Facility (FFTF). This test vehicle permits irradiation test data to be obtained at multiple exposures on a few select test pins without the substantial expense of fabricating individual test assemblies as would otherwise be required. A variety of test pin types can be loaded in the reusable test assembly. A reusable test vehicle for irradiation testing in the FFTF has long been desired, but a number of obstacles previously prevented the implementation of such an experimental rig. The MFF-8A test assembly employs a 169-pin bundle using HT-9 alloy for duct and cladding material. The standard driver pins in the fuel bundle are sodium-bonded metal fuel (U-10 wt% Zr). Thirty-seven positions in the bundle are replaceable pin positions. Standard MFF-8A driver pins can be loaded in any test pin location to fill the bundle if necessary. Application of the MFF-8A reusable test assembly in the FFTF constitutes a considerable cost-saving measure with regard to irradiation testing. Only a few well-characterized test pins need be fabricated to conduct a test program rather than constructing entire test assemblies

  1. PWR and BWR spent fuel assembly gamma spectra measurements

    Energy Technology Data Exchange (ETDEWEB)

    Vaccaro, S. [European Commission, DG Energy, Directorate EURATOM Safeguards Luxembourg (Luxembourg); Tobin, S.J.; Favalli, A. [Los Alamos National Laboratory, Los Alamos, NM (United States); Grogan, B. [Oak Ridge National Laboratory, Oak Ridge (United States); Jansson, P. [Uppsala University, Uppsala (Sweden); Liljenfeldt, H. [Oak Ridge National Laboratory, Oak Ridge (United States); Mozin, V. [Lawrence Livermore National Laboratory, Livermore, CA (United States); Hu, J. [Oak Ridge National Laboratory, Oak Ridge (United States); Schwalbach, P. [European Commission, DG Energy, Directorate EURATOM Safeguards Luxembourg (Luxembourg); Sjöland, A. [Swedish Nuclear Fuel and Waste Management Company (SKB) (Sweden); Trellue, H.; Vo, D. [Los Alamos National Laboratory, Los Alamos, NM (United States)

    2016-10-11

    A project to research the application of nondestructive assay (NDA) to spent fuel assemblies is underway. The research team comprises the European Atomic Energy Community (EURATOM), embodied by the European Commission, DG Energy, Directorate EURATOM Safeguards; the Swedish Nuclear Fuel and Waste Management Company (SKB); two universities; and several United States national laboratories. The Next Generation of Safeguards Initiative–Spent Fuel project team is working to achieve the following technical goals more easily and efficiently than in the past using nondestructive assay measurements of spent fuel assemblies: (1) verify the initial enrichment, burnup, and cooling time of facility declaration; (2) detect the diversion or replacement of pins, (3) estimate the plutonium mass, (4) estimate the decay heat, and (5) determine the reactivity of spent fuel assemblies. This study focuses on spectrally resolved gamma-ray measurements performed on a diverse set of 50 assemblies [25 pressurized water reactor (PWR) assemblies and 25 boiling water reactor (BWR) assemblies]; these same 50 assemblies will be measured with neutron-based NDA instruments and a full-length calorimeter. Given that encapsulation/repository and dry storage safeguards are the primarily intended applications, the analysis focused on the dominant gamma-ray lines of {sup 137}Cs, {sup 154}Eu, and {sup 134}Cs because these isotopes will be the primary gamma-ray emitters during the time frames of interest to these applications. This study addresses the impact on the measured passive gamma-ray signals due to the following factors: burnup, initial enrichment, cooling time, assembly type (eight different PWR and six different BWR fuel designs), presence of gadolinium rods, and anomalies in operating history. To compare the measured results with theory, a limited number of ORIGEN-ARP simulations were performed.

  2. Nuclear reactor fuel sub-assemblies

    International Nuclear Information System (INIS)

    Ford, J.; Bishop, J.F.W.

    1981-01-01

    An improved fuel sub-assembly for liquid metal cooled fast breeder nuclear reactors is described which facilitates dismantling operations for reprocessing purposes. The method of dismantling is described. (U.K.)

  3. Grid structure for nuclear reactor fuel assembly

    International Nuclear Information System (INIS)

    Wachter, W.J.; Akey, J.G.

    1975-01-01

    Described is a nuclear fuel element support system comprising an egg-crate-type grid made up of slotted vertical portions interconnected at right angles to each other, the vertical portions being interconnected by means of cross straps which are dimpled midway between their ends to engage fuel elements disposed within openings formed in the egg-crate assembly. The cross straps are disposed at an angle, other than a right angle, to the vertical portions of the assembly whereby their lengths are increased for a given span, and the total elastic deflection capability of the cell is increased. The assembly is particularly adapted for computer design and automated machine tool fabrication

  4. Application of status uncertainty analysis methods for AP1000 LBLOCA calculation

    International Nuclear Information System (INIS)

    Zhang Shunxiang; Liang Guoxing

    2012-01-01

    Parameter uncertainty analysis is developed by using the reasonable method to establish the response relations between input parameter uncertainties and output uncertainties. The application of the parameter uncertainty analysis makes the simulation of plant state more accuracy and improves the plant economy with reasonable security assurance. The AP1000 LBLOCA was analyzed in this paper and the results indicate that the random sampling statistical analysis method, sensitivity analysis numerical method and traditional error propagation analysis method can provide quite large peak cladding temperature (PCT) safety margin, which is much helpful for choosing suitable uncertainty analysis method to improve the plant economy. Additionally, the random sampling statistical analysis method applying mathematical statistics theory makes the largest safety margin due to the reducing of the conservation. Comparing with the traditional conservative bounding parameter analysis method, the random sampling method can provide the PCT margin of 100 K, while the other two methods can only provide 50-60 K. (authors)

  5. Fuel assembly assessment from CVD image analysis: A feasibility study

    International Nuclear Information System (INIS)

    Lindsay, C.S.; Lindblad, T.

    1997-05-01

    The Swedish Nuclear Inspectorate commissioned a feasibility study of automatic assessment of fuel assemblies from images obtained with the digital Cerenkov viewing device currently in development. The goal is to assist the IAEA inspectors in evaluating the fuel since they typically have only a few seconds to inspect an assembly. We report results here in two main areas: Investigation of basic image processing and recognition techniques needed to enhance the images and find the assembly in the image; Study of the properties of the distributions of light from the assemblies to determine whether they provide unique signatures for different burn-up and cooling times for real fuel or indicate presence of non-fuel. 8 refs, 27 figs

  6. Assembly mechanism for nuclear fuel bundles

    International Nuclear Information System (INIS)

    Long, J.W.; Flora, B.S.

    1977-01-01

    A method of securing a fuel bundle to permit easy remote disassembly is described. Fuel rods are held loosely between end plates, each end of the rods fitting into holes in the end plates. At the upper end of each fuel rod there is a spring pressing against the end plate. Tie rods are used to hold the end plates together securely. The lower end of each tie rod is screwed into the lower end plate; the upper end of each tie rod is attached to the upper end plate by means of a locking assembly described in the patent. In order to remove the upper tie plate during the disassembly process, it is necessary only to depress the tie plate against the pressure of the springs surrounding the fuel rods and then to rotate each locking sleeve on the tie rods from its locked to its unlocked position. It is then possible to remove the tie plate without disassembling the locking assembly. (LL)

  7. Development of anti-debris filter for WWER-440 working fuel assembly

    International Nuclear Information System (INIS)

    Kolosovsky, V.; Aksyonov, P.; Kukushkin, Y.; Molchanov, V.; Kolobaev, A.

    2006-01-01

    Mechanical damaging of the fuel rod claddings caused by debris is one of the main reasons for fuel assembly failures. The paper focuses on the program and results of experimental and design activities carried out by Russian organizations relating to the development and investigation of operational characteristics of anti-debris filters for WWER-440 working fuel assemblies. Lead working fuel assemblies equipped with anti-debris filters have been loaded in the core of Kola-2 NPP. The results obtained can be used for making the decision concerning the application of anti-debris filter for WWER-440 working fuel assemblies with the purpose of enhancing their debris-resistance properties. (authors)

  8. Design of a decoupled AP1000 reactor core control system using digital proportional–integral–derivative (PID) control based on a quasi-diagonal recurrent neural network (QDRNN)

    Energy Technology Data Exchange (ETDEWEB)

    Wei, Xinyu, E-mail: xyuwei@mail.xjtu.edu.cn; Wang, Pengfei, E-mail: pengfeixiaoli@yahoo.cn; Zhao, Fuyu, E-mail: fuyuzhao_xj@163.com

    2016-08-01

    Highlights: • We establish a disperse dynamic model for AP1000 reactor core. • A digital PID control based on QDRNN is used to design a decoupling control system. • The decoupling performance is verified and discussed. • The decoupling control system is simulated under the load following operation. - Abstract: The control system of the AP1000 reactor core uses the mechanical shim (MSHIM) strategy, which includes a power control subsystem and an axial power distribution control subsystem. To address the strong coupling between the two subsystems, an interlock between the two subsystems is used, which can only alleviate but not eliminate the coupling. Therefore, sometimes the axial offset (AO) cannot be controlled tightly, and the flexibility of load-following operation is limited. Thus, the decoupling of the original AP1000 reactor core control system is the focus of this paper. First, a two-node disperse dynamic model is established for the AP1000 reactor core to use PID control. Then, a digital PID control system based on a quasi-diagonal recurrent neural network (QDRNN) is designed to decouple the original system. Finally, the decoupling of the control system is verified by the step signal and load-following condition. The results show that the designed control system can decouple the original system as expected and the AO can be controlled much more tightly. Moreover, the flexibility of the load following is increased.

  9. Design of a decoupled AP1000 reactor core control system using digital proportional–integral–derivative (PID) control based on a quasi-diagonal recurrent neural network (QDRNN)

    International Nuclear Information System (INIS)

    Wei, Xinyu; Wang, Pengfei; Zhao, Fuyu

    2016-01-01

    Highlights: • We establish a disperse dynamic model for AP1000 reactor core. • A digital PID control based on QDRNN is used to design a decoupling control system. • The decoupling performance is verified and discussed. • The decoupling control system is simulated under the load following operation. - Abstract: The control system of the AP1000 reactor core uses the mechanical shim (MSHIM) strategy, which includes a power control subsystem and an axial power distribution control subsystem. To address the strong coupling between the two subsystems, an interlock between the two subsystems is used, which can only alleviate but not eliminate the coupling. Therefore, sometimes the axial offset (AO) cannot be controlled tightly, and the flexibility of load-following operation is limited. Thus, the decoupling of the original AP1000 reactor core control system is the focus of this paper. First, a two-node disperse dynamic model is established for the AP1000 reactor core to use PID control. Then, a digital PID control system based on a quasi-diagonal recurrent neural network (QDRNN) is designed to decouple the original system. Finally, the decoupling of the control system is verified by the step signal and load-following condition. The results show that the designed control system can decouple the original system as expected and the AO can be controlled much more tightly. Moreover, the flexibility of the load following is increased.

  10. A Neutronic Feasibility Study of an OPR-1000 Core Design with Boron-bearing Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Kyung Hoon; Park, Sang Yoon; Lee, Chung Chan; Yang, Yong Sik [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2013-10-15

    In Westinghouse plants, boron is mainly used as a form of the integral fuel burnable absorber (IFBA) with a thin coating of zirconium diboride (ZrB{sub 2}) or wet annular burnable absorber (WABA) with a hollow Al{sub 2}O{sub 3}+B{sub 4}C pellet. In OPR-1000, on the other hand, gadolinia is currently employed as a form of an admixture which consists of Gd{sub 2}O{sub 3} of 6∼8 w/o and UO{sub 2} of natural uranium. Recently, boron-bearing UO{sub 2} fuel (BBF) with the high density of greater than 94%TD has been developed by using a low temperature sintering technique. In this paper, the feasibility of replacing conventional gadolinia-bearing UO{sub 2} fuel (GBF) in OPR-1000 with newly developed boron-bearing fuel is evaluated. Neutronic feasibility study to utilize the BBF in OPR-1000 core has been performed. The results show that the OPR-1000 core design with the BBF is feasible and promising in neutronic aspects. Therefore, the use of the BBF in OPR-1000 can reduce the dependency on the rare material such as gadolinium. However, the burnout of the {sup 10}B isotope results in helium gas, so fuel performance related study with respect to helium generation is needed.

  11. Refer to AP1000 for discussing the betterment of seismic design of internal nuclear power plant

    International Nuclear Information System (INIS)

    Gong Zhenbang; Zhang Renyan

    2014-01-01

    As a reference technique of AP1000, This paper discussed the betterment of seismic design of nuclear power plant in three ways. (1) Establish design criteria and guidelines for protection from seismic interaction; (2) Nuclear power plant seismic design of eliminating or weaken operation-basis earthquake; (3) Develop the seismic margin analysis (SMA) of the nuclear power plant. These three aspect are frontier technology in internal seismic design of internal nuclear power plant, and also these three technology are related intimately. (authors)

  12. A CFD analysis of flow blockage phenomena in ALFRED LFR demo fuel assembly

    Energy Technology Data Exchange (ETDEWEB)

    Di Piazza, Ivan, E-mail: ivan.dipiazza@enea.it [Italian National Agency for New Technologies, Energy and Sustainable Economic Development, C.R. ENEA Brasimone (Italy); Magugliani, Fabrizio [Ansaldo Nucleare, ANN, Corso Perrone n.25, Genova (Italy); Tarantino, Mariano [Italian National Agency for New Technologies, Energy and Sustainable Economic Development, C.R. ENEA Brasimone (Italy); Alemberti, Alessandro [Ansaldo Nucleare, ANN, Corso Perrone n.25, Genova (Italy)

    2014-09-15

    Highlights: • URANS simulations were performed on internal flow blockage in HLM fuel assemblies. • Comparison with RELAP results for foot blockage shows a very good agreement. • The temperature peak behind the blockage is dominant for large blockages. • A blockage of ∼15% leads to a maximum clad temperature around 800 °C in 3–4 s. • Local clad temperatures around 1000 °C are reached for blockages of 30% or more. - Abstract: A CFD study was carried out on fluid flow and heat transfer in the Lead-cooled Fuel Pin Bundle of the ALFRED LFR DEMO. In the context of GEN-IV heavy liquid metal-cooled reactors safety studies, the flow blockage in a fuel sub-assembly is considered one of the main issues to be addressed and the most important and realistic accident for LFR fuel assembly. The present paper is a first step toward a detailed analysis of such phenomena, and a CFD model and approach are presented to have a detailed thermo-fluid dynamic picture in the case of blockage. In particular the closed hexagonal, grid-spaced fuel assembly of the LFR ALFRED was modeled and computed. At this stage, the details of the spacer grids were not included, but a conservative analysis has been carried out based on the current main geometrical and physical features. Reactivity feedback, as well as axial power profile, were not included in this analysis. Results indicate that critical conditions, with clad temperatures around ∼900 °C, are reached with blockage larger than 30% in terms of area fraction. Two main effects can be distinguished: a local effect in the wake/recirculation region downstream the blockage and a global effect due to the lower mass flow rate in the blocked subchannels; the former effect gives rise to a temperature peak behind the blockage and it is dominant for large blockages (>20%), while the latter effect determines a temperature peak at the end of the active region and it is dominant for small blockages (<10%). The blockage area was placed at

  13. Recessive loss-of-function mutations in AP4S1 cause mild fever-sensitive seizures, developmental delay and spastic paraplegia through loss of AP-4 complex assembly

    Science.gov (United States)

    Hardies, Katia; May, Patrick; Djémié, Tania; Tarta-Arsene, Oana; Deconinck, Tine; Craiu, Dana; Helbig, Ingo; Suls, Arvid; Balling, Rudy; Weckhuysen, Sarah; De Jonghe, Peter; Hirst, Jennifer; Afawi, Zaid; Barisic, Nina; Baulac, Stéphanie; Caglayan, Hande; Depienne, Christel; De Kovel, Carolien G.F.; Dimova, Petia; Guerrero-López, Rosa; Guerrini, Renzo; Hjalgrim, Helle; Hoffman-Zacharska, Dorota; Jahn, Johanna; Klein, Karl Martin; Koeleman, Bobby P.C.; Leguern, Eric; Lehesjoki, Anna-Elina; Lemke, Johannes; Lerche, Holger; Marini, Carla; Muhle, Hiltrud; Rosenow, Felix; Serratosa, Jose M.; Møller, Rikke S.; Stephani, Ulrich; Striano, Pasquale; Talvik, Tiina; Von Spiczak, Sarah; Weber, Yvonne; Zara, Federico

    2015-01-01

    We report two siblings with infantile onset seizures, severe developmental delay and spastic paraplegia, in whom whole-genome sequencing revealed compound heterozygous mutations in the AP4S1 gene, encoding the σ subunit of the adaptor protein complex 4 (AP-4). The effect of the predicted loss-of-function variants (p.Gln46Profs*9 and p.Arg97*) was further investigated in a patient's fibroblast cell line. We show that the premature stop mutations in AP4S1 result in a reduction of all AP-4 subunits and loss of AP-4 complex assembly. Recruitment of the AP-4 accessory protein tepsin, to the membrane was also abolished. In retrospect, the clinical phenotype in the family is consistent with previous reports of the AP-4 deficiency syndrome. Our study reports the second family with mutations in AP4S1 and describes the first two patients with loss of AP4S1 and seizures. We further discuss seizure phenotypes in reported patients, highlighting that seizures are part of the clinical manifestation of the AP-4 deficiency syndrome. We also hypothesize that endosomal trafficking is a common theme between heritable spastic paraplegia and some inherited epilepsies. PMID:25552650

  14. Thermohydraulic analysis of assemblies containing up to 2/7 fuel rods

    International Nuclear Information System (INIS)

    Ferreira, W.J.; Luz, M.

    1985-01-01

    The COBRA IV-I computer code was tested using data from the Fast Flux Test Facility. Then this code was applied to the analysis of fuel assemblies from the Binary Breeder Reactor. Previously this analysis was carried out using the COBRA III-C code which allows only for the calculations of fuel assemblies having seven fuel pins. The COBRA IV-I permits the calculation of fuel assemblies containing up to 217 fuel pins and the inclusion of blanket and shielding effects. (F.E.) [pt

  15. Nuclear fuel assembly with improved spectral shift-producing rods

    International Nuclear Information System (INIS)

    Ferrari, H.M.

    1987-01-01

    This patent describes a nuclear reactor having fuel assemblies and a moderator-coolant liquid flowing through the fuel assemblies, each fuel assembly including an organized array of nuclear fuel rods wherein the moderator-coolant liquid flows along the fuel rods, at least one improved spectral shift-producing rod disposed among the fuel rods. The spectra shift-producing rod consists of: (a) an elongated hollow hermetically-sealed tubular member; (b) a weakened region formed in a portion of the member, the portion being subject to rupture at a given level of internal pressure; and (c) burnable poison material contained in the member which generates gas in the member as operation of the reactor proceeds normally, the material being soluble in the moderator-coolant liquid when brought into contact therewith; (d) the given level of internal pressure being less than the maximum level of internal pressure normally expected to be generated within the member by the poison material by normal operation of the reactor

  16. Integrated Radiation Transport and Nuclear Fuel Performance for Assembly-Level Simulations

    Energy Technology Data Exchange (ETDEWEB)

    Clarno, Kevin T [ORNL; Hamilton, Steven P [ORNL; Philip, Bobby [ORNL; Berrill, Mark A [ORNL; Sampath, Rahul S [ORNL; Allu, Srikanth [ORNL; Pugmire, Dave [ORNL; Dilts, Gary [Los Alamos National Laboratory (LANL); Banfield, James E [ORNL

    2012-02-01

    The Advanced Multi-Physics (AMP) Nuclear Fuel Performance code (AMPFuel) is focused on predicting the temperature and strain within a nuclear fuel assembly to evaluate the performance and safety of existing and advanced nuclear fuel bundles within existing and advanced nuclear reactors. AMPFuel was extended to include an integrated nuclear fuel assembly capability for (one-way) coupled radiation transport and nuclear fuel assembly thermo-mechanics. This capability is the initial step toward incorporating an improved predictive nuclear fuel assembly modeling capability to accurately account for source-terms and boundary conditions of traditional (single-pin) nuclear fuel performance simulation, such as the neutron flux distribution, coolant conditions, and assembly mechanical stresses. A novel scheme is introduced for transferring the power distribution from the Scale/Denovo (Denovo) radiation transport code (structured, Cartesian mesh with smeared materials within each cell) to AMPFuel (unstructured, hexagonal mesh with a single material within each cell), allowing the use of a relatively coarse spatial mesh (10 million elements) for the radiation transport and a fine spatial mesh (3.3 billion elements) for thermo-mechanics with very little loss of accuracy. In addition, a new nuclear fuel-specific preconditioner was developed to account for the high aspect ratio of each fuel pin (12 feet axially, but 1 4 inches in diameter) with many individual fuel regions (pellets). With this novel capability, AMPFuel was used to model an entire 17 17 pressurized water reactor fuel assembly with many of the features resolved in three dimensions (for thermo-mechanics and/or neutronics), including the fuel, gap, and cladding of each of the 264 fuel pins; the 25 guide tubes; the top and bottom structural regions; and the upper and lower (neutron) reflector regions. The final, full assembly calculation was executed on Jaguar using 40,000 cores in under 10 hours to model over 162

  17. Blockages in LMFBR fuel assemblies: a review

    International Nuclear Information System (INIS)

    Han, J.T.; Fontana, M.H.

    1977-01-01

    Experimental and analytical investigations performed in the United States, Germany, Great Britain, and Japan on the effects of partial flow blockages in liquid-metal fast breeder reactor fuel assemblies are reviewed and the results presented. Generalized models are developed from experimental data obtained for blockages of various sizes, shapes, and porosity, with and without pins, utilizing water and sodium as the coolant. Generally, the recirculating flow in the wake behind a blockage is a relatively effective heat transfer mechanism. Experiments where sodium boiling was made to occur behind the blockages indicate that boiling is stable for the configurations tested; these results are predicted by analytical models. Blockages at the inlet of fuel assemblies tend to have insignificant effects in the fuel assembly unless flow is reduced grossly and therefore would be detectable. Blockages in the heat generating zone have to be quite large to cause sodium boiling under normal reactor operating conditions

  18. Blockages in LMFBR fuel assemblies: a review

    Energy Technology Data Exchange (ETDEWEB)

    Han, J T; Fontana, M H

    1977-01-01

    Experimental and analytical investigations performed in the United States, Germany, Great Britain, and Japan on the effects of partial flow blockages in liquid-metal fast breeder reactor fuel assemblies are reviewed and the results presented. Generalized models are developed from experimental data obtained for blockages of various sizes, shapes, and porosity, with and without pins, utilizing water and sodium as the coolant. Generally, the recirculating flow in the wake behind a blockage is a relatively effective heat transfer mechanism. Experiments where sodium boiling was made to occur behind the blockages indicate that boiling is stable for the configurations tested; these results are predicted by analytical models. Blockages at the inlet of fuel assemblies tend to have insignificant effects in the fuel assembly unless flow is reduced grossly and therefore would be detectable. Blockages in the heat generating zone have to be quite large to cause sodium boiling under normal reactor operating conditions.

  19. Power release estimation inside of fuel pins neighbouring fuel pin with gadolinium in a WWER-1000 type core

    International Nuclear Information System (INIS)

    Mikus, J.

    2006-01-01

    The purpose of this work consists in investigation of the gadolinium fuel pin (fps) influence on space power distribution, especially from viewpoint of the values and gradient occurrence inside of neighbouring FPs that could result in static loads with some consequences, e.g., FP bowing. Since detailed power distributions cannot be obtained in the NPPs, needed information is provided by means of experiments on research reactors. As for the power release measurement inside of FPs, some special (e.g. track) detectors placed between fuel pellets are usually used. Since such works are relatively complicated and time consuming, an evaluation method based on mathematical modelling and numerical approximation was proposed by means of that, and using measured (integral) power release in selected FPs, relevant information about power release inside of needed (investigated) FP, can be obtained. For this purpose, an experiment on light water, zero-power research reactor LR-0 was realized in a WWER-1000 type core with 7 fuel assemblies at zero boron concentration and containing gadolinium FPs. Application of the above evaluation method is demonstrated on investigated FP neighbouring a FP with gadolinium by means of the 1) Azimuthal power distribution inside of investigated FP on their fuel pellet surface in horizontal plane and 2) Gradient of the power distribution inside of investigated FP in two opposite positions on pellets surface that are situated to- and outwards a FP with gadolinium. Similar information can be relevant from the viewpoint of the FP failures occurrence investigation (Authors)

  20. Calibration of spent fuel measurement assembly

    International Nuclear Information System (INIS)

    Koleska, Michal; Viererbl, Ladislav; Marek, Milan

    2014-01-01

    The LVR-15 research reactor (Czech Republic) had been converted from the highly enriched IRT-2M to the low enriched IRT-4M fuel. For the possibility of the independent pre-transport evaluation of IRT-2M burnup, a spectrometric system was developed. This spectrometric system consists of the fuel holder, the collimator and the portable Canberra Big MAC HPGe (High Purity Germanium) detector. In order to have well reproducible and reliable experimental data for modeling of the measurement system, calibration with the 110m Ag isotope with known activity was performed. This isotope was chosen for having energies similar to isotopes measured in fuel assemblies. The 110m Ag isotope was prepared by irradiating of the silver foil in LVR-15 research reactor; its activity was evaluated in the LVR-15's spectrometric laboratory. From the measured data, an efficiency curve of the spectrometric system has been determined. The experimental data were compared to the calculation results with the MCNPX model of the spectrometric system. - Highlights: • Calibration of research reactor spent fuel measurement assembly. • On-site prepared 110m Ag isotope used for the measurement. • Calculated self-shielding factor for the IRT-2M fuel. • Applicable to other research reactor fuel geometries

  1. SWR 1000: Efficient design for operational excellence

    International Nuclear Information System (INIS)

    Brettschuh, W.

    2008-01-01

    The SWR 1000 boiling water reactor (BWR) offers all of the advantages associated with an advanced plant design, i.e. excellent safety performance and competitive power generation costs, in the medium capacity range (1000-1250 MW). The economic efficiency of this medium-sized plant in comparison with large-capacity designs is achieved by using very simple passive safety equipment, simplified plant operating systems, and a very simple plant configuration. Systems engineering is thus optimized, reducing dependence on electrical and instrumentation and control (I and C) systems. The fuel assemblies deployed in the SWR 1000 core are enlarged from a 10 x 10 to a 12 x 12 rod array. This cuts down the total number of fuel assemblies in the core and hence also the number of control rods and control rod drives, as well as in-core neutron flux monitors. The design owes its competitiveness to the fact that investment, maintenance and fuel cycle costs are all lower. In addition, refueling outages are shorter, thanks to the reduced scope for outage activities. For example, there are no bolted reactor internal joints, and the SWR 1000 has a permanently installed reactor vessel-to-drywell seal. Replacement of in-core detectors is carried out from below, and does not affect the critical path of the outage. Furthermore all in-service -inspections (ISIs) on the reactor pressure vessel (RPV) and its nozzles can be undertaken from the outside, so that no extended ISI outages are necessary. As in existing plants, forced coolant circulation is utilized, ensuring problem-free startup and enabling plant operators to adjust power rapidly in the high power range (70%-100%). This is achieved without moving the control rods, and allows both spectral-shift and stretch-out operation. The considerable gains provided by forced coolant circulation, in terms of operational flexibility and fuel utilization, mean that the investment and maintenance costs of the pumps are covered within just a few

  2. Structural integrity assessment and stress measurement of CHASNUPP-1 fuel assembly

    Directory of Open Access Journals (Sweden)

    Waseem

    2016-01-01

    Full Text Available Fuel assembly of the PWR nuclear power plant is a long and flexible structure. This study has been made in an attempt to find the structural integrity of the fuel assembly (FA of Chashma Nuclear Power Plant-1 (CHASNUPP-1 at room temperature in air. The non-linear contact and structural tensile analysis have been performed using ANSYS 13.0, in order to determine the fuel assembly (FA elongation behaviour as well as the location and values of the stress intensity and stresses developed in axial direction under applied tensile load of 9800 N or 2 g being the fuel assembly handling or lifting load [Y. Zhang et al., Fuel assembly design report, SNERDI, China, 1994]. The finite element (FE model comprises spacer grids, fuel rods, flexible contacts between the fuel rods and grid's supports system and guide thimbles with dash-pots and flow holes, in addition to the spot welds between spacer grids and guide thimbles, has been developed using Shell181, Conta174 and Targe170 elements. FA is a non-straight structure. The actual behavior of the geometry is non-linear due to its curvature or design tolerance. It has been observed that fuel assembly elongation values obtained through FE analysis and experiment [SNERDI Tech. Doc., Mechanical strength and calculation for fuel assembly, Technical Report, F3.2.1, China, 1994] under applied tensile load are comparable and show approximately linear behaviors. Therefore, it seems that the permanent elongation of fuel assembly may not occur at the specified load. Moreover, the values of stresses obtained at different locations of the fuel assembly are also comparable with the stress values of the experiment determined at the same locations through strain gauges. Since the results of both studies (analytical and experimental are comparable, therefore, validation of the FE methodology is confirmed. The stress intensity of the FE model and maximum stresses developed along the guide thimbles in axial direction are

  3. The FARC fuel archive of VVER

    International Nuclear Information System (INIS)

    Zizin, M.N.; Parfenova, N.A.; Proselkov, V.N.; Shishkov, L.K.

    1998-01-01

    The principles of organisation are explained and the structure of the FARC fuel archive for VVER reactors is described. The objective of the archive is accumulation of fuel data, data storage and obtaining the fuel using characteristics. The working version of fuel archive on 01.07.98 is realised, in which the data tables for fuel assemblies for 169 VVER-440 cycles and 35 VVER-1000 cycles are stored. There are two different versions of fuel archive - for VVER-440 (FARC) and for VVER-1000 (FARC1000). A structure of some tables and the texts of programs for them differ. The algorithms and codes for checking integrity, reasonableness and reliability of fuel archive data are developed. (author)

  4. Modal testing and identification of a PWR fuel assembly

    International Nuclear Information System (INIS)

    Pisapia, S.; Collard, B.; Mori, V.; Bellizzi, S.

    2003-01-01

    This study aims at characterizing the vibratory behavior of a full-scale fuel assembly using an experimental approach. The effect of the assembly environment (air, stagnant water, and water under flow) is studied. The analysis of the test series shows that the vibratory behavior of full-scale fuel assembly is strongly nonlinear. An identification phase, based on temporal mean square criterion, allows us to obtain a nonlinear model representative of the first vibration mode of a fuel assembly. The selected class of models including damping and stiffness nonlinear terms is efficient in air, in stagnant water, and in water under flow. In all environments, the stiffness decreases with the displacement level and the damping increases with the velocity level. In the presence of water, the damping goes up and increases again with flowrate. (author)

  5. The development of flow test technology for PWR fuel assembly

    International Nuclear Information System (INIS)

    Chung, Moon Ki; Cha, Chong Hee; Chung, Chang Hwan; Chun, Se Young; Song, Chul Hwa; Chung, Heung Joon; Won, Soon Yeun; Cho, Yeong Rho; Kim, Bok Deuk

    1988-05-01

    KAERI has an extensive program to develope PWR fuel assembly. In relation to the program, development of flow test technology is needed to evaluate the thermal hydraulic compactibility and mechanical integrity of domestically fabricated nuclear fuels. A high-pressure and high-temperature flow test facility was designed to test domestically fabricated fuel assembly. The test section of the facility has capacity of a 6x6 full length PWR fuel assembly. A flow test rig was designed and installed at Cold Test Loop to carry out model experiments with 5x5 rod assembly under atmosphere pressure to get information about the characteristics of pressure loss of spacer grids and velocity distribution in the subchannels. LDV measuring technology was established using TSI's Laser Dopper Velocimeter 9100-3 System

  6. Device for supporting a fuel pin cluster within a nuclear reactor fuel assembly wrapper

    International Nuclear Information System (INIS)

    Marmonier, P.; Mesnage, B.; Teulon, J.; Vayra, J.; Venobre, H.

    1976-01-01

    A supporting member for an array of parallel rails each carrying one row of slidably mounted pins of a fuel cluster is placed coaxially at the lower end of a vertical fuel assembly wrapper. Each parallel rail is provided at each end with a downward extension and terminal lug which engages in a lateral groove formed in the periphery of the supporting member in order to lock and maintain the rails and the fuel pins in uniformly spaced relation within the fuel assembly wrapper. 10 claims, 8 figures

  7. Development of four-year fuel cycle based on the advanced fuel assembly with uranium-gadolinium fuel and its implementation to the operating WWER-440 units

    International Nuclear Information System (INIS)

    Lunin, G.; Novikov, A.; Pavlov, V.; Pavlovichev, P.; Filimonov, P.

    2000-01-01

    Over the past few years in Russia the investigations aimed at the increase of the reliability, safety and efficiency of operation of the WWER-1000 reactors as well as of its competitiveness in the world market were carried out. In the frame of these investigations the four-year fuel cycle, based on advanced fuel assemblies with zirconium alloy spacer grids and guide tubes and with fuel pellet having a reduced diameter of the central hole (1,5 mm), has been developed. For the compensation of a part of excess reactivity, Gd 2 O 3 integrated burnable absorbers are used. CPS absorbing rods contain a combine absorber (B 4 C + Dy 2 O 3 *TiO 2 ). A part of depleted fuel is located on the core periphery. The algorithms controlling the reactor power and power distribution have been updated. For checking of the solutions adopted and for verification of code package developed at the RRC 'Kurchatov Institute' the wide-scale experimental operation of advanced FA and its individual components is carried out. (Authors)

  8. Disassembling and rebuilding 900 MW unit fuel assemblies in Celimene

    International Nuclear Information System (INIS)

    Giquel, G.; Leseur, A.; Pillet, C.; Van Craeynest, J.C.

    1987-01-01

    The Celimene high activity laboratory, in the Nuclear Research Centre of Saclay, has equipment for and experience of disassembling and rebuilding fuel assemblies from 900 MW light water reactors. These operations have been performed for R and D purposes; they allow removal for investigation of some of the fuel rods and examination of the skeleton. The rebuilt assemblies are sent to the fuel reprocessing plant. Reirradiation of these assemblies has not been considered so far and would require modifications of the procedure and of parts of the new skeleton. Disassembling and rebuilding have already been performed on three assemblies and a fourth one will be rebuilt in the coming months [fr

  9. U.S. Commercial Spent Nuclear Fuel Assembly Characteristics - 1968-2013

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Jianwei [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Peterson, Joshua L. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Gauld, Ian C. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Bowman, Stephen M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2016-09-01

    Activities related to management of spent nuclear fuel (SNF) are increasing in the US and many other countries. Over 240,000 SNF assemblies have been discharged from US commercial reactors since the late 1960s. The enrichment and burnup of SNF have changed significantly over the past 40 years, and fuel assembly designs have also evolved. Understanding the general characteristics of SNF helps regulators and other stakeholders form overall strategies towards the final disposal of US SNF. This report documents a survey of all US commercial SNF assemblies in the GC-859 database and provides reference SNF source terms (e.g., nuclide inventories, decay heat, and neutron/photon emission) at various cooling times up to 200 years after fuel discharge. This study reviews the distribution and evolution of fuel parameters of all SNF assemblies discharged over the past 40 years. Assemblies were categorized into three groups based on discharge year, and the median burnups and enrichments of each group were used to establish representative cases. An extended burnup case was created for boiling water reactor (BWR) fuels, and another was created for the pressurized water reactor (PWR) fuels. Two additional cases were developed to represent the eight mixed oxide (MOX) fuel assemblies in the database. Burnup calculations were performed for each representative case. Realistic parameters for fuel design and operations were used to model the SNF and to provide reference fuel characteristics representative of the current inventory. Burnup calculations were performed using the ORIGEN code, which is part of the SCALE nuclear modeling and simulation code system. Results include total activity, decay heat, photon emission, neutron flux, gamma heat, and plutonium content, as well as concentrations for 115 significant nuclides. These quantities are important in the design, regulation, and operations of SNF storage, transportation, and disposal systems.

  10. Evolution of fuel rod support under irradiation consequences on the mechanical behavior of fuel assembly

    International Nuclear Information System (INIS)

    Billerey, A.; Bouffioux, P.

    2002-01-01

    The complete paper follows. According to the fuel management policy in French PWR with respect to high burn-up, the prediction of the mechanical behavior of the irradiated fuel assembly is required as far as excessive deformations of fuel assembly might lead to incomplete Rod Cluster Control Assembly insertion (safety problems) and fretting wear lead to leaking rods (plant operation problems). One of the most important parameter is the evolution of the fuel rod support in the grid cell as it directly governs the mechanical behavior of the fuel assembly and consequently allows to predict the behavior of irradiated structure in terms of (i) axial and lateral deformation (global behavior of the assembly) and (ii) fretting wear (local behavior of the rod). Fuel rod support is provided by a spring-dimple system fixed on the grid. During irradiation, the spring force decreases and a gap between the rod and the spring might open. This phenomenon is due to (i) irradiation-induced stress relaxation for the spring and for the dimples, (ii) grid growth and (iii) reduction of rod diameter. Two models have been developed to predict the behavior of the rod in the grid cell. The first model is able to evaluate the spring force relaxation during irradiation. The second one is able to evaluate the rotation characteristic of the fuel rod in the cell, function of the spring force. The main input parameters are (i) the creep laws of the grid materials, (ii) the growth law of the grid, (iii) the evolution of rod diameter and (iv) the design of the fuel rod support. The objectives of this paper are to: (i) evaluate the consequences of grid support design modifications on the fretting sensitivity in terms of predicted maximum gap during irradiation and operational time to gap appearance; (ii) evaluate, using a non-linear Finite Element assembly model, the impact of the evolution of grid support under irradiation on the mechanical behavior of the full assembly in terms of axial and

  11. Evaluation of efficiency of axial profiling in WWER-440 fuel assemblies

    International Nuclear Information System (INIS)

    Ananjev, Yu. A.; Kurakin, K. Yu.; Artemov, V.G.; Ivanov, A.S.

    2005-01-01

    The present report deals with consideration of fuel enrichment axial profiling in WWER-440 assemblies. The study is performed on improving the effectiveness of fuel utilization using the example of implementing the axial profiling in the assemblies of the second generation. For simulation of fuel loadings the computer code package SAPFIR 9 5 and RC is used that allows for correct consideration of specific features of assemblies design changes. The methodical approach to assessment of effectiveness of implementing the axial profiling is considered with the use of capabilities of the mentioned code package. In conclusion the recommendations are given on using the fuel enrichment axial profiling in WWER-440 assemblies (Authors)

  12. Heat evaluation examination of fuel assembly

    International Nuclear Information System (INIS)

    Suto, Shinya; Nakabayashi, Hiroki; Yao, Kaoru

    2007-03-01

    The cooling examination was executed by using the simulated fuel assembly to obtain the basic data of the most effective cooling system in the lazer disassembling process of the spent fuel assembly of prototype fast breeder reactor 'Monju'. As a result, the following have been understood. (1) Before the laser disassembling (there is not any duct tube cutting), it is possible to cool enough by the amount of the wind of 20m 3 /h or more flowing from the handling head side. (2) After the laser disassembling begins (duct tube is cut), 1kW or more of the heat generation cannot be cooled by ventilation from the handling head side. (3) Cooling by the flow across fuel pin is required during lazer disassembling. The basic data of the cooling system was obtained from these examination results. However, for cooling across fuel pin during the laser disassembling, it is necessary to examine shape of the side cooling nozzle, spraying angle, and flow velocity at the nozzle exit, etc. enough. (author)

  13. The verification of PWR-fuel code for PWR in-core fuel management

    International Nuclear Information System (INIS)

    Surian Pinem; Tagor M Sembiring; Tukiran

    2015-01-01

    In-core fuel management for PWR is not easy because of the number of fuel assemblies in the core as much as 192 assemblies so many possibilities for placement of the fuel in the core. Configuration of fuel assemblies in the core must be precise and accurate so that the reactor operates safely and economically. It is necessary for verification of PWR-FUEL code that will be used in-core fuel management for PWR. PWR-FUEL code based on neutron transport theory and solved with the approach of multi-dimensional nodal diffusion method many groups and diffusion finite difference method (FDM). The goal is to check whether the program works fine, especially for the design and in-core fuel management for PWR. Verification is done with equilibrium core search model at three conditions that boron free, 1000 ppm boron concentration and critical boron concentration. The result of the average burn up fuel assemblies distribution and power distribution at BOC and EOC showed a consistent trend where the fuel with high power at BOC will produce a high burn up in the EOC. On the core without boron is obtained a high multiplication factor because absence of boron in the core and the effect of fission products on the core around 3.8 %. Reactivity effect at 1000 ppm boron solution of BOC and EOC is 6.44 % and 1.703 % respectively. Distribution neutron flux and power density using NODAL and FDM methods have the same result. The results show that the verification PWR-FUEL code work properly, especially for core design and in-core fuel management for PWR. (author)

  14. Fuel Cycle of VVER-1000: technical and economic aspects

    International Nuclear Information System (INIS)

    Kosourov, E.; Pavlov, V.; Pavlovichev, A.

    2009-01-01

    The paper contains estimations of dependences of technical and economic characteristics of VVER-1000 fuel cycle on number of charged FAs and their enrichment. In the study following restrictions were used: minimum quantity of loaded fresh FAs is equal 36 FAs, a maximum one - 78 (79) FAs and fuel enrichment is limited by value 4,95 %. The following technical and economic characteristics are discussed: cycle length, average burnup of spent fuel, specific consumption of natural uranium, specific quantity of separative work, annual production of thermal energy, fuel component of electrical energy cost, electricity generation cost. Results of estimations are presented as dependences of researched characteristics on cycle length, quantity of loaded FAs and their enrichments. The presented information allows to show tendencies and ranges of technical and economic characteristics at change of fuel cycle parameters. This information can be useful for definition of the fuel cycle parameters which satisfy the requirements of power system and exploiting organizations. (authors)

  15. Characteristics and properties of cladding tubes for VVER-1000 higher Uranium content fuel rods

    International Nuclear Information System (INIS)

    Peregud, M.; Markelov, A.; Novikov, V.; Gusev, A.; Konkov, V.; Pimenov, Y.; Agapitov, V.; Shtutsa, M.

    2009-01-01

    To improve the fuel cycle economics and to further increase the VVER fuel usability the work programme is under way to design novel improved fuel, fuel rods and fuel assemblies. Longer FA operation time that is needed to increase the fuel burnup and the related design developments of novel fuel assemblies resulted not only in changing types and sizes of Zirconium items and fuel assembly components but also altered the requirements placed on their technical characteristics. To use fuel rods having a larger charge of fuel, to improve their behaviour in LOCA, to reduce fuel rod damage ability during assembling the work was carried out to perfect the characteristics of both the cladding (reduced wall thickness and more rigid tolerances for geometry) and its material. To meet the more rigid requirements for the geometry dimensions of cladding tubes an improved process flow sheet has been designed and employed for their fabrication and also the finishing treatment of tube surfaces has been improved. The higher and stable properties of the cladding materials were managed through using the special purity in terms of Hafnium Zirconium (not higher than 100 ppm Hf) as a base of the E110 alloy and maintaining within the valid specifications for the alloy the optimized contents of Oxygen and Iron at the levels of (600 - 990) ppm and (250 - 700) ppm, respectively. The work was under way in 2004 - 2008 years; during this period the technology and materials science solutions were mastered that were phased-in introduced into the production of the cladding tubes for the fuels loaded into the of the Kalinin NPP Unit 1

  16. Nuclear imaging of the fuel assembly in ignition experiments

    Energy Technology Data Exchange (ETDEWEB)

    Grim, G. P.; Guler, N.; Merrill, F. E.; Morgan, G. L.; Danly, C. R.; Volegov, P. L.; Wilde, C. H.; Wilson, D. C.; Clark, D. S.; Hinkel, D. E.; Jones, O. S.; Raman, K. S.; Izumi, N.; Fittinghoff, D. N.; Drury, O. B.; Alger, E. T.; Arnold, P. A.; Ashabranner, R. C.; Atherton, L. J.; Barrios, M. A.; Batha, S.; Bell, P. M.; Benedetti, L. R.; Berger, R. L.; Bernstein, L. A.; Berzins, L. V.; Betti, R.; Bhandarkar, S. D.; Bionta, R. M.; Bleuel, D. L.; Boehly, T. R.; Bond, E. J.; Bowers, M. W.; Bradley, D. K.; Brunton, G. K.; Buckles, R. A.; Burkhart, S. C.; Burr, R. F.; Caggiano, J. A.; Callahan, D. A.; Casey, D. T.; Castro, C.; Celliers, P. M.; Cerjan, C. J.; Chandler, G. A.; Choate, C.; Cohen, S. J.; Collins, G. W.; Cooper, G. W.; Cox, J. R.; Cradick, J. R.; Datte, P. S.; Dewald, E. L.; Di Nicola, P.; Di Nicola, J. M.; Divol, L.; Dixit, S. N.; Dylla-Spears, R.; Dzenitis, E. G.; Eckart, M. J.; Eder, D. C.; Edgell, D. H.; Edwards, M. J.; Eggert, J. H.; Ehrlich, R. B.; Erbert, G. V.; Fair, J.; Farley, D. R.; Felker, B.; Fortner, R. J.; Frenje, J. A.; Frieders, G.; Friedrich, S.; Gatu-Johnson, M.; Gibson, C. R.; Giraldez, E.; Glebov, V. Y.; Glenn, S. M.; Glenzer, S. H.; Gururangan, G.; Haan, S. W.; Hahn, K. D.; Hammel, B. A.; Hamza, A. V.; Hartouni, E. P.; Hatarik, R.; Hatchett, S. P.; Haynam, C.; Hermann, M. R.; Herrmann, H. W.; Hicks, D. G.; Holder, J. P.; Holunga, D. M.; Horner, J. B.; Hsing, W. W.; Huang, H.; Jackson, M. C.; Jancaitis, K. S.; Kalantar, D. H.; Kauffman, R. L.; Kauffman, M. I.; Khan, S. F.; Kilkenny, J. D.; Kimbrough, J. R.; Kirkwood, R.; Kline, J. L.; Knauer, J. P.; Knittel, K. M.; Koch, J. A.; Kohut, T. R.; Kozioziemski, B. J.; Krauter, K.; Krauter, G. W.; Kritcher, A. L.; Kroll, J.; Kyrala, G. A.; Fortune, K. N. La; LaCaille, G.; Lagin, L. J.; Land, T. A.; Landen, O. L.; Larson, D. W.; Latray, D. A.; Leeper, R. J.; Lewis, T. L.; LePape, S.; Lindl, J. D.; Lowe-Webb, R. R.; Ma, T.; MacGowan, B. J.; MacKinnon, A. J.; MacPhee, A. G.; Malone, R. M.; Malsbury, T. N.; Mapoles, E.; Marshall, C. D.; Mathisen, D. G.; McKenty, P.; McNaney, J. M.; Meezan, N. B.; Michel, P.; Milovich, J. L.; Moody, J. D.; Moore, A. S.; Moran, M. J.; Moreno, K.; Moses, E. I.; Munro, D. H.; Nathan, B. R.; Nelson, A. J.; Nikroo, A.; Olson, R. E.; Orth, C.; Pak, A. E.; Palma, E. S.; Parham, T. G.; Patel, P. K.; Patterson, R. W.; Petrasso, R. D.; Prasad, R.; Ralph, J. E.; Regan, S. P.; Rinderknecht, H.; Robey, H. F.; Ross, G. F.; Ruiz, C. L.; Seguin, F. H.; Salmonson, J. D.; Sangster, T. C.; Sater, J. D.; Saunders, R. L.; Schneider, M. B.; Schneider, D. H.; Shaw, M. J.; Simanovskaia, N.; Spears, B. K.; Springer, P. T.; Stoeckl, C.; Stoeffl, W.; Suter, L. J.; Thomas, C. A.; Tommasini, R.; Town, R. P.; Traille, A. J.; Wonterghem, B. Van; Wallace, R. J.; Weaver, S.; Weber, S. V.; Wegner, P. J.; Whitman, P. K.; Widmann, K.; Widmayer, C. C.; Wood, R. D.; Young, B. K.; Zacharias, R. A.; Zylstra, A.

    2013-05-01

    First results from the analysis of neutron image data collected on implosions of cryogenically layered deuterium-tritium capsules during the 2011-2012 National Ignition Campaign are reported. The data span a variety of experimental designs aimed at increasing the stagnation pressure of the central hotspot and areal density of the surrounding fuel assembly. Images of neutrons produced by deuterium–tritium fusion reactions in the hotspot are presented, as well as images of neutrons that scatter in the surrounding dense fuel assembly. The image data are compared with 1D and 2D model predictions, and consistency checked using other diagnostic data. The results indicate that the size of the fusing hotspot is consistent with the model predictions, as well as other imaging data, while the overall size of the fuel assembly, inferred from the scattered neutron images, is systematically smaller than models’ prediction. Preliminary studies indicate these differences are consistent with a significant fraction (20%–25%) of the initial deuterium-tritium fuel mass outside the compact fuel assembly, due either to low mode mass asymmetry or high mode 3D mix effects at the ablator-ice interface.

  17. Nuclear imaging of the fuel assembly in ignition experiments

    Energy Technology Data Exchange (ETDEWEB)

    Grim, G. P.; Guler, N.; Merrill, F. E.; Morgan, G. L.; Danly, C. R.; Volegov, P. L.; Wilde, C. H.; Wilson, D. C.; Batha, S.; Herrmann, H. W.; Kline, J. L.; Kyrala, G. A. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Clark, D. S.; Hinkel, D. E.; Jones, O. S.; Raman, K. S.; Izumi, N.; Fittinghoff, D. N.; Drury, O. B.; Alger, E. T. [Lawrence Livermore National Laboratory, Livermore, California 94551-0808 (United States); and others

    2013-05-15

    First results from the analysis of neutron image data collected on implosions of cryogenically layered deuterium-tritium capsules during the 2011-2012 National Ignition Campaign are reported. The data span a variety of experimental designs aimed at increasing the stagnation pressure of the central hotspot and areal density of the surrounding fuel assembly. Images of neutrons produced by deuterium–tritium fusion reactions in the hotspot are presented, as well as images of neutrons that scatter in the surrounding dense fuel assembly. The image data are compared with 1D and 2D model predictions, and consistency checked using other diagnostic data. The results indicate that the size of the fusing hotspot is consistent with the model predictions, as well as other imaging data, while the overall size of the fuel assembly, inferred from the scattered neutron images, is systematically smaller than models' prediction. Preliminary studies indicate these differences are consistent with a significant fraction (20%–25%) of the initial deuterium-tritium fuel mass outside the compact fuel assembly, due either to low mode mass asymmetry or high mode 3D mix effects at the ablator-ice interface.

  18. Physical characteristics of GE [General Electric] BWR [boiling-water reactor] fuel assemblies

    International Nuclear Information System (INIS)

    Moore, R.S.; Notz, K.J.

    1989-06-01

    The physical characteristics of fuel assemblies manufactured by the General Electric Company for boiling-water reactors are classified and described. The classification into assembly types is based on the GE reactor product line, the Characteristics Data Base (CDB) assembly class, and the GE fuel design. Thirty production assembly types are identified. Detailed physical data are presented for each assembly type in an appendix. Descriptions of special (nonstandard) fuels are also reported. 52 refs., 1 fig., 6 tabs

  19. Improvements in nuclear fuel assembly sleeves

    International Nuclear Information System (INIS)

    Eaton, C.W.; Seeley, T.A.; Ince, G.; Speakman, W.T.

    1986-01-01

    The graphite sleeve of a nuclear fuel assembly or reflector element for a stringer mounts a number of grids via mounting assemblies installed in grooves formed in the interior wall surface of the sleeve. The bore of the sleeve is of reduced cross-section between two successive grooves such that the internal diameter of the sleeve is substantially the same as the inner diameter of the radially innermost extremity of the mounting assemblies whereby the coolant pressure loss at each transition between the reduced diameter bore section and the mounting assemblies is reduced. Each mounting assembly may be of radially contractable split ring construction to permit its placement in the groove and may carry burnable poison material. (author)

  20. Improvements in nuclear fuel assembly sleeves

    Energy Technology Data Exchange (ETDEWEB)

    Eaton, C.W.; Seeley, T.A.; Ince, G.; Speakman, W.T.

    1986-02-26

    The graphite sleeve of a nuclear fuel assembly or reflector element for a stringer mounts a number of grids via mounting assemblies installed in grooves formed in the interior wall surface of the sleeve. The bore of the sleeve is of reduced cross-section between two successive grooves such that the internal diameter of the sleeve is substantially the same as the inner diameter of the radially innermost extremity of the mounting assemblies whereby the coolant pressure loss at each transition between the reduced diameter bore section and the mounting assemblies is reduced. Each mounting assembly may be of radially contractable split ring construction to permit its placement in the groove and may carry burnable poison material.

  1. ROSA-V large scale test facility (LSTF) system description for the third and fourth simulated fuel assemblies

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, Mitsuhiro; Nakamura, Hideo; Ohtsu, Iwao [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment] [and others

    2003-03-01

    The Large Scale Test Facility (LSTF) is a full-height and 1/48 volumetrically scaled test facility of the Japan Atomic Energy Research Institute (JAERI) for system integral experiments simulating the thermal-hydraulic responses at full-pressure conditions of a 1100 MWe-class pressurized water reactor (PWR) during small break loss-of-coolant accidents (SBLOCAs) and other transients. The LSTF can also simulate well a next-generation type PWR such as the AP600 reactor. In the fifth phase of the Rig-of-Safety Assessment (ROSA-V) Program, eighty nine experiments have been conducted at the LSTF with the third simulated fuel assembly until June 2001, and five experiments have been conducted with the newly-installed fourth simulated fuel assembly until December 2002. In the ROSA-V program, various system integral experiments have been conducted to certify effectiveness of both accident management (AM) measures in beyond design basis accidents (BDBAs) and improved safety systems in the next-generation reactors. In addition, various separate-effect tests have been conducted to verify and develop computer codes and analytical models to predict non-homogeneous and multi-dimensional phenomena such as heat transfer across the steam generator U-tubes under the presence of non-condensable gases in both current and next-generation reactors. This report presents detailed information of the LSTF system with the third and fourth simulated fuel assemblies for the aid of experiment planning and analyses of experiment results. (author)

  2. Inspection and repair apparatus for a nuclear reactor fuel assembly

    International Nuclear Information System (INIS)

    Shallenberger, J.M.; Hornak, L.P.; Desmarchais, W.E.

    1975-01-01

    An apparatus is disclosed for inspecting and repairing a radioactive fuel assembly. The radioactive fuel assembly is positioned within a shielding sleeve which substantially reduces the level of radioactivity immediately surrounding the sleeve thereby permitting direct access by operating personnel. In one embodiment, a rotatable collar is mounted to the sleeve at a midlength location. An access port, an inspection port and an instrument port are included with the collar so that operating personnel may directly inspect the fuel assembly and effectuate any necessary repairs

  3. Fuel assemblies for use in nuclear reactors

    International Nuclear Information System (INIS)

    Schluderberg, D.C.

    1981-01-01

    A fuel assembly for use in pressurized water cooled nuclear fast breeder reactors is described in which moderator to fuel ratios, conducive to a high Pu-U-D 2 O reactor breeding ratio, are obtained whilst at the same time ensuring accurate spacing of fuel pins without the parasitic losses associated with the use of spacer grids. (U.K.)

  4. Nondestructive examination of Oconee 1 fuel assemblies after four cycles of irradiation

    International Nuclear Information System (INIS)

    Pyecha, T.D.; Mayer, J.T.; Guthrie, B.A. III; Riordan, J.E.

    1980-12-01

    Five B and W Mark B (15 x 15) pressurized water reactor fuel assemblies were nondestructively examined after four cycles of irradiation in the Oconee 1 reactor. Four of the five assemblies examined had a burnup of 40,000 MWd/mtU; the fifth assembly had a burnup of 36,800 MWd/mtU. This effort is part of a Department of Energy program to improve uranium utilization by extending the burnup of light water reactor fuel. The examinations were conducted in the Oconee 1 and 2 spent fuel storage pool. Data obtained included fuel assembly and fuel rod dimensions, water channel spacings, spacer grid and holddown spring forces, fuel column stack and axial gap lengths, and crud samples. The results indicate that the assemblies performed well through four cycles of operation; all of the data were within design limits

  5. Nuclear reactor, fuel assembly and neutron measuring system

    International Nuclear Information System (INIS)

    Chaki, Masao; Murase, Michio; Zukeran, Atsushi; Moriya, Kimiaki

    1998-01-01

    The present invention provides a BWR type reactor improved with the efficiency of used fuels and fuel economy by increasing a rated power and reducing exchange fuels. Namely, in a BWR type reactor at present, a thermal limit value is determined by conducting nuclear calculation of the reactor core based on data of reactor flow rate measurement and data of neutron flux measurement. However, since the neutron calculation of the reactor core is based on fuel assemblies while the points for the neutron measurement are present at the outside of the fuel assemblies, errors are caused. A margin including the errors has been used as a thermal limit value during operation. In the present invention, neutron fluxes in the fuel assembly as a base of the nuclear calculation can be measured by the same number of neutron detector tubes, but the number of the measuring points is increased to four times. With such procedures, errors caused by the difference of the neutron calculation and values at neutron measuring points can be reduced. As a result, a margin of the thermal limit value is reduced to increase the degree of freedom of reactor operation. Then, the economical property of the reactor operation can be improved. (N.H.)

  6. Fuel assembly

    International Nuclear Information System (INIS)

    Hirukawa, Koji; Sakurada, Koichi.

    1992-01-01

    In a fuel assembly for a BWR type reactor, water rods or water crosses are disposed between fuel rods, and a value with a spring is disposed at the top of the coolant flow channel thereof, which opens a discharge port when pressure is increased to greater than a predetermined value. Further, a control element for the amount of coolant flow rate is inserted retractable to a control element guide tube formed at the lower portion of the water rod or the water cross. When the amount of control elements inserted to the control element guide tube is small and the inflown coolant flow rate is great, the void coefficient at the inside of the water rod is less than 5%. On the other hand, when the control elements are inserted, the flow resistance is increased, so that the void coefficient in the water rod is greater than 80%. When the pressure in the water rod is increased, the valve with the spring is raised to escape water or steams. Then, since the variation range of the change of the void coefficient can be controlled reliably by the amount of the control elements inserted, and nuclear fuel materials can be utilized effectively. (N.H.)

  7. The effect of the fuel rod friction force to the fuel assembly lateral mechanical characteristics

    International Nuclear Information System (INIS)

    Ha, Dong Geun; Jeon, Sang Youn; Suh, Jung Min

    2012-01-01

    The Fuel Assembly (FA) for light water reactor consists of hundreds of fuel rods, guide tubes, spacer grids, top/bottom nozzles. The guide tubes transmit vertical loads between the top and bottom nozzles, position the fuel rod support grids vertically, react the loads from the fuel rods that are applied to the grids, and provide some of the lateral load capability for the overall fuel assembly. The guide tubes are the structural members of the skeleton assembly. And the spacer grids maintain the fuel rod array by providing positive lateral restraint to the fuel rod but only frictional restraint in the axial direction. Figure 1 shows the outline of skeleton, FA and the location of guide tubes in the view of cross section. 17x17 FA has 24 guide tubes and one instrumentation tube. When the FA is in reactor, the lateral stiffness is one of very important factors from the view point of in reactor integrity of fuel assembly such as guarantee of the cool able geometry, the control rod insertion etc. The lateral stiffness of FA is mainly determined by skeleton lateral stiffness. And the fuel rods loaded in the spacer grids reinforce the FA lateral stiffness. Generally, fuel rods and spacer grids create the nonlinear friction force between fuel rod tube and grid spring/dimple against external lateral force of FA. Thus, it is necessary to study the contribution of the fuel rods friction force to the FA lateral stiffness. So, this paper is to show how much amount of the fuel rod grid interaction contributes to the FA lateral stiffness based on the test results

  8. Investigation regarding the safety of handling the fuel assemblies for the nuclear ship 'Mutsu'

    International Nuclear Information System (INIS)

    Anon.

    1977-01-01

    It was concluded previously that the general inspection of safety and the repair of shielding can be carried out as the fuel assemblies are charged, and the safety can be secured sufficiently. According to the decision by the meeting of cabinet ministers concerned with the nuclear ship ''Mutsu'', the Mutsu General Inspection and Repair Technology Investigation Committee investigated on the basic concept regarding the method and the safety of taking out, transporting and preserving the fuel assemblies. 112 fuel rods and 9 burnable poison rods are arranged into the square grid of 11 x 11 in a fuel assembly, and 32 fuel assemblies are employed. The contents of the investigation are the outline of the fuel assemblies, the present states of nuclear fission products, surface dose rate and soundness of the fuel assemblies, the safety of taking out, transporting and preserving the fuel assemblies, the measures required for securing the safety, and the place for taking out the fuel assemblies. In case of taking out, transporting and preserving the fuel assemblies, it is considered in view of the present state of the fuel assemblies that the safety can be secured sufficiently if the works are carried out carefully by taking the methods and conditions investigated into consideration. Also the committee reached already the conclusion described at the outset. (Kako, I.)

  9. Hydraulic Design of the CARA Fuel Assembly for Atucha-I

    International Nuclear Information System (INIS)

    Juanico, Luis; Brasnarof, Daniel

    2000-01-01

    In this paper a hydraulic model of the CARA fuel assembly within the Atucha I fuel channel is developed. Besides, a experimental test running in the CBP low pressure loop have been designed.This model is used for design purpose of the assembly system such as the whole channel pressure drop remains the same that it is at the present.It is observed that choosing the right thickness and hole surface of the assembly system, it is possible tune up the CARA pressure drop, releases the azimuth alignment condition on the fuel element neighbors

  10. Spacers for use in nuclear fuel assembly

    International Nuclear Information System (INIS)

    Shiohata, Hironori; Nakamura, Shozo; Hasegawa, Kunio; Higuchi, Shigeo; Nagashima, Hideaki; Kawada, Yoshishige.

    1987-01-01

    Purpose: To prevent liquid film breakage at the surface of a fuel rod due to swirlings of steam flow generated at the upstream of a contact portion between the fuel rod and a spacer leaf spring, that is, below the contact portion. Constitution: Steam-hot water 2-phase streams flowing from the lower to the upper portions of a fuel assembly is hindered by leaf springs, thereby forming swirlings in the steam flow at the upstream of a contact portion between the fuel rod and the leaf springs, that is, below the contact portion. The horseshoe-like swirlings shed the liquid films at the surface of the fuel rod to remarkably decrease the heat cooling performance, by which the surface temperature of a fuel can is temporarily increased thereby possibly causing failures due to so-called burnout in view of the above, steps are formed to the spacer leaf spring for use in the fuel assembly, to reduce the pressure difference between the leaf spring and the fuel rod at the upstream of the springs relative to the 2-phase coolant stream. In this way, formation of the swirlings is moderated to prevent the liquid film breakage and improve the critical heat power. (Kamimura, M.)

  11. Neutron collar calibration for assay of LWR [light-water reactor] fuel assemblies

    International Nuclear Information System (INIS)

    Menlove, H.O.; Pieper, J.E.

    1987-03-01

    The neutron-coincidence collar is used for the verification of the uranium content in light-water reactor fuel assemblies. An AmLi neutron source is used to give an active interrogation of the fuel assembly to measure the 235 U content, and the 238 U content is verified from a passive neutron-coincidence measurement. This report gives the collar calibration data of pressurized-water reactor and boiling-water reactor fuel assemblies. Calibration curves and correction factors are presented for neutron absorbers (burnable poisons) and different fuel assembly sizes. The data were collected at Exxon Nuclear, Franco-Belge de Fabrication de Combustibles, ASEA-Atom, and other nuclear fuel fabrication facilities

  12. New phenomena observed during fuel assemblies testing

    International Nuclear Information System (INIS)

    Tzotcheva, V.

    2001-01-01

    The paper presents a new attempt to explain inexplicable increase of specific activity for some of the fuel assemblies during the fuel tightness testing procedures on Kozloduy NPP. A brief description of established procedure for fuel tightness control is presented in the paper. Special emphasis is given on a hypothesis that explains the fact of existence of deviation in Iodine activity more than usual, which have no reasonable interpretation. The reasons for uniform high Iodine activity for reloaded assemblies, that have kept in the open measuring can for a long time (1-3 hours), is found to be the process of Iodine dissolving in the water and the accelerated process of natural degassing. A proposal to use the 134 Cs and 137 Cs as stand-alone criteria for more precise results is made in respect to increase the reliability of fuel reloading and storage procedures

  13. Irradiation performance of experimental fast reactor 'JOYO' MK-1 driver fuel assemblies

    International Nuclear Information System (INIS)

    Itaki, Toshiyuki; Kono, Keiichi; Tachi, Hirokatsu; Yamanouchi, Sadamu; Yuhara, Shunichi; Shibahara, Itaru

    1985-01-01

    The experimental fast reactor ''JOYO'' completed it's breeder core (MK-I) operation in January 1982. The MK-I driver fuel assemblies were removed from the core sequencially in order of burnup increase and have been under postirradiation examination (PIE). The PIE has almost been completed for 30 assemblies including the highest burnup assemblies of 48,000 MWD/MTM. It has been confirmed that all fuel assemblies have exhibited satisfactory performance without detrimental assembly deformation or without any indications of fuel pin breach. The irradiation conditions of the MK-I core were somewhat more moderate than those conditions envisioned for prototypic reactor. However the results of the examination revealed the typical irradiation behavior of LMFBR fuels, although such characteristics were benign as compared with those anticipated in high burnup fuels. Systematic performance data have been accumulated through the fuel fabrication, irradiation and postirradiation examination processes. Based on these data, the MK-I fuel designing and fabrication techniques were totally confirmed. This technical experience and the associated insight into irradiation behavior have established a milestone to the next step of fast reactor fuel development. (author)

  14. Fuel assemblies for BWR type reactors

    International Nuclear Information System (INIS)

    Ishizuka, Takao.

    1981-01-01

    Purpose: To enable effective failed fuel detection by the provision of water rod formed with a connecting section connected to a warmed water feed pipe of a sipping device at the lower portion and with a warmed water jetting port in the lower portion in a fuel assembly of a BWR type reactor to thereby carry out rapid sipping. Constitution: Fuel rods and water rods are contained in the channel box of a fuel assembly, and the water rod is provided at its upper portion with a connecting section connected to the warmed water feed pipe of the sipping device and formed at its lower portion with a warmed water jetting port for jetting warmed water fed from the warmed water feed pipe. Upon detection of failed fuels, the reactor operation is shut down and the reactor core is immersed in water. The cover for the reactor container is removed and the cap of the sipping device is inserted to connect the warmed water feed pipe to the connecting section of the water rod. Then, warmed water is fed to the water rod and jetted out from the warmed water jetting port to cause convection and unify the water of the channel box in a short time. Thereafter, specimen is sampled and analyzed for the detection of failed fuels. (Moriyama, K.)

  15. Leaching Studies on ACR-1000{sup R} Fuel Under Reactor Operating Conditions

    Energy Technology Data Exchange (ETDEWEB)

    Sunder, S. [Atomic Energy of Canada Limited, Fuel and Fuel Channel Safety Branch, Chalk River, Ontario, K0J 1J0 (Canada)

    2009-06-15

    ACR-1000{sup R} is the latest nuclear power reactor being developed by AECL. The ACR-1000 fuel uses a modified CANFLEX{sup R} fuel bundle that contains low-enriched uranium and pellets of burnable neutron absorbers (BNA) in a central element. Dysprosium and gadolinium are used as the burnable neutron absorbers and are present as oxides in a 'fully-stabilized' zirconia matrix. The BNA material in the centre element is designed to limit the coolant void reactivity of the reactor core during postulated loss-of-coolant accidents. As part of the ACR-1000 fuel development, the stability of the BNA material under conditions associated with defects of the Zircaloy sheathing of the BNA central element has been investigated. The results of these tests can be used to demonstrate the phase stability and leaching behaviour of the ACR-1000 fuel under reactor operating conditions. The samples were disks, about 3-4 mm thick, obtained from BNA pellets and Candu fuel (natural uranium UO{sub 2}) pellets (the UO{sub 2} measurements provide a reference point). Leaching tests were carried out in light water at 325 deg. C, above the maximum coolant temperature in an ACR-1000 fuel channel during normal operating conditions (319 deg. C). This temperature also bounds the maximum operating temperature for the current Candu reactors (311 deg. C). The initial pH of the solution (measured at room temperature) used in the leaching tests was 10.3. The leach rates were determined by monitoring the amount of metals leached into solutions. Leaching tests were also carried out with BNA pellet samples in the presence of Zr-2.5%Nb pressure tube coupons to determine the effects, if any, of the presence of pressure tube material on leach rates. Other leaching tests with BNA pellet samples and UO{sub 2} pellets were conducted at 80 deg. C to study the effects of temperature on the leach rates. The temperature of 80 deg. C was selected as representative of typical shutdown temperatures

  16. Removal and replacement of fuel rods in nuclear fuel assembly

    International Nuclear Information System (INIS)

    Shallenberger, J.M.; Ferlan, S.J.

    1983-01-01

    Apparatus for replacing components of a nuclear fuel assembly stored in a pit under about 10 m. of water. The fuel assembly is secured in a container which is rotatable from the upright position to an inverted position in which the bottom nozzle is upward. The bottom nozzle plate is disconnected from the control-rod thimbles by means of a cutter for severing the welds. To guide and provide lateral support for the cutter a fixture including bushings is provided, each encircling a screw fastener and sealing the region around a screw fastener to trap the chips from the severed weld. Chips adhering to the cutter are removed by a suction tube of an eductor. (author)

  17. Transport of fresh MOX fuel assemblies for the Monju initial core

    International Nuclear Information System (INIS)

    Kurakami, J.; Ouchi, Y.; Usami, M.

    1997-01-01

    Transport of fresh MOX fuel assemblies for the prototype FBR MONJU initial core started in July 1992 and ended in March 1994. As many as 205 fresh MOX fuel assemblies for an inner core, 91 assemblies for an outer core and 5 assemblies for testing) were transported in nine transport missions. The packaging for fuel assemblies, which has shielding and shock absorbing material inside, meets IAEA regulatory requirements for Type B(U) packaging including hypothetical accident conditions such as the 9 m drop test, fire test, etc. Moreover, this package design feature such advanced technologies as high performance neutron shielding material and an automatic hold-down mechanism for the fuel assemblies. Every effort was made to carry out safe transport in conjunction with the cooperation of every competent organisation. This effort includes establishment of the transport control centre, communication training, and accompanying of the radiation monitoring expert. No transport accident occurred during the transport and all the transport missions were successfully completed on schedule. (Author)

  18. Nuclear reactor fuel element sub-assemblies

    International Nuclear Information System (INIS)

    Hill, G.D.; Trevalion, P.A.

    1977-01-01

    A fuel element sub-assembly for a liquid metal cooled fast reactor is described. It comprises a bundle of fuel pins enclosed by a tubular wrapper having a lower end journal for plugging into an upper aperture in a core supporting structure and a spike bar with an articulated bush for engaging a lower aperture in the core supporting structure. The articulated bush is retained on a spherical end portion of the spike bar by a pair of parallel retaining pins arranged transversely and disposed one each side of the spike bar. The pins are tubular and collapsible at a predetermined loading to enable the spherical end portion to pass between them. The articulated bush has an internal groove for engagement by a lifting grab, this groove being formed in a bore for receiving the spherical end portion of the spike bar. The construction lessens liability to rattling of the fuel element sub-assemblies and aids removal for replacement. (U.K.)

  19. Development of a VVER-1000 core loading pattern optimization program based on perturbation theory

    International Nuclear Information System (INIS)

    Hosseini, Mohammad; Vosoughi, Naser

    2012-01-01

    Highlights: ► We use perturbation theory to find an optimum fuel loading pattern in a VVER-1000. ► We provide a software for in-core fuel management optimization. ► We consider two objectives for our method (perturbation theory). ► We show that perturbation theory method is very fast and accurate for optimization. - Abstract: In-core nuclear fuel management is one of the most important concerns in the design of nuclear reactors. Two main goals in core fuel loading pattern design optimization are maximizing the core effective multiplication factor in order to extract the maximum energy, and keeping the local power peaking factor lower than a predetermined value to maintain the fuel integrity. Because of the numerous possible patterns of fuel assemblies in the reactor core, finding the best configuration is so important and challenging. Different techniques for optimization of fuel loading pattern in the reactor core have been introduced by now. In this study, a software is programmed in C language to find an order of the fuel loading pattern of a VVER-1000 reactor core using the perturbation theory. Our optimization method is based on minimizing the radial power peaking factor. The optimization process launches by considering an initial loading pattern and the specifications of the fuel assemblies which are given as the input of the software. The results on a typical VVER-1000 reactor reveal that the method could reach to a pattern with an allowed radial power peaking factor and increases the cycle length 1.1 days, as well.

  20. Lessons learned from the computational simulation of thermomechanical behaviour of the WWER-1000 reactor cores: FA development and its implantation into the Balakovo NPP unit 1

    International Nuclear Information System (INIS)

    Troyanov, V.; Likhatchev, Y.; Folomeev, V.; Demishonkov, A.

    2003-01-01

    The fuel assembly is forced under operation conditions by weight and hydraulic force; hold-down force; contact transversal forces; non-uniform thermal and neutron fields; thermomechanical forces in the fuel assembly multirod structure. The fuel assembly bowing has been investigated in this work. The objective of the study is to recommend the optimal design for fuel assemblies. Calculations are made using the code TEREMOK. A new generation fuel assemblies for WWER-1000 named FA-2 are suggested. The performance of the FA- 2 has been studied. The theoretical approach and the calculation technique have been verified

  1. Development of WWER-440 fuel. Use of fuel assemblies of 2-nd and 3-rd generations with increased enrichment

    International Nuclear Information System (INIS)

    Vasilchenko, I.; Lushin, V.; Ananev, U.; Baranov, A.; Kukushkin, U.

    2009-01-01

    The problem of increasing the power of units at NPPs with WWER-440 is of current importance. There are all the necessary prerequisites for the above-stated problem as a result of updating the design of fuel assemblies and codes. The decrease of power peaking factor in the core is achieved by using profiled fuel assemblies, fuel-integrated burning absorber, FAs with modernized docking unit, modern codes, which allows decreasing conservatism of RP safety substantiation. A wide range of experimental studies of fuel behaviour has been performed which has reached burn-up of (50-60) MW·day/kgU in transition and emergency conditions, post-reactor studies of fuel assemblies, fuel rods and fuel pellets with a 5-year operating period have been performed, which prove high reliability of fuel, presence of a large margin in the fuel pillar, which helps reactor operation at increased power. The results of the work performed on introduction of 5-6 fuel cycles show that the ultimate fuel state on operability in WWER-440 reactors is far from being achieved. Neutron-physical and thermal-hydraulic characteristics of the cores of working power units with RP V-213 are such that actual (design and measured) power peaking factors on fuel assemblies and fuel rods, as a rule, are smaller than the maximum design values. This factor is a real reserve for power forcing. There is experience of operating Units 1, 2, 4 of the Kola NPP and Unit 2 of the Rovno NPP at increased power. Units of the Loviisa NPP are operated at 109 % power. During transfer to work at increased power it is reasonable to use fuel assemblies with increased height of the fuel pillar, which allows decreasing medium linear power distribution. Further development of the 2-nd generation fuel assembly design and consequent transition to working fuel assemblies of the 3-rd generation provides significant improvement of fuel consumption under the conditions of WWER-440 reactors operation with more continuous fuel cycles and

  2. TEMP-M program for thermal-hydraulic calculation of fast reactor fuel assemblies

    International Nuclear Information System (INIS)

    Bogoslovskaya, C.P.; Sorokin, A.P.; Tikhomirov, B.B.; Titov, P.A.; Ushakov, P.A.

    1983-01-01

    TEMP-M program (Fortran, BESM-6 computer) for thermal-hydraulic calculation of fast reactor fuel assemblies is described. Results of calculation of temperature field in a 127 fuel element assembly of BN-600, reactor accomplished according to TEMP-N program are considered as an example. Algorithm, realized in the program, enables to calculate the distributions of coolant heating, fuel element temperature (over perimeter and length) and assembly shell temperature. The distribution of coolant heating in assembly channels is determined from a solution of the balance equation system which accounts for interchannel exchange, nonadiabatic conditions on the assembly shell. The TEMP-M program gives necessary information for calculation of strength, seviceability of fast reactor core elements, serves an effective instrument for calculations when projecting reactor cores and analyzing thermal-hydraulic characteristics of operating reactor fuel assemblies

  3. TracWorks - global fuel assembly data management

    International Nuclear Information System (INIS)

    Cooney, B.F.

    1997-01-01

    The TracWorks Data Management System is a workstation-based software product that provides a utility with a single, broadly available, regularly updated source for virtually every data item available for a fuel assembly or core component. TracWorks is designed to collect, maintain and provide information about assembly and component locations and movements during the refuelling process and operation, assembly burnup and isotopic inventory (both in-core and out-of-core), pin burnup and isotopics for pins that have been removed from their original assemblies, assembly and component inspection results (including video) and manufacturing data provided by the fabrication plant. (UK)

  4. Siemens advance PWR fuel assemblies (HTP) and cladding

    International Nuclear Information System (INIS)

    Stout, R. B.; Woods, K. N.

    1997-01-01

    This paper describes the key features of the Siemens HTP (High Thermal Performance) fuel design, the current in-reactor performance of this advanced fuel assembly design, and the advanced cladding types available

  5. Mechanical fragmentation of nuclear reactor fuel assemblies by the double cutting method

    International Nuclear Information System (INIS)

    Voitsekhovskii, B.V.; Istomin, V.L.; Mitrofanov, V.V.

    1995-01-01

    A method is described for cutting a spent fuel assembly with straight shears into pieces of a prescribed size. The method does not require separation of the casing and the lattices. The double cutting method is briefly described, and experiments designed for cutting BN-350 and VVER-440 fuel assemblies are outlined. The testing showed that the cutting method was suitable for mechanical polarization of fuel assemblies. The investigations led to the development of turnkey industrial equipment for cutting spent fuel assemblies of different geometries with a maximum size up to 170 mm. 6 refs., 8 figs., 1 tab

  6. Spacer grid for a nuclear reactor fuel assembly

    International Nuclear Information System (INIS)

    Jabsen, F.S.

    1978-01-01

    The spacer grid consists of pairs of plates forming rectangular cells and enclosing the cylindrical fuel assemblies. They have got rigid as well as elastic projections extending into the cells and holding the fuel assemblies. Additional pairs of plates are arranged in about the center of the grid of plates. They have got only elastic projections extending on both sides of the plates into one cell each. This spacer grid may be used for reactor cores with and without fuel channels. By the combination of spring-elastic and rigid projections there is obtained a reinforced outer tie. Hydraulic pressure losses, parasitic neutron capture, and hot spots are essentially reduced. (DG) [de

  7. Thermohydraulic analysis of BWR and PWR spent fuel assemblies contained within square canisters

    International Nuclear Information System (INIS)

    Wiles, L.E.; McCann, R.A.

    1981-09-01

    This report presents the results of several thermohydraulic simulations of spent fuel assembly/canister configurations performed in support of a program investigating the feasibility of storing spent nuclear fuel assemblies in canisters that would be stored in an air environment. Eleven thermohydraulic simulations were performed. Five simulations were performed using a single BWR fuel assembly/canister design. The various cases were defined by changing the canister spacing and the heat generation rate of the fuel assembly. For each simulation a steady-state thermohydraulic solution was achieved for the region inside the canister. Similarly, six simulations were performed for a single PWR fuel assembly/canister design. The square fuel rod arrays were contained in square canisters which would permit closer packing of the canisters in a storage facility. However, closer packing of the canisters would result in higher fuel temperatures which would possibly have an adverse impact on fuel integrity. Thus, the most important aspect of the analysis was to define the peak fuel assembly temperatures for each case. These results are presented along with various temperature profiles, heat flux distributions, and air velocity profiles within the canister. 48 figures, 4 tables

  8. The AFA 3G fuel assembly: a proven design for high burnups

    International Nuclear Information System (INIS)

    Forat, C.; Florentin, F.

    1999-01-01

    The AFA 3G fuel assembly design is based on the wide experience gained with the AFA 2G fuel assembly. More than 9500 AFA 2G fuel assemblies have been loaded in different reactors, worldwide, reaching discharged burnups in the range of 45 - 55 GWd/tU. This experience confirmed the features of the AFA 2G, such as the grids and the vanes arrangement for thermal hydraulic performance, the concept of the fuel rod support within the grid which avoids any rod fretting or vibration phenomenon, the efficiency of the anti-debris device. The AFA 3G also relies on and benefits from the results of the world's largest R and D program, in-pile and out-of(pile testing by Framatome with EDF and CEA, with a special focus on corrosion-resistant fuel rod cladding. The AFA 3G exhibits the following enhancements: a reinforced structure, which improves resistance to assembly bow as well as its consequences in terms of RCCA insertion fuel handling and core physics obtained from: MONOBLOC TM guide thimbles, characterized by a thickened and enlarged tube and reinforced dash-pot; a hold down spring system which has been optimized to accommodate fuel assembly hydraulic lift-off forces and to meet the fuel assembly bow resistance requirement; widened recrystallized Zircaloy-4 spacer grids; a high resistance to corrosion due to the M5 TM Zirconium-Niobium-Oxygen alloy for the fuel rod cladding, which contributes also to the bow resistance of the fuel assembly; an enhanced thermal-hydraulic behavior promoted by well proven mixing vane array of AFA 2G spacer grids, combined with three additional Mid Span Mixing Grids; a very effective debris protection with the use of the TRAPPER TM bottom nozzle. With these improvements, the AFA 3G fuel assembly is able to reach discharge burnup of 60 GWd/tU with margins on important characteristics like corrosion behavior, assembly bow and thermal-hydraulic performance. The AFA 3G design is so convincing that major utilities have decided to shift their fuel

  9. Development of ORIGEN libraries for mixed oxide (MOX) fuel assembly designs

    International Nuclear Information System (INIS)

    Mertyurek, Ugur; Gauld, Ian C.

    2016-01-01

    Highlights: • ORIGEN MOX library generation process is described. • SCALE burnup calculations are validated against measured MOX fuel samples from the MALIBU program. • ORIGEN MOX libraries are verified using the OECD Phase IV-B benchmark. • There is good agreement for calculated-to-measured isotopic distributions. - Abstract: ORIGEN cross section libraries for reactor-grade mixed oxide (MOX) fuel assembly designs have been developed to provide fast and accurate depletion calculations to predict nuclide inventories, radiation sources and thermal decay heat information needed in safety evaluations and safeguards verification measurements of spent nuclear fuel. These ORIGEN libraries are generated using two-dimensional lattice physics assembly models that include enrichment zoning and cross section data based on ENDF/B-VII.0 evaluations. Using the SCALE depletion sequence, burnup-dependent cross sections are created for selected commercial reactor assembly designs and a representative range of reactor operating conditions, fuel enrichments, and fuel burnup. The burnup dependent cross sections are then interpolated to provide problem-dependent cross sections for ORIGEN, avoiding the need for time-consuming lattice physics calculations. The ORIGEN libraries for MOX assembly designs are validated against destructive radiochemical assay measurements of MOX fuel from the MALIBU international experimental program. This program included measurements of MOX fuel from a 15 × 15 pressurized water reactor assembly and a 9 × 9 boiling water reactor assembly. The ORIGEN MOX libraries are also compared against detailed assembly calculations from the Phase IV-B numerical MOX fuel burnup credit benchmark coordinated by the Nuclear Energy Agency within the Organization for Economic Cooperation and Development. The nuclide compositions calculated by ORIGEN using the MOX libraries are shown to be in good agreement with other physics codes and with experimental data.

  10. The estimation of the control rods absorber burn-up during the VVER-1000 operation

    Energy Technology Data Exchange (ETDEWEB)

    Bolshagin, Sergey N.; Gorodkov, Sergey S.; Sukhino-Khomenko, Evgeniya A. [National Research Centre ' Kurchatov Institute' , Moscow (Russian Federation)

    2013-09-15

    The isotopic composition of the control rods absorber changes under the neutron flux influence, so the control rods efficiency can decrease. In the VVER-1000 control rods boron carbide and dysprosium titanate are used as absorbing materials. In boric part the efficiency decreases due to the {sup 10}B isotope burn-up. Dysprosium isotopes turn into other absorbing isotopes, so the absorbing properties of dysprosium part decrease to a lesser degree. Also the control rod's shells may be deformed as a consequence of boron carbide radiation swelling. This fact should be considered in substantiation of control rods durability. For the estimation of the control rods absorber burn-up two models are developed: VVER-1000 3-D fuel assembly with control rods partially immersed (imitation of the control rods operation in the working group) and VVER-1000 3-D fuel assembly with control rods, located at the upper limit switch (imitation of the control rods operation in groups of the emergency shutdown system). (orig.)

  11. Manipulator for fuel assemblies in a spent fuel pool, especially for a LMFBR

    International Nuclear Information System (INIS)

    Dalmas, R.

    1988-01-01

    The spent fuel manipulator has - a travelling crane moving longitudinally: - a carriage moving on the travelling crane in a direction perpendicular to its motion so that the carriage is positioned over each assembly, - a telescopic rod carried by the carriage and terminating in a vertically mobile grapple, - a tubular shielded hood on the carriage extending downwards to house the rod, grapple and fuel assembly and maintaining a biologically acceptable level of radiation above the surface of the pool [fr

  12. Yalina booster subcritical assembly performance with low enriched uranium fuel

    International Nuclear Information System (INIS)

    Talamo, Alberto; Gohar, Yousry

    2011-01-01

    The YALINA Booster facility is a subcritical assembly located in Minsk, Belarus. The facility has special features that result in fast and thermal neutron spectra in different zones. The fast zone of the assembly uses a lead matrix and uranium fuels with different enrichments: 90% and 36%, 36%, or 21%. The thermal zone of the assembly contains 10% enriched uranium fuel in a polyethylene matrix. This study discusses the performance of the three YALINA Booster configurations with the different fuel enrichments. In order to maintain the same subcriticality level in the three configurations, the number of fuel rods in the thermal zone is increased as the uranium fuel enrichment in the fast zone is decreased. The maximum number of fuel rods that can be loaded in the thermal zone is about 1185. Consequently, the neutron multiplication of the configuration with 21% enriched uranium fuel in the fast zone is enhanced by changing the position of the boron carbide and the natural uranium absorber rods, located between the fast and the thermal zones, to form an annular rather than a square arrangement. (author)

  13. Yalina booster subcritical assembly performance with low enriched uranium fuel

    Energy Technology Data Exchange (ETDEWEB)

    Talamo, Alberto; Gohar, Yousry, E-mail: alby@anl.gov [Argonne National Laboratory, Lemont, IL (United States)

    2011-07-01

    The YALINA Booster facility is a subcritical assembly located in Minsk, Belarus. The facility has special features that result in fast and thermal neutron spectra in different zones. The fast zone of the assembly uses a lead matrix and uranium fuels with different enrichments: 90% and 36%, 36%, or 21%. The thermal zone of the assembly contains 10% enriched uranium fuel in a polyethylene matrix. This study discusses the performance of the three YALINA Booster configurations with the different fuel enrichments. In order to maintain the same subcriticality level in the three configurations, the number of fuel rods in the thermal zone is increased as the uranium fuel enrichment in the fast zone is decreased. The maximum number of fuel rods that can be loaded in the thermal zone is about 1185. Consequently, the neutron multiplication of the configuration with 21% enriched uranium fuel in the fast zone is enhanced by changing the position of the boron carbide and the natural uranium absorber rods, located between the fast and the thermal zones, to form an annular rather than a square arrangement. (author)

  14. OpenAPS Data Commons on Open Humans

    OpenAIRE

    Lewis, Dana M.; Ball, Madeleine

    2017-01-01

    Poster describing OpenAPS, Open Humans, and joint work creating a data commons for OpenAPS data in the Open Humans platform. Presented at the 2017 Sage Assembly Bionetworks Assembly and recipient of a Young Innovator/Investigator award.

  15. Contemporary and prospective fuel cycles for WWER-440 based on new assemblies with higher uranium capacity and higher average fuel enrichment

    International Nuclear Information System (INIS)

    Gagarinskiy, A.A.; Saprykin, V.V.

    2009-01-01

    RRC 'Kurchatov Institute' has performed an extensive cycle of calculations intended to validate the opportunities of improving different fuel cycles for WWER-440 reactors. Works were performed to upgrade and improve WWER-440 fuel cycles on the basis of second-generation fuel assemblies allowing core thermal power to be uprated to 107 108 % of its nominal value (1375 MW), while maintaining the same fuel operation lifetime. Currently intensive work is underway to develop fuel cycles based on second-generation assemblies with higher fuel capacity and average fuel enrichment per assembly increased up to 4.87 % of U-235. Fuel capacity of second-generation assemblies was increased by means of eliminated central apertures of fuel pellets, and pellet diameter extended due to reduced fuel cladding thickness. This paper intends to summarize the results of works performed in the field of WWER-440 fuel cycle modernization, and to present yet unemployed opportunities and prospects of further improvement of WWER-440 neutronic and operating parameters by means of additional optimization of fuel assembly designs and fuel element arrangements applied. (Authors)

  16. FSI effects and seismic performance evaluation of water storage tank of AP1000 subjected to earthquake loading

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Chunfeng, E-mail: zhaowindy@126.com [Institute of Earthquake Engineering, Dalian University of Technology, Dalian 116024 (China); School of Civil Engineering, Hefei University of Technology, Anhui Province 230009 (China); Chen, Jianyun; Xu, Qiang [Institute of Earthquake Engineering, Dalian University of Technology, Dalian 116024 (China)

    2014-12-15

    Graphical abstract: - Highlights: • Water sloshing and oscillation of water tank under earthquake are simulated by FEM. • The influences of various water levels on seismic response are investigated. • ALE algorithm is applied to study the fluid–structure interaction effects. • The effects of different water levels in reducing seismic response are compared. • The optimal water level of water tank under seismic loading is obtained. - Abstract: The gravity water storage tank of AP1000 is designed to cool down the temperature of containment vessel by spray water when accident releases mass energy. However, the influence of fluid–structure interaction between water and water tank of AP1000 on dynamic behavior of shield building is still a hot research question. The main objective of the current study is to investigate how the fluid–structure interaction affects the dynamic behavior of water tank and whether the water sloshing and oscillation can reduce the seismic response of the shield building subjected to earthquake. For this purpose, a fluid–structure interaction algorithm of finite element technique is employed for the seismic analysis of water storage tank of AP1000. In the finite element model, 8 cases height of water, such as 10.8, 9.8, 8.8, 7.8, 6.8, 5.8, 4.8, and 3.8 m, are established and compared with the empty water tank in order to demonstrate the positive effect in mitigating the seismic response. An Arbitrary Lagrangian Eulerian (ALE) algorithm is used to simulate the fluid–structure interaction, fluid sloshing and oscillation of water tank under the El-Centro earthquake. The correlation between seismic response and parameters of water tank in terms of height of air (h{sub 1}), height of water (h{sub 2}), height ratio of water to tank (h{sub 2}/H{sub w}) and mass ratio of water to total structure (m{sub w}/m{sub t}) is also analyzed. The numerical results clearly show that the optimal h{sub 2}, h{sub 2}/H{sub w} and m{sub w}/m{sub t

  17. The Model of Temperature Dynamics of Pulsed Fuel Assembly

    CERN Document Server

    Bondarchenko, E A; Popov, A K

    2002-01-01

    Heat exchange process differential equations are considered for a subcritical fuel assembly with an injector. The equations are obtained by means of the use of the Hermit polynomial. The model is created for modelling of temperature transitional processes. The parameters and dynamics are estimated for hypothetical fuel assembly consisting of real mountings: the powerful proton accelerator and the reactor IBR-2 core at its subcritica l state.

  18. Radiation Analysis for Skeleton of Spent Nuclear Fuel Assembly

    International Nuclear Information System (INIS)

    Park, Chang Je; Na, Sang Ho; Yang, Jae Hwan; Kang, Kweon Ho

    2010-11-01

    ORIGEN-S code was used in order to analyze the radioactive characteristics of skeleton of the spent nuclear fuel assembly. From the results, radioactivity, decay heat for various compositions in skeleton were obtained with a variation of cooling period and axial distribution of radioactivity was calculated, too. These data will be utilized later to process and dispose the skeleton of spent nuclear fuel assembly

  19. Experimental study of flow induced vibration of the planar fuel assembly

    International Nuclear Information System (INIS)

    Wang Jinhua; Bo Hanliang; Jiang Shengyao; Jia Haijun; Zheng Wenxiang; Min Gang; Qu Xinxing

    2005-01-01

    The paper studied the flow-induced vibration of the planar fuel assembly under scour of coolant through experiments, the study includes: the characteristics of the inherent vibration, the response to the flow-induced vibration in rating condition and the confirmation of the critical flow velocity's scope of the flow flexible instability. The velocity distributions in different flow channels formed by fuel plates in the assembly were measured, and the velocity distribution in the same flow channel was also measured. The experimental conclusions includes: the inherent vibration frequency of the planar fuel assembly is different for a little in each direction. The damp ratio corresponding to the assembly each rank's inherent frequency is small, and the damp ratio decreased with the increase of the corresponding inherent frequency. The velocity in different flow channels decreased from outside to inside, and the velocity in the middle channel was the least; the velocity in the same channel decreased from inside to outside, and the velocity in the middle position was the most. The vibration swing of the fuel assembly was small at rating condition, and the vibration swing of the fuel plates was larger than side plates. The vibration of the fuel assembly increased with the increase of the velocity, the vibration of the middle fuel plate were larger than the border fuel plate, and the vibration of the border fuel plate was larger than the side plate. The large scale vibration of the flow flexible instability didn't occur in the velocity scope of 0-18.8 m/s in the experiment, so the critical flow velocity of the flow flexible instability was not in the flow velocity scope of the experiment. (authors)

  20. Design of the Flow Plates for a Dual Cooled Fuel Assembly

    International Nuclear Information System (INIS)

    Kim, Jae Yong; Yoon, Kyung Ho; Lee, Young Ho; Lee, Kang Hee; Kim, Hyung Kyu

    2009-01-01

    In a dual cooled fuel assembly, the array and position of fuels are changed from those of a conventional PWR fuel assembly to achieve a power uprating. The flow plate provides flow holes to direct the heated coolant into/out of the fuel assembly and structural intensity to insure that the fuel rod is axially restrained within the spacer grids. So, flow plates of top/bottom end pieces (TEP/BEP) have to be modified into proper shape. Because the flow holes' area of a flow plate affects pressure drop, the flow holes' area must be larger than/equal to that of conventional flow plates. And design criterion of the TEP/BEP says that the flow plate should withstand a 22.241 kN axial load during handling lest a calculated stress intensity should exceed the Condition I allowable stress. In this paper, newly designed flow plates of a TEP/BEP are suggested and stress analysis is conducted to evaluate strength robustness of the flow plates for the dual cooled fuel assembly

  1. Thermomechanical evaluation of the fuel assemblies fabricated in the ININ

    International Nuclear Information System (INIS)

    Hernandez L, H.; Ortiz V, J.

    2005-01-01

    The pilot plant of fuel production of the National Institute of Nuclear Research (ININ) provided to the Laguna Verde Nuclear Power Plant (CNLV) four fuel assemblies type GE9B. The fuel irradiation was carried out in the unit 1 of the CNLV during four operation cycles, highlighting the fact that in their third cycle the four assemblies were placed in the center of the reactor core. In the Nuclear Systems Department (DSN) of the ININ it has been carried out studies to evaluate their neutron performance and to be able to determine the exposure levels of this fuels. Its also outlines the necessity to carry out a study of the thermomechanical behavior of the fuel rods that compose the assemblies, through computational codes that simulate their performance so much thermal as mechanical. For such purpose has been developing in the DSN the FETMA code, together with the codes that compose the system Fuel Management System (FMS), which evaluates the thermomechanical performance of fuel elements. In this work were used the FETMA and FEMAXI codes (developed by JAERI) to study the thermomechanical performance of the fuel elements manufactured in the ININ. (Author)

  2. CFD Analysis of Hot Spot Fuel Temperature in the Control Fuel Block Assembly of a VHTR core

    International Nuclear Information System (INIS)

    Kim, Min Hwan; Tak, Nam Il; Noh, Jae Man

    2010-01-01

    The Very High Temperature Reactor (VHTR) dedicated for efficient hydrogen production requires core outlet temperatures of more than 950 .deg. C. As the outlet temperature increases, the thermal margin of the core decreases, which highlights the need for a detailed analysis to reduce its uncertainty. Tak et al. performed CFD analysis for a 1/12 fuel assembly model and compared the result with a simple unit-cell model in order to emphasize the need of a detailed CFD analysis for the prediction of hot spot fuel temperatures. Their CFD model, however, was focused on the standard fuel assembly but not on the control fuel assembly in which a considerable amount of bypass flow is expected to occur through the control rod passages. In this study, a CFD model for the control fuel block assembly is developed and applied for the hot spot analyses of PMR200 core. Not only the bypass flow but also the cross flow is considered in the analyses

  3. Fuel assembly for a nuclear reactor

    International Nuclear Information System (INIS)

    Ferrari, H.M.; Miller, D.L.; Tong, L.S.

    1975-01-01

    A description is given of a fuel assembly including multiple open channel grids for holding fuel rods and control rod guide thimbles in predetermined fixed relationship with each other. Metallic straps are interwoven to form a grid or egg crate configuration having openings which receive the fuel rods and guide thimbles. To properly support and cool the fuel rods near the grid-fuel rod interface, springs and dimples on the grid straps project into each opening, the dimples being oriented in a direction to permit flow of coolant upwardly therethrough. To minimize turbulence in coolant flow, the leading edge of each grid strap is provided with cutout sections which form scallops effective in channeling coolant in a uniform flow path through the network of grid openings

  4. Support of Construction and Verification of Out-of-Pile Fuel Assembly Test Facilities

    International Nuclear Information System (INIS)

    Park, Nam Gyu; Kim, K. T.; Park, J. K.

    2006-12-01

    Fuel assembly and components should be verified by the out-of-pile test facilities in order to load the developed fuel in reactor. Even though most of the component-wise tests have been performed using the facilities in land, the assembly-wise tests has been depended on the oversees' facility due to the lack of the facilities. KAERI started to construct the assembly-wise mechanical/hydraulic test facilities and KNF, as an end user, is supporting the mechanical/hydraulic test facility construction by using the technologies studied through the fuel development programs. The works performed are as follows: - Test assembly shipping container design and manufacturing support - Fuel handling tool design : Gripper, Upper and lower core simulators for assembly mechanical test facility, Internals for assembly hydraulic test facility - Manufacture of test specimens : skeleton and assembly for preliminary functional verification of assembly mechanical/hydraulic test facilities, two assemblies for the verification of assembly mechanical/hydraulic test facilities, Instrumented rod design and integrity evaluation - Verification of assembly mechanical/hydraulic test facilities : test data evaluation

  5. Support of Construction and Verification of Out-of-Pile Fuel Assembly Test Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Park, Nam Gyu; Kim, K. T.; Park, J. K. [KNF, Daejeon (Korea, Republic of)] (and others)

    2006-12-15

    Fuel assembly and components should be verified by the out-of-pile test facilities in order to load the developed fuel in reactor. Even though most of the component-wise tests have been performed using the facilities in land, the assembly-wise tests has been depended on the oversees' facility due to the lack of the facilities. KAERI started to construct the assembly-wise mechanical/hydraulic test facilities and KNF, as an end user, is supporting the mechanical/hydraulic test facility construction by using the technologies studied through the fuel development programs. The works performed are as follows: - Test assembly shipping container design and manufacturing support - Fuel handling tool design : Gripper, Upper and lower core simulators for assembly mechanical test facility, Internals for assembly hydraulic test facility - Manufacture of test specimens : skeleton and assembly for preliminary functional verification of assembly mechanical/hydraulic test facilities, two assemblies for the verification of assembly mechanical/hydraulic test facilities, Instrumented rod design and integrity evaluation - Verification of assembly mechanical/hydraulic test facilities : test data evaluation.

  6. Nondestructive examination of Oconee 1 fuel assemblies after three cycles of irradiation

    International Nuclear Information System (INIS)

    Pyecha, T.D.; Davis, H.H.; Mayer, J.T.; Guthrie, B.A. III; Larson, J.G.

    1979-09-01

    The Babcock and Wilcox Company (B and W) in conjunction with Duke Power Company is participating in a Department of Energy sponsored research and development program to qualify current design pressurized water reactor (PWR) fuel assemblies for extended burnup (>40,000 MWd/mtU). The information obtained from this program will provide a basis for future design improvements in PWR fuel assemblies culminating in an extended burnup assembly having a nominal operating limit of approximately 50,000 MWd/mtU. An extension of the current assembly design to higher burnups will result in the following benefits: (1) lower uranium ore requirements, (2) greater fuel cycle efficiency, (3) reduction in spent fuel storage requirements, and (4) increased flexibility in tailoring fuel batch sizes to better accommodate the varying energy requirements of the utilities

  7. Experience feedback from the transportation of Framatome fuel assemblies

    International Nuclear Information System (INIS)

    Robin, M.E.; Gaillard, G.; Aubin, C.

    1998-01-01

    Framatome, the foremost world nuclear fuel manufacturer, has for 25 years been delivering fuel elements from its three factories (Dessel, Romans, Pierrelatte) to the various sites in France and abroad (Germany, Sweden, Belgium, China, Korea, South Africa, Switzerland). During this period, Framatome has built up experience and expertise in fuel element transportation by road, rail and sea. In this filed, the range of constraints is very wide: safety and environmental protection constraints; constraints arising from the control and protection of nuclear materials, contractual and financial constraints, media watchdogs. Through the experience feedback from the transportation of FRAMATOME assemblies, this paper addresses all the phases in the transportation of fresh fuel assemblies. (authors)

  8. Apparatus and method for loading fuel rods into grids of a fuel assembly

    International Nuclear Information System (INIS)

    De Mario, E.E.; Burman, D.L.; Olson, C.A.; Secker, J.R.

    1987-01-01

    This patent describes a fuel assembly having fuel rods and at least one grid formed of interleaved straps and yieldable springs, the interleaved straps defining hollow cells aligned in rows and columns thereof for receiving the respective fuel rods. A pair of the springs are disposed within each of the cells for engaging and supporting one of the fuel rods when received in the cell. An apparatus is described for facilitating the loading of the fuel rods into the grid of the fuel assembly, comprising: (a) first mean insertable concurrently into the cells of the grid for engaging and moving the springs from respective first positions in which each pair of springs will engage a respective fuel rod when disposed within the grid cell to respective second positions in which each pair of springs is disengaged from the respective fuel rod when disposed within the grid cell; (b) a pair of second means, one of the pair of the second means being insertable concurrently into the rows of the cells of the grid and the other of the pair of second means being insertable concurrently into the column of the cells

  9. Fuel assembly cooling experience at the FFTF/IEM cell

    International Nuclear Information System (INIS)

    McGuinness, P.W.

    1985-01-01

    In the Fast Flux Test Facility (FFTF), sodium wetted irradiated fuel assemblies are discharged to the Interim Examination and Maintenance (IEM) Cell for disassembly and post-irradiation examination in an inert argon atmosphere. While in the IEM Cell, fuel assemblies are cooled by the IEM Cell Subassembly Cooling System. This paper describes the cooling system design, performance, and lessons learned, including a discussion of two overtemperature incidents. 2 refs., 6 figs

  10. Results of post-irradiation examination of WWER fuel assembly structural components made of E110 and E635 alloys

    International Nuclear Information System (INIS)

    Smirnov, A.; Markov, D.; Smirnov, V.; Polenok, V.; Ivashchenko, A.; Strozhuk, A.

    2006-01-01

    The paper presents the main examination results on the condition of fuel rods claddings, guide tubes and spacer grids of the WWER FA made of E110 and E635 alloys operated under standard operating conditions. The paper is based on the data obtained during the examination of 28 WWER-1000 FA and 12 WWER-400 FA. E110 alloy is shown to be suitable material for the WWER fuel rod claddings under the normal operating conditions. E635 alloy is attractive to manufacturing of the skeleton components. The currently used combination (E110 as a material of fuel rods claddings and E635 - as a material of the skeleton components) is the optimal solution for the WWER fuel assembly because the advantages of the both alloys are used. (authors)

  11. Verification of FA2D Prediction Capability Using Fuel Assembly Benchmark

    International Nuclear Information System (INIS)

    Jecmenica, R.; Pevec, D.; Grgic, D.; Konjarek, D.

    2008-01-01

    FA2D is 2D transport collision probability code developed at Faculty of Electrical Engineering and Computing, University Zagreb. It is used for calculation of cross section data at fuel assembly level. Main objective of its development was capability to generate cross section data to be used for fuel management and safety analyses of PWR reactors. Till now formal verification of code predictions capability is not performed at fuel assembly level, but results of fuel management calculations obtained using FA2D generated cross sections for NPP Krsko and IRIS reactor are compared against Westinghouse calculations. Cross section data were used within NRC's PARCS code and satisfactory preliminary results were obtained. This paper presents results of calculations performed for Nuclear Fuel Industries, Ltd., benchmark using FA2D, and SCALE5 TRITON calculation sequence (based on discrete ordinates code NEWT). Nuclear Fuel Industries, Ltd., Japan, released LWR Next Generation Fuels Benchmark with the aim to verify prediction capability in nuclear design for extended burnup regions. We performed calculations for two different Benchmark problem geometries - UO 2 pin cell and UO 2 PWR fuel assembly. The results obtained with two mentioned 2D spectral codes are presented for burnup dependency of infinite multiplication factor, isotopic concentration of important materials and for local peaking factor vs. burnup (in case of fuel assembly calculation).(author)

  12. Issues in the use of Weapons-Grade MOX Fuel in VVER-1000 Nuclear Reactors: Comparison of UO2 and MOX Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Carbajo, J.J.

    2005-05-27

    The purpose of this report is to quantify the differences between mixed oxide (MOX) and low-enriched uranium (LEU) fuels and to assess in reasonable detail the potential impacts of MOX fuel use in VVER-1000 nuclear power plants in Russia. This report is a generic tool to assist in the identification of plant modifications that may be required to accommodate receiving, storing, handling, irradiating, and disposing of MOX fuel in VVER-1000 reactors. The report is based on information from work performed by Russian and U.S. institutions. The report quantifies each issue, and the differences between LEU and MOX fuels are described as accurately as possible, given the current sources of data.

  13. Fuel rod behaviour at high burnup WWER fuel cycles

    International Nuclear Information System (INIS)

    Medvedev, A.; Bogatyr, S.; Kouznetsov, V.; Khvostov, G.; Lagovsky; Korystin, L.; Poudov, V.

    2003-01-01

    The modernisation of WWER fuel cycles is carried out on the base of complete modelling and experimental justification of fuel rods up to 70 MWd/kgU. The modelling justification of the reliability of fuel rod and fuel rod with gadolinium is carried out with the use of certified START-3 code. START-3 code has a continuous experimental support. The thermophysical and strength reliability of WWER-440 fuel is justified for fuel rod and pellet burnups 65 MWd/kgU and 74 MWd/U, accordingly. Results of analysis are demonstrated by the example of uranium-gadolinium fuel assemblies of second generation under 5-year cycle with a portion of 6-year assemblies and by the example of successfully completed pilot operation of 5-year cycle fuel assemblies during 6 years at unit 3 of Kolskaja NPP. The thermophysical and strength reliability of WWER-1000 fuel is justified for a fuel rod burnup 66 MWd/kgU by the example of fuel operation under 4-year cycles and 6-year test operation of fuel assemblies at unit 1 of Kalininskaya NPP. By the example of 5-year cycle at Dukovany NPP Unit 2 it was demonstrated that WWER fuel rod of a burnup 58 MWd/kgU ensure reliable operation under load following conditions. The analysis has confirmed sufficient reserves of Russian fuel to implement program of JSC 'TVEL' in order to improve technical and economical parameters of WWER fuel cycles

  14. PWR fuel assembly

    International Nuclear Information System (INIS)

    Yamada, Yuji.

    1995-01-01

    A lower end plug is secured to a lower end of a thimble tube. A bolt-like thimble screw is screw-coupled and fastened to a female screw disposed to the end plug by way of a bushing screw-coupled to a lower nozzle. Then, the thimble screw and the lower nozzle are welded to secure the thimble tube and the lower nozzle. The lower portion of the bushing extends near the lower surface of the lower nozzle. The extended portion is provided with a recess to which a bolt head of the thimble screw is tightly inserted and a seating-face portion against which a seating-face of the bolt head abuts. Then, the extended portion of the bushing and the lower nozzle are spot-welded on the side of the lower surface of the nozzle, to prevent rotation of the bushing. This can easily prevent the rotation of the bushing after adjustment, to simplify the assembling of the fuel assembly. (I.N.)

  15. K-infinite trends with burnup, enrichment, and cooling time for BWR fuel assemblies

    International Nuclear Information System (INIS)

    Broadhead, B.L.

    1998-08-01

    This report documents the work performed by ORNL for the Yucca Mountain project (YMP) M and O contractor, Framatome Cogema Fuels. The goal of this work was to obtain k inf values for infinite arrays of flooded boiling-water-reactor (BWR) fuel assemblies as a function of various burnup/enrichment and cooling-time combinations. These scenarios simulate expected limiting criticality loading conditions (for a given assembly type) for drift emplacements in a repository. Upon consultation with the YMP staff, a Quad Cities BWR fuel assembly was selected as a baseline assembly. This design consists of seven axial enrichment zones, three of which contain natural uranium oxide. No attempt was made to find a bounding or even typical assembly design due to the wide variety in fuel assembly designs necessary for consideration. The current work concentrates on establishing a baseline analysis, along with a small number of sensitivity studies which can be expected later if desired. As a result of similar studies of this nature, several effects are known to be important in the determination of the final k inf for spent fuel in a cask-like geometry. For a given enrichment there is an optimal burnup: for lower burnups, excess energy (and corresponding excess reactivity) is present in the fuel assembly; for larger burnups, the assembly is overburned and essentially driven by neighboring fuel assemblies. The majority of the burnup/enrichment scenarios included in this study were for some near-optimum burnup/enrichment combinations as determined from Energy Information Administration (EIA) data. Several calculations were performed for under- and over-burned fuel to show these effects

  16. Grapples for manipulating end fittings for nuclear reactor fuel assemblies

    International Nuclear Information System (INIS)

    Jabsen, F.S.

    1982-01-01

    A nuclear fuel assembly includes control rod guide tubes the upper ends of which protrude beyond a spider and are locked in place by means of a cellular lattice seated in grooves in the outer surfaces of the sleeves. A grapple is provided for disengaging the structure comprising lattice, spider, springs and a grill from the end of the fuel assembly to enable these components to be removed in an assembly state and subsequently replaced after inspection and repair. (author)

  17. Evaluation of the fuel-element assembly non-hermeticity at its early stage

    International Nuclear Information System (INIS)

    Bliznyakova, V.A.; Shevel', V.N.; Ostapenko, V.I.

    1983-01-01

    The given paper deals with control of the fuel-element assembly shell state at the early stage of failure development. Technique for the fuel-element assembly shell state evaluation are described. A method for assembly failure detection, used at WWR of the Institute for Nuclear Research is described also

  18. Nuclear reactor fuel assembly spacer grid

    International Nuclear Information System (INIS)

    Jabsen, F.S.

    1977-01-01

    A spacer grid for a nuclear fuel assembly is comprised of a lattice of grid plates forming multiple cells that are penetrated by fuel elements. Resilient protrusions and rigid protrusions projecting into the cells from the plates bear against the fuel element to effect proper support and spacing. Pairs of intersecting grid plates, disposed in a longitudinally spaced relationship, cooperate with other plates to form a lattice wherein each cell contains adjacent panels having resilient protrusions arranged opposite adjacent panels having rigid protrusions. The peripheral band bounding the lattice is provided solely with rigid protrusions projecting into the peripheral cells. (Auth.)

  19. Water confinement effects on fuel assembly motion and damping

    International Nuclear Information System (INIS)

    Brenneman, B.; Shah, S.J.; Williams, G.T.; Strumpell, J.H.

    2003-01-01

    It has been established by other authors that the accelerations of the water confined by the reactor core baffle plates has a significant effect on the responses of all the fuel assemblies during LOCA or seismic transients. This particular effect is a consequence of the water being essentially incompressible, and thus experiencing the same horizontal accelerations as the imposed baffle plate motions. These horizontal accelerations of the fluid induce lateral pressure gradients that cause horizontal buoyancy forces on any submerged structures. These forces are in the same direction as the baffle accelerations and, for certain frequencies at least, tend to reduce the relative displacements between the fuel and baffle plates. But there is another confinement effect - the imposed baffle plate velocities must also be transmitted to the water. If the fuel assembly grid strips are treated as simple hydro-foils, these horizontal velocity components change the fluid angle of attack on each strip, and thus may induce large horizontal lift forces on each grid in the same direction as the baffle plate velocity. There is a similar horizontal lift due to inclined flow over the rods when axial flow is present. These combined forces appear to always reduce the relative displacements between the fuel and baffle plates for any significant axial flow velocity. Modeling this effect is very simple. It was shown in previous papers that the mechanism for the large fuel assembly damping due to axial flow may be the hydrodynamic forces on the grid strips, and that this is very well represented by discrete viscous dampers at each grid elevation. To include the imposed horizontal water velocity effects, on both the grids and rods, these dampers are simply attached to the baffle plate rather than 'ground'. The large flow-induced damping really acts in a relative reference frame rather than an absolute or inertial reference frame, and thus it becomes a flow-induced coupling between the fuel

  20. Large LOCA accident analysis for AP1000 under earthquake

    International Nuclear Information System (INIS)

    Yu, Yu; Lv, Xuefeng; Niu, Fenglei

    2015-01-01

    Highlights: • Seismic failure event probability is induced by uncertainties in PGA and in Am. • Uncertainty in PGA is shared by all the components at the same place. • Relativity induced by sharing PGA value can be analyzed explicitly by MC method. • Multi components failures and accident sequences will occur under high PGA value. - Abstract: Seismic probabilistic safety assessment (PSA) is developed to give the insight of nuclear power plant risk under earthquake and the main contributors to the risk. However, component failure probability including the initial event frequency is the function of peak ground acceleration (PGA), and all the components especially the different kinds of components at same place will share the common ground shaking, which is one of the important factors to influence the result. In this paper, we propose an analysis method based on Monte Carlo (MC) simulation in which the effect of all components sharing the same PGA level can be expressed by explicit pattern. The Large LOCA accident in AP1000 is analyzed as an example, based on the seismic hazard curve used in this paper, the core damage frequency is almost equal to the initial event frequency, moreover the frequency of each accident sequence is close to and even equal to the initial event frequency, while the main contributors are seismic events since multi components and systems failures will happen simultaneously when a high value of PGA is sampled. The component failure probability is determined by uncertainties in PGA and in component seismic capacity, and the former is the crucial element to influence the result