WorldWideScience

Sample records for anu superconducting linac

  1. The superconducting linac booster at the ANU

    International Nuclear Information System (INIS)

    Weisser, D.C.

    1995-02-01

    This report outlines the progress of the installation of the superconducting Linac booster at the Australian National University. The Linac is based upon four modules, three of which contain three split-loop resonators. The fourth cryostat was intended to be a superbuncher and so houses only one resonator. The first stage of Linac operation will employ only three modules with 2 MV/m from each resonator. It is expected that the implementation of all nine modules, in subsequent stages, would boost beams by 18 MV/q. The project has fostered productive international collaboration between UK and Australian scientists. 1 tab., 6 figs

  2. New technology of lead-tin plating of superconducting RF resonators for the ANU LINAC

    International Nuclear Information System (INIS)

    Lobanov, N.R.; Weisser, D.C.

    2003-01-01

    The RF accelerating resonators for the ANU superconducting LINAC have been re-plated with lead-tin and their performance substantially improved. The re-plating was at first derailed by the appearance of dendrites on the surface. This problem was overcome by a new combination of two techniques. Rather than the standard process of chemically stripping the old Pb and hand polishing the Cu substrate the unsatisfactory Pb surface was mechanically polished and then re-plated. This is enormously easier, faster and doesn't put at risk the thin cosmetic electron beam welds or the repaired ones. Reverse pulse plating was then used to re-establish an excellent superconducting surface. Average acceleration fields of 3.5 to 3.9 MV/m have been achieved. The re-plated resonators will double the energy gain of the accelerator significantly extending capability of the facility research. Lead-tin plating provides fast adequate results with modest equipment and at relatively low cost. SUNY re-plated six high-beta SLRs with 2 microns of Pb-Sn using a modern, commercial, methane-sulfonate process (Lea Ronal Solderon MHS-L) and a simple open-air procedure. This proven success motivated ANU to adopt MSA chemistry and to re-plate the first SLR in November 1998 followed by re-plating all twelve SLRs by November 2002. This increased the booster energy gain by almost 100%

  3. Superconducting linac

    International Nuclear Information System (INIS)

    Bollinger, L.M.; Shepard, K.W.; Wangler, T.P.

    1978-01-01

    This project has two goals: to design, build, and test a small superconducting linac to serve as an energy booster for heavy ions from an FN tandem electrostatic accelerator, and to investigate various aspects of superconducting rf technology. The main design features of the booster are described, a status report on various components (resonators, rf control system, linac control system, cryostats, buncher) is given, and plans for the near future are outlined. Investigations of superconducting-linac technology concern studies on materials and fabrication techniques, resonator diagnostic techniques, rf-phase control, beam dynamics computer programs, asymmetry in accelerating field, and surface-treatment techniques. The overall layout of the to-be-proposed ATLAS, the Argonne Tandem-Linac Accelerator System, is shown; the ATLAS would use superconducting technology to produce beams of 5 to 25 MeV/A. 6 figures

  4. ANU LINAC upgrade using multi-stub resonators

    Indian Academy of Sciences (India)

    A copper prototype has been constructed and is being plated with PbSn for cold testing. Keywords. Electrostatic; collective and linear accelerators; electrostatic accelerator; LINAC; super- conducting resonator. PACS No. 29.17.+w. 1. Introduction. LINAC development work at ANU is currently aimed at improving performance ...

  5. Superconducting Hadron Linacs

    CERN Document Server

    Ostroumov, Peter

    2013-01-01

    This article discusses the main building blocks of a superconducting (SC) linac, the choice of SC resonators, their frequencies, accelerating gradients and apertures, focusing structures, practical aspects of cryomodule design, and concepts to minimize the heat load into the cryogenic system. It starts with an overview of design concepts for all types of hadron linacs differentiated by duty cycle (pulsed or continuous wave) or by the type of ion species (protons, H-, and ions) being accelerated. Design concepts are detailed for SC linacs in application to both light ion (proton, deuteron) and heavy ion linacs. The physics design of SC linacs, including transverse and longitudinal lattice designs, matching between different accelerating–focusing lattices, and transition from NC to SC sections, is detailed. Design of high-intensity SC linacs for light ions, methods for the reduction of beam losses, preventing beam halo formation, and the effect of HOMs and errors on beam quality are discussed. Examples are ta...

  6. Review of superconducting linacs

    International Nuclear Information System (INIS)

    Bollinger, L.M.

    1992-01-01

    This paper summarizes the status of the technology of superconducting (SC) linacs designed for the acceleration of ions. The emphasis is on the technical issues involved, with only brief descriptions of the numerous linacs now in operation or under construction. Recent developments of special interest are treated in more detail, and remaining technical challenges are outlined. The technology required for acceleration of ions with velocity β ∼ 1 is not discussed because it is almost the same as for relativistic electrons. That is, this paper is mainly about SC linacs for low-velocity heavy ions. (Author) 5 tabs., 6 figs., 29 refs

  7. An integrated computer control system for the ANU linac

    International Nuclear Information System (INIS)

    Davidson, P.M.; Foote, G.S.

    1996-01-01

    One facet of the installation of the superconducting linac at the ANU is the need for computer control of a variety of systems, such as beam transport, resonator RF, cryogenics and others. To accommodate this, a number of control interfaces (for example, analogue signals and RS232 serial lines) must be employed. Ideally, all of the systems should be able to be controlled from a central location, remote from the actual devices. To this end a system based around VAX computers and VME crates has been designed and is currently being developed and implemented. A VAXstation is used to issue control messages and perform high-level functions, while VME crates containing appropriate modules (primarily DACs, ADCs and digital I/O boards) control the devices. The controllers in the VME crates are AEON rtVAX modules running a real-time operating system. Communication with the VAXstation is via DECnet, on a private ethernet to allow communication rates unaffected by unrelated network activity and potentially increasing the security of the system by providing a possible network isolation point. Also on this ethernet are a number of terminal servers to control RS232 devices. A central database contains all device control and monitoring parameters. The main control process running on the VAXstation is responsible for maintaining the current values of the parameters in the database and for dispatching control messages to the appropriate VME crate or RS232 serial line

  8. An integrated computer control system for the ANU linac

    Science.gov (United States)

    Davidson, P. M.; Foote, G. S.

    1996-02-01

    One facet of the installation of the superconducting linac at the ANU is the need for computer control of a variety of systems, such as beam transport, resonator RF, cryogenics and others. To accommodate this, a number of control interfaces (for example, analogue signals and RS232 serial lines) must be employed. Ideally, all of the systems should be able to be controlled from a central location, remote from the actual devices. To this end a system based around VAX computers and VME crates has been designed and is currently being developed and implemented. A VAXstation is used to issue control messages and perform high-level functions, while VME crates containing appropriate modules (primarily DACs, ADCs and digital I/O boards) control the devices. The controllers in the VME crates are AEON rtVAX modules running a real-time operating system. Communication with the VAXstation is via DECnet, on a private ethernet to allow communication rates unaffected by unrelated network activity and potentially increasing the security of the system by providing a possible network isolation point. Also on this ethernet are a number of terminal servers to control RS232 devices. A central database contains all device control and monitoring parameters. The main control process running on the VAXstation is responsible for maintaining the current values of the parameters in the database and for dispatching control messages to the appropriate VME crate or RS232 serial line. Separate graphical interface processes allow the operator to interact with the control process, communicating through shared memory. Many graphics processes can be active simultaneously, displaying either on a single or on multiple terminals. Software running on the rtVAX controllers handles the low-level device-specific control by translating messages from the main control process to VME commands which set hardware outputs on VME modules. Similarly, requests for the value of a parameter result in the rtVAX program

  9. Superconducting linacs used with tandems

    International Nuclear Information System (INIS)

    Ben-Zvi, I.

    1984-01-01

    The main features of superconducting linacs used as post-accelerators of tandems are reviewed. Various aspects of resonators, cryogenics and electronics are discussed, and recent advances in the field are presented. (orig.)

  10. Superconducting heavy-ion linacs

    International Nuclear Information System (INIS)

    Bollinger, L.M.

    1977-01-01

    A summary is given of plans developed by four different groups for the construction of small superconducting linacs to boost the energy of heavy ions from existing tandem electrostatic accelerators. The projects considered are the linac under construction at Argonne and the design efforts at Karlsruhe, at Stanford, and by a Cal Tech-Stony Brook collaboration. The intended uses of the accelerator systems are stated. Beam dynamics of linacs formed of short independently-phased resonators are reviewed, and the implications for performance are discussed. The main parameters of the four linacs are compared, and a brief analysis of accelerating structures is given

  11. Heavy-ion superconducting linacs

    International Nuclear Information System (INIS)

    Delayen, J.R.

    1989-01-01

    This paper reviews the status of the superconducting heavy-ion accelerators. Most of them are linacs used as boosters for tandem electrostatic accelerators, although the technology is being extended to very low velocity to eliminate the need for an injector. The characteristics and features of the various superconducting heavy-ion accelerators are discussed. 45 refs

  12. SNS superconducting linac

    International Nuclear Information System (INIS)

    Sundelin, Ronald M.

    2001-01-01

    The Spallation Neutron Source (SNS) decided in early 2000 to use superconducting RF (SRF) in the linac at energies above 185 MeV. Since the SNS duty cycle is 6%, the SRF and normal conducting approaches have capital costs which are about the same, but operating costs and future upgradability are improved by using SRF. The current status of cavity and cryomodule development and procurement, including the basis for decisions made, is discussed. The current plan includes use of 805 MHz, 6-cell cavities with geometrical betas of 0.61 and 0.81. There are 33 medium beta and 60 high beta cavities in 11 and 15 cryomodules, respectively. Each cavity (except the 93rd) is powered by a 550 kW pulsed klystron. Issues addressed include choice of peak surface gradient, optimization of cavity shape, selection of a scaled KEK input power coupler, selection of scaled TESLA higher mode couplers, and control of the effects of higher order modes on the beam. (author)

  13. Review of superconducting ion linacs

    International Nuclear Information System (INIS)

    Bollinger, L.M.

    1992-01-01

    This paper summarizes the status of the technology of superconducting (SC) linacs designed for the acceleration of ions. The emphasis is on the technical issues involved, with only brief descriptions of the numerous linacs now in operation or under construction. Recent developments of special interest are treated in more detail, and remaining technical challenges are outlined. The technology required for the acceleration of ions with velocity β=1 is not discussed because it is almost the same as for relativistic electrons. That is, this paper is mainly about SC linacs for low-velocity heavy ions

  14. SUPERCONDUCTING LINAC FOR THE SPALLATION NEUTRON SOURCE

    International Nuclear Information System (INIS)

    STOVALL, J.; NATH, S.

    2000-01-01

    The Spallation Neutron Source (SNS) linac is comprised of both normal and superconducting rf (SRF) accelerating structures. The SRF linac accelerates the beam from 186 to 1250 MeV through 117 elliptical, multi-cell niobium cavities. This paper describes the SRF linac architecture, physics design considerations, cavity commissioning, and the expected beam dynamics performance

  15. ANU LINAC upgrade using multi-stub resonators

    Indian Academy of Sciences (India)

    drift space between the two legs of the LINAC. 3. Progress in multi-stub resonators modeling. 3.1 Two-stub resonator – mode splitting and tuning. The half wave resonator structure is inspired by the Delayen design [6]. It can be also thought of as a straight inductor version of an SLR (figure 2). The center column has a. 822.

  16. University of Washington superconducting booster linac

    International Nuclear Information System (INIS)

    Storm, D.W.; Amsbaugh, J.F.; Cramer, J.G.; Swanson, H.E.; Trainor, T.A.; Vandenbosch, R.; Weitkamp, W.G.; Will, D.I.

    1985-01-01

    We have begun construction of a superconducting linac designed to accelerate ions from protons through about mass 60. Injected by our 9 MV-terminal tandem van de Graaff accelerator, the linac is expected to double the proton energy and quadruple the energies of heavier ions. The resonators are lead plated copper quarter wave structures. The overall layout and expected performance of the accelerator will be presented, along with a brief status report. 3 refs., 3 figs

  17. NPL superconducting Linac control system

    International Nuclear Information System (INIS)

    Swanson, H.E.; Howe, M.A.; Jackson, L.W.; LaCroix, J.M.; Readdy, H.P.; Storm, D.W.; Van Houten, L.P.

    1985-01-01

    The control system for the NPL Linac is based on a Microvax II host computer connected in a star network with 9 satellite computers. These satellites use single board varsions of DEC's PDP 11 processor. The operator's console uses high performance graphics and touch screen technology to display the current linac status and as the means for interactively controlling the operation of the accelerator

  18. Superconducting RF for energy-recovery linacs

    International Nuclear Information System (INIS)

    Liepe, M.; Knobloch, J.

    2006-01-01

    Since superconducting RF for particle accelerators made its first appearance in the 1970s, it has found highly successful application in a variety of machines. Recent progress in this technology has made so-called Energy-Recovery Linacs (ERLs)-originally proposed in 1965-feasible, and interest in this type of machine has increased enormously. A superconducting linac is the driving heart of ERLs, and emittance preservation and cost efficiency is of utmost importance. The resulting challenges for the superconducting cavity technology and RF field control are manifold. In March 2005 the first international workshop on ERLs was held at Newport News, VA, to explore the potential of ERLs and to discuss machine-physics and technology challenges and their solutions. This paper reviews the state-of-the-art in superconducting RF and RF control for ERLs, and summarizes the discussions of the SRF working group on this technology during the ERL2005 workshop

  19. Argonne superconducting heavy-ion linac

    International Nuclear Information System (INIS)

    Bollinger, L.M.; Benaroya, R.; Clifft, B.E.; Jaffey, A.H.; Johnson, K.W.; Khoe, T.K.; Scheibelhut, C.H.; Shepard, K.W.; Wangler, Y.Z.

    1976-01-01

    A summary is given of the status of a project to develop and build a small superconducting linac to boost the energy of heavy ions from an existing tandem electrostatic accelerator. The design of the system is well advanced, and construction of major components is expected to start in late 1976. The linac will consist of independently-phased resonators of the split-ring type made of niobium and operating at a temperature of 4.2 0 K. The resonance frequency is 97 MHz. Tests on full-scale resonators lead one to expect accelerating fields of approximately 4 MV/m within the resonators. The linac will be long enough to provide a voltage gain of at least 13.5 MV, which will allow ions with A less than or approximately 80 to be accelerated above the Coulomb barrier of any target. The modular nature of the system will make future additions to the length relatively easy. A major design objective is to preserve the good quality of the tandem beam. This requires an exceedingly narrow beam pulse, which is achieved by bunching both before and after the tandem. Focusing by means of superconducting solenoids within the linac limit the radial size of the beam. An accelerating structure some 15 meters downstream from the linac will manipulate the longitudinal phase ellipse so as to provide the experimenter with either very good energy resolution (ΔE/E approximately equal to 2 x 10 -4 ) or very good time resolution

  20. Muon acceleration in a superconducting proton Linac

    International Nuclear Information System (INIS)

    Popovic, Milorad; FermilabJohnson, Rolland P.; MUONS Inc., Batavia

    2005-01-01

    This note describes how a future Fermilab proton driver [1] based on TESLA superconducting linac modules can perform as both the source of protons to produce the muons and as the accelerator of the muons to be used for a neutrino factory or muon collider. Recent advances in muon cooling [2] have the promise of muon emittances that are compatible with the 1300 MHz accelerating structures that are the basis for the ILC design. In the design described here, H - ions are accelerated to 8 GeV in the superconducting Linac, then stripped, stored and bunched in a ring while the Linac cavities are rephased for muon acceleration. Then the protons are extracted from the ring to produce pions and muons which are cooled in a few hundred meters, accelerated to a few GeV and injected into the Linac at the β = 1 point for acceleration to add 7 GeV. By recirculating the muons in the constant frequency section of such a proton driver Linac, even higher energies can be achieved quickly so that losses from muon decay are minimized. By adding additional refrigeration and RF power, the repetition rate of the Linac can be increased to make large increases in the average flux of a neutrino factory and the average luminosity of a muon collider. driver linac to be able to accelerate muons, including the costs to produce and cool the muons, will be considerably less than the costs estimated in previous neutrino factory design studies. We also believe that such an approach can produce a much higher neutrino flux and, because of the necessity for effective muon cooling, also be on the path to an energy frontier muon collider

  1. Spallation Neutron Source Superconducting Linac Commissioning Algorithms

    CERN Document Server

    Henderson, Stuart; Galambos, John; Jeon Dong Oh; Zhang, Yan

    2005-01-01

    We describe the techniques which will be employed for establishing RF and quadrupole setpoints in the SNS superconducting linac. The longitudinal tuneup will be accomplished using phase-scan methods, as well as a technique that makes use of the beam induced field in the unpowered cavity.* The scheme for managing the RF and quadrupole setpoints to achieve a given energy profile will be described.

  2. Argonne superconducting heavy-ion linac

    Energy Technology Data Exchange (ETDEWEB)

    Bollinger, L.M.; Benaroya, R.; Clifft, B.E.; Jaffey, A.H.; Johnson, K.W.; Khoe, T.K.; Scheibelhut, C.H.; Shepard, K.W.; Wangler, Y.Z.

    1976-01-01

    A summary is given of the status of a project to develop and build a small superconducting linac to boost the energy of heavy ions from an existing tandem electrostatic accelerator. The design of the system is well advanced, and construction of major components is expected to start in late 1976. The linac will consist of independently-phased resonators of the split-ring type made of niobium and operating at a temperature of 4.2/sup 0/K. The resonance frequency is 97 MHz. Tests on full-scale resonators lead one to expect accelerating fields of approximately 4 MV/m within the resonators. The linac will be long enough to provide a voltage gain of at least 13.5 MV, which will allow ions with A less than or approximately 80 to be accelerated above the Coulomb barrier of any target. The modular nature of the system will make future additions to the length relatively easy. A major design objective is to preserve the good quality of the tandem beam. This requires an exceedingly narrow beam pulse, which is achieved by bunching both before and after the tandem. Focusing by means of superconducting solenoids within the linac limit the radial size of the beam. An accelerating structure some 15 meters downstream from the linac will manipulate the longitudinal phase ellipse so as to provide the experimenter with either very good energy resolution (..delta..E/E approximately equal to 2 x 10/sup -4/) or very good time resolution (..delta.. t approximately equal to 30 psec).

  3. Superconducting linac booster for NSC Pelletron

    International Nuclear Information System (INIS)

    Roy, A.; Prakash, P.N.; Ajithkumar, B.P.; Ghosh, S.; Changrani, T.; Mehta, R.; Sarkar, A.; Muralidhar, S.; Dutt, R.N.; Kumar, M.; Shepard, K.W.; and others.

    1996-01-01

    The progress made in the heavy ion superconducting linac booster project for the Nuclear Science Centre Pelletron accelerator is overviewed. Prototypes of the accelerating structure have been fabricated at Argonne National Laboratory and undergone several diagnostic tests. In the first phase heavy ions up to mass 80 will be accelerated to energies above the Coulomb barrier and in the second phase the mass limit would be increased to 120. The subsystems of the project are the basic accelerating structures, the RF instrumentation and control, the cryogenic system and the beam optics. Preliminary designs for the buncher and linac cryostats have been made. Several prototypes of RF electronics and control modules have been fabricated and tested. (R.P.)

  4. Commercial Superconducting Electron Linac for Radioisotope Production

    Energy Technology Data Exchange (ETDEWEB)

    Grimm, Terry Lee [Niowave, Inc., Lansing, MI (United States); Boulware, Charles H. [Niowave, Inc., Lansing, MI (United States); Hollister, Jerry L. [Niowave, Inc., Lansing, MI (United States); Jecks, Randall W. [Niowave, Inc., Lansing, MI (United States); Mamtimin, Mayir [Niowave, Inc., Lansing, MI (United States); Starovoitova, Valeriia [Niowave, Inc., Lansing, MI (United States)

    2015-08-13

    The majority of radioisotopes used in the United States today come from foreign suppliers or are generated parasitically in large government accelerators and nuclear reactors. Both of these restrictions limit the availability of radioisotopes and discourage the development and evaluation of new isotopes and for nuclear medicine, science, and industry. Numerous studies have been recommending development of dedicated accelerators for production of radioisotopes for over 20 years (Institute of Medicine, 1995; Reba, et al, 2000; National Research Council, 2007; NSAC 2009). The 2015 NSAC Long Range Plan for Isotopes again identified electron accelerators as an area for continued research and development. Recommendation 1(c) from the 2015 NSAC Isotope report specifically identifies electron accelerators for continued funding for the purpose of producing medical and industrial radioisotopes. Recognizing the pressing need for new production methods of radioisotopes, the United States Congress passed the American Medical Isotope Production Act of 2012 to develop a domestic production of 99Mo and to eliminate the use of highly enriched uranium (HEU) in the production of 99Mo. One of the advantages of high power electron linear accelerators (linacs) is they can create both proton- and neutron-rich isotopes by generating high energy x-rays that knock out protons or neutrons from stable atoms or by fission of uranium. This allows for production of isotopes not possible in nuclear reactors. Recent advances in superconducting electron linacs have decreased the size and complexity of these systems such that they are economically competitive with nuclear reactors and large, high energy accelerators. Niowave, Inc. has been developing a radioisotope production facility based on a superconducting electron linac with liquid metal converters.

  5. Beam commissioning for a superconducting proton linac

    Directory of Open Access Journals (Sweden)

    Zhi-Jun Wang

    2016-12-01

    Full Text Available To develop the next generation of safe and cleaner nuclear energy, the accelerator-driven subcritical (ADS system emerges as one of the most attractive technologies. It will be able to transmute the long-lived transuranic radionuclides produced in the reactors of today’s nuclear power plants into shorter-lived ones, and also it will provide positive energy output at the same time. The prototype of the Chinese ADS (C-ADS proton accelerator comprises two injectors and a 1.5 GeV, 10 mA continuous wave (CW superconducting main linac. The injector scheme II at the C-ADS demo facility inside the Institute of Modern Physics is a 10 MeV CW superconducting linac with a designed beam current of 10 mA, which includes an ECR ion source, a low-energy beam transport line, a 162.5 MHz radio frequency quadrupole accelerator, a medium-energy beam transport line, and a superconducting half wave resonator accelerator section. This demo facility has been successfully operating with an 11 mA, 2.7 MeV CW beam and a 3.9 mA, 4.3 MeV CW beam at different times and conditions since June 2014. The beam power has reached 28 kW, which is the highest record for the same type of linear accelerators. In this paper, the parameters of the test injector II and the progress of the beam commissioning are reported.

  6. A SUPER-CONDUCTING LINAC DRIVER FOR THE HFBR.

    Energy Technology Data Exchange (ETDEWEB)

    Alessi, J.; Raparia, D.; Ruggiero, A.G.

    2000-08-21

    This paper reports on the feasibility study of a proton Super-Conducting Linac (SCL) as a driver for the High-Flux Breeder Reactor (HFBR) at Brookhaven National Laboratory (BNL). The Linac operates in Continuous Wave (CW) mode to produce an average 10 MW of beam power. The Linac beam energy is 1.0 GeV. The average proton beam intensity in exit is 10 mA.

  7. Superconducting LINAC booster for the Mumbai pelletron

    Indian Academy of Sciences (India)

    LINAC), to boost the energy of heavy ion beams from the 14UD Pelletron accelerator, at Tata Institute of Fundamental Research, Mumbai. The accelerating structures in the LINAC are quarter wave resonators (QWR) coated with lead which is ...

  8. Design considerations for high-current superconducting ion linacs

    International Nuclear Information System (INIS)

    Delayen, J.R.; Bohn, C.L.; Micklich, B.J.; Roche, C.T.; Sagalovsky, L.

    1993-01-01

    Superconducting linacs may be a viable option for high-current applications such as fusion materials irradiation testing, spallation neutron source, transmutation of radioactive waste, tritium production, and energy production. These linacs must run reliably for many years and allow easy routine maintenance. Superconducting cavities operate efficiently with high cw gradients, properties which help to reduce operating and capital costs, respectively. However, cost-effectiveness is not the sole consideration in these applications. For example, beam impingement must be essentially eliminated to prevent unsafe radioactivation of the accelerating structures, and thus large apertures are needed through which to pass the beam. Because of their high efficiency, superconducting cavities can be designed with very large bore apertures, thereby reducing the effect of beam impingement. Key aspects of high-current cw superconducting linac designs are explored in this context

  9. Status of the SNS superconducting linac and future plan

    International Nuclear Information System (INIS)

    Kim, Sang-Ho

    2008-01-01

    The use of superconducting radiofrequency (SRF) cavities in particle accelerator is becoming more widespread. Among the projects that make use of that technology is the Spallation Neutron Source, where H- ions are accelerated to about 1 GeV, mostly making use of niobium elliptical cavities. SNS generates neutrons by the spallation reaction with the accelerated short (about 700 ns) sub-bunches of protons, which will in turn allow probing structural and magnetic properties of new and existing materials. The SNS superconducting linac is the largest application of RF superconductivity to come on-line in the last decade and has been operating with beam for almost two years. As the first operational pulsed superconducting linac, many of the aspects of its performance were unknown and unpredictable. A lot of experiences and data have been gathered on the pulsed behavior of cavities and cryomodules at various repetition rates and at various temperatures during the commissioning of its components and beam operations. This experience is of great value in determining future optimizations of SNS as well in guiding in the design and operation of future pulsed superconducting linacs. The testing of the superconducting cavities, the operating experience with beam, the performance of the superconducting linac and the future plans will be presented.

  10. Initial operation of the Argonne superconducting heavy-ion linac

    Energy Technology Data Exchange (ETDEWEB)

    Shepard, K. W.

    1979-01-01

    Initial operation and recent development of the Argonne superconducting heavy-ion linac are discussed. The linac has been developed in order to demonstrate a cost-effective means of extending the performance of electrostatic tandem accelerators. The results of beam acceleration tests which began in June 1978 are described. At present 7 of a planned array of 22 resonators are operating on-line, and the linac system provides an effective accelerating potential of 7.5 MV. Although some technical problems remain, the level of performance and reliability is sufficient that appreciable beam time is becoming available to users.

  11. The quarter wave resonator as a superconducting linac element

    International Nuclear Information System (INIS)

    Ben-Zvi, I.; Brennan, J.M.

    1983-01-01

    The electrical and mechanical properties of quarter wave resonators are derived. A procedure for optimal design of a quarter wave resonator for use in a superconducting heavy ion linac is given. It is concluded that a quarter wave resonator has significant advantages for this application. (orig.)

  12. Superconducting Linac and associated accelerator development at ...

    Indian Academy of Sciences (India)

    This system is undergoing tests with the modified BARC resonator controller. Resonators for the first Linac module were fabricated in collaboration with Argonne Na- tional Laboratory ... It is now working at high RF power satisfactorily. ... consists of the helium liquefier, nitrogen liquefier, cryostats cryo distribution system, he-.

  13. Optimization of the cooling power distribution in a superconducting linac

    International Nuclear Information System (INIS)

    Wendl, C.M.; Noe, J.W.

    1996-01-01

    The benefits of setting the resonators in a superconducting heavy-ion linac to a certain optimum distribution of cooling power have been evaluated in terms of the total acceleration such a distribution may produce, compared to a distribution in which each resonator dissipates power equally. The optimum power distribution can be expressed in closed form in certain simplified cases, but the general case is solved by equalizing the 'marginal power cost' of the resonators by iteration in a computer simulation. For the Stony Brook linac an additional possible acceleration of several percent is thus predicted for typical beams. (author)

  14. Canceling evanescent waves in high-energy superconducting rf linacs

    Science.gov (United States)

    Litvinenko, Vladimir N.

    2010-05-01

    Many future projects plan using high-current, high-energy, multipass energy-recovery linacs that are based on superconducting rf (SRF) cavities. The necessity of ensuring the transverse stability of the beam in such accelerators imposes strict limits on the high order modes (HOMs) impedances, and demands effective HOM damping. The latter requirement often precludes achieving a high real-estate accelerating gradient in such structures. The modular structure of long SRF linacs also requires incorporating vacuum flanges; however, these flanges have surface contacts and cannot tolerate strong rf fields. Locating them in the low-field areas of the linac structure may involve considerably elongating the intermodular interfaces, a change that would reduce the linac’s real-estate accelerating gradient. In this paper, I propose a novel method to resolve this issue, using compact interconnects between the SRF cavities wherein to locate effective HOM dampers and vacuum flanges.

  15. Free electron lasers on superconducting linac

    International Nuclear Information System (INIS)

    Lapierrre, Y.

    1986-01-01

    Analysing the results of several Free Electron Laser experiments, we show that the best accelerator should be a superconducting linear accelerator: it can provide a c.w. high quality beam (energy spread and emittance). The technology of RF superconductivity provide the opportunity to build such an accelerator. In this paper, we present the foreseen results one can expect from a FEL based on such a machine: - Average power > 1 Kw, - Total efficiency > 2.5%, - Tunability between 0.6 and 5 μm [fr

  16. Superconducting LINAC booster for the Mumbai pelletron

    Indian Academy of Sciences (India)

    the scope of studies by a further increase of the energy of the heavy ion beams from the pelletron. It was realized more than two decades ago that significant benefits could be derived from the use of superconducting RF resonators for the acceleration of heavy ion beams for nuclear physics experiments. Since ohmic losses ...

  17. Superconducting Linac and associated accelerator development at ...

    Indian Academy of Sciences (India)

    Abstract. There has been significant progress in the programme to develop a superconducting linear accelerator as a booster for the Pelletron accelerator at the Nuclear Science Centre. This paper presents the current status of the development in all the major components of the accelerator.

  18. Superconducting LINAC booster for the Mumbai pelletron

    Indian Academy of Sciences (India)

    It was realized more than two decades ago that significant benefits could be derived from the use of superconducting RF resonators for the acceleration of heavy ion ..... Several such LCS's will be interconnected through fast ethernet to the main control station (MCS) located in the control room. The various LCS's will help in ...

  19. RIA Superconducting Drift Tube Linac R and D

    International Nuclear Information System (INIS)

    Popielarski, J.; Bierwagen, J.; Bricker, S.; Compton, C.; DeLauter, J.; Glennon, P.; Grimm, T.; Hartung, W.; Harvell, D.; Hodek, M.; Johnson, M.; Marti, F.; Miller, P.; Moblo, A.; Norton, D.; Popielarski, L.; Wlodarczak, J.; York, R.C.; Zeller, A.

    2009-01-01

    Cavity and cryomodule development work for a superconducting ion linac has been underway for several years at the National Superconducting Cyclotron Laboratory. The original application of the work was the proposed Rare Isotope Accelerator. At present, the work is being continued for use with the Facility for Rare Isotope Beams (FRIB). The baseline linac for FRIB requires 4 types of superconducting cavities to cover the velocity range needed to accelerate an ion beam to (ge) 200 MeV/u: 2 types of quarter-wave resonator (QWR) and 2 types of half-wave resonator (HWR). Superconducting solenoids are used for focusing. Active and passive shielding is required to ensure that the solenoids field does not degrade the cavity performance. First prototypes of both QWR types and one HWR type have been fabricated and tested. A prototype solenoid has been procured and tested. A test cryomodule has been fabricated and tested. The test cryomodule contains one QWR, one HWR, one solenoid, and one super-ferric quadrupole. This report covers the design, fabrication, and testing of this cryomodule

  20. Coupled superconducting resonant cavities for a heavy ion linac

    International Nuclear Information System (INIS)

    Shepard, K.W.; Roy, A.

    1992-01-01

    A design for a superconducting niobium slow-wave accelerating structure has been explored that may have performance and cost advantages over existing technology. The option considered is an array of pairs of quarter-wave coaxial-line resonant cavities, the two elements of each pair strongly coupled through a short superconducting transmission line. In the linac formed by such an array, each paired structure is independently phased. A disadvantage of two-gap slow wave structures is that each cavity is relatively short, so that a large number of independently-phased elements is required for a linac. Increasing the number of drift tubes per cavity reduces the number of independently-phased elements but at the cost of reducing the range of useful velocity acceptance for each element. Coupling two cavities splits the accelerating rf eigenmode into two resonant modes each of which covers a portion of the full velocity acceptance range of the original, single cavity mode. Using both of these resonant modes makes feasible the use of coupled cavity pairs for a linac with little loss in velocity acceptance. (Author) 2 figs., 8 refs

  1. Optical emission spectroscopy of the Linac4 and superconducting proton Linac plasma generators.

    Science.gov (United States)

    Lettry, J; Fantz, U; Kronberger, M; Kalvas, T; Koivisto, H; Komppula, J; Mahner, E; Schmitzer, C; Sanchez, J; Scrivens, R; Midttun, O; Myllyperkiö, P; O'Neil, M; Pereira, H; Paoluzzi, M; Tarvainen, O; Wünderlich, D

    2012-02-01

    CERN's superconducting proton Linac (SPL) study investigates a 50 Hz high-energy, high-power Linac for H(-) ions. The SPL plasma generator is an evolution of the DESY ion source plasma generator currently operated at CERN's Linac4 test stand. The plasma generator is a step towards a particle source for the SPL, it is designed to handle 100 kW peak RF-power at a 6% duty factor. While the acquisition of an integrated hydrogen plasma optical spectrum is straightforward, the measurement of a time-resolved spectrum requires dedicated amplification schemes. The experimental setup for visible light based on photomultipliers and narrow bandwidth filters and the UV spectrometer setup are described. The H(α), H(β), and H(γ) Balmer line intensities, the Lyman band and alpha transition were measured. A parametric study of the optical emission from the Linac4 ion source and the SPL plasma generator as a function of RF-power and gas pressure is presented. The potential of optical emission spectrometry coupled to RF-power coupling measurements for on-line monitoring of short RF heated hydrogen plasma pulses is discussed.

  2. Investigation of alternating-phase focusing for superconducting linacs

    International Nuclear Information System (INIS)

    Sagalovsky, L.; Delayen, J.R.

    1992-01-01

    The paper describes a new model of alternating-phase focusing (APF) dynamics applicable to ion linacs with short independently controlled superconducting cavities. The equations of motion are derived for a cylindrically symmetric electric field represented by a traveling wave with continuous periodic phase modulation. Solutions are obtained and analyzed for both the linear and nonlinear particle motion. Problems of linear stability and overall longitudinal acceptance are solved using standard mathematical techniques for periodic systems; analytical results are obtained. It is shown that the main beam dynamical aspects of APF are adequately described by four parameters; equilibrium synchronous phase, phase modulation amplitude, length of APF period, and incremental energy gain. The model can be applied to study the feasibility of realizing APF in a low-β section of a proton linac. (author). 9 refs., 3 figs

  3. Improved performance of the control scheme for IUAC superconducting Linac

    International Nuclear Information System (INIS)

    Sahu, B.K.; Suman, S.K.; Kumar, R.

    2015-01-01

    Since many years energized ion beams from linac are being delivered routinely for scheduled experiments using all the three accelerating modules of linac along with super buncher and rebuncher. Major efforts are dedicated to improve the performance of the control scheme to minimise the down time of the linac during operation. Earlier, a number of developments were carried out to improve the dynamics of the control scheme. The most significant of them is the piezoelectric actuator based tuning mechanism which is implemented in all the operational resonators of second and third accelerating modules of superconducting linac. This has helped us to bridge the gap between the accelerating fields achieved during Q measurement at 6 W of helium power and during phase locking of the resonator during beam operation at a given RF power (∼120W). The piezoelectric actuator based tuner is also instrumental to reduce the unlocking rate of the resonators. Pulse width modulation (PWM) control based helium gas operated tuner is implemented in few resonators to improve phase locking performance. CAMAC based distributed control scheme is upgraded to VME based distributed control without changing the existing client interface to maintain uniformity between the Pelletron and linac control. Python code support has been implemented to protect the resonators against high forward power during unlocking. This is also integrated with the display status of the resonators for monitoring. A frequency to voltage converter is incorporated in control scheme to monitor the frequency error. This has helped us to develop a scheme for automatic phase locking of the cavities using piezoelectric actuator based tuner control. (author)

  4. Status of the Argonne superconducting-linac heavy-ion booster

    International Nuclear Information System (INIS)

    Aron, J.; Benaroya, R.; Bollinger, L.M.; Clifft, B.E.; Johnson, K.W.; Markovich, P.; Nixon, J.M.; Pardo, R.; Shepard, K.W.; Zinkann, G.

    1982-01-01

    The Argonne Superconducting-Linac Heavy-Ion Booster is nearly complete. The linac now contains 22 of the complement of 24 resonators which will eventually be installed. During the construction period, the completed portion of the linac has provided useful beams for nuclear and atomic physics experimental programs. The linac-control system has been developed so that much of the more complex control functions are performed automatically

  5. Status of the Kansas State University superconducting linac project

    Science.gov (United States)

    Gray, Tom J.

    1986-05-01

    Funding for the construction of the superconducting linac at Kansas State University was approved by the Department of Energy on May 15, 1985. The project is funded out of the Division of Chemical Sciences, USDOE. Initial design and staff technical training was initiated during 1984-85 with laboratory personnel working at both Florida State University and Argonne National Laboratory. The linac under construction is based upon the Nb split-ring resonator technology developed at Argonne National Laboratory for ATLAS. The linac at Kansas State University will have 14 superconducting resonators with nine low-β (β=0.06) and five high-β (β=0.105) units operating at 97 MHz. Work has progressed on both of the single-resonator cryostats for time bunching and energy rebunching, respectively, with the major cryostat components presently under construction by C. E. Raymond Enterprise Manufacturing, a division of Combustion Engineering, with scheduled delivery of the single resonator cryostat vacuum housings, LN2-cooled heat shields, and LHe Dewars on January 17, 1986. Orders for all Nb-clad Cu resonators have been placed with Argonne National Laboratory and two low-β units are currently under construction. Requests for quotations for a 300-W LHe refrigerator (expandable to 500 W) 1000-l storage Dewar and LHe distribution system have been issued. The building addition which includes a new accelerator/experimental hall (˜6000 ft2 basement structure) and ground-level laboratory support space including additional experimental setup space, additional machine shop space, and mechanical equipment space, is currently under construction with a completion date scheduled for May 1986. Additional personnel training on LHe refrigeration systems is scheduled for January 1986, at the Texas Accelerator Center and at Florida State University.

  6. High Power CW Superconducting Linacs for EURISOL and XADS

    CERN Document Server

    Biarrotte, J L

    2004-01-01

    A multi-MW superconducting proton linac is proposed as the baseline solution for the EURISOL and the XADS driver accelerators. In the EURISOL project, which studies the design of the next-generation European ISOL facility, it is used to produce both neutron-deficient and neutron-rich exotic nuclei far from the valley of stability. In the PDS-XADS project, which aims to the demonstration of the feasibility of an ADS system for nuclear waste transmutation, it is used to produce the neutron flux required by the associated sub-critical reactor. In this paper, we report the main results and conclusions reached within these preliminary design studies. A special emphasis is given on the on-going and future R&D to be done to accomplish the demonstration of the full technology.

  7. Requirements for longitudinal HOM damping in superconducting recirculating linacs

    International Nuclear Information System (INIS)

    Bisognano, J.J.; Fripp, M.L.

    1989-01-01

    Transverse beam breakup provides the primary current limitation in the operation of superconducting recirculating linacs and requires the significant damping of transverse-deflecting higher order modes. The need to damp the coexisting longitudinal HOMs in these nominally isochronous machines, however, is not as clear. Isochronicity implies that energy variations induced by excitation of longitudinal modes do not translate directly into position and current modulations. Such modulations, if present, could enhance the initial excitation, effectively closing a potentially unstable feedback loop. Design optimization of cavity structures may suggest that no longitudinal damping be provided. On the other hand, easing of the isochronicity requirement may provide desired flexibility in lattice design. In this note, limits are placed on the requirements for longitudinal HOM damping and on the tolerances for isochronicity which are driven by possible longitudinal multipass phenomena. 2 refs., 1 fig

  8. Digital self-excited loop for a superconducting linac

    Energy Technology Data Exchange (ETDEWEB)

    Joshi, Gopal, E-mail: gjos@barc.gov.in [BARC, Mumbai 400085 (India); Singh, Pitamber [BARC, Mumbai 400085 (India); Agarwal, Vivek; Kumar, Girish [IITB, Mumbai 400076 (India)

    2014-10-21

    A self-excited loop based RF control with signal processing carried out primarily in the digital domain, has been developed for the amplitude and phase stabilization of RF fields in the superconducting resonators of BARC-TIFR linac, having a resonant frequency of 150 MHz. The system employs direct sampling and the subsequent signal processing has been carried out in a Field Programmable Gate Array. The signal processing has all been carried out in the baseband using the in-phase and the quadrature components only. Limiter, one of the key elements of the signal processing, has been implemented as a feedback loop, which keeps the magnitude of its output constant without affecting the phase. Using a first order low pass filter with gain as the controller, good steady state and adequate dynamic characteristics have been obtained for the limiter. The paper describes the signal processing modules with emphasis on the analysis of the limiter. The test results with the BARC-TIFR linac are presented. The results are encouraging and establish the suitability of the signal processing scheme for this and similar systems.

  9. Status of the Superconducting Proton Linac (SPL) Cryo-Module

    CERN Document Server

    Parma, V; Capatina, O; Chambrillon, J; Montesinos, E; Schirm, K; Vande Craen, A; Vandoni, G; Van Weelderen, R

    2014-01-01

    The Superconducting Proton Linac (SPL) is an R&D effort conducted by CERN in partnership with other international laboratories, aimed at developing key technologies for the construction of a multi-megawatt proton linac based on state-of-the-art SRF technology. Such an accelerator could serve as a driver in new physics facilities for neutrinos and/or radioactive ion beams [1]. Amongst the main objectives of this effort, are the development of 704 MHz bulk niobium beta=1 elliptical cavities (operating at 2 K and providing an accelerating gradient of 25 MV/m) and the test of a string of cavities integrated in a machine-type cryo-module. In an initial phase, only four out of the eight cavities of the SPL cryo-module will be tested in a half-length cryo-module developed for this purpose, which nonetheless preserves the main features of the full size module. This paper presents the final design of the cryo-module and the status of the construction of the main cryostat parts. Preliminary plans for the assembly a...

  10. Status of the Argonne superconducting-linac heavy-ion energy booster

    International Nuclear Information System (INIS)

    Aron, J.; Benaroya, R.; Bollinger, L.M.; Clifft, B.E.; Henning, W.; Johnson, K.W.; Nixon, J.M.; Markovich, P.; Shepard, K.W.

    1979-01-01

    A superconducting linac is being constructed to provide an energy booster for heavy ions from an FN tandem. By late 1980 the linac will consist of 24 independently-phased superconducting resonators, and will provide an effective accelerating potential of more than 25 MV. While the linac is under construction, completed sections are being used to provide useful beam for nuclear physics experiments. In the most recent run with beam (June 1979), an eight resonator array provided an effective accelerating potential of 9.3 MV. Operation of a 12 resonator array is scheduled to begin in October 1979

  11. Status of the Argonne superconducting-linac heavy-ion energy booster

    Energy Technology Data Exchange (ETDEWEB)

    Aron, J.; Benaroya, R.; Bollinger, L.M.; Clifft, B.E.; Henning, W.; Johnson, K.W.; Nixon, J.M.; Markovich, P.; Shepard, K.W.

    1979-01-01

    A superconducting linac is being constructed to provide an energy booster for heavy ions from an FN tandem. By late 1980 the linac will consist of 24 independently-phased superconducting resonators, and will provide an effective accelerating potential of more than 25 MV. While the linac is under construction, completed sections are being used to provide useful beam for nuclear physics experiments. In the most recent run with beam (June 1979), an eight resonator array provided an effective accelerating potential of 9.3 MV. Operation of a 12 resonator array is scheduled to begin in October 1979.

  12. Discussion of superconducting and room-temperature high-intensity ion linacs

    International Nuclear Information System (INIS)

    Jameson, R.A.

    1996-01-01

    The point of view taken in this discussion is that the basic technology base exists in all essential respects for both superconducting or room-temperature rf linac accelerators and associated power and control systems, and thus a project can make a choice between these technologies on overall system considerations. These include performance, cost, availability, flexibility, and upgradability. Large high-intensity neutron source proposals involving light-ion rf linacs in three categories are reviewed in this context. The categories arc cw linacs to high (∼1 GeV) and low (∼40 MeV) output energy, and pulsed linacs to energy ∼1 GeV

  13. Superconducting Super Collider Laboratory coupled-cavity linac mechanical design

    International Nuclear Information System (INIS)

    Starling, W.J.; Cain, T.

    1992-01-01

    A collaboration between the Superconducting Super Collider Laboratory (SSCL) and the Los Alamos National Laboratory (LANL) for the engineering and mechanical design of the SSCL Coupled-Cavity Linac (CCL) has yielded an innovative example of the well known side coupled-cavity type of linear accelerator. The SSCL CCL accelerates an H - beam from 70 MeV to 600 MeV with an rf cavity structure consisting of eight tanks in each of nine modules for a total length of about 112 meters. Magnetically-coupled bridge couplers transfer power from tank to tank within a module. A single rf power input is located at the center bridge coupler of each module. The bridge couplers permit placement along the beam line of combined function focusing/steering electromagnets and diagnostic pods for beam instrumentation. Each tank and bridge coupler is rf frequency stabilized, nominally to 1,283 MHz, by water pumped through integral water passages. Air isolation grooves surround the water passages at each braze joint so that water-to-vacuum interfaces are avoided. Each tank is supported by adjustable spherical bearing rod end struts to permit alignment and accommodate thermal expansion and contraction of the rf structure. Tank struts, electromagnet/diagnostic pod support frames, vacuum manifolds and utilities are all mounted to a girder-and-leg support stand running the full length of the CCL. (Author) tab., fig

  14. Design of high-energy high-current linac with focusing by superconducting solenoids

    Energy Technology Data Exchange (ETDEWEB)

    Batskikh, G.I.; Belugin, V.M.; Bondarev, B.I. [Moscow Radiotechnical Institute (Russian Federation)] [and others

    1995-10-01

    The advancement of MRTI design for 1.5 GeV and 250 mA ion CW linac was presented in a previous report. In this new linac version all the way from input to output the ions are focused by magnetic fields of superconducting solenoids. The ion limit current is far beyond the needed value. The linac focusing channel offers major advantages over the more conventional ones. The acceptance is 1.7 times as large for such focusing channel as for quadrupole one. Concurrently, a random perturbation sensitivity for such channel is one order of magnitude smaller than in quadrupole channel. These focusing channel features allow to decrease beam matched radius and increase a linac radiation purity without aperture growth. {open_quotes}Regotron{close_quotes} is used as high power generator in linac main part. But D&W cavities need not be divided into sections connected by RF-bridges which denuded them of high coupling factor.

  15. Development of a superconducting LINAC booster for the Pelletron ...

    Indian Academy of Sciences (India)

    beam through the LINAC is carried out using periodic quadrupole doublet magnets operating at room temperature. The present ... A 14Æ dipole magnet shoots the beam from the pelletron to the first half of the LINAC where it gets .... penetrations, the drive shaft of the stepper motors are connected to the drive mechanisms.

  16. Comparison of coaxial higher order mode couplers for the CERN Superconducting Proton Linac study

    CERN Document Server

    AUTHOR|(CDS)2085329; Gerigk, Frank; Van Rienen, Ursula

    2017-01-01

    Higher order modes (HOMs) may affect beam stability and refrigeration requirements of superconducting proton linacs such as the Superconducting Proton Linac, which is studied at CERN. Under certain conditions beam-induced HOMs can accumulate sufficient energy to destabilize the beam or quench the superconducting cavities. In order to limit these effects, CERN considers the use of coaxial HOM couplers on the cutoff tubes of the 5-cell superconducting cavities. These couplers consist of resonant antennas shaped as loops or probes, which are designed to couple to potentially dangerous modes while sufficiently rejecting the fundamental mode. In this paper, the design process is presented and a comparison is made between various designs for the high-beta SPL cavities, which operate at 704.4 MHz. The rf and thermal behavior as well as mechanical aspects are discussed. In order to verify the designs, a rapid prototype for the favored coupler was fabricated and characterized on a low-power test-stand.

  17. A controller for 97 MHz super-conducting QWR for NSC LINAC booster

    Indian Academy of Sciences (India)

    A resonator controller has been implemented to stabilize the amplitude and phase of rf fields in the super-conducting resonators of NSC LINAC. Due to reduced losses these resonators have intrinsic band width of the order of 0.1 Hz at 97 MHz whereas the vibration-induced center frequency changes are of the order of a ...

  18. Superconducting linac beam dynamics with high-order maps for RF resonators

    CERN Document Server

    Geraci, A A; Pardo, R C; 10.1016/j.nima.2003.11.177

    2004-01-01

    The arbitrary-order map beam optics code COSY Infinity has recently been adapted to calculate accurate high-order ion-optical maps for electrostatic and radio-frequency accelerating structures. The beam dynamics of the superconducting low-velocity positive-ion injector linac for the ATLAS accelerator at Argonne National Lab is used to demonstrate some advantages of the new simulation capability. The injector linac involves four different types of superconducting accelerating structures and has a total of 18 resonators. The detailed geometry for each of the accelerating cavities is included, allowing an accurate representation of the on- and off-axis electric fields. The fields are obtained within the code from a Poisson-solver for cylindrically symmetric electrodes of arbitrary geometry. The transverse focusing is done with superconducting solenoids. A detailed comparison of the transverse and longitudinal phase space is made with the conventional ray-tracing code LINRAY. The two codes are evaluated for ease ...

  19. Overview of superconducting RF technology and its application to high-current linacs

    International Nuclear Information System (INIS)

    Delayen, J.R.; Bohn, C.L.

    1994-01-01

    Superconducting linacs may be a viable option for high-current applications such as copious neutron production like that needed for transmutation of radioactive waste. These linacs must run reliably for many years and allow easy routine maintenance. superconducting cavities operate efficiently with high cw gradients, properties which help to reduce operating and capital costs. However, cost effectiveness is not the sole consideration in these applications. For example, beam impingement must be essentially eliminated to prevent unsafe radioactivation of the accelerating structures, and thus large apertures are needed through which to pass the beam. Because of their high efficiency, superconducting cavities can be designed with very large bore apertures, thereby reducing the effect of beam impingement

  20. Design considerations for a superconducting linac as an option for the ESS

    CERN Document Server

    Bräutigam, W F; Schug, G; Zaplatin, E N; Meads, P F; Senichev, Yu V

    1999-01-01

    An approach for a superconducting high-current proton linac for the ESS has been discussed as an option in the "Proposal for a Next Generation Neutron Source for Europe-the European Spallation Source (ESS)". The following work studies the technical and economic conditions for a superconducting linac at the high-energy end of the proposed accelerator system. The use of superconducting elliptical cavities for the acceleration of high-energetic particles beta =v/c-1 is certainly state of the art. This is documented by many activities (TJNAF, TESLA, LEP, LHC, and KEK). A design study for the cavities is described in another paper on this conference. For low energy particles ( beta <<1) quarter wave type cavities and spoke-type cavities have been discussed. The main motivation for this study is the expectation of significant cost reduction in terms of operational and possibly investment cost. (5 refs).

  1. A digital closed loop control system for automatic phase locking of superconducting cavities of IUAC Linac

    International Nuclear Information System (INIS)

    Dutt, R.N.; Rai, A.; Pandey, A.; Sahu, B.K.; Patra, P.; Karmakar, J.; Chaudhari, G.K.; Mathur, Y.; Ghosh, S.; Kanjilal, D.

    2013-01-01

    A closed loop digital control system has been designed and tested to automate the tuning process of superconducting resonators of LINAC at Inter-University Accelerator Centre, New Delhi. The mechanism controls the proportional valves of the He gas based pneumatic tuner in response to the phase and frequency errors of the cavity RF field. The main RF phase lock loop (PLL) is automatically closed once the resonant frequency is within locking range of the resonator PLL. The digital control scheme was successfully tested on few resonators of LINAC cryostat 1. A high stability of phase lock was observed. The details of the digital automation system are presented in the paper. (author)

  2. Commissioning of the Superconducting Linac at the Spallation Neutron Source (SNS)

    International Nuclear Information System (INIS)

    Kim, Sang-Ho; Campisi, Isidoro E.

    2007-01-01

    The use of superconducting radiofrequency (SRF) cavities in particle accelerator is becoming more widespread. Among the projects that make use of that technology is the Spallation Neutron Source, where H-ions are accelerated to about 1 GeV, mostly making use of niobium elliptical cavities. SNS will use the accelerated short (about 700 ns) sub-bunches of protons to generate neutrons by spallation, which will in turn allow probing structural and magnetic properties of new and existing materials. The SNS superconducting linac is the largest application of RF superconductivity to come on-line in the last decade. The SRF cavities, operated at 805 MHz, were designed, built and integrated into cryomodules at Jefferson Lab and installed and tested at SNS. SNS is also the first proton-like accelerator which uses SRF cavities in a pulse mode. Many of the details of the cavity performance are peculiar to this mode of operation, which is also being applied to lepton accelerators (TESLA test facility and X-FEL at DESY and the international linear collider project). Thanks to the low frequency of the SNS superconducting cavities, operation at 4.2 K has been possible without beam energy degradation, even though the cavities and cryogenic systems were originally designed for 2.1 K operation. The testing of the superconducting cavities, the operating experience with beam and the performance of the superconducting linac will be presented

  3. Updating the CSNS injector linac to 250 MeV with superconducting double-spoke cavities

    International Nuclear Information System (INIS)

    Li Zhihui; Fu Shinian

    2015-01-01

    In order to update the beam power from 100 kW to 500 kW in the China Spallation neutron source (CSNS) Phase Ⅱ, one of the important measures is to replace the 80 m long beam transport line between the present 80 MeV linac injector and the rapid cycling synchrotron (RCS) to another kind of acceleration structure. In this paper, we proposed a scheme based on 324 MHz double-spoke superconducting cavities. Unlike the superconducting elliptical cavity and normal conducting coupled cavity linac (CCL) structure, the double-spoke cavity belongs to the TE mode structure and has a smaller transverse dimension compared with that of the TH mode one. It can work at base frequency as the drift tube Linac (DTL) section, so that the cost and complexity of the RF system will be much decreased, and the behaviors of the beam dynamics are also improved significantly because of the low charge density and larger longitudinal acceptance. Furthermore, because of the relatively longer interactive length between the charged particle and the electromagnetic field per cell, it needs relatively less cell numbers and it has larger velocity acceptance compared with the double frequency TH structures. The superconducting section consists of 14 periods, each of which includes 3 superconducting cavities encapsulated in one cryomodule and a doublet in room temperate. The general considerations on cavity and beam dynamics design are discussed and the main results are presented. (authors)

  4. Superconducting LINAC booster for the pelletron accelerator at Bombay

    International Nuclear Information System (INIS)

    Pillay, R.G.; Kurup, M.B.; Jain, A.K.; Biswas, D.; Kori, S.A.; Srinivasan, B.

    1989-01-01

    A superconducting heavy ion linear accelerator being constructed as a booster for the 14 UD pelletron installed recently at Bombay. The work involved in this project and the progress made so far are reviewed. (author). 15 refs., 8 figs

  5. Present and next steps of the JAERI superconducting rf linac based FEL program

    International Nuclear Information System (INIS)

    Minehara, E.J.; Yamauchi, T.; Sugimoto, M.

    2000-01-01

    The JAERI superconducting rf linac based FEL has successfully been lased to produce a 0.3 kW FEL light and 100 kW or larger electron beam output in quasi continuous wave operation in 1999. The 1 kW class output as our present program goal will be achieved to improve the optical out coupling method in the FEL optical resonator, the electron gun, and the electron beam optics in the JAERI FEL driver. As our next 5 year program goal is the 100 kW class FEL light and a few tens MW class electron beam output in average, quasi continuous wave operation of the light and electron beam will be planned in the JAERI superconducting rf linac based FEL facility. Conceptual design options needed for such a very high power operation and shorter wavelength light sources will be discussed to improve and to upgrade the exciting facility. (author)

  6. R & D on Very-High-Current Superconducting Proton Linac, Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Ben-Zvi, Ilan [Stony Brook Univ., NY (United States)

    2013-03-31

    The aim of this R&D project was to develop a superconducting cavity for a very-­ high-current proton accelerator. The particular application motivating the proposal was a LHC upgrade called the Superconducting Proton Linac, or SPL. Under the grant awarded to Stony Brook University the cavity was designed, a prototype copper cavity, followed by the niobium cavity, were built. A new set of HOM dampers was developed. The cavity has outstanding RF performance parameters – low surface fields, low power loss and all HOMs are fully damped. In fact, it is a “universal cavity” in the sense that it is suited for the acceleration of high-­current protons and well as high current electrons. Its damping of HOM modes is so good that it can see service in a multi-pass linac or an Energy Recovery Linac in addition to the easier service in a single-pass linac. Extensive measurements were made on the cavities and couplers, with the exception of the cold test of the niobium cavity. At the time of this report the cavity has been chemically processed and is ready for vertical testing which will be carried out shortly.

  7. A high gradient superconducting quadrupole for a low charge state ion linac

    International Nuclear Information System (INIS)

    Kim, J.W.; Shepard, K.W.; Nolen, J.A.

    1995-01-01

    A superconducting quadrupole magnet has been designed for use as the focusing element in a low charge state linac proposed at Argonne. The expected field gradient is 350 T/m at an operating current of 53 A, and the bore diameter is 3 cm. The use of rare earth material holmium for pole tips provides about 10% more gradient then iron pole tips. The design and the status of construction of a prototype singlet magnet is described

  8. Development of a superconducting LINAC booster for the Pelletron ...

    Indian Academy of Sciences (India)

    Superconducting cavity resonator; cryogenic distribution system; pelletron accelerator; beam buncher; amplitude and phase feedback. PACS Nos 29.17.+w; 07.20. ... normal room temperature cavities, a substantial reduction in electrical power to sustain large accelerating fields in these devices can be achieved. This allows ...

  9. Spatial and temporal beam profile monitor with nanosecond resolution for CERN's Linac4 and Superconducting Proton Linac

    CERN Document Server

    Hori, M

    2008-01-01

    The Linac4, now being developed at CERN, will provide 160-MeV H- beams of high intensity . Before this beam can be injected into the CERN Proton Synchrotron Booster or future Superconducting Proton Linac for further acceleration, some sequences of 500-ps-long micro-bunches must be removed from it, using a beam chopper. These bunches, if left in the beam, would fall outside the longitudinal acceptance of the accelerators and make them radioactive. We developed a monitor to measure the time structure and spatial profile of this chopped beam, with respective resolutions and . Its large active area and dynamic range also allows investigations of beam halos. The ion beam first struck a carbon foil, and secondary electrons emerging from the foil were accelerated by a series of parallel grid electrodes. These electrons struck a phosphor screen, and the resulting image of the scintillation light was guided to a thermoelectrically cooled, charge-coupled device camera. The time resolution was attained by applying high-...

  10. Multiplacting analysis on 650 MHz, BETA 0.61 superconducting RF LINAC cavity

    International Nuclear Information System (INIS)

    Seth, Sudeshna; Som, Sumit; Mandal, Aditya; Ghosh, Surajit; Saha, S.

    2013-01-01

    Design, analysis and development of high-β multi-cell elliptical shape Superconducting RF linac cavity has been taken up by VECC, Kolkata as a part of IIFC collaboration. The project aims to provide the-art technology achieving very high electric field gradient in superconducting linac cavity, which can be used in high energy high current proton linear accelerator to be built for ADSS/SNS programme in India and in Project-X at Fermilab, USA. The performance of this type of superconducting RF structure can be greatly affected due to multipacting when we feed power to the cavity. Multipacting is a phenomenon of resonant electron multiplication in which a large number of electrons build up an electron Avalanche which absorbs RF Energy leading to remarkable power losses and heating of the walls, making it impossible to raise the electric field by increasing the RF Power. Multipacting analysis has been carried out for 650 MHz, β=0.61, superconducting elliptical cavity using 2D code MultiPac 2.1 and 3 D code CST particle studio and the result is presented in this paper. (author)

  11. Comparison of coaxial higher order mode couplers for the CERN Superconducting Proton Linac study

    Directory of Open Access Journals (Sweden)

    K. Papke

    2017-06-01

    Full Text Available Higher order modes (HOMs may affect beam stability and refrigeration requirements of superconducting proton linacs such as the Superconducting Proton Linac, which is studied at CERN. Under certain conditions beam-induced HOMs can accumulate sufficient energy to destabilize the beam or quench the superconducting cavities. In order to limit these effects, CERN considers the use of coaxial HOM couplers on the cutoff tubes of the 5-cell superconducting cavities. These couplers consist of resonant antennas shaped as loops or probes, which are designed to couple to potentially dangerous modes while sufficiently rejecting the fundamental mode. In this paper, the design process is presented and a comparison is made between various designs for the high-beta SPL cavities, which operate at 704.4 MHz. The rf and thermal behavior as well as mechanical aspects are discussed. In order to verify the designs, a rapid prototype for the favored coupler was fabricated and characterized on a low-power test-stand.

  12. Some aspects of the layout and optimization for the cryogenic supply of superconducting linacs

    International Nuclear Information System (INIS)

    Petersen, Bernd

    2006-01-01

    The primary power consumption of large linear accelerators can be significantly lowered by means of superconducting RF technologies. Nevertheless, superconducting RF cavities dissipate energy at low temperatures, and large cryogenic plants have to be operated for the cryogenic supply. In particular, cryogenic plants for future superconducting Energy Recovery Linacs (ERLs) will require primary power in the order of some mega watts. Because of the fundamental laws of thermodynamics, the efficiencies of the cryogenic plants decrease with decreasing operation temperature. At the same time, the dynamic heat losses of high-Q superconducting cavities decrease strongly with temperature. In order to minimize the primary power consumption at stable operating conditions of the cavities, the cryogenic operating conditions, and in particular the operation temperature, have to be optimized. With the focus on helium II cooling, some aspects of cryogenic efficiencies at low temperatures and the consequences for the layout of cryogenic systems are discussed. As an example, options for the cryogenic layout of the European XFEL-Linac including some ERL upgrade options are presented

  13. Feasibility of Using Conductively Cooled Magnets in Cryomidules of Superconducting Linacs

    Energy Technology Data Exchange (ETDEWEB)

    Terechkine, I. [Fermilab; Cheban, Cheban,S. [Fermilab; Nicol. T., Nicol. T. [Fermilab; Poloubotko, V. [Fermilab; Sergatskov, D. [Fermilab

    2013-09-01

    As part of a search for optimal ways to configure cryomodules of the low-beta section of a high-current, high-power superconducting linac, an option of using conductively cooled superconducting focusing lenses was evaluated. Superconducting magnet was installed inside existing test cryostat, which was modified by adding current feed-throughs and two conductively cooled current leads. Each lead was equipped with heat sinks at the temperatures of liquid nitrogen and liquid helium. The magnet was mounted inside the cryostat on an individual heat sink plate, and thermometers were installed on the leads, heat sinks, and on the magnet. In this report we provide some details of the test setup and analyse results of the temperature measurements.

  14. Summary of the Superconducting RF Linac for Muon Collider and Neutrino Factory

    International Nuclear Information System (INIS)

    Galambos, J.; Garoby, R.; Geer, S.

    2010-01-01

    Project-X is a proposed project to be built at Fermi National Accelerator Laboratory with several potential missions. A primary part of the Project-X accelerator chain is a Superconducting linac, and In October 2009 a workshop was held to concentrate on the linac parameters. The charge of the workshop was to 'focus only on the SRF linac approaches and how it can be used'. The focus of Working Group 2 of this workshop was to evaluate how the different linac options being considered impact the potential realization of Muon Collider (MC) and Neutrino Factory (NF) applications. In particular the working group charge was, 'to investigate the use of a multi-megawatt proton linac to target, phase rotate and collect muons to support a muon collider and neutrino factory'. To focus the working group discussion, three primary questions were identified early on, to serve as a reference: (1) What are the proton source requirements for muon colliders and neutrino factories? (2) What are the issues with respect to realizing the required muon collider and neutrino factory proton sources - (a) General considerations and (b) Considerations specific to the two linac configurations identified by Project-X? (3) What things need to be done before we can be reasonably confident that ICD1/ICD2 can be upgraded to provide the neutrino factory/muon collider needs? A number of presentations were given, and are available at the workshop web-site. This paper does not summarize the individual presentations, but rather addresses overall findings as related to the three guiding questions listed above.

  15. Conceptual design of the SPL II A high-power superconducting $H^-$ linac at CERN

    CERN Document Server

    Baylac, M; Benedico-Mora, E; Caspers, Friedhelm; Chel, S; Deconto, J M; Duperrier, R; Froidefond, E; Garoby, R; Hanke, K; Hill, C; Hori, M; Inigo-Golfin, J; Kahle, K; Kroyer, T; Küchler, D; Lallement, J B; Lindroos, M; Lombardi, A M; López Hernández, A; Magistris, M; Meinschad, T; Millich, Antonio; Noah-Messomo, E; Pagani, C; Palladino, V; Paoluzzi, M; Pasini, M; Pierini, P; Rossi, C; Royer, J P; Sanmartí, M; Sargsyan, E; Scrivens, R; Silari, M; Steiner, T; Tückmantel, Joachim; Uriot, D; Vretenar, M

    2006-01-01

    An analysis of the revised physics needs and recent progress in the technology of superconducting RF cavities have led to major changes in the speci cation and in the design for a Superconducting Proton Linac (SPL) at CERN. Compared with the rst conceptual design report (CERN 2000–012) the beam energy is almost doubled (3.5 GeV instead of 2.2 GeV), while the length of the linac is reduced by 40% and the repetition rate is reduced to 50 Hz. The basic beam power is at a level of 4–5MW and the approach chosen offers enough margins for upgrades. With this high beam power, the SPL can be the proton driver for an ISOL-type radioactive ion beam facility of the next generation (`EURISOL'), and for a neutrino facility based on superbeam C beta-beam or on muon decay in a storage ring (`neutrino factory'). The SPL can also replace the Linac2 and PS Booster in the low-energy part of the CERN proton accelerator complex, improving signi cantly the beam performance in terms of brightness and intensity for the bene t of al...

  16. Superconducting low-velocity linac for the Argonne positive-ion injector

    International Nuclear Information System (INIS)

    Shepard, K.W.; Markovich, P.K.; Zinkann, G.P.; Clifft, B.; Benaroya, R.

    1989-01-01

    A low-velocity superconducting linac has been developed as part of a positive-ion injector system, which is replacing a 9 MV tandem as the injector for the ATLAS accelerator. The linac consists of an independently phased array of resonators, and is designed to accelerate various ions over a velocity range .008 < v/c < .06. The resonator array is formed of four different types of superconducting interdigital structures. The linac is being constructed in three phases, each of which will cover the full velocity range. Successive phases will increase the total accelerating potential and permit heavier ions to be accelerated. Assembly of the first phase was completed in early 1989. In initial tests with beam, a five-resonator array provided approximately 3.5 MV of accelerating potential and operated without difficulty for several hundred hours. The second phase is scheduled for completion in late 1989, and will increase the accelerating potential to more than 8 MV. 5 refs., 2 figs., 1 tab

  17. Superconducting low-velocity linac for the Argonne positive-ion injector

    Energy Technology Data Exchange (ETDEWEB)

    Shepard, K.W.; Markovich, P.K.; Zinkann, G.P.; Clifft, B.; Benaroya, R.

    1989-01-01

    A low-velocity superconducting linac has been developed as part of a positive-ion injector system, which is replacing a 9 MV tandem as the injector for the ATLAS accelerator. The linac consists of an independently phased array of resonators, and is designed to accelerate various ions over a velocity range .008 < v/c < .06. The resonator array is formed of four different types of superconducting interdigital structures. The linac is being constructed in three phases, each of which will cover the full velocity range. Successive phases will increase the total accelerating potential and permit heavier ions to be accelerated. Assembly of the first phase was completed in early 1989. In initial tests with beam, a five-resonator array provided approximately 3.5 MV of accelerating potential and operated without difficulty for several hundred hours. The second phase is scheduled for completion in late 1989, and will increase the accelerating potential to more than 8 MV. 5 refs., 2 figs., 1 tab.

  18. High duty factor Plasma Generator for CERN’s Superconducting Proton Linac

    CERN Document Server

    Lettry, J; Scrivens, R; Chaudet, E; Faircloth, D; Favre, G; Geisser, JM; Kuchler, D; Mathot, S; Midttun, O; Paoluzzi, M; Schmitzer, C; Steyaert, D

    2010-01-01

    CERN’s Linac4 is a 160 MeV linear accelerator currently under construction. It will inject negatively charged hydrogen ions into CERN’s PS-Booster. Its ion source is a non-cesiated RF driven H- volume source directly inspired from the one of DESY and is aimed to deliver pulses of 80 mA of H- during 0.4 ms at a 2 Hz repetition rate. The Superconducting Proton Linac (SPL) project is part of the luminosity upgrade of the LHC, it consists of an extension of Linac4 up to 5 GeV and is foreseen to deliver protons to a future 50 GeV Synchrotron (PS2). For the SPL high power option (HP-SPL), the ion source would deliver pulses of 80 mA of H- during 1.2 ms and operate at a 50 Hz repetition rate. This significant upgrade motivates the design of the new water cooled plasma generator presented in this paper. Its engineering is based on the results of a finite element thermal study of the Linac4 H- plasma generator that identified critical components and thermal barriers. A cooling system is proposed which achieves the...

  19. Superconducting linac at Inter-University Accelerator Centre: Operational challenges and solutions

    Directory of Open Access Journals (Sweden)

    S. Ghosh

    2009-04-01

    Full Text Available A superconducting linear accelerator based on niobium quarter wave resonators has recently become operational to boost the energy of the heavy ion beams available from the existing 15 UD (unit doubled Pelletron accelerator. The niobium resonators typically performed at an accelerating field of 3–6  MV/m at 6 watts of input power in the test cryostat. When they were tested in the linac cryostat, the accelerating fields were drastically reduced and a number of other problems were also encountered. At present, all the problems have been diagnosed and solved. Many design modifications, e.g., in power coupler, mechanical tuner, helium cooling system, etc. were incorporated to solve the problems. A novel method of vibration damping was also implemented to reduce the effect of microphonics on the resonators. Finally, the accelerated beam through linac was delivered to conduct experiments.

  20. Higher order mode analysis of the SNS superconducting linac

    CERN Document Server

    Sang Ho Kim; Dong Jeon; Sundelin, R

    2001-01-01

    Higher order modes (HOM's) of monopoles, dipoles, quadrupoles and sextupoles in beta =0.61 and beta =0.81 6-cell superconducting (SC) cavities for the Spallation Neutron Source (SNS) project, have been found up to about 3 GHz and their properties such as R/Q, trapping possibility, etc have been figured out concerning manufacturing imperfection. The main issues of HOM's are beam instabilities (published separately) and HOM induced power especially from TM monopoles. The time structure of SNS beam has three different time scales of pulses, which are micro-pulse, midi-pulse and macropulse. Each time structure will generate resonances. When a mode is near these resonance frequencies, the induced voltage could be large and accordingly the resulting HOM power. In order to understand the effects from such a complex beam time structure on the mode excitation and resulting HOM power, analytic expressions are developed. With these analytic expressions, the induced HOM voltage and HOM power were calculated by assuming e...

  1. Development of niobium spoke cavities for a superconducting light-ion linac

    International Nuclear Information System (INIS)

    Shepard, K.W.; Kedzie, M.; Delayen, J.R.; Piller, C.

    1998-01-01

    This paper reports the development of 350 MHz niobium superconducting cavities for the velocity range 0.2 < v/c < 0.6. Such cavities could be used to form a linac of exceptional flexibility, capable of efficiently accelerating beams of either protons, deuterons, or any of a wide range of ions, at intensities sufficient for a production beam for a radioactive facility. Results of numerical modeling for several resonator geometries are presented. The design and construction status of prototype niobium cavities is discussed

  2. Design of the MYRRHA 17-600 MeV Superconducting Linac

    CERN Document Server

    Biarrotte, J-L; Bouly, F; Carneiro, J-P; Vandeplassche, D

    2013-01-01

    The goal of the MYRRHA project is to demonstrate the technical feasibility of transmutation in a 100MWth Accelerator Driven System (ADS) by building a new flexible irradiation complex in Mol (Belgium). The MYRRHA facility requires a 600 MeV accelerator delivering a maximum proton flux of 4 mA in continuous operation, with an additional requirement for exceptional reliability. This paper will briefly describe the beam dynamics design of the main superconducting linac section which covers the 17 to 600 MeV energy range and requires enhanced fault-tolerance capabilities.

  3. Development of niobium spoke cavities for a superconducting light-ion Linac.

    Energy Technology Data Exchange (ETDEWEB)

    Shepard, K. W.

    1998-11-18

    This paper reports the development of 350 MHz niobium superconducting cavities for the velocity range 0.2< v/c <0.6. Such cavities could be used to form a linac of exceptional flexibility, capable of efficiently accelerating beams of either protons, deuterons, or any of a wide range of light ions, at intensities sufficient for a production beam for a radioactive beam facility. Results of numerical modeling for several resonator geometries are presented. The design and construction status of prototype niobium cavities is discussed.

  4. Development of niobium spoke cavities for a superconducting light-ion linac

    Energy Technology Data Exchange (ETDEWEB)

    Shepard, K W; Kedzie, M; Delayen, J R; Piller, C

    1998-08-01

    This paper reports the development of 350 MHz niobium superconducting cavities for the velocity range 0.2 < v/c < 0.6. Such cavities could be used to form a linac of exceptional flexibility, capable of efficiently accelerating beams of either protons, deuterons, or any of a wide range of ions, at intensities sufficient for a production beam for a radioactive facility. Results of numerical modeling for several resonator geometries are presented. The design and construction status of prototype niobium cavities is discussed.

  5. Development of niobium spoke cavities for a superconducting light-ion Linac

    International Nuclear Information System (INIS)

    Shepard, K. W.

    1998-01-01

    This paper reports the development of 350 MHz niobium superconducting cavities for the velocity range 0.2< v/c <0.6. Such cavities could be used to form a linac of exceptional flexibility, capable of efficiently accelerating beams of either protons, deuterons, or any of a wide range of light ions, at intensities sufficient for a production beam for a radioactive beam facility. Results of numerical modeling for several resonator geometries are presented. The design and construction status of prototype niobium cavities is discussed

  6. Superconducting linac at Inter-University Accelerator Centre: Operational challenges and solutions

    OpenAIRE

    S. Ghosh; R. Mehta; G. K. Chowdhury; A. Rai; P. Patra; B. K. Sahu; A. Pandey; D. S. Mathuria; J. Chacko; A. Chowdhury; S. Kar; S. Babu; M. Kumar; S. S. K. Sonti; K. K. Mistry

    2009-01-01

    A superconducting linear accelerator based on niobium quarter wave resonators has recently become operational to boost the energy of the heavy ion beams available from the existing 15 UD (unit doubled) Pelletron accelerator. The niobium resonators typically performed at an accelerating field of 3–6  MV/m at 6 watts of input power in the test cryostat. When they were tested in the linac cryostat, the accelerating fields were drastically reduced and a number of other problems were also encounte...

  7. Developments and Tests of a 700 MHz Cryomodule for the Superconducting Linac of MYRRHA

    CERN Document Server

    Bouly, F; Bosotti, A; Pierini, P; El Yakoubi, M; Berthelot, S; Biarrotte, J-L; Joly, C; Lesrel, J; Rampnoux, E

    2013-01-01

    The MYRRHA projects aims at the construction of an Accelerator Driven System demonstrator. The criticality will be sustained by an external spallation neutron flux; produced thanks to a 600 MeV high intensity proton beam. This beam will be delivered by a superconducting linac which must fulfil very stringent reliability requirements. To carry out “real scale” reliability-oriented experiments a 700 MHz Cryomodule was developed. Several tests were performed to commission the experimental set-up. We review here the obtained results and the lessons learnt by operating this module, as well as the on-going developments.

  8. Medical Application of the SARAF-Proton/Deuteron 40 MeV Superconducting Linac

    Science.gov (United States)

    Halfon, Shlomi

    2007-11-01

    The Soreq Applied Research Accelerator Facility (SARAF) is based on a superconducting linear accelerator currently being built at the Soreq research center (Israel). The SARAF is planned to generate a 2 mA 4 MeV proton beam during its first year of operation and up to 40 MeV proton or deuteron beam in 2012. The high intensity beam, together with the linac ability to adjust the ion energy provides opportunities for medical research, such as Boron Neutron Capture Therapy (BNCT) and the production of medical radioisotopes, for instance 103Pd for prostate brachytherapy.

  9. Preliminary design study and problem definition for intense CW superconducting deuteron ion linac for fusion material study

    International Nuclear Information System (INIS)

    Tanabe, Y.; Kakutani, N.; Ota, T.; Yamaguchi, A.; Takeda, O.; Wachi, Y.; Yamazaki, C.; Morii, Y.

    1997-01-01

    The advantages of superconducting (SC) cavity have been verified for many electron accelerators and the application of SC cavity to high intensity CW ion linacs is currently being considered. These linacs have been required for neutron irradiation tests of materials, transmutation of nuclear waste and so on. An SC linac consisting of SC cavities, SC quadrupole magnets and cryostats, was preliminarily designed to investigate the feasibility of applying to deuteron machine. Beam dynamics analysis was also carried out by using a modified PARMILA code in order to confirm no beam loss. Since radiation damage of superconductors is especially severe for such a machine, data relating to the damage were surveyed and discussed. Moreover, other major facilities such as cryogenic system, radio frequency amplifier and RF control system were considered. Many problems to be solved were defined but no critical issues were found. In consequence, it became clear that SC linac is very attractive and competitive with a room-temperature linac. (orig.)

  10. Forced-circulation cooling system for the Argonne superconducting heavy-ion linac

    International Nuclear Information System (INIS)

    Nixon, J.M.; Bollinger, L.M.

    1980-01-01

    The Argonne superconducting heavy-ion linac is a prototype heavy-ion accelerator used to increase the energy of an ion beam from a tandem electrostatic accelerator. The accelerating elements are split-ring-type resonators with hollow niobium drift tubes mounted in cylindrical housings. The housings are made of explosively bonded niobium clad copper. The resonators, along with superconducting solenoid focusing magnets are positioned axially in cryostats on support structures which also serve as helium supply and return manifolds. The resonators and magnets are cooled by a continuous forced-flow circulation of liquid helium directly from a refrigerator. The colling system consists of the refrigerator, a 1000-liter dewar with built-in heat exchanger coil, a 46-m 3 helium gas storage tank, three distribution boxes with valves, heat exchangers, and transfer line ports, connected by a 20-m-long, liquid-nitrogen-shielded, coaxial distribution line. Design and operation of the cooling system are described

  11. Study of Higher Order Modes in Superconducting Accelerating Structures for Linac Applications

    CERN Document Server

    Schuh, Marcel; Welsch, C P

    2011-01-01

    Higher Order Modes (HOMs) can severely limit the operation of superconducting cavities in a linear accelerator with high beam current, high duty factor and complex pulse structure. Therefore, the full HOM spectrum has to be analysed in detail to identify potentially dangerous modes already during the design phase and to define their damping requirements. For this purpose a dedicated beam dynamics simulation code, Simulation of higher order Mode Dynamics (SMD), focusing on beam-HOM interaction, has been developed in the frame of this project. SMD allows to analyse the beam behaviour under the presence of HOMs, taking into account many important effects, such as for example the HOM frequency spread, beam input jitter, different chopping patterns, as well as klystron and alignment errors. SMD is used to investigate in detail into the effects of HOMs in the Superconducting Proton Linac (SPL) at CERN and in particular their potential to drive beam instabili- ties in the longitudinal and transverse direction. Based...

  12. Cumulative beam break-up study of the spallation neutron source superconducting linac

    CERN Document Server

    Jeon, D; Krafft, G A; Yunn, B; Sundelin, R; Delayen, J; Kim, S; Doleans, M

    2002-01-01

    Beam instabilities due to High Order Modes (HOMs) are a concern to superconducting (SC) linacs such as the Spallation Neutron Source (SNS) linac. The effects of pulsed mode operation on transverse and longitudinal beam breakup instability are studied for H sup - beam in a consistent manner for the first time. Numerical simulation indicates that cumulative transverse beam breakup instabilities are not a concern in the SNS SC linac, primarily due to the heavy mass of H sup - beam and the HOM frequency spread resulting from manufacturing tolerances. As little as +-0.1 MHz HOM frequency spread stabilizes all the instabilities from both transverse HOMs, and also acts to stabilize the longitudinal HOMs. Such an assumed frequency spread of +-0.1 MHz HOM is small, and hence conservative compared with measured values of sigma=0.00109(f sub H sub O sub M -f sub 0)/f sub 0 obtained from Cornell and the Jefferson Lab Free Electron Laser cavities. However, a few cavities may hit resonance lines and generate a high heat lo...

  13. Initial studies of Bremsstrahlung energy deposition in small-bore superconducting undulator structures in linac environments

    Energy Technology Data Exchange (ETDEWEB)

    Cremer, T.; Tatchyn, R. [Stanford Univ., CA (United States)

    1995-12-31

    One of the more promising technologies for developing minimal-length insertion devices for linac-driven, single-pass Free Electron Lasers (FELs) operating in the x-ray range is based on the use of superconducting (SC) materials. In recent FEL simulations, for example, a bifilar helical SC device with a 2 cm period and 1.8 T field was found to require a 30 m saturation length for operation at 1.5{Angstrom} on a 15 GeV linac, more than 40% shorter than an alternative hybrid/permanent magnet (hybrid/PM) undulator. AT the same time, however, SC technology is known to present characteristic difficulties for insertion device design, both in engineering detail and in operation. Perhaps the most critical problem, as observed, e.g., by Madey and co-workers in their initial FEL experiments, was the frequent quenching induced by scattered electrons upstream of their (bifilar) device. Postulating that this quenching was precipitated by directly-scattered or bremsstrahlung-induced particle energy deposited into the SC material or into material contiguous with it, the importance of numerical and experimental characterizations of this phenomenon for linac-based, user-facility SC undulator design becomes evident. In this paper we discuss selected prior experimental results and report on initial EGS4 code studies of scattered and bremsstrahlung induced particle energy deposition into SC structures with geometries comparable to a small-bore bifilar helical undulator.

  14. Assessment of the basic parameters of the CERN Superconducting Proton Linac

    Directory of Open Access Journals (Sweden)

    O. Brunner

    2009-07-01

    Full Text Available The construction of a 4 GeV superconducting proton linac (the SPL is now part of the long term plan of CERN, and the construction of Linac4, its low-energy front end, has begun. For mid-2012 the existing conceptual design of the SPL has to be refined and transformed into a project proposal. As a first step, basic parameters like rf frequency, accelerating gradient, and operating temperature of the superconducting cavities have been reassessed, taking into account the experience accumulated in the world during the recent years, especially for the Spallation Neutron Source (SNS in Oakridge and the International Linear Collider (ILC projects. The conclusions confirm the validity of the initial choices, namely, the rf frequency of 704.4 MHz and the cooling temperature of ≈2  K. However, the assumed gradients are estimated as optimistic: additional tests are necessary during the coming years to properly define the values to be used in the SPL design. This analysis is documented and its results are explained in this report.

  15. Superconducting, energy variable heavy ion linac with constant β, multicell cavities of CH-type

    Directory of Open Access Journals (Sweden)

    S. Minaev

    2009-12-01

    Full Text Available An energy variable ion linac consisting of multigap, constant-β cavities was developed. The effect of phase sliding, unavoidable in any constant-β section, is leading to a coherent rf phase motion, which fits well to the H-type structures with their long π-mode sections and separated lenses. The exact periodicity of the cell lengths within each cavity results in technical advantages, such as higher calculation accuracy when only one single period can be simulated, simpler manufacturing, and tuning. This is most important in the case of superconducting cavities. By using this concept, an improved design for a 217 MHz cw superconducting heavy ion linac with energy variation has been worked out. The small output energy spread of ±3  AkeV is provided over the whole range of energy variation from 3.5 to 7.3 AMeV. These capabilities would allow for a competitive research in the field of radiochemistry and for a production of super heavy elements (SHE, especially. A first 19-cell cavity of that type was designed, built, and rf tested successfully at the Institute for Applied Physics (IAP Frankfurt. A 325.224 MHz, seven-cell cavity with constant β=0.16 is under development and will be operated in a frequency controlled mode. It will be equipped with a power coupler and beam tests with Unilac beams at GSI are foreseen.

  16. Conceptual Design of the Superconducting Proton Linac Short Cryo-module

    CERN Document Server

    Bourcey, N; Capatina, O; Azevedo, P; Montesinos, E; Parma, V; Renaglia, T; Vande Craen, A; Williams, L R; Weingarten, W; Rousselot, S; Duthil, P; Duchesne, P; Reynet, D; Dambre, P

    2012-01-01

    The Superconducting Proton Linac (SPL) is an R&amp;amp;D effort conducted by CERN in partnership with other international laboratories, aimed at developing key technologies for the construction of a multi-megawatt proton linac based on state-of-the-art Superconducting Radio Frequency technology, which would serve as a driver for new physics facilities such as neutrinos and radioactive ion beams. Amongst the main objectives of this effort, are the development of 704 MHz bulk niobium b=1 elliptical cavities, operating at 2 K and providing an accelerating field of 25 MV/m, and testing of a string of cavities integrated in a machine-type cryo-module. In an initial phase only four out of the eight cavities of an SPL cryo-module will be tested in a ½ length cryo-module developed for this purpose, and therefore called the Short Cryo-module. This paper presents the conceptual design of the SC, highlighting its innovative principles in terms of cavity supporting and alignment, and describes the integratio...

  17. High duty factor plasma generator for CERN's Superconducting Proton Linac

    Energy Technology Data Exchange (ETDEWEB)

    Lettry, J.; Kronberger, M.; Scrivens, R.; Chaudet, E.; Favre, G.; Geisser, J.-M.; Kuechler, D.; Mathot, S.; Midttun, O.; Paoluzzi, M.; Schmitzer, C.; Steyaert, D. [CERN, CH1211 Geneva (Switzerland); Faircloth, D. [Rutherford Appleton Laboratory, Chilton, Didcot OX11 0QX (United Kingdom)

    2010-02-15

    CERN's Linac4 is a 160 MeV linear accelerator currently under construction. It will inject negatively charged hydrogen ions into CERN's PS-Booster. Its ion source is a noncesiated rf driven H{sup -} volume source directly inspired from the one of DESY and is aimed to deliver pulses of 80 mA of H{sup -} during 0.4 ms at a 2 Hz repetition rate. The Superconducting Proton Linac (SPL) project is part of the luminosity upgrade of the Large Hadron Collider. It consists of an extension of Linac4 up to 5 GeV and is foreseen to deliver protons to a future 50 GeV synchrotron (PS2). For the SPL high power option (HP-SPL), the ion source would deliver pulses of 80 mA of H{sup -} during 1.2 ms and operate at a 50 Hz repetition rate. This significant upgrade motivates the design of the new water cooled plasma generator presented in this paper. Its engineering is based on the results of a finite element thermal study of the Linac4 H{sup -} plasma generator that identified critical components and thermal barriers. A cooling system is proposed which achieves the required heat dissipation and maintains the original functionality. Materials with higher thermal conductivity are selected and, wherever possible, thermal barriers resulting from low pressure contacts are removed by brazing metals on insulators. The AlN plasma chamber cooling circuit is inspired from the approach chosen for the cesiated high duty factor rf H{sup -} source operating at SNS.

  18. Note: Electronic damping of microphonics in superconducting resonators of a continuous wave linac

    Energy Technology Data Exchange (ETDEWEB)

    Joshi, Gopal [BARC, Mumbai 400085 (India); Sahu, Bhuban Kumar [IUAC, New Delhi 110067 (India); Agarwal, Vivek; Kumar, Girish [IITB, Mumbai 400076 (India)

    2014-02-15

    The paper presents an implementation technique to damp the microphonics in superconducting resonators utilizing the coupling between the electromagnetic and the mechanical modes of a resonator. In the technique used the resonant frequency variations are fed back to modulate the field amplitude through a suitable transfer function. Of the two transfer functions used in the experiments, one emulates a derivative action and is placed in a negative feedback configuration. The other transfer function is essentially a parallel combination of second order low pass filters and is used in a positive feedback configuration. Experiments with the Quarter Wave resonators of IUAC, New Delhi linac demonstrate that the damping of some of the modes increases significantly with the introduction of this feedback leading to a reduction in power required for field stabilization and quieter operation of the RF control system.

  19. The JAERI superconducting RF linac-based FELS and THEIR cryogenics

    International Nuclear Information System (INIS)

    Minehara, Eisuke J.

    2003-01-01

    In the 21st century, we need a powerful and efficient free-electron laser (FEL) for academic and industrial uses in almost all fields. In order to realize such a tunable, highly-efficient, high average power, high peak power and ultra-short pulse FEL, the JAERI FEL group and I have developed an industrial FEL driven by a compact, stand-alone and zero-boil off super-conducting rf linac with an energy-recovery geometry. Our discussions on the JAERI FEL and cryogenics will cover market-requirements for the industrial FELs, some answers from the JAERI compact, stand-alone and zero-boil off cryostat concept and operational experiences over these 9 years, our discovery of the new, highly-efficient, high-power, and ultra-short pulse lasing mode, and the energy-recovery geometry. (author)

  20. Operational experiences of the spallation neutron source superconducting linac and power ramp-up

    International Nuclear Information System (INIS)

    Kim, Sang-Ho

    2009-01-01

    The spallation neutron source (SNS) is a second generation pulsed neutron source and designed to provide a 1-GeV, 1.44-MW proton beam to a mercury target for neutron production. Since the commissioning of the accelerator complex in 2006, the SNS has started its operation for neutron production and beam power ramp-up has been in progress toward the design goal. All subsystems of the SNS were designed and developed for substantial improvements compared to existing accelerators because the design beam power is almost an order of magnitude higher compared to existing neutron facilities and the achievable neutron scattering performance will exceed present sources by more than a factor of 20 to 100. In this paper, the operational experiences with the SNS Superconducting Linac (SCL), Power Ramp-up Plan to reach the design goal and the Power Upgrade Plan (PUP) will be presented including machine, subsystem and beam related issues.

  1. The Jefferson Lab Quality Assurance Program for the SNS Superconducting Linac Construction Project

    International Nuclear Information System (INIS)

    Joseph Ozelis

    2003-01-01

    As part of a multi-laboratory collaboration, Jefferson Lab is currently engaged in the fabrication, assembly, and testing of 23 cryomodules for the superconducting linac portion of the Spallation Neutron Source (SNS) being built at Oak Ridge National Laboratory. As with any large accelerator construction project, it is vitally important that these components be built in a cost effective and timely manner, and that they meet the stringent performance requirements dictated by the project specifications. A comprehensive Quality Assurance (QA) program designed to help accomplish these goals has been implemented as an inherent component of JLab's SNS construction effort. This QA program encompasses the traditional spectrum of component performance, from incoming parts inspection, raw materials testing, through to sub-assembly and finished article performance evaluation

  2. A new generation of superconducting solenoids for heavy-ion linac application

    International Nuclear Information System (INIS)

    Ostroumov, P. N.; Kim, S. H.; Lessner, E. S.; Shepard, K. W.; Laxdal, R. E.; Wheatley, R.

    2002-01-01

    The beam dynamics of superconducting (SC) heavy-ion linacs operating in the velocity range below 0.4c require a compact accelerating-focusing lattice. The use of SC solenoids together with SC RF resonators within a common cryostat can solve the real-estate problem. The solenoids must have low fringe fields to avoid magnetic-flux capture in the SC RF resonators. Also, incorporating dipole steering coils together with the SC solenoids in one magnet assembly can increase the compactness of the linac lattice. R and D work has been carried out to determine the feasibility of combining the three elements of high solenoid field, low fringe field, and integral dipole field, into one compact package. A 9-Tesla magnet has been initially designed and will be prototyped, with the goal of eventually developing 14-Tesla solenoids of similar design. The most important design issues are: (1) to minimize stray field in the RF cavity region using SC bucking coils and (2) to achieve adequate mechanical stability of the transverse dipole windings in the presence of forces produced by the solenoid/bucking coil assembly. The assembly, including terminals, switches, and protection circuit, are designed to fit inside a 25-cm diameter helium reservoir. The results of the preliminary design of the solenoid, including numerical simulations of the beam dynamics, are reported

  3. New Generation of Superconducting Solenoids for Heavy-Ion Linac Application

    Science.gov (United States)

    Ostroumov, P. N.; Kim, S. H.; Lessner, E. S.; Shepard, K. W.; Laxdal, R. E.

    2002-01-01

    The beam dynamics of superconducting (SC) heavy-ion linacs operating in the velocity range below 0.4c require a compact accelerating-focusing lattice. The use of SC solenoids together with SC RF resonators within a common cryostat can solve the real-estate problem. The solenoids must have low fringe fields to avoid magnetic-flux capture in the SC RF resonators. Also, incorporating dipole steering coils together with the SC solenoids in one magnet assembly can increase the compactness of the linac lattice. R&D work has been carried out to determine the feasibility of combining the three elements of high solenoid field, low fringe field, and integral dipole field, into one compact package. A 9-Tesla magnet has been initially designed and will be prototyped, with the goal of eventually developing 14-Tesla solenoids of similar design. The most important design issues are: (1) to minimize stray field in the RF cavity region using SC bucking coils and (2) to achieve adequate mechanical stability of the transverse dipole windings in the presence of forces produced by the solenoid/bucking coil assembly. The assembly, including terminals, switches, and protection circuit, are designed to fit inside a 25-cm diameter helium reservoir. The results of the preliminary design of the solenoid, including numerical simulations of the beam dynamics, are reported.

  4. Effect of transients on the beam in the Superconducting Supercollider Coupled-Cavity Linac

    International Nuclear Information System (INIS)

    Young, L.M.; Nath, S.

    1992-01-01

    Each module of the Superconducting Super Collider (SSC) Coupled-Cavity Linac (CCL) consists of eight tanks (10 accelerating cells each) coupled with bridge couplers. The radio frequency (rf) power drive is in the center of the module at the bridge coupler between the fourth and fifth tanks. In this simulation of the beam dynamics, the rf power is turned on 10 μs before the beam is turned on. This time lapse allows the fields to build up and stabilize before they are required by the beam. When the beam is turned on, the beam loading causes the fields to change. This transient state of the fields together with their effect on the beam is presented. A model has been developed to calculate field distribution throughout the module as a function of time. Beam dynamics simulations were run with the results of this model at several times during the beam pulse. An estimate of the effect of the transients is given by the results of these simulations

  5. Digital LN2 control system for superconducting linac at PLF, Mumbai

    International Nuclear Information System (INIS)

    Karande, J.N.; Dhumal, P.; Takke, A.N.; Pal, S.; Nanal, V.; Pillay, R.G.

    2013-01-01

    The superconducting LINAC at PLF, Mumbai has a modular structure with eight cryostats divided in two groups. Each cryostat has a LN2 vessel of ∼ 40L capacity, which serves as a thermal shield for helium vessel. A coaxial capacitance type sensor is developed in house to measure the LN2 level. Monostable multi-vibrator based readout electronics is designed to measure the change in capacitance due to LN2 level change. The sensor capacitance with a fixed value resistor decides the 'ON' time of the monostable multi-vibrator. A 16 bit timer of microcontroller 8051 is used to measure the pulse width. The change in pulse width is converted into a LN2 level and displayed on a 4*20 LCD screen. The control unit is also equipped with automatic control of LN2 filling valves triggered by levels. The digital LN2 control can be operated locally or remotely via a serial RS232 communication line.Two control stations are designed and developed to take care of eight cryostats. (author)

  6. Superconducting Cavity Cryomodule Designs for the Next Generation of CW Linacs: Challenges and Options

    Energy Technology Data Exchange (ETDEWEB)

    Nicol, Thomas [Fermilab; Orlov, Yuriy [Fermilab; Peterson, Thomas [Fermilab; Yakovlev, Vyacheslav [Fermilab

    2014-07-01

    The designs of nearly all superconducting RF (SRF) linacs over the last several years, with one notable exception being CEBAF at Jefferson Lab, have assumed pulsed beam operation with relatively low duty factors. These include the XFEL at DESY, the ILC, the original configuration for Project X at Fermilab, as well as several others. Recently proposed projects, on the other hand, including the LCLS-II at SLAC, the newly configured low and medium energy sections for Project X, and FRIB at Michigan State, to name a few, assume continuous wave or CW operation on quite a large scale with ambitious gradients and cavity performance requirements. This has implications in the cavity design as well as in many parts of the overall cryomodule due to higher dynamic heat loads in the cavities themselves and higher heat loads in the input and high-order-mode (HOM) couplers. Piping internal to the cryomodule, the effectiveness of thermal intercepts, the size of integrated heat exchangers, and many other aspects of the overall design are also affected. This paper will describe some of these design considerations as we move toward the next generation of accelerator projects.

  7. Conceptual Design of the Low-Power and High-Power SPL A Superconducting H$^-$ Linac at CERN

    CERN Document Server

    Atieh, S; Aviles Santillana, I; Bartmann, W; Borburgh, J; Brunner, O; Calatroni, S; Capatina, O; Chambrillon, J; Ciapala, E; Eshraqi, M; Ferreira, L; Garoby, R; Goddard, B; Hessler, C; Hofle, W; Horvath-Mikulas, S; Junginger, T; Kozlova, E; Lebbos, E; Lettry, J; Liao, K; Lombardi, A M; Macpherson, A; Montesinos, E; Nisbet, D; Otto, T; Paoluzzi, M; Papke, K; Parma, V; Pillon, F; Posocco, P; Ramberger, S; Rossi, C; Schirm, K; Schuh, M; Scrivens, R; Torres Sanchez, R; Valuch, D; Valverde Alonso, N; Wegner, R; Weingarten, W; Weisz, S

    2014-01-01

    The potential for a superconducting proton linac (SPL) at CERN started to be seriously considered at the end of the 1990s. In the first conceptual design report (CDR), published in 2000 [1], most of the 352 MHz RF equipment from LEP was re-used in an 800 m long linac, and the proton beam energy was limited to 2.2 GeV. During the following years, the design was revisited and optimized to better match the needs of a high-power proton driver for neutrino physics. The result was a more compact (470 m long) accelerator capable of delivering 5 MW of beam power at 3.5 GeV, using state-of-the-art superconducting RF cavities at 704 MHz. It was described in a second CDR, published in 2006 [2]. Soon afterwards, when preparation for increasing the luminosity of the LHC by an order of magnitude beyond nominal became an important concern, a low-power SPL (LP-SPL) was studied as a key component in the renovation of the LHC injector complex. The combination of a 4 GeV LP-SPL injecting into a new 50 GeV synchrotron (PS2) was ...

  8. Piezoelectric actuator based phase locking system to improve the dynamics of the control scheme for a heavy ion superconducting linac

    Energy Technology Data Exchange (ETDEWEB)

    Sahu, B.K., E-mail: bhuban@iuac.res.in [Inter University Accelerator Centre (IUAC), Aruna Asaf Ali Marg, New Delhi – 110 067 (India); Ahuja, R.; Kumar, Rajesh; Suman, S.K.; Mathuria, D.S.; Rai, A.; Patra, P.; Pandey, A.; Karmakar, J.; Chowdhury, G.K.; Dutt, R.N. [Inter University Accelerator Centre (IUAC), Aruna Asaf Ali Marg, New Delhi – 110 067 (India); Joshi, G. [Electronics Division, Bhabha Atomic Research Centre, Mumbai – 400 085 (India); Ghosh, S.; Kanjilal, D.; Roy, A. [Inter University Accelerator Centre (IUAC), Aruna Asaf Ali Marg, New Delhi – 110 067 (India)

    2015-03-21

    The superconducting heavy ion linear accelerator at Inter-University Accelerator Centre Delhi has been in operation since 2007. Initially, the superconducting niobium Quarter Wave Resonators (QWRs) in the linac were phase locked using a combination of electronic and mechanical controls which operated in fast (~10 μsec) and slow (~sec) time scales respectively. In this scheme, fast control was achieved through dynamic phase control whereas slow control of the frequency was done through the niobium tuner bellows installed at the drift tube end of the resonator and flexed using helium gas to change the resonance frequency. In order to improve the dynamics of this control system, an alternate scheme using piezoelectric actuator, instead of helium gas, to flex the same niobium bellows, has been implemented in the QWRs of the second and third accelerating modules of the linac. The piezoelectric actuator is used in closed loop along with the fast dynamic phase control scheme. The feedback loop of the piezoelectric control includes a dual control scheme - an integral control loop to arrest the slow drift, and the positive position feedback (PPF) based control loop to damp the microphonics. This control scheme has been found to arrest slow drifts in the resonator frequency more tightly along with damping of low frequency microphonics (~few tens of Hz) picked up by the resonator from its surrounding environment. This has substantially eased the load from the fast electronic control, resulting in the reduction of the radio frequency (RF) power requirement during operation. In addition, it has improved the stability of phase and amplitude of the QWRs. The details of the new scheme along with results obtained during the online run of the linac for beam acceleration are presented.

  9. Analysis of tritium production in the vicinity of Linac and LEB tunnels at the Superconducting Super Collider Laboratory

    International Nuclear Information System (INIS)

    Nabelssi, B.K.

    1994-01-01

    Monte Carlo calculations were performed to estimate the tritium production in groundwater around the Linear Accelerator (Linac) and the Low Energy Booster (LEB) tunnels at the Superconducting Super Collider Laboratory (SSCL). The calculations were performed using the new version of the Los Alamos High Energy Transport (LAHET) code system (SUPERHET). Most of the tritium activity was found to occur in a zone extending 2 m from the tunnel wall. The calculated tritium production rate was used to derive the. maximum allowable beam losses that would result in an average groundwater concentration in the activation zone of 20 pCi/cm 3 , the federal maximum contaminant level (MCL) for tritium in drinking water. The maximum allowable beam losses were found to be about 4% and 2% of the maximum operating be.-un for the Linac at 1 GeV and the LEB at 11 GeV, resnectively. These percentages are well in excess of typical operational losses at existing highenergy accelerators. The results are in good agreement with previously reported calculations. Tritium saturation activity in water pipes resultina, from the derived maximum allowable beam loss was found to be 355 pCi/cm 3 in the Linac operating at 600 MeV and 363 pCi/cm 3 in the LEB operating at 11 GeV. Accidental tritium releases from water pipes were found to cause an inhalation dose rate of less than 0.013 (Linac at 600 MeV) and 0.009 mrem/hr (LEB at 11 Gev) in the tunnels. These dose rates are well within the laboratory's design limit of 0.1 mrem/hr for controlled areas. Accidental beam losses were found to cause activation in excess of the MCL only after an irradiation time of more than 557 hours in the Linac at 600 MeV and 69 hours in the LEB at 11 GeV. A full-beam accident lasting more than one hour is considered unlikely

  10. Design and fabrication of the 2 × 4-cell superconducting linac module for the free-electron laser

    Science.gov (United States)

    Luo, Xing; Lao, Chenglong; Zhou, Kui; Li, Ming; Yang, Xingfan; Lu, Xiangyang; Quan, Shengwen; Wang, Fang; Mi, Zhenghui; Sun, Yi; Wang, Hanbin; Shan, Lijun; He, Tianhui

    2017-11-01

    A 2 × 4-cell superconducting linac module for the THz-FEL facility has been developed at the China Academy of Engineering Physics, which is expected to provide 6-8 MeV quasi-CW electron beams with an average current of 1-5 mA. The module consists of two 4-cell SRF cavities, two main couplers, two tuners and a cryostat. The design, fabrication and performance test of these components is presented in this paper. The test results reveal that all these components have reached their design goals and the module has also been assembled and horizontal tested at Chengdu. The gradients of both cavities at 2 K reach 10 MV/m, which meets our requirements. Currently beam-loading commissioning is underway.

  11. Kiikuv maja / Anu Arm

    Index Scriptorium Estoniae

    Arm, Anu

    2006-01-01

    Eesti Kunstiakadeemia esimese kursuse arhitektuuriüliõpilaste II semestri töö. Juhendaja arhitekt Andres Alver, ehitamise Pedaspeale organiseeris suvepraktika juhendaja arhitekt Jaan Tiidemann. Autor Anu Arm, kaasa töötasid ja valmis ehitasid: Ott Alver, Maarja Elm, Mari Hunt, Alvin Järving, Marten Kaevats, Riho Kerge, Reedik Poopuu, Anu Põime, Helen Rebane, Kaisa Saarva, Martin Tago, Reet Volt. Valmis: 19. VIII 2006

  12. Accelerator mass spectrometry of 59Ni and Fe isotopes at the Argonne superconducting linac

    International Nuclear Information System (INIS)

    Henning, W.; Kutschera, W.; Myslek-Laurikainen, B.; Pardo, R.C.; Smither, R.K.; Yntema, J.L.

    1981-01-01

    We have obtained initial results in an attempt to use the Argonne tandem-linac system for accelerator mass spectrometry of medium-heavy nuclei. Nuclei of the radioisotope 59 Ni (T/sub 1/2 = 7.5 x 10 5 y) and of the stable isotope 58 Fe at low concentrations have been accelerated and clearly identified. The latter experiment is in preparation of a measurement of the half-life of 60 Fe

  13. HOM damping properties of fundamental power couplers in the superconducting electron gun of the energy recovery LINAC at Brookhaven National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Hammons, L.; Hahn, H.

    2011-03-28

    Among the accelerator projects under construction at the Relativistic Heavy Ion Collider (RHIC) is an R and D energy recovery LINAC (ERL) test facility. The ERL includes both a five-cell superconducting cavity as well as a superconducting, photoinjector electron gun. Because of the high-charge and high-current demands, effective higher-order mode (HOM) damping is essential, and several strategies are being pursued. Among these is the use of the fundamental power couplers as a means for damping some HOMs. Simulation studies have shown that the power couplers can play a substantial role in damping certain HOMs, and this presentation discusses these studies along with measurements.

  14. Multi-cell superconducting structures for high energy e+ e- colliders and free electron laser linacs

    CERN Document Server

    Sekutowicz, J

    2008-01-01

    This volume, which is the first in the EuCARD Editorial Series on “Accelerator Science and Technology”, is closely combined with the most advanced particle accelerators – based on Superconducting Radio Frequency (SRF) technology. In general, SRF research includes following areas: high gradient cavities, cavity prototyping, thin film technologies, large grain and mono-crystalline niobium and niobium alloys, quenching effects in superconducting cavities, SRF injectors, photo-cathodes, beam dynamics, quality of electron beams, cryogenics, high power RF sources, low level RF controls, tuners, RF power coupling to cavities, RF test infrastructures, etc. The monograph focuses on TESLA structures used in FLASH machine and planned for XFEL and ILC experiments.

  15. Pinge all / Anu Allikvee

    Index Scriptorium Estoniae

    Allikvee, Anu, 1960-

    2010-01-01

    Näitus "Pinge. Saksa ekspressionism Eesti Kunstimuuseumi kogust" Mikkeli muuseumis 31. oktoobrini 2010. Kuraator Anu Allikvee, kujundaja Inga Heamägi. Muuseumi jõudnud Martin ja Francesca Lutheri, Voldemar Puhki ning Eestimaa Kirjanduse Ühingu kollektsioonidest, Otto Dixi joonistustest (Alfred Rõude pärand)

  16. A 0.1 kW operation of the JAERI superconducting RF linac-based FEL

    CERN Document Server

    Minehara, E J; Sawamura, M; Nagai, R; Kikuzawa, N; Yamanouchi, T; Nishimori, N

    1999-01-01

    First and stable laser oscillation has been obtained around a wavelength of 24 mu m using the Japan Atomic Energy Research Institute, Tokai (JAERI) superconducting RF-linac-based FEL driver and far infrared FEL device. The electron beam energy and spread are 15.8 MeV and 0.6%, respectively. The beam current varies between 2 and 4 mA, and the pulse width between 0.1 and 0.9 ms, respectively. The near-concentric optical resonator is 14.4 m long, and uses gold-coated copper mirrors 120 mm in diameter. The hybrid, planar undulator has 52 periods, 33 mm in length and K=0.7. Remote-controlled actuators precisely adjust the optical axes and distance of the mirrors in order to coincide with the electron beam and micro pulse repetition rate, respectively, before oscillation. The power has been measured and is scattered from 10 sup 7 to 10 sup 8 times higher than that of the spontaneous emission. During the first successful operation, the highest average FEL power was measured to be about a hundred watts. The FWHM of t...

  17. Heavy-ion research at the tandem and superconducting linac accelerators

    International Nuclear Information System (INIS)

    Anon.

    1980-01-01

    The heavy-ion research program at the Argonne Physics Division is principally aimed at the study of nuclear structure and its manifestation in heavy-ion induced nuclear reactions. In order to extract information on nuclear structure, measurements with high precision often need to be performed. Such measurements are now carried out at the tandem-linac accelerator over a wide energy range. The investigation of high-spin states near the yrast line has provided much new information on the behavior of nuclei at high angular momentum. Argonne work has concentrated on nuclei where high-spin isomers, the so-called yrast traps, are prevalent. The resonance effects observed previously in the 24 Mg( 16 O, 12 C) 28 Si reactions have been further explored through both additional measurements and a new quantitative method of analysis. The measurements were extended in energy and angular range and to various exit channels as well as similar systems. Several measurements were performed to investigate the reaction mechanisms in heavy-ion induced reactions and to map out the distribution of reaction strength as a function of energy and target-projectile masses energy regions previously not accessible. The behavior of the quasi- and deep-inelastic reaction cross sections was studied as a function of energy for medium-heavy systems, the production of inclusive alpha-particle yields for 16 O beams at energies E/A greater than or equal to 5 MeV/nucleon, and excitation functions, mass and kinetic energy distributions for heavy-ion induced fusion-fission reactions

  18. Low-charge-state linac

    Energy Technology Data Exchange (ETDEWEB)

    Shepard, K.W.; Kim, J.W.

    1995-08-01

    A design is being developed for a low-charge-state linac suitable for injecting ATLAS with a low-charge-state, radioactive beam. Initial work indicates that the existing ATLAS interdigital superconducting accelerating structures, together with the superconducting quadrupole transverse focussing element discussed above, provides a basis for a high-performance low-charge-state linac. The initial 2 or 3 MV of such a linac could be based on a normally-conducting, low-frequency RFQ, possibly combined with 24-MHz superconducting interdigital structures. Beam dynamics studies of the whole low-charge-state post-accelerator section were carried out in early FY 1995.

  19. Anu Põder Karlskronas / Jaan Elken

    Index Scriptorium Estoniae

    Elken, Jaan, 1954-

    2002-01-01

    9. juunini Karlskrona Kunstihoones Rootsi IAA (International Association of Arts) ja Karlskrona linna kultuuriosakonna eestvedamisel avatud näitusel "Expressions around the Baltic" ning paneeldiskussioonil 27. IV esindas Eestit Anu Põder

  20. Kogemuse kaudu õppijad / Anu Mõttus

    Index Scriptorium Estoniae

    Mõttus, Anu

    2009-01-01

    19. novembril peeti Kumus teavituskonverentsi "Kvalifikatsioonid uude raami?!" Euroopa elukestva õppe kvalifikatsiooniraamistikust. Oma kogemustest räägivad Luua Metsanduskooli direktor ja MTÜ Europea Eesti keskuse juhatuse esimees Haana Zuba ning Luua Metsanduskooli arendusjuht Anu Vaagen

  1. Anu Lamp / [vestelnud Kalju Orro

    Index Scriptorium Estoniae

    Lamp, Anu, 1958-

    2007-01-01

    Lavakunstikooli sisseastumisest, õppimisest, õpetajatest ja õpetamisest. Anu Lamp õppis Lavakunstikoolis 10. lennus (1978-1982). Osalenud samas lavakõne õppejõuna 18.-23. lennu ja erialaõppejõuna 20. lennu töös

  2. Beam transfer between the coupled cavity linac and the low energy booster synchrotron for the SSC [Superconducting Super Collider

    International Nuclear Information System (INIS)

    Bhandari, R.K.; Penner, S.

    1990-09-01

    Ion optical design of the transfer line, which will be used to inject H - beam at 600 MeV from the Coupled Cavity Linac (CCL) into the Low Energy Booster (LEB) synchrotron, is described. Space charge effects of up to 50 mA average beam current have been taken into account

  3. IMPACT simulation and the SNS linac beam

    International Nuclear Information System (INIS)

    Zhang, Y.; Qiang, J.

    2008-01-01

    Multi-particle tracking simulations for the SNS linac beam dynamics studies are performed with the IMPACT code. Beam measurement results are compared with the computer simulations, including beam longitudinal halo and beam losses in the superconducting linac, transverse beam Courant-Snyder parameters and the longitudinal beam emittance in the linac. In most cases, the simulations show good agreement with the measured results

  4. Superconductivity

    CERN Document Server

    Poole, Charles P; Farach, Horacio A

    1995-01-01

    Superconductivity covers the nature of the phenomenon of superconductivity. The book discusses the fundamental principles of superconductivity; the essential features of the superconducting state-the phenomena of zero resistance and perfect diamagnetism; and the properties of the various classes of superconductors, including the organics, the buckministerfullerenes, and the precursors to the cuprates. The text also describes superconductivity from the viewpoint of thermodynamics and provides expressions for the free energy; the Ginzburg-Landau and BCS theories; and the structures of the high

  5. Heavy-ion-linac post-accelerators

    International Nuclear Information System (INIS)

    Bollinger, L.M.

    1979-01-01

    The main features of the tandem-linac system for heavy-ion acceleration are reviewed and illustrated in terms of the technology and performance of the superconducting heavy-ion energy booster at Argonne. This technology is compared briefly with the corresponding technologies of the superconducting linac at Stony Brook and the room-temperature linac at Heidelberg. The performance possibilities for the near-term future are illustrated in terms of the proposed extension of the Argonne booster to form ATLAS

  6. Superconductivity

    International Nuclear Information System (INIS)

    Andersen, N.H.; Mortensen, K.

    1988-12-01

    This report contains lecture notes of the basic lectures presented at the 1st Topsoee Summer School on Superconductivity held at Risoe National Laboratory, June 20-24, 1988. The following lecture notes are included: L.M. Falicov: 'Superconductivity: Phenomenology', A. Bohr and O. Ulfbeck: 'Quantal structure of superconductivity. Gauge angle', G. Aeppli: 'Muons, neutrons and superconductivity', N.F. Pedersen: 'The Josephson junction', C. Michel: 'Physicochemistry of high-T c superconductors', C. Laverick and J.K. Hulm: 'Manufacturing and application of superconducting wires', J. Clarke: 'SQUID concepts and systems'. (orig.) With 10 tabs., 128 figs., 219 refs

  7. Superconductivity

    CERN Document Server

    Ketterson, John B

    2008-01-01

    Conceived as the definitive reference in a classic and important field of modern physics, this extensive and comprehensive handbook systematically reviews the basic physics, theory and recent advances in the field of superconductivity. Leading researchers, including Nobel laureates, describe the state-of-the-art in conventional and unconventional superconductors at a particularly opportune time, as new experimental techniques and field-theoretical methods have emerged. In addition to full-coverage of novel materials and underlying mechanisms, the handbook reflects continued intense research into electron-phone based superconductivity. Considerable attention is devoted to high-Tc superconductivity, novel superconductivity, including triplet pairing in the ruthenates, novel superconductors, such as heavy-Fermion metals and organic materials, and also granular superconductors. What’s more, several contributions address superconductors with impurities and nanostructured superconductors. Important new results on...

  8. Status Of the ILC Main Linac Design

    Energy Technology Data Exchange (ETDEWEB)

    Saini, Arun [Fermilab; Kapin, Valery [Fermilab; Solyak, Nikolay [Fermilab

    2017-05-01

    International Linear collider (ILC) is a proposed accelerator facility which is primarily based on two 11-km long superconducting main linacs. In this paper we present recent updates on the main linac design and discuss changes made in order to meet specification outlined in the technical design report (TDR).

  9. Progress in design of the SNS linac

    Energy Technology Data Exchange (ETDEWEB)

    Hardekopf, R. [Los Alamos National Laboratory, Los Alamos, NM (United States)

    2001-03-01

    The Spallation Neutron Source (SNS) is a six-laboratory collaboration to build an intense pulsed neutron facility at Oak Ridge, TN. The linac design has evolved from the conceptual design presented in 1997 in order to achieve higher initial performance and to incorporate desirable upgrade features. The linac is now designed to produce 2-MW beam power using a combination of radio-frequency quadrupole (RFQ) linac, drift-tube linac (DTL), coupled-cavity linac (CCL), and superconducting-RF (SRF) linac. Designs of each of these elements support the high peak intensity and high quality beam required for injection into the SNS accumulator ring. This paper will trace the evolution of the linac design and the progress made in the R and D program. (author)

  10. Progress in design of the SNS linac

    International Nuclear Information System (INIS)

    Hardekopf, R.

    2001-01-01

    The Spallation Neutron Source (SNS) is a six-laboratory collaboration to build an intense pulsed neutron facility at Oak Ridge, TN. The linac design has evolved from the conceptual design presented in 1997 in order to achieve higher initial performance and to incorporate desirable upgrade features. The linac is now designed to produce 2-MW beam power using a combination of radio-frequency quadrupole (RFQ) linac, drift-tube linac (DTL), coupled-cavity linac (CCL), and superconducting-RF (SRF) linac. Designs of each of these elements support he high peak intensity and high quality beam required for injection into the SNS accumulator ring. This paper will trace the evolution of the linac design and the progress made in the R and D program. (author)

  11. Superconductivity

    CERN Document Server

    Poole, Charles P; Creswick, Richard J; Prozorov, Ruslan

    2014-01-01

    Superconductivity, Third Edition is an encyclopedic treatment of all aspects of the subject, from classic materials to fullerenes. Emphasis is on balanced coverage, with a comprehensive reference list and significant graphics from all areas of the published literature. Widely used theoretical approaches are explained in detail. Topics of special interest include high temperature superconductors, spectroscopy, critical states, transport properties, and tunneling. This book covers the whole field of superconductivity from both the theoretical and the experimental point of view. This third edition features extensive revisions throughout, and new chapters on second critical field and iron based superconductors.

  12. Induction linacs

    International Nuclear Information System (INIS)

    Keefe, D.

    1986-07-01

    The principle of linear induction acceleration is described, and examples are given of practical configurations for induction linacs. These examples include the Advanced Technology Accelerator, Long Pulse Induction Linac, Radial Line Accelerator (RADLAC), and Magnetically-Insulated Electron-Focussed Ion Linac. A related concept, the auto accelerator, is described in which the high-current electron-beam technology in the sub-10 MeV region is exploited to produce electron beams at energies perhaps as high as the 100 to 1000 MeV range. Induction linacs for ions are also discussed. The efficiency of induction linear acceleration is analyzed

  13. Linac boosters for electrostatic machines

    International Nuclear Information System (INIS)

    Ben-Zvi, I.; Brookhaven National Lab., Upton, NY

    1990-01-01

    A survey of linacs which are used as boosters to electrostatic accelerators is presented. Machines both operating and under construction, copper and superconducting, are reviewed. The review includes data on the accelerating structures, performance, rf and control, beam optics, budget, vacuum and cryogenics. (orig.)

  14. Anu Saagim pagendati Viljandi linnapildist / Maris Meiessaar

    Index Scriptorium Estoniae

    Meiessaar, Maris

    2008-01-01

    Viljandi linnavalitsus kohustas bussiootepaviljonide reklaampindu haldavat osaühingut JCDecaux Eesti maha võtma meelelahutusportaali Elu24.ee Anu Saagimi fotoga reklaamplakatid, sest need ei vasta heale tavale

  15. Superconductivity

    International Nuclear Information System (INIS)

    2007-01-01

    During 2007, a large amount of the work was centred on the ITER project and related tasks. The activities based on low-temperature superconducting (LTS) materials included the manufacture and qualification of ITER full-size conductors under relevant operating conditions, the design of conductors and magnets for the JT-60SA tokamak and the manufacture of the conductors for the European dipole facility. A preliminary study was also performed to develop a new test facility at ENEA in order to test long-length ITER or DEMO full-size conductors. Several studies on different superconducting materials were also started to create a more complete database of superconductor properties, and also for use in magnet design. In this context, an extensive measurement campaign on transport and magnetic properties was carried out on commercially available NbTi strands. Work was started on characterising MgB 2 wire and bulk samples to optimise their performance. In addition, an intense experimental study was started to clarify the effect of mechanical loads on the transport properties of multi-filamentary Nb 3 Sn strands with twisted or untwisted superconducting filaments. The experimental activity on high-temperature superconducting (HTS) materials was mainly focussed on the development and characterisation of YBa 2 Cu 3 O 7-X (YBCO) based coated conductors. Several characteristics regarding YBCO deposition, current transport performance and tape manufacture were investigated. In the framework of chemical approaches for YBCO film growth, a new method, developed in collaboration with the Technical University of Cluj-Napoca (TUCN), Romania, was studied to obtain YBCO film via chemical solution deposition, which modifies the well-assessed metallic organic deposition trifluoroacetate (MOD-TFA) approach. The results are promising in terms of critical current and film thickness values. YBCO properties in films with artificially added pinning sites were characterised in collaboration with

  16. Large superconducting magnets

    CERN Document Server

    Pérot, J

    1981-01-01

    Discusses the use of large superconducting magnets in the areas of particle physics, thermonuclear fusion, and magnetohydrodynamics. In addition to considering the physics of the superconducting state, the article considers machines such as BEBC (Big European Bubble Chamber) at CERN, the LINAC at SLAC and possible Tokamak applications. The future application of superconductors to high speed trains is discussed. (0 refs).

  17. New linac technology - for SSC, and beyond

    International Nuclear Information System (INIS)

    Jameson, R.A.

    1983-01-01

    With recent agreement on the high priority of seeking funding for a Superconducting Super Collider (SSC), it is appropriate to consider the injector linac requirements for such a machine. In so doing, the status of established technique and advantages of near-term R and D with relatively clear payoff are established, giving a base line for some speculation about linac possibilities even further in the future

  18. Overview of the Pelletron Linac facility, Mumbai

    International Nuclear Information System (INIS)

    Pillay, R.G.

    2011-01-01

    The Pelletron LINAC Facility at TIFR, Mumbai, comprising the 14 MV Pelletron and the superconducting LINAC booster caters to a variety of experiments in basic and applied Sciences. The Liquid Helium Refrigeration plant for the LINAC has been upgraded to enhance the refrigeration capacity. New instrumentation and interface for control and monitor of the cryogenic parameters, beam diagnostics and beam transport devices have been developed and installed. Digital implementation of the LLRF control has been demonstrated. All seven beam lines in new user halls have been commissioned and several new experimental setups have been added. (author)

  19. Heavy-ion LINAC development for the US RIA project

    Indian Academy of Sciences (India)

    The RIA development effort involves several US Laboratories (ANL, JLAB, LBNL, MSU, ORNL). The RIA facility includes a CW 1.4 GeV driver LINAC and a 100 MV post-accelerator both based on superconducting (SC) cavities operating at frequencies from 48 MHz to 805 MHz. An initial acceleration in both LINACs is ...

  20. Ka Eesti vajab oma pildiraamatuid / Anu Kalm

    Index Scriptorium Estoniae

    Kalm, Anu, 1960-

    2007-01-01

    Bologna lasteraamatumessist. IBBY (The International Board on Books for Young People) Eesti esindajatena olid messil Piret Raud ja Anu Kalm. Piret Raua tööd olid valitud rahvusvahelisele illustraatorite näitusele, mille aukülaline oli saksa illustraator Wolf Erlbruch. Eestit esindasid kolm raamatut IBBY rahvusvahelisel stendil. Kümme parimat raamatut ja viimase 40 aasta parimad raamatud olid eksponeeritud Bologna Ragazzi Award'i ülikooli raamatukogus

  1. 25 years of Pelletron Linac facility

    International Nuclear Information System (INIS)

    Shrivastava, A.; Palit, R.

    2014-01-01

    The DAE-BRNS International Symposium on Nuclear Physics was held in BARC during 2nd to 6th December 2013. A summary of the highlights of this symposium has recently appeared in Physics News. As a part of the symposium, a special session was held to commemorate 25 years of operation of the Mumbai Pelletron Linac Facility (PLF). PLF, being operated jointly by Bhabha Atomic Research Centre and Tata Institute of Fundamental Research, has been a major centre for heavy-ion accelerator based research in India. The Pelletron accelerator was formally inaugurated on 30th December 1988, and marked an important milestone in nuclear physics research in India. The facility was augmented with the indigenously developed superconducting LINAC booster to enhance the energy of the accelerated beams. The LINAC booster was commissioned in a phased manner and the entire facility was dedicated to the users on the 28th November 2007. The LINAC booster consists of seven liquid helium cryostat modules, each housing four lead coated (2 μm) copper quarter wave resonators (QWR). The cavities are designed to operate at 150 MHz with an optimum acceptance at a velocity corresponding to β=0.1. The performance of the QWRs is found to be excellent with an average energy gain of 0.4 MV/q per cavity corresponding to 80% of the design value. Beam transmission from the entry to the exit of the LINAC was found to be 80% and the beam timing (FWHM) of 600 ps was measured at the target position. Development of the superconducting LINAC is a major milestone in the accelerator technology in our country. Most of the critical components of the LINAC booster, the first superconducting heavy-ion accelerator in India, have been designed, developed and fabricated indigenously

  2. Superconducting magnetic quadrupole

    Energy Technology Data Exchange (ETDEWEB)

    Kim, J.W.; Shepard, K.W.; Nolen, J.A.

    1995-08-01

    A design was developed for a 350 T/m, 2.6-cm clear aperture superconducting quadrupole focussing element for use in a very low q/m superconducting linac as discussed below. The quadrupole incorporates holmium pole tips, and a rectangular-section winding using standard commercially-available Nb-Ti wire. The magnet was modeled numerically using both 2D and 3D codes, as a basis for numerical ray tracing using the quadrupole as a linac element. Components for a prototype singlet are being procured during FY 1995.

  3. All Digital IQ Servo-System for CERN Linacs

    CERN Document Server

    Rohlev, A; Garoby, R

    2003-01-01

    A new VME based system has been developed and built at CERN for the servo loops regulating the field in the linac accelerating structure. It makes use of high speed digital In-phase/Quadrature (IQ) detection, digital processing, and digital IQ modulation. The digital processing and IQ modulation is done in a single PLD. The system incorporates continually variable set points, iterative learning, feed forward as well as extensive diagnostics and other features well suited for digital implementations. Built on a single VME card, it will be first used in the energy ramping RF chain of the CERN Heavy Ion Linac (linac 3) and later for upgrading the present proton linac (linac 2). This system serves also as a prototype for the future Superconducting Proton Linac (SPL). The design principle and the experimental results are described.

  4. An overview of BARC-TIFR Pelletron-Linac Facility

    International Nuclear Information System (INIS)

    Gupta, A. K.

    2015-01-01

    The 14UD Pelletron Accelerator at Mumbai has recently completed twenty five years of successful operation. The accelerator is primarily used for basic research in the fields of nuclear, atomic, condensed matter and material science. The superconducting Linac booster provides additional acceleration to the ions from Pelletron injector up to A~60 region with E~5 MeV/A. Further, an alternate injector system to the Superconducting LINAC booster is planned as an augmentation programme, comprising of a superconducting ECR ion source, room temperature RFQ and superconducting low-beta cavity resonators. This talk will provide an overview of the recent developmental activities carried out at the Pelletron Accelerator Facility, resulting in enhanced overall performance and uptime of the accelerator. The application oriented programs initiated at Pelletron Accelerator and the current status of the alternate injector system at the Pelletron-Linac facility will also be discussed. (author)

  5. An overview of BARC-TIFR pelletron linac facility

    International Nuclear Information System (INIS)

    Gupta, A.K.

    2014-01-01

    The 14UD Pelletron Accelerator at Mumbai has recently completed twenty five years of successful operation. The accelerator is primarily used for basic research in the fields of nuclear, atomic, condensed matter and material science. The superconducting Linac booster provides additional acceleration to the ions from Pelletron injector up to A∼60 region with E∼5 MeV/A. Further, an alternate injector system to the Superconducting LINAC booster is planned as an augmentation programme, comprising of a superconducting ECR ion source, room temperature RFQ and superconducting low-beta cavity resonators. This talk will provide an overview of the recent developmental activities carried out at the Pelletron Accelerator Facility, resulting in enhanced overall performance and uptime of the accelerator. The application oriented programs initiated at Pelletron Accelerator and the current status of the alternate injector system at the Pelletron-Linac facility will also be discussed. (author)

  6. Some aspects of linacs as applied to the ISL benchmark facility

    International Nuclear Information System (INIS)

    Shepard, K.W.

    1992-01-01

    This paper considers several aspects of using linacs in a radioactive beam facility in terms of the Isospin Laboratory (ISL) Benchmark Facility (BMF) plan, described in the 1991 white paper for a possible radioactive-beam laboratory. The intention is not to review comprehensively the application of linacs to an ISL facility, but to compare in outline form several linac options for such a facility. Particular emphasis is given to the use of superconducting rf technology for the secondary beam accelerator. In what follows, first a possible normally-conducting light-ion linac for a primary beam accelerator is briefly outlined. Then the performance and cost of two options for a secondary beam accelerator are compared: a recent design for a normal-conducting cw linac, and an ATLAS-type superconducting linac. Finally, some of the problems which may be encountered at the entrance of a secondary beam linac are discussed

  7. Linac postaccelerators for tandem machines

    International Nuclear Information System (INIS)

    Jaeschke, E.

    1984-01-01

    Linear accelerators as postaccelerators have become an accepted total for increasing the final energy of tandem accelerators. This special application of linacs requires an extreme flexibility to cope with a wide velocity and specific charge range of ions while maintaining the excellent beam quality of the electrostatic machines. These requirements can best be fulfilled by choosing independently phased accelerator resonators of the spiral, splitring or quarter wave type in either normal or superconducting technology. Basic design considerations for postaccelerators are discussed and a survey about the major projects, operational or planned, is given. (orig.)

  8. Status of RF superconductivity at Argonne

    International Nuclear Information System (INIS)

    Shepard, K.W.

    1990-01-01

    Development of a superconducting slow-wave structures began at Argonne National Laboratory (ANL) in 1971, and led to the first superconducting heavy-ion linac (ATLAS - the Argonne Tandem-Linac Accelerator System). The Physics Division at ANL has continued to develop superconducting RF technology for accelerating heavy-ions, with the result that the linac has been in an almost continuous process of upgrade and expansion. In 1987, the Engineering Physics Division at ANL began developing of superconducting RF components for the acceleration of high-brightness proton and deuterium beams. The two divisions collaborate in work on several applications of RF superconductivity, and also in work to develop the technology generally. The present report briefly describes major features of the superconducting heavy-ion linac (very-low-velocity superconducting linac, positive ion injector), proton accelerating structures (superconducting resonant cavities for acceleration of high-current proton and deuteron beams, RF properties of oxide superconductors), and future work. Both divisions expect to continue a variety of studies, frequently in collaboration, to advance the basic technology of RF superconductivity. (N.K.)

  9. The superconducting 130 MeV electron accelerator at Darmstadt

    International Nuclear Information System (INIS)

    Aab, A.; Alrutz-Ziemssen, K.; Amend, R.; Flasche, D.; Graef, H.D.; Huck, V.; Hummel, K.D.; Knirsch, M.; Lindqvist, F.; Lotz, W.; Richter, A.; Rietdorf, T.; Schaaf, U.; Simrock, S.; Spamer, E.; Stiller, A.; Titze, O.; Weise, H.; Ziegler, W.; Heinrichs, H.; Piel, H.; Pouryamout, J.

    1988-07-01

    Since the superconducting injector linac of the accelerator produced a first beam in August 87 the first cryomodule of the main linac containing another two accelerating structures has been installed and operated. The final concept of the rf control circuits has been developed and two prototype channels were operated successfully in an acceleration test with five superconducting structures. The beam from the injector linac was used routinely for atomic and nuclear physics experiments during the last four months. (orig.)

  10. Linear Accelerator (LINAC)

    Science.gov (United States)

    ... News Physician Resources Professions Site Index A-Z Linear Accelerator A linear accelerator (LINAC) customizes high energy x-rays or ... ensured? What is this equipment used for? A linear accelerator (LINAC) is the device most commonly used ...

  11. Operation of the Stony Brook tandem/linac accelerator system

    International Nuclear Information System (INIS)

    Noe, J.W.

    1986-01-01

    The Stony Brook nuclear structure laboratory operates the first superconducting linac based on a lead-on-copper resonator technology. Heavy ions up to mass Aapprox. =100 from the FN tandem Van de Graaff are boosted to energies of 5--10 MeV per nucleon for a variety of nuclear structure and reaction studies. We review the first 2 1/2 years of linac operating experience, with emphasis on resonator performance, system limitations, and future improvements

  12. Commissioning and first cooldown of XFEL linac

    Science.gov (United States)

    Bozhko, Y.; Escherich, K.; Jensch, K.; Petersen, B.; Schnautz, T.; Sellmann, D.

    2017-12-01

    Beam commissioning of the European X-ray Free Electron Laser (European XFEL project) is ongoing. Commissioning the XFEL cryogenic system has started by cooling down the XFEL injector section in December 2015. The stationary operation was continued until August 2016. After intermediate warming up of the complete XFEL cryogenic system, the commissioning of remaining components including the 1.5 km long superconducting XFEL linear accelerator (linac) has commenced and was completed in beginning of December 2016. After conclusive pressure and leak tests, and flushing the cooldown started on 11 December 2016. Stable 4.5 K operation both for the linac and injector was established on 28 December. In this paper the XFEL cryogenic system is introduced and the first cooldown of the XFEL linac is reported. The cooldown sequences are described and the measured cooldown evolution is presented. Thermal losses of single circuits are given. Preliminary conclusions with the review of critical points are drawn.

  13. Chitinase Production by Streptomyces sp. ANU 6277

    Directory of Open Access Journals (Sweden)

    Kolla J.P. Narayana

    2009-12-01

    Full Text Available Chitinase production by a terrestrial Streptomyces sp. ANU 6277 was studied under sub-merged fermentation. Chitinase production started after 24 h of incubation and reached maximum levels after 60 h of cultivation. A high level of chitinase activity was observed in the culture medium with pH 6 at 35ºC. Culture medium amended with 1% chitin was found to be suitable for maximum production of chitinase. An optimum concentration of colloidal chitin for chitinase production was determined. Studies on the influence of additional carbon and nitrogen sources on chitinase production revealed that starch and yeast extract served as good carbon and nitrogen sources to enhance chitinase yield.Chitinase was purified from crude enzyme extract by single step gel filtration by Sephadex G-100. Purified chitinase of the strain exhibited a distinct protein band near 45 kDa by means of SDS-PAGE.

  14. Arte näitab filmi Anu Talist / Immo Mihkelson

    Index Scriptorium Estoniae

    Mihkelson, Immo, 1959-

    2008-01-01

    24. veebruaril esilinastub telekanalil Arte Saksa portreefilm Eesti dirigendist "Maestra Baltica: Anu Tali dirigiert baltische Musik" (režissöörid Daniel Finkernagel, Alexander Lück). Lisatud info kultuurikanali Arte kohta

  15. A Multi-MW Proton/Electron Linac at KEK

    OpenAIRE

    Belusevic, Radoje

    2014-01-01

    The main `bottleneck' limiting the beam power in circular machines is caused by space charge effects that produce beam instabilities. To increase maximally the beam power of a `proton driver', it is proposed to build a facility consisting solely of a 2.5-GeV injector linac (PI) and a 20-GeV pulsed superconducting linac (SCL). Such a facility could be constructed using the existing KEK accelerator infrastructure. The PI, based on the European Spallation Source (ESS) linac, would serve both as ...

  16. High intensity proton linac activities at Los Alamos

    International Nuclear Information System (INIS)

    Rusnak, B.; Chan, K.C.; Campbell, B.

    1998-01-01

    High-current proton linear accelerators offer an attractive alternative for generating the intense neutron fluxes needed for transmutations technologies, tritium production and neutron science. To achieve the fluxes required for tritium production, a 100-mA, 1700-MeV cw proton accelerator is being designed that uses superconducting cavities for the high-energy portion of the linac, from 211 to 1,700 MeV. The development work supporting the linac design effort is focused on three areas: superconducting cavity performance for medium-beta cavities at 700 MHz, high power rf coupler development, and cryomodule design. An overview of the progress in these three areas is presented

  17. Linac Optics for Energy Recovery Linac

    International Nuclear Information System (INIS)

    Ivan Bazarov; Geoffrey Krafft; Lia Merminga

    2001-01-01

    Several possible scenarios of Energy Recovery Linac (ERL) beam optics design are investigated to support the low emittance high current CW electron beam needed to drive a new ERL based X-ray Source. It is shown by numerical simulations that sufficiently high multipass beam break-up (BBU) threshold current can be achieved in a straightforward one-pass one-linac ERL scenario. A simple guideline for choosing optimal linac and recirculating transport line optics is suggested to realize best possible BBU threshold current

  18. Development of an Eddy Current Septum for LINAC4

    CERN Document Server

    Barnes, M; Borburgh, J; Fowler, T; Goddard, B; Ueda, A; Weterings, W

    2008-01-01

    A linear accelerator (linac) is the first stage of the CERN accelerator complex. The linac defines the beam quality for subsequent stages of acceleration and the reliability has to be high as a fault of the linac shuts down all other machines. The existing linacs at CERN were designed 30 or more years ago: recent upgrades allowed the linacs to reach LHC requirements but also showed that they are at the limit of their brightness and intensity capabilities. A replacement Superconducting Proton Linac (SPL) has been proposed; the initial part of the SPL is termed LINAC4. The LINAC4 injection bump would be made up of a set of four pulsed dipole magnets; the first of these magnets (BS1) must act as a septum with a thin element dividing the high-field region of the circulating beam from the field-free region through which injected $H^{-}$ beam must pass. The initial specifications for BS1 required; a deflection of 66 mrad at 160 MeV, achieved with a peak field of 628 mT and a length of 250 mm: the field fall time wa...

  19. Linac 1, inner structure

    CERN Multimedia

    1968-01-01

    This photo shows the inner structure of Linac 1. As injector to the PS, and later to the Booster, Linac 1 accelerated protons to 50 MeV, but it has also accelerated heavier ions. Fitted with a 520 keV RFQ pre-injector (instead of the original Cockcroft-Walton generator), it delivered protons and heavy ions to LEAR, from 1982 to 1992. After 33 years of faithful service, Linac 1 was dismantled in 1992 to make room for Linac 3 (Pb ions).

  20. Superconducting linear accelerator system for NSC

    Indian Academy of Sciences (India)

    This paper reports the construction of a superconducting linear accelerator as a booster to the 15 UD Pelletron accelerator at Nuclear Science Centre, New Delhi. The LINAC will use superconducting niobium quarter wave resonators as the accelerating element. Construction of the linear accelerator has progressed ...

  1. Conceptual design report: superconducting booster

    International Nuclear Information System (INIS)

    1983-01-01

    The Superconducting Booster project includes the construction of a new high-voltage injector and buncher for the existing tandem, a magnetic transport system, an rf linac with superconducting resonators, and a rebuncher-debuncher. The booster will fit in existing space so that a new building is not required. The layout of the accelerator is given in Fig. I-1. The University of Washington is contributing approximately $1 M to this project

  2. Workshop: Linac90

    International Nuclear Information System (INIS)

    Van Dyck, Olin

    1990-01-01

    In 1960 the first linear accelerator (linac) conference was organized at Brookhaven by John Blewett. In the few years following, linear accelerator energies jumped from 50 MeV (at Brookhaven and CERN) to 2 GeV at Stanford. With the realization that, at least for electrons, circular accelerators have reached their practical limits, linacs are once more in the spotlight

  3. Linac pre-injector

    CERN Multimedia

    CERN PhotoLab

    1965-01-01

    New accelerating column of the linac pre-injector, supporting frame and pumping system. This new system uses two mercury diffusion pumps (in the centre) and forms part of the modifications intended to increase the intensity of the linac. View taken during assembly in the workshop.

  4. Notes on the design of experiments and beam diagnostics with synchrotron light detected by a gated photomultiplier for the Fermilab superconducting electron linac and for the Integrable Optics Test Accelerator (IOTA)

    Energy Technology Data Exchange (ETDEWEB)

    Stancari, Giulio [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Romanov, Aleksandr [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Ruan, Jinhao [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Santucci, James [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Thurman-Keup, Randy [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Valishev, Alexander [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States)

    2017-11-08

    We outline the design of beam experiments for the electron linac at the Fermilab Accelerator Science and Technology (FAST) facility and for the Integrable Optics Test Accelerator (IOTA), based on synchrotron light emitted by the electrons in bend dipoles, detected with gated microchannel-plate photomultipliers (MCP-PMTs). The system can be used both for beam diagnostics (e.g., beam intensity with full dynamic range, turn-by-turn beam vibrations, etc.) and for scientific experiments, such as the direct observation of the time structure of the radiation emitted by single electrons in a storage ring. The similarity between photon pulses and spectrum at the downstream end of the electron linac and in the IOTA ring allows one to test the apparatus during commissioning of the linac.

  5. The Linac4 project

    CERN Document Server

    AUTHOR|(CDS)2108735

    2016-01-01

    Linac4 is a normal conducting, 160 MeV H- ion accelerator that is being constructed within the scope of the LHC injectors upgrade project. Linac4 will be connected to the Proton Synchrotron Booster (PSB) during the next long LHC shut-down and it will replace the current 50 MeV hadron linac, Linac2. Linac4 is presently being commissioned, with the aim of achieving the final energy at the end of the year. A test of the injection chicane and a reliability run will follow. The beam commissioning, in steps of increasing energy, has been prepared by an extended series of studies and interlaced with phases of installation. In this paper we will detail the beam dynamics challenges and we will report on the commissioning results.

  6. Electron linac design for pion radiotherapy

    International Nuclear Information System (INIS)

    Loew, G.A.; Brown, K.L.; Miller, R.H.; Walz, D.R.

    1977-03-01

    The electron linac provides a straightforward, state-of-the-art method of producing the primary beam required for a hospital-based multiport pion radiotherapy facility for cancer treatment. The accelerator and associated beam transport system described are capable of generating an electron beam of about 250 kW and delivering it alternately to one of several pion generators and treatment areas. Each pion generator, a prototype of which now exists at the Stanford W. W. Hansen Laboratory, would contain a target for the electron beam and sixty separate superconducting magnet channels which focus the pions in the patient. The considerations which enter the design of a practical linac are presented together with a possible layout of a flexible beam transport system

  7. High Current Energy Recovery Linac at BNL

    CERN Document Server

    Litvinenko, Vladimir N; Ben-Zvi, Ilan; Blaskiewicz, Michael; Bluem, Hans; Brennan, Joseph M; Burger, Al; Burrill, Andrew; Calaga, Rama; Cameron, Peter; Chang, Xiangyun; Cole, Michael; Connolly, Roger; Delayen, Jean R; Favale, Anthony; Gassner, David M; Hahn, Harald; Hershcovitch, Ady; Holmes, Douglas; Hseuh Hsiao Chaun; Johnson, Peter; Kayran, Dmitry; Kewisch, Jorg; Lambiase, Robert; Mahler, George; McIntyre, Gary; Meng, Wuzheng; Nehring, Thomas; Nicoletti, Tony; Oerter, Brian; Pate, David; Phillips, Larry; Preble, Joseph P; Rank, Jim; Rao, Triveni; Rathke, John; Roser, Thomas; Russo, Thomas; Scaduto, Joseph; Schultheiss, Tom; Smith, Kevin T; Todd, Alan M M; Warren Funk, L; Williams, Neville; Wu, Kuo-Chen; Yakimenko, Vitaly; Yip, Kin; Zaltsman, Alex; Zhao, Yongxiang

    2004-01-01

    We present the design and the parameters of a small Energy Recovery Linac (ERL) facility, which is under construction at BNL. This R&D facility has goals to demonstrate CW operation of ERL with average beam current in the range of 0.1 - 1 ampere, combined with very high efficiency of energy recovery. The possibility for future up-grade to a two-pass ERL is being considered. The heart of the facility is a 5-cell 703.75 MHz super-conducting RF linac with HOM damping. Flexible lattice of ERL provides a test-bed for testing issues of transverse and longitudinal instabilities and diagnostics of intense CW e-beam. We present the status and plans for this facility.

  8. Operation of the tandem-linac accelerator

    International Nuclear Information System (INIS)

    Anon.

    1985-01-01

    The tandem-linac accelerator system is operated as a source of energetic heavy-ion projectiles for research in several areas of nuclear physics and occasionally in other areas of science. The accelerator system consists of a 9-MV tandem electrostatic accelerator and a superconducting-linac energy booster that can provide an additional 20 MV of acceleration. A figure shows the layout of this system, which will be operated in its present form until September 1985, when it will be incorporated into the larger ATLAS system. In both the present and future forms the accelerator is designed to provide the exceptional beam quality and overall versatility required for precision nuclear-structure research

  9. Compendium of Scientific Linacs

    Energy Technology Data Exchange (ETDEWEB)

    Clendenin, James E

    2003-05-16

    The International Committee supported the proposal of the Chairman of the XVIII International Linac Conference to issue a new Compendium of linear accelerators. The last one was published in 1976. The Local Organizing Committee of Linac96 decided to set up a sub-committee for this purpose. Contrary to the catalogues of the High Energy Accelerators which compile accelerators with energies above 1 GeV, we have not defined a specific limit in energy. Microtrons and cyclotrons are not in this compendium. Also data from thousands of medical and industrial linacs has not been collected. Therefore, only scientific linacs are listed in the present compendium. Each linac found in this research and involved in a physics context was considered. It could be used, for example, either as an injector for high energy accelerators, or in nuclear physics, materials physics, free electron lasers or synchrotron light machines. Linear accelerators are developed in three continents only: America, Asia, and Europe. This geographical distribution is kept as a basis. The compendium contains the parameters and status of scientific linacs. Most of these linacs are operational. However, many facilities under construction or design studies are also included. A special mention has been made at the end for the studies of future linear colliders.

  10. Uudised : Anu Tali debüüt Hesseni raadios

    Index Scriptorium Estoniae

    2007-01-01

    28. septembril juhatab dirigent Anu Tali Frankfurdis esmakordselt Hesseni Raadio Sümfooniaorkestrit Hesseni Ringhäälingu saalis. Ettekandel Tõnu Kõrvitsa teos"Sung into the Wind", Shostakovitshi 9. sümfoonia ja Beethoveni 5. klaverikontsert (solist Herbert Schuch)

  11. Keeleuuendusest sündis diplomilavastus / Anu Lamp

    Index Scriptorium Estoniae

    Lamp, Anu, 1958-

    2006-01-01

    24. märtsil esietendus teatris NO99 lavakunstikooli 22. lennu viimane diplomilavastus "Keeleuuenduse lõpmatu kurv". Lavastaja Anu Lamp räägib, kuidas sündis ja kuidas materjal Johannes Aaviku keeleuuendusest lavale jõudis

  12. Anu Lamp õpetab presidendile kõnekunsti peensusi / Kadri Paas

    Index Scriptorium Estoniae

    Paas, Kadri, 1982-

    2007-01-01

    Näitleja Anu Lamp õpetab president Toomas Hendrik Ilvesele kaheksa akadeemilise tunni jooksul kõnelemisoskust. Vt. samas: Martti Kass. Presidendi hiiglaslik vastuvõtutelk võtab ilmet. Tartus hakati Vanemuise teatri külje alla hiigeltelki püstitama. Telgis surub president Toomas Hendrik Ilves 24. veebruaril 2007 kutsutud külaliste kätt

  13. Deliverable D3 - Low- and Medium-beta linac

    CERN Document Server

    A. Facco, A. Balabin, R. Paparella, D. Zenere, INFN-Laboratori Nazionali di Legnaro, Padova, Italy; D. Berkovits, J. Rodnizki, SOREQ, Yavne, Israel; J. L. Biarrotte, S. Bousson, A. Ponton, G. Olry, IPN Orsay, France; R. Duperrier, D. Uriot, CEA/Saclay, France; V. Zvyagintsev, TRIUMF, Vancouver, Canada.

    The present document describes the Low- and Medium-beta section of the EURISOL DS Driver Accelerator. This section consists of a superconducting linac, based on Half-Wave (HWR) and SPOKE type resonators, preceded by a short, normal-conducting MEBT (Medium Energy Beam Transport) section that performs input beam matching. The scope of this linac is to bring the beams of H-, D+ and 3He++ produced by the Ion Injector (Deliverable D-5) to the energy and beam parameters required for injection in the superconducting High-beta linac (Deliverable D4-High beta linac). The present beam dynamics design reaches the goal of accelerating the required high current beams to the design energy (about 100 MeV/A, depending on the ion species), with minimum emittance growth and with low losses, using realistic and cost-effective, although innovative, technological solutions. The Low- and Medium-beta linac layout is described, together with the fundamental parameters and characteristics of its components and the system performanc...

  14. Deliverable D3 - Low- and Medium-beta linac

    CERN Document Server

    A. Facco, A. Balabin, R. Paparella, D. Zenere, INFN-Laboratori Nazionali di Legnaro, Padova, Italy; D. Berkovits, J. Rodnizki, SOREQ, Yavne, Israel; J. L. Biarrotte, S. Bousson, A. Ponton, G. Olry, IPN Orsay, France; R. Duperrier, D. Uriot, CEA/Saclay, France; V. Zvyagintsev, TRIUMF, Vancouver, Canada.

    The present document describes the Low- and Medium-beta section of the EURISOL DS Driver Accelerator. This section consists of a superconducting linac, based on Half-Wave (HWR) and SPOKE type resonators, preceded by a short, normal-conducting MEBT (Medium Energy Beam Transport) section that performs input beam matching. The scope of this linac is to bring the beams of H-, D+ and 3He++ produced by the Ion Injector (Deliverable D-5) to the energy and beam parameters required for injection in the superconducting High-beta linac (Deliverable D4-High beta linac). The present beam dynamics design reaches the goal of accelerating the required high current beams to the design energy (about 100 MeV/A, depending on the ion species), with minimum emittance growth and with low losses, using realistic and cost-effective, although innovative, technological solutions. The Low- and Medium-beta linac layout is described, together with the fundamental parameters and characteristics of its components and the system performance.

  15. Electron linac injector developments

    International Nuclear Information System (INIS)

    Fraser, J.S.

    1986-01-01

    There is a continuing demand for improved injectors for electron linacs. Free-electron laser (FEL) oscillators require pulse trains of high brightness and, in some applications, high average power at the same time. Wakefield-accelerator and laser-acceleration experiments require isolated bunches of high peak brightness. Experiments with alkali-halide photoemissive and thermionic electron sources in rf cavities for injector applications are described. For isolated pulses, metal photocathodes (illuminated by intense laser pulses) are being employed. Reduced emittance growth in high-peak-current electron injectors may be achieved by linearizing the cavity electric field's radial component and by using high field strengths at the expense of lower shunt impedance. Harmonically excited cavities have been proposed for enlarging the phase acceptance of linac cavities and thereby reducing the energy spread produced in the acceleration process. Operation of injector linacs at a subharmonic of the main linac frequency is also proposed for enlarging the phase acceptance

  16. Brookhaven Linac Isotope Producer

    Data.gov (United States)

    Federal Laboratory Consortium — The Brookhaven Linac Isoptope Producer (BLIP)—positioned at the forefront of research into radioisotopes used in cancer treatment and diagnosis—produces commercially...

  17. Status of rf superconductivity at Argonne National Laboratory

    International Nuclear Information System (INIS)

    Markovich, P.M.; Shepard, K.W.; Zinkann, G.P.

    1987-01-01

    This paper reports the status of hardware development for the linac portion of the Argonne tandem-linac accelerator system (ATLAS). The ATLAS superconducting linac consists of an independent-phased array of 45 superconducting niobium resonators of the split-ring type. The linac has been operating in its present form since 1985, on a 24-hours per day, 5 days per week schedule. An upgrade of the ATLAS system is currently under construction the positive-ion injector (PII). The PII system will consist of an ECR positive-ion source mounted on a high-voltage platform injecting a very-low-velocity superconducting linac. The completed system will provide for the acceleration of beams of mass up to uranium, and will replace the tandem electrostatic accelerator as the injector for ATLAS. The status of resonator development for the superconducting linac is reported in this paper. Accelerating gradients in the existing ATLAS linac are currently limited by excessive heating and rf loss in the fast-tuning system associated with each superconducting resonator. Development of an upgraded fast-tuning system is also reported here. 7 refs., 5 figs

  18. RF Structures for Linac4

    CERN Document Server

    Gerigk, F; Pasini, M; Ramberger, S; Vretenar, M; Wegner, R

    2007-01-01

    Linac4 is proposed to replace the existing proton linac at CERN (Linac2). Using an increased injection energy of 160 MeV instead of 50 MeV, Linac4 is expected to double the beam intensity in the PS Booster (PSB) and will thus be the first step towards higher brightness beams in the LHC. In this paper we re-assess the choice of RF structures for Linac4. Different accelerating structures for different energy ranges are compared in terms of RF efficiency, ease of construction and alignment, and necessary infrastructure. Eventually we present the final choice for Linac4.

  19. Radiation processing using electron linacs

    International Nuclear Information System (INIS)

    McKeown, J.

    1985-01-01

    The performance capabilities of a modern linac make it a commercially viable tool for enterprising applied radiation chemists and biologists. Good economics requires efficient transformation of main power to beam power and although pulsed travelling wave linacs have been used in industrial applications for several years, their high cost per watt is a disadvantage. The cw linac with its variants is a developed technology which could be used profitably in selected applications. More integrated designs like the self-excited linac and the induction linac also offer promise for the near future. Linac design optimization in relation to the physical and chemical processes desired in the irradiated product is discussed

  20. Physics design of APT linac with normal conducting rf cavities

    International Nuclear Information System (INIS)

    Nath, S.; Billen, J.H.; Stovall, J.E.; Takeda, Harunori; Young, L.M.

    1996-01-01

    The accelerator based production of tritium calls for a high-power, cw proton linac. Previous designs for such a linac use a radiofrequency quadrupole (RFQ), followed by a drift-tube linac (DTL) to an intermediate energy and a coupled-cavity linc (CCL) to the final energy. The Los Alamos design uses a high-energy (6.7 MeV) RFQ followed by the newly developed coupled-cavity drift-tube linac (CCDTL) and a CCL. This design accommodates external electromagnetic quadrupole lenses which provide a strong uniform focusing lattice from the end of the RFQ to the end of the CCL. The cell lengths in linacs of traditional design are typically graded as a function of particle velocity. By making groups of cells symmetric in both the CCDTL and CCL, the cavity design as well as mechanical design and fabrication is simplified without compromising the performance. At higher energies, there are some advantages of using superconducting rf cavities. Currently, such schemes are under vigorous study. This paper describes the linac design based on normal conducting cavities and presents simulation results

  1. Superconducting RF Development at Nuclear Science Centre

    CERN Document Server

    Roy, Amit

    2005-01-01

    A Superconducting Linac is being installed as a booster for the 15 UD Pelletron accelerator at Nuclear Science Centre (NSC). The accelerating structure for this linac is a Nb QWR cavity, designed and fabricated as a joint collaboration between NSC and ANL, USA. Initial cavities required for the first linac module were fabricated at ANL. For fabrication of cavities required for future modules a Superconducting Resonator Fabrication Facility has been set up at NSC. Three quarter wave resonator (QWR) cavities have been fabricated using the in-house facility. This facility has been used for repairs on the resonators which sprung leaks. Fabrication of fifteen resonators for the second and third linac modules is under progress. Eight resonators along with a superconducting solenoid has been installed in the first linac cryostat and tested for energy gain with a pulsed beam of 90 MeV Si from the Pelletron. Acceleration of the ions to 96 MeV was measured downstream and beam transmission through the linac was measured...

  2. Tantsides Jamaicat vallutamas / Anu Sööt

    Index Scriptorium Estoniae

    Sööt, Anu, 1957-

    2009-01-01

    Rahvusvahelisest lastetantsu konverentsist "Dance and the Child International Conference" Jamaica pealinnas Kingstonis, kus osales Eestist 11 tantsuhuvilist, nende õpetaja ja koreograaf Elo Unt ning projektijuht Jane Miller-Pärnamägi Eesti Tantsuagentuurist. Lisaks Tartu Ülikooli Viljandi Kultuuriakadeemia õppejõud Anu Sööt ja Äli Leijen ning Tallinna Ülikooli koreograafia osakonna õppejõud ja Viljandi huvikooli õpetaja Eve Noormets

  3. A superconducting RFQ for an ECR injector

    International Nuclear Information System (INIS)

    Ben-Zvi, I.

    1988-01-01

    The beam dynamics and resonator properties of a superconducting radio-frequency quadrupole (RFQ) for heavy ions are discussed. The motivation is its use as a very low velocity section following an electron cyclotron resonance (ECR) source for injection into a superconducting heavy-ion linac. The constraints on the design and performance of this accelerating structure are presented. Expressions for a limiting stable phase angle and longitudinal and transverse acceptance are derived. A numerical example is given, using the SUNYLAC linac at Sony Stony Brook. Beam-dynamics calculations with PARMTEQ are reported, verifying the theoretical beam-dynamics calculations. (author) 12 refs., 1 tab

  4. High field electron linacs

    International Nuclear Information System (INIS)

    Le Duff, J.

    1985-12-01

    High field electron linacs are considered as potential candidates to provide very high energies beyond LEP. Since almost twenty years not much improvement has been made on linac technologies as they have been mostly kept at low and medium energies to be used as injectors for storage rings. Today, both their efficiency and their performances are being reconsidered, and for instance the pulse compression sheme developed at SLAC and introduced to upgrade the energy of that linac is a first step towards a new generation of linear accelerators. However this is not enough in terms of power consumption and more development is needed to improve both the efficiency of accelerating structures and the performances of RF power sources

  5. Exergetic analysis of refrigeration system of the Pelletron-Linac particle accelerator of the University of Sao Paulo

    International Nuclear Information System (INIS)

    Oliveira Filho, O.B. de

    1993-01-01

    The Pelletron-Linac accelerator of the University of Sao Paulo will use the existing electrostatic Pelletron accelerator as an injector for the linear superconducting accelerator (Linac), to increase the acceleration of the particles. The Linac uses a forced flow circulation helium system to promote continuous refrigeration for long periods of time, at temperatures below or equal to 4,9 K. This paper shows the exergetic analysis of the Pelletron-linac refrigerator, identifying the main sources of irreversibilities and evaluating energetic consumption of the system. An exergy-enthalpy diagram for the helium shows the thermodynamic processes that take place in the refrigeration plant and the exergy losses. (author)

  6. Overview and status of RF systems for the SSC Linac

    International Nuclear Information System (INIS)

    Mynk, J.; Grippe, J.; Cutler, R.I.; Rodriguez, R.

    1993-05-01

    The Superconducting Super Collider (SSC) Linear Accelerator (Linac) produces a 600-MeV, 35-μs, H-beam at a 10-Hz repetition rate. The beam is accelerated by a series of RF cavities. These consist of a Radio Frequency Quadrupole (RFQ), two bunchers, and four Drift Tube Linac (DTL) tanks at 427.617 MHz, and two bunchers, nine side-coupled Linac modules, and an energy compressor at 1282.851 MHz. The RFQ amplifier and the low-frequency buncher cavity amplifiers use gridded tubes, while the other cavities use klystron amplifier systems. The RF control system consists of a reference line and cavity feedback and feedforward loops for each amplifier. The RF amplifier system for each of these accelerator cavities is described, and the current status of each system is presented

  7. Conceptual study of high power proton linac for accelerator driven subcritical nuclear power system

    CERN Document Server

    Yu Qi; Ouyang Hua Fu; Xu Tao Guang

    2001-01-01

    As a prior option of the next generation of energy source, the accelerator driven subcritical nuclear power system (ADS) can use efficiently the uranium and thorium resource, transmute the high-level long-lived radioactive wastes and raise nuclear safety. The ADS accelerator should provide the proton beam with tens megawatts. The superconducting linac is a good selection of ADS accelerator because of its high efficiency and low beam loss rate. The ADS accelerator presented by the consists of a 5 MeV radio-frequency quadrupole, a 100 MeV independently phased superconducting cavity linac and a 1 GeV elliptical superconducting cavity linac. The accelerating structures and main parameters are determined and the research and development plan is considered

  8. Assessment of Alternative RF Linac Structures for APT

    International Nuclear Information System (INIS)

    None

    1997-01-01

    The APT program has been examining both normal and superconducting variants of the APT linac for the past two years. A decision on which of the two will be the selected technology will depend upon several considerations including the results of ongoing feasibility experiments, the performance and overall attractiveness of each of the design concepts, and an assessment of the system-level features of both alternatives. The primary objective of the Assessment of Alternative RF Linac Structures for APT study reported herein was to assess and compare, at the system-level, the performance, capital and life cycle costs, reliability/availability/maintainability (RAM) and manufacturing schedules of APT RF linear accelerators based upon both superconducting and normal conducting technologies. A secondary objective was to perform trade studies to explore opportunities for system optimization, technology substitution and alternative growth pathways and to identify sensitivities to design uncertainties

  9. Design of a superconducting low beta niobium resonator

    Indian Academy of Sciences (India)

    The proposed high current injector for the superconducting Linac at the InterUniversity Accelerator Centre will have several accelerating structures, including a superconducting module which will contain low beta niobium resonators. A prototype resonator for the low beta module has been designed. The resonator has been ...

  10. Design of a superconducting low beta niobium resonator

    Indian Academy of Sciences (India)

    Abstract. The proposed high current injector for the superconducting Linac at the Inter-. University Accelerator Centre will have several accelerating structures, including a superconducting module which will contain low beta niobium resonators. A prototype resonator for the low beta module has been designed.

  11. SRF LINAC for future extension of the PEFP

    International Nuclear Information System (INIS)

    Kim, Han Sung; Kwon, Hyeok Jung; Seol, Kyoung Tae; Jang, Ji Ho; Cho, Yong Sub

    2014-01-01

    A study on the superconducting RF linac is underway in order to increase the beam energy up to 1 GeV by extending the Proton Engineering Frontier Project (PEFP) 100-MeV linac. The operating frequency of the PEFP superconducting linac (SCL) is 700 MHz, which is determined by the fact that the frequency of the existing normal conducting linac is 350 MHz. A preliminary study on the beam dynamics showed that two types of cavities with geometrical betas of 0.50 and 0.74 could cover the entire energy range from 100 MeV to 1 GeV. An inductive output tube (IOT) based RF system is under consideration as a high-power RF source for the SCL due to its low operating voltage and high efficiency. As a prototyping activity for a reduced beta cavity, a five-cell cavity with a geometrical beta of 0.42 was designed and fabricated. A vertical test of the prototype cavity at low temperatures was performed to check the performance of the cavity. The design study and the prototyping activity for the PEFP SCL will be presented in this paper.

  12. SRF LINAC FOR FUTURE EXTENSION OF THE PEFP

    Directory of Open Access Journals (Sweden)

    HAN-SUNG KIM

    2014-04-01

    Full Text Available A study on the superconducting RF linac is underway in order to increase the beam energy up to 1 GeV by extending the Proton Engineering Frontier Project (PEFP 100-MeV linac. The operating frequency of the PEFP superconducting linac (SCL is 700 MHz, which is determined by the fact that the frequency of the existing normal conducting linac is 350 MHz. A preliminary study on the beam dynamics showed that two types of cavities with geometrical betas of 0.50 and 0.74 could cover the entire energy range from 100 MeV to 1 GeV. An inductive output tube (IOT based RF system is under consideration as a high-power RF source for the SCL due to its low operating voltage and high efficiency. As a prototyping activity for a reduced beta cavity, a five-cell cavity with a geometrical beta of 0.42 was designed and fabricated. A vertical test of the prototype cavity at low temperatures was performed to check the performance of the cavity. The design study and the prototyping activity for the PEFP SCL will be presented in this paper.

  13. High order modes in Project-X linac

    Energy Technology Data Exchange (ETDEWEB)

    Sukhanov, A., E-mail: ais@fnal.gov; Lunin, A.; Yakovlev, V.; Awida, M.; Champion, M.; Ginsburg, C.; Gonin, I.; Grimm, C.; Khabiboulline, T.; Nicol, T.; Orlov, Yu.; Saini, A.; Sergatskov, D.; Solyak, N.; Vostrikov, A.

    2014-01-11

    Project-X, a multi-MW proton source, is now under development at Fermilab. In this paper we present study of high order modes (HOM) excited in continues-wave (CW) superconducting linac of Project-X. We investigate effects of cryogenic losses caused by HOMs and influence of HOMs on beam dynamics. We find that these effects are small. We conclude that HOM couplers/dampers are not needed in the Project-X SC RF cavities.

  14. Electron Induction Linacs

    Science.gov (United States)

    Caporaso, George J.; Chen, Yu-Jiuan

    Electron induction linacs have been used for over four decades for a variety of applications. As discussed in Chap. 8, these include basic studies in magnetically confined fusion, transport of intense electron beams in various gases, the generation of electromagnetic radiation from free electron lasers, radiation processing of materials and food, and flash X-ray radiography sources.

  15. TOP LINAC design

    International Nuclear Information System (INIS)

    Picardi, L.; Ronsivalle, C.; Vignati, A.

    1997-11-01

    The report describes a linear accelerator for protons named TOP LINAC designed for the TOP (Terapia Oncologica con Protoni, Oncological Protontherapy) project launched by the Italian National Institute of Health (Istituto Superiore di Sanita', ISS) to explore in collaboration with the biggest Oncological Hospital in Rome (Istituto Regina Elena, IRE) the potentialities of the therapy with accelerated protons and establish guide lines for the application of this new type of radiotherapy in comparison with the more traditional electron and x-rays radiotherapy. The concept of a compact accelerator for protontherapy applications bore within the Italian Hadrontherapy Collaboration (TERA Collaboration) with the aim to diffuse the protontherapy on the National territory. The ISS program plans to use the TOP linac proton beam also for production of PET (Positron Emission Tomography) radioisotopes and radiobiology studies. Official agreements are in course between ISS and ENEA which provides its experience in the industrial and medical accelerators for the design and the construction of the TOP linac. The accelerator that will be the first 3 GHz proton linac in the world, will be composed of a 428.3 MHz 7 Me V RFQ + DTL injector followed by a 7-65 Me V section of a 3 GHz SCDTL structure and a 65 - 200 Me V variable energy SCL 3 GHz structure. In particular the SCDTL section uses a highly innovative accelerating structure patented by ENEA. In this report the clinical and physical requests are discussed and a preliminary design of the whole machine is given

  16. Drift tubes of Linac 2

    CERN Multimedia

    CERN PhotoLab

    1977-01-01

    With the advent of the 800 MeV PS Booster in 1972, the original injector of the PS, a 50 MeV Alvarez-type proton linac, had reached its limits, in terms of intensity and stability. In 1973 one therefore decided to build a new linac (Linac 2), also with a drift-tube Alvarez structure and an energy of 50 MeV. It had a new Cockcroft-Walton preinjector with 750 keV, instead of the previous one with 500 keV. Linac 2 was put into service in 1980. The old Linac 1 was then used for the study of, and later operation with, various types of ions. This picture shows Linac 2 drift-tubes, suspended on stems coming from the top, in contrast to Linac 1, where the drift-tubes stood on stems coming from the bottom.

  17. Multiple-linac approach for tritium production and other applications

    International Nuclear Information System (INIS)

    Ruggiero, A.G.

    1995-01-01

    This report describes an approach to tritium production based on the use of multiple proton linear accelerators. Features of a single APTT Linac as proposed by the Los Alamos National Laboratory are presented and discussed. An alternative approach to the attainment of the same total proton beam power of 200 MW with several lower-performance superconducting Linacs is proposed and discussed. Although each of these accelerators are considerable extrapolations of present technology, the latter can nevertheless be built at less technical risk when compared to the single high-current APT Linac, particularly concerning the design and the performance of the low-energy front-end. The use of superconducting cavities is also proposed as a way of optimizing the accelerating gradient, the overall length, and the operational costs. The superconducting technology has already been successfully demonstrated in a number of large-size projects and should be seriously considered for the acceleration of intense low-energy beams of protons. Finally, each linear accelerator would represent an ideal source of very intense beams of protons for a variety of applications, such as: weapons and waste actinide transmutation processes, isotopes for medical application, spallation neutron sources, and the generation of intense beams of neutrinos and muons for nuclear and high-energy physics research. The research community at large has obviously an interest in providing expertise for, and in having access to, the demonstration, the construction, the operation, and the exploitation of these top-performance accelerators

  18. Anu Tali : enda elust filmi vaadata ei ole väga lihtne / Jaanus Kulli

    Index Scriptorium Estoniae

    Kulli, Jaanus, 1955-

    2008-01-01

    Dirigent Anu Tali elust ja tööst rääkivat filmi "Maestra Baltica : Anu Tali dirigiert baltische Musik" (režissöörid Daniel Finkernagel ja Alexander Lück) näitab telekanal Arte. Noor dirigent kommenteerib

  19. Superconducting rf development at ATLAS

    Energy Technology Data Exchange (ETDEWEB)

    Shepard, K.W.; Kedzie, M.; Clifft, B.E. [Argonne National Lab., IL (United States); Roy, A.; Potukuchi, P. [Nuclear Science Centre, New Delhi (India); Givens, J.; Potter, J.; Crandall, K. [AccSys Technology, Inc., Pleasanton, CA (United States); Added, N. [Sao Paulo Univ., SP (Brazil)

    1993-12-31

    The ATLAS superconducting heavy-ion linac began operation in 1978 and has operated nearly continuously since that time, while undergoing a series of upgrades and expansions, the most recent being the ``uranium upgrade`` completed earlier this year and described below. In its present configuration the ATLAS linac consists of an array of 64 resonant cavities operating from 48 to 145 MHz, which match a range of particle velocities .007 < {beta} = v/c < .2. The linac provides approximately 50 MV of effective accelerating potential for ions of q/m > 1/10 over the entire periodic table. Delivered beams include 5 {minus} 7 pnA of {sup 238}U{sup 39+} at 1535 MeV. At present more than 10{sup 6} cavity-hours of operation at surface electric fields of 15 MV/m have been accumulated. Superconducting structure development at ATLAS is aimed at improving the cost/performance of existing low velocity structures both for possible future ATLAS upgrades, and also for heavy-ion linacs at other institutions. An application of particular current interest is to develop structures suitable for accelerating radioactive ion beams. Such structures must accelerate very low charge to mass ratio beams and must also have very large transverse acceptance.

  20. Superconducting RFQs in the PIAVE Injector

    CERN Document Server

    Bisoffi, G; Bezzon, G; Calore, A; Canella, S; Chiurlotto, F; Lombardi, A; Modanese, P; Porcellato, A M; Stark, S

    2004-01-01

    The PIAVE superconducting RFQs were installed on the linac line and connected to the TCF50 cryogenic system. First results on the on-line resonator performance (e.g. Q-curves, amplitude and phase locking) are described as well as the behaviour of the fast tuners.

  1. Beam Loss in Linacs

    CERN Document Server

    Plum, M.A.

    2016-01-01

    Beam loss is a critical issue in high-intensity accelerators, and much effort is expended during both the design and operation phases to minimize the loss and to keep it to manageable levels. As new accelerators become ever more powerful, beam loss becomes even more critical. Linacs for H- ion beams, such as the one at the Oak Ridge Spallation Neutron Source, have many more loss mechanisms compared to H+ (proton) linacs, such as the one being designed for the European Spallation Neutron Source. Interesting H- beam loss mechanisms include residual gas stripping, H+ capture and acceleration, field stripping, black-body radiation and the recently discovered intra-beam stripping mechanism. Beam halo formation, and ion source or RF turn on/off transients, are examples of beam loss mechanisms that are common for both H+ and H- accelerators. Machine protection systems play an important role in limiting the beam loss.

  2. Linacs for Medical Isotope Production

    Directory of Open Access Journals (Sweden)

    A. Pramudita

    2011-04-01

    Full Text Available This paper reviews efforts on using high energy (25-30 MeV and high power (10-20 kW electron linacs and lower energy (7 MeV proton linacs for medical radioisotope production. Using high energy x-rays from the electron linacs, PET (Positron Emission Tomography radioisotopes are produced through photonuclear reactions such as 19F(γ,n18F, which also allow production of other PET radionuclides 11C, 13N, and 15O. Other mostly used medical radionuclides 99mTc can also be obtained by using the electron linacs, through photofission or photonuclear reactions. Proton linacs for PET have also been recently developed and the product has been available in the market since 2005. The linacs have been tested for 18F production. As a proton accelerator, the target systems and nuclear reactions are similar to the ones used in PET cyclotrons

  3. Applied superconductivity

    CERN Document Server

    Newhouse, Vernon L

    1975-01-01

    Applied Superconductivity, Volume II, is part of a two-volume series on applied superconductivity. The first volume dealt with electronic applications and radiation detection, and contains a chapter on liquid helium refrigeration. The present volume discusses magnets, electromechanical applications, accelerators, and microwave and rf devices. The book opens with a chapter on high-field superconducting magnets, covering applications and magnet design. Subsequent chapters discuss superconductive machinery such as superconductive bearings and motors; rf superconducting devices; and future prospec

  4. High-beta linac structures

    International Nuclear Information System (INIS)

    Schriber, S.O.

    1979-01-01

    Accelerating structures for high-beta linacs that have been and are in use are reviewed in terms of their performance. Particular emphasis is given to room-temperature structures and the disk-and-washer structure. The disk-and-washer structure has many attractive features that are discussed for pulsed high-gradient linacs, for 100% duty-cycle medium-gradient linacs and for high-current linacs requiring maximal amounts of stored energy in the electric fields available to the beam

  5. Resonant coupling applied to superconducting accelerator structures

    International Nuclear Information System (INIS)

    Potter, James M.; Krawczyk, Frank L.

    2013-01-01

    The concept of resonant coupling and the benefits that accrue from its application is well known in the world of room temperature coupled cavity linacs. Design studies show that it can be applied successfully between sections of conventional elliptical superconducting coupled cavity accelerator structures and internally to structures with spoked cavity resonators. The coupling mechanisms can be designed without creating problems with high field regions or multipactoring. The application of resonant coupling to superconducting accelerators eliminates the need for complex cryogenic mechanical tuners and reduces the time needed to bring a superconducting accelerator into operation.

  6. FRIB driver linac vacuum model and benchmarks

    CERN Document Server

    Durickovic, Bojan; Kersevan, Roberto; Machicoane, Guillaume

    2014-01-01

    The Facility for Rare Isotope Beams (FRIB) is a superconducting heavy-ion linear accelerator that is to produce rare isotopes far from stability for low energy nuclear science. In order to achieve this, its driver linac needs to achieve a very high beam current (up to 400 kW beam power), and this requirement makes vacuum levels of critical importance. Vacuum calculations have been carried out to verify that the vacuum system design meets the requirements. The modeling procedure was benchmarked by comparing models of an existing facility against measurements. In this paper, we present an overview of the methods used for FRIB vacuum calculations and simulation results for some interesting sections of the accelerator. (C) 2013 Elsevier Ltd. All rights reserved.

  7. Energy Recovery Linacs for Light Source Applications

    Energy Technology Data Exchange (ETDEWEB)

    George Neil

    2011-04-01

    Energy Recovery Linacs are being considered for applications in present and future light sources. ERLs take advantage of the continuous operation of superconducting rf cavities to accelerate high average current beams with low losses. The electrons can be directed through bends, undulators, and wigglers for high brightness x ray production. They are then decelerated to low energy, recovering power so as to minimize the required rf drive and electrical draw. When this approach is coupled with advanced continuous wave injectors, very high power, ultra-short electron pulse trains of very high brightness can be achieved. This paper will review the status of worldwide programs and discuss the technology challenges to provide such beams for photon production.

  8. Argonne National Laboratory 1980-1981 tandem-linac accelerator report

    International Nuclear Information System (INIS)

    Hartog, P.D.; Pardo, R.; Munson, F.; Heath, C.

    1981-01-01

    Performance of the facility is discussed. The FN tandem Van de Graaff is now used as an injector for the superconducting linac; heavy-ion beams are being injected. Stripper foil development is described, with fabrication by arc evaporation and by RF discharge compared. Facility modifications, such as the control room, are discussed

  9. Resonance Excitation of Longitudinal High Order Modes in Project X Linac

    Energy Technology Data Exchange (ETDEWEB)

    Khabiboulline, T.N.; Sukhanov, A.AUTHOR = Awida, M.; Gonin, I.; Lunin, A.AUTHOR = Solyak, N.; Yakovlev, V.; /Fermilab

    2012-05-01

    Results of simulation of power loss due to excitation of longitudinal high order modes (HOMs) in the accelerating superconducting RF system of CW linac of Project X are presented. Beam structures corresponding to the various modes of Project X operation are considered: CW regime for 3 GeV physics program; pulsed mode for neutrino experiments; and pulsed regime, when Project X linac operates as a driver for Neutrino Factory/Muon Collider. Power loss and associated heat load due to resonance excitation of longitudinal HOMs are shown to be small in all modes of operation. Conclusion is made that HOM couplers can be removed from the design of superconducting RF cavities of Project X linac.

  10. Energy Recovery Linacs

    Energy Technology Data Exchange (ETDEWEB)

    Nikolitsa Merminga

    2007-06-01

    The success and continuing progress of the three operating FELs based on Energy Recovery Linacs (ERLs), the Jefferson Lab IR FEL Upgrade, the Japan Atomic Energy Agency (JAEA) FEL, and the Novosibirsk High Power THz FEL, have inspired multiple future applications of ERLs, which include higher power FELs, synchrotron radiation sources, electron cooling devices, and high luminosity electron-ion colliders. The benefits of using ERLs for these applications are presented. The key accelerator physics and technology challenges of realizing future ERL designs, and recent developments towards resolving these challenges are reviewed.

  11. Linac4 Technical Design Report

    CERN Document Server

    Arnaudon, L; Baylac, M; Bellodi, G; Body, Y; Borburgh, J; Bourquin, P; Broere, J; Brunner, O; Bruno, L; Carli, C; Caspers, Friedhelm; Cousineau, S M; Cuvet, Y; De Almeida Martins, C; Dobers, T; Fowler, T; Garoby, R; Gerigk, F; Goddard, B; Hanke, K; Hori, M; Jones, M; Kahle, K; Kalbreier, Willi; Kroyer, T; Küchler, D; Lombardi, A M; López-Hernandez, L A; Magistris, M; Martini, M; Maury, S; Page, E; Paoluzzi, M; Pasini, M; Raich, U; Rossi, C; Royer, J P; Sargsyan, E; Serrano, J; Scrivens, R; Silari, M; Timmins, M; Venturini-Delsolaro, W; Vretenar, M; Wegner, R; Weterings, W; Zickler, T

    2006-01-01

    Linac4 is an H- linear accelerator, intended to replace Linac2 as injector to the PS Booster (PSB). By delivering to the PSB a beam at 160 MeV energy, Linac4 will provide the conditions to double the brightness and intensity of the beam from the PSB, thus removing the first bottleneck towards higher brightness for the LHC and simplifying operation. Moreover, this new linac constitutes an essential component of any of the envisaged LHC upgrade scenarios and could open the way to future extensions of the CERN accelerator complex towards higher performance. This Technical Design Report presents a detailed technical overview of the Linac4 design as it stands at end 2006.

  12. Status report on the ATLAS superconducting linear accelerator

    International Nuclear Information System (INIS)

    Aron, J.; Benaroya, R.; Bogaty, J.; Bollinger, L.M.; Clifft, B.E.; Den Hartog, P.; Johnson, K.W.; Kutschera, W.; Markovich, P.; Nixon, J.M.; Pardo, R.; Shepard, K.W.; Zinkann, G.

    1984-01-01

    ATLAS, the Argonne Tandem-Linac Accelerator System, is a project to upgrade the existing Argonne superconducting linac heavy-ions booster which began providing beams of heavy-ions for experimental nuclear research in 1979. When completed ATLAS will provide beams of heavy ions up to approximately mass 130 at energies as high as 25 MeV/A. The construction of ATLAS is approximately 60% complete. First beam from the accelerator is expected in spring of 1985. (orig.)

  13. Status report on the ATLAS superconducting linear accelerator

    International Nuclear Information System (INIS)

    Argon, J.; Benaroya, R.; Bogaty, J.

    1984-05-01

    ATLAS, the Argonne Tandem-Linac Accelerator System, is a project to upgrade the existing Argonne superconducting linac heavy-ion booster which began providing beams of heavy-ions for experimental nuclear research in 1979. When completed ATLAS will provide beams of heavy ions up to approximately mass 130 at energies as high as 25 MeV/A. The construction of ATLAS is approximately 60% complete. First beam from the accelerator is expected in spring of 1985

  14. Superconducting niobium resonator fabrication at Nuclear Science Centre

    International Nuclear Information System (INIS)

    Prakash, P.N.; Sonti, S.S.K.; Zacharias, J.; Mistri, K.K.

    2005-01-01

    This paper presents the status of the indigenous fabrication of superconducting niobium cavities for the heavy ion linac at Nuclear Science Centre. In the first phase of the fabrication a quarter wave resonator was successfully electron beam welded and tested. In the second phase two completely indigenous resonators along with the niobium slow tuner bellows have been fabricated. In addition, several critical repairs have been performed. Plans for producing resonators for the second and third linac modules have started. (author)

  15. Optimization of steering elements in the RIA driver linac

    International Nuclear Information System (INIS)

    Lessner, E. S.; Aseev, V. S.; Ostroumov, P. N.; Physics

    2005-01-01

    The driver linac of the projected RIA facility is a versatile accelerator, a 1.4-GV, CW superconducting (SC) linac designed to simultaneously accelerate several heavy-ion charge states, providing beams from proton to uranium at 400 MeV/u at power levels at a minimum of 100 kW and up to 400 kW for most beams. Acceleration of multiple-charge-state uranium beams places stringent requirements on the linac design. A steering algorithm was derived that fulfilled the driver's real estate requirements, such as placement of steering dipole coils on SC solenoids and of beam position monitors outside cryostats, and beam-dynamics requirements, such as coupling effects induced by the focusing solenoids. The algorithm has been fully integrated into the tracking code TRACK and it is used to study and optimize the number and position of steering elements that minimize the multiple-beam centroid oscillations and preserve the beam emittance under misalignments of accelerating and transverse focusing elements in the driver linac

  16. Reliability model of SNS linac (spallation neutron source-ORNL)

    International Nuclear Information System (INIS)

    Pitigoi, A.; Fernandez, P.

    2015-01-01

    A reliability model of SNS LINAC (Spallation Neutron Source at Oak Ridge National Laboratory) has been developed using risk spectrum reliability analysis software and the analysis of the accelerator system's reliability has been performed. The analysis results have been evaluated by comparing them with the SNS operational data. This paper presents the main results and conclusions focusing on the definition of design weaknesses and provides recommendations to improve reliability of the MYRRHA ( linear accelerator. The reliability results show that the most affected SNS LINAC parts/systems are: 1) SCL (superconducting linac), front-end systems: IS, LEBT (low-energy beam transport line), MEBT (medium-energy beam transport line), diagnostics and controls; 2) RF systems (especially the SCL RF system); 3) power supplies and PS controllers. These results are in line with the records in the SNS logbook. The reliability issue that needs to be enforced in the linac design is the redundancy of the systems, subsystems and components most affected by failures. For compensation purposes, there is a need for intelligent fail-over redundancy implementation in controllers. Enough diagnostics has to be implemented to allow reliable functioning of the redundant solutions and to ensure the compensation function

  17. The FAIR proton linac

    International Nuclear Information System (INIS)

    Kester, O.

    2015-01-01

    FAIR - the Facility for Antiproton and Ion Research in Europe - constructed at GSI in Darmstadt comprises an international centre of heavy ion accelerators that will drive heavy ion and antimatter research. FAIR will provide worldwide unique accelerator and experimental facilities, allowing a large variety of fore-front research in physics and applied science. FAIR will deliver antiproton and ion beams of unprecedented intensities and qualities. The main part of the FAIR facility is a sophisticated accelerator system, which delivers beams to different experiments of the FAIR experimental collaborations - APPA, NuSTAR, CBM and PANDA - in parallel. Modern H-type cavities offer highest shunt impedances of resonant structures of heavy ion linacs at low beam energies < 20 MeV/u and enable the acceleration of intense proton and ion beams. One example is the interdigital H-type structure. The crossed-bar H-cavities extend these properties to high energies even beyond 100 MeV/u. Compared to conventional Alvarez cavities, these crossed-bar (CH) cavities feature much higher shunt impedance at low energies. The design of the proton linac is based on those cavities

  18. Kas me sellist eesti keelt tahtsime? / Anu Lamp ; interv. Andres Keil

    Index Scriptorium Estoniae

    Lamp, Anu, 1958-

    2006-01-01

    24. märtsil esietendus teatris NO99 lavakunstikooli 22. lennu viimane diplomilavastus "Keeleuuenduse lõpmatu kurv". Lavastaja Anu Lamp räägib eesti keelest ja sellest, kuidas materjal Johannes Aaviku keeleuuendusest lavale jõudis

  19. Kunstnikuraamat - teos või dokument? / Alissa Nirgi, Marge Monko, Anu Vahtra ; intervjueerinud Laura Kuusk

    Index Scriptorium Estoniae

    Nirgi, Alissa, 1993-

    2016-01-01

    Alissa Nirgi, Marge Monko ja Anu Vahtra mõtteid, kuidas nende viimaste aastate kunstiprojektid raamatukaante vahele jõudsid. Alissa Nirgi fotoseeriast ja raamatust "Kaspar istub". Marge Monko fototööst "Kümme pärast kümmet", performance'ist ja raamatust "Don't wind it up, turn it on". Anu Vahtra installatsioonidest ja raamatust "Untitled"

  20. LYRAN: A program for the analysis of linac beam dynamics

    International Nuclear Information System (INIS)

    Lu, J.Q.; Ben-Zvi, I.; Cramer, J.G.

    1987-01-01

    The FORTRAN program LYRAN has been written for use in analyzing the beam dynamics of superconducting heavy ion linacs. The program is based on the program LYRA developed by A.H. Scholldorf at SUNY Stony Brook, but that original program has been extensively extended, modified, and restructured. LYRAN transports a group of input particles randomly distributed on a selected distribution function through linac elements which include RF accelerating and bunching elements, dipole and quadrupole magnets, electrostatic elements, and drift spaces. Second order corrections to dipoles and quadrupole fields are included. A nonlinear optimization routine is incorporated, providing fast and efficient determination of accelerator configurations and parameter settings that provide desired beam properties. Beam envelope plotting is also included to provide graphic display of beam characteristics

  1. Energy Recovery Linacs

    CERN Document Server

    Merminga, L

    2005-01-01

    Successfully operating, pioneering Energy Recovery Linac (ERL) – based Free Electron Lasers (FELs) have paved the way towards powerful and highly efficient accelerators based on the principle of energy recovery. Pursued and envisioned ERL applications worldwide include high brilliance light sources for the production of both spontaneous and FEL radiation, high-energy electron cooling devices, and electron-ion colliders. The required electron source parameters, average beam current and beam energy of the proposed applications are a significant extrapolation from demonstrated performance. We present an overview of the accelerator physics and technology challenges encountered in the design of the various ERL projects around the world, as well as progress and development plans to achieving the required performance.

  2. Beam halo in high-intensity hadron linacs

    International Nuclear Information System (INIS)

    Gerigk, F.

    2006-01-01

    This document aims to cover the most relevant mechanisms for the development of beam halo in high-intensity hadron linacs. The introduction outlines the various applications of high-intensity linacs and it will explain why, in the case of the CERN Superconducting Proton Linac (SPL) study a linac was chosen to provide a high-power beam, rather than a different kind of accelerator. The basic equations, needed for the understanding of halo development are derived and employed to study the effects of initial and distributed mismatch on high-current beams. The basic concepts of the particle-core model, envelope modes, parametric resonances, the free-energy approach, and the idea of core-core resonances are introduced and extended to study beams in realistic linac lattices. The approach taken is to study the behavior of beams not only in simplified theoretical focusing structures but to highlight the beam dynamics in realistic accelerators. All effects which are described and derived with simplified analytic models, are tested in realistic lattices and are thus related to observable effects in linear accelerators. This approach involves the use of high-performance particle tracking codes, which are needed to simulate the behavior of the outermost particles in distributions of up to 100 million macro particles. In the end a set of design rules are established and their impact on the design of a typical high-intensity machine, the CERN SPL, is shown. The examples given in this document refer to two different design evolutions of the SPL study: the first conceptual design report (SPL I) and the second conceptual design report (SPL II). (orig.)

  3. Beam halo in high-intensity hadron linacs

    Energy Technology Data Exchange (ETDEWEB)

    Gerigk, F.

    2006-12-21

    This document aims to cover the most relevant mechanisms for the development of beam halo in high-intensity hadron linacs. The introduction outlines the various applications of high-intensity linacs and it will explain why, in the case of the CERN Superconducting Proton Linac (SPL) study a linac was chosen to provide a high-power beam, rather than a different kind of accelerator. The basic equations, needed for the understanding of halo development are derived and employed to study the effects of initial and distributed mismatch on high-current beams. The basic concepts of the particle-core model, envelope modes, parametric resonances, the free-energy approach, and the idea of core-core resonances are introduced and extended to study beams in realistic linac lattices. The approach taken is to study the behavior of beams not only in simplified theoretical focusing structures but to highlight the beam dynamics in realistic accelerators. All effects which are described and derived with simplified analytic models, are tested in realistic lattices and are thus related to observable effects in linear accelerators. This approach involves the use of high-performance particle tracking codes, which are needed to simulate the behavior of the outermost particles in distributions of up to 100 million macro particles. In the end a set of design rules are established and their impact on the design of a typical high-intensity machine, the CERN SPL, is shown. The examples given in this document refer to two different design evolutions of the SPL study: the first conceptual design report (SPL I) and the second conceptual design report (SPL II). (orig.)

  4. Commissioning plans for SSC linac

    International Nuclear Information System (INIS)

    Hurd, J.W.; Aprile, R.L.; Chang, C.R.; Crist, C.E.; Cutler, R.I.; Funk, L.W.; Guy, F.W.; Leifeste, G.T.; Raparia, D.; Saadatmand, K.; Sethi, R.C.; Swenson, D.A.; Tooker, J.; Yao, C.G.

    1992-01-01

    Presented are the general description of the SSC linac and the plans for commissioning. Sections of the linac are installed, tested, and beam commissioned in a serial approach. A specialized set of diagnostics is used to characterize the beam through each section. In addition to the standard diagnostic set, plans call for the use of a bunch shape monitor and x-ray spectrometer. Streak camera and digital imaging diagnostics will be developed. The commissioning plan is folded into the general linac project schedule to show the relation between delivery, staging, installation, conditioning, and actual commissioning with beam. These plans form the basis for coordination between the various organizations responsible for different elements of the linac including the technical components, infrastructure, and temporary staging and operation facilities. (Author) 2 figs., 17 refs

  5. Installation of the Gbar LINAC

    CERN Multimedia

    Maximilien, Brice

    2017-01-01

    Installation of the GBAR linac in its shielding bunker. The electrons accelerated to 10 MeV toward a target will produce the positrons that are necessary to form anti hydrogen with the antiprotons coming from the ELENA decelerator.

  6. Drift tubes of Linac 2

    CERN Multimedia

    Photographic Service

    1977-01-01

    Being redied for installation, those at the right are for tank 1, those on the left for tank 2. Contrary to Linac 1, which had drift-tubes supported on stems, here the tubes are suspended, for better mechanical stability.

  7. Low-β SC linacs: past, present, and future

    International Nuclear Information System (INIS)

    Bollinger, L. M.

    1998-01-01

    This paper is a general review of superconducting low-β technology and applications from its beginning in 1969 into the near-term future. The emphasis is on studies of accelerating resonators and on SC linacs that boost the energy of heavy-ion beams from tandem electrostatic accelerators used for nuclear-physics research. Other topics are positive-ion SC injectors to replace tandems and the need for accelerating structures with β outside of the present proven range, 0.008 < β < 0.2

  8. Testing begins on Linac4

    CERN Multimedia

    Katarina Anthony

    2012-01-01

    On 3 August 2012, the Linac4 radiofrequency quadrupole (RFQ) module was installed at the accelerator test-stand in Building 152. The site will be the module’s home for almost a year, as the linear accelerator enters the assembly and testing stage.   Final module assembly is carried out before installation in Building 152.  Over the next Long Shutdown (LS2), Linac4 will replace the current Linac2 linear accelerator as the first link in CERN’s accelerator chain. It will deliver particles at 160 MeV to the PS Booster, more than triple the energy currently delivered by Linac2. But before the accelerator team can pop the champagne, the various elements of Linac4 will be tested and re-tested in facilities across CERN. “The first Linac4 tests are currently underway, starting with the CERN-built RFQ,” says Carlo Rossi, a physicist in the RF Group of the Beams (BE) Department and the RFQ project coordinator. “It’s an extremely impre...

  9. Inner structure of Linac 2

    CERN Multimedia

    CERN PhotoLab

    1977-01-01

    With the advent of the 800 MeV Booster in 1972, the original injector of the PS, a 50 MeV Alvarez-type proton linac, had reached its limits, in terms of intensity and stability. In 1973 one therefore decided to build a new linac (Linac 2), also with a drift-tube Alvarez structure and an energy of 50 MeV. It had a new Cockcroft-Walton preinjector with 750 keV, instead of the previous one with 500 keV. Linac 2 was put into service in 1980. The old Linac 1 was then used for the study of, and later operation with, various types of ions. This picture shows the inner structure of Linac 2, with drift-tubes hanging on stems under a rigid support structure, soon to be mounted inside tank 1 (750 keV to 10 MeV, the lowest-energy one of 3). Frank Malthouse is standing in the background.

  10. Anu Samarüütel-Long: sama kleiti võiks toota mitukümmend aastat / Anu Samarüütel-Long ; intervjueerinud Tanel Veenre

    Index Scriptorium Estoniae

    Samarüütel-Long, Anu, 1966-

    2010-01-01

    Anu Samarüütel-Long oma mais 2010 ilmunud reisikirjast "Minu London", Londonisse elama asumisest, õpingutest seal, Londonist kui loovlinnast, eesti disainist, soovist teha moedisaini, koostööst Montoniga, lihtsuse saavutamisest, eetilisest tootmisest, kunsti ja kaubanduse dialoogist jm.

  11. The KAERI 10 MeV Electron Linac - Description and Operational Manual

    International Nuclear Information System (INIS)

    Lee, Byung Cheol; Park, Seong Hee; Jung, Young Uk; Han, Young Hwan; Kang, Hee Young

    2005-06-01

    The objective of this technical report is to guide the right operation and maintenance of the KAERI electron linac system. The KAERI electron linac system consists of 2 MeV injector based on 176 MHz Normal conducting RF (Radio Frequency)cavity and 10 MeV main accelerator based on 352 MHz Superconducting RF cavity, electron beamlines (injection and extraction). Since a electron accelerator generates hazard radiation, this system is located at the shielded room in basement and we can operate the system using the remote control system. It includes the description and the operational manual as well as the detailed technical direction for trouble shooting

  12. The KAERI 10 MeV Electron Linac - Description and Operational Manual

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Byung Cheol; Park, Seong Hee; Jung, Young Uk; Han, Young Hwan; Kang, Hee Young

    2005-06-15

    The objective of this technical report is to guide the right operation and maintenance of the KAERI electron linac system. The KAERI electron linac system consists of 2 MeV injector based on 176 MHz Normal conducting RF (Radio Frequency)cavity and 10 MeV main accelerator based on 352 MHz Superconducting RF cavity, electron beamlines (injection and extraction). Since a electron accelerator generates hazard radiation, this system is located at the shielded room in basement and we can operate the system using the remote control system. It includes the description and the operational manual as well as the detailed technical direction for trouble shooting.

  13. Accelerators for hadrontherapy: From Lawrence cyclotrons to linacs

    CERN Document Server

    Braccini, S; Garlasche, M; Weiss, M; Crescenti, M; Pearce, P; Rosso, E; Wegner, R; Magrin, G; Pitta, G; Amaldi, U; Puggioni, P; Degiovanni, A; Mellace, C; Zennaro, R; Bonomi, R; Garonna, A

    2010-01-01

    Hadrontherapy with protons and carbon ions is a fast developing methodology in radiation oncology. The accelerators used and planned for this purpose are reviewed starting from the cyclotrons used in the thirties. As discussed in the first part of this paper, normal and superconducting cyclotrons are still employed, together with synchrotrons, for proton therapy while for carbon ion therapy synchrotrons have been till now the only option. The latest developments concern a superconducting cyclotron for carbon ion therapy, fast-cycling high frequency linacs and `single room' proton therapy facilities. These issues are discussed in the second part of the paper by underlining the present challenges, in particular the treatment of moving organs. (C) 2010 Elsevier B.V. All rights reserved.

  14. Overview on superconducting photoinjectors

    Directory of Open Access Journals (Sweden)

    A. Arnold

    2011-02-01

    Full Text Available The success of most of the proposed energy recovery linac (ERL based electron accelerator projects for future storage ring replacements (SRR and high power IR–free-electron lasers (FELs largely depends on the development of an appropriate source. For example, to meet the FEL specifications [J. W. Lewellen, Proc. SPIE Int. Soc. Opt. Eng. 5534, 22 (2004PSISDG0277-786X10.1117/12.557378] electron beams with an unprecedented combination of high brightness, low emittance (0.1  μmrad, and high average current (hundreds of mA are required. An elegant way to create a beam of such quality is to combine the high beam quality of a normal conducting rf photoinjector with the superconducting technology, i.e., to build a superconducting rf photoinjector (SRF gun. SRF gun R&D programs based on different approaches have been launched at a growing number of institutes and companies (AES, Beijing University, BESSY, BNL, DESY, FZD, TJNAF, Niowave, NPS, Wisconsin University. Substantial progress was achieved in recent years and the first long term operation was demonstrated at FZD [R. Xiang et al., in Proceedings of the 31st International Free Electron Laser Conference (FEL 09, Liverpool, UK (STFC Daresbury Laboratory, Warrington, 2009, p. 488]. In the near future SRF guns are expected to play an important role for linac-driven FEL facilities. In this paper we will review the concepts, the design parameters, and the status of the major SRF gun projects.

  15. submitter Radiation Protection Studies for CERN LINAC4/SPL Accelerator Complex

    CERN Document Server

    Mauro, Egidio; Silari, Marco

    2009-01-01

    CERN is presently designing a new chain of accelerators to replace the present Proton Synchrotron (PS) complex: a 160 MeV room-temperature H$^-$ linac (Linac4) to replace the present 50 MeV proton linac injector, a 3.5 GeV Superconducting Proton Linac (SPL) to replace the 1.4 GeV PS booster (PSB) and a 50 GeV synchrotron (named PS2) to replace the 26 GeV PS. Linac4 has been funded and the civil engineering work started in October 2008, whilst the SPL is in an advanced stage of design. Beyond injecting into the future 50 GeV PS, the ultimate goal of the SPL is to generate a 4 MW beam for the production of intense neutrino beams. The radiation protection design is driven by the latter requirement. This thesis summarizes the radiation protection studies conducted for Linac4. FLUKA Monte Carlo simulations, complemented by analytical estimates, were performed 1) to evaluate the propagation of neutrons through the waveguide, ventilation and cable ducts placed along the accelerator, 2) to estimate the radiological i...

  16. Radiation protection studies for a high-power 160 MeV proton linac

    CERN Document Server

    Mauro, Egidio

    2009-01-01

    CERN is presently designing a new chain of accelerators to replace the present Proton Synchrotron (PS) complex: a 160 MeV room-temperature H− linac (Linac4) to replace the present 50 MeV proton linac injector, a 3.5 GeV Superconducting Proton Linac (SPL) to replace the 1.4 GeV PS Booster (PSB) and a 50 GeV synchrotron (named PS2) to replace the 26 GeV PS. Linac4 has been funded and the civil engineering work started in October 2008, whilst the SPL is in an advanced stage of design. Beyond injecting into the future 50 GeV PS, the ultimate goal of the SPL is to generate a 4 MW beam for the production of intense neutrino beams. The radiation protection design is driven by the latter requirement. This work summarizes the radiation protection studies conducted for Linac4. FLUKA Monte Carlo simulations, complemented by analytical estimates, were performed to evaluate the propagation of neutrons through the waveguide, ventilation and cable ducts placed along the accelerator, to estimate the radiological impact of ...

  17. A new fast-cycling system for AMS at ANU

    Science.gov (United States)

    De Cesare, M.; Fifield, L. K.; Weisser, D. C.; Tsifakis, D.; Cooper, A.; Lobanov, N. R.; Tunningley, T. B.; Tims, S. G.; Wallner, A.

    2015-10-01

    In order to perform higher precision measurements, an upgrade of the ANU accelerator is underway. Fast switching times on the low-energy side, with maximum settling times of 30 ms, are achieved by holding the injector magnet field constant while changing the energy of the different isotopes by changing the pre-acceleration voltage after the ion source. Because ions of the different isotopes then have different energies before injection, it is necessary to adjust the strength and steering of the electrostatic quadrupole lens that focusses the beam before entry into the accelerator. First tests of the low-energy system will be reported. At the high energy end, a larger vacuum box in the analyzing magnet has been designed, manufactured and installed to allow the transport of differences in mass as large as 10% at constant terminal voltage. For the cases where more than one isotope must be transported to the detector an additional refinement is necessary. If the accelerator voltage is to be kept constant, then the trajectories of the different isotopes around both the analyzing and switching magnets must be modified. This will be achieved using bounced electrostatic steerers before and after the magnets. Simulations have been performed with the ion optic code COSY Infinity to determine the optimal positions and sizes of these steerers.

  18. Superconducting RF activities at Cornell University

    International Nuclear Information System (INIS)

    Kirchgessner, J.; Moffat, D.; Padamsee, H.; Rubin, D.; Sears, J.; Shu, Q.S.

    1990-01-01

    This paper outlines the RF superconductivity research and development work that has taken place at Cornell Laboratory of Nuclear Studies over the past years. The work that has been performed since the last RF superconductivity workshop is emphasized together with a discussion of the direction of future efforts. Past work is summarized first, focusing on research and development activities in the area of RF superconductivity. Superconducting TeV linear collider is then discussed focusing on the application of superconducting RF to a future TeV linear collider. Linear collider structure development is then described centering on the development of a simpler (thereby cheaper) structure for a TeV linear collider. B-factory with superconducting RF is outlined focusing on the formulation of a conceptual design for a B-factory. B-factory structure development is discussed in relation to the advancement in the capability of SC cavities to carry beam currents of several amperes necessary for a high luminosity storage ring. High gradients are discussed as the key to the realization of a high energy superconducting linac or a superconducting RF B-factory. (N.K.)

  19. Status of superconducting RF test facility (STF)

    International Nuclear Information System (INIS)

    Hayano, Hitoshi

    2005-01-01

    A superconducting technology was recommended for the main linac design of the International Linear Collider (ILC) by the International Technology Recommendation Panel (ITRP). The basis for this design has been developed and tested at DESY, and R and D is progressing at many laboratories around the world including DESY, Orsay, KEK, FNAL, SLAC, Cornell, and JLAB. In order to promote Asian SC-technology for ILC, construction of a test facility in KEK was discussed and decided. The role and status of the superconducting RF test facility (STF) is reported in this paper. (author)

  20. Applications of a 6.5T Superconducting Solenoidal Separator

    Directory of Open Access Journals (Sweden)

    Williams E.

    2012-10-01

    Full Text Available A 6.5 Tesla superconducting gas-filled solenoid (SOLITAIRE has been developed at the Heavy Ion Accelerator Facility at the ANU as a reaction product separator. Key features of the device allowing its application for precise measurement of heavy ion fusion cross sections are described. The physical separation of beam particles and the high efficiency (~80% transport of heavy ion fusion products open up applications in nuclear structure physics, and in materials science. Finally, the developments to allow its application to providing beams of light radioactive isotopes (SOLEROO are described.

  1. Multiple-charge beam dynamics in an ion linac

    Directory of Open Access Journals (Sweden)

    P. N . Ostroumov

    2000-03-01

    Full Text Available An advanced facility for the production of nuclei far from stability could be based on a high-power driver accelerator providing ion beams over the full mass range from protons to uranium. A beam power of several hundred kilowatts is highly desirable for this application. At present, however, the beam power available for the heavier ions would be limited by ion source capabilities. A simple and cost-effective method to enhance the available beam current would be to accelerate multiple charge states through a superconducting ion linac. This paper presents results of numerical simulation of multiple charge state beams through a 1.3 GeV ion linac, the design of which is based on current state-of-the-art superconducting elements. The dynamics of multiple charge state beams are detailed, including the effects of possible errors in rf field parameters and misalignments of transverse focusing elements. The results indicate that operation with multiple charge state beams is not only feasible but straightforward and can increase the beam current by a factor of 3 or more.

  2. Upgrading the Fermilab Linac local control system

    International Nuclear Information System (INIS)

    McCrory, E.S.; Goodwin, R.W.; Shea, M.F.

    1991-02-01

    A new control system for the Fermilab Linac is being designed, built and implemented. First, the nine-year-old linac control system is being replaced. Second, a control system for the new 805 MHz part of the linac is being built. The two systems are essentially identical, so that when the installations are complete, we will still have a single Linac Control System. 8 refs., 5 figs

  3. Status of the RFD Linac Structure Developement

    OpenAIRE

    Swenson, Donald A.

    2000-01-01

    The Proof-of-Principle (POP) prototype of the Rf-Focused Drift tube (RFD) linac structure is currently under test at Linac Systems, after years of delay due to a variety of technical problems. A discussion of these technical problems and their solutions will be presented. The status of these tests will be reported. Plans for future development of this linac structure will be revealed. Potential uses of this linac structure for a variety of scientific, medical, and industrial applications will...

  4. Measurement of radium isotopes with the ANU AMS facility

    International Nuclear Information System (INIS)

    Tims, S.G.; Fifield, L.K.

    2003-01-01

    In contaminated environments the spatial distribution of thorium should be far more uniform than that for uranium. Accordingly, measurements of the 228 Ra/ 226 Ra ratio may provide a probe with which to assess variations in the amount of uranium-process derived 226 Ra. Furthermore, for contaminated or rehabilitated areas where the 226 Ra/ 228 Ra ratio is anomalous, measurements of the transport of material away from the site via the ratio could provide information on the local erosion rate. Accelerator Mass Spectrometry (AMS) adds a tandem ion accelerator and additional analysis stages to a conventional mass spectrometry arrangement, in order to facilitate ultra-trace level abundance measurements of selected isotopes. In doing so, it also makes use of the detection and analysis techniques of traditional nuclear physics. For the 226,228 Ra isotopes AMS offers a number of advantages over the more traditional techniques of a-and γ- spectroscopy. AMS requires less sample mass, and because of its very high selectivity provides excellent discrimination against potential interferences. The smaller sample size (∼1g) also allows a considerable simplification of the radio-chemical processing compared with α-spectroscopy. Two major advantages are the ability to measure both isotopes with the one technique without the necessity of waiting for 228 Th to grow in and, that once prepared, the 228 Ra/ 226 Ra ratio for ∼30 samples can be determined in about a day. This paper will describe the AMS technique, and highlight recent developments in the measurement of 226,228 Ra with the ANU system

  5. Status and performance of PF injector linac

    International Nuclear Information System (INIS)

    Sato, Isamu

    1994-01-01

    PF injector linac has been improved on a buncher section for accelerating of intense electron beam, and reinforced a focusing system of the positron generator linac for the expansion of phase space. In this presentation, I shall report present status and performance of PF injector linac, and discuss its upgrade program for B-factory project. (author)

  6. Commissioning of the 112 MHz SRF Gun and 500 MHz bunching cavities for the CeC PoP Linac

    Energy Technology Data Exchange (ETDEWEB)

    Belomestnykh, S. [Brookhaven National Lab. (BNL), Upton, NY (United States); Stony Brook Univ., NY (United States); Ben-Zvi, I. [Brookhaven National Lab. (BNL), Upton, NY (United States); Stony Brook Univ., NY (United States); Brutus, J. C. [Brookhaven National Lab. (BNL), Upton, NY (United States); Litvinenko, V. [Brookhaven National Lab. (BNL), Upton, NY (United States); Stony Brook Univ., NY (United States); McIntosh, P. [Science and Technology Facilities Council (STFC), Daresbury (United Kingdom). Daresbury Lab.; Moss, A. [Science and Technology Facilities Council (STFC), Daresbury (United Kingdom). Daresbury Lab.; Narayan, G. [Brookhaven National Lab. (BNL), Upton, NY (United States); Orfin, P. [Brookhaven National Lab. (BNL), Upton, NY (United States); Pinayev, I. [Brookhaven National Lab. (BNL), Upton, NY (United States); Rao, T. [Brookhaven National Lab. (BNL), Upton, NY (United States); Skaritka, J. [Brookhaven National Lab. (BNL), Upton, NY (United States); Smith, K. [Brookhaven National Lab. (BNL), Upton, NY (United States); Than, R. [Brookhaven National Lab. (BNL), Upton, NY (United States); Tuozzolo, J. [Brookhaven National Lab. (BNL), Upton, NY (United States); Wang, E. [Brookhaven National Lab. (BNL), Upton, NY (United States); Wheelhouse, A. [Science and Technology Facilities Council (STFC), Daresbury (United Kingdom). Daresbury Lab.; Wu, Q. [Brookhaven National Lab. (BNL), Upton, NY (United States); Xiao, B. [Brookhaven National Lab. (BNL), Upton, NY (United States); Xin, T. [Stony Brook Univ., NY (United States); Xu, W. [Brookhaven National Lab. (BNL), Upton, NY (United States); Zaltsman, A. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2015-05-03

    The Coherent electron Cooling Proof-of-Principle (CeC PoP) experiment at BNL includes a short electron linac. During Phase 1, a 112 MHz superconducting RF photo-emission gun and two 500 MHz normal conducting bunching cavities were installed and are under commissioning. The paper describes the Phase1 linac layout and presents commissioning results for the cavities and associated RF, cryogenic and other sub-systems

  7. First operation of the XFEL linac with the 2 K cryogenic system

    Science.gov (United States)

    Paetzold, T.; Petersen, B.; Schnautz, T.; Ueresin, C.; Zajac, J.

    2017-12-01

    The RF operation of the about 800 superconducting 1.3 GHz 9-cell cavities of the XFEL linac requires helium II bath cooling at 2 K, corresponding to a vapor pressure of 3100 Pa. After the first cool-down of the XFEL linac to 4 K in December, 27th 2016 the operation of the 2 K cryogenic system was started in January, 2nd 2017. The 2 K cryogenic system consist of a 4-stage set of cold compressors to compress helium vapor at a mass flow of up to 100 g/s from 2400 Pa to about 110 kPa and a full flow bypass with an arrangement of heat exchangers and control valves. This paper describes the XFEL refrigerating plant, especially the 2 K cryogenic system, the tuning of the cold compressor regulation to adapt to the XFEL linac static and dynamic heat loads and experience of about 6 months of operation.

  8. Overview on superconducting photoinjectors

    CERN Document Server

    Arnold, A

    2011-01-01

    The success of most of the proposed energy recovery linac (ERL) based electron accelerator projects for future storage ring replacements (SRR) and high power IR–free-electron lasers (FELs) largely depends on the development of an appropriate source. For example, to meet the FEL specifications [J.W. Lewellen, Proc. SPIE Int. Soc. Opt. Eng. 5534, 22 (2004)] electron beams with an unprecedented combination of high brightness, low emittance (0.1 µmrad), and high average current (hundreds of mA) are required. An elegant way to create a beam of such quality is to combine the high beam quality of a normal conducting rf photoinjector with the superconducting technology, i.e., to build a superconducting rf photoinjector (SRF gun). SRF gun R&D programs based on different approaches have been launched at a growing number of institutes and companies (AES, Beijing University, BESSY, BNL, DESY, FZD, TJNAF, Niowave, NPS, Wisconsin University). Substantial progress was achieved in recent years and the first long term ...

  9. The Linac Coherent Light Source

    Energy Technology Data Exchange (ETDEWEB)

    White, William E., E-mail: wewhite@slac.stanford.edu; Robert, Aymeric; Dunne, Mike [Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025 (United States)

    2015-04-21

    The present status of the Linac Coherent Light Source as a user facility is presented. Opportunities and challenges as well as the scientific impact of X-ray free-electron lasers are discussed. The Linac Coherent Light Source (LCLS) at the SLAC National Accelerator Laboratory was the first hard X-ray free-electron laser (FEL) to operate as a user facility. After five years of operation, LCLS is now a mature FEL user facility. Our personal views about opportunities and challenges inherent to these unique light sources are discussed.

  10. Superconductivity revisited

    CERN Document Server

    Dougherty, Ralph

    2013-01-01

    While the macroscopic phenomenon of superconductivity is well known and in practical use worldwide in many industries, including MRIs in medical diagnostics, the current theoretical paradigm for superconductivity (BCS theory) suffers from a number of limitations, not the least of which is an adequate explanation of high temperature superconductivity. This book reviews the current theory and its limitations and suggests new ideas and approaches in addressing these issues. The central objective of the book is to develop a new, coherent, understandable theory of superconductivity directly based on molecular quantum mechanics.

  11. Status of the SNS Linac An Overview

    CERN Document Server

    Holtkamp, N

    2004-01-01

    The Spallation Neutron Source SNS is a second generation pulsed neutron source and under construction at Oak Ridge National Laboratory. The SNS is funded by the U.S. Department of Energy?s Office of Basic energy Sciences and is dedicated to the study of the structure and dynamics of materials by neutron scattering. A collaboration composed of six national laboratories (ANL, BNL, TJNAF, LANL, LBNL, ORNL) is responsible for the design and construction of the various subsystems. With the official start in October 1998, the operation of the facility will begin in 2006 and deliver a 1.0 GeV, 1.4 MW proton beam with a pulse length of approximately 700 nanoseconds on a liquid mercury target. The multi-lab collaboration allowed access to a large variety of expertise in order to enhance the delivered beam power by almost an order of magnitude compared to existing neutron facilities. The SNS linac consists of a combination of room temperature and superconducting structures and will be the first pulsed high power sc lin...

  12. Niobium coaxial quarter-wave cavities for the New Delhi booster linac

    Energy Technology Data Exchange (ETDEWEB)

    Shepard, K.W. [Argonne National Lab., IL (United States); Roy, A.; Potukuchi, P.N. [Nuclear Science Centre, New Delhi (India)

    1993-07-01

    This paper reports the design and construction status of a prototype superconducting niobium accelerating structure consisting of a pair of quarter-wave coaxial-line cavities which are strongly coupled with a superconducting loop. Quarter-wave resonators are two-gap accelerating structures and are relatively short, so that a large number of independently-phased cavities is required for a linac. Strongly coupling several cavities can reduce the number of independently-phased elements, but at the cost of reducing the range of useful velocity acceptance for each element. Coupling two cavities splits the accelerating rf eigenmode into two resonant modes each of which covers a portion of the full velocity acceptance range of the original single cavity mode. Using both of these resonant modes makes feasible the use of coupled cavity pairs for a linac with little loss m velocity acceptance. Design details for the niobium cavity pair and the results of preliminary tests of multipacting behavior are discussed.

  13. Niobium coaxial quarter-wave cavities for the New Delhi booster linac

    International Nuclear Information System (INIS)

    Shepard, K.W.; Roy, A.; Potukuchi, P.N.

    1993-01-01

    This paper reports the design and construction status of a prototype superconducting niobium accelerating structure consisting of a pair of quarter-wave coaxial-line cavities which are strongly coupled with a superconducting loop. Quarter-wave resonators are two-gap accelerating structures and are relatively short, so that a large number of independently-phased cavities is required for a linac. Strongly coupling several cavities can reduce the number of independently-phased elements, but at the cost of reducing the range of useful velocity acceptance for each element. Coupling two cavities splits the accelerating rf eigenmode into two resonant modes each of which covers a portion of the full velocity acceptance range of the original single cavity mode. Using both of these resonant modes makes feasible the use of coupled cavity pairs for a linac with little loss m velocity acceptance. Design details for the niobium cavity pair and the results of preliminary tests of multipacting behavior are discussed

  14. Booster LINAC project: introduction

    International Nuclear Information System (INIS)

    Storm, D.W.

    1984-01-01

    During the past year the DOE awarded a contract to build the superconducting booster proposed in 1982. Although the majority of the funds ($8M) of the project are construction funds included in the DOE contract, part of the project is to be done with state funds ($1.03M) and part with the operating funds (3 FTE personnel as well as costs of prototyping the resonators). Therefore it is appropriate to outline the progress in this report. The overall design was changed somewhat from that described in last year's Annual Report. Instead of 12 split ring resonators optimized for beta = 0.10 and 12 for beta = 0.16, the author has chosen to use 16 quarter wave resonators optimized for beta = 0.09 and 16 for beta = 0.18. The quarter wave resonators, which have two accelerating gaps instead of the three of the split rings, have a wider transit time factor, which is favorable for accelerating a broader range of particle masses. The quarter wave resonators are to be built of lead plated copper, following the design of Ben-Zvi and Brennan

  15. Drift Tube Linac Conditioning of Tank1

    CERN Document Server

    Shafqat, N; Toor, W A

    2014-01-01

    Tank1 of the Drift Tube Linac (DTL) of the Linac4 has been conditioned at the Linac4 tunnel. The tank was tuned for resonance at 352.2 MHz, and stable operation has been achieved with 725 µs long RF pulses at a repetition rate of 1 Hz. The maximum RF level that has been reached is 810 kW with a pulse width of 600 µs. Since this was the first RF structure exclusively conditioned in the Linac4 tunnel with the operation and control software of Linac4, some related issues and limitations had to be taken into account.

  16. Analysis of HOM Problems in the C-ADS Main Linac

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Burn [Chinese Academy of Sciences (CAS), Lanzhou (China). Inst. of Modern Physics; Ng, King Yuen [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States)

    2017-05-18

    Excitation of higher-order modes (HOMs) in superconducting cavities may severely affect the operation of the main linac in the Chinese Accelerator Driven System (CADS). Preliminary analysis is made on the effects of beam dynamic, which includes possible longitudinal and transverse emittance enlargements, as well as the possibility of beam breakup. Suggestions are given for further investigation. Comparison is made between the C-ADS and the Fermilab Project X.

  17. The new Linac moves mountains

    CERN Multimedia

    2008-01-01

    The civil engineering work has started for Linac 4, one of the major renovation projects for the CERN accelerator complex. The work will be completed at the end of 2010 and the new linear accelerator is scheduled to be commissioned in 2013.

  18. Emittance growth in rf linacs

    Energy Technology Data Exchange (ETDEWEB)

    Jameson, R.A.

    1979-01-01

    As the space-charge limit is approached, the current that can be accelerated in an rf linac and the output emittance that can be expected are discussed. The role of the envelope equations to estimate limits is outlined. The results of numerical experiments to explore general properties of emittance growth are given.

  19. Superconducting resonators for the University of Washington booster linac

    International Nuclear Information System (INIS)

    Storm, D.W.; Brennan, J.M.; Ben-Zvi, I.

    1985-01-01

    We have developed two models of a 150 MHz quarter wave resonator - one with optimum beta = 0.10 and one with optimum beta = 0.21. These are lead-plated copper structures. The prototype beta = 0.10 resonator was tested successfully a year ago and gave average accelerating fields of 3.5 MV/m with 4.2 watts dissipated. It is quite similar to the resonator developed by the second and third authors. We have made and tested several more of this model. A prototype beta = 0.21 resonator has been completed, but weld flaws have prevented definitive tests. In order to minimize surface electric fields in the high-beta resonator, there were some modifications in the drift tube shape beyond those required to change the optimum beta. These quarter wave resonators have a wide transit time factor curve and are extremely rigid mechanically. Variations in eigen-frequency due to mechanical vibrations are less than 1 Hertz. Maximum attainable fields are limited by field emission. 2 refs., 3 figs

  20. BNCT with linac, feasibility study

    International Nuclear Information System (INIS)

    Alfuraih, A.; Ma, A.; Spyrou, N.M.; Awotwi-Pratt, Joseph

    2006-01-01

    High energy photon beams from Medical Linear Accelerators (linacs) which are used in radiotherapy produce undesirable neutrons, beside the clinically useful electron and photon beams. Neutrons are produced from the photonuclear reaction (γ,n) of high energy photons with high Z-materials which compose the accelerator head. In this paper the possible use of these undesirable neutrons for BNCT is investigated, making use of high energy linacs already installed in hospitals, primarily for high energy electron and photon therapy and applying them in the context of BNCT. The photoneutron components emitted by the accelerator is the source for Monte Carlo simulations of the interactions that take place within the head of a voxel-based phantom. The neutron flux across the phantom head is calculated using different moderator arrangements and different techniques in the aim of increasing the thermal neutron flux at the targeted site. Also, we shall test different configurations of the linac head to maximize the exposure of high-Z materials to the photon beam, including the removal of the flattening filter, so as to boost the photoneutron production in the linac head. Experimental work will be conducted in hospitals to validate the Monte Carlo simulations. To make use of linacs for BNCT will be advantageous in the sense that the setting in a hospital department is much more acceptable by the public than a reactor installation. This will mean less complications regarding patient positioning and movement with respect to the beams, additional patient transportation and management will be more cost effective. (author)

  1. Sotsiaalset kaitset võib vajada igaüks / Maris Jesse, Anu Toots, Tõnis Kõiv

    Index Scriptorium Estoniae

    Jesse, Maris, 1968-

    2009-01-01

    Sotsiaalpoliitika asjatundjad Eesti sotsiaalsüsteemi probleemidest ja arenguteedest. Vestlusringist võtsid osa Tervise Arengu Instituudi direktor Maris Jesse, Tallinna Ülikooli riigiteaduste instituudi võrdleva halduspoliitika professor Anu Toots ja Riigikogu sotsiaalkomisjoni liige Tõnis Kõiv. Vestlusringi juhtis RiTO peatoimetaja Helle Ruusing

  2. Ilmus teadusartikkel kaasaegsest tantsupedagoogikast / Anu Sööt ja Ele Viskus

    Index Scriptorium Estoniae

    Sööt, Anu, 1957-

    2014-01-01

    Ajakirjas “European Journal of Social and Behavioural Sciences” ilmus Anu Söödi ja Ele Viskuse artikkel “Contemporary Approaches to Dance Pedagogy - the Challenges of the 21st Century” (“Kaasaegne tantsupedagoogika - 21. sajandi väljakutsed”)

  3. Problēmas un iespējamie risinājumi kriminālatbildības piemērošanai par bordeļu izveidošanu, uzturēšanu, vadīšanu vai finansēšanu

    OpenAIRE

    Bočs, Lauris

    2012-01-01

    Bakalaura darba mērķis ir noteikt mūsdienu bordeļu kā prostitūcijas sniegšanas un organizēšanas vietu darbības izpratnes nepilnības, normatīvo regulējumu un ar to saistītās problēmas kriminālatbildības piemērošanai par bordeļu izveidošanu, uzturēšanu, vadīšanu vai finansēšanu Latvijas Republikā. Īstenojot mērķi, tiek aprakstīti iespējamie nelegālās prostitūcijas cēloņi, sniegti atbilstoši priekšlikumi cēloņu mazināšanai, un skaidrotas legālās prostitūcijas sniegšanas un organizēšanas īpatn...

  4. Uus ja parem Anu Samarüütel / Vesta Reest

    Index Scriptorium Estoniae

    Reest, Vesta, 1971-

    1998-01-01

    Moekunstnik Anu Samarüütlist, tema varasemast loomingust ja ettevõtmistest ning uutest plaanidest: oma toodangu müümisest Inglismaal, oma nime kandva kodukollektsiooni loomisest koostöös Eesti Tekstiiliga, Mutant Disco kollektsiooni loomisest koos Heivi Saaremetsaga.

  5. Eesti talendid välismaale / Juko-Mart Kõlar, Tiina Jokinen, Anu Jaanson... [jt.

    Index Scriptorium Estoniae

    2011-01-01

    Küsimustele muusikute vahendamisest välismaale vastavad MTÜ Eesti Muusika Ekspordi tegevjuht Juko-Mart Kõlar, Estonian Record Productionsi tegevdirektor Tiina Jokinen, sama firma mänedžer Anu Jaanson ja Pille Lille Muusikute Toetusfondi tegevjuht Leelo Lehtla

  6. Updated layout of the LINAC4 transfer line to the PS Booster (Green Field Option)

    CERN Document Server

    Bellodi, G; Lallement, J B; Lombardi, A M; CERN. Geneva. AB Department

    2008-01-01

    At the time of defining the site of Linac4 and its integration in the complex of existing infrastructure at CERN (together with the plans for a future Superconducting Proton Linac), a series of radiation protection issues emerged that have since prompted a revision of the Linac4 to PSB transfer line layout, as was described in the document AB‐Note‐2007‐037. For radiological safety reasons the distance between the planned SPL tunnel and the basement of building 513 had to be increased, and this led to the decision to lower the Linac4 machine by 2.5m. A vertical ramp was consequently introduced in the transfer line to raise the beam at the same level of LINAC2/PSB for connection to the existing transfer line. A series of error study runs has been carried out on the modified layout to have an estimate of the losses induced by quadrupole alignment and field errors. The two worst cases of each error family have been used as case studies to test the efficiency of possible steering strategies in...

  7. Design of a 120 MeV $H^{-}$ Linac for CERN High-Intensity Applications

    CERN Document Server

    Gerigk, F

    2002-01-01

    The SPL (Superconducting Proton Linac) study at CERN foresees the construction of a 2.2 GeV linac as a high beam-power driver for applications such as a second-generation radioactive ion beam facility or a neutrino superbeam. At the same time such a high-performance injector would both modernize and improve the LHC injection chain. The 120 MeV normal-conducting section of the SPL could be used directly in a preliminary stage for H- charge-exchange injection into the PS Booster. This would increase the proton flux to the CERN experiments while also improving the quality and reliability of the beams for the LHC. The 120 MeV linac consists of a front-end, a conventional Drift Tube Linac (DTL) to 40 MeV and a Cell Coupled Drift Tube Linac (CCDTL) to the full energy. All the RF structures will operate at 352 MHz, using klystrons and RF equipment recovered from the LEP collider. This paper concentrates on the design of the 3 to 120 MeV section. It introduces the design criteria for high-stability beam optics and th...

  8. Pramana – Journal of Physics | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Keywords. Electrostatic; collective and linear accelerators; electrostatic accelerator; LINAC; super-conducting resonator. Abstract. A proposal has been prepared to upgrade the LINAC at ANU, using re-plated PbSn split loop resonators performing at 3.6 MV/m, and the addition of two- and three-stub resonators. The system is ...

  9. Superconducting TESLA cavities

    Directory of Open Access Journals (Sweden)

    B. Aune

    2000-09-01

    Full Text Available The conceptional design of the proposed linear electron-positron collider TESLA is based on 9-cell 1.3 GHz superconducting niobium cavities with an accelerating gradient of E_{acc}≥25 MV/m at a quality factor Q_{0}≥5×10^{9}. The design goal for the cavities of the TESLA Test Facility (TTF linac was set to the more moderate value of E_{acc}≥15 MV/m. In a first series of 27 industrially produced TTF cavities the average gradient at Q_{0}=5×10^{9} was measured to be 20.1±6.2 MV/m, excluding a few cavities suffering from serious fabrication or material defects. In the second production of 24 TTF cavities, additional quality control measures were introduced, in particular, an eddy-current scan to eliminate niobium sheets with foreign material inclusions and stringent prescriptions for carrying out the electron-beam welds. The average gradient of these cavities at Q_{0}=5×10^{9} amounts to 25.0±3.2 MV/m with the exception of one cavity suffering from a weld defect. Hence only a moderate improvement in production and preparation techniques will be needed to meet the ambitious TESLA goal with an adequate safety margin. In this paper we present a detailed description of the design, fabrication, and preparation of the TESLA Test Facility cavities and their associated components and report on cavity performance in test cryostats and with electron beam in the TTF linac. The ongoing research and development towards higher gradients is briefly addressed.

  10. Organic superconductivity

    International Nuclear Information System (INIS)

    Jerome, D.

    1980-01-01

    We present the experimental evidences for the existence of a superconducting state in the Quasi One Dimensional organic conductor (TMTSF) 2 PF 6 . Superconductivity occuring at 1 K under 12 kbar is characterized by a zero resistance diamagnetic state. The anistropy of the upper critical field of this type II superconductor is consistent with the band structure anistropy. We present evidences for the existence of large superconducting precursor effects giving rise to a dominant paraconductive contribution below 40 K. We also discuss the anomalously large pressure dependence of T sb(s), which drops to 0.19 K under 24 kbar in terms of the current theories. (author)

  11. Superconducting accelerating structures for very low velocity ion beams

    Energy Technology Data Exchange (ETDEWEB)

    Xu, J.; Shepard, K.W.; Ostroumov, P.N.; Fuerst, J.D.; Waldschmidt, G.; /Argonne; Gonin, I.V.; /Fermilab

    2008-01-01

    This paper presents designs for four types of very-low-velocity superconducting accelerating cavity capable of providing several MV of accelerating potential per cavity, and suitable for particle velocities in the range 0.006 < v/c < 0.06. Superconducting TEM-class cavities have been widely applied to CW acceleration of ion beams. SC linacs can be formed as an array of independently-phased cavities, enabling a variable velocity profile to maximize the output energy for each of a number of different ion species. Several laboratories in the US and Europe are planning exotic beam facilities based on SC linacs. The cavity designs presented here are intended for the front-end of such linacs, particularly for the post-acceleration of rare isotopes of low charge state. Several types of SC cavities have been developed recently to cover particle velocities above 0.06c. Superconducting four-gap quarter-wave resonators for velocities 0.008 < {beta} = v/c < 0.05 were developed about two decades ago and have been successfully operated at the ATLAS SC linac at Argonne National Laboratory. Since that time, progress in simulation tools, cavity fabrication and processing have increased SC cavity gradients by a factor of 3-4. This paper applies these tools to optimize the design of a four-gap quarter-wave resonator for exotic beam facilities and other low-velocity applications.

  12. first tank of Linac 1

    CERN Multimedia

    This was the first tank of the linear accelerator Linac1, the injection system for the Proton Synchrotron, It ran for 34 years (1958 - 1992). Protons entered at the far end and were accelerated between the copper drift tubes by an oscillating electromagnetic field. The field flipped 200 million times a second (200 MHz) so the protons spent 5 nanoseconds crossing a drift tube and a gap. Moving down the tank, the tubes and gaps had to get longer as the protons gained speed. The tank accelerated protons from 500 KeV to 10 MeV. Linac1 was also used to accelerate deutrons and alpha particles for the Intersecting Storage Rings and oxygen and sulpher ions for the Super Proton Synchrotron heavy ion programme.

  13. High-Power Linac for the Spallation Neutron Source

    Science.gov (United States)

    Rej, D. J.

    2002-04-01

    The Spallation Neutron Source (SNS) will be the world’s most intense source of neutrons for fundamental science and industrial applications. Design and construction of this facility, located at Oak Ridge, is a joint venture between six DOE laboratories. Construction began in 1999 and is currently ahead of the scheduled 2006 completion date. Injecting a high-power, pulsed proton beam into a mercury target produces neutrons. In this talk, we review the physics requirements, design, and status of the construction of the 1-GeV, 1.4-MW average power RF linac for SNS. The accelerator consists of a drift tube linac (DTL), a coupled-cavity linac (CCL), and a superconducting rf (SRF) linac. The phase and quadrupole settings are set to avoid structure and parametric resonances, with coherent resonances posing minimal risk for emittance growth. The DTL is 37 m long and accelerates the ions to 87 MeV. The CCL is 55 m long and accelerates the ions to 186 MeV. The rf structure design and stability for both the DTL and CCL have been validated with scale models. The SRF linac has a modular design to accelerate ions to 1000 MeV, with a straightforward upgrade to 1.3 GeV at a later date. 3D particle-in-cell simulations of beam dynamics are performed to validate performance. The accelerator utilizes 93 MW of pulsed power operating continuously at 60-Hz with an 8factor. Approximately one hundred 402.5 or 805-MHz klystrons, with outputs between 0.55 and 5 MW, are used. The klystrons are powered by a novel converter-modulator that takes advantage of recent advances in IGBT switch plate assemblies and low-loss material cores for boost transformer. Beam diagnostics include position, phase, profile, and current monitors. They are designed to enable accurate beam steering and matching, and to minimize beam loss that would lead to activation and prevent hands-on maintenance.

  14. The BATES linac control system

    International Nuclear Information System (INIS)

    Russ, T.; Radouch, Z.

    1989-01-01

    The Bates linac control system (LCS), a distributed processing architecture, is described. Due to the historic evolution of the system, a mix of different hardware, operating systems and programming languages are used throughout. However, a standardized interface at the network level enables a smooth system integration. In particular, a multicasting scheme for data transmission over the network permits simultaneous database updates on more than one workstation. This allows for true distribution of data processing power. 3 figs

  15. Superconducting materials

    International Nuclear Information System (INIS)

    Kormann, R.; Loiseau, R.; Marcilhac, B.

    1989-01-01

    The invention concerns superconducting ceramics containing essentially barium, calcium and copper fluorinated oxides with close offset and onset temperatures around 97 K and 100 K and containing neither Y nor rare earth [fr

  16. The LINAC4 Power Coupler

    CERN Document Server

    Gerigk, F; Montesinos, E; Riffaud, B; Ugena Tirado, P; Wegner, R

    2011-01-01

    Linac4 is employing three types of accelerating structures after the RFQ: a Drift Tube Linac (DTL), a Cell- Coupled DTL (CCDTL), and a Pi-Mode Structure (PIMS) to accelerate the beam up to 160 MeV at 352.2MHz. The structures are designed for a peak power of approximately 1 MW per power coupler, which is transported via rectangular waveguides from the klystron gallery to the RF cavities. The coupler itself consists of two parts: a ceramic window, which separates the cavity vacuum from the air in the waveguides, and a Tuner-adjustablewaveguide Coupler (TaCo), which couples the RF power through an iris to the cavity. In the frame of the Linac4 R&D both devices have been significantly improvedwith respect to their commonly used design. On the coupler side, the waveguide short circuit with its matched length has been replaced by a fixedlength /4 short circuit. The RF matching is done by a simple piston tuner, which allows a quick matching to different cavity quality factors. In the window part, which usually c...

  17. LFSC - Linac Feedback Simulation Code

    Energy Technology Data Exchange (ETDEWEB)

    Ivanov, Valentin; /Fermilab

    2008-05-01

    The computer program LFSC (<Linac Feedback Simulation Code>) is a numerical tool for simulation beam based feedback in high performance linacs. The code LFSC is based on the earlier version developed by a collective of authors at SLAC (L.Hendrickson, R. McEwen, T. Himel, H. Shoaee, S. Shah, P. Emma, P. Schultz) during 1990-2005. That code was successively used in simulation of SLC, TESLA, CLIC and NLC projects. It can simulate as pulse-to-pulse feedback on timescale corresponding to 5-100 Hz, as slower feedbacks, operating in the 0.1-1 Hz range in the Main Linac and Beam Delivery System. The code LFSC is running under Matlab for MS Windows operating system. It contains about 30,000 lines of source code in more than 260 subroutines. The code uses the LIAR ('Linear Accelerator Research code') for particle tracking under ground motion and technical noise perturbations. It uses the Guinea Pig code to simulate the luminosity performance. A set of input files includes the lattice description (XSIF format), and plane text files with numerical parameters, wake fields, ground motion data etc. The Matlab environment provides a flexible system for graphical output.

  18. Wakefields in SLAC linac collimators

    Directory of Open Access Journals (Sweden)

    A. Novokhatski

    2014-12-01

    Full Text Available When a beam travels near collimator jaws, it gets an energy loss and a transverse kick due to the backreaction of the beam field diffracted from the jaws. The effect becomes very important for an intense short bunch when a tight collimation of the background beam halo is required. In the Linac Coherent Light Source at SLAC a collimation system is used to protect the undulators from radiation due to particles in the beam halo. The halo is most likely formed from gun dark current or dark current in some of the accelerating sections. However, collimators are also responsible for the generation of wake fields. The wake field effect from the collimators not only brings an additional energy jitter and change in the trajectory of the beam, but it also rotates the beam on the phase plane, which consequently leads to a degradation of the performance of the Free Electron Laser at the Linac Coherent Light Source. In this paper, we describe a model of the wake field radiation in the SLAC linac collimators. We use the results of a numerical simulation to illustrate the model. Based on the model, we derive simple formulas for the bunch energy loss and the average kick. We also present results from experimental measurements that confirm our model.

  19. Linacs for medical and industrial applications

    International Nuclear Information System (INIS)

    Hamm, R.W.

    1986-01-01

    Linear accelerators for medical and industrial applications have become an important commercial business. Microwave electron linacs for cancer radiation therapy and high-energy industrial radiography form the bulk of this market, but these, as well as induction linacs, are now being offered for radiation processing applications such as sterilization of disposable medical products, food preservation and material modifications. The radio frequency quadrupole (RFQ) linac has now made the ion linac also practical for commercial applications in medicine and industry, including radiation therapy, isotope production, neutron production, materials modification, and energy transfer processes. Ion linacs for several of these applications will soon be commercially available. The market for both ion and electron linacs is expected to significantly grow in several exciting and important areas

  20. Käsitöömeister Anu Raud astub Mark Soosaare kinolinale / Mark Soosaar ; interv. Grete Naaber

    Index Scriptorium Estoniae

    Soosaar, Mark, 1946-

    1999-01-01

    Tekstiilikunstnik Anu Rauast valmivast dokumentaalfilmist, pikemalt juttu ÜROle 50. aastapäevaks kingitud kihnu seelikutest skulptuurist 'Emapuu' (asub ÜRO peaassamblee koosolekutesaali peasissekäigu vastas)

  1. Siberi mälestuste kogumine kui oluline osa eestlaste kultuurimälust / Anu Kell ; intervjueerinud Karl Kello

    Index Scriptorium Estoniae

    Kell, Anu

    2014-01-01

    Okupatsioonide Muuseumi küsimustele vastab Gustav Adolfi gümnaasiumi pedagoogmetoodik Anu Kell, 2010/2011 õppeaastal toimunud küüditatute mälestuslugude kogumise konkursist „Siberi koolilood”

  2. [Anu Mai Kõll. The village and the class war : anti-kulak campaign in Estonia] / Karsten Brüggemann

    Index Scriptorium Estoniae

    Brüggemann, Karsten, 1965-

    2015-01-01

    Arvustus: Kõll, Anu Mai. The village and the class war : anti-kulak campaign in Estonia (Historical studies in Eastern Europe and Eurasia, 2). Central European University Press. Budapest and New York 2013

  3. Linac design for intense hadron beams

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Chuan

    2009-12-14

    Based on the RFQ and H-type DTL structures, this dissertation is dedicated to study the beam dynamics in the presence of significantly strong space-charge effects while accelerating intense hadron beams in the low- and medium-{beta} region. Besides the 5 mA/30 mA, 17 MeV proton injector (RFQ+DTL) and the 125 mA, 40 MeV deuteron DTL of the EUROTRANS and IFMIF facilities, a 200 mA, 700 keV proton RFQ has been also intensively studied for a small-scale but ultra-intense neutron source FRANZ planned at Frankfurt University. The most remarkable properties of the FRANZ RFQ and the IFMIF DTL are the design beam intensities, 200 mA and 125 mA. A new design approach, which can provide a balanced and accelerated beam bunching at low energy, has been developed for intense beams. To design the IFMIF DTL and the injector DTL part of the EUROTRANS driver linac, which have been foreseen as the first real applications of the novel superconducting CH-DTL structure, intensive attempts have been made to fulfill the design goals under the new conditions. For the IFMIF DTL, the preliminary IAP design has been considerably improved with respect to the linac layout as well as the beam dynamics. By reserving sufficient drift spaces for the cryosystem, diagnostic devices, tuner and steerer, introducing SC solenoid lenses and adjusting the accelerating gradients and accordingly other configurations of the cavities, a more realistic, reliable and efficient linac system has been designed. On the other hand, the specifications and positions of the transverse focusing elements as well as the phase- and energy-differences between the bunch-center particle and the synchronous particle at the beginning of the {phi}{sub s}=0 sections have been totally redesigned. For the EUROTRANS injector DTL, in addition to the above-mentioned procedures, extra optimization concepts to coordinate the beam dynamics between two intensities have been applied. In the beam transport simulations for both DTL designs

  4. Superconductivity: Phenomenology

    International Nuclear Information System (INIS)

    Falicov, L.M.

    1988-08-01

    This document discusses first the following topics: (a) The superconducting transition temperature; (b) Zero resistivity; (c) The Meissner effect; (d) The isotope effect; (e) Microwave and optical properties; and (f) The superconducting energy gap. Part II of this document investigates the Ginzburg-Landau equations by discussing: (a) The coherence length; (b) The penetration depth; (c) Flux quantization; (d) Magnetic-field dependence of the energy gap; (e) Quantum interference phenomena; and (f) The Josephson effect

  5. Diagnostic expert system in the PF LINAC

    International Nuclear Information System (INIS)

    Abe, Isamu; Nakahara, Kazuo; Kitamura, Masaharu.

    1992-01-01

    A prototype diagnostic expert system (ES) was developed for the Photon Factory 2.5-GeV electron/positron LINAC injector system. The ES has been on-lined with the conventional linac computer network for receiving real data. This project was undertaken in an attempt to reduce the linac operator's mental workload, diagnosis duties, and to explore Artificial Intelligence (AI) technologies. The outlook for ES and its problems, and what has been achieved are outlined in this presentation. (author)

  6. Status of the Linac Coherent Light Source

    Energy Technology Data Exchange (ETDEWEB)

    Galayda, John N.; /SLAC

    2011-11-04

    The Linac Coherent Light Source (LCLS) is a free electron laser facility in construction at Stanford Linear Accelerator Center. It is designed to operate in the wavelength range 0.15-1.5 nanometers. At the time of this conference, civil construction of new tunnels and buildings is complete, the necessary modifications to the SLAC linac are complete, and the undulator system and x-ray optics/diagnostics are being installed. The electron gun, 135 MeV injector linac and 250 MeV bunch compressor were commissioned in 2007. Accelerator commissioning activities are presently devoted to the achievement of performance goals for the completed 14 GeV linac.

  7. Post-accelerator LINAC design for the VECC RIB project

    Indian Academy of Sciences (India)

    accelerator LINAC design for the VECC RIB project. Arup Bandyopadhyay. Volume 59 Issue 6 December ... and LINAC modules for the post-acceleration. The design aspects of these postaccelerator LINAC modules will be discussed in this paper.

  8. Beam Diagnostics for the BNL Energy Recovery Linac Test Facility

    International Nuclear Information System (INIS)

    Cameron, Peter; Ben-Zvi, Ilan; Blaskiewicz, Michael; Brennan, Michael; Connolly, Roger; Dawson, William; Degen, Chris; DellaPenna, Al; Gassner, David; Kesselman, Martin; Kewish, Jorg; Litvinenko, Vladimir; Mead, Joseph; Oerter, Brian; Russo, Tom; Vetter, Kurt; Yakimenko, Vitaly

    2004-01-01

    An Energy Recovery Linac (ERL) test facility is presently under construction at BNL. The goals of this test facility are first to demonstrate stable intense CW electron beam with parameters typical for the RHIC e-cooling project (and potentially for eRHIC), second to test novel elements of the ERL (high current CW photo-cathode, superconducting RF cavity with HOM dampers, and feedback systems), and finally to test lattice dependence of stability criteria. Planned diagnostics include position monitors, loss monitors, transverse profile monitors (both optical and wires), scrapers/halo monitors, a high resolution differential current monitor, phase monitors, an energy spread monitor, and a fast transverse monitor (for beam break-up studies and the energy feedback system). We discuss diagnostics challenges that are unique to this project, and present preliminary system specifications. In addition, we include a brief discussion of the timing system

  9. A medical facility proposal to use the SSC linac

    International Nuclear Information System (INIS)

    Funk, L.W.

    1994-01-01

    A consortium organized by the Texas National Research Laboratory Commission under a Department of Energy grant proposes to build and operate a Regional Medical Technology Center to function as a combined medical radioisotope production complex and proton cancer therapy facility using the Linear Accelerator (Linac) assets of the Superconducting Super Collider (SSC). The radioisotope production complex will serve as a domestic source of radioisotopes critically needed by the U.S. pharmaceutical industry and nuclear medicine facilities throughout North America. Presently, more than 70 percent of radioisotopes used in U.S. nuclear medicine procedures are produced outside the country. The Center's state-of-the-art proton cancer therapy facility will serve the Central United States, providing advanced capabilities and augmenting facilities in California and Massachusetts. Long-term, it is anticipated that the RMTC also will stimulate nuclear medicine research, advance medical diagnostic technologies, and generate new industrial applications for linear accelerator technology

  10. A medical facility proposal to use the SSC linac

    International Nuclear Information System (INIS)

    Funk, L.W.

    1995-01-01

    A consortium organized by the Texas National Research Laboratory Commission (TNRLC) under a Department of Energy (DOE) grant proposes to build and operate a Regional Medical Technology Center (RMTC) to function as a combined medical radioisotope production complex and proton cancer therapy facility using the linear accelerator (linac) assets of the cancelled Superconducting Super Collider (SSC). The radioisotope production complex will serve as a domestic source of radioisotopes critically needed by the U.S. pharmaceutical industry and nuclear medicine facilities throughout North America. Presently, more than 70 percent of radioisotopes used in U.S. nuclear medicine procedures are produced outside the country. The Center's state-of-the-art proton cancer therapy facility will serve the Central United States, providing advanced capabilities and augmenting facilities in California and Massachusetts. Long-term, it is anticipated that the RMTC also will stimulate nuclear medicine research, advance medical diagnostic technologies, and generate new industrial applications of linear accelerator technology. (orig.)

  11. A medical facility proposal to use the SSC linac

    Science.gov (United States)

    Warren Funk, L.

    1995-05-01

    A consortium organized by the Texas National Research Laboratory Commission (TNRLC) under a Department of Energy (DOE) grant proposes to build and operate a Regional Medical Technology Center (RMTC) to function as a combined medical radioisotope production complex and proton cancer therapy facility using the linear accelerator (linac) assets of the cancelled Superconducting Super Collider (SSC). The radioisotope production complex will serve as a domestic source of radioisotopes critically needed by the U.S. pharmaceutical industry and nuclear medicine facilities throughout North America. Presently, more than 70 percent of radioisotopes used in U.S. nuclear medicine procedures are produced outside the country. The Center's state-of-the-art proton cancer therapy facility will serve the Central United States, providing advanced capabilities and augmenting facilities in California and Massachusetts. Long-term, it is anticipated that the RMTC also will stimulate nuclear medicine research, advance medical diagnostic technologies, and generate new industrial applications of linear accelerator technology.

  12. A 300-nm compact mm-wave linac FEL design

    Energy Technology Data Exchange (ETDEWEB)

    Nassiri, A.; Kustom, R.L.; Kang, Y.W. [Argonne National Lab., IL (United States)

    1995-12-31

    Microfabrication technology offers an alternative method for fabricating precision, miniature-size components suitable for use in accelerator physics and commercial applications. The original R&D work at Argonne, in collaboration with the University of Illinois at Chicago, has produced encouraging results in the area of rf accelerating structure design, optical and x-ray masks production, deep x-ray lithography (LIGA exposures), and precision structural alignments. In this paper we will present a design study for a compact single pass mm-linac FEL to produce short wavelength radiation. This system will consists of a photocathode rf gun operated at 30 GHz, a 50-MeV superconducting constant gradient structure operated at 60 GHz, and a microundulator with 1-mm period. Initial experimental results on a scale model rf gun and microundulator will be presented.

  13. Fast ferroelectric phase shifters for energy recovery linacs

    Directory of Open Access Journals (Sweden)

    S. Yu Kazakov

    2010-11-01

    Full Text Available Fast phase shifters are described that use a novel barium strontium titanate ceramic that can rapidly change its dielectric constant as an external bias voltage is changed. These phase shifters promise to reduce by ∼10 times the power requirements for the rf source needed to drive an energy recovery linac (ERL. Such phase shifters will be coupled with superconducting radiofrequency cavities so as to tune them to compensate for phase instabilities, whether beam-driven or those caused by microphonics. The most promising design is presented, which was successfully cold tested and demonstrated a switching speed of ∼30  ns for 77 deg, corresponding to <0.5  ns per deg of rf phase. Other crucial issues (losses, phase shift values, etc. are discussed.

  14. SRF and RF systems for LEReC Linac

    Energy Technology Data Exchange (ETDEWEB)

    Belomestnykh, S. [Brookhaven National Lab. (BNL), Upton, NY (United States); Stony Brook Univ., NY (United States); Ben-Zvi, I. [Brookhaven National Lab. (BNL), Upton, NY (United States); Stony Brook Univ., NY (United States); Brutus, J. C. [Brookhaven National Lab. (BNL), Upton, NY (United States); Fedotov, A. [Brookhaven National Lab. (BNL), Upton, NY (United States); McIntyre, G. [Brookhaven National Lab. (BNL), Upton, NY (United States); Polizzo, S. [Brookhaven National Lab. (BNL), Upton, NY (United States); Smith, K. [Brookhaven National Lab. (BNL), Upton, NY (United States); Than, R. [Brookhaven National Lab. (BNL), Upton, NY (United States); Tuozzolo, J. [Brookhaven National Lab. (BNL), Upton, NY (United States); Veshcherevich, V. [Cornell Univ., Ithaca, NY (United States); Wu, Q. [Brookhaven National Lab. (BNL), Upton, NY (United States); Xiao, B. [Brookhaven National Lab. (BNL), Upton, NY (United States); Xu, W. [Brookhaven National Lab. (BNL), Upton, NY (United States); Zaltsman, A. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2015-05-03

    The Low Energy RHIC electron Cooling (LEReC) is under development at BNL to improve RHIC luminosity at low energies. It will consist of a short electron linac and two cooling sections, one for blue and one for yellow rings. For the first stage of the project, LEReC-I, we will install a 704 MHz superconducting RF cavity and three normal conducting cavities operating at 9 MHz, 704 MHz and 2.1 GHz. The SRF cavity will boost the electron beam energy up to 2 MeV. The warm cavities will be used to correct the energy spread introduced in the SRF cavity. The paper describes layouts of the SRF and RF systems, their parameters and status.

  15. Beam tests on a proton linac booster for hadron therapy

    CERN Document Server

    De Martinis, C; Berra, P; Birattari, C; Calabretta, L; Crandall, K; Giove, D; Masullo, M R; Mauri, M; Rosso, E; Rovelli, A; Serafini, L; Szeless, Balázs; Toet, D Z; Vaccaro, Vittorio G; Weiss, M; Zennaro, R

    2002-01-01

    LIBO is a 3 GHz modular side-coupled proton linac booster designed to deliver beam energies up to 200 MeV, as required for the therapy of deep seated tumours. The injected beam of 50 to 70 MeV is produced by a cyclotron like those in several hospitals and research institutes. A full-scale prototype of the first module with an input/output energy of 62/74 MeV, respectively, was designed and built in 1999 and 2000. Full power RF tests were carried out successfully at CERN using a test facility at LIL at the end of the year 2000. In order to prove the feasibility of the acceleration process, an experimental setup with this module was installed at the INFN Laboratorio Nazionale del Sud (LNS) in Catania during 2001. The superconducting cyclotron provided the 62 MeV test beam. A compact solid-state RF modulator with a 4 MW klystron, made available by IBA-Scanditronix, was put into operation to power the linac. In this paper the main features of the accelerator are reviewed and the experimental results obtained duri...

  16. The Superconducting TESLA Cavities

    CERN Document Server

    Aune, B.; Bloess, D.; Bonin, B.; Bosotti, A.; Champion, M.; Crawford, C.; Deppe, G.; Dwersteg, B.; Edwards, D.A.; Edwards, H.T.; Ferrario, M.; Fouaidy, M.; Gall, P-D.; Gamp, A.; Gössel, A.; Graber, J.; Hubert, D.; Hüning, M.; Juillard, M.; Junquera, T.; Kaiser, H.; Kreps, G.; Kuchnir, M.; Lange, R.; Leenen, M.; Liepe, M.; Lilje, L.; Matheisen, A.; Möller, W-D.; Mosnier, A.; Padamsee, H.; Pagani, C.; Pekeler, M.; Peters, H-B.; Peters, O.; Proch, D.; Rehlich, K.; Reschke, D.; Safa, H.; Schilcher, T.; Schmüser, P.; Sekutowicz, J.; Simrock, S.; Singer, W.; Tigner, M.; Trines, D.; Twarowski, K.; Weichert, G.; Weisend, J.; Wojtkiewicz, J.; Wolff, S.; Zapfe, K.

    2000-01-01

    The conceptional design of the proposed linear electron-positron colliderTESLA is based on 9-cell 1.3 GHz superconducting niobium cavities with anaccelerating gradient of Eacc >= 25 MV/m at a quality factor Q0 > 5E+9. Thedesign goal for the cavities of the TESLA Test Facility (TTF) linac was set tothe more moderate value of Eacc >= 15 MV/m. In a first series of 27industrially produced TTF cavities the average gradient at Q0 = 5E+9 wasmeasured to be 20.1 +- 6.2 MV/m, excluding a few cavities suffering fromserious fabrication or material defects. In the second production of 24 TTFcavities additional quality control measures were introduced, in particular aneddy-current scan to eliminate niobium sheets with foreign material inclusionsand stringent prescriptions for carrying out the electron-beam welds. Theaverage gradient of these cavities at Q0 = 5E+9 amounts to 25.0 +- 3.2 MV/mwith the exception of one cavity suffering from a weld defect. Hence only amoderate improvement in production and preparation technique...

  17. Dark currents for CEBAF linacs

    International Nuclear Information System (INIS)

    Yunn, B.C.

    1995-01-01

    Continuing on our numerical study of field emitted electrons from a superconducting CEBAF cavity we have identified all possible emission sites, magnitudes, and the energy profile of dark currents expected at CEBAF under nominal operating conditions. We find that most electrons do not survive beyond a single cryomodule which includes eight 5-cell superconducting cavities. However, some electrons can be accelerated through many cryomodules, ending up with an energy close to 100 MeV. However, no field emitted electrons can be recirculated along with an electron beam generated at the gun, due to the limited energy acceptance of CEBAF recirculation arcs. 4 refs., 4 figs

  18. An Induction Linac Test Stand

    CERN Document Server

    De Hope, William; Kihara, Ron; Ong, Mike; Vogtlin, George; Zentler, Jan-Mark

    2005-01-01

    A single-cell test stand has been constructed to facilitate study and guide improvements of the induction electron linac at the FXR radiographic facility at LLNL.* This paper will discuss how modifications in pulse compression and shaping, pulse power transmission, initial ferrite state, and accelerator cell loading have been performed on the test stand and can be applied to the entire accelerator. Some of the specialized diagnostics being used will be described. Finally, the paper will discuss how computer modeling and judicious timing control can be used to optimize accelerator performance by making only selective changes that can be accomplished at minimal cost.

  19. Induction linacs and pulsed power

    International Nuclear Information System (INIS)

    Caporaso, G.J.

    1995-01-01

    Progress in electronic power conversion technology is making possible a new class of induction linacs that can operate at extremely high repetition rates. Advances in insulator technology, pulse forming line design and switching may also lead to a new type of high current accelerator with accelerating gradients at least an order of magnitude greater than those attainable today. The evolution of the induction accelerator pulsed power system will be discussed along with some details of these emerging technologies which are at the frontiers of accelerator technology

  20. Present status of the ETL LINAC facility

    International Nuclear Information System (INIS)

    Suzuki, Ryoichi; Mikado, Tomohisa; Ohgaki, Hideaki

    1993-01-01

    The ETL LINAC has been operated for the beam injection to the storage rings NIJI-II, III, IV, and TERAS, and for the generation of an intense slow positron beam. The status of the ETL LINAC on the operations, the maintenances, and the improvements is described. (author)

  1. Linac design for the European spallation source

    Energy Technology Data Exchange (ETDEWEB)

    Klein, H. [Universitaet Postfach, Frankfurt am Main (Germany)

    1995-10-01

    A study group has started to develop a conceptual design for a European Spallation Source (ESS). This pulsed 5 MW source presently consists of a 1.334 GeV linac and two compressor rings. In the following mainly the high intensity linac part will be discussed, which has some features of interest for accelerators for transmutation of radioactive waste too.

  2. Funneling in LANL high intensity linac designs

    International Nuclear Information System (INIS)

    Nath, Subrata

    1995-01-01

    The Los Alamos design approach to Accelerator driven transmutation applications is based on high power proton linacs. Most of the accelerators that have been studied have one important element in common. That component is a funnel, where beams from two separate but identical front end linac systems are merged to form a collinear beam of twice the initial beam intensity. The nominal linac design for Accelerator Transmutation of Waste (ATW) consists of an ion source-injector/Radio Frequency Quadrupole (RFQ)/Drift Tube Linac (DTL) combination operating at 350 MHz. The output beam at 20 MeV from each of the DTLs is then funneled to a single high energy linac operating at 700 MHz which accelerates the beam to 800 MeV. In this paper, we present the rationale behind the choice of funneling to achieve higher beam intensity, a beam dynamics design, and simulation results through the funnel section, together with the present experimental status of funneling

  3. High gradient linac for proton therapy

    Science.gov (United States)

    Benedetti, S.; Grudiev, A.; Latina, A.

    2017-04-01

    Proposed for the first time almost 30 years ago, the research on radio frequency linacs for hadron therapy experienced a sparkling interest in the past decade. The different projects found a common ground on a relatively high rf operating frequency of 3 GHz, taking advantage of the availability of affordable and reliable commercial klystrons at this frequency. This article presents for the first time the design of a proton therapy linac, called TULIP all-linac, from the source up to 230 MeV. In the first part, we will review the rationale of linacs for hadron therapy. We then divided this paper in two main sections: first, we will discuss the rf design of the different accelerating structures that compose TULIP; second, we will present the beam dynamics design of the different linac sections.

  4. Funneling in LANL high intensity linac designs

    International Nuclear Information System (INIS)

    Nath, S.

    1994-01-01

    The Los Alamos design approach to Accelerator driven transmutation applications is based on high power proton linacs. Most of the accelerators that have been studied have one important element in common. That component is a funnel, where beams from two separate but identical front end linac systems are merged to form a collinear beam of twice the initial beam intensity. The nominal linac design for Accelerator Transmutation of Waste (ATW) consists of an ion source-injector/Radio Frequency Quadrupole (RFQ)/Drift Tube Linac (DTL) combination operating at 350 MHz. The output beam at 20 MeV from each of the DTLs is then funneled to a single high energy linac operating at 700 MHz which achieve higher beam intensity, a beam dynamics design, and simulation results through the funnel section, together with the present experimental status of funneling

  5. CERN Linac4 - The space charge challenge

    Energy Technology Data Exchange (ETDEWEB)

    Hein, Lutz Matthias [CERN, Genf (Switzerland)

    2012-07-01

    The achievement of a higher proton flux to go beyond the current LHC design luminosity parameters is conditional on an upgrade of the injector chain. Presently the major limitation is given by space charge effects at injection from Linac2 into the PS Booster. These will be overcome by increasing the injection energy from 50 MeV to 160 MeV with the planned replacement of Linac2 with Linac4, a new normal conducting H-linear accelerator presently under construction. Due to the high charge density of the Linac4 bunches space charge will still dominate the beam dynamics in the low energy 3 MeV frontend. In this presentation a short, theoretical introduction to space charge effects is given, and their impact on the beam is illustrated with simulations. Moreover, the latest results of the commissioning of the low energy front end of Linac4 are shown and discussed.

  6. High gradient linac for proton therapy

    Directory of Open Access Journals (Sweden)

    S. Benedetti

    2017-04-01

    Full Text Available Proposed for the first time almost 30 years ago, the research on radio frequency linacs for hadron therapy experienced a sparkling interest in the past decade. The different projects found a common ground on a relatively high rf operating frequency of 3 GHz, taking advantage of the availability of affordable and reliable commercial klystrons at this frequency. This article presents for the first time the design of a proton therapy linac, called TULIP all-linac, from the source up to 230 MeV. In the first part, we will review the rationale of linacs for hadron therapy. We then divided this paper in two main sections: first, we will discuss the rf design of the different accelerating structures that compose TULIP; second, we will present the beam dynamics design of the different linac sections.

  7. Dark current and radiation shielding studies for the ILC main linac

    Energy Technology Data Exchange (ETDEWEB)

    Mokhov, Nikolai V. [Fermilab; Rakhno, I. L. [Fermilab; Solyak, N. A. [Fermilab; Sukhanov, A. [Fermilab; Tropin, I. S. [Fermilab

    2016-12-05

    Electrons of dark current (DC), generated in high-gradient superconducting RF cavities (SRF) due to field emission, can be accelerated up to very high energies—19 GeV in the case of the International Linear Collider (ILC) main linac—before they are removed by focusing and steering magnets. Electromagnetic and hadron showers generated by such electrons can represent a significant radiation threat to the linac equipment and personnel. In our study, an operational scenario is analysed which is believed can be considered as the worst case scenario for the main linac regarding the DC contribution to the radiation environment in the main linac tunnel. A detailed modelling is performed for the DC electrons which are emitted from the surface of the SRF cavities and can be repeatedly accelerated in the high-gradient fields in many SRF cavities. Results of MARS15 Monte Carlo calculations, performed for the current main linac tunnel design, reveal that the prompt dose design level of 25 μSv/hr in the service tunnel can be provided by a 2.3-m thick concrete wall between the main and service ls.

  8. MEASUREMENT OF THE TRANSVERSE BEAM DYNAMICS IN A TESLA-TYPE SUPERCONDUCTING CAVITY

    Energy Technology Data Exchange (ETDEWEB)

    Halavanau, A. [NICADD, DeKalb; Eddy, N. [Fermilab; Edstrom, D. [Fermilab; Lunin, A. [Fermilab; Piot, P. [NICADD, DeKalb; Ruan, J. [Fermilab; Solyak, N. [Fermilab

    2016-09-26

    Superconducting linacs are capable of producing intense, ultra-stable, high-quality electron beams that have widespread applications in Science and Industry. Many project are based on the 1.3-GHz TESLA-type superconducting cavity. In this paper we provide an update on a recent experiment aimed at measuring the transfer matrix of a TESLA cavity at the Fermilab Accelerator Science and Technology (FAST) facility. The results are discussed and compared with analytical and numerical simulations.

  9. Free electron laser and superconductivity

    CERN Document Server

    Iwata, A

    2003-01-01

    The lasing of the first free-electron laser (FEL) in the world was successfully carried out in 1977, so the history of FELs as a light source is not so long. But FELs are now utilized for research in many scientific and engineering fields owing to such characteristics as tunability of the wavelength, and short pulse and high peak power, which is difficult utilizing a common light source. Research for industrial applications has also been carried out in some fields, such as life sciences, semiconductors, nano-scale measurement, and others. The task for the industrial use of FEL is the realization of high energy efficiency and high optical power. As a means of promoting realization, the combining of an FEL and superconducting linac is now under development in order to overcome the thermal limitations of normal-conducting linacs. Further, since tuning the wavelength is carried out by changing the magnetic density of the undulator, which is now induced by moving part of the stack of permanent magnets, there is un...

  10. Superconducting rotating electronic machine

    International Nuclear Information System (INIS)

    Cheon, Hui Yeong

    1989-04-01

    This book is divided into ten chapters, which handles summary of superconducting electronic machine, aspect of using of superconductor, superconducting direct current : Homopolar D. C. Machines, Drum machines, segmented slip-ring principle and carbon fibre brushes, superconducting alternating current turbine generator, design of superconducting alternating current machine, performance of superconducting alternating current machine, superconducting turbo generator by new rotor design, basic design of superconducting current generator, generator and power model, design of rotor and information of material property.

  11. LFSC - Linac Feedback Simulation Code

    International Nuclear Information System (INIS)

    Ivanov, Valentin; Fermilab

    2008-01-01

    The computer program LFSC ( ) is a numerical tool for simulation beam based feedback in high performance linacs. The code LFSC is based on the earlier version developed by a collective of authors at SLAC (L.Hendrickson, R. McEwen, T. Himel, H. Shoaee, S. Shah, P. Emma, P. Schultz) during 1990-2005. That code was successively used in simulation of SLC, TESLA, CLIC and NLC projects. It can simulate as pulse-to-pulse feedback on timescale corresponding to 5-100 Hz, as slower feedbacks, operating in the 0.1-1 Hz range in the Main Linac and Beam Delivery System. The code LFSC is running under Matlab for MS Windows operating system. It contains about 30,000 lines of source code in more than 260 subroutines. The code uses the LIAR ('Linear Accelerator Research code') for particle tracking under ground motion and technical noise perturbations. It uses the Guinea Pig code to simulate the luminosity performance. A set of input files includes the lattice description (XSIF format), and plane text files with numerical parameters, wake fields, ground motion data etc. The Matlab environment provides a flexible system for graphical output

  12. The DARHT Phase 2 Linac

    International Nuclear Information System (INIS)

    Wolf, Zachary R.

    2000-01-01

    The second phase accelerator for the Dual Axis Hydrodynamic Test facility (DARHT) is designed to provide an electron beam pulse that is 2μs long, 2kA, and 20 MeV in particle energy. The injector provides 3.2 MeV so that the linac need only provide 16.8 MeV. The linac is made with two types of induction accelerator cells. The first block of 8 cells have a 14 in. beam pipe compared to 10 in. in the remaining 80 cells. The other principal difference is that the first 8 cells have reduced volt-sec in their induction cores as a result of a larger diameter beam pipe. The cells are designed for very reliable high voltage operation. The insulator is Mycalex. Results from prototype tests are given including results from solenoid measurements. Each cell contains a solenoid for beam transport and a set of x-y correction coils to reduce corkscrew motion. Details of tests to determine RF mode impedances relevant to BBU generation are given. Blocks of cells are separated by intercells some of which contain transport solenoids. The intercells provide vacuum pumping stations as well. Issues of alignment and installation are discussed

  13. Energy-Recovery Linacs for Commercial Radioisotope Production

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Rolland Paul [Muplus, Inc., Newport News, VA (United States)

    2016-11-19

    Most radioisotopes are produced by nuclear reactors or positive ion accelerators, which are expensive to construct and to operate. Photonuclear reactions using bremsstrahlung photon beams from less-expensive electron linacs can generate isotopes of critical interest, but much of the beam energy in a conventional electron linac is dumped at high energy, making unwanted radioactivation. The largest part of this radioactivation may be completely eliminated by applying energy recovery linac technology to the problem with an additional benefit that the energy cost to produce a given amount of isotope is reduced. Consequently, a Superconducting Radio Frequency (SRF) Energy Recovery Linac (ERL) is a path to a more diverse and reliable domestic supply of short-lived, high-value, high-demand isotopes at a cost lower than that of isotopes produced by reactors or positive-ion accelerators. A Jefferson Lab approach to this problem involves a thin photon production radiator, which allows the electron beam to recirculate through rf cavities so the beam energy can be recovered while the spent electrons are extracted and absorbed at a low enough energy to minimize unwanted radioactivation. The thicker isotope photoproduction target is not in the beam. MuPlus, with Jefferson Lab and Niowave, proposed to extend this ERL technology to the commercial world of radioisotope production. In Phase I we demonstrated that 1) the ERL advantage for producing radioisotopes is at high energies (~100 MeV), 2) the range of acceptable radiator thickness is narrow (too thin and there is no advantage relative to other methods and too thick means energy recovery is too difficult), 3) using optics techniques developed under an earlier STTR for collider low beta designs greatly improves the fraction of beam energy that can be recovered (patent pending), 4) many potentially useful radioisotopes can be made with this ERL technique that have never before been available in significant commercial quantities

  14. Energy-Recovery Linacs for Commercial Radioisotope Production

    International Nuclear Information System (INIS)

    Johnson, Rolland Paul

    2016-01-01

    Most radioisotopes are produced by nuclear reactors or positive ion accelerators, which are expensive to construct and to operate. Photonuclear reactions using bremsstrahlung photon beams from less-expensive electron linacs can generate isotopes of critical interest, but much of the beam energy in a conventional electron linac is dumped at high energy, making unwanted radioactivation. The largest part of this radioactivation may be completely eliminated by applying energy recovery linac technology to the problem with an additional benefit that the energy cost to produce a given amount of isotope is reduced. Consequently, a Superconducting Radio Frequency (SRF) Energy Recovery Linac (ERL) is a path to a more diverse and reliable domestic supply of short-lived, high-value, high-demand isotopes at a cost lower than that of isotopes produced by reactors or positive-ion accelerators. A Jefferson Lab approach to this problem involves a thin photon production radiator, which allows the electron beam to recirculate through rf cavities so the beam energy can be recovered while the spent electrons are extracted and absorbed at a low enough energy to minimize unwanted radioactivation. The thicker isotope photoproduction target is not in the beam. MuPlus, with Jefferson Lab and Niowave, proposed to extend this ERL technology to the commercial world of radioisotope production. In Phase I we demonstrated that 1) the ERL advantage for producing radioisotopes is at high energies (~100 MeV), 2) the range of acceptable radiator thickness is narrow (too thin and there is no advantage relative to other methods and too thick means energy recovery is too difficult), 3) using optics techniques developed under an earlier STTR for collider low beta designs greatly improves the fraction of beam energy that can be recovered (patent pending), 4) many potentially useful radioisotopes can be made with this ERL technique that have never before been available in significant commercial quantities

  15. Superconducting transistor

    International Nuclear Information System (INIS)

    Gray, K.E.

    1978-01-01

    A three film superconducting tunneling device, analogous to a semiconductor transistor, is presented, including a theoretical description and experimental results showing a current gain of four. Much larger current gains are shown to be feasible. Such a development is particularly interesting because of its novelty and the striking analogies with the semiconductor junction transistor

  16. Superconducting materials

    International Nuclear Information System (INIS)

    Ruvalds, J.

    1990-01-01

    This report discusses the following topics: Fermi liquid nesting in high temperature superconductors; optical properties of high temperature superconductors; Hall effect in superconducting La 2-x Sr x CuO 4 ; source of high transition temperatures; and prospects for new superconductors

  17. Superconducting magnets

    International Nuclear Information System (INIS)

    1994-08-01

    This report discusses the following topics on superconducting magnets: D19B and -C: The next steps for a record-setting magnet; D20: The push beyond 10 T: Beyond D20: Speculations on the 16-T regime; other advanced magnets for accelerators; spinoff applications; APC materials development; cable and cabling-machine development; and high-T c superconductor at low temperature

  18. Bipolar superconductivity

    International Nuclear Information System (INIS)

    Pankratov, S.G.

    1987-01-01

    A model of bipolaron superconductivity suggested by Soviet scientist Alexandrov A.S. and French scientist Ranninger is presentes in a popular way. It is noted that the bipolaron theory gives a good explanation of certain properties of new superconductors, high critical temperature, in particular

  19. Magnetic shielding investigation for a 6 MV in-line linac within the parallel configuration of a linac-MR system.

    Science.gov (United States)

    Santos, D M; St Aubin, J; Fallone, B G; Steciw, S

    2012-02-01

    In our current linac-magnetic resonance (MR) design, a 6 MV in-line linac is placed along the central axis of the MR's magnet where the MR's fringe magnetic fields are parallel to the overall electron trajectories in the linac waveguide. Our previous study of this configuration comprising a linac-MR SAD of 100 cm and a 0.5 T superconducting (open, split) MR imager. It showed the presence of longitudinal magnetic fields of 0.011 T at the electron gun, which caused a reduction in target current to 84% of nominal. In this study, passive and active magnetic shielding was investigated to recover the linac output losses caused by magnetic deflections of electron trajectories in the linac within a parallel linac-MR configuration. Magnetic materials and complex shield structures were used in a 3D finite element method (FEM) magnetic field model, which emulated the fringe magnetic fields of the MR imagers. The effects of passive magnetic shielding was studied by surrounding the electron gun and its casing with a series of capped steel cylinders of various inner lengths (26.5-306.5 mm) and thicknesses (0.75-15 mm) in the presence of the fringe magnetic fields from a commercial MR imager. In addition, the effects of a shield of fixed length (146.5 mm) with varying thicknesses were studied against a series of larger homogeneous magnetic fields (0-0.2 T). The effects of active magnetic shielding were studied by adding current loops around the electron gun and its casing. The loop currents, separation, and location were optimized to minimize the 0.011 T longitudinal magnetic fields in the electron gun. The magnetic field solutions from the FEM model were added to a validated linac simulation, consisting of a 3D electron gun (using OPERA-3d/scala) and 3D waveguide (using comsol Multiphysics and PARMELA) simulations. PARMELA's target current and output phase-space were analyzed to study the linac's output performance within the magnetic shields. The FEM model above agreed within 1

  20. A High Current Proton Linac with 352 MHz SC Cavities

    CERN Document Server

    Pagani, C; Pierini, P

    1996-01-01

    A proposal for a 10-120 mA proton linac employing superconducting beta-graded, CERN type, four cell cavities at 352 MHz is presented. The high energy part (100 MeV-1 GeV) of the machine is split in three beta-graded sections, and transverse focusing is provided via a periodic doublet array. All the parameters, like power in the couplers and accelerating fields in the cavities, are within the state of the art, achieved in operating machines. A first stage of operation at 30 mA beam current is proposed, while the upgrade of the machine to 120 mA operation can be obtained increasing the number of klystrons and couplers per cavity. The additional coupler ports, up to four, will be integrated in the cavity design. Preliminary calculations indicate that beam transport is feasible, given the wide aperture of the 352 MHz structures. A capital cost of less than 100 M$ at 10 mA, reaching up to 280 M$ for the 120 mA extension, has been estimated for the superconducting high energy section (100 MeV-1 GeV). The high effic...

  1. A photocathode rf gun design for a mm-wave linac-based FEL

    International Nuclear Information System (INIS)

    Nassiri, A.; Berenc, T.; Foster, J.; Waldschmidt, G.; Zhou, J.

    1995-01-01

    In recent years, advances in the rf gun technology have made it possible to produce small beam emittances suitable for short period microundulators which take advantage of the low emittance beam to reduce the wavelength of FELs. At the Advanced Photon Source, we are studying the design of a compact 50-MeV superconducting mm-wave linac-based FEL for the production of short wavelengths (∼300 nm) to carry out FEL demonstration experiments. The electron source considered for the linac is a 30- GHz, 3 1/2-cell π-mode photocathode rf gun. For cold model rf measurements a 15-GHz prototype structure was fabricated. Here we report on the design, numerical modelling and the initial cold-model rf measurement results on the 15-GHz prototype structure

  2. First operation of ATLAS using the PII linac and a comparison to tandem injection

    Energy Technology Data Exchange (ETDEWEB)

    Pardo, R.C.; Bollinger, L.M.; Billquist, P.J.; Bogaty, J.M.; Clifft, B.E.; Markovich, P.; Munson, F.H.; Shepard, K.W.; Zinkann, G.P.

    1991-12-31

    The ATLAS Positive Ion Injector (PII) is designed to replace the tandem injector for the ATLAS heavy-ion facility. When the PII project is complete, ATLAS will be able to accelerate all ions through uranium to energies above the Coulomb barrier. PII consists of an ECR ion source on a 350 kV platform and a very low-velocity superconducting linac. The PII project is nearing completion. First beam from the complete system is expected in early 1992. Beam tests and experiments using a partially completed PII linac have demonstrated that the technical design goals are being met. The results of the early beam tests and first experiments will be discussed and compared to the performance of ATLAS with tandem injection. 10 refs., 2 figs.

  3. First operation of ATLAS using the PII linac and a comparison to tandem injection

    Energy Technology Data Exchange (ETDEWEB)

    Pardo, R.C.; Bollinger, L.M.; Billquist, P.J.; Bogaty, J.M.; Clifft, B.E.; Markovich, P.; Munson, F.H.; Shepard, K.W.; Zinkann, G.P.

    1991-01-01

    The ATLAS Positive Ion Injector (PII) is designed to replace the tandem injector for the ATLAS heavy-ion facility. When the PII project is complete, ATLAS will be able to accelerate all ions through uranium to energies above the Coulomb barrier. PII consists of an ECR ion source on a 350 kV platform and a very low-velocity superconducting linac. The PII project is nearing completion. First beam from the complete system is expected in early 1992. Beam tests and experiments using a partially completed PII linac have demonstrated that the technical design goals are being met. The results of the early beam tests and first experiments will be discussed and compared to the performance of ATLAS with tandem injection. 10 refs., 2 figs.

  4. A photocathode rf gun design for a mm-wave linac-based FEL

    Energy Technology Data Exchange (ETDEWEB)

    Nassiri, A.; Berenc, T,; Foster, J.; Waldschmidt, G.; Zhou, J.

    1995-07-01

    In recent years, advances in the rf gun technology have made it possible to produce small beam emittances suitable for short period microundulators which take advantage of the low emittance beam to reduce the wavelength of FELs. At the Advanced Photon Source, we are studying the design of a compact 50-MeV superconducting mm-wave linac-based FEL for the production of short wavelengths ({approximately}300 nm) to carry out FEL demonstration experiments. The electron source considered for the linac is a 30- GHz, 3 1/2-cell {pi}-mode photocathode rf gun. For cold model rf measurements a 15-GHz prototype structure was fabricated. Here we report on the design, numerical modelling and the initial cold-model rf measurement results on the 15-GHz prototype structure.

  5. HIE-ISOLDE CRYO-MODULE Assembly - Superconducting Solenoid

    CERN Multimedia

    Leclercq, Yann

    2016-01-01

    Assembly of the cryo-module components in SM18 cleanroom. The superconducting solenoid (housed inside its helium vessel) is cleaned, prepared then installed on the supporting frame of the cryo-module and connected to the helium tank, prior to the assembly of the RF cavities on the structure. The completed first 2 cryo-modules installed inside the HIE-ISOLDE-LINAC ready for beam operation is also shown.

  6. 25th anniversary for Linac-2

    CERN Multimedia

    2003-01-01

    On Friday, 3 October 2003, the Linac team celebrated a quarter century of successful operation of one of its linear accelerators: Linac-2, the proton workhorse of the CERN accelerator complex. Linac-2, CERN's linear proton accelerator, has now been running for 25 years - ample reason for a small celebration. About 30 members of the original team (10 of the initially more than 50 are still working at CERN), and other CERN personnel met on 3 October 2003. Linac-2 is the first link in the accelerator chain Linac-2 - PS Booster - PS - SPS and eventually LHC. Beams from Linac-2 are used after further acceleration in the CERN complex for SPS fixed target physics; for antiproton production for the Antiproton Decelerator (AD); for test beams in the East Experimental Hall and in the PS; for nuclear physics at ISOLDE; for LHC test beams and in the past for both ISR physics and Antiproton production (AA/AC) and test beams in LEAR. Linac-2 was built to obtain higher intensities and better stability than with ...

  7. Higher-order-mode absorbers for energy recovery linac cryomodules at Brookhaven National Laboratory

    International Nuclear Information System (INIS)

    Hahn, H.; Ben-Zvi, I.; Calaga, R.; Hammons, L.; Johnson, E.C.; Kewisch, J.; Litvinenko, V.N.; Xu, W.

    2010-01-01

    Several future accelerator projects at Brookhaven for the Relativistic Heavy Ion Collider (RHIC) are based on energy recovery linacs (ERLs) with high-charge high-current electron beams. Their stable operation mandates effective higher-order-mode (HOM) damping. The development of HOM dampers for these projects is pursued actively at this laboratory. Strong HOM damping was experimentally demonstrated both at room and at superconducting (SC) temperatures in a prototype research and development (R and D) five-cell niobium superconducting rf (SRF) cavity with ferrite dampers. Two room-temperature mock-up five-cell copper cavities were used to study various damper configurations with emphasis on capacitive antenna dampers. An innovative type of ferrite damper over a ceramic break for an R and D SRF electron gun also was developed. For future SRF linacs longer cryomodules comprised of multiple superconducting cavities with reasonably short intercavity transitions are planned. In such a configuration, the dampers, located closer to the cavities, will be at cryogenic temperatures; this will impose additional constraints and complications. This paper presents the results of simulations and measurements of several damper configurations.

  8. Higher-order-mode absorbers for energy recovery linac cryomodules at Brookhaven National Laboratory

    Science.gov (United States)

    Hahn, H.; Ben-Zvi, I.; Calaga, R.; Hammons, L.; Johnson, E. C.; Kewisch, J.; Litvinenko, V. N.; Xu, Wencan

    2010-12-01

    Several future accelerator projects at Brookhaven for the Relativistic Heavy Ion Collider (RHIC) are based on energy recovery linacs (ERLs) with high-charge high-current electron beams. Their stable operation mandates effective higher-order-mode (HOM) damping. The development of HOM dampers for these projects is pursued actively at this laboratory. Strong HOM damping was experimentally demonstrated both at room and at superconducting (SC) temperatures in a prototype research and development (R&D) five-cell niobium superconducting rf (SRF) cavity with ferrite dampers. Two room-temperature mock-up five-cell copper cavities were used to study various damper configurations with emphasis on capacitive antenna dampers. An innovative type of ferrite damper over a ceramic break for an R&D SRF electron gun also was developed. For future SRF linacs longer cryomodules comprised of multiple superconducting cavities with reasonably short intercavity transitions are planned. In such a configuration, the dampers, located closer to the cavities, will be at cryogenic temperatures; this will impose additional constraints and complications. This paper presents the results of simulations and measurements of several damper configurations.

  9. Higher-order-mode absorbers for energy recovery linac cryomodules at Brookhaven National Laboratory

    Directory of Open Access Journals (Sweden)

    H. Hahn

    2010-12-01

    Full Text Available Several future accelerator projects at Brookhaven for the Relativistic Heavy Ion Collider (RHIC are based on energy recovery linacs (ERLs with high-charge high-current electron beams. Their stable operation mandates effective higher-order-mode (HOM damping. The development of HOM dampers for these projects is pursued actively at this laboratory. Strong HOM damping was experimentally demonstrated both at room and at superconducting (SC temperatures in a prototype research and development (R&D five-cell niobium superconducting rf (SRF cavity with ferrite dampers. Two room-temperature mock-up five-cell copper cavities were used to study various damper configurations with emphasis on capacitive antenna dampers. An innovative type of ferrite damper over a ceramic break for an R&D SRF electron gun also was developed. For future SRF linacs longer cryomodules comprised of multiple superconducting cavities with reasonably short intercavity transitions are planned. In such a configuration, the dampers, located closer to the cavities, will be at cryogenic temperatures; this will impose additional constraints and complications. This paper presents the results of simulations and measurements of several damper configurations.

  10. Lead/tin resonator development at the Stony Brook heavy-ion linac

    International Nuclear Information System (INIS)

    Sikora, J.; Ben-Zvi, I.; Brennan, J.M.; Cole, M.; Noe, J.W.

    1988-01-01

    The Stony Brook Nuclear Structure Laboratory (NSL) has operated a superconducting heavy-ion booster linac since April 1983. The 40 copper split-loop resonators were developed and fabricated at Cal-Tech and plated with lead at Stony Brook. These original lead surfaces have given stable performance for the last 4 years, at an average accelerating gradient of about 2.5 MV/m in the high-β section. The low-β resonators however have never run reliably on-line much better than 2.0 MV/m, due to excessive vibration of their rather soft loop arms in the working accelerator environment. For the last 2-3 years the efforts of the Stony Brook accelerator development group have been focused on (1) a retrofit of the low-beta section of the linac with new QWRs and (2) the further development of plated superconducting surfaces. In particular a Sn/Pb alloy has been shown to give resonator performance at least comparable to that obtained with pure Pb but with a greatly simplified plating technique, as discussed below. Recently a possible heavy-ion injector based on superconducting RF quadrupole (RFQ) structures has also been studied. 13 references, 3 figures, 1 table

  11. Study on design of proton linacs

    International Nuclear Information System (INIS)

    Yu Qingchang

    2000-01-01

    Two important directions in the development of proton linacs are high-current proton linacs (mainly applied in nuclear power field) and compact proton linacs (for proton therapy). There are some common characteristics in them: (1) Employment of the novel accelerating structures, which are combination and evolution of the conventional ones; (2) Accelerating beam with small emittance; (3) Requirement for high reliability. The construction of the former is, however, much more difficult because it still needs low beam lose rate and as high power transformation efficiency as possible. Some important problems in the design of these accelerators are discussed and some schemes designed are presented

  12. Upgrade of the AGS H- linac

    International Nuclear Information System (INIS)

    Alessi, J.G.; Buxton, W.; Kponou, A.; LoDestro, V.; Mapes, M.; McNerney, A.J.; Raparia, D.

    1994-01-01

    The AGS linac presently accelerates 25 mA of H - to 200 MeV at a 5 Hz rep-rate and 500 μs pulse width. The Booster takes 4 pulses every 3.8 seconds, and the remaining pulses are used for isotope production. The authors are in the process of upgrading the linac to increase the average current delivered for isotope production by more than a factor of two, while at the same time expecting to decrease linac downtime. Various aspects of this upgrade are discussed, including the upgrade of the control system, new high power transmission line, transport line vacuum, and rf power supply system upgrades

  13. Cryogenic, superconducting and rf results of the SRFQ2 of PIAVE

    Indian Academy of Sciences (India)

    SRFQ2 is the second RFQ superconducting (SC) structure of PIAVE, the positive ion injector of the SC LINAC for heavy ions ALPI, in operation at Legnaro. During 2001, SRFQ2 was extensively tested at cryogenic temperature reaching its design perfor- mance, i.e., 280 kV inter-electrode voltage (equivalent to 25 MV/m peak ...

  14. Mechanical considerations in cw linacs

    International Nuclear Information System (INIS)

    King, J.D.

    1985-01-01

    An 80-MHz radio-frequency quadrupole (RFQ) linac has been designed, fabricated and operated at 100% duty factor (cw) for the Fusion Materials Irradiation Test (FMIT) project at Los Alamos. This paper describes the design features, fabrication techniques, and operational problems of the device. The RFQ is an assembly of heavy steel, copper-plated weldments. It measures about 15 ft (4.5 m) long by 5 ft (1.5 m) in diameter and weighs over 12 t. Major components are two pair of diametrically orthogonal vanes mounted in a core cylinder. The core is assembled into a manifold cylinder that couples rf power into the vane quadrants. The design features discussed include assembly of hollow wall, flood-cooled components; high-conductivity rf seals; removable and adjustable vanes; and tuning devices. Fabrication challenges such as close-tolerance weldments, vane-tip-contour machining and large-component plating requirements are covered

  15. Source and LINAC3 studies

    CERN Document Server

    Bellodi, G

    2017-01-01

    In the framework of the LHC Ion Injector Upgrade pro-gramme (LIU), several activities have been carried out in2016 to improve the ion source and Linac3 performance,with the goal to increase the beam current routinely deliv-ered to LEIR. The extraction region of the GTS-LHC ionsource was upgraded with enlarged vacuum chamber aper-tures and the addition of an einzel lens, yielding highertransmission through the rest of the machine. Also, a seriesof experiments have been performed to study the effects ofdouble frequency mixing on the afterglow performance ofthe source after installation of a Travelling Wave Tube Am-plifier (TWTA) as secondary microwave source at variablefrequency. Measurements have been carried out at a dedi-cated oven test stand for better understanding of the ionsource performance. Finally, several MD sessions werededicated to the study and characterization of the strippingfoils, after evidence of degradation in time was discoveredin the 2015 run.

  16. Resonant excitation of high order modes in the 3.9 GHz cavity of the Linac Coherent Light Source

    Science.gov (United States)

    Lunin, A.; Khabiboulline, T.; Solyak, N.; Sukhanov, A.; Yakovlev, V.

    2018-02-01

    Construction of the Linac Coherent Light Source II (LCLS-II) is underway for the world's first hard x-ray free-electron laser. A central part of the LCLS-II project is a 4 GeV superconducting radio frequency electron linac that will operate in the continuous wave (cw) mode. The linac is segmented into four sections named as L 0 , L 1 , L 2 , and L 3 . Two 3.9 GHz cryomodules, each housing of eight third-harmonic cavities similar to the cavities developed for the European X-ray Free Electron Laser (XFEL), will be used in section L 1 of the linac for linearizing the longitudinal beam profile. In this paper, we present a study of trapped high order modes (HOMs) excited by a cw electron beam in the third-harmonic cavities of the LCLS-II linac. A detailed comparison of the original XFEL design and the LCLS-II design with a modified end group is performed in order to estimate the effect of a reduced beam pipe aperture on the efficiency of HOM damping. Furthermore, we apply a statistical analysis of the eigenmode spectrum for the estimation of the probability of resonant HOM losses and influence of HOMs on beam dynamics.

  17. Differential current measurement in the BNL energy recovery linac test facility

    International Nuclear Information System (INIS)

    Cameron, Peter

    2006-01-01

    An energy recovery linac (ERL) test facility is presently under construction at BNL [V.N. Litvinenko, et al., High current energy recovery linac at BNL, PAC, 2005; I. Ben-Zvi, et al., Extremely high current, high brightness energy recovery linac, PAC, 2005]. The goal of this test facility is to demonstrate CW operation with an average beam current greater than 100mA, and with greater than 99.95% efficiency of current recovery. This facility will serve as a test bed for the novel high current CW photo-cathode [A. Burrill, et al., Multi-alkali photocathode development at BNL, PAC, 2005; A. Murray, et al., State-of-the-art electron guns and injector designs for energy recovery linacs, PAC, 2005], the superconducting RF cavity with HOM dampers [R. Calaga, et al., High current superconducting cavities at RHIC, EPAC, 2004; R. Calaga, et al., in: Proceedings of the 11th workshop on RF superconductivity, Lubeck, Germany, 2003], and the lattice [D. Kayran, V. Litvinenko, Novel method of emittance preservation in ERL merging system in presence of strong space charge forces, PAC, 2005; D. Kayran, et al., Optics for high brightness and high current ERL project at BNL, PAC, 2005] and feedback systems needed to insure the specified beam parameters. It is an important stepping stone for electron cooling in RHIC [I. Ben-Zvi, et al., Electron cooling of RHIC, PAC, 2005], and essential to meet the luminosity specifications of RHICII [T. Hallman, et al., RHICII/eRHIC white paper, available at http://www.bnl.gov/henp/docs/NSAC_RHICII-eRHIC_2-15-03.pdf]. The expertise and experience gained in this effort might also extend forward into a 10-20GeV ERL for the electron-ion collider eRHIC [http://www.agsrhichome.bnl.gov/eRHIC/, Appendix A, The linac-ring option, 2005]. We report here on the use of a technique of differential current measurement to monitor the efficiency of current recovery in the test facility, and investigate the possibility of using such a monitor in the machine

  18. Color superconductivity

    Energy Technology Data Exchange (ETDEWEB)

    Wilczek, F. [Institute for Advanced Study, Princeton, NJ (United States)

    1997-09-22

    The asymptotic freedom of QCD suggests that at high density - where one forms a Fermi surface at very high momenta - weak coupling methods apply. These methods suggest that chiral symmetry is restored and that an instability toward color triplet condensation (color superconductivity) sets in. Here I attempt, using variational methods, to estimate these effects more precisely. Highlights include demonstration of a negative pressure in the uniform density chiral broken phase for any non-zero condensation, which we take as evidence for the philosophy of the MIT bag model; and demonstration that the color gap is substantial - several tens of MeV - even at modest densities. Since the superconductivity is in a pseudoscalar channel, parity is spontaneously broken.

  19. The CEBAF [Continuous Electron Beam Accelerator Facility] superconducting accelerator: An overview

    International Nuclear Information System (INIS)

    Leemann, C.W.

    1986-01-01

    The CEBAF accelerator is a CW linac based on rf superconductivity and making use of multiple recirculation. Its major components are a 50 MeV injector, two linac segments of 0.5 GeV energy gain each, and recirculator arcs connecting the two linac segments. Each linac segment consists of 25 cryomodules, separated by warm sections with quadrupoles, steering magnets, and beam diagnostics. Each cryomodule contains 8, 1500 MHz, 5-cell, Cornell type cavities with waveguide couplers for fundamental power and HOM damping, each cavity being powered by its own klystron. Recirculator arcs are vertically stacked, large radius, strong focusing beam lines that minimize synchrotron radiation effects. A high quality (ΔE/E ∼ 10 -4 , ε ∼ 10 -9 m) beam of 200μA, 100% duty factor, with 0.5 GeV ≤ E ≤ 4.0 GeV will be generated

  20. An Electron Bunch Compression Scheme for a Superconducting Radio Frequency Linear Accelerator Driven Light Source

    Energy Technology Data Exchange (ETDEWEB)

    C. Tennant, S.V. Benson, D. Douglas, P. Evtushenko, R.A. Legg

    2011-09-01

    We describe an electron bunch compression scheme suitable for use in a light source driven by a superconducting radio frequency (SRF) linac. The key feature is the use of a recirculating linac to perform the initial bunch compression. Phasing of the second pass beam through the linac is chosen to de-chirp the electron bunch prior to acceleration to the final energy in an SRF linac ('afterburner'). The final bunch compression is then done at maximum energy. This scheme has the potential to circumvent some of the most technically challenging aspects of current longitudinal matches; namely transporting a fully compressed, high peak current electron bunch through an extended SRF environment, the need for a RF harmonic linearizer and the need for a laser heater. Additional benefits include a substantial savings in capital and operational costs by efficiently using the available SRF gradient.

  1. Operational experience with the CERN hadron linacs

    International Nuclear Information System (INIS)

    Charmot, H.; Dutriat, C.; Hill, C.E.; Langbein, K.; Lombardi, A.M.; O'Neil, M.; Tanke, E.; Vretenar, M.

    1996-01-01

    The present CERN proton linac (Linac2) was commissioned in 1978 and since that date has been the primary source of protons to the CERN accelerator complex. During the past 18 years, the machine has had a very good reliability record in spite of the demands made upon it. Modifications have been made with the view of maintaining this reliability with reduced resources and new requirements from the users. Further demands will be made in the future for LHC operation. In 1994, a new linac for heavy ion production was put into service replacing the original CERN proton linac. As this machine was built within an international collaboration, operation had to take into account the novelty of the techniques used and the variety of equipment supplied by outside collaborators. Even so, the new machine has also had very good reliability. (author)

  2. System engineering in the SSC Linac

    International Nuclear Information System (INIS)

    Tooker, J.F.; Chang, C.R.; Cutler, R.I.; Funk, L.W.; Guy, F.W.; Hale, R.; Leifeste, G.T.; Nonte, J.; Prichard, B.; Raparia, D.; Saadatmand, K.; Sethi, R.C.; Yao, C.G.

    1992-01-01

    The design and construction of the SSC Linac involves various departments within the SSCL and many outside vendors. The adaptive incorporation of system engineering principles into the SSC Linac is described. This involves the development of specification trees with the breakdown and flow of functional and physical requirements from the top level system specifications to the lower level component specifications. Interfaces are defined, which specify and control the interconnections between the various components. Review cycles are presented during which the requirements, evolution of the design, and test plans are reviewed, monitored, and finalized. The Linac specification tree, interface definition, and reviews of the Linac are presented, including typical examples. (Author) 2 refs., 3 tabs

  3. A linac for the Spallation Neutron Source

    International Nuclear Information System (INIS)

    Jason, A.J.

    1998-01-01

    The Spallation Neutron Source Project (SNS), to be constructed at Oak Ridge National Laboratory, accelerates H - ions to an energy of 1.0 GeV with an average current of 1-mA for injection into an accumulator ring that produces the short intense burst of protons needed for the spallation-neutron source. The linac will be the most intense source of H - ions and as such requires advanced design techniques to meet project technical goals. In particular, low beam loss is stressed for the chopped beam placing strong requirements on the beam dynamics and linac construction. Additionally, the linac is to be upgraded to the 2- and 4-MW beam-power levels with no increase in duty factor. The author gives an overview of the linac design parameters and design choices made

  4. The invention that is shaping Linac4

    CERN Multimedia

    CERN Bulletin

    2010-01-01

    Accelerator experts are no strangers to innovative optimizations of existing techniques and to the development of novel solutions. Sometimes, they even come up with ideas that have the potential to revolutionize the field. This is the case with the Tolerance Aligned Cantilever Mounting (TACM) system, a completely new way of supporting the drift tubes, one of the core elements of linear accelerators. The new, patent-pending technique will be implemented at Linac4.   Drift tubes in a prototype for Linac4, assembled using the new TACM technology. “Assemble and adjust” – that was the technique used to build drift-tube linacs before the arrival of the TACM. Now, the inventors’ motto has become ‘adjust and assemble’. The inversion of these two words represents a real revolution for people working in the field. “The drift tubes are a critical element of Linac4 and they have to satisfy several requirements: they have to be mechanically ...

  5. Applications for the RFD linac structure

    Science.gov (United States)

    Swenson, Donald A.

    2001-07-01

    With the successful completion and operation of the "Proof-of-Principle" prototype of the Rf Focused Drift tube (RFD) linac structure, our attention has now turned to the identification of the first applications for this new compact and economical linac structure. The principal medical applications are for the production of short-lived radioisotopes for the positron emission tomography (PET and SPECT) application, epithermal neutron beams for the boron neutron capture therapy (BNCT) application, and nanoamperes of energetic (250 MeV) protons for proton therapy. The structure can be configured as a compact injector linac for proton synchrotrons. The structure can be configured as a pulsed cold neutron source to support cold neutron physics and its applications. The principal industrial applications include nondestructive testing (NDT), thermal neutron radiography (TNR), thermal neutron analysis (TNA), and pulsed fast neutron analysis (PFNA). Brief descriptions of these RFD-linac-based systems will be presented.

  6. Status of the first batch of niobium resonator production for the New Delhi booster linac

    International Nuclear Information System (INIS)

    Potukuchi, P. N.

    1999-01-01

    This paper reports the status and details of the costs of construction of niobium superconducting resonant cavities for a linear accelerator, presently being built as a booster for the 15 UD tandem Pelletron accelerator at the Nuclear Science Centre, New Delhi. The linear accelerator will have three cryostat modules, each holding eight quarter-wave resonators. Construction of a batch of ten resonators for the linac started at Argonne National Laboratory in May 1997. For production, all fabrication and all electron beam welding is being done through commercial vendors. Details of construction and present status of the project are presented

  7. Status of RF superconductivity at Argonne

    International Nuclear Information System (INIS)

    Shepard, K.W.

    1989-01-01

    Development of a superconducting (SC) slow-wave structures began at Argonne National Laboratory (ANL) in 1971, and led to the first SC heavy-ion linac (ATLAS - the Argonne Tandem-Linac Accelerating System), which began regularly scheduled operation in 1978. To date, more than 40,000 hours of bean-on target operating time has been accumulated with ATLAS. The Physics Division at ANL has continued to develop SC RF technology for accelerating heavy-ions, with the result that the SC linac has, up to the present, has been in an almost continuous process of upgrade and expansion. It should be noted that this has been accomplished while at the same time maintaining a vigorous operating schedule in support of the nuclear and atomic physics research programs of the division. In 1987, the Engineering Physics Division at ANL began development of SC RF components for the acceleration of high-brightness proton and deuterium beams. This work has included the evaluation of RF properties of high-T c oxide superconductors, both for the above and for other applications. The two divisions collaborated while they worked on several applications of RF SC, and also worked to develop the technology generally. 11 refs., 6 figs

  8. Status of RF superconductivity at Argonne

    Energy Technology Data Exchange (ETDEWEB)

    Shepard, K.W.

    1989-01-01

    Development of a superconducting (SC) slow-wave structures began at Argonne National Laboratory (ANL) in 1971, and led to the first SC heavy-ion linac (ATLAS - the Argonne Tandem-Linac Accelerating System), which began regularly scheduled operation in 1978. To date, more than 40,000 hours of bean-on target operating time has been accumulated with ATLAS. The Physics Division at ANL has continued to develop SC RF technology for accelerating heavy-ions, with the result that the SC linac has, up to the present, has been in an almost continuous process of upgrade and expansion. It should be noted that this has been accomplished while at the same time maintaining a vigorous operating schedule in support of the nuclear and atomic physics research programs of the division. In 1987, the Engineering Physics Division at ANL began development of SC RF components for the acceleration of high-brightness proton and deuterium beams. This work has included the evaluation of RF properties of high-{Tc} oxide superconductors, both for the above and for other applications. The two divisions collaborated while they worked on several applications of RF SC, and also worked to develop the technology generally. 11 refs., 6 figs.

  9. Anu Juurak : Must kast, tsoonid, totaalne ruum = Black box, zones, total space / Reet Varblane

    Index Scriptorium Estoniae

    Varblane, Reet, 1952-

    2007-01-01

    Anu Juuraku looming on jagunenud aastate lõikes selgesti eristatavateks perioodideks: 1988-89 värviline graafika, 1996-2000 installatsioonid ja 2000-ndate algusest tantsufilmid. Ta ei ole muutnud mitte ainult oma kujundikeelt vaid hüpanud ühest meediumist teise, vahetanud eneseväljenduse valdkondi ja nendega kaasnevaid kontekstuaalseid tähendusi. Need kunsti erinevad vormid on oma aja täpsed ja selged metafoorid. Oma tähenduslikke nägemuspilte vaatajani tuues, paneb kunstnik publiku uskuma, et ka temani on need kujundid ja ruumid jõudnud pigem nägemustena, unenäoliste kaadritena

  10. The trajectory control in the SLC linac

    International Nuclear Information System (INIS)

    Hsu, I.C.; Adolphsen, C.E.; Himel, T.M.; Seeman, J.T.

    1991-05-01

    Due to wake field effects, the trajectories of accelerated beams in the Linac should be well maintained to avoid severe beam breakup. In order to maintain a small emittance at the end of the Linac, the tolerance on the trajectory deviations become tighter when the beam intensities increase. The existing two beam trajectory correction method works well when the theoretical model agrees with the real machine lattice. Unknown energy deviations along the linac as well as wake field effects can cause the real lattice to deviate from the model. This makes the trajectory correction difficult. Several automated procedures have been developed to solve these problems. They are: an automated procedure to frequently steer the whole Linac by dividing the Linac into several small regions; an automated procedure to empirically correct the model to fit the real lattice and eight trajectory correcting feedback loops along the linac and steering through the collimator region with restricted corrector strengths and a restricted number of correctors. 6 refs., 2 figs

  11. The LINAC4 Project at CERN

    CERN Document Server

    Arnaudon, L; Bertone, C; Body, Y; Broere, J; Brunner, O; Buzio, M; Carli, C; Caspers, F; Corso, JP; Coupard, J; Dallocchio, A; Dos Santos, N; Garoby, R; Gerigk, F; Hammouti, L; Hanke, K; Jones, M; Kozsar, I; Lettry, J; Lallement, JB; Lombardi, A; Lopez-Hernandez, LA; Maglioni, C; Mathot, S; Maury, S; Mikulec, B; Nisbet, D; Noels, C; Paoluzzi, M; Puccio, B; Raich, U; Ramberger, S; Rossi, C; Schwerg, N; Scrivens, R; Vandoni, G; Weisz, S; Vollaire, J; Vretenar, M; Zickler, T

    2011-01-01

    As the first step of a long-term programme aiming at an increase in the LHC luminosity, CERN is building a new 160 MeV H¯ linear accelerator, Linac4, to replace the ageing 50 MeV Linac2 as injector to the PS Booster (PSB). Linac4 is an 86-m long normal-conducting linac made of an H¯ source, a Radio Frequency Quadrupole (RFQ), a chopping line and a sequence of three accelerating structures: a Drift-Tube Linac (DTL), a Cell-Coupled DTL (CCDTL) and a Pi-Mode Structure (PIMS). The civil engineering has been recently completed, and construction of the main accelerator components has started with the support of a network of international collaborations. The low-energy section up to 3 MeV including a 3-m long 352 MHz RFQ entirely built at CERN is in the final construction phase and is being installed on a dedicated test stand. The present schedule foresees beam commissioning of the accelerator in the new tunnel in 2013/14; the moment of connection of the new linac to the CERN accelerator chain will depend on the L...

  12. Simulation of large acceptance LINAC for muons

    International Nuclear Information System (INIS)

    Miyadera, H.; Kurennoy, S.; Jason, A.J.

    2010-01-01

    There has been a recent need for muon accelerators not only for future Neutrino Factories and Muon Colliders but also for other applications in industry and medical use. We carried out simulations on a large-acceptance muon linac with a new concept 'mixed buncher/acceleration'. The linac can accept pions/muons from a production target with large acceptance and accelerate muon without any beam cooling which makes the initial section of muon-linac system very compact. The linac has a high impact on Neutrino Factory and Muon Collider (NF/MC) scenario since the 300-m injector section can be replaced by the muon linac of only 10-m length. The current design of the linac consists of the following components: independent 805-MHz cavity structure with 6- or 8-cm-radius aperture window; injection of a broad range of pion/muon energies, 10-100 MeV, and acceleration to 150 - 200 MeV. Further acceleration of the muon beam are relatively easy since the beam is already bunched.

  13. Superconducting RF cavities and magnets for a 4-TeV energy muon collider

    International Nuclear Information System (INIS)

    Shu, Q.S.; Green, M.; Neuffer, D.; Summers, D.; Simrock, S.; Willen, E.

    1997-01-01

    The accelerators must take the muon beams from ∼ 100 MeV to 2 TeV energies within the muon lifetime for a 4 TeV energy muon collider. These constraints plus the muon decay heating seriously challenge the designs of the superconducting RF (SRF) cavities and magnets in the accelerators and collider ring. The multiple superconducting recirculation linac and the very rap8id-cycling superconducting synchrotron approach are both studied. The authors briefly introduce the technical considerations and preliminary designs of the SRF systems and magnets

  14. ECR plasma cleaning for superconducting cavities

    Energy Technology Data Exchange (ETDEWEB)

    Takeuchi, Suehiro [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2000-02-01

    A superconducting linac has been operating well as a heavy ion energy booster of the tandem accelerator at JAERI since 1994. Forty superconducting quarter wave resonators are used in the linac. They have high performances in average. Some of them are, however, suffering from 'Q-disease' that has been caused by hydrogen absorption into niobium during electro-polishing and the precipitation of niobium-hydrides on the surface at the vicinity of about 120K during precooling. A method of electron cyclotron resonance (ECR) plasma cleaning was applied to spare resonator in order to investigate if it is useful as a curing method of Q-disease. ECR plasma was excited in the resonator by 2.45 GHz microwave in a magnetic field of about 87.5 mT. In the first preliminary experiments, hydrogen, helium, water and oxigen gases were investigated. Every case was done at a pressure of about 3x10{sup -3} Pa. The results show that apparent recovery from Q-disease was found with helium and oxigen gases. (author)

  15. CERN Developments for 704 MHz Superconducting Cavities

    CERN Document Server

    Capatina, O; Aviles Santillana, I; Arnau Izquierdo, G; Bonomi, R; Calatroni, S; Chambrillon, J; Gerigk, F; Garoby, R; Guinchard, M; Junginger, T; Malabaila, M; Marques Antunes Ferreira, L; Mikulas, S; Parma, V; Pillon, F; Renaglia, T; Schirm, K; Tardy, T; Therasse, M; Vacca, A; Valverde Alonso, N; Vande Craen, A

    2013-01-01

    The Superconducting Proton Linac (SPL) is an R&D effort coordinated by CERN in partnership with other international laboratories. It is aiming at developing key technologies for the construction of a multi-megawatt proton linac based on state-of-the-art RF superconducting technology, which would serve as a driver in new physics facilities for neutrinos and/or Radioactive Ion Beam (RIB). Amongst the main objectives of this R&D effort, is the development of 704 MHz bulk niobium beta=1 elliptical cavities, operating at 2 K with a maximum accelerating gradient of 25 MV/m, and the testing of a string of cavities integrated in a machine-type cryomodule. The cavity together with its helium tank had to be carefully designed in coherence with the innovative design of the cryomodule. New fabrication methods have also been explored. Five such niobium cavities and two copper cavities are in fabrication. The key design aspects are discussed, the results of the alternative fabrication methods presented and the stat...

  16. Modern aspects of superconductivity theory of superconductivity

    CERN Document Server

    Kruchinin, Sergei; Aono, Shigeyuki

    2011-01-01

    Superconductivity remains one of the most interesting research areas in physics and stood as a major scientific mystery for a large part of this century. This book, written for graduate students and researchers in the field of superconductivity, discusses important aspects of the experiment and theory surrounding superconductivity. New experimental investigations of magnetic and thermodynamic superconducting properties of mesoscopic samples are explored with the help of recent developments in nanotechnologies and measurement techniques, and the results are predicted based upon theoretical mode

  17. Superconducting plasmas

    International Nuclear Information System (INIS)

    Ohnuma, Toshiro; Ohno, J.

    1994-01-01

    Superconducting (SC) plasmas are proposed and investigated. The SC plasmas are not yet familiar and have not yet been studied. However, the existence and the importance of SC plasmas are stressed in this report. The existence of SC plasmas are found as follows. There is a fundamental property of Meissner effect in superconductors, which shows a repulsive effect of magnetic fields. Even in that case, in a microscopic view, there is a region of magnetic penetration. The penetration length λ is well-known as London's penetration depth, which is expressed as δ = (m s /μ 0 n s q s 2 ) 1/2 where m s , n s , q s and μ o show the mass, the density, the charge of SC electron and the permeability in free space, respectively. Because this expression is very simple, no one had tried it into more simple and meaningful form. Recently, one of the authors (T.O.) has found that the length can be expressed into more simple and understandable fundamental form as λ = c/ω ps where c = (ε 0 μ 0 ) -1/2 and ω ps = (n s q s 2 /m s ε 0 ) 1/2 are the light velocity and the superconducting plasma frequency. From this simple expression, the penetration depth of the magnetic field to SC is found as a SC plasma skin depth, that is, the fundamental property of SC can be expressed by the SC plasmas. This discovery indicates an importance of the studies of superconducting plasmas. From these points, several properties (propagating modes et al) of SC plasmas, which consist of SC electrons, normal electrons and lattice ions, are investigated in this report. Observations of SC plasma frequency is also reported with a use of Terahertz electromagnet-optical waves

  18. Perspectives of development of linac-driver for the ITEP neutron generator

    International Nuclear Information System (INIS)

    Kozodaev, A.M.; Vengrov, R.M.; Drozdovskij, A.A.; Kolomiets, A.A.; Orlov, Yu.G.; Raskopin, A.M.; Skachkov, V.S.; Shvedov, O.V.

    1999-01-01

    The perspectives of developing the experimental accelerator-driven neutron generator being made in ITEP are discussed. The ITEP ADS neutron generator consists of the target-blanket assembly and the linear proton accelerator Istra-36. It is projected to introduce superconducting sections in the composition of the neutron generator linac-driven. The application of superconducting resonators allows to increase the particle energy up to 53 MeV at the average beam current 500 μA. The variants of raising the average current up to 5 mA by increasing the HF-system power are considered. The application of magnetohard materials permits to decrease the cost of the bend magnet and its dimensions. To improve the radiation situation it is proposed to use the graphite absorbers of particles [ru

  19. Higher-order-mode (HOM) power in elliptical superconducting cavities for intense pulsed proton accelerators

    CERN Document Server

    Sang Ho Kim; Dong O Jeon; Sundeli, R

    2002-01-01

    In linacs for intense pulsed proton accelerators, the beam has a multiple time-structure, and each beam time-structure generates resonance. When a higher-order mode (HOM) is near these resonance frequencies, the induced voltage could be large and accordingly the resulting HOM power, too. In order to understand the effects of a complex beam time-structure on the mode excitations and the resulting HOM powers in elliptical superconducting cavities, analytic expressions are developed, with which the beam-induced voltage and corresponding power are explored, taking into account the properties of HOM frequency behavior in elliptical superconducting cavities. The results and understandings from this analysis are presented with the beam parameters of the Spallation Neutron Source (SNS) superconducting linac.

  20. Toomas Siitan, Kristel Pappel, Anu Sõõro (Hrsg.). Musikleben des 19. Jahrhunderts im nördlichen Europa = 19th-century musical life in Nothern Europe / Karsten Brüggemann ; tõlkinud Anu Schaper

    Index Scriptorium Estoniae

    Brüggemann, Karsten, 1965-

    2012-01-01

    Arvustus: Toomas Siitan, Kristel Pappel, Anu Sõõro (Hrsg.). Musikleben des 19. Jahrhunderts im nördlichen Europa = 19th-century musical life in Nothern Europe. Hildesheim/Zürich/New York : Georg Olms Verlag, 2010. (Studien und Materialien zur Musikwissenschaft ; 60)

  1. CERN Linac4. The space charge challenge

    Energy Technology Data Exchange (ETDEWEB)

    Hein, Lutz Matthias

    2013-08-06

    In the first phase of the upgrade program of the CERN accelerator complex the proton injector Linac2 will be replaced by a new, normal-conducting H-ion Linac, Linac4, allowing a significant increase of the proton flux intensity along the downstream accelerator complex. In the design of Linac4 three beam transport sections are implemented to match the beam between the different accelerator elements and to model the longitudinal pulse structure. These three beam transport sections, which are the most critical locations in terms of beam quality preservation, are in the focus of this thesis. During the work of this thesis the Low Energy Beam Transport (LEBT), which is required to match the source beam to the radiofrequency quadrupole (RFQ), has been commissioned and its beam dynamics re-constructed. The measurement campaign used to reconstruct the LEBT beam dynamics was performed with the aim to prepare the RFQ commissioning and to maximise the LEBT performance. Downstream of the Linac4 accelerator the beam is transported along a 180 m long transfer line to the Proton Synchrotron Booster (PS-Booster). The transfer line optics was studied, optimised and sections were completely re-designed. The new transfer line optics is characterised by an improved preservation of the beam emittance, higher stability of the optical solution with respect to alignment errors and field jitters of the transfer line magnets and it is matched to each of the PS-Booster injection schemes. In a concluding ''Start-To-End'' simulation based on the measured beam characteristics at the LEBT exit the beam dynamics of the downstream Linac, including the transfer line, was calculated. To minimise particle losses within acceptable emittance preservation the beam optics of the Medium Energy Beam Transport (MEBT) was adapted to the measured beam parameters. This ''Start-To-End'' simulation was performed to identify critical sections of the Linac4 beam dynamics and

  2. Kommunikatsiooniharidus vajab rohkem praktikuid / Anu Vahtra-Hellat, Erki Varma, Aneth Rosen ... [jt.] ; intervjueerinud Kertu Kärk

    Index Scriptorium Estoniae

    2016-01-01

    Eesti kommunikatsioonihariduse vajalikkusest, plussidest ja miinustest üle. Arvati, et kommunikatsiooniharidus võiks muutuda praktilisemaks ja hõlmata teadmisi erinevatest valdkondadest. Vestlusringis kommunikatsioonijuhid Anu Vahtra-Hellat E-riigi Akadeemiast, Erki Varma Tallinna Tehnikaülikoolist, Aneth Rosen Kultuuriministeeriumist, Regina Hansen Erametsakeskusest ja Kaarel Kutti Elektrilevist

  3. Mida kujutab endast IB õppekava? / Toomas Kruusimägi, Anu Parts, Karl Hendrik Thomson ; intervjueerinud Raivo Juurak

    Index Scriptorium Estoniae

    Kruusimägi, Toomas, 1962-

    2010-01-01

    Uuest rahvusvahelisest International Baccalaureate'i (IB) õppekavast ja selle rakendamisest Tallinna Inglise Kolledži 11. klassis alates möödunud aastast räägivad kooli direktor Toomas Kruusimägi, õppedirektor Anu Parts ning õpilane Karl Hendrik Thomson

  4. Mood = isiklik puudutus = loominguline vabadus = isikupärane tarbija / Urmas Väljaots, Anu Lensment ; interv. Reet Varblane

    Index Scriptorium Estoniae

    Väljaots, Urmas, 1981-

    2001-01-01

    7. IV Vene Draamateatris toimuvast moedisainikonkursist "SuperNoova", žürii koosseis (Eestist Anu Samarüütel, Toomas Volkmann). Briti moekunsti näitusest "Fabric of Fashion" Tallinna Kunstihoones. Seosest tekstiili- ja moekunsti vahel Eestis, koostööst Ele Praksiga.

  5. Split ring resonator for the Argonne superconducting heavy ion booster

    Energy Technology Data Exchange (ETDEWEB)

    Shepard, K.W.; Scheibelhut, C.H.; Benaroya, R.; Bollinger, L.M.

    1977-01-01

    A split-ring resonator for use in the ANL superconducting heavy-ion linac was constructed and is being tested. The electromagnetic characteristics of the 98-MHz device are the same as the unit described earlier, but the housing is formed of a new material consisting of niobium sheet explosively bonded to copper. The niobium provides the superconducting path and the copper conducts heat to a small area cooled by liquid helium. This arrangement greatly simplified the cryogenic system. Fabrication of the housing was relatively simple, with the result that costs have been reduced substantially. The mechanical stability of the resonator and the performance of the demountable superconducting joints are significantly better than for the earlier unit.

  6. Split ring resonator for the Argonne superconducting heavy ion booster

    International Nuclear Information System (INIS)

    Shepard, K.W.; Scheibelhut, C.H.; Benaroya, R.; Bollinger, L.M.

    1977-01-01

    A split-ring resonator for use in the ANL superconducting heavy-ion linac was constructed and is being tested. The electromagnetic characteristics of the 98-MHz device are the same as the unit described earlier, but the housing is formed of a new material consisting of niobium sheet explosively bonded to copper. The niobium provides the superconducting path and the copper conducts heat to a small area cooled by liquid helium. This arrangement greatly simplified the cryogenic system. Fabrication of the housing was relatively simple, with the result that costs have been reduced substantially. The mechanical stability of the resonator and the performance of the demountable superconducting joints are significantly better than for the earlier unit

  7. Design and construction of superconducting quadrupole magnets at Karlsruhe

    CERN Document Server

    Arendt, F; Turowski, P

    1977-01-01

    Two types of superconducting quadrupole magnets have been developed: 6 extremely short doublets with a quadrupole length of nearly 11 cm as beam focusing elements in the Karlsruhe superconducting proton linac; 2 quadrupoles of about 1 m length for use in the hyperon experiments at the CERN SPS. The concept for these quadrupoles is a one current block winding per pole, calculated with respect to minimum field errors. Special mechanical and winding techniques have been developed to get the high geometric accuracy required for such air coils. The short doublets must be operated in persistent current mode with a thermal superconducting switch and a required time constant of tau >10 /sup 4/ hours. The hyperon beam quadrupoles must operate reliably for a long time in an inaccessible concrete shielding. (2 refs).

  8. Dispersion and betatron matching into the linac

    International Nuclear Information System (INIS)

    Decker, F.J.; Adolphsen, C.; Corbett, W.J.; Emma, P.; Hsu, I.; Moshammer, H.; Seeman, J.T.; Spence, W.L.

    1991-05-01

    In high energy linear colliders, the low emittance beam from a damping ring has to be preserved all the way to the linac, in the linac and to the interaction point. In particular, the Ring-To-Linac (RTL) section of the SLAC Linear Collider (SLC) should provide an exact betatron and dispersion match from the damping ring to the linac. A beam with a non-zero dispersion shows up immediately as an increased emittance, while with a betatron mismatch the beam filaments in the linac. Experimental tests and tuning procedures have shown that the linearized beta matching algorithms are insufficient if the actual transport line has some unknown errors not included in the model. Also, adjusting quadrupole strengths steers the beam if it is offset in the quadrupole magnets. These and other effects have lead to a lengthy tuning process, which in the end improves the matching, but is not optimal. Different ideas will be discussed which should improve this matching procedure and make it a more reliable, faster and simpler process. 5 refs., 2 figs

  9. Linac beam dynamics calculations for low-current large-emittance beams

    International Nuclear Information System (INIS)

    Swain, G.R.; Butler, H.S.

    1992-01-01

    The beam in PILAC, a superconducting linac for pions proposed at LAUFF, will have a lager momentum spread (7% dp/p) and occupy a larger transverse space (13 cm dia. bore) than is usual in high-beta linacs. To find the effects of this large phase space, a cavity element is being added to the MOTER code. With this addition, pions and other particles may be tracked through the injection line and the PILAC linac. In one option, the particles may be cell by cell through a multicell cavity using formulas. The formulas are derived by integrating the energy gain and transverse impulse from the fields in a cell along the path of the particle. What is new in this analysis is that the transverse momentum is considered to be a significant part of the total momentum. The effect of a difference in velocity from the design velocity of the structure is considered. In another option still under development, field information is specified, and the particles may be tracked by stepwise integration

  10. 100 years of superconductivity

    CERN Document Server

    Rogalla, Horst

    2011-01-01

    Even a hundred years after its discovery, superconductivity continues to bring us new surprises, from superconducting magnets used in MRI to quantum detectors in electronics. 100 Years of Superconductivity presents a comprehensive collection of topics on nearly all the subdisciplines of superconductivity. Tracing the historical developments in superconductivity, the book includes contributions from many pioneers who are responsible for important steps forward in the field.The text first discusses interesting stories of the discovery and gradual progress of theory and experimentation. Emphasizi

  11. Superconducting accelerator technology

    International Nuclear Information System (INIS)

    Grunder, H.A.; Hartline, B.K.

    1986-01-01

    Modern and future accelerators for high energy and nuclear physics rely increasingly on superconducting components to achieve the required magnetic fields and accelerating fields. This paper presents a practical overview of the phenomenon of superconductivity, and describes the design issues and solutions associated with superconducting magnets and superconducting rf acceleration structures. Further development and application of superconducting components promises increased accelerator performance at reduced electric power cost

  12. Energy Recovery Linacs for Commercial Radioisotope Production

    Energy Technology Data Exchange (ETDEWEB)

    Sy, Amy [Jefferson Lab, Newport News, VA; Krafft, Geoffrey A. [Jefferson Lab, Newport News, VA; Johnson, Rolland [Muons, Inc., Batavia, IL; Roberts, Tom; Boulware, Chase; Hollister, Jerry

    2015-09-01

    Photonuclear reactions with bremsstrahlung photon beams from electron linacs can generate radioisotopes of critical interest. An SRF Energy Recovery Linac (ERL) provides a path to a more diverse and reliable domestic supply of short-lived, high-value, high-demand isotopes in a more compact footprint and at a lower cost than those produced by conventional reactor or ion accelerator methods. Use of an ERL enables increased energy efficiency of the complex through energy recovery of the waste electron beam, high electron currents for high production yields, and reduced neutron production and shielding activation at beam dump components. Simulation studies using G4Beamline/GEANT4 and MCNP6 through MuSim, as well as other simulation codes, will design an ERL-based isotope production facility utilizing bremsstrahlung photon beams from an electron linac. Balancing the isotope production parameters versus energy recovery requirements will inform a choice of isotope production target for future experiments.

  13. Induced radioisotopes in a linac treatment hall.

    Science.gov (United States)

    Vega-Carrillo, Héctor René; de Leon-Martinez, Héctor Asael; Rivera-Perez, Esteban; Luis Benites-Rengifo, Jorge; Gallego, Eduardo; Lorente, Alfredo

    2015-08-01

    When linacs operate above 8MV an undesirable neutron field is produced whose spectrum has three main components: the direct spectrum due to those neutrons leaking out from the linac head, the scattered spectrum due to neutrons produced in the head that collides with the nuclei in the head losing energy and the third spectrum due to room-return effect. The third category of spectrum has mainly epithermal and thermal neutrons being constant at any location in the treatment hall. These neutrons induce activation in the linac components, the concrete walls and in the patient body. Here the induced radioisotopes have been identified in concrete samples located in the hall and in one of the wedges. The identification has been carried out using a gamma-ray spectrometer. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Variable-energy drift-tube linacs

    International Nuclear Information System (INIS)

    Swenson, D.A.; Boyd, T.J.; Potter, J.M.; Stovall, J.E.

    1981-01-01

    Practical applications of ion linacs are more viable now than ever before because of the recent development of the radio-frequency quadrupole accelerating structure, as well as other technological advances developed under the Pion Generator for Medical Irradiations program. This report describes a practical technique for varying the energy of drift-tube linacs and thus further broadening the possibilities for linac applications. This technique involves using the post couplers (normally used to flatten and stabilize the electric fields) to create a step in the fields, thus terminating the acceleration process. In the examples given for a 70-MeV accelerator design, when using this technique the energy is continuously variable down to 20 MeV, while maintaining a small energy spread

  15. Stabilization Strategies for Drift Tube Linacs

    CERN Document Server

    AUTHOR|(CDS)2085420; Lamehi Rashti, Mohammad

    The average axial electric fields in drift tube linac cavities are known to be sensitive with respect to the perturbation errors. Postcoupler is a powerful stabilizer devices that is used to reduce this sensitivity of average axial field. Postcouplers are the cylindrical rod which is extended from cavity wall toward the drift tube without touching the drift tube surface. Postcouplers need to be adjusted to the right length to stabilize the average axial field. Although postcouplers are used successfully in many projects, there is no straightforward procedure for postcouplers adjustment and it has been done almost based on trial and errors. In this thesis, the physics and characteristics of postcouplers has been studied by using an equivalent circuit model and 3D finite element method calculations. Finally, a straightforward and accurate method to adjust postcouplers has been concluded. The method has been verified by using experimental measurements on CERN Linac4 drift tube linac cavities.

  16. Electro neutrons around a 12 MV Linac

    International Nuclear Information System (INIS)

    Vega C, H. R.; Perez L, L. H.

    2012-10-01

    Neutron contamination around Linacs for radiotherapy is a source of undesirable doses for the patient. The main source of these neutrons is the photonuclear reactions occurring in the Linac head and the patient body. Electrons also produce neutrons through (e, en) reactions. This reaction is known as electro disintegration and is carried out by the electron scattering that produce a virtual photon that is absorbed by the scattering nucleus producing the reaction e + A → (A-1) + n + e'. In this work the electron-neutron spectrum to 100 cm from the isocenter of a 12 MV Linac has been measured using a passive Bonner spheres spectrometer in a novel procedure named Planetary mode. (Author)

  17. Transverse Matching Techniques for the SNS Linac

    CERN Document Server

    Jeon Dong Oh; Danilov, Viatcheslav V

    2005-01-01

    It is crucial to minimize beam loss and machine activation by obtaining optimal transverse matching for a high-intensity linear accelerator such as the Spallation Neutron Source linac. For matching the Drift Tube Linac (DTL) to Coupled Cavity Linac (CCL), there are four wire-scanners installed in series in CCL module 1 as proposed by the author.* A series of measurements was conducted to minimize envelope breathing and the results are presented here. As an independent approach, Chu et al is developing an application based on another technique by estimating rms emittance using the wire scanner profile data.** For matching the Medium Energy Beam Transport Line to the DTL, a technique of minimizing rms emittance was used and emittance data show that tail is minimized as well.

  18. Magnet design for the splitter/combiner regions of CBETA, the Cornell-Brookhaven Energy-Recovery-Linac Test Accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Crittendon, J. A. [Cornell Lab. for Accelerator-Based Sciences and Education, Ithaca, NY (United States); Burke, D. C. [Cornell Lab. for Accelerator-Based Sciences and Education, Ithaca, NY (United States); Fuentes, Y. L.P. [Cornell Lab. for Accelerator-Based Sciences and Education, Ithaca, NY (United States); Mayes, C. E. [Cornell Lab. for Accelerator-Based Sciences and Education, Ithaca, NY (United States); Smolenski, K. W. [Cornell Lab. for Accelerator-Based Sciences and Education, Ithaca, NY (United States)

    2017-01-06

    The Cornell-Brookhaven Energy-Recovery-Linac Test Accelerator (CBETA) will provide a 150-MeV electron beam using four acceleration and four deceleration passes through the Cornell Main Linac Cryomodule housing six 1.3-GHz superconducting RF cavities. The return path of this 76-m-circumference accelerator will be provided by 106 fixed-field alternating-gradient (FFAG) cells which carry the four beams of 42, 78, 114 and 150 MeV. Here we describe magnet designs for the splitter and combiner regions which serve to match the on-axis linac beam to the off-axis beams in the FFAG cells, providing the path-length adjustment necessary to energy recovery for each of the four beams. The path lengths of the four beamlines in each of the splitter and combiner regions are designed to be adapted to 1-, 2-, 3-, and 4-pass staged operations. Design specifi- cations and modeling for the 24 dipole and 32 quadrupole electromagnets in each region are presented. The CBETA project will serve as the first demonstration of multi-pass energy recovery using superconducting RF cavities with FFAG cell optics for the return loop.

  19. Beam lines from Linac 1 and Linac 2 to the Booster

    CERN Multimedia

    CERN PhotoLab

    1978-01-01

    View against the direction of the beams. Both Linacs are behind the concrete wall at the back of the picture. The 50 MeV proton beam from Linac 1 enters the PS tunnel through the hole at left. The line from Linac 2, in the process of being installed, comes from the hole at right. The lines converge at a switching magnet (prominently in the foreground), which selects which of the 2 beams to send on to the Booster. See also 7802261 and further explanations there.

  20. Linac BPM [Beam Position Monitor] modification program status

    International Nuclear Information System (INIS)

    Smith, S.; Williams, S.

    1990-01-01

    In the fall of 1988 the Beam Position Monitor (BPM) Task Force recommended that linac BPM processors be pulled out of the linac, modified, adjusted for offsets, recalibrated, and reinstalled. As of the end of 1989 this process had been completed on all linac type BPM processors. This paper discusses these modifications and tests

  1. 4-rod RFQ linac for ion implantation

    Energy Technology Data Exchange (ETDEWEB)

    Fujisawa, Hiroshi; Hamamoto, Nariaki; Inouchi, Yutaka [Nisshin Electric Co. Ltd., Kyoto (Japan)

    1997-03-01

    A 34 MHz 4-rod RFQ linac system has been upgraded in both its rf power efficiency and beam intensity. The linac is able to accelerate in cw operation 0.83 mA of a B{sup +} ion beam from 0.03 to 0.91 MeV with transmission of 61 %. The rf power fed to the RFQ is 29 kW. The unloaded Q-value of the RFQ has been improved approximately 61 % to 5400 by copper-plating stainless steel cooling pipes in the RFQ cavity. (author)

  2. Linac design algorithm with symmetric segments

    International Nuclear Information System (INIS)

    Takeda, Harunori; Young, L.M.; Nath, S.; Billen, J.H.; Stovall, J.E.

    1996-01-01

    The cell lengths in linacs of traditional design are typically graded as a function of particle velocity. By making groups of cells and individual cells symmetric in both the CCDTL AND CCL, the cavity design as well as mechanical design and fabrication is simplified without compromising the performance. We have implemented a design algorithm in the PARMILA code in which cells and multi-cavity segments are made symmetric, significantly reducing the number of unique components. Using the symmetric algorithm, a sample linac design was generated and its performance compared with a similar one of conventional design

  3. Preinjector for Linac 1, accelerating column

    CERN Multimedia

    1974-01-01

    For a description of the Linac 1 preinjector, please see first 7403070X. High up on the wall of the Faraday cage (7403073X) is this drum-shaped container of the ion source (7403083X). It is mounted at the HV end of the accelerating column through which the ions (usually protons; many other types of ions in the course of its long history) proceed through the Faraday cage wall to the low-energy end (at ground potential) of Linac 1. The 520 kV accelerating voltage was supplied by a SAMES generator (7403074X).

  4. Raidpere filmib inimesi läbi enda / Mark Raidpere ; intervjueerinud Eva Kübar ; kommenteerinud Anu Aaremäe

    Index Scriptorium Estoniae

    Raidpere, Mark, 1975-

    2009-01-01

    Ars Fennica kunstiauhinna võitnud Mark Raidpere räägib oma videoteoste valmimisest. Lähemalt videotest "Pühendus", "Shifting Focus", "Andrey/Andris", "Work in Progress". Anu Aaremäe kommentaar "Markist ja Markile"

  5. Neutron and photon spectra in LINACs

    International Nuclear Information System (INIS)

    Vega-Carrillo, H.R.; Martínez-Ovalle, S.A.; Lallena, A.M.; Mercado, G.A.; Benites-Rengifo, J.L.

    2012-01-01

    A Monte Carlo calculation, using the MCNPX code, was carried out in order to estimate the photon and neutron spectra in two locations of two linacs operating at 15 and 18 MV. Detailed models of both linac heads were used in the calculations. Spectra were estimated below the flattening filter and at the isocenter. Neutron spectra show two components due to evaporation and knock-on neutrons. Lethargy spectra under the filter were compared to the spectra calculated from the function quoted by Tosi et al. that describes reasonably well neutron spectra beyond 1 MeV, though tends to underestimate the energy region between 10 –6 and 1 MeV. Neutron and the Bremsstrahlung spectra show the same features regardless of the linac voltage. - Highlights: ► With MCNPX code realistic models of two LINACs were built. ► Photon and neutron spectra below the flattening filter and at the isocenter were calculated. ► Neutron spectrum at the flattening filter was compared against the Tosi et al. source-term model. ► Tosi et al. model underestimates the neutron contribution below 1 MeV. ► Photon spectra look alike to those published in literature.

  6. Linac based radiosurgery and stereotactic radiotherapy

    International Nuclear Information System (INIS)

    Mackie, T.R.

    2008-01-01

    The following topics were discussed: Definition of stereotactic radiosurgery (SRS) and stereotactic radiotherapy (SRT); Stereo market; Indications for SRS/SRT; History of linac-based SRS/SRT; Variety of systems; QA for SRS; Localization; and Imaging. (P.A.)

  7. First beam in Linac4 DTL

    CERN Multimedia

    Katarina Anthony

    2014-01-01

    Following the installation of the Linac4 Drift Tube Linac (DTL) earlier this summer (see here), the first DTL tank saw beams at 12 MeV on 5 August.   Transverse emittance measured at 12 MeV after the DTL tank1 using a temporary slit-and-grid emittance device. You never forget your first beam. That was especially true for the Linac4 DTL team, as it followed years of design, construction and vigorous testing. "We performed countless measurements of the geometry, vacuum and magnet polarisation of the DTL tanks while we were in the workshop," says Suitbert Ramberger, project engineer for the Linac4 DTL. "Add that preparation to the excellent RF conditioning that we carried out in the weeks before the beam tests and I was confident that the acceleration with beam would fully meet expectations!" Indeed it did. Beam commissioning tests ran until 21 August and found the DTL operating with nominal transmission. This successful run has confirmed the innovative design ...

  8. Preinjector for Linac 1, ion source

    CERN Multimedia

    1974-01-01

    For a description of the Linac 1 preinjector, please see first 7403070X. Inside the drum-shaped container shown in 7403081X, is the ion source with its associated electronics. It sits at the HV end of the accelerating column seen also in 7403081.

  9. High-field strong-focusing undulator designs for X-ray Linac Coherent Light Source (LCLS) applications

    International Nuclear Information System (INIS)

    Caspi, S.; Schlueter, R.; Tatchyn, R.

    1995-01-01

    Linac-driven X-Ray Free Electron Lasers (e.g., Linac Coherent Light Sources (LCLSs)), operating on the principle of single-pass saturation in the Self-Amplified Spontaneous Emission (SASE) regime typically require multi-GeV beam energies and undulator lengths in excess of tens of meters to attain sufficient gain in the 1 angstrom--0.1 angstrom range. In this parameter regime, the undulator structure must provide: (1) field amplitudes B 0 in excess of 1T within periods of 4cm or less, (2) peak on-axis focusing gradients on the order of 30T/m, and (3) field quality in the 0.1%--0.3% range. In this paper the authors report on designs under consideration for a 4.5--1.5 angstrom LCLS based on superconducting (SC), hybrid/PM, and pulsed-Cu technologies

  10. Statistical simulations of machine errors for LINAC4

    CERN Document Server

    Baylac, M.; Froidefond, E.; Sargsyan, E.

    2006-01-01

    LINAC 4 is a normal conducting H- linac proposed at CERN to provide a higher proton flux to the CERN accelerator chain. It should replace the existing LINAC 2 as injector to the Proton Synchrotron Booster and can also operate in the future as the front end of the SPL, a 3.5 GeV Superconductingg Proton Linac. LINAC 4 consists of a Radio-Frequency Quadrupole, a chopper line, a Drift Tube Linac (DTL) and a Cell Coupled DTL all operating at 352 MHz and finally a Side Coupled Linac at 704 MHz. Beam dynamics was studied and optimized performing end-to-end simulations. This paper presents statistical simulations of machine errors which were performed in order to validate the proposed design.

  11. Commissioning and operating experience with the LISA superconducting accelerator

    International Nuclear Information System (INIS)

    Castellano, M.; Ferrario, M.; Minestrini, M.; Patteri, P.; Tazzioli, F.; Kulinski, S.

    1996-06-01

    The commissioning of the LISA superconducting (SC) RF electron linac at INFN Frascati Laboratories has been concluded although, due to a change in program priorities, the full possibilities of the machine have not been exploited. In this report the authors illustrate the results achieved so far and the difficulties encountered in commissioning, with the hope that this material might be some of help to those who intend to start the enterprise of building a SC linac in a non specialized environment. The part concerning the SC system is particularly stressed, but a relevant attention is also devoted to the traditional room temperature injector, the proper setting of which is fundamental to achieving the high beam quality that such a machine allows

  12. HOM Coupler Optimisation for the Superconducting RF Cavities in ESS

    CERN Document Server

    Ainsworth, R; Calaga, R

    2012-01-01

    The European Spallation Source (ESS) will be the world’s most powerful next generation neutron source. It consists of a linear accelerator, target, and instruments for neutron experiments. The linac is designed to accelerate protons to a final energy of 2.5 GeV, with an average design beam power of 5 MW, for collision with a target used to produce a high neutron flux. A section of the linac will contain Superconducting RF (SCRF) cavities designed at 704 MHz. Beam induced HOMs in these cavities may drive the beam unstable and increase the cryogenic load, therefore HOM couplers are installed to provide sufficient damping. Previous studies have shown that these couplers are susceptible to multipacting, a resonant process which can absorb RF power and lead to heating effects. This paper will show how a coupler suffering from multipacting has been redesigned to limit this effect. Optimisation of the RF damping is also discussed.

  13. WORKSHOPS: Radiofrequency superconductivity

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    In the continual push towards higher energy particle beams, superconducting radiofrequency techniques now play a vital role, highlighted in the fifth workshop on radiofrequency superconductivity, held at DESY from 19 - 24 August 1991

  14. Study on RFQ linacs for heavy ions

    International Nuclear Information System (INIS)

    Ueda, Nozomu.

    1990-11-01

    Study on a prototype linac 'LITL', the first Radiofrequency Quadrupole (RFQ) linac that accelerated heavy ions in the world, 1.4 m in length and 0.6 m in diameter has revealed: a vane mounting method using 'base plugs' is effective to align the large vanes within a precision of 100 μm: a circle approximation of the ideal vane shape can give a satisfactory rf field distribution in the beam aperture and can yield a high surface field strength exceeding 21 kV/mm. A long RFQ linac 'TALL', 7.3 m in length, has been realized by 'vane separation' method. The cavity has been fabricated by joining four sections which had been assembled independently. The vanes are separated at the joints with gaps between them, which to tolerate machining errors and unequal thermal expansion. This method enables the precise alignment of the vane for a long RFQ. It does not decrease the sparking limit and does not increase beam loss. By devising end inductive tuners, sufficient mode separation was obtained. By compensating the capacitance errors owing to the vane misalignment with side inductive tuners, azimuthal and longitudinal field uniformities of ±1.5 % and ±5 %, respectively have been obtained. The frequency can be controlled without destroying the field uniformity. The cavity is excited stably by a simple loop coupler for a peak rf power up to 240 kW. Beam tests show the output beam characteristics which have been predicted by computer simulations are realized. Through the construction and performance studies of the two linacs, a type of the RFQ linac for heavy ions has been established. (author)

  15. Resonant excitation of high order modes in the 3.9 GHz cavity of the Linac Coherent Light Source

    Directory of Open Access Journals (Sweden)

    A. Lunin

    2018-02-01

    Full Text Available Construction of the Linac Coherent Light Source II (LCLS-II is underway for the world’s first hard x-ray free-electron laser. A central part of the LCLS-II project is a 4 GeV superconducting radio frequency electron linac that will operate in the continuous wave (cw mode. The linac is segmented into four sections named as L0, L1, L2, and L3. Two 3.9 GHz cryomodules, each housing of eight third-harmonic cavities similar to the cavities developed for the European X-ray Free Electron Laser (XFEL, will be used in section L1 of the linac for linearizing the longitudinal beam profile. In this paper, we present a study of trapped high order modes (HOMs excited by a cw electron beam in the third-harmonic cavities of the LCLS-II linac. A detailed comparison of the original XFEL design and the LCLS-II design with a modified end group is performed in order to estimate the effect of a reduced beam pipe aperture on the efficiency of HOM damping. Furthermore, we apply a statistical analysis of the eigenmode spectrum for the estimation of the probability of resonant HOM losses and influence of HOMs on beam dynamics.

  16. Simple Superconducting "Permanent" Electromagnet

    Science.gov (United States)

    Israelson, Ulf E.; Strayer, Donald M.

    1992-01-01

    Proposed short tube of high-temperature-superconducting material like YBa2Cu3O7 acts as strong electromagnet that flows as long as magnetic field remains below critical value and temperature of cylinder maintained sufficiently below superconducting-transition temperature. Design exploits maximally anisotropy of high-temperature-superconducting material.

  17. Superconducting material development

    Science.gov (United States)

    1987-09-01

    A superconducting compound was developed that showed a transition to a zero-resistance state at 65 C, or 338 K. The superconducting material, which is an oxide based on strontium, barium, yttrium, and copper, continued in the zero-resistance state similar to superconductivity for 10 days at room temperature in the air. It was also noted that measurements of the material allowed it to observe a nonlinear characteristic curve between current and voltage at 65 C, which is another indication of superconductivity. The research results of the laboratory experiment with the superconducting material will be published in the August edition of the Japanese Journal of Applied Physics.

  18. Superconductivity in Medicine

    Science.gov (United States)

    Alonso, Jose R.; Antaya, Timothy A.

    2012-01-01

    Superconductivity is playing an increasingly important role in advanced medical technologies. Compact superconducting cyclotrons are emerging as powerful tools for external beam therapy with protons and carbon ions, and offer advantages of cost and size reduction in isotope production as well. Superconducting magnets in isocentric gantries reduce their size and weight to practical proportions. In diagnostic imaging, superconducting magnets have been crucial for the successful clinical implementation of magnetic resonance imaging. This article introduces each of those areas and describes the role which superconductivity is playing in them.

  19. Superconductivity in transition metals.

    Science.gov (United States)

    Slocombe, Daniel R; Kuznetsov, Vladimir L; Grochala, Wojciech; Williams, Robert J P; Edwards, Peter P

    2015-03-13

    A qualitative account of the occurrence and magnitude of superconductivity in the transition metals is presented, with a primary emphasis on elements of the first row. Correlations of the important parameters of the Bardeen-Cooper-Schrieffer theory of superconductivity are highlighted with respect to the number of d-shell electrons per atom of the transition elements. The relation between the systematics of superconductivity in the transition metals and the periodic table high-lights the importance of short-range or chemical bonding on the remarkable natural phenomenon of superconductivity in the chemical elements. A relationship between superconductivity and lattice instability appears naturally as a balance and competition between localized covalent bonding and so-called broken covalency, which favours d-electron delocalization and superconductivity. In this manner, the systematics of superconductivity and various other physical properties of the transition elements are related and unified. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  20. NIJI-III superconducting compact light source facility

    International Nuclear Information System (INIS)

    Emura, Katsuji; Haga, Tsuyoshi; Shinzato, Tsuyoshi; Takada, Hiroshi

    1995-01-01

    Sumitomo Electric Industries established a synchrotron radiation (SR) facility named 'Harima Research Laboratories' in 1993. The facility is located in Harima Science Garden City where the large SR facility 'Spring-8' is being under construction. Main purpose of our laboratory is to develop the advanced technologies on SR application, particularly for micro-fabrication, photochemistry and x-ray tomography. In the facility, a 600 MeV superconducting compact SR ring 'NIJI-III', a 100 MeV compact linac and five beamlines have been installed. Nowadays, NIJI-III usually provides SR light to users for 16 hours in a day. (author)

  1. Induction linacs for heavy ion fusion research

    Energy Technology Data Exchange (ETDEWEB)

    Fessenden, T.J.

    1984-05-01

    The new features of employing an induction linac as a driver for inertial fusion involve (1) transport of high-current low-emittance heavy ion beams, (2) multiple independently-focussed beams threading the same accelerator structure, and (3) synthesis of voltage waveforms to accomplish beam current amplification. A research program is underway at LBL to develop accelerators that test all these features with the final goal of producing an ion beam capable of heating matter to approx. 70 eV. This paper presents a discussion of some properties of induction linacs and how they may be used for HIF research. Physics designs of the High Temperature Experiment (HTE) and the Multiple Beam Experiment (MBE) accelerators are presented along with initial concepts of the MBE induction units.

  2. Re-circulating linac vacuum system

    International Nuclear Information System (INIS)

    Wells, Russell P.; Corlett, John N.; Zholents, Alexander A.

    2003-01-01

    The vacuum system for a proposed 2.5 GeV, 10ΜA recirculating linac synchrotron light source [1] is readily achievable with conventional vacuum hardware and established fabrication processes. Some of the difficult technical challenges associated with synchrotron light source storage rings are sidestepped by the relatively low beam current and short beam lifetime requirements of a re-circulating linac. This minimal lifetime requirement leads directly to relatively high limits on the background gas pressure through much of the facility. The 10ΜA average beam current produces very little synchrotron radiation induced gas desorption and thus the need for an ante-chamber in the vacuum chamber is eliminated. In the arc bend magnets, and the insertion devices, the vacuum chamber dimensions can be selected to balance the coherent synchrotron radiation and resistive wall wakefield effects, while maintaining the modest limits on the gas pressure and minimal outgassing

  3. Low-energy linac structure for PIGMI

    International Nuclear Information System (INIS)

    Swenson, D.A.; Stovall, J.E.

    1977-01-01

    The higher radio frequency (450 MHz) and lower injection energy (250 keV) of the PIGMI (Pion Generator for Medical Irradiations) linac design seriously compound the problem of beam containment in the first few meters of the structure. The conventional quadrupole-focused, drift-tube linac represents the best solution for beam energies above 8 MeV, but because of the small space available for quadrupoles in the PIGMI designs, cannot provide the required focusing at lower energies. A satisfactory solution to this focusing problem has been found based on pure alternating phase focusing for the first few MeV, followed by a smooth transition to a pure permanent magnet quadrupole-focused structure at 8 MeV. The structure and its calculated performance are described

  4. Challenges of Linac Driven Light Sources

    CERN Document Server

    Bocchetta, C J

    2004-01-01

    The use of linacs allows novel light sources to be conceived by not being limited by equilibrium dynamics or IBS effects. These new sources can be single pass or recirculated (with or without energy recovery) or linac augmented storage rings. They allow tuneable polarised radiation of unprecedented brilliance, short pulse lengths that may reach the atto-second scale and full coherence. Both SC and NC machines are being proposed, designed and constructed. Photon output characteristics range from incoherent synchrotron radiation to SASE to seeded HGHG. The proposed beams can be low to high average current and pulse time structures range from CW to highly variable with mutual exclusion amongst different forms of operation. The multiple challenges of these machines reside not only in the requirement of beams of extremely high quality (energy, emittance, energy-spread and temporal stability) for the brightest, shortest wavelength sources but also in the demanding technologies and control of beam-machine interactio...

  5. Cryogenic safety of the superconducting ALPI accelerator at INFN-LNL

    CERN Multimedia

    CERN. Geneva

    2016-01-01

    The superconducting linac ALPI at INFN-LNL is composed of 20 identical cryostats housing, at a group of four (or two), 74 superconducting QWR type cavities: 58 resonators are made of copper with Nb sputtered on the internal surface and 16 are made of Nb bulk. In each cryostat is installed a 100 liter volume LHe reservoir feeding by gravity the QWR’s. The thermal shield around is cooled by GHe at 6 bar abs at 60-80 K. The linac ALPI is a post-accelerator which can receive heavy ions from either the 16 MV Tandem Van de Graaf or from the superconducting injector PIAVE. The latter is composed by an ECR source, two superconducting RFQ, and two cryostats each containg four superconducting bulk Nb QWR. The ALPI cryostats are cooled by a Helium refrigerator whose refrigerator capacity is 1200 W at 4.5 K and 3900 W additional at 60-80 K. PIAVE cryostats are cooled by a separate TCF50 helium refrigerator. The complex ALPI-PIAVE is installed in a semi-open removable concrete tunnel in the same building where the two h...

  6. Thermal stabilities and optimal operating parameters for the Oak Ridge Spallation Neutron Source superconducting linear accelerator

    International Nuclear Information System (INIS)

    Kim, Sang-Ho; Campisi, Isidoro E.

    2007-01-01

    The baseline Spallation Neutron Source (SNS) accelerator will provide a 1 GeV, 1.4 MW proton beam to a mercury target for the production of neutrons. The main acceleration for the H- beam is provided by 81 superconducting cavities installed in 23 cryomodules operating at 805 MHz. The design of the superconducting linac includes a 2.1 K, 2.5 kW cryogenic plant to maintain the cavities below the helium lambda point for efficient operation at high accelerating gradients. In this paper operating conditions are analyzed rather than the design ones, which still guarantees a high gradient operation without any temperature constraint. From the analysis it appears that the SNS superconducting linac can be operated at temperatures higher than 2.1 K, a fact resulting from both the pulsed nature of the superconducting cavities, the specific configuration of the existing cryogenic plant and the operating frequency. General conditions are also given regarding the operation of pulsed superconducting cavities resonating at different frequencies

  7. Control system in the technological electron linacs

    International Nuclear Information System (INIS)

    Boriskin, V.N.; Akchurin, Yu.I.; Bahmetev, N.N.; Gurin, V.A.

    1999-01-01

    The special system has been developed for linac control.It controls the electron beam current,the energy and the position,protects the accelerating and scanning systems from the damage caused by the beam;blocks the modulator and the klystron amplifier in the case of intolerable operating modes;regulates the phase and power of the HF signals in the injecting system and also regulates the source power currents in the magnetic system

  8. LINAC4 takes a tour of Europe

    CERN Multimedia

    Katarina Anthony

    2011-01-01

    Along the German Autobahnen, a truck carrying 20 tonnes of copper is on its way to Poland. The metal has already made a short tour of Europe, yet the drive across the high-speed highway is only the beginning of its transformation into CERN’s next linear accelerator, LINAC4.   Grzegorz Wrochna (left), director of the Andrzej Soltan Institute for Nuclear Studies (IPJ), and Rolf Heuer (right), CERN DG, sign the framework agreement between the two institutes. By the summer of 2012, the PI-Mode Structures (PIMS) will be constructed and completely installed in the LINAC4 tunnel. The PIMS cavities are the final accelerating structures needed for LINAC4, and have been designed to accelerate protons from 100 to 160MeV. While the first cavity was built entirely at CERN, construction of the remaining cavities has become a larger, multi-national operation. In a 1 million euro framework agreement signed on 11 February by the Director-General, the Andrzej Soltan Institute for Nuclear Studies in Swie...

  9. Preinjector for Linac 1, Faraday cage

    CERN Document Server

    1974-01-01

    The 50 MeV Linac 1 started up in 1958 as injector to the 26 GeV PS, with a 520 kV Cockcroft-Walton generator as its preinjector, housed in a vast Faraday cage, visible here. When the Cockcroft-Walton broke down in 1973, it was replaced by a much smaller SAMES generator, of the kind used for electrostatic separators. From 1980 on, Linac 2 took over as injector for the 800 MeV Booster, and Linac 1 continued as injector for LEAR. In 1984, the electrostatic preinjector (i.e. the Faraday cage with its contents, SAMES generator and all) was replaced by a 520 keV RFQ. At the lower left corner we see the HV connectors to the SAMES generator, at the right edge part of the opened electronics-platform. Jean-Luc Vallet sees to it that all parts are properly grounded. See also 7403073X, 7403074X, 7403081X, 7403083X.

  10. Wake fields in SLAC Linac Collimators

    Energy Technology Data Exchange (ETDEWEB)

    Novokhatski, Alexander [SLAC National Accelerator Laboratory (SLAC), Menlo Park, CA (United States); Stanford Univ., Stanford, CA (United States); Decker, F. -J. [SLAC National Accelerator Laboratory (SLAC), Menlo Park, CA (United States); Stanford Univ., Stanford, CA (United States); Smith, H. [SLAC National Accelerator Laboratory (SLAC), Menlo Park, CA (United States); Stanford Univ., Stanford, CA (United States); Sullivan, M. [SLAC National Accelerator Laboratory (SLAC), Menlo Park, CA (United States); Stanford Univ., Stanford, CA (United States)

    2014-12-02

    When a beam travels near collimator jaws, it gets an energy loss and a transverse kick due to the backreaction of the beam field diffracted from the jaws. The effect becomes very important for an intense short bunch when a tight collimation of the background beam halo is required. In the Linac Coherent Light Source at SLAC a collimation system is used to protect the undulators from radiation due to particles in the beam halo. The halo is most likely formed from gun dark current or dark current in some of the accelerating sections. However, collimators are also responsible for the generation of wake fields. The wake field effect from the collimators not only brings an additional energy jitter and change in the trajectory of the beam, but it also rotates the beam on the phase plane, which consequently leads to a degradation of the performance of the Free Electron Laser at the Linac Coherent Light Source. In this paper, we describe a model of the wake field radiation in the SLAC linac collimators. We use the results of a numerical simulation to illustrate the model. Based on the model, we derive simple formulas for the bunch energy loss and the average kick. In addition, we also present results from experimental measurements that confirm our model.

  11. Status of the Beijing proton linac

    International Nuclear Information System (INIS)

    Zhou, Q.Y.; Pan, H.B.; Wang, S.H.; Zhang, Y.X.; Xiao, L.R.; Luo, Z.H.

    1984-01-01

    The Beijing Proton Linac (BPL) was planned as an injector for Beijing Proton Synchrotron (BPS) which was to be the central facility in a proposed high energy physics experimental center. Design work for BPL was started from Aug. 1978. Contracts with industry were made from 1979. Manufacture and delivery of most major components for the 750 KeV preinjector and the first 10 MeV tank were proceeded according to schedule. In 1980, the ambitious BPS project had to be abandoned because of financial constraints, and a decision was made to utilize the BPL for some medical applications. Thus a BPL conversion project was generated accordingly. Construction of the converted BPL has been in two phases. First, the 750 KeV injector and the 10 MeV linac section were installed and tested. The first 10 MeV beam of 14 mA (without buncher) was produced at the end of 1982. The record current was 120 mA at 0.2% duty in 1984. Second, additions for the 35 MeV linac will be installed and put into operation. This task is scheduled for completion in 1985. (orig.)

  12. Experiments and prospects for induction linac drivers

    International Nuclear Information System (INIS)

    Keefe, D.

    1986-05-01

    In the last three years, the US program in Heavy Ion Fusion has concentrated on understanding the induction linac approach to a power-plant driver. In this method it is important that the beam current be maximized throughout the accelerator. Consequently, it is crucial to understand the space-charge limit in the AG transport system in the linac and, also, to achieve current amplification during acceleration to keep pace with the kinematical increase of this limit with energy. Experimental results on both these matters and also on the use of multiple beams (inside the same accelerating structure) will be described. A new examination of the most attractive properties of the induction linac for a fusion driver has clearly pointed to the advantage of using heavy ions with a charge-state greater than unity - perhaps q = 3 may be an optimum. This development places even greater importance on understanding space-charge limits and mechanisms for emittance growth; also, it will require a new emphasis on the development of a suitable ion source

  13. Preliminary design of a dedicated proton therapy linac

    International Nuclear Information System (INIS)

    Hamm, R.W.; Crandall, K.R.; Potter, J.M.

    1991-01-01

    The preliminary design has been completed for a low current, compact proton linac dedicated to cancer therapy. A 3 GHz side-coupled structure accelerates the beam from a 70 MeV drift tube linac using commercially available S-band rf power systems and accelerating cavities. This significantly reduces the linac cost and allows incremental energies up to 250 MeV. The short beam pulse width and high repetition rate make the linac similar to the high energy electron linacs now used for cancer therapy, yet produce a proton flux sufficient for treatment of large tumors. The high pulse repetition rate permits raster scanning, and the small output beam size and emittance result in a compact isocentric gantry design. Such a linac will reduce the facility and operating costs for a dedicated cancer therapy system

  14. A 2--4 nm Linac Coherent Light Source (LCLS) using the SLAC linac

    International Nuclear Information System (INIS)

    Winick, H.; Bane, K.; Boyce, R.

    1993-05-01

    We describe the use of the SLAC linac to drive a unique, powerful. short wavelength Linac Coherent Light Source (LCLS). Operating as an FEL, lasing would be achieved in a single pass of a high peak current electron beam through a long undulator by self-amplified spontaneous emission (SASE). The main components are a high-brightness rf photocathode electron gun; pulse compressors; about 1/5 of the SLAC linac; and a long undulator with a FODO quadrupole focussing system. Using electrons below 8 GeV, the system would operate at wavelengths down to about 3 nm, producing ≥10 GW peak power in sub-ps pulses. At a 120 Hz rate the average power is ∼ 1 W

  15. Wire scanner data analysis for the SSC Linac emittance measurement

    International Nuclear Information System (INIS)

    Yao, C.Y.; Hurd, J.W.; Sage, J.

    1993-07-01

    The wire scanners are designed in the SSC Linac for measurement of beam emittance at various locations. In order to obtain beam parameters from the scan signal, a data analysis program was developed that considers the problems of noise reduction, machine modeling, parameter fitting, and correction. This program is intended as a tool for Linac commissioning and also as part of the Linac control program. Some of the results from commissioning runs are presented

  16. Fast Ferroelectric L-Band Tuner for Superconducting Cavities

    Energy Technology Data Exchange (ETDEWEB)

    Jay L. Hirshfield

    2012-07-03

    Design, analysis, and low-power tests are described on a ferroelectric tuner concept that could be used for controlling external coupling to RF cavities for the superconducting Energy Recovery Linac (ERL) in the electron cooler of the Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory (BNL). The tuner configuration utilizes several small donut-shaped ferroelectric assemblies, which allow the design to be simpler and more flexible, as compared to previous designs. Design parameters for 704 and 1300 MHz versions of the tuner are given. Simulation results point to efficient performance that could reduce by a factor-of-ten the RF power levels required for driving superconducting cavities in the BNL ERL.

  17. Characterization of Superconducting Cavities for HIE-ISOLDE

    CERN Document Server

    Martinello, Martina

    2013-01-01

    In this report the radiofrequency measurements done for the superconducting cavities developed at CERN for the HIE-ISOLDE project are analyzed. The purpose of this project is improve the energy of the REX-ISOLDE facility by means of a superconducting LINAC. In this way it will be possible to reach higher accelerating gradients, and so higher particle energies (up to 10MeV/u). At this purpose the Niobium thin film technology was preferred to the Niobium bulk technology because of the technical advantages like the higher thermal conductivity of Copper and the higher stiffness of the cavities which are less sentitive to mechanical vibrations. The Niobium coating is being optimized on test prototypes which are qualified by RF measurements at cold.

  18. Fast Ferroelectric L-Band Tuner for Superconducting Cavities

    International Nuclear Information System (INIS)

    Hirshfield, Jay L.

    2012-01-01

    Design, analysis, and low-power tests are described on a ferroelectric tuner concept that could be used for controlling external coupling to RF cavities for the superconducting Energy Recovery Linac (ERL) in the electron cooler of the Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory (BNL). The tuner configuration utilizes several small donut-shaped ferroelectric assemblies, which allow the design to be simpler and more flexible, as compared to previous designs. Design parameters for 704 and 1300 MHz versions of the tuner are given. Simulation results point to efficient performance that could reduce by a factor-of-ten the RF power levels required for driving superconducting cavities in the BNL ERL.

  19. Superconducting resonator used as a beam phase detector

    Directory of Open Access Journals (Sweden)

    S. I. Sharamentov

    2003-05-01

    Full Text Available Beam-bunch arrival time has been measured for the first time by operating superconducting cavities, normally part of the linac accelerator array, in a bunch-detecting mode. The very high Q of the superconducting cavities provides high sensitivity and allows for phase-detecting low-current beams. In detecting mode, the resonator is operated at a very low field level comparable to the field induced by the bunched beam. Because of this, the rf field in the cavity is a superposition of a “pure” (or reference rf and the beam-induced signal. A new method of circular phase rotation (CPR, allowing extraction of the beam phase information from the composite rf field was developed. Arrival time phase determination with CPR is better than 1° (at 48 MHz for a beam current of 100 nA. The electronics design is described and experimental data are presented.

  20. Linac4: the final assembly stage is under way

    CERN Multimedia

    CERN Bulletin

    2013-01-01

    The Linac4 radiofrequency quadrupole (RFQ) module was installed at the accelerator test-stand in Building 152 last August. After an assembly phase and tests that concluded last March with the acceleration of a hydrogen beam to 3 MeV, the module has just been permanently installed in the new Linac4 tunnel (Building 400). The installation of the MEBT (Medium Energy Beam Transport) will begin shortly, followed by the start of the first Linac4 commissioning phase.     To find out more about the Linac4 RFQ module, read the previous Bulletin articles published in Nos. 21-22/2010 and 35-36/2012.

  1. Oxygen ion source and RFQ for Linac 1

    CERN Multimedia

    Photographic Service

    1986-01-01

    As injector to the PS Booster, Linac 1 was replaced by Linac 2 in 1980. It continued to be used for the acceleration of oxygen and sulfur ions. In 1984, its Cockcroft-Walton preinjector was replaced by an RFQ. In the foreground at the right is the oxygen ion source. A 90 deg bending magnet selects O6+ ions which are preaccelerated in an RFQ and enter Linac 1, at the far left. In the background is the proton and negative hydrogen ion source, followed by the 520 keV RFQ-1 and a bending magnet towards the entrance of Linac 1.

  2. Boeing 120 MeV RF linac for FEL research

    International Nuclear Information System (INIS)

    Adamski, J.L.; Gallagher, W.J.; Kennedy, R.C.; Robinson, B.; Shoffstall, D.R.; Tyson, E.L.; Vetter, A.M.; Yeremian, A.D.

    1985-01-01

    A new electron linac for high power, visible wavelength, free electron laser research is under construction at the Boeing Radiation Laboratory in Seattle. The linac is a five section, traveling wave, L band structure with a specialized comb pulse format of widely separated high charge micropulses. The paper describes the accelerator design and prototyping of key components of the linac. These include a double subharmonic injector and a long pulse phase and amplitude stabilized RF source which have been tested on Boeing's 20 MeV S band linac

  3. All Digital IQ Servo-System for CERN Linacs

    CERN Document Server

    Broere, J; Garoby, R; Rohlev, A; Serrano, J

    2004-01-01

    A VME based control system has been developed and built at CERN for the servo loops regulating the field in linac accelerating structures. It is an all-digital system built on a single VME card, providing digital detection, processing, and modulation. It is foreseen to be used, in different versions, for the needs of both present and future CERN hadron linacs. The first application will be in the energy ramping RF chain of the CERN Heavy Ion Linac (linac 3). Design principle and the experimental results are described.

  4. Crossbar H-mode drift-tube linac design with alternative phase focusing for muon linac

    Science.gov (United States)

    Otani, M.; Futatsukawa, K.; Hasegawa, K.; Kitamura, R.; Kondo, Y.; Kurennoy, S.

    2017-07-01

    We have developed a Crossbar H-mode (CH) drift-tube linac (DTL) design with an alternative phase focusing (APF) scheme for a muon linac, in order to measure the anomalous magnetic moment and electric dipole moment (EDM) of muons at the Japan Proton Accelerator Research Complex (J-PARC). The CH-DTL accelerates muons from β = v/c = 0.08 to 0.28 at an operational frequency of 324 MHz. The design and results are described in this paper.

  5. 4GLS and the Energy Recovery Linac Prototype Project at Daresbury Laboratory

    CERN Document Server

    Seddon, Elaine

    2005-01-01

    4GLS is a novel next generation proposal for a UK national light source to be sited at Daresbury Laboratory. It is based on a superconducting energy recovery linac (ERL) with capabilities for both high average current spontaneous photon sources (undulators and bending magnets) and high peak current free electron lasers. Key features of the proposal are a high gain, seeded FEL amplifier to generate XUV radiation and the prospect of advanced dynamics work arising from its unique combinations of sources and its femtosecond pulse structure. To meet the challenging accelerator technology involved, a significant R&D programme has commenced and a major part of this is a 35 MeV demonstrator, the ERL Prototype (ERLP), currently under construction. This paper summarises the 4GLS design activities, describes the ERLP in detail and explains the 4GLS project status and plans.

  6. Chromaticity of the lattice and beam stability in energy-recovery linacs

    Energy Technology Data Exchange (ETDEWEB)

    Litvinenko, V.N.

    2011-12-23

    Energy recovery linacs (ERLs) are an emerging generation of accelerators promising to revolutionize the fields of high-energy physics and photon sciences. These accelerators combine the advantages of linear accelerators with that of storage rings, and hold the promise of delivering electron beams of unprecedented power and quality. Use of superconducting radio-frequency (SRF) cavities converts ERLs into nearly perfect 'perpetuum mobile' accelerators, wherein the beam is accelerated to a desirable energy, used, and then gives the energy back to the RF field. One potential weakness of these devices is transverse beam break-up instability that could severely limit the available beam current. In this paper, I present a method of suppressing these dangerous effects using a natural phenomenon in the accelerators, viz., the chromaticity of the transverse motion.

  7. Laser activated superconducting switch

    International Nuclear Information System (INIS)

    Wolf, A.A.

    1976-01-01

    A superconducting switch or bistable device is described consisting of a superconductor in a cryogen maintaining a temperature just below the transition temperature, having a window of the proper optical frequency band for passing a laser beam which may impinge on the superconductor when desired. The frequency of the laser is equal to or greater than the optical absorption frequency of the superconducting material and is consistent with the ratio of the gap energy of the switch material to Planck's constant, to cause depairing of electrons, and thereby normalize the superconductor. Some embodiments comprise first and second superconducting metals. Other embodiments feature the two superconducting metals separated by a thin film insulator through which the superconducting electrons tunnel during superconductivity

  8. Frontiers in Superconducting Materials

    CERN Document Server

    Narlikar, Anant V

    2005-01-01

    Frontiers in Superconducting Materials gives a state-of-the-art report of the most important topics of the current research in superconductive materials and related phenomena. It comprises 30 chapters written by renowned international experts in the field. It is of central interest to researchers and specialists in Physics and Materials Science, both in academic and industrial research, as well as advanced students. It also addresses electronic and electrical engineers. Even non-specialists interested in superconductivity might find some useful answers.

  9. Superconductivity and their applications

    OpenAIRE

    Roque, António

    2017-01-01

    Trabalho apresentado em International Conference on Renewable Energies and Power Quality (ICREPQ’17), 4 a 6 de Abril de 2017, Málaga, Espanha The research in the field of superconductivity has led to the synthesis of superconducting materials with features that allow you to expand the applicability of this kind of materials. Among the superconducting materials characteristics, the critical temperature of the superconductor is framing the range and type of industrial applications that can b...

  10. Surface and Superconductivity

    Science.gov (United States)

    Gor'kov, L. P.

    2006-07-01

    Experiments reveal the existence of metallic bands at surfaces of metals and insulators. The bands can be doped externally. We review properties of surface superconductivity that may set up in such bands at low temperatures and various means of superconductivity defection. The fundamental difference as compared to the ordinary superconductivity in metals, besides its two-dimensionality lies in the absence of the center of space inversion. This results in mixing between the singlet and triplet channels of the Cooper pairing.

  11. Superconductivity in the actinides

    International Nuclear Information System (INIS)

    Smith, J.L.; Lawson, A.C.

    1985-01-01

    The trends in the occurrence of superconductivity in actinide materials are discussed. Most of them seem to show simple transition metal behavior. However, the superconductivity of americium proves that the f electrons are localized in that element and that ''actinides'' is the correct name for this row of elements. Recently the superconductivity of UBe 13 and UPt 3 has been shown to be extremely unusual, and these compounds fall in the new class of compounds now known as heavy fermion materials

  12. High-Temperature Superconductivity

    Science.gov (United States)

    Tanaka, Shoji

    2006-12-01

    A general review on high-temperature superconductivity was made. After prehistoric view and the process of discovery were stated, the special features of high-temperature superconductors were explained from the materials side and the physical properties side. The present status on applications of high-temperature superconductors were explained on superconducting tapes, electric power cables, magnets for maglev trains, electric motors, superconducting quantum interference device (SQUID) and single flux quantum (SFQ) devices and circuits.

  13. Digital low level RF control system for the DESY TTF VUV-FEL Linac

    International Nuclear Information System (INIS)

    Ayvazyan, V.; Choroba, S.; Matyushin, A.; Moeller, G.; Petrosyan, G.; Rehlich, K.; Simrock, S.N.; Vetrov, P.

    2005-01-01

    In the RF system for the Vacuum Ultraviolet Free Electron Laser (VUV-FEL) Linac each klystron supplies RF power to up to 32 cavities. The superconducting cavities are operated in pulsed mode and high accelerating gradients close to the performance limit. The RF control of the cavity fields to the level of 10 -4 for amplitude and 0.1 degree for phase however presents a significant technical challenge due to the narrow bandwidth of the cavities which results in high sensitivity to perturbations of the resonance frequency by mechanical vibrations (microphonics) and Lorenz force detuning. The VUV-FEL Linac RF control system employs a completely digital feedback system to provide flexibility in the control algorithms, precise calibration of the accelerating field vector-sum, and extensive diagnostics and exception handling capabilities. The RF control algorithm is implemented in DSP (Digital Signal Processor) firmware and DOOCS (Distributed Object Oriented Control System) servers. The RF control system design objectives are discussed. Hardware and software design of the DSP based RF control are presented. (orig.)

  14. Muon Acceleration Concepts for NuMAX: "Dual-use" Linac and "Dogbone" RLA

    Science.gov (United States)

    Bogacz, S. A.

    2018-02-01

    We summarize the current state of a concept for muon acceleration aimed at a future Neutrino Factory. The main thrust of these studies was to reduce the overall cost while maintaining performance by exploring the interplay between the complexity of the cooling systems and the acceptance of the accelerator complex. To ensure adequate survival for the short-lived muons, acceleration must occur at high average gradient. The need for large transverse and longitudinal acceptances drives the design of the acceleration system to an initially low RF frequency, e.g., 325 MHz, which is then increased to 650 MHz as the transverse size shrinks with increasing energy. High-gradient normal conducting RF cavities at these frequencies require extremely high peak-power RF sources. Hence superconducting RF (SRF) cavities are chosen. We consider two cost effective schemes for accelerating muon beams for a stageable Neutrino Factory: exploration of the so-called "dual-use" linac concept, where the same linac structure is used for acceleration of both H- and muons and, alternatively, an SRF-efficient design based on a multi-pass (4.5) "dogbone" RLA, extendable to multi-pass FFAG-like arcs.

  15. End-to-End Beam Dynamics Simulations for the ANL-RIA Driver Linac

    CERN Document Server

    Ostroumov, P N

    2004-01-01

    The proposed Rare Isotope Accelerator (RIA) Facility consists of a superconducting (SC) 1.4 GV driver linac capable of producing 400 kW beams of any ion from hydrogen to uranium. The driver is configured as an array of ~350 SC cavities, each with independently controllable rf phase. For the end-to-end beam dynamics design and simulation we use a dedicated code, TRACK. The code integrates ion motion through the three-dimensional fields of all elements of the driver linac beginning from the exit of the electron cyclotron resonance (ECR) ion source to the production targets. TRACK has been parallelized and is able to track large number of particles in randomly seeded accelerators with misalignments and a comprehensive set of errors. The simulation starts with multi-component dc ion beams extracted from the ECR. Beam losses are obtained by tracking up to million particles in hundreds of randomly seeded accelerators. To control beam losses a set of collimators is applied in designated areas. The end-to-end simulat...

  16. Superconductivity and its application

    International Nuclear Information System (INIS)

    Spadoni, M.

    1988-01-01

    This paper, after a short introduction to superconductivity and to multifilamentary superconducting composites is aiming to review the state of the art and the future perspective of some of the applications of the superconducting materials. The main interest is focussed to large scale applications like, for istance, magnets for accelerators or fusion reactors, superconducting system for NMR thomography, etc. A short paragraph is dedicated to applications for high sensitivity instrumentation. The paper is then concluded by some considerations about the potentialities of the newly discovered high critical temperature materials

  17. Superconductivity in power engineering

    International Nuclear Information System (INIS)

    1989-01-01

    This proceedings volume presents 24 conference papers and 15 posters dealing with the following aspects: 1) Principles and elementary aspects of high-temperature superconductivity (3 plenary lectures); 2) Preparation, properties and materials requirements of metallic or oxide superconductors (critical current behaviour, soldered joints, structural studies); 3) Magnet technology (large magnets for thermonuclear fusion devices; magnets for particle accelerators and medical devices); 4) Magnetic levitation and superconductivity; 5) Cryogenics; 6) Energy storage systems using superconducting coils (SMES); 7) Superconducting power transmission cables, switches, transformers, and generator systems for power plant; 8) Supporting activities, industrial aspects, patents. There are thirty-eight records in the ENERGY database relating to individual conference papers. (MM) [de

  18. Superconducting linear accelerator cryostat

    International Nuclear Information System (INIS)

    Ben-Zvi, I.; Elkonin, B.V.; Sokolowski, J.S.

    1984-01-01

    A large vertical cryostat for a superconducting linear accelerator using quarter wave resonators has been developed. The essential technical details, operational experience and performance are described. (author)

  19. First operation of the rf-focused interdigital linac structure

    Science.gov (United States)

    Joel Starling, W.; Swenson, Donald A.

    2007-08-01

    The new rf-focused interdigital (RFI) linac structure came into operation at the Linac Systems laboratory in May of 2006, after a multi-year development program supported by the US Department of Energy. The RFI linac structure is basically an interdigital (or Wideröe) linac structure with rf quadrupole focusing incorporated into each drift tube. The RFI prototype operates at 200-MHz and consists of an ECR ion source, an Einzel lens LEBT, a radial-strut, four-bar RFQ linac section to 0.75 MeV and an RFI linac section to a final energy of 2.5 MeV. The total length of the prototype is 2.2 m. The RFQ and RFI linac sections are resonantly coupled and require a total of 120 kW of rf power for cavity excitation. The energy of the accelerated beam was confirmed by requiring it to pass through a 2.25-MeV energy-degrading foil. The specifications for the RFI linac prototype were chosen to address the demanding Boron Neutron Capture Therapy medical application. There are, however, many other potential applications for the structure as it has efficiency and size advantages for both protons and heavy ions at a variety of energies and currents. To date, we have achieved a beam current of approximately 1 mA peak at a relatively low duty factor. We continue to improve the performance of the prototype structure on a daily basis as we better understand the optimal operational settings for the prototype system. Now that the first operational milestone for the RFI linac structure has been achieved, Linac Systems will vigorously pursue projects and partnerships for multiple applications such as compact and intense neutron sources, proton and carbon injector linacs for synchrotrons and PET isotope production.

  20. An RF input coupler for a superconducting single cell cavity

    International Nuclear Information System (INIS)

    Fechner, B.; Ouchi, Nobuo; Kusano, Joichi; Mizumoto, Motoharu; Mukugi, Ken; Krawczyk, F.

    1999-03-01

    Japan Atomic Energy Research Institute proposes a high intensity proton accelerator for the Neutron Science Project. A superconducting linac is a main option for the high energy part of the accelerator. Design and development work for the superconducting accelerating cavities (resonant frequency of 600 MHz) is in progress. Superconducting cavities have an advantage of very high accelerating efficiency because RF wall loss is very small and much of the RF power fed to the cavity is consumed for the beam acceleration. On the other hand, an RF input coupler for the superconducting cavity has to be matched to the beam loading. Therefore, estimation of coupling coefficient or external quality factor (Qext) of the RF input coupler is important for the design of the couplers. In this work, Qext's were calculated by the electromagnetic analysis code (MAFIA) and were compared with those by the measurements. A β (ratio of the particle velocity to the light velocity) = 0.5 single-cell cavity with either axial coupler or side coupler was used in this work. In the experiments, a model cavity made by copper is applied. Both 2- and 3-dimensional calculations were performed in the axial coupler geometry and the results were compared. The agreements between calculated and measured values are good and this method for calculation of Qext is confirmed to be proper for the design of the RF input couplers. (author)

  1. Status of work on superconducting quarter wave resonators at JAERI

    International Nuclear Information System (INIS)

    Takeuchi, S.

    1988-01-01

    A superconducting heavy ion linac is being proposed for the JAERI-tandem booster. For the accelerating structure of the tandem booster which ought to accelerate heavy ions of wide range of mass numbers, quarter wave resonator (QWR)s are suitable because of their wide ion-velocity acceptance. Ions of hydrogen to bismuth from the JAERI tandem can be accelerated by β = 0.1 QWRs. The excellent result of a niobium QWR at Argonne National Laboratory was a motive for the development of niobium QWRs. Further considerations on the design were required, because the Argonne's QWR did not have beam ports nor frequency tuners. As a result of considerations on these points, it has been decided to have an oval cylinder for the outer conductor. The prototype resonator has been built and tested. The fabrication techniques of explosive bonding, electron beam welding and heat treatment were found to be available in domestic companies in 1984. After obtaining niobium and niobium-clad-copper materials in 1985, the prototype resonator was built in 1985-86. Electro-polishing was done in their laboratory. Tests at 4.2 K have been repeated several times in combination of treatments of the niobium surface. The work is proceeding to the construction of a buncher and a prototype linac unit which are composed of superconducting QWRs. 4 references, 4 figures, 2 tables

  2. Numerical simulation of coupler cavities for linacs

    Energy Technology Data Exchange (ETDEWEB)

    Ng, C.K.; Derutyer, H.; Ko, K.

    1993-04-01

    We present numerical procedures involved in the evaluation of the performance of coupler cavities for linacs. The MAFIA code is used to simulate an X-Band accelerator section in the time domain. The input/output coupler cavities for the structure arc of the symmetrical double-input design. We calculate the transmission properties of the coupler and compare the results with measurements. We compare the performance of the symmetrical double-input design with that of the conventional single-input type by evaluating the field amplitude and phase asymmetries. We also evaluate the peak field gradient in the computer.

  3. Event Registration System for INR Linac

    International Nuclear Information System (INIS)

    Grekhov, O.V.; Drugakov, A.N.; Kiselev, Yu.V.

    2006-01-01

    The software of the Event registration system for the linear accelerators is described. This system allows receiving of the information on changes of operating modes of the accelerator and supervising of hundreds of key parameters of various systems of the accelerator. The Event registration system consists of the source and listeners of events. The sources of events are subroutines built in existing ACS Linac. The listeners of events are software Supervisor and Client ERS. They are used for warning the operator about change controlled parameter of the accelerator

  4. Linac based free-electron laser

    International Nuclear Information System (INIS)

    Rossbach, J.

    2004-01-01

    A basic treatment of the principle of the linac-driven free-electron laser (FEL) is given. The first part of the paper describes the FEL in low-gain approximation, and in the second part the high-gain FEL theory is given. The majority of the treatment describes FELs in one dimensional approximation, neglecting effects by diffraction of radiation and by electron beam emittance. Only in the final section a few remarks on these issues are given. The ambition of the paper is by no means any progress in FEL theory but a clear presentation of basic FEL theory concepts with explicit derivation of the formulae from first principles. (orig.)

  5. Vacuum specifications for the CLIC Main LINAC

    CERN Document Server

    Jeanneret, J B; Schulte, D

    2010-01-01

    The maximum tolerable pressure in the vacuum of the CLIC electron Main Linac is determined by the threshold above which the fast ion instability sets in over a bunch train. With micro-metric beam sizes, the macroscopic electric field of the bunches reaches values above the field ionization threshold, thus producing more ions than the classical scattering ionization. In this paper we first discuss the extent of the transverse areas that gets fully ionized along the ML. Then, we show the results of the instability simulations made with the FASTION code using the new model, and consequently review the pressure requirement in the ML.

  6. MEIC Proton Beam Formation with a Low Energy Linac

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yuhong [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States)

    2015-09-01

    The MEIC proton and ion beams are generated, accumulated, accelerated and cooled in a new green-field ion injector complex designed specifically to support its high luminosity goal. This injector consists of sources, a linac and a small booster ring. In this paper we explore feasibility of a short ion linac that injects low-energy protons and ions into the booster ring.

  7. Photonuclear reactions with zinc : A case for clinical linacs

    NARCIS (Netherlands)

    Boztosun, I.; Dapo, H.; Karakoc, M.; Ozmen, S. F.; Cecen, Y.; Coban, A.; Caner, T.; Bayram, E.; Saito, T. R.; Akdogan, T.; Bozkurt, V.; Kucuk, Y.; Kaya, D.; Harakeh, M. N.

    2015-01-01

    The use of bremsstrahlung photons produced by a linac to induce photonuclear reactions is wide spread. However, using a clinical linac to produce the photons is a new concept. We aimed to induce photonuclear reactions on zinc isotopes and measure the subsequent transition energies and half-lives.

  8. Production of slow-positron beams with an electron linac

    International Nuclear Information System (INIS)

    Howell, R.H.; Alvarez, R.A.; Stanek, M.

    1982-01-01

    Intense, pulsed beams of low-energy positrons have been produced by a high-energy beam from an electron linac. The production efficiency for low-energy positrons has been determined for electrons with 60 to 120 MeV energy, low-energy positron beams from a linac can be of much higher intensity than those beams currently derived from radioactive sources

  9. Design of the SLC damping ring to linac transport lines

    International Nuclear Information System (INIS)

    Fieguth, T.H.; Murray, J.J.

    1983-07-01

    The first and second order optics for the damping ring to linac transport line are designed to preserve the damped transverse emittance while simultaneously compressing the bunch length of the beam to that length required for reinjection into the linac. This design, including provisions for future control of beam polarization, is described

  10. Post-accelerator LINAC design for the VECC RIB project

    Indian Academy of Sciences (India)

    The LINAC design work starts with the generation of the cell tables for the LINAC tanks, i.e., to find out the cell lengths, operating voltage, number of cells in the tanks etc. A program CELLGEN has been developed for this purpose. In addition to generating the cell parameters, it also produces the input file for the beam ...

  11. Towards breast cancer radiotherapy on the MRI-linac

    NARCIS (Netherlands)

    van Heijst, TCF

    2017-01-01

    With the introduction of the magnetic resonance imaging (MRI)-linear accelerator (linac) at University Medical Center Utrecht, on-line MRI guidance for radiation therapy (RT) treatments is possible. This PhD thesis explores technical implementation of the MRI-linac for local and regional breast

  12. Stabilization of the RF system at the SPring-8 linac

    CERN Document Server

    Asaka, T; Hori, T; Kobayashi, T; Mizuno, A; Sakaki, H; Suzuki, S; Taniuchi, T; Yanagida, K; Yokomizo, H; Yoshikawa, H

    2002-01-01

    Beam energy variation of the SPring-8 linac was 1% or more at the start of beam commissioning. Depending on fluctuation, beam transmission efficiency from the linac to the booster synchrotron was significantly affected, and beam intensity in the booster synchrotron changed 20-30%. This caused delay of optimization of the various parameters in the booster synchrotron. More problematic, the beam intensities stored in each RF (radio frequency) bucket of the storage ring at SPring-8 were all different from each other. The users utilizing synchrotron radiation requested that the beam intensity in each RF bucket be as uniform as possible. It was thus a pressing necessity to stabilize the beam energy in the linac. Investigation of the cause has clarified that the various apparatuses installed in the linac periodically changed depending on circumstances and utilities such as the air conditioner, cooling water and electric power. After various improvements, beam energy stability in the linac of <0.06% rms was attai...

  13. The Pre-Injector Linac for the Diamond Light Source

    CERN Document Server

    Christou, C

    2004-01-01

    The Diamond Light Source is a new medium-energy high brightness synchrotron light facility which is under construction on the Rutherford Appleton Laboratory site in the U.K. The accelerator facility can be divided into three major components; a 3 GeV 561 m circumference storage ring, a full-energy booster synchrotron and a 100 MeV pre-injector linac. This paper describes the linac design and plans for operation. The linac is supplied by ACCEL Instruments GmbH under a turn-key contract, with Diamond Light Source Ltd. providing linac beam diagnostics, control system hardware and standard vacuum components. Commissioning of the linac will take place in early 2005 and user operation of the facility will commence in 2007.

  14. Photon and photoneutron spectra produced in radiotherapy Linacs

    Energy Technology Data Exchange (ETDEWEB)

    Vega C, H. R. [Universidad Autonoma de Zacatecas, Unidad Academica de Estudios Nucleares, Calle Cipres No. 10, Fracc. La Penuela, 98068 Zacatecas (Mexico); Martinez O, S. A. [Universidad Pedagogica y Tecnologica de Colombia, Grupo de Fisica Nuclear Aplicada y Simulacion, Av. Central del Norte Km. 1, Via Paipa Tunja, Boyaca (Colombia); Benites R, J. L. [Universidad Autonoma de Nayarit, Postgrado CBAP, Carretera Tepic Compostela Km. 9, Xalisco, Nayarit (Mexico); Lallena, A. M., E-mail: fermineutron@yahoo.com [Universida de Granada, Departamento de Fisica Atomica, Molecular y Nuclear, E-18071 Granada (Spain)

    2011-10-15

    A Monte Carlo calculation, using the MCNPX code, was carried out in order to estimate the photon and neutron spectra in two locations of two linacs operating at 15 and 18 MV. Detailed models of both linac heads were used in the calculations. Spectra were estimated below the flattening filter and at the isocenter. Neutron spectra show two components due to evaporation and knock-on neutrons. Lethargy spectra under the filter were compared to the spectra calculated from the function quoted by Tosi et al. that describes reasonably well neutron spectra beyond 1 MeV, though tends to underestimate the energy region between 10{sup -6} and 1 MeV. Neutron and Bremsstrahlung spectra show the same features regardless of the linac voltage. The amount of photons and neutrons produced by the 15 MV linac is smaller than that found for the 18 MV linac. As expected, Bremsstrahlung spectra ends according to the voltage used to accelerate the electrons. (Author)

  15. Photon and photoneutron spectra produced in radiotherapy Linacs

    International Nuclear Information System (INIS)

    Vega C, H. R.; Martinez O, S. A.; Benites R, J. L.; Lallena, A. M.

    2011-10-01

    A Monte Carlo calculation, using the MCNPX code, was carried out in order to estimate the photon and neutron spectra in two locations of two linacs operating at 15 and 18 MV. Detailed models of both linac heads were used in the calculations. Spectra were estimated below the flattening filter and at the isocenter. Neutron spectra show two components due to evaporation and knock-on neutrons. Lethargy spectra under the filter were compared to the spectra calculated from the function quoted by Tosi et al. that describes reasonably well neutron spectra beyond 1 MeV, though tends to underestimate the energy region between 10 -6 and 1 MeV. Neutron and Bremsstrahlung spectra show the same features regardless of the linac voltage. The amount of photons and neutrons produced by the 15 MV linac is smaller than that found for the 18 MV linac. As expected, Bremsstrahlung spectra ends according to the voltage used to accelerate the electrons. (Author)

  16. Superconducting elliptical cavities

    CERN Document Server

    Sekutowicz, J K

    2011-01-01

    We give a brief overview of the history, state of the art, and future for elliptical superconducting cavities. Principles of the cell shape optimization, criteria for multi-cell structures design, HOM damping schemes and other features are discussed along with examples of superconducting structures for various applications.

  17. Superconducting cavities for LEP

    CERN Multimedia

    CERN PhotoLab

    1983-01-01

    Above: a 350 MHz superconducting accelerating cavity in niobium of the type envisaged for accelerating electrons and positrons in later phases of LEP. Below: a small 1 GHz cavity used for investigating the surface problems of superconducting niobium. Albert Insomby stays on the right. See Annual Report 1983 p. 51.

  18. Academic training: Applied superconductivity

    CERN Multimedia

    2007-01-01

    LECTURE SERIES 17, 18, 19 January from 11.00 to 12.00 hrs Council Room, Bldg 503 Applied Superconductivity : Theory, superconducting Materials and applications E. PALMIERI/INFN, Padova, Italy When hearing about persistent currents recirculating for several years in a superconducting loop without any appreciable decay, one realizes that we are dealing with a phenomenon which in nature is the closest known to the perpetual motion. Zero resistivity and perfect diamagnetism in Mercury at 4.2 K, the breakthrough during 75 years of several hundreds of superconducting materials, the revolution of the "liquid Nitrogen superconductivity"; the discovery of still a binary compound becoming superconducting at 40 K and the subsequent re-exploration of the already known superconducting materials: Nature discloses drop by drop its intimate secrets and nobody can exclude that the last final surprise must still come. After an overview of phenomenology and basic theory of superconductivity, the lectures for this a...

  19. Measurements of longitudinal phase space in the SLC linac

    International Nuclear Information System (INIS)

    Bane, K.; Adolphsen, C.; Lavine, T.L.; Ross, M.; Seeman, J.; Thompson, K.

    1990-05-01

    In the Stanford Linear Collider the beam leaves a damping ring and then enters the Ring-to-Linac (RTL) transfer line. In the RTL it is compressed in length by a factor of 10 by means of an rf section, with which a longitudinally correlated energy variation is induced in the beam, and a following beam line which has non-zero momentum compaction. The compressed beam then enters the linac proper. In this paper we describe three measurements of longitudinal properties of the beam in the SLC linac. We present measurements of single bunch beam loading, of the energy spectrum at the end of the linac, and of the linac bunch length. Since the results of all three measurements depend on the beam's longitudinal charge distribution in the linac they, in turn, also depend on the bunch lengthening that occurs in the damping rings, as well as on the behavior of the compressor. The results of the first two measurements, in addition, depend critically on the strength of the longitudinal wakefields in the linac. The results of these three measurements are compared with simulations. For these calculations, at any given current, the potential well distortion in the damping ring is first computed. The compression process is then simulated to obtain the longitudinal charge distribution in the linac. For the first two measurements this distribution is then convolved with the calculated longitudinal wake function of the SLAC linac in order to obtain the induced voltage. Finally, the induced voltage is combined with the effect of the linac rf wave to give the final energy spectrum. 8 refs., 5 figs

  20. Qubit compatible superconducting interconnects

    Science.gov (United States)

    Foxen, B.; Mutus, J. Y.; Lucero, E.; Graff, R.; Megrant, A.; Chen, Yu; Quintana, C.; Burkett, B.; Kelly, J.; Jeffrey, E.; Yang, Yan; Yu, Anthony; Arya, K.; Barends, R.; Chen, Zijun; Chiaro, B.; Dunsworth, A.; Fowler, A.; Gidney, C.; Giustina, M.; Huang, T.; Klimov, P.; Neeley, M.; Neill, C.; Roushan, P.; Sank, D.; Vainsencher, A.; Wenner, J.; White, T. C.; Martinis, John M.

    2018-01-01

    We present a fabrication process for fully superconducting interconnects compatible with superconducting qubit technology. These interconnects allow for the three dimensional integration of quantum circuits without introducing lossy amorphous dielectrics. They are composed of indium bumps several microns tall separated from an aluminum base layer by titanium nitride which serves as a diffusion barrier. We measure the whole structure to be superconducting (transition temperature of 1.1 K), limited by the aluminum. These interconnects have an average critical current of 26.8 mA, and mechanical shear and thermal cycle testing indicate that these devices are mechanically robust. Our process provides a method that reliably yields superconducting interconnects suitable for use with superconducting qubits.

  1. Superconducting wind turbine generators

    DEFF Research Database (Denmark)

    Abrahamsen, Asger Bech; Mijatovic, Nenad; Seiler, Eugen

    2010-01-01

    We have examined the potential of 10 MW superconducting direct drive generators to enter the European offshore wind power market and estimated that the production of about 1200 superconducting turbines until 2030 would correspond to 10% of the EU offshore market. The expected properties of future...... offshore turbines of 8 and 10 MW have been determined from an up-scaling of an existing 5 MW turbine and the necessary properties of the superconducting drive train are discussed. We have found that the absence of the gear box is the main benefit and the reduced weight and size is secondary. However......, the main challenge of the superconducting direct drive technology is to prove that the reliability is superior to the alternative drive trains based on gearboxes or permanent magnets. A strategy of successive testing of superconducting direct drive trains in real wind turbines of 10 kW, 100 kW, 1 MW and 10...

  2. Production of Medical Isotopes with Electron Linacs

    Energy Technology Data Exchange (ETDEWEB)

    Rotsch, D A; Alford, K.; Bailey, J. L.; Bowers, D. L.; Brossard, T.; Brown, M. A.; Chemerisov, S. D.; Ehst, D.; Greene, J.; Gromov, R. G.; Grudzinski, J.J.; Hafenrichter, L.; Hebden, A. S.; Henning, W.; Heltemes, T. A.; Jerden, J.; Jonah, C. D.; Kalensky, M.; Krebs, J. F.; Makarashvili, V.; Micklich, B.; Nolen, J.; Quigley, K. J.; Schneider, J. F.; Smith, N. A.; Stepinski, D. C.; Sun, Z.; Tkac, P.; Vandegrift, G. F.; Virgo, M J; Wesolowski, K. A.; Youker, A. J.

    2017-06-01

    Radioisotopes play important roles in numerous areas ranging from medical treatments to national security and basic research. Radionuclide production technology for medical applications has been pursued since the early 1900s both commercially and in nuclear science centers. Many medical isotopes are now in routine production and are used in day-to-day medical procedures. Despite these advancements, research is accelerating around the world to improve the existing production methodologies as well as to develop novel radionuclides for new medical appli-cations. Electron linear accelerators (linacs) represent a unique method for the production of radioisotopes. Even though the basic technology has been around for decades, only recently have electron linacs capable of producing photons with sufficient energy and flux for radioisotope production become available. Housed in Argonne Nation-al Laboratory’s Low Energy Accelerator Facility (LEAF) is a newly upgraded 55 MeV/25-kW electron linear ac-celerator, capable of producing a wide range of radioiso-topes. This talk will focus on the work being performed for the production of the medical isotopes 99Mo (99Mo/99mTc generator), 67Cu, and 47Sc.

  3. Superconductivity in aromatic hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Kubozono, Yoshihiro, E-mail: kubozono@cc.okayama-u.ac.jp [Research Laboratory for Surface Science, Okayama University, Okayama 700-8530 (Japan); Research Center of New Functional Materials for Energy Production, Storage and Transport, Okayama University, Okayama 700-8530 (Japan); Japan Science and Technology Agency, ACT-C, Kawaguchi 332-0012 (Japan); Goto, Hidenori; Jabuchi, Taihei [Research Laboratory for Surface Science, Okayama University, Okayama 700-8530 (Japan); Yokoya, Takayoshi [Research Laboratory for Surface Science, Okayama University, Okayama 700-8530 (Japan); Research Center of New Functional Materials for Energy Production, Storage and Transport, Okayama University, Okayama 700-8530 (Japan); Kambe, Takashi [Department of Physics, Okayama University, Okayama 700-8530 (Japan); Sakai, Yusuke; Izumi, Masanari; Zheng, Lu; Hamao, Shino; Nguyen, Huyen L.T. [Research Laboratory for Surface Science, Okayama University, Okayama 700-8530 (Japan); Sakata, Masafumi; Kagayama, Tomoko; Shimizu, Katsuya [Center of Science and Technology under Extreme Conditions, Osaka University, Osaka 560-8531 (Japan)

    2015-07-15

    Highlights: • Aromatic superconductor is one of core research subjects in superconductivity. Superconductivity is observed in certain metal-doped aromatic hydrocarbons. Some serious problems to be solved exist for future advancement of the research. This article shows the present status of aromatic superconductors. - Abstract: ‘Aromatic hydrocarbon’ implies an organic molecule that satisfies the (4n + 2) π-electron rule and consists of benzene rings. Doping solid aromatic hydrocarbons with metals provides the superconductivity. The first discovery of such superconductivity was made for K-doped picene (K{sub x}picene, five benzene rings). Its superconducting transition temperatures (T{sub c}’s) were 7 and 18 K. Recently, we found a new superconducting K{sub x}picene phase with a T{sub c} as high as 14 K, so we now know that K{sub x}picene possesses multiple superconducting phases. Besides K{sub x}picene, we discovered new superconductors such as Rb{sub x}picene and Ca{sub x}picene. A most serious problem is that the shielding fraction is ⩽15% for K{sub x}picene and Rb{sub x}picene, and it is often ∼1% for other superconductors. Such low shielding fractions have made it difficult to determine the crystal structures of superconducting phases. Nevertheless, many research groups have expended a great deal of effort to make high quality hydrocarbon superconductors in the five years since the discovery of hydrocarbon superconductivity. At the present stage, superconductivity is observed in certain metal-doped aromatic hydrocarbons (picene, phenanthrene and dibenzopentacene), but the shielding fraction remains stubbornly low. The highest priority research area is to prepare aromatic superconductors with a high superconducting volume-fraction. Despite these difficulties, aromatic superconductivity is still a core research target and presents interesting and potentially breakthrough challenges, such as the positive pressure dependence of T{sub c} that is clearly

  4. Linac4 crosses the 100 MeV threshold

    CERN Multimedia

    Corinne Pralavorio

    2016-01-01

    The new linear accelerator, which from 2020 will be the first link in the accelerator chain, has entered a new stage of its commissioning.   Members of the team in charge of the commissioning of Linac4 in the accelerator’s control room. A few hours earlier, Linac4 accelerated a beam to 107 MeV for the first time. We couldn’t have imagined a more appropriate date: on 1 July (1.07), Linac4 reached an energy of 107 MeV. Having crossed the 100 MeV barrier, the linear accelerator is now on the home straight of its commissioning. “This stage was very quick – it took less than two weeks,” says Alessandra Lombardi, deputy project leader of Linac4, in charge of the commissioning. In 2020, Linac4 will replace the existing Linac2 as the first link in the accelerator chain. It will accelerate beams of H- ions (protons surrounded by two electrons) to 160 MeV, compared to 50 MeV with Linac2. The new machine is particularly sophisticated as it comprises...

  5. First Linac4 DTL & CCDTL cavities installed in tunnel

    CERN Multimedia

    Katarina Anthony

    2014-01-01

    On 5 June, the first Drift Tube Linac (DTL) was successfully transported to its forever home in the Linac4 tunnel. Similarly, the first Cell-Coupled Drift Tube Linac (CCDTL) was installed on 6 June. These moves marked the end of years of design and manufacturing by Linac4 teams.   Although it may seem like a relatively routine transport operation, the DTL's move was a landmark event for the entire Linac4 collaboration. "Along with the first four Cell-Coupled DTL modules, which were installed on the following two working days, these are the first accelerating structures after front-end commissioning to be installed in the tunnel," says Frank Gerigk, who is responsible for all Linac4 accelerating structures. "It is a major milestone, because work on all these structures started well over a decade ago." The transport operation was also quite a victory for the Linac4 DTL team, whose journey to a complete DTL structure has been a bit of a wild ride. &qu...

  6. Development of the low energy linac systems

    International Nuclear Information System (INIS)

    Cho, Yong Sub; Kwon, H. J.; Kim, Y. H.

    2005-08-01

    The project 'Development of the Low Energy Linac System' is aiming to develop the 20 MeV proton linac system. This consists of a 50 keV proton injector, a 3 MeV RFQ, and a 20 MeV DTL. We obtained the first beam signal after the 20 MeV linac. The high power switch installed in the ion source supplies the pulsed beam into the following LEBT. The pulse operation was successfully tested. The main role of the LEBT is to match the beam into the 3 MeV RFQ. The total length of the four-vane type RFQ is about 3.26m. For the field stabilization, we used the resonant coupling scheme and dipole stabilizer rods. An 1 MW klystron supplies the RF power into the RFQ. After tuning, the field deviation of the quadrupole mode is less than 2% of the design value and the dipole fraction is less than 5% of the operating mode. The following accelerating structure is DTL which accelerate 20 mA proton beams up to 20 MeV. It consists of 4 tanks and the length of each tank is less than 5 m. The lattice is FFDD type and the integrated fields of the quadrupole magnets are 1.75 T. The inner walls of the tanks are copper-plated by PR plating method. The thickness is 100m with the roughness of 0.3m. Each drift tube consists of 6 parts and assembled by e-beam welding. The tanks and drift tubes are aligned under the installation limit of 50m by using the laser-tracker. The tuning by the slug tuners and post couplers results in the field uniformity of 2% and field sensitivity of 100%/MHz. In order to detect the beam signal, we installed the Faraday cup after the RFQ or the DTL. For the RFQ, we observed the beam of 12 A under the forward RF power of 450 kW. The beam current after DTL is about 0.5 A when RF power of 150 kW was fed into each tank

  7. Simulation studies of the LAMPF proton linac

    International Nuclear Information System (INIS)

    Garnett, R.W.; Gray, E.R.; Rybarcyk, L.J.; Wangler, T.P.

    1995-01-01

    The LAMPF accelerator consists of two 0.75-MeV injectors, one for H + and the other for H - , a separate low-energy beam transport (LEBT) line for each beam species, a 0.75 to 100-MeV drift-tube linac (DTL) operating at 201.25-MHz, a 100-MeV transition region (TR), and a 100 to 800-MeV side-coupled linac (SCL) operating at 805-MHz. Each LEBT line consists of a series of quadrupoles to transport and transversely match the beam. The LEBT also contains a prebuncher, a main buncher, and an electrostatic deflector. The deflector is used to limit the fraction of a macropulse which is seen by the beam diagnostics throughout the linac. The DTL consists of four rf tanks and uses singlet FODO transverse focusing. The focusing period is doubled in the last two tanks by placing a quadrupole only in every other drift-tube. Doublet FDO transverse focusing is used in the SCL. The TR consists of separate transport lines for the H + and H - beams. The pathlengths for the two beams differ, by introducing bends, so as to delay arrival of one beam relative to the other and thereby produce the desired macropulse time structure. Peak beam currents typically range from 12 to 18-mA for varying macropulse lengths which give an average beam current of 1-mA. The number of particles per bunch is of the order 10 8 . The work presented here is an extension of previous work. The authors have attempted to do a more complete simulation by including modeling of the LEBT. No measurements of the longitudinal structure of the beam, except phase-scans, are performed at LAMPF. The authors show that, based on simulation results, the primary causes of beam spill are inefficient longitudinal capture and the lack of longitudinal matching. Measurements to support these claims are not presently made at LAMPF. However, agreement between measurement and simulation for the transverse beam properties and transmissions serve to benchmark the simulations

  8. First Demonstration of Electron Beam Generation and Characterization with an All Superconducting Radio-frequency (SRF) Photoinjector

    Energy Technology Data Exchange (ETDEWEB)

    Kamps, T; Barday, R; Jankowiak, A; Knobloch, J; Kugeler, O; Matveenko, A N; Neumann, A; Quast, T; Rudolph, J; Schubert, S G; Volker, J; Kneisel, P; Nietubyc, R; Sekutowicz, J K; Smedley, J; Volkov, V; Weinberg, G

    2011-09-01

    In preparation for a high brightness, high average current electron source for the energy-recovery linac BERLinPro an all superconducting radio-frequency photoinjector is now in operation at Helmholtz-Zentrum Berlin. The aim of this experiment is beam demonstration with a high brightness electron source able to generate sub-ps pulse length electron bunches from a superconducting (SC) cathode film made of Pb coated on the backwall of a Nb SRF cavity. This paper describes the setup of the experiment and first results from beam measurements.

  9. Development of a superconducting radio frequency photoelectron injector

    Science.gov (United States)

    Arnold, A.; Büttig, H.; Janssen, D.; Kamps, T.; Klemz, G.; Lehmann, W. D.; Lehnert, U.; Lipka, D.; Marhauser, F.; Michel, P.; Möller, K.; Murcek, P.; Schneider, Ch.; Schurig, R.; Staufenbiel, F.; Stephan, J.; Teichert, J.; Volkov, V.; Will, I.; Xiang, R.

    2007-07-01

    A superconducting radio frequency (RF) photoelectron injector (SRF gun) is under development at the Research Center Dresden-Rossendorf. This project aims mainly at replacing the present thermionic gun of the superconducting electron linac ELBE. Thereby the beam quality is greatly improved. Especially, the normalized transverse emittance can be reduced by up to one order of magnitude depending on the operating conditions. The length of the electron bunches will be shortened by about two orders of magnitude making the present bunchers in the injection beam line dispensable. The maximum obtainable bunch charge of the present thermionic gun amounts to 80 pC. The SRF gun is designed to deliver also higher bunch charge values up to 2.5 nC. Therefore, this gun can be used also for advanced facilities such as energy recovery linacs (ERLs) and soft X-ray FELs. The SRF gun is designed as a 3{1}/{2} cell cavity structure with three cells basically TESLA cells supplemented by a newly developed gun cell and a choke filter. The exit energy is projected to be 9.5 MeV. In this paper, we present a description of the design of the SRF gun with special emphasis on the physical and technical problems arising from the necessity of integrating a photocathode into the superconducting cavity structure. Preparation, transfer, cooling and alignment of the photocathode are discussed. In designing the SRF gun cryostat for most components wherever possible the technical solutions were adapted from the ELBE cryostat in some cases with major modifications. As concerns the status of the project the design is finished, most parts are manufactured and the gun is being assembled. Some of the key components are tested in special test arrangements such as cavity warm tuning, cathode cooling, the mechanical behavior of the tuners and the effectiveness of the magnetic screening of the cavity.

  10. Introduction to superconductivity

    CERN Document Server

    Darriulat, Pierre

    1998-01-01

    The lecture series will address physicists, such as particle and nuclear physicists, familiar with non-relativistic quantum mechanics but not with solid state physics. The aim of this introduction to low temperature superconductivity is to give sufficient bases to the student for him/her to be able to access the scientific literature on this field. The five lectures will cover the following topics : 1. Normal metals, free electron gas, chambers equation. 2. Cooper pairs, the BCS ground state, quasi particle excitations. 3. DC superconductivity, Meissner state, dirty superconductors.4. Self consistent approach, Ginsburg Landau equations, Abrikosov fluxon lattice. 5. Josephson effects, high temperature superconductivity.

  11. Superconducting tin core fiber

    Energy Technology Data Exchange (ETDEWEB)

    Homa, Daniel; Liang, Yongxuan; Hill, Cary; Kaur, Gurbinder; Pickrell, Gary [Virginia Polytechnic Institute and State University, Department of Materials Science and Engineering, Blacksburg, VA (United States)

    2014-11-13

    In this study, we demonstrated superconductivity in a fiber with a tin core and fused silica cladding. The fibers were fabricated via a modified melt-draw technique and maintained core diameters ranging from 50-300 microns and overall diameters of 125-800 microns. Superconductivity of this fiber design was validated via the traditional four-probe test method in a bath of liquid helium at temperatures on the order of 3.8 K. The synthesis route and fiber design are perquisites to ongoing research dedicated all-fiber optoelectronics and the relationships between superconductivity and the material structures, as well as corresponding fabrication techniques. (orig.)

  12. Superconducting tin core fiber

    International Nuclear Information System (INIS)

    Homa, Daniel; Liang, Yongxuan; Hill, Cary; Kaur, Gurbinder; Pickrell, Gary

    2015-01-01

    In this study, we demonstrated superconductivity in a fiber with a tin core and fused silica cladding. The fibers were fabricated via a modified melt-draw technique and maintained core diameters ranging from 50-300 microns and overall diameters of 125-800 microns. Superconductivity of this fiber design was validated via the traditional four-probe test method in a bath of liquid helium at temperatures on the order of 3.8 K. The synthesis route and fiber design are perquisites to ongoing research dedicated all-fiber optoelectronics and the relationships between superconductivity and the material structures, as well as corresponding fabrication techniques. (orig.)

  13. The chronicle of superconductivity

    International Nuclear Information System (INIS)

    Bassalo, J.M.F.

    1981-01-01

    The chronicle of the superconductivity is shown, since the first observation made of Kamerlingh-Onnes, in the begining of our century about superconductivity effects, by describing several models and theories made by the physicists, by trying to explain the phenomenons referred about supercurrent, up to the modern BCS Theory. Our fundamental purpose rather than to make a historical-philosophical evolution about the superconductivity is only to make a sequence as who made what, when and how, by using the Solla-Price meaning. (Author) [pt

  14. Superconductivity in doped insulators

    International Nuclear Information System (INIS)

    Emery, V.J.; Kivelson, S.A.

    1995-01-01

    It is shown that many synthetic metals, including high temperature superconductors are ''bad metals'', with such a poor conductivity that the usual meanfield theory of superconductivity breaks down because of anomalously large classical and quantum fluctuations of the phase of the superconducting order parameter. It is argued that the supression of a first order phase transition (phase separation) by the long-range Coulomb interaction leads to high temperature superconductivity accompanied by static or dynamical charge inhomogeneIty. Evidence in support of this picture for high temperature superconductors is described

  15. Superconducting materials and magnets

    International Nuclear Information System (INIS)

    1991-04-01

    The Technical Committee Meeting on Superconducting Materials and Magnets was convened by the IAEA and held by invitation of the Japanese government on September 4-6, 1989 in Tokyo. The meeting was hosted by the National Research Institute for Metals. Topics of the conference related to superconducting magnets and technology with particular application to fusion and the superconducting supercollider. Technology using both high and low-temperature superconductors was discussed. This document is a compendium of the papers presented at the meeting. Refs, figs and tabs

  16. 'Speedy' superconducting circuits

    International Nuclear Information System (INIS)

    Holst, T.

    1994-01-01

    The most promising concept for realizing ultra-fast superconducting digital circuits is the Rapid Single Flux Quantum (RSFQ) logic. The basic physical principle behind RSFQ logic, which include the storage and transfer of individual magnetic flux quanta in Superconducting Quantum Interference Devices (SQUIDs), is explained. A Set-Reset flip-flop is used as an example of the implementation of an RSFQ based circuit. Finally, the outlook for high-temperature superconducting materials in connection with RSFQ circuits is discussed in some details. (au)

  17. The Linac4 DTL Prototype: Low and High Power Measurements

    CERN Document Server

    De Michele, G; Marques-Balula, J; Ramberger, S

    2012-01-01

    The prototype of the Linac4 Drift Tube Linac (DTL) has undergone low power measurements in order to verify the RF coupling and to adjust the post-coupler lengths based on bead-pull and spectrum measurements. Following the installation at the test stand, the cavity has been subjected to high power operation at Linac4 and SPL duty cycles. Saturation effects and multipacting have been observed and linked to X-ray emission. Voltage holding is reported in the presence of magnetic fields from permanent magnet quadrupoles (PMQ) installed in the first drift tubes.

  18. A new method for improving beam quality of LINAC

    International Nuclear Information System (INIS)

    Xie Jialin; Li Fengtian; Wang Yanshan; Wang Bosi

    1999-01-01

    The principle of the self-adaptive feed-forward (SAFF) control to improve the beam quality of linac is introduced. the analytical procedure for calculating the control signals, the structure of a practical control system, and applications of SAFF in klystron, RF gun, and linac are presented, especially the application in the thermionic gun whose response is non-linear, time-variant and of large time-delay. The described control system is operational and some primary experimental results have been obtained, including the control of amplitude and phase fluctuations of the klystron output, the microwave field in the gun cavity and linac

  19. Status and recent developments at the polarized-electron injector of the superconducting Darmstadt electron linear accelerator S-DALINAC

    Science.gov (United States)

    Poltoratska, Y.; Eckardt, C.; Ackermann, W.; Aulenbacher, K.; Bahlo, T.; Barday, R.; Brunken, M.; Burandt, C.; Eichhorn, R.; Enders, J.; Espig, M.; Franke, S.; Ingenhaag, C.; Lindemann, J.; Müller, W. F. O.; Platz, M.; Roth, M.; Schneider, F.; Wagner, M.; Weber, A.; Weiland, T.; Zwicker, B.

    2011-05-01

    At the superconducting Darmstadt electron linac a 100 keV source of polarized electrons has been installed. Major components had been tested prior to installation at an offline teststand. Commissioning of the new source at the S-DALINAC will take place early in 2011. We report on the performance of the teststand, simulations, developments on the laser systems, new radio-frequency components for the S-DALINAC injector, and the status of the implementation of the source.

  20. Noored režissöörid väärtustavad eneseleidmist / Maiju Ingman, Anu Aun ; interv. Karin Klaus

    Index Scriptorium Estoniae

    Ingman, Maiju

    2007-01-01

    Pärnus näidatakse noortefilme : soomlanna Maiju Ingmani TÜ lõputööd "Mida iganes, Aleksander" (teekonnafilm, osades Jaak Prints, Arvo Kukumägi) ja Anu Auna lühifilmi "Indigo tuba" (mängivad Mirtel Pohla, Alo Kõrve). Režissöörid oma otsingutest ja filmidest

  1. Söömishäirete spetsialistid kaesid uusi ravivõimalusi / Anu Järv, Kirsti Akkerman ; interv. Marika Kusnets

    Index Scriptorium Estoniae

    Järv, Anu

    2005-01-01

    Vestlus TÜ kliinikumi psühhiaatriakliiniku söömishäirete keskuse juhataja Anu Järvega ja kliinilise psühholoogi Kirsti Akkermanniga, kes osalesid 27.-30. aprillini Kanadas toimunud Academy of Eating Disorders konverentsil

  2. Three-stub quarter wave superconducting resonator design

    Directory of Open Access Journals (Sweden)

    N. R. Lobanov

    2006-11-01

    Full Text Available This paper describes a concept for superconducting resonators for the acceleration of ions in the velocity range β=v/c=0.015–0.04. Such a resonator operates in λ/4 mode with three loading elements and so can be thought of as a triple quarter wave resonator (3-QWR providing 4 accelerating gaps. The use of a column to support the three stubs provides a benefit beyond those of the two-stub design (2-QWR. In the 3-QWR, the rf mirror currents in the walls surrounding the stubs need only travel through 45° instead of the 90° in the 2-QWR thus further reducing the current in the demountable joints. As in the 2-QWR, the shape of the column allows control of the frequency splitting between the accelerating and other modes. The copper structure is designed to be coated by a thin superconducting film of niobium or lead for operation at 4.3 K. The particular device reported here operates at 150 MHz with an optimum β of 0.04. Its outer cylinder is the same size and shape as for the 2-QWR structure reported previously, in order to minimize construction and cryostat costs. A simple transmission line model is presented and the results of microwave studio and other numerical analyses are discussed. The 3-QWR resonators are appropriate for the upgrade of the low-velocity sections of the ANU Heavy Ion Accelerator Facility and other heavy ion accelerator boosters.

  3. Superconducting Technology Assessment

    National Research Council Canada - National Science Library

    2005-01-01

    This Superconducting Technology Assessment (STA) has been conducted by the National Security Agency to address the fundamental question of a potential replacement for silicon complementary metal oxide semiconductor (CMOS...

  4. Superconductivity and its devices

    International Nuclear Information System (INIS)

    Forbes, D.S.

    1981-01-01

    Among the more important developments that are discussed are cryotrons, superconducting motors and generators, and high-field magnets. Cryotrons will create faster and more economical computer systems. Superconducting motors and generators will cost much less to build than conventional electric generators and cut fuel consumption. Moreover, high-field magnets are being used to confine plasma in connection with nuclear fusion. Superconductors have a vital role to play in all of these developments. Most importantly, though, are the magnetic properties of superconductivity. Superconducting magnets are an integral part of nuclear fusion. In addition, high-field magnets are necessary in the use of accelerators, which are needed to study the interactions between elementary particles

  5. Superconductivity: Heike's heritage

    NARCIS (Netherlands)

    van der Marel, D.; Golden, M.

    2011-01-01

    A century ago, Heike Kamerlingh Onnes discovered superconductivity. And yet, despite the conventional superconductors being understood, the list of unconventional superconductors is growing — for which unconventional theories may be required.

  6. Magnetic and superconducting nanowires

    DEFF Research Database (Denmark)

    Piraux, L.; Encinas, A.; Vila, L.

    2005-01-01

    magnetic and superconducting nanowires. Using different approaches entailing measurements on both single wires and arrays, numerous interesting physical properties have been identified in relation to the nanoscopic dimensions of these materials. Finally, various novel applications of the nanowires are also...

  7. Industrial applied superconductivity

    International Nuclear Information System (INIS)

    Sabrie, J.L.

    1984-01-01

    This paper reviews the main applications of superconductivity in D.C. in variable current and in A.C. The existing markets are now worth the effort of producing commercial superconductors and of developing applications [fr

  8. Superconductivity fundamentals and applications

    CERN Document Server

    Buckel, Werner

    2004-01-01

    This is the second English edition of what has become one of the definitive works on superconductivity in German -- currently in its sixth edition. Comprehensive and easy to understand, this introductory text is written especially with the non-specialist in mind. The authors, both long-term experts in this field, present the fundamental considerations without the need for extensive mathematics, describing the various phenomena connected with the superconducting state, with liberal insertion of experimental facts and examples for modern applications. While all fields of superconducting phenomena are dealt with in detail, this new edition pays particular attention to the groundbreaking discovery of magnesium diboride and the current developments in this field. In addition, a new chapter provides an overview of the elements, alloys and compounds where superconductivity has been observed in experiments, together with their major characteristics. The chapter on technical applications has been considerably expanded...

  9. Superconducting Wind Turbine Generators

    OpenAIRE

    Yunying Pan; Danhzen Gu

    2016-01-01

    Wind energy is well known as a renewable energy because its clean and less polluted characteristic, which is the foundation of development modern wind electricity. To find more efficient wind turbine is the focus of scientists around the world. Compared from conventional wind turbines, superconducting wind turbine generators have advantages at zero resistance, smaller size and lighter weight. Superconducting wind turbine will inevitably become the main trends in this area. This paper intends ...

  10. Superconducting Fullerene Nanowhiskers

    Directory of Open Access Journals (Sweden)

    Yoshihiko Takano

    2012-04-01

    Full Text Available We synthesized superconducting fullerene nanowhiskers (C60NWs by potassium (K intercalation. They showed large superconducting volume fractions, as high as 80%. The superconducting transition temperature at 17 K was independent of the K content (x in the range between 1.6 and 6.0 in K-doped C60 nanowhiskers (KxC60NWs, while the superconducting volume fractions changed with x. The highest shielding fraction of a full shielding volume was observed in the material of K3.3C60NW by heating at 200 °C. On the other hand, that of a K-doped fullerene (K-C60 crystal was less than 1%. We report the superconducting behaviors of our newly synthesized KxC60NWs in comparison to those of KxC60 crystals, which show superconductivity at 19 K in K3C60. The lattice structures are also discussed, based on the x-ray diffraction (XRD analyses.

  11. Electron pairing without superconductivity

    Science.gov (United States)

    Levy, Jeremy

    Strontium titanate (SrTiO3) is the first and best known superconducting semiconductor. It exhibits an extremely low carrier density threshold for superconductivity, and possesses a phase diagram similar to that of high-temperature superconductors--two factors that suggest an unconventional pairing mechanism. Despite sustained interest for 50 years, direct experimental insight into the nature of electron pairing in SrTiO3 has remained elusive. Here we perform transport experiments with nanowire-based single-electron transistors at the interface between SrTiO3 and a thin layer of lanthanum aluminate, LaAlO3. Electrostatic gating reveals a series of two-electron conductance resonances--paired electron states--that bifurcate above a critical pairing field Bp of about 1-4 tesla, an order of magnitude larger than the superconducting critical magnetic field. For magnetic fields below Bp, these resonances are insensitive to the applied magnetic field; for fields in excess of Bp, the resonances exhibit a linear Zeeman-like energy splitting. Electron pairing is stable at temperatures as high as 900 millikelvin, well above the superconducting transition temperature (about 300 millikelvin). These experiments demonstrate the existence of a robust electronic phase in which electrons pair without forming a superconducting state. Key experimental signatures are captured by a model involving an attractive Hubbard interaction that describes real-space electron pairing as a precursor to superconductivity. Support from AFOSR, ONR, ARO, NSF, DOE and NSSEFF is gratefully acknowledged.

  12. Emergent Higgsless Superconductivity

    Directory of Open Access Journals (Sweden)

    Cristina Diamantini M.

    2017-01-01

    Full Text Available We present a new Higgsless model of superconductivity, inspired from anyon superconductivity but P- and T-invariant and generalizable to any dimension. While the original anyon superconductivity mechanism was based on incompressible quantum Hall fluids as average field states, our mechanism involves topological insulators as average field states. In D space dimensions it involves a (D-1-form fictitious pseudovector gauge field which originates from the condensation of topological defects in compact lowenergy effective BF theories. There is no massive Higgs scalar as there is no local order parameter. When electromagnetism is switched on, the photon acquires mass by the topological BF mechanism. Although the charge of the gapless mode (2 and the topological order (4 are the same as those of the standard Higgs model, the two models of superconductivity are clearly different since the origins of the gap, reflected in the high-energy sectors are totally different. In 2D thi! s type of superconductivity is explicitly realized as global superconductivity in Josephson junction arrays. In 3D this model predicts a possible phase transition from topological insulators to Higgsless superconductors.

  13. Parastās priedes (Pinus sylvestris) un parastās egles (Picea abies) mizas ekstraktu ietekme uz fitopatogēno sēņu Colletotrichum acutatum, Phytophthora cactorum un Botrytis cinerea micēlija augšanu un sporulēšanu in vitro

    OpenAIRE

    Minova, Sandra

    2014-01-01

    Pētījuma mērķis bija noteikt egles (Picea abies) un priedes (Pinus sylvestris) mizas etanola ekstraktu ietekmi uz zemeņu fitopatogēo sēņu Colletotrichum acutatum, Phytophthora cactorum un Botrytis cinerea micēlija augšanu un sporulēšanu in vitro. Micēlija augšana un sporulēšana priedes un egles, kā arī no tām iegūto preparatīvo formu dažādu koncentrāciju (0,1, 1, 10, 20 g L-1) ietekmē tika noteiktas izmantojot radiālās augšanas testu un sporu skaitīšanu Gorjajeva kamerā. Ekstrakti un to prepa...

  14. An induction Linac driven heavy-ion fusion systems model

    International Nuclear Information System (INIS)

    Zuckerman, D.S.; Driemeyer, D.E.; Waganer, L.M.; Dudziak, D.J.

    1988-01-01

    A computerized systems model of a heavy-ion fusion (HIF) reactor power plant is presented. The model can be used to analyze the behavior and projected costs of a commercial power plant using an induction linear accelerator (Linac) as a driver. Each major component of the model (targets, reactor cavity, Linac, beam transport, power flow, balance of plant, and costing) is discussed. Various target, reactor cavity, Linac, and beam transport schemes are examined and compared. The preferred operating regime for such a power plant is also examined. The results show that HIF power plants can compete with other advanced energy concepts at the 1000-MW (electric) power level [cost of electricity (COE) -- 50 mill/kW . h] provided that the cost savings predicted for Linacs using higher charge-state ions (+3) can be realized

  15. Overview of High Intensity Linac Programs in Europe

    CERN Document Server

    Garoby, R

    2004-01-01

    Recent years have seen a boost in the support by the European Union (EU) of accelerator research in Europe. Provided they coordinate their efforts and define common goals and strategies, laboratories and institutions from the member states can receive a financial support reaching 50% of the total project cost. In the field of High Intensity Linacs, the EU has already supported the EURISOL initiative for nuclear physics, which this year is applying for funding of a Design Study, and the development of linacs for Waste Transmutation. More recently, an initiative for high-energy physics has been approved, which includes a programme for the development of pulsed linac technologies. The coordination and synergy imposed by the EU rules increase the benefit of the allocated resources. Combined with the ongoing internal projects in the partner laboratories, these European initiatives represent a strong effort focussed towards the development of linac technologies. This paper summarises the requests from the various E...

  16. Post-accelerator LINAC design for the VECC RIB project

    Indian Academy of Sciences (India)

    acclerator type of RIB facility. The scheme utilises the existing = 130 room temperature variable energy cyclotron machine as the primary accelerator for the production of RIBs and radio frequency quadrupole (RFQ) and LINAC modules for ...

  17. A high current electron gun for the IEAv linac

    International Nuclear Information System (INIS)

    Muraro, A. Jr.; Stopa, C.R.S.; Romao, B.M.V.; Jorge, A.M.; Takahashi, J.

    2001-01-01

    This work presents the design, construction and characterization of a new electron gun for the linear electron accelerator (linac) which is under construction at the Instituto de Estudos Avancados (IEAv)

  18. Proposal for a new proton injector for LINAC2

    CERN Document Server

    Couturier, B

    1997-01-01

    The CERN proton Drift Tube LINAC (LINAC2) has been serving as proton injector to the PS Booster for over 20 years. In 1992 the pre-accelerator (composed of a 750 keV column and a double buncher system) has been replaced by a Radio Frequency Quadrupole (RFQ2) able to be accelerated excess of 200 mA of protons. 160 mA-proton beam are delivered to the booster during normal operation, 180mA during high intensity operation. Although this value is satisfying for the future LHC operation, a larger margin would be welcome ( 180mA for production beam, 200 mA for high intensity operation). In this note we propose a solution to improve the overall performance of the CERN proton LINAC (LINAC2).

  19. CAS CERN Accelerator School: Cyclotrons, linacs and their applications. Proceedings

    International Nuclear Information System (INIS)

    Turner, S.

    1996-01-01

    These proceedings present the lectures given at the eighth specialized course organized by the CERN Accelerator School (CAS), the topic this time being 'Cyclotrons, Linacs and Their Applications'. Following an introductory lecture on linacs, the fundamental features of electron, ion and induction linacs are described together with their RF systems and particle sources. Cyclotrons are then introduced followed by details of their different types, their magnet and RF design, and their injection and extraction systems, with a glance towards exotic and possible future machines. Chapters are then presented on the use of linacs and cyclotrons for medical, fission, fusion and material applications, as well as for isotope production. Finally, descriptions of the design of a radioisotope facility, the matching of accelerators to their task and the computational tools used in their design are included. (orig.)

  20. Ion induction linacs: reference design and proposed test-bed

    International Nuclear Information System (INIS)

    Faltens, A.; Keefe, D.

    1980-01-01

    The LBL HIF program has concentrated on the induction linac approach because this type of machine is able to accelerate the entire charge required for fusion in a single, high current bunch, and because of our experience ten years ago using the Astron induction linac at LLL and subsequently building and operating our own machine at LBL. The operation of an rf linac with storage rings is based on an operating line where, excluding the tree of linacs at the lowest energies, acceleration is along a constant current trajectory to peak energy, and then along a constant energy trajectory as the current is compressed and multiplied to reach the required of beam power (> 100 TW). The operation of the linear induction accelerator is along a trajectory where the energy and current are increased simultaneously; at the end of acceleration the beam is split transversely into two groups of beams to provide for higher peak power and a left-right symmetrical pellet bombardment