WorldWideScience

Sample records for aorta smooth muscle

  1. Differences in the primary culture, purification and biological characteristics between endothelial cells and smooth muscle cells from rat aorta

    Institute of Scientific and Technical Information of China (English)

    Shaobo Hu; Zifang Song; Qichang Zheng; Jun Nie

    2009-01-01

    Objective: To investigate the differences of primary culture, purification and biological characteristics between endothelial cells and smooth muscle cells from rat aorta. Methods: Endothelial cells were obtained using the vascular ring adherence, collagenase digestion method and an improved vascular ring adherence method, while smooth muscle cells were separated from tissue sections of rat aorta. Clones of endothelial cells were selected by limiting dilution assay. Both cell types were identified using specific cell immunofluorescent markers,and phase contrast microscopy was used to observe the morphological disparity between endothelial cells and smooth muscle cells at the single cell and colony level. Cell proliferation was determined by the cell counting kit-8. Differences between endothelial cells and smooth muscle cells were evaluated in trypsin digestion 6me, attachment time and recovery after cryopreservation. Results: Endothelial cells were obtained by all three methods. The improved vascular ring method provided the most reproducible results. Cells were in good condition, and of high purity. Smooth muscle cells were cultured successfully by the tissue fragment culture method. Clonal expansion of singleendothelial cells was attained. The two cell types expressed their respective specific markers, and the rate of proliferation of smooth muscle cells exceeded that of endothelial cells. Endothelial cells were more sensitive to trypsin digestion than smooth muscle cells. In addition, they had a shorter adherence time and better recovery following cryopreservation than smooth muscle cells. Conclusion: The improved vascular ring method was optimal for yielding endothelial cells. Limiting dilution is a novel and valid method for purifying primary endothelial cells from rat aorta. Primary rat endothelial cell and vascular smooth muscle cell cultures exhibited different morphological characteristics, proliferation rate, adherence time, susceptibility to trypsin

  2. Effects of Total Alkaloids in Buxus microphylla Leaves on Aorta Smooth Muscle of Rats and Their Mechanisms

    Institute of Scientific and Technical Information of China (English)

    ZHANG Hui-qin; LIU Yan-yan; LI Yong-wen; LI Li; CUI Zhi-qing

    2012-01-01

    Objective To investigate the effects of total alkaloids in Buxus microphylla leaves (ABML) on isolated rats thoracic aorta rings,and then to explore the possible mechanisms underlying the effects.Methods Thoracic aortas of Wistar rats were isolated,removed,and mounted onto an organ bath.The effects of ABML at different concentration on the contraction of isolated thoracic aorta rings (with and without endothelium) precontracted with KC1 or PE were observed with organ bath technique.Dose-effect curves of CaCl2 were recorded by organ bath technique.The concentration of intracellular Ca2+ ([Ca2+]i) increased by PE,KCI,and caffeine in the presence of ABML was determined using Ca2+ sensitive fluorescence indicator Fura-2/AM loaded thoracic aorta vascular smooth muscle (VSM) cells of rats.Results In aorta rings precontracted with PE and KCI,ABML produced concentrationdependent relaxation in both intact and denuded endothelium ring groups.There was no difference in the inhibition of contraction between the intact and denuded endothelium ring groups at the same concentration.Exposure of isolated thoracic aorta rings to ABML led to a significant reduction in the contracting response induced by CaCI2,and shifted the cumulative concentration-response curves to right.ABML could significantly inhibit the extracellular Ca2+ influx induced by PE and KCI under [Ca2+]0 of 1.5 mmol/L,with inhibitory ratios of 40.2% and 49.9%,respectively.In the case of Ca2+-free,ABML could significantly inhibit the intracellular Ca2+ release induced by PE,with inhibitory ratio of 72.4%.Conclusion ABML relaxes thoracic aorta VSM cells by suppressing influx of extracellular Ca2+ via voltage-dependent Ca2+ channel and receptor-operated Ca2+ channel.

  3. Segmental and age differences in the elastin network, collagen, and smooth muscle phenotype in the tunica media of the porcine aorta.

    Science.gov (United States)

    Tonar, Zbyněk; Kubíková, Tereza; Prior, Claudia; Demjén, Erna; Liška, Václav; Králíčková, Milena; Witter, Kirsti

    2015-09-01

    The porcine aorta is often used in studies on morphology, pathology, transplantation surgery, vascular and endovascular surgery, and biomechanics of the large arteries. Using quantitative histology and stereology, we estimated the area fraction of elastin, collagen, alpha-smooth muscle actin, vimentin, and desmin within the tunica media in 123 tissue samples collected from five segments (thoracic ascending aorta; aortic arch; thoracic descending aorta; suprarenal abdominal aorta; and infrarenal abdominal aorta) of porcine aortae from growing domestic pigs (n=25), ranging in age from 0 to 230 days. The descending thoracic aorta had the greatest elastin fraction, which decreased proximally toward the aortic arch as well as distally toward the abdominal aorta. Abdominal aortic segments had the highest fraction of actin, desmin, and vimentin positivity and all of these vascular smooth muscle markers were lower in the thoracic aortic segments. No quantitative differences were found when comparing the suprarenal abdominal segments with the infrarenal abdominal segments. The area fraction of actin within the media was comparable in all age groups and it was proportional to the postnatal growth. Thicker aortic segments had more elastin and collagen with fewer contractile cells. The collagen fraction decreased from ascending aorta and aortic arch toward the descending aorta. By revealing the variability of the quantitative composition of the porcine aorta, the results are suitable for planning experiments with the porcine aorta as a model, i.e. power test analyses and estimating the number of samples necessary to achieving a desirable level of precision. The complete primary morphometric data, in the form of continuous variables, are made publicly available for biomechanical modeling of site-dependent distensibility and compliance of the porcine aorta.

  4. [Effect of adrenaline on the proliferation of the tunica media smooth muscle cells of rat aorta in culture].

    Science.gov (United States)

    Blaes, N; Bourdillon, M C; Crouzet, B; Suplisson, A; Boissel, J P

    1980-03-24

    The proliferation of Rat medial aortic smooth muscle cells in secondary cultures is increased with adrenalin. The maximal effect is obtained after 3 days and the increase is dose-dependent. Thus adrenalin might be one of the factors responsible for the proliferation of smooth muscle cells that could play a key role in the formation of the atherosclerotic plaque in vivo.

  5. Involvement of estrogen receptor-βin farrerol inhibition of rat thoracic aorta vascular Smooth muscle cell proliferation

    Institute of Scientific and Technical Information of China (English)

    Qun-yi LI; Li CHEN; Yan-hui ZHU; Meng ZHANG; Yi-ping WANG; Ming-wei WANG

    2011-01-01

    AIm:TO investigate the effect of farrerol,a major active component isolated from a traditional Chinese herb"Man-shan-hong"(the dried Ieaves of Rhododendron dauncum L)on fetal bovine serum(FBS)-induced proliferation of cultured vascular smooth muscle cells (VSMCs)of rat thoracic aorta.Methods:VSMCs proliferation,DNA synthesis and cell cycle progression were studied using the MTT assay,bromodeoxyuridine(BrdU)incorporation and flow cytometry,respectively.The mRNA levels of cell cycle proteins were quantified using real-time RT-PCR, and the phosphorylation of ERKl/2 was determined using Western blotting.Reporter gene and receptor binding assays were employed to study the interaction between farrerol and estrogen receptors(ERs).Results:FarreroI(0.3-10 μmol/L)inhibited VSMC proliferation and DNA synthesis induced by 5%FBS in a concentration-dependent manner.The effects were associated with G,cell cycle arrest.down-regulation of cell cycle proteins and reduction in FBS-induced ERKl/2 phosphorylation.Using a reporter gene.it was found that farrerol(3 μmol/L)induced 2.1-fold transcription of ER.In receptor binding assays, farrerol inhibited the binding of [3H]estradiol for ERa and ERβ with IC50 values of 57 μmol/L and 2.7 μmol/L, respectively.implying that farrerol had a higher affinity for ERl3.Finally,the inhibition of VSMC proliferation by farrerol(3 μmol/L)was abolished by the specific ERβ antagonist PHTPP(5 μmol/L).Conclusion:FarreroI acts as a functional phytoestrogen to inhibit FBS-induced VSMC proliferation, mainly via interaction with ERβ,which may be helpful in the treatment of cardiovascular diseases related to abnormal VSMCs proliferation.

  6. The Effect of the LysoPC-induced Endothelial Cell Conditioned Medium on Proliferating Cell Nuclear Antigen Expression of the Calf Thoracic Aorta Smooth Muscle Cells

    Institute of Scientific and Technical Information of China (English)

    周洪莲; 姚济华; 余枢

    2002-01-01

    In order to study the effect of and mechanism of lysophosphatidylcholine (LysoPC) on proliferation of the calf thoracic aorta smooth muscle cells (ASMCs), the ASMCs were used to observe the effects of LysoPC-induced endothelial cell conditioned medium on the DNA content and proliferating cell nuclear antigen (PCNA) expression in the calf thoracic ASMCs by flow cytometry and Western Blot technique. It was found that LysoPC-induced endothelial cell conditioned medium could significantly promote PCNA expression of the calf ASMCs, induce the converting of ASMCs from G0/G1 phase to S phase of DNA synthesis, and increase the tyrosine phosphorylation protein expression. Tyrosine protein kinase inhibitor (TPKi) RG50864 could obviously inhibit proliferation of LysoPC-induced ASMCs in a dose-dependence manner. The results indicated that the effect of LysoPC promoting the proliferation of ASMCs is partly evoked by endothelial cell derived growth factors such as PDGF and so on.

  7. Gene expression profiles of mouse aorta and cultured vascular smooth muscle cells differ widely, yet show common responses to dioxin exposure.

    Science.gov (United States)

    Puga, Alvaro; Sartor, Maureen A; Huang, Ming-Ya; Kerzee, J Kevin; Wei, Yu-Dan; Tomlinson, Craig R; Baxter, C Stuart; Medvedovic, Mario

    2004-01-01

    Exposure to environmental toxicants may play a role in the onset and progression of cardiovascular disease. Many environmental agents, such as dioxin, are risk factors for atherosclerosis because they may exacerbate an underlying disease by altering gene expression patterns. Expression profiling of vascular tissues allows the simultaneous analysis of thousands of genes and may provide predictive information particularly useful in early disease stages. Often, however, in vivo experiments are unfeasible for material or ethical reasons, and data from cultured cells must be used instead, even though it may not be known whether cultured cells and live tissues share common global responses to the same toxicant. In a search for genes responsive to dioxin exposure, we used oligonucleotide microarrays with DNA sequences from 13,433 genes to compare global gene expression profiles of C57BL/6 mice aortas with cultured vascular smooth muscle cells (vSMCs) of the same mice. Aorta segments and vSMCs differed in the expression of more than 4500 genes, many showing expression differences greater than 1000-fold. Integration of microarray data into Gene Ontology Project annotations showed that many of the genes differentially expressed belonged to the same biological process or metabolic pathway. Notwithstanding these results, a subset of 35 genes responded in the same fashion to dioxin exposure in both systems. Genes in this subset encoded phase I and phase II detoxification enzymes, signal transduction kinases and phosphatases, and proteins involved in DNA repair and the cell cycle. We conclude that vSMCS may be useful aorta surrogates to study early gene expression responses to dioxin exposure, provided that analyses focus on this subset of genes.

  8. Vascular Pharmacology of Mokuboito (Mu-Fang-Yi-Tang and Its Constituents on the Smooth Muscle and the Endothelium in Rat Aorta

    Directory of Open Access Journals (Sweden)

    Seiichiro Nishida

    2007-01-01

    Full Text Available Pharmacological actions of Mokuboito and its constituents (Sinomenium acutum and sinomenine on rat aorta were examined. Mokuboito and S. acutum at lower concentrations (0.03–1 mg ml−1 contracted the non-loaded aorta, but at higher concentrations (1–3 mg ml−1, reversed to dilate it. The vasoconstriction was blocked by phentolamine (10 μM. Sinomenine failed to exhibit the vasoconstriction. On the other hand, Mokuboito and S. acutum dilated the NE (5 μM-induced vasoconstriction: at 3 mg ml−1, by 98.9 ± 2.5% (n = 6, P < 0.01 and 97.0 ± 4.8% (n = 6, P < 0.01. Vasorelaxation induced by Mokuboito and S. acutum was attenuated by indomethacin, L-NMMA and nicardipine. Propranolol decreased the vasorelaxation induced by Mokuboito, but not by S. acutum. Sinomenine also relaxed the constriction and at 100 μM, by 68.8 ± 5.1% (n = 7, P < 0.01. This vasorelaxation was attenuated by indomethacin, L-NMMA and nicardipine, and also by propranolol. Therefore, these results indicate that Mokuboito and its constituents exert both vasodilating actions mediated by endothelium-dependent mechanisms (PGI2 and NO from endothelium and by endothelium-independent mechanisms (Ca2+ influx control on smooth muscle cells. Simultaneously, Mokuboito and S. acutum cause the vasoconstrictions mediated through α-adrenoceptor stimulation, but not sinomenine. Also, Mokuboito and sinomenine possess β-adrenoreceptor stimulating action, but not S. acutum.

  9. Ganoderma lucidum Polysaccharides Reduce Lipopolysaccharide-Induced Interleukin-1β Expression in Cultured Smooth Muscle Cells and in Thoracic Aortas in Mice

    Directory of Open Access Journals (Sweden)

    Chan-Jung Liang

    2014-01-01

    Full Text Available The expression of inflammatory cytokines on vascular walls is a critical event in vascular diseases and inflammation. The aim of the present study was to examine the effects of an extract of Ganoderma lucidum (Reishi polysaccharides (EORPs, which is effective against immunological disorders, on interleukin- (IL- 1β expression by human aortic smooth muscle cells (HASMCs and the underlying mechanism. The lipopolysaccharide- (LPS- induced IL-1β expression was significantly reduced when HASMCs were pretreated with EORP by Western blot and immunofluorescent staining. Pretreatment with 10 μg/mL EORP decreased LPS-induced ERK, p38, JNK, and Akt phosphorylation. But the increase in IL-1β expression with LPS treatment was only inhibited by pretreatment with the ERK1/2 inhibitor, while the JNK and p38 inhibitors had no effect. In addition, EORP reduced the phosphorylation and nuclear translocation of nuclear factor- (NF- κB p65 in LPS-treated HASMCs. Furthermore, in vivo, IL-1β expression was strongly expressed in thoracic aortas in LPS-treated mice. Oral administration of EORP decreased IL-1β expression. The level of IL-1β expression in LPS-treated or in LPS/EORP-treated group was very low and was similar to that of the saline-treated group in toll-like receptor 4-deficient (TLR4−/− mice. These findings suggest that EORP has the anti-inflammatory property and could prove useful in the prevention of vascular diseases and inflammatory responses.

  10. Metamizol acts as an ATP sensitive potassium channel opener to inhibit the contracting response induced by angiotensin II but not to norepinephrine in rat thoracic aorta smooth muscle.

    Science.gov (United States)

    Valenzuela, Fermín; García-Saisó, Sebastián; Lemini, Cristina; Ramírez-Solares, Rafael; Vidrio, Horacio; Mendoza-Fernández, Víctor

    2005-08-01

    Clinically metamizol (MZ) has been related to alteration on haemodynamic parameters and modifications on blood pressure in humans when administered intravenously. These effects have been observed at MZ therapeutic doses. Experimentally, MZ is able to induce relaxation on several types of vascular smooth muscles and modulates the contraction induced by phenylephrine. However, the mechanism underlying the MZ effects on vascular reactivity is not clear. Potassium channels (K) present on vascular smooth muscle cells closely regulate the vascular reactivity and membrane potential. There are four described types of K in vascular tissue: K voltage sensitive (K(V)), K calcium sensitive (K(Ca)2+), K ATP sensitive (K(ATP) and K inward rectification (K(IR), voltage sensitive). The aim of this work was to investigate MZ effects on angiotensin II (AT II) and noradrenaline (NA) induced contraction and to evaluate the K participation on MZ modulating effect on vascular smooth muscle contraction, using isometric and patch clamp techniques. MZ induces relaxation in a concentration dependent manner. Furthermore, MZ strongly inhibits in a concentration dependent fashion the contraction induced by AT II. However, MZ inhibition on NA induced contraction was moderated compared with that observed on AT II. MZ effects on AT II induced contraction was blocked by glybenclamide (a specific K(ATP) blocker, 3 microM, *p < 0.01). In patch clamp experiments, MZ (3 mM) induces an increase on potassium current (K+) mediated by K(ATP) in similar way as diazoxide (a specific K(ATP) opener, 3 microM). Our results suggest that MZ induces relaxation and inhibits contraction induced by AT II acting as a K(ATP) opener.

  11. Anti-smooth muscle antibody

    Science.gov (United States)

    ... gov/ency/article/003531.htm Anti-smooth muscle antibody To use the sharing features on this page, please enable JavaScript. Anti-smooth muscle antibody is a blood test that detects the presence ...

  12. Rare, Non-Synonymous Variant in the Smooth Muscle-Specific Isoform of Myosin Heavy Chain, MYH11, R247C, Alters Force Generation in the Aorta and Phenotype of Smooth Muscle Cells

    Science.gov (United States)

    Kuang, Shao-Qing; Kwartler, Callie S.; Byanova, Katerina L.; Pham, John; Gong, Limin; Prakash, Siddharth K.; Huang, Jian; Kamm, Kristine E.; Stull, James T.; Sweeney, H. Lee; Milewicz, Dianna M.

    2013-01-01

    Rationale Mutations in MYH11 cause autosomal dominant inheritance of thoracic aortic aneurysms and dissections. At the same time, rare, non-synonymous variants in MYH11 that are predicted to disrupt protein function but do not cause inherited aortic disease are common in the general population and the vascular disease risk associated with these variants is unknown. Objective To determine the consequences of the recurrent MYH11 rare variant, R247C, through functional studies in vitro and analysis of a knock-in mouse model with this specific variant, including assessment of aortic contraction, response to vascular injury, and phenotype of primary aortic smooth muscle cells (SMCs). Methods and Results The steady state ATPase activity (actin-activated) and the rates of phosphate and ADP release were lower for the R247C mutant myosin than for the wild-type, as was the rate of actin filament sliding in an in vitro motility assay. Myh11R247C/R247C mice exhibited normal growth, reproduction, and aortic histology but decreased aortic contraction. In response to vascular injury, Myh11R247C/R247C mice showed significantly increased neointimal formation due to increased SMC proliferation when compared with the wild-type mice. Primary aortic SMCs explanted from the Myh11R247C/R247C mice were de-differentiated compared with wild-type SMCs based on increased proliferation and reduced expression of SMC contractile proteins. The mutant SMCs also displayed altered focal adhesions and decreased Rho activation, associated with decreased nuclear localization of myocardin-related transcription factor-A. Exposure of the Myh11R247C/R247C SMCs to a Rho activator rescued the de-differentiated phenotype of the SMCs. Conclusions These results indicate that a rare variant in MYH11, R247C, alters myosin contractile function and SMC phenotype, leading to increased proliferation in vitro and in response to vascular injury. PMID:22511748

  13. Pharmacology of airway smooth muscle proliferation

    NARCIS (Netherlands)

    Gosens, Reinoud; Roscioni, Sara S.; Dekkers, Bart G. J.; Pera, Tonio; Schmidt, Martina; Schaafsma, Dedmer; Zaagsma, Johan; Meurs, Herman

    2008-01-01

    Airway smooth muscle thickening is a pathological feature that contributes significantly to airflow limitation and airway hyperresponsiveness in asthma. Ongoing research efforts aimed at identifying the mechanisms responsible for the increased airway smooth muscle mass have indicated that hyperplasi

  14. Effects of sodium selenite on vascular smooth muscle reactivity.

    Science.gov (United States)

    Togna, G; Russo, P; Pierconti, F; Caprino, L

    2000-02-01

    The effects of sodium selenite (Na(2)SeO(3)) on the vascular smooth muscle reactivity of rabbit aorta were studied. In isolated rabbit aorta, Na(2)SeO(3) inhibited contractile response to phenylephrine and developed a lasting contracture in the vascular tissue. Relaxation in phenylephrine-precontracted aortic rings induced by sodium nitroprusside and 8-bromo-guanosine 3':5'-cyclic-monophosphate was also inhibited. Preliminary data obtained with ascorbic acid suggested a partial involvement of an oxidative mechanism. Excluding the possibility that Se damages actin or modifies its distribution (immunohistochemical evaluation), results indicate that Se alters vascular smooth muscle reactivity by inhibiting both its contracting and relaxing properties. Calcium-dependent mechanisms appear to be primarily involved and an interference with calcium re-uptake by sarcoplasmic reticulum as a possible site of Se vascular action could be hypothesized.

  15. Pasteur effect in vascular and intestinal smooth muscle.

    Science.gov (United States)

    Pettersson, G; Lundholm, L

    1985-01-01

    The increase in lactate production on changing from aerobic to anaerobic conditions, i.e. the Pasteur effect, has been reported to be small in vascular muscle and especially in aorta. It has been suggested that this may be an artefact caused by damage to the intimal endothelium. We have compared the Pasteur effect in different kinds of pig arteries, but also in rabbit colon. The aerobic lactate production in 60 min was 11-15 mumol/g in the aorta and the carotid artery, but 3 mumol/g in the mesenteric and renal arteries and 4 mumol/g in the rabbit colon. The increase in lactate production under anaerobic conditions was 12-20 mumol/g/60 min in the carotid artery, aorta and rabbit colon and 10 mumol/g/60 min in the mesenteric and renal arteries. When calculated in per cent, the Pasteur effect was greater in the mesenteric artery than in the aorta, but the actual rise in lactate production in mumol/g was higher in the aorta and carotid artery. The high aerobic lactate production of smooth muscle in vitro may be related to its low ability to oxidize glucose; some other substrates may be preferentially oxidized when present in vitro or in vivo.

  16. Airway Epithelium Stimulates Smooth Muscle Proliferation

    OpenAIRE

    Malavia, Nikita K.; Raub, Christopher B.; Mahon, Sari B.; Brenner, Matthew; Reynold A Panettieri; George, Steven C.

    2009-01-01

    Communication between the airway epithelium and stroma is evident during embryogenesis, and both epithelial shedding and increased smooth muscle proliferation are features of airway remodeling. Hence, we hypothesized that after injury the airway epithelium could modulate airway smooth muscle proliferation. Fully differentiated primary normal human bronchial epithelial (NHBE) cells at an air–liquid interface were co-cultured with serum-deprived normal primary human airway smooth muscle cells (...

  17. Expression profile and protein translation of TMEM16A in murine smooth muscle

    DEFF Research Database (Denmark)

    Davis, Alison J; Forrest, Abigail S; Jepps, Thomas Andrew

    2010-01-01

    Recently, overexpression of the genes TMEM16A and TMEM16B has been shown to produce currents qualitatively similar to native Ca(2+)-activated Cl(-) currents (I(ClCa)) in vascular smooth muscle. However, there is no information about this new gene family in vascular smooth muscle, where Cl......(-) channels are a major depolarizing mechanism. Qualitatively similar Cl(-) currents were evoked by a pipette solution containing 500 nM Ca(2+) in smooth muscle cells isolated from BALB/c mouse portal vein, thoracic aorta, and carotid artery. Quantitative PCR using SYBR Green chemistry and primers specific...... for transmembrane protein (TMEM) 16A or the closely related TMEM16B showed TMEM16A expression as follows: portal vein > thoracic aorta > carotid artery > brain. In addition, several alternatively spliced variant transcripts of TMEM16A were detected. In contrast, TMEM16B expression was very low in smooth muscle...

  18. PAT1 (SLC36A1) shows nuclear localization and affect growth of smooth muscle cells from rats

    DEFF Research Database (Denmark)

    Jensen, Anne; Figueiredo-Larsen, Evan Manuel; Holm, René

    2014-01-01

    the localization and function of PAT1 in smooth muscle cells (SMCs). The PAT1 protein was found in smooth muscles from rat intestine and in the embryonic rat aorta cell line A7r5. Immunolocalization and cellular fractionation studies revealed that the majority of the PAT1 protein located within the cell nucleus...

  19. Cardiac, Skeletal, and smooth muscle mitochondrial respiration

    DEFF Research Database (Denmark)

    Park, Song-Young; Gifford, Jayson R; Andtbacka, Robert H I

    2014-01-01

    Unlike cardiac and skeletal muscle, little is known about vascular smooth muscle mitochondrial function. Therefore, this study examined mitochondrial respiratory rates in the smooth muscle of healthy human feed arteries and compared with that of healthy cardiac and skeletal muscle. Cardiac......, skeletal, and smooth muscle was harvested from a total of 22 subjects (53±6 yrs) and mitochondrial respiration assessed in permeabilized fibers. Complex I+II, state 3 respiration, an index of oxidative phosphorylation capacity, fell progressively from cardiac, skeletal, to smooth muscle (54±1; 39±4; 15......±1 pmol•s(-1)•mg (-1), psmooth muscle (222±13; 115±2; 48±2 umol•g(-1)•min(-1), p

  20. Identification of the smooth muscle excitatory receptors for ergot alkaloids.

    Science.gov (United States)

    Innes, I R

    1962-08-01

    In cats under sodium pentobarbitone anaesthesia the first dose of ergotamine (50 mug/kg) invariably caused retraction of the nictitating membrane and a rise of arterial blood pressure. However, the responses to the dose of ergotamine were strikingly reduced when the cats were previously treated with the adrenaline antagonists phenoxybenzamine (5 mg/kg) or ergotamine (50 mug/kg). Further experiments to identify receptors for ergotamine were carried out on three different isolated smooth muscle preparations: rabbit aorta, rat uterus and dog retractor penis.Receptors for adrenaline were selectively protected by high concentrations of adrenaline throughout exposure of the preparation to a blocking concentration of ergotamine or phenoxybenzamine. Protected muscles responded to ergotamine; unprotected muscles did not. Muscles where receptors for acetylcholine, histamine or 5-hydroxytryptamine were protected by high concentrations of these drugs did not respond to ergotamine. Ergometrine, which has no blocking action on adrenaline receptors, behaved in the same way as ergotamine; muscles which were protected by adrenaline against blockade by phenoxybenzamine responded to ergometrine, but unprotected muscles did not. The stimulant actions of adrenaline, ergotamine and ergometrine were also protected against the blocking action of phenoxybenzamine by treating the muscle with a high concentration of ergometrine instead of adrenaline. It is concluded that, in smooth muscle which can be excited by adrenaline, ergotamine and ergometrine act by combining with adrenaline receptors, and that ergotamine may therefore be regarded not only as an adrenaline antagonist but also as a partial agonist since it excites the same receptors.

  1. Caveolin-1 regulates contractility in differentiated vascular smooth muscle.

    Science.gov (United States)

    Je, Hyun-Dong; Gallant, Cynthia; Leavis, Paul C; Morgan, Kathleen G

    2004-01-01

    Caveolin is a principal component of caveolar membranes. In the present study, we utilized a decoy peptide approach to define the degree of involvement of caveolin in PKC-dependent regulation of contractility of differentiated vascular smooth muscle. The primary isoform of caveolin in ferret aorta vascular smooth muscle is caveolin-1. Chemical loading of contractile vascular smooth muscle tissue with a synthetic caveolin-1 scaffolding domain peptide inhibited PKC-dependent increases in contractility induced by a phorbol ester or an alpha agonist. Peptide loading also resulted in a significant inhibition of phorbol ester-induced adducin Ser662 phosphorylation, an intracellular monitor of PKC kinase activity, ERK1/2 activation, and Ser789 phosphorylation of the actin binding protein caldesmon. alpha-Agonist-induced ERK1-1/2 activation was also inhibited by the caveolin-1 peptide. Scrambled peptide-loaded tissues or sham-loaded tissues were unaffected with respect to both contractility and signaling. Depolarization-induced activation of contraction was not affected by caveolin peptide loading. Similar results with respect to contractility and ERK1/2 activation during exposure to the phorbol ester or the alpha-agonist were obtained with the cholesterol-depleting agent methyl-beta-cyclodextrin. These results are consistent with a role for caveolin-1 in the coordination of signaling leading to the regulation of contractility of smooth muscle.

  2. The small GTPase Rac1 is required for smooth muscle contraction

    DEFF Research Database (Denmark)

    Rahman, Awahan; Davis, Benjamin; Lövdahl, Cecilia

    2014-01-01

    The role of the small GTP-binding protein Rac1 in smooth muscle contraction was examined using small molecule inhibitors (EHT1864, NSC23766) and a novel smooth muscle-specific, conditional, Rac1 knockout mouse strain. EHT1864, which affects nucleotide binding and inhibits Rac1 activity...... at lowered intracellular [Ca2+]. These results show that Rac1 activity is required for active contraction in smooth muscle, probably via enabling an adequate Ca2+ transient. At the same time, specific agonists recruit Rac1 signalling via upstream modulators, resulting in either a potentiation of contraction......, aorta) smooth muscle tissues. This contractile inhibition was associated with inhibition of the Ca2+ transient. Knockout of Rac1 (with a 50% loss of Rac1 protein) lowered active stress in the urinary bladder and the saphenous artery consistent with a role of Rac1 in facilitating smooth muscle...

  3. Maintenance of GLUT4 expression in smooth muscle prevents hypertension-induced changes in vascular reactivity.

    Science.gov (United States)

    Atkins, Kevin B; Seki, Yoshinori; Saha, Jharna; Eichinger, Felix; Charron, Maureen J; Brosius, Frank C

    2015-02-01

    Previous studies have shown that expression of GLUT4 is decreased in arterial smooth muscle of hypertensive rats and mice and that total body overexpression of GLUT4 in mice prevents enhanced arterial reactivity in hypertension. To demonstrate that the effect of GLUT4 overexpression on vascular responses is dependent on vascular smooth muscle GLUT4 rather than on some systemic effect we developed and tested smooth-muscle-specific GLUT4 transgenic mice (SMG4). When made hypertensive with angiotensin II, both wild-type and SMG4 mice exhibited similarly increased systolic blood pressure. Responsiveness to phenylephrine, serotonin, and prostaglandin F2α was significantly increased in endothelium-intact aortic rings from hypertensive wild-type mice but not in aortae of SMG4 mice. Inhibition of Rho-kinase equally reduced serotonin-stimulated contractility in aortae of hypertensive wild-type and SMG4-mice. In addition, acetylcholine-stimulated relaxation was significantly decreased in aortic rings of hypertensive wild-type mice, but not in rings of SMG4 mice. Inhibition of either prostacylin receptors or cyclooxygenase-2 reduced relaxation in rings of hypertensive SMG4 mice. Inhibition of cyclooxygenase-2 had no effect on relaxation in rings of hypertensive wild-type mice. Cyclooxygenase-2 protein expression was decreased in hypertensive wild-type aortae but not in hypertensive SMG4 aortae compared to nonhypertensive controls. Our results demonstrate that smooth muscle expression of GLUT4 exerts a major effect on smooth muscle contractile responses and endothelium-dependent vasorelaxation and that normal expression of GLUT4 in vascular smooth muscle is required for appropriate smooth muscle and endothelial responses.

  4. Intracellular Angiotensin II and cell growth of vascular smooth muscle cells

    NARCIS (Netherlands)

    Filipeanu, CM; Henning, RH; de Zeeuw, D; Nelemans, A

    2001-01-01

    1 We recently demonstrated that intracellular application of Angiotensin II (Angiotensin IIintr) induces rat aorta contraction independent of plasma membrane Angiotensin II receptors. In this study we investigated the effects of Angiotensin IIintr on cell growth in A7r5 smooth muscle cells. 2 DNA-sy

  5. Role of Smooth Muscle in Intestinal Inflammation

    Directory of Open Access Journals (Sweden)

    Stephen M Collins

    1996-01-01

    Full Text Available The notion that smooth muscle function is altered in inflammation is prompted by clinical observations of altered motility in patients with inflammatory bowel disease (IBD. While altered motility may reflect inflammation-induced changes in intrinsic or extrinsic nerves to the gut, changes in gut hormone release and changes in muscle function, recent studies have provided in vitro evidence of altered muscle contractility in muscle resected from patients with ulcerative colitis or Crohn’s disease. In addition, the observation that smooth muscle cells are more numerous and prominent in the strictured bowel of IBD patients compared with controls suggests that inflammation may alter the growth of intestinal smooth muscle. Thus, inflammation is associated with changes in smooth muscle growth and contractility that, in turn, contribute to important symptoms of IBD including diarrhea (from altered motility and pain (via either altered motility or stricture formation. The involvement of smooth muscle in this context may be as an innocent bystander, where cells and products of the inflammatory process induce alterations in muscle contractility and growth. However, it is likely that intestinal muscle cells play a more active role in the inflammatory process via the elaboration of mediators and trophic factors, including cytokines, and via the production of collagen. The concept of muscle cells as active participants in the intestinal inflammatory process is a new concept that is under intense study. This report summarizes current knowledge as it relates to these two aspects of altered muscle function (growth and contractility in the inflamed intestine, and will focus on mechanisms underlying these changes, based on data obtained from animal models of intestinal inflammation.

  6. Autonomic Modification of Intestinal Smooth Muscle Contractility

    Science.gov (United States)

    Montgomery, Laura E. A.; Tansey, Etain A.; Johnson, Chris D.; Roe, Sean M.; Quinn, Joe G.

    2016-01-01

    Intestinal smooth muscle contracts rhythmically in the absence of nerve and hormonal stimulation because of the activity of pacemaker cells between and within the muscle layers. This means that the autonomic nervous system modifies rather than initiates intestinal contractions. The practical described here gives students an opportunity to observe…

  7. Smooth muscle actin and myosin expression in cultured airway smooth muscle cells.

    Science.gov (United States)

    Wong, J Z; Woodcock-Mitchell, J; Mitchell, J; Rippetoe, P; White, S; Absher, M; Baldor, L; Evans, J; McHugh, K M; Low, R B

    1998-05-01

    In this study, the expression of smooth muscle actin and myosin was examined in cultures of rat tracheal smooth muscle cells. Protein and mRNA analyses demonstrated that these cells express alpha- and gamma-smooth muscle actin and smooth muscle myosin and nonmuscle myosin-B heavy chains. The expression of the smooth muscle specific actin and myosin isoforms was regulated in the same direction when growth conditions were changed. Thus, at confluency in 1 or 10% serum-containing medium as well as for low-density cells (50-60% confluent) deprived of serum, the expression of the smooth muscle forms of actin and myosin was relatively high. Conversely, in rapidly proliferating cultures at low density in 10% serum, smooth muscle contractile protein expression was low. The expression of nonmuscle myosin-B mRNA and protein was more stable and was upregulated only to a small degree in growing cells. Our results provide new insight into the molecular basis of differentiation and contractile function in airway smooth muscle cells.

  8. Effect of PAI-1 antisense RNA on vascular endothelial growth factor expression in aorta smooth muscle cells cultured in vitro%PAI-1反义RNA对人主动脉平滑肌细胞中 血管内皮生长因子的影响

    Institute of Scientific and Technical Information of China (English)

    富路; 梅宇; 李晖

    2001-01-01

    Objective  To investigate the role of plasminogen activator inhibitor-1(PAI-1) antisense RNA in regulating the expression of PAI-1 and vascular endothelial growth factor(VEGF) in aorta smooth muscle cells cultured in vitro. Methods  The second extron of PAI-1 was amplified with polymerase chain reaction(PCR), the production was inserted into eukaryotic cell expression vector pcDNA3.1 after it had been purified and cloned so as to construct PAI-1 antisence RNA recombination plasmid. The recombination plasmid was transfected into SMC. PAI-1 expression was detected by immumohistochemistry, Western blod and ELISA; the effects of PAI-1 variation on VEGF was examined by immunofluorescence. Results  PAI-1 antigen was the lowest in cells on the third day after transfection; the expression of VEGF was also decreased. PAI-1 antigen gradually increased on the fifth day and VEGF increased correspondently. On the seventh day, PAI-1 antigen and VEGF increased to nearly normal level. Conclusion  PAI-1 antisense RNA can block the translation progress of PAI-1 proteins effectively and inhibit the expression of VEGF in aorta smooth muscle cells.%目的探讨纤溶酶原激活物抑制剂-1(plasminogen activatorinhibitor-1,PAI-1)反义RNA对离体培养的主动脉平滑肌细胞(smooth muscle cell,SMC)PAI-1表达的作用及对血管内皮生长因子(vascular endothelial growth factor,VEGF)表达的影响。方法PCR扩增PAI-1第2外显子,将PCR产物纯化克隆后连入真核细胞表达载体pcDNA3.1,构建PAI-1反义RNA重组质粒。将pcDNA3.1-反义PAI-1重组质粒转染SMC中。通过免疫组化、Western印迹、ELISA检测细胞中PAI-1表达的改变;通过免疫荧光技术观察细胞中PAI-1表达量的变化对VEGF的影响。结果转染后第3天,细胞中PAI-1含量最低,VEGF的表达也减少。第5天,PAI-1含量逐渐升高,VEGF也相应增加。第7天,PAI-1含量接近于正常,VEGF也增至正常水平。结论反义PAI-1RNA

  9. Autophagic regulation of smooth muscle cell biology

    Science.gov (United States)

    Salabei, Joshua K.; Hill, Bradford G.

    2014-01-01

    Autophagy regulates the metabolism, survival, and function of numerous cell types, including those comprising the cardiovascular system. In the vasculature, changes in autophagy have been documented in atherosclerotic and restenotic lesions and in hypertensive vessels. The biology of vascular smooth muscle cells appears particularly sensitive to changes in the autophagic program. Recent evidence indicates that stimuli or stressors evoked during the course of vascular disease can regulate autophagic activity, resulting in modulation of VSMC phenotype and viability. In particular, certain growth factors and cytokines, oxygen tension, and pharmacological drugs have been shown to trigger autophagy in smooth muscle cells. Importantly, each of these stimuli has a redox component, typically associated with changes in the abundance of reactive oxygen, nitrogen, or lipid species. Collective findings support the hypothesis that autophagy plays a critical role in vascular remodeling by regulating smooth muscle cell phenotype transitions and by influencing the cellular response to stress. In this graphical review, we summarize current knowledge on the role of autophagy in the biology of the smooth muscle cell in (patho)physiology. PMID:25544597

  10. Autophagic regulation of smooth muscle cell biology

    Directory of Open Access Journals (Sweden)

    Joshua K. Salabei

    2015-04-01

    Full Text Available Autophagy regulates the metabolism, survival, and function of numerous cell types, including those comprising the cardiovascular system. In the vasculature, changes in autophagy have been documented in atherosclerotic and restenotic lesions and in hypertensive vessels. The biology of vascular smooth muscle cells appears particularly sensitive to changes in the autophagic program. Recent evidence indicates that stimuli or stressors evoked during the course of vascular disease can regulate autophagic activity, resulting in modulation of VSMC phenotype and viability. In particular, certain growth factors and cytokines, oxygen tension, and pharmacological drugs have been shown to trigger autophagy in smooth muscle cells. Importantly, each of these stimuli has a redox component, typically associated with changes in the abundance of reactive oxygen, nitrogen, or lipid species. Collective findings support the hypothesis that autophagy plays a critical role in vascular remodeling by regulating smooth muscle cell phenotype transitions and by influencing the cellular response to stress. In this graphical review, we summarize current knowledge on the role of autophagy in the biology of the smooth muscle cell in (pathophysiology.

  11. Transforming growth factor-β and smooth muscle differentiation

    Institute of Scientific and Technical Information of China (English)

    2012-01-01

    Transforming growth factor(TGF)-β family members are multifunctional cytokines regulating diverse cel- lular functions such as growth,adhesion,migration, apoptosis,and differentiation.TGF-βs elicit their effects via specific typeⅠand typeⅡserine/threonine kinase receptors and intracellular Smad transcription factors. Knockout mouse models for the different components of the TGF-β signaling pathway have revealed their critical roles in smooth muscle cell(SMC)differentia- tion.Genetic studies in humans have linked mutations in these signaling components to specific cardiovascular disorders such as aorta aneurysm and congenital heart diseases due to SMC defects.In this review,the current understanding of TGF-β function in SMC differentiation is highlighted,and the role of TGF-βsignaling in SMC- related diseases is discussed.

  12. On the thermodynamics of smooth muscle contraction

    Science.gov (United States)

    Stålhand, Jonas; McMeeking, Robert M.; Holzapfel, Gerhard A.

    2016-09-01

    Cell function is based on many dynamically complex networks of interacting biochemical reactions. Enzymes may increase the rate of only those reactions that are thermodynamically consistent. In this paper we specifically treat the contraction of smooth muscle cells from the continuum thermodynamics point of view by considering them as an open system where matter passes through the cell membrane. We systematically set up a well-known four-state kinetic model for the cross-bridge interaction of actin and myosin in smooth muscle, where the transition between each state is driven by forward and reverse reactions. Chemical, mechanical and energy balance laws are provided in local forms, while energy balance is also formulated in the more convenient temperature form. We derive the local (non-negative) production of entropy from which we deduce the reduced entropy inequality and the constitutive equations for the first Piola-Kirchhoff stress tensor, the heat flux, the ion and molecular flux and the entropy. One example for smooth muscle contraction is analyzed in more detail in order to provide orientation within the established general thermodynamic framework. In particular the stress evolution, heat generation, muscle shorting rate and a condition for muscle cooling are derived.

  13. The Smooth Muscle of the Artery

    Science.gov (United States)

    1975-01-01

    ruling out the oossibility that depolarization is a junction potential due to rnovement. The low resting potential shown is indicative of the degree of...which is embryologically Soditm Pump in the Con- and functionally related to vascular trol ot %tscle Contrac- smooth muscle, many of the electrical...consideration a 5-hydroxytryptamine as well as histamine as being the factor that we are studying. This does not rule out the posni- bility that either

  14. Notch Signaling in Vascular Smooth Muscle Cells.

    Science.gov (United States)

    Baeten, J T; Lilly, B

    2017-01-01

    The Notch signaling pathway is a highly conserved pathway involved in cell fate determination in embryonic development and also functions in the regulation of physiological processes in several systems. It plays an especially important role in vascular development and physiology by influencing angiogenesis, vessel patterning, arterial/venous specification, and vascular smooth muscle biology. Aberrant or dysregulated Notch signaling is the cause of or a contributing factor to many vascular disorders, including inherited vascular diseases, such as cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy, associated with degeneration of the smooth muscle layer in cerebral arteries. Like most signaling pathways, the Notch signaling axis is influenced by complex interactions with mediators of other signaling pathways. This complexity is also compounded by different members of the Notch family having both overlapping and unique functions. Thus, it is vital to fully understand the roles and interactions of each Notch family member in order to effectively and specifically target their exact contributions to vascular disease. In this chapter, we will review the Notch signaling pathway in vascular smooth muscle cells as it relates to vascular development and human disease.

  15. Airway smooth muscle growth in asthma: proliferation, hypertrophy, and migration.

    Science.gov (United States)

    Bentley, J Kelley; Hershenson, Marc B

    2008-01-01

    Increased airway smooth muscle mass is present in fatal and non-fatal asthma. However, little information is available regarding the cellular mechanism (i.e., hyperplasia vs. hypertrophy). Even less information exists regarding the functional consequences of airway smooth muscle remodeling. It would appear that increased airway smooth muscle mass would tend to increase airway narrowing and airflow obstruction. However, the precise effects of increased airway smooth muscle mass on airway narrowing are not known. This review will consider the evidence for airway smooth muscle cell proliferation and hypertrophy in asthma, potential functional effects, and biochemical mechanisms.

  16. Relaxation of uterine and aortic smooth muscle by glaucolides D and E from Vernonia liatroides.

    Science.gov (United States)

    Campos, María; Oropeza, Martha; Ponce, Héctor; Fernández, Jaquelina; Jimenez-Estrada, Manuel; Torres, Héctor; Reyes-Chilpa, Ricardo

    2003-01-01

    Vernonia spp. (Asteraceae) are used in herbolaria in Latin America in menstrual and stomach disorders, suggesting smooth muscle relaxing properties of some of their chemical constituents. For pharmacological support for this belief, sesquiterpene lactones glaucolides D and E were assayed on isolated rat smooth muscle. Glaucolide E proved more potent than glaucolide D to relax high KCl- or noradrenaline-induced contractions in aorta and to relax the high KCl-contraction in uterus. Hirsutinolide-type sesquiterpene lactone also was tested but displayed no effect. Relaxation of smooth muscle by structurally related sesquiterpene lactone parthenolide has been attributed mainly to the alpha-methylene gamma-lactone moiety; because glaucolides D and E lack this functional group, their relaxant properties may rely on other alkylating sites such as C10 of the germacra-1(10),4-diene-4-epoxide skeleton.

  17. Sphingosine induces phospholipase D and mitogen activated protein kinase in vascular smooth muscle cells.

    Science.gov (United States)

    Taher, M M; Abd-Elfattah, A S; Sholley, M M

    1998-12-01

    The enzymes phospholipase D and diacylglycerol kinase generate phosphatidic acid which is considered to be a mitogen. Here we report that sphingosine produced a significant amount of phosphatidic acid in vascular smooth muscle cells from the rat aorta. The diacylglycerol kinase inhibitor R59 949 partially depressed sphingosine induced phosphatidic acid formation, suggesting that activation of phospholipase C and diacylglycerol kinase can not account for the bulk of phosphatidic acid produced and that additional pathways such as phospholipase D may contribute to this. Further, we have shown that phosphatidylethanol was produced by sphingosine when vascular smooth muscle cells were stimulated in the presence of ethanol. Finally, as previously shown for other cell types, sphingosine stimulated mitogen-activated protein kinase in vascular smooth muscle cells.

  18. PPARα-Independent Arterial Smooth Muscle Relaxant Effects of PPARα Agonists.

    Science.gov (United States)

    Silswal, Neerupma; Parelkar, Nikhil K; Wacker, Michael J; Badr, Mostafa; Andresen, Jon

    2012-01-01

    We sought to determine direct vascular effects of peroxisome proliferator-activated receptor alpha (PPARα) agonists using isolated mouse aortas and middle cerebral arteries (MCAs). The PPARα agonists GW7647, WY14643, and gemfibrozil acutely relaxed aortas held under isometric tension and dilated pressurized MCAs with the following order of potency: GW7647≫WY14643>gemfibrozil. Responses were endothelium-independent, and the use of PPARα deficient mice demonstrated that responses were also PPARα-independent. Pretreating arteries with high extracellular K(+) attenuated PPARα agonist-mediated relaxations in the aorta, but not in the MCA. In the aorta, the ATP sensitive potassium (K(ATP)) channel blocker glibenclamide also impaired relaxations whereas the other K(+) channel inhibitors, 4-aminopyridine and Iberiotoxin, had no effect. In aortas, GW7647 and WY14643 elevated cGMP levels by stimulating soluble guanylyl cyclase (sGC), and inhibition of sGC with ODQ blunted relaxations to PPARα agonists. In the MCA, dilations were inhibited by the protein kinase C (PKC) activator, phorbol 12,13-dibutyrate, and also by ODQ. Our results demonstrated acute, nonreceptor-mediated relaxant effects of PPARα agonists on smooth muscle of mouse arteries. Responses to PPARα agonists in the aorta involved K(ATP) channels and sGC, whereas in the MCA the PKC and sGC pathways also appeared to contribute to the response.

  19. Effect of Salusin-β on the expression of c-fos, c-jun and proliferating cell nuclear antigen in vascular smooth muscle cells of thoracic aorta of rat%Salusin-β对大鼠胸主动脉血管平滑肌细胞c-fos、c-jun和增殖细胞核抗原表达的影响

    Institute of Scientific and Technical Information of China (English)

    马艳红; 王海昌

    2011-01-01

    Objective To observe the effect of Salusin-β on c-fos, c-jun and proliferating cell nuclear antigen (PCNA) in vascular smooth muscle cells (VSMCs) of thoracic aorta of rat. Methods Fifty male Wistar rats were randomly divided into normal saline (NS)group (n=25) and Salusin-β group (n= 25) . Rats in Salusin-β group were injected Salusin-β(5nmol/kg) uia the femoral vein, while in NS group were injected equal amount of NS. All the rats were infused with paraform at 0.5, 1, 2, 4 and 24h after the injection, and then the thoracic aortas were harvested. The expressions of c-fos, c-jun and PCNA in VSMCs of rats' thoracic aorta were detected by immunocytochemistry and analyzed by Image-Pro Plus 5.0 image software. Results Compared with NS group, in Salusin-β group, the expression of c-fos at 1h and 2h, of c-jun at 1h, 2h and 4h, and of PCNA at 24h were up-regulated significantly (P<0.0001). Conclusion Salusin-β may promote the proliferation of VSMCs.%目的 观察Salusin-β对大鼠胸主动脉血管平滑肌细胞(VSMCs)中c-fos、c-jun和增殖细胞核抗原(PCNA)表达的影响.方法 健康雄性Wiser大鼠50只,随机均分为生理盐水(NS)组(n=25)和Salusin-β组(n=25).经股静脉向Salusin-β组大鼠体内注射Salusin-β(5nmol/kg),NS组注射等量生理盐水.分别于0.5、1、2、4、24h后用多聚甲醛灌注大鼠,取其胸主动脉,采用免疫组织化学方法,检测两组大鼠胸主动脉VSMCs中c-fos、c-jun和PCNA的表达情况,使用Image-Pro Plus 5.0图像分析软件对结果进行面积密度分析.结果 Salusin-β组c-fos表达量在1、2h明显高于NS组(P<0.0001),c-jun表达量在1、2和4h Salusin-β组明显高于NS组(P<0.0001),PCNA表达量在24h明显高于NS组(P<0.0001).结论 Salusin-β可促进胸主动脉VSMCs的增殖.

  20. An α-smooth muscle actin (acta2/αsma) zebrafish transgenic line marking vascular mural cells and visceral smooth muscle cells.

    Science.gov (United States)

    Whitesell, Thomas R; Kennedy, Regan M; Carter, Alyson D; Rollins, Evvi-Lynn; Georgijevic, Sonja; Santoro, Massimo M; Childs, Sarah J

    2014-01-01

    Mural cells of the vascular system include vascular smooth muscle cells (SMCs) and pericytes whose role is to stabilize and/or provide contractility to blood vessels. One of the earliest markers of mural cell development in vertebrates is α smooth muscle actin (acta2; αsma), which is expressed by pericytes and SMCs. In vivo models of vascular mural cell development in zebrafish are currently lacking, therefore we developed two transgenic zebrafish lines driving expression of GFP or mCherry in acta2-expressing cells. These transgenic fish were used to trace the live development of mural cells in embryonic and larval transgenic zebrafish. acta2:EGFP transgenic animals show expression that largely mirrors native acta2 expression, with early pan-muscle expression starting at 24 hpf in the heart muscle, followed by skeletal and visceral muscle. At 3.5 dpf, expression in the bulbus arteriosus and ventral aorta marks the first expression in vascular smooth muscle. Over the next 10 days of development, the number of acta2:EGFP positive cells and the number of types of blood vessels associated with mural cells increases. Interestingly, the mural cells are not motile and remain in the same position once they express the acta2:EGFP transgene. Taken together, our data suggests that zebrafish mural cells develop relatively late, and have little mobility once they associate with vessels.

  1. An α-smooth muscle actin (acta2/αsma zebrafish transgenic line marking vascular mural cells and visceral smooth muscle cells.

    Directory of Open Access Journals (Sweden)

    Thomas R Whitesell

    Full Text Available Mural cells of the vascular system include vascular smooth muscle cells (SMCs and pericytes whose role is to stabilize and/or provide contractility to blood vessels. One of the earliest markers of mural cell development in vertebrates is α smooth muscle actin (acta2; αsma, which is expressed by pericytes and SMCs. In vivo models of vascular mural cell development in zebrafish are currently lacking, therefore we developed two transgenic zebrafish lines driving expression of GFP or mCherry in acta2-expressing cells. These transgenic fish were used to trace the live development of mural cells in embryonic and larval transgenic zebrafish. acta2:EGFP transgenic animals show expression that largely mirrors native acta2 expression, with early pan-muscle expression starting at 24 hpf in the heart muscle, followed by skeletal and visceral muscle. At 3.5 dpf, expression in the bulbus arteriosus and ventral aorta marks the first expression in vascular smooth muscle. Over the next 10 days of development, the number of acta2:EGFP positive cells and the number of types of blood vessels associated with mural cells increases. Interestingly, the mural cells are not motile and remain in the same position once they express the acta2:EGFP transgene. Taken together, our data suggests that zebrafish mural cells develop relatively late, and have little mobility once they associate with vessels.

  2. Insulin induces a hypercontractile airway smooth muscle phenotype

    NARCIS (Netherlands)

    Gosens, R; Nelemans, SA; Bromhaar, MMG; Meurs, H; Zaagsma, J

    2003-01-01

    This study aims to investigate the effects of insulin on bovine tracheal smooth muscle phenotype in vitro. Contractility of muscle strips and DNA-synthesis ([3 H]thymidine incorporation) of isolated cells were used as parameters for smooth muscle phenotyping. Insulin (1 muM) was mitogenic for bovine

  3. Cytoskeletal remodeling in differentiated vascular smooth muscle is actin isoform dependent and stimulus dependent.

    Science.gov (United States)

    Kim, Hak Rim; Gallant, Cynthia; Leavis, Paul C; Gunst, Susan J; Morgan, Kathleen G

    2008-09-01

    Dynamic remodeling of the actin cytoskeleton plays an essential role in the migration and proliferation of vascular smooth muscle cells. It has been suggested that actin remodeling may also play an important functional role in nonmigrating, nonproliferating differentiated vascular smooth muscle (dVSM). In the present study, we show that contractile agonists increase the net polymerization of actin in dVSM, as measured by the differential ultracentrifugation of vascular smooth muscle tissue and the costaining of single freshly dissociated cells with fluorescent probes specific for globular and filamentous actin. Furthermore, induced alterations of the actin polymerization state, as well as actin decoy peptides, inhibit contractility in a stimulus-dependent manner. Latrunculin pretreatment or actin decoy peptides significantly inhibit contractility induced by a phorbol ester or an alpha-agonist, but these procedures have no effect on contractions induced by KCl. Aorta dVSM expresses alpha-smooth muscle actin, beta-actin, nonmuscle gamma-actin, and smooth muscle gamma-actin. The incorporation of isoform-specific cell-permeant synthetic actin decoy peptides, as well as isoform-specific probing of cell fractions and two-dimensional gels, demonstrates that actin remodeling during alpha-agonist contractions involves the remodeling of primarily gamma-actin and, to a lesser extent, beta-actin. Taken together, these results show that net isoform- and agonist-dependent increases in actin polymerization regulate vascular contractility.

  4. Caveolin-3 promotes a vascular smooth muscle contractile phenotype

    Directory of Open Access Journals (Sweden)

    Jorge L. Gutierrez-Pajares

    2015-06-01

    Full Text Available Epidemiological studies have demonstrated the importance of cardiovascular diseases in Western countries. Among the cell types associated with a dysfunctional vasculature, smooth muscle cells are believed to play an essential role in the development of these illnesses. Vascular smooth muscle cells are key regulators of the vascular tone and also have an important function in the development of atherosclerosis and restenosis. While in the normal vasculature contractile smooth muscle cells are predominant, in atherosclerotic vascular lesions, synthetic cells migrate toward the neointima, proliferate, and synthetize extracellular matrix proteins. In the present study, we have examined the role of caveolin-3 in the regulation of smooth muscle cell phenotype. Caveolin-3 is expressed in vivo in normal arterial smooth muscle cells, but its expression appears to be lost in cultured smooth muscle cells. Our data show that caveolin-3 expression in the A7r5 smooth muscle cell line is associated with increased expression of contractility markers such as smooth muscle  actin, smooth muscle myosin heavy chain but decreased expression of the synthetic phenotype markers such as p-Elk and Klf4. Moreover, we also show that caveolin-3 expression can reduce proliferation upon treatment with LDL or PDGF. Finally, we show that caveolin-3-expressing smooth muscle cells are less sensitive to apoptosis than control cells upon treatment with oxidized LDL. Taken together, our data suggest that caveolin-3 can regulate the phenotypic switch between contractile and synthetic smooth muscle cells. A better understanding of the factors regulating caveolin-3 expression and function in this cell type will permit the development of a better comprehension of the factors regulating smooth muscle function in atherosclerosis and restenosis.

  5. Changes of smooth muscle contractile filaments in small bowel atresia

    Institute of Scientific and Technical Information of China (English)

    Stefan Gfroerer; Henning Fiegel; Priya Ramachandran; Udo Rolle; Roman Metzger

    2012-01-01

    AIM:To investigate morphological changes of intestinal smooth muscle contractile fibres in small bowel atresia patients.METHODS:Resected small bowel specimens from small bowel atresia patients (n =12) were divided into three sections (proximal,atretic and distal).Standard histology hematoxylin-eosin staining and enzyme immunohistochemistry was performed to visualize smooth muscle contractile markers α-smooth muscle actin (SMA) and desmin using conventional paraffin sections of the proximal and distal bowel.Small bowel from agematched patients (n =2) undergoing Meckel's diverticulum resection served as controls.RESULTS:The smooth muscle coat in the proximal bowel of small bowel atresia patients was thickened compared with control tissue,but the distal bowel was unchanged.Expression of smooth muscle contractile fibres SMA and desmin within the proximal bowel was slightly reduced compared with the distal bowel and control tissue.There were no major differences in the architecture of the smooth muscle within the proximal bowel and the distal bowel.The proximal and distal bowel in small bowel atresia patients revealed only minimal differences regarding smooth muscle morphology and the presence of smooth muscle contractile filament markers.CONCLUSION:Changes in smooth muscle contractile filaments do not appear to play a major role in postoperative motility disorders in small bowel atresia.

  6. Regeneration and Maintenance of Intestinal Smooth Muscle Phenotypes

    Science.gov (United States)

    Walthers, Christopher M.

    Tissue engineering is an emerging field of biomedical engineering that involves growing artificial organs to replace those lost to disease or injury. Within tissue engineering, there is a demand for artificial smooth muscle to repair tissues of the digestive tract, bladder, and vascular systems. Attempts to develop engineered smooth muscle tissues capable of contracting with sufficient strength to be clinically relevant have so far proven unsatisfactory. The goal of this research was to develop and sustain mature, contractile smooth muscle. Survival of implanted SMCs is critical to sustain the benefits of engineered smooth muscle. Survival of implanted smooth muscle cells was studied with layered, electrospun polycaprolactone implants with lasercut holes ranging from 0--25% porosity. It was found that greater angiogenesis was associated with increased survival of implanted cells, with a large increase at a threshold between 20% and 25% porosity. Heparan sulfate coatings improved the speed of blood vessel infiltration after 14 days of implantation. With these considerations, thicker engineered tissues may be possible. An improved smooth muscle tissue culture technique was utilized. Contracting smooth muscle was produced in culture by maintaining the native smooth muscle tissue organization, specifically by sustaining intact smooth muscle strips rather than dissociating tissue in to isolated smooth muscle cells. Isolated cells showed a decrease in maturity and contained fewer enteric neural and glial cells. Muscle strips also exhibited periodic contraction and regular fluctuation of intracellular calclium. The muscle strip maturity persisted after implantation in omentum for 14 days on polycaprolactone scaffolds. A low-cost, disposable bioreactor was developed to further improve maturity of cultured smooth muscle cells in an environment of controlled cyclical stress.The bioreactor consistently applied repeated mechanical strain with controllable inputs for strain

  7. Arterial wall mechanics as a function of heart rate: role of vascular smooth muscle

    Energy Technology Data Exchange (ETDEWEB)

    Salvucci, Fernando Pablo; Schiavone, Jonathan; Craiem, Damian; Barra, Juan Gabriel [Facultad de Ingenieria y Ciencias Exactas y Naturales, Universidad Favaloro Av. Belgrano 1723 - Buenos Aires (Argentina)

    2007-11-15

    Vascular wall viscoelasticity can be evaluated using a first-order lumped model. This model consists of a spring with elastic constant E and a dashpot with viscous constant {eta}. More importantly, this viscoelastic model can be fitted in-vivo measuring arterial pressure and diameter. The aim of this work is to analyze the influence of heart rate over E and {eta}. In two anesthetized sheep, diameter in thoracic aorta and intravascular pressure has been registered. The right atrium was connected to a programmable stimulator through a pair of pace-maker wires to produce changes in stimulation heart rate (HR) from 80 to 160 bpm. Additionally, local activation of vascular smooth muscle was induced with phenylephrine. After converting pressure and diameter signals into stress and strain respectively, E y {eta} were calculated in control state and during muscle activation. The elastic modulus E did not present significant changes with heart rate. The viscous modulus {eta} decreased 49% with a two-fold acceleration in heart rate from 80 to 160 bpm. However, the product {eta} HR remained stable. The viscous modulus {eta} increased 39% with smooth muscle activation. No significant pressure changes were registered during the experiment. The contractile action of vascular smooth muscle could contribute to increasing arterial wall viscosity. The decrease of {eta} when HR increased might be related to smooth muscle relaxation mediated by endothelium activity, which was stimulated by flow increase. We conclude that HR can modulate arterial wall viscoelasticity through endothelium-dependent mechanisms.

  8. Nuclear fusion-independent smooth muscle differentiation of human adipose-derived stem cells induced by a smooth muscle environment.

    Science.gov (United States)

    Zhang, Rong; Jack, Gregory S; Rao, Nagesh; Zuk, Patricia; Ignarro, Louis J; Wu, Benjamin; Rodríguez, Larissa V

    2012-03-01

    Human adipose-derived stem cells hASC have been isolated and were shown to have multilineage differentiation capacity. Although both plasticity and cell fusion have been suggested as mechanisms for cell differentiation in vivo, the effect of the local in vivo environment on the differentiation of adipose-derived stem cells has not been evaluated. We previously reported the in vitro capacity of smooth muscle differentiation of these cells. In this study, we evaluate the effect of an in vivo smooth muscle environment in the differentiation of hASC. We studied this by two experimental designs: (a) in vivo evaluation of smooth muscle differentiation of hASC injected into a smooth muscle environment and (b) in vitro evaluation of smooth muscle differentiation capacity of hASC exposed to bladder smooth muscle cells. Our results indicate a time-dependent differentiation of hASC into mature smooth muscle cells when these cells are injected into the smooth musculature of the urinary bladder. Similar findings were seen when the cells were cocultured in vitro with primary bladder smooth muscle cells. Chromosomal analysis demonstrated that microenvironment cues rather than nuclear fusion are responsible for this differentiation. We conclude that cell plasticity is present in hASCs, and their differentiation is accomplished in the absence of nuclear fusion.

  9. Smooth muscle cells largely develop independently of functional hemogenic endothelium

    Directory of Open Access Journals (Sweden)

    Monika Stefanska

    2014-01-01

    Full Text Available Vascular smooth muscle cells represent a major component of the cardiovascular system. In vitro studies have shown that FLK1+ cells derived from embryonic stem (ES cells can differentiate into both endothelial and smooth muscle cells. These FLK1+ cells also contain a mesodermal precursor, the hemangioblast, able to produce endothelial, blood and smooth muscle cells. The generation of blood precursors from the hemangioblast was recently shown to occur through a transient cell population of specialised endothelium, a hemogenic endothelium. To date, the lineage relationship between this cell population and smooth muscle cell progenitors has not been investigated. In this study, we generated a reporter ES cell line in which expression of the fluorescent protein H2B-VENUS is driven by the α-smooth muscle actin (α-SMA regulatory sequences. We demonstrated that this reporter cell line efficiently trace smooth muscle development during ES cell differentiation. Although some smooth muscle cells are associated with broad endothelial development, we established that smooth muscle cells are mostly generated independently from a specialised functional hemogenic endothelium. This study provides new and important insights into hematopoietic and vascular development, which may help in driving further progress towards the development of bioengineered vascular grafts for regenerative medicine.

  10. Treating asthma means treating airway smooth muscle cells

    NARCIS (Netherlands)

    Zuyderduyn, S; Sukkar, M B; Fust, A; Dhaliwal, S; Burgess, J K

    2008-01-01

    Asthma is characterised by airway hyperresponsiveness, airway inflammation and airway remodelling. Airway smooth muscle cells are known to be the main effector cells of airway narrowing. In the present paper, studies will be discussed that have led to a novel view of the role of airway smooth muscle

  11. In vitro contractility of normal and aneurysmal abdominal aorta muscle coat sections in human and animal material.

    Science.gov (United States)

    Gnus, Jan; Czerski, Albert; Zawadzki, Wojciech; Witkiewicz, Wojciech; Hauzer, Willy; Rusiecka, Agnieszka; Ferenc, Stanisław

    2012-01-01

    The objective of the study was to demonstrate spontaneous contractile activity of the smooth muscle coat of the aorta in human and animal material. Spontaneous contractility of smooth muscle tissue, or tonus, is essential for the proper function of many internal organs as observed in the many types of muscle cells which make up the internal structures. The spontaneous contractile activity of the muscle tissue in blood vessels is particularly marked in resistance vessels, regulating circulation within organs or tissues. It can also be observed in large blood vessels such as arteries and veins. The contractile activity of muscular tissue isolated from arteries is the result of a number of factors, including endogenous paracrine substances, neurotransmitters released at postganglionic endings (mostly within the sympathetic system), cells capable of spontaneously generation of functional potentials (pacemaking cells) and the vascular endothelium. Pacemaking cells present in the aortic wall are an important factor in the development of the spontaneous contractility of the muscular coat of the aorta. They are capable of generating functional potentials, resulting in the constant tonus of the smooth muscular coat (comprising the aortic wall) due to tonic contraction. In vitro studies were carried out on abdominal aortic sections collected from 30 New Zealand rabbits with a body mass of 3-4 kilograms each and also on aneurysmal abdominal aortic sections collected during elective aneurysm repair procedures in humans (10 abdominal aortic sections). The 1.5 cm-long sections were mounted in chambers of an automated water bath. The sections were oriented in a transverse and longitudal fashion in order to compare contractility. The incubation medium consisted of Krebs-Henseleit buffer. Spontaneous contractile activity was observed during the study, characterized by rhythmic contractions of the muscular layer of the aorta. The contractile tension within the sections was 0.15 m

  12. High glucose enhance expression of matrix metalloproteinase—2 in smooth muscle cells

    Institute of Scientific and Technical Information of China (English)

    HAOFeng; YUJin-De

    2003-01-01

    AIM:To investigate the effects of high glucose on expression of matrix metalloproteinase-2(MMP-2) in rat aortic smooth muscle cells and the influence of matrix remodeling on atherogenesis in diabetic patients. METHODS: The smooth muscle cells were cultured from the thoracic aorta of Sprague-Dawley (SD) rat. MMP-2 mRNA was determined by reverse transcriptase-polymerase chain reaction(RT-PCR),MMP-2 protein was measured by Western blotting, and MMP-2 activity in conditioned medium was observed by zymography. RESULTS:In comparison with the control, there was no difference in the expression of MMP-2 when glucose concentration was 1g/L,whereas MMP-2 activity in smooth muscle cells was significantly increased by the glucose 5 g/L(P<0.01). CONCLUSION:High glucose enhanced the expression and activity of MMP-2 in smooth muscle cells, which may provide an explanation for the phenomenon that diabetes patients are prone to have atherosclerotic lesions.

  13. Mechanotransduction in colonic smooth muscle cells.

    Science.gov (United States)

    Young, S H; Ennes, H S; Mayer, E A

    1997-11-15

    We evaluated mechanisms which mediate alterations in intracellular biochemical events in response to transient mechanical stimulation of colonic smooth muscle cells. Cultured myocytes from the circular muscle layer of the rabbit distal colon responded to brief focal mechanical deformation of the plasma membrane with a transient increase in intracellular calcium concentration ([Ca2+]i) with peak of 422.7 +/- 43.8 nm above an average resting [Ca2+]i of 104.8 +/- 10.9 nM (n = 57) followed by both rapid and prolonged recovery phases. The peak [Ca2+]i increase was reduced by 50% in the absence of extracellular Ca2+, while the prolonged [Ca2+]i recovery was either abolished or reduced to less than or = 15% of control values. In contrast, no significant effect of gadolinium chloride (100 microM) or lanthanum chloride (25 microM) on either peak transient or prolonged [Ca2+]i recovery was observed. Pretreatment of cells with thapsigargin (1 microM) resulted in a 25% reduction of the mechanically induced peak [Ca2+]i response, while the phospholipase C inhibitor U-73122 had no effect on the [Ca2+]i transient peak. [Ca2+]i transients were abolished when cells previously treated with thapsigargin were mechanically stimulated in Ca2+-free solution, or when Ca2+ stores were depleted by thapsigargin in Ca2+-free solution. Pretreatment with the microfilament disrupting drug cytochalasin D (10 microM) or microinjection of myocytes with an intracellular saline resulted in complete inhibition of the transient. The effect of cytochalasin D was reversible and did not prevent the [Ca2+]i increases in response to thapsigargin. These results suggest a communication, which may be mediated by direct mechanical link via actin filaments, between the plasma membrane and an internal Ca2+ store.

  14. Endoscopic management of gastrointestinal smooth muscle tumor

    Institute of Scientific and Technical Information of China (English)

    Xiao-Dong Zhou; Nong-Hua Lv; Hong-Xia Chen; Chong-Wen Wang; Xuan Zhu; Ping Xu; You-Xiang Chen

    2007-01-01

    AIM: To systematically evaluate the efficacy and safety of endoscopic resection of gastrointestinal smooth muscle tumors (SMTs, including leiomyoma and leiomyosarcoma) and to review our preliminary experiences on endoscopic diagnosis of gastrointestinal SMTs.METHODS: A total of 69 patients with gastrointestinal SMT underwent routine endoscopy in our department.Endoscopic ultrasonography (EUS) was also performed in 9 cases of gastrointestinal SMT. The sessile submucosal gastrointestinal SMTs with the base smaller than 2 cm in diameter were resected by "pushing" technique or "grasping and pushing" technique while the pedunculated SMTs were resected by polypectomy. For those SMTs originating from muscularis propria or with the base size ≥ 2 cm, ordinary biopsy technique was performed in tumors with ulcers while the "Digging" technique was performed in those without ulcers.RESULTS: 54 cases of leiomyoma and 15 cases of leiomyosarcoma were identified. In them, 19 cases of submucosal leiomyoma were resected by "pushing"technique and 10 cases were removed by "grasping and pushing" technique. Three cases pedunculated submucosal leiomyoma were resected by polypectomy.No severe complications developed during or after the procedure. No recurrence was observed. The diagnostic accuracy of ordinary and the "Digging" biopsy technique was 90.0% and 94.1%, respectively.CONCLUSION: Endoscopic resection is a safe and effective treatment for leiomyomas with the base size ≤2 cm. The "digging" biopsy technique would be a good option for histologic diagnosis of SMTs.

  15. Differential response of human fetal smooth muscle cells from arterial duct to retinoid acid

    Institute of Scientific and Technical Information of China (English)

    Li-hui WU; Shao-jun XU; Jian-ying TENG; Wei WU; Du-yun YE; Xing-zhong WU

    2008-01-01

    Aim:The aim of the present study was to understand the role of retinoic acid (RA) in the development of isolated patent ductus arteriosus and the features of arterial duct-derived vascular smooth muscle cells (VSMC). Methods:The VSMC were isolated, and the biological characteristics and the response to RA were investi-gated in the arterial duct, aorta, and pulmonary artery VSMC from 6 human embry-onic samples. Western blotting, immunostaining, and cell-based ELISA were em-ployed to analyze the proliferation regulation of VSMC. Results:The VSMC from the arterial duct expressed proliferating cell nuclear antigen (PCNA) at a signifi-cantly lower rate than those from the aorta and pulmonary artery, but expressed a higher level of Bax and Bcl-2. The expression level of PCNA or Bcl-2 was associ-ated with the embryonic age. The effects of RA on the VSMC from the arterial duct were quite different from those from the aorta and pulmonary artery. In arterial duct VSMC, RA stimulated PCNA expression, but such stimulation could be sup-pressed by CD2366, an antagonist of nuclear retinoid receptor activation. In aorta or pulmonary artery VSMC, the expression response of PCNA to RA was insignificant. The ratio of Bax/Bcl-2 decreased in arterial duct VSMC after RA treatment due to the significant inhibition of Bax expression. Conclusion:The VSMC from the arterial duct possessed distinct biological behaviors. RA might be important in the development of ductus arteriosus VSMC.

  16. Smooth muscle phenotypic modulation--a personal experience.

    Science.gov (United States)

    Campbell, Julie H; Campbell, Gordon R

    2012-08-01

    The idea that smooth muscle cells can exist in multiple phenotypic states depending on the functional demands placed upon them has been around for >5 decades. However, much of the literature today refers to only recent articles, giving the impression that it is a new idea. At the same time, the current trend is to delve deeper and deeper into transcriptional regulation of smooth muscle genes, and much of the work describing the change in biology of the cells in the different phenotypic states does not appear to be known. This loss of historical perspective regarding the biology of smooth muscle phenotypic modulation is what the current article has tried to mitigate.

  17. Tobacco constituents are mitogenic for arterial smooth-muscle cells

    Energy Technology Data Exchange (ETDEWEB)

    Becker, C.G.; Hajjar, D.P.; Hefton, J.M.

    1985-07-01

    Tobacco glycoprotein (TGP) purified from flue-cured tobacco leaves, tar-derived material (TAR), the water soluble, nondialyzable, delipidized extract of cigarette smoke condensate, rutin-bovine serum albumin conjugates, quercetin, and chlorogenic acid are mitogenic for bovine aortic smooth-muscle cells, but not adventitial fibroblasts. The mitogenicity appears to depend on polyphenol epitopes on carrier molecules. Ellagic acid, another plant polyphenol, inhibited arterial smooth-muscle proliferation. These results suggest that a number of ubiquitous, plant-derived substances may influence smooth-muscle cell proliferation in the arterial wall.

  18. Calcification of human vascular smooth muscle cells: associations with osteoprotegerin expression and acceleration by high-dose insulin

    DEFF Research Database (Denmark)

    Olesen, Ping; Knudsen, Kirsten Quyen Nguyen; Wogensen, Lise

    2007-01-01

    Arterial medial calcifications occur often in diabetic individuals as part of the diabetic macroangiopathy. The pathogenesis is unknown, but the presence of calcifications predicts risk of cardiovascular events. We examined the effects of insulin on calcifying smooth muscle cells in vitro...... and measured the expression of the bone-related molecule osteoprotegerin (OPG). Human vascular smooth muscle cells (VSMCs) were grown from aorta from kidney donors. Induction of calcification was performed with beta-glycerophosphate. The influence of insulin (200 microU/ml or 1,000 microU/ml) on calcification...... calcification in human smooth muscle cells from a series of donors after variable time in culture. Decreased OPG amounts were observed from the cells during the accelerated calcification phase. High dose of insulin (1,000 microU/ml) accelerated the calcification, whereas lower concentrations (200 microU/ml) did...

  19. Augmented vascular smooth muscle cell stiffness and adhesion when hypertension is superimposed on aging.

    Science.gov (United States)

    Sehgel, Nancy L; Sun, Zhe; Hong, Zhongkui; Hunter, William C; Hill, Michael A; Vatner, Dorothy E; Vatner, Stephen F; Meininger, Gerald A

    2015-02-01

    Hypertension and aging are both recognized to increase aortic stiffness, but their interactions are not completely understood. Most previous studies have attributed increased aortic stiffness to changes in extracellular matrix proteins that alter the mechanical properties of the vascular wall. Alternatively, we hypothesized that a significant component of increased vascular stiffness in hypertension is due to changes in the mechanical and adhesive properties of vascular smooth muscle cells, and that aging would augment the contribution from vascular smooth muscle cells when compared with the extracellular matrix. Accordingly, we studied aortic stiffness in young (16-week-old) and old (64-week-old) spontaneously hypertensive rats and Wistar-Kyoto wild-type controls. Systolic and pulse pressures were significantly increased in young spontaneously hypertensive rats when compared with young Wistar-Kyoto rats, and these continued to rise in old spontaneously hypertensive rats when compared with age-matched controls. Excised aortic ring segments exhibited significantly greater elastic moduli in both young and old spontaneously hypertensive rats versus Wistar-Kyoto rats. were isolated from the thoracic aorta, and stiffness and adhesion to fibronectin were measured by atomic force microscopy. Hypertension increased both vascular smooth muscle cell stiffness and vascular smooth muscle cell adhesion, and these increases were both augmented with aging. By contrast, hypertension did not affect histological measures of aortic collagen and elastin, which were predominantly changed by aging. These findings support the concept that stiffness and adhesive properties of vascular smooth muscle cells are novel mechanisms contributing to the increased aortic stiffness occurring with hypertension superimposed on aging.

  20. Anisotropic Smoothing Improves DT-MRI-Based Muscle Fiber Tractography.

    Directory of Open Access Journals (Sweden)

    Amanda K W Buck

    Full Text Available To assess the effect of anisotropic smoothing on fiber tracking measures, including pennation angle, fiber tract length, and fiber tract number in the medial gastrocnemius (MG muscle in healthy subjects using diffusion-weighted magnetic resonance imaging (DW-MRI.3T DW-MRI data were used for muscle fiber tractography in the MG of healthy subjects. Anisotropic smoothing was applied at three levels (5%, 10%, 15%, and pennation angle, tract length, fiber tract number, fractional anisotropy, and principal eigenvector orientation were quantified for each smoothing level.Fiber tract length increased with pre-fiber tracking smoothing, and local heterogeneities in fiber direction were reduced. However, pennation angle was not affected by smoothing.Modest anisotropic smoothing (10% improved fiber-tracking results, while preserving structural features.

  1. Ureter smooth muscle cell orientation in rat is predominantly longitudinal.

    Directory of Open Access Journals (Sweden)

    Bart Spronck

    Full Text Available In ureter peristalsis, the orientation of the contracting smooth muscle cells is essential, yet current descriptions of orientation and composition of the smooth muscle layer in human as well as in rat ureter are inconsistent. The present study aims to improve quantification of smooth muscle orientation in rat ureters as a basis for mechanistic understanding of peristalsis. A crucial step in our approach is to use two-photon laser scanning microscopy and image analysis providing objective, quantitative data on smooth muscle cell orientation in intact ureters, avoiding the usual sectioning artifacts. In 36 rat ureter segments, originating from a proximal, middle or distal site and from a left or right ureter, we found close to the adventitia a well-defined longitudinal smooth muscle orientation. Towards the lamina propria, the orientation gradually became slightly more disperse, yet the main orientation remained longitudinal. We conclude that smooth muscle cell orientation in rat ureter is predominantly longitudinal, though the orientation gradually becomes more disperse towards the proprial side. These findings do not support identification of separate layers. The observed longitudinal orientation suggests that smooth muscle contraction would rather cause local shortening of the ureter, than cause luminal constriction. However, the net-like connective tissue of the ureter wall may translate local longitudinal shortening into co-local luminal constriction, facilitating peristalsis. Our quantitative, minimally invasive approach is a crucial step towards more mechanistic insight into ureter peristalsis, and may also be used to study smooth muscle cell orientation in other tube-like structures like gut and blood vessels.

  2. Airway smooth muscle cell proliferation is increased in asthma

    NARCIS (Netherlands)

    Johnson, P R; Roth, Michael; Tamm, M; Hughes, J Margaret; Ge, Q; King, G; Burgess, J K; Black, J L

    2001-01-01

    UNLABELLED: Increased airway smooth muscle (ASM) within the bronchial wall of asthmatic patients has been well documented and is likely to be the result of increased muscle proliferation. We have for the first time been able to culture ASM cells from asthmatic patients and to compare their prolifera

  3. THE ROLE OF GASOTRANSMITTERS IN REGULATING OF THE FUNCTIONS OF SMOOTH MUSCLES: THE POSSIBLE EFFECTOR SYSTEMS

    Directory of Open Access Journals (Sweden)

    I. V. Kovalev

    2014-01-01

    Full Text Available Influence of gasotransmitters carbon monoxide (CO and hydrogen sulfide (H2S on the electrical and contractile activities of smooth muscle cells (SMCs of the guinea pig ureter and rat aorta were studied by methods of double sucrose bridge and mechanography. It has been shown that CO causes a dose-dependent decrease of the contractile response of SMCs of the ureter and rat aorta and also reduces the amplitude and duration of the action potential plateau. Against the background of the action of biologically active substances, agonists α1-adrenergetic and H1-histaminergetic receptors (phenylephrine and histamine, respectively, these effects of CO donor (CORM II were amplified. The inhibitory effect of CO on the parameters of the contractile and electrical activities of smooth muscles is attenuated by blocking potassium channels of plasma membrane with tetraethylammonium (TEA or inhibition of soluble guanylate cyclase (ODQ [1H-[1,2,4]-oxadiazolo[4,3-a]quinoxalin-l-one]. Thus, the effects of carbon monoxide on the electrical and contractile activities of SMCs are associated with an increase potassium conductivity of the membrane or the activation of soluble guanylate cyclase.In experiments with a donor of hydrogen sulfide (NaHS, it was shown, that it has an activating effect on the electrical and contractile activities of smooth muscles of the guinea pig ureter, which is caused by the action of potassium conductivity of the membrane. Activating effect of H2S on the contractile properties of SMCs of the guinea pig ureter decreased by blocking ATP-dependent channels with glibenclamide. Analysis of the effect of H2S on sodium and calcium conductance of the membrane smooth muscles of the ureter using modified sodium-free and TEA- containing Krebs solution showed that the contribution of potassium conductance is mainly sold at high concentrations (100 and 1000 μmol donor NaHS. Probably, that the impact of low concentrations of NaHS (10 μmol on the

  4. Experimental modulation of the plasmalemmal microfluidity. Studies on endothelial and aortic smooth muscle cells.

    Science.gov (United States)

    Badea, M; Jinga, V; Hörer, O

    1984-01-01

    The microfluidity of cell membranes has been modified experimentally in endothelial cells and smooth muscle cells of bovine or monkey aorta cultured in vitro. Microfluidity was estimated by fluorescence depolarization measurements of diphenyl-hexatriene (DPH)-labelled cells. In both types of cells investigated, the arachidonic acid at concentration of 90 microM induced an increase in the microfluidity by 26-53% whereas the cholesterol at the same concentration produced a decrease in the microfluidity by 16-25%. The oleic acid in the range of 30 to 90 microM increased the monkey smooth muscle cell membranes microfluidity by 21-33% but did not change the microfluidity of endothelial and bovine aortic smooth muscle cells. The stearic acid did not influence the microfluidity of either type of cells under investigation. Cortisol at 90 microM changed the microfluidity of the bovine aortic endothelial cells plasmalemma depending on the incubation time. Possible factors of error in the physical measurements due to the extracellular localization of DPH have been identified.

  5. Regulation of CCL5 expression in smooth muscle cells following arterial injury.

    Directory of Open Access Journals (Sweden)

    Huan Liu

    Full Text Available Chemokines play a crucial role in inflammation and in the pathophysiology of atherosclerosis by recruiting inflammatory immune cells to the endothelium. Chemokine CCL5 has been shown to be involved in atherosclerosis progression. However, little is known about how CCL5 is regulated in vascular smooth muscle cells. In this study we report that CCL5 mRNA expression was induced and peaked in aorta at day 7 and then declined after balloon artery injury, whereas IP-10 and MCP-1 mRNA expression were induced and peaked at day 3 and then rapidly declined.The expression of CCL5 receptors (CCR1, 3 & 5 were also rapidly induced and then declined except CCR5 which expression was still relatively high at day 14 after balloon injury. In rat smooth muscle cells (SMCs, similar as in aorta CCL5 mRNA expression was induced and kept increasing after LPS plus IFN-gamma stimulation, whereas IP-10 mRNA expression was rapidly induced and then declined. Our data further indicate that induction of CCL5 expression in SMCs was mediated by IRF-1 via binding to the IRF-1 response element in CCL5 promoter. Moreover, p38 MAPK was involved in suppression of CCL5 and IP-10 expression in SMCs through common upstream molecule MKK3. The downstream molecule MK2 was required for p38-mediated CCL5 but not IP-10 inhibition. Our findings indicate that CCL5 induction in aorta and SMCs is mediated by IRF-1 while activation of p38 MAPK signaling inhibits CCL5 and IP-10 expression. Methods targeting MK2 expression could be used to selectively regulate CCL5 but not IP-10 expression in SMCs.

  6. Increased apoptosis and decreased density of medial smooth muscle cells in human abdominal aortic aneurysms

    Institute of Scientific and Technical Information of China (English)

    ZHANG Jian张健; Jan Schmidt; Eduard Ryschich; Hardy Schumacher; Jens R Allenberg

    2003-01-01

    Objective To determine the increase of apoptosis and the decrease of smooth muscle cells (SMCs) density in human abdominal aortic aneurysms (AAA). Methods In situ terminal transferase-mediated dUTP nick end labeling (TUNEL) was employed to detect apoptosis of SMCs in patients with AAA (n=25) and normal abdominal aortae (n=10). Positive cells were identified by specific cell marker in combination with immunohistochemistry. Meanwhile SMC counting was performed by anti-α-actin immunohistostaining to compare the SMC density. Results TUNEL staining revealed that there was significantly increased apoptosis in AAAs (average 8.6%) compared with normal abdominal aortae (average 0.95%, P<0.01). Double staining showed that most of these cells were SMCs. Counting of α-actin positive SMCs revealed that medial SMC density of AAAs (37.5±7.6 SMCs /HPF) was reduced by 79.1% in comparison with that of normal abdominal aortae (179.2±16.1 SMCs /HPF, P<0.01). Conclusions Significantly increased SMCs of AAA bear apoptotic markers initiating cell death. Elevated apoptosis may result in a decreased density of SMCs in AAA, which may profoundly influence the development of AAA.

  7. UROTENSIN II RECEPTOR IN THE RAT AIRWAY SMOOTH MUSCLE AND ITS EFFECT ON THE RAT AIRWAY SMOOTH MUSCLE CELLS PROLIFERATION

    Institute of Scientific and Technical Information of China (English)

    陈亚红; 赵鸣武; 刘秀华; 姚婉贞; 杨军; 张肇康; 唐朝枢

    2001-01-01

    Objective. To investigate the characteristics of urotensin II (U-II) receptor in the rat airway smooth muscleand the effect and signal transduction pathway of U-II on the proliferation of airway smooth muscle cells.Methods. Using 125-UII binding assay to measure the Bmax and Kd of U-II receptor. Using the 3H-TdRincorporation to deter mine the effect of U-II on the proliferation of airway smooth muscle cells and its signal transduc-tion pathway. Using Fura-2/AM to measure the effect of U-II on the cytosolic free calcium concentration.Results. 1. 125I-UⅡ binding increased with the time and reached saturation at 45min. The Bmax was(ll. 36 +0.37)fmol/mg pr and Kd was (4.46 +0.61)nmol/L. 2. U-II increased 3H-TdR incorporation of theairway smooth muscle cells in a dose-dependent manner. 3. H7, PDg8059 and nicardipine, inhibitors of PKC,MAPK, calcium cha.nnel, respectively, significantly inhibited U-II-stimulated 3H-TdR incorporation of airwaysmooth muscle cells. W7, inhibitor of CaM-PK, had no effect. 4. Cyclosporin A, inhibitor of CaN, inhibited3H-TdRincorporation ofthe airway smooth muscle cells induced by U-Ⅱl in a dose-dependent manner. 5. U-Ⅱlpromot-ed cy-tosolic free calcium concentration increase by 18%.Conclusions. 1. There was U-II receptor in the rat airway smooth muscle. 2. The effect of U-II-stimulated-3H-TdR incorporation of airway smooth muscle cells was mediated by such signal transduction pathway as Ca2 +.PKC, MAPK and Ca.N, etc.``

  8. Notch2 and Notch3 Function Together to Regulate Vascular Smooth Muscle Development

    OpenAIRE

    Qingqing Wang; Ning Zhao; Simone Kennard; Brenda Lilly

    2012-01-01

    Notch signaling has been implicated in the regulation of smooth muscle differentiation, but the precise role of Notch receptors is ill defined. Although Notch3 receptor expression is high in smooth muscle, Notch3 mutant mice are viable and display only mild defects in vascular patterning and smooth muscle differentiation. Notch2 is also expressed in smooth muscle and Notch2 mutant mice show cardiovascular abnormalities indicative of smooth muscle defects. Together, these findings infer that N...

  9. An anti-NH2-terminal antibody localizes NBCn1 to heart endothelia and skeletal and vascular smooth muscle cells

    DEFF Research Database (Denmark)

    Damkier, Helle Hasager; Nielsen, Søren; Prætorius, Jeppe

    2006-01-01

    plexus. The anti-NH2-terminal antibody localized NBCn1 to the plasma membrane domains of endothelia and smooth muscle cells in small mesenteric and renal arteries, as well as the capillaries of the heart ventricles, spleen, and salivary glands. NBCn1 was also detected in neuromuscular junctions...... the development of the NH2-terminal antibody allowed the localization of NBCn1 protein to major cardiovascular tissues where NBCn1 mRNA was previously detected. The NBCn1 is a likely candidate for mediating the reported electroneutral Na+-HCO3(-) cotransport in vascular smooth muscle.......The electroneutral sodium bicarbonate cotransporter NBCn1 or NBC3 was originally cloned from rat aorta and from human skeletal muscle. NBCn1 (or NBC3) has been localized to the basolateral membrane of various epithelia, but thus far it has been impossible to detect the protein in these tissues...

  10. Regional specific modulation of the glycocalyx and smooth muscle cell contractile apparatus in conduit arteries of tail-suspended rats.

    Science.gov (United States)

    Kang, Hongyan; Fan, Yubo; Zhao, Ping; Ren, Changhui; Wang, Zhenze; Deng, Xiaoyan

    2016-03-01

    The glycocalyx is a key mechanosensor on the surfaces of vascular cells (endothelial cells and smooth muscle cells), and recently, we reported that the redistribution of the hemodynamic factors in tail-suspended (TS) hindlimb-unloaded rats induces the dimensional adaptation of the endothelial glycocalyx in a regional-dependent manner. In the present study, we investigated the coverage and gene expression of the glycocalyx and its possible relationship with smooth muscle contractility in the conduit arteries from the TS rats. The coverage of the glycocalyx, determined by the area analysis of the fluorescein isothiocyanate-labeled wheat germ agglutinin (WGA-FITC) staining to the cryosections of rat vessels, showed a 27.2% increase in the common carotid artery, a 13.3 and 8.0% decrease in the corresponding abdominal aorta and the femoral artery after 3 wk of tail suspension. The relative mRNA levels of syndecan-2, 3, 4, glypican-1, smooth muscle protein 22 (SM22), smoothelin (SMTN), and calponin were enhanced to 1.40, 1.53, 1.70, 1.90, 2.93, 2.30, and 5.23-fold, respectively, in the common carotid artery of the TS rat. However, both glycocalyx-related genes and smooth muscle contractile apparatus were totally or partially downregulated in the abdominal aorta and femoral artery of the TS rat. A linear positive correlation between the normalized coverage of glycocalyx and normalized mRNA levels of SM22, SMTN, and calponin exists. These results suggest the regional-dependent adaptation of the glycocalyx in simulated microgravity condition, which may affect its mechanotransduction of shear stress to regulate the contractility of the smooth muscle, finally contributing to postspaceflight orthostatic intolerance.

  11. Cellular mechanisms of myogenic activity in gastric smooth muscle.

    Science.gov (United States)

    Suzuki, H

    2000-06-01

    In many regions of the intestine, a thin layer of interstitial cells of Cajal (ICC) lie in the myenteric region, between the circular and longitudinal muscle layers. ICC are connected by gap junctions to surrounding ICC and also with circular and longitudinal smooth muscle cells, forming a large electrical syncytium. Damage of the ICC causes a disorder in the patterns of rhythmic activity. Isolated ICC produce a rhythmic oscillation of the membrane potential. All these observations have led to the suggestion that ICC may be the pacemaker cell responsible for intestinal activity. Gastric smooth muscles generate slow oscillatory membrane potential changes (slow waves) and spike potentials. The activity is considered to be linked to the metabolism in the cell. Three types of cells located in the gastric wall (circular and longitudinal smooth muscle cells and ICC) produce synchronized electrical responses with different shapes. The electrical responses appear to originate in ICC and then spread to the smooth muscle layers, indicating that ICC may also be the pacemaker cells responsible for gastric activity. However, isolated circular smooth muscle tissues spontaneously generate regenerative potentials, suggesting that there are at least two sites for the initiation of spontaneous activity in the stomach. Regenerative potentials persist in the presence of Ca-antagonists and are inhibited by agents which disrupt intracellular Ca(2+) homeostasis. Depolarization of the membrane elicits regenerative potentials after a long delay and the potentials have long refractory periods. This suggests that an unidentified 2nd messenger may be formed during the delay between membrane depolarization and the initiation of a regenerative potential. In gastric muscles of mutant mice which do not express inositol trisphosphate (InsP(3)) receptors, spike potentials but not slow waves are generated, suggesting the possible involvement of InsP(3) in the initiation of spontaneous activity.

  12. Phenotype modulation of airway smooth muscle in asthma

    NARCIS (Netherlands)

    Wright, David B.; Trian, Thomas; Siddiqui, Sana; Pascoe, Chris D.; Johnson, Jill R.; Dekkers, Bart G. J.; Dakshinamurti, Shyamala; Bagchi, Rushita; Burgess, Janette K.; Kanabar, Varsha; Ojo, Oluwaseun O.

    2013-01-01

    The biological responses of airway smooth muscle (ASM) are diverse, in part due to ASM phenotype plasticity. ASM phenotype plasticity refers to the ability of ASM cells to change the degree of a variety of functions, including contractility, proliferation, migration and secretion of inflammatory med

  13. Congenital smooth muscle hamartoma of the palpebral conjunctiva.

    Science.gov (United States)

    Mora, L Evelyn; Rodríguez-Reyes, Abelardo A; Vera, Ana M; Rubio, Rosa Isela; Mayorquín-Ruiz, Mariana; Salcedo, Guillermo

    2012-01-01

    Smooth muscle hamartoma is defined as a disorganized focus or an overgrowth of mature smooth muscle, generally with low capacity of autonomous growth and benign behavior. The implicated tissues are mature and proliferate in a disorganized fashion. A healthy 5-day-old Mexican boy was referred to the authors' hospital in México city for evaluation of a "cystic" lesion of the right eye that had been noted since birth. The pregnancy and delivery were unremarkable. On physical examination, there was a reddish-pink soft lesion with a tender "cystic" appearance, which was probably emerging from the upper eyelid conjunctiva, which measured 2.7 cm in its widest diameter and transilluminated. Ultrasound imaging revealed an anterior "cystic" lesion with normally formed phakic eye. An excisional biopsy was performed, and the lesion was dissected from the upper tarsal subconjunctival space. Subsequent histologic and immunohistochemical findings were consistent with the diagnosis of congenital smooth muscle hamartoma (CSMH) of the tarsal conjunctiva. The authors' research revealed that only one case of CSMH localized in the conjunctiva (Roper GJ, Smith MS, Lueder GT. Congenital smooth muscle hamartoma of the conjunctival fornix. Am J Ophthalmol. 1999;128:643-4) has been reported to date in the literature. To the best of the authors' knowledge, this current case would be the second case reported of CSMH in this anatomic location. Therefore, the authors' recommendation is to include CSMH in the differential diagnosis of a cystic mass that presents in the fornix and palpebral conjunctiva.

  14. beta-Catenin regulates airway smooth muscle contraction

    NARCIS (Netherlands)

    Jansen, Sepp R.; Van Ziel, Anna M.; Baarsma, Hoeke A.; Gosens, Reinoud

    2010-01-01

    Jansen SR, Van Ziel AM, Baarsma HA, Gosens R. beta-Catenin regulates airway smooth muscle contraction. Am J Physiol Lung Cell Mol Physiol 299: L204-L214, 2010. First published May 14, 2010; doi:10.1152/ajplung.00020.2010.-beta-Catenin is an 88-kDa member of the armadillo family of proteins that is a

  15. Airway smooth muscle and fibroblasts in the pathogenesis of asthma

    NARCIS (Netherlands)

    Johnson, Peter R A; Burgess, Janette K

    2004-01-01

    Asthma is a disease characterized by marked structural changes within the airway wall. These changes include deposition of extracellular matrix proteins and an increase in the numbers of airway smooth muscle cells and subepithelial fibroblasts. Both these cell types possess properties that would ena

  16. Airway smooth muscle - Its relationship to the extracellular matrix

    NARCIS (Netherlands)

    Black, Judith L.; Burgess, Janette K.; Johnson, Peter R.A.

    2003-01-01

    The airway smooth muscle cell has a variety of properties, which confer on it the ability to participate actively in the inflammatory process and the remodeling events, which accompany severe, persistent asthma. Among these properties is its relationship to the extracellular matrix (ECM) with which

  17. Plasticity of cerebrovascular smooth muscle cells after subarachnoid hemorrhage

    DEFF Research Database (Denmark)

    Edvinsson, Lars; Larsen, Stine Schmidt; Maddahi, Aida

    2014-01-01

    , inflammatory reactions, and microthrombosis. Additionally, a large body of evidence indicates that vascular plasticity plays an important role in SAH pathophysiology, and this review aims to summarize our current knowledge on the phenotypic changes of vascular smooth muscle cells of the cerebral vasculature...

  18. Extracellular proteolysis and the migrating vascular smooth muscle cell

    NARCIS (Netherlands)

    Leeuwen, R.T.J. van

    1996-01-01

    Smooth muscle cells (SMC) form the major cell type in the arterial blood vessels. In the undamaged vessel wall they remain in a contractile state characterized by the absence of cell division, a low metabolic activity and a high actin-myosin content. As a reaction to injury of the vessel wall they c

  19. HSP20 phosphorylation and airway smooth muscle relaxation

    Directory of Open Access Journals (Sweden)

    Mariam Ba

    2009-06-01

    Full Text Available Mariam Ba1, Cherie A Singer1, Manoj Tyagi2, Colleen Brophy3, Josh E Baker4, Christine Cremo4, Andrew Halayko5, William T Gerthoffer21Department of Pharmacology, University of Nevada School of Medicine, Reno, NV, USA; 2Department of Biochemistry and Molecular Biology, University of South Alabama, Mobile, AL, USA; 3Harrington Department of Biochemistry, Arizona State University, Tempe, AZ, USA; 4Department of Biochemistry and Molecular Biology, University of Nevada, Reno, NV, USA; 5Departments of Physiology and Internal Medicine, University of Manitoba, Winnipeg, MB, CanadaAbstract: HSP20 (HSPB6 is a small heat shock protein expressed in smooth muscles that is hypothesized to inhibit contraction when phosphorylated by cAMP-dependent protein kinase. To investigate this hypothesis in airway smooth muscle (ASM we showed that HSP20 was constitutively expressed as well as being inducible in cultured hASM cells by treatment with 1 µM isoproterenol or 10 µM salmeterol. In contrast, a mixture of proinflammatory mediators (interleukin-1β, tumor necrosis factor α, and interferon γ inhibited expression of HSP20 by about 50% in 48 hours. To determine whether phosphorylation of HSP20 is sufficient to induce relaxation, canine tracheal smooth muscle was treated with a cell permeant phosphopeptide that mimics the phosphorylation of HSP20. The HSP20 phosphopeptide antagonized carbacholinduced contraction by 60% with no change in myosin light chain phosphorylation. Recombinant full length HSP20 inhibited skeletal actin binding to smooth muscle myosin subfragment 1 (S1, and recombinant cell permeant TAT-HSP20 S16D mutant reduced F-actin filaments in cultured hASM cells. Carbachol stimulation of canine tracheal smooth muscle tissue caused redistribution of HSP20 from large macromolecular complexes (200–500 kDa to smaller complexes (<60 kDa. The results are consistent with HSP20 expression and macromolecular structure being dynamically regulated in airway

  20. Mutations in smooth muscle alpha-actin (ACTA2) lead to thoracic aortic aneurysms and dissections.

    Science.gov (United States)

    Guo, Dong-Chuan; Pannu, Hariyadarshi; Tran-Fadulu, Van; Papke, Christina L; Yu, Robert K; Avidan, Nili; Bourgeois, Scott; Estrera, Anthony L; Safi, Hazim J; Sparks, Elizabeth; Amor, David; Ades, Lesley; McConnell, Vivienne; Willoughby, Colin E; Abuelo, Dianne; Willing, Marcia; Lewis, Richard A; Kim, Dong H; Scherer, Steve; Tung, Poyee P; Ahn, Chul; Buja, L Maximilian; Raman, C S; Shete, Sanjay S; Milewicz, Dianna M

    2007-12-01

    The major function of vascular smooth muscle cells (SMCs) is contraction to regulate blood pressure and flow. SMC contractile force requires cyclic interactions between SMC alpha-actin (encoded by ACTA2) and the beta-myosin heavy chain (encoded by MYH11). Here we show that missense mutations in ACTA2 are responsible for 14% of inherited ascending thoracic aortic aneurysms and dissections (TAAD). Structural analyses and immunofluorescence of actin filaments in SMCs derived from individuals heterozygous for ACTA2 mutations illustrate that these mutations interfere with actin filament assembly and are predicted to decrease SMC contraction. Aortic tissues from affected individuals showed aortic medial degeneration, focal areas of medial SMC hyperplasia and disarray, and stenotic arteries in the vasa vasorum due to medial SMC proliferation. These data, along with the previously reported MYH11 mutations causing familial TAAD, indicate the importance of SMC contraction in maintaining the structural integrity of the ascending aorta.

  1. Crk-associated substrate, vascular smooth muscle and hypertension

    Institute of Scientific and Technical Information of China (English)

    Dale D. TANG

    2008-01-01

    Hypertension is characterized by vascular smooth muscle constriction and vascular remodeling involving cell migration, hypertrophy and growth. Crk-associated substrate (CAS), the first discovered member of the adapter protein CAS family, has been shown to be a critical cellular component that regulates various smooth muscle functions. In this review, the molecular structure and protein interactions of the CAS family members are summarized. Evidence for the role of CAS in the regu-lation of vascular smooth muscle contractility is pre-sented. Contraction stimulation induces CAS phosphor-ylation on Tyr-410 in arterial smooth muscle, creating the binding site for the Src homology (SH) 2/SH3 protein Crkll, which activates neuronal Wiskott-Aldrich syn-drome protein (N-WASP)-mediated actin assembly and force development. The functions of CAS in cell migra-tion, hypertrophy and growth are also summarized. Abelson tyrosine kinase (Abl), c-Src, focal adhesion kinase (FAK), proline-rich tyrosine kinase 2 (PYK2), pro-tein tyrosine phosphatase-proline, glutamate, serine and threonine sequence protein (PTP-PEST) and SHP-2 have been documented to coordinate the phosphorylation and dephosphorylation of CAS. The downstream signaling partners of CAS in the context of cell motility, hyper-trophy, survival and growth are also discussed. These new findings establish the important role of CAS in the modulation of vascular smooth muscle functions. Furthermore, the upstream regulators of CAS may be new biologic targets for the development of more effective and specific treatment of cardiovascular diseases such as hypertension.

  2. Function and role of voltage-gated sodium channel NaV1.7 expressed in aortic smooth muscle cells.

    Science.gov (United States)

    Meguro, Kentaro; Iida, Haruko; Takano, Haruhito; Morita, Toshihiro; Sata, Masataka; Nagai, Ryozo; Nakajima, Toshiaki

    2009-01-01

    Voltage-gated Na(+) channel currents (I(Na)) are expressed in several types of smooth muscle cells. The purpose of this study was to evaluate the expression of I(Na), its functional role, pathophysiology in cultured human (hASMCs) and rabbit aortic smooth muscle cells (rASMCs), and its association with vascular intimal hyperplasia. In whole cell voltage clamp, I(Na) was observed at potential positive to -40 mV, was blocked by tetrodotoxin (TTX), and replacing extracellular Na(+) with N-methyl-d-glucamine in cultured hASMCs. In contrast to native aorta, cultured hASMCs strongly expressed SCN9A encoding Na(V)1.7, as determined by quantitative RT-PCR. I(Na) was abolished by the treatment with SCN9A small-interfering (si)RNA (P SCN9A siRNA significantly inhibited cell migration (P SCN9A in cultured rASMCs and aorta 48 h after balloon injury but not in native aorta. In conclusion, these studies show that I(Na) is expressed in cultured and diseased conditions but not in normal aorta. The Na(V)1.7 plays an important role in cell migration, endocytosis, and secretion. Na(V)1.7 is also expressed in aorta after balloon injury, suggesting a potential role for Na(V)1.7 in the progression of intimal hyperplasia.

  3. UDP acts as a growth factor for vascular smooth muscle cells by activation of P2Y(6) receptors

    DEFF Research Database (Denmark)

    Hou, Mingyan; Harden, T Kendall; Kuhn, Cynthia M;

    2002-01-01

    Mitogenic effects of the extracellular nucleotides ATP and UTP are mediated by P2Y(1), P2Y(2), and P2Y(4) receptors. However, it has not been possible to examine the highly expressed UDP-sensitive P2Y(6) receptor because of the lack of stable, selective agonists. In rat aorta smooth muscle cells...... (vascular smooth muscle cells; VSMC), UDP and UTP stimulated (3)H-labeled thymidine incorporation with similar pEC(50) values (5.96 and 5.69). Addition of hexokinase did not reduce the mitogenic effect of UDP. In cells transfected with P2Y receptors the stable pyrimidine agonist uridine 5'-O-(2...

  4. Uhrf2 is important for DNA damage response in vascular smooth muscle cells.

    Science.gov (United States)

    Luo, Tao; Cui, Shijun; Bian, Chunjing; Yu, Xiaochun

    2013-11-08

    Emerging evidence shows that Uhrf1 plays an important role in DNA damage response for maintaining genomic stability. Interestingly, Uhrf1 has a paralog Uhrf2 in mammals. Uhrf1 and Uhrf2 share similar domain architectures. However, the role of Uhrf2 in DNA damage response has not been studied yet. During the analysis of the expression level of Uhrf2 in different tissues, we found that Uhrf2 is highly expressed in aorta and aortic vascular smooth muscle cells. Thus, we studied the role of Uhrf2 in DNA damage response in aortic vascular smooth muscle cells. Using laser microirradiation, we found that like Uhrf1, Uhrf2 was recruited to the sites of DNA damage. We dissected the functional domains of Uhrf2 and found that the TTD, PHD and SRA domains are important for the relocation of Uhrf2 to the sites of DNA damage. Moreover, depletion of Uhrf2 suppressed DNA damage-induced H2AX phosphorylation and DNA damage repair. Taken together, our results demonstrate the function of Uhrf2 in DNA damage response.

  5. Induction of interleukin-8 production by angiotensin Ⅱ in rat vascular smooth muscle cells

    Institute of Scientific and Technical Information of China (English)

    Zhi Wang; Lili Zhang; Baogui Sun; Qiuyan Dai

    2009-01-01

    Objective:Interleukin-8(IL-8) represents the prototypical chemokine that is made by a wide variety of cell types.Previously studies have suggested that angiotensin Ⅱ(Ang Ⅱ) is involved in atherogenesis through induction ofproinflammatory cytokines such as interleukin-6 or monocyte chemoattractant protein-1 (MCP-1) in vascular smooth muscle cells(VSMCs),while the role orang Ⅱ on IL-8 expression in VSMCs is poorly studied.Methods:In this study,VSMCs were isolated from the thoracic aorta of Sprague-Dawley rats.The expression of smooth muscle α-actin was confirmed by an immunohistochemical method.Semi-quantitative RT-PCR and enzyme-linked immunosorbent assay (ELISA) analyses were conducted to detect IL-8 expression.Results:In the present study we found that Ang Ⅱ significantly increased the expression of IL-8 both at the mRNA and protein levels in rat VSMCs in a dose- and time-dependent manner.Conclusion:These findings suggested that Ang Ⅱ may participate in atherosclerosis through induction of inflammatory mediator in VSMCs.

  6. Redundant control of migration and adhesion by ERM proteins in vascular smooth muscle cells

    Energy Technology Data Exchange (ETDEWEB)

    Baeyens, Nicolas; Latrache, Iman; Yerna, Xavier [Laboratory of Cell Physiology, IoNS, Université Catholique de Louvain (Belgium); Noppe, Gauthier; Horman, Sandrine [Pôle de Recherche Cardiovasculaire, IREC, Université Catholique de Louvain (Belgium); Morel, Nicole, E-mail: nicole.morel@uclouvain.be [Laboratory of Cell Physiology, IoNS, Université Catholique de Louvain (Belgium)

    2013-11-22

    Highlights: •The three ERM proteins are expressed in vascular smooth muscle cell. •ERM depletion inhibited PDGF-evoked migration redundantly. •ERM depletion increased cell adhesion redundantly. •ERM depletion did not affect PDGF-evoked Ca signal, Rac1 activation, proliferation. •ERM proteins control PDGF-induced migration by regulating adhesion. -- Abstract: Ezrin, radixin, and moesin possess a very similar structure with a C-terminal actin-binding domain and a N-terminal FERM interacting domain. They are known to be involved in cytoskeleton organization in several cell types but their function in vascular smooth muscle cells (VSMC) is still unknown. The aim of this study was to investigate the role of ERM proteins in cell migration induced by PDGF, a growth factor involved in pathophysiological processes like angiogenesis or atherosclerosis. We used primary cultured VSMC obtained from rat aorta, which express the three ERM proteins. Simultaneous depletion of the three ERM proteins with specific siRNAs abolished the effects of PDGF on cell architecture and migration and markedly increased cell adhesion and focal adhesion size, while these parameters were only slightly affected by depletion of ezrin, radixin or moesin alone. Rac1 activation, cell proliferation, and Ca{sup 2+} signal in response to PDGF were unaffected by ERM depletion. These results indicate that ERM proteins exert a redundant control on PDGF-induced VSMC migration by regulating focal adhesion turn-over and cell adhesion to substrate.

  7. Menthol inhibiting parasympathetic function of tracheal smooth muscle

    Science.gov (United States)

    Wang, Hsing-Won; Liu, Shao-Cheng; Chao, Pin-Zhir; Lee, Fei-Peng

    2016-01-01

    Menthol is used as a constituent of food and drink, tobacco and cosmetics nowadays. This cold receptor agonist has been used as a nasal inhalation solution in the daily life. The effect of menthol on nasal mucosa in vivo is well known; however, the effect of the drug on tracheal smooth muscle has been rarely explored. Therefore, during administration of the drug for nasal symptoms, it might also affect the trachea via oral intake or inhalation. We used our preparation to test the effectiveness of menthol on isolated rat tracheal smooth muscle. A 5 mm long portion of rat trachea was submersed in 30 ml Krebs solution in a muscle bath at 37ºC. Changes in tracheal contractility in response to the application of a parasympathetic mimetic agent were measured using a transducer connected to a Pentium III computer equipped with polygraph software. The following assessments of menthol were performed: (1) effect on tracheal smooth muscle resting tension; (2) effect on contraction caused by 10-6 M methacholine as a parasympathetic mimetic; (3) effect of the drug on electrically induced tracheal smooth muscle contractions. Results indicated that addition of a parasympathetic mimetic to the incubation medium caused the trachea to contract in a dose-dependent manner. Addition of menthol at doses of 10-5 M or above elicited a relaxation response to 10-6 M methacholine-induced contraction. Menthol could also inhibit electrical field stimulation (EFS) induced spike contraction. However, it alone had a minimal effect on the basal tension of trachea as the concentration increased. We concluded that the degree of drug-induced tracheal contraction or relaxation was dose-dependent. In addition, this study indicated that high concentrations of menthol might actually inhibit parasympathetic function of the trachea. PMID:27994497

  8. Eye features in three Danish patients with multisystemic smooth muscle dysfunction syndrome

    DEFF Research Database (Denmark)

    Moller, Hans Ulrik; Fledelius, Hans C; Milewicz, Dianna M

    2012-01-01

    A de novo mutation of the ACTA2 gene encoding the smooth muscle cell α-actin has been established in patients with multisystemic smooth muscle dysfunction syndrome associated with patent ductus arteriosus and mydriasis present at birth....

  9. Relaxation of vascular smooth muscle induced by low-power laser radiation.

    Science.gov (United States)

    Chaudhry, H; Lynch, M; Schomacker, K; Birngruber, R; Gregory, K; Kochevar, I

    1993-11-01

    The relaxation of rabbit aorta rings induced by low-power laser radiation was investigated in vitro to determine the location of the chromophore(s) responsible for this response and evaluate possible mechanisms. An action spectrum for relaxation was measured on rabbit thoracic aorta rings precontracted with norepinephrine. The decrease in isometric tension was measured during exposure to laser light (351-625 nm) delivered via a fiber optic to a small spot on the adventitial surface. The shortest UV wavelength (351 nm) was 35-fold more effective than 390 nm and 1700-fold more effective than 460 nm. Ultraviolet wavelengths also produced greater maximum relaxation (0.40-0.45) than visible wavelengths (0.20-0.25), suggesting that photovasorelaxation involves more than one chromophore. The adventitial layer was not necessary for photovasorelaxation, indicating that the light is absorbed by a chromophore in the medial layer. The same degree of relaxation was obtained on rings without adventitia when either one-half of the ring, or a small spot was irradiated indicating that communication between smooth muscle cells spreads a signal from the area illuminated to the entire ring. The mechanism for photovasorelaxation was investigated using potential inhibitors. N-monomethyl-L-arginine and N-amino-L-arginine, inhibitors of nitric oxide synthase, did not alter photovasorelaxation nor did indomethacin, an inhibitor of cyclooxygenase, and zinc protoporphyrin, an inhibitor of heme oxygenase.

  10. TGFBR2 mutations alter smooth muscle cell phenotype and predispose to thoracic aortic aneurysms and dissections

    Science.gov (United States)

    Inamoto, Sakiko; Kwartler, Callie S.; Lafont, Andrea L.; Liang, Yao Yun; Fadulu, Van Tran; Duraisamy, Senthil; Willing, Marcia; Estrera, Anthony; Safi, Hazim; Hannibal, Mark C.; Carey, John; Wiktorowicz, John; Tan, Filemon K.; Feng, Xin-Hua; Pannu, Hariyadarshi; Milewicz, Dianna M.

    2010-01-01

    Aims Transforming growth factor-β (TGF-β) signaling is critical for the differentiation of smooth muscle cells (SMCs) into quiescent cells expressing a full repertoire of contractile proteins. Heterozygous mutations in TGF-β receptor type II (TGFBR2) disrupt TGF-β signaling and lead to genetic conditions that predispose to thoracic aortic aneurysms and dissections (TAADs). The aim of this study is to determine the molecular mechanism by which TGFBR2 mutations cause TAADs. Methods and results Using aortic SMCs explanted from patients with TGFBR2 mutations, we show decreased expression of SMC contractile proteins compared with controls. Exposure to TGF-β1 fails to increase expression of contractile genes in mutant SMCs, whereas control cells further increase expression of these genes. Analysis of fixed and frozen aortas from patients with TGFBR2 mutations confirms decreased in vivo expression of contractile proteins relative to unaffected aortas. Fibroblasts explanted from patients with TGFBR2 mutations fail to transform into mature myofibroblasts with TGF-β1 stimulation as assessed by expression of contractile proteins. Conclusions These data support the conclusion that heterozygous TGFBR2 mutations lead to decreased expression of SMC contractile protein in both SMCs and myofibroblasts. The failure of TGFBR2-mutant SMCs to fully express SMC contractile proteins predicts defective contractile function in these cells and aligns with a hypothesis that defective SMC contractile function contributes to the pathogenesis of TAAD. PMID:20628007

  11. Induction of Timp1 in smooth muscle cells during development of abdominal aortic aneurysms.

    Science.gov (United States)

    Bumdelger, Batmunkh; Kokubo, Hiroki; Kamata, Ryo; Fujii, Masayuki; Ishida, Mari; Ishida, Takafumi; Yoshizumi, Masao

    2013-09-01

    Abdominal aortic aneurysm (AAA) is known to develop mainly by the increased diameter of aorta through metalloproteinases (MMPs). Although activities of MMPs are tightly regulated by the presence of tissue inhibitor of MMPs (TIMPs) and imbalances between MMPs and TIMPs may serve to fragility of arterial wall, little is known about TIMPs behavior in aneurysmal formation. Here, we utilized a murine experimental AAA model, and found that by immunohistochemical analysis, Timp1 as and Timp1 mRNA levels was also revealed in aortic tissue in AAA by RT-PCR. In cultured vascular smooth muscle cells (SMCs), Tumor Necrosis Factor (TNF)-alpha significantly activated both Mmp9 and Timp1 expression, and they were blocked by Jun kinase inhibitor (SP600125) in a dose-dependent manner. Interestingly, a proteasome inhibitor (MG132), which is known as an agent for inhibition of the nuclear factor-kappa B (NF-kappaB), significantly inhibited the TNF-alpha-induced expression of Timp1, whereas MG132, which also works as an activator of c-Jun/AP-1 pathway, strongly increased Mmp9. Taken together, inflammatory cytokines, including TNF-alpha, may simultaneously induce MMPs and TIMPs for the remodeling of the medial layer, leading to the increased diameter of the aorta, the aneurysm.

  12. Catalase overexpression in aortic smooth muscle prevents pathological mechanical changes underlying abdominal aortic aneurysm formation.

    Science.gov (United States)

    Maiellaro-Rafferty, Kathryn; Weiss, Daiana; Joseph, Giji; Wan, William; Gleason, Rudolph L; Taylor, W Robert

    2011-08-01

    The causality of the associations between cellular and mechanical mechanisms of abdominal aortic aneurysm (AAA) formation has not been completely defined. Because reactive oxygen species are established mediators of AAA growth and remodeling, our objective was to investigate oxidative stress-induced alterations in aortic biomechanics and microstructure during subclinical AAA development. We investigated the mechanisms of AAA in an angiotensin II (ANG II) infusion model of AAA in apolipoprotein E-deficient (apoE(-/-)) mice that overexpress catalase in vascular smooth muscle cells (apoE(-/-)xTg(SMC-Cat)). At baseline, aortas from apoE(-/-)xTg(SMC-Cat) exhibited increased stiffness and the microstructure was characterized by 50% more collagen content and less elastin fragmentation. ANG II treatment for 7 days in apoE(-/-) mice altered the transmural distribution of suprarenal aortic circumferential strain (quantified by opening angle, which increased from 130 ± 1° at baseline to 198 ± 8° after 7 days of ANG II treatment) without obvious changes in the aortic microstructure. No differences in aortic mechanical behavior or suprarenal opening angle were observed in apoE(-/-)xTg(SMC-Cat) after 7 days of ANG II treatment. These data suggest that at the earliest stages of AAA development H(2)O(2) is functionally important and is involved in the control of local variations in remodeling across the vessel wall. They further suggest that reduced elastin integrity at baseline may predispose the abdominal aorta to aneurysmal mechanical remodeling.

  13. Aging impairs smooth muscle-mediated regulation of aortic stiffness: a defect in shock absorption function?

    Science.gov (United States)

    Gao, Yuan Z; Saphirstein, Robert J; Yamin, Rina; Suki, Bela; Morgan, Kathleen G

    2014-10-15

    Increased aortic stiffness is an early and independent biomarker of cardiovascular disease. Here we tested the hypothesis that vascular smooth muscle cells (VSMCs) contribute significantly to aortic stiffness and investigated the mechanisms involved. The relative contributions of VSMCs, focal adhesions (FAs), and matrix to stiffness in mouse aorta preparations at optimal length and with confirmed VSMC viability were separated by the use of small-molecule inhibitors and activators. Using biomechanical methods designed for minimal perturbation of cellular function, we directly quantified changes with aging in aortic material stiffness. An alpha adrenoceptor agonist, in the presence of N(G)-nitro-l-arginine methyl ester (l-NAME) to remove interference of endothelial nitric oxide, increases stiffness by 90-200% from baseline in both young and old mice. Interestingly, increases are robustly suppressed by the Src kinase inhibitor PP2 in young but not old mice. Phosphotyrosine screening revealed, with aging, a biochemical signature of markedly impaired agonist-induced FA remodeling previously associated with Src signaling. Protein expression measurement confirmed a decrease in Src expression with aging. Thus we report here an additive model for the in vitro biomechanical components of the mouse aortic wall in which 1) VSMCs are a surprisingly large component of aortic stiffness at physiological lengths and 2) regulation of the VSMC component through FA signaling and hence plasticity is impaired with aging, diminishing the aorta's normal shock absorption function in response to stressors.

  14. Critical role of exogenous nitric oxide in ROCK activity in vascular smooth muscle cells.

    Directory of Open Access Journals (Sweden)

    Tatsuya Maruhashi

    Full Text Available Rho-associated kinase (ROCK signaling pathway has been shown to mediate various cellular functions including cell proliferation, migration, adhesion, apoptosis, and contraction, all of which may be involved in pathogenesis of atherosclerosis. Endogenous nitric oxide (NO is well known to have an anti-atherosclerotic effect, whereas the exogenous NO-mediated cardiovascular effect still remains controversial. The purpose of this study was to evaluate the effect of exogenous NO on ROCK activity in vascular smooth muscle cells (VSMCs in vitro and in vivo.VSMCs migration was evaluated using a modified Boyden chamber assay. ROCK activities were measured by Western blot analysis in murine and human VSMCs and aorta of mice treated with or without angiotensin II (Ang II and/or sodium nitroprusside (SNP, an NO donor.Co-treatment with SNP inhibited the Ang II-induced cell migration and increases in ROCK activity in murine and human VSMCs. Similarly, the increased ROCK activity 2 weeks after Ang II infusion in the mouse aorta was substantially inhibited by subcutaneous injection of SNP.These findings suggest that administration of exogenous NO can inhibit ROCK activity in VSMCs in vitro and in vivo.

  15. Structural properties of lipid reconstructs and lipid composition of normotensive and hypertensive rat vascular smooth muscle cell membranes

    Directory of Open Access Journals (Sweden)

    T.R. Oliveira

    2009-09-01

    Full Text Available Multiple cell membrane alterations have been reported to be the cause of various forms of hypertension. The present study focuses on the lipid portion of the membranes, characterizing the microviscosity of membranes reconstituted with lipids extracted from the aorta and mesenteric arteries of spontaneously hypertensive (SHR and normotensive control rat strains (WKY and NWR. Membrane-incorporated phospholipid spin labels were used to monitor the bilayer structure at different depths. The packing of lipids extracted from both aorta and mesenteric arteries of normotensive and hypertensive rats was similar. Lipid extract analysis showed similar phospholipid composition for all membranes. However, cholesterol content was lower in SHR arteries than in normotensive animal arteries. These findings contrast with the fact that the SHR aorta is hyporeactive while the SHR mesenteric artery is hyperreactive to vasopressor agents when compared to the vessels of normotensive animal strains. Hence, factors other than microviscosity of bulk lipids contribute to the vascular smooth muscle reactivity and hypertension of SHR. The excess cholesterol in the arteries of normotensive animal strains apparently is not dissolved in bulk lipids and is not directly related to vascular reactivity since it is present in both the aorta and mesenteric arteries. The lower cholesterol concentrations in SHR arteries may in fact result from metabolic differences due to the hypertensive state or to genes that co-segregate with those that determine hypertension during the process of strain selection.

  16. Mechanisms mediating cholinergic antral circular smooth muscle contraction in rats

    Institute of Scientific and Technical Information of China (English)

    Helena F Wrzos; Tarun Tandon; Ann Ouyang

    2004-01-01

    AIM: To investigate the pathway (s) mediating rat antral circular smooth muscle contractile responses to the cholinomimetic agent, bethanechol and the subtypes of muscarinic receptors mediating the cholinergic contraction.METHODS: Circular smooth muscle strips from the antrum of Sprague-Dawley rats were mounted in muscle baths in Krebs buffer. Isometric tension was recorded. Cumulative concentration-response curves were obtained for (+)-cisdioxolane (cD), a nonspecific muscarinic agonist, at 10-8-10-4 mol/L, in the presence of tetrodotoxin (TTX, 10-7 mol/L).Results were normalized to cross sectional area. A repeat concentration-response curve was obtained after incubation of the muscle for 90 min with antagonists for M1 (pirenzepine),M2 (methoctramine) and M3 (darifenacin) muscarinic receptor subtypes. The sensitivity to PTX was tested by the ip injection of 100 mg/kg of PTX 5 d before the experiment. The antral circular smooth muscles were removed from PTX-treated and non-treated rats as strips and dispersed smooth muscle cells to identify whether PTX-linked pathway mediated the contractility to bethanechol.RESULTS: A dose-dependent contractile response observed with bethanechol, was not affected by TTX. The pretreatment of rats with pertussis toxin decreased the contraction induced by bethanechol. Lack of calcium as Well as the presence of the L-type calcium channel blocker, nifedipine, also inhibited the cholinergic contraction, with a reduction in response from 2.5±0.4 g/mm2 to 1.2±0.4 g/mm2 (P<0.05). The doseresponse curves were shifted to the right by muscarinic antagonists in the following order of affinity: darifenacin(M3)>methocramine (M2)>pirenzepine (M1).CONCLUSION: The muscarinic receptors-dependent contraction of rat antral circular smooth muscles was linked to the signal transduction pathway(s) involving pertussis-toxin sensitive GTP-binding proteins and to extracellular calcium via L-type voltage gated calcium channels. The presence of the

  17. Structural limits on force production and shortening of smooth muscle.

    Science.gov (United States)

    Siegman, Marion J; Davidheiser, Sandra; Mooers, Susan U; Butler, Thomas M

    2013-02-01

    This study determined the factors that limit force production and shortening in two smooth muscles having very different relationships between active and passive force as a function of muscle length. The rat anococcygeus muscle develops active force over the range of lengths 0.2-2.0× the optimum length for force production (Lo). Passive tension due to extension of the resting muscle occurs only at lengths exceeding Lo. In contrast, the rabbit taenia coli develops force in the range of lengths 0.4-1.1 Lo, and passive force which is detectable at 0.56 Lo, increases to ~0.45 maximum active force at Lo, and increases sharply with further extension. The anococcygeus muscle can shorten to 0.2 Lo and the taenia coli to 0.4 Lo. Dynamic stiffness and energy usage at short muscle lengths suggest that the limit of shortening in the taenia coli, in contrast to the anococcygeus muscle, is not due to a failure of cross bridge interaction. Phosphorylation of the regulatory myosin light chains in intact muscles decreased to a small extent at short lengths compared to the decrease in force production. The differences in force production and the extent of shortening in the two muscles was maintained even when, following permeabilization, the myosin light chains were irreversibly phosphorylated with ATPγS, indicating that differences in activation played little, if any role. Ultrastructural studies on resting and activated muscles show that the taenia coli, which is rich in connective tissue (unlike the anococcygeus muscle) undergoes marked cellular twisting and contractile filament misalignment at short lengths with compression of the extracellular matrix. As a result, force is not transmitted in the longitudinal axis of the muscle, but is dissipated against an internal load provided by the compressed extracellular matrix. These observations on two very different normal smooth muscles reveal how differences in the relative contribution of active and passive structural elements

  18. Contractile proteins of endothelial cells, platelets and smooth muscle.

    Science.gov (United States)

    Becker, C G; Nachman, R L

    1973-04-01

    In experiments described herein it was observed, by direct and indirect immunofluorescence technics, that rabbit antisera to human platelet actomyosin (thrombosthenin) stained mature megakaryocytes, blood platelets, endothelial cells and smooth muscle cells of arteries and veins, endothelial cells of liver sinusoids and certain capillaries, uterine smooth muscle cells, myoepithelial cells, perineurial cells of peripheral nerves and "fibroblastic" cells of granulation tissue. The specificity of immunohistologic staining was confirmed by appropriate absorption and blocking studies and immunodiffusional analysis in agarose gel. It was also observed by immunodiffusional analysis in agarose gel, electrophoresis of actomyosin fragments in polyacrylamide gels, immune inhibition of actomyosin ATPase activity and immune aggregation of platelets that uterine and platelet actomyosin are partially, but not completely, identical.

  19. Icariin on relaxation effect of corpus cavernosum smooth muscle

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    NO-cGMP pathway in penile corpus cavernosal smooth muscle plays an important role in penile erection. The level of cGMP is regulated by a balance between the rate of synthesis by guanylate cyclase and the rate of hydrolytic breakdown to guanosine 5′monophosphate (GMP) by phos- phodiesterase 5(PDE5). Icariin is isolated from natural drug Epimedii herba, it is shown to have the relaxation effect on corpus cavernosal smooth muscle of rabbit (IC50: 4×10-4 mol/L), and the mechanism of the relaxation effect of Icariin on corpus cavernosum believed to have the inhibiting effect on PDE5 and activation of NO-cGMP pathway to enhancing penile erection.

  20. Modulation of the Cholinergic Mechanisms in the Bronchial Smooth Muscle.

    Science.gov (United States)

    1984-06-01

    Ginsborg and Hirst, 1q72; Sawynok and Jhamandas, 1976), although theopylline has not shown to be a specific adenosine receptor antagonist in all the tissues... theopylline and other cyclic nucletide phosphodiesterase inhibitors. Acta Pharmacol. Toxicol. 45, 336-344. Fredholm, B.B. and P. Hedqvist, 1980...51 mM) evoked release of [3H]-Ach from cholinergic nerves in the bronchial smooth muscle. The effect of theopylline (I mM) on the response to

  1. Action on ileal smooth muscle of synthetic detergents and pardaxin.

    Science.gov (United States)

    Primor, N

    1986-01-01

    Pardaxin (PX), a toxic and repellent substance isolated from the Red Sea flatfish, causes a sharp ball-like profile of drop of saline placed on a hydrophobic film to turn into a flattened one. This effect results with a decrease of the contact angle (theta) from 96 degrees to a maximum of 42 degrees at 10(-4) M of PX. The action of sodium dodecyl sulphate (SDS), a synthetic anionic detergent, benzalkonium chloride (BAC) cationic detergent and pardaxin (PX) a toxic protein with detergent properties, were studied in the ileal guinea-pig longitudinal smooth muscle preparation. SDS (4 X 10(-4) M) and PX (5 X 10(-6) M) diminished the muscle contractile response to field stimulation (0.1 Hz, 1 msec) and to acetylcholine (Ach) and to histamine and elicited a prolonged (4-6 min) TTX-insensitive muscle contraction. The dose dependence of muscle contraction to SDS and PX was found to be sigmoidal and occurred over a narrow range of concentrations. The SDS- but not PX-induced muscle contraction could be reduced by diphenhydramine (H1 antihistamine). BAC (10(-5)-10(-4) M) suppressed the muscle's contractile response to electrical stimulation (0.1 Hz, 1 msec), to Ach, histamine and 5-hydroxytryptamine but did not produce muscle contraction. PX at concentrations higher than 5 X 10(-6) M is a potent detergent and at this concentration shares several pharmacological similarities with SDS.

  2. Smooth muscle FGF/TGFβ cross talk regulates atherosclerosis progression.

    Science.gov (United States)

    Chen, Pei-Yu; Qin, Lingfeng; Li, Guangxin; Tellides, George; Simons, Michael

    2016-07-01

    The conversion of vascular smooth muscle cells (SMCs) from contractile to proliferative phenotype is thought to play an important role in atherosclerosis. However, the contribution of this process to plaque growth has never been fully defined. In this study, we show that activation of SMC TGFβ signaling, achieved by suppression of SMC fibroblast growth factor (FGF) signaling input, induces their conversion to a contractile phenotype and dramatically reduces atherosclerotic plaque size. The FGF/TGFβ signaling cross talk was observed in vitro and in vivo In vitro, inhibition of FGF signaling increased TGFβ activity, thereby promoting smooth muscle differentiation and decreasing proliferation. In vivo, smooth muscle-specific knockout of an FGF receptor adaptor Frs2α led to a profound inhibition of atherosclerotic plaque growth when these animals were crossed on Apoe(-/-) background and subjected to a high-fat diet. In particular, there was a significant reduction in plaque cellularity, increase in fibrous cap area, and decrease in necrotic core size. In agreement with these findings, examination of human coronary arteries with various degrees of atherosclerosis revealed a strong correlation between the activation of FGF signaling, loss of TGFβ activity, and increased disease severity. These results identify SMC FGF/TGFβ signaling cross talk as an important regulator of SMC phenotype switch and document a major contribution of medial SMC proliferation to atherosclerotic plaque growth.

  3. Cytoskeletal heart-enriched actin-associated protein (CHAP) is expressed in striated and smooth muscle cells in chick and mouse during embryonic and adult stages.

    Science.gov (United States)

    van Eldik, Willemijn; Beqqali, Abdelaziz; Monshouwer-Kloots, Jantine; Mummery, Christine; Passier, Robert

    2011-01-01

    We recently identified a new Z-disc protein, CHAP (Cytoskeletal Heart-enriched Actin-associated Protein), which is expressed in striated muscle and plays an important role during embryonic muscle development in mouse and zebrafish. Here, we confirm and further extend these findings by (i) the identification and characterization of the CHAP orthologue in chick and (ii) providing a detailed analysis of CHAP expression in mouse during embryonic and adult stages. Chick CHAP contains a PDZ domain and a nuclear localization signal, resembling the human and mouse CHAPa. CHAP is expressed in the developing heart and somites, as well as muscle precursors of the limb buds in mouse and chick embryos. CHAP expression in heart and skeletal muscle is maintained in adult mice, both in slow and fast muscle fibers. Moreover, besides expression in striated muscle, we demonstrate that CHAP is expressed in smooth muscle cells of aorta, carotid and coronary arteries in adult mice, but not during embryonic development.

  4. Spontaneously tonic smooth muscle has characteristically higher levels of RhoA/ROK compared with the phasic smooth muscle.

    Science.gov (United States)

    Patel, Chirag A; Rattan, Satish

    2006-11-01

    The internal anal sphincter (IAS) tone is important for the rectoanal continence. The RhoA/Rho kinase (ROK) pathway has been associated with the agonist-induced sustained contraction of the smooth muscle, but its role in the spontaneously tonic smooth muscle is not known. Present studies compared expression of different components of the RhoA/ROK pathway between the IAS (a truly tonic SM), the rectal smooth muscle (RSM) (a mixture of phasic and tonic), and anococcygeus smooth muscle (ASM) (a purely phasic SM) of rat. RT-PCR and Western blot analyses were performed to determine RhoA, ROCK-II, CPI-17, MYPT1, and myosin light-chain 20 (MLC20). Phosphorylated CPI-17 at threonine-38 residue (p(Thr38)-CPI-17), MYPT1 at threonine-696 residue (p(Thr696)-MYPT1), and MLC20 at threonine-18/serine-19 residues (p(Thr18/Ser19)-MLC20) were also determined in the basal state and after pretreatment with the ROK inhibitor Y 27632. In addition, we compared the effect of Y 27632 on the basal isometric tension and ROK activity in the IAS vs. the RSM. Our data show the highest levels of RhoA, ROCK-II, CPI-17, MLC20, and of phospho-MYPT1, -CPI-17, and -MLC20 in the IAS followed by in the RSM and ASM. Conversely, MYPT1 levels were lowest in the IAS and highest in the ASM. In the IAS, Y 27632 caused a concentration-dependent decrease in the basal tone, levels of phospho-MYPT1, -CPI-17, and -MLC20, and ROK activity. We conclude that RhoA/ROK plays a critical role in the basal tone in the IAS by the inhibition of MLC phosphatase via the phosphorylation of MYPT1 and CPI-17.

  5. A fibroblast-associated antigen: Characterization in fibroblasts and immunoreactivity in smooth muscle differentiated stromal cells

    DEFF Research Database (Denmark)

    Rønnov-Jessen, Lone; Celis, Julio E.; van Deurs, Bo

    1992-01-01

    Fibroblasts with smooth muscle differentiation are frequently derived from human breast tissue. Immunofluorescence cytochemistry of a fibroblast-associated antigen recognized by a monoclonal antibody (MAb), 1B10, was analyzed with a view to discriminating smooth muscle differentiated fibroblasts...... from vascular smooth muscle cells. The antigen was detected on the cell surface and in cathepsin D-positive and acridine orange-accumulating vesicular compartments of fibroblasts. Ultrastructurally, the antigen was revealed in coated pits and in endosomal and lysosomal structures. 1B10 recognized three...... immunoreactivity was specific to fibroblasts and smooth muscle differentiated fibroblasts within the context of vascular smooth muscle cells....

  6. Proteomic analysis of vascular smooth muscle cells in physiological condition and in pulmonary arterial hypertension: Toward contractile versus synthetic phenotypes.

    Science.gov (United States)

    Régent, Alexis; Ly, Kim Heang; Lofek, Sébastien; Clary, Guilhem; Tamby, Mathieu; Tamas, Nicolas; Federici, Christian; Broussard, Cédric; Chafey, Philippe; Liaudet-Coopman, Emmanuelle; Humbert, Marc; Perros, Frédéric; Mouthon, Luc

    2016-10-01

    Vascular smooth muscle cells (VSMCs) are highly specialized cells that regulate vascular tone and participate in vessel remodeling in physiological and pathological conditions. It is unclear why certain vascular pathologies involve one type of vessel and spare others. Our objective was to compare the proteomes of normal human VSMC from aorta (human aortic smooth muscle cells, HAoSMC), umbilical artery (human umbilical artery smooth muscle cells, HUASMC), pulmonary artery (HPASMC), or pulmonary artery VSMC from patients with pulmonary arterial hypertension (PAH-SMC). Proteomes of VSMC were compared by 2D DIGE and MS. Only 19 proteins were differentially expressed between HAoSMC and HPASMC while 132 and 124 were differentially expressed between HUASMC and HAoSMC or HPASMC, respectively (fold change 1.5≤ or -1.5≥, p < 0.05). As much as 336 proteins were differentially expressed between HPASMC and PAH-SMC (fold change 1.5≤ or -1.5≥, p < 0.05). HUASMC expressed increased amount of α-smooth muscle actin compared to either HPASMC or HAoSMC (although not statistically significant). In addition, PAH-SMC expressed decreased amount of smooth muscle myosin heavy chain and proliferation rate was increased compared to HPASMC thus supporting that PAH-SMC have a more synthetic phenotype. Analysis with Ingenuity identified paxillin and (embryonic lethal, abnormal vision, drosophila) like 1 (ELAVL1) as molecules linked with a lot of proteins differentially expressed between HPASMC and PAH-SMC. There was a trend toward reduced proliferation of PAH-SMC with paxillin-si-RNA and increased proliferation with ELAVL1-siRNA. Thus, VSMCs have very diverse protein content depending on their origin and this is in link with phenotypic differentiation. Paxillin targeting may be a promising treatment of PAH. ELAVL1 also participate in the regulation of PAH-SMC proliferation.

  7. Angiogenesis is induced by airway smooth muscle strain.

    Science.gov (United States)

    Hasaneen, Nadia A; Zucker, Stanley; Lin, Richard Z; Vaday, Gayle G; Panettieri, Reynold A; Foda, Hussein D

    2007-10-01

    Angiogenesis is an important feature of airway remodeling in both chronic asthma and chronic obstructive pulmonary disease (COPD). Airways in those conditions are exposed to excessive mechanical strain during periods of acute exacerbations. We recently reported that mechanical strain of human airway smooth muscle (HASM) led to an increase in their proliferation and migration. Sustained growth in airway smooth muscle in vivo requires an increase in the nutritional supply to these muscles, hence angiogenesis. In this study, we examined the hypothesis that cyclic mechanical strain of HASM produces factors promoting angiogenic events in the surrounding vascular endothelial cells. Our results show: 1) a significant increase in human lung microvascular endothelial cell (HMVEC-L) proliferation, migration, and tube formation following incubation in conditioned media (CM) from HASM cells exposed to mechanical strain; 2) mechanical strain of HASM cells induced VEGF expression and release; 3) VEGF neutralizing antibodies inhibited the proliferation, migration, and tube formations of HMVEC-L induced by the strained airway smooth muscle CM; 4) mechanical strain of HASM induced a significant increase in hypoxia-inducible factor-1alpha (HIF-1alpha) mRNA and protein, a transcription factor required for VEGF gene transcription; and 5) mechanical strain of HASM induced HIF-1alpha/VEGF through dual phosphatidylinositol 3-kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR) and ERK pathways. In conclusion, exposing HASM cells to mechanical strain induces signal transduction pathway through PI3K/Akt/mTOR and ERK pathways that lead to an increase in HIF-1alpha, a transcription factor required for VEGF expression. VEGF release by mechanical strain of HASM may contribute to the angiogenesis seen with repeated exacerbation of asthma and COPD.

  8. Dihydroartemisinin-Stimulated Hyperplasia of Rat Lung Smooth Muscles

    Directory of Open Access Journals (Sweden)

    Utoh-Nedosa U. Anastasia

    2012-01-01

    Full Text Available Problem statement: Dihydroartemisinin was shown to produce two types of inhibitory effects on the cardiac muscles of rats. It was also shown to stimulate haemopoiesis in the lungs, liver, spleen, intestine and kidney of rats. This study attempted to find out the nature of the effect of oral dihydroartemisinin on the lungs of Wistar albino rats. Approach: The effects of dihydroartemisinin on the tissues of the lungs of wistar albino rats were investigated with five doses of Dihydroartemisinin (DHA administered for 5 days by oral intubation. The five tested doses were 1 mg kg-1, a repeated dose of 1, 2, 60 and 80 mg kg-1 DHA. Results: Histopathological examination of the tissue micrographs of the lungs of the dihydroartemisinin treated rats showed that in comparism with those of the controls, DHA had no adverse effects on the tissues of the lungs of the rats but rather produced a direct stimulatory effect on the smooth muscles of the lungs. This stimulation caused hyperplasia of these tissues which was observable histologically in tissue micrographs of the lungs. These effects of dihydroartemisinin on the tissues of the lungs of Wistar albino rats were dose, repetition and time dependent. Conclusion: These growth hormone-like stimulatory effects of dihydroartemisinin on the smooth muscles of the lungs suggest that DHA enhanced the functioning capacity of the lungs of the DHA-treated rats. These results suggest that dihydroartemisinin has possible respiration enhancement effects.

  9. Mechanics of smooth muscle in isolated single microvessels.

    Science.gov (United States)

    Gore, R W; Davis, M J

    1984-01-01

    In vivo studies on frog mesenteric arterioles (4) indicate that segmental differences in the response of microvessels to physical and chemical stimuli can be explained simply in terms of the length-tension characteristics of vascular smooth muscle at different points along the vascular tree. Studies on single, isolated arterioles in vitro were initiated to examine more closely the validity of this explanation for regional response differences. This paper reports some of the results. First-, second-, and third-order arterioles (18-60 micron i.d.) were dissected from hamster cheek pouches. The vessels were cannulated with a modified Burg microperfusion system, and their mechanical properties studied using the methods described by Duling and Gore. Vessels were activated in four stages with K+ and norepinephrine. During activation, transmural pressures were adjusted to minimize vascular smooth-muscle shortening. Active pressure-diameter curves were recorded while adjusting transmural pressure through the range 5 to 400 cm H20 in 5-25 cm steps. Vessel dimensions were measured with a videomicrometer. Passive curves were obtained after equilibration overnight in Ca2+-free medium. The vessels were then fixed and prepared for histologic sectioning, and measurements of vessel-wall composition were made. The Laplace relationship was used to construct length-tension diagrams, and the histologic data were used to normalize the dimensional data to smooth-muscle lengths. Maximum active tension of second-order arterioles (1,170 dynes/cm) was two times previous values reported by Gore et al. This was due presumably to refinements in techniques and dissection procedures. Maximum active stress averaged 3.9 X 10(+6) dynes/cm2 for second-order arterioles. This number is identical to data obtained from hog carotid strips by Dillon et al.

  10. Statins meditate anti-atherosclerotic action in smooth muscle cells by peroxisome proliferator-activated receptor-γ activation

    Energy Technology Data Exchange (ETDEWEB)

    Fukuda, Kazuki [Department of Metabolic Medicine, Faculty of Life Sciences, Kumamoto University, Kumamoto (Japan); Matsumura, Takeshi, E-mail: takeshim@gpo.kumamoto-u.ac.jp [Department of Metabolic Medicine, Faculty of Life Sciences, Kumamoto University, Kumamoto (Japan); Senokuchi, Takafumi; Ishii, Norio; Kinoshita, Hiroyuki; Yamada, Sarie; Murakami, Saiko [Department of Metabolic Medicine, Faculty of Life Sciences, Kumamoto University, Kumamoto (Japan); Nakao, Saya [Department of Environmental & Symbiotic Sciences, Prefectural University of Kumamoto, Kumamoto (Japan); Motoshima, Hiroyuki; Kondo, Tatsuya; Kukidome, Daisuke; Kawasaki, Shuji [Department of Metabolic Medicine, Faculty of Life Sciences, Kumamoto University, Kumamoto (Japan); Kawada, Teruo [Laboratory of Nutrition Chemistry, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kyoto (Japan); Nishikawa, Takeshi; Araki, Eiichi [Department of Metabolic Medicine, Faculty of Life Sciences, Kumamoto University, Kumamoto (Japan)

    2015-01-30

    Highlights: • Statins induce PPARγ activation in vascular smooth muscle cells. • Statin-induced PPARγ activation is mediated by COX-2 expression. • Statins suppress cell migration and proliferation in vascular smooth muscle cells. • Statins inhibit LPS-induced inflammatory responses by PPARγ activation. • Fluvastatin suppress the progression of atherosclerosis and induces PPARγ activation in the aorta of apoE-deficient mice. - Abstract: The peroxisome proliferator-activated receptor-γ (PPARγ) is an important regulator of lipid and glucose metabolism, and its activation is reported to suppress the progression of atherosclerosis. We have reported that 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors (statins) activate PPARγ in macrophages. However, it is not yet known whether statins activate PPARγ in other vascular cells. In the present study, we investigated whether statins activate PPARγ in smooth muscle cells (SMCs) and endothelial cells (ECs) and thus mediate anti-atherosclerotic effects. Human aortic SMCs (HASMCs) and human umbilical vein ECs (HUVECs) were used in this study. Fluvastatin and pitavastatin activated PPARγ in HASMCs, but not in HUVECs. Statins induced cyclooxygenase-2 (COX-2) expression in HASMCs, but not in HUVECs. Moreover, treatment with COX-2-siRNA abrogated statin-mediated PPARγ activation in HASMCs. Statins suppressed migration and proliferation of HASMCs, and inhibited lipopolysaccharide-induced expression of monocyte chemoattractant protein-1 (MCP-1) and tumor necrosis factor-α (TNF-α) in HASMCs. These effects of statins were abrogated by treatment with PPARγ-siRNA. Treatment with statins suppressed atherosclerotic lesion formation in Apoe{sup −/−} mice. In addition, transcriptional activity of PPARγ and CD36 expression were increased, and the expression of MCP-1 and TNF-α was decreased, in the aorta of statin-treated Apoe{sup −/−} mice. In conclusion, statins mediate anti-atherogenic effects

  11. Troponin T3 expression in skeletal and smooth muscle is required for growth and postnatal survival: characterization of Tnnt3(tm2a(KOMP)Wtsi) mice.

    Science.gov (United States)

    Ju, Yawen; Li, Jie; Xie, Chao; Ritchlin, Christopher T; Xing, Lianping; Hilton, Matthew J; Schwarz, Edward M

    2013-09-01

    The troponin complex, which consists of three regulatory proteins (troponin C, troponin I, and troponin T), is known to regulate muscle contraction in skeletal and cardiac muscle, but its role in smooth muscle remains controversial. Troponin T3 (TnnT3) is a fast skeletal muscle troponin believed to be expressed only in skeletal muscle cells. To determine the in vivo function and tissue-specific expression of Tnnt3, we obtained the heterozygous Tnnt3+/flox/lacZ mice from Knockout Mouse Project (KOMP) Repository. Tnnt3(lacZ/+) mice are smaller than their WT littermates throughout development but do not display any gross phenotypes. Tnnt3(lacZ/lacZ) embryos are smaller than heterozygotes and die shortly after birth. Histology revealed hemorrhagic tissue in Tnnt3(lacZ/lacZ) liver and kidney, which was not present in Tnnt3(lacZ/+) or WT, but no other gross tissue abnormalities. X-gal staining for Tnnt3 promoter-driven lacZ transgene expression revealed positive staining in skeletal muscle and diaphragm and smooth muscle cells located in the aorta, bladder, and bronchus. Collectively, these findings suggest that troponins are expressed in smooth muscle and are required for normal growth and breathing for postnatal survival. Moreover, future studies with this mouse model can explore TnnT3 function in adult muscle function using the conditional-inducible gene deletion approach

  12. Multiple congenital familial smooth muscle hamartoma in two siblings.

    Science.gov (United States)

    García-Gavín, Juan; Pérez-Pérez, Lidia; Allegue, Francisco; Pérez-Pedrosa, Alberto; Ortíz-Rey, Jose Antonio; Zulaica, Ander

    2012-05-15

    Smooth muscle hamartoma (SMH) is a cutaneous malformation mainly composed of a disorganized proliferation of normal muscle fibers that arise from arrector pili. It usually presents as a single congenital lesion that frequently involves the back and the lower limbs. Unusual clinical presentations, such as atypical localizations, multiple disseminated lesions, and generalized forms have been rarely described. In 2001, Gualandri et al. reported the presence of multiple SMH in three members of the same family, namely two brothers and their mother. This is, as far as we know, the only familial case reported in the English literature. We herein describe a similar case affecting two siblings who presented with identical congenital lesions in the same location.

  13. Pharmacological characterisation of the smooth muscle antispasmodic agent tiropramide.

    Science.gov (United States)

    Setnikar, I; Cereda, R; Pacini, M A; Revel, L; Makovec, F

    1989-09-01

    (+/-) Tiropramide hydrochloride, its D and L optical isomers and some of its metabolites were characterized in a number of in vitro pharmacological tests. Tiropramide showed broad spectrum antispasmodic activities on the isolated stomach of guinea pig electrically stimulated; on the longitudinal muscles of the ileum of guinea pig stimulated by electrical impulses, BaCl2, acetylcholine, histamine, serotonin, substance P and cholecystokinin octapeptide (CCK-8); on the spontaneous contractions and on the electrical inhibition of the jejunum of rabbit; on the spontaneous contractions and on the contractions provoked by BaCl2 and acetylcholine of the ascending colon of the rat; on the contractions provoked by BaCl2, acetylcholine, histamine and cerulein of the circular muscles of the gall bladder of the guinea pig; on the spontaneous contractions of the pyel-ureter preparation of the guinea pig; on the contractions of the uterus of the rat provoked by oxitocin, serotonin, acetylcholine, PGF2; on the spontaneous contraction of the portal vein of the rat; on the constriction of the tail artery of the rat provoked by electrical stimulation, epinephrine and ergotamine; on the contractions of the aortic strip of the rabbit stimulated by norepinephrine; on the contractions of the strip of bovine coronary artery depolarized by HCl. In general tiropramide had antispasmodic effect at 5-60 mumol/l concentration. It was more potent than papaverine on contractions provoked by electrical or chemical stimuli, and was less potent or ineffective on spontaneous and "physiological" contractions of the different smooth muscle preparations. Tiropramide had small effects on vascular smooth muscles and showed very small calcium channel blocking activity.

  14. Novel treatment strategies for smooth muscle disorders: Targeting Kv7 potassium channels.

    Science.gov (United States)

    Haick, Jennifer M; Byron, Kenneth L

    2016-09-01

    Smooth muscle cells provide crucial contractile functions in visceral, vascular, and lung tissues. The contractile state of smooth muscle is largely determined by their electrical excitability, which is in turn influenced by the activity of potassium channels. The activity of potassium channels sustains smooth muscle cell membrane hyperpolarization, reducing cellular excitability and thereby promoting smooth muscle relaxation. Research over the past decade has indicated an important role for Kv7 (KCNQ) voltage-gated potassium channels in the regulation of the excitability of smooth muscle cells. Expression of multiple Kv7 channel subtypes has been demonstrated in smooth muscle cells from viscera (gastrointestinal, bladder, myometrial), from the systemic and pulmonary vasculature, and from the airways of the lung, from multiple species, including humans. A number of clinically used drugs, some of which were developed to target Kv7 channels in other tissues, have been found to exert robust effects on smooth muscle Kv7 channels. Functional studies have indicated that Kv7 channel activators and inhibitors have the ability to relax and contact smooth muscle preparations, respectively, suggesting a wide range of novel applications for the pharmacological tool set. This review summarizes recent findings regarding the physiological functions of Kv7 channels in smooth muscle, and highlights potential therapeutic applications based on pharmacological targeting of smooth muscle Kv7 channels throughout the body.

  15. Differentiation defect in neural crest-derived smooth muscle cells in patients with aortopathy associated with bicuspid aortic valves.

    Science.gov (United States)

    Jiao, Jiao; Xiong, Wei; Wang, Lunchang; Yang, Jiong; Qiu, Ping; Hirai, Hiroyuki; Shao, Lina; Milewicz, Dianna; Chen, Y Eugene; Yang, Bo

    2016-08-01

    Individuals with bicuspid aortic valves (BAV) are at a higher risk of developing thoracic aortic aneurysms (TAA) than patients with trileaflet aortic valves (TAV). The aneurysms associated with BAV most commonly involve the ascending aorta and spare the descending aorta. Smooth muscle cells (SMCs) in the ascending and descending aorta arise from neural crest (NC) and paraxial mesoderm (PM), respectively. We hypothesized defective differentiation of the neural crest stem cells (NCSCs)-derived SMCs but not paraxial mesoderm cells (PMCs)-derived SMCs contributes to the aortopathy associated with BAV. When induced pluripotent stem cells (iPSCs) from BAV/TAA patients were differentiated into NCSC-derived SMCs, these cells demonstrated significantly decreased expression of marker of SMC differentiation (MYH11) and impaired contraction compared to normal control. In contrast, the PMC-derived SMCs were similar to control cells in these aspects. The NCSC-SMCs from the BAV/TAA also showed decreased TGF-β signaling based on phosphorylation of SMAD2, and increased mTOR signaling. Inhibition of mTOR pathway using rapamycin rescued the aberrant differentiation. Our data demonstrates that decreased differentiation and contraction of patient's NCSC-derived SMCs may contribute to that aortopathy associated with BAV.

  16. Differentiation defect in neural crest-derived smooth muscle cells in patients with aortopathy associated with bicuspid aortic valves

    Directory of Open Access Journals (Sweden)

    Jiao Jiao

    2016-08-01

    Full Text Available Individuals with bicuspid aortic valves (BAV are at a higher risk of developing thoracic aortic aneurysms (TAA than patients with trileaflet aortic valves (TAV. The aneurysms associated with BAV most commonly involve the ascending aorta and spare the descending aorta. Smooth muscle cells (SMCs in the ascending and descending aorta arise from neural crest (NC and paraxial mesoderm (PM, respectively. We hypothesized defective differentiation of the neural crest stem cells (NCSCs-derived SMCs but not paraxial mesoderm cells (PMCs-derived SMCs contributes to the aortopathy associated with BAV. When induced pluripotent stem cells (iPSCs from BAV/TAA patients were differentiated into NCSC-derived SMCs, these cells demonstrated significantly decreased expression of marker of SMC differentiation (MYH11 and impaired contraction compared to normal control. In contrast, the PMC-derived SMCs were similar to control cells in these aspects. The NCSC-SMCs from the BAV/TAA also showed decreased TGF-β signaling based on phosphorylation of SMAD2, and increased mTOR signaling. Inhibition of mTOR pathway using rapamycin rescued the aberrant differentiation. Our data demonstrates that decreased differentiation and contraction of patient's NCSC-derived SMCs may contribute to that aortopathy associated with BAV.

  17. Generation and Characterization of Vascular Smooth Muscle Cell Lines Derived from a Patient with a Bicuspid Aortic Valve

    Directory of Open Access Journals (Sweden)

    Pamela Lazar-Karsten

    2016-04-01

    Full Text Available Thoracic aortic dilation is the most common malformation of the proximal aorta and is responsible for 1%–2% of all deaths in industrialized countries. In approximately 50% of patients with a bicuspid aortic valve (BAV, dilation of any or all segments of the aorta occurs. BAV patients with aortic dilation show an increased incidence of cultured vascular smooth muscle cell (VSMC loss. In this study, VSMC, isolated from the ascending aorta of BAV, was treated with Simian virus 40 to generate a BAV-originated VSMC cell line. To exclude any genomic DNA or cross-contamination, highly polymorphic short tandem repeats of the cells were profiled. The cells were then characterized using flow cytometry and karyotyping. The WG-59 cell line created is the first reported VSMC cell line isolated from a BAV patient. Using an RT2 Profiler PCR Array, genes within the TGFβ/BMP family that are dependent on losartan treatment were identified. Endoglin was found to be among the regulated genes and was downregulated in WG-59 cells following treatment with different losartan concentrations, when compared to untreated WG-59 cells.

  18. [Biomechanics and bio-energetics of smooth muscle contraction. Relation to bronchial hyperreactivity].

    Science.gov (United States)

    Coirault, C; Blanc, F X; Chemla, D; Salmeron, S; Lecarpentier, Y

    2000-06-01

    Mechanical studies of isolated muscle and analysis of molecular actomyosin interactions have improved our understanding of the pathophysiology of airway smooth muscle. Mechanical properties of airway smooth muscle are similar to those of other smooth muscles. Airway smooth muscle exhibits spontaneous intrinsic tone and its maximum shortening velocity (Vmax) is 10-30 fold lower than in striated muscle. Smooth muscle myosin generates step size and elementary force per crossbridge interaction approximately similar to those of skeletal muscle myosin. Special slow cycling crossbridges, termed latch-bridges, have been attributed to myosin light chain dephosphorylation. From a mechanical point of view, it has been shown that airway hyperresponsiveness is characterized by an increased Vmax and an increased shortening capacity, with no significant change in the force-generating capacity.

  19. Cell length measurements in longitudinal smooth muscle strips of the pig urinary bladder

    NARCIS (Netherlands)

    E. van Asselt (Els); R. Schot; R. van Mastrigt (Ron)

    1993-01-01

    textabstractIn this study the length of smooth muscle cells in muscle bundles of pig urinary bladder wall was determined after dissection in Tyrode buffers with different calcium concentrations ([Ca2+]). Previous studies have shown that the length of isolated smooth muscle cells decreases with an in

  20. Activated mineralocorticoid receptor regulates micro-RNA-29b in vascular smooth muscle cells.

    Science.gov (United States)

    Bretschneider, Maria; Busch, Bianca; Mueller, Daniel; Nolze, Alexander; Schreier, Barbara; Gekle, Michael; Grossmann, Claudia

    2016-04-01

    Inappropriately activated mineralocorticoid receptor (MR) is a risk factor for vascular remodeling with unclear molecular mechanism. Recent findings suggest that post-transcriptional regulation by micro-RNAs (miRs) may be involved. Our aim was to search for MR-dependent miRs in vascular smooth muscle cells (VSMCs) and to explore the underlying molecular mechanism and the pathologic relevance. We detected that aldosteroneviathe MR reduces miR-29bin vivoin murine aorta and in human primary and cultured VSMCs (ED50= 0.07 nM) but not in endothelial cells [quantitative PCR (qPCR), luciferase assays]. This effect was mediated by an increased decay of miR-29b in the cytoplasm with unchanged miR-29 family member or primary-miR levels. Decreased miR-29b led to an increase in extracellular matrix measured by ELISA and qPCR and enhanced VSMC migration in single cell-tracking experiments. Additionally, cell proliferation and the apoptosis/necrosis ratio (caspase/lactate dehydrogenase assay) was modulated by miR-29b. Enhanced VSMC migration by aldosterone required miR-29b regulation. Control experiments were performed with scrambled RNA and empty plasmids, by comparing aldosterone-stimulated with vehicle-incubated cells. Overall, our findings provide novel insights into the molecular mechanism of aldosterone-mediated vascular pathogenesis by identifying miR-29b as a pathophysiologic relevant target of activated MR in VSMCs and by highlighting the importance of miR processing for miR regulation.-Bretschneider, M., Busch, B., Mueller, D., Nolze, A., Schreier, B., Gekle, M., Grossmann, C. Activated mineralocorticoid receptor regulates micro-RNA-29b in vascular smooth muscle cells.

  1. Biophysical induction of vascular smooth muscle cell podosomes.

    Directory of Open Access Journals (Sweden)

    Na Young Kim

    Full Text Available Vascular smooth muscle cell (VSMC migration and matrix degradation occurs with intimal hyperplasia associated with atherosclerosis, vascular injury, and restenosis. One proposed mechanism by which VSMCs degrade matrix is through the use of podosomes, transient actin-based structures that are thought to play a role in extracellular matrix degradation by creating localized sites of matrix metalloproteinase (MMP secretion. To date, podosomes in VSMCs have largely been studied by stimulating cells with phorbol esters, such as phorbol 12,13-dibutyrate (PDBu, however little is known about the physiological cues that drive podosome formation. We present the first evidence that physiological, physical stimuli mimicking cues present within the microenvironment of diseased arteries can induce podosome formation in VSMCs. Both microtopographical cues and imposed pressure mimicking stage II hypertension induce podosome formation in A7R5 rat aortic smooth muscle cells. Moreover, wounding using a scratch assay induces podosomes at the leading edge of VSMCs. Notably the effect of each of these biophysical stimuli on podosome stimulation can be inhibited using a Src inhibitor. Together, these data indicate that physical cues can induce podosome formation in VSMCs.

  2. MURC deficiency in smooth muscle attenuates pulmonary hypertension

    Science.gov (United States)

    Nakanishi, Naohiko; Ogata, Takehiro; Naito, Daisuke; Miyagawa, Kotaro; Taniguchi, Takuya; Hamaoka, Tetsuro; Maruyama, Naoki; Kasahara, Takeru; Nishi, Masahiro; Matoba, Satoaki; Ueyama, Tomomi

    2016-01-01

    Emerging evidence suggests that caveolin-1 (Cav1) is associated with pulmonary arterial hypertension. MURC (also called Cavin-4) is a member of the cavin family, which regulates caveolar formation and functions together with caveolins. Here, we show that hypoxia increased Murc mRNA expression in the mouse lung, and that Murc-null mice exhibited attenuation of hypoxia-induced pulmonary hypertension (PH) accompanied by reduced ROCK activity in the lung. Conditional knockout mice lacking Murc in smooth muscle also resist hypoxia-induced PH. MURC regulates the proliferation and migration of pulmonary artery smooth muscle cells (PASMCs) through Rho/ROCK signalling. Cav1 suppresses RhoA activity in PASMCs, which is reversed by MURC. MURC binds to Cav1 and inhibits the association of Cav1 with the active form of Gα13, resulting in the facilitated association of the active form of Gα13 with p115RhoGEF. These results reveal that MURC has a function in the development of PH through modulating Rho/ROCK signalling. PMID:27546070

  3. Smooth muscle archvillin is an ERK scaffolding protein.

    Science.gov (United States)

    Gangopadhyay, Samudra S; Kengni, Edouard; Appel, Sarah; Gallant, Cynthia; Kim, Hak Rim; Leavis, Paul; DeGnore, Jon; Morgan, Kathleen G

    2009-06-26

    ERK influences a number of pathways in all cells, but how ERK activities are segregated between different pathways has not been entirely clear. Using immunoprecipitation and pulldown experiments with domain-specific recombinant fragments, we show that smooth muscle archvillin (SmAV) binds ERK and members of the ERK signaling cascade in a domain-specific, stimulus-dependent, and pathway-specific manner. MEK binds specifically to the first 445 residues of SmAV. B-Raf, an upstream regulator of MEK, constitutively interacts with residues 1-445 and 446-1250. Both ERK and 14-3-3 bind to both fragments, but in a stimulus-specific manner. Phosphorylated ERK is associated only with residues 1-445. An ERK phosphorylation site was determined by mass spectrometry to reside at Ser132. A phospho-antibody raised to this site shows that the site is phosphorylated during alpha-agonist-mediated ERK activation in smooth muscle tissue. Phosphorylation of SmAV by ERK decreases the association of phospho-ERK with SmAV. These results, combined with previous observations, indicate that SmAV serves as a new ERK scaffolding protein and provide a mechanism for regulation of ERK binding, activation, and release from the signaling complex.

  4. Effects of lubiprostone on human uterine smooth muscle cells.

    Science.gov (United States)

    Cuppoletti, John; Malinowska, Danuta H; Chakrabarti, Jayati; Ueno, Ryuji

    2008-06-01

    Lubiprostone, a bicyclic fatty acid derivative and member of a new class of compounds called prostones, locally activates ClC-2 Cl(-) channels without activation of prostaglandin receptors. The present study was specifically designed to test and compare lubiprostone and prostaglandin effects at the cellular level using human uterine smooth muscle cells. Effects on [Ca(2+)](i), membrane potential and [cAMP](i) in human uterine smooth muscle cells were measured. 10 nM lubiprostone significantly decreased [Ca(2+)](i) from 188 to 27 nM, which was unaffected by 100 nM SC-51322, a prostaglandin EP receptor antagonist. In contrast 10nM PGE(2) and PGE(1) both increased [Ca(2+)](i) 3-5-fold which was blocked by SC-51322. Similarly, lubiprostone and prostaglandins had opposite/different effects on membrane potential and [cAMP](i). Lubiprostone caused SC-51322-insensitive membrane hyperpolarization and no effect on [cAMP](i). PGE(2) and PGE(1) both caused SC-51322-sensitive membrane depolarization and increased [cAMP](i). Lubiprostone has fundamentally different cellular effects from prostaglandins that are not mediated by EP receptors.

  5. Microintegrating smooth muscle cells into a biodegradable, elastomeric fiber matrix.

    Science.gov (United States)

    Stankus, John J; Guan, Jianjun; Fujimoto, Kazuro; Wagner, William R

    2006-02-01

    Electrospinning permits fabrication of biodegradable elastomers into matrices that can resemble the scale and mechanical behavior of the native extracellular matrix. However, achieving high-cellular density and infiltration with this technique remains challenging and time consuming. We have overcome this limitation by electrospraying vascular smooth muscle cells (SMCs) concurrently with electrospinning a biodegradable, elastomeric poly(ester urethane)urea (PEUU). Trypan blue staining revealed no significant decrease in cell viability from the fabrication process and electrosprayed SMCs spread and proliferated similar to control unprocessed SMCs. The resulting SMC microintegrated PEUU constructs were cultured under static conditions or transmural perfusion. Higher cell numbers resulted with perfusion culture with 131% and 98% more viable cells versus static culture at days 4 and 7 (pfibers after perfusion culture. SMC microintegrated PEUU was strong, flexible and anisotropic with tensile strengths ranging from 2.0 to 6.5 MPa and breaking strains from 850 to 1,700% dependent on the material axis. The ability to microintegrate smooth muscle or other cell types into a biodegradable elastomer fiber matrix embodies a novel tissue engineering approach that could be applied to fabricate high cell density elastic tissue mimetics, blood vessels or other cardiovascular tissues.

  6. Defining an olfactory receptor function in airway smooth muscle cells

    Science.gov (United States)

    Aisenberg, William H.; Huang, Jessie; Zhu, Wanqu; Rajkumar, Premraj; Cruz, Randy; Santhanam, Lakshmi; Natarajan, Niranjana; Yong, Hwan Mee; De Santiago, Breann; Oh, Jung Jin; Yoon, A-Rum; Panettieri, Reynold A.; Homann, Oliver; Sullivan, John K.; Liggett, Stephen B.; Pluznick, Jennifer L.; An, Steven S.

    2016-01-01

    Pathways that control, or can be exploited to alter, the increase in airway smooth muscle (ASM) mass and cellular remodeling that occur in asthma are not well defined. Here we report the expression of odorant receptors (ORs) belonging to the superfamily of G-protein coupled receptors (GPCRs), as well as the canonical olfaction machinery (Golf and AC3) in the smooth muscle of human bronchi. In primary cultures of isolated human ASM, we identified mRNA expression for multiple ORs. Strikingly, OR51E2 was the most highly enriched OR transcript mapped to the human olfactome in lung-resident cells. In a heterologous expression system, OR51E2 trafficked readily to the cell surface and showed ligand selectivity and sensitivity to the short chain fatty acids (SCFAs) acetate and propionate. These endogenous metabolic byproducts of the gut microbiota slowed the rate of cytoskeletal remodeling, as well as the proliferation of human ASM cells. These cellular responses in vitro were found in ASM from non-asthmatics and asthmatics, and were absent in OR51E2-deleted primary human ASM. These results demonstrate a novel chemo-mechanical signaling network in the ASM and serve as a proof-of-concept that a specific receptor of the gut-lung axis can be targeted to treat airflow obstruction in asthma. PMID:27905542

  7. MicroRNAs dynamically remodel gastrointestinal smooth muscle cells.

    Directory of Open Access Journals (Sweden)

    Chanjae Park

    Full Text Available Smooth muscle cells (SMCs express a unique set of microRNAs (miRNAs which regulate and maintain the differentiation state of SMCs. The goal of this study was to investigate the role of miRNAs during the development of gastrointestinal (GI SMCs in a transgenic animal model. We generated SMC-specific Dicer null animals that express the reporter, green fluorescence protein, in a SMC-specific manner. SMC-specific knockout of Dicer prevented SMC miRNA biogenesis, causing dramatic changes in phenotype, function, and global gene expression in SMCs: the mutant mice developed severe dilation of the intestinal tract associated with the thinning and destruction of the smooth muscle (SM layers; contractile motility in the mutant intestine was dramatically decreased; and SM contractile genes and transcriptional regulators were extensively down-regulated in the mutant SMCs. Profiling and bioinformatic analyses showed that SMC phenotype is regulated by a complex network of positive and negative feedback by SMC miRNAs, serum response factor (SRF, and other transcriptional factors. Taken together, our data suggest that SMC miRNAs are required for the development and survival of SMCs in the GI tract.

  8. The Inhibitory Effect of Astilbin on the Arteriosclerosis of Murine Thoracic Aorta Transplant

    Institute of Scientific and Technical Information of China (English)

    Jinping ZHAO; Ping LI; Yunfeng ZHANG; Xianguo WANG; Qilin AO; Sihai GAO

    2009-01-01

    The inhibitory effect of astilbin on transplant arteriosclerosis in murine model of thoracic aorta transplantation was examined.Model of rat thoracic aorta transplantation was established.Ninety rats were divided into three groups.In isograft group,the thoracic aorta of Brown Norway (BN) rat was anastomosed with the abdominal aorta of another BN rat.In allograft group,the thoracic aorta of BN rat was anastomosed with the abdominal aorta of Lewis rat.In astilbin group,the rats receiving allo-transplantation were given astiibin 5 mg/kg per day for a time of 28 days.The donor thoracic aorta and the recipient abdominal aorta were anastomosed by means of a polyethylene cannula (inner diameter:1.5 mm,length:3 mm length).The grafts were histologically examined for structural changes.The areas of arterial lumen and endatrium were calculated.Our results showed that,in the allograft group,28 days after aliografting,conspicuous proliferation of smooth muscles and infiltration with a great number of inflammatory cells were found in the tunica intima and tunica media.Astilbin significantly inhibited the proliferation of smooth muscles and ameliorated the infiltration of inflammatory cells thereyby prevent against the development of transplant arteriosclerosis.It is concluded that asltilbin can effectively prevent the development of arteriosclerosis in allotrausplant by inhibiting the proliferation of smooth muscles and inhibit the proliferation of smooth muscles in tunica of intima and media and reducing infiltration of the inflammatory cells.

  9. MicroRNA-34a Induces Vascular Smooth Muscle Cells Senescence by SIRT1 Downregulation and Promotes the Expression of Age-Associated Pro-inflammatory Secretory Factors.

    Science.gov (United States)

    Badi, Ileana; Burba, Ilaria; Ruggeri, Clarissa; Zeni, Filippo; Bertolotti, Matteo; Scopece, Alessandro; Pompilio, Giulio; Raucci, Angela

    2015-11-01

    Arterial aging is a major risk factor for the occurrence of cardiovascular diseases. The aged artery is characterized by endothelial dysfunction and vascular smooth muscle cells altered physiology together with low-grade chronic inflammation. MicroRNA-34a (miR-34a) has been recently implicated in cardiac, endothelial, and endothelial progenitor cell senescence; however, its contribution to aging-associated vascular smooth muscle cells phenotype has not been explored so far. We found that miR-34a was highly expressed in aortas isolated from old mice. Moreover, its well-known target, the longevity-associated protein SIRT1, was significantly downregulated during aging in both endothelial cells and vascular smooth muscle cells. Increased miR-34a as well as decreased SIRT1 expression was also observed in replicative-senescent human aortic smooth muscle cells. miR-34a overexpression in proliferative human aortic smooth muscle cells caused cell cycle arrest along with enhanced p21 protein levels and evidence of cell senescence. Furthermore, miR-34a ectopic expression induced pro-inflammatory senescence-associated secretory phenotype molecules. Finally, SIRT1 protein significantly decreased upon miR-34a overexpression and restoration of its levels rescued miR-34a-dependent human aortic smooth muscle cells senescence, but not senescence-associated secretory phenotype factors upregulation. Taken together, our findings suggest that aging-associated increase of miR-34a expression levels, by promoting vascular smooth muscle cells senescence and inflammation through SIRT1 downregulation and senescence-associated secretory phenotype factors induction, respectively, may lead to arterial dysfunctions.

  10. Fibronectin matrix polymerization regulates smooth muscle cell phenotype through a Rac1 dependent mechanism.

    Directory of Open Access Journals (Sweden)

    Feng Shi

    Full Text Available Smooth muscle cells are maintained in a differentiated state in the vessel wall, but can be modulated to a synthetic phenotype following injury. Smooth muscle phenotypic modulation is thought to play an important role in the pathology of vascular occlusive diseases. Phenotypically modulated smooth muscle cells exhibit increased proliferative and migratory properties that accompany the downregulation of smooth muscle cell marker proteins. Extracellular matrix proteins, including fibronectin, can regulate the smooth muscle phenotype when used as adhesive substrates. However, cells produce and organize a 3-dimensional fibrillar extracellular matrix, which can affect cell behavior in distinct ways from the protomeric 2-dimensional matrix proteins that are used as adhesive substrates. We previously showed that the deposition/polymerization of fibronectin into the extracellular matrix can regulate the deposition and organization of other extracellular matrix molecules in vitro. Further, our published data show that the presence of a fibronectin polymerization inhibitor results in increased expression of smooth muscle cell differentiation proteins and inhibits vascular remodeling in vivo. In this manuscript, we used an in vitro cell culture system to determine the mechanism by which fibronectin polymerization affects smooth muscle phenotypic modulation. Our data show that fibronectin polymerization decreases the mRNA levels of multiple smooth muscle differentiation genes, and downregulates the levels of smooth muscle α-actin and calponin proteins by a Rac1-dependent mechanism. The expression of smooth muscle genes is transcriptionally regulated by fibronectin polymerization, as evidenced by the increased activity of luciferase reporter constructs in the presence of a fibronectin polymerization inhibitor. Fibronectin polymerization also promotes smooth muscle cell growth, and decreases the levels of actin stress fibers. These data define a Rac1

  11. Smooth Muscle Hgs Deficiency Leads to Impaired Esophageal Motility

    Science.gov (United States)

    Chen, Jicheng; Hou, Ning; Zhang, Chong; Teng, Yan; Cheng, Xuan; Li, Zhenhua; Ren, Jie; Zeng, Jian; Li, Rui; Wang, Wei; Yang, Xiao; Lan, Yu

    2015-01-01

    As a master component of endosomal sorting complex required for transport proteins, hepatocyte growth factor-regulated tyrosine kinase substrate (Hgs) participates multiple cellular behaviors. However, the physiological role of Hgs in smooth muscle cells (SMCs) is by far unknown. Here we explored the in vivo function of Hgs in SMCs by using a conditional gene knockout strategy. Hgs deficiency in SMCs uniquely led to a progressive dilatation of esophagus with a remarkable thinning muscle layer. Of note, the mutant esophagus showed a decreased contractile responsiveness to potassium chloride and acetylcholine stimulation. Furthermore, an increase in the inhibitory neurites along with an intense infiltration of T lymphocytes in the mucosa and muscle layer were observed. Consistently, Hgs deficiency in SMCs resulted in a disturbed expression of a set of genes involved in neurotrophin and inflammation, suggesting that defective SMC might be a novel source for excessive production of cytokines and chemokines which may trigger the neuronal dysplasia and ultimately contribute to the compromised esophageal motility. The data suggest potential implications in the pathogenesis of related diseases such as gastroesophageal reflux disease. PMID:26078721

  12. Whole-cell recordings of calcium and potassium currents in acutely isolated smooth muscle cells

    Institute of Scientific and Technical Information of China (English)

    Qing Cai; Zhong-Liang Zhu; Xiao-Li Fan

    2006-01-01

    AIM: To record calcium and potassium currents in acutely isolated smooth muscle cells of mesenteric arterial branches in rats.METHODS: Smooth muscle cells were freshly isolated by collagenase digest and mechanical trituration with polished pipettes. Patch clamp technique in whole-cell mode was employed to record calcium and potassium currents.RESULTS: The procedure dissociated smooth muscle cells without impairing the electrophysiological characteristics of the cells. The voltage-gated Ca2+ and potassium currents were successfully recorded using whole-cell patch clamp configuration.CONCLUSION: The method dissociates smooth muscle cells from rat mesenteric arterial branches. Voltage-gated channel currents can be recorded in this preparation.

  13. Membrane Currents in Airway Smooth Muscle: Mechanisms and Therapeutic Implications

    Directory of Open Access Journals (Sweden)

    Luke J Janssen

    1997-01-01

    Full Text Available Electrophysiological and pharmacological techniques were used to characterize the membrane conductance changes underlying spasmogen-evoked depolarization in airway smooth muscle (ASM. Changes included a transient activation of chloride ion channels and prolonged suppression of potassium ion channels; both changes are triggered by release of internally sequestered calcium ion and in turn cause opening of voltage-dependent calcium channels. The resultant influx of calcium ions contributes to contraction as well as to refilling of the internal calcium ion pool. Bronchodilators, on the other hand, act in part through activation of potassium channels, with consequent closure of calcium channels. The tools used to study ion channels in ASM are described, and the investigations of the roles of ion channels in ASM physiology (autacoid-evoked depolarization and hyperpolarization and pathophysiology (airway hyperresponsiveness are summarized. Finally, how the relationship between ion channels and ASM function/dysfunction may relate to the treatment of asthma and related breathing disorders is discussed.

  14. Vascular smooth muscle cell apoptosis promotes transplant arteriosclerosis through inducing the production of SDF-1α.

    Science.gov (United States)

    Li, J; Liu, S; Li, W; Hu, S; Xiong, J; Shu, X; Hu, Q; Zheng, Q; Song, Z

    2012-08-01

    Transplant arteriosclerosis is a leading cause of late allograft loss. Medial smooth muscle cell (SMC) apoptosis is considered to be an important event in transplant arteriosclerosis. However, the precise contribution of medial SMC apoptosis to transplant arteriosclerosis and the underlying mechanisms remain unclear. We transferred wild-type p53 to induce apoptosis of cultured SMCs. We found that apoptosis induces the production of SDF-1α from apoptotic and neighboring viable cells, resulting in increased SDF-1α in the culture media. Conditioned media from Ltv-p53-transferred SMCs activated PI3K/Akt/mTOR and MAPK/Erk signaling in a SDF-1α-dependent manner and thereby promoted mesenchymal stem cell (MSC) migration and proliferation. In a rat aorta transplantation model, lentivirus-mediated BclxL transfer selectively inhibits medial SMC apoptosis in aortic allografts, resulting in a remarkable decrease of SDF-1α both in allograft media and in blood plasma, associated with diminished recruitment of CD90(+)CD105(+) double-positive cells and impaired neointimal formation. Systemic administration of rapamycin or PD98059 also attenuated MSC recruitment and neointimal formation in the aortic allografts. These results suggest that medial SMC apoptosis is critical for the development of transplant arteriosclerosis through inducing SDF-1α production and that MSC recruitment represents a major component of vascular remodeling, constituting a relevant target and mechanism for therapeutic interventions.

  15. The classical competitive antagonism of phentolamine on smooth muscle preparations, investigated by two procedures.

    Science.gov (United States)

    Patil, P N

    2007-01-01

    1. In isolated smooth muscle tissues taken from rats, rabbits and guinea-pigs, all at 37.5 degrees C, the equilibrium dissociation constant (K(beta)) of the competitive, reversible alpha-adrenoceptor antagonist phentolamine varied between 4 and 28 nm. 2. The concentration of the antagonist required to inhibit contractions to direct- or indirect-acting alpha-adrenenoceptor agonists by 50% (IC50) also varied between 5 and 30 nm. 3. From one tissue to another, the IC50/K(beta) ratio of the blocker varied from 1 to 2.5, the values being close to those predicted by classical receptor theory based on the law of mass action. 4. At 27.5 degrees C, using phenylephrine as the spasmogen in rat aorta, the IC50/K(beta) ratio for phentolamine was 3.1. 5. A significantly higher IC50 compared with K(beta) for phentolamine indicates that the procedures for estimating affinity constants for a competitive antagonist are not equivalent.

  16. Mechanical Anisotropy of Rat Aortic Smooth Muscle Cells Decreases with Their Contraction

    Science.gov (United States)

    Nagayama, Kazuaki; Matsumoto, Takeo

    Tensile properties of smooth muscle cells freshly isolated from rat thoracic aortas (FSMCs) in their major and minor axes were measured using a laboratory-made micro tensile tester. The relationship between the tension applied to a cell and its elongation was obtained in untreated cells and those treated with 10-5M serotonin to induce contraction. An initial stiffness of untreated FSMCs, normalized by their initial cross-sectional area perpendicular to the stretch direction, was significantly higher in the major axis (14.8±4.3kPa, mean±SEM, n=5) than the minor axis (2.8±1.0kPa, n=5). The stiffness increased significantly in response to the contraction, but the increase was much higher in the minor axis (59.0±9.4kPa, n=4) than in the major (88.1±13.3kPa, n=4). The difference between the two directions was insignificant in the contracted state. Observations of the morphology of actin filaments with a confocal laser scanning microscope in untreated FSMCs revealed that they were long fibers running almost parallel to the major axis, while those in contracted cells showed an aggregated structure without a preferential direction. These results may indicate that anisotropy in untreated FSMCs is caused by the anisotropic alignment of their actin filaments, and that such anisotropy disappears in response to actin filament reorganization caused by the contraction.

  17. Increased expression of osteoprotegerin in vascular smooth muscle cells from spontaneously hypertensive rats

    Institute of Scientific and Technical Information of China (English)

    Yongshan MOU; Tianhua LEI; Luning ZHAO; Xiaojun ZHU; Mingui FU; Yuqing E CHEN

    2004-01-01

    Background Osteoprotegerin (OPG) is a secreted protein of the tumor necrosis factor receptor family, which regulates bone mass by inhibiting osteoclast differentiation and activation. Although OPG is expressed ubiquitously and abundantly in many tissues and cell types including vascular cells, the role of OPG in other tissues is unknown.Our previous studies demonstrated that OPG was highly expressed in vascular smooth muscle cells (VSMC) and upregulated during vascular lesion formation. Methods and Results We documented, by Northern blot analysis,that the expression of OPG was more prevalent in the aorta and cultured VSMC from spontaneously hypertensive rats (SI-IR) compared to Wistar-Kyoto rats (WKY). In addition, we found that the expression of Angiotensin II (Ang II)type I receptor (AT1R) in SHR VSMC was at significantly increased levels than in WKY VSMC. Furthermore, Ang II potently induced the expression of OPG in VSMC in a time- and dose-dependent manner through the AT1R signaling pathway. Conclusions OPG expression was substantially greater in SHR VSMC, suggesting that OPG may be an important determinant of vascular remodeling in SHR.

  18. Characterization of putative receptors specific for quercetin on bovine aortic smooth-muscle cells

    Energy Technology Data Exchange (ETDEWEB)

    Yu, S.C.; Becker, C.G.

    1986-03-01

    The authors have reported that tobacco glycoprotein (TGP), rutin-bovine serum albumin conjugates (R-BSA), quercetin, and chlorogenic acid are mitogenic for bovine aortic smooth-muscle cells (SMC). To investigate whether there are binding sites or receptors for these polyphenol-containing molecules on SMC, the authors have synthesized /sup 125/I-labeled rutin-bovine serum albumin ((/sup 125/I)R-BSA) of high specific activity (20 Ci/mmol). SMC were isolated from a bovine thoracic aorta and maintained in Eagle's minimum essential medium with 10% calf serum in culture. These SMC at early subpassages were suspended (3-5 x 10/sup 7/ cells/ml) in phosphate-buffered saline and incubated with (/sup 125/I)R-BSA (10 pmol) in the presence or absence of 200-fold unlabeled R-BSA, TGP, BSA, rutin, quercetin or related polyphenols, and catecholamines. Binding of (/sup 125/I)R-BSA to SMC was found to be reproducible and the radioligand was displaced by R-BSA, and also by TGP, rutin, quercetin, and chlorogenic acid, but not by BSA, ellagic acid, naringin, hesperetin, dopamine, epinephrine, or isoproterenol. The binding was saturable, reversible, and pH-dependent. These results demonstrate the presence of specific binding sites for quercetinon arterial SMC.

  19. Diffuse and uncontrolled vascular smooth muscle cell proliferation in rapidly progressing pediatric moyamoya disease.

    Science.gov (United States)

    Reid, Amy J; Bhattacharjee, Meenakshi B; Regalado, Ellen S; Milewicz, Allen L; El-Hakam, Lisa M; Dauser, Robert C; Milewicz, Dianna M

    2010-09-01

    Moyamoya disease is a rare stroke syndrome of unknown etiology resulting from stenosis or occlusion of the supraclinoid internal carotid artery (ICA) in association with an abnormal vascular network in the basal ganglia. Although the highest incidence of moyamoya disease is in pediatric patients, pathology reports have been primarily limited to adult samples and describe occlusive fibrocellular lesions in the intimae of affected arteries. We describe the case of a young girl with primary moyamoya disease who presented at 18 months of age with right hemiparesis following an ischemic stroke. Angiography showed stenosis of the distal left ICA, left middle cerebral artery, and right ICA. An emergent left-sided dural inversion was performed. Recurrent strokes and alternating hemiplegia necessitated a right dural inversion 6 months later. Nonetheless, her aggressive disease proved uniquely refractory to surgical revascularization, and she succumbed to recurrent strokes and neurological deterioration at 2.5 years of age. Pathological specimens revealed a striking bilateral occlusion of the anterior carotid circulation resulting from intimal proliferation of smooth muscle cells (SMCs). Most strikingly, the ascending aorta and the superior mesenteric artery demonstrated similar intimal proliferation, along with SMC proliferation in the media. The systemic pathology involving multiple arteries in this extremely young child, the first case of its kind available for autopsy, suggests that globally uncontrolled SMC proliferation, in the absence of environmental risk factors and likely resulting from an underlying genetic alteration, may be a primary etiologic event leading to moyamoya disease.

  20. Differential Mitochondrial Adaptation in Primary Vascular Smooth Muscle Cells from a Diabetic Rat Model.

    Science.gov (United States)

    Keller, Amy C; Knaub, Leslie A; McClatchey, P Mason; Connon, Chelsea A; Bouchard, Ron; Miller, Matthew W; Geary, Kate E; Walker, Lori A; Klemm, Dwight J; Reusch, Jane E B

    2016-01-01

    Diabetes affects more than 330 million people worldwide and causes elevated cardiovascular disease risk. Mitochondria are critical for vascular function, generate cellular reactive oxygen species (ROS), and are perturbed by diabetes, representing a novel target for therapeutics. We hypothesized that adaptive mitochondrial plasticity in response to nutrient stress would be impaired in diabetes cellular physiology via a nitric oxide synthase- (NOS-) mediated decrease in mitochondrial function. Primary smooth muscle cells (SMCs) from aorta of the nonobese, insulin resistant rat diabetes model Goto-Kakizaki (GK) and the Wistar control rat were exposed to high glucose (25 mM). At baseline, significantly greater nitric oxide evolution, ROS production, and respiratory control ratio (RCR) were observed in GK SMCs. Upon exposure to high glucose, expression of phosphorylated eNOS, uncoupled respiration, and expression of mitochondrial complexes I, II, III, and V were significantly decreased in GK SMCs (p < 0.05). Mitochondrial superoxide increased with high glucose in Wistar SMCs (p < 0.05) with no change in the GK beyond elevated baseline concentrations. Baseline comparisons show persistent metabolic perturbations in a diabetes phenotype. Overall, nutrient stress in GK SMCs caused a persistent decline in eNOS and mitochondrial function and disrupted mitochondrial plasticity, illustrating eNOS and mitochondria as potential therapeutic targets.

  1. Bronchoprotective effect of simulated deep inspirations in tracheal smooth muscle.

    Science.gov (United States)

    Pascoe, Christopher D; Donovan, Graham M; Bossé, Ynuk; Seow, Chun Y; Paré, Peter D

    2014-12-15

    Deep inspirations (DIs) taken before an inhaled challenge with a spasmogen limit airway responsiveness in nonasthmatic subjects. This phenomenon is called bronchoprotection and is severely impaired in asthmatic subjects. The ability of DIs to prevent a decrease in forced expiratory volume in 1 s (FEV1) was initially attributed to inhibition of airway narrowing. However, DIs taken before methacholine challenge limit airway responsiveness only when a test of lung function requiring a DI is used (FEV1). Therefore, it has been suggested that prior DIs enhance the compliance of the airways or airway smooth muscle (ASM). This would increase the strain the airway wall undergoes during the subsequent DI, which is part of the FEV1 maneuver. To investigate this phenomenon, we used ovine tracheal smooth muscle strips that were subjected to shortening elicited by acetylcholine with or without prior strain mimicking two DIs. The compliance of the shortened strip was then measured in response to a stress mimicking one DI. Our results show that the presence of "DIs" before acetylcholine-induced shortening resulted in 11% greater relengthening in response to the third DI, compared with the prior DIs. This effect, although small, is shown to be potentially important for the reopening of closed airways. The effect of prior DIs was abolished by the adaptation of ASM to either shorter or longer lengths or to a low baseline tone. These results suggest that DIs confer bronchoprotection because they increase the compliance of ASM, which, consequently, promotes greater strain from subsequent DI and fosters the reopening of closed airways.

  2. Aging impairs Ca2+ sensitization pathways in gallbladder smooth muscle.

    Science.gov (United States)

    Macias, Beatriz; Gomez-Pinilla, Pedro J; Camello-Almaraz, Cristina; Pascua, Patricia; Tresguerres, Jesus Af; Camello, Pedro J; Pozo, Maria J

    2012-08-01

    Calcium sensitization is an important physiological process in agonist-induced contraction of smooth muscle. In brief, calcium sensitization is a pathway that leads to smooth muscle contraction independently of changes in [Ca(2+)](i) by mean of inhibition of myosin light chain phosphatase. Aging has negative impacts on gallbladder contractile response due to partial impairment in calcium signaling and alterations in the contractile machinery. However, information regarding aging-induced alterations in calcium sensitization is scanty. We hypothesized that the calcium sensitization system is negatively affected by age. To investigate this, gallbladders were collected from adult (4 months old) and aged (22-24 months old) guinea pigs. To evaluate the contribution of calcium sensitization pathways we assayed the effect of the specific inhibitors Y-27632 and GF109203X on the "in vitro" isometric gallbladder contractions induced by agonist challenges. In addition, expression and phosphorylation (as activation index) of proteins participating in the calcium sensitization pathways were quantified by Western blotting. Aging reduced bethanechol- and cholecystokinin-evoked contractions, an effect associated with a reduction in MLC20 phosphorylation and in the effects of both Y-27632 and GF109203X. In addition, there was a drop in ROCK I, ROCK II, MYPT-1 and PKC expression and in the activation/phosphorylation of MYPT-1, PKC and CPI-17 in response to agonists. Interestingly, melatonin treatment for 4 weeks restored gallbladder contractile responses due to re-establishment of calcium sensitization pathways. These results demonstrate that age-related gallbladder hypocontractility is associated to alterations of calcium sensitization pathways and that melatonin treatment exerts beneficial effects in the recovery of gallbladder contractility.

  3. Oxygen mediates vascular smooth muscle relaxation in hypoxia.

    Directory of Open Access Journals (Sweden)

    Jessica Dada

    Full Text Available The activation of soluble guanylate cyclase (sGC by nitric oxide (NO and other ligands has been extensively investigated for many years. In the present study we considered the effect of molecular oxygen (O2 on sGC both as a direct ligand and its affect on other ligands by measuring cyclic guanosine monophosphate (cGMP production, as an index of activity, as well as investigating smooth muscle relaxation under hypoxic conditions. Our isolated enzyme studies confirm the function of sGC is impaired under hypoxic conditions and produces cGMP in the presence of O2, importantly in the absence of NO. We also show that while O2 could partially affect the magnitude of sGC stimulation by NO when the latter was present in excess, activation by the NO independent, haem-dependent sGC stimulator 3-(5'-hydroxymethyl-2'-furyl-1-benzylindazole (YC-1 was unaffected. Our in vitro investigation of smooth muscle relaxation confirmed that O2 alone in the form of a buffer bolus (equilibrated at 95% O2/5% CO2 had the ability to dilate vessels under hypoxic conditions and that this was dependent upon sGC and independent of eNOS. Our studies confirm that O2 can be a direct and important mediator of vasodilation through an increase in cGMP production. In the wider context, these observations are key to understanding the relative roles of O2 versus NO-induced sGC activation.

  4. IP3 receptors regulate vascular smooth muscle contractility and hypertension

    Science.gov (United States)

    Lin, Qingsong; Zhao, Guiling; Fang, Xi; Peng, Xiaohong; Tang, Huayuan; Wang, Hong; Jing, Ran; Liu, Jie; Ouyang, Kunfu

    2016-01-01

    Inositol 1, 4, 5-trisphosphate receptor–mediated (IP3R-mediated) calcium (Ca2+) release has been proposed to play an important role in regulating vascular smooth muscle cell (VSMC) contraction for decades. However, whether and how IP3R regulates blood pressure in vivo remains unclear. To address these questions, we have generated a smooth muscle–specific IP3R triple-knockout (smTKO) mouse model using a tamoxifen-inducible system. In this study, the role of IP3R-mediated Ca2+ release in adult VSMCs on aortic vascular contractility and blood pressure was assessed following tamoxifen induction. We demonstrated that deletion of IP3Rs significantly reduced aortic contractile responses to vasoconstrictors, including phenylephrine, U46619, serotonin, and endothelin 1. Deletion of IP3Rs also dramatically reduced the phosphorylation of MLC20 and MYPT1 induced by U46619. Furthermore, although the basal blood pressure of smTKO mice remained similar to that of wild-type controls, the increase in systolic blood pressure upon chronic infusion of angiotensin II was significantly attenuated in smTKO mice. Taken together, our results demonstrate an important role for IP3R-mediated Ca2+ release in VSMCs in regulating vascular contractility and hypertension.

  5. Circular smooth muscle contributes to esophageal shortening during peristalsis

    Institute of Scientific and Technical Information of China (English)

    Anil K Vegesna; Keng-Yu Chuang; Ramashesai Besetty; Steven J Phillips; Alan S Braverman; Mary F Barbe; Michael R Ruggieri

    2012-01-01

    AIM:To study the angle between the circular smooth muscle (CSM) and longitudinal smooth muscle (LSM) fibers in the distal esophagus.METHODS:In order to identify possible mechanisms for greater shortening in the distal compared to proximal esophagus during peristalsis,the angles between the LSM and CSM layers were measured in 9 cadavers.The outer longitudinal layer of the muscularis propria was exposed after stripping the outer serosa.The inner circular layer of the muscularis propria was then revealed after dissection of the esophageal mucosa and the underlying muscularis mucosa.Photographs of each specimen were taken with half of the open esophagus folded back showing both the outer longitudinal and inner circular muscle layers.Angles were measured every one cm for 10 cm proximal to the squamocolumnar junction (SCJ) by two independent investigators.Two human esophagi were obtained from organ transplant donors and the angles between the circular and longitudinal smooth muscle layers were measured using micro-computed tomography (micro CT) and Image J software.RESULTS:All data are presented as mean ± SE.The CSM to LSM angle at the SCJ and 1 cm proximal to SCJ on the autopsy specimens was 69.3 ± 4.62 degrees vs 74.9 ± 3.09 degrees,P =0.32.The CSM to LSM angle at SCJ were statistically significantly lower than at 2,3,4 and 5 cm proximal to the SCJ,69.3 ± 4.62 degrees vs 82.58 ± 1.34 degrees,84.04 ± 1.64 degrees,84.87 ± 1.04 degrees and 83.72 ± 1.42 degrees,P =0.013,P =0.008,P =0.004,P =0.009 respectively.The CSM to LSM angle at SCJ was also statistically significantly lower than the angles at 6,7 and 8 cm proximal to the SCJ,69.3 ± 4.62 degrees vs 80.18 ± 2.09 degrees,81.81 ± 1.75 degrees and 80.96 ± 2.04 degrees,P =0.05,P =0.02,P =0.03 respectively.The CSM to LSM angle at 1 cm proximal to SCJ was statistically significantly lower than at 3,4 and 5 cm proximal to the SCJ,74.94 ± 3.09 degrees vs 84.04 ± 1.64 degrees,84.87± 1.04 degrees and 83.72 ± 1

  6. Increased proinflammatory responses from asthmatic human airway smooth muscle cells in response to rhinovirus infection

    NARCIS (Netherlands)

    Oliver, Brian G G; Johnston, Sebastian L; Baraket, Melissa; Burgess, Janette K; King, Nicholas J C; Roth, Michael; Lim, Sam; Black, Judith L

    2006-01-01

    BACKGROUND: Exacerbations of asthma are associated with viral respiratory tract infections, of which rhinoviruses (RV) are the predominant virus type. Airway smooth muscle is important in asthma pathogenesis, however little is known about the potential interaction of RV and human airway smooth muscl

  7. Insulin-Induced Laminin Expression Promotes a Hypercontractile Airway Smooth Muscle Phenotype

    NARCIS (Netherlands)

    Dekkers, Bart G. J.; Schaafsma, Dedmer; Tran, Thai; Zaagsma, Johan; Meurs, Herman

    2009-01-01

    Airway smooth muscle (ASM) plays a key role in the development of airway hyperresponsiveness and remodeling in asthma, which may involve maturation of ASM cells to a hypercontractile phenotype. In vitro studies have indicated that long-term exposure of bovine tracheal smooth muscle (BTSM) to insulin

  8. (Endo)cannabinoid signaling in human bronchial epithelial and smooth muscle cells

    NARCIS (Netherlands)

    Gkoumassi, Effimia

    2007-01-01

    We investigated the pathways used by various (endo)cannabinoids in regulating intracellular calcium homeostasis, adenylyl cyclase and ERK signaling, in bronchial epithelial cells as well as smooth muscle cells. In DDT1 MF2 smooth muscle cells the synthetic cannabinoid CP55,940 increases [Ca2+]i by a

  9. CD40 and OX40 ligand are increased on stimulated asthmatic airway smooth muscle

    NARCIS (Netherlands)

    Burgess, Janette K; Blake, Anita E; Boustany, Sarah; Johnson, Peter R A; Armour, Carol L; Black, Judith L; Hunt, Nicholas H; Hughes, J Margaret

    2005-01-01

    BACKGROUND: Severe, persistent asthma is characterized by airway smooth muscle hyperplasia, inflammatory cell infiltration into the smooth muscle, and increased expression of many cytokines, including IL-4, IL-13, IL-1beta, and TNF-alpha. These cytokines have the potential to alter the expression of

  10. Regulation of GPCR-mediated smooth muscle contraction : implications for asthma and pulmonary hypertension

    NARCIS (Netherlands)

    Wright, D B; Tripathi, S; Sikarwar, A; Santosh, K T; Perez-Zoghbi, J; Ojo, O O; Irechukwu, N; Ward, J P T; Schaafsma, D

    2013-01-01

    Contractile G-protein-coupled receptors (GPCRs) have emerged as key regulators of smooth muscle contraction, both under healthy and diseased conditions. This brief review will discuss some key topics and novel insights regarding GPCR-mediated airway and vascular smooth muscle contraction as discusse

  11. Vascular smooth muscle cell spreading onto fibrinogen is regulated by calpains and phospholipase C.

    Science.gov (United States)

    Paulhe, F; Bogyo, A; Chap, H; Perret, B; Racaud-Sultan, C

    2001-11-09

    Fibrinogen deposition and smooth muscle cell migration are important causes of atherosclerosis and angiogenesis. Involvement of calpains in vascular smooth muscle cell adhesion onto fibrinogen was investigated. Using calpain inhibitors, we showed that activation of calpains was required for smooth muscle cell spreading. An increase of (32)P-labeled phosphatidic acid and phosphatidylinositol-3,4-bisphosphate, respective products of phospholipase C and phosphoinositide 3-kinase activities, was measured in adherent cells. Addition of the calpain inhibitor calpeptin strongly decreased phosphatidic acid and phosphatidylinositol-3,4-bisphosphate. However, smooth muscle cell spreading was prevented by the phospholipase C inhibitor U-73122, but poorly modified by phosphoinositide 3-kinase inhibitors wortmannin and LY-294002. Moreover, PLC was found to act upstream of the PI 3-kinase IA isoform. Thus, our data provide the first evidence that calpains are required for smooth muscle cell spreading. Further, phospholipase C activation is pointed as a key step of cell-spreading regulation by calpains.

  12. Some properties of the smooth muscle of mouse vas deferens.

    Science.gov (United States)

    Holman, M E; Taylor, G S; Tomita, T

    1977-04-01

    1. Contractions of the mouse vas deferens in response to electrical stimulation differ form those recorded form the guinea-pig vas deferens in that they are abolished by tetrodotoxin. 2. Changes in membrane potentials were recorded form the smooth muscle of both preparations in response to stimulation with current pulses applied by an intracellular electrode and by alrge extracellular plate electrodes. 3. Both preparations behaved similarly in response to intracellular stimulation. Electrotonic potentials in response to extracellular current pulses spread in a longitudinal direction in the guinea-pig vas deferens in accordance with the cable-like properties of this preparation. In contrast, no longitudinal spread of eletrotonus was observed in the mouse vas deferens. 4. Responses to nerve stimulation differed in the two preparations. In the guinea-pig, single stimuli caused excitatory junction potentials (e.j.p.s) which gave rise to action potentials. Some cells from the mouse vas deferens showed similar e.j.p.s and action potentials, although the threshold for the initiation of action potentials was lower and more variable. 5. The majority of cells in the mouse vas deferens failed to show action potentials in response to a single stimuli even though the amplitude of e.j.p.s was from 35 to 40 mV. This was probably due to the large resting membrane potentials of these cells, as all-or-nothing action potentials could be evoked if successive e.j.p.s were allowed to sum with each other or if a depolarizing current pulse was applied at the peak of an e.j.p. 6. The nature of the response to nerve stimulation recorded from differnt cells in the mouse vas deferens could be correlated with the amplitude and time course of the response of the same cell to intracellular stimulation. 7. It is concluded that individual smooth muscle cells in both preparations are probably coupled electrically but that there are few, if any, low resistance pathways in the longitudinal direction

  13. Low levels of the reverse transactivator fail to induce target transgene expression in vascular smooth muscle cells.

    Directory of Open Access Journals (Sweden)

    Nikenza Viceconte

    Full Text Available Hutchinson-Gilford progeria syndrome (HGPS is a genetic disease with multiple features that are suggestive of premature aging. Most patients with HGPS carry a mutation on one of their copies of the LMNA gene. The LMNA gene encodes the lamin A and lamin C proteins, which are the major proteins of the nuclear lamina. The organs of the cardiovascular system are amongst those that are most severely affected in HGPS, undergoing a progressive depletion of vascular smooth muscle cells, and most children with HGPS die in their early teens from cardio-vascular disease and other complications from atherosclerosis. In this study, we developed a transgenic mouse model based on the tet-ON system to increase the understanding of the molecular mechanisms leading to the most lethal aspect of HGPS. To induce the expression of the most common HGPS mutation, LMNA c.1824C>T; p.G608G, in the vascular smooth muscle cells of the aortic arch and thoracic aorta, we used the previously described reverse tetracycline-controlled transactivator, sm22α-rtTA. However, the expression of the reverse sm22α-transactivator was barely detectable in the arteries, and this low level of expression was not sufficient to induce the expression of the target human lamin A minigene. The results from this study are important because they suggest caution during the use of previously functional transgenic animal models and emphasize the importance of assessing transgene expression over time.

  14. Sympathetically evoked Ca2+ signaling in arterial smooth muscle

    Institute of Scientific and Technical Information of China (English)

    Wei-jin ZANG; Joseph ZACHARIA; Christine LAMONT; Withrow Gil WIER

    2006-01-01

    The sympathetic nervous system plays an essential role in the control of total peripheral vascular resistance and blood flow, by controlling the contraction of small arteries. Perivascular sympathetic nerves release ATP, norepinephrine (NE) and neuropeptide Y. This review summarizes our knowledge of the intracellular Ca2+ signals that are activated by ATP and NE, acting respectively on P2X1 and α1 adrenoceptors in arterial smooth muscle. Each neurotransmitter produces a unique type of post-synaptic Ca2+ signal and associated contraction. The neural release of ATP and NE is thought to vary markedly with the pattern of nerve activity, probably reflecting both pre- and post-synaptic mechanisms. Finally, we show that Ca2+ signaling during neurogenic contractions activated by trains of sympathetic nerve fiber action potentials are in fact significantly different from that elicited by simple bath application of exogenous neurotransmitters to isolated arteries (a common experimental technique), and end by identifying important questions remaining in our understanding of sympathetic neurotransmission and the physiological regulation of contraction of small arteries.

  15. Gene expression in asthmatic airway smooth muscle: a mixed bag.

    Science.gov (United States)

    Pascoe, Christopher D; Swyngedouw, Nicholas E; Seow, Chun Y; Paré, Peter D

    2015-02-01

    It has long been known that airway smooth muscle (ASM) contraction contributes significantly to the reversible airflow obstruction that defines asthma. It has also been postulated that phenotypic changes in ASM contribute to the airway hyper-responsiveness (AHR) that is a characteristic feature of asthma. Although there is agreement that the mass of ASM surrounding the airways is significantly increased in asthmatic compared with non-asthmatic airways, it is still uncertain whether there are quantitative or qualitative changes in the level of expression of the genes and proteins involved in the canonical contractile pathway in ASM that could account for AHR. This review will summarize past attempts at quantifying gene expression changes in the ASM of asthmatic lungs as well as non-asthmatic ASM cells stimulated with various inflammatory cytokines. The lack of consistent findings in asthmatic samples coupled with the relative concordance of results from stimulated ASM cells suggests that changes to the contractility of ASM tissues in asthma may be dependent on the presence of an inflammatory environment surrounding the ASM layer. Removal of the ASM from this environment could explain why hypercontractility is rarely seen ex vivo.

  16. The importance of the smooth muscle cytoskeleton to preterm labour.

    Science.gov (United States)

    Morgan, Kathleen G

    2014-03-01

    Multiple mechanisms have been shown to regulate the onset of labour in a co-operative and complex manner. One factor, myometrial stretch and associated increases in wall tension, has been implicated clinically in the initiation of labour and especially the aetiology of preterm labour. Recent work on the mechanisms involved has led to the finding that the intracellular Ca(2+) requirement for activation of the myometrial contractile filaments increases during gestation. The decreased Ca(2+) sensitivity correlates with an increase in the expression of caldesmon, an actin-binding protein and inhibitor of myosin activation, during pregnancy. In late pregnancy, an increase in extracellular signal-regulated kinase-mediated caldesmon phosphorylation occurs, which appears to reverse the inhibitory action of caldesmon during labour. Force generated by the myometrial contractile filaments is communicated across the plasmalemma to the uterine wall through focal adhesions. Phospho-tyrosine screening and mass spectrometry of stretched myometrial samples identified several stretch-activated focal adhesion proteins. This Src-mediated focal adhesion signalling appears to provide a tunable, i.e. regulated, tension sensor and force transmitter in the myometrial cell. In other parallel studies, biophysical measurements of smooth muscle compliance at both the cellular and tissue levels suggest that decreases in cellular compliance due to changing interactions of the actin cytoskeleton with the focal adhesions may also promote increases in uterine wall tension. These results, taken together, suggest that focal adhesion proteins and their interaction with the cytoskeleton may present a new mode of regulation of uterine contractility.

  17. DIAGNOSTIC IMPLICATIONS OF IMMUNOHISTOCHEMICAL MARKERS IN UTERINE SMOOTH MUSCLE TUMORS

    Institute of Scientific and Technical Information of China (English)

    朱雪琼; 石一复; 陈晓端; 吴裕中

    2004-01-01

    Objective: To evaluate the diagnostic implications of immunohistochemical markers in uterine smooth muscle tumors. Methods: Formalin-fixed paraffin-embedded tissue blocks were selected from 17 uterine leiomyosarcomas, 40 uterine unusual leiomyomas and 25 uterine usual leiomyomas. Utilizing immunohistochemical techniques with antigen retrieval, serial sections of each tumor for immunoreactivity with myogenic markers, ovarian steroid receptors, CD44v3, proliferating cell nuclear antigen and mast cells were assessed. Results: Although the myogenic markers and CD44v3 showed less frequent positivity in uterine leiomyosarcomas than those in unusual leiomyomas, they were not reliable markers for differentiating leiomyosarcoma from leiomyoma. Uterine leiomyosarcoma tended to have lower ovarian steroid receptors immunoreactivity rates than leiomyoma. Leiomyoma tended to have a higher quantity of intratumoral mast cells than leiomyosarcoma, while the expression of proliferating cell nuclear antigen was lower in them. Conclusion: Because the estimation of mitotic count was subject to significant variation, the immunohistochemical expression of ovarian steroid receptors, mast cells and proliferating cell nuclear antigen seemed to be helpful for the discrimination of unusual leiomyoma from leiomyosarcoma.

  18. Arterial Myogenic Activation through Smooth Muscle Filamin A

    Directory of Open Access Journals (Sweden)

    Kevin Retailleau

    2016-03-01

    Full Text Available Mutations in the filamin A (FlnA gene are frequently associated with severe arterial abnormalities, although the physiological role for this cytoskeletal element remains poorly understood in vascular cells. We used a conditional mouse model to selectively delete FlnA in smooth muscle (sm cells at the adult stage, thus avoiding the developmental effects of the knockout. Basal blood pressure was significantly reduced in conscious smFlnA knockout mice. Remarkably, pressure-dependent tone of the resistance caudal artery was lost, whereas reactivity to vasoconstrictors was preserved. Impairment of the myogenic behavior was correlated with a lack of calcium influx in arterial myocytes upon an increase in intraluminal pressure. Notably, the stretch activation of CaV1.2 was blunted in the absence of smFlnA. In conclusion, FlnA is a critical upstream element of the signaling cascade underlying the myogenic tone. These findings allow a better understanding of the molecular basis of arterial autoregulation and associated disease states.

  19. Epigenetic Control of Smooth Muscle Cell Identity and Lineage Memory.

    Science.gov (United States)

    Gomez, Delphine; Swiatlowska, Pamela; Owens, Gary K

    2015-12-01

    Vascular smooth muscle cells (SMCs), like all cells, acquire a cell-specific epigenetic signature during development that includes acquisition of a unique repertoire of histone and DNA modifications. These changes are postulated to induce an open chromatin state (referred to as euchromatin) on the repertoire of genes that are expressed in differentiated SMC, including SMC-selective marker genes like Acta2 and Myh11, as well as housekeeping genes expressed by most cell types. In contrast, genes that are silenced in differentiated SMC acquire modifications associated with a closed chromatin state (ie, heterochromatin) and transcriptional silencing. Herein, we review mechanisms that regulate epigenetic control of the differentiated state of SMC. In addition, we identify some of the major limitations in the field and future challenges, including development of innovative new tools and approaches, for performing single-cell epigenetic assays and locus-selective editing of the epigenome that will allow direct studies of the functional role of specific epigenetic controls during development, injury repair, and disease, including major cardiovascular diseases, such as atherosclerosis, hypertension, and microvascular disease, associated with diabetes mellitus.

  20. SREBP inhibits VEGF expression in human smooth muscle cells.

    Science.gov (United States)

    Motoyama, Koka; Fukumoto, Shinya; Koyama, Hidenori; Emoto, Masanori; Shimano, Hitoshi; Maemura, Koji; Nishizawa, Yoshiki

    2006-03-31

    Sterol regulatory element-binding proteins (SREBPs) are transcription factors that regulate expression of genes encoding enzymes for lipid biosynthesis. SREBPs are activated by HMG-CoA reductase inhibitors (statins). Statins have been also reported to suppress vascular endothelial growth factor (VEGF) expression in vascular smooth muscle cells (VSMCs). Therefore, we hypothesized that SREBPs are involved in statin-mediated regulation of VEGF production in VSMCs. SREBP1 was robustly expressed, and was activated by atorvastatin in VSMCs, as demonstrated by increased levels of the mature nuclear form of SREBP1, and increased promoter activities of a reporter containing sterol regulatory elements by atorvastatin. Moreover, overexpression of SREBP1a dose-dependently suppressed VEGF promoter activity. Site-specific mutation or deletion of the proximal Sp1 sites reduced the inhibitory effects of SREBP1a on VEGF promoter activity. These data demonstrated that SREBP1, activated by atorvastatin, suppressed VEGF expression through the indirect interaction with the proximal tandem Sp1 sites in VSMCs.

  1. Histone deacetylase 8 regulates cortactin deacetylation and contraction in smooth muscle tissues.

    Science.gov (United States)

    Li, Jia; Chen, Shu; Cleary, Rachel A; Wang, Ruping; Gannon, Olivia J; Seto, Edward; Tang, Dale D

    2014-08-01

    Histone deacetylases (HDACs) are a family of enzymes that mediate nucleosomal histone deacetylation and gene expression. Some members of the HDAC family have also been implicated in nonhistone protein deacetylation, which modulates cell-cycle control, differentiation, and cell migration. However, the role of HDACs in smooth muscle contraction is largely unknown. Here, HDAC8 was localized both in the cytoplasm and the nucleus of mouse and human smooth muscle cells. Knockdown of HDAC8 by lentivirus-encoding HDAC8 shRNA inhibited force development in response to acetylcholine. Treatment of smooth muscle tissues with HDAC8 inhibitor XXIV (OSU-HDAC-44) induced relaxation of precontracted smooth muscle tissues. In addition, cortactin is an actin-regulatory protein that undergoes deacetylation during migration of NIH 3T3 cells. In this study, acetylcholine stimulation induced cortactin deacetylation in mouse and human smooth muscle tissues, as evidenced by immunoblot analysis using antibody against acetylated lysine. Knockdown of HDAC8 by RNAi or treatment with the inhibitor attenuated cortactin deacetylation and actin polymerization without affecting myosin activation. Furthermore, expression of a charge-neutralizing cortactin mutant inhibited contraction and actin dynamics during contractile activation. These results suggest a novel mechanism for the regulation of smooth muscle contraction. In response to contractile stimulation, HDAC8 may mediate cortactin deacetylation, which subsequently promotes actin filament polymerization and smooth muscle contraction.

  2. Involvement of STAT3 in Bladder Smooth Muscle Hypertrophy Following Bladder Outlet Obstruction

    Directory of Open Access Journals (Sweden)

    Ogawa,Norio

    2006-12-01

    Full Text Available We examined the involvement of the signal transducer and activator of transcription 3 (STAT3 in bladder outlet obstruction (BOO-induced bladder smooth muscle hypertrophy using a rat in vivo and in vitro study. BOO induced increases in bladder weight and bladder smooth muscle thickness 1 week after the operation. By using antibody microarrays, 64 of 389 proteins blotted on the array met our selection criteria of an INR value between > or = 2.0 and < or = 0.5. This result revealed up-regulation of transcription factors, cell cycle regulatory proteins, apoptosis-associated proteins and so on. On the other hand, down-regulation (INR value < or = 0.5 of proteins was not found. In a profiling study, we found an increase in the expression of STAT3. A significant increase in nuclear phosphorylated STAT3 expression was confirmed in bladder smooth muscle tissue by immunohistochemistry and Western blot analysis. Cyclical stretch-relaxation (1 Hz at 120% elongation significantly increased the expression of STAT3 and of alpha-smooth muscle actin in primary cultured bladder smooth muscle cells. Furthermore, the blockade of STAT3 expression by the transfection of STAT3 small interfering RNA (siRNA significantly prevented the stretch-induced increase in alpha-smooth muscle actin expression. These results suggest that STAT3 has an important role in the induction of bladder smooth muscle hypertrophy.

  3. Rock Tea extract (Jasonia glutinosa) relaxes rat aortic smooth muscle by inhibition of L-type Ca(2+) channels.

    Science.gov (United States)

    Valero, Marta Sofía; Oliván-Viguera, Aida; Garrido, Irene; Langa, Elisa; Berzosa, César; López, Víctor; Gómez-Rincón, Carlota; Murillo, María Divina; Köhler, Ralf

    2015-12-01

    In traditional herbal medicine, Rock Tea (Jasonia glutinosa) is known for its prophylactic and therapeutic value in various disorders including arterial hypertension. However, the mechanism by which Rock Tea exerts blood pressure-lowering actions has not been elucidated yet. Our aim was to demonstrate vasorelaxing effects of Rock Tea extract and to reveal its possible action mechanism. Isometric myography was conducted on high-K+-precontracted rings from rat thoracic aorta and tested extracts at concentrations of 0.5-5 mg/ml. Whole-cell patch-clamp experiments were performed in rat aortic vascular smooth muscle cells (line A7r5) to determine blocking effects on L-type Ca(2+) channels. Rock Tea extract relaxed the aorta contracted by high [K+] concentration dependently with an EC50 of ≈2.4 mg/ml and produced ≈75 % relaxation at the highest concentration tested. The L-type Ca(2+) channel blocker, verapamil (10(-6) M), had similar effects. Rock Tea extract had no effect in nominally Ca(2+)-free high-K(+) buffer but significantly inhibited contractions to re-addition of Ca(2+). Rock Tea extract inhibited the contractions induced by the L-type Ca(2+) channel activator Bay K 8644 (10(-5) M) and by phenylephrine (10(-6) M). Rock Tea extract and Y-27632 (10(-6) M), Rho-kinase inhibitor, had similar effects and the respective effects were not additive. Patch-clamp experiments demonstrated that Rock Tea extract (2.5 mg/ml) virtually abolished L-type Ca(2+) currents in A7r5. We conclude that Rock Tea extract produced vasorelaxation of rat aorta and that this relaxant effect is mediated by inhibition of L-type Ca(2+) channels. Rock Tea extracts may be of phytomedicinal value for prevention and adjuvant treatment of hypertension and other cardiovascular diseases.

  4. Isolation of Endothelial Cells and Vascular Smooth Muscle Cells from Internal Mammary Artery Tissue

    Science.gov (United States)

    Moss, Stephanie C.; Bates, Michael; Parrino, Patrick E.; Woods, T. Cooper

    2007-01-01

    Analyses of vascular smooth muscle cell and endothelial cell function through tissue culture techniques are often employed to investigate the underlying mechanisms regulating cardiovascular disease. As diseases such as diabetes mellitus and chronic kidney disease increase a patient's risk of cardiovascular disease, the development of methods for examining the effects of these diseases on vascular smooth muscle cells and endothelial cells is needed. Commercial sources of endothelial cells and vascular smooth muscle cells generally provide minimal donor information and are in limited supply. This study was designed to determine if vascular smooth muscle cells and endothelial cells could be isolated from human internal mammary arteries obtained from donors undergoing coronary artery bypass graft surgery. As coronary artery bypass graft surgery is a commonly performed procedure, this method would provide a new source for these cells that when combined with the donor's medical history will greatly enhance our studies of the effects of complicating diseases on vascular biology. Internal mammary artery tissue was obtained from patients undergoing coronary artery bypass graft surgery. Through a simple method employing two separate tissue digestions, vascular smooth muscle cells and endothelial cells were isolated and characterized. The isolated vascular smooth muscle cells and endothelial cells exhibited the expected morphology and were able to be passaged for further analysis. The vascular smooth muscle cells exhibited positive staining for α-smooth muscle actin and the endothelial cells exhibited positive staining for CD31. The overall purity of the isolations was > 95%. This method allows for the isolation of endothelial cells and vascular smooth muscle cells from internal mammary arteries, providing a new tool for investigations into the interplay of vascular diseases and complicating diseases such as diabetes and kidney disease. PMID:21603530

  5. File list: NoD.CDV.20.AllAg.Coronary_artery_smooth_muscle [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.CDV.20.AllAg.Coronary_artery_smooth_muscle hg19 No description Cardiovascular Coronary arte...ry smooth muscle http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/NoD.CDV.20.AllAg.Coronary_artery_smooth_muscle.bed ...

  6. File list: Unc.CDV.50.AllAg.Coronary_artery_smooth_muscle [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.CDV.50.AllAg.Coronary_artery_smooth_muscle hg19 Unclassified Cardiovascular Coronary arte...ry smooth muscle http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Unc.CDV.50.AllAg.Coronary_artery_smooth_muscle.bed ...

  7. File list: His.CDV.10.AllAg.Coronary_artery_smooth_muscle [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.CDV.10.AllAg.Coronary_artery_smooth_muscle hg19 Histone Cardiovascular Coronary arte...ry smooth muscle http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.CDV.10.AllAg.Coronary_artery_smooth_muscle.bed ...

  8. File list: Pol.CDV.10.AllAg.Coronary_artery_smooth_muscle [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.CDV.10.AllAg.Coronary_artery_smooth_muscle hg19 RNA polymerase Cardiovascular Coronary arte...ry smooth muscle http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Pol.CDV.10.AllAg.Coronary_artery_smooth_muscle.bed ...

  9. File list: Unc.CDV.10.AllAg.Coronary_artery_smooth_muscle [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.CDV.10.AllAg.Coronary_artery_smooth_muscle hg19 Unclassified Cardiovascular Coronary arte...ry smooth muscle http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Unc.CDV.10.AllAg.Coronary_artery_smooth_muscle.bed ...

  10. File list: Unc.CDV.05.AllAg.Coronary_artery_smooth_muscle [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.CDV.05.AllAg.Coronary_artery_smooth_muscle hg19 Unclassified Cardiovascular Coronary arte...ry smooth muscle http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Unc.CDV.05.AllAg.Coronary_artery_smooth_muscle.bed ...

  11. File list: NoD.CDV.10.AllAg.Coronary_artery_smooth_muscle [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.CDV.10.AllAg.Coronary_artery_smooth_muscle hg19 No description Cardiovascular Coronary arte...ry smooth muscle http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/NoD.CDV.10.AllAg.Coronary_artery_smooth_muscle.bed ...

  12. File list: DNS.CDV.05.AllAg.Coronary_artery_smooth_muscle [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.CDV.05.AllAg.Coronary_artery_smooth_muscle hg19 DNase-seq Cardiovascular Coronary arte...ry smooth muscle http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/DNS.CDV.05.AllAg.Coronary_artery_smooth_muscle.bed ...

  13. File list: Pol.CDV.05.AllAg.Coronary_artery_smooth_muscle [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.CDV.05.AllAg.Coronary_artery_smooth_muscle hg19 RNA polymerase Cardiovascular Coronary arte...ry smooth muscle http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Pol.CDV.05.AllAg.Coronary_artery_smooth_muscle.bed ...

  14. File list: Pol.CDV.50.AllAg.Coronary_artery_smooth_muscle [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.CDV.50.AllAg.Coronary_artery_smooth_muscle hg19 RNA polymerase Cardiovascular Coronary arte...ry smooth muscle http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Pol.CDV.50.AllAg.Coronary_artery_smooth_muscle.bed ...

  15. File list: DNS.CDV.10.AllAg.Coronary_artery_smooth_muscle [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.CDV.10.AllAg.Coronary_artery_smooth_muscle hg19 DNase-seq Cardiovascular Coronary arte...ry smooth muscle http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/DNS.CDV.10.AllAg.Coronary_artery_smooth_muscle.bed ...

  16. File list: Unc.CDV.20.AllAg.Coronary_artery_smooth_muscle [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.CDV.20.AllAg.Coronary_artery_smooth_muscle hg19 Unclassified Cardiovascular Coronary arte...ry smooth muscle http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Unc.CDV.20.AllAg.Coronary_artery_smooth_muscle.bed ...

  17. File list: InP.CDV.50.AllAg.Coronary_artery_smooth_muscle [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.CDV.50.AllAg.Coronary_artery_smooth_muscle hg19 Input control Cardiovascular Coronary arte...ry smooth muscle SRX699739,SRX699736 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/InP.CDV.50.AllAg.Coronary_artery_smooth_muscle.bed ...

  18. File list: His.CDV.50.AllAg.Coronary_artery_smooth_muscle [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.CDV.50.AllAg.Coronary_artery_smooth_muscle hg19 Histone Cardiovascular Coronary arte...ry smooth muscle http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.CDV.50.AllAg.Coronary_artery_smooth_muscle.bed ...

  19. File list: NoD.CDV.50.AllAg.Coronary_artery_smooth_muscle [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.CDV.50.AllAg.Coronary_artery_smooth_muscle hg19 No description Cardiovascular Coronary arte...ry smooth muscle http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/NoD.CDV.50.AllAg.Coronary_artery_smooth_muscle.bed ...

  20. File list: His.CDV.20.AllAg.Coronary_artery_smooth_muscle [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.CDV.20.AllAg.Coronary_artery_smooth_muscle hg19 Histone Cardiovascular Coronary arte...ry smooth muscle http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.CDV.20.AllAg.Coronary_artery_smooth_muscle.bed ...

  1. File list: DNS.CDV.50.AllAg.Coronary_artery_smooth_muscle [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.CDV.50.AllAg.Coronary_artery_smooth_muscle hg19 DNase-seq Cardiovascular Coronary arte...ry smooth muscle http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/DNS.CDV.50.AllAg.Coronary_artery_smooth_muscle.bed ...

  2. File list: InP.CDV.05.AllAg.Coronary_artery_smooth_muscle [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.CDV.05.AllAg.Coronary_artery_smooth_muscle hg19 Input control Cardiovascular Coronary arte...ry smooth muscle SRX699739,SRX699736 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/InP.CDV.05.AllAg.Coronary_artery_smooth_muscle.bed ...

  3. File list: NoD.CDV.05.AllAg.Coronary_artery_smooth_muscle [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.CDV.05.AllAg.Coronary_artery_smooth_muscle hg19 No description Cardiovascular Coronary arte...ry smooth muscle http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/NoD.CDV.05.AllAg.Coronary_artery_smooth_muscle.bed ...

  4. File list: Pol.CDV.20.AllAg.Coronary_artery_smooth_muscle [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.CDV.20.AllAg.Coronary_artery_smooth_muscle hg19 RNA polymerase Cardiovascular Coronary arte...ry smooth muscle http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Pol.CDV.20.AllAg.Coronary_artery_smooth_muscle.bed ...

  5. File list: His.CDV.05.AllAg.Coronary_artery_smooth_muscle [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.CDV.05.AllAg.Coronary_artery_smooth_muscle hg19 Histone Cardiovascular Coronary arte...ry smooth muscle http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.CDV.05.AllAg.Coronary_artery_smooth_muscle.bed ...

  6. File list: InP.CDV.10.AllAg.Coronary_artery_smooth_muscle [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.CDV.10.AllAg.Coronary_artery_smooth_muscle hg19 Input control Cardiovascular Coronary arte...ry smooth muscle SRX699739,SRX699736 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/InP.CDV.10.AllAg.Coronary_artery_smooth_muscle.bed ...

  7. Potential role of vascular smooth muscle cell-like progenitor cell therapy in the suppression of experimental abdominal aortic aneurysms.

    Science.gov (United States)

    Park, Hyung Sub; Choi, Geum Hee; Hahn, Soli; Yoo, Young Sun; Lee, Ji Youl; Lee, Taeseung

    2013-02-08

    Abdominal aortic aneurysms (AAA) are a growing problem worldwide, yet there is no known medical therapy. The pathogenesis involves degradation of the elastic lamina by two combined mechanisms: increased degradation of elastin by matrix metalloproteinases (MMP) and decreased formation of elastin due to apoptosis of vascular smooth muscle cells (VSMC). In this study, we set out to examine the potential role of stem cells in the attenuation of AAA formation by inhibition of these pathogenetic mechanisms. Muscle-derived stem cells from murine skeletal muscles were isolated and stimulated with PDGF-BB in vitro for differentiation to VSMC-like progenitor cells (VSMC-PC). These cells were implanted in to elastase-induced AAAs in rats. The cell therapy group had decreased rate of aneurysm formation compared to control, and MMP expression at the genetic, protein and enzymatic level were also significantly decreased. Furthermore, direct implantation of VSMC-PCs in the intima of harvested aortas was visualized under immunofluorescent staining, suggesting that these cells were responsible for the inhibition of MMPs and consequent attenuation of AAA formation. These results show a promising role of stem cell therapy for the treatment of AAAs, and with further studies, may be able to reach clinical significance.

  8. Altered Smooth Muscle Cell Force Generation as a Driver of Thoracic Aortic Aneurysms and Dissections.

    Science.gov (United States)

    Milewicz, Dianna M; Trybus, Kathleen M; Guo, Dong-Chuan; Sweeney, H Lee; Regalado, Ellen; Kamm, Kristine; Stull, James T

    2017-01-01

    The importance of maintaining contractile function in aortic smooth muscle cells (SMCs) is evident by the fact that heterozygous mutations in the major structural proteins or kinases controlling contraction lead to the formation of aneurysms of the ascending thoracic aorta that predispose to life-threatening aortic dissections. Force generation by SMC requires ATP-dependent cyclic interactions between filaments composed of SMC-specific isoforms of α-actin (encoded by ACTA2) and myosin heavy chain (MYH11). ACTA2 and MYH11 mutations are predicted or have been shown to disrupt this cyclic interaction predispose to thoracic aortic disease. Movement of the myosin motor domain is controlled by phosphorylation of the regulatory light chain on the myosin filament, and loss-of-function mutations in the dedicated kinase for this phosphorylation, myosin light chain kinase (MYLK) also predispose to thoracic aortic disease. Finally, a mutation in the cGMP-activated protein kinase (PRKG1) results in constitutive activation of the kinase in the absence of cGMP, thus driving SMC relaxation in part through increased dephosphorylation of the regulatory light chain and predisposes to thoracic aortic disease. Furthermore, SMCs cannot generate force without connections to the extracellular matrix through focal adhesions, and mutations in the major protein in the extracellular matrix, fibrillin-1, linking SMCs to the matrix also cause thoracic aortic disease in individuals with Marfan syndrome. Thus, disruption of the ability of the aortic SMC to generate force through the elastin-contractile units in response to pulsatile blood flow may be a primary driver for thoracic aortic aneurysms and dissections.

  9. Diabetic conditions promote binding of monocytes to vascular smooth muscle cells and their subsequent differentiation.

    Science.gov (United States)

    Meng, Li; Park, Jehyun; Cai, Qiangjun; Lanting, Linda; Reddy, Marpadga A; Natarajan, Rama

    2010-03-01

    Diabetes is associated with significantly accelerated rates of atherosclerosis, key features of which include the presence of excessive macrophage-derived foam cells in the subendothelial space. We examined the hypothesis that enhanced monocyte-vascular smooth muscle cell (VSMC) interactions leading to subendothelial monocyte retention and differentiation to macrophages under diabetic conditions may be underlying mechanisms. Human aortic VSMCs (HVSMCs) treated with diabetic stimuli high glucose (HG) or S100B, a ligand of the receptor for advanced glycation end products, exhibited significantly increased binding of THP-1 monocytic cells. Diabetic stimuli increased the expression of the adhesive chemokine fractalkine (FKN) in HVSMCs. Pretreatment of HVSMCs with FKN or monocyte chemoattractant protein-1 (MCP-1) neutralizing antibodies significantly inhibited monocyte-VSMC binding, whereas monocytes treated with FKN showed enhanced binding to VSMC. Mouse aortic VSMCs (MVSMCs) derived from type 2 diabetic db/db mice exhibited significantly increased FKN levels and binding to mouse WEHI78/24 monocytic cells relative to nondiabetic control db/+ cells. The enhanced monocyte binding in db/db cells was abolished by both FKN and MCP-1 antibodies. Endothelium-denuded aortas from db/db mice and streptozotocin-induced diabetic mice also exhibited enhanced FKN expression and monocyte binding, relative to respective controls. Coculture with HVSMCs increased CD36 expression in THP-1 cells, and this was significantly augmented by treatment of HVSMCs with S100B or HG. CD36 mRNA and protein levels were also significantly increased in WEHI78/24 cells after coincubation with db/db MVSMCs relative to control MVSMCs. These results demonstrate that diabetic conditions may accelerate atherosclerosis by inducing key chemokines in the vasculature that promote VSMC-monocyte interactions, subendothelial monocyte retention, and differentiation.

  10. Cigarette Smoke and Estrogen Signaling in Human Airway Smooth Muscle

    Directory of Open Access Journals (Sweden)

    Venkatachalem Sathish

    2015-06-01

    Full Text Available Aims: Cigarette smoke (CS in active smokers and second-hand smoke exposure exacerbate respiratory disorders such as asthma and chronic bronchitis. While women are known to experience a more asthmatic response to CS than emphysema in men, there is limited information on the mechanisms of CS-induced airway dysfunction. We hypothesize that CS interferes with a normal (protective bronchodilatory role of estrogens, thus worsening airway contractility. Methods: We tested effects of cigarette smoke extract (CSE on 17β-estradiol (E2 signaling in enzymatically-dissociated bronchial airway smooth muscle (ASM obtained from lung samples of non-smoking female patients undergoing thoracic surgery. Results: In fura-2 loaded ASM cells, CSE increased intracellular calcium ([Ca2+]i responses to 10µM histamine. Acute exposure to physiological concentrations of E2 decreased [Ca2+]i responses. However, in 24h exposed CSE cells, although expression of estrogen receptors was increased, the effect of E2 on [Ca2+]i was blunted. Acute E2 exposure also decreased store-operated Ca2+ entry and inhibited stromal interaction molecule 1 (STIM1 phosphorylation: effects blunted by CSE. Acute exposure to E2 increased cAMP, but less so in 24h CSE-exposed cells. 24h CSE exposure increased S-nitrosylation of ERα. Furthermore, 24h CSE-exposed bronchial rings showed increased bronchoconstrictor agonist responses that were not reduced as effectively by E2 compared to non-CSE controls. Conclusion: These data suggest that CS induces dysregulation of estrogen signaling in ASM, which could contribute to increased airway contractility in women exposed to CS.

  11. Mechanisms of Cigarette Smoke Effects on Human Airway Smooth Muscle.

    Directory of Open Access Journals (Sweden)

    Mark E Wylam

    Full Text Available Cigarette smoke contributes to or exacerbates airway diseases such as asthma and COPD, where airway hyperresponsiveness and airway smooth muscle (ASM proliferation are key features. While factors such as inflammation contribute to asthma in part by enhancing agonist-induced intracellular Ca(2+ ([Ca(2+]i responses of ASM, the mechanisms by which cigarette smoke affect ASM are still under investigation. In the present study, we tested the hypothesis that cigarette smoke enhances the expression and function of Ca(2+ regulatory proteins leading to increased store operated Ca(2+ entry (SOCE and cell proliferation. Using isolated human ASM (hASM cells, incubated in the presence and absence cigarette smoke extract (CSE we determined ([Ca(2+]i responses and expression of relevant proteins as well as ASM proliferation, reactive oxidant species (ROS and cytokine generation. CSE enhanced [Ca(2+]i responses to agonist and SOCE: effects mediated by increased expression of TRPC3, CD38, STIM1, and/or Orai1, evident by attenuation of CSE effects when siRNAs against these proteins were used, particularly Orai1. CSE also increased hASM ROS generation and cytokine secretion. In addition, we found in the airways of patients with long-term smoking history, TRPC3 and CD38 expression were significantly increased compared to life-long never-smokers, supporting the role of these proteins in smoking effects. Finally, CSE enhanced hASM proliferation, an effect confirmed by upregulation of PCNA and Cyclin E. These results support a critical role for Ca(2+ regulatory proteins and enhanced SOCE to alter airway structure and function in smoking-related airway disease.

  12. Cooling-induced contraction in ovine airways smooth muscle.

    Science.gov (United States)

    Mustafa, S M; Pilcher, C W; Williams, K I

    1999-02-01

    The mechanism of cold-induced bronchoconstriction is poorly understood. This prompted the present study whose aim was to determine the step-wise direct effect of cooling on smooth muscle of isolated ovine airways and analyse the role of calcium in the mechanisms involved. Isolated tracheal strips and bronchial segments were suspended in organ baths containing Krebs' solution for isometric tension recording. Tissue responses during stepwise cooling from 37 to 5 degrees C were examined. Cooling induced a rapid and reproducible contraction proportional to cooling temperature in ovine tracheal and bronchial preparations which was epithelium-independent. On readjustment to 37 degrees C the tone returned rapidly to basal level. Maximum contraction was achieved at a temperature of 5 degrees C for trachea and 15 degrees C for bronchiole. Cooling-induced contractions (CIC) was resistant to tetrodotoxin (1; 10 micrometer), and not affected by the muscarinic antagonist atropine (1 micrometer) or the alpha-adrenergic antagonist phentolamine (1 micrometer), or the histamine H1-antagonist mepyramine (1 micrometer) or indomethacin (1 micrometer). Ca2+ antagonists (nifedipine and verapamil) and Mn2+ raised tracheal but not bronchiolar tone and augmented CIC. Incubation in Ca2+-free, EGTA-containing Krebs' solution for 5 min had no effect on CIC, although it significantly reduced KCl-induced contraction by up to 75%. Cooling inhibited Ca2+ influx measured using 45Ca2+ uptake. Caffeine (100 micrometer) significantly inhibited CIC. The results show that cooling-induced contractions do not appear to involve activation of nerve endings, all surface reception systems or Ca2+ influx. However, CIC is mainly dependent on release of intracellular Ca2+.

  13. Length adaptation of smooth muscle contractile filaments in response to sustained activation.

    Science.gov (United States)

    Stålhand, Jonas; Holzapfel, Gerhard A

    2016-05-21

    Airway and bladder smooth muscles are known to undergo length adaptation under sustained contraction. This adaptation process entails a remodelling of the intracellular actin and myosin filaments which shifts the peak of the active force-length curve towards the current length. Smooth muscles are therefore able to generate the maximum force over a wide range of lengths. In contrast, length adaptation of vascular smooth muscle has attracted very little attention and only a handful of studies have been reported. Although their results are conflicting on the existence of a length adaptation process in vascular smooth muscle, it seems that, at least, peripheral arteries and arterioles undergo such adaptation. This is of interest since peripheral vessels are responsible for pressure regulation, and a length adaptation will affect the function of the cardiovascular system. It has, e.g., been suggested that the inward remodelling of resistance vessels associated with hypertension disorders may be related to smooth muscle adaptation. In this study we develop a continuum mechanical model for vascular smooth muscle length adaptation by assuming that the muscle cells remodel the actomyosin network such that the peak of the active stress-stretch curve is shifted towards the operating point. The model is specialised to hamster cheek pouch arterioles and the simulated response to stepwise length changes under contraction. The results show that the model is able to recover the salient features of length adaptation reported in the literature.

  14. Effect of Montelukast on bradykinin-induced contraction of isolated tracheal smooth muscle of guinea pig

    Directory of Open Access Journals (Sweden)

    A Noor

    2011-01-01

    Conclusion: It is concluded that montelukast significantly inhibits, in a dose-dependent manner, the bradykinin-induced contraction of the guinea pig tracheal smooth muscle, and alludes to an interaction between the bradykinin and leukotriene mediators.

  15. End-stage renal disease causes an imbalance between endothelial and smooth muscle progenitor cells

    NARCIS (Netherlands)

    Westerweel, Peter E; Hoefer, Imo E; Blankestijn, Peter J; de Bree, Petra; Groeneveld, Dafna; van Oostrom, Olivia; Braam, Branko; Koomans, Hein A; Verhaar, Marianne C

    2007-01-01

    Patients with end-stage renal disease (ESRD) on hemodialysis have an increased risk of cardiovascular disease (CVD). Circulating endothelial progenitor cells (EPC) contribute to vascular regeneration and repair, thereby protecting against CVD. However, circulating smooth muscle progenitor cells (SPC

  16. Focal adhesion kinase regulates collagen I-induced airway smooth muscle phenotype switching

    NARCIS (Netherlands)

    Dekkers, Bart G J; Spanjer, Anita I R; van der Schuyt, Robert D; Kuik, Willem Jan; Zaagsma, Johan; Meurs, Herman

    2013-01-01

    Increased extracellular matrix (ECM) deposition and airway smooth muscle (ASM) mass are major contributors to airway remodeling in asthma. Recently, we demonstrated that the ECM protein collagen I, which is increased surrounding asthmatic ASM, induces a proliferative, hypocontractile ASM phenotype.

  17. Microfibrillar-associated protein 4 modulates airway smooth muscle cell phenotype in experimental asthma

    DEFF Research Database (Denmark)

    Pilecki, Bartosz; Schlosser, Anders; Wulf-Johansson, Helle

    2015-01-01

    . In the current study we investigated the role of MFAP4 in experimental allergic asthma. METHODS: MFAP4-deficient mice were subjected to alum/ovalbumin and house dust mite induced models of allergic airway disease. In addition, human healthy and asthmatic primary bronchial smooth muscle cell cultures were used...... to evaluate MFAP4-dependent airway smooth muscle responses. RESULTS: MFAP4 deficiency attenuated classical hallmarks of asthma, such as eosinophilic inflammation, eotaxin production, airway remodelling and hyperresponsiveness. In wild-type mice, serum MFAP4 was increased after disease development...... and correlated with local eotaxin levels. MFAP4 was expressed in human bronchial smooth muscle cells and its expression was upregulated in asthmatic cells. Regarding the underlying mechanism, we showed that MFAP4 interacted with integrin αvβ5 and promoted asthmatic bronchial smooth muscle cell proliferation...

  18. TGF-β1 inhibits connexin-43 expression in cultured smooth muscle cells of human bladder

    Institute of Scientific and Technical Information of China (English)

    Chi Qiang; Zhou Fenghai; Wang Yangmin

    2009-01-01

    Objective: In this research, we studied the TGF-β1 effects on connexin-43 expression in cultured human bladder smooth muscle cells. Methods: Human bladder smooth muscle cells primary cultures, with bladder tissue obtained from patients undergoing cystectomy, were intervened by recombinant human TGF-β1. Connexin-43 expression in human bladder smooth muscle cells was then examined by Western blotting and immunocytochemistry. Results: Stimulation with TGF-β1 led to significant reduction of cormexin-43 immunoreactivity and coupling (P<0.0001). Connexin-43 protein expression was significantly downregnlated (P<0.05). Simultaneously, low phosphorylation species of connexin-43 were particularly affected. Conclusion: Our experiments demonstrated a significant downregulation of connexin-43 by TGF-β1 in cultured human bladder smooth muscle cells. These findings support the view that TGF-β1 is involved in the pathophysiology of urinary bladder dysfunction.

  19. Increased rhythmicity in hypertensive arterial smooth muscle is linked to transient receptor potential canonical channels

    DEFF Research Database (Denmark)

    Chen, Xiaoping; Yang, Dachun; Ma, Shuangtao

    2010-01-01

    Vasomotion describes oscillations of arterial vascular tone due to synchronized changes of intracellular calcium concentrations. Since increased calcium influx into vascular smooth muscle cells from spontaneously hypertensive rats (SHR) has been associated with variances of transient receptor...

  20. Protective Role for Tissue Inhibitor of Metalloproteinase-4, a Novel Peroxisome Proliferator-Activated Receptor-γ Target Gene, in Smooth Muscle in Deoxycorticosterone Acetate-Salt Hypertension.

    Science.gov (United States)

    Ketsawatsomkron, Pimonrat; Keen, Henry L; Davis, Deborah R; Lu, Ko-Ting; Stump, Madeliene; De Silva, T Michael; Hilzendeger, Aline M; Grobe, Justin L; Faraci, Frank M; Sigmund, Curt D

    2016-01-01

    Loss of peroxisome proliferator-activated receptor-γ (PPARγ) function causes hypertension, whereas its activation lowers blood pressure. Evidence suggests that these effects may be attributable to PPARγ activity in the vasculature. However, the specific transcriptional targets of PPARγ in vessels remain largely unidentified. In this study, we examined the role of smooth muscle PPARγ during salt-sensitive hypertension and investigated its transcriptional targets and functional effect. Transgenic mice expressing dominant-negative PPARγ (S-P467L) in smooth muscle cells were more prone to deoxycorticosterone acetate-salt-induced hypertension and mesenteric arterial dysfunction compared with nontransgenic controls. Despite similar morphometry at baseline, vascular remodeling in conduit and small arteries was enhanced in S-P467L after deoxycorticosterone acetate-salt treatment. Gene expression profiling in aorta and mesenteric arteries revealed significantly decreased expression of tissue inhibitor of metalloproteinase-4 (TIMP-4) in S-P467L. Expression of TIMP-4 was increased by deoxycorticosterone acetate-salt treatment, but this increase was ablated in S-P467L. Interference with PPARγ activity either by treatment with a PPARγ inhibitor, GW9662, or by expressing P467L PPARγ markedly suppressed TIMP-4 in primary smooth muscle cells. PPARγ binds to a PPAR response element (PPRE) in chromatin close to the TIMP-4 gene in smooth muscle cells, suggesting that TIMP-4 is a novel target of PPARγ. The interference with PPARγ and decrease in TIMP-4 were accompanied by an increase in total matrix metalloproteinase activity. PPARγ-mediated loss of TIMP-4 increased, whereas overexpression of TIMP-4 decreased smooth muscle cell migration in a scratch assay. Our findings highlight a protective mechanism induced by PPARγ in deoxycorticosterone acetate-salt treatment, establishing a novel mechanistic link between PPARγ and TIMP-4.

  1. Voltage dependent potassium channel remodeling in murine intestinal smooth muscle hypertrophy induced by partial obstruction.

    Science.gov (United States)

    Liu, Dong-Hai; Huang, Xu; Guo, Xin; Meng, Xiang-Min; Wu, Yi-Song; Lu, Hong-Li; Zhang, Chun-Mei; Kim, Young-chul; Xu, Wen-Xie

    2014-01-01

    Partial obstruction of the small intestine causes obvious hypertrophy of smooth muscle cells and motility disorder in the bowel proximate to the obstruction. To identify electric remodeling of hypertrophic smooth muscles in partially obstructed murine small intestine, the patch-clamp and intracellular microelectrode recording methods were used to identify the possible electric remodeling and Western blot, immunofluorescence and immunoprecipitation were utilized to examine the channel protein expression and phosphorylation level changes in this research. After 14 days of obstruction, partial obstruction caused obvious smooth muscle hypertrophy in the proximally located intestine. The slow waves of intestinal smooth muscles in the dilated region were significantly suppressed, their amplitude and frequency were reduced, whilst the resting membrane potentials were depolarized compared with normal and sham animals. The current density of voltage dependent potassium channel (KV) was significantly decreased in the hypertrophic smooth muscle cells and the voltage sensitivity of KV activation was altered. The sensitivity of KV currents (IKV) to TEA, a nonselective potassium channel blocker, increased significantly, but the sensitivity of IKv to 4-AP, a KV blocker, stays the same. The protein levels of KV4.3 and KV2.2 were up-regulated in the hypertrophic smooth muscle cell membrane. The serine and threonine phosphorylation levels of KV4.3 and KV2.2 were significantly increased in the hypertrophic smooth muscle cells. Thus this study represents the first identification of KV channel remodeling in murine small intestinal smooth muscle hypertrophy induced by partial obstruction. The enhanced phosphorylations of KV4.3 and KV2.2 may be involved in this process.

  2. Strain history and TGF-β1 induce urinary bladder wall smooth muscle remodeling and elastogenesis

    OpenAIRE

    Heise, Rebecca L.; Parekh, Aron; Joyce, Erinn M.; Michael B. Chancellor; Sacks, Michael S.

    2011-01-01

    Mechanical cues that trigger pathological remodeling in smooth muscle tissues remain largely unknown and are thought to be pivotal triggers for strain-induced remodeling. Thus, an understanding of the effects mechanical stimulation is important to elucidate underlying mechanisms of disease states and in the development of methods for smooth muscle tissue regeneration. For example, the urinary bladder wall (UBW) adaptation to spinal cord injury (SCI) includes extensive hypertrophy as well as i...

  3. Smooth muscle pharmacology in the isolated virgin and pregnant rat uterus and cervix.

    Science.gov (United States)

    Darios, Emma S; Seitz, Bridget; Watts, Stephanie W

    2012-06-01

    Uterine smooth muscle function is established, but comparatively little is known about cervical smooth muscle pharmacology. We performed a proof-of-principle experiment that smooth muscle was expressed in the cervix in both virgin and pregnant rats, using the uterus as a comparator. We tested whether all tissues were pharmacologically responsive to contractile and relaxant agonists. Immunohistochemistry revealed the expression of smooth muscle α-actin in all tissues. The isolated tissue bath was used to measure isometric contractility of uterine strips and whole cervices from virgin and pregnant (day 11 ± 2) female Sprague-Dawley rats. We tested classic activators of uterine smooth muscle contraction and relaxation in both uterus and cervix. All tissues contracted to the depolarizing agent potassium chloride, prostaglandin F2α, muscarinic cholinergic agonist carbachol [2-[(aminocarbonxyl)oxy]-N,N,N-trimethylethanaminium chloride], and 5-hydroxytryptamine. Unlike other tissues, the pregnant cervix did not contract to oxytocin, but the oxytocin receptor was present. Both cervix and uterus (virgin and pregnant) had concentration-dependent, near-complete relaxation to the adrenergic agonist norepinephrine and adenylate cyclase activator forskolin [(3R,4aR,5S,6S,6aS,10S,10aR,10bS)-6,10-10b-trihydroxy-3,4a,7,10a-pentamethyl-1-oxo-3-vinyldodecahydro-1H-benzo[f] chroment-5-yl acetate]. The β-adrenergic receptor agonist isoproterenol was less potent in pregnant cervix versus virgin by ∼10-fold. All tissues, particularly the cervix, responded poorly to the nitric-oxide donor sodium nitroprusside, relaxing ∼20% maximally. These findings support the importance of smooth muscle in the cervix, the use of the isolated cervix in pharmacological studies, and a similarity between smooth muscle pharmacology of the nonpregnant uterus and cervix. This work highlights the unappreciated smooth muscle function of the cervix versus uterus and cervical changes in pharmacology during

  4. Voltage dependent potassium channel remodeling in murine intestinal smooth muscle hypertrophy induced by partial obstruction.

    Directory of Open Access Journals (Sweden)

    Dong-Hai Liu

    Full Text Available Partial obstruction of the small intestine causes obvious hypertrophy of smooth muscle cells and motility disorder in the bowel proximate to the obstruction. To identify electric remodeling of hypertrophic smooth muscles in partially obstructed murine small intestine, the patch-clamp and intracellular microelectrode recording methods were used to identify the possible electric remodeling and Western blot, immunofluorescence and immunoprecipitation were utilized to examine the channel protein expression and phosphorylation level changes in this research. After 14 days of obstruction, partial obstruction caused obvious smooth muscle hypertrophy in the proximally located intestine. The slow waves of intestinal smooth muscles in the dilated region were significantly suppressed, their amplitude and frequency were reduced, whilst the resting membrane potentials were depolarized compared with normal and sham animals. The current density of voltage dependent potassium channel (KV was significantly decreased in the hypertrophic smooth muscle cells and the voltage sensitivity of KV activation was altered. The sensitivity of KV currents (IKV to TEA, a nonselective potassium channel blocker, increased significantly, but the sensitivity of IKv to 4-AP, a KV blocker, stays the same. The protein levels of KV4.3 and KV2.2 were up-regulated in the hypertrophic smooth muscle cell membrane. The serine and threonine phosphorylation levels of KV4.3 and KV2.2 were significantly increased in the hypertrophic smooth muscle cells. Thus this study represents the first identification of KV channel remodeling in murine small intestinal smooth muscle hypertrophy induced by partial obstruction. The enhanced phosphorylations of KV4.3 and KV2.2 may be involved in this process.

  5. The effects of TSH on human vascular endothelial cells and smooth muscle cells

    Institute of Scientific and Technical Information of China (English)

    田利民

    2014-01-01

    Objective To study the effect of thyroid-stimulating hormone(TSH)on human vascular endothelial cells and smooth muscle cells and to explore the roles of TSH in the development of atherosclerosis.Methods Human vascular endothelial cells and smooth muscle cells were cultured in vitro.MTT method was used to assay the effect of TSH on cell viability.Real-time PCR was used

  6. Mast cell numbers in airway smooth muscle and PC(20)AMP in asthma and COPD

    NARCIS (Netherlands)

    Liesker, J. J. W.; ten Hacken, N. H. T.; Rutgers, S. R.; Zeinstra-Smith, M.; Postma, D. S.; Timens, W.

    2007-01-01

    Introduction: Most patients with asthma and many patients with COPD show bronchial hyperresponsiveness to adenosine (BHRAMP). BHRAMP may be caused by release of mast cell histamine, which induces smooth muscle contraction. Aim of the study: To evaluate whether mast cell numbers in airway smooth musc

  7. Airway smooth muscle phenotype and function : interactions with current asthma therapies

    NARCIS (Netherlands)

    Halayko, A J; Tran, T; Ji, S Y; Yamasaki, A; Gosens, R

    2006-01-01

    Asthma incidence has climbed markedly in the past two decades despite an increased use of medications that suppress airway inflammation and repress contraction of smooth muscle that encircles the airways. Asthmatics exhibit episodes of airway inflammation that potentiates reversible airway smooth mu

  8. Smooth muscle-like tissue constructs with circumferentially oriented cells formed by the cell fiber technology.

    Directory of Open Access Journals (Sweden)

    Amy Y Hsiao

    Full Text Available The proper functioning of many organs and tissues containing smooth muscles greatly depends on the intricate organization of the smooth muscle cells oriented in appropriate directions. Consequently controlling the cellular orientation in three-dimensional (3D cellular constructs is an important issue in engineering tissues of smooth muscles. However, the ability to precisely control the cellular orientation at the microscale cannot be achieved by various commonly used 3D tissue engineering building blocks such as spheroids. This paper presents the formation of coiled spring-shaped 3D cellular constructs containing circumferentially oriented smooth muscle-like cells differentiated from dedifferentiated fat (DFAT cells. By using the cell fiber technology, DFAT cells suspended in a mixture of extracellular proteins possessing an optimized stiffness were encapsulated in the core region of alginate shell microfibers and uniformly aligned to the longitudinal direction. Upon differentiation induction to the smooth muscle lineage, DFAT cell fibers self-assembled to coiled spring structures where the cells became circumferentially oriented. By changing the initial core-shell microfiber diameter, we demonstrated that the spring pitch and diameter could be controlled. 21 days after differentiation induction, the cell fibers contained high percentages of ASMA-positive and calponin-positive cells. Our technology to create these smooth muscle-like spring constructs enabled precise control of cellular alignment and orientation in 3D. These constructs can further serve as tissue engineering building blocks for larger organs and cellular implants used in clinical treatments.

  9. Smooth muscle-like tissue constructs with circumferentially oriented cells formed by the cell fiber technology.

    Science.gov (United States)

    Hsiao, Amy Y; Okitsu, Teru; Onoe, Hiroaki; Kiyosawa, Mahiro; Teramae, Hiroki; Iwanaga, Shintaroh; Kazama, Tomohiko; Matsumoto, Taro; Takeuchi, Shoji

    2015-01-01

    The proper functioning of many organs and tissues containing smooth muscles greatly depends on the intricate organization of the smooth muscle cells oriented in appropriate directions. Consequently controlling the cellular orientation in three-dimensional (3D) cellular constructs is an important issue in engineering tissues of smooth muscles. However, the ability to precisely control the cellular orientation at the microscale cannot be achieved by various commonly used 3D tissue engineering building blocks such as spheroids. This paper presents the formation of coiled spring-shaped 3D cellular constructs containing circumferentially oriented smooth muscle-like cells differentiated from dedifferentiated fat (DFAT) cells. By using the cell fiber technology, DFAT cells suspended in a mixture of extracellular proteins possessing an optimized stiffness were encapsulated in the core region of alginate shell microfibers and uniformly aligned to the longitudinal direction. Upon differentiation induction to the smooth muscle lineage, DFAT cell fibers self-assembled to coiled spring structures where the cells became circumferentially oriented. By changing the initial core-shell microfiber diameter, we demonstrated that the spring pitch and diameter could be controlled. 21 days after differentiation induction, the cell fibers contained high percentages of ASMA-positive and calponin-positive cells. Our technology to create these smooth muscle-like spring constructs enabled precise control of cellular alignment and orientation in 3D. These constructs can further serve as tissue engineering building blocks for larger organs and cellular implants used in clinical treatments.

  10. Control of Vascular Smooth Muscle Cell Growth by Connexin 43

    Directory of Open Access Journals (Sweden)

    Chintamani eJoshi

    2012-06-01

    Full Text Available Connexin 43 (Cx43, the principal gap junction protein in vascular smooth muscle cells (VSMCs, regulates movement of ions and other signaling molecules through gap junction intercellular communication (GJIC and plays important roles in maintaining normal vessel function; however, many of the signaling mechanisms controlling Cx43 in VSMCs are not clearly described. The goal of this study was to investigate mechanisms of Cx43 regulation with respect to VSMC proliferation. Treatment of rat primary VSMCs with the cAMP analog 8Br-cAMP, the soluble guanylate cyclase (sGC stimulator BAY 41-2272 (BAY, or the Cx inducer diallyl disulfide (DADS significantly reduced proliferation after 72 h compared to vehicle controls. Bromodeoxyuridine uptake revealed reduction (p<.001 in DNA synthesis after 6 h and flow cytometry showed reduced (40% S phase cell numbers after 16 h in DADS-treated cells compared to controls. Cx43 expression significantly increased after 270 min treatment with 8Br-cAMP, 8Br-cGMP, BAY or DADS. Inhibition of PKA, PKG or PKC reversed 8Br-cAMP-stimulated increases in Cx43 expression, whereas only PKG or PKC inhibition reversed 8Br-cGMP- and BAY-stimulated increases in total Cx43. Interestingly, stimulation of Cx43 expression by DADS was not dependent on PKA, PKG or PKC. Using fluorescence recovery after photobleaching, only 8Br-cAMP or DADS increased GJIC with 8Br-cAMP mediated by PKC and DADS mediated by PKG. Further, DADS significantly increased phosphorylation at the MAPK-sensitive serine (Ser255 and Ser279, the cell cycle regulatory kinase-sensitive Ser262 and the PKC-sensitive Ser368 after 30 min while 8Br-cAMP significantly increased phosphorylation only at Ser279 compared to controls. This study demonstrates that 8Br-cAMP- and DADS-enhanced GJIC rather than Cx43 expression and/or phosphorylation plays an important role in regulation of VSMC proliferation and provides new insights into the growth-regulatory capacities of Cx43 in VSMCs.

  11. 3D Reconstruction of Coronary Artery Vascular Smooth Muscle Cells.

    Directory of Open Access Journals (Sweden)

    Tong Luo

    Full Text Available The 3D geometry of individual vascular smooth muscle cells (VSMCs, which are essential for understanding the mechanical function of blood vessels, are currently not available. This paper introduces a new 3D segmentation algorithm to determine VSMC morphology and orientation.A total of 112 VSMCs from six porcine coronary arteries were used in the analysis. A 3D semi-automatic segmentation method was developed to reconstruct individual VSMCs from cell clumps as well as to extract the 3D geometry of VSMCs. A new edge blocking model was introduced to recognize cell boundary while an edge growing was developed for optimal interpolation and edge verification. The proposed methods were designed based on Region of Interest (ROI selected by user and interactive responses of limited key edges. Enhanced cell boundary features were used to construct the cell's initial boundary for further edge growing. A unified framework of morphological parameters (dimensions and orientations was proposed for the 3D volume data. Virtual phantom was designed to validate the tilt angle measurements, while other parameters extracted from 3D segmentations were compared with manual measurements to assess the accuracy of the algorithm. The length, width and thickness of VSMCs were 62.9±14.9 μm, 4.6±0.6 μm and 6.2±1.8 μm (mean±SD. In longitudinal-circumferential plane of blood vessel, VSMCs align off the circumferential direction with two mean angles of -19.4±9.3° and 10.9±4.7°, while an out-of-plane angle (i.e., radial tilt angle was found to be 8±7.6° with median as 5.7°.A 3D segmentation algorithm was developed to reconstruct individual VSMCs of blood vessel walls based on optical image stacks. The results were validated by a virtual phantom and manual measurement. The obtained 3D geometries can be utilized in mathematical models and leads a better understanding of vascular mechanical properties and function.

  12. Eukaryotic Expression of Human Arresten Gene and Its Effect on the Proliferation of Vascular Smooth Muscle Cells

    Institute of Scientific and Technical Information of China (English)

    SHANG Dan; ZHENG Qichang; SONG Zifang; LI Yiqing; WANG Xiedan; GUO Xingjun

    2006-01-01

    The eukaryotic expression of human arresten geneand its effect on the proliferation of in vitro cultured vascular smooth cells (VSMCs) in vitro were investigated. COS-7 cells were transfected with recombinant eukaryotic expression plasmid pSecTag2-AT or control plasmid pSecTag2 mediated by liposome. Forty-eight h after transfection, reverse transcription-polymerase chain reaction (RT-PCR) was used to detect the expression of arresten mRNA in the cells,while Western blot assay was applied to detect the expression of arresten protein in concentrated supernatant. Primary VSMCs from thoracic aorta of male Sprague-Dawley rats were cultured using the tissue explant method, and identified by immunohistochemical staining with a smooth muscle-specific anti-αactin monoclonal antibody before serial subcultivation. VSMCs were then co-cultured with the concentrated supernatant and their proliferation was detected using Cell Counting Kit-8 (CCK-8) in vitro. The results showed that RT-PCR revealed that the genome of arresten-transfected cells contained a 449 bp specific fragment of arresten gene, suggesting the successful transfection. Successful protein expression in supernatants was confirmed by Western blot. CCK-8 assay showed that the proliferation of VSMCs were inhibited significantly by arresten protein as compared with control cells (F=40.154, P<0.01). It was concluded that arresten protein expressed in eukaryotic cells can inhibit proliferation of VSMCs effectively in vitro, which would provide possibility to the animal experiments.

  13. Original Research: Combined model of bladder detrusor smooth muscle and interstitial cells.

    Science.gov (United States)

    Rosenberg, Josef; Byrtus, Miroslav; Stengl, Milan

    2016-10-01

    Although patients with lower urinary tract symptoms constitute a large and still growing population, understanding of bladder detrusor muscle physiology remains limited. Understanding the interactions between the detrusor smooth muscle cells and other bladder cell types (e.g. interstitial cells, IC) that may significantly contribute to coordinating and modulating detrusor contractions represents a considerable challenge. Computer modeling could help to elucidate some properties that are difficult to address experimentally; therefore, we developed in silico models of detrusor smooth muscle cell and interstitial cells, coupled through gap junctions. The models include all of the major ion conductances and transporters described in smooth muscle cell and interstitial cells in the literature. The model of normal detrusor muscle (smooth muscle cell and interstitial cells coupled through gap junctions) completely reproduced the experimental results obtained with detrusor strips in the presence of several pharmacological interventions (ryanodine, caffeine, nimodipine), whereas the model of smooth muscle cell alone (without interstitial cells) failed to reproduce the experimental results. Next, a model of overactive bladder, a highly prevalent clinical condition in both men and women with increasing incidence at older ages, was produced by modifying several processes as reported previously: a reduction of Ca(2+)-release through ryanodine receptors and a reduction of Ca(2+)-dependent K(+)-conductance with augmented gap junctional coupling. This model was also able to reproduce the pharmacological modulation of overactive bladder. In conclusion, a model of bladder detrusor muscle was developed that reproduced experimental results obtained in both normal and overactive bladder preparations. The results indicate that the non-smooth muscle cells of the detrusor (interstitial cells) contribute significantly to the contractile behavior of bladder detrusor muscle and should not be

  14. Correlation between the distribution of smooth muscle or non muscle myosins and alpha-smooth muscle actin in normal and pathological soft tissues.

    Science.gov (United States)

    Benzonana, G; Skalli, O; Gabbiani, G

    1988-01-01

    The distribution of smooth muscle (SM) and non muscle myosins was compared with that of alpha-SM actin in various normal and pathological tissues and in cultured cells by means of indirect immunofluorescence using a monoclonal antibody specific for alpha-SM actin [anti-alpha sm-1, Skalli et al., 1986b] and two polyclonal antibodies raised against bovine aortic myosin (ABAM) and human platelet myosin (AHPM), respectively. In normal tissues ABAM stained vascular and parenchymal smooth muscle cells (SMC), myoepithelial cells and myoid cells of the testis in a pattern similar to that reported by other authors with antisera raised against non vascular SM myosin. Cells stained with ABAM were always positive for anti-alpha sm-1. In human and experimental atheromatous plaques, most cells were positive for AHPM; a variable proportion was also stained for ABAM plus anti-alpha sm-1. Myofibroblasts from rat granulation tissue, Dupuytren's nodule and stroma from breast carcinoma were constantly positive for AHPM and negative for ABAM; however, myofibroblasts from Dupuytren's nodule and breast carcinoma were anti-alpha sm-1 positive. Early primary cultures of rat aortic SMC were positive for ABAM and anti-alpha sm-1 and became negative for ABAM and positive for AHPM after a few days in culture. They remained positive for AHPM and anti-alpha sm-1 after passages; the staining of AHPM and anti-alpha sm-1 appeared to be colocalized along the same stress fibers. These results may be relevant for the understanding of SMC function and adaptation, and show that in non malignant SMC proliferation, alpha-SM actin represents a more general marker of SM origin than SM myosin.

  15. Shortening induced effects on force (re)development in pig urinary smooth muscle

    NARCIS (Netherlands)

    E. van Asselt (Els); J.J.M. Pel (Johan); R. van Mastrigt (Ron)

    2007-01-01

    textabstractIntroduction: When muscle is allowed to shorten during an active contraction, the maximum force that redevelops after shortening is smaller than the isometric force at the same muscle length without prior shortening. We studied the course of force redevelopment after shortening in smooth

  16. A Simple, Inexpensive Model to Demonstrate How Contraction of GI Longitudinal Smooth Muscle Promotes Propulsion

    Science.gov (United States)

    Lujan, Heidi L.; DiCarlo, Stephen E.

    2015-01-01

    Peristalis is a propulsive activity that involves both circular and longitudinal muscle layers of the esophagus, distal stomach, and small and large intestines. During peristalsis, the circular smooth muscle contracts behind (on the orad side) the bolus and relaxes in front (on the aborad side) of the bolus. At the same time, the longitudinal…

  17. The force recovery following repeated quick releases applied to pig urinary bladder smooth muscle

    NARCIS (Netherlands)

    R. van Mastrigt (Ron)

    1991-01-01

    textabstractA method for measuring several quick-releases during one contraction of a pig urinary bladder smooth muscle preparation was developed. The force recovery following quick release in this muscle type was studied by fitting a multiexponential model to 926 responses measured during the first

  18. Dual ERK and phosphatidylinositol 3-kinase pathways control airway smooth muscle proliferation : differences in asthma

    NARCIS (Netherlands)

    Burgess, Janette K; Lee, Jin Hee; Ge, Qi; Ramsay, Emma E; Poniris, Maree H; Parmentier, Johannes; Roth, Michael; Johnson, Peter R A; Hunt, Nicholas H; Black, Judith L; Ammit, Alaina J

    2008-01-01

    Hyperplasia of airway smooth muscle (ASM) within the bronchial wall of asthmatic patients has been well documented and is likely due to increased muscle proliferation. We have shown that ASM cells obtained from asthmatic patients proliferate faster than those obtained from non-asthmatic patients. In

  19. YFa and analogs: Investigation of opioid receptors in smooth muscle contraction

    Institute of Scientific and Technical Information of China (English)

    Krishan Kumar; Ritika Goyal; Annu Mudgal; Anita Mohan; Santosh Pasha

    2011-01-01

    AIM: To study the pharmacological profile and inhibition of smooth muscle contraction by YFa and its analogs in conjunction with their receptor selectivity. METHODS: The effects of YFa and its analogs (D-Ala2) YFa, Y (D-Ala2) GFMKKKFMRF amide and Des-Phe- YGGFMKKKFMR amide in guinea pig ileum (GPI) and mouse vas deferens (MVD) motility were studied using an isolated tissue organ bath system, and morphine and DynA (1-13) served as controls. Acetylcholine was used for muscle stimulation. The observations were validated by specific antagonist pretreatment experiments using naloxonazine, naltrindole and norbinaltorphimine norBNI. RESULTS: YFa did not demonstrate significant inhibition of GPI muscle contraction as compared with morphine (15% vs 62%, P = 0.0002), but moderate inhibition of MVD muscle contraction, indicating the role of κ opioid receptors in the contraction. A moderate inhibition of GPI muscles by (Des-Phe) YFa revealed the role of anti-opiate receptors in the smooth muscle contraction. (D-Ala-2) YFa showed significant inhibition of smooth muscle contraction, indicating the involvement of mainly d receptors in MVD contraction. These results were supported by specific antagonist pretreatment assays. CONCLUSION: YFa revealed its side-effect-free analgesic properties with regard to arrest of gastrointestinal transit. The study provides evidences for the involvement of κ and anti-opioid receptors in smooth muscle contraction.

  20. Shortening induced effects on force (re)development in pig urinary smooth muscle

    OpenAIRE

    van Asselt, Els; Pel, Johan; van Mastrigt, Ron

    2007-01-01

    textabstractIntroduction: When muscle is allowed to shorten during an active contraction, the maximum force that redevelops after shortening is smaller than the isometric force at the same muscle length without prior shortening. We studied the course of force redevelopment after shortening in smooth muscle to unravel the mechanism responsible for this deactivation. Method: In a first series of measurements the shortening velocity was varied resulting in different shortening amplitudes. In a s...

  1. Time course of isotonic shortening and the underlying contraction mechanism in airway smooth muscle.

    Science.gov (United States)

    Syyong, Harley T; Raqeeb, Abdul; Paré, Peter D; Seow, Chun Y

    2011-09-01

    Although the structure of the contractile unit in smooth muscle is poorly understood, some of the mechanical properties of the muscle suggest that a sliding-filament mechanism, similar to that in striated muscle, is also operative in smooth muscle. To test the applicability of this mechanism to smooth muscle function, we have constructed a mathematical model based on a hypothetical structure of the smooth muscle contractile unit: a side-polar myosin filament sandwiched by actin filaments, each attached to the equivalent of a Z disk. Model prediction of isotonic shortening as a function of time was compared with data from experiments using ovine tracheal smooth muscle. After equilibration and establishment of in situ length, the muscle was stimulated with ACh (100 μM) until force reached a plateau. The muscle was then allowed to shorten isotonically against various loads. From the experimental records, length-force and force-velocity relationships were obtained. Integration of the hyperbolic force-velocity relationship and the linear length-force relationship yielded an exponential function that approximated the time course of isotonic shortening generated by the modeled sliding-filament mechanism. However, to obtain an accurate fit, it was necessary to incorporate a viscoelastic element in series with the sliding-filament mechanism. The results suggest that a large portion of the shortening is due to filament sliding associated with muscle activation and that a small portion is due to continued deformation associated with an element that shows viscoelastic or power-law creep after a step change in force.

  2. Smooth muscle cell-derived carbon monoxide is a regulator of vascular cGMP.

    Science.gov (United States)

    Morita, T; Perrella, M A; Lee, M E; Kourembanas, S

    1995-02-28

    Carbon monoxide (CO) is a product of the enzyme heme oxygenase (HO; EC 1.14.99.3). In vascular smooth muscle cells, exogenously administered CO increases cyclic guanosine 3',5'-monophosphate (cGMP), which is an important regulator of vessel tone. We report here that smooth muscle cells produce CO via HO and that it regulates cGMP levels in these cells. Hypoxia, which has profound effects on vessel tone, significantly increased the transcriptional rate of the HO-1 gene resulting in corresponding increases of its mRNA and HO enzymatic activity. In addition, under the same conditions, rat aortic and pulmonary artery smooth muscle cells accumulated high levels of cGMP following a similar time course to that of HO-1 production. The increased accumulation of cGMP in smooth muscle cells required the enzymatic activity of HO, since it was abolished by a specific HO inhibitor, tin protoporphyrin. In contrast, N omega-nitro-L-arginine, a potent inhibitor of nitric oxide (NO) synthesis, had no effect on cGMP produced by smooth muscle cells, indicating that NO is not responsible for the activation of guanylyl cyclase in this setting. Furthermore, conditioned medium from hypoxic smooth muscle cells stimulated cGMP production in recipient cells and this stimulation was completely inhibited by tin protoporphyrin or hemoglobin, an inhibitor of CO production and a scavenger of CO, respectively. This report shows that HO-1 is expressed by vascular smooth muscle cells and that its product, CO, may regulate vascular tone under physiologic and pathophysiologic (such as hypoxic) conditions.

  3. Pentosan polysulfate decreases prostate smooth muscle proliferation and extracellular matrix turnover.

    Science.gov (United States)

    Elliot, S J; Zorn, B H; McLeod, D G; Moul, J W; Nyberg, L; Striker, L J; Striker, G E

    2003-01-01

    Benign prostatic hyperplasia (BPH) involves proliferation of smooth muscle cells and increased deposition of extracellular matrix (ECM). We recently found that pentosan polysulfate (PPS) has marked effects on growth and ECM of smooth muscle cells derived from vascular tissues. We examined smooth muscle cells cultured from human prostates and the effects of PPS on their growth and ECM production. Fragments of surgical prostatectomy specimens were diced, digested with collagenase (0.01%), and placed in culture medium supplemented with 20% fetal bovine serum. Outgrowths of elongated cells were characterized by light microscopic examination and immunohistochemical techniques by the presence of F-actin, alpha-smooth muscle actin, and myosin, which is a characteristic of smooth muscle cells. Two independent isolates were propagated, and growth curves and ECM production were assessed in the presence and absence of PPS (10 or 100 microg/ml). PPS decreased cell number beginning at day 1 and throughout the incubation period, up to 4 days. The amount of the ECM degradative enzymes, metallo-proteinases MMP-9 and MMP-2, was examined by zymography. PPS did not alter the amount of MMP-2 in the supernatants but MMP-9 was increased 234.4 +/- 17.23-fold over control cells. Tissue inhibitor of MMP (TIMPS), examined by reverse zymography, increased 200% over control. The amount of alpha I type (IV) and alpha I type (I) collagen released in the supernatant, measured by ELISA, significantly decreased in PPS-treated cultures. In conclusion, we found that the administration of PPS decreased proliferation as well as ECM production in prostate smooth muscle. Since smooth muscle proliferation and ECM are involved in the pathophysiology of BPH, PPS may have therapeutic potential.

  4. Deletion of Dicer in smooth muscle affects voiding pattern and reduces detrusor contractility and neuroeffector transmission.

    Directory of Open Access Journals (Sweden)

    Mardjaneh Karbalaei Sadegh

    Full Text Available MicroRNAs have emerged as important regulators of smooth muscle phenotype and may play important roles in pathogenesis of various smooth muscle related disease states. The aim of this study was to investigate the role of miRNAs for urinary bladder function. We used an inducible and smooth muscle specific Dicer knockout (KO mouse which resulted in significantly reduced levels of miRNAs, including miR-145, miR-143, miR-22, miR125b-5p and miR-27a, from detrusor preparations without mucosa. Deletion of Dicer resulted in a disturbed micturition pattern in vivo and reduced depolarization-induced pressure development in the isolated detrusor. Furthermore, electrical field stimulation revealed a decreased cholinergic but maintained purinergic component of neurogenic activation in Dicer KO bladder strips. The ultrastructure of detrusor smooth muscle cells was well maintained, and the density of nerve terminals was similar. Western blotting demonstrated reduced contents of calponin and desmin. Smooth muscle α-actin, SM22α and myocardin were unchanged. Activation of strips with exogenous agonists showed that depolarization-induced contraction was preferentially reduced; ATP- and calyculin A-induced contractions were unchanged. Quantitative real time PCR and western blotting demonstrated reduced expression of Cav1.2 (Cacna1c. It is concluded that smooth muscle miRNAs play an important role for detrusor contractility and voiding pattern of unrestrained mice. This is mediated in part via effects on expression of smooth muscle differentiation markers and L-type Ca(2+ channels in the detrusor.

  5. Effects and its possible mechanism of Radix Saposhnikoviae on rat colonic smooth muscle in vitro

    Institute of Scientific and Technical Information of China (English)

    Zhenqing Liu; Tao Lü; Ping Hu; Muxin Wei

    2009-01-01

    Objective: To determine the effect of different concentrations of Radix Saposhnikoviae (RS) on the contraction of smooth muscle strips and the Ca2. mobilization of cultured smooth muscle cells of rat colon and its possible mechanism of action. Methods: Strips of rat colon longitudinal muscle were prepared and smooth muscle cells from rat colon were isolated and cultured. In the experiments, in vitro muscle strips were suspended in an organ bath and the contraction of the strips was recorded. In the cell-experiments, intracellular Ca2+ was assessed using fluorescent intensity (FI) of smooth muscle cells loaded with Fluo-4/AM, measured with a laser scanning confocal microscope and related software. Results: In the in vitro experiment, RS (0.02, 0.2, 2, 20 g/L) inhibited contraction of muscle strips in a concentration-dependent manner, and this inhibition was significant for the three higher RS concentrations (P < 0.01) for both Peak (the maximal contraction amplitude) and Area (the area under curves), Similarly, RS inhibited Ach-induced contraction. In these experiments the inhibition of the Peak values in the RS 2 and 20 g/L groups was significant (P < 0.01), as was the inhibition of the Area values in all RS groups (P < 0.05). Naloxone and propranolol did not significantly affect the inhibitory effect of RS on smooth muscle contractility, while phentolamine significantly reduced the inhibitory effect (P < 0.01). In experiments using primary smooth muscle cell cultures in Ca2+-containing buffer, the post-treatment fluorescence of cells in the RS 0.2, 2 and 20 g/L groups differed significantly from pre-treatment values (P < 0.05), and the percent inhibition of fluorescence in the RS 2 g/L and 20 g/L groups was significant (P < 0.01). However, in Ca2+-free buffer, FS had no significant effect on cell fluorescence. Conclusion: RS inhibited both the spontaneous and Ach-stimulated contraction of rat colonic smooth muscle strips. This RS effect appeared to involve a

  6. Dysfunctional interaction of C/EBPα and the glucocorticoid receptor in asthmatic bronchial smooth-muscle cells

    NARCIS (Netherlands)

    Roth, Michael; Johnson, Peter R.A.; Borger, Peter; Bihl, Michel P.; Rüdiger, Jochen J.; King, Gregory G.; Ge, Qi; Hostettler, Katrin; Burgess, Janette K.; Black, Judith L.; Tamm, Michael

    2004-01-01

    BACKGROUND: Increased proliferation of bronchial smooth-muscle cells may lead to increased muscle mass in the airways of patients with asthma. The antiproliferative effect of glucocorticoids in bronchial smooth-muscle cells in subjects without asthma is mediated by a complex of the glucocorticoid re

  7. Expression pattern of fibroblast growth factors (FGFs), their receptors and antagonists in primary endothelial cells and vascular smooth muscle cells.

    Science.gov (United States)

    Antoine, M; Wirz, W; Tag, C G; Mavituna, M; Emans, N; Korff, T; Stoldt, V; Gressner, A M; Kiefer, P

    2005-06-01

    Fibroblast growth factors (FGFs) are important angiogenic growth factors. While basic FGF (FGF2) is well established as a potent inducer of angiogenesis much less is known about other FGFs possibly expressed by EC. We investigated the expression of all known FGFs, their main tyrosine kinase receptors and antagonists by RT-PCR analysis in human umbilical vascular endothelial cells (HUVECs) to obtain a complete expression profile of this important growth factor system in model endothelial cells (EC). In addition to FGFR1IIIc, which is considered as the major FGF receptor in EC, HUVECs express similar levels of FGFR3IIIc, detectable amounts of FGFR2IIIc and a new FGF receptor without an intracellular kinase domain (FGFR5). HUVECs express several secreted FGFs, including FGF5, 7, 8, 16 and 18 and two members of the fibroblast growth factor homologous factors (FHFs), not yet reported to be expressed in EC. The expression panel was compared with that obtained from human vascular smooth muscle cells (VSMCs) and human aortic tissue. Human umbilical artery smooth muscle cells (HUASMCs) and HUVECs express the identical FGF receptor and ligand panel implicating that both cell types act, according the FGF signals more as an entity than as individual cell types. Expression of Fgf1, 2, 7, 16 and 18 and the antagonists Sprouty 2,3 and 4 was demonstrated for all analysed cDNAs. The IIIc isoforms of FGFR1 and 2 and the novel FGFR5 were expressed in the aorta, but expression of the FGF receptor 3 was not detected in cDNAs derived from aortic tissue. In the VSMC of rat aortic tissue and in HUASM cultured cells we could demonstrate FGF18 immunoreactivity in the nucleus of the cells. The expression of several secreted FGFs by EC may focus the view more on their paracrine effects on neighbouring cells during tissue regeneration or tumor formation.

  8. Endothelium- and smooth muscle-dependent vasodilator effects of Citrus aurantium L. var. amara: Focus on Ca(2+) modulation.

    Science.gov (United States)

    Kang, Purum; Ryu, Kang-Hyun; Lee, Jeong-Min; Kim, Hyo-Keun; Seol, Geun Hee

    2016-08-01

    Neroli, the essential oil of Citrus aurantium L. var. amara, is a well-characterized alleviative agent used to treat cardiovascular symptoms. However, because it has been found to have multiple effects, its mechanism of action requires further exploration. We sought to clarify the mechanism underlying the actions of neroli in mouse aorta. In aortic rings from mice precontracted with prostaglandin F2 alpha, neroli induced vasodilation. However, relaxation effect of neroli was decreased in endothelium-denuded ring or pre-incubation with the nitric oxide synthase inhibitor NG-Nitro-l-arginine-methyl ester (L-NAME). And also, neroli-induced relaxation was also partially reversed by 1H-[1,2,4] oxadiazolo [4,3-a] quinoxalin-1-one (ODQ), a soluble guanylyl cyclase (sGC) inhibitor. In addition, neroli inhibited extracellular Ca(2+)-dependent, depolarization-induced contraction, an effect that was concentration dependent. Pretreatment with the non-selective cation channel blocker, Ni(2+), attenuated neroli-induced relaxation, whereas the K(+) channel blocker, tetraethylammonium chloride, had no effect. In the presence of verapamil, added to prevent Ca(2+) influx via smooth muscle voltage-gated Ca(2+) channels, neroli-induced relaxation was reduced by the ryanodine receptor (RyR) inhibitor ruthenium red. Our findings further indicate that the endothelial component of neroli-induced vasodilation is partly mediated by the NO-sGC pathway, whereas the smooth muscle component involves modulation of intracellular Ca(2+) concentration through inhibition of cation channel-mediated extracellular Ca(2+) influx and store-operated Ca(2+) release mediated by the RyR signaling pathway.

  9. Characterization of cyclic AMP accumulation in cultured human corpus cavernosum smooth muscle cells.

    Science.gov (United States)

    Palmer, L S; Valcic, M; Melman, A; Giraldi, A; Wagner, G; Christ, G J

    1994-10-01

    Intracavernous pharmacotherapy relies heavily on the use of vasoactive agents which act by increasing intracellular cAMP levels in human corpus cavernosum smooth muscle. Yet little is known about the cAMP generating system in this tissue, and how it may affect observed patient variability. Thus, the goal of these studies was to better characterize the biochemistry of cAMP formation in human corpus cavernosum smooth muscle, and thus provide more insight into the mechanisms of corporal smooth muscle relaxation in vivo. We studied both receptor and nonreceptor mediated increases in cAMP formation in short-term cultures of human corpus cavernosum smooth muscle cells. Both isoproterenol (ISO) and prostaglandin E1 (PGE1) produced concentration-dependent increases in cAMP, but histamine, serotonin and vasoactive intestinal polypeptide did not. Forskolin, a relatively specific activator of adenylate cyclase, was also a potent stimulant of cAMP formation in these cells. Moreover, there was a direct correlation between the degree of forskolin-induced cAMP accumulation in cultured corporal smooth muscle cells and the magnitude of the forskolin-induced relaxation response of precontracted isolated corporal smooth muscle strips. Prostaglandin E1 and ISO concentration response curves (CRCs) were then assayed in the absence and presence of subthreshold forskolin (0.1 microM.). In the presence of forskolin, the calculated maximal PGE1-induced cAMP accumulation (Emax) was significantly greater than that elicited by PGE1 alone, ISO alone, or ISO + forskolin (p protocol was used to demonstrate that both 80:20 and 70:30 FMRs (but not 95:5 or 90:10), were associated with significantly greater cAMP Emax values than that observed for PGE1 alone (p < or = 0.01). These data provide direct evidence that the degree of cAMP formation in cultured corporal smooth muscle cells is strongly correlated with the magnitude of relaxation of isolated corporal smooth muscle strips. In addition, since

  10. Captopril augments acetylcholine-induced bronchial smooth muscle contractions in vitro via kinin-dependent mechanisms.

    Science.gov (United States)

    Agrawal, Naman; Akella, Aparna; Deshpande, Shripad B

    2016-06-01

    Angiotensin converting enzyme (ACE) inhibitors therapy is aassociated with bothersome dry cough as an adverse effect. The mechanisms underlying this adverse effect are not clear. Therefore, influence of captopril (an ACE inhibitor) on acetylcholine (ACh)-induced bronchial smooth muscle contractions was investigated. Further, the mechanisms underlying the captopril-induced changes were also explored. In vitro contractions of rat bronchial smooth muscle to cumulative concentrations of ACh were recorded before and after exposure to captopril. Further, the involvement of kinin and inositol triphosphate (IP₃) pathways for captopril-induced alterations were explored. ACh produced concentration-dependent (5-500 µM) increase in bronchial smooth muscle contractions. Pre-treatment with captopril augmented the ACh-induced contractions at each concentration significantly. Pre-treatment with aprotinin (kinin synthesis inhibitor) or heparin (inositol triphosphate, IP₃-inhibitor), blocked the captopril-induced augmentation of bronchial smooth muscle contractions evoked by ACh. Further, captopril-induced augmentation was absent in calcium-free medium. These results suggest that captopril sensitizes bronchial smooth muscles to ACh-induced contractions. This sensitization may be responsible for dry cough associated with captopril therapy.

  11. Effect of 1,1-dimethylphenyl 1,4-piperazinium on mouse tracheal smooth muscle responsiveness.

    Science.gov (United States)

    Dorion, G; Israël-Assayag, E; Beaulieu, M J; Cormier, Y

    2005-06-01

    Bronchial hyperresponsiveness is one of the main features of asthma. A nicotinic receptor agonist, 1,1-dimethylphenyl 1,4-piperazinium (DMPP), has been shown to have an inhibitory effect on airway response to methacholine in an in vivo model of asthma. The aims of this study were to 1) verify whether nicotinic acetylcholine receptors (nAChR) were present on mouse tracheal smooth muscle, 2) verify whether bronchoprotection observed in mice was due to a direct effect on airway smooth muscle, and 3) compare the effects of nicotinic agonists to that of salbutamol. Alpha3-, alpha4-, and alpha7-nAChR subunits were detected by immunofluorescence on tracheal tissues from normal BALB/c mice. The effect of DMPP on tracheal responsiveness was verified by an isometric method. Tracheas were isolated from normal mice, placed in organ baths, and contracted with a single dose of methacholine. Cumulative doses of DMPP or salbutamol were added to the baths. Results show that mouse tracheal smooth muscle is positive for alpha4- and alpha7-nAChR subunits and that the epithelium is positive for alpha3-, alpha4-, and alpha7-subunits. DMPP induced a greater dose-dependent relaxation of tracheal smooth muscles precontracted with methacholine than with salbutamol. These results suggest that the smooth muscle-relaxing effect of DMPP could have some interest in the treatment of obstructive pulmonary diseases.

  12. Gliosarcoma with prominent smooth muscle component (gliomyosarcoma: A report of 10 cases

    Directory of Open Access Journals (Sweden)

    Manisha Khanna

    2011-01-01

    Full Text Available Background and Aim: Gliosarcoma (GS is an uncommon malignant tumor of the brain, consisting of malignant glial, usually a glioblastoma (GB, as well as sarcomatous component; the latter is usually in the form of fibrosarcoma. We report a series of 10 GSs with prominent smooth muscle component, which is a rare occurrence. Settings and Design: Out of a series of 225 cases of GB admitted in our hospital, 10 were diagnosed as GS with prominent smooth muscle component, gliomyosarcoma (GMS. Materials and Methods: This is an observational study based on the experience with 225 cases of GB, encountered between 1995 and 2008, in our hospital. The tumors showing prominent spindle cell component were stained with reticulin and 20 with strongly positive reticulin stain were diagnosed as GS. They were further studied by immunohistochemical staining for glial fibrillary acidic protein (GFAP, smooth muscle actin (SMA, desmin and factor VIII antigen. Results: Out of 225 cases of GB, 20 were diagnosed as GS. Ten of these showed prominent smooth muscle component and were diagnosed as GMS. They revealed varying degrees of SMA and factor VIII Ag positivity. In the sarcomatous component, SMA and factor VIII positive cells were seen close to the vessel walls as well as away from them. Conclusion: GMS containing prominent smooth muscle component may not be as rare as has been reported in the literature. Both GS and GMS appear to arise from the vessel wall at least in some cases, suggesting their possible vascular origin.

  13. Notch signal reception is required in vascular smooth muscle cells for ductus arteriosus closure.

    Science.gov (United States)

    Krebs, Luke T; Norton, Christine R; Gridley, Thomas

    2016-02-01

    The ductus arteriosus is an arterial vessel that shunts blood flow away from the lungs during fetal life, but normally occludes after birth to establish the adult circulation pattern. Failure of the ductus arteriosus to close after birth is termed patent ductus arteriosus, and is one of the most common congenital heart defects. Our previous work demonstrated that vascular smooth muscle cell expression of the Jag1 gene, which encodes a ligand for Notch family receptors, is essential for postnatal closure of the ductus arteriosus in mice. However, it was not known what cell population was responsible for receiving the Jag1-mediated signal. Here we show, using smooth muscle cell-specific deletion of the Rbpj gene, which encodes a transcription factor that mediates all canonical Notch signaling, that Notch signal reception in the vascular smooth muscle cell compartment is required for ductus arteriosus closure. These data indicate that homotypic vascular smooth muscle cell interactions are required for proper contractile smooth muscle cell differentiation and postnatal closure of the ductus arteriosus in mice.

  14. Role of SM22 in the differential regulation of phasic vs. tonic smooth muscle.

    Science.gov (United States)

    Rattan, Satish; Ali, Mehboob

    2015-04-01

    Preliminary proteomics studies between tonic vs. phasic smooth muscles identified three distinct protein spots identified to be those of transgelin (SM22). The latter was found to be distinctly downregulated in the internal anal sphincter (IAS) vs. rectal smooth muscle (RSM) SMC. The major focus of the present studies was to examine the differential molecular control mechanisms by SM22 in the functionality of truly tonic smooth muscle of the IAS vs. the adjoining phasic smooth muscle of the RSM. We monitored SMC lengths before and after incubation with pFLAG-SM22 (for SM22 overexpression), and SM22 small-interfering RNA. pFLAG-SM22 caused concentration-dependent and significantly greater relaxation in the IAS vs. the RSM SMCs. Conversely, temporary silencing of SM22 caused contraction in both types of the SMCs. Further studies revealed a significant reverse relationship between the levels of SM22 phosphorylation and the amount of SM22-actin binding in the IAS and RSM SMC. Data showed higher phospho-SM22 levels and decreased SM22-actin binding in the IAS, and reverse to be the case in the RSM SMCs. Experiments determining the mechanism for SM22 phosphorylation in these smooth muscles revealed that Y-27632 (Rho kinase inhibitor) but not Gö-6850 (protein kinase C inhibitor) caused concentration-dependent decreased phosphorylation of SM22. We speculate that SM22 plays an important role in the regulation of basal tone via Rho kinase-induced phosphorylation of SM22.

  15. Rosuvastatin inhibits the smooth muscle cell proliferation by targeting TNFα mediated Rho kinase pathway

    Institute of Scientific and Technical Information of China (English)

    Xiao Sun; Hao Tong; Man Zhang; Xiao-Hang Wang

    2012-01-01

    Objective To investigate whether Tumor Necrosis Factor-alpha (TNFα) is capable of activating Rho kinase pathway which leads to smooth muscle cell proliferation and the intervention function of Rosuvastatin, and clarify the mechanism and intervention manner of anti-atherosclerosis by Rosuvastatin. Methods Wistar neonate rat smooth muscle cells were cultured, and the activity of cell proliferation was determined by methyl thiazolyl tetrazolium (MTT). The expression of Rho kinase genes after the stimulation of TNFα was evaluated by RT-PCR. Western blot method was used to measure the protein expression of proliferating cell nuclear antigen (PCNA) after TNFα stimulation and Rosuvastatin intervention in smooth muscle cell. Results The TNFα stimulation significantly enhanced the expression of Rho kinase and increased the expression of PCNA protein in smooth muscle cells (P < 0.05). These effects were positively correlated with prolonged treatment whereas additional Rosuvastatin administration inhibited the above-mentioned effects (P < 0.05). Conclusions The activation of TNFα mediated Rho kinase signaling pathway can significantly promote smooth muscle cell proliferation, and Rosuvastatin can not only inhibit this pathway but also the induced proliferation.

  16. Increased IGF-IEc expression and mechano-growth factor production in intestinal muscle of fibrostenotic Crohn's disease and smooth muscle hypertrophy.

    Science.gov (United States)

    Li, Chao; Vu, Kent; Hazelgrove, Krystina; Kuemmerle, John F

    2015-12-01

    The igf1 gene is alternatively spliced as IGF-IEa and IGF-IEc variants in humans. In fibrostenotic Crohn's disease, the fibrogenic cytokine TGF-β1 induces IGF-IEa expression and IGF-I production in intestinal smooth muscle and results in muscle hyperplasia and collagen I production that contribute to stricture formation. Mechano-growth factor (MGF) derived from IGF-IEc induces skeletal and cardiac muscle hypertrophy following stress. We hypothesized that increased IGF-IEc expression and MGF production mediated smooth muscle hypertrophy also characteristic of fibrostenotic Crohn's disease. IGF-IEc transcripts and MGF protein were increased in muscle cells isolated from fibrostenotic intestine under regulation by endogenous TGF-β1. Erk5 and MEF2C were phosphorylated in vivo in fibrostenotic muscle; both were phosphorylated and colocalized to nucleus in response to synthetic MGF in vitro. Smooth muscle-specific protein expression of α-smooth muscle actin, γ-smooth muscle actin, and smoothelin was increased in affected intestine. Erk5 inhibition or MEF2C siRNA blocked smooth muscle-specific gene expression and hypertrophy induced by synthetic MGF. Conditioned media of cultured fibrostenotic muscle induced muscle hypertrophy that was inhibited by immunoneutralization of endogenous MGF or pro-IGF-IEc. The results indicate that TGF-β1-dependent IGF-IEc expression and MGF production in patients with fibrostenotic Crohn's disease regulates smooth muscle cell hypertrophy a critical factor that contributes to intestinal stricture formation.

  17. Intimal smooth muscle cells are a source but not a sensor of anti-inflammatory CYP450 derived oxylipins.

    Science.gov (United States)

    Thomson, Scott; Edin, Matthew L; Lih, Fred B; Davies, Michael; Yaqoob, Muhammad M; Hammock, Bruce D; Gilroy, Derek; Zeldin, Darryl C; Bishop-Bailey, David

    2015-08-01

    Vascular pathologies are associated with changes in the presence and expression of morphologically distinct vascular smooth muscle cells. In particular, in complex human vascular lesions and models of disease in pigs and rodents, an intimal smooth muscle cell (iSMC) which exhibits a stable epithelioid or rhomboid phenotype in culture is often found to be present in high numbers, and may represent the reemergence of a distinct developmental vascular smooth muscle cell phenotype. The CYP450-oxylipin - soluble epoxide hydrolase (sEH) pathway is currently of great interest in targeting for cardiovascular disease. sEH inhibitors limit the development of hypertension, diabetes, atherosclerosis and aneurysm formation in animal models. We have investigated the expression of CYP450-oxylipin-sEH pathway enzymes and their metabolites in paired intimal (iSMC) and medial (mSMC) cells isolated from rat aorta. iSMC basally released significantly larger amounts of epoxy-oxylipin CYP450 products from eicosapentaenoic acid > docosahexaenoic acid > arachidonic acid > linoleic acid, and expressed higher levels of CYP2C12, CYP2B1, but not CYP2J mRNA compared to mSMC. When stimulated with the pro-inflammatory TLR4 ligand LPS, epoxy-oxylipin production did not change greatly in iSMC. In contrast, LPS induced epoxy-oxylipin products in mSMC and induced CYP2J4. iSMC and mSMC express sEH which metabolizes primary epoxy-oxylipins to their dihydroxy-counterparts. The sEH inhibitors TPPU or AUDA inhibited LPS-induced NFκB activation and iNOS induction in mSMC, but had no effect on NFκB nuclear localization or inducible nitric oxide synthase in iSMC; effects which were recapitulated in part by addition of authentic epoxy-oxylipins. iSMCs are a rich source but not a sensor of anti-inflammatory epoxy-oxylipins. Complex lesions that contain high levels of iSMCs may be more resistant to the protective effects of sEH inhibitors.

  18. Intimal smooth muscle cells are a source but not a sensor of anti-inflammatory CYP450 derived oxylipins

    Energy Technology Data Exchange (ETDEWEB)

    Thomson, Scott [Comparative Biomedical Sciences, Royal Veterinary College, Royal College Street, London NW1 0TU (United Kingdom); Edin, Matthew L.; Lih, Fred B. [Division of Intramural Research, NIEHS/NIH, Research Triangle Park, NC 27709 (United States); Davies, Michael [Comparative Biomedical Sciences, Royal Veterinary College, Royal College Street, London NW1 0TU (United Kingdom); Yaqoob, Muhammad M. [Barts and the London, Queen Mary University, Charterhouse Square, London EC1M 6BQ (United Kingdom); Hammock, Bruce D. [Department of Entomology and Comprehensive Cancer Center, University of California, Davies, CA 95616-8584 (United States); Gilroy, Derek [University College London, University Street, London (United Kingdom); Zeldin, Darryl C. [Division of Intramural Research, NIEHS/NIH, Research Triangle Park, NC 27709 (United States); Bishop-Bailey, David, E-mail: dbishopbailey@rvc.ac.uk [Comparative Biomedical Sciences, Royal Veterinary College, Royal College Street, London NW1 0TU (United Kingdom)

    2015-08-07

    Vascular pathologies are associated with changes in the presence and expression of morphologically distinct vascular smooth muscle cells. In particular, in complex human vascular lesions and models of disease in pigs and rodents, an intimal smooth muscle cell (iSMC) which exhibits a stable epithelioid or rhomboid phenotype in culture is often found to be present in high numbers, and may represent the reemergence of a distinct developmental vascular smooth muscle cell phenotype. The CYP450-oxylipin - soluble epoxide hydrolase (sEH) pathway is currently of great interest in targeting for cardiovascular disease. sEH inhibitors limit the development of hypertension, diabetes, atherosclerosis and aneurysm formation in animal models. We have investigated the expression of CYP450-oxylipin-sEH pathway enzymes and their metabolites in paired intimal (iSMC) and medial (mSMC) cells isolated from rat aorta. iSMC basally released significantly larger amounts of epoxy-oxylipin CYP450 products from eicosapentaenoic acid > docosahexaenoic acid > arachidonic acid > linoleic acid, and expressed higher levels of CYP2C12, CYP2B1, but not CYP2J mRNA compared to mSMC. When stimulated with the pro-inflammatory TLR4 ligand LPS, epoxy-oxylipin production did not change greatly in iSMC. In contrast, LPS induced epoxy-oxylipin products in mSMC and induced CYP2J4. iSMC and mSMC express sEH which metabolizes primary epoxy-oxylipins to their dihydroxy-counterparts. The sEH inhibitors TPPU or AUDA inhibited LPS-induced NFκB activation and iNOS induction in mSMC, but had no effect on NFκB nuclear localization or inducible nitric oxide synthase in iSMC; effects which were recapitulated in part by addition of authentic epoxy-oxylipins. iSMCs are a rich source but not a sensor of anti-inflammatory epoxy-oxylipins. Complex lesions that contain high levels of iSMCs may be more resistant to the protective effects of sEH inhibitors. - Highlights: • We examined oxylipin production in different

  19. [Influence of prostatilen on smooth muscle organs functional activity in surgical patients (clinical and experimental study)].

    Science.gov (United States)

    Al'-Shukri, S Kh; Aĭvazian, A I; Barabanov, S V; Barabanova, V V; Bobkov, Iu A; Gorbachev, A G; Parastaeva, M M

    1999-01-01

    The action of prostatilen on contractile activity of smooth muscles of isolated line slices of urine bladder of Wistar rats (myography) and arterial vessels of cat kidneys (resistography) was studied. On the basis of clinical cases effectiveness of prostatilen was analysed as a treatment restorting urine bladder function in acute reflex urinary retention after operations in the area of rectal sphincter, as well as in treatment of patients with chronic prostatitis. It is shown, that prostatilen produces contractile action on smooth muscles of renal blood vessels in cats and urine bladder walls in rats and it raises contractile activity of smooth muscles of human urine bladder. The results of experimental and clinical investigations make it possible to recommend the application of this bioregulating preparation for treatment and prophylaxis of disturbances in urination.

  20. Primary Intraosseous Smooth Muscle Tumor of Uncertain Malignant Potential: Original Report and Molecular Characterization

    Science.gov (United States)

    Kropp, Lauren; Siegal, Gene P.; Frampton, Garrett M.; Rodriguez, Michael G.; McKee, Svetlana; Conry, Robert M.

    2016-01-01

    We report the first case of primary intraosseous smooth muscle tumor of uncertain malignant potential (STUMP) which is analogous to borderline malignant uterine smooth muscle tumors so designated. The tumor presented in the femur of an otherwise healthy 30-year-old woman. Over a 3-year period, the patient underwent 11 biopsies or resections and 2 cytologic procedures. Multiple pathologists reviewed the histologic material including musculoskeletal pathologists but could not reach a definitive diagnosis. However, metastases eventually developed and were rapidly progressive and responsive to gemcitabine and docetaxel. Molecular characterization and ultrastructural analysis was consistent with smooth muscle origin, and amplification of unmutated chromosome 12p and 12q segments appears to be the major genomic driver of this tumor. Primary intraosseous STUMP is thought to be genetically related to leiomyosarcoma of bone, but likely representing an earlier stage of carcinogenesis. Wide excision and aggressive follow-up is warranted for this potentially life-threatening neoplasm. PMID:27994831

  1. Cinematographic analysis of vascular smooth muscle cell interactions with extracellular matrix.

    Science.gov (United States)

    Absher, M; Baldor, L

    1991-01-01

    The interactions of vascular smooth muscle cells with growth modulators and extracellular matrix molecules may play a role in the proliferation and migration of these cells after vascular injury and during the development of atherosclerosis. Time-lapse cinematographic techniques have been used to study cell division and migration of bovine carotid artery smooth muscle cells in response to matrix molecules consisting of solubilized basement membrane (Matrigel) and type I collagen. When cells were grown adjacent to Matrigel, both migration and cell proliferation were increased and interdivision time was shortened. Cells grown in Matrigel or in type I collagen had markedly reduced migration rates but interdivision time was not altered. Further, diffusible components of the Matrigel were found to stimulate proliferation of the smooth muscle cells.

  2. Smooth muscle relaxant activity of Crocus sativus (saffron) and its constituents: possible mechanisms.

    Science.gov (United States)

    Mokhtari-Zaer, Amin; Khazdair, Mohammad Reza; Boskabady, Mohammad Hossein

    2015-01-01

    Saffron, Crocus sativus L. (C. sativus) is rich in carotenoids and used in traditional medicine for treatment of various conditions such as coughs, stomach disorders, amenorrhea, asthma and cardiovascular disorders. These therapeutic effects of the plant are suggested to be due to its relaxant effect on smooth muscles. The effect of C. sativus and its constituents on different smooth muscles and the underlying mechanisms have been studied. Several studies have shown the relaxant effects of C. sativus and its constituents including safranal, crocin, crocetin and kaempferol on blood vessels. In addition, it was reported that saffron stigma lowers systolic blood pressure. The present review highlights the relaxant effects of C. sativus and its constituents on various smooth muscles. The possible mechanisms of this relaxing effect including activation of ß2-adrenoceptors, inhibition of histamine H1 and muscarinic receptors and calcium channels and modulation of nitric oxide (NO) are also reviewed.

  3. Smooth muscle relaxant activity of Crocus sativus (saffron and its constituents: possible mechanisms

    Directory of Open Access Journals (Sweden)

    Amin Mokhtari-Zaer

    2015-08-01

    Full Text Available Saffron, Crocus sativus L. (C. sativus is rich in carotenoids and used in traditional medicine for treatment of various conditions such as coughs, stomach disorders, amenorrhea, asthma and cardiovascular disorders. These therapeutic effects of the plant are suggested to be due to its relaxant effect on smooth muscles. The effect of C. sativus and its constituents on different smooth muscles and the underlying mechanisms have been studied. Several studies have shown the relaxant effects of C. sativus and its constituents including safranal, crocin, crocetin and kaempferol on blood vessels. In addition, it was reported that saffron stigma lowers systolic blood pressure. The present review highlights the relaxant effects of C. sativus and its constituents on various smooth muscles. The possible mechanisms of this relaxing effect including activation of ß2-adrenoceptors, inhibition of histamine H1 and muscarinic receptors and calcium channels and modulation of nitric oxide (NO are also reviewed.

  4. An In Vitro Murine Model of Vascular Smooth Muscle Cell Mineralization.

    Science.gov (United States)

    Kelynack, Kristen J; Holt, Stephen G

    2016-01-01

    Vascular calcification (VC) is seen ubiquitously in aging blood vessels and prematurely in disease states like renal failure. It is thought to be driven by a number of systemic and local factors that lead to extra-osseous deposition of mineral in the vascular wall and valves as a common endpoint. The response of resident vascular smooth muscle cell to these dystrophic signals appears to be important in this process. Whilst in vivo models allow the observation of global changes in a pro-calcific environment, identifying the specific cells and mechanisms involved has been largely garnered from in vitro experiments, which provide added benefits in terms of reproducibility, cost, and convenience. Here we describe a 7-21 day cell culture model of calcification developed using immortalized murine vascular smooth muscle cells (MOVAS-1). This model provides a method by which vascular smooth muscle cell involvement and manipulation within a mineralizing domain can be studied.

  5. A continuum model for excitation-contraction of smooth muscle under finite deformations.

    Science.gov (United States)

    Sharifimajd, Babak; Stålhand, Jonas

    2014-08-21

    The main focus in most of the continuum based muscle models is the mechanics of muscle contraction while other physiological processes governing muscle contraction, e.g., cell membrane excitation and activation, are ignored. These latter processes are essential to initiate contraction and to determine the amount of generated force, and by excluding them, the developed model cannot replicate the true behavior of the muscle in question. The aim of this study is to establish a thermodynamically and physiologically consistent framework which allows us to model smooth muscle contraction by including cell membrane excitability and kinetics of myosin phosphorylation, along with dynamics of smooth muscle contraction. The model accounts for these processes through a set of coupled dissipative constitutive equations derived by applying first principles. To show the performance of the derived model, it is evaluated for two different cases: a chemo-mechanical study of pig taenia coli cells where the excitation process is excluded, and an electro-chemo-mechanical study of rat myometrium. The results show that the model is able to replicate important aspects of the smooth muscle excitation-contraction process.

  6. Value of counting positive PHH3 cells in the diagnosis of uterine smooth muscle tumors.

    Science.gov (United States)

    Pang, Shu-Jie; Li, Cheng-Cheng; Shen, Yan; Liu, Yian-Zhu; Shi, Yi-Quan; Liu, Yi-Xin

    2015-01-01

    The diagnosis of uterine smooth muscle tumors including leiomyosarcomas (LMS), smooth muscle tumors of uncertain malignant potential (STUMP), bizarre (atypical) leiomyoma (BLM), mitotically active leiomyoma (MAL) and leiomyoma (LM) depends on a combination of microscopic features, such as mitoses, cytologic atypia, and coagulative tumor cell necrosis. However, a small number of these tumors still pose difficult diagnostic challenges. The assessment of accurate mitotic figures (MF) is one of the major parameters in the proper classification of uterine smooth muscle tumors. This assessment can be hampered by the presence of increased number of apoptotic bodies or pyknotic nuclei, which frequently mimic mitoses. Phospho-histone H3 (PHH3) is a recently described immunomarker specific for cells undergoing mitoses. In our study, we collected 132 cases of uterine smooth muscle tumors, including 26 LMSs, 16 STUMPs, 30 BLMs, 30 MALs and 30 LMs. We used mitosis specific marker PHH3 to count mitotic indexes (MI) of uterine smooth muscle tumors and compared with the mitotic indexes of hematoxylin and eosin (H&E). There is a positive correlation with the number of mitotic figures in H&E-stained sections and PHH3-stained sections (r=0.944, P0.05). The counting value of PHH3 in LMSs have significantly higher than STUMPs, BLMs, MALs and LMs (Pnumber of mitotic indexes in H&E. To conclude, our results show that counting PHH3 is a useful index in the diagnosis of uterine smooth muscle tumors and it can provide a more accurate index instead of the time-honored mitotic figure counts at a certain ratio.

  7. Smooth Muscle Endothelin B Receptors Regulate Blood Pressure but Not Vascular Function or Neointimal Remodeling.

    Science.gov (United States)

    Miller, Eileen; Czopek, Alicja; Duthie, Karolina M; Kirkby, Nicholas S; van de Putte, Elisabeth E Fransen; Christen, Sibylle; Kimmitt, Robert A; Moorhouse, Rebecca; Castellan, Raphael F P; Kotelevtsev, Yuri V; Kuc, Rhoda E; Davenport, Anthony P; Dhaun, Neeraj; Webb, David J; Hadoke, Patrick W F

    2017-02-01

    The role of smooth muscle endothelinB (ETB) receptors in regulating vascular function, blood pressure (BP), and neointimal remodeling has not been established. Selective knockout mice were generated to address the hypothesis that loss of smooth muscle ETB receptors would reduce BP, alter vascular contractility, and inhibit neointimal remodeling. ETB receptors were selectively deleted from smooth muscle by crossing floxed ETB mice with those expressing cre-recombinase controlled by the transgelin promoter. Functional consequences of ETB deletion were assessed using myography. BP was measured by telemetry, and neointimal lesion formation induced by femoral artery injury. Lesion size and composition (day 28) were analyzed using optical projection tomography, histology, and immunohistochemistry. Selective deletion of ETB was confirmed by genotyping, autoradiography, polymerase chain reaction, and immunohistochemistry. ETB-mediated contraction was reduced in trachea, but abolished from mesenteric veins, of knockout mice. Induction of ETB-mediated contraction in mesenteric arteries was also abolished in these mice. Femoral artery function was unaltered, and baseline BP modestly elevated in smooth muscle ETB knockout compared with controls (+4.2±0.2 mm Hg; P<0.0001), but salt-induced and ETB blockade-mediated hypertension were unaltered. Circulating endothelin-1 was not altered in knockout mice. ETB-mediated contraction was not induced in femoral arteries by incubation in culture medium or lesion formation, and lesion size was not altered in smooth muscle ETB knockout mice. In the absence of other pathology, ETB receptors in vascular smooth muscle make a small but significant contribution to ETB-dependent regulation of BP. These ETB receptors have no effect on vascular contraction or neointimal remodeling.

  8. Smooth muscle cell-derived carbon monoxide is a regulator of vascular cGMP.

    OpenAIRE

    Morita, T.; Perrella, M A; Lee, M E; Kourembanas, S

    1995-01-01

    Carbon monoxide (CO) is a product of the enzyme heme oxygenase (HO; EC 1.14.99.3). In vascular smooth muscle cells, exogenously administered CO increases cyclic guanosine 3',5'-monophosphate (cGMP), which is an important regulator of vessel tone. We report here that smooth muscle cells produce CO via HO and that it regulates cGMP levels in these cells. Hypoxia, which has profound effects on vessel tone, significantly increased the transcriptional rate of the HO-1 gene resulting in correspondi...

  9. Integrin mobilizes intracellular Ca(2+) in renal vascular smooth muscle cells

    DEFF Research Database (Denmark)

    Chan, W L; Holstein-Rathlou, N H; Yip, K P

    2001-01-01

    Peptides with the Arg-Gly-Asp (RGD) motif induce vasoconstriction in rat afferent arterioles by increasing the intracellular Ca(2+) concentration ([Ca(2+)](i)) in vascular smooth muscle cells (VSMC). This finding suggests that occupancy of integrins on the plasma membrane of VSMC might affect...... vascular tone. The purpose of this study was to determine whether occupancy of integrins by exogenous RGD peptides initiates intracellular Ca(2+) signaling in cultured renal VSMC. When smooth muscle cells were exposed to 0.1 mM hexapeptide GRGDSP, [Ca(2+)](i) rapidly increased from 91 +/- 4 to 287 +/- 37 n...

  10. Steroids and antihistamines synergize to inhibit rat's airway smooth muscle contractility.

    Science.gov (United States)

    Liu, Shao-Cheng; Chu, Yueng-Hsiang; Kao, Chuan-Hsiang; Wu, Chi-Chung; Wang, Hsing-Won

    2015-06-01

    Both glucocorticoids and H1-antihistamines were widely used on patients with allergic rhinitis (AR) and obstructive airway diseases. However, their direct effects on airway smooth muscle were not fully explored. In this study, we tested the effectiveness of prednisolone (Kidsolone) and levocetirizine (Xyzal) on isolated rat trachea submersed in Kreb's solution in a muscle bath. Changes in tracheal contractility in response to the application of parasympathetic mimetic agents were measured. The following assessments of the drug were performed: (1) effect on tracheal smooth muscle resting tension; (2) effect on contraction caused by 10(-6) M methacholine; (3) effect of the drug on electrical field stimulation (EFS) induced tracheal smooth muscle contractions. The result revealed sole use of Kidsolone or Xyzal elicited no significant effect or only a little relaxation response on tracheal tension after methacholine treatment. The tension was 90.5 ± 7.5 and 99.5 ± 0.8 % at 10(-4) M for Xyzal and 10(-5) M for Kidsolone, respectively. However, a dramatically spasmolytic effect was observed after co-administration of Kidsolone and Xyzal and the tension dropped to 67.5 ± 13.6 %, with statistical significance (p antihistamines to dramatically relax the trachea smooth muscle within minutes. Therefore, for AR patients with acute asthma attack, combined use of those two drugs is recommended.

  11. Crystal Structure of a Phosphorylated Light Chain Domain of Scallop Smooth-Muscle Myosin

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, V.S.; Robinson, H.; O-Neall-Hennessey, E.; Reshetnikova, L.; Brown, J. H.; Szent-Gyorgyi, A. G.; Cohen, C.

    2011-11-02

    We have determined the crystal structure of a phosphorylated smooth-muscle myosin light chain domain (LCD). This reconstituted LCD is of a sea scallop catch muscle myosin with its phosphorylatable regulatory light chain (RLC SmoA). In the crystal structure, Arg{sup 16}, an arginine residue that is present in this isoform but not in vertebrate smooth-muscle RLC, stabilizes the phosphorylation site. This arginine interacts with the carbonyl group of the phosphorylation-site serine in the unphosphorylated LCD (determined previously), and with the phosphate group when the serine is phosphorylated. However, the overall conformation of the LCD is essentially unchanged upon phosphorylation. This result provides additional evidence that phosphorylation of the RLC is unlikely to act as an on-switch in regulation of scallop catch muscle myosin.

  12. Pharmacomechanical coupling in smooth muscle may involve phosphatidylinositol metabolism.

    OpenAIRE

    Baron, C B; Cunningham, M.; Strauss, J F; Coburn, R F

    1984-01-01

    Cholinergic contraction of canine trachealis muscle, a contraction that primarily utilizes membrane potential-independent mechanisms for activating contractile proteins (pharmacomechanical coupling), is associated with a decline in the phosphatidylinositol pool, an increase in the phosphatidic acid and diacylglycerol pools, and an increased incorporation of 32PO4 into phosphatidylinositol. We found that these changes occur during development of the contraction and during maintenance of tensio...

  13. Static pressure drives proliferation of vascular smooth muscle cells via caveolin-1/ERK1/2 pathway

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Di-xian, E-mail: luodixian_2@163.com [Division of Pharmacoproteomics, Institute of Pharmacy and Pharmacology, Research Center of Life Science, University of South China, Hengyang, Hunan 421001 (China); Department of Pharmacology, School of Pharmaceutics, Central South University, Changsha, Hunan 410083 (China); The First People' s Hospital of Chenzhou City, Chenzhou, Hunan 421001 (China); Cheng, Jiming [Internal Medicine and SimmonsCooper Cancer Institute, Southern Illinois University School of Medicine, 911 N. Rutledge Street, Springfield, IL 62794-9626 (United States); Suzhou Health College of Technology, 20 Shuyuanxiang, Suzhou, Jiangsu 215002 (China); Xiong, Yan [Department of Pharmacology, School of Pharmaceutics, Central South University, Changsha, Hunan 410083 (China); Li, Junmo [Division of Pharmacoproteomics, Institute of Pharmacy and Pharmacology, Research Center of Life Science, University of South China, Hengyang, Hunan 421001 (China); Xia, Chenglai [Division of Pharmacoproteomics, Institute of Pharmacy and Pharmacology, Research Center of Life Science, University of South China, Hengyang, Hunan 421001 (China); School of Pharmaceutics, Southern Medical University, Guangzhou, Guangdong 510515 (China); Xu, Canxin; Wang, Chun; Zhu, Bingyang [Division of Pharmacoproteomics, Institute of Pharmacy and Pharmacology, Research Center of Life Science, University of South China, Hengyang, Hunan 421001 (China); Hu, Zhuowei [Institute of Materia Medical, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730 (China); Liao, Duan-fang, E-mail: dfliao66@yahoo.com.cn [Division of Pharmacoproteomics, Institute of Pharmacy and Pharmacology, Research Center of Life Science, University of South China, Hengyang, Hunan 421001 (China)

    2010-01-22

    Intimal hyperplasia plays an important role in various types of vascular remodeling. Mechanical forces derived from blood flow are associated with the proliferation of vascular smooth muscle cells (VSMC). This contributes to many vascular disorders such as hypertension, atherosclerosis and restenosis after percutaneous transluminal angioplasty (PTA). In this study, we show that static pressure induces the proliferation of VSMC and activates its related signal pathway. VSMC from a rat aorta were treated with different pressures (0, 60, 90, 120, 150 and 180 mm Hg) in a custom-made pressure incubator for 24 h. The most active proliferation of VSMC was detected at a pressure of 120 mm Hg. VSMC was also incubated under a static pressure of 120 mm Hg for different time intervals (0, 2, 4, 8, 12 and 24 h). We found that static pressure significantly stimulates VSMC proliferation. Extracellular signal-regulated kinases 1/2 (ERK1/2) activation showed a peak at the pressure of 120 mm Hg at 4-h time point. Moreover, caveolin-1 expression was significantly inhibited by rising static pressure. Downregulation of VSMC proliferation could be found after PD98059 (ERK1/2 phosphorylation inhibitor) treatment. Our data also showed that a siRNA-mediated caveolin-1 knock down increased ERK1/2 phosphorylation and VSMC proliferation. These results demonstrate that static pressure promotes VSMC proliferation via the Caveolin-1/ERK1/2 pathway.

  14. Artesunate Reduces Proliferation, Interferes DNA Replication and Cell Cycle and Enhances Apoptosis in Vascular Smooth Muscle Cells

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    This study examined the effect of artesunate (Art) on the proliferation, DNA replication, cell cycles and apoptosis of vascular smooth muscle cells (VSMCs). Primary cultures of VSMCs were established from aortas of mice and artesunate of different concentrations was added into the medium. The number of VSMCs was counted and the curve of cell growth was recorded.The activity of VSMCs was assessed by using MTT method and inhibitory rate was calculated.DNA replication was evaluated by [3 H]-TdR method and apoptosis by DNA laddering and HE staining. Flowmetry was used for simultaneous analysis of cell apoptosis and cell cycles. Compared with the control group, VSMCs proliferation in Art interfering groups were inhibited and [3H]-TdR incorprating rate were decreased as well as cell apoptosis was induced. The progress of cell cycle was blocked in G0/G1 by Art in a dose-dependent manner. It is concluded that Art inhibits VSMCs proliferation by disturbing DNA replication, inducing cell apoptosis and blocking cell cycle in G0/G1 phase.

  15. Statins meditate anti-atherosclerotic action in smooth muscle cells by peroxisome proliferator-activated receptor-γ activation.

    Science.gov (United States)

    Fukuda, Kazuki; Matsumura, Takeshi; Senokuchi, Takafumi; Ishii, Norio; Kinoshita, Hiroyuki; Yamada, Sarie; Murakami, Saiko; Nakao, Saya; Motoshima, Hiroyuki; Kondo, Tatsuya; Kukidome, Daisuke; Kawasaki, Shuji; Kawada, Teruo; Nishikawa, Takeshi; Araki, Eiichi

    2015-01-30

    The peroxisome proliferator-activated receptor-γ (PPARγ) is an important regulator of lipid and glucose metabolism, and its activation is reported to suppress the progression of atherosclerosis. We have reported that 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors (statins) activate PPARγ in macrophages. However, it is not yet known whether statins activate PPARγ in other vascular cells. In the present study, we investigated whether statins activate PPARγ in smooth muscle cells (SMCs) and endothelial cells (ECs) and thus mediate anti-atherosclerotic effects. Human aortic SMCs (HASMCs) and human umbilical vein ECs (HUVECs) were used in this study. Fluvastatin and pitavastatin activated PPARγ in HASMCs, but not in HUVECs. Statins induced cyclooxygenase-2 (COX-2) expression in HASMCs, but not in HUVECs. Moreover, treatment with COX-2-siRNA abrogated statin-mediated PPARγ activation in HASMCs. Statins suppressed migration and proliferation of HASMCs, and inhibited lipopolysaccharide-induced expression of monocyte chemoattractant protein-1 (MCP-1) and tumor necrosis factor-α (TNF-α) in HASMCs. These effects of statins were abrogated by treatment with PPARγ-siRNA. Treatment with statins suppressed atherosclerotic lesion formation in Apoe(-/-) mice. In addition, transcriptional activity of PPARγ and CD36 expression were increased, and the expression of MCP-1 and TNF-α was decreased, in the aorta of statin-treated Apoe(-/-) mice. In conclusion, statins mediate anti-atherogenic effects through PPARγ activation in SMCs. These effects of statins on SMCs may be beneficial for the prevention of atherosclerosis.

  16. Diminished Lipid Raft SNAP23 Increases Blood Pressure by Inhibiting the Membrane Fluidity of Vascular Smooth-Muscle Cells.

    Science.gov (United States)

    Yoon, Mi So; Won, Kyung-Jong; Kim, Do-Yoon; Hwang, Dae Il; Yoon, Seok Won; Jung, Seung Hyo; Lee, Kang Pa; Jung, Dongju; Choi, Wahn Soo; Kim, Bokyung; Lee, Hwan Myung

    2015-01-01

    Synaptosomal-associated protein 23 (SNAP23) is involved in microvesicle trafficking and exocytosis in various cell types, but its functional role in blood pressure (BP) regulation has not yet been defined. Here, we found that lipid raft SNAP23 expression was much lower in vascular smooth-muscle cells (VSMCs) from spontaneously hypertensive rats (SHR) than in those from normotensive Wistar-Kyoto (WKY) rats. This led us to investigate the hypothesis that this lower expression may be linked to the spontaneous hypertension found in SHR. The expression level of lipid raft SNAP23 and the fluidity in the plasma membrane of VSMCs were lower in SHR than in WKY rats. Cholesterol content in the VSMC membrane was higher, but the secreted cholesterols found in VSMC-conditioned medium and in the blood serum were lower in SHR than in WKY rats. SNAP23 knockdown in WKY rat VSMCs reduced the membrane fluidity and increased the membrane cholesterol level. Systemic overexpression of SNAP23 in SHR resulted in an increase of cholesterol content in their serum, a decrease in cholesterol in their aorta and the reduction of their BP. Our findings suggest that the low expression of the lipid raft SNAP23 in VSMCs might be a potential cause for the characteristic hypertension of SHR.

  17. Regulation of angiotensinⅡon Gaq/11 protein of vascular smooth muscle cell and its underlying mechanism

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    To study the regulation of angiotensin Ⅱ(Ang Ⅱ) on Gαq/11 protein of vascular smooth muscle cell (VSMC) and its underlying mechanism, the protein synthesis was detected by [3H]-leucine incorporation. G?q/11 expression was measured by Western blot in cultured VSMC of rat aorta. The results showed that the level of G?q/11 was downregulated after stimulated by AngⅡ for 1-6 h, while it was upregulated significantly by 12-24 h stimulation (P < 0.01) in VSMC. The [3H]-leucine incorporation of VSMC was increased after 24 h Ang Ⅱ stimulation. The biphase regulation of Ang Ⅱ on G?q/11 protein was blocked by the Ang Ⅱ type Ⅰ receptor (AT1) specific antagnist losartan or PLC inhibitor U73122, while PD98059 did not have this effect. These data indicated that Ang Ⅱ contributed to VSMC hypertrophy by regulating the level of G?q/11, and this effect was mediated mainly through AT1 receptor-PLC signal transduction pathway.

  18. INHIBITORY EFFECT OF ANGIOTENSIN Ⅱ TYPE 1 RECEPTOR-ASSOCIATED PROTEIN ON VASCULAR SMOOTH MUSCLE CELL GROWTH AND NEOINTIMAL FORMATION

    Institute of Scientific and Technical Information of China (English)

    Zhen Li; Zhong-gao Wang; Xiu Chen; Xiao-dong Chen

    2007-01-01

    Objective To investigate the mechanism of a novel angiotensin n type 1 receptor-associated protein (ATRAP) interfering with angiotensin Ⅱ type 1 (AT1) receptor-mediated vascular smooth muscle cell (VSMC) growth and neointimal formation. Methods VSMCs isolated from thoracic aorta of adult Sprague-Dawley ( SD) rats were used in this study. ATRAP Cdna was subcloned into pcDNA3 vector and then transfected into VSMCs. DNA synthesis and extracellular signal-regulated kinase (ERK) and phospho-ERK expressions in VSMCs were assayed by measurement of 3H thymidine incorporation and Western blotting, respectively. Morphological changes were observed in the balloon injured artery with or without transfection of ATRAP Cdna using 12-week-old male SD rats. Results ATRAP overexpression in VSMCs inhibited angiotensin Ⅱ (Ang Ⅱ) -induced 3H thymidine incorporation 48 hours after Ang Ⅱ stimulation (P < 0.05). In VSMC, Ang Ⅱ stimulation increased the phosphorylation of ERK, which reached the peak around 60 minutes. The activation of phospho-ERK was significantly decreased by ATRAP (P < 0.05). Neointimal formation was markedly inhibited by ATRAP overexpression in injuried arteries. Conclusions The AT1 receptor-derived activation of ERK plays an essential role in Ang Ⅱ-induced VSMC growth. The growth inhibitory effects of ATRAP might be due to interfering with AT1 receptor-mediated activation of ERK in VSMC growth and neointimal formation.

  19. HSP70 increases extracellular matrix production by human vascular smooth muscle through TGF-β1 up-regulation.

    Science.gov (United States)

    González-Ramos, Marta; Calleros, Laura; López-Ongil, Susana; Raoch, Viviana; Griera, Mercedes; Rodríguez-Puyol, Manuel; de Frutos, Sergio; Rodríguez-Puyol, Diego

    2013-02-01

    The circulating levels of heat shock proteins (HSP) are increased in cardiovascular diseases; however, the implication of this for the fibrotic process typical of such diseases remains unclear. HSP70 can interact with the vascular smooth muscle cells (SMC), the major producer of extracellular matrix (ECM) proteins, through the Toll-like receptors 4 (TLR4). The transforming growth factor type-β1 (TGF-β1) is a well known vascular pro-fibrotic cytokine that is regulated in part by AP-1-dependent transcriptional mechanisms. We hypothesized that extracellular HSP70 could interact with SMCs, inducing TGF-β1 synthesis and subsequent changes in the vascular ECM. We demonstrate that extracellular HSP70 binds to human aorta SMC TLR4, which up-regulates the AP-1-dependent transcriptional activity of the TGF-β1 promoter. This is achieved through the mitogen activated protein kinases JNK and ERK, as demonstrated by the use of specific blockers and the knockdown of TLR4 with specific small interfering RNAs. The TGF-β1 upregulation increase the expression of the ECM proteins type I collagen and fibronectin. This novel observation may elucidate the mechanisms by which HSP70 contributes in the inflammation and fibrosis present in atherosclerosis and other fibrosis-related diseases.

  20. Antagonism of Nav channels and α1-adrenergic receptors contributes to vascular smooth muscle effects of ranolazine.

    Science.gov (United States)

    Virsolvy, Anne; Farah, Charlotte; Pertuit, Nolwenn; Kong, Lingyan; Lacampagne, Alain; Reboul, Cyril; Aimond, Franck; Richard, Sylvain

    2015-12-10

    Ranolazine is a recently developed drug used for the treatment of patients with chronic stable angina. It is a selective inhibitor of the persistent cardiac Na(+) current (INa), and is known to reduce the Na(+)-dependent Ca(2+) overload that occurs in cardiomyocytes during ischemia. Vascular effects of ranolazine, such as vasorelaxation,have been reported and may involve multiple pathways. As voltage-gated Na(+) channels (Nav) present in arteries play a role in contraction, we hypothesized that ranolazine could target these channels. We studied the effects of ranolazine in vitro on cultured aortic smooth muscle cells (SMC) and ex vivo on rat aortas in conditions known to specifically activate or promote INa. We observed that in the presence of the Nav channel agonist veratridine, ranolazine inhibited INa and intracellular Ca(2+) calcium increase in SMC, and arterial vasoconstriction. In arterial SMC, ranolazine inhibited the activity of tetrodotoxin-sensitive voltage-gated Nav channels and thus antagonized contraction promoted by low KCl depolarization. Furthermore, the vasorelaxant effects of ranolazine, also observed in human arteries and independent of the endothelium, involved antagonization of the α1-adrenergic receptor. Combined α1-adrenergic antagonization and inhibition of SMCs Nav channels could be involved in the vascular effects of ranolazine.

  1. C-TYPE NATRIURETIC PEPTIDE INHIBITS UPREGULATION OF αl-ADRENOCEPTOR AND INOSITOL 1,4,5-TRISPHOSPHATE RECEPTOR IN RAT VASCULAR SMOOTH MUSCLE AFTER VASCULAR ENDOTHELIAL INJURY

    Institute of Scientific and Technical Information of China (English)

    王晓红; 杨军; 佟利家; 苏静怡; 唐朝枢; 刘乃奎

    2000-01-01

    Objective. In a model of balloon injury of rat aortic endothelium, the effects of C-type natriuretic peptide(CNP) on al-adrenoreceptar and inositol 1,4,5-triphosphate (IP3) receptor were studied. Methods. Aortic injuries were produced by vascular endothelium-denudation, αl- adrenoreceptor in smooth muscle sarcolemma and IP3 receptor in smooth muscle sarcoplasmic reticulum in the rat aorta were assayed by radioactive analysis method. Results. It was found that neoinfma was formed and the coraents of DNA, collagen and elastin of each intimamedia were significantly increased in 7 days and 21 days after balloon injury of rat aorta, α1-adrenoreceptor in smooth muscle sarcolemma and IP3 receptor in sarcoplasmic reticulum were also upwodated. Results also showed that the administration of CNP i.p significantly decreased the contents of DNA, collagen and elaslin of each iraima-media, and inhibited the up-regulation of α1-adrenoreceptor and IP3 receptor. Conelusion. The inhibition of the up-regulation of α1-adrenoreceptor and IP3 receptor by CNP might be one of the mechanisms of its suppressive action on intimal proliferation.

  2. Smooth Muscle-Like Cells Generated from Human Mesenchymal Stromal Cells Display Marker Gene Expression and Electrophysiological Competence Comparable to Bladder Smooth Muscle Cells.

    Directory of Open Access Journals (Sweden)

    Juliane Brun

    Full Text Available The use of mesenchymal stromal cells (MSCs differentiated toward a smooth muscle cell (SMC phenotype may provide an alternative for investigators interested in regenerating urinary tract organs such as the bladder where autologous smooth muscle cells cannot be used or are unavailable. In this study we measured the effects of good manufacturing practice (GMP-compliant expansion followed by myogenic differentiation of human MSCs on the expression of a range of contractile (from early to late myogenic markers in relation to the electrophysiological parameters to assess the functional role of the differentiated MSCs and found that differentiation of MSCs associated with electrophysiological competence comparable to bladder SMCs. Within 1-2 weeks of myogenic differentiation, differentiating MSCs significantly expressed alpha smooth muscle actin (αSMA; ACTA2, transgelin (TAGLN, calponin (CNN1, and smooth muscle myosin heavy chain (SM-MHC; MYH11 according to qRT-PCR and/or immunofluorescence and Western blot. Voltage-gated Na+ current levels also increased within the same time period following myogenic differentiation. In contrast to undifferentiated MSCs, differentiated MSCs and bladder SMCs exhibited elevated cytosolic Ca2+ transients in response to K+-induced depolarization and contracted in response to K+ indicating functional maturation of differentiated MSCs. Depolarization was suppressed by Cd2+, an inhibitor of voltage-gated Ca2+-channels. The expression of Na+-channels was pharmacologically identified as the Nav1.4 subtype, while the K+ and Ca2+ ion channels were identified by gene expression of KCNMA1, CACNA1C and CACNA1H which encode for the large conductance Ca2+-activated K+ channel BKCa channels, Cav1.2 L-type Ca2+ channels and Cav3.2 T-type Ca2+ channels, respectively. This protocol may be used to differentiate adult MSCs into smooth muscle-like cells with an intermediate-to-late SMC contractile phenotype exhibiting voltage-gated ion

  3. Smooth Muscle-Like Cells Generated from Human Mesenchymal Stromal Cells Display Marker Gene Expression and Electrophysiological Competence Comparable to Bladder Smooth Muscle Cells

    Science.gov (United States)

    Brun, Juliane; Lutz, Katrin A.; Neumayer, Katharina M. H.; Klein, Gerd; Seeger, Tanja; Uynuk-Ool, Tatiana; Wörgötter, Katharina; Schmid, Sandra; Kraushaar, Udo; Guenther, Elke; Rolauffs, Bernd; Aicher, Wilhelm K.; Hart, Melanie L.

    2015-01-01

    The use of mesenchymal stromal cells (MSCs) differentiated toward a smooth muscle cell (SMC) phenotype may provide an alternative for investigators interested in regenerating urinary tract organs such as the bladder where autologous smooth muscle cells cannot be used or are unavailable. In this study we measured the effects of good manufacturing practice (GMP)-compliant expansion followed by myogenic differentiation of human MSCs on the expression of a range of contractile (from early to late) myogenic markers in relation to the electrophysiological parameters to assess the functional role of the differentiated MSCs and found that differentiation of MSCs associated with electrophysiological competence comparable to bladder SMCs. Within 1–2 weeks of myogenic differentiation, differentiating MSCs significantly expressed alpha smooth muscle actin (αSMA; ACTA2), transgelin (TAGLN), calponin (CNN1), and smooth muscle myosin heavy chain (SM-MHC; MYH11) according to qRT-PCR and/or immunofluorescence and Western blot. Voltage-gated Na+ current levels also increased within the same time period following myogenic differentiation. In contrast to undifferentiated MSCs, differentiated MSCs and bladder SMCs exhibited elevated cytosolic Ca2+ transients in response to K+-induced depolarization and contracted in response to K+ indicating functional maturation of differentiated MSCs. Depolarization was suppressed by Cd2+, an inhibitor of voltage-gated Ca2+-channels. The expression of Na+-channels was pharmacologically identified as the Nav1.4 subtype, while the K+ and Ca2+ ion channels were identified by gene expression of KCNMA1, CACNA1C and CACNA1H which encode for the large conductance Ca2+-activated K+ channel BKCa channels, Cav1.2 L-type Ca2+ channels and Cav3.2 T-type Ca2+ channels, respectively. This protocol may be used to differentiate adult MSCs into smooth muscle-like cells with an intermediate-to-late SMC contractile phenotype exhibiting voltage-gated ion channel

  4. H2O2 generated from mitochondrial electron transport chain in thoracic perivascular adipose tissue is crucial for modulation of vascular smooth muscle contraction.

    Science.gov (United States)

    Costa, Rafael M; Filgueira, Fernando P; Tostes, Rita C; Carvalho, Maria Helena C; Akamine, Eliana H; Lobato, Nubia S

    2016-09-01

    The perivascular adipose tissue (PVAT) releases a variety of factors that affect vascular function. PVAT in the thoracic aorta shares characteristics with the brown adipose tissue, including a large amount of mitochondria. PVAT-derived factors influence both endothelial and smooth muscle function via several signaling mechanisms including the release/generation of reactive nitrogen and oxygen species. Considering the importance of reactive oxygen species (ROS) on vascular function and that mitochondria are an important source of ROS, we hypothesized that mitochondria-derived ROS in the PVAT modulates vascular reactivity. Vascular reactivity to norephinephrine (NE) was evaluated in thoracic aortic rings, with or without endothelium and/or PVAT, from male Wistar rats. Mitochondrial uncoupling, as well as hydrogen peroxide (H2O2) removal, increased the contraction in vessels surrounded by PVAT. PVAT stimulated with NE exhibited increased protein expression, determined by Western blot analysis, of manganese superoxide dismutase (Mn-SOD) and decreased protein expression of catalase. Ultimately, NE increased superoxide anion (O2(-)) generation in PVAT via increases in intracellular calcium. These results clearly demonstrate that mitochondrial electron transport chain (mETC) in PVAT contributes to modulation of aortic muscle contraction by generating higher amounts of O2(-) that is, in turn, dismutated to hydrogen peroxide, which then acts as a pivotal signaling molecule regulating vascular smooth muscle contraction.

  5. Infiltration of hypertrophic esophageal smooth muscle by mast cells and basophils.

    Science.gov (United States)

    Tung, H N; Schulze-Delrieu, K; Shirazi, S

    1993-01-01

    Partial obstruction leads to chronic distension and muscular hypertrophy of the opossum esophagus. The smooth muscle cells of the circular muscle layer enlarge, become pleomorphic and are surrounded by an amorphous ground substance in the extracellular space. Here we describe the histological and ultrastructural features of a peculiar cellular infiltrate in the hypertrophic smooth muscle. The infiltrate consisted uniquely of mast cells and basophils. In per unit area, the number of mast cells increased from 0.9 +/- 0.1 cells in controls to 3.7 +/- 0.2 in hypertrophic smooth muscle; the corresponding numbers for basophils were 2.5 +/- 0.2 and 7.2 +/- 0.3 cells. Cells were seen primarily in the septal spaces of the circular muscle layer and at the interface of the circular and longitudinal muscle layer. The cytoplasm of basophils is normally packed with round and oval granules. The granules stain metachromatically and with varying intensity on Wright-Giemsa stains. On transmission electronmicroscopy, granules display a membrane and a great diversity in the structure of their luminal contents. In hypertrophic muscle, most granules were discharging their contents into the cytoplasm or extracellular space. The membranes of adjacent empty granules then fused to form a chain of vacuoles. Similar changes occurred also in the mast cells which differed from the basophil by their lack of nuclear lobulation and by the greater homogeneity of their cytoplasmic granules. It is possible that these inflammatory cells are involved in the reconstruction of the smooth muscle and its connective tissue which occur during esophageal distension and hypertrophy.

  6. Embracing change: striated-for-smooth muscle replacement in esophagus development.

    Science.gov (United States)

    Krauss, Robert S; Chihara, Daisuke; Romer, Anthony I

    2016-01-01

    The esophagus functions to transport food from the oropharyngeal region to the stomach via waves of peristalsis and transient relaxation of the lower esophageal sphincter. The gastrointestinal tract, including the esophagus, is ensheathed by the muscularis externa (ME). However, while the ME of the gastrointestinal tract distal to the esophagus is exclusively smooth muscle, the esophageal ME of many vertebrate species comprises a variable amount of striated muscle. The esophageal ME is initially composed only of smooth muscle, but its developmental maturation involves proximal-to-distal replacement of smooth muscle with striated muscle. This fascinating phenomenon raises two important questions: what is the developmental origin of the striated muscle precursor cells, and what are the cellular and morphogenetic mechanisms underlying the process? Studies addressing these questions have provided controversial answers. In this review, we discuss the development of ideas in this area and recent work that has shed light on these issues. A working model has emerged that should permit deeper understanding of the role of ME development and maturation in esophageal disorders and in the functional and evolutionary underpinnings of the variable degree of esophageal striated myogenesis in vertebrate species.

  7. Extracellular matrix proteins modulate asthmatic airway smooth muscle cell proliferation via an autocrine mechanism

    NARCIS (Netherlands)

    Johnson, Peter R A; Burgess, Janette K; Underwood, P Anne; Au, Wendy; Poniris, Maree H; Tamm, Michael; Ge, Qi; Roth, Michael; Black, Judith L

    2004-01-01

    BACKGROUND: Airway remodeling is a key feature of persistent asthma and includes alterations in the extracellular matrix protein profile around the airway smooth muscle (ASM) and hyperplasia of the ASM. We have previously shown that nonasthmatic ASM cells in culture produce a range of extracellular

  8. Molecular and functional characterization of Kv7 K+ channel in murine gastrointestinal smooth muscles

    DEFF Research Database (Denmark)

    Jepps, Thomas Andrew; Greenwood, Iain A; Moffatt, James D

    2009-01-01

    Members of the K(v)7 voltage-gated K(+) channel family are important determinants of cardiac and neuronal membrane excitability. Recently, we and others have shown that K(v)7 channels are also crucial regulators of smooth muscle activity. The aim of the present study was to assess the K(v)7 expre...

  9. Fibulin-2 is present in murine vascular lesions and is important for smooth muscle cell migration

    DEFF Research Database (Denmark)

    Ström, A.; Olin, A. I.; Aspberg, A.;

    2006-01-01

    Objective: The vascular extracellular matrix (ECM) can affect smooth muscle cell (SMC) adhesion, migration and proliferation-events that are important during the atherosclerotic process. Fibulin-2 is a member of the ECM protein family of fibulins and has been found to cross-link versican/hyaluron...

  10. Mounier-Kuhn syndrome: a case of tracheal smooth muscle remodeling.

    Science.gov (United States)

    Cook, Daniel P; Adam, Ryan J; Abou Alaiwa, Mahmoud H; Eberlein, Michael; Klesney-Tait, Julia A; Parekh, Kalpaj R; Meyerholz, David K; Stoltz, David A

    2017-02-01

    Mounier-Kuhn syndrome is a rare clinical disorder characterized by tracheobronchial dilation and recurrent lower respiratory tract infections. While the etiology of the disease remains unknown, histopathological analysis of Mounier-Kuhn airways demonstrates that the disease is, in part, characterized by cellular changes in airway smooth muscle.

  11. Croton sonderianus essential oil samples distinctly affect rat airway smooth muscle.

    Science.gov (United States)

    Pinho-da-Silva, L; Mendes-Maia, P V; do Nascimento Garcia, T M; Cruz, J S; de Morais, S M; Coelho-de-Souza, A N; Lahlou, S; Leal-Cardoso, J H

    2010-08-01

    Plants of the genus Croton have been used extensively in the northeast of Brazil for treating various clinical conditions. Previous studies have demonstrated that the essential oil of some specimens of Croton sp. have a relaxing effect on tracheal smooth muscle. Our study aimed to characterize the effects of Croton sonderianus essential oil samples, collected at 1:00 pm (EO-13) and 9:00 pm (EO-21), on rat tracheal smooth muscle. The two samples were submitted to gas chromatography (GC) and mass spectrometry (MS) analysis to identify their components. Rat tracheal smooth muscle strips were used to assess the biological activity. The major constituents of EO-21 were: spathulenol (18.32%), beta-caryophyllene (14.58%) and caryophyllene oxide (8.54%) and the major constituents of EO-13 were bicyclogermacrene (16.29%), beta-phellandrene (15.42%) and beta-caryophyllene (13.82%). These samples showed an antispasmodic effect on tracheal smooth muscle strips pre-contracted with high K+ concentration (80 mM) or with acetylcholine. EO-21 increased baseline tonus while EO-13 provoked a decrease. These results demonstrated that EO-13 and EO-21 have different chemical composition and showed myorelaxant activity. In conclusion, EO-13 and EO-21 may have potential therapeutic use in the treatment of bronchospasm.

  12. Allergic sensitization enhances the contribution of Rho-kinase to airway smooth muscle contraction

    NARCIS (Netherlands)

    Schaafsma, D.; Gosens, Reinout; Bos, I.S.T.; Meurs, Herman; Zaagsma, Hans; Nelemans, Herman

    2004-01-01

    1 Repeated allergen challenge has been shown to increase the role of Rho-kinase in airway smooth muscle (ASM) contraction. We considered the possibility that active allergic sensitization by itself, that is, without subsequent allergen exposure, could be sufficient to enhance Rho-kinase-mediated ASM

  13. Intracellular electrical activity in human urinary bladder smooth muscle: the effect of high sucrose medium

    NARCIS (Netherlands)

    A.J. Visser (Anna); R. van Mastrigt (Ron)

    2001-01-01

    textabstractIntroduction: The primary key to pharmacotherapy of bladder instability is in the excitation-contraction coupling of detrusor smooth muscle cells. To study this process, simultaneous recordings of mechanical and electrical activity are required. However, recording of mechanical activity

  14. Effect of pharmacologically induced smooth muscle activation on permeability in murine colitis

    Directory of Open Access Journals (Sweden)

    Freek J. Zijlstra

    2003-01-01

    Full Text Available Background: Both intestinal permeability and contractility are altered in inflammatory bowel disease. Little is known about their mutual relation. Therefore, an in vitro organ bath technique was developed to investigate the simultaneous effects of inflammation on permeability and smooth muscle contractility in different segments of the colon.

  15. Intercellular ultrafast Ca(2+) wave in vascular smooth muscle cells: numerical and experimental study.

    Science.gov (United States)

    Quijano, J C; Raynaud, F; Nguyen, D; Piacentini, N; Meister, J J

    2016-08-10

    Vascular smooth muscle cells exhibit intercellular Ca(2+) waves in response to local mechanical or KCl stimulation. Recently, a new type of intercellular Ca(2+) wave was observed in vitro in a linear arrangement of smooth muscle cells. The intercellular wave was denominated ultrafast Ca(2+) wave and it was suggested to be the result of the interplay between membrane potential and Ca(2+) dynamics which depended on influx of extracellular Ca(2+), cell membrane depolarization and its intercel- lular propagation. In the present study we measured experimentally the conduction velocity of the membrane depolarization and performed simulations of the ultrafast Ca(2+) wave along coupled smooth muscle cells. Numerical results reproduced a wide spectrum of experimental observations, including Ca(2+) wave velocity, electrotonic membrane depolarization along the network, effects of inhibitors and independence of the Ca(2+) wave speed on the intracellular stores. The numerical data also provided new physiological insights suggesting ranges of crucial model parameters that may be altered experimentally and that could significantly affect wave kinetics allowing the modulation of the wave characteristics experimentally. Numerical and experimental results supported the hypothesis that the propagation of membrane depolarization acts as an intercellular messenger mediating intercellular ultrafast Ca(2+) waves in smooth muscle cells.

  16. Glucocorticosteroids and beta(2)-Adrenoceptor Agonists Synergize to Inhibit Airway Smooth Muscle Remodeling

    NARCIS (Netherlands)

    Dekkers, Bart G. J.; Pehlic, Adnan; Mariani, Raissa; Bos, I. Sophie T.; Meurs, Herman; Zaagsma, Johan

    2012-01-01

    Airway remodeling, including increased airway smooth muscle (ASM) mass and contractility, contributes to increased airway narrowing in asthma. Increased ASM mass may be caused by exposure to mitogens, including platelet-derived growth factor (PDGF) and collagen type I, which induce a proliferative,

  17. Characterization of vascular smooth muscle cell phenotype in long-term culture.

    Science.gov (United States)

    Absher, M; Woodcock-Mitchell, J; Mitchell, J; Baldor, L; Low, R; Warshaw, D

    1989-02-01

    Studies of bovine carotid artery smooth muscle cells, during long-term in vitro subcultivation (up to 100 population doublings), have revealed phenotypic heterogeneity among cells, as characterized by differences in proliferative behavior, cell morphology, and contractile-cytoskeletal protein profiles. In vivo, smooth muscle cells were spindle-shaped and expressed desmin and alpha-smooth muscle actin (50% of total actin) as their predominant cytoskeletal and contractile proteins. Within 24 h of culture, vimentin rather than desmin was the predominant intermediate filament protein, with little change in alpha-actin content. Upon initial subcultivation, all cells were flattened and fibroblastic in appearance with a concomitant fivefold reduction in alpha-actin content, whereas the beta and gamma nonmuscle actins predominated. In three out of four cell lines studied, fluctuations in proliferative activity were observed during the life span of the culture. These spontaneous fluctuations in proliferation were accompanied by coordinated changes in morphology and contractile-cytoskeletal protein profiles. During periods of enhanced proliferation a significant proportion of cells reverted to their original spindle-shaped morphology with a simultaneous increase in alpha-actin content (20 to 30% of total actin). These results suggest that in long-term culture smooth muscle cells undergo spontaneous modulations in cell phenotype and may serve as a useful model for studying the regulation of intracellular protein expression.

  18. Airway smooth muscle dynamics : a common pathway of airway obstruction in asthma

    NARCIS (Netherlands)

    An, S S; Bai, T R; Bates, J H T; Black, J L; Brown, R H; Brusasco, V; Chitano, P; Deng, L; Dowell, M; Eidelman, D H; Fabry, B; Fairbank, N J; Ford, L E; Fredberg, J J; Gerthoffer, W T; Gilbert, S H; Gosens, R; Gunst, S J; Halayko, A J; Ingram, R H; Irvin, C G; James, A L; Janssen, L J; King, G G; Knight, D A; Lauzon, A M; Lakser, O J; Ludwig, M S; Lutchen, K R; Maksym, G N; Martin, J G; Mauad, T; McParland, B E; Mijailovich, S M; Mitchell, H W; Mitchell, R W; Mitzner, W; Murphy, T M; Paré, P D; Pellegrino, R; Sanderson, M J; Schellenberg, R R; Seow, C Y; Silveira, P S P; Smith, P G; Solway, J; Stephens, N L; Sterk, P J; Stewart, A G; Tang, D D; Tepper, R S; Tran, T; Wang, L

    2007-01-01

    Excessive airway obstruction is the cause of symptoms and abnormal lung function in asthma. As airway smooth muscle (ASM) is the effecter controlling airway calibre, it is suspected that dysfunction of ASM contributes to the pathophysiology of asthma. However, the precise role of ASM in the series o

  19. Supramaximal stimuli do not evoke a maximal contraction in urinary bladder smooth muscle fibers

    NARCIS (Netherlands)

    J. Minekus (Joanne); A.J. Visser (Anna); R. van Mastrigt (Ron)

    2001-01-01

    textabstractBACKGROUND: Smooth muscle fibers can be stimulated with an electrical field, high potassium or carbachol. We studied the effect of combined, supramaximal stimulation on the isometric force and the maximum shortening velocity of the pig urinary bladder. MATERIALS AND METHODS: After determ

  20. Mechanical properties of mammalian single smooth muscle cells. I. A low cost large range microforce transducer.

    NARCIS (Netherlands)

    J.J. Glerum (Jacobus); R. van Mastrigt (Ron)

    1990-01-01

    textabstractA transducer has been developed for measuring the minute forces generated during isometric contractions (1.0-10.0 microN) of single smooth muscle cells from the pig urinary bladder and the human uterus. In addition to its high sensitivity, resolution and stability (100 mV microN-1, and l

  1. Pulmonary surfactant in the airway physiology: a direct relaxing effect on the smooth muscle.

    Science.gov (United States)

    Calkovska, A; Uhliarova, B; Joskova, M; Franova, S; Kolomaznik, M; Calkovsky, V; Smolarova, S

    2015-04-01

    Beside alveoli, surface active material plays an important role in the airway physiology. In the upper airways it primarily serves in local defense. Lower airway surfactant stabilizes peripheral airways, provides the transport and defense, has barrier and anti-edematous functions, and possesses direct relaxant effect on the smooth muscle. We tested in vitro the effect of two surfactant preparations Curosurf® and Alveofact® on the precontracted smooth muscle of intra- and extra-pulmonary airways. Relaxation was more pronounced for lung tissue strip containing bronchial smooth muscle as the primary site of surfactant effect. The study does not confirm the participation of ATP-dependent potassium channels and cAMP-regulated epithelial chloride channels known as CFTR chloride channels, or nitric oxide involvement in contractile response of smooth muscle to surfactant.By controlling wall thickness and airway diameter, pulmonary surfactant is an important component of airway physiology. Thus, surfactant dysfunction may be included in pathophysiology of asthma, COPD, or other diseases with bronchial obstruction.

  2. CD40 and OX40 ligand are differentially regulated on asthmatic airway smooth muscle

    NARCIS (Netherlands)

    Krimmer, D I; Loseli, M; Hughes, J M; Oliver, B G G; Moir, L M; Hunt, N H; Black, J L; Burgess, J K

    2009-01-01

    BACKGROUND: CD40 and OX40 Ligand (OX40L) are cell-surface molecules expressed on airway smooth muscle (ASM) that can enhance inflammatory cell activation and survival. The aim of this study was to examine the effect of tumour necrosis factor-alpha (TNF-alpha) and interferon-gamma (IFN-gamma) on ASM

  3. Comparison of gel contraction mediated by airway smooth muscle cells from patients with and without asthma

    NARCIS (Netherlands)

    Matsumoto, Hisako; Moir, Lyn M; Oliver, Brian G G; Burgess, Janette K; Roth, Michael; Black, Judith L; McParland, Brent E

    2007-01-01

    BACKGROUND: Exaggerated bronchial constriction is the most significant and life threatening response of patients with asthma to inhaled stimuli. However, few studies have investigated the contractility of airway smooth muscle (ASM) from these patients. The purpose of this study was to establish a me

  4. Connective tissue growth factor induces extracellular matrix in asthmatic airway smooth muscle

    NARCIS (Netherlands)

    Johnson, Peter R A; Burgess, Janette K; Ge, Qi; Poniris, Maree; Boustany, Sarah; Twigg, Stephen M; Black, Judith L

    2006-01-01

    Transforming growth factor (TGF)-beta and connective tissue growth factor may be implicated in extracellular matrix protein deposition in asthma. We have recently reported that TGF-beta increased connective tissue growth factor expression in airway smooth muscle cells isolated from patients with ast

  5. The effect of asthma therapeutics on signalling and transcriptional regulation of airway smooth muscle function

    NARCIS (Netherlands)

    Ammit, Alaina J; Burgess, Janette K; Hirst, Stuart J; Hughes, J Margaret; Kaur, Manminder; Lau, Justine Y; Zuyderduyn, Suzanne

    2009-01-01

    SCOPE OF THE REVIEW: Our knowledge of the multifunctional nature of airway smooth muscle (ASM) has expanded rapidly in the last decade, but the underlying molecular mechanisms and how current therapies for obstructive airway diseases, such as asthma and chronic obstructive pulmonary disease (COPD),

  6. Regulation of actin dynamics by wnt-5a : Implications for human airway smooth muscle contraction

    NARCIS (Netherlands)

    Koopmans, Tim; Kumawat, Kuldeep; Menzen, Mark; Halayko, Andrew; Gosens, Reinoud

    2016-01-01

    An important pathophysiological feature of asthma is airway hyperresponsiveness (AHR), characterized by exaggerated bronchoconstriction in which the airway smooth muscle (ASM) is fundamentally involved. How the ASM in asthmatics differs from that in non-asthmatics is a current focus for research. We

  7. The length dependence of the series elasticity of pig bladder smooth muscle

    NARCIS (Netherlands)

    R. van Mastrigt (Ron)

    1988-01-01

    textabstractStrips of urinary bladder smooth muscle were subjected to a series of quick release measurements. Each measurement consisted of several releases and resets to the original length, made during one contraction. The complete length-force characteristic of series elasticity was quantified by

  8. A mechanism for arteriolar remodeling based on maintenance of smooth muscle cell activation

    DEFF Research Database (Denmark)

    Jacobsen, Jens Christian Brings; Mulvany, Michael John; Holstein-Rathlou, N.-H.

    2008-01-01

    Structural adaptation in arterioles is part of normal vascular physiology but is also seen in disease states such as hypertension. Smooth muscle cell (SMC) activation has been shown to be central to microvascular remodeling. We hypothesize that, in a remodeling process driven by SMC activation...

  9. MFAP4 Promotes Vascular Smooth Muscle Migration, Proliferation and Accelerates Neointima Formation

    DEFF Research Database (Denmark)

    Schlosser, Anders; Pilecki, Bartosz; Hemstra, Line E.

    2016-01-01

    OBJECTIVE: Arterial injury stimulates remodeling responses that, when excessive, lead to stenosis. These responses are influenced by integrin signaling in vascular smooth muscle cells (VSMCs). Microfibrillar-associated protein 4 (MFAP4) is an integrin ligand localized to extracellular matrix fibers...

  10. Bone morphogenetic proteins regulate osteoprotegerin and its ligands in human vascular smooth muscle cells

    DEFF Research Database (Denmark)

    Knudsen, Kirsten Quyen Nguyen; Olesen, Ping; Ledet, Thomas

    2007-01-01

    in the transformation of human vascular smooth muscle cells (HVSMC) to osteoblast-like cells. In this study, we evaluated the effect of BMP-2, BMP-7 and transforming growth factor beta (TGF-beta1) on the secretion and mRNA expression of OPG and its ligands receptor activator of nuclear factor-kappabeta ligand (RANKL...

  11. Effects of One Resistance Exercise Session on Vascular Smooth Muscle of Hypertensive Rats

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Tharciano Luiz Teixeira Braga da; Mota, Marcelo Mendonça; Fontes, Milene Tavares; Araújo, João Eliakim dos Santos; Carvalho, Vitor Oliveira; Bonjardim, Leonardo Rigoldi; Santos, Márcio Roberto Viana, E-mail: marciorvsantos@bol.com.br [Universidade Federal de Sergipe, Universidade de São Paulo (Brazil)

    2015-08-15

    Hypertension is a public health problem and increases the incidence of cardiovascular diseases. To evaluate the effects of a resistance exercise session on the contractile and relaxing mechanisms of vascular smooth muscle in mesenteric arteries of N{sup G}-nitro L-arginine methyl ester (L-NAME)-induced hypertensive rats. Wistar rats were divided into three groups: control (C), hypertensive (H), and exercised hypertensive (EH). Hypertension was induced by administration of 20 mg/kg of L-NAME for 7 days prior to experimental protocols. The resistance exercise protocol consisted of 10 sets of 10 repetitions and intensity of 40% of one repetition maximum. The reactivity of vascular smooth muscle was evaluated by concentration‑response curves to phenylephrine (PHEN), potassium chloride (KCl) and sodium nitroprusside (SNP). Rats treated with L-NAME showed an increase (p < 0.001) in systolic blood pressure (SBP), diastolic blood pressure (DBP) and mean arterial pressure (MAP) compared to the initial period of induction. No difference in PHEN sensitivity was observed between groups H and EH. Acute resistance exercise reduced (p < 0.001) the contractile response induced by KCl at concentrations of 40 and 60 mM in group EH. Greater (p < 0.01) smooth muscle sensitivity to NPS was observed in group EH as compared to group H. One resistance exercise session reduces the contractile response induced by KCl in addition to increasing the sensitivity of smooth muscle to NO in mesenteric arteries of hypertensive rats.

  12. The nanostructure of myoendothelial junctions contributes to signal rectification between endothelial and vascular smooth muscle cells

    DEFF Research Database (Denmark)

    Brasen, Jens Christian; Jacobsen, Jens Christian Brings; von Holstein-Rathlou, Niels-Henrik

    2012-01-01

    Micro-anatomical structures in tissues have potential physiological effects. In arteries and arterioles smooth muscle cells and endothelial cells are separated by the internal elastic lamina, but the two cell layers often make contact through micro protrusions called myoendothelial junctions. Cross...

  13. Functional characterization of serum- and growth factor-induced phenotypic changes in intact bovine tracheal smooth muscle

    NARCIS (Netherlands)

    Gosens, R; Meurs, H; Bromhaar, MMG; McKay, S; Nelemans, SA; Zaagsma, J

    2002-01-01

    1 The present study aims to investigate whether phenotypic changes, reported to occur in cultured isolated airway smooth muscle (ASM) cells, are of relevance to intact ASM. Moreover, we aimed to gain insight into the signalling pathways involved. 2 Culturing of bovine tracheal smooth muscle (BTSM) s

  14. Effect of fenoterol-induced constitutive beta(2)-adrenoceptor activity on contractile receptor function in airway smooth muscle

    NARCIS (Netherlands)

    de Vries, B; Roffel, AF; Zaagsma, J; Meurs, H

    2001-01-01

    In the present study, we investigated the effect of fenoterol-induced constitutive beta (2)-adrenoceptor activity on muscarinic receptor agonist- and histamine-induced bovine tracheal smooth muscle contractions. Bovine tracheal smooth muscle strips were incubated with 10 muM fenoterol or vehicle for

  15. Effects of fenoterol on beta-adrenoceptor and muscarinic M-2 receptor function in bovine tracheal smooth muscle

    NARCIS (Netherlands)

    De Vries, B; Roffel, AF; Kooistra, JM; Meurs, H; Zaagsma, J

    2001-01-01

    Prolonged (18 h) incubation of isolated bovine tracheal smooth muscle with the beta (2)-adrenoceptor agonist fenoterol (10 muM) induced desensitization of isoprenaline-induced adenylyl cyclase activity in bovine tracheal smooth muscle membranes, characterized by a 25% decrease in maximal effect (E-m

  16. File list: ALL.CDV.20.AllAg.Coronary_artery_smooth_muscle [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.CDV.20.AllAg.Coronary_artery_smooth_muscle hg19 All antigens Cardiovascular Coronary arte...ttp://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/ALL.CDV.20.AllAg.Coronary_artery_smooth_muscle.bed ...

  17. File list: Oth.CDV.50.AllAg.Coronary_artery_smooth_muscle [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.CDV.50.AllAg.Coronary_artery_smooth_muscle hg19 TFs and others Cardiovascular Coronary arte...osciencedbc.jp/kyushu-u/hg19/assembled/Oth.CDV.50.AllAg.Coronary_artery_smooth_muscle.bed ...

  18. File list: ALL.CDV.05.AllAg.Coronary_artery_smooth_muscle [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.CDV.05.AllAg.Coronary_artery_smooth_muscle hg19 All antigens Cardiovascular Coronary arte...ttp://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/ALL.CDV.05.AllAg.Coronary_artery_smooth_muscle.bed ...

  19. File list: Oth.CDV.20.AllAg.Coronary_artery_smooth_muscle [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.CDV.20.AllAg.Coronary_artery_smooth_muscle hg19 TFs and others Cardiovascular Coronary arte...osciencedbc.jp/kyushu-u/hg19/assembled/Oth.CDV.20.AllAg.Coronary_artery_smooth_muscle.bed ...

  20. File list: ALL.CDV.50.AllAg.Coronary_artery_smooth_muscle [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.CDV.50.AllAg.Coronary_artery_smooth_muscle hg19 All antigens Cardiovascular Coronary arte...ttp://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/ALL.CDV.50.AllAg.Coronary_artery_smooth_muscle.bed ...

  1. File list: ALL.CDV.10.AllAg.Coronary_artery_smooth_muscle [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.CDV.10.AllAg.Coronary_artery_smooth_muscle hg19 All antigens Cardiovascular Coronary arte...ttp://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/ALL.CDV.10.AllAg.Coronary_artery_smooth_muscle.bed ...

  2. File list: Oth.CDV.10.AllAg.Coronary_artery_smooth_muscle [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.CDV.10.AllAg.Coronary_artery_smooth_muscle hg19 TFs and others Cardiovascular Coronary arte...osciencedbc.jp/kyushu-u/hg19/assembled/Oth.CDV.10.AllAg.Coronary_artery_smooth_muscle.bed ...

  3. File list: Oth.CDV.05.AllAg.Coronary_artery_smooth_muscle [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.CDV.05.AllAg.Coronary_artery_smooth_muscle hg19 TFs and others Cardiovascular Coronary arte...osciencedbc.jp/kyushu-u/hg19/assembled/Oth.CDV.05.AllAg.Coronary_artery_smooth_muscle.bed ...

  4. Inorganic phosphate accelerates the migration of vascular smooth muscle cells: evidence for the involvement of miR-223.

    Directory of Open Access Journals (Sweden)

    Ashraf Yusuf Rangrez

    Full Text Available BACKGROUND: An elevated serum inorganic phosphate (Pi level is a major risk factor for kidney disease and downstream vascular complications. We focused on the effect of Pi levels on human aortic vascular smooth muscle cells (VSMCs, with an emphasis on the role of microRNAs (miRNAs. METHODOLOGY/PRINCIPAL FINDINGS: Exposure of human primary VSMCs in vitro to pathological levels of Pi increased calcification, migration rate and concomitantly reduced cell proliferation and the amount of the actin cytoskeleton. These changes were evidenced by significant downregulation of miRNA-143 (miR-143 and miR-145 and concomitant upregulation of their targets and key markers in synthetic VSMCs, such as Krüppel-like factors-4 and -5 and versican. Interestingly, we also found that miR-223 (a marker of muscle damage and a key factor in osteoclast differentiation is expressed in VSMCs and is significantly upregulated in Pi-treated cells. Over-expressing miR-223 in VSMCs increased proliferation and markedly enhanced VSMC migration. Additionally, we found that the expression of two of the known miR-223 targets, Mef2c and RhoB, was highly reduced in Pi treated as well as miR-223 over-expressing VSMCs. To complement these in vitro findings, we also observed significant downregulation of miR-143 and miR-145 and upregulation of miR-223 in aorta samples collected from ApoE knock-out mice, which display vascular calcification. CONCLUSIONS/SIGNIFICANCE: Our results suggest that (i high levels of Pi increase VSMC migration and calcification, (ii altered expression levels of miR-223 could play a part in this process and (iii miR-223 is a potential new biomarker of VSMC damage.

  5. Rapid effects of phytoestrogens on human colonic smooth muscle are mediated by oestrogen receptor beta.

    LENUS (Irish Health Repository)

    Hogan, A M

    2012-02-01

    Epidemiological studies have correlated consumption of dietary phytoestrogens with beneficial effects on colon, breast and prostate cancers. Genomic and non-genomic mechanisms are responsible for anti-carcinogenic effects but, until now, the effect on human colon was assumed to be passive and remote. No direct effect on human colonic smooth muscle has previously been described. Institutional research board approval was granted. Histologically normal colon was obtained from the proximal resection margin of colorectal carcinoma specimens. Circular smooth muscle strips were microdissected and suspended under 1g of tension in organ baths containing oxygenated Krebs solution at 37 degrees C. After an equilibration period, tissues were exposed to diarylpropionitrile (DPN) (ER beta agonist) and 1,3,5-tris(4-hydroxyphenyl)-4-propyl-1H-pyrazole (PPT) (ER alpha agonist) or to the synthetic phytoestrogen compounds genistein (n=8), daidzein (n=8), fisetin (n=8) and quercetin (n=8) in the presence or absence of fulvestrant (oestrogen receptor antagonist). Mechanism of action was investigated by inhibition of downstream pathways. The cholinergic agonist carbachol was used to induce contractile activity. Tension was recorded isometrically. Phytoestrogens inhibit carbachol-induced colonic contractility. In keeping with a non-genomic, rapid onset direct action, the effect was within minutes, reversible and similar to previously described actions of 17 beta oestradiol. No effect was seen in the presence of fulvestrant indicating receptor modulation. While the DPN exerted inhibitory effects, PPT did not. The effect appears to be reliant on a p38\\/mitogen activated protein kinase mediated induction of nitric oxide production in colonic smooth muscle. The present data set provides the first description of a direct effect of genistein, daidzein, fisetin and quercetin on human colonic smooth muscle. The presence of ER in colonic smooth muscle has been functionally proven and the beta

  6. Smooth muscle myosin regulation by serum and cell density in cultured rat lung connective tissue cells.

    Science.gov (United States)

    Babij, P; Zhao, J; White, S; Woodcock-Mitchell, J; Mitchell, J; Absher, M; Baldor, L; Periasamy, M; Low, R B

    1993-08-01

    RNA and protein analyses were used to detect expression of SM1 and SM2 smooth muscle myosin heavy chain (MHC) in cultured adult rat lung connective tissue cells (RL-90). Smooth muscle MHC mRNA expression in confluent cells grown in 10% serum was approximately 50% of the level in adult stomach. Similar results were obtained in cells cultured at low density (25% confluency) in 1% serum. However, in low-density cultures transferred to 10% serum for 24 h, the level of MHC mRNA decreased to approximately 20% of that in adult stomach. Smooth muscle alpha-actin showed a pattern of expression similar to that for smooth muscle MHC. Expression of nonmuscle MHC-A mRNA was higher in all culture conditions compared to stomach. MHC-A mRNA expression was less in low-density cultures in low serum and increased when low-density cultures were transferred to 10% serum for 24 h. MHC-B mRNA expression was less in low- vs. high-density cultures. In contrast to MHC-A, however, MHC-B mRNA expression in low-density cultures was higher in low serum. Immunofluorescence and immunoblotting with SM1-specific antibody demonstrated the presence of the SM1 protein isoform as well as reactivity to a protein band migrating slightly faster than SM2. These results demonstrate that cultured rat lung connective tissue cells express smooth muscle MHC and that expression is modulated by culture conditions.

  7. Electrical properties of purinergic transmission in smooth muscle of the guinea-pig prostate.

    Science.gov (United States)

    Lam, Michelle; Mitsui, Retsu; Hashitani, Hikaru

    2016-01-01

    Prostatic smooth muscle develops spontaneous myogenic tone which is modulated by autonomic neuromuscular transmission. This study aimed to investigate the role of purinergic transmission in regulating electrical activity of prostate smooth muscle and whether its contribution may be altered with age. Intracellular recordings were simultaneously made with isometric tension recordings in smooth muscle preparations of the guinea-pig prostate. Immunostaining for P2X1 receptors on whole mount preparations was also performed. In prostate preparations which generated spontaneous slow waves, electrical field stimulation (EFS)-evoked excitatory junction potentials (EJPs) which were abolished by guanethidine (10 μM), α-β-methylene ATP (10 μM) or pyridoxal phosphate-6-azophenyl-2,4-disulfonic acid (PPADS, 10 μM) but not phentolamine (1 μM). Consistently, immunostaining revealed the expression of P2X1 receptors on prostatic smooth muscle. EJPs themselves did not cause contractions, but EJPs could sum to trigger a slow wave and associated contraction. Yohimbine (1 μM) and 3,7-dimethyl-1-propargylxanthine (DMPX, 10 μM) but not propranolol (1 μM) potentiated EJPs. Although properties of EJPs were not different between young and aging guinea-pig prostates, ectoATPase inhibitor ARL 67156 (100 μM) augmented EJP amplitudes by 64.2 ± 29.6% in aging animals, compared to 22.1 ± 19.9% in young animals. These results suggest that ATP released from sympathetic nerves acts on P2X1 purinoceptors located on prostate smooth muscle to evoke EJPs, while pre-junctional α2-adrenergic and adenosine A2 receptors may play a role in preventing excessive transmitter release. Age-related up-regulation of enzymatic ATP breakdown may be a compensatory mechanism for the enhanced purinergic transmission which would cause hypercontractility arising from increased ATP release in older animals.

  8. Regulation of collagen biosynthesis in cultured bovine aortic smooth muscle cells

    Energy Technology Data Exchange (ETDEWEB)

    Stepp, M.A.

    1986-01-01

    Aortic smooth muscles cells have been implicated in the etiology of lesions which occur in atherosclerosis and hypertension. Both diseases involve proliferation of smooth muscle cells and accumulation of excessive amounts of extracellular matrix proteins, including collagen type I and type III produced by the smooth muscle cells. To better understand the sites of regulation of collagen biosynthesis and to correlate these with the growth rate of the cells, cultured bovine aortic smooth muscle cells were studied as a function of the number of days (3 to 14) in second passage. Cells grew rapidly up to day 6 when confluence was reached. The total incorporation of (/sup 3/H)-proline into proteins was highest at day 3 and decreased to a constant level after the cultures reached confluence. In contrast, collagen protein production was lowest before confluence and continued to increase over the entire time course of the experiments. cDNA clones for the ..cap alpha..1 and ..cap alpha..2 chains of type I and the ..cap alpha..1 chain of type III collagen were used to quantitate the steady state level of collagen mRNAs. RNA was tested in a cell-free translation system. Changes in the translational activity of collagen mRNAs parallelled the observed increases in collagen protein production. Thus, at later time points, collagen mRNAs are more active in directing synthesis of preprocollagens, even though less collagen mRNA is present. The conclusion is that the site of regulation of the expression of collagen genes is a function of the growth rate of cultured smooth muscle cells.

  9. Evidence of direct smooth muscle relaxant effects of the fibrate gemfibrozil.

    Science.gov (United States)

    Phelps, Laura E; Peuler, Jacob D

    2010-01-01

    Fibrates are commonly employed to treat abnormal lipid metabolism via their unique ability to stimulate peroxisome proliferator-activated receptor alpha (PPARalpha). Interestingly, they also decrease systemic arterial pressure, despite recent evidence that PPAR alpha may contribute to expression of renin and related hypertension. Yet, mechanisms responsible for their potential antihypertensive activity remain unresolved. Rapid decreases in arterial pressure following bolus intravenous injections of bezafibrate strongly suggest they may relax arterial smooth muscle directly. But since bezafibrate is highly susceptible to photodegradation in aqueous media, it has never been critically tested for this possibility in vitro with isolated arterial smooth muscle preparations. Accordingly, we tested gemfibrozil which is resistant to photodegradation. We examined it over a therapeutically-relevant range (50-400 microM) for both acute and delayed relaxant effects on contractions of the isolated rat tail artery; contractions induced by either depolarizing its smooth muscle cell membranes with high potassium or stimulating its membrane-bound receptors with norepinephrine and arginine-vasopressin. We also examined these same gemfibrozil levels for effects on spontaneously-occurring phasic rhythmic contractile activity, typically not seen in arteries under in vitro conditions but commonly exhibited by smooth muscle of uterus, duodenum and bladder. We found that gemfibrozil significantly relaxed all induced forms of contraction in the rat tail artery, acutely at the higher test levels and after a delay of a few hours at the lower test levels. The highest test level of gemfibrozil (400 microM) also completely abolished spontaneously-occurring contractile activity of the isolated uterus and duodenum and markedly suppressed it in the bladder. This is the first evidence that a fibrate drug can directly relax smooth muscle contractions, either induced by various contractile agents or

  10. A role of stretch-activated potassium currents in the regulation of uterine smooth muscle contraction

    Institute of Scientific and Technical Information of China (English)

    Iain L O BUXTON; Nathanael HEYMAN; Yi-ying WU; Scott BARNETT; Craig ULRICH

    2011-01-01

    Rates of premature birth are alarming and threaten societies and healthcare systems worldwide. Premature labor results in premature birth in over 50% of cases. Preterm birth accounts for three-quarters of infant morbidity and mortality. Children that survive birth before 34 weeks gestation often face life-long disability. Current treatments for preterm labor are wanting. No treatment has been found to be generally effective and none are systematically evaluated beyond 48 h. New approaches to the treatment of preterm labor are desperately needed. Recent studies from our laboratory suggest that the uterine muscle is a unique compartment with regulation of uterine relaxation unlike that of other smooth muscles. Here we discuss recent evidence that the mechanically activated 2-pore potassium channel, TREK-1, may contribute to contraction-relaxation signaling in uterine smooth muscle and that TREK-1 gene variants associated with human labor and preterm labor may lead to a better understanding of preterm labor and its possible prevention.

  11. Sodium tanshinone IIA silate inhibits high glucose-induced vascular smooth muscle cell proliferation and migration through activation of AMP-activated protein kinase.

    Directory of Open Access Journals (Sweden)

    Wen-yu Wu

    Full Text Available The proliferation of vascular smooth muscle cells may perform a crucial role in the pathogenesis of diabetic vascular disease. AMPK additionally exerts several salutary effects on vascular function and improves vascular abnormalities. The current study sought to determine whether sodium tanshinone IIA silate (STS has an inhibitory effect on vascular smooth muscle cell (VSMC proliferation and migration under high glucose conditions mimicking diabetes without dyslipidemia, and establish the underlying mechanism. In this study, STS promoted the phosphorylation of AMP-activated protein kinase (AMPK at T172 in VSMCs. VSMC proliferation was enhanced under high glucose (25 mM glucose, HG versus normal glucose conditions (5.5 mM glucose, NG, and this increase was inhibited significantly by STS treatment. We utilized western blotting analysis to evaluate the effects of STS on cell-cycle regulatory proteins and found that STS increased the expression of p53 and the Cdk inhibitor, p21, subsequent decreased the expression of cell cycle-associated protein, cyclin D1. We further observed that STS arrested cell cycle progression at the G0/G1 phase. Additionally, expression and enzymatic activity of MMP-2, translocation of NF-κB, as well as VSMC migration were suppressed in the presence of STS. Notably, Compound C (CC, a specific inhibitor of AMPK, as well as AMPK siRNA blocked STS-mediated inhibition of VSMC proliferation and migration. We further evaluated its potential for activating AMPK in aortas in animal models of type 2 diabetes and found that Oral administration of STS for 10 days resulted in activation of AMPK in aortas from ob/ob or db/db mice. In conclusion, STS inhibits high glucose-induced VSMC proliferation and migration, possibly through AMPK activation. The growth suppression effect may be attributable to activation of AMPK-p53-p21 signaling, and the inhibitory effect on migration to the AMPK/NF-κB signaling axis.

  12. Gene expression profiles of vascular smooth muscle show differential expression of mitogen-activated protein kinase pathways during captopril therapy of heart failure.

    Science.gov (United States)

    Chen, Frank C; Brozovich, Frank V

    2008-01-01

    Congestive heart failure (CHF) is characterized by increased vascular tone and an impairment in nitric-oxide-mediated vasodilatation. We have demonstrated that the blunted response to nitric oxide is due, in part, to a reduction in the leucine-zipper-positive isoform of the myosin-targeting subunit (MYPT1) of myosin light-chain phosphatase. Additionally, we have shown that angiotensin-converting enzyme inhibition, but not afterload reduction with prazosin, preserves leucine-zipper-positive MYPT1 isoform expression in vascular smooth muscle cells and normalizes the sensitivity to cGMP-mediated vasodilatation. We therefore hypothesized that in CHF, growth regulators and cytokines downstream of the angiotensin II receptor are involved in modulating gene expression in vascular tissue. Rats were divided into control and captopril-treated groups following left coronary artery ligation. Gene expression profiles in the aorta and portal vein at baseline and 2 and 4 weeks after myocardial infarction (MI) were analyzed using microarray technology and quantitative real-time PCR. After MI, microarray analysis revealed differential mRNA expression of 21 genes in the aorta of captopril-treated rats 2 and 4 weeks after surgery when compared to gene expression profiles at baseline and without captopril therapy. Real-time PCR demonstrated that captopril suppressed the expression of protein kinases in the angiotensin-II-mediated mitogen-activated protein kinase signaling pathway, including Taok1 and Raf1. These data suggest that in CHF, captopril therapy modulates gene expression in vascular smooth muscle, and some of the beneficial effects of ACE inhibition may be due to differential gene expression in the vasculature.

  13. Titanium Dioxide Modulation of the Contractibility of Visceral Smooth Muscles In Vivo

    Science.gov (United States)

    Tsymbalyuk, Olga V.; Naumenko, Anna M.; Rohovtsov, Oleksandr O.; Skoryk, Mykola A.; Voiteshenko, Ivan S.; Skryshevsky, Valeriy A.; Davydovska, Tamara L.

    2017-02-01

    Electronic scanning microscopy was used in the work to obtain the image and to identify the sizes of titanium dioxide (TiO2) nanoparticles 21 ± 5 nm. The qualitative and quantitative elemental analysis of the preparations of the caecum, antrum, myometrium, kidneys, and lungs of the rats, burdened with titanium dioxide, was also performed. It was established using the tenzometric method in the isometric mode that the accumulation of titanium dioxide in smooth muscles of the caecum resulted in the considerable, compared to the control, increase in the frequency of their spontaneous contractions, the decrease in the duration of the contraction-relaxation cycle, and the decrease in the indices of muscle functioning efficiency (the index of contractions in Montevideo units (MU) and the index of contractions in Alexandria units (AU)). In the same experimental conditions, there was not the increase, but the decrease in the frequency of spontaneous contractions, the duration of the contraction-relaxation cycle, and the increase in MU and AU indices in the smooth muscles of myometrium (in the group of rats, burdened with TiO2 for 30 days). It was also determined that TiO2 modulates both the mechanisms of the input of extracellular Ca2+ ions and the mechanisms of decreasing the concentration of these cations in smooth muscle cells of the caecum during the generation of the high potassium contraction. In these conditions, there is a considerable increase in the normalized maximal velocity of the contraction phase and the relaxation phase. It was demonstrated in the work that titanium dioxide also changes the cholinergic excitation in these muscles. The impact of titanium dioxide in the group of rats, burdened with TiO2, was accompanied with a considerable impairment of the kinetics of forming the tonic component of the oxytocin-induced contraction of the smooth muscles of myometrium.

  14. A new level of plasticity: Drosophila smooth-like testes muscles compensate failure of myoblast fusion.

    Science.gov (United States)

    Kuckwa, Jessica; Fritzen, Katharina; Buttgereit, Detlev; Rothenbusch-Fender, Silke; Renkawitz-Pohl, Renate

    2016-01-15

    The testis of Drosophila resembles an individual testis tubule of mammals. Both are surrounded by a sheath of smooth muscles, which in Drosophila are multinuclear and originate from a pool of myoblasts that are set aside in the embryo and accumulate on the genital disc later in development. These muscle stem cells start to differentiate early during metamorphosis and give rise to all muscles of the inner male reproductive system. Shortly before the genital disc and the developing testes connect, multinuclear nascent myotubes appear on the anterior tips of the seminal vesicles. Here, we show that adhesion molecules are distinctly localized on the seminal vesicles; founder cell (FC)-like myoblasts express Dumbfounded (Duf) and Roughest (Rst), and fusion-competent myoblast (FCM)-like cells mainly express Sticks and stones (Sns). The smooth but multinuclear myotubes of the testes arose by myoblast fusion. RNAi-mediated attenuation of Sns or both Duf and Rst severely reduced the number of nuclei in the testes muscles. Duf and Rst probably act independently in this context. Despite reduced fusion in all of these RNAi-treated animals, myotubes migrated onto the testes, testes were shaped and coiled, muscle filaments were arranged as in the wild type and spermatogenesis proceeded normally. Hence, the testes muscles compensate for fusion defects so that the myofibres encircling the adult testes are indistinguishable from those of the wild type and male fertility is guaranteed.

  15. Signal transduction of bombesin-induced circular smooth muscle cell contraction in cat esophagus

    Institute of Scientific and Technical Information of China (English)

    Sung-Uk Park; Chang-Yell Shin; Jung-Su Ryu; Hyen-O La; Sun-Young Park; Hyun-Ju Song; Young-Sil Min; Dong-Seok Kim; Uy-Dong Sohn

    2006-01-01

    AIM: To investigate the mechanism of bombesin-induced circular smooth muscle cell contraction in cat esophagus.METHODS: Specific G protein or phospholipase C involved in cat esophagus contraction was identified,muscle cells were permeabilized with saponin. After permeabilization of muscle cells, the Gi3 antibody inhibited bombesin-induced smooth muscle cell contraction.RESULTS: Incubation of permeabilized circular muscle cells with PLC-β3 antibody could inhibit bombesin-induced contraction. H-7, chelerythrine (PKC inhibitor)and genistein (protein tyrosine kinase inhibitor) inhibited bombesin-induced contraction, but DAG kinase inhibitor,R59949, could not inhibit it. To examine which mitogenactivated protein kinase (MAPK) was involved in bombesin-induced contraction, the specific MAPK inhibitors (MEK inhibitor, PD98059 and p38 MAPK inhibitor, SB202190)were used. Preincubation of PD98059 blocked the contraction induced by bombesin in a concentration-dependent manner. However, SB202190 had no effects on contraction.CONCLUSION: Bombesin-induced circular muscle cell contraction in cat esophagus is madiated via a PKC or a PTK-dependent pathway or p44/p42 MAPK pathway.

  16. Vascular smooth muscle cells express the alpha(1A) subunit of a P-/Q-type voltage-dependent Ca(2+)Channel, and It is functionally important in renal afferent arterioles

    DEFF Research Database (Denmark)

    Hansen, Pernille B. Lærkegaard; Jensen, Boye L.; Andreasen, D

    2000-01-01

    in rat aorta, brain, aortic smooth muscle cells (A7r5), VSMCs, and mesangial cells. Immunolabeling with an anti-alpha(1A) antibody was positive in acid-macerated, microdissected preglomerular vessels and in A7r5 cells. Patch-clamp experiments on aortic A7r5 cells showed 22+/-4% (n=6) inhibition of inward...... Ca(2+) current by omega-Agatoxin IVA (10(-8) mol/L), which in this concentration is a specific inhibitor of P-type VDCCs. Measurements of intracellular Ca(2+) in afferent arterioles with fluorescence-imaging microscopy showed 32+/-9% (n=10) inhibition of the K(+)-induced rise in Ca(2...... preglomerular resistance vessels and aorta, as well as mesangial cells, and that P-type VDCCs contribute to Ca(2+) influx in aortic and renal VSMCs and are involved in depolarization-mediated contraction in renal afferent arterioles....

  17. Kruppel-like factor 4 contributes to high phosphate-induced phenotypic switching of vascular smooth muscle cells into osteogenic cells.

    Science.gov (United States)

    Yoshida, Tadashi; Yamashita, Maho; Hayashi, Matsuhiko

    2012-07-27

    Hyperphosphatemia in chronic kidney disease is highly associated with vascular calcification. Previous studies have shown that high phosphate-induced phenotypic switching of vascular smooth muscle cells (SMCs) into osteogenic cells plays an important role in the calcification process. In the present study, we determined whether Krüppel-like factor 4 (Klf4) and phosphorylated Elk-1, transcriptional repressors of SMC differentiation marker genes activated by intimal atherogenic stimuli, contributed to this process. Rat aortic SMCs were cultured in the medium with normal (0.9 mmol/liter) or high (4.5 mmol/liter) phosphate concentration. Results showed that high phosphate concentration induced SMC calcification. Moreover, high phosphate decreased expression of SMC differentiation marker genes including smooth muscle α-actin and SM22α, whereas it increased expression of osteogenic genes, such as Runx2 and osteopontin. High phosphate also induced Klf4 expression, although it did not phosphorylate Elk-1. In response to high phosphate, Klf4 selectively bound to the promoter regions of SMC differentiation marker genes. Of importance, siRNA-mediated knockdown of Klf4 blunted high phosphate-induced suppression of SMC differentiation marker genes, as well as increases in expression of osteogenic genes and calcium deposition. Klf4 was also induced markedly in the calcified aorta of adenine-induced uremic rats. Results provide novel evidence that Klf4 mediates high phosphate-induced conversion of SMCs into osteogenic cells.

  18. Inhibition of development of experimental abdominal aortic aneurysm by c-jun N-terminal protein kinase inhibitor combined with lysyl oxidase gene modified smooth muscle progenitor cells.

    Science.gov (United States)

    Chen, Feng; Zhang, ZhenDong; Zhu, XianHua

    2015-11-05

    Chronic inflammation, imbalance between the extracellular matrix synthesis and degradation, and loss of vascular smooth muscle cells (SMCs) contribute to the development of abdominal aortic aneurysm (AAA). The purpose of this study was to investigate the effect of the therapy with periaortic incubation of c-Jun N-terminal protein kinase inhibitor SP600125 infused from an osmotic pump and subadventitial injection of lysyl oxidase (LOX) gene modified autologous smooth muscle progenitor cells (SPCs) on treatment of AAA in a rabbit model. Obvious dilation of the abdominal aorta in the control group was caused by periaortic incubation of calcium chloride and elastase. But the progression of aortic dilation was significantly decreased after the treatment with SP600125 and LOX gene modified SPCs compared to the treatment with phosphate-buffered saline. This therapy could inhibit matrix metalloproteinases expression, enhance elastin synthesis, improve preservation of elastic laminar integrity, benefit SPCs survival and restore SMCs population. It seemed that this method might provide a novel therapeutic strategy to treat AAA.

  19. Signal pathways involved in emodin-induced contraction of smooth muscle cells from rat colon

    Institute of Scientific and Technical Information of China (English)

    Tao Ma; Qing-Hui Qi; Jian Xu; Zuo-Liang Dong; Wen-Xiu Yang

    2004-01-01

    AIM: To investigate the effects induced by emodin on single smooth muscle cells from rat colon in vitro, and to determine the signal pathways involved.METHODS: Cells were isolated from the muscle layers of Wistar rat colon by enzymatic digestion. Cell length was measured by computerized image micrometry. Intracellular Ca2+ ([Ca2+]i) signals were studied using the fluorescent Ca2+ indicator fluo-3 and confocal microscopy. PKCα distribution at rest state or after stimulation was measured with immunofluorescence confocal microscopy.RESULTS: (1) Emodin dose-dependently caused colonic smooth muscle cells contraction; (2) emodin induced an increase in intracellular Ca2+ concentration; (3) the contractile responses induced by emodin were respectively inhibited by preincubation of the cells with ML-7 (an inhibitorof MLCK)and calphostin C (an inhibitor of PKC); (4) Incubation of cells with emodin caused translocation of PKCα from cytosolic area to the membrane.CONCLUSION: Emodin has a direct contractile effect on colonic smooth muscle cell. This signal cascade induced by emodin is initiated by increased [Ca2+]i and PKCα translocation,which in turn lead to the activation of MLCK and the suppression of MLCP. Both of them contribute to the emodininduced contraction.

  20. Hypotension Due to Kir6.1 Gain‐of‐Function in Vascular Smooth Muscle

    Science.gov (United States)

    Li, Anlong; Knutsen, Russell H.; Zhang, Haixia; Osei‐Owusu, Patrick; Moreno‐Dominguez, Alex; Harter, Theresa M.; Uchida, Keita; Remedi, Maria S.; Dietrich, Hans H.; Bernal‐Mizrachi, Carlos; Blumer, Kendall J.; Mecham, Robert P.; Koster, Joseph C.; Nichols, Colin G.

    2013-01-01

    Background KATP channels, assembled from pore‐forming (Kir6.1 or Kir6.2) and regulatory (SUR1 or SUR2) subunits, link metabolism to excitability. Loss of Kir6.2 results in hypoglycemia and hyperinsulinemia, whereas loss of Kir6.1 causes Prinzmetal angina–like symptoms in mice. Conversely, overactivity of Kir6.2 induces neonatal diabetes in mice and humans, but consequences of Kir6.1 overactivity are unknown. Methods and Results We generated transgenic mice expressing wild‐type (WT), ATP‐insensitive Kir6.1 [Gly343Asp] (GD), and ATP‐insensitive Kir6.1 [Gly343Asp,Gln53Arg] (GD‐QR) subunits, under Cre‐recombinase control. Expression was induced in smooth muscle cells by crossing with smooth muscle myosin heavy chain promoter–driven tamoxifen‐inducible Cre‐recombinase (SMMHC‐Cre‐ER) mice. Three weeks after tamoxifen induction, we assessed blood pressure in anesthetized and conscious animals, as well as contractility of mesenteric artery smooth muscle and KATP currents in isolated mesenteric artery myocytes. Both systolic and diastolic blood pressures were significantly reduced in GD and GD‐QR mice but normal in mice expressing the WT transgene and elevated in Kir6.1 knockout mice as well as in mice expressing dominant‐negative Kir6.1 [AAA] in smooth muscle. Contractile response of isolated GD‐QR mesenteric arteries was blunted relative to WT controls, but nitroprusside relaxation was unaffected. Basal KATP conductance and pinacidil‐activated conductance were elevated in GD but not in WT myocytes. Conclusions KATP overactivity in vascular muscle can lead directly to reduced vascular contractility and lower blood pressure. We predict that gain of vascular KATP function in humans would lead to a chronic vasodilatory phenotype, as indeed has recently been demonstrated in Cantu syndrome. PMID:23974906

  1. [The effect of prostatilen on the contractile activity of the smooth-muscle cells of the blood vessels and bladder in cats].

    Science.gov (United States)

    al-Shchukri, S Kh; Barabanov, S V; Barabanova, V V; Bobkov, Iu A; Gorbachev, A G; Parastaeva, M M

    1996-07-01

    Prostatilene enhanced the functional activity of the bladder and blood vessels' smooth muscle cells. A possibility of activation of the smooth muscle cells contractility with prostatilene by a pharmaco-mechanical association, is discussed.

  2. MCP-1 Stimulates MMP-9 Expression via ERK 1/2 and p38 MAPK Signaling Pathways in Human Aortic Smooth Muscle Cells

    Directory of Open Access Journals (Sweden)

    Ci-Qiu Yang

    2014-07-01

    Full Text Available Objective: We investigated the molecular mechanism underlying the role of monocyte chemoattractant protein-1 (MCP-1 in the formation and development of human abdominal aortic aneurysm (AAA. Methods: We examined protein expression profiles using a protein array and found that MCP-1 was the most highly expressed protein in AAA tissues compared with normal aortas. To investigate the potential mechanism of MCP-1 involvement in the pathogenesis of AAA, we treated human aortic smooth muscle cells (HASMCs with human recombinant MCP-1. Results: MCP-1 was the most highly expressed protein in AAA tissues compared with normal aorta; matrix metalloproteinase-9 (MMP-9 expression was also significantly increased. Treatment with MCP-1 significantly increased the expression and activation of MMP-9 and activated the three major mitogen activated protein kinases (MAPKs extracellular signal regulated kinase (ERK, c-Jun amino terminal kinase (JNK1/2 and p38 MAPK. Furthermore, MCP-1-induced secretion of MMP-9 was inhibited by U0126 (inhibitor of the ERK 1/2 pathway and SB203580 (inhibitor of the p38 MAPK pathway, but not SP600125 (inhibitor of the JNK1/2 pathway. Conclusion: These data demonstrate that MCP-1 stimulates secretion of MMP-9 directly through the ERK1/2 and p38 MAPK mediated pathways in HASMCs. Thus, inhibition of this molecular mechanism might be a potential therapeutic target in the non-surgical treatment of AAA.

  3. Assays for in vitro monitoring of human airway smooth muscle (ASM) and human pulmonary arterial vascular smooth muscle (VSM) cell migration.

    Science.gov (United States)

    Goncharova, Elena A; Goncharov, Dmitry A; Krymskaya, Vera P

    2006-01-01

    Migration of human pulmonary vascular smooth muscle (VSM) cells contributes to vascular remodeling in pulmonary arterial hypertension and atherosclerosis. Evidence also indicates that, in part, migration of airway smooth muscle (ASM) cells may contribute to airway remodeling associated with asthma. Here we describe migration of VSM and ASM cells in vitro using Transwell or Boyden chamber assays. Because dissecting signaling mechanisms regulating cell migration requires molecular approaches, our protocol also describes how to assess migration of transfected VSM and ASM cells. Transwell or Boyden chamber assays can be completed in approximately 8 h and include plating of serum-deprived VSM or ASM cell suspension on membrane precoated with collagen, migration of cells toward chemotactic gradient and visual (Transwell) or digital (Boyden chamber) analysis of membrane. Although the Transwell assay is easy, the Boyden chamber assay requires hands-on experience; however, both assays are reliable cell-based approaches providing valuable information on how chemotactic and inflammatory factors modulate VSM and ASM migration.

  4. Increased Expression of RhoA in Epithelium and Smooth Muscle of Obese Mouse Models: Implications for Isoprenoid Control of Airway Smooth Muscle and Fibroblasts

    Directory of Open Access Journals (Sweden)

    Kristie R. Ross

    2013-01-01

    Full Text Available The simultaneous rise in the prevalence of asthma and obesity has prompted epidemiologic studies that establish obesity as a risk factor for asthma. The alterations in cell signaling that explain this link are not well understood and warrant investigation so that therapies that target this asthma phenotype can be developed. We identified a significant increase in expression of the small GTPase RhoA in nasal epithelial cells and tracheal smooth muscle cells from leptin-deficient (ob/ob mice compared to their wild-type counterparts. Since RhoA function is dependent on isoprenoid modification, we sought to determine the role of isoprenoid-mediated signaling in regulating the viability and proliferation of human airway smooth muscle cells (ASM and normal human lung fibroblasts (NHLF. Inhibiting isoprenoid signaling with mevastatin significantly decreased the viability of ASM and NHLF. This inhibition was reversed by geranylgeranyl pyrophosphate (GGPP, but not farnesyl pyrophosphate (FPP, suggesting specificity to the Rho GTPases. Conversely, increasing isoprenoid synthesis significantly increased ASM proliferation and RhoA protein expression. RhoA expression is inherently increased in airway tissue from ob/ob mice, and obesity-entrained alterations in this pathway may make it a novel therapeutic target for treating airway disease in the obese population.

  5. Mercury induces proliferation and reduces cell size in vascular smooth muscle cells through MAPK, oxidative stress and cyclooxygenase-2 pathways

    Energy Technology Data Exchange (ETDEWEB)

    Aguado, Andrea; Galán, María; Zhenyukh, Olha; Wiggers, Giulia A.; Roque, Fernanda R. [Departamento de Farmacología, Facultad de Medicina, Universidad Autónoma de Madrid, Instituto de Investigación Hospital Universitario La Paz (IdiPAZ), 28029, Madrid (Spain); Redondo, Santiago [Departamento de Farmacología, Facultad de Medicina, Universidad Complutense, 28040, Madrid (Spain); Peçanha, Franck [Departamento de Farmacología, Facultad de Medicina, Universidad Autónoma de Madrid, Instituto de Investigación Hospital Universitario La Paz (IdiPAZ), 28029, Madrid (Spain); Martín, Angela [Departamento de Bioquímica, Fisiología y Genética Molecular, Universidad Rey Juan Carlos, 28922, Alcorcón (Spain); Fortuño, Ana [Área de Ciencias Cardiovasculares, Centro de Investigación Médica Aplicada, Universidad de Navarra, 31008, Pamplona (Spain); Cachofeiro, Victoria [Departamento de Fisiología, Facultad de Medicina, Universidad Complutense, 28040, Madrid (Spain); Tejerina, Teresa [Departamento de Farmacología, Facultad de Medicina, Universidad Complutense, 28040, Madrid (Spain); Salaices, Mercedes, E-mail: mercedes.salaices@uam.es [Departamento de Farmacología, Facultad de Medicina, Universidad Autónoma de Madrid, Instituto de Investigación Hospital Universitario La Paz (IdiPAZ), 28029, Madrid (Spain); and others

    2013-04-15

    Mercury exposure is known to increase cardiovascular risk but the underlying cellular mechanisms remain undetermined. We analyzed whether chronic exposure to HgCl{sub 2} affects vascular structure and the functional properties of vascular smooth muscle cells (VSMC) through oxidative stress/cyclooxygenase-2 dependent pathways. Mesenteric resistance arteries and aortas from Wistar rats treated with HgCl{sub 2} (first dose 4.6 mg kg{sup −1}, subsequent doses 0.07 mg kg{sup −1} day{sup −1}, 30 days) and cultured aortic VSMC stimulated with HgCl{sub 2} (0.05–5 μg/ml) were used. Treatment of rats with HgCl{sub 2} decreased wall thickness of the resistance and conductance vasculature, increased the number of SMC within the media and decreased SMC nucleus size. In VSMCs, exposure to HgCl{sub 2}: 1) induced a proliferative response and a reduction in cell size; 2) increased superoxide anion production, NADPH oxidase activity, gene and/or protein levels of the NADPH oxidase subunit NOX-1, the EC- and Mn-superoxide dismutases and cyclooxygenase-2 (COX-2); 3) induced activation of ERK1/2 and p38 MAPK. Both antioxidants and COX-2 inhibitors normalized the proliferative response and the altered cell size induced by HgCl{sub 2}. Blockade of ERK1/2 and p38 signaling pathways abolished the HgCl{sub 2}-induced Nox1 and COX-2 expression and normalized the alterations induced by mercury in cell proliferation and size. In conclusion, long exposure of VSMC to low doses of mercury activates MAPK signaling pathways that result in activation of inflammatory proteins such as NADPH oxidase and COX-2 that in turn induce proliferation of VSMC and changes in cell size. These findings offer further evidence that mercury might be considered an environmental risk factor for cardiovascular disease. - Highlights: ► Chronic HgCl{sub 2} exposure induces vascular remodeling. ► HgCl{sub 2} induces proliferation and decreased cell size in vascular smooth muscle cells. ► HgCl{sub 2} induces

  6. Regulation of intracellular Ca2+ and calcineurin by NO/PKG in proliferation of vascular smooth muscle cells

    Institute of Scientific and Technical Information of China (English)

    Shi-jun LI; Ning-ling SUN

    2005-01-01

    Aim: To determine whether Ca2+/calcineurin mediated the inhibitory effects of nitric oxide/cGMP-dependent protein kinase (NO/PKG) on the proliferation of vascular smooth muscle cells (VSMC). Methods: Proliferation and viability of primary VSMC from rat aorta were measured using [3-(4,5-dimethyl thiazol-2-yl)-2,5-diphenyl tetrazolium bromide] (MTT) assay and acridine orange and ethidium bromide staining, respectively. Cytosolic Ca2+ was determined by Fluo-3/AM.Calcineurin protein and its activity were assayed using immunoblotting and free inorganic phosphate analysis, respectively. Results: (±)-S-nitroso-N-acetylpenicillamine (SNAP) and Sp-8-(4-chlorophenylthio)-guanosine-3',5'-cyclic monophosphorothioate (Sp-8-pCPT-cGMPS) decreased phenylephrine (PE)-induced proliferation of VSMC by 27.3% and 36.6%, respectively, but Rp-8-[(4-chlorophenyl)thio]-guanosine-3',5'-cyclic monophosphorothioate (Rp-8-pCPT-cGMPS) increased PE-induced proliferation of VSMC. SNAP, Sp-8-pCPT-cGMPS,and Rp-8-pCPT-cGMPS did not affect the viability of VSMC. Calcineurin protein was decreased by 63.1% and its activity was decreased by 59.7% in smooth muscle cells (SMC) pretreated with verapamil (Ver) and then stimulated by PE. In SMC pretreated with Ver, the absorbance of cells stimulated by PE decreased by 22.0% and was further inhibited by the additional treatment of SNAP and Sp-8-pCPT-cGMPS. In SMC pretreated with cyclosporin A (CsA), the absorbance of cells stimulated by PE decreased by 36.7%, but could not be further altered by the additional treatment of SNAP, Sp-8-pCPT-cGMPS, and Rp-8-pCPT-cGMPS. In addition, Ver inhibited PE-induced intracellular Ca2+ variations, which could be further inhibited by SNAP and Sp-8-pCPT-cGMPS, but not by Rp-8-pCPT-cGMPS.Moreover, the increase in calcineurin activity induced by PE was inhibited by SNAP and Sp-8-pCPT-cGMPS, but was promoted by Rp-8-pCPT-cGMPS.Conclusion: NO/PKG regulates calcineurin activity via the modulation of intracellular Ca2

  7. The impact of simulated microgravity on purinergic signaling in an endothelial and smooth muscle cell co-culture model

    Science.gov (United States)

    Zhang, Yu; Hemmersbach, Ruth; Lau, Patrick; Pansky, Andreas; Kassack, Matthias; Tobiasch, Edda

    Astronauts suffer from cardiovascular deconditioning when they are exposed to microgravity conditions during space missions. Thus, current research focuses on the identification of the underlying mechanism also with respect to therapy and countermeasures. Endothelial cells (ECs) and smooth muscle cells (SMCs) play a key role in a variety of vascular functions. Gene expression, cytoskeleton morphology and apoptosis in both, ECs and SMCs, have shown alterations under simulated and real microgravity condition. However, all these data were observed during single culturing of either ECs or SMCs under microgravity conditions, which is different from the in vivo situation. Purinergic 2 (P2) receptors bind extracellular nucleotides and can regulate the vascular tone and vascular cell proliferation, migration and apoptosis. In this study primary ECs and SMCs were obtained from bovine aorta and characterized using specific markers. Here we show for the first time that the P2-receptor expressions pattern in ECs and in SMCs is altered after 24h in simulated microgravity. Specific receptors are down- or up-regulated on the gene and protein level. In addition the supernatant of ECs during culture was used as conditioned medium for SMCs and vice visa to investigate the influence of either cell type on the other. ECs and SMCs secret cytokines which induce pathogenic proliferation and an altered migration behavior under simulated microgravity conditions. Interestingly, co-culturing with condition medium could compensate this change. In detail, P2X7 was down-regulated in ECs after 24h clinorotation but recovered to the 1 g level when cultured with conditioned medium from SMCs collected under normal gravity. In conclusion, our data indicate that the paracrine effect between ECs and SMCs is an important regulator of cell behavior, also under altered gravity conditions. P2-receptor gene and protein expression were altered during microgravity. Since several P2-receptor artificial

  8. Smooth muscle myosin light chain kinase efficiently phosphorylates serine 15 of cardiac myosin regulatory light chain

    Energy Technology Data Exchange (ETDEWEB)

    Josephson, Matthew P.; Sikkink, Laura A. [Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905 (United States); Penheiter, Alan R. [Molecular Medicine Program, Mayo Clinic, Rochester, MN 55905 (United States); Burghardt, Thomas P., E-mail: burghardt@mayo.edu [Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905 (United States); Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905 (United States); Ajtai, Katalin [Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905 (United States)

    2011-12-16

    Highlights: Black-Right-Pointing-Pointer Cardiac myosin regulatory light chain (MYL2) is phosphorylated at S15. Black-Right-Pointing-Pointer Smooth muscle myosin light chain kinase (smMLCK) is a ubiquitous kinase. Black-Right-Pointing-Pointer It is a widely believed that MYL2 is a poor substrate for smMLCK. Black-Right-Pointing-Pointer In fact, smMLCK efficiently and rapidly phosphorylates S15 in MYL2. Black-Right-Pointing-Pointer Phosphorylation kinetics measured by novel fluorescence method without radioactivity. -- Abstract: Specific phosphorylation of the human ventricular cardiac myosin regulatory light chain (MYL2) modifies the protein at S15. This modification affects MYL2 secondary structure and modulates the Ca{sup 2+} sensitivity of contraction in cardiac tissue. Smooth muscle myosin light chain kinase (smMLCK) is a ubiquitous kinase prevalent in uterus and present in other contracting tissues including cardiac muscle. The recombinant 130 kDa (short) smMLCK phosphorylated S15 in MYL2 in vitro. Specific modification of S15 was verified using the direct detection of the phospho group on S15 with mass spectrometry. SmMLCK also specifically phosphorylated myosin regulatory light chain S15 in porcine ventricular myosin and chicken gizzard smooth muscle myosin (S20 in smooth muscle) but failed to phosphorylate the myosin regulatory light chain in rabbit skeletal myosin. Phosphorylation kinetics, measured using a novel fluorescence method eliminating the use of radioactive isotopes, indicates similar Michaelis-Menten V{sub max} and K{sub M} for regulatory light chain S15 phosphorylation rates in MYL2, porcine ventricular myosin, and chicken gizzard myosin. These data demonstrate that smMLCK is a specific and efficient kinase for the in vitro phosphorylation of MYL2, cardiac, and smooth muscle myosin. Whether smMLCK plays a role in cardiac muscle regulation or response to a disease causing stimulus is unclear but it should be considered a potentially significant

  9. Isolation and individual electrical stimulation of single smooth-muscle cells from the urinary bladder of the pig

    NARCIS (Netherlands)

    J.J. Glerum (Jacobus); R. van Mastrigt (Ron); J.C. Romijn (Johannes); D.J. Griffiths (Derek)

    1987-01-01

    textabstractIn contrast to striated muscle, measurements on strips of smooth muscle cannot be uniquely interpreted in terms of an array of contractile units. Therefore scaling down to the single-cell level is necessary to gain detailed understanding of the contractile process in this type of muscle.

  10. Platelet affinity for burro aorta collagen

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, M.D.

    1977-10-01

    Despite ingenious concepts, there are no unequivocal clues as to what, when, and how some undefined biochemical factor(s) or constituent(s) that localizes in the arterial wall can precipitate a thromboatheromatous lesion or arterial disease. The present study focused on the extraction, partial purification, and characterization of a collagen-active platelet stimulator from the aortas of aged burros. The aggregator moiety in the aorta extracts invariably had a higher affinity for platelets in citrated platelet-rich plasma of human beings than for platelets of homologous burros. The platelet-aggregating factor(s) in the aorta extract was retained by incubation with ..cap alpha..-chymotrypsin. Platelet-aggregating activity was rapidly abolished after incubation with collagenase, as determined by platelet-aggregometry tests. Evidence based on light microscope and polysaccharide histochemical reactions indicates a probability that the intracellular amorphous matrix (PAS-positive) and filamentous components (PTAH-positive) expelled from smooth muscle cells disrupted during homogenization of the aorta may be a principal source of a precursor collagen species which is a potent inducer of platelet aggregation.

  11. Abdominal aorta transplantation after programmed cryopreservation

    Institute of Scientific and Technical Information of China (English)

    Song Gu; Chang-Jian Liu; Tong Qiao; Xue-Mei Sun; Jun-Hao Chen

    2004-01-01

    AIM: To study the morphologic and cellular immunologic changes after homologous transplantation of the abdominal aorta in rats after programmed cryopreservation (-196°C).METHODS: Abdominal aorta was harvested from anesthetized Spraque Dawley (SD) rats for cryopreservation (group B) or immediate implantation (group A). The survival rates and apoptotic rates of aortic endothelial cells (ECs)were examined. The patency rates, histology and cellular immunologic changes of the abdominal aorta were examined on days 1, 3, 7, 14, 30, 60 after transplantation respectively.RESULTS: The survival rate of ECs after programmed cryopreservation was 90.1±1.79%, about 3.4% lower than that of uncryopreservation (93.5±1.96%). The apoptotic rates of ECs was increased after cryopreservation (7.15%vs 4.86%, P<0.05). The patency rate of group B was significantly higher than that of group A (91.6±12.9% vs 62.5±26.2%, P<0.01). CD4/CD8 ratio, TCR αβ and CD11b/CD18 ratio of group B were significantly lower than those of group A (P<0.05). Revivification of the cryopreserved abdominal aorta showed normal adventitia and intact smooth muscle cells.CONCLUSION: Cryopreservation can reduce homologous abdominal aortic antigenecity. Even if without administration of immunosuppressive agents, it is still feasible to implement homologous artery grafting in rats.

  12. Role of Ryanodine Receptor Subtypes in Initiation and Formation of Calcium Sparks in Arterial Smooth Muscle: Comparison with Striated Muscle

    Directory of Open Access Journals (Sweden)

    Maik Gollasch

    2009-01-01

    Full Text Available Calcium sparks represent local, rapid, and transient calcium release events from a cluster of ryanodine receptors (RyRs in the sarcoplasmic reticulum. In arterial smooth muscle cells (SMCs, calcium sparks activate calcium-dependent potassium channels causing decrease in the global intracellular [Ca2+] and oppose vasoconstriction. This is in contrast to cardiac and skeletal muscle, where spatial and temporal summation of calcium sparks leads to global increases in intracellular [Ca2+] and myocyte contraction. We summarize the present data on local RyR calcium signaling in arterial SMCs in comparison to striated muscle and muscle-specific differences in coupling between L-type calcium channels and RyRs. Accordingly, arterial SMC Cav1.2 L-type channels regulate intracellular calcium stores content, which in turn modulates calcium efflux though RyRs. Downregulation of RyR2 up to a certain degree is compensated by increased SR calcium content to normalize calcium sparks. This indirect coupling between Cav1.2 and RyR in arterial SMCs is opposite to striated muscle, where triggering of calcium sparks is controlled by rapid and direct cross-talk between Cav1.1/Cav1.2 L-type channels and RyRs. We discuss the role of RyR isoforms in initiation and formation of calcium sparks in SMCs and their possible molecular binding partners and regulators, which differ compared to striated muscle.

  13. Effect of oxidative stress on Rho kinase II and smooth muscle contraction in rat stomach.

    Science.gov (United States)

    Al-Shboul, Othman; Mustafa, Ayman

    2015-06-01

    Recent studies have shown that both Rho kinase signaling and oxidative stress are involved in the pathogenesis of a number of human diseases, such as diabetes mellitus, hypertension, and atherosclerosis. However, very little is known about the effect of oxidative stress on the gastrointestinal (GI) smooth muscle Rho kinase pathway. The aim of the current study was to investigate the effect of oxidative stress on Rho kinase II and muscle contraction in rat stomach. The peroxynitrite donor 3-morpholinosydnonimine (SIN-1), hydrogen peroxide (H2O2), and peroxynitrite were used to induce oxidative stress. Rho kinase II expression and ACh-induced activity were measured in control and oxidant-treated cells via specifically designed enzyme-linked immunosorbent assay (ELISA) and activity assay kits, respectively. Single smooth muscle cell contraction was measured via scanning micrometry in the presence or absence of the Rho kinase blocker, Y-27632 dihydrochloride. All oxidant agents significantly increased ACh-induced Rho kinase II activity without affecting its expression level. Most important, oxidative stress induced by all three agents augmented ACh-stimulated muscle cell contraction, which was significantly inhibited by Y-27632. In conclusion, oxidative stress activates Rho kinase II and enhances contraction in rat gastric muscle, suggesting an important role in GI motility disorders associated with oxidative stress.

  14. Deranged smooth muscle α-actin as a biomarker of intestinal pseudo-obstruction: a controlled multinational case series

    Science.gov (United States)

    Knowles, C H; Silk, D B A; Darzi, A; Veress, B; Feakins, R; Raimundo, A H; Crompton, T; Browning, E C; Lindberg, G; Martin, J E

    2004-01-01

    Background and aims: Chronic idiopathic intestinal pseudo-obstruction (CIIP) is a severe motility disorder associated with significant morbidity. Several histopathological (neuropathic and myopathic) phenotypes have been described but only a single adult with jejunal smooth (circular) muscle α-actin deficiency. We present a prospective multinational case series investigating smooth muscle α-actin deficiency as a biomarker of this disease. Methods: A total of 115 fully clinically and physiologically (including prolonged (24 hour) ambulatory jejunal manometry) characterised CIIP patients from three European centres were studied. Immunohistochemical localisation of actins and other cytoskeletal proteins were performed on laparoscopic full thickness jejunal biopsies and compared with adult controls. Distribution of α-actin was also characterised in other gut regions and in the developing human alimentary tract. Results: Twenty eight of 115 (24%) CIIP patient biopsies had absent (n = 22) or partial (n = 6) jejunal smooth muscle α-actin immunostaining in the circular muscle layer. In contrast, smooth muscle α-actin staining was preserved in the longitudinal muscle and in adult jejunal controls (n = 20). Comparative study of other adult alimentary tract regions and fetal small intestine, suggested significant spatial and temporal variations in smooth muscle α-actin expression. Conclusions: The ability to modulate α-smooth muscle actin expression, evident in development, is maintained in adult life and may be influenced by disease, rendering it a valuable biomarker even in the absence of other structural abnormalities. PMID:15479676

  15. Smooth Muscle Tumor Originating in the Pleura: A Case Report and Updated Literature Review

    Science.gov (United States)

    Zarubin, Vadim; Zarineh, Alireza

    2016-01-01

    Smooth muscle tumors (SMTs) of the pleura are exceptionally rare. At present and to the best of these authors' knowledge, there are only 17 cases reported in the literature. We describe a case of a 51-year-old woman who complained of left sided pleuritic chest pain. Further, computed tomography (CT) revealed a left sided localized pleural-based mass involving the 9th rib. She underwent an interventional radiology guided percutaneous core biopsy of the lesion, which disclosed a “Smooth Muscle Tumor of Undetermined Malignant Potential (SMT-UMP).” A video-assisted thoracoscopic surgery (VATS) was performed for diagnosis and treatment purposes. Resections of the pleural-based mass and 9th rib were performed. SMT-UMP was the definitive diagnosis. PMID:27747117

  16. Smooth Muscle Tumor Originating in the Pleura: A Case Report and Updated Literature Review

    Directory of Open Access Journals (Sweden)

    Santiago Fabián Moscoso Martínez

    2016-01-01

    Full Text Available Smooth muscle tumors (SMTs of the pleura are exceptionally rare. At present and to the best of these authors’ knowledge, there are only 17 cases reported in the literature. We describe a case of a 51-year-old woman who complained of left sided pleuritic chest pain. Further, computed tomography (CT revealed a left sided localized pleural-based mass involving the 9th rib. She underwent an interventional radiology guided percutaneous core biopsy of the lesion, which disclosed a “Smooth Muscle Tumor of Undetermined Malignant Potential (SMT-UMP.” A video-assisted thoracoscopic surgery (VATS was performed for diagnosis and treatment purposes. Resections of the pleural-based mass and 9th rib were performed. SMT-UMP was the definitive diagnosis.

  17. Influences on vascular wall smooth muscle cells with novel short-duration thermal angioplasty

    Science.gov (United States)

    Kunio, M.; Shimazaki, N.; Arai, T.; Sakurada, M.

    2012-02-01

    We investigated the influences on smooth muscle cells after our novel short-duration thermal angioplasty, Photo-thermo Dynamic Balloon Angioplasty (PTDBA), to reveal the mechanism that can suppress neo-intimal hyperplasia after PTDBA. We obtained the sufficient arterial dilatations by short-duration heating (angioplasty in vivo. The measured neo-intimal hyperplasia occupancy rate was less than 20% after PTDBA in vivo. We prospect that the inhibition of the growth factor's expression by stretch-fixing may result to suppress the neo-intimal hyperplasia. In addition, the decrease of smooth muscle cells' density in the vessel media by heating might be another reason for the neo-intimal hyperplasia suppression.

  18. Endometrial stromal sarcoma with smooth muscle and glandular differentiation of the feline uterus.

    Science.gov (United States)

    Sato, T; Maeda, H; Suzuki, A; Shibuya, H; Sakata, A; Shirai, W

    2007-05-01

    The intra-abdominal tumor developing in the uterus and lung of a domestic Shorthair cat was examined histopathologically and immunohistochemically. The tumor showed a proliferation of both endometrial stromal and smooth muscle cells accompanied by prominent vasculature. There were well-differentiated endometrial glands, and tubuli made up a monolayer of eosinophilic cuboidal epithelium. Immunohistochemically, the spindle-shaped cells and half of the stromal-like cells reacted to caldesmon and desmin antibodies. The neoplastic epithelium expressed AE1/AE3 cytokeratin. Feline endometrial stromal tumor has, to the best of our knowledge, not been reported previously and has smooth muscle and glandular components that are a unique variant to the human counterpart.

  19. Prediction of peak forces for a shortening smooth muscle tissue subjected to vibration.

    Science.gov (United States)

    Pidaparti, Ramana M; Dhanaraj, Nandhini; Meiss, Richard A

    2008-01-01

    The objective of the present study is to investigate the peak forces for a tracheal smooth muscle tissue subjected to an applied longitudinal vibration following isotonic shortening. A non-linear finite element analysis was carried out to simulate the vibratory response under experimental conditions that corresponds to forced length oscillations at 33 Hz for 1 second. The stiffness change and hysteresis estimated from the experimental data was used in the analysis. The finite element results of peak forces are compared to the experimental data obtained. The comparison of results indicate that the approach and the vibratory response obtained may be useful for describing the cross-bridge de-attachments within the cells as well as connective tissue connections characteristic of tracheal smooth muscle tissue.

  20. A function for filamentous alpha-smooth muscle actin: Retardation of motility in human breast fibroblasts

    DEFF Research Database (Denmark)

    Rønnov-Jessen, Lone; Petersen, Ole William

    1996-01-01

    Actins are known to comprise six mammalian isoforms of which beta- and gamma-nonmuscle actins are present in all cells, whereas alpha-smooth muscle (alpha-sm) actin is normally restricted to cells of the smooth muscle lineages. alpha-Sm actin has been found also to be expressed transiently...... reactions. Here, we show that the presence of alpha-sm actin is a signal for retardation of migratory behavior in fibroblasts. Comparison in a migration assay of fibroblast cell strains with and without alpha-sm actin revealed migratory restraint in alpha-sm actin-positive fibroblasts. Electroporation...... in certain nonmuscle cells, in particular fibroblasts, which are referred to as myofibroblasts. The functional significance of alpha-sm actin in fibroblasts is unknown. However, myofibroblasts appear to play a prominent role in stromal reaction in breast cancer, at the site of wound repair, and in fibrotic...

  1. siRNA-mediated knockdown of endogenously expressed bestrophin in smooth muscles

    DEFF Research Database (Denmark)

    Larsen, Per; Matchkov, Vladimir; Nilsson, Holger;

     We have recently characterized in smooth muscle cells a unique cGMP-dependent Ca2+-activated Cl- current (ICl(cGMP-Ca)) that co-exists with a "classical" Ca2+-activated Cl- current. We hypothesized that bestrophin-4 (a product of the VMD2-like 3 gene) could be responsible for the ICl(cGMP-Ca) ba...... is responsible for the ICl(cGMP-Ca) in smooth muscle cells. This study presents a novel efficient technique for specific downregulation of gene expression in blood vessels, much needed in studies of vascular function....... was controlled by qPCR and Western blot. The downregulation of bestrophin-4 expression (by 88% in mRNA) with siRNA was a associated with significant reduction (by 83%) of the ICl(cGMP-Ca) while the "classical" Ca2+-activated Cl- current was not affected. Our studies provide evidence that bestrophin-4...

  2. The effects of wild-type and mutant SOD1 on smooth muscle contraction

    Directory of Open Access Journals (Sweden)

    Nikolić-Kokić Aleksandra

    2015-01-01

    Full Text Available In this work we compared the mutated liver copper zinc-containing superoxide dismutase (SOD1 protein G93A of the transgenic rat model of familial amyotrophic lateral sclerosis (FALS, to wild-type (WT rat SOD1. We examined their enzymatic activities and effects on isometric contractions of uteri of healthy virgin rats. G93A SOD1 showed a slightly higher activity than WT SOD1 and, in contrast to WT SOD1, G93A SOD1 did not induce smooth muscle relaxation. This result indicates that effects on smooth muscles are not related to SOD1 enzyme activity and suggest that heterodimers of G93A SOD1 form an ion-conducting pore that diminishes the relaxatory effects of SOD1. We propose that this type of pathogenic feedback affects neurons in FALS. [Projekat Ministarstva nauke Republike Srbije, br. 173014 i br. 175083

  3. Atrial natriuretic factor inhibits mitogen-induced growth in aortic smooth muscle cells.

    Science.gov (United States)

    Baldini, P M; De Vito, P; Fraziano, M; Mattioli, P; Luly, P; Di Nardo, P

    2002-10-01

    Atrial natriuretic factor (ANF) is a polypeptide able to affect cardiovascular homeostasis exhibiting diuretic, natriuretic, and vasorelaxant activities. ANF shows antimitogenic effects in different cell types acting through R(2) receptor. Excessive proliferation of smooth muscle cells is a common phenomenon in diseases such as atherosclerosis, but the role of growth factors in the mechanism which modulate this process has yet to be clarified. The potential antimitogenic role of ANF on the cell growth induced by growth factors appears very intriguing. Aim of the present study was to investigate the possible involvement of ANF on rat aortic smooth muscle (RASM) cells proliferation induced by known mitogens and the mechanism involved. Our data show that ANF, at physiological concentration range, inhibits RASM cell proliferation induced by known mitogens such as PDGF and insulin, and the effect seems to be elicited through the modulation of phosphatidic acid (PA) production and MAP kinases involvement.

  4. Increased fibroblast telomerase expression precedes myofibroblast α-smooth muscle actin expression in idiopathic pulmonary fibrosis

    Directory of Open Access Journals (Sweden)

    Daniel Reis Waisberg

    2012-09-01

    Full Text Available OBJECTIVE: This study sought to identify the relationship between fibroblast telomerase expression, myofibroblasts, and telomerase-mediated regulatory signals in idiopathic pulmonary fibrosis. METHODS: Thirty-four surgical lung biopsies, which had been obtained from patients with idiopathic pulmonary fibrosis and histologically classified as usual interstitial pneumonia, were examined. Immunohistochemistry was used to evaluate fibroblast telomerase expression, myofibroblast α-smooth muscle actin expression and the tissue expression of inter leu kin-4, transforming growth factor-β, and basic fibroblast growth factor. The point-counting technique was used to quantify the expression of these markers in unaffected, collapsed, mural fibrosis, and honeycombing areas. The results were correlated to patient survival. RESULTS: Fibroblast telomerase expression and basic fibroblast growth factor tissue expression were higher in collapsed areas, whereas myofibroblast expression and interleukine-4 tissue expression were higher in areas of mural fibrosis. Transforming growth factor-β expression was higher in collapsed, mural fibrosis and honeycombing areas in comparison to unaffected areas. Positive correlations were found between basic fibroblast growth factor tissue expression and fibroblast telomerase expression and between interleukin-4 tissue expression and myofibroblast α-smooth muscle actin expression. Negative correlations were observed between interleukin-4 expression and basic fibroblast growth factor tissue expression in areas of mural fibrosis. Myofibroblast α-smooth muscle actin expression and interleukin-4 tissue expression in areas of mural fibrosis were negatively associated with patient survival. CONCLUSION: Fibroblast telomerase expression is higher in areas of early remodeling in lung tissues demonstrating typical interstitial pneumonia, whereas myofibroblast α-smooth muscle actin expression predominates in areas of late remodeling

  5. Diabetic conditions promote binding of monocytes to vascular smooth muscle cells and their subsequent differentiation

    OpenAIRE

    Meng, Li; Park, Jehyun; Cai, Qiangjun; Lanting, Linda; Reddy, Marpadga A; Natarajan, Rama

    2009-01-01

    Diabetes is associated with significantly accelerated rates of atherosclerosis, key features of which include the presence of excessive macrophage-derived foam cells in the subendothelial space. We examined the hypothesis that enhanced monocyte-vascular smooth muscle cell (VSMC) interactions leading to subendothelial monocyte retention and differentiation to macrophages under diabetic conditions may be underlying mechanisms. Human aortic VSMCs (HVSMCs) treated with diabetic stimuli high gluco...

  6. Strain history and TGF-β1 induce urinary bladder wall smooth muscle remodeling and elastogenesis.

    Science.gov (United States)

    Heise, Rebecca L; Parekh, Aron; Joyce, Erinn M; Chancellor, Michael B; Sacks, Michael S

    2012-01-01

    Mechanical cues that trigger pathological remodeling in smooth muscle tissues remain largely unknown and are thought to be pivotal triggers for strain-induced remodeling. Thus, an understanding of the effects mechanical stimulation is important to elucidate underlying mechanisms of disease states and in the development of methods for smooth muscle tissue regeneration. For example, the urinary bladder wall (UBW) adaptation to spinal cord injury (SCI) includes extensive hypertrophy as well as increased collagen and elastin, all of which profoundly alter its mechanical response. In addition, the pro-fibrotic growth factor TGF-β1 is upregulated in pathologies of other smooth muscle tissues and may contribute to pathological remodeling outcomes. In the present study, we utilized an ex vivo organ culture system to investigate the response of UBW tissue under various strain-based mechanical stimuli and exogenous TGF-β1 to assess extracellular matrix (ECM) synthesis, mechanical responses, and bladder smooth muscle cell (BSMC) phenotype. Results indicated that a 0.5-Hz strain frequency triangular waveform stimulation at 15% strain resulted in fibrillar elastin production, collagen turnover, and a more compliant ECM. Further, this stretch regime induced changes in cell phenotype while the addition of TGF-β1 altered this phenotype. This phenotypic shift was further confirmed by passive strip biomechanical testing, whereby the bladder groups treated with TGF-β1 were more compliant than all other groups. TGF-β1 increased soluble collagen production in the cultured bladders. Overall, the 0.5-Hz strain-induced remodeling caused increased compliance due to elastogenesis, similar to that seen in early SCI bladders. Thus, organ culture of bladder strips can be used as an experimental model to examine ECM remodeling and cellular phenotypic shift and potentially elucidate BMSCs ability to produce fibrillar elastin using mechanical stretch either alone or in combination with

  7. Smooth muscle progenitor cells from peripheral blood promote the neovascularization of endothelial colony-forming cells

    Energy Technology Data Exchange (ETDEWEB)

    Joo, Hyung Joon; Seo, Ha-Rim [Department of Cardiology, Cardiovascular Center, College of Medicine, Korea University, Seoul (Korea, Republic of); Jeong, Hyo Eun [Department of Mechanical Engineering, Korea University, Seoul (Korea, Republic of); Choi, Seung-Cheol; Park, Jae Hyung; Yu, Cheol Woong; Hong, Soon Jun [Department of Cardiology, Cardiovascular Center, College of Medicine, Korea University, Seoul (Korea, Republic of); Chung, Seok [Department of Mechanical Engineering, Korea University, Seoul (Korea, Republic of); Lim, Do-Sun, E-mail: dslmd@kumc.or.kr [Department of Cardiology, Cardiovascular Center, College of Medicine, Korea University, Seoul (Korea, Republic of)

    2014-07-11

    Highlights: • Two distinct vascular progenitor cells are induced from adult peripheral blood. • ECFCs induce vascular structures in vitro and in vivo. • SMPCs augment the in vitro and in vivo angiogenic potential of ECFCs. • Both cell types have synergistic therapeutic potential in ischemic hindlimb model. - Abstract: Proangiogenic cell therapy using autologous progenitors is a promising strategy for treating ischemic disease. Considering that neovascularization is a harmonized cellular process that involves both endothelial cells and vascular smooth muscle cells, peripheral blood-originating endothelial colony-forming cells (ECFCs) and smooth muscle progenitor cells (SMPCs), which are similar to mature endothelial cells and vascular smooth muscle cells, could be attractive cellular candidates to achieve therapeutic neovascularization. We successfully induced populations of two different vascular progenitor cells (ECFCs and SMPCs) from adult peripheral blood. Both progenitor cell types expressed endothelial-specific or smooth muscle-specific genes and markers, respectively. In a protein array focused on angiogenic cytokines, SMPCs demonstrated significantly higher expression of bFGF, EGF, TIMP2, ENA78, and TIMP1 compared to ECFCs. Conditioned medium from SMPCs and co-culture with SMPCs revealed that SMPCs promoted cell proliferation, migration, and the in vitro angiogenesis of ECFCs. Finally, co-transplantation of ECFCs and SMPCs induced robust in vivo neovascularization, as well as improved blood perfusion and tissue repair, in a mouse ischemic hindlimb model. Taken together, we have provided the first evidence of a cell therapy strategy for therapeutic neovascularization using two different types of autologous progenitors (ECFCs and SMPCs) derived from adult peripheral blood.

  8. Transforming growth factor-beta as a differentiating factor for cultured smooth muscle cells.

    Science.gov (United States)

    Gawaziuk, J P; X; Sheikh, F; Cheng, Z-Q; Cattini, P A; Stephens, N L

    2007-10-01

    The aim of the present study was to determine whether the development of supercontractile smooth muscle cells, contributing to the nonspecific hyperreactivity of airways in asthmatic patients, is due to transforming growth factor (TGF)-beta. In cultured smooth muscle cells starved by removal of 10% foetal bovine serum for 7 days, growth arrest was seen; 30% became elongated and demonstrated super contractility. Study of conditioned medium suggested that the differentiating factor was TGF-beta. Sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE) was carried out on conditioned medium from the arrested cells. Two protein bands were identified as matrix metalloproteinase (MMP)-2 and TGF-beta1. To determine second messenger signalling by SMAD2, Western blotting and confocal microscopy were employed. Conditioned medium from arrested cultures showed the presence of MMP-2 and TGF-beta1, as revealed by SDS-PAGE; 68- and 25-kDa bands were seen. Differentiation was confirmed by upregulation of marker proteins, smooth muscle type myosin heavy chain and myosin light chain kinase. Confirmation was obtained by downregulating these proteins with decorin treatment, which reduces the levels of active TGF-beta and an adenoviral dominant-negative vector coding for a mutated type II TGF-beta-receptor. Activation of second messenger signalling was demonstrated immunocytochemically by the presence of phosphorylated SMAD2 and SMAD4. Transforming growth factor-beta is likely to be the differentiating factor responsible for the development of these supercontractile smooth muscle cells. The development of such cells in vivo after cessation of an asthmatic attack could contribute to the nonspecific hyperreactivity of airways seen in patients.

  9. JunB mediates basal- and TGFβ1-induced smooth muscle cell contractility.

    Directory of Open Access Journals (Sweden)

    Aruna Ramachandran

    Full Text Available Smooth muscle contraction is a dynamic process driven by acto-myosin interactions that are controlled by multiple regulatory proteins. Our studies have shown that members of the AP-1 transcription factor family control discrete behaviors of smooth muscle cells (SMC such as growth, migration and fibrosis. However, the role of AP-1 in regulation of smooth muscle contractility is incompletely understood. In this study we show that the AP-1 family member JunB regulates contractility in visceral SMC by altering actin polymerization and myosin light chain phosphorylation. JunB levels are robustly upregulated downstream of transforming growth factor beta-1 (TGFβ1, a known inducer of SMC contractility. RNAi-mediated silencing of JunB in primary human bladder SMC (pBSMC inhibited cell contractility under both basal and TGFβ1-stimulated conditions, as determined using gel contraction and traction force microscopy assays. JunB knockdown did not alter expression of the contractile proteins α-SMA, calponin or SM22α. However, JunB silencing decreased levels of Rho kinase (ROCK and myosin light chain (MLC20. Moreover, JunB silencing attenuated phosphorylation of the MLC20 regulatory phosphatase subunit MYPT1 and the actin severing protein cofilin. Consistent with these changes, cells in which JunB was knocked down showed a reduction in the F:G actin ratio in response to TGFβ1. Together these findings demonstrate a novel function for JunB in regulating visceral smooth muscle cell contractility through effects on both myosin and the actin cytoskeleton.

  10. Characterisation of K+ Channels in Human Fetoplacental Vascular Smooth Muscle Cells

    OpenAIRE

    Brereton, Melissa F.; Mark Wareing; Rebecca L Jones; Greenwood, Susan L.

    2013-01-01

    Adequate blood flow through placental chorionic plate resistance arteries (CPAs) is necessary for oxygen and nutrient transfer to the fetus and a successful pregnancy. In non-placental vascular smooth muscle cells (SMCs), K(+) channels regulate contraction, vascular tone and blood flow. Previous studies showed that K(+) channel modulators alter CPA tone, but did not distinguish between effects on K(+) channels in endothelial cells and SMCs. In this study, we developed a preparation of freshly...

  11. Effects of One Resistance Exercise Session on Vascular Smooth Muscle of Hypertensive Rats

    Directory of Open Access Journals (Sweden)

    Tharciano Luiz Teixeira Braga da Silva

    2015-01-01

    Full Text Available Abstract Background: Hypertension is a public health problem and increases the incidence of cardiovascular diseases. Objective: To evaluate the effects of a resistance exercise session on the contractile and relaxing mechanisms of vascular smooth muscle in mesenteric arteries of NG-nitro L-arginine methyl ester (L-NAME-induced hypertensive rats. Methods: Wistar rats were divided into three groups: control (C, hypertensive (H, and exercised hypertensive (EH. Hypertension was induced by administration of 20 mg/kg of L-NAME for 7 days prior to experimental protocols. The resistance exercise protocol consisted of 10 sets of 10 repetitions and intensity of 40% of one repetition maximum. The reactivity of vascular smooth muscle was evaluated by concentration‑response curves to phenylephrine (PHEN, potassium chloride (KCl and sodium nitroprusside (SNP. Results: Rats treated with L-NAME showed an increase (p < 0.001 in systolic blood pressure (SBP, diastolic blood pressure (DBP and mean arterial pressure (MAP compared to the initial period of induction. No difference in PHEN sensitivity was observed between groups H and EH. Acute resistance exercise reduced (p < 0.001 the contractile response induced by KCl at concentrations of 40 and 60 mM in group EH. Greater (p < 0.01 smooth muscle sensitivity to NPS was observed in group EH as compared to group H. Conclusion: One resistance exercise session reduces the contractile response induced by KCl in addition to increasing the sensitivity of smooth muscle to NO in mesenteric arteries of hypertensive rats.

  12. TRPC3 Regulates Release of Brain-Derived Neurotrophic Factor From Human Airway Smooth Muscle

    OpenAIRE

    Vohra, Pawan K.; Thompson, Michael A.; Sathish, Venkatachalem; Kiel, Alexander; Jerde, Calvin; Pabelick, Christina M.; Singh, Brij B.; Prakash, Y. S.

    2013-01-01

    Exogenous brain-derived neurotrophic factor (BDNF) enhances Ca2+ signaling and cell proliferation in human airway smooth muscle (ASM), especially with inflammation. Human ASM also expresses BDNF, raising the potential for autocrine/paracrine effects. The mechanisms by which ASM BDNF secretion occurs are not known. Transient receptor potential channels (TRPCs) regulate a variety of intracellular processes including store-operated Ca2+ entry (SOCE; including in ASM) and secretion of factors suc...

  13. Increased proinflammatory responses from asthmatic human airway smooth muscle cells in response to rhinovirus infection

    Directory of Open Access Journals (Sweden)

    King Nicholas JC

    2006-05-01

    Full Text Available Abstract Background Exacerbations of asthma are associated with viral respiratory tract infections, of which rhinoviruses (RV are the predominant virus type. Airway smooth muscle is important in asthma pathogenesis, however little is known about the potential interaction of RV and human airway smooth muscle cells (HASM. We hypothesised that rhinovirus induction of inflammatory cytokine release from airway smooth muscle is augmented and differentially regulated in asthmatic compared to normal HASM cells. Methods HASM cells, isolated from either asthmatic or non-asthmatic subjects, were infected with rhinovirus. Cytokine production was assayed by ELISA, ICAM-1 cell surface expression was assessed by FACS, and the transcription regulation of IL-6 was measured by luciferase activity. Results RV-induced IL-6 release was significantly greater in HASM cells derived from asthmatic subjects compared to non-asthmatic subjects. This response was RV specific, as 5% serum- induced IL-6 release was not different in the two cell types. Whilst serum stimulated IL-8 production in cells from both subject groups, RV induced IL-8 production in only asthmatic derived HASM cells. The transcriptional induction of IL-6 was differentially regulated via C/EBP in the asthmatic and NF-κB + AP-1 in the non-asthmatic HASM cells. Conclusion This study demonstrates augmentation and differential transcriptional regulation of RV specific innate immune response in HASM cells derived from asthmatic and non-asthmatics, and may give valuable insight into the mechanisms of RV-induced asthma exacerbations.

  14. Von Willebrand factor inhibits mature smooth muscle gene expression through impairment of Notch signaling.

    Directory of Open Access Journals (Sweden)

    He Meng

    Full Text Available Von Willebrand factor (vWF, a hemostatic protein normally synthesized and stored by endothelial cells and platelets, has been localized beyond the endothelium in vascular disease states. Previous studies have implicated potential non-hemostatic functions of vWF, but signaling mechanisms underlying its effects are currently undefined. We present evidence that vWF breaches the endothelium and is expressed in a transmural distribution pattern in cerebral small vessel disease (SVD. To determine the potential molecular consequences of vWF permeation into the vessel wall, we also tested whether vWF impairs Notch regulation of key smooth muscle marker genes. In a co-culture system using Notch ligand expressing cells to stimulate Notch in A7R5 cells, vWF strongly inhibited both the Notch pathway and the activation of mature smooth muscle gene promoters. Similar repressive effects were observed in primary human cerebral vascular smooth muscle cells. Expression of the intracellular domain of NOTCH3 allowed cells to bypass the inhibitory effects of vWF. Moreover, vWF forms molecular complexes with all four mammalian Notch ectodomains, suggesting a novel function of vWF as an extracellular inhibitor of Notch signaling. In sum, these studies demonstrate vWF in the vessel wall as a common feature of cerebral SVD; furthermore, we provide a plausible mechanism by which non-hemostatic vWF may play a novel role in the promotion of vascular disease.

  15. Non-selective cation channels mediate chloroquine-induced relaxation in precontracted mouse airway smooth muscle.

    Directory of Open Access Journals (Sweden)

    Ting Zhang

    Full Text Available Bitter tastants can induce relaxation in precontracted airway smooth muscle by activating big-conductance potassium channels (BKs or by inactivating voltage-dependent L-type Ca2+ channels (VDLCCs. In this study, a new pathway for bitter tastant-induced relaxation was defined and investigated. We found nifedipine-insensitive and bitter tastant chloroquine-sensitive relaxation in epithelium-denuded mouse tracheal rings (TRs precontracted with acetylcholine (ACH. In the presence of nifedipine (10 µM, ACH induced cytosolic Ca2+ elevation and cell shortening in single airway smooth muscle cells (ASMCs, and these changes were inhibited by chloroquine. In TRs, ACH triggered a transient contraction under Ca2+-free conditions, and, following a restoration of Ca2+, a strong contraction occurred, which was inhibited by chloroquine. Moreover, the ACH-activated whole-cell and single channel currents of non-selective cation channels (NSCCs were blocked by chloroquine. Pyrazole 3 (Pyr3, an inhibitor of transient receptor potential C3 (TRPC3 channels, partially inhibited ACH-induced contraction, intracellular Ca2+ elevation, and NSCC currents. These results demonstrate that NSCCs play a role in bitter tastant-induced relaxation in precontracted airway smooth muscle.

  16. Statins inhibited erythropoietin-induced proliferation of rat vascular smooth muscle cells.

    Science.gov (United States)

    Kaneda, Tae; Tsuruoka, Shuichi; Fujimura, Akio

    2010-12-15

    Erythropoietin (EPO) directly stimulates the proliferation of vascular smooth muscle cells, and this is believed to be one of the mechanisms of vascular access failure of hemodialysis patients. However, precise mechanisms of the EPO-induced proliferation of vascular smooth muscle cells are not certain. HMG-CoA reductase inhibitors (statins) are primarily used to reduce cholesterol levels, but also exert other effects, including reno-protective effects. We evaluated the effect of several statins with various hydrophilicities on the EPO-induced proliferation of primary cultured rat vascular smooth muscle cells (VSMCs) in vitro. EPO significantly and concentration-dependently increased DNA synthesis as assessed by [³H]thymidine incorporation, cell proliferation as assessed by WST-1 assay, and activation of the p44/42MAPK pathway. Therapeutic doses of statins (pravastatin, simvastatin, atorvastatin and fluvastatin) in patients with hypercholesterolemia almost completely suppressed all of the EPO-induced effects in a concentration-dependent manner. Co-addition of mevalonic acid almost completely reversed the effects of statins. Statin alone did not affect the basal proliferation capacity of the cells. The effects were almost similar among the statins. We concluded that statins inhibited EPO-induced proliferation in rat VSMCs at least partly through their inhibition of HMG-CoA reductase activity. In the future, statins might prove useful for the treatment of EPO-induced hyperplasia of vascular access. Because the statins all showed comparable effects irrespective of their hydrophilicities, these effects might be a class effect.

  17. Smooth muscle cell proliferation in the occluded rat carotid artery: lack of requirement for luminal platelets.

    Science.gov (United States)

    Guyton, J. R.; Karnovsky, M. J.

    1979-01-01

    The relationship of intimal smooth muscle cell proliferation in the permanently occluded rat carotid artery to the presence or absence of luminal platelets was examined. Blood was rinsed from the arterial lumen immediately after occlusion and was replaced by autologous, citrated platelet-rich plasma (PRP, 6 to 20 X 10(5) platelets/microliter) or filtered platelet-poor plasma (PPP, less than 100 platelets/microliter). Occluded arteries were studied after 1 to 28 days by light and electron microscopy. Events occurring within the first 2 days included fibrin clot formation, endothelial degeneration and denudation, transmural migration of polymorphonucelar leukocytes and monocytes, and, in PRP-filled arteries, degranulation and disappearance of platelets. By 7 days a neointima was formed by macrophages and undifferentiated cells. The latter cells had some features of vascular smooth muscle cells and were apparently derived from medial cells which traversed the internal elastic lamina. After 14 days, identifiable smooth muscle cells emerged as the predominant cell type in a rapidly growing intimal plaque. No differences could be discerned between arteries originally filled with PRP or PPP. This experimental model is similar to atherosclerosis in dimensions of avascular area and in coexistence of degenerative, inflammatory, and proliferative processes. Cell proliferation deep within an atherosclerotic plaque could be initiated by factors other than platelets, perhaps by products of inflammatory cells. Images Figure 4 Figure 7 Figure 6 Figure 1 Figure 2 Figure 3 Figure 8 Figure 5 PMID:426040

  18. Magnesium used in bioabsorbable stents controls smooth muscle cell proliferation and stimulates endothelial cells in vitro.

    Science.gov (United States)

    Sternberg, Katrin; Gratz, Matthias; Koeck, Kathleen; Mostertz, Joerg; Begunk, Robert; Loebler, Marian; Semmling, Beatrice; Seidlitz, Anne; Hildebrandt, Petra; Homuth, Georg; Grabow, Niels; Tuemmler, Conny; Weitschies, Werner; Schmitz, Klaus-Peter; Kroemer, Heyo K

    2012-01-01

    Magnesium-based bioabsorbable cardiovascular stents have been developed to overcome limitations of permanent metallic stents, such as late stent thrombosis. During stent degradation, endothelial and smooth muscle cells will be exposed to locally high magnesium concentrations with yet unknown physiological consequences. Here, we investigated the effects of elevated magnesium concentrations on human coronary artery endothelial and smooth muscle cell (HCAEC, HCASMC) growth and gene expression. In the course of 24 h after incubation with magnesium chloride solutions (1 or 10 mM) intracellular magnesium level in HCASMC raised from 0.55 ± 0.25 mM (1 mM) to 1.38 ± 0.95 mM (10 mM), while no increase was detected in HCAEC. Accordingly, a DNA microarray-based study identified 69 magnesium regulated transcripts in HCAEC, but 2172 magnesium regulated transcripts in HCASMC. Notably, a significant regulation of various growth factors and extracellular matrix components was observed. In contrast, viability and proliferation of HCAEC were increased at concentrations of up to 25 mM magnesium chloride, while in HCASMC viability and proliferation appeared to be unaffected. Taken together, our data indicate that magnesium halts smooth muscle cell proliferation and stimulates endothelial cell proliferation, which might translate into a beneficial effect in the setting of stent associated vascular injury.

  19. Biomathematical pattern of EMG signal propagation in smooth muscle of the non-pregnant porcine uterus

    Science.gov (United States)

    Domino, Malgorzata; Pawlinski, Bartosz; Gajewski, Zdzislaw

    2017-01-01

    Uterine contractions are generated by myometrial smooth muscle cells (SMCs) that comprise most of the myometrial layer of the uterine wall. Aberrant uterine motility (i.e., hypo- or hyper-contractility or asynchronous contractions) has been implicated in the pathogenesis of infertility due to the failure of implantation, endometriosis and abnormal estrous cycles. The mechanism whereby the non-pregnant uterus initiates spontaneous contractions remains poorly understood. The aim of the present study was to employ linear synchronization measures for analyzing the pattern of EMG signal propagation (direction and speed) in smooth muscles of the non-pregnant porcine uterus in vivo using telemetry recording system. It has been revealed that the EMG signal conduction in the uterine wall of the non-pregnant sow does not occur at random but it rather exhibits specific directions and speed. All detectable EMG signals moved along the uterine horn in both cervico-tubal and tubo-cervical directions. The signal migration speed could be divided into the three main types or categories: i. slow basic migration rhythm (SBMR); ii. rapid basic migration rhythm (RBMR); and iii. rapid accessory migration rhythm (RAMR). In conclusion, the EMG signal propagation in smooth muscles of the porcine uterus in vivo can be assessed using a linear synchronization model. Physiological pattern of the uterine contractile activity determined in this study provides a basis for future investigations of normal and pathologicall myogenic function of the uterus. PMID:28282410

  20. Voltage-dependent effects of barnidipine in rat vascular smooth muscle.

    Science.gov (United States)

    Wegener, J W; Korstanje, C; Nawrath, H

    2003-08-01

    The effects of the dihydropyridine nifedipine and its more lipophilic congener, barnidipine, were investigated in smooth muscle preparations from the rat in resting and depolarizing conditions. Both drugs relaxed precontracted aortic rings more potently in depolarizing conditions, barnidipine being more potent than nifedipine. Currents through Ca2+ channels in rat vascular smooth muscle cells (A7r5) and in isolated rat cardiomyocytes were reduced more potently by both drugs at a holding potential of -40 mV than at -80 mV. However, barnidipine and nifedipine were more effective in reducing the current in A7r5 cells than in cardiomyocytes. The IC(50) obtained in aortic rings and in A7r5 cells were similar for barnidipine but an order of magnitude different for nifedipine. The results show that, in depolarizing conditions, barnidipine was more effective than nifedipine. It is suggested that the higher potency of barnidipine acting in vascular smooth muscle is related to both a higher affinity to the inactivated state of vascular Ca2+ channels and to a more lipophilic property as compared with nifedipine.

  1. Smooth muscle myosin inhibition: a novel therapeutic approach for pulmonary hypertension.

    Directory of Open Access Journals (Sweden)

    David Ho

    Full Text Available OBJECTIVE: Pulmonary hypertension remains a major clinical problem despite current therapies. In this study, we examine for the first time a novel pharmacological target, smooth muscle myosin, and determine if the smooth muscle myosin inhibitor, CK-2019165 (CK-165 ameliorates pulmonary hypertension. MATERIALS AND METHODS: Six domestic female pigs were surgically instrumented to measure pulmonary blood flow and systemic and pulmonary vascular dynamics. Pulmonary hypertension was induced by hypoxia, or infusion of the thromboxane analog (U-46619, 0.1 µg/kg/min, i.v.. In rats, chronic pulmonary hypertension was induced by monocrotaline. RESULTS: CK-165 (4 mg/kg, i.v. reduced pulmonary vascular resistance by 22±3 and 28±6% from baseline in hypoxia and thromboxane pig models, respectively (p<0.01 and 0.01, while mean arterial pressure also fell and heart rate rose slightly. When CK-165 was delivered via inhalation in the hypoxia model, pulmonary vascular resistance fell by 17±6% (p<0.05 while mean arterial pressure and heart rate were unchanged. In the monocrotaline model of chronic pulmonary hypertension, inhaled CK-165 resulted in a similar (18.0±3.8% reduction in right ventricular systolic pressure as compared with sildenafil (20.3±4.5%. CONCLUSION: Inhibition of smooth muscle myosin may be a novel therapeutic target for treatment of pulmonary hypertension.

  2. Piezo1 in Smooth Muscle Cells Is Involved in Hypertension-Dependent Arterial Remodeling.

    Science.gov (United States)

    Retailleau, Kevin; Duprat, Fabrice; Arhatte, Malika; Ranade, Sanjeev Sumant; Peyronnet, Rémi; Martins, Joana Raquel; Jodar, Martine; Moro, Céline; Offermanns, Stefan; Feng, Yuanyi; Demolombe, Sophie; Patel, Amanda; Honoré, Eric

    2015-11-10

    The mechanically activated non-selective cation channel Piezo1 is a determinant of vascular architecture during early development. Piezo1-deficient embryos die at midgestation with disorganized blood vessels. However, the role of stretch-activated ion channels (SACs) in arterial smooth muscle cells in the adult remains unknown. Here, we show that Piezo1 is highly expressed in myocytes of small-diameter arteries and that smooth-muscle-specific Piezo1 deletion fully impairs SAC activity. While Piezo1 is dispensable for the arterial myogenic tone, it is involved in the structural remodeling of small arteries. Increased Piezo1 opening has a trophic effect on resistance arteries, influencing both diameter and wall thickness in hypertension. Piezo1 mediates a rise in cytosolic calcium and stimulates activity of transglutaminases, cross-linking enzymes required for the remodeling of small arteries. In conclusion, we have established the connection between an early mechanosensitive process, involving Piezo1 in smooth muscle cells, and a clinically relevant arterial remodeling.

  3. Management of gastrointestinal smooth muscle tumors: Seven years experience of a teaching hospital in Saudi Arabia

    Directory of Open Access Journals (Sweden)

    Al Salamah Saleh

    2000-01-01

    Full Text Available Background: Gastrointestinal (GI smooth muscle tumors are a group of intramural GI tumors formerly known as leiomyoma and leiomyosarcoma. This retrospective study was made to review our experience in surgical management of GI smooth muscle tumors. Methods: The clinical records for patients with GI smooth muscle tumors during 1993-1999 were reviewed. Results: Ten tumors were located in stomach. Abdominal pain was the main presenting symptom followed by GI bleeding. The preoperative diagnosis was made by enhanced computerized tomography (CT on eleven patients out of thirteen, while upper GI endoscopy with biopsy identified six tumors out of thirteen patients had the test. Tumors were treated by conservative excision in four and radical excision in fourteen. Histology was leiomyoma in six patients (with mitotic figures < 4 per 10 high power field and leiomyosarcoma was found in twelve patients (with mitotic figures> 4 per 10 high power field. Median follow-up was 4 years. There was one recurrence for leiomyoma (size: 6cm. All patients with leiomyosarcoma presented later with metastasis and died. Conclusion: Size and mitotic activity of tumors are the main determinant factors. Enhanced CT remains the proper diagnostic tool.

  4. Endoplasmic reticulum stress induced by Thapsigargin in vascular smooth muscle cells of rat coronary artery

    Institute of Scientific and Technical Information of China (English)

    CHEN Xiao-yan; DENG Chun-yu; JIANG Li

    2016-01-01

    AIM:To establish the endoplasmic reticulum stress ( ERS) cell model in vascular smooth muscle cells ( VSMCs) of Sprague-Dawley (SD) rats.METHODS:Under sterile condition, the coronary arteries were isolated from SD rats .The primary VSMCs were cultured by tissue-sticking method , and observed the basic morphological characteristics under optical microscope .The marker proteins of VSMCs including α-smooth muscle actin (α-SMA) and smooth muscle myosin heavy chain ( SM-MHC) were identified by immuno-fluorescence technique .VSMCs were treated with thapsigargin (0.5, 1 and 2 μmol/L) for 24 h, and the expression levels of binding immunoglobulin protein (BiP) and C/EBP homologus protein (CHOP), the marker molecules of ERS, were detected using Western blotting.RESULTS:VSMCs climbed out from coronary artery tissues after about six days , and the cells had a nice state and formed the VSMC-like typical "peak valley".The results of immunofluorescence technique show that the marker proteins of VSMCs ,α-SMA and SM-MHC were expressed significantly .The results of Western blotting show that the protein expression levels of BiP and CHOP were increased by thapsigargin in a dose-dependent manner .CONCLUSION:VSMCs can be successfully cultured by tissue-sticking method and built the ERS model induced by thapsigargin .

  5. Relaxant effect of an estrone derivate EA303 on isolated colonic smooth muscle of rabbits

    Institute of Scientific and Technical Information of China (English)

    ZHU Lan; FU Shou-ting; CHEN Guo-liang; ZHOU Qian-qian

    2008-01-01

    Objective To study the relaxant effect mechanism of an estrone derivate EA303 on isolate colonic smooth muscle of rabbits. Methods Preparations of the isolated colonic smooth muscle of rabbits were prepared. The effect of EA303 on potassium channel, β receptor and prostaglandin were studied by observing the difference of relaxant dose-effect curves of EA303 on preparations pre-contracted with BaCl3, High K+ solution and Acetylcholine chloride (ACh) in the absence or presence incubation with glibenclamide (10 μM), propranolol (0.1 μM) and Indometacin (10 μM). Results The relaxant effect of EA303 on contraction caused by BaCl2 and High K+ solution were weakened by glibenclamide inhibiting the opening of K+ channel while the relaxant effect of that on contraction caused by ACh was strengthened, after adding propranolol inhabiting β receptor, EA303 attenuated the relaxant action on contraction caused by BaCl2. EA303 had some relaxant impact on contraction induced by High K+ solution after adding indometacin inhabiting the synthesis the prostaglandin (PG). Conclusions The relaxant effect of EA303 on isolated colonic smooth muscle of rabbits may be related with PG synthesis enzyme, potassium channel and β receptor.

  6. Guiding the orientation of smooth muscle cells on random and aligned polyurethane/collagen nanofibers.

    Science.gov (United States)

    Jia, Lin; Prabhakaran, Molamma P; Qin, Xiaohong; Ramakrishna, Seeram

    2014-09-01

    Fabricating scaffolds that can simulate the architecture and functionality of native extracellular matrix is a huge challenge in vascular tissue engineering. Various kinds of materials are engineered via nano-technological approaches to meet the current challenges in vascular tissue regeneration. During this study, nanofibers from pure polyurethane and hybrid polyurethane/collagen in two different morphologies (random and aligned) and in three different ratios of polyurethane:collagen (75:25; 50:50; 25:75) are fabricated by electrospinning. The fiber diameters of the nanofibrous scaffolds are in the range of 174-453 nm and 145-419 for random and aligned fibers, respectively, where they closely mimic the nanoscale dimensions of native extracellular matrix. The aligned polyurethane/collagen nanofibers expressed anisotropic wettability with mechanical properties which is suitable for regeneration of the artery. After 12 days of human aortic smooth muscle cells culture on different scaffolds, the proliferation of smooth muscle cells on hybrid polyurethane/collagen (3:1) nanofibers was 173% and 212% higher than on pure polyurethane scaffolds for random and aligned scaffolds, respectively. The results of cell morphology and protein staining showed that the aligned polyurethane/collagen (3:1) scaffold promote smooth muscle cells alignment through contact guidance, while the random polyurethane/collagen (3:1) also guided cell orientation most probably due to the inherent biochemical composition. Our studies demonstrate the potential of aligned and random polyurethane/collagen (3:1) as promising substrates for vascular tissue regeneration.

  7. Improved Adhesion, Growth and Maturation of Vascular Smooth Muscle Cells on Polyethylene Grafted with Bioactive Molecules and Carbon Particles

    Directory of Open Access Journals (Sweden)

    Martina Blazkova

    2009-10-01

    Full Text Available High-density polyethylene (PE foils were modified by an Ar+ plasma discharge and subsequent grafting with biomolecules, namely glycine (Gly, polyethylene glycol (PEG, bovine serum albumin (BSA, colloidal carbon particles (C or BSA and C (BSA + C. As revealed by atomic force microscopy (AFM, goniometry and Rutherford Backscattering Spectroscopy (RBS, the surface chemical structure and surface morphology of PE changed dramatically after plasma treatment. The contact angle decreased for the samples treated by plasma, mainly in relation to the formation of oxygen structures during plasma irradiation. A further decrease in the contact angle was obvious after glycine and PEG grafting. The increase in oxygen concentration after glycine and PEG grafting proved that the two molecules were chemically linked to the plasma-activated surface. Plasma treatment led to ablation of the PE surface layer, thus the surface morphology was changed and the surface roughness was increased. The materials were then seeded with vascular smooth muscle cells (VSMC derived from rat aorta and incubated in a DMEM medium with fetal bovine serum. Generally, the cells adhered and grew better on modified rather than on unmodified PE samples. Immunofluorescence showed that focal adhesion plaques containing talin, vinculin and paxillin were most apparent in cells on PE grafted with PEG or BSA + C, and the fibres containing α-actin, β-actin or SM1 and SM2 myosins were thicker, more numerous and more brightly stained in the cells on all modified PE samples than on pristine PE. An enzyme-linked immunosorbent assay (ELISA revealed increased concentrations of focal adhesion proteins talin and vinculin and also a cytoskeletal protein β-actin in cells on PE modified with BSA + C. A contractile protein α-actin was increased in cells on PE grafted with PEG or Gly. These results showed that PE activated with plasma and subsequently grafted with bioactive molecules and colloidal C

  8. Improved adhesion, growth and maturation of vascular smooth muscle cells on polyethylene grafted with bioactive molecules and carbon particles.

    Science.gov (United States)

    Parizek, Martin; Kasalkova, Nikola; Bacakova, Lucie; Slepicka, Petr; Lisa, Vera; Blazkova, Martina; Svorcik, Vaclav

    2009-11-20

    High-density polyethylene (PE) foils were modified by an Ar(+) plasma discharge and subsequent grafting with biomolecules, namely glycine (Gly), polyethylene glycol (PEG), bovine serum albumin (BSA), colloidal carbon particles (C) or BSA and C (BSA + C). As revealed by atomic force microscopy (AFM), goniometry and Rutherford Backscattering Spectroscopy (RBS), the surface chemical structure and surface morphology of PE changed dramatically after plasma treatment. The contact angle decreased for the samples treated by plasma, mainly in relation to the formation of oxygen structures during plasma irradiation. A further decrease in the contact angle was obvious after glycine and PEG grafting. The increase in oxygen concentration after glycine and PEG grafting proved that the two molecules were chemically linked to the plasma-activated surface. Plasma treatment led to ablation of the PE surface layer, thus the surface morphology was changed and the surface roughness was increased. The materials were then seeded with vascular smooth muscle cells (VSMC) derived from rat aorta and incubated in a DMEM medium with fetal bovine serum. Generally, the cells adhered and grew better on modified rather than on unmodified PE samples. Immunofluorescence showed that focal adhesion plaques containing talin, vinculin and paxillin were most apparent in cells on PE grafted with PEG or BSA + C, and the fibres containing alpha-actin, beta-actin or SM1 and SM2 myosins were thicker, more numerous and more brightly stained in the cells on all modified PE samples than on pristine PE. An enzyme-linked immunosorbent assay (ELISA) revealed increased concentrations of focal adhesion proteins talin and vinculin and also a cytoskeletal protein beta-actin in cells on PE modified with BSA + C. A contractile protein alpha-actin was increased in cells on PE grafted with PEG or Gly. These results showed that PE activated with plasma and subsequently grafted with bioactive molecules and colloidal C

  9. Analysis of SM22alpha-deficient mice reveals unanticipated insights into smooth muscle cell differentiation and function.

    Science.gov (United States)

    Zhang, J C; Kim, S; Helmke, B P; Yu, W W; Du, K L; Lu, M M; Strobeck, M; Yu, Q; Parmacek, M S

    2001-02-01

    SM22alpha is a 22-kDa smooth muscle cell (SMC) lineage-restricted protein that physically associates with cytoskeletal actin filament bundles in contractile SMCs. To examine the function of SM22alpha, gene targeting was used to generate SM22alpha-deficient (SM22(-/-LacZ)) mice. The gene targeting strategy employed resulted in insertion of the bacterial lacZ reporter gene at the SM22alpha initiation codon, permitting precise analysis of the temporal and spatial pattern of SM22alpha transcriptional activation in the developing mouse. Northern and Western blot analyses confirmed that the gene targeting strategy resulted in a null mutation. Histological analysis of SM22(+/-LacZ) embryos revealed detectable beta-galactosidase activity in the unturned embryonic day 8.0 embryo in the layer of cells surrounding the paired dorsal aortae concomitant with its expression in the primitive heart tube, cephalic mesenchyme, and yolk sac vasculature. Subsequently, during postnatal development, beta-galactosidase activity was observed exclusively in arterial, venous, and visceral SMCs. SM22alpha-deficient mice are viable and fertile. Their blood pressure and heart rate do not differ significantly from their control SM22alpha(+/-) and SM22alpha(+/+) littermates. The vasculature and SMC-containing tissues of SM22alpha-deficient mice develop normally and appear to be histologically and ultrastructurally similar to those of their control littermates. Taken together, these data demonstrate that SM22alpha is not required for basal homeostatic functions mediated by vascular and visceral SMCs in the developing mouse. These data also suggest that signaling pathways that regulate SMC specification and differentiation from local mesenchyme are activated earlier in the angiogenic program than previously recognized.

  10. α-Iso-Cubebene Inhibits PDGF-Induced Vascular Smooth Muscle Cell Proliferation by Suppressing Osteopontin Expression

    Science.gov (United States)

    Jang, Min A.; Lee, Seung Jin; Baek, Seung Eun; Park, So Youn; Choi, Young Whan; Kim, Chi Dae

    2017-01-01

    α-Iso-cubebene (ICB) is a dibenzocyclooctadiene lignin contained in Schisandra chinensis (SC), a well-known medicinal herb that ameliorates cardiovascular symptoms. Thus, we examined the effect of ICB on vascular smooth muscle cell (VSMC) proliferation, a key feature of diverse vascular diseases. When VSMCs primary cultured from rat thoracic aorta were stimulated with PDGF (1–10 ng/ml), cell proliferation and osteopontin (OPN) expression were concomitantly up-regulated, but these effects were attenuated when cells were treated with MPIIIB10, a neutralizing monoclonal antibody for OPN. In aortic tissues exposed to PDGF, sprouting VSMC numbers increased, which was attenuated in tissues from OPN-deficient mice. Furthermore, VSMC proliferation and OPN expression induced by PDGF were attenuated dose-dependently by ICB (10 or 30 μg/ml). Reporter assays conducted using OPN promoter-luciferase constructs showed that the promoter region 538–234 bp of the transcription start site was responsible for transcriptional activity enhancement by PDGF, which was significantly inhibited by ICB. Putative binding sites for AP-1 and C/EBPβ in the indicated promoter region were suggested by TF Search, and increased binding of AP-1 and C/EBPβ in PDGF-treated VSMCs was demonstrated using a ChIP assay. The increased bindings of AP-1 and C/EBPβ into OPN promoter were attenuated by ICB. Moreover, the PDGF-induced expression of OPN was markedly attenuated in VSMCs transfected with siRNA for AP-1 and C/EBPβ. These results indicate that ICB inhibit VSMC proliferation by inhibiting the AP-1 and C/EBPβ signaling pathways and thus downregulating OPN expression. PMID:28114367

  11. Smooth Muscle Precursor Cells Derived from Human Pluripotent Stem Cells for Treatment of Stress Urinary Incontinence

    Science.gov (United States)

    Wang, Zhe; Li, Yan Hui; Wei, Yi; Green, Morgaine; Wani, Prachi; Zhang, Pengbo; Pera, Renee Reijo; Chen, Bertha

    2016-01-01

    There is great interest in using stem cells (SC) to regenerate a deficient urethral sphincter in patients with urinary incontinence. The smooth muscle component of the sphincter is a significant contributor to sphincter function. However, current translational efforts for sphincter muscle restoration focus only on skeletal muscle regeneration because they rely on adult mesenchymal SC as cell source. These adult SC do not yield sufficient smooth muscle cells (SMCs) for transplantation. We may be able to overcome this limitation by using pluripotent stem cell (PSC) to derive SMCs. Hence, we sought to investigate whether smooth muscle precursor cells (pSMCs) derived from human PSCs can restore urethral function in an animal model generated by surgical urethrolysis and ovariectomy. Rats were divided into four groups: control (no intervention), sham saline (surgery + saline injection), bladder SMC (surgery + human bladder SMC injection), and treatment (surgery + pSMC injection, which includes human embryonic stem cell (hESC) H9-derived pSMC, episomal reprogrammed induced pluripotent stem cells (iPSCs)-derived pSMC, or viral reprogrammed iPSC-derived pSMC). pSMCs (2 × 106 cells/rat) were injected periurethrally 3 weeks postsurgery. Leak point pressure (LPP) and baseline external urethral sphincter electromyography were measured 5 weeks postinjection. Both iPSC-derived pSMC treatment groups showed significantly higher LPP compared to the sham saline group, consistent with restoration of urethral sphincter function. While the difference between the H9-derived pSMC treatment and sham saline group was not significant, it did show a trend toward restoration of the LPP to the level of intact controls. Our data indicate that pSMCs derived from human PSCs (hESC and iPSC) can restore sphincter function. PMID:26785911

  12. Calcium ion requirement for acetylcholine-stimulated breakdown of triphosphoinositide in rabbit iris smooth muscle.

    Science.gov (United States)

    Akhtar, R A; Abdel-Latif, A A

    1978-03-01

    Previous studies from this laboratory have established that addition of acetylcholine (ACh) or norepinephrine to 32P-labeled rabbit iris smooth muscle increases significantly the breakdown of triphosphoinositide (TPI) and that these stimulatory effects are blocked by atropine and phentolamine, respectively. The present studies were undertaken in order to show the effect of Ca++ on the ACh-stimulated breakdown of TPI ("TPI effect") in this tissue. Paired iris smooth muscles were prelabeled with 32Pi for 30 minutes at 37 degrees C in Ca++-free iso-osmotic salt medium. The prelabeled irises were then washed and incubated for 10 minutes in nonradioactive Ca++-free medium which contained 10 mM 2-deoxyglucose under various conditions. The phospholipids were isolated by means of two-dimensional thin-layer chromatography and their radioactivities were determined. In the absence of Ca++, 50 micrometer ACh increased TPI breakdown and phosphatidic acid (PA) labeling by 16 and 38%, respectively. In the absence of ACh, 0.75 micrometer Ca++ increased TPI breakdown and PA labeling by 11 and 20%, respectively. When both ACh and Ca++ were added, the increase in TPI breakdown and PA labeling rose to 32 and 74%, respectively. The labeling of phosphatidylinositol was found to be insensitive to the presence of Ca++. Ca++ was determined in the iris smooth muscle and it was found to contain 3.13 mumol of Ca++ per g of tissue. This was reduced by 80% after the muscle was washed and incubated in a medium which contained 0.25 micrometer ethyleneglycol bis (beta-aminoethyl ether)-N,N'-tetraacetic acid (EGTA). The TPI effect was abolished by 0.25 micrometer EGTA and restored when excess Ca++ (1.25 micrometer) was added. Concentrations of Ca++ as low as 50 micrometer provoked a TPI effect. Sr++ (2 micrometer), but not Ba++ or Mn++, was found to substitute partially for Ca++. Ionophore A-23187 (20 micrometer) was found to increase the breakdown of TPI and labeling of PA by 11 and 24

  13. [The effect of prostatic peptides on the contractile activity of smooth-muscle cells from the bladder].

    Science.gov (United States)

    Barabanova, V V; Gorbachev, A G; Parastaeva, M M; Khavinson, V Kh

    1993-02-01

    Prostatilene (PST) enhanced the functional activity of the bladder smooth-muscle cells (SMC). The possibility of activation of the SMC contractility by the PST through pharmacomechanical associations, is discussed.

  14. Development of transplant vasculopathy in aortic allografts correlates with neointimal smooth muscle cell proliferative capacity and fibrocyte frequency

    NARCIS (Netherlands)

    Onuta, Geanina; van Ark, Joris; Rienstra, Heleen; Boer, Mark Walther; Klatter, Flip A.; Bruggeman, Cathrien A.; Zeebregts, Clark J.; Rozing, Jan; Hillebrands, Jan-Luuk

    2010-01-01

    Objective: Transplant vasculopathy consists of neointima formation in graft vasculature resulting from vascular smooth muscle cell recruitment and proliferation. Variation in the severity of vasculopathy has been demonstrated. Genetic predisposition is suggested as a putative cause of this variation

  15. p42/p44 MAP kinase activation is localized to caveolae-free membrane domains in airway smooth muscle

    NARCIS (Netherlands)

    Gosens, Reinoud; Dueck, Gordon; Gerthoffer, William T; Unruh, Helmut; Zaagsma, Johan; Meurs, Herman; Halayko, Andrew J

    2007-01-01

    Caveolae are abundant plasma membrane invaginations in airway smooth muscle that may function as preorganized signalosomes by sequestering and regulating proteins that control cell proliferation, including receptor tyrosine kinases (RTKs) and their signaling effectors. We previously demonstrated, ho

  16. The effect of trinitrobenzene sulfonic acid on gut-derived smooth muscle cell arachidonic acid metabolism: role of endogenous prostanoids

    Directory of Open Access Journals (Sweden)

    W. E. Longo

    1997-01-01

    Full Text Available The contribution of smooth muscle cells as a potential source of eicosanoid production during inflammatory states remains to be elucidated. We investigated the effect of trinitrobenzene sulfonic acid (TNB, a known pro-inflammatory agent, on jejunal smooth muscle cell eicosanoid production. Human gut-derived smooth muscle cells (HISM were incubated with TNB for 1 hour. Additionally, some cells were preincubated with either dimethylthiourea, or indomethacin for 1 hour before exposure to identical concentrations of TNB. Incubation with TNB led to significant increases in PGE2 and 6-keto PGF-1α release, but not leukotriene B4 release; responses which were both inhibited by dimethylthiourea and indomethacin treatment. Our results suggest that gutderived smooth muscle cells may represent an important source of proinflammatory prostanoids but not leukotrienes during inflammatory states of the intestine. The inhibition of prostanoid activity by thiourea may be mediated by suppression of cyclooxygenase activity in this cell line.

  17. HB-EGF-Promoted Airway Smooth Muscle Cells and Their Progenitor Migration Contribute to Airway Smooth Muscle Remodeling in Asthmatic Mouse.

    Science.gov (United States)

    Wang, Qing; Li, Hequan; Yao, Yinan; Lu, Guohua; Wang, Yuehong; Xia, Dajing; Zhou, Jianying

    2016-03-01

    The airway smooth muscle (ASM) cells' proliferation, migration, and their progenitor's migration are currently regarded as causative factors for ASM remodeling in asthma. Heparin-binding epidermal growth factor (HB-EGF), a potent mitogen and chemotactic factor, could promote ASM cell proliferation through MAPK pathways. In this study, we obtained primary ASM cells and their progenitors from C57BL/6 mice and went on to explore the role of HB-EGF in these cells migration and the underlying mechanisms. We found that recombinant HB-EGF (rHB-EGF) intratracheal instillation accelerated ASM layer thickening in an OVA-induced asthmatic mouse. Modified Boyden chamber assay revealed that rHB-EGF facilitate ASM cell migration in a dose-dependent manner and ASM cells from asthmatic mice had a greater migration ability than that from normal counterparts. rHB-EGF could stimulate the phosphorylation of ERK1/2 and p38 in ASM cells but further migration assay showed that only epidermal growth factor receptor inhibitor (AG1478) or p38 inhibitor (SB203580), but not ERK1/2 inhibitor (PD98059), could inhibit rHB-EGF-mediated ASM cells migration. Actin cytoskeleton experiments exhibited that rHB-EGF could cause actin stress fibers disassembly and focal adhesions formation of ASM cells through the activation of p38. Finally, airway instillation of rHB-EGF promoted the recruitment of bone marrow-derived smooth muscle progenitor cells, which were transferred via caudal vein, migrating into the airway from the circulation. These observations demonstrated that ASM remodeling in asthma might have resulted from HB-EGF-mediated ASM cells and their progenitor cells migration, via p38 MAPK-dependent actin cytoskeleton remodeling.

  18. Pathway of programmed cell death and oxidative stress induced by β-hydroxybutyrate in dairy cow abomasum smooth muscle cells and in mouse gastric smooth muscle.

    Directory of Open Access Journals (Sweden)

    Wulin Tian

    Full Text Available The administration of exogenous β-hydroxybutyrate (β-HB, as well as fasting and caloric restriction, is a condition associated with β-HB abundance and decreased appetite in animals. Increased β-HB and decreased appetite exist simultaneously in some diseases, such as bovine left displaced abomasums (LDA and human chronic gastritis. However, the effects of β-HB on stomach injuries have not been explored. To elucidate the possible effects of exogenous β-HB on the stomach, mice were injected intraperitoneally with β-HB, and bovine abomasum smooth muscle cells (BSMCs were treated with different concentrations of β-HB. We found that β-HB induced BSMCs endoplasmic reticulum- and mitochondria-mediated apoptotic cell death. β-HB promoted Bax expression and caspase-12, -9, and -3 activation while blocking Bcl-2 expression. β-HB also promoted AIF, EndoG release and p53 expression. β-HB acted on key molecules in the apoptotic cell death pathway and increased p38 and c-June NH2-terminal kinase phosphorylation while inhibiting ERK phosphorylation and PCNA expression. β-HB upregulated P27 and P21 mRNA levels while downregulating cyclin and CDK mRNA levels, arresting the cell cycle. These results suggest that BSMCs treated with β-HB can induce oxidative stress, which can be prevented by intracellular calcium chelators BAPTA/AM but not antioxidant NAC. Additionally, these results suggest that β-HB causes ROS generation through a Ca2+-dependent mechanism and that intracellular Ca2+ levels play a critical role in β-HB -induced apoptotic cell death. The impact of β-HB on programmed cell death and oxidative stress in vivo was confirmed in murine experiments. For the first time, we show oxidative stress effects of β-HB on smooth muscle. We propose that β-HB is a possible cause of some stomach diseases, including bovine LDA.

  19. Effects of Ginkgo biloba extracts with mirodenafil on the relaxation of corpus cavernosal smooth muscle and the potassium channel activity of corporal smooth muscle cells

    Institute of Scientific and Technical Information of China (English)

    Jung Jun Kim; Sung Won Lee; Deok Hyun Han; Soo Hyun Lim; Tae Hun Kim; Mee Ree Chae; Kyung Jin Chung; Sung Chul Kam; Ju-Hong Jeon; Jong Kwan Parks

    2011-01-01

    @@ In this study,we investigated the effects of a combination of Ginkgo biloba extracts (GBE) and phosphodiesterase type 5 (IRDE-5)inhibitors on the muscular tone of the corpus cavernosum and potassium channel activity of corporal smooth muscle cells.Strips of corpus cavernosum from male New Zealand white rabbits were mounted in organ baths for isometric tension studies.After contraction with 1 x 10-5 mol I-1 norepinephrine,GBE (0.01-1 mg ml-1) and mirodenafil (0.01-100 nmoll-1) were added together into the organ bath.In electrophysiological studies,whole-cell currents were recorded by the conventional patch-clamp technique in cultured smooth muscle cells of the human corpus cavernosum.The corpus cavernosum was relaxed in response to GBE in a dose-dependent manner (from 0.64%a18.35% at 0.01 mg ml一'to 52.28%±11.42% at 1 mg ml-1).After pre-treatment with 0.03 mg ml-1of GBE,the relaxant effects of mirodenafil were increased at all concentrations.After tetraethylammonium (TEA) (1 mmoll-1) administration,the increased effects were inhibited (P<0.01).Extracellular administration of GBE increased the whole-cell K+ outward currents in a dose-dependent fashion.The increase of the outward current was inhibited by 1 mmoll-1 TEA.These results suggest that GBE could increase the relaxant potency of mirodenafil even at a minimally effective dose.The K+ flow through potassium channels might be one of the mechanisms involved in this synergistic relaxation.

  20. Integrin αVβ5 Mediated TGF-β Activation by Airway Smooth Muscle Cells in Asthma

    OpenAIRE

    Tatler, Amanda L; John, Alison E.; Jolly, Lisa; Habgood, Anthony; Porte, Jo; Brightling, Chris; Knox, Alan J; Pang, Linhua; Sheppard, Dean; Huang, Xiaozhu; Jenkins, Gisli

    2011-01-01

    Severe asthma is associated with airway remodelling, characterised by structural changes including increased smooth muscle mass and matrix deposition in the airway, leading to deteriorating lung function. Transforming growth factor-β (TGF-β) is a pleiotropic cytokine leading to increased synthesis of matrix molecules by human airway smooth muscle cells (HASMs) and is implicated in asthmatic airway remodelling. TGF-β is synthesised as a latent complex, sequestered in the extracellular matrix, ...

  1. Effect of pinaverium bromide on stress-induced colonic smooth muscle contractility disorder in rats

    Institute of Scientific and Technical Information of China (English)

    Yun Dai; Jian-Xiang Liu; Jun-Xia Li; Yun-Feng Xu

    2003-01-01

    AIM: To investigate the effect of pinaverium bromide, a Ltype calcium channel blocker with selectivity for the gastrointestinal tract on contractile activity of colonic circular smooth muscle in normal or cold-restraint stressed rats and its possible mechanism.METHODS: Cold-restraint stress was conducted on rats to increase fecal pellets output. Each isolated colonic circular muscle strip was suspended in a tissue chamber containing warm oxygenated Tyrode-Ringer solution. The contractile response to ACh or KCl was measured isometrically on inkwriting recorder. Incubated muscle in different concentrations of pinaverium and the effects of pinaverium were investigated on ACh or KCl-induced contraction. Colon smooth muscle cells were cultured from rats and [Ca2+]i was measured in cell suspension using the Ca2+ fluorescent dye fura-2/AlMl.RESULTS: During stress, rats fecal pellet output increased 61% (P<0.01). Stimulated with ACh or KCl, the muscle contractility was higher in stress than that in control. Pinaverium inhibited the increment of [Ca2+]i and the muscle contraction in response to ACh or KCl in a dose dependent manner. A significant inhibition of pinaverium to ACh or KCl induced [Ca2+]i increment was observed at 10-6 mol/L. The IC50 values for inhibition of ACh induced contraction for the stress and control group were 1.66×10-6 mol/L and 0.91×10-6mol/L, respectively. The ICs0 values for inhibition of KCl induced contraction for the stress and control group were 8.13×10-7 mol/L and 3.80×10-7 mol/L, respectively.CONCLUSION: Increase in [Ca2+]i of smooth muscle cells is directly related to the generation of contraction force in colon. L-type Ca2+ channels represent the main route of Ca2+ entry.Pinaverium inhibits the calcium influx through L-type channels;decreases the contractile response to many kinds of agonists and regulates the stress-induced colon hypermotility.

  2. A network of 2-4 nm filaments found in sea urchin smooth muscle. Protein constituents and in situ localization.

    Science.gov (United States)

    Pureur, R P; Coffe, G; Soyer-Gobillard, M O; de Billy, F; Pudles, J

    1986-01-01

    In this report the coisolation of two proteins from sea urchin smooth muscle of apparent molecular weights (Mr) 54 and 56 kD respectively, as determined on SDS-PAGE, is described. Like the intermediate filament proteins, these two proteins are insoluble in high ionic strength buffer solution. On two-dimensional gel electrophoresis and by immunological methods it is shown that these proteins are not related (by these criteria) to rat smooth muscle desmin (54 kD) or vimentin (56 kD). Furthermore, in conditions where both desmin and vimentin assemble in vitro into 10 nm filaments, the sea urchin smooth muscle proteins do not assemble into filaments. Ultrastructural studies on the sea urchin smooth muscle cell show that the thin and thick filaments organization resembles that described in the vertebrate smooth muscle. However, instead of 10 nm filaments, a network of filaments, 2-4 nm in diameter, is revealed, upon removal of the thin and thick filaments by 0.6 M KCl treatment. By indirect immunofluorescence microscopy, and in particular by immunocytochemical electron microscopy studies on the sea urchin smooth muscle cell, it is shown that the antibodies raised against both 54 and 56 kD proteins appear to specifically label these 2-4 nm filaments. These findings indicate that both the 54 and 56 kD proteins might be constituents of this category of filaments. The possible significance of this new cytoskeletal element, that we have named echinonematin filaments, is discussed.

  3. On the terminology for describing the length-force relationship and its changes in airway smooth muscle.

    Science.gov (United States)

    Bai, Tony R; Bates, Jason H T; Brusasco, Vito; Camoretti-Mercado, Blanca; Chitano, Pasquale; Deng, Lin Hong; Dowell, Maria; Fabry, Ben; Ford, Lincoln E; Fredberg, Jeffrey J; Gerthoffer, William T; Gilbert, Susan H; Gunst, Susan J; Hai, Chi-Ming; Halayko, Andrew J; Hirst, Stuart J; James, Alan L; Janssen, Luke J; Jones, Keith A; King, Greg G; Lakser, Oren J; Lambert, Rodney K; Lauzon, Anne-Marie; Lutchen, Kenneth R; Maksym, Geoffrey N; Meiss, Richard A; Mijailovich, Srboljub M; Mitchell, Howard W; Mitchell, Richard W; Mitzner, Wayne; Murphy, Thomas M; Paré, Peter D; Schellenberg, R Robert; Seow, Chun Y; Sieck, Gary C; Smith, Paul G; Smolensky, Alex V; Solway, Julian; Stephens, Newman L; Stewart, Alastair G; Tang, Dale D; Wang, Lu

    2004-12-01

    The observation that the length-force relationship in airway smooth muscle can be shifted along the length axis by accommodating the muscle at different lengths has stimulated great interest. In light of the recent understanding of the dynamic nature of length-force relationship, many of our concepts regarding smooth muscle mechanical properties, including the notion that the muscle possesses a unique optimal length that correlates to maximal force generation, are likely to be incorrect. To facilitate accurate and efficient communication among scientists interested in the function of airway smooth muscle, a revised and collectively accepted nomenclature describing the adaptive and dynamic nature of the length-force relationship will be invaluable. Setting aside the issue of underlying mechanism, the purpose of this article is to define terminology that will aid investigators in describing observed phenomena. In particular, we recommend that the term "optimal length" (or any other term implying a unique length that correlates with maximal force generation) for airway smooth muscle be avoided. Instead, the in situ length or an arbitrary but clearly defined reference length should be used. We propose the usage of "length adaptation" to describe the phenomenon whereby the length-force curve of a muscle shifts along the length axis due to accommodation of the muscle at different lengths. We also discuss frequently used terms that do not have commonly accepted definitions that should be used cautiously.

  4. Effect of Nateglinide and Glibenclamide on Endothelial Cells and Smooth Muscle Cells from Human Coronary Arteries

    Directory of Open Access Journals (Sweden)

    Seeger H

    2004-01-01

    Full Text Available In the present work the effect of nateglinide and glibenclamide, two different substances used for therapy of diabetes mellitus type 2, were investigated on the synthesis of markers of endothelial function and on the proliferation of smooth muscle cells in vitro. As cell models endothelial and smooth muscle cells from human coronary arteries were used. Both substances were tested at concentrations of 0.1, 1 and 10 mmol/l. As markers of endothelial function prostacyclin, endothelin and plasminogen-activator-inhibitor-1 (PAI-1 were tested. Nateglinide and glibenclamide were similarly able to inhibit endothelial endothelin and PAI-1 synthesis, but only at the highest concentration tested. Endothelial prostacyclin synthesis and proliferation of smooth muscle cells were not significantly changed by both substances. These results indicate that both nateglinide and glibenclamide may have potential in reducing negative long-term effects of diabetes such as atherogenesis. Kurzfassung: Effekt von Nateglinid und Glibenclamid auf Endothel- und Muskelzellen humaner Koronararterien. In der vorliegenden Arbeit wurde die Wirkung von Nateglinid und Glibenclamid, zweier unterschiedlicher Substanzen zur Behandlung des Diabetes mellitus Typ 2, auf die Synthese von Markern der Endothelfunktion und auf die Proliferation glatter Muskelzellen untersucht. Als Zellmodell dienten Endothelzellen und glatte Muskelzellen menschlicher Koronararterien. Beide Substanzen wurden in den Konzentrationen 0,1, 1 und 10 mmol/l getestet. Als Marker der Endothelfunktion dienten Prostazyklin, Endothelin und Plasminogen-Aktivator-Inhibitor-1 (PAI-1. Sowohl Nateglinid als auch Glibenclamid konnten die endotheliale Endothelin- und PAI-1-Produktion in ähnlichem Ausmaß senken, allerdings nur in der höchsten Konzentration. Die Prostazyklinsynthese und die Muskelzellproliferation wurden nicht signifikant beeinflußt. Diese Ergebnisse deuten daraufhin, daß sowohl Nateglinid als auch

  5. Actions of genistein on contractile response of smooth muscle isolated from guinea pig gallbladder

    Institute of Scientific and Technical Information of China (English)

    Ya-Li Luo; Ya-Li Wang; Neng-Lian Li; Tian-Zhen Zheng; Li Zhang; Ya-Li She; Shu-Ming Hu

    2009-01-01

    BACKGROUND: Defective contractile motility of the gallbladder is an important factor for gallstone formation. Estrogen might increase the risk of gallstones and cholecystitis, and estradiol inhibits the contractile activity of isolated strips of guinea pig gallbladder. The potential risks associated with hormone replacement therapy (HRT) include symptomatic gallstones. Phytoestrogen have been used to treat menopause syndromes by replacing traditional estrogen. This experiment aimed to determine the effects of the phytoestrogen genistein on the contractile response of smooth muscle strips isolated from guinea pig gallbladder and its possible mechanism of action. METHODS: Guinea pigs were sacriifced to remove the whole gallbladder. Two or three smooth muscle strips were cut longitudinally. Each strip was suspended in a tissue chamber containing Krebs solution. After 2 hours of equilibration, contractile response indexes were recorded. Different concentrations of genistein were added to the chamber and the contractile responses were measured. Each antagonist was added 2 minutes before genistein to study possible mechanisms. The effect of genistein on calcium-dependent contraction curves and biphasic contraction in calcium-free Krebs solution were measured. RESULTS: Genistein decreased the resting tension dose-dependently, and reduced the mean contractile amplitude and frequency in gallbladder strips. Ranitidine partly inhibited the effect of genistein, but methylene blue, Nω-nitro-L-arginine, and propranolol hydrochloride did not inlfuence this action. Genistein had no signiifcant effects on calcium-dependent contraction. Genistein reduced the ifrst contraction induced by acetylcholine chloride, but did not affect the second contraction caused by CaCl2. CONCLUSIONS: Genistein relaxed smooth muscle isolated from the gallbladder of guinea pigs and this might contribute to the formation of gallstones. The inhibitory action might be related to H2 receptors and

  6. The impact of extracellular and intracellular Ca2+ on ethanol-induced smooth muscle contraction

    Institute of Scientific and Technical Information of China (English)

    Naciye YAKTUBAY DONDAS; Mahir KAPLAN; Derya KAYA; Ergin SiNGiRiK

    2009-01-01

    Aim:To evaluate the impact of extracellular and intracellular Ca~(2+) on contractions induced by ethanol in smooth muscle.Methods: Longitudinal smooth muscle strips were prepared from the gastric fundi of mice. The contractions of smooth muscle strips were recorded with an isometric force displacement transducer.Results: Ethanol (164 mmol/L) produced reproducible contractions in isolated gastric fundal strips of mice. Although lidocaine (50 and 100 μmol/L), a local anesthetic agent, and hexamethonium (100 and 500 μmol/L), a ganglionic blocking agent, failed to affect these contractions, verapamil (1-50 μmol/L) and nifedipine (1-50 μmol/L), selective blockers of L-type Ca~(2+) channels, significantly inhibited the contractile responses of ethanol. Using a Ca~(2+)-free medium nearly eliminated these contractions in the same tissue. Ryanodine (1-50 μmol/L) and ruthenium red (10-100 μmol/L), selective blockers of intracellular Ca~(2+) channels/ryanodine receptors; cyclopiazonic acid (CPA; 1-10 μmol/L), a selective inhibitor of sarcoplasmic reticulum (SR) Ca~(2+)-ATPase; and caffeine (0.5-5 mmol/L), a depleting agent of intracellular Ca~(2+) stores, significantly inhibited the contractile responses induced by ethanol. In addition, the com-bination of caffeine (5 mmol/L) plus CPA (10 μmol/L), and ryanodine (10 μmol/L) plus CPA (10 μmol/L), caused further inhibition of contractions in response to ethanol. This inhibition was significantly different from those associated with caffeine, ryanodine or CPA. Furthermore the combination of caffeine (5 mmol/L), ryanodine (10 μmol/L) and CPA(10 μmol/L) eliminated the contractions induced by ethanol in isolated gastric fundal strips of mice.Conclusion: Both extracellular and intracellular Ca~(2+) may have important roles in regulating contractions induced by ethanol in the mouse gastric fundus.

  7. A key role for STIM1 in store operated calcium channel activation in airway smooth muscle

    Directory of Open Access Journals (Sweden)

    Peel Samantha E

    2006-09-01

    Full Text Available Abstract Background Control of cytosolic calcium plays a key role in airway myocyte function. Changes in intracellular Ca2+ stores can modulate contractile responses, modulate proliferation and regulate synthetic activity. Influx of Ca2+ in non excitable smooth muscle is believed to be predominantly through store operated channels (SOC or receptor operated channels (ROC. Whereas agonists can activate both SOC and ROC in a range of smooth muscle types, the specific trigger for SOC activation is depletion of the sarcoplasmic reticulum Ca2+ stores. The mechanism underlying SOC activation following depletion of intracellular Ca2+ stores in smooth muscle has not been identified. Methods To investigate the roles of the STIM homologues in SOC activation in airway myocytes, specific siRNA sequences were utilised to target and selectively suppress both STIM1 and STIM2. Quantitative real time PCR was employed to assess the efficiency and the specificity of the siRNA mediated knockdown of mRNA. Activation of SOC was investigated by both whole cell patch clamp electrophysiology and a fluorescence based calcium assay. Results Transfection of 20 nM siRNA specific for STIM1 or 2 resulted in robust decreases (>70% of the relevant mRNA. siRNA targeted at STIM1 resulted in a reduction of SOC associated Ca2+ influx in response to store depletion by cyclopiazonic acid (60% or histamine but not bradykinin. siRNA to STIM2 had no effect on these responses. In addition STIM1 suppression resulted in a more or less complete abrogation of SOC associated inward currents assessed by whole cell patch clamp. Conclusion Here we show that STIM1 acts as a key signal for SOC activation following intracellular Ca2+ store depletion or following agonist stimulation with histamine in human airway myocytes. These are the first data demonstrating a role for STIM1 in a physiologically relevant, non-transformed endogenous expression cell model.

  8. Role of M1 receptor in regulation of gastric fundus smooth muscle contraction

    Directory of Open Access Journals (Sweden)

    Marta Gajdus

    2011-09-01

    Full Text Available Background:The subject of this study is determination of the influence of drugs on gastric fundus smooth muscle contraction induced by activation of muscarinic receptors M1. Experiments tested interactions between a receptor agonist, carbachol and muscarinic receptor antagonists, atropine and pirenzepine.Material/Methods:Testing was conducted on tissues isolated from rat’s stomach. Male Wistar rats with weight between 220 g and 360 g were anesthetized by intraperitoneal injection of urethane (120 mg/kg. The stomach was dissected, and later the gastric fundus was isolated. Tissue was placed in a dish for insulated organs with 20 ml in capacity, filled with Krebs fluid. Results contained in the study are average values ± SE. In order to determine statistical significance, the principles of receptor theory were used (Kenakin modification.Results:According to tests, carbachol, in concentrations ranging between 10–8 M to 10–4 M, in a dosage-dependent way induces gastric fundus smooth muscle contraction. Presented results indicate that carbachol meets the conditions posed to full agonists. On the other hand, atropine, a non-selective muscarinic receptor antagonist, causes a concentration-dependent shift of concentration-effect curve (for carbachol to the right, maintaining maximum reaction. According to analysis of the curve determined, we can deduce that atropine meets the conditions posed to competitive antagonists. The use of pirenzepine, a competitive receptor agonist M1, causes shift of concentration-effect curve (for carbachol to the right, maintaining maximum reaction.Conclusions:From the testing conducted on the preparation of the gastric fundus we can deduce that atropine causes shift of concentration-effect curves for carbachol to the right. A similar effect is released by pirenzepine, selectively blocking muscarinic receptors of M1 type. The results indicate that in the preparation of the gastric fundus smooth muscle, M1 type

  9. Tropomyosin variants describe distinct functional subcellular domains in differentiated vascular smooth muscle cells.

    Science.gov (United States)

    Gallant, Cynthia; Appel, Sarah; Graceffa, Philip; Leavis, Paul; Lin, Jim Jung-Ching; Gunning, Peter W; Schevzov, Galina; Chaponnier, Christine; DeGnore, Jon; Lehman, William; Morgan, Kathleen G

    2011-06-01

    Tropomyosin (Tm) is known to be an important gatekeeper of actin function. Tm isoforms are encoded by four genes, and each gene produces several variants by alternative splicing, which have been proposed to play roles in motility, proliferation, and apoptosis. Smooth muscle studies have focused on gizzard smooth muscle, where a heterodimer of Tm from the α-gene (Tmsm-α) and from the β-gene (Tmsm-β) is associated with contractile filaments. In this study we examined Tm in differentiated mammalian vascular smooth muscle (dVSM). Liquid chromatography-tandem mass spectrometry (LC MS/MS) analysis and Western blot screening with variant-specific antibodies revealed that at least five different Tm proteins are expressed in this tissue: Tm6 (Tmsm-α) and Tm2 from the α-gene, Tm1 (Tmsm-β) from the β-gene, Tm5NM1 from the γ-gene, and Tm4 from the δ-gene. Tm6 is by far most abundant in dVSM followed by Tm1, Tm2, Tm5NM1, and Tm4. Coimmunoprecipitation and coimmunofluorescence studies demonstrate that Tm1 and Tm6 coassociate with different actin isoforms and display different intracellular localizations. Using an antibody specific for cytoplasmic γ-actin, we report here the presence of a γ-actin cortical cytoskeleton in dVSM cells. Tm1 colocalizes with cortical cytoplasmic γ-actin and coprecipitates with γ-actin. Tm6, on the other hand, is located on contractile bundles. These data indicate that Tm1 and Tm6 do not form a classical heterodimer in dVSM but rather describe different functional cellular compartments.

  10. Leptin augments coronary vasoconstriction and smooth muscle proliferation via a Rho-kinase-dependent pathway.

    Science.gov (United States)

    Noblet, Jillian N; Goodwill, Adam G; Sassoon, Daniel J; Kiel, Alexander M; Tune, Johnathan D

    2016-05-01

    Leptin has been implicated as a key upstream mediator of pathways associated with coronary vascular dysfunction and disease. The purpose of this investigation was to test the hypothesis that leptin modifies the coronary artery proteome and promotes increases in coronary smooth muscle contraction and proliferation via influences on Rho kinase signaling. Global proteomic assessment of coronary arteries from lean swine cultured with obese concentrations of leptin (30 ng/mL) for 3 days revealed significant alterations in the coronary artery proteome (68 proteins) and identified an association between leptin treatment and calcium signaling/contraction (four proteins) and cellular growth and proliferation (35 proteins). Isometric tension studies demonstrated that both acute (30 min) and chronic (3 days, serum-free media) exposure to obese concentrations of leptin potentiated depolarization-induced contraction of coronary arteries. Inhibition of Rho kinase significantly reduced leptin-mediated increases in coronary artery contractions. The effects of leptin on the functional expression of Rho kinase were time-dependent, as acute treatment increased Rho kinase activity while chronic (3 day) exposure was associated with increases in Rho kinase protein abundance. Proliferation assays following chronic leptin administration (8 day, serum-containing media) demonstrated that leptin augmented coronary vascular smooth muscle proliferation and increased Rho kinase activity. Inhibition of Rho kinase significantly reduced these effects of leptin. Taken together, these findings demonstrate that leptin promotes increases in coronary vasoconstriction and smooth muscle proliferation and indicate that these phenotypic effects are associated with alterations in the coronary artery proteome and dynamic effects on the Rho kinase pathway.

  11. Activity of sap from Croton lechleri on rat vascular and gastric smooth muscles.

    Science.gov (United States)

    Froldi, G; Zagotto, G; Filippini, R; Montopoli, M; Dorigo, P; Caparrotta, L

    2009-08-01

    The effects of red sap from Croton lechleri (SdD), Euphorbiaceae, on vascular and gastric smooth muscles were investigated. SdD, from 10 to 1000 microg/ml, induced concentration-dependent vasoconstriction in rat caudal arteries, which was endothelium-independent. In arterial preparations pre-constricted by phenylephrine (0.1 microM) or KCl (30 mM), SdD also produced concentration-dependent vasoconstriction. To study the mechanisms implicated in this effect we used selective inhibitors such as prazosin (0.1 microM), an antagonist of alpha(1)-adrenoceptors, atropine (0.1 microM), an antagonist of muscarinic receptors, and ritanserin (50 nM), a 5-HT(2A) antagonist; none of these influenced vasoconstriction caused by SdD. Likewise, nifedipine (50 nM), an inhibitor of L-type calcium channels, did not modify the action of SdD. Capsaicin (100 nM), an agonist of vanilloid receptors, also did not affect vasoconstriction by SdD. We also investigated the action of SdD (10-1000 microg/ml) on rat gastric fundus; per se the sap slightly increased contractile tension. When the gastric fundus was pre-treated with SdD (100 microg/ml) the contraction induced by carbachol (1 microM) was increased, whereas that by KCl (60mM) or capsaicin (100 nM) were unchanged. The data shows that SdD increased contractile tension in a concentration-dependent way, both on vascular and gastric smooth muscles. The vasoconstriction is unrelated to alpha(1), M, 5-HT(2A) and vanilloid receptors as well as L-type calcium channels. SdD increased also contraction by carbachol on rat gastric fundus. Thus for the first time, experimental data provides evidence that sap from C. lechleri owns constricting activity on smooth muscles.

  12. Expression of Potassium Channels in Uterine Smooth Muscle Cells from Patients with Adenomyosis

    Institute of Scientific and Technical Information of China (English)

    Jing-Hua Shi; Li Jin; Jin-Hua Leng; Jing-He Lang

    2016-01-01

    Background:Adenomyosis (AM) has impaired contraction.This study aimed to explore the expression of potassium channels related to contraction in myometrial smooth muscle cells (MSMCs) of AM.Methods:Uterine tissue samples from 22 patients (cases) with histologically confirmed AM and 12 (controls) with cervical intraepithelial neoplasia were collected for both immunohistochemistry and real-time polymerase chain reaction to detect the expression of large conductance calcium-and voltage-sensitive K+ channel (BKCa)-α/β subunits,voltage-gated potassium channel (Kv) 4.2,and Kv4.3.Student's t-test was used to compare the expression.Results:The BKCa-α/β subunits,Kv4.2,and Kv4.3 were located in smooth muscle cells,glandular epithelium,and stromal cells.However,BKCa-β subunit expression in endometrial glands of the controls was weak,and Kv4.3 was almost undetectable in the controls.The expression of BKCa-α messenger RNA (mRNA) (0.62 ± 0.19-fold decrease,P < 0.05) and Kv4.3 mRNA (0.67 ± 0.20-fold decrease,P < 0.05) decreased significantly in the M SMCs of the control group compared with the AM group.However,there were no significant differences in BKCa-β subunit mRNA or Kv4.2 mRNA.Conclusions:The BKCa-α mRNA and the Kv4.3 mRNA are expressed significantly higher in AM than those in the control group,that might cause the abnormal uterus smooth muscle contractility,change the microcirculation of uterus to accumulate the inflammatory factors,impair the endometrium further,and aggravate the pain.

  13. Expression of Potassium Channels in Uterine Smooth Muscle Cells from Patients with Adenomyosis

    Directory of Open Access Journals (Sweden)

    Jing-Hua Shi

    2016-01-01

    Full Text Available Background: Adenomyosis (AM has impaired contraction. This study aimed to explore the expression of potassium channels related to contraction in myometrial smooth muscle cells (MSMCs of AM. Methods: Uterine tissue samples from 22 patients (cases with histologically confirmed AM and 12 (controls with cervical intraepithelial neoplasia were collected for both immunohistochemistry and real-time polymerase chain reaction to detect the expression of large conductance calcium- and voltage-sensitive K + channel (BKCa-α/β subunits, voltage-gated potassium channel (Kv 4.2, and Kv4.3. Student′s t-test was used to compare the expression. Results: The BKCa-α/β subunits, Kv4.2, and Kv4.3 were located in smooth muscle cells, glandular epithelium, and stromal cells. However, BKCa-β subunit expression in endometrial glands of the controls was weak, and Kv4.3 was almost undetectable in the controls. The expression of BKCa-α messenger RNA (mRNA (0.62 ± 0.19-fold decrease, P < 0.05 and Kv4.3 mRNA (0.67 ± 0.20-fold decrease, P < 0.05 decreased significantly in the MSMCs of the control group compared with the AM group. However, there were no significant differences in BKCa-β subunit mRNA or Kv4.2 mRNA. Conclusions: The BKCa-α mRNA and the Kv4.3 mRNA are expressed significantly higher in AM than those in the control group, that might cause the abnormal uterus smooth muscle contractility, change the microcirculation of uterus to accumulate the inflammatory factors, impair the endometrium further, and aggravate the pain.

  14. Acrolein relaxes mouse isolated tracheal smooth muscle via a TRPA1-dependent mechanism.

    Science.gov (United States)

    Cheah, Esther Y; Burcham, Philip C; Mann, Tracy S; Henry, Peter J

    2014-05-01

    Airway sensory C-fibres express TRPA1 channels which have recently been identified as a key chemosensory receptor for acrolein, a toxic and highly prevalent component of smoke. TRPA1 likely plays an intermediary role in eliciting a range of effects induced by acrolein including cough and neurogenic inflammation. Currently, it is not known whether acrolein-induced activation of TRPA1 produces other airway effects including relaxation of mouse airway smooth muscle. The aims of this study were to examine the effects of acrolein on airway smooth muscle tone in mouse isolated trachea, and to characterise the cellular and molecular mechanisms underpinning the effects of acrolein. Isometric tension recording studies were conducted on mouse isolated tracheal segments to characterise acrolein-induced relaxation responses. Release of the relaxant PGE₂ was measured by EIA to examine its role in the response. Use of selective antagonists/inhibitors permitted pharmacological characterisation of the molecular and cellular mechanisms underlying this relaxation response. Acrolein induced dose-dependent relaxation responses in mouse isolated tracheal segments. Importantly, these relaxation responses were significantly inhibited by the TRPA1 antagonists AP-18 and HC-030031, an NK₁ receptor antagonist RP-67580, and the EP₂ receptor antagonist PF-04418948, whilst completely abolished by the non-selective COX inhibitor indomethacin. Acrolein also caused rapid PGE₂ release which was suppressed by HC-030031. In summary, acrolein induced a novel bronchodilator response in mouse airways. Pharmacologic studies indicate that acrolein-induced relaxation likely involves interplay between TRPA1-expressing airway sensory C-fibres, NK₁ receptor-expressing epithelial cells, and EP₂-receptor expressing airway smooth muscle cells.

  15. Effects of pseudophosphorylation mutants on the structural dynamics of smooth muscle myosin regulatory light chain

    Science.gov (United States)

    Espinoza-Fonseca, L. Michel; Colson, Brett A.; Thomas, David D.

    2014-01-01

    We have performed 50 independent molecular dynamics (MD) simulations to determine the effect of pseudophosphorylation mutants on the structural dynamics of smooth muscle myosin (SMM) regulatory light chain (RLC). We previously showed that the N-terminal phosphorylation domain of RLC simultaneously populates two structural states in equilibrium, closed and open, and that phosphorylation at S19 induces a modest shift toward the open state, which is sufficient to activate smooth muscle. However, it remains unknown why pseudophosphorylation mutants poorly mimic phosphorylation-induced activation of SMM. We performed MD simulations of unphosphorylated, phosphorylated, and three pseudophosphorylatedRLC mutants: S19E, T18D/S19D and T18E/S19E. We found that the S19E mutation does not shift the equilibrium toward the open state, indicating that simple charge replacement at position S19 does not mimic the activating effect of phosphorylation, providing a structural explanation for previously published functional data. In contrast, mutants T18D/S19D and T18E/S19E shift the equilibrium toward the open structure and partially activate in vitro motility, further supporting the model that an increase in the mol fraction of the open state is coupled to SMM motility. Structural analyses of the doubly-charged pseudophosphorylation mutants suggest that alterations in an interdomain salt bridge between residues R4 and D100 results in impaired signal transmission from RLC to the catalytic domain of SMM, which explains the low ATPase activity of these mutants. Our results demonstrate that phosphorylation produces a unique structural balance in the RLC. These observations have important implications for our understanding of the structural aspects of activation and force potentiation in smooth and striated muscle. PMID:25091814

  16. Differential effects of fatty acids on glycolysis and glycogen metabolism in vascular smooth muscle.

    Science.gov (United States)

    Barron, J T; Kopp, S J; Tow, J P; Parrillo, J E

    1991-07-10

    The effects of fatty acids of different chain lengths on aerobic glycolysis, lactic acid production, glycogen metabolism and contractile function of vascular smooth muscle were investigated. Porcine carotid artery segments were treated with 50 microM iodoacetate and perchloric acid tissue extracts were then analyzed by 31P-NMR spectroscopy to observe the accumulation of phosphorylated glycolytic intermediates so that the activity of the Embden-Myerhof pathway could be tracked under various experimental paradigms. Aerobic glycolysis and lactate production in resting arteries were almost completely inhibited with 0.5 mM octanoate, partially inhibited with 0.5 mM acetate and unaffected by 0.5 mM palmitate. Inhibition of glycolysis by octanoate was not attributable to inhibition of glucose uptake or glucose phosphorylation. Basal glycogen synthesis was unchanged with palmitate and acetate, but was inhibited by 52% with octanoate incubation. The characteristic glycogenolysis which occurs upon isometric contraction with 80 mM KCl in the absence of fatty acid in the medium was not demonstrable in the presence of any of the fatty acids tested. Glycogen sparing was also demonstrable in norepinephrine contractions with octanoate and acetate, but not with palmitate. Additionally, norepinephrine-stimulated isometric contraction was associated with enhanced synthesis of glycogen amounting to 6-times the basal rate in medium containing octanoate. Contractile responses to norepinephrine were attenuated by 20% in media containing fatty acids. Thus, fatty acids significantly alter metabolism and contractility of vascular smooth muscle. Fatty acids of different chain lengths affect smooth muscle differentially; the pattern of substrate utilization during contraction depends on the contractile agonist and the fatty acid present in the medium.

  17. Diversity of K+ channels in circular smooth muscle of opossum lower esophageal sphincter.

    Science.gov (United States)

    Zhang, Y; Paterson, W G

    2001-07-01

    We previously demonstrated that a balance of K+ and Ca2+-activated Cl- channel activity maintained the basal tone of circular smooth muscle of opossum lower esophageal sphincter (LES). In the current studies, the contribution of major K+ channels to the LES basal tone was investigated in circular smooth muscle of opossum LES in vitro. K+ channel activity was recorded in dispersed single cells at room temperature using patch-clamp recordings. Whole-cell patch-clamp recordings displayed an outward current beginning to activate at -60 mV by step test pulses lasting 400 ms (-120 mV to +100 mV) with increments of 20 mV from holding potential of -80 mV ([K+]I = 150 mM, [K+]o = 2.5 mM). However, no inward rectification was observed. The outward current peaked within 50 ms and showed little or no inactivation. It was significantly decreased by bath application of nifedipine, tetraethylammonium (TEA), 4-aminopyridine (4-AP), and iberiotoxin (IBTN). Further combination of TEA with 4-AP, nifedipine with 4-AP, and IBTN with TEA, or vice versa, blocked more than 90% of the outward current. Ca2+-sensitive single channels were recorded at asymetrical K+ gradients in cell-attached patch-clamp configurations (100.8+/-3.2 pS, n = 8). Open probability of the single channels recorded in inside-out patch-clamp configurations were greatly decreased by bath application of IBTN (100 nM) (Vh = -14.4+/-4.8 mV in control vs. 27.3+/-0.1 mV, n = 3, P < 0.05). These data suggest that large conductance Ca2+-activated K+ and delayed rectifier K+ channels contribute to the membrane potential, and thereby regulate the basal tone of opossum LES circular smooth muscle.

  18. Attenuation of endothelin-1-induced calcium response by tyrosine kinase inhibitors in vascular smooth muscle cells.

    Science.gov (United States)

    Liu, C Y; Sturek, M

    1996-06-01

    Although tyrosine kinases play an important role in cell growth and have been implicated in regulation of smooth muscle contraction, their role in agonist-induced myoplasmic Ca2+ responses is unclear. We examined effects of the tyrosine kinase inhibitors genistein and methyl 2,5-dihydroxycinnamate (MDHC) on the endothelin-1 (ET-1)-induced Ca2+ response and determined underlying mechanisms for the effects. Freshly isolated smooth muscle cells from porcine coronary arteries were loaded with fura 2 ester, and myoplasmic free Ca2+ (Ca2+ (m)) concentration was estimated with fura 2 microfluorometry. Both genistein and MDHC inhibited the initial transient Cam2+ response to ET by 54 and 81%, respectively (P latent period from ET-1 application to the beginning of the Cam2+ response being increased from 1.08 +/- 0.17 to 2.65 +/- 0.52 min (P < 0.05). In the absence of extracellular Ca2+, genistein inhibited the ET-1-induced Cam2+ response by 93% (P < 0.05). The Cam2+ responses to caffeine (5 mM) or inositol trisphosphate (IP3) applied intracellularly via a patch-clamp pipette were not affected by genistein. Both genistein and MDHC also abolished the sustained Cam2+ response to ET-1. However, the Cam2+ response to depolarization by 80 mM K+ was not inhibited by MDHC and only inhibited 22% by genistein (P < 0.05). These results indicate that 1) activation of tyrosine kinases is an important regulatory mechanism for the ET-1-induced Cam2+ response in vascular smooth muscle and 2) tyrosine kinases mediate ET-1-induced Ca2+ release with no direct effect on IP3-mediated Ca2+ release. Thus ET-1-mediated signaling upstream of IP3 interaction with the Ca2+ stores is regulated by tyrosine kinases.

  19. Cholinergic facilitation of neurotransmission to the smooth muscle of the guinea-pig prostate gland.

    Science.gov (United States)

    Lau, W A; Pennefather, J N; Mitchelson, F J

    2000-07-01

    1. Functional experiments have been conducted to assess the effects of acetylcholine and carbachol, and the receptors on which they act to facilitate neurotransmission to the stromal smooth muscle of the prostate gland of the guinea-pig. 2. Acetylcholine and carbachol (0.1 microM - 0.1 mM) enhanced contractions evoked by trains of electrical field stimulation (20 pulses of 0.5 ms at 10 Hz every 50 s with a dial setting of 60 V) of nerve terminals within the guinea-pig isolated prostate. In these concentrations they had negligible effects on prostatic smooth muscle tone. 3. The facilitatory effects of acetylcholine, but not those of carbachol, were further enhanced in the presence of physostigmine (10 microM). 3. The facilitatory effects of carbachol were unaffected by the neuropeptide Y Y(1) receptor antagonist BIBP 3226 ((R)-N(2)-(diphenylacetyl)-N-[(4-hydroxyphenyl)methyl]-arginina mide) (0.3 microM, n=3) or suramin (100 microM, n=5). Prazosin (0.1 microM, n=5) and guanethidine (10 microM, n=5) alone and in combination (n=4), reduced responses to field stimulation and produced rightward shifts of the log concentration-response curves to carbachol. 4. The rank orders of potency of subtype-preferring muscarinic receptor antagonists in inhibiting the facilitatory actions of acetylcholine and carbachol were: pirenzepine > HHSiD (hexahydrosiladifenidol) > pF-HHSiD (para-fluoro-hexahydrosiladifenidol)>/= 5 himbacine, and pirenzepine > HHSiD > himbacine>/= 5 pF-HHSiD, respectively. These profiles suggest that muscarinic receptors of the M(1)-subtype mediate the facilitatory effects of acetylcholine and carbachol on neurotransmission to the smooth muscle of the guinea-pig prostate.

  20. Control of stomach smooth muscle development and intestinal rotation by transcription factor BARX1.

    Science.gov (United States)

    Jayewickreme, Chenura D; Shivdasani, Ramesh A

    2015-09-01

    Diverse functions of the homeodomain transcription factor BARX1 include Wnt-dependent, non-cell autonomous specification of the stomach epithelium, tracheo-bronchial septation, and Wnt-independent expansion of the spleen primordium. Tight spatio-temporal regulation of Barx1 levels in the mesentery and stomach mesenchyme suggests additional roles. To determine these functions, we forced constitutive BARX1 expression in the Bapx1 expression domain, which includes the mesentery and intestinal mesenchyme, and also examined Barx1(-/)(-) embryos in further detail. Transgenic embryos invariably showed intestinal truncation and malrotation, in part reflecting abnormal left-right patterning. Ectopic BARX1 expression did not affect intestinal epithelium, but intestinal smooth muscle developed with features typical of the stomach wall. BARX1, which is normally restricted to the developing stomach, drives robust smooth muscle expansion in this organ by promoting proliferation of myogenic progenitors at the expense of other sub-epithelial cells. Undifferentiated embryonic stomach and intestinal mesenchyme showed modest differences in mRNA expression and BARX1 was sufficient to induce much of the stomach profile in intestinal cells. However, limited binding at cis-regulatory sites implies that BARX1 may act principally through other transcription factors. Genes expressed ectopically in BARX1(+) intestinal mesenchyme and reduced in Barx1(-/-) stomach mesenchyme include Isl1, Pitx1, Six2 and Pitx2, transcription factors known to control left-right patterning and influence smooth muscle development. The sum of evidence suggests that potent BARX1 functions in intestinal rotation and stomach myogenesis occur through this small group of intermediary transcription factors.

  1. De Novo ACTA2 Mutation Causes a Novel Syndrome of Multisystemic Smooth Muscle Dysfunction

    Science.gov (United States)

    Milewicz, Dianna M.; Østergaard, John R.; Ala-Kokko, Leena M.; Khan, Nadia; Grange, Dorothy K.; Mendoza-Londono, Roberto; Bradley, Timothy J.; Olney, Ann Haskins; Adès, Lesley; Maher, Joseph F.; Guo, Dongchuan; Buja, L. Maximilian; Kim, Dong; Hyland, James C.; Regalado, Ellen S.

    2011-01-01

    Smooth muscle cells (SMCs) contract to perform many physiological functions, including regulation of blood flow and pressure in arteries, contraction of the pupils, peristalsis of the gut and voiding of the bladder. SMC lineage in these organs is characterized by cellular expression of the SMC isoform of α-actin, encoded by the ACTA2 gene. We report here on a unique and de novo mutation in ACTA2, R179H, that causes a syndrome characterized by dysfunction of SMCs throughout the body, leading to aortic and cerebrovascular disease, fixed dilated pupils, hypotonic bladder, malrotation and hypoperistalsis of the gut and pulmonary hypertension. PMID:20734336

  2. Device for Investigation of Mechanical Tension of Isolated Smooth Muscle Vessels and Airway Segments of Animals

    Science.gov (United States)

    Aleinik, A.; Karpovich, N.; Turgunova, N.; Nosarev, A.

    2016-11-01

    For the purpose of testing and the search for new drug compounds, designed to heal many human diseases, it is necessary to investigate the deformation of experimental tissue samples under influence of these drugs. For this task a precision force sensor for measuring the mechanical tension, produced by isolated ring segments of blood vessels and airways was created. The hardware and software systems for the study of changes in contractile responses of the airway smooth muscles and blood vessels of experimental animals was developed.

  3. The pharmacological properties of K+ currents from rabbit isolated aortic smooth muscle cells.

    OpenAIRE

    Halliday, F. C.; Aaronson, P. I.; Evans, A. M.; Gurney, A M

    1995-01-01

    1. Using the whole-cell patch-clamp technique, the effects of several K+ channel blocking drugs on K+ current recorded from rabbit isolated aortic smooth muscle cells were investigated. 2. Upon depolarization from -80 mV, outward K+ current composed of several distinct components were observed: a transient, 4-aminopyridine (4-AP)-sensitive component (I1) and a sustained component (Isus), comprising a 4-AP-sensitive delayed rectifier current (IK(V)), and a noisy current which was sensitive to ...

  4. Pharmacological role of atorvastatin in myocardium and smooth muscle progenitor cells

    Directory of Open Access Journals (Sweden)

    Suresh Kanna

    2016-06-01

    Full Text Available Atorvastatin is a synthetic 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA reductase inhibitor with a great potency in the reduction of lipids and it has been well documented in both primary and secondary prevention studies. It exhibits pleiotropic properties in both in-vitro and in vivo conditions. Conversely, atorvastatin remain under-utilized in several situations. The main objective of this review is to focuses the pharmacological benefits, pleiotropic properties of the atorvastatin related to smooth muscle proliferation and myocardium. [Int J Basic Clin Pharmacol 2016; 5(3.000: 605-608

  5. Signaling and regulation of G protein-coupled receptors in airway smooth muscle

    Directory of Open Access Journals (Sweden)

    Penn Raymond B

    2003-03-01

    Full Text Available Abstract Signaling through G protein-coupled receptors (GPCRs mediates numerous airway smooth muscle (ASM functions including contraction, growth, and "synthetic" functions that orchestrate airway inflammation and promote remodeling of airway architecture. In this review we provide a comprehensive overview of the GPCRs that have been identified in ASM cells, and discuss the extent to which signaling via these GPCRs has been characterized and linked to distinct ASM functions. In addition, we examine the role of GPCR signaling and its regulation in asthma and asthma treatment, and suggest an integrative model whereby an imbalance of GPCR-derived signals in ASM cells contributes to the asthmatic state.

  6. Effects of pinacidil on proliferation of cultured rabbit airway smooth muscle cells induced by endothelin-1

    Institute of Scientific and Technical Information of China (English)

    WANG Hong; XIE Wei-ping; QI Xu; ZHANG Xi-long

    2005-01-01

    @@ It has been found that the potassium channel dysfunction of the membrane of airway smooth muscle cells (ASMCs) is closely associated with proliferation of ASMCs.1 Preliminary research has demonstrated that pinacidil, an ATP sensitive potassium channel (KATP) opener, could play a remarkable role in the prevention and treatment of antigen induced bronchial asthma in guinea pigs.2 This study was designed to investigate further the role and molecular mechanism of the proliferation of ASMCs: a chief pathological change of the nonacute phase of bronchial asthmatic episodes.

  7. Identification and characterization of a novel angiotensin binding site in cultured vascular smooth muscle cells that is specific for the hexapeptide (3-8) fragment of angiotensin II, angiotensin IV.

    Science.gov (United States)

    Hall, K L; Hanesworth, J M; Ball, A E; Felgenhauer, G P; Hosick, H L; Harding, J W

    1993-03-19

    This study demonstrates the existence of a previously unrecognized class of angiotensin binding sites on vascular smooth muscle that exhibit high affinity and specificity for the hexapeptide (3-8) fragment of angiotensin II (AngIV). Binding of [125I]AngIV is saturable, reversible and describes a pharmacologic profile that is distinct and separate from the classic AT1 or AT2 angiotensin receptors. Saturation binding studies utilizing cultured vascular smooth muscle cells obtained from bovine aorta (BVSM) revealed that [125I]AngIV bound to a single high affinity site with an associated Hill coefficient of 0.99 +/- 0.003, exhibiting a KD = 1.85 +/- 0.45 nM and a corresponding Bmax = 960 +/- 100 fmol mg-1 protein. Competition binding curves in BVSM demonstrated the following rank order effectiveness: AngIV > AngII(3-7) > AngIII > Sar1,Ile8 AngII > AngII > AngII(1-7) > AngII(4-8), DuP 753, PD123177. The presence of the non-hydrolyzable GTP analog GTP gamma S, had no effect on [125I]AngIV binding affinity in BVSM. The presence of this novel angiotensin binding site on smooth muscle in high concentration suggests the possibility that this system may play an important, yet unrecognized role in vascular control.

  8. Human vascular smooth muscle cells both express and respond to heparin-binding growth factor I (endothelial cell growth factor)

    Energy Technology Data Exchange (ETDEWEB)

    Winkles, J.A.; Friesel, R.; Burgess, W.H.; Howk, R.; Mehlman, T.; Weinstein, R.; Maciag, T.

    1987-10-01

    The control of vascular endothelial and muscle cell proliferation is important in such processes as tumor angiogenesis, wound healing, and the pathogenesis of atherosclerosis. Class I heparin-binding growth factor (HBGF-I) is a potent mitogen and chemoattractant for human endothelial cells in vitro and will induce angiogenesis in vivo. RNA gel blot hybridization experiments demonstrate that cultured human vascular smooth muscle cells, but not human umbilical cells also synthesize an HBGF-I mRNA. Smooth muscle cells also synthesize an HBGF-I-like polypeptide since (i) extract prepared from smooth muscle cells will compete with /sup 125/I-labeled HBGF-I for binding to the HBGF-I cell surface receptor, and (ii) the competing ligand is eluted from heparin-Sepharose affinity resin at a NaCl concentration similar to that required by purified bovine brain HBGF-I and stimulates endothelial cell proliferation in vitro. Furthermore, like endothelial cells, smooth muscle cells possess cell-surface-associated HBGF-I receptors and respond to HBGF-I as a mitogen. These results indicate the potential for an additional autocrine component of vascular smooth muscle cell growth control and establish a vessel wall source of HBGF-I for endothelial cell division in vivo.

  9. Roles of NHE-1 in the proliferation and apoptosis of pulmonary artery smooth muscle cells in rats

    Institute of Scientific and Technical Information of China (English)

    姚伟; 钱桂生; 杨晓静

    2002-01-01

    Objective To evaluate the roles of Na+/H+ exchanger-1 (NHE-1)in the proliferation and apoptosis of pulmonary artery smooth muscle cells in rats. Methods Twenty Wistar rats were randomized into control group and 3-week hypoxic group. Intracellular pH (pHi) of the smooth muscle was determined with fluorescence measurement of the pH-sensitive dye BCECF-AM, and the expression of NHE-1 mRNA was detected by reverse transcription polymerase chain reaction (RT-PCR). Primary culture of pulmonary artery smooth muscle cells in vitro was performed. In situ cell death detection kit (TUNEL) was used for studying the effect of specific NHE-1 inhibitor-dimethyl amiloride (DMA) on the apoptosis of muscle cells which had intracellular acidification. Results pHi value and NHE-1 mRNA expression of pulmonary artery smooth muscle cells were significantly higher in the hypoxic group than in the control group (P<0.01, P<0.001). DMA elevated the apoptotic ratio remarkably. The effect was enhanced when DMA concentration increased and the time prolonged. Conclusions With the function of adjusting pHi, NHE-1 may play an important role in the proliferation and apoptosis of pulmonary artery smooth muscle cells.

  10. Focal adhesion kinase antisense oligodeoxynucleotides inhibit human pulmonary artery smooth muscle cells proliferation and promote human pulmonary artery smooth muscle cells apoptosis

    Institute of Scientific and Technical Information of China (English)

    LIN Chun-long; ZHANG Zhen-xiang; XU Yong-jian; NI Wang; CHEN Shi-xin

    2005-01-01

    Background Pulmonary artery smooth muscle cell (PASMC) proliferation plays an important role in pulmonary vessel structural remodelling. At present, the mechanisms related to proliferation of PASMCs are not clear. Focal adhesion kinase (FAK) is a widely expressed nonreceptor protein tyrosine kinase. Recent research indicates that FAK is implicated in signalling pathways which regulate cytoskeletal organization, adhesion, migration, survival and proliferation of cells. Furthermore, there are no reports about the role of FAK in human pulmonary artery smooth muscle cells (HPASMCs). We investigated whether FAK takes part in the intracellular signalling pathway involved in HPASMCs proliferation and apoptosis, by using antisense oligodeoxynucleotides (ODNs) to selectively suppress the expression of FAK protein.Methods Cultured HPASMCs stimulated by fibronectin (40 μg/ml) were passively transfected with ODNs, sense FAK, mismatch sense and antisense-FAK respectively. Expression of FAK, Jun NH2-terminal kinase (JNK), cyclin-dependent kinase 2 (CDK 2) and caspase-3 proteins were detected by immunoprecipitation and Western blots. Cell cycle and cell apoptosis were analysed by flow cytometry. In addition, cytoplasmic FAK expression was detected by immunocytochemical staining.Results When compared with mismatch sense group, the protein expressions of FAK, JNK and CDK 2 in HPASMCs decreased in antisense-FAK ODNs group and increased in sense-FAK ODNs group significantly. Caspase-3 expression upregulated in HPASMCs when treated with antisense ODNs and downregulated when treated with sense ODNs. When compared with mismatch sense ODNs group, the proportion of cells at G1 phase decreased significantly in sense ODNs group, while the proportion of cells at S phase increased significantly. In contrast, compared with mismatch sense ODNs group, the proportion of cells at G1 phase was increased significantly in antisense-FAK ODNs group. The level of cell apoptosis in antisense-FAK group

  11. Matrine inhibits the expression of adhesion molecules in activated vascular smooth muscle cells.

    Science.gov (United States)

    Liu, Jun; Zhang, Lihua; Ren, Yingang; Gao, Yanli; Kang, Li; Lu, Shaoping

    2016-03-01

    Atherosclerosis is a chronic inflammatory disease associated with increased expression of adhesion molecules in vascular smooth muscle cells (VSMCs). Matrine is a main active ingredient of Sophora flavescens roots, which are used to treat inflammatory diseases. However, the effects of matrine on the expression of adhesion molecules in VSMCs have largely remained elusive. Therefore, the present study investigated the effects of matrine on the expression of adhesion molecules in tumor necrosis factor (TNF)‑α‑stimulated human aortic smooth muscle cells (HASMCs). The results showed that matrine inhibited the expression of vascular cell adhesion molecule‑1 (VCAM‑1) and intercellular adhesion molecule‑1 (ICAM‑1) in TNF‑α‑stimulated HASMCs. Matrine markedly inhibited the TNF‑α‑induced expression of nuclear factor (NF)‑κB p65 and prevented the TNF‑α‑caused degradation of inhibitor of NF‑κB; it also inhibited TNF‑α‑induced activation of mitogen‑activated protein kinases (MAPKs). Furthermore, matrine inhibited the production of intracellular reactive oxygen species (ROS) in TNF‑α‑stimulated HASMCs. In conclusion, the results of the present study demonstrated that matrine inhibited the expression of VCAM‑1 and ICAM‑1 in TNF‑α‑stimulated HASMCs via the suppression of ROS production as well as NF‑κB and MAPK pathway activation. Therefore, matrine may have a potential therapeutic use for preventing the advancement of atherosclerotic lesions.

  12. American ginseng inhibits vascular smooth muscle cell proliferation via suppressing Jak/Stat pathway

    Science.gov (United States)

    Wu, Qi; Wang, Wenjuan; Li, Siying; Nagarkatti, Prakash; Nagarkatti, Mitzi; Windust, Anthony; Wang, Xing Li; Tang, Dongqi; Cui, Taixing

    2014-01-01

    Ethnopharmcological relevance Ginseng, a folk medicine which has been used for thousands of years in Asia, has been promoted for the treatment or prevention of health problems including cardiovascular disease. However, the molecular mechanism of ginseng-induced cardiovascular protection is unclear. Thus, we investigated signaling mechanism by which American ginseng inhibits vascular smooth muscle cell (VSMC) proliferation, a key feature of diverse vascular disease. Materials and methods A standardized crude extract of American ginseng was supplied by the National Research Council of Canada, Institute for National Measurement Standards. Rat aortic smooth muscle cells (RASMCs) were exposed to fetal bovine serum (FBS), platelet derived growth factor (PDGF), insulin, or angiotensin II (Ang II) to induce proliferation that was examined by measuring DNA synthesis and cell numbers. Western blot was applied to determine the activations of Jak, Stat, Akt, and ERK. Results American ginseng inhibited RASMC proliferation induced by FBS, PDGF, insulin or Ang II. American ginseng slightly increased both basal and FBS-, PDGF- or Ang II-induced activities of Akt and ERK in RASMCs; however, it dramatically inhibited the activation of Jak2 and Stat3. Conclusion These results demonstrate that American ginseng inhibits VSMC proliferation through suppressing the Jak/Stat pathway. PMID:23041701

  13. Possible Mechanisms for Functional Antagonistic Effect of Ferula assafoetida on Muscarinic Receptors in Tracheal Smooth Muscle

    Science.gov (United States)

    Kiyanmehr, Majid; Boskabady, Mohammad Hossein; Khazdair, Mohammad Reza; Hashemzehi, Milad

    2016-01-01

    Background The contribution of histamine (H1) receptors inhibitory and/or β-adrenoceptors stimulatory mechanisms in the relaxant property of Ferula assa-foetida. (F. asafoetida) was examined in the present study. Methods We evaluated the effect of three concentrations of F. asafoetida extract (2.5, 5, and 10 mg/mL), a muscarinic receptors antagonist, and saline on methacholine concentration-response curve in tracheal smooth muscles incubated with β-adrenergic and histamine (H1) (group 1), and only β-adrenergic (group 2) receptors antagonists. Results EC50 values in the presence of atropine, extract (5 and 10 mg/mL) and maximum responses to methacholine due to the 10 mg/mL extract in both groups and 5 mg/mL extract in group 1 were higher than saline (P < 0.0001, P = 0.0477, and P = 0.0008 in group 1 and P < 0.0001, P = 0.0438, and P = 0.0107 in group 2 for atropine, 5 and 10 mg/mL extract, respectively). Values of concentration ratio minus one (CR-1), in the presence of extracts were lower than atropine in both groups (P = 0.0339 for high extract concentration in group 1 and P < 0.0001 for other extract concentrations in both groups). Conclusion Histamine (H1) receptor blockade affects muscarinic receptors inhibitory property of F. asafoetida in tracheal smooth muscle PMID:27540324

  14. Effects of nitrendipine on growth activity in cultured vascular smooth muscle cells.

    Science.gov (United States)

    Absher, M P; Baldor, L; Warshaw, D M

    1988-01-01

    Proliferation and migration of smooth muscle cells (SMCs) in the arterial wall may play a role in the development of atherosclerosis and hypertension. If cell migration and proliferation are dependent on extracellular calcium, then treatment with calcium channel blockers such as nitrendipine may alter these cellular responses. In the studies reported here, proliferation and migration activities were assessed in cultured bovine carotid artery smooth muscle cells exposed to nitrendipine. SMCs in long-term culture are characterized by periods of either stable or enhanced proliferative activity. During the stable periods, 1 microM nitrendipine has no effect on proliferation, but during periods of enhanced proliferation, 1 microM nitrendipine augments growth by approximately 20%. SMC migration rates and interdivision times were determined from analysis of time-lapse cinematography films. During stable periods of growth, cell migration rate was inversely related to interdivision time (i.e., fast migrating cells had the shortest interdivision times). Treatment with 1 microM nitrendipine abolished the relationship between migration rate and interdivision time and prolonged interdivision times. These data suggest that the ability of nitrendipine to alter SMC proliferation, interdivision time, and migration is dependent upon the overall proliferative state of the culture.

  15. Relationship of adrenomedullin expression and microvessel density and prognosis in smooth muscle tumor of uterus

    Institute of Scientific and Technical Information of China (English)

    JIANG Yuan; TIAN Xuehong; YUAN Jie; JIN Yuemei; TAN Yusong

    2007-01-01

    The aim of this paper was to investigate the relationship between the expression of adrenomedullin(ADM)and microvessel density(MVD)and prognosis in smooth muscle tumor of uterus.The expression of ADM was detected using immunohistochemical staining in specimens from 15 normal controls,28 eases of uterine leiomyoma(LE)and 19 eases of uterine leiomyosarcoma(LES).The MVD was assayed by immunostainting with CD34.There was a positive correlation between the ADM expression and MVD in LE and LES respectively(rs=0.823,P<0.01;rs=0.793,P<0.01).The expression of ADM in LE was statistically lower than that in LES(P<0.05).There was a positive correlation between the ADM expression and mitotic figures in LES(P<0.05):the more mitotic figures,the higher levels of the ADM expression and poor prognosis.The ADM is an important angiogenic factor in smooth muscle tumor of uterus.The ADM can be used as an accessory marker in estimating the malignant potency of LE and judging the prognosis of LES,and as a novel molecular target of anti-angiogenic and anticarcinogenic strategies.

  16. Transmembrane Protein 184A Is a Receptor Required for Vascular Smooth Muscle Cell Responses to Heparin.

    Science.gov (United States)

    Pugh, Raymond J; Slee, Joshua B; Farwell, Sara Lynn N; Li, Yaqiu; Barthol, Trista; Patton, Walter A; Lowe-Krentz, Linda J

    2016-03-01

    Vascular cell responses to exogenous heparin have been documented to include decreased vascular smooth muscle cell proliferation following decreased ERK pathway signaling. However, the molecular mechanism(s) by which heparin interacts with cells to induce those responses has remained unclear. Previously characterized monoclonal antibodies that block heparin binding to vascular cells have been found to mimic heparin effects. In this study, those antibodies were employed to isolate a heparin binding protein. MALDI mass spectrometry data provide evidence that the protein isolated is transmembrane protein 184A (TMEM184A). Commercial antibodies against three separate regions of the TMEM184A human protein were used to identify the TMEM184A protein in vascular smooth muscle cells and endothelial cells. A GFP-TMEM184A construct was employed to determine colocalization with heparin after endocytosis. Knockdown of TMEM184A eliminated the physiological responses to heparin, including effects on ERK pathway activity and BrdU incorporation. Isolated GFP-TMEM184A binds heparin, and overexpression results in additional heparin uptake. Together, these data support the identification of TMEM184A as a heparin receptor in vascular cells.

  17. Propylthiouracil, independent of its antithyroid effect, promotes vascular smooth muscle cells differentiation via PTEN induction.

    Science.gov (United States)

    Chen, Wei-Jan; Pang, Jong-Hwei S; Lin, Kwang-Huei; Lee, Dany-Young; Hsu, Lung-An; Kuo, Chi-Tai

    2010-01-01

    Propylthiouracil (PTU), independent of its antithyroid effect, is recently found to have an antiatherosclerotic effect. The aim of this study is to determine the impact of PTU on phenotypic modulation of vascular smooth muscle cells (VSMCs), as phenotypic modulation may contribute to the growth of atherosclerotic lesions and neointimal formation after arterial injury. Propylthiouracil reduced neointimal formation in balloon-injured rat carotid arteries. In vitro, PTU may convert VSMCs from a serum-induced dedifferentiation state to a differentiated state, as indicated by a spindle-shaped morphology and an increase in the expression of SMC differentiation marker contractile proteins, including calponin and smooth muscle (SM)-myosin heavy chain (SM-MHC). Transient transfection studies in VSMCs demonstrated that PTU induced the activity of SMC marker genes (calponin and SM-MHC) promoters, indicating that PTU up-regulates these genes expression predominantly at the transcriptional level. Furthermore, PTU enhanced the expression of PTEN and inhibition of PTEN by siRNA knockdown blocked PTU-induced activation of contractile proteins expression and promoter activity. In the rat carotid injury model, PTU reversed the down-regulation of contractile proteins and up-regulated PTEN in the neointima induced by balloon injury. Propylthiouracil promotes VSMC differentiation, at lest in part, via induction of the PTEN-mediated pathway. These findings suggest a possible mechanism by which PTU may contribute to its beneficial effects on atherogenesis and neointimal formation after arterial injury.

  18. Airway smooth muscle dynamics: a common pathway of airway obstruction in asthma.

    Science.gov (United States)

    An, S S; Bai, T R; Bates, J H T; Black, J L; Brown, R H; Brusasco, V; Chitano, P; Deng, L; Dowell, M; Eidelman, D H; Fabry, B; Fairbank, N J; Ford, L E; Fredberg, J J; Gerthoffer, W T; Gilbert, S H; Gosens, R; Gunst, S J; Halayko, A J; Ingram, R H; Irvin, C G; James, A L; Janssen, L J; King, G G; Knight, D A; Lauzon, A M; Lakser, O J; Ludwig, M S; Lutchen, K R; Maksym, G N; Martin, J G; Mauad, T; McParland, B E; Mijailovich, S M; Mitchell, H W; Mitchell, R W; Mitzner, W; Murphy, T M; Paré, P D; Pellegrino, R; Sanderson, M J; Schellenberg, R R; Seow, C Y; Silveira, P S P; Smith, P G; Solway, J; Stephens, N L; Sterk, P J; Stewart, A G; Tang, D D; Tepper, R S; Tran, T; Wang, L

    2007-05-01

    Excessive airway obstruction is the cause of symptoms and abnormal lung function in asthma. As airway smooth muscle (ASM) is the effecter controlling airway calibre, it is suspected that dysfunction of ASM contributes to the pathophysiology of asthma. However, the precise role of ASM in the series of events leading to asthmatic symptoms is not clear. It is not certain whether, in asthma, there is a change in the intrinsic properties of ASM, a change in the structure and mechanical properties of the noncontractile components of the airway wall, or a change in the interdependence of the airway wall with the surrounding lung parenchyma. All these potential changes could result from acute or chronic airway inflammation and associated tissue repair and remodelling. Anti-inflammatory therapy, however, does not "cure" asthma, and airway hyperresponsiveness can persist in asthmatics, even in the absence of airway inflammation. This is perhaps because the therapy does not directly address a fundamental abnormality of asthma, that of exaggerated airway narrowing due to excessive shortening of ASM. In the present study, a central role for airway smooth muscle in the pathogenesis of airway hyperresponsiveness in asthma is explored.

  19. beta. -Adrenoceptors in human tracheal smooth muscle: characteristics of binding and relaxation

    Energy Technology Data Exchange (ETDEWEB)

    van Koppen, C.J.; Hermanussen, M.W.; Verrijp, K.N.; Rodrigues de Miranda, J.F.; Beld, A.J.; Lammers, J.W.J.; van Ginneken, C.A.M.

    1987-06-29

    Specific binding of (/sup 125/I)-(-)-cyanopindolol to human tracheal smooth muscle membranes was saturable, stereo-selective and of high affinity (K/sub d/ = 5.3 +/- 0.9 pmol/l and R/sub T/ = 78 +/- 7 fmol/g tissue). The ..beta../sub 1/-selective antagonists atenolol and LK 203-030 inhibited specific (/sup 125/I)-(-)-cyanopindolol binding according to a one binding site model with low affinity in nearly all subjects, pointing to a homogeneous BETA/sub 2/-adrenoceptor population. In one subject using LK 203-030 a small ..beta../sub 1/-adrenoceptor subpopulation could be demonstrated. The beta-mimetics isoprenaline, fenoterol, salbutamol and terbutaline recognized high and low affinity agonist binding sites. Isoprenaline's pK/sub H/- and pK/sub L/-values for the high and low affinity sites were 8.0 +/- 0.2 and 5.9 +/- 0.3 respectively. In functional experiments isoprenaline relaxed tracheal smooth muscle strips having intrinsic tone with a pD/sub 2/-value of 6.63 +/- 0.19. 32 references, 4 figures, 2 tables.

  20. Relaxant Effects of Matrine on Aortic Smooth Muscles of Guinea Pigs

    Institute of Scientific and Technical Information of China (English)

    JIE ZHENG; PING ZHENG; XU ZHOU; LIN YAN; RU ZHOU; XUE-YAN FU; GUI-DONG DAI

    2009-01-01

    Objectives To determine whether matrine, a kind of traditional Chinese medicinal alkaloid, can relax the aortic smooth muscles isolated from guinea pigs and to investigate the mechanism of its relaxant effects. Methods Phenylephrine or potassium chloride concentration-dependent relaxation response of aortic smooth muscles to matrine was studied in the precontracted guinea pigs. Results Matrine (lx104 mol/L-3.3x10-3mol/L) relaxed the endothelium-denuded aortic rings pre-contracted sub-maximally with phenylephrine, in a concentration-dependent manner, and its pre-incubation (3.3x10-3mol/L) produced a significant rightward shift in the phenylephrine dose-response curve, but had no effects on the potassium chloride-induced contraction. The anti-contractile effect of matrine was not reduced by the highly selective ATP-dependent K+ channel blocker glibenclamide (10-5mol/L), either by the non-selective K+channel blocker tetraethylammonium (103mol/L), or by theβ-antagonist propranolol (105 mol/L). In either "normal" or "Ca2+-free'' bathing medium, the phenylephrine-induced contraction was attenuated by matrine (3.3x103 mol/L), indicating that the vasorelaxation was due to inhibition of intracellular and extracellular Ca2+ mobilization. Conclusion Matrine inhibits phenylephrine-induced contractions by inhibiting activation of a-adrenoceptor and interfering with the release of intracellular Ca2+ and the influx of extracellular Ca2+.

  1. Airway Responsiveness: Role of Inflammation, Epithelium Damage and Smooth Muscle Tension

    Directory of Open Access Journals (Sweden)

    K. I. Gourgoulianis

    1999-01-01

    Full Text Available The purpose of this study was the effect of epithelium damage on mechanical responses of airway smooth muscles under different resting tension. We performed acetylcholine (ACh (10-5M-induced contraction on tracheal strips from 30 rabbits in five groups (0.5, 1, 1.5, 2 and 2.5 g before and after epithelium removal. At low resting tension (0.5-1.5g, the epithelium removal decreased the ACh-induced contractions. At 2g resting tension, the epithelium removal increased the ACh-induced contractions of airways with intact epithelium about 20%. At 2.5 g resting tension, the elevation of contraction is about 25% (p<0.01. Consequently, after epithelium loss, the resting tension determines the airway smooth muscles responsiveness. In asthma, mediators such as ACh act on already contracted inflammatory airways, which results in additional increase of contraction. In contrast, low resting tension, a condition that simulates normal tidal breathing, protects from bronchoconstriction even when the epithelium is damaged.

  2. May Sonic Hedgehog proteins be markers for malignancy in uterine smooth muscle tumors?

    Science.gov (United States)

    Garcia, Natalia; Bozzini, Nilo; Baiocchi, Glauco; da Cunha, Isabela Werneck; Maciel, Gustavo Arantes; Soares Junior, José Maria; Soares, Fernando Augusto; Baracat, Edmund Chada; Carvalho, Katia Candido

    2016-04-01

    Several studies have demonstrated that the Sonic Hedgehog signaling pathway (SHH) plays an important role in tumorigenesis and cellular differentiation. We analyzed the protein expression of SHH pathway components and evaluated whether their profile could be useful for the diagnosis, prognosis, or prediction of the risk of malignancy for uterine smooth muscle tumors (USMTs). A total of 176 samples (20 myometrium, 119 variants of leiomyoma, and 37 leiomyosarcoma) were evaluated for the protein expression of the SHH signaling components, HHIP1 (SHH inhibitor), and BMP4 (SHH target) by immunohistochemistry. Western blot analysis was performed to verify the specificity of the antibodies. We grouped leiomyoma samples into conventional leiomyomas and unusual leiomyomas that comprise atypical, cellular, mitotically active leiomyomas and uterine smooth muscle tumors of uncertain malignant potential. Immunohistochemical analysis showed that SMO, SUFU, GLI1, GLI3, and BMP4 expression gradually increased depending on to the histologic tissue type. The protein expression of SMO, SUFU, and GLI1 was increased in unusual leiomyoma and leiomyosarcoma samples compared to normal myometrium. The inhibitor HHIP1 showed higher expression in myometrium, whereas only negative or basal expression of SMO, SUFU, GLI1, and GLI3 was detected in these samples. Strong expression of SHH was associated with poorer overall survival. Our data suggest that the expression of SHH proteins can be useful for evaluating the potential risk of malignancy for USMTs. Moreover, GLI1 and SMO may serve as future therapeutic targets for women with USMTs.

  3. [Response mechanisms of the airway smooth muscle tissue in experimental bronchial spasm].

    Science.gov (United States)

    Zashikhin, A L; Agafonov, Iu V; Barmina, A O

    2009-01-01

    This investigation was aimed at the complex evaluation of the reactivity mechanisms of bronchial smooth muscle tissue (SMT) in experimental bronchial spasm. Morphometric, cytospectrophotometric and electron microscopical analysis demonstrated the presence of three types of smooth muscle cells (SMC) within the bronchial SMT (small, medium, large), that differed in their linear and metabolic parameters. The findings of this study indicate that under the conditions of experimental bronchial spasm development, the ratios of SMC in bronchial SMT are changed with the increase in proportion of small SMC and the elimination of large SMC. In the dynamics of experimental bronchial spasm development, the activation of cytoplasmic synthesis as well as of DNA synthesis was detected mainly in group of small SMC. The reactive-dystrophic changes were marked at the subcellular level, that were most often identified in large SMC resulting in their elimination from population in the dynamics of an experiment. The data obtained suggest that one of the important mechanisms of airway SMT adaptation to the bronchial spasm development is a dynamic reorganization of SMC population.

  4. Smooth muscle cell-extrinsic vascular spasm arises from cardiomyocyte degeneration in sarcoglycan-deficient cardiomyopathy.

    Science.gov (United States)

    Wheeler, Matthew T; Allikian, Michael J; Heydemann, Ahlke; Hadhazy, Michele; Zarnegar, Sara; McNally, Elizabeth M

    2004-03-01

    Vascular spasm is a poorly understood but critical biomedical process because it can acutely reduce blood supply and tissue oxygenation. Cardiomyopathy in mice lacking gamma-sarcoglycan or delta-sarcoglycan is characterized by focal damage. In the heart, sarcoglycan gene mutations produce regional defects in membrane permeability and focal degeneration, and it was hypothesized that vascular spasm was responsible for this focal necrosis. Supporting this notion, vascular spasm was noted in coronary arteries, and disruption of the sarcoglycan complex was observed in vascular smooth muscle providing a molecular mechanism for spasm. Using a transgene rescue strategy in the background of sarcoglycan-null mice, we replaced cardiomyocyte sarcoglycan expression. Cardiomyocyte-specific sarcoglycan expression was sufficient to correct cardiac focal degeneration. Intriguingly, successful restoration of the cardiomyocyte sarcoglycan complex also eliminated coronary artery vascular spasm, while restoration of smooth muscle sarcoglycan in the background of sarcoglycan-null alleles did not. This mechanism, whereby tissue damage leads to vascular spasm, can be partially corrected by NO synthase inhibitors. Therefore, we propose that cytokine release from damaged cardiomyocytes can feed back to produce vascular spasm. Moreover, vascular spasm feeds forward to produce additional cardiac damage.

  5. Phytoncide, Nanochemicals from Chamaecyparis obtusa, Inhibits Proliferation and Migration of Vascular Smooth Muscle Cells.

    Science.gov (United States)

    Lim, Leejin; Jang, Young-Su; Yun, Je-Jung; Song, Heesang

    2015-01-01

    Phytoncide, nanochemicals extracted from Chamaecyparis obtusa (C. obtusa), is reported to possess many pharmacological activities including immunological stimulating, anti-cancer, antioxidant, and antiinflammatory activities. However, the effect of phytoncide in vascuar diseases, especially on the behavior of vascular smooth muscle cells, has not yet been clearly elucidated. Therefore, in the present study, we investigated the effects of 15 kinds of phytoncide by various extraction conditions from C. obtusa on the proliferation and migration in rat aortic smooth muscle cells (RAoSMCs). First of all, we determined the concentration of each extracts not having cytotoxicity by MTT assay. We observed that the proliferation rate measured using BrdU assay was significantly reduced by supercritical fluid, steam distillation, Me-OH, and hexane extraction fraction in order with higher extent, respectively. Moreover, the treatment of above nanofractions inhibit the migration of RAoSMCs by 40%, 60%, and 30%, respectively, both in 2-D wound healing assay and 3-D boyden chamber assay. Immunoblot revealed that the phosphorylated levels of Akt and ERK were significantly reduced in nanofractions treated RAoSMCs. Taken together, these data suggest that phytoncide extracted from C. obtusa inhibits proliferation and migration in RAoSMCs via the modulation of phosphorylated levels of Akt and ERK. Therefore, phytoncide nanomolecules might be a potential therapeutic approach to prevent or treat atheroscrelosis and restenosis.

  6. Thin-film dielectric elastomer sensors to measure the contraction force of smooth muscle cells

    Science.gov (United States)

    Araromi, O.; Poulin, A.; Rosset, S.; Favre, M.; Giazzon, M.; Martin-Olmos, C.; Liley, M.; Shea, H.

    2015-04-01

    The development of thin-film dielectric elastomer strain sensors for the characterization of smooth muscle cell (SMC) contraction is presented here. Smooth muscle disorders are an integral part of diseases such as asthma and emphysema. Analytical tools enabling the characterization of SMC function i.e. contractile force and strain, in a low-cost and highly parallelized manner are necessary for toxicology screening and for the development of new and more effective drugs. The main challenge with the design of such tools is the accurate measurement of the extremely low contractile cell forces expected as a result of SMC monolayer contraction (as low as ~ 100 μN). Our approach utilizes ultrathin (~5 μm) and soft elastomer membranes patterned with elastomer-carbon composite electrodes, onto which the SMCs are cultured. The cell contraction induces an in-plane strain in the elastomer membrane, predicted to be in the order 1 %, which can be measured via the change in the membrane capacitance. The cell force can subsequently be deduced knowing the mechanical properties of the elastomer membrane. We discuss the materials and fabrication methods selected for our system and present preliminary results indicating their biocompatibility. We fabricate functional capacitive senor prototypes with good signal stability over the several hours (~ 0.5% variation). We succeed in measuring in-plane strains of 1 % with our fabricated devices with good repeatability and signal to noise ratio.

  7. Insulin induces PKC-dependent proliferation of mesenteric vascular smooth muscle cells from hypertensive patients

    Institute of Scientific and Technical Information of China (English)

    Xukai WANG; Yan WANG; Chenming YANG; Ying WAN; Xianwen JI

    2006-01-01

    Background and objectives Proliferation of human vascular smooth muscle cells (VSMCs) induced by hyperinsulinemia is a very common clinical pathology. Extensive research has focused on PKC (Protein kinase C)-MAPK (mitogen-activated protein kinase)intracellular signal transduction and the phenotypic modulation accompanied by reorganization of intracellular F-actins in VSMCs.Methods DNA synthesis, signaling of ERK1/2 MAPKs, and changes in α-smooth muscle (SM) actin and F-actin were studied in hypertensive and normotensive human arterial VSMCs exposed to insulin and PMA with and without the PKC inhibitor, GF109203X.Results Differences among cell types in MAPK signaling, α-SM actin, and F-actin isoforms in VSMCs harvested from the arteries of patients with essential hypertension (EH) and normotension (NT) were identified in response to insulin treatment. Proliferation and activation of MAPK were more pronounced in EH VSMCs than in NEH VSMCs. Insulin exposure decreased expression of α-SM actin and was accompanied by rearrangement of intracellular F-actins in VSMCs, especially in the EH group. These effects were reversed by treatment with the PKC inhibitor. Conclusions Human mesenteric VSMCs of EH and NT patients differed in proliferation, MAPK signaling, and degree of changes in α-SM actin and F-actin isoforms immediately following insulin exposure in vitro.

  8. Fluid flow releases fibroblast growth factor-2 from human aortic smooth muscle cells

    Science.gov (United States)

    Rhoads, D. N.; Eskin, S. G.; McIntire, L. V.

    2000-01-01

    This study tested the hypothesis that fluid shear stress regulates the release of fibroblast growth factor (FGF)-2 from human aortic smooth muscle cells. FGF-2 is a potent mitogen that is involved in the response to vascular injury and is expressed in a wide variety of cell types. FGF-2 is found in the cytoplasm of cells and outside cells, where it associates with extracellular proteoglycans. To test the hypothesis that shear stress regulates FGF-2 release, cells were exposed to flow, and FGF-2 amounts were measured from the conditioned medium, pericellular fraction (extracted by heparin treatment), and cell lysate. Results from the present study show that after 15 minutes of shear stress at 25 dyne/cm(2) in a parallel-plate flow system, a small but significant fraction (17%) of the total FGF-2 was released from human aortic smooth muscle cells. FGF-2 levels in the circulating medium increased 10-fold over medium from static controls (Pmuscle cells is likely due to transient membrane disruption on initiation of flow.

  9. Azelnidipine inhibits Msx2-dependent osteogenic differentiation and matrix mineralization of vascular smooth muscle cells.

    Science.gov (United States)

    Shimizu, Takehisa; Tanaka, Toru; Iso, Tatsuya; Kawai-Kowase, Keiko; Kurabayashi, Masahiko

    2012-01-01

    Vascular calcification is an active and regulated process that is similar to bone formation. While calcium channel blockers (CCBs) have been shown to improve outcomes in atherosclerotic vascular disease, it remains unknown whether CCBs have an effect on the process of vascular calcification. Here we investigated whether CCBs inhibit osteogenic differentiation and matrix mineralization of vascular smooth muscle cells induced by Msx2, a key factor of vascular calcification. Human aortic smooth muscle cells (HASMCs) were transduced with adenovirus expressing MSX2 and were treated with 3 distinct CCBs. Azelnidipine, a dihydropyridine subclass of CCBs, significantly decreased alkaline phosphatase (ALP) activity of Msx2-overexpressed HASMCs, whereas verapamil and diltiazem had no effect. Furthermore, azelnidipine, but not verapamil and diltiazem, significantly decreased matrix mineralization of Msx2-overexpressing HASMCs. Azelnidipine significantly attenuated the induction of ALP gene expression by Msx2, a key transcription factor in osteogenesis, while it did not reduce enzymatic activity of ALP. Furthermore, azelnidipine inhibited the ability of Msx2 to activate the ALP gene, but had no effect on Notch-induced Msx2 expression. Given that L-type calcium channels are equally blocked by these CCBs, our results suggest that azelnidipine inhibits the Msx2-dependent process of vascular calcification by mechanisms other than inhibition of calcium channel activity.

  10. Increased activity of chondroitin sulfate-synthesizing enzymes during proliferation of arterial smooth muscle cells

    Energy Technology Data Exchange (ETDEWEB)

    Hollmann, J.; Thiel, J.; Schmidt, A.; Buddecke, E.

    1986-12-01

    Cultured arterial smooth muscle cells incorporate (/sup 35/S)sulfate into the extracellular chondroitin sulfate/dermatan sulfate containing proteoglycans at a higher rate in the phase of logarithmic growth than do non-dividing cells. The cell growth-dependent decrease in /sup 35/S incorporation with increasing cell density is accompanied by a decrease in the activity of chondroitin sulfate-synthesizing enzymes. The specific activity of xylosyl transferase, N-acetylgalactosaminyl transferase I and chondroitin sulfotransferase declines as the cells proceed from low to high densities. The corresponding correlation coefficients are 0.86, 0.91 and 0.89. The ratio of C-60H/C-40H sulfation of chondroitin shows a cell proliferation-dependent decrease indicating an inverse correlation of chondroitin 6-sulfotransferase and chondroitin 4-sulfotransferase activity. The observed changes in the expression of enzyme activities are thought to have some implications in the pathogenesis of arteriosclerosis, the initial stages of which are characterized by proliferation of arterial smooth muscle cells.

  11. The relaxant effect of Ferula assafoetida on smooth muscles and the possible mechanisms

    Directory of Open Access Journals (Sweden)

    Khazdair Mohammad Reza

    2015-04-01

    Full Text Available Asafoetida (Ferula asafoetida an oleo-gum-resin belongs to the Apiaceae family which obtained from the living underground rhizome or tap roots of the plant. F. assa-foetida is used in traditional medicine for the treatment of variety of disorders. Asafoetida is used as a culinary spice and in folk medicine has been used to treat several diseases, including intestinal parasites, weak digestion, gastrointestinal disorders, asthma and influenza. A wide range of chemical compounds including sugars, sesquiterpene coumarins and polysulfides have been isolated from this plant. This oleo-gum-resin is known to possess antifungal, anti-diabetic, anti-inflammatory, anti-mutagenic and antiviral activities. Several studies investigated the effects of F. asafoetida gum extract on the contractile responses induced by acetylcholine, methacholin, histamine and KCl on different smooth muscles. The present review summarizes the information regarding the relaxant effect of asafetida and its extracts on different smooth muscles and the possible mechanisms of this effect.

  12. Effects of Artesunate on Tracheal Smooth Muscle from the Guinea—pig

    Institute of Scientific and Technical Information of China (English)

    Mao-ShengYang; Jian-ChuXiao

    1997-01-01

    Artesunae is a derivative of qinghaosu,with a sesquiterpene structure.The specific action and the clinical uses of artesunate are on the preliminary stage,on the one hand ,artesunate has specific action of both antiinflammation and antivirus,and also has protective effect on the pulmonary alveolar macrophages,whuich may be advantageous to the treatment of the airway non-specific inflammation of asthma,.On the other hand,qinghaousu has the activities to relax vascular smooth muscle and to cause hypotension.The expectorant action,the antitussive action and the antuiasthmatic action of qinghaosu were preported.Artesunate may also have antiasthmatic activity,because the antimalarial potency of artesunate is stronger than that of qinghaosu,and Artesunate can block Ca2+ influx by inhibiting calcium-dependent chloride current.The main aims of this paper are to investigate the site,the mode,and the mechanism of artesunate action on isolated tracheal smooth muscle from the guinea-pig.

  13. Co-cultivation of human aortic smooth muscle cells with epicardial adipocytes affects their proliferation rate.

    Science.gov (United States)

    Ždychová, J; Čejková, S; Králová Lesná, I; Králová, A; Malušková, J; Janoušek, L; Kazdová, L

    2014-01-01

    The abnormal proliferation of vascular smooth muscle cells (VSMC) is thought to play a role in the pathogenesis of atherosclerosis. Adipocytes produce several bioactive paracrine substances that can affect the growth and migration of VSMCs. Our study focuses on the direct effect of the bioactive substances in conditioned media (CM) that was obtained by incubation with primary adipocyte-derived cell lines, including cell lines derived from both preadipocytes and from more mature cells, on the proliferation rate of human aortic smooth muscle cells (HAoSMCs). We used a Luminex assay to measure the adipokine content of the CM and showed that there was a higher concentration of monocyte chemoattractant protein-1 in renal preadipocyte-CM compared with the HAoSMC control (p<0.5). The addition of both renal preadipocyte- and epicardial adipocyte- CM resulted in the elevated production of vascular endothelial growth factor compared with the control HASoSMC CM (p<0.001). The adiponectin content in renal adipocyte-CM was increased compared to all the remaining adipocyte-CM (p<0.01). Moreover, the results showed a higher proliferation rate of HAoSMCs after co-culture with epicardial adipocyte-CM compared to the HAoSMC control (p<0.05). These results suggest that bioactive substances produced by adipocytes have a stimulatory effect on the proliferation of VSMCs.

  14. Microscopic study of ultrasound-mediated microbubble destruction effects on vascular smooth muscle cells

    Institute of Scientific and Technical Information of China (English)

    Bo Zhang; Yi-Rong Hou; Tian Chen; Bing Hu

    2015-01-01

    Objective: To observe vascular smooth muscle cell morphological changes induced by ultrasound combined with microbubbles by Atomic Force Acoustic Microscopy (AFAM). Methods: A7r5 rat aortic smooth muscle cells were divided into groups: control group (without ultrasonic irradiation, no micro bubbles) and US+MB group (45 kHz, 0.4 W/cm2 ultrasound irradiate for 20 seconds with a SonoVue™ concentration of [(56-140)×10 5/mL]. Cell micro-morphological changes (such as topographic and acoustic prognosis) were detected, before and after ultrasound destruction by AFAM. Results: In cell morphology, smooth muscle cells were spread o and connected to each another by fibers. At the center of the cell, the nuclear area had a rough surface and was significantly elevated from its surroundings. The cytoskeletal structure of the reticular nucleus and cytoplasm in the morphology of A7r5 cells (20μm×20μm) were clear before microbubble intervention. After acoustic exciting, the cell structure details of the acoustic image were improved with better resolution, showing the elasticity of different tissues. In the acoustic image, the nucleus was harder, more flexible and uneven compared with the cytoplasm. Many strong various-sized echo particles were stuck on the rough nuclear membrane’s substrate surface. The nuclear membrane did not have a continuous smooth surface; there were many obstructions (pores). After ultrasound-intervention was combined with microbubbles, the dark areas of the A7r5 cell images was increased in various sizes and degrees. The dark areas showed the depth or low altitudes of the lower regions, suggesting regional depressions. However, the location and scope of the acoustic image dark areas were not similar to those found in the topographic images. Therefore, it was likely that the dark areas, both from the topographic and acoustic images, were sound-holes. In addition, some cell nuclei become round in different degrees after irradiation. Conclusions: Atomic

  15. Protease-Activated Receptor 2 Promotes Pro-Atherogenic Effects through Transactivation of the VEGF Receptor 2 in Human Vascular Smooth Muscle Cells

    Science.gov (United States)

    Indrakusuma, Ira; Romacho, Tania; Eckel, Jürgen

    2017-01-01

    Background: Obesity is associated with impaired vascular function. In the cardiovascular system, protease-activated receptor 2 (PAR2) exerts multiple functions such as the control of the vascular tone. In pathological conditions, PAR2 is related to vascular inflammation. However, little is known about the impact of obesity on PAR2 in the vasculature. Therefore, we explored the role of PAR2 as a potential link between obesity and cardiovascular diseases. Methods: C57BL/6 mice were fed with either a chow or a 60% high fat diet for 24 weeks prior to isolation of aortas. Furthermore, human coronary artery endothelial cells (HCAEC) and human coronary smooth muscle cells (HCSMC) were treated with conditioned medium obtained from in vitro differentiated primary human adipocytes. To investigate receptor interaction vascular endothelial growth factor receptor 2 (VEGFR2) was blocked by exposure to calcium dobesilate and a VEGFR2 neutralization antibody, before treatment with PAR2 activating peptide. Student's t-test or one-way were used to determine statistical significance. Results: Both, high fat diet and exposure to conditioned medium increased PAR2 expression in aortas and human vascular cells, respectively. In HCSMC, conditioned medium elicited proliferation as well as cyclooxygenase 2 induction, which was suppressed by the PAR2 antagonist GB83. Specific activation of PAR2 by the PAR2 activating peptide induced proliferation and cyclooxygenase 2 expression which were abolished by blocking the VEGFR2. Additionally, treatment of HCSMC with the PAR2 activating peptide triggered VEGFR2 phosphorylation. Conclusion: Under obesogenic conditions, where circulating levels of pro-inflammatory adipokines are elevated, PAR2 arises as an important player linking obesity-related adipose tissue inflammation to atherogenesis. We show for the first time that the underlying mechanisms of these pro-atherogenic effects involve a potential transactivation of the VEGFR2 by PAR2. PMID

  16. Iptakalim inhibits PDGF-BB-induced human airway smooth muscle cells proliferation and migration

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Wenrui; Kong, Hui; Zeng, Xiaoning; Wang, Jingjing; Wang, Zailiang; Yan, Xiaopei; Wang, Yanli; Xie, Weiping, E-mail: wpxie@njmu.edu.cn; Wang, Hong, E-mail: hongwang@njmu.edu.cn

    2015-08-15

    Chronic airway diseases are characterized by airway remodeling which is attributed partly to the proliferation and migration of airway smooth muscle cells (ASMCs). ATP-sensitive potassium (K{sub ATP}) channels have been identified in ASMCs. Mount evidence has suggested that K{sub ATP} channel openers can reduce airway hyperresponsiveness and alleviate airway remodeling. Opening K{sup +} channels triggers K{sup +} efflux, which leading to membrane hyperpolarization, preventing Ca{sup 2+}entry through closing voltage-operated Ca{sup 2+} channels. Intracellular Ca{sup 2+} is the most important regulator of muscle contraction, cell proliferation and migration. K{sup +} efflux decreases Ca{sup 2+} influx, which consequently influences ASMCs proliferation and migration. As a K{sub ATP} channel opener, iptakalim (Ipt) has been reported to restrain the proliferation of pulmonary arterial smooth muscle cells (PASMCs) involved in vascular remodeling, while little is known about its impact on ASMCs. The present study was designed to investigate the effects of Ipt on human ASMCs and the mechanisms underlying. Results obtained from cell counting kit-8 (CCK-8), flow cytometry and 5-ethynyl-2′-deoxyuridine (EdU) incorporation showed that Ipt significantly inhibited platelet-derived growth factor (PDGF)-BB-induced ASMCs proliferation. ASMCs migration induced by PDGF-BB was also suppressed by Ipt in transwell migration and scratch assay. Besides, the phosphorylation of Ca{sup 2+}/calmodulin-dependent kinase II (CaMKII), extracellular regulated protein kinases 1/2 (ERK1/2), protein kinase B (Akt), and cyclic adenosine monophosphate (cAMP) response element binding protein (CREB) were as well alleviated by Ipt administration. Furthermore, we found that the inhibition of Ipt on the PDGF-BB-induced proliferation and migration in human ASMCs was blocked by glibenclamide (Gli), a selective K{sub ATP} channel antagonist. These findings provide a strong evidence to support that Ipt

  17. Smooth-muscle-like cells derived from human embryonic stem cells support and augment cord-like structures in vitro.

    Science.gov (United States)

    Vo, Elaine; Hanjaya-Putra, Donny; Zha, Yuanting; Kusuma, Sravanti; Gerecht, Sharon

    2010-06-01

    Engineering vascularized tissue is crucial for its successful implantation, survival, and integration with the host tissue. Vascular smooth muscle cells (v-SMCs) provide physical support to the vasculature and aid in maintaining endothelial viability. In this study, we show an efficient derivation of v-SMCs from human embryonic stem cells (hESCs), and demonstrate their functionality and ability to support the vasculature in vitro. Human ESCs were differentiated in monolayers and supplemented with platelet-derived growth factor-BB (PDGF-BB) and transforming growth factor-beta 1 (TGF-beta1). Human ESC-derived smooth-muscle-like cells (SMLCs) were found to highly express specific smooth muscle cell (SMC) markers--including alpha-smooth muscle actin, calponin, SM22, and smooth muscle myosin heavy chain--to produce and secrete fibronectin and collagen, and to contract in response to carbachol. In vitro tubulogenesis assays revealed that these hESC-derived SMLCs interacted with human endothelial progenitor cell (EPCs) to form longer and thicker cord-like structures in vitro. We have demonstrated a simple protocol for the efficient derivation of highly purified SMLCs from hESCs. These in vitro functional SMLCs interacted with EPCs to support and augment capillary-like structures (CLSs), demonstrating the potential of hESCs as a cell source for therapeutic vascular tissue engineering.

  18. The effects of cannabidiol on the antigen-induced contraction of airways smooth muscle in the guinea-pig.

    Science.gov (United States)

    Dudášová, A; Keir, S D; Parsons, M E; Molleman, A; Page, C P

    2013-06-01

    (-)-Δ(9)-Tetrahydrocannabinol has been demonstrated to have beneficial effects in the airways, but its psychoactive effects preclude its therapeutic use for the treatment of airways diseases. In the present study we have investigated the effects of (-)-cannabidiol, a non-psychoactive component of cannabis for its actions on bronchial smooth muscle in vitro and in vivo. Guinea-pig bronchial smooth muscle contractions induced by exogenously applied spasmogens were measured isometrically. In addition, contractile responses of bronchial smooth muscle from ovalbumin-sensitized guinea-pigs were investigated in the absence or presence of (-)-cannabidiol. Furthermore, the effect of (-)-cannabidiol against ovalbumin-induced airway obstruction was investigated in vivo in ovalbumin-sensitized guinea-pigs. (-)-Cannabidiol did not influence the bronchial smooth muscle contraction induced by carbachol, histamine or neurokinin A. In contrast, (-)-cannabidiol inhibited anandamide- and virodhamine-induced responses of isolated bronchi. A fatty acid amide hydrolase inhibitor, phenylmethanesulfonyl fluoride reversed the inhibitory effect of (-)-cannabidiol on anandamide-induced contractions. In addition, (-)-cannabidiol inhibited the contractile response of bronchi obtained from allergic guinea-pigs induced by ovalbumin. In vivo, (-)-cannabidiol reduced ovalbumin-induced airway obstruction. In conclusion, our results suggest that cannabidiol can influence antigen-induced airway smooth muscle tone suggesting that this molecule may have beneficial effects in the treatment of obstructive airway disorders.

  19. Inhibition of PKCalpha and rhoA translocation in differentiated smooth muscle by a caveolin scaffolding domain peptide.

    Science.gov (United States)

    Taggart, M J; Leavis, P; Feron, O; Morgan, K G

    2000-07-10

    Receptor-coupled contraction of smooth muscle involves recruitment to the plasma membrane of downstream effector molecules PKCalpha and rhoA but the mechanism of this signal integration is unclear. Caveolins, the principal structural proteins of caveolar plasma membrane invaginations, have been implicated in the organization and regulation of many signal transducing molecules. Thus, using laser scanning confocal immunofluorescent microscopy, we tested the hypothesis that caveolin is involved in smooth muscle signaling by investigating caveolin isoform expression and localization, together with the effect of a peptide inhibitor of caveolin function, in intact differentiated smooth muscle cells. All three main caveolin isoforms were identified in uterine, stomach, and ileal smooth muscles and assumed a predominantly plasma membranous localization in myometrial cells. Cytoplasmic introduction of a peptide corresponding to the caveolin-1 scaffolding domain-an essential region for caveolin interaction with signaling molecules--significantly inhibited agonist-induced translocation of both PKCalpha and rhoA. Translocation was unimpaired by a scrambled peptide and was unaltered in sham-treated cells. The membranous localization of caveolins, and direct inhibition of receptor-coupled PKCalpha and rhoA translocation by the caveolin-1 scaffolding domain, supports the concept that caveolins can regulate the integration of extracellular contractile stimuli and downstream intracellular effectors in smooth muscle.

  20. Protective effect of high-dose montelukast on salbutamol-induced homologous desensitisation in airway smooth muscle.

    Science.gov (United States)

    Fogli, Stefano; Stefanelli, Fabio; Martelli, Alma; Daniele, Simona; Testai, Lara; Calderone, Vincenzo; Trincavelli, Maria Letizia; Martini, Claudia; Breschi, Maria Cristina

    2013-12-01

    Montelukast (MK) is a potent cysteinyl-leukotriene receptor antagonist that causes dose-related improvements in chronic asthma. We sought to determine whether MK was able to prevent salbutamol-induced tolerance in airway smooth muscle. Homologous β2-adrenoceptor desensitisation models were established in guinea-pigs and in human bronchial smooth muscle cells (BSMC) by chronic salbutamol administration. Characterisation tools included measurement of the response of tracheal smooth muscle tissues to salbutamol, analysis of gene expression and receptor trafficking, evaluation of intracellular cAMP levels and phosphodiesterase (PDE) activity in human bronchial smooth muscle cells. Salbutamol-induced β2-adrenoceptor desensitisation was characterised by β2-agonist hyporesponsiveness (-30%, p salbutamol. Prolonged salbutamol treatment significantly decreased cAMP synthesis, induced a complete removal of the β2-adrenoceptor from plasma membrane with a parallel increase in the cytosol and increased PDE4D5 gene transcription and PDE activity in human bronchial smooth muscle cells. In homologously desensitised BSMC, MK 30 μM for 24 h was able to prevent salbutamol subsensitivity and such an effect was associated with inhibition of salbutamol-induced PDE4 activity and restoration of membrane β2-adrenoceptor expression and function. These findings suggest the presence of a favourable interaction between MK and β2-adrenoceptor agonists that might improve the therapeutic index of bronchodilators in patients with chronic respiratory diseases.

  1. Calphostin-C induction of vascular smooth muscle cell apoptosis proceeds through phospholipase D and microtubule inhibition.

    Science.gov (United States)

    Zheng, Xi-Long; Gui, Yu; Du, Guangwei; Frohman, Michael A; Peng, Dao-Quan

    2004-02-20

    Calphostin-C, a protein kinase C inhibitor, induces apoptosis of cultured vascular smooth muscle cells. However, the mechanisms are not completely defined. Because apoptosis of vascular smooth muscle cells is critical in several proliferating vascular diseases such as atherosclerosis and restenosis after angioplasty, we decided to investigate the mechanisms underlying the calphostin-C-induced apoptotic pathway. We show here that apoptosis is inhibited by the addition of exogenous phosphatidic acid, a metabolite of phospholipase D (PLD), and that calphostin-C inhibits completely the activities of both isoforms of PLD, PLD1 and PLD2. Overexpression of either PLD1 or PLD2 prevented the vascular smooth muscle cell apoptosis induced by serum withdrawal but not the calphostin-C-elicited apoptosis. These data suggest that PLDs have anti-apoptotic effects and that complete inhibition of PLD activity by calphostin-C induces smooth muscle cell apoptosis. We also report that calphostin-C induced microtubule disruption and that the addition of exogenous phosphatidic acid inhibits calphostin-C effects on microtubules, suggesting a role for PLD in stabilizing the microtubule network. Overexpressing PLD2 in Chinese hamster ovary cells phenocopies this result, providing strong support for the hypothesis. Finally, taxol, a microtubule stabilizer, not only inhibited the calphostin-C-induced microtubule disruption but also inhibited apoptosis. We therefore conclude that calphostin-C induces apoptosis of cultured vascular smooth muscle cells through inhibiting PLD activity and subsequent microtubule polymerization.

  2. Smooth muscle enfoldment internal sphincter construction after intersphincteric resection for rectal cancer.

    Directory of Open Access Journals (Sweden)

    Heiying Jin

    Full Text Available To assess smooth muscle enfoldment and internal sphincter construction (SMESC for improvement of continence after intersphincteric resection (ISR for rectal cancer.Twenty-four Bama miniature pigs were randomly divided into a conventional ISR group and experimental SMESC group, with 12 pigs in each group. The proximal sigmoid colon was anastomosed directly to the anus in the ISR group. In the SMESC group, internal sphincter construction was performed. At 12 weeks before and after surgery, rectal resting pressure and anal canal length were assessed. Three-dimensional ultrasound was used to determine the thickness of the internal sphincter. After the animals were sacrificed, the rectum and anus were resected and pathological examinations were performed to evaluate the differences in sphincter thickness and muscle fibers.All 24 animals in the SMESC group and the ISR group survived the surgery. Twelve weeks post-surgery, the rectal resting pressure, length of the anal high-pressure zone and the postoperative internal sphincter thickness for the ISR group were significantly lower than for the SMESC group. There was a thickened area (about 2 cm above the anastomotic stoma among animals from the SMESC group; in addition, the smooth muscles were significantly enlarged and enfolded when compared to the ISR group.This animal model study shows that the SMESC procedure achieved acceptable reconstruction of the internal anal neo-sphincter (IAN/S, without increasing surgical risk. However, the findings in this experimental animal model must be confirmed by clinical trials to determine the safety and efficacy of this procedure in clinical practice.

  3. Iptakalim inhibits PDGF-BB-induced human airway smooth muscle cells proliferation and migration.

    Science.gov (United States)

    Liu, Wenrui; Kong, Hui; Zeng, Xiaoning; Wang, Jingjing; Wang, Zailiang; Yan, Xiaopei; Wang, Yanli; Xie, Weiping; Wang, Hong

    2015-08-15

    Chronic airway diseases are characterized by airway remodeling which is attributed partly to the proliferation and migration of airway smooth muscle cells (ASMCs). ATP-sensitive potassium (KATP) channels have been identified in ASMCs. Mount evidence has suggested that KATP channel openers can reduce airway hyperresponsiveness and alleviate airway remodeling. Opening K(+) channels triggers K(+) efflux, which leading to membrane hyperpolarization, preventing Ca(2+)entry through closing voltage-operated Ca(2+) channels. Intracellular Ca(2+) is the most important regulator of muscle contraction, cell proliferation and migration. K(+) efflux decreases Ca(2+) influx, which consequently influences ASMCs proliferation and migration. As a KATP channel opener, iptakalim (Ipt) has been reported to restrain the proliferation of pulmonary arterial smooth muscle cells (PASMCs) involved in vascular remodeling, while little is known about its impact on ASMCs. The present study was designed to investigate the effects of Ipt on human ASMCs and the mechanisms underlying. Results obtained from cell counting kit-8 (CCK-8), flow cytometry and 5-ethynyl-2'-deoxyuridine (EdU) incorporation showed that Ipt significantly inhibited platelet-derived growth factor (PDGF)-BB-induced ASMCs proliferation. ASMCs migration induced by PDGF-BB was also suppressed by Ipt in transwell migration and scratch assay. Besides, the phosphorylation of Ca(2+)/calmodulin-dependent kinase II (CaMKII), extracellular regulated protein kinases 1/2 (ERK1/2), protein kinase B (Akt), and cyclic adenosine monophosphate (cAMP) response element binding protein (CREB) were as well alleviated by Ipt administration. Furthermore, we found that the inhibition of Ipt on the PDGF-BB-induced proliferation and migration in human ASMCs was blocked by glibenclamide (Gli), a selective KATP channel antagonist. These findings provide a strong evidence to support that Ipt antagonize the proliferating and migrating effects of PDGF-BB on

  4. Effects of menthol on circular smooth muscle of human colon: analysis of the mechanism of action.

    Science.gov (United States)

    Amato, Antonella; Liotta, Rosa; Mulè, Flavia

    2014-10-05

    Menthol is the major constituent of peppermint oil, an herbal preparation commonly used to treat nausea, spasms during colonoscopy and irritable bowel disease. The mechanism responsible for its spasmolytic action remains unclear. The aims of this study were to investigate the effects induced by menthol on the human distal colon mechanical activity in vitro and to analyze the mechanism of action. The spontaneous or evoked-contractions of the circular smooth muscle were recorded using vertical organ bath. Menthol (0.1 mM-30 mM) reduced, in a concentration-dependent manner, the amplitude of the spontaneous contractions without affecting the frequency and the resting basal tone. The inhibitory effect was not affected by 5-benzyloxytryptamine (1 μM), a transient receptor potential-melastatin8 channel antagonist, or tetrodotoxin (1 μM), a neural blocker, or 1H-[1,2,4] oxadiazolo [4,3-a]quinoxalin-1-one (10 µM), inhibitor of nitric oxide (NO)-sensitive soluble guanylyl cyclase, or tetraethylammonium (10 mM), a blocker of potassium (K+)-channels. On the contrary, nifedipine (3 nM), a voltage-activated L-type Ca2+ channel blocker, significantly reduced the inhibitory menthol actions. Menthol also reduced in a concentration-dependent manner the contractile responses caused by exogenous application of Ca2+ (75-375 μM) in a Ca2+-free solution, or induced by potassium chloride (KCl; 40 mM). Moreover menthol (1-3 mM) strongly reduced the electrical field stimulation (EFS)-evoked atropine-sensitive contractions and the carbachol-contractile responses. The present results suggest that menthol induces spasmolytic effects in human colon circular muscle inhibiting directly the gastrointestinal smooth muscle contractility, through the block of Ca2+ influx through sarcolemma L-type Ca2+ channels.

  5. Smooth muscle cells can express cytokeratins of "simple" epithelium. Immunocytochemical and biochemical studies in vitro and in vivo.

    Science.gov (United States)

    Gown, A M; Boyd, H C; Chang, Y; Ferguson, M; Reichler, B; Tippens, D

    1988-08-01

    Cytokeratins are a set of 19 proteins that together constitute the class of intermediate filament protein expressed by epithelial cells and tumors. Using a panel of 9 different monoclonal anti-cytokeratin antibodies, the authors have performed immunocytochemistry on methanol-fixed, frozen sections and methacarn-fixed, paraffin-embedded tissue of human myometrial specimens. Anomalous cytokeratin expression (ACE) by smooth muscle cells was found in all specimens. Immunoblots of this tissue confirmed the presence of cytokeratin 19, and possibly 8. In addition, immunocytochemical studies demonstrated ACE in human fetal tissues within the intestinal muscularis and the heart, especially in the region of the aortic outflow tract, and in 8 of 19 cases of leiomyosarcoma from adults. Indirect immunofluorescence studies were also performed on cells explanted from myometrial tissue; the overwhelming majority of cells derived from these cultures were smooth muscle cells as verified by expression of muscle actins, and a subpopulation of these cells was found to be cytokeratin-positive. ACE was confirmed in vitro by double labeling experiments demonstrating simultaneous expression of muscle actins and cytokeratins within the same cell. The significance of this smooth muscle cell ACE is unknown, but it may be a phenotypic marker of smooth muscle in a proliferative state. ACE could be a source of confusion in the immunocytochemical analysis of poorly differentiated malignancies if a complete panel of antibodies is not employed.

  6. The retardation of vasculopathy induced by attenuation of insulin resistance in the corpulent JCR:LA-cp rat is reflected by decreased vascular smooth muscle cell proliferation in vivo.

    Science.gov (United States)

    Absher, P M; Schneider, D J; Baldor, L C; Russell, J C; Sobel, B E

    1999-04-01

    Proliferation in vivo of vascular smooth muscle cells occurs early in the course of atherosclerosis. Cultured smooth muscle cells (SMCs) explanted from aortas of JCR:LA-cp corpulent rats known to exhibit metabolic derangements and insulin resistance typical of type II diabetes early in life and to develop atherosclerosis later in life exhibit increased proliferation compared with SMCs from lean, normal rats. Vascular smooth muscle proliferation in vitro was found to be positively and significantly correlated with plasma insulin levels in vivo. Proliferation of aortic SMCs from JCR:LA-cp cp/cp corpulent rats cultured in vitro exhibited increased proliferation in the presence of exogenous insulin. Exercise and diet, selected as interventions designed to ameliorate the insulin resistance and hyperinsulinemia in the JCR:LA-cp cp/cp rat, effectively lowered blood insulin levels and decreased subsequent proliferation in vitro of aortic SMCs explanted from these animals. The results indicate that assessment of proliferation of vascular smooth muscle cells ex vivo may provide insight into the presence and severity of atherogenicity in association with insulin resistance in diverse species under diverse circumstances. Accordingly, with appropriate controls, it may be possible to use SMC proliferation ex vivo as a marker of the extent to which an intervention such as administration of insulin sensitizers to experimental animals and human subjects results in a change in behavior of vessel wall elements potentially indicative of amelioration of atherogenicity and detectable as judged from reduced proliferative rates of the cells ex vivo when they have been harvested from vessels exposed to a milieu in which insulin resistance has been attenuated.

  7. Could an increase in airway smooth muscle shortening velocity cause airway hyperresponsiveness?

    Science.gov (United States)

    Bullimore, Sharon R; Siddiqui, Sana; Donovan, Graham M; Martin, James G; Sneyd, James; Bates, Jason H T; Lauzon, Anne-Marie

    2011-01-01

    Airway hyperresponsiveness (AHR) is a characteristic feature of asthma. It has been proposed that an increase in the shortening velocity of airway smooth muscle (ASM) could contribute to AHR. To address this possibility, we tested whether an increase in the isotonic shortening velocity of ASM is associated with an increase in the rate and total amount of shortening when ASM is subjected to an oscillating load, as occurs during breathing. Experiments were performed in vitro using 27 rat tracheal ASM strips supramaximally stimulated with methacholine. Isotonic velocity at 20% isometric force (Fiso) was measured, and then the load on the muscle was varied sinusoidally (0.33 ± 0.25 Fiso, 1.2 Hz) for 20 min, while muscle length was measured. A large amplitude oscillation was applied every 4 min to simulate a deep breath. We found that: 1) ASM strips with a higher isotonic velocity shortened more quickly during the force oscillations, both initially (P shortening during the force oscillation protocol (P shortening with increased isotonic velocity could be explained by a change in either the cycling rate of phosphorylated cross bridges or the rate of myosin light chain phosphorylation. We conclude that, if asthma involves an increase in ASM velocity, this could be an important factor in the associated AHR.

  8. Accumulating evidence for increased velocity of airway smooth muscle shortening in asthmatic airway hyperresponsiveness.

    Science.gov (United States)

    Ijpma, Gijs; Matusovsky, Oleg; Lauzon, Anne-Marie

    2012-01-01

    It remains unclear whether airway smooth muscle (ASM) mechanics is altered in asthma. While efforts have originally focussed on contractile force, some evidence points to an increased velocity of shortening. A greater rate of airway renarrowing after a deep inspiration has been reported in asthmatics compared to controls, which could result from a shortening velocity increase. In addition, we have recently shown in rats that increased shortening velocity correlates with increased muscle shortening, without increasing muscle force. Nonetheless, establishing whether or not asthmatic ASM shortens faster than that of normal subjects remains problematic. Endobronchial biopsies provide excellent tissue samples because the patients are well characterized, but the size of the samples allows only cell level experiments. Whole human lungs from transplant programs suffer primarily from poor patient characterization, leading to high variability. ASM from several animal models of asthma has shown increased shortening velocity, but it is unclear whether this is representative of human asthma. Several candidates have been suggested as responsible for increased shortening velocity in asthma, such as alterations in contractile protein expression or changes in the contractile apparatus structure. There is no doubt that more remains to be learned about the role of shortening velocity in asthma.

  9. Effects of hypoxia and glucose-removal condition on muscle contraction of the smooth muscles of porcine urinary bladder.

    Science.gov (United States)

    Nagai, Yuta; Kaneda, Takeharu; Miyamoto, Yasuyuki; Nuruki, Takaomi; Kanda, Hidenori; Urakawa, Norimoto; Shimizu, Kazumasa

    2016-01-01

    To elucidate the dependence of aerobic energy metabolism and utilization of glucose in contraction of urinary bladder smooth muscle, we investigated the changes in the reduced pyridine nucleotide (PNred) fluorescence, representing glycolysis activity, and determined the phosphocreatine (PCr) and ATP contents of the porcine urinary bladder during contractions induced by high K(+) or carbachol (CCh) and with and without hypoxia (achieved by bubbling N2 instead of O2) or in a glucose-free condition. Hyperosmotic addition of 65 mM KCl (H-65K(+)) and 1 µM CCh induced a phasic contraction followed by a tonic contraction. A glucose-free physiological salt solution (PSS) did not change the subsequent contractile responses to H-65K(+) and CCh. However, hypoxia significantly attenuated H-65K(+)- and CCh-induced contraction. H-65K(+) and CCh induced a sustained increase in PNred fluorescence, representing glycolysis activity. Hypoxia enhanced H-65K(+)- and CCh-induced increases in PNred fluorescence, whereas glucose-free PSS decreased these increases, significantly. In the presence of H-65K(+), hypoxia decreased the PCr and ATP contents; however, the glucose-free PSS did not change the PCr contents. In conclusion, we demonstrated that high K(+)- and CCh-induced contractions depend on aerobic metabolism and that an endogenous substrate may be utilized to maintain muscle contraction in a glucose-free PSS in the porcine urinary bladder.

  10. Transgenic overexpression of pregnancy-associated plasma protein-A in murine arterial smooth muscle accelerates atherosclerotic lesion development

    DEFF Research Database (Denmark)

    Conover, Cheryl A; Mason, Megan A; Bale, Laurie K

    2010-01-01

    of atherosclerotic lesions, we generated transgenic mice that express human PAPP-A in arterial smooth muscle. Four founder lines were characterized for transgenic human PAPP-A mRNA and protein expression, IGFBP-4 protease activity, and tissue specificity. In study I, apolipoprotein E knockout (ApoE KO) mice, a well...... from ApoE KO/Tg compared with ApoE KO mice (P smooth muscle of double ApoE KO/PAPP-A KO mice resulted in a 2.5-fold increase in lesion area (P = 0.002), without an effect...... on lesion number. PAPP-A transgene expression was associated with a significant increase in an IGF-responsive gene (P smooth muscle accelerates lesion progression in a mouse model...

  11. Differences in time to peak carbachol-induced contractions between circular and longitudinal smooth muscles of mouse ileum.

    Science.gov (United States)

    Azuma, Yasu-Taka; Samezawa, Nanako; Nishiyama, Kazuhiro; Nakajima, Hidemitsu; Takeuchi, Tadayoshi

    2016-01-01

    The muscular layer in the GI tract consists of an inner circular muscular layer and an outer longitudinal muscular layer. Acetylcholine (ACh) is the representative neurotransmitter that causes contractions in the gastrointestinal tracts of most animal species. There are many reports of muscarinic receptor-mediated contraction of longitudinal muscles, but few studies discuss circular muscles. The present study detailed the contractile response in the circular smooth muscles of the mouse ileum. We used small muscle strips (0.2 mm × 1 mm) and large muscle strips (4 × 4 mm) isolated from the circular and longitudinal muscle layers of the mouse ileum to compare contraction responses in circular and longitudinal smooth muscles. The time to peak contractile responses to carbamylcholine (CCh) were later in the small muscle strips (0.2 × 1 mm) of circular muscle (5.7 min) than longitudinal muscles (0.4 min). The time to peak contractile responses to CCh in the large muscle strips (4 × 4 mm) were also later in the circular muscle (3.1 min) than the longitudinal muscle (1.4 min). Furthermore, a muscarinic M2 receptor antagonist and gap junction inhibitor significantly delayed the time to peak contraction of the large muscle strips (4 × 4 mm) from the circular muscular layer. Our findings indicate that muscarinic M2 receptors in the circular muscular layer of mouse ileum exert a previously undocumented function in gut motility via the regulation of gap junctions.

  12. Vascular smooth muscle G(q) signaling is involved in high blood pressure in both induced renal and genetic vascular smooth muscle-derived models of hypertension.

    Science.gov (United States)

    Harris, David M; Cohn, Heather I; Pesant, Stéphanie; Zhou, Rui-Hai; Eckhart, Andrea D

    2007-11-01

    More than 30% of the US population has high blood pressure (BP), and less than a third of people treated for hypertension have it controlled. In addition, the etiology of most high BP is not known. Having a better understanding of the mechanisms underlying hypertension could potentially increase the effectiveness of treatment. Because G(q) signaling mediates vasoconstriction and vascular function can cause BP abnormalities, we were interested in determining the role of vascular smooth muscle (VSM) G(q) signaling in two divergent models of hypertension: a renovascular model of hypertension through renal artery stenosis and a genetic model of hypertension using mice with VSM-derived high BP. Inhibition of VSM G(q) signaling attenuated BP increases induced by renal artery stenosis to a similar extent as losartan, an ANG II receptor blocker and current antihypertensive therapy. Inhibition of G(q) signaling also attenuated high BP in our genetic VSM-derived hypertensive model. In contrast, BP remained elevated 25% following treatment with losartan, and prazosin, an alpha(1)-adrenergic receptor antagonist, only decreased BP by 35%. Inhibition of G(q) signaling attenuated VSM reactivity to ANG II and resulted in a 2.4-fold rightward shift in EC(50). We also determined that inhibition of G(q) signaling was able to reverse VSM hypertrophy in the genetic VSM-derived hypertensive model. These results suggest that G(q) signaling is an important signaling pathway in two divergent models of hypertension and, perhaps, optimization of antihypertensive therapy could occur with the identification of particular G(q)-coupled receptors involved.

  13. Differentiation of Murine Bone Marrow-Derived Smooth Muscle Progenitor Cells Is Regulated by PDGF-BB and Collagen.

    Directory of Open Access Journals (Sweden)

    Clifford Lin

    Full Text Available Smooth muscle cells (SMCs are key regulators of vascular disease and circulating smooth muscle progenitor cells may play important roles in vascular repair or remodelling. We developed enhanced protocols to derive smooth muscle progenitors from murine bone marrow and tested whether factors that are increased in atherosclerotic plaques, namely platelet-derived growth factor-BB (PDGF-BB and monomeric collagen, can influence the smooth muscle specific differentiation, proliferation, and survival of mouse bone marrow-derived progenitor cells. During a 21 day period of culture, bone marrow cells underwent a marked increase in expression of the SMC markers α-SMA (1.93 ± 0.15 vs. 0.0008 ± 0.0003 (ng/ng GAPDH at 0 d, SM22-α (1.50 ± 0.27 vs. 0.005 ± 0.001 (ng/ng GAPDH at 0 d and SM-MHC (0.017 ± 0.004 vs. 0.001 ± 0.001 (ng/ng GAPDH at 0 d. Bromodeoxyuridine (BrdU incorporation experiments showed that in early culture, the smooth muscle progenitor subpopulation could be identified by high proliferative rates prior to the expression of smooth muscle specific markers. Culture of fresh bone marrow or smooth muscle progenitor cells with PDGF-BB suppressed the expression of α-SMA and SM22-α, in a rapidly reversible manner requiring PDGF receptor kinase activity. Progenitors cultured on polymerized collagen gels demonstrated expression of SMC markers, rates of proliferation and apoptosis similar to that of cells on tissue culture plastic; in contrast, cells grown on monomeric collagen gels displayed lower SMC marker expression, lower growth rates (319 ± 36 vs. 635 ± 97 cells/mm2, and increased apoptosis (5.3 ± 1.6% vs. 1.0 ± 0.5% (Annexin 5 staining. Our data shows that the differentiation and survival of smooth muscle progenitors are critically affected by PDGF-BB and as well as the substrate collagen structure.

  14. Modelling the elastin, collagen and smooth muscle contribution to the duodenal mechanical behaviour in patients with systemic sclerosis

    DEFF Research Database (Denmark)

    Gao, F.; Liao, Donghua; Drewes, Asbjørn Mohr;

    2009-01-01

    wall mechanics, structure and function is important. The aim was to establish a model for differentiating the biomechanical remodelling of elastin, collagen and smooth muscle in the duodenum in SS patients. A duodenal distension protocol was used in six patients and five healthy controls. A theoretical...... model for evaluating the mechanical contributions of elastin, collagen and smooth muscle tone was established. The tension-strain curves computed from pressure and cross-sectional area data were analysed. The elastic modulus of elastin, the relationship between the collagen recruitment, collagen density...

  15. A cyclic GMP-dependent calcium-activated chloride current in smooth-muscle cells from rat mesenteric resistance arteries

    DEFF Research Database (Denmark)

    Matchkov, Vladimir; Aalkjær, Christian; Nilsson, Holger

    2004-01-01

    -PET-cGMP or with a peptide inhibitor of PKG, or with the nonhydrolysable ATP analogue AMP-PNP. Under biionic conditions, the anion permeability sequence of the channel was SCN- > Br- > I- > Cl- > acetate > F- >> aspartate, but the conductance sequence was I- > Br- > Cl- > acetate > F- > aspartate = SCN-. The current had...... conditions of high calcium in the patch-pipette solution, a current similar to the latter could be identified also in the mesenteric artery smooth-muscle cells. We conclude that smooth-muscle cells from rat mesenteric resistance arteries have a novel cGMP-dependent calcium-activated chloride current, which...

  16. Inhibition of rac1 reduces PDGF-induced reactive oxygen species and proliferation in vascular smooth muscle cells.

    OpenAIRE

    2001-01-01

    In vascular smooth muscle cells, reactive oxygen species (ROS) were known to mediate platelet-derived growth factor (PDGF)-induced cell proliferation and NADH/NADPH oxidase is the major source of ROS. NADH/NADPH oxidase is controlled by rac1 in non-phagocytic cells. In this study, we examined whether the inhibition of rac1 by adenoviral-mediated gene transfer of a dominant negative rac1 gene product (Ad.N17rac1) could reduce the proliferation of rat aortic vascular smooth muscle cells (RASMC)...

  17. Ouabain sensitive Na+/K+-pump regulates other membrane transporters in the microdomain of smooth muscle cells

    DEFF Research Database (Denmark)

    Matchkov, Vladimir; Nilsson, Holger; Aalkjær, Christian

    Ouabain, a specific inhibitor of the Na+/K+-pump, has previously been shown to interfere with intercellular communication. We have demonstrated a mechanism of this action of ouabain (1). We have showed that gap junctions between vascular smooth muscle cells (SMCs) are regulated through......+/K+-pump-containing microdomain is functionally linked to KATP channels via the local ion homeostasis and that this interaction can be bidirectional (1;2). [Ca2+]i in individual SMCs was imaged simultaneously with isometric force in rat mesenteric small arteries. Paired cultured rat aortic smooth muscle cells (A7r5) were used...

  18. Activation of protein kinase C accelerates contraction kinetics of airway smooth muscle.

    Science.gov (United States)

    Peiper, U; Knipp, S C; Thies, B; Henke, R

    1996-01-01

    Contraction kinetics of isolated rat tracheal smooth muscle were studied by analysing the increase of force subsequent to force-inhibiting passive length changes lasting 1 s (100 Hz, sinus, 5% of muscle length). Compared with carbachol activation, phorboldibutyrate (PDBu)-induced stimulation of protein kinase C (PKC) demonstrated no significant difference in the extent of force development in the polarized preparation [mean peak force 9.16 +/- 0.37 mN (carbachol) vs. 9.12 +/- 0.37 mN (PDBu)]. However, the time constant calculated for the slow component of post-vibration force recovery was 6.40 +/- 0.29 s after addition of PDBu vs. 22.39 +/- 1.40 s during carbachol activation, indicating a significant phorbol ester-induced acceleration of the cross-bridge cycling rate. In the K-depolarized preparation, treatment with 26.4 microM indolactam (IL) to activate PKC produced muscle relaxation (9.94 +/- 0.16 mN measured 0-30 min after the onset of depolarization vs. 4.13 +/- 0.05 mN measured during 30-60 min of IL treatment). Again, even in the presence of high sarcoplasmic Ca2+ resulting from tonic depolarization, PKC activation was associated with a distinct diminution of the time constant (25.99 +/- 0.79 s during the first 30 min of depolarization vs. 10.32 +/- 0.21 s during 30-60 min of IL treatment). In contrast, addition of 0.035 microM verapamil, 1.5 microM isoproterenol, and 32 microM dibutyryl-cAMP to the bathing medium induced relaxation without affecting the rate of post-vibration force recovery. The results suggest that the calcium-dependent signal cascade (agonist receptor/inositol trisphosphate/ Ca(2+)-calmodulin/myosin light chain kinase) hardly affects the regulation of contraction kinetics in the tonically activated intact smooth muscle preparation. PKC stimulation, however, accelerates actin/myosin interaction kinetics, possibly by inhibition of phosphatase(s).

  19. Relaxation of rabbit cavernous smooth muscle to 17β-estradiol: a non-genomic, NO-independent mechanism

    Institute of Scientific and Technical Information of China (English)

    Sae-ChulKim; Kyung-KunSeo; Soon-ChulMyung; MooYeolLee

    2004-01-01

    Aim: To investigate whether estrogen was involved in relaxation of rabbit cavernous smooth muscle.Methods: Relaxation response of the rabbit cavernous smooth muscles to 17β-estradiol (0.3, 3, 30 and 300 nmol/L) were observed in vitro. The response of the muscle strips to estrogen after incubation with either actinomycin D (10μmol/L) or L-NAME (10μmol/L) were also evaluated. Inside-out mode of patch clamp in a single smooth muscle cell was applied to investigate the Maxi-K channel activities. Results: Estrogen caused a dose-dependent relaxation of the strips precontracted with norepinephrine. The maximal response was noted about 10 minutes after treatment. Theestrogen-induced relaxation was prevented by neither actinomycin D nor L-NAME, suggesting that the response was not mediated by gene transcription or nitric oxide (NO). Application of 17β-estradiol increased the Maxi-K channelactivities. Conclusion: 17β-estradiol may be involved in relaxation of rabbit cavernous smooth muscles via a nongenomic and NO independent mechanism. 17β-estradiol stimulates Maxi-K channel of the rabbit cavernous myocyte.

  20. Photobiomodulation of vascular endothelial and smooth muscle cells in vitro with red laser light

    Science.gov (United States)

    Kipshidze, Nicholas; Keelan, Michael H., Jr.; Horn, Joseph B.; Nikolaychik, Victor

    1996-12-01

    Numerous reports suggest that low power red laser light (LPRLL) is capable of affecting cellular processes in the absence of significant thermal effect. The objective of the present study was to determine the effect of LPRLL on viability, growth, and attachment characteristics of rabbit and human aortic endothelial cells (EC) and smooth muscle cells (SMC) in vitro. All cell cultures were irradiated with single dose LPRLL using a He-Ne continuous wave laser with different energy densities. Assessment of effect on cell viability, growth, and attachment was performed utilizing Alamar Blue assay. Based upon our experiments, we conclude that: 1) stimulation and/or inhibition of cell growth and death can be obtained with LPRLL by varying the energy level, 2) LPRLL increases EC attachment, and 3) EC are more sensitive to photobiomodulation with LPRLL than SMC. These data may have significant importance leading to the establishment of new methods for phototherapy of atherosclerosis and restenosis.

  1. Direct effect of croton oil on intestinal epithelial cells and colonic smooth muscle cells

    Institute of Scientific and Technical Information of China (English)

    Xin Wang; Mei Lan; Han-Ping Wu; Yong-Quan Shi; Ju Lu; Jie Ding; Kai-Cun Wu; Jian-Ping Jin; Dai-Ming Fan

    2002-01-01

    AIM: To investigate the direct effect of croton oil (CO) onhuman intestinal epithelial cells (HIEC) and guinea pigcolonic smooth muscle cells in vitro.METHODS: Growth curves of HIEC were drawn by MTTcolorimetry. The dynamics of cell proliferation was analyzedwith flow cytometry, and morphological changes wereobserved under light and electron microscopy after long-term (6 weeks) treatment with CO. Expression of cyclo-oxygenase2 (COX-2) mRNA was detected by dot blot inHIEC treated with CO. Genes related to CO were screenedby DD-PCR, and the direct effect of CO on the contractilityof isolated guinea pig colonic smooth muscle cells wasobservedRESULTS: High concentration (20- 40 mg @ L 1) Coinhibited cell growth significantly (1, 3, 5, 7d OD sequence:(20 mg@L 1) 0.040± 0.003, 0.081 ± 0.012, 0.147± 0.022,0.024± 0.016; (40 mg@ L-1) 0.033 ± 0.044, 0.056 ± 0.012,0.104 ± 0.010, 0. 189 ± 0.006; OD eontrol 0.031 ± 0.008, 0.096± 0.012, 0.173 ± 0.009, 0.300 ± 0.016, P < 0.01), whichappeared to be related directly to the dosage. Comparedwith the control, the fraction number of cells in G1 phasedecreased from 0.60 to 0.58, while that in S phase increasedfrom 0.30 to 0.34, and DNA index also increased after 6weeks of treatment with CO (the dosage was increasedgradually from 4 to 40 rg@ L-1 ). Light microscopicobservation revealed that cells had karyomegaly, lessplasma and karyoplasm lopsidedness. Electron microscopyalso showed an increase in cell proliferation and in thequantity of abnormal nuclei with pathologic mitosis.Expression of COX-2 mRNA decreased significantly in HIECtreated with CO. Thirteen differential cDNA fragments werecloned from HIEC treated with CO, one of which was 100percent homologous with human mitochondrial cytochromeC oxidase subunit Ⅱ. The length of isolated guinea pigcolonic smooth muscle cells was significantly shortenedafter treatment with CO ( P < 0.05).CONCLUSION: At a high CO concentration ( > 20 mg@ L 1 ),cell growth and

  2. [3H]ouabain binding to cultured rat vascular smooth muscle cells.

    Science.gov (United States)

    Khalil, F; Hopp, L; Searle, B M; Tokushige, A; Tamura, H; Kino, M; Aviv, A

    1984-05-01

    The number of Na+ pump units (Bmax) and the equilibrium dissociation constant (Kd) for ouabain as well as parameters of K+ binding to the Na+ pump were examined in in vitro-grown vascular smooth muscle cells ( VSMC ) derived from Sprague-Dawley rats. The technique to measure these variables utilizes analyses of [3H]ouabain displacement from its VSMC receptors by nonlabeled ouabain and K+. The mean values for Bmax and Kd in the cultured VSMCs were 1.95 X 10(5) receptor sites per single VSMC and 2.68 X 10(-6) M, respectively. The equilibrium dissociation constant for K+ (Ki) was 0.92 mM. K+ binding to the cultured VSMCs demonstrated positive cooperativity with a Hill coefficient (n) of 1.78.

  3. Oxidative modification of high density lipoprotein induced by cultured human arterial smooth muscle cells

    Institute of Scientific and Technical Information of China (English)

    江渝; 刘红; 彭家和; 叶治家; 何凤田; 董燕麟; 刘秉文

    2003-01-01

    Objective: To observe the oxidative modification of high density lipoprotein (HDL) induced by cultured human arterial smooth muscle cells (SMCs). Methods: HDL cocultured with SMCs at 37℃ in 48 h was subjected, and native HDL (N-HDL) served as control. Oxidative modification of HDL was identified by using agarose gel electrophoresis. Absorbances of conjugated diene (CD) and lipid hydroperoxide (LOOH) were measured with ultraviolet spectrophotometry at 234 and 560 nm respectively, and fluorescence intensity of thiobarbuturic acid reaction substance (TBARS) with fluorescence spectrophotometry at 550 nm emission wavelength with excitation at 515 nm. Results: In comparison with N-HDL, the electrophoretic mobility of SMCs-cocultured HDL was increased, and the contents of CD, LOOH and TBARS HDL were very significantly higher than those of the control HDL (P<0.01). Conclusion: Oxidative modification of HDL can be induced by human arterial SMCs.

  4. Involvement of phospholipase D in store-operated calcium influx in vascular smooth muscle cells.

    Science.gov (United States)

    Walter, M; Tepel, M; Nofer, J R; Neusser, M; Assmann, G; Zidek, W

    2000-08-11

    In non-excitable cells, sustained intracellular Ca2+ increase critically depends on influx of extracellular Ca2+. Such Ca2+ influx is thought to occur by a 'store-operated' mechanism, i.e. the signal for Ca2+ entry is believed to result from the initial release of Ca2+ from inositol 1,4,5-trisphosphate-sensitive intracellular stores. Here we show that the depletion of cellular Ca2+ stores by thapsigargin or bradykinin is functionally linked to a phosphoinositide-specific phospholipase D (PLD) activity in cultured vascular smooth muscle cells (VSMC), and that phosphatidic acid formed via PLD enhances sustained calcium entry in this cell type. These results suggest a regulatory role for PLD in store-operated Ca2+ entry in VSMC.

  5. Genetic analysis of blood vessel formation role of endothelial versus smooth muscle cells.

    Science.gov (United States)

    Carmeliet, P; Collen, D

    1997-11-01

    Formation of new blood vessels is vital during embryogenesis, essential for reproduction and wound healing during adulthood, and required to rescue tissue during ischemia. Neovascularization may, however, also contribute to the pathogenesis of several disorders, including tumorigenesis, diabetic vasculopathy, and chronic inflammation. Initially, blood vessels form as endothelium-lined channels by in situ differentiation of endothelial cells. Subsequently, they sprout and remodel into a highly organized and interconnected vascular network. During further maturation of the blood vessels, a sheet of primitive vascular smooth muscle cells surrounds the endothelium-lined channels, which controls endothelial cell function and provides structural support. Recent molecular analyses have identified candidate molecules that affect these processes. Their in vivo role has been further established by targeted gene manipulation in transgenic mice. This review highlights recent developments in the genetic analysis of blood vessel formation, as deduced from analysis of gene-inactivated mice. (Trends Cardiovasc Med 1997;7:271-281). © 1997, Elsevier Science Inc.

  6. Effects of drug combinations on smooth muscle cell proliferation: an isobolographic analysis.

    Science.gov (United States)

    Parry, Tom J; Thyagarajan, Rathna; Argentieri, Dennis; Falotico, Robert; Siekierka, John; Tallarida, Ronald J

    2006-02-17

    Although sirolimus is a potent inhibitor of vascular smooth muscle cell (VSMC) proliferation and is effective at preventing restenosis in the majority of clinical revascularization procedures employing sirolimus-eluting stents, some VSMC may escape the antiproliferative effects of sirolimus. The present study examines the effects of combining sirolimus with other known cell cycle-specific antiproliferative agents (cladribine, topotecan or etoposide) on cultured coronary artery VSMC proliferation and utilizes a novel isobolographic approach to determine whether sirolimus/antiproliferative agent combinations produce subadditive, additive or supraadditive potentiation of antiproliferative activity. All agents were found to inhibit coronary artery VSMC proliferation in a dose-dependent manner. Cladribine was found to potentiate the antiproliferative activity of sirolimus in either an additive or supraadditive manner, depending upon the cladribine concentration. Topotecan potentiated the sirolimus antiproliferative activity by simple additivity while etoposide yielded subadditive potentiation. The present results demonstrate the utility of isobolographic analysis for identifying and optimizing antiproliferative drug combinations.

  7. Effects of piperitenone oxide on the intestinal smooth muscle of the guinea pig

    Directory of Open Access Journals (Sweden)

    P.J.C. Sousa

    1997-06-01

    Full Text Available We investigated the effects of piperitenone oxide (PO, a major constituent of the essential oil of Mentha x villosa, on the guinea pig ileum. PO (30 to 740 µg/ml relaxed basal tonus without significantly altering the resting membrane potential. In addition, PO relaxed preparations precontracted with either 60 mM K+ or 5 mM tetraethylammonium in a concentration-dependent manner. At concentrations from 0.1 to 10 µg/ml PO potentiated acetylcholine-induced contractions, while higher concentrations (>30 µg/ml blocked this response. These higher PO concentrations also inhibited contractions induced by 60 mM K+. PO also blocked the components of acetylcholine contraction which are not sensitive to nifedipine or to solutions with nominal zero Ca2+ and EGTA. These results show that PO is a relaxant of intestinal smooth muscle and suggest that this activity may be mediated at least in part by an intracellular effect

  8. Embryonic origins of human vascular smooth muscle cells: implications for in vitro modeling and clinical application.

    Science.gov (United States)

    Sinha, Sanjay; Iyer, Dharini; Granata, Alessandra

    2014-06-01

    Vascular smooth muscle cells (SMCs) arise from multiple origins during development, raising the possibility that differences in embryological origins between SMCs could contribute to site-specific localization of vascular diseases. In this review, we first examine the developmental pathways and embryological origins of vascular SMCs and then discuss in vitro strategies for deriving SMCs from human embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs). We then review in detail the potential for vascular disease modeling using iPSC-derived SMCs and consider the pathological implications of heterogeneous embryonic origins. Finally, we touch upon the role of human ESC-derived SMCs in therapeutic revascularization and the challenges remaining before regenerative medicine using ESC- or iPSC-derived cells comes of age.

  9. Epstein-Barr virus-associated smooth muscle tumour presenting as a parasagittal brain tumour.

    Science.gov (United States)

    Ibebuike, K E; Pather, S; Emereole, O; Ndolo, P; Kajee, A; Gopal, R; Naidoo, S

    2012-11-01

    Dural-based brain tumours, apart from meningiomas, are rare. Epstein-Barr virus (EBV)-associated smooth muscle tumor (SMT) is a documented but rare disease that occurs in immunocompromized patients. These tumours may be located at unusual sites including the brain. We present a 37-year-old patient, positive for the human immunodeficiency virus (HIV), who was admitted after generalized tonic-clonic seizures. MRI and CT scan revealed a dural-based brain tumour, intraoperatively thought to be a meningioma, but with an eventual histological diagnosis of EBV-SMT. Clinically the patient was well postoperatively with a Glasgow coma scale score of 15/15 and no focal neurologic deficit. This case confirms the association between EBV and SMT in patients with HIV/acquired immunodeficiency syndrome (AIDS). It also highlights the need to include EBV-SMT in the differential diagnosis of intracranial mass lesions in patients with HIV/AIDS.

  10. Thrombospondin-1, -2 and -5 have differential effects on vascular smooth muscle cell physiology

    Energy Technology Data Exchange (ETDEWEB)

    Helkin, Alex; Maier, Kristopher G. [SUNY Upstate Medical University, Division of Vascular Surgery and Endovascular Services, Syracuse, NY (United States); Department of Veterans Affairs VA Healthcare Network Upstate New York at Syracuse, Syracuse, NY (United States); Gahtan, Vivian, E-mail: gahtanv@upstate.edu [SUNY Upstate Medical University, Division of Vascular Surgery and Endovascular Services, Syracuse, NY (United States); Department of Veterans Affairs VA Healthcare Network Upstate New York at Syracuse, Syracuse, NY (United States)

    2015-09-04

    Introduction: The thrombospondins (TSPs) are matricellular proteins that exert multifunctional effects by binding cytokines, cell-surface receptors and other proteins. TSPs play important roles in vascular pathobiology and are all expressed in arterial lesions. The differential effects of TSP-1, -2, and -5 represent a gap in knowledge in vascular smooth muscle cell (VSMC) physiology. Our objective is to determine if structural differences of the TSPs imparted different effects on VSMC functions critical to the formation of neointimal hyperplasia. We hypothesize that TSP-1 and -2 induce similar patterns of migration, proliferation and gene expression, while the effects of TSP-5 are different. Methods: Human aortic VSMC chemotaxis was tested for TSP-2 and TSP-5 (1–40 μg/mL), and compared to TSP-1 and serum-free media (SFM) using a modified Boyden chamber. Next, VSMCs were exposed to TSP-1, TSP-2 or TSP-5 (0.2–40 μg/mL). Proliferation was assessed by MTS assay. Finally, VSMCs were exposed to TSP-1, TSP-2, TSP-5 or SFM for 3, 6 or 24 h. Quantitative real-time PCR was performed on 96 genes using a microfluidic card. Statistical analysis was performed by ANOVA or t-test, with p < 0.05 being significant. Results: TSP-1, TSP-2 and TSP-5 at 20 μg/mL all induce chemotaxis 3.1 fold compared to serum-free media. TSP-1 and TSP-2 induced proliferation 53% and 54% respectively, whereas TSP-5 did not. In the gene analysis, overall, cardiovascular system development and function is the canonical pathway most influenced by TSP treatment, and includes multiple growth factors, cytokines and proteases implicated in cellular migration, proliferation, vasculogenesis, apoptosis and inflammation pathways. Conclusions and relevance: The results of this study indicate TSP-1, -2, and -5 play active roles in VSMC physiology and gene expression. Similarly to TSP-1, VSMC chemotaxis to TSP-2 and -5 is dose-dependent. TSP-1 and -2 induces VSMC proliferation, but TSP-5 does not, likely

  11. Phosphate-induced rat vascular smooth muscle cell calcification and the implication of zinc deficiency in a7r5 cell viability.

    Science.gov (United States)

    Shin, Mee-Young; Kwun, In-Sook

    2013-06-01

    The calcification of vascular smooth muscle cells (VSMCs) is considered one of the major contributors for vascular disease. Phosphate is known as the inducer for VSMC calcification. In this study, we assessed whether phosphate affected cell viability and fetuin-A, a calcification inhibitor protein, both which are related to VSMC calcification. Also, VSMC viability by zinc level was assessed. The results showed that phosphate increased Ca and P deposition in VSMCs (A7r5 cell line, rat aorta origin). This phosphate-induced Ca and P deposition was consistent with the decreased A7r5 cell viability (Pviability. As phosphate increased, the protein expression of fetuin-A protein was up-regulated. A7r5 cell viability decreased as the addition of cellular zinc level was decreased (Pviability and it would be the future study to clarify how zinc does act for VSMC cell viability. The results suggest that the decreased VSMC viability by high P or low Zn in VSMCs may be the risk factor for vascular disease.

  12. Angiotensin Ⅱ stimulates phosphorylation of 4E-binding protein 1 and p70 S6 kinase in cultured vascular smooth muscle cells

    Institute of Scientific and Technical Information of China (English)

    Na LI; Ke-gui WU; Xiang-yu WANG; Liang-di XIE; Chang-sheng XU; Hua-jun WANG

    2004-01-01

    AIM: To examine the regulatory effects of angiotensin Ⅱ (Ang Ⅱ) on the phosphorylation of 4E-binding protein 1 (4E-BP1) and p70 S6 kinase in cultured vascular smooth muscle cells (VSMC), and the contribution of phosphatidylinositol 3-kinase (PI3K)/protein kinase B (PKB) signaling pathway in this process. METHODS: VSMC obtained from rat thoracic aortas were cultured. The phosphorylation of 4E-BP1 and p70 S6 kinase was detected by immunoblotting. RESULTS: Ang Ⅱ significantly increased the phosphorylation of 4E-BP1 and p70 S6 kinase,with the peaks occurring at, respectively, 10 min and 30 min, after stimulation with Ang Ⅱ. The stimulatory effect of Ang Ⅱ on 4E-BP1 and p70 S6 kinase phosphorylation was abrogated by Ang Ⅱ type 1 receptor (AT1 receptor)antagonist losartan, and suppressed by PI3K inhibitor LY294002 in a concentration-dependent manner.CONCLUSION: Ang Ⅱ treatment of VSMC induces the phosphorylation of 4E-BP1 and p70 S6 kinase via AT1 receptor, and PI3K signaling pathway is involved in this process.

  13. Effects of Statins and Xuezhikang on the Expression of Secretory Phospholipase A2, Group IIA in Rat Vascular Smooth Muscle Cells.

    Science.gov (United States)

    Xie, Qiang; Zhang, Dan

    2017-02-07

    Atherosclerosis is a multifactorial vascular disease characterized by formation of inflammatory lesions. Secretory phospholipase A2, group IIA (sPLA2-IIA) is involved in this process and plays a critical role. However, the exact role of sPLA2-IIA in cardiovascular inflammation is more complicated and remains unclear. Furthermore, both statins and Xuezhikang (XZK) are widely used in the prevention and treatment of cardiovascular disease risk because of their pleiotropic effects on the cardiovascular system. However, their effects on sPLA2-IIA are still controversial. We investigated the regulation of sPLA2-IIA by rat thoracic aorta smooth muscle cells (VSMCs) in culture. Cells were first incubated with IL-1β alone to induce expression of sPLA2-IIA and then treated with several concentrations of statins or XZK for different times in the absence or presence of IL-1β. We tested the expression of sPLA2-IIA, including sPLA2-IIA mRNA, protein, as well as activity. We found that statins or IL-1β increase the expression of sPLA2-IIA in VSMCs and the effect is based on a synergetic relationship between them. However, for the first time, we observed that XZK effectively reduces sPLA2-IIA expression in IL-1β-treated VSMCs. Our findings may shine a new light on the clinical use of XZK and statins in the prevention and treatment of atherosclerosis-related thrombosis.

  14. Effectiveness of cyclooxygenase-2 inhibition in limiting abdominal aortic aneurysm progression in mice correlates with a differentiated smooth muscle cell phenotype.

    Science.gov (United States)

    Mukherjee, Kamalika; Gitlin, Jonathan M; Loftin, Charles D

    2012-12-01

    Abdominal aortic aneurysms (AAAs) are a chronic condition that often progress over years to produce a weakened aorta with increased susceptibility for rupture, and currently, there are no pharmacological treatments available to slow disease progression. AAA development has been characterized by increased expression of cyclooxygenase-2 (COX-2), and inactivation of COX-2 before disease initiation reduces AAA incidence in a mouse model of the disease. The current study determined the effectiveness of COX-2 inhibition on AAA progression when treatment was begun after initiation of the disease. COX-2 inhibitor treatment with celecoxib was initiated after angiotensin II-induced AAA formation in a strain of nonhyperlipidemic mice that we have previously identified as highly susceptible to AAA development. When analyzed at different time points during progression of the disease, celecoxib treatment significantly reduced the incidence and severity of AAAs. The celecoxib treatment also protected the mice from aortic rupture and death. The aneurysmal lesion displayed an altered smooth muscle cell (SMC) phenotype, whereas celecoxib treatment was associated with increased expression of differentiated SMC markers and reduced dedifferentiation marker expression during AAA progression. Maintenance of a differentiated SMC phenotype is associated with the effectiveness of COX-2 inhibition for limiting AAA progression in nonhyperlipidemic mice.

  15. Effects of different dose endothelin-1 on expession of peroxisome proliferator-γ in cultured vascular smooth muscle cells of adult rats

    Institute of Scientific and Technical Information of China (English)

    Zhengli Di; Xiaolin Niu; Jin Wei; Nanping Wang

    2005-01-01

    Objective: To investigate the effects of endothlin- 1 (ET- 1 ) on vascular smooth muscle cells(VSMCs ) proliferation and the expression of Peroxisome proliferator-activated receptorγ (PPAR-γ) in VSMCs. Methods: VSMCs of 16-week-old wistar rats thoracic aorta were cultured. VSMCs were treated by ET-1 for 48 h and observed of the proliferation by MTT. The expression of PPAR-γmRNA and protein in cultured VSMCs treated by different concentration of ET-1 for 48 h was detected by RT-PCR and Western blot.Results: Compared with control group, VSMCs treated by ET-1 proliferated with the increase concentration of ET-1. There was significant differences among different groups ( P < 0.01). Meanwhile, the expression of PPAR-γ both in mRNA and in protein levels deceased. The expression of PPAR-γ in VSMCs was gradually decreased along with the increase concentration of ET-1. There was significant differences among different groups ( P <0.01). Compared with control group, the expression of both PPAR-γ mRNA and PPAR-γ in ET-1 treated groups were lower( P < 0.01). Conclusion: ET-1 could induce VSMCs proliferation and the expression of PPAR-γ in VSMCs, which demonstrates that high dose ET-1 obviously weakens the function of PPAR-γ to increase VSMCs proliferation.

  16. Mechanical stretch upregulates proteins involved in Ca2+ sensitization in urinary bladder smooth muscle hypertrophy.

    Science.gov (United States)

    Boopathi, Ettickan; Gomes, Cristiano; Zderic, Stephen A; Malkowicz, Bruce; Chakrabarti, Ranjita; Patel, Darshan P; Wein, Alan J; Chacko, Samuel

    2014-09-15

    Partial bladder outlet obstruction (pBOO)-induced remodeling of bladder detrusor smooth muscle (DSM) is associated with the modulation of cell signals regulating contraction. We analyzed the DSM from obstructed murine urinary bladders for the temporal regulation of RhoA GTPase and Rho-activated kinase (ROCK), which are linked to Ca(2+) sensitization. In addition, the effects of equibiaxial cell stretch, a condition thought to be associated with pBOO-induced bladder wall smooth muscle hypertrophy and voiding frequency, on the expression of RhoA, ROCK, and C-kinase-activated protein phosphatase I inhibitor (CPI-17) were investigated. DSM from 1-, 3-, 7-, and 14-day obstructed male mice bladders and benign prostatic hyperplasia (BPH)-induced obstructed human bladders revealed overexpression of RhoA and ROCK-β at the mRNA and protein levels compared with control. Primary human bladder myocytes seeded onto type I collagen-coated elastic silicone membranes were subjected to cyclic equibiaxial stretch, mimicking the cellular mechanical stretch in the bladder in vivo, and analyzed for the expression of RhoA, ROCK-β, and CPI-17. Stretch caused a significant increase of RhoA, ROCKβ, and CPI-17 expression. The stretch-induced increase in CPI-17 expression occurs at the transcriptional level and is associated with CPI-17 promoter binding by GATA-6 and NF-κB, the transcription factors responsible for CPI-17 gene transcription. Cell stretch caused by bladder overdistension in pBOO is the likely mechanism for initiating overexpression of the signaling proteins regulating DSM tone.

  17. In vascular smooth muscle cells paricalcitol prevents phosphate-induced Wnt/β-catenin activation.

    Science.gov (United States)

    Martínez-Moreno, Julio M; Muñoz-Castañeda, Juan R; Herencia, Carmen; Oca, Addy Montes de; Estepa, Jose C; Canalejo, Rocio; Rodríguez-Ortiz, Maria E; Perez-Martinez, Pablo; Aguilera-Tejero, Escolástico; Canalejo, Antonio; Rodríguez, Mariano; Almadén, Yolanda

    2012-10-15

    The present study investigates the differential effect of two vitamin D receptor agonists, calcitriol and paricalcitol, on human aortic smooth muscle cells calcification in vitro. Human vascular smooth muscle cells were incubated in a high phosphate (HP) medium alone or supplemented with either calcitriol 10(-8)M (HP + CTR) or paricalcitol 3·10(-8) M (HP + PC). HP medium induced calcification, which was associated with the upregulation of mRNA expression of osteogenic factors such as bone morphogenetic protein 2 (BMP2), Runx2/Cbfa1, Msx2, and osteocalcin. In these cells, activation of Wnt/β-catenin signaling was evidenced by the translocation of β-catenin into the nucleus and the increase in the expression of direct target genes as cyclin D1, axin 2, and VCAN/versican. Addition of calcitriol to HP medium (HP + CTR) further increased calcification and also enhanced the expression of osteogenic factors together with a significant elevation of nuclear β-catenin levels and the expression of cyclin D1, axin 2, and VCAN. By contrast, the addition of paricalcitol (HP + PC) not only reduced calcification but also downregulated the expression of BMP2 and other osteoblastic phenotype markers as well as the levels of nuclear β-catenin and the expression of its target genes. The role of Wnt/β-catenin on phosphate- and calcitriol-induced calcification was further demonstrated by the inhibition of calcification after addition of Dickkopf-related protein 1 (DKK-1), a specific natural antagonist of the Wnt/β-catenin signaling pathway. In conclusion, the differential effect of calcitriol and paricalcitol on vascular calcification appears to be mediated by a distinct regulation of the BMP and Wnt/β-catenin signaling pathways.

  18. Piperlongumine inhibits atherosclerotic plaque formation and vascular smooth muscle cell proliferation by suppressing PDGF receptor signaling

    Energy Technology Data Exchange (ETDEWEB)

    Son, Dong Ju [Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA (United States); Division of Cardiology, Department of Medicine, Emory University, Atlanta, GA (United States); Kim, Soo Yeon [Division of Life Science, Korea Basic Science Institute, Daejeon (Korea, Republic of); Han, Seong Su [University of Iowa Carver College of Medicine, Department of Pathology, Iowa City, IA (United States); Kim, Chan Woo [Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA (United States); Division of Cardiology, Department of Medicine, Emory University, Atlanta, GA (United States); Department of Bioinspired Science, Ehwa Womans University, Seoul (Korea, Republic of); Kumar, Sandeep [Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA (United States); Division of Cardiology, Department of Medicine, Emory University, Atlanta, GA (United States); Park, Byeoung Soo [Nanotoxtech Co., Ansan (Korea, Republic of); Lee, Sung Eun [Division of Applied Biology and Chemistry, Kyungpook National University, Daegu (Korea, Republic of); Yun, Yeo Pyo [College of Pharmacy, Chungbuk National University, Cheongju (Korea, Republic of); Jo, Hanjoong, E-mail: hjo@emory.edu [Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA (United States); Division of Cardiology, Department of Medicine, Emory University, Atlanta, GA (United State